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ABSTRACT 
The goal of tele-immersion has long been to enable people at 
remote locations to share a sense of presence. A tele-immersion 
system acquires the 3D representation of a collaborator’s 
environment remotely and sends it over the network where it is 
rendered in the user’s environment. Acquisition, reconstruction, 
transmission, and rendering all have to be done in real-time to 
create a sense of presence. With added commodity hardware 
resources, parallelism can increase the acquisition volume and 
reconstruction data quality while maintaining real-time 
performance. However this is not as easy for rendering since all 
of the data need to be combined into a single display. 
In this paper we present an algorithm to compress data from such 
3D environments in real-time to solve this imbalance. We expect 
the compression algorithm to scale comparably to the acquisition 
and reconstruction, reduce network transmission bandwidth, and 
reduce the rendering requirement for real-time performance. We 
have tested the algorithm using a synthetic office data set and 
have achieved a 5 to 1 compression for 22 depth streams.  

Categories and Subject Descriptors 
I.3.2 [Computer Graphics]: Graphics Systems – 
distributed/network graphics. I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – virtual reality. I.3.7 
[Computer Graphics]: Applications. H.3.3 [Information 
Storage and Retrieval]: Information Search and Retrieval  - 
Clustering. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Real-Time Compression, Tele-Immersion, Virtual Reality, K-
Means algorithm, K-Means initialization. 

1. INTRODUCTION 
Tele-immersion creates a sense of presence with distant 
individuals and situations by providing an interactive 3D 

rendering of remote environments. The 3D Tele-Immersion 
research group at the University of North Carolina, Chapel Hill 
[10] together with collaborators at the University of Pennsylvania 
[17], the Pittsburgh Supercomputing Center [11], and Advanced 
Network and Services, Inc. [1] have been actively developing 
tele-immersion systems for several years.  
There are three main components to a tele-immersion system: 
scene acquisition, 3D reconstruction, and rendering. Figure 1 
shows a block diagram relating these components to each other 
and the overall system. The scene acquisition component is 
comprised of multiple digital cameras and PCs.  The digital 
cameras are placed around the scene to be reconstructed. The 
cameras are calibrated and registered to a single coordinate 
system called the world coordinate system. PCs are used to 
synchronize the cameras and control image transfer to the 3D 
reconstruction system. 
The 3D reconstruction system uses the captured images from the 
acquisition system to create real-time depth streams [9]. A depth 
stream is a video stream augmented with per-pixel depth 
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Figure 1. Tele-Immersion System: The 2D cameras acquire 
images of the scene and transmit them to the 3D 
reconstruction where depth streams are created. The depth 
streams are sent to the rendering system for view-dependent 
rendering of the scene. 



information from the world coordinate system. Three input 
images are used to create one depth stream. The images are 
rectified and searched for correspondences between images. 
Using the correspondence information, disparities at each pixel 
are computed. The computed disparities and the calibration 
matrices of the cameras are used to compute the world 
coordinates of each 3D point. The acquisition and 3D 
reconstruction systems can be thought of as an array of 3D 
cameras (i.e., a camera that creates a depth stream with color and 
depth information at each pixel). Each 3D camera is associated 
with a specific viewpoint and view direction defined in the world 
coordinate system. 
The depth streams are sent to the rendering system to be rendered 
and displayed in head-tracked passive stereo [3]. Since the depth 
streams are in world coordinates, thus view-independent, they can 
be rendered from any new viewpoint. The user’s head is tracked 
to render the depth streams from precisely the user’s current 
viewpoint to provide a sense of presence.  
For effective, interactive operation, a tele-immersion system must 
accomplish all of these tasks in real-time. A number of system 
resources must be carefully managed including: 

Network bandwidth. 
The acquired images must be sent to the 3D reconstruction system 
and the resulting depth streams sent to the rendering system.  
Even at a modest frame rate of 10 fps and an image resolution of 
640x480 with 8 bits per pixel,  24.5 Mbs per 2D camera is 
required. Compressing the image streams is generally not possible 
due to severe artifacts created by most coding techniques during 
the 3D reconstruction process. The reconstructed depth streams 
must also be transmitted to the remote rendering system. At 
640x480 resolution, each depth stream is 12.3Mbits per frame 
(i.e., 3 bytes for color and 2 bytes for depth). Without data 
compression, 10 depth streams at 10 fps would produce data at 
1.23 Gbps to the rendering system.  
Computation.  
The correspondence between images must be calculated in order 
to create depth streams in the world coordinate system. 
Fortunately, this process can be parallelized to achieve real-time 
performance as each depth stream computation is independent of 
the others. 
Rendering.  
At a resolution of 640x480, each frame of each depth stream is 
comprised of approximately 300K 3D points. A system with ten 
depth streams would require 90 Mpts/sec rendering performance 
to achieve 30 fps view-dependent rendering which is difficult 
with currently available commodity hardware. Rendering is not as 
easily parallelized as 3D reconstruction since all of the depth 
streams must be rendered into a single view.  
Our initial prototype system used fifteen cameras and five quad-
processor PCs for image acquisition and 3D reconstruction.  Each 
PC was connected to three cameras for image acquisition. These 
five PCs were also used for 3D reconstruction, creating one depth 
stream per PC using the three cameras as input. The five 
reconstructed depth streams were sent over Internet-2 to a remote 
rendering system, which were interactively rendered in stereo 
using three additional PCs [16]. A major bottleneck of this system 
was the computational demand of the 3D scene reconstruction. 

