
Real-Time Compression for Dynamic 3D Environments
Sang-Uok Kum

kumsu@cs.unc.edu
Ketan Mayer-Patel
kmp@cs.unc.edu

Henry Fuchs
fuchs@cs.unc.edu

University of North Carolina at Chapel Hill
CB#3175, Sitterson Hall

Chapel Hill, NC 27599 USA

ABSTRACT
The goal of tele-immersion has long been to enable people at
remote locations to share a sense of presence. A tele-immersion
system acquires the 3D representation of a collaborator’s
environment remotely and sends it over the network where it is
rendered in the user’s environment. Acquisition, reconstruction,
transmission, and rendering all have to be done in real-time to
create a sense of presence. With added commodity hardware
resources, parallelism can increase the acquisition volume and
reconstruction data quality while maintaining real-time
performance. However this is not as easy for rendering since all
of the data need to be combined into a single display.
In this paper we present an algorithm to compress data from such
3D environments in real-time to solve this imbalance. We expect
the compression algorithm to scale comparably to the acquisition
and reconstruction, reduce network transmission bandwidth, and
reduce the rendering requirement for real-time performance. We
have tested the algorithm using a synthetic office data set and
have achieved a 5 to 1 compression for 22 depth streams.

Categories and Subject Descriptors
I.3.2 [Computer Graphics]: Graphics Systems –
distributed/network graphics. I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – virtual reality. I.3.7
[Computer Graphics]: Applications. H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval -
Clustering.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Real-Time Compression, Tele-Immersion, Virtual Reality, K-
Means algorithm, K-Means initialization.

1. INTRODUCTION
Tele-immersion creates a sense of presence with distant
individuals and situations by providing an interactive 3D

rendering of remote environments. The 3D Tele-Immersion
research group at the University of North Carolina, Chapel Hill
[10] together with collaborators at the University of Pennsylvania
[17], the Pittsburgh Supercomputing Center [11], and Advanced
Network and Services, Inc. [1] have been actively developing
tele-immersion systems for several years.
There are three main components to a tele-immersion system:
scene acquisition, 3D reconstruction, and rendering. Figure 1
shows a block diagram relating these components to each other
and the overall system. The scene acquisition component is
comprised of multiple digital cameras and PCs. The digital
cameras are placed around the scene to be reconstructed. The
cameras are calibrated and registered to a single coordinate
system called the world coordinate system. PCs are used to
synchronize the cameras and control image transfer to the 3D
reconstruction system.
The 3D reconstruction system uses the captured images from the
acquisition system to create real-time depth streams [9]. A depth
stream is a video stream augmented with per-pixel depth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MM’03, November 2-8, 2003, Berkeley, California, USA.

Copyright 2003 ACM 1-58113-722-2/03/0011…$5.00.

2D Camera
2D Camera
2D Camera 3D

Recon-
struction

3D Camera

3D Camera
3D Camera

3D Camera

2D Camera
2D Camera
2D Camera 3D

Recon-
struction

3D Camera

Rendering System

user
location

Remote
Scene

Remote
Scene

D
is

pl
ay

 S
cr

ee
n

User

Figure 1. Tele-Immersion System: The 2D cameras acquire
images of the scene and transmit them to the 3D
reconstruction where depth streams are created. The depth
streams are sent to the rendering system for view-dependent
rendering of the scene.

information from the world coordinate system. Three input
images are used to create one depth stream. The images are
rectified and searched for correspondences between images.
Using the correspondence information, disparities at each pixel
are computed. The computed disparities and the calibration
matrices of the cameras are used to compute the world
coordinates of each 3D point. The acquisition and 3D
reconstruction systems can be thought of as an array of 3D
cameras (i.e., a camera that creates a depth stream with color and
depth information at each pixel). Each 3D camera is associated
with a specific viewpoint and view direction defined in the world
coordinate system.
The depth streams are sent to the rendering system to be rendered
and displayed in head-tracked passive stereo [3]. Since the depth
streams are in world coordinates, thus view-independent, they can
be rendered from any new viewpoint. The user’s head is tracked
to render the depth streams from precisely the user’s current
viewpoint to provide a sense of presence.
For effective, interactive operation, a tele-immersion system must
accomplish all of these tasks in real-time. A number of system
resources must be carefully managed including:

Network bandwidth.
The acquired images must be sent to the 3D reconstruction system
and the resulting depth streams sent to the rendering system.
Even at a modest frame rate of 10 fps and an image resolution of
640x480 with 8 bits per pixel, 24.5 Mbs per 2D camera is
required. Compressing the image streams is generally not possible
due to severe artifacts created by most coding techniques during
the 3D reconstruction process. The reconstructed depth streams
must also be transmitted to the remote rendering system. At
640x480 resolution, each depth stream is 12.3Mbits per frame
(i.e., 3 bytes for color and 2 bytes for depth). Without data
compression, 10 depth streams at 10 fps would produce data at
1.23 Gbps to the rendering system.
Computation.
The correspondence between images must be calculated in order
to create depth streams in the world coordinate system.
Fortunately, this process can be parallelized to achieve real-time
performance as each depth stream computation is independent of
the others.
Rendering.
At a resolution of 640x480, each frame of each depth stream is
comprised of approximately 300K 3D points. A system with ten
depth streams would require 90 Mpts/sec rendering performance
to achieve 30 fps view-dependent rendering which is difficult
with currently available commodity hardware. Rendering is not as
easily parallelized as 3D reconstruction since all of the depth
streams must be rendered into a single view.
Our initial prototype system used fifteen cameras and five quad-
processor PCs for image acquisition and 3D reconstruction. Each
PC was connected to three cameras for image acquisition. These
five PCs were also used for 3D reconstruction, creating one depth
stream per PC using the three cameras as input. The five
reconstructed depth streams were sent over Internet-2 to a remote
rendering system, which were interactively rendered in stereo
using three additional PCs [16]. A major bottleneck of this system
was the computational demand of the 3D scene reconstruction.

