

UNC-CH TR 00-007

The Design of an API for Particle Systems
David K. McAllister

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
Simulation of dynamic particle systems has been used in com-
puter animation for several years and has more recently been
used in real time simulation and video games. Much research
has explored ways to compute and render particle systems, but
relatively little research has discussed suitable application
programmer interfaces to the particle systems. What con-
structs and abstractions are useful for specifying particle ef-
fects? How can the API be made general so that unforeseen
effects can be created? What set of functionality should be
provided that can be implemented on either the application
CPU or within specialized graphics hardware?

The result of our research is the Particle System Application
Programmer Interface (API). This is a C++ function library
specification that allows applications to simulate the dynamics
of particles. The API was created for easily adding a variety
of particle-based effects to interactive graphics applications
such as games and virtual environments. The API is also well
suited for non-interactive graphics systems such as modeling
and rendering packages for computer animation. It is not in-
tended for scientific simulation, although principles of Newto-
nian physics have been used to implement the particle
dynamics where applicable, and the accuracy of the numeric
integration is scalable.

1 Introduction
As the computer graphics field becomes more sophisticated
and the demand for realism, quality and interaction increases –
both in computer generated effects, and in video games and
other simulations, it becomes ever more necessary to encapsu-
late and abstract functional components of these applications.
Also, computer graphics hardware is changing very rapidly, so
application programmer interfaces (APIs) are necessary to
provide a consistent, portable interface to the hardware im-
plementations of any given functionality. There are several
examples: OpenGL [Neider 1993] and Direct3D abstract the
low-level operations of real-time rendering. OpenGL Opti-
mizer and DirectModel encapsulate scene graph functionality.
Object physics and collision detection libraries such as the
Ipion Virtual Physics Engine and Telekinesys Research's Om-
niate provide encapsulated object dynamics. Game engines
such as id Software’s Quake Engine and Numerical Design
Ltd.’s NetImmerse have become an important component for
encapsulating the representation and dynamics of a video
game’s virtual world, and often integrate the functionality of
other APIs. We propose to extend this list by researching an
API to dynamic particle system simulation. The two motiva-
tions for particle system API research are the same as those for

the above-mentioned APIs. First, we desire to encapsulate the
functionality so that developers do not need to implement it
repeatedly and so that the application can be easily ported to
any platform that has the API. Second, we desire to provide an
interface to the functionality so that it may be implemented
within specialized graphics hardware, without affecting the
application’s portability.

Within the Particle System API, a particle is computed as a
simple point in three-space with a fixed set of attributes such
as position, velocity and color. The responsibility of the li-
brary is to compute values of these attributes for each particle
over time. The API also includes a few helper functions for
rapidly rendering the particles using some implementation de-
pendent method, although these functions will usually be ig-
nored in favor of application-dependent rendering methods.

The API specification is centered on the particle group, which
is a set of particles that are acted upon as a group by the same
forces. Several particle groups may exist at once, but all API
functions apply to the current particle group. Particle groups
are acted upon using action functions that perform fairly low-
level operations on a group of particles, often simulating
physical forces. Examples of actions include gravity, bounc-
ing, color fading, etc. A complete effect is created using a se-
ries of actions. Actions may be compiled into action lists,
which are similar to OpenGL display lists. Action lists encap-
sulate particle behavior into higher-order effects and also en-
able implementation-specific optimizations.

The source code for the UNIX and Windows implementations
of the Particle System API and its user manual are publicly
available at [McAllister 1999] and have been used by many
programmers. The API is a key component in a number of
publicly available software packages ranging from video
games to virtual environment and animation authoring sys-
tems. This paper does not seek to teach the use of the API but
instead focuses on solutions to the problems encountered
while designing an interface to particle system functionality.