The system was only able to use 320x240 resolution images and 
only processed the foreground. The resulting acquisition volume 
was only approximately one cubic meter and the reconstruction 
rate was limited to 1-2 fps. The rendering system combined the 
320x240 resolution depth streams with a previously modeled 3D 
office as a background and displayed the result in head-tracked 
stereo at 40-50 fps. 
The next system improved the volume of the acquisition space 
and resolution of the streams [6]. Scene acquisition was 
performed using 27 cameras and 9 PCs – each PC connected to 3 
cameras. These cameras were capable of capturing 640x480 
resolution images at 30 fps. These images were sent 
uncompressed to the Terascale Computing System at the 
Pittsburgh Supercomputing Center using Gigabit Ethernet and 
Internet-2 for 3D scene reconstruction. Nine depth streams at 
640x480 resolution with no background subtraction were 
computed at 8 fps by the reconstruction system. The depth 
streams were sent to a 3 PC rendering system also using Internet-
2 and Gigabit Ethernet. However due to the limits of the 
rendering system, the system was only able to achieve 1-2 fps 
end-to-end. 
While the scene acquisition and 3D reconstruction processes can 
be parallelized by adding additional hardware resources, 
experience with our initial prototypes indicate that rendering 
performance is likely to remain a bottleneck. One way to alleviate 
this bottleneck is to exploit coherence between the reconstructed 
depth streams and remove redundant points. Doing so reduces the 
number of points that are communicated to the rendering system 
while maintaining the quality of the reconstruction.  
In this paper, we present techniques for exploiting coherence 
between depth streams in order to find and eliminate redundant 
points. Our contributions include: 

• A real-time depth stream compression technique. Our 
Group Based Real-Time Compression finds and eliminates 
redundant points between two or more depth streams. 

• A depth stream coherence metric. In order to efficiently 
employ Group Based Real-Time Compression, we must be 
able to compute which depth streams are most likely to 
exhibit strong coherence. We present an efficient algorithm 
for partitioning depth streams into coherent groups. 

This paper is organized as follows. Section 2 describes 
background and related work. Section 3 provides an overview of 
our approach and a comparison with other possible approaches. In 
Section 4 we present the compression algorithm in detail. Section 
5 explains how streams are partitioned into coherent groups. We 
give performance results in Section 6, and present our conclusions 
and future work in Section 7. 

2. BACKGROUND AND RELATED WORK 
We are not aware of any work on real-time compression of 
dynamic 3D environments. There is, however, related work on 
compressing static environments.  
McMillan and Bishop [7] proposed using a depth image (i.e., an 
image with color and depth information) to render a scene from 
new viewpoints by warping the depth image. One of the major 
problems is disocclusion artifacts caused when a portion of the 
scene not visible in the depth image is visible from the new 
viewpoint. Using multiple depth images from multiple viewpoints 



can reduce these disocclusion artifacts. Layered Depth Images 
(LDI) merge multiple depth images into a single depth image by 
keeping multiple depth values per pixel [14]. However, the fixed 
resolution of an LDI imposes limits on sampling multiple depth 
images. LDI tree, an octreee with a single LDI in each node, can 
be used to overcome this limitation [2]. 
Grossman and Dally [4] create multiple depth images to model an 
arbitrary synthetic object. The depth images are divided into 8x8 
blocks and redundant blocks are removed. QSplat [13] uses a 
bounding sphere hierarchy to group 3D scanned points for real-
time progressive rendering of large models. 
All of the previous research described above dealt with static data 
in which compression was done only once as a preprocessing 
step. These techniques are not suitable for real-time dynamic 
environments in which the compression has to be done every 
frame. 
There has been special scalable hardware developed to composite 
images with depth information [8, 15]. The rendering system can 
be parallelized using these special hardware by connecting each 
3D camera to a rendering PC and then compositing all of the 
rendered images. Unfortunately these systems are not commonly 
available and expensive to build. 

3. OVERVIEW AND DESIGN GOALS 
This section outlines our design goals for the compression 
algorithm, examines several possible approaches to the problem 
and gives an overview of our Group Based Real-Time 
Compression. 