The system was only able to use 320x240 resolution images and
only processed the foreground. The resulting acquisition volume
was only approximately one cubic meter and the reconstruction
rate was limited to 1-2 fps. The rendering system combined the
320x240 resolution depth streams with a previously modeled 3D
office as a background and displayed the result in head-tracked
stereo at 40-50 fps.
The next system improved the volume of the acquisition space
and resolution of the streams [6]. Scene acquisition was
performed using 27 cameras and 9 PCs – each PC connected to 3
cameras. These cameras were capable of capturing 640x480
resolution images at 30 fps. These images were sent
uncompressed to the Terascale Computing System at the
Pittsburgh Supercomputing Center using Gigabit Ethernet and
Internet-2 for 3D scene reconstruction. Nine depth streams at
640x480 resolution with no background subtraction were
computed at 8 fps by the reconstruction system. The depth
streams were sent to a 3 PC rendering system also using Internet-
2 and Gigabit Ethernet. However due to the limits of the
rendering system, the system was only able to achieve 1-2 fps
end-to-end.
While the scene acquisition and 3D reconstruction processes can
be parallelized by adding additional hardware resources,
experience with our initial prototypes indicate that rendering
performance is likely to remain a bottleneck. One way to alleviate
this bottleneck is to exploit coherence between the reconstructed
depth streams and remove redundant points. Doing so reduces the
number of points that are communicated to the rendering system
while maintaining the quality of the reconstruction.
In this paper, we present techniques for exploiting coherence
between depth streams in order to find and eliminate redundant
points. Our contributions include:

• A real-time depth stream compression technique. Our
Group Based Real-Time Compression finds and eliminates
redundant points between two or more depth streams.

• A depth stream coherence metric. In order to efficiently
employ Group Based Real-Time Compression, we must be
able to compute which depth streams are most likely to
exhibit strong coherence. We present an efficient algorithm
for partitioning depth streams into coherent groups.

This paper is organized as follows. Section 2 describes
background and related work. Section 3 provides an overview of
our approach and a comparison with other possible approaches. In
Section 4 we present the compression algorithm in detail. Section
5 explains how streams are partitioned into coherent groups. We
give performance results in Section 6, and present our conclusions
and future work in Section 7.

2. BACKGROUND AND RELATED WORK
We are not aware of any work on real-time compression of
dynamic 3D environments. There is, however, related work on
compressing static environments.
McMillan and Bishop [7] proposed using a depth image (i.e., an
image with color and depth information) to render a scene from
new viewpoints by warping the depth image. One of the major
problems is disocclusion artifacts caused when a portion of the
scene not visible in the depth image is visible from the new
viewpoint. Using multiple depth images from multiple viewpoints

can reduce these disocclusion artifacts. Layered Depth Images
(LDI) merge multiple depth images into a single depth image by
keeping multiple depth values per pixel [14]. However, the fixed
resolution of an LDI imposes limits on sampling multiple depth
images. LDI tree, an octreee with a single LDI in each node, can
be used to overcome this limitation [2].
Grossman and Dally [4] create multiple depth images to model an
arbitrary synthetic object. The depth images are divided into 8x8
blocks and redundant blocks are removed. QSplat [13] uses a
bounding sphere hierarchy to group 3D scanned points for real-
time progressive rendering of large models.
All of the previous research described above dealt with static data
in which compression was done only once as a preprocessing
step. These techniques are not suitable for real-time dynamic
environments in which the compression has to be done every
frame.
There has been special scalable hardware developed to composite
images with depth information [8, 15]. The rendering system can
be parallelized using these special hardware by connecting each
3D camera to a rendering PC and then compositing all of the
rendered images. Unfortunately these systems are not commonly
available and expensive to build.

3. OVERVIEW AND DESIGN GOALS
This section outlines our design goals for the compression
algorithm, examines several possible approaches to the problem
and gives an overview of our Group Based Real-Time
Compression.

3.1 Design Goals
In order to ensure a high quality rendering, we will require that
the depth stream that most closely matches the user’s viewpoint at
any given time is not compressed. We will call this depth stream
the main stream. All points of the main stream are transmitted to
the rendering process. Furthermore, a subset of the depth streams
is identified as the set of reference streams. The reference streams
form a predictive base for detecting and eliminating redundant
points and are distributed among the reconstruction processes.
Every stream except for the main stream is compared to one or
more of the reference streams and redundant points are
eliminated. The result is called a differential stream. These
differential streams and the main stream are sent to the rendering
system.
Our design goals for the compression algorithm include:

• Real-time performance. The compression algorithm needs
to be at least as fast as the 3D reconstruction so there is no
delay in processing the streams.

• Scalability. The algorithm needs to scale with the number of
3D cameras, so that as the number of 3D cameras increases
the number of data points does not overwhelm the rendering
system.