2 Previous Work
Dynamic particle systems for computer graphics were first
conceived of by [Reeves 1983]. His specification of what at-
tributes a particle has and how particle systems are computed
prevail through most subsequent research. Reeves’ particles
are generated within a spherical, rectangular, or circular gen-
eration shape. Their initial velocity is tightly coupled to their
initial position. The other particle attributes like color are gen-
erated stochastically with a mean and a tolerance, similar to
the PDBox domain that we will present. The dynamics of the
original particle systems were quite simple. The only force af-

UNC-CH TR 00-007

fecting particles after their creation was gravity, yielding para-
bolic paths for all particles. The great complexity achieved by
these particle systems stemmed mainly from complex, sto-
chastic initial values, not from complex dynamics. Reeves’
follow-on paper, [Reeves 1985], includes more sophisticated
particle motion for grass and introduces constrained particles
for modeling solid objects like grass and trees.

[Reynolds 1987] introduces Boids, which represent individual
birds or other animals that flock or school in a realistic-
appearing manner. Boids can be seen as extending particle
systems by adding a full coordinate frame to each particle and
modeling more complex particle motion, especially motion re-
sulting from interaction with other particles. This is necessary
to model flocking behavior. Obstacle avoidance, surveyed in
[Reynolds 1988], allows boids or particles to steer to avoid
obstacles. We use a selection of these methods to implement
obstacle avoidance.

The Connection Machine was used in [Sims 1990] to render
particle system animations in a data parallel system, with quite
compelling results. The paper set forth a suite of simple opera-
tions to be performed on particles, which could be combined
to create the complete effect. We directly adopt many of these
operations in our work. The interface to these operations is not
discussed. The paper mentions that re-implementing the parti-
cle animation code on a serial computer would be interesting
future work that has not been done because of the unique par-
allel nature of the implementation. In part we are fulfilling this
future work. This also illustrates the need for a particle system
API so that the animation and rendering application would be
more portable.

[Leech 1993] describes an interactive particle system virtual
environment toolkit. Wearing a head-mounted display, the
user has access to a suite of widgets that each represent a par-
ticle system operation, most of which correspond directly to
the operations defined by [Sims 1990]. These widgets can be
interactively adjusted and placed in the environment to see re-
sults of particle system special effects. The main focus of the
paper was the immersive, graphical interaction system. The
paper also seems to be the first in the literature to use arbitrar-
ily combinable operations like those of Sims in a serial com-
puter.

Video games have started to use real-time particle systems for
special effects. Quake III Arena by id Software has particle
sparks and particle smoke trails. These particle systems seem
to contain between one hundred and five hundred particles and
are rendered either as point primitives or textured screen-
aligned polygons. Their behavior mostly consists of gravity
and a color fade, with complex initial velocities, such as spi-
rals.

Most commercial animation packages such as Maya and 3D
Studio Max now include a particle system animation package.
Since these are usually rendered offline the developers are free
to include more computationally intensive particle operations
than those that must run in real time. The major area of inno-
vation for these implementations seems to be the method
given to the animator to constrain and script the particle dy-
namics. This is less of an issue in the real-time domain since
there is no animator, although our API can be used for tight
control of particle systems.

3 Design Goals
The Particle System API was designed with specific goals and
constraints. We list these roughly in order of their importance
to the design.

Run-time Efficiency – The primary purpose of the API is to
enable real-time applications to include dynamic particle sys-
tems. This requires that the particle dynamics be computed ef-
ficiently so that the CPU has enough time per frame to
perform the rest of the application’s computation.

Flexibility – The API should be specifically designed to allow
the user to create many effects not envisioned by the API de-
signers. For this reason, the API consists of simple building
blocks such as Gravity and Bounce, rather than complete ef-
fects such as Flock or Fountain.

Independence of Parameters – Since the API will consist of
simple building blocks, the design space for implementing a
particular effect can be quite large. It should be clear which
parameter of which action in a particular effect should be
modified for a particular visual result. Also, the parameters to
the action functions should be in terms that do not depend on a
particular external measuring system and the units of parame-
ters should be transparent to the API.

Scalable Simulation Quality – The numerical accuracy of the
simulation must be scalable and modifiable by the application.
This is because we desire the same API to be usable for pro-
duction-quality offline animation and for real-time special ef-
fects in already CPU-intensive video games. Also, some
action functions, such as orbiting a gravity source, are much
less numerically stable than others, like velocity damping. The
application programmer should be able to specify different ac-
curacy needs for different effects.