3.1 Design Goals 
In order to ensure a high quality rendering, we will require that 
the depth stream that most closely matches the user’s viewpoint at 
any given time is not compressed. We will call this depth stream 
the main stream. All points of the main stream are transmitted to 
the rendering process. Furthermore, a subset of the depth streams 
is identified as the set of reference streams. The reference streams 
form a predictive base for detecting and eliminating redundant 
points and are distributed among the reconstruction processes. 
Every stream except for the main stream is compared to one or 
more of the reference streams and redundant points are 
eliminated. The result is called a differential stream. These 
differential streams and the main stream are sent to the rendering 
system.  
Our design goals for the compression algorithm include: 

• Real-time performance. The compression algorithm needs 
to be at least as fast as the 3D reconstruction so there is no 
delay in processing the streams. 

• Scalability. The algorithm needs to scale with the number of 
3D cameras, so that as the number of 3D cameras increases 
the number of data points does not overwhelm the rendering 
system. 

• Data reduction. In order to alleviate the rendering 
bottleneck, the algorithm needs to reduce the number of 
data points by eliminating as many redundant points as 
possible. 

• Tunable network bandwidth. Distributing reference streams 
to the reconstruction processes will require additional 

network bandwidth. The algorithm should be tunable to 
limit the network bandwidth used even as the total number 
of depth streams increases. 

3.2 General Approaches 
Given the restrictions and design goals outlined above, there are a 
number of general approaches that may be incorporated into our 
solution. 

3.2.1 Stream Independent Temporal Compression 
One possible approach is to compress each stream independently 
using temporal coherence. With such an approach, each stream 
acts as its own reference stream. Exploiting temporal coherence 
for traditional video types is known to result in good compression 
for real-time applications. This compression scheme scales well, 
and requires no additional network bandwidth since there is no 
need to communicate reference streams among the reconstruction 
processes. However this compression scheme does not reduce any 
data points that the renderer must render each frame. The renderer 
must render all redundant points from the previous frame with the 
non-redundant points of the current frame. 

3.2.2 Best Interstream Compression 
The best possible interstream compression would be to remove all 
redundant points from all streams by using every stream as a 
possible reference stream. This could be accomplished in the 
following way. The first stream sends all of its data points to the 
rendering system and to all other reconstruction processes as a 
reference stream. The second stream uses the first stream as a 
reference stream, creating a differential stream which it also 
distributes to the other reconstruction processes as a reference 
stream. The third stream receives the first two streams as 
reference streams in order to create its differential stream, and so 
on, continuing until the last stream uses all other streams as 
reference streams (Figure 2a). This is the best possible interstream 
compression since it has no redundant points. The drawbacks to 
this approach, however, are severe. Most streams in this approach 
require multiple reference streams with at least one stream using 
all other streams as references. This dramatically increases 
computation requirements and makes realizing a real-time 
implementation very difficult. Also the number of reference 
streams broadcast is dependent on the number of streams. Thus 
the network bandwidth required will increase as the number of 
streams increases, limiting scalability of the 3D cameras.  

Figure 2. Examples of different compression algorithms and 
its reference stream transfer. The main stream is in bold and 
the arrows show the direction of reference stream movement. 
(a)Best Interstream Compression. (b)Single Reference Stream 
Compression. (c)Neighbors as Reference Stream 
Compression. 

(a)

54321 (b) 

1 2 3 4 5

(c) 

1 2 3 4 55



3.2.3 Single Reference Stream Compression 
Another approach is to use the main stream as the reference 
stream for all other streams (Figure 2b). This does not require 
additional network bandwidth as more streams are added since 
there is always one reference stream. Real-time operation is 
feasible since all other streams are compared against only one 
reference stream. A main disadvantage of this approach is 
possibly poor data compression. The coherence between the main 
stream and the depth streams that use it as a reference stream is 
likely to diminish as the viewpoints of  the streams diverges. 
Furthermore, the depth streams from two nearby viewpoints may 
contain redundant points which are not removed by using the 
main stream as the only reference.  

3.2.4 Neighbors as Reference Stream Compression 
Another approach is for each depth stream to select the closest 
neighboring depth stream as the reference stream to achieve better 
compression. The streams can be linearly sorted such that 
neighboring streams in the list have viewpoints that are close to 
each other. From this sorted list of streams, the streams left of the 
main stream use the right neighboring stream as its reference 
stream, and the streams right of the main stream uses the left 
neighboring stream as its reference stream (Figure 2c). With this 
scheme, every stream has one reference stream regardless of the 
total number of streams. The compression rate depends on the 
number of points that appear in non-neighboring streams but not 
in neighboring streams since these points will be redundant in the 
final result. Since the streams are sorted, the number of redundant 
points in non-neighboring streams but not in neighboring streams 
should be small which makes the compression comparable to the 
previously mentioned Best Interstream Compression method. 
However the network bandwidth demand for this compression 
scheme is high. For n streams there are n-1 reference streams to 
distribute, again limiting scalability of 3D cameras. 