• Data reduction. In order to alleviate the rendering
bottleneck, the algorithm needs to reduce the number of
data points by eliminating as many redundant points as
possible.

• Tunable network bandwidth. Distributing reference streams
to the reconstruction processes will require additional

network bandwidth. The algorithm should be tunable to
limit the network bandwidth used even as the total number
of depth streams increases.

3.2 General Approaches
Given the restrictions and design goals outlined above, there are a
number of general approaches that may be incorporated into our
solution.

3.2.1 Stream Independent Temporal Compression
One possible approach is to compress each stream independently
using temporal coherence. With such an approach, each stream
acts as its own reference stream. Exploiting temporal coherence
for traditional video types is known to result in good compression
for real-time applications. This compression scheme scales well,
and requires no additional network bandwidth since there is no
need to communicate reference streams among the reconstruction
processes. However this compression scheme does not reduce any
data points that the renderer must render each frame. The renderer
must render all redundant points from the previous frame with the
non-redundant points of the current frame.

3.2.2 Best Interstream Compression
The best possible interstream compression would be to remove all
redundant points from all streams by using every stream as a
possible reference stream. This could be accomplished in the
following way. The first stream sends all of its data points to the
rendering system and to all other reconstruction processes as a
reference stream. The second stream uses the first stream as a
reference stream, creating a differential stream which it also
distributes to the other reconstruction processes as a reference
stream. The third stream receives the first two streams as
reference streams in order to create its differential stream, and so
on, continuing until the last stream uses all other streams as
reference streams (Figure 2a). This is the best possible interstream
compression since it has no redundant points. The drawbacks to
this approach, however, are severe. Most streams in this approach
require multiple reference streams with at least one stream using
all other streams as references. This dramatically increases
computation requirements and makes realizing a real-time
implementation very difficult. Also the number of reference
streams broadcast is dependent on the number of streams. Thus
the network bandwidth required will increase as the number of
streams increases, limiting scalability of the 3D cameras.

Figure 2. Examples of different compression algorithms and
its reference stream transfer. The main stream is in bold and
the arrows show the direction of reference stream movement.
(a)Best Interstream Compression. (b)Single Reference Stream
Compression. (c)Neighbors as Reference Stream
Compression.

(a)

54321 (b)

1 2 3 4 5

(c)

1 2 3 4 55

3.2.3 Single Reference Stream Compression
Another approach is to use the main stream as the reference
stream for all other streams (Figure 2b). This does not require
additional network bandwidth as more streams are added since
there is always one reference stream. Real-time operation is
feasible since all other streams are compared against only one
reference stream. A main disadvantage of this approach is
possibly poor data compression. The coherence between the main
stream and the depth streams that use it as a reference stream is
likely to diminish as the viewpoints of the streams diverges.
Furthermore, the depth streams from two nearby viewpoints may
contain redundant points which are not removed by using the
main stream as the only reference.

3.2.4 Neighbors as Reference Stream Compression
Another approach is for each depth stream to select the closest
neighboring depth stream as the reference stream to achieve better
compression. The streams can be linearly sorted such that
neighboring streams in the list have viewpoints that are close to
each other. From this sorted list of streams, the streams left of the
main stream use the right neighboring stream as its reference
stream, and the streams right of the main stream uses the left
neighboring stream as its reference stream (Figure 2c). With this
scheme, every stream has one reference stream regardless of the
total number of streams. The compression rate depends on the
number of points that appear in non-neighboring streams but not
in neighboring streams since these points will be redundant in the
final result. Since the streams are sorted, the number of redundant
points in non-neighboring streams but not in neighboring streams
should be small which makes the compression comparable to the
previously mentioned Best Interstream Compression method.
However the network bandwidth demand for this compression
scheme is high. For n streams there are n-1 reference streams to
distribute, again limiting scalability of 3D cameras.

3.3 Overview of Our Approach
Group Based Real-Time Compression tries to balance
compression efficiency and network bandwidth requirements by
limiting the number of reference streams to a configurable limit
and grouping streams together based on which of these streams
serves as the best reference stream to use. All streams are divided
into groups such that each stream is part of only one group. Each
group has a center stream that is a representative of the group and
sub streams (i.e., all other streams in the group). Stream
partitioning and center stream selection is done as a preprocessing
step. The main stream and the center streams are possible
reference streams. Thus the number of reference streams
distributed equals the number of groups created plus one – the
main stream. Each stream selects the reference stream that will
generate the best compression and creates a differential stream.
Since the number of reference streams is limited to the number of
groups, new streams can be added without increasing the
reference stream network traffic. Also each stream only uses one
reference stream to create its differential frame, which makes
real-time operation feasible. The compression algorithm is
described in more detail in Section 4. Section 5 details how
streams are partitioned into groups and the center stream for each
group selected.

4. STREAM COMPRESSION
This section details how depth streams are compressed in real-
time. First we detail how reference streams are selected for each
stream, and then discuss how these streams are compressed using
the selected reference stream.