Hardware Abstraction – The API must truly be an abstraction
of the particle system functionality. The application should
work identically whether the API is implemented entirely as a
library linked into the application, or as a thin layer that
merely communicates the particle dynamics instructions to the
graphics hardware or some other device.

Scalability – Particle functions should be callable from multi-
ple threads and multiple processors in order to increase the to-
tal rate of particle simulation. The applicable API calls should
be reentrant.

Easy to Learn – The OpenGL graphics API is broadly consid-
ered to have an elegant, easy to learn structure [Sepúlveda
1998; Silicon Graphics 1998]. For example, most OpenGL
calls for defining geometry take a quadruple of numbers that
can be specified using any data type and the user can choose
whether to specify two, three, or all four parameters, with con-
sistent defaults chosen for the unspecified parameters. This
self-consistency allows users’ knowledge of one API call to
extend to many other calls, and greatly reduces the need to re-
fer to documentation. We desire a similar elegance for particle
system function calls. We also want the order of the function
calls to matter as little as possible to avoid programming pit-
falls.

UNC-CH TR 00-007

4 API Description
A particle within the Particle System API is an object with a
set of attributes very similar to those of Reeves‘ original parti-
cle systems [Reeves 1983]: position, velocity, color, alpha,
size, age, secondary position, and secondary velocity. All at-
tributes are three-vectors, except alpha and age, which are sca-
lars. The secondary position is normally a destination position
and is rarely used. The secondary velocity normally stores the
velocity from the previous time step for computing particle
orientations from their instantaneous curvature. The three-
vector size is only a rendering attribute, like color. Its use is
completely application-dependent. For particle dynamics pur-
poses, particles are a unit point-mass.

Like OpenGL, the API uses C-like function calls that are not
members of a class. For the sake of elegance, a context handle
is not passed into the functions. Section 4.6 discusses implica-
tions of not passing a context. API function names take the
form pFunctionName. Most calls are defined with default
values for the lesser-used arguments to simplify the applica-
tion developer’s coding in the common case. This is the only
trait that makes the API C++-specific.

The API includes four kinds of functions: calls that operate on
and manage particle groups, calls that set the current state of
the library, action calls that act on particle groups, and calls
that create and operate on action lists. We will discuss each of
these in turn. Refer to the appendix for a complete list of API
calls.

4.1 Particle Groups
All particles exist within a particle group, which is a set of
particles that are acted upon by the same forces. Several parti-
cle groups may exist at once, but all API functions apply to the
current particle group. All actions apply to every particle in
the current particle group. A particle group is first created us-
ing pGenParticleGroups, which will return the identifying
number of the generated particle group. pCurrentGroup
switches which group is current. Particle groups are initially
empty and pSource emits new particles into the group. The
maximum number of particles in the group is specified using
pSetMaxParticles. When a particle group reaches its maxi-
mum size, attempts to add more particles are ignored.

4.2 Actions
Actions are the functions in the API that modify the attributes
of particles in the current particle group. Most actions are
meant to simulate physical forces such as pGravity. Others
have no physical counterpart such as pRestore, which com-
putes a parametric quadratic path for each particle to some
specified position. The API currently has 27 action functions,
and future versions of the API can easily add more actions.

Action functions are meant to be building blocks for special
effects, not finished special effects themselves. Most particle
effects consist of between three and eight actions. Each action
performs a pass over all particles in the particle group. This
may be slightly slower than a single pass for a hard-coded se-
ries of actions, but separate passes allow the action functions
to be building blocks that can be combined in any desired or-
der. Multiple passes over the particles are feasible because
several thousand particles can fit in a current L2 cache.

Action functions are normally called while or just before the
application renders the scene each frame. The following pseu-
docode outlines this task.

for each particle group j

 pCurrentGroup(j) // Context is group j.

 for each time step per rendered frame

 pSource(…) // Emit new particles

 other actions…

 pMove() // Update positions

end for

pDrawGroup(…) // Draw particles

end for

other drawing…

The pMove action adds the fraction dt of each particle’s cur-
rent velocity to its current position, and then increments its age
by dt, thus completing the time step for the particle. Section
4.5 discusses the mathematics of this process in greater