3.3 Overview of Our Approach 
Group Based Real-Time Compression tries to balance 
compression efficiency and network bandwidth requirements by 
limiting the number of reference streams to a configurable limit 
and grouping streams together based on which of these streams 
serves as the best reference stream to use. All streams are divided 
into groups such that each stream is part of only one group. Each 
group has a center stream that is a representative of the group and 
sub streams (i.e., all other streams in the group). Stream 
partitioning and center stream selection is done as a preprocessing 
step. The main stream and the center streams are possible 
reference streams. Thus the number of reference streams 
distributed equals the number of groups created plus one – the 
main stream. Each stream selects the reference stream that will 
generate the best compression and creates a differential stream. 
Since the number of reference streams is limited to the number of 
groups, new streams can be added without increasing the 
reference stream network traffic. Also each stream only uses one 
reference stream to create its differential frame, which makes 
real-time operation feasible. The compression algorithm is 
described in more detail in Section 4. Section 5 details how 
streams are partitioned into groups and the center stream for each 
group selected. 

4. STREAM COMPRESSION 
This section details how depth streams are compressed in real-
time. First we detail how reference streams are selected for each 
stream, and then discuss how these streams are compressed using 
the selected reference stream. 

4.1  Reference Stream Selection 
In Group Based Real-Time Compression, all depth streams are 
partitioned into disjoint groups. The number of groups created is 
determined by the network bandwidth. Each group has a center 
stream, which best represents the group, and sub streams – depth 
streams in a group that are not the center stream. 
Furthermore, one stream is selected as the main stream for which 
no compression is done. The depth stream viewpoint with the 
shortest Euclidian distance to the user is chosen as the main 
stream since it best represents the user’s viewpoint. 
The group containing the main stream is called the main group 
and all other groups are referred to as a sub group. Once the main 
stream has been selected, the reference stream for all streams are 
selected as follows: 

• For the main stream, no reference stream is needed. 

• For the center stream of the main group, the main stream is 
used as the reference stream. 

• For the center streams of the sub groups, the center stream 
of the main group is used as the reference stream. 

• For any other substream, the center stream of its group is 
used as the reference stream. 

An example is shown in Figure 3. 

4.2 Differential Stream Construction 
To construct a differential stream, the data points of a depth 
stream are compared to the data points within the reference 
stream. Points that are within some given distance threshold are 
removed from the depth stream. 
The format of the differential stream is different from the original 
stream format. The original stream has five bytes, three bytes for 
color and two bytes for depth, for each data point. The differential 

Figure 3. An example of reference stream transfer for Group 
Based Real-Time Compression. Stream 2 is the main stream, 
which makes Group 1 the main group. Streams 1,4, and 7 are
the center streams for its group. The arrows show the 
direction of the reference stream movement. 

Group 1 Stream 1 Stream 2 Stream 3 

Group 3 Stream 7 Stream 8 Stream 9 

Group 2 Stream 4 Stream 5 Stream 6 



stream has five bytes for only the non-redundant points (i.e., 
points not removed) and a bitmask to indicate which points have 
been retained and which points have been eliminated. If the bit 
value is ‘0’ then the data point represented by the bit is a 
redundant point and is removed. If the bit value is ‘1’, the 
corresponding point is included. The order of data for non-
redundant points is the same as the order it appears in the bitmask. 
This format reduces the size of a frame in the differential stream 
by 39 bits, five bytes minus one bit, for redundant points and adds 
1 bit for non-redundant points. So for a depth stream of 640x480 
resolution with a 5 to 1 redundancy ratio (i.e., 80% of data points 
are deemed redundant), the data will be reduced from 1.536MB to 
346KB – approximately 5 to 1. 

5. STREAM PARTITION 
As discussed above the streams need to be partitioned into groups. 
In this section we present an effective criterion to partition n 
streams into k groups and to find the appropriate center stream in 
each group. We further use the criteria to develop an efficient 
approximate algorithm for stream partitioning and center stream 
selection when n is too large for an exhaustive approach. 

5.1 Coherence Metrics 
Stream partitioning and selection of center streams has a direct 
impact on compression since all sub streams of a group use the 
center stream of the group as the reference stream. Therefore the 
partitioning should ensure that each stream belongs to a group 
where the volume overlap between the stream and the group 
center stream is maximized.  
However, exact calculation of the volume overlap between two 
streams is expensive.  Thus, in this paper we propose using the 
angle between the view directions of two depth streams as an 
approximation of the overlapped volume. Characteristically, tele-
immersion applications generally organize depth streams to point 
toward a common area (i.e., the acquisition volume). Also the 
volumes of the depth streams are symmetric, making the angle 
between the view directions of two streams a good estimate for 

how much the two stream volumes overlap.  The smaller the 
angle, the bigger the overlap. This is shown in Figure 4.  
The local squared angle sum (LSAS) is defined for stream Si as 
the sum of the squared angle between stream Si and all other 
streams in its group (equation (1)). This is used as the center 
stream selection criterion. The stream with the lowest LSAS of 
the group is chosen to be  the center stream. 

 

LSASi = ∑ [angle of (Si, Sj)] 2, (1) 

where stream Si and Sj is in group k, and nk is the number 
of streams in group k 

The group squared angle sum(GSAS), defined for a given group, 
is the sum of the squared angle between the group’s center stream 
and every sub stream in the group (equation (2)). This is used as 
the partitioning criterion for partitioning n streams into k groups. 
The sum of all GSAS’s for a particular partition (equation (3)) is 
defined as the total squared angle sum (TSAS). We are seeking 
the partition that minimizes TSAS. 