4.1 Reference Stream Selection
In Group Based Real-Time Compression, all depth streams are
partitioned into disjoint groups. The number of groups created is
determined by the network bandwidth. Each group has a center
stream, which best represents the group, and sub streams – depth
streams in a group that are not the center stream.
Furthermore, one stream is selected as the main stream for which
no compression is done. The depth stream viewpoint with the
shortest Euclidian distance to the user is chosen as the main
stream since it best represents the user’s viewpoint.
The group containing the main stream is called the main group
and all other groups are referred to as a sub group. Once the main
stream has been selected, the reference stream for all streams are
selected as follows:

• For the main stream, no reference stream is needed.

• For the center stream of the main group, the main stream is
used as the reference stream.

• For the center streams of the sub groups, the center stream
of the main group is used as the reference stream.

• For any other substream, the center stream of its group is
used as the reference stream.

An example is shown in Figure 3.

4.2 Differential Stream Construction
To construct a differential stream, the data points of a depth
stream are compared to the data points within the reference
stream. Points that are within some given distance threshold are
removed from the depth stream.
The format of the differential stream is different from the original
stream format. The original stream has five bytes, three bytes for
color and two bytes for depth, for each data point. The differential

Figure 3. An example of reference stream transfer for Group
Based Real-Time Compression. Stream 2 is the main stream,
which makes Group 1 the main group. Streams 1,4, and 7 are
the center streams for its group. The arrows show the
direction of the reference stream movement.

Group 1 Stream 1 Stream 2 Stream 3

Group 3 Stream 7 Stream 8 Stream 9

Group 2 Stream 4 Stream 5 Stream 6

stream has five bytes for only the non-redundant points (i.e.,
points not removed) and a bitmask to indicate which points have
been retained and which points have been eliminated. If the bit
value is ‘0’ then the data point represented by the bit is a
redundant point and is removed. If the bit value is ‘1’, the
corresponding point is included. The order of data for non-
redundant points is the same as the order it appears in the bitmask.
This format reduces the size of a frame in the differential stream
by 39 bits, five bytes minus one bit, for redundant points and adds
1 bit for non-redundant points. So for a depth stream of 640x480
resolution with a 5 to 1 redundancy ratio (i.e., 80% of data points
are deemed redundant), the data will be reduced from 1.536MB to
346KB – approximately 5 to 1.

5. STREAM PARTITION
As discussed above the streams need to be partitioned into groups.
In this section we present an effective criterion to partition n
streams into k groups and to find the appropriate center stream in
each group. We further use the criteria to develop an efficient
approximate algorithm for stream partitioning and center stream
selection when n is too large for an exhaustive approach.

5.1 Coherence Metrics
Stream partitioning and selection of center streams has a direct
impact on compression since all sub streams of a group use the
center stream of the group as the reference stream. Therefore the
partitioning should ensure that each stream belongs to a group
where the volume overlap between the stream and the group
center stream is maximized.
However, exact calculation of the volume overlap between two
streams is expensive. Thus, in this paper we propose using the
angle between the view directions of two depth streams as an
approximation of the overlapped volume. Characteristically, tele-
immersion applications generally organize depth streams to point
toward a common area (i.e., the acquisition volume). Also the
volumes of the depth streams are symmetric, making the angle
between the view directions of two streams a good estimate for

how much the two stream volumes overlap. The smaller the
angle, the bigger the overlap. This is shown in Figure 4.
The local squared angle sum (LSAS) is defined for stream Si as
the sum of the squared angle between stream Si and all other
streams in its group (equation (1)). This is used as the center
stream selection criterion. The stream with the lowest LSAS of
the group is chosen to be the center stream.

LSASi = ∑ [angle of (Si, Sj)] 2, (1)

where stream Si and Sj is in group k, and nk is the number
of streams in group k

The group squared angle sum(GSAS), defined for a given group,
is the sum of the squared angle between the group’s center stream
and every sub stream in the group (equation (2)). This is used as
the partitioning criterion for partitioning n streams into k groups.
The sum of all GSAS’s for a particular partition (equation (3)) is
defined as the total squared angle sum (TSAS). We are seeking
the partition that minimizes TSAS.

GSASi = ∑ [angle of (Cj, Sji)] 2, (2)

where Cj is the center stream in group j, Sji is a sub
stream in group j, and nj is the number of streams in
group j

TSAS = ∑ GSASi, (3)

where k is the number of groups

Finally, the central squared angle sum (CSAS) is defined as the
sum of the squared angle between all center streams (equation
(4)). The streams should be partitioned such that CSAS is also
minimal, since all center streams use each other as references.
However, it should be noted that minimizing TSAS is much more
important than minimizing CSAS since TSAS effects
compression much more than CSAS.

CSAS = ∑ ∑ [angle of (Ci, Cj)] 2, (4)

where Ci and Cj is and center stream for group i and j,
and k is the number of groups

5.2 Exhaustive Partition
One way to partition n streams into k groups is an exhaustive
method where all possible grouping combinations are tested. First
k streams are selected from n streams. The selected streams are
chosen as center streams and all other streams are assigned to the
group with which the absolute angle of the stream and the group’s
center stream is the smallest. This is done for all possible
combinations of selecting k streams from n streams – a total of
nCk. For each stream partitioning the TSAS is calculated and the
stream partitioning with the lowest TSAS is the partitioning
solution. If there are multiple stream partitions with the same

nk

j=1

nj

i=1

k-1 k

i=1 j=i+1

k

i=1

Figure 4. Percentage of redundant points of a stream in the
reference stream vs. the angle between the two streams. The
percentage of redundant points decrease as the angle
increases. The streams are from the 3D camera
configurations of Figure 9.