 

GSASi = ∑ [angle of (Cj, Sji)] 2, (2) 

where Cj is the center stream in group j, Sji is a sub 
stream in group j, and nj is the number of streams in 
group j 

 

TSAS = ∑ GSASi, (3) 

where k is the number of groups  

Finally, the central squared angle sum (CSAS) is defined as the 
sum of the squared angle between all center streams (equation 
(4)).  The streams should be partitioned such that CSAS is also 
minimal, since all center streams use each other as references. 
However, it should be noted that minimizing TSAS is much more 
important than minimizing CSAS since TSAS effects 
compression much more than CSAS. 

 

CSAS = ∑  ∑  [angle of (Ci, Cj)] 2, (4) 

where Ci and Cj is and center stream for group i and j, 
and k is the number of groups 

5.2 Exhaustive Partition 
One way to partition n streams into k groups is an exhaustive 
method where all possible grouping combinations are tested. First 
k streams are selected from n streams. The selected streams are 
chosen as center streams and all other streams are assigned to the 
group with which the absolute angle of the stream and the group’s 
center stream is the smallest. This is done for all possible 
combinations of selecting k streams from n streams – a total of 
nCk. For each stream partitioning the TSAS is calculated and the 
stream partitioning with the lowest TSAS is the partitioning 
solution. If there are multiple stream partitions with the same 
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Figure 4. Percentage of redundant points of a stream in the
reference stream vs. the angle between the two streams. The
percentage of redundant points decrease as the angle
increases. The streams are from the 3D camera
configurations of Figure 9. 

0

20

40

60

80

100

0 20 40 60 80

Angle Between Two Streams (degree)

R
ed

un
da

nt
 P

oi
nt

s 
(%

)



j=1 

n 

TSAS, the stream partition with the lowest CSAS is chosen as the 
solution. Unless n is small, this method is not practical. 

5.3 Approximate Partition 
The k-means framework [5], original developed as a clustering 
algorithm, can be used to partition the streams for an approximate 
solution. The k-means framework is used to partition n data points 
into k disjoint subsets such that a criterion is optimized. The k-
means framework is a robust and fast iterative method that finds 
the locally optimal solutions for the given criteria. It is done in the 
following three steps. 

• Initialization: Initial centers for the k partitions are chosen. 

• Assignment: All data points are placed in the partition with 
the center that best satisfies the given criteria.  Usually the 
criteria are given as a relationship between a data point and 
the center. 

• Centering: For each partition the cluster centers are 
reassigned to optimize the criteria. 

The assignment and centering steps are repeated until the cluster 
centers do not change or an error threshold is reached.  

5.3.1 Iterative Solution for Approximate Partitioning 
Given initial center streams, the criteria used to assign all sub 
streams to a group is the absolute angle of the stream and the 
group’s center stream.  The sub streams are assigned such that this 
absolute angle is the smallest. This would give groupings where 
the TSAS is minimized. After every sub stream has been assigned 
to a group, each group recalculates its center stream where the 
stream with the lowest LSAS is the new center stream of the 
group.  The process of grouping and finding the center stream is 
repeated until the center streams converge and does not change 
between iterations. 

5.3.2 Center Stream Initialization 
The performance of this approximate approach heavily depends 
on the initial starting conditions (initial center streams and stream 
order) [12]. Therefore in practice, to obtain a near optimal 
solution, multiple trials are attempted with several different 
instances of initial center streams.   
The full search space for the iterative method could be 
investigated when all possible starting conditions – total of nCk – 
are explored.  A starting condition is given as a set of k initial 
center streams. As seen in Table 2, such an exhaustive method 
will find all possible ending conditions. For example, if n=10 and 
k=5, then there would be a total of 10C5 = 252 possible starting 
conditions, which in the example in Table 2 will lead to one of 46 
distinct ending conditions.  An ending condition is one in which 
the center streams do not change from one iteration to the next. 
The optimal answer is obtained by examining TSAS of all ending 
conditions. If there are multiple ending conditions with the same 
TSAS, the CSAS is used.  
However for numbers of n and k where this becomes impractical, 
we can examine only a small sample of all the possible starting 
conditions. The chances of finding the same optimal solution as 
the exhaustive method will increase by intelligently selecting the 
starting conditions to examine.   

Theoretically, the best way to initialize the starting center streams 
is to have the initial center streams as close to the optimal answer 
as possible.  This means that in general the initial centers should 
be dispersed throughout the data space.  In this section, we 
discuss a method for finding starting center stream assignments 
that are well-dispersed in the data space.  Once good starting 
conditions have been identified, it is straightforward to examine 
all corresponding ending conditions to find a near-optimal 
solution. 
The basic approach to identifying all possible good starting 
conditions is as follows: 

(1) Sort the given streams using global squared angle sum. 
(2) Group the streams in all possible “reasonable” ways. 
(3) Find all possible “reasonable” candidate center streams.  
(4) Generate all possible combination of the candidate center 

streams for each possible grouping as good starting 
conditions. 