0

20

40

60

80

100

0 20 40 60 80

Angle Between Two Streams (degree)

R
ed

un
da

nt
 P

oi
nt

s
(%

)

j=1

n

TSAS, the stream partition with the lowest CSAS is chosen as the
solution. Unless n is small, this method is not practical.

5.3 Approximate Partition
The k-means framework [5], original developed as a clustering
algorithm, can be used to partition the streams for an approximate
solution. The k-means framework is used to partition n data points
into k disjoint subsets such that a criterion is optimized. The k-
means framework is a robust and fast iterative method that finds
the locally optimal solutions for the given criteria. It is done in the
following three steps.

• Initialization: Initial centers for the k partitions are chosen.

• Assignment: All data points are placed in the partition with
the center that best satisfies the given criteria. Usually the
criteria are given as a relationship between a data point and
the center.

• Centering: For each partition the cluster centers are
reassigned to optimize the criteria.

The assignment and centering steps are repeated until the cluster
centers do not change or an error threshold is reached.

5.3.1 Iterative Solution for Approximate Partitioning
Given initial center streams, the criteria used to assign all sub
streams to a group is the absolute angle of the stream and the
group’s center stream. The sub streams are assigned such that this
absolute angle is the smallest. This would give groupings where
the TSAS is minimized. After every sub stream has been assigned
to a group, each group recalculates its center stream where the
stream with the lowest LSAS is the new center stream of the
group. The process of grouping and finding the center stream is
repeated until the center streams converge and does not change
between iterations.

5.3.2 Center Stream Initialization
The performance of this approximate approach heavily depends
on the initial starting conditions (initial center streams and stream
order) [12]. Therefore in practice, to obtain a near optimal
solution, multiple trials are attempted with several different
instances of initial center streams.
The full search space for the iterative method could be
investigated when all possible starting conditions – total of nCk –
are explored. A starting condition is given as a set of k initial
center streams. As seen in Table 2, such an exhaustive method
will find all possible ending conditions. For example, if n=10 and
k=5, then there would be a total of 10C5 = 252 possible starting
conditions, which in the example in Table 2 will lead to one of 46
distinct ending conditions. An ending condition is one in which
the center streams do not change from one iteration to the next.
The optimal answer is obtained by examining TSAS of all ending
conditions. If there are multiple ending conditions with the same
TSAS, the CSAS is used.
However for numbers of n and k where this becomes impractical,
we can examine only a small sample of all the possible starting
conditions. The chances of finding the same optimal solution as
the exhaustive method will increase by intelligently selecting the
starting conditions to examine.

Theoretically, the best way to initialize the starting center streams
is to have the initial center streams as close to the optimal answer
as possible. This means that in general the initial centers should
be dispersed throughout the data space. In this section, we
discuss a method for finding starting center stream assignments
that are well-dispersed in the data space. Once good starting
conditions have been identified, it is straightforward to examine
all corresponding ending conditions to find a near-optimal
solution.
The basic approach to identifying all possible good starting
conditions is as follows:

(1) Sort the given streams using global squared angle sum.
(2) Group the streams in all possible “reasonable” ways.
(3) Find all possible “reasonable” candidate center streams.
(4) Generate all possible combination of the candidate center

streams for each possible grouping as good starting
conditions.

(5) Remove all duplicates.

5.3.2.1 Stream Sorting
Although the streams cannot be strictly ordered due to the three-
dimensional nature of the viewpoint locations, an approximate
sorting using the global squared angle sum is sufficient for our
purpose. Global squared angle sum (GlSAS) for stream Si is the
sum of the squared angle between steam Si and all other given
streams (equation (5)).

GlSASi = ∑ [angle of (Si, Sj)] 2, (5)

where Si and Sj are streams, and n is the total number of
streams

Given total of n streams, the pivot stream is chosen as the stream
with the lowest GlSAS. Next all other streams are divided into
three groups – streams with a negative angle with respect to the
center stream, streams with a positive angle, and streams with
zero angle.
Any stream that has zero angle with the center stream, either
covers the pivot stream or is covered by the pivot stream. All such
streams except for the dominant stream (i.e., the stream that
covers all other streams) are removed from the stream list. Figure
5 illustrates the notion of a dominant stream. These removed
streams are added back as sub streams to the dominant stream’s
group after the near-optimal solution has been found.
The positive angle and negative angle groups are each sorted
using the GlSAS. The negative angle streams are sorted in

S1 S2 S3

Figure 5. Dominant Stream: Streams S1, S2, and S3 all have
zero angle with each other. Stream S1 covers stream S2 and
S3 since any data point in S2 and S3 is also in S1. Therefore S1
is the dominant stream. The arrow indicates the stream view
direction.

descending order and the positive angle streams are sorted in
ascending order. Placing the sorted negative angle streams left
and the sorted positive angle streams on the right of the pivot
stream creates the final sorted list.

5.3.2.2 Initial Group Partitions
After the n streams are sorted, they are partitioned into k initial
groups. To ensure that we include all possible good starting
conditions, we consider all reasonable groupings. Next we
describe our heuristics for creating reasonable groupings. The k
initial groups are created such that,

• If stream Si is in group Gj, stream Si+1 is either in group Gj
or Gj+1 where 1≤i≤n, 1≤j≤k, and stream Si is left of stream
Si+1 in the sorted stream list.

• If n is not an exact multiple of k, every group is assigned
either n/k or n/k streams and every stream is assigned to
a group. If n is an exact multiple of k one group is assigned
(n/k)-1 streams, another is assigned (n/k)+1 streams, and
every other group is assigned n/k streams.

Streams are grouped into every possible combination that meets
the above reasonableness criteria. Figure 6a shows the three
possible groupings of 10 sorted streams into 3 groups. The
special case when n is an exact multiple of k is treated differently
because the normal conditions will only allow one possible

partition (Figure 6b). In order to generate multiple partitions, one
group is assigned (n/k)-1 streams and another is assigned (n/k)+1
streams, and every other group is assigned n/k streams (Figure
6c).

5.3.2.3 Candidate Centers
Again to ensure all possible good starting conditions are included,
multiple center stream candidates are chosen for each group. If
the group has even number of streams, the two streams in the
middle are chosen as candidates. If it has odd number of streams,
the middle stream and its two neighboring streams are chosen as
candidates (Figure 7a).

5.3.2.4 Generating Initial Starting Points
Finally we select a set of k center streams, one from each group,
to construct a starting condition. All possible combinations for the
candidate centers are generated as good beginning conditions
(Figure 7b). Note that when all possible starting conditions for all
possible combinations are generated there will be duplicate
starting conditions, and these are removed. The distinct starting
conditions generated will be the good starting conditions
explored.
If the number of starting conditions is still too large, the desired
number of initial sets can be stochastically sampled from all
identified good starting conditions. In this case, the duplicates are
not removed when sampling in order to provide those conditions
with a better chance of being sampled.

Figure 6. Initial Group Partitions: (a)All possible initial
group partitions for 10 streams into 3 groups. (b)Only one
grouping is possible for 9 streams and 3 groups with normal
conditions. (c)All possible initial group partitions for 9
streams into 3 groups.

1 2 3 | 4 5 6 | 7 8 9 10
1 2 3 | 4 5 6 7 | 8 9 10
1 2 3 4 | 5 6 7 | 8 9 10

(a)

1 2 3 | 4 5 6 | 7 8 9
(b)

1 2 | 3 4 5 | 6 7 8 9
1 2 | 3 4 5 6 | 7 8 9
1 2 3 | 4 5 | 6 7 8 9
1 2 3 | 4 5 6 7 | 8 9
1 2 3 4 | 5 6 7 | 8 9
1 2 3 4 | 5 6 | 7 8 9

(c)

 (a) 1 2 3 | 4 5 6 | 7 8 9 10

 {1, 4, 8}, {1, 4, 9}, {1, 5, 8}, {1, 5, 9}, {1, 6, 8}, {1, 6, 9},
 (b) {2, 4, 8}, {2, 4, 9}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {2, 6, 9},
 {3, 4, 8}, {3, 4, 9}, {3, 5, 8}, {3, 5, 9}, {3, 6, 8}, {3, 6, 9}

Figure 7. Initial Center Streams: (a)10 streams partitioned
into 3 groups. The candidate centers are in bold. (b)Initial
center streams generated from group partition (a). Total of 18
initial center streams have been generated for this instance.

(b)

Figure 8. (a)Synthetic Office Layout (b)Rendered Images of the Synthetic office.

(a)

6. RESULTS
In this section we present our results for depth stream
compression and depth stream partitioning. Stream compression
was tested on two different camera configurations similar to the
ones used in previous systems [6, 16]. The stream partition
algorithm was tested on randomly placed cameras as well as the
configuration used to test stream compression.

6.1 Stream Compression
We tested the Group Based Real-Time Compression algorithm on
two different 3D camera configurations of a synthetic office [3].
Figure 8a shows the layout of the synthetic office and Figure 8b is
an image of the rendered office. The first configuration placed 13
3D cameras around the scene in a semi-circle. The 3D cameras
were placed about 2m from the mannequin at its eye height and
was pointed at the mannequin’s head. The 3D cameras were
placed about 20cm apart [16] (Figure 9a). The second
configuration placed 2 rows of 11 3D cameras on a wall 2.25m
from the mannequin. The two rows were parallel and 20cm apart

with the bottom row at the height of the mannequin’s eye.
Cameras in each row were placed at 20cm intervals and pointed at
the mannequin’s head [6] (Figure 9b). The depth stream from
each 3D camera was at a resolution of 640x480 without any
background subtraction. The horizontal field of view for all of the
cameras was 42 degrees.

6.1.1 Compression Speed
The average compression speed for the both 3D camera
configurations was 0.099sec/frame. The minimum time was
0.080sec/frame for the both configurations. The maximum time
was 0.104sec/frame for the first configuration of 13 3D cameras
and 0.107sec/frame for the second 22 3D camera configuration.
These results show that the compression algorithm is able to
handle 10 frames/sec on the average and 9.3 frames/sec in the
worst case. This is fast enough to handle the 3D reconstruction of
8 frames/sec given in [6]. All of the results were obtained using a
PentiumIV 2.4GHz machines with 1GB of memory running
Linux.