(5) Remove all duplicates. 

5.3.2.1 Stream Sorting 
Although the streams cannot be strictly ordered due to the three-
dimensional nature of the viewpoint locations, an approximate 
sorting using the global squared angle sum is sufficient for our 
purpose. Global squared angle sum (GlSAS) for stream Si is the 
sum of the squared angle between steam Si and all other given 
streams (equation (5)). 

 

GlSASi = ∑ [angle of (Si, Sj)] 2, (5) 

where Si and Sj  are streams, and n is the total number of 
streams 

Given total of n streams, the pivot stream is chosen as the stream 
with the lowest GlSAS. Next all other streams are divided into 
three groups – streams with a negative angle with respect to the 
center stream, streams with a positive angle, and streams with 
zero angle.   
Any stream that has zero angle with the center stream, either 
covers the pivot stream or is covered by the pivot stream. All such 
streams except for the dominant stream (i.e., the stream that 
covers all other streams) are removed from the stream list. Figure 
5 illustrates the notion of a dominant stream. These removed 
streams are added back as sub streams to the dominant stream’s 
group after the near-optimal solution has been found. 
The positive angle and negative angle groups are each sorted 
using the GlSAS. The negative angle streams are sorted in 

S1 S2 S3 

Figure 5. Dominant Stream: Streams S1, S2, and S3 all have 
zero angle with each other. Stream S1 covers stream S2 and 
S3 since any data point in S2 and S3 is also in S1. Therefore S1
is the dominant stream. The arrow indicates the stream view 
direction. 



descending order and the positive angle streams are sorted in 
ascending order. Placing the sorted negative angle streams left 
and the sorted positive angle streams on the right of the pivot 
stream creates the final sorted list. 

5.3.2.2 Initial Group Partitions 
After the n streams are sorted, they are partitioned into k initial 
groups.  To ensure that we include all possible good starting 
conditions, we consider all reasonable groupings. Next we 
describe our heuristics for creating reasonable groupings. The k 
initial groups are created such that, 

• If stream Si is in group Gj, stream Si+1 is either in group Gj 
or Gj+1 where 1≤i≤n, 1≤j≤k, and stream Si is left of stream 
Si+1 in the sorted stream list. 

• If n is not an exact multiple of k, every group is assigned 
either n/k or n/k streams and every stream is assigned to 
a group.  If n is an exact multiple of k one group is assigned 
(n/k)-1 streams, another is assigned (n/k)+1 streams, and 
every other group is assigned n/k streams. 

Streams are grouped into every possible combination that meets 
the above reasonableness criteria.  Figure 6a shows the three 
possible groupings of 10 sorted streams into 3 groups.  The 
special case when n is an exact multiple of k is treated differently 
because the normal conditions will only allow one possible 

partition (Figure 6b).  In order to generate multiple partitions, one 
group is assigned (n/k)-1 streams and another is assigned (n/k)+1 
streams, and every other group is assigned n/k streams (Figure 
6c).  

5.3.2.3 Candidate Centers 
Again to ensure all possible good starting conditions are included, 
multiple center stream candidates are chosen for each group.  If 
the group has even number of streams, the two streams in the 
middle are chosen as candidates. If it has odd number of streams, 
the middle stream and its two neighboring streams are chosen as 
candidates (Figure 7a). 

5.3.2.4 Generating Initial Starting Points 
Finally we select a set of k center streams, one from each group, 
to construct a starting condition. All possible combinations for the 
candidate centers are generated as good beginning conditions 
(Figure 7b).  Note that when all possible starting conditions for all 
possible combinations are generated there will be duplicate 
starting conditions, and these are removed. The distinct starting 
conditions generated will be the good starting conditions 
explored. 
If the number of starting conditions is still too large, the desired 
number of initial sets can be stochastically sampled from all 
identified good starting conditions.  In this case, the duplicates are 
not removed when sampling in order to provide those conditions 
with a better chance of being sampled. 

Figure 6. Initial Group Partitions: (a)All possible initial 
group partitions for 10 streams into 3 groups. (b)Only one
grouping is possible for 9 streams and 3 groups with normal
conditions. (c)All possible initial group partitions for 9
streams into 3 groups. 
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1 2 3 | 4 5 6 7 | 8 9 10 
1 2 3 4 | 5 6 7 | 8 9 10 
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1 2 | 3 4 5 | 6 7 8 9 
1 2 | 3 4 5 6 | 7 8 9 
1 2 3 | 4 5 | 6 7 8 9 
1 2 3 | 4 5 6 7 | 8 9 
1 2 3 4 | 5 6 7 | 8 9 
1 2 3 4 | 5 6 | 7 8 9 
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 (a)  1 2 3 | 4 5 6 |  7 8 9 10  

       {1, 4, 8}, {1, 4, 9}, {1, 5, 8}, {1, 5, 9}, {1, 6, 8}, {1, 6, 9},
 (b) {2, 4, 8}, {2, 4, 9}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {2, 6, 9},
       {3, 4, 8}, {3, 4, 9}, {3, 5, 8}, {3, 5, 9}, {3, 6, 8}, {3, 6, 9} 

Figure 7. Initial Center Streams: (a)10 streams partitioned 
into 3 groups. The candidate centers are in bold. (b)Initial 
center streams generated from group partition (a). Total of 18 
initial center streams have been generated for this instance. 

(b) 

Figure 8. (a)Synthetic Office Layout (b)Rendered Images of the Synthetic office. 

(a) 



6. RESULTS 
In this section we present our results for depth stream 
compression and depth stream partitioning. Stream compression 
was tested on two different camera configurations similar to the 
ones used in previous systems [6, 16]. The stream partition 
algorithm was tested on randomly placed cameras as well as the 
configuration used to test stream compression. 

6.1 Stream Compression 
We tested the Group Based Real-Time Compression algorithm on 
two different 3D camera configurations of a synthetic office [3]. 
Figure 8a shows the layout of the synthetic office and Figure 8b is 
an image of the rendered office. The first configuration placed 13 
3D cameras around the scene in a semi-circle. The 3D cameras 
were placed about 2m from the mannequin at its eye height and 
was pointed at the mannequin’s head. The 3D cameras were 
placed about 20cm apart [16] (Figure 9a). The second 
configuration placed 2 rows of 11 3D cameras on a wall 2.25m 
from the mannequin. The two rows were parallel and 20cm apart 

with the bottom row at the height of the mannequin’s eye. 
Cameras in each row were placed at 20cm intervals and pointed at 
the mannequin’s head [6] (Figure 9b). The depth stream from 
each 3D camera was at a resolution of 640x480 without any 
background subtraction. The horizontal field of view for all of the 
cameras was 42 degrees. 

6.1.1 Compression Speed 
The average compression speed for the both 3D camera 
configurations was 0.099sec/frame. The minimum time was 
0.080sec/frame for the both configurations. The maximum time 
was 0.104sec/frame for the first configuration of 13 3D cameras 
and 0.107sec/frame for the second 22 3D camera configuration. 
These results show that the compression algorithm is able to 
handle 10 frames/sec on the average and 9.3 frames/sec in the 
worst case. This is fast enough to handle the 3D reconstruction of 
8 frames/sec given in [6]. All of the results were obtained using a 
PentiumIV 2.4GHz machines with 1GB of memory running 
Linux. 
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Figure 10. Compression rates of different schemes. ‘Best’ shows Best Interstream Compression, ‘Neighbor’ the Neighbors as 
Reference Stream Compression, and ‘Real-Time’ the Group Based Real-Time Compression. (a)13 streams from Figure 9a (b)22 
streams from Figure 9b 

Figure 9. 3D Camera Configuration: The 3D cameras are partitioned using the 
algorithm given in the paper. The 3D cameras in circled numbers are the center 
camera of the group. (a)Top view of 13 3D camera configuration partitioned into 3 
groups. The 3D cameras are placed 2m from the mannequin in a semicircle at
mannequin’s eye height. The distance between neighboring cameras is 20cm. 
(b)Frontal view of 22 3D cameras configuration partitioned into 5 groups. The 3D
cameras are placed on a wall 2.25m from the mannequin. The vertical and horizontal
distance between 3D cameras is 20cm. The bottom row is at mannequin’s eye height. (a) 
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6.1.2 Compression Rate 
Figure 10 shows a comparison of compression rates for Group 
Based Real-Time Compression, Best Interstream Compression 
and Neighbors as Reference Stream Compression. The Best 
Interstream Compression was chosen since it is the best 
compression achievable, and the Neighbors as Reference Stream 
Compression was chosen because it is the best compression 
achievable in real-time. 
The results indicate that Group Based Real-Time Compression is 
comparable to the Neighbors as Reference Stream Compression 
and measures well against the Best Interstream Compression. 

6.1.3 Rendered Image Quality 
We compared the quality of rendered images from Group Based 
Real-Time Compression algorithm to that of different 
compression algorithms including: no compression, Best 
Interstream Compression, and Neighbors as Reference Stream 
Compression. The desired image was rendered using the original 

synthetic office data set. Four novel views were selected for each 
camera configuration. The first was chosen so the user is almost 
directly across the desk from the mannequin. The second was 
placed near a sub stream farthest from its center stream, where the 
center stream is directly across the desk from the mannequin. The 
third was located near a center stream in one of the stream groups 
at the edge. The fourth was placed near a sub stream at the edges. 
The first two views were chosen to represent the usual movement 
of the user and the last two views were selected to show rare 
cases. As shown in Table 1, the quality of images as measured by 
the peak signal-to-noise ratio (PSNR) is very similar for all cases. 