0
1
2
3
4
5
6
7

0 2 4 6 8 10 12
Main Stream

C
om

pr
es

si
on

 R
at

e

Best
Neighbor
Real-Time

0
2
4
6
8
10
12

0 2 4 6 8 10 12 14 16 18 20 22
Main Stream

Co
mp

re
ss

ion
 R

ate

 (a) (b)
Figure 10. Compression rates of different schemes. ‘Best’ shows Best Interstream Compression, ‘Neighbor’ the Neighbors as
Reference Stream Compression, and ‘Real-Time’ the Group Based Real-Time Compression. (a)13 streams from Figure 9a (b)22
streams from Figure 9b

Figure 9. 3D Camera Configuration: The 3D cameras are partitioned using the
algorithm given in the paper. The 3D cameras in circled numbers are the center
camera of the group. (a)Top view of 13 3D camera configuration partitioned into 3
groups. The 3D cameras are placed 2m from the mannequin in a semicircle at
mannequin’s eye height. The distance between neighboring cameras is 20cm.
(b)Frontal view of 22 3D cameras configuration partitioned into 5 groups. The 3D
cameras are placed on a wall 2.25m from the mannequin. The vertical and horizontal
distance between 3D cameras is 20cm. The bottom row is at mannequin’s eye height. (a)

4
3

1
2 11 12

13

10 6 7 8 9 5

Table

 Mannequin

 1 2 3 4 5 6 7 8 9 10 11

 12 13 14 15 16 17 18 19 20 21 22

 (b)

6.1.2 Compression Rate
Figure 10 shows a comparison of compression rates for Group
Based Real-Time Compression, Best Interstream Compression
and Neighbors as Reference Stream Compression. The Best
Interstream Compression was chosen since it is the best
compression achievable, and the Neighbors as Reference Stream
Compression was chosen because it is the best compression
achievable in real-time.
The results indicate that Group Based Real-Time Compression is
comparable to the Neighbors as Reference Stream Compression
and measures well against the Best Interstream Compression.

6.1.3 Rendered Image Quality
We compared the quality of rendered images from Group Based
Real-Time Compression algorithm to that of different
compression algorithms including: no compression, Best
Interstream Compression, and Neighbors as Reference Stream
Compression. The desired image was rendered using the original

synthetic office data set. Four novel views were selected for each
camera configuration. The first was chosen so the user is almost
directly across the desk from the mannequin. The second was
placed near a sub stream farthest from its center stream, where the
center stream is directly across the desk from the mannequin. The
third was located near a center stream in one of the stream groups
at the edge. The fourth was placed near a sub stream at the edges.
The first two views were chosen to represent the usual movement
of the user and the last two views were selected to show rare
cases. As shown in Table 1, the quality of images as measured by
the peak signal-to-noise ratio (PSNR) is very similar for all cases.

6.2 Stream Partition
Table 2 shows the result of running the stream partitioning
algorithm on several different examples. The streams in Table 2a
were placed randomly with the only constraint that the largest
possible angle between two streams is 120 degrees. The streams
for Table 2b are the same configuration as in Figure 9.
Table 2a shows the algorithm works well for different number of
streams. The first example (n=10, k=5) shows that for a relatively
small n and k an exhaustive search is plausible. The third (n=25,
k=5) is an example of where n is an exact multiple of k. The final
example (n=60, k=5) is a case where doing an exhaustive search
is not practical.
Table 2b demonstrates that the algorithm works well for streams
placed fairly uniformly, which better represents the application.
One thing to note is that there were two instances of center
streams – {3, 7, 11} and {3, 8, 12} – with the same GSAS of 550
for the first configuration (n=13, k=3). However {3, 7, 11} was
selected on the basis of the CSAS.
The last row of the table shows that for all cases tested, the
solution generated by the approximate partitioning method is
either the same or very close to the optimal solution. All solutions
were in the top 0.4% of the total possible solutions. Also for
camera configurations better suited to the application (i.e.,
roughly uniform placement) approximate partitioning method
found the optimal solution. This was achieved with exploring less
then 1% of the total possible initial center streams when the
number of streams was larger then 22.

 n=10, k=5 n=22, k=5 n=25, k=5 n=60, k=5 n=13, k=5 n=22, k=5
of possible initial center streams 252 26334 53130 5461512 286 26334
of created initial center streams 144 240 529 352 20 240
Total # of possible center streams 46 10443 25907 5170194 5 612
Optimal center streams {2, 3, 6, 8, 9} {4, 15, 16, 17, 20} {3, 11, 12, 13, 17} {2, 8, 22, 34, 58} {3, 7, 11} {2, 6, 10, 15, 19}
Optimal solution’s TSAS 246 574.25 686.5 2224 550 432.032
Found center streams solution {2, 3, 6, 8, 9} {9, 15, 16, 17, 20} {3, 11, 12, 13, 21} {22, 34, 36, 47, 54} {3, 7, 11} {2, 6, 10, 15, 19}
Found solution’s TSAS 246 734 730.5 3984.5 550 432.032
of solutions with less TSAS 0 6 1 20517 0 0

 (a) (b)

Table 2. Stream Partition: n is the total number of streams and k is the number of groups. Total number of possible solutions and the
optimal solution is from running all possible initial center streams. Total squared angle sum(TSAS) is given with each center streams
solution. The last row shows the number of solutions that has a smaller TSAS then the approximate partitioning solution. Streams for (a)
was generated randomly while (b) is the same stream configuration given in Figure 9.

PSNR Camera
Config View Main

Stream None Best Neighbor Real-
Time

1 3 24.57 24.86 24.96 25.01
2 13 23.87 24.29 24.21 24.22
3 7 26.20 26.91 26.87 26.86

1

4 9 24.81 25.52 25.45 25.41
1 6 25.78 26.23 26.81 26.15
2 17 24.95 25.51 25.42 25.41
3 2 24.82 25.56 25.44 25.42

2

4 22 24.06 24.50 24.41 24.38

Table 1. The table shows the peak signal-to-noise ratio(PSNR)
for different compression schemes. ‘None’ is no compression,
‘Best’ is Best Interstream Compression, ‘Neighbor’ is
Neighbors as Reference Stream Compression, and ‘Real-Time’
is Group Based Real-Time Compression. The ‘Main Stream’
column shows the main stream for the given novel view.
Configuration 1 is with 13 streams and 2 is with 22 streams.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a real-time compression
algorithm for 3D environments to solve the scalability imbalance
between the 3D cameras (acquisition and 3D reconstruction) and
the rendering system used for tele-immersion. Furthermore, we
have presented a stream partitioning algorithm that helps achieve
real-time compression by effectively grouping streams with high
coherence. We have shown that the compression algorithm
performs in real-time, is scalable, and can tolerate network
bandwidth limits for multiple configurations using synthetic data
sets.
As part of future work, we would like to test Group Based Real-
Time Compression algorithm’s performance with real-world data
sets, and make the following improvements to the algorithm:

• Use temporal coherence to increase compression and reduce
comparisons made with the reference stream for faster
compression.

• Develop a better metric for main stream selection. Instead
of just using Euclidean distance, the angles between the
user’s view and the view directions of the 3D cameras can
be used in conjunction.

• As the main stream changes, major portions of the point
data set changes abruptly causing a popping effect. This is
worse if the main stream changes from one group to
another. A gradual change in the point data set as the main
stream changes would be desirable.

Finally, we would like to explore the proposed stochastic
sampling for generating initial starting points for approximate
stream partitioning.

8. ACKNOWLEDGMENTS
We would like to thank Hye-Chung (Monica) Kum for all her
helpful discussions and feedback, and Herman Towles for helpful
suggestions and comments. We would also like to thank all the
reviewers for their constructive critique, and the paper shepherd
Wu-Chi Feng. This work has been supported in part by a Link
Fellowship (www.ist.ucf.edu/link_foundation.htm), and National
Science Foundation (ANI-0219780, IIS-0121293).

9. REFERENCES
[1] Advanced Network and Services, Inc.

http://www.advanced.org
[2] Chang, C-F, G. Bishop, and A. Lastra. LDI Tree: A

Hierarchical Representation for Image-based Rendering,
Proceedings of ACM SIGGRAPH 99, pp. 291-298, August
1999.

[3] Chen, W-C, H. Towles, L. Nyland, G. Welch, and H.
Fuchs. Toward a Compelling Sensation of Telepresence:
Demonstrating a Portal to a Distant (Static) Office. IEEE
Visualization 2000, pp. 327-333, October 2000.

[4] Grossman J. and W. J. Dally. Point Sample Rendering.
Proceedings of 9th Eurographics Workshop on Rendering,
pp. 181-192, June 1998.

[5] Jain, A. K., M. N. Murty, and P. J. Flynn. Data Clustering: A
Review, ACM Computing Surveys, vol. 31, no. 3, pp. 264-
323, 1999.

[6] Kelshikar, N., et al. Real-time Terascale Implementation of
Tele-immersion. International Conference on Computational
Science 2003, Melbourne, Australia, June 2003.

[7] McMillan, L., and G. Bishop. Plenoptic Modeling: An
Image-Based Rendering System. Proceedings of ACM
SIGGRAPH 95, pp. 39-46, August 1995.

[8] Molnar S., Eyles J., and Poulton J., PixelFlow: High-Speed
Rendering Using Image Composition, Proceedings of ACM
SIGGRAPH 92, pp. 231-240, 1992.

[9] Mulligan J., V. Isler, and K. Daniilidis, Trinocular Stereo: A
New Algorithm and its Evaluation, International Journal for
Computer Vision, Special Issue on Stereo and Multi-baseline
Vision, vol. 47, pp. 51-61, 2002.

[10] Office of the Future Project, http://www.cs.unc.edu/~ootf
[11] Pittsburgh Supercomputing Center, http://www.psc.edu
[12] Pena, J.M., J.A. Lozano, and P. Larranaga. An empirical

comparison of four initialization methods for the k-means
algorithm, Pattern Recognition Letters, vol. 20, pp. 1027-
1040, 1999.

[13] Rusinkiewicz S., and M. Levoy. QSplat: A Multiresolution
Point Rendering System for Large Meshes. Proceedings of
ACM SIGGRAPH 2000, pp. 343-352, July 2000.

[14] Shade J., S. Gortler, Li wei He, and R. Szeliski. Layered
Depth Images. Proceedings of ACM SIGGRAPH 98, pp.
231-242, 1998.

[15] Stoll G., et al. Lightning-2: A high performance display
subsystem for pc clusters. Proceedings of ACM SIGGRAPH
2001, pp. 141-148, 2001.

[16] Towles H., et al. 3D Tele-Immersion Over Internet2.
International Workshop on Immersive Telepresence
(ITP2002), Juan Les Pins, France, December 2002.

[17] University of Pennsylvania GRASP Lab,
http://www.grasp.upenn.edu