6.2 Stream Partition 
Table 2 shows the result of running the stream partitioning 
algorithm on several different examples. The streams in Table 2a 
were placed randomly with the only constraint that the largest 
possible angle between two streams is 120 degrees. The streams 
for Table 2b are the same configuration as in Figure 9. 
Table 2a shows the algorithm works well for different number of 
streams. The first example (n=10, k=5) shows that for a relatively 
small n and k an exhaustive search is plausible. The third (n=25, 
k=5) is an example of where n is an exact multiple of k. The final 
example (n=60, k=5) is a case where doing an exhaustive search 
is not practical. 
Table 2b demonstrates that the algorithm works well for streams 
placed fairly uniformly, which better represents the application. 
One thing to note is that there were two instances of center 
streams – {3, 7, 11} and {3, 8, 12} – with the same GSAS of 550 
for the first configuration (n=13, k=3). However {3, 7, 11} was 
selected on the basis of the CSAS. 
The last row of the table shows that for all cases tested, the 
solution generated by the approximate partitioning method is 
either the same or very close to the optimal solution. All solutions 
were in the top 0.4% of the total possible solutions. Also for 
camera configurations better suited to the application (i.e., 
roughly uniform placement) approximate partitioning method 
found the optimal solution. This was achieved with exploring less 
then 1% of the total possible initial center streams when the 
number of streams was larger then 22. 

 n=10, k=5 n=22, k=5 n=25, k=5 n=60, k=5 n=13, k=5 n=22, k=5
# of possible initial center streams 252 26334 53130 5461512 286 26334
# of created  initial center streams 144 240 529 352 20 240
Total # of possible center streams 46 10443 25907 5170194 5 612
Optimal center streams {2, 3, 6, 8, 9} {4, 15, 16, 17, 20} {3, 11, 12, 13, 17} {2, 8, 22, 34, 58} {3, 7, 11} {2, 6, 10, 15, 19}
Optimal solution’s TSAS 246 574.25 686.5 2224 550 432.032
Found center streams solution {2, 3, 6, 8, 9} {9, 15, 16, 17, 20} {3, 11, 12, 13, 21} {22, 34, 36, 47, 54} {3, 7, 11} {2, 6, 10, 15, 19}
Found solution’s TSAS 246 734 730.5 3984.5 550 432.032
# of solutions with less TSAS 0 6 1 20517 0 0

 (a) (b) 

Table 2. Stream Partition: n is the total number of streams and k is the number of groups. Total number of possible solutions and the 
optimal solution is from running all possible initial center streams. Total squared angle sum(TSAS) is given with each center streams 
solution. The last row shows the number of solutions that has a smaller TSAS then the approximate partitioning solution. Streams for (a) 
was generated randomly while (b) is the same stream configuration given in Figure 9.

PSNR Camera 
Config View Main 

Stream None Best Neighbor Real-
Time 

1 3 24.57 24.86 24.96 25.01
2 13 23.87 24.29 24.21 24.22
3 7 26.20 26.91 26.87 26.86

1 

4 9 24.81 25.52 25.45 25.41
1 6 25.78 26.23 26.81 26.15
2 17 24.95 25.51 25.42 25.41
3 2 24.82 25.56 25.44 25.42

2 

4 22 24.06 24.50 24.41 24.38

Table 1. The table shows the peak signal-to-noise ratio(PSNR) 
for different compression schemes. ‘None’ is no compression, 
‘Best’ is Best Interstream Compression, ‘Neighbor’ is 
Neighbors as Reference Stream Compression, and ‘Real-Time’ 
is Group Based Real-Time Compression. The ‘Main Stream’ 
column shows the main stream for the given novel view. 
Configuration 1 is with 13 streams and 2 is with 22 streams. 



7. CONCLUSIONS AND FUTURE WORK 
In this paper we have presented a real-time compression 
algorithm for 3D environments to solve the scalability imbalance 
between the 3D cameras (acquisition and 3D reconstruction) and 
the rendering system used for tele-immersion. Furthermore, we 
have presented a stream partitioning algorithm that helps achieve 
real-time compression by effectively grouping streams with high 
coherence. We have shown that the compression algorithm 
performs in real-time, is scalable, and can tolerate network 
bandwidth limits for multiple configurations using synthetic data 
sets. 
As part of future work, we would like to test Group Based Real-
Time Compression algorithm’s performance with real-world data 
sets, and make the following improvements to the algorithm: 

• Use temporal coherence to increase compression and reduce 
comparisons made with the reference stream for faster 
compression. 

• Develop a better metric for main stream selection. Instead 
of just using Euclidean distance, the angles between the 
user’s view and the view directions of the 3D cameras can 
be used in conjunction. 

• As the main stream changes, major portions of the point 
data set changes abruptly causing a popping effect. This is 
worse if the main stream changes from one group to 
another. A gradual change in the point data set as the main 
stream changes would be desirable. 

Finally, we would like to explore the proposed stochastic 
sampling for generating initial starting points for approximate 
stream partitioning. 
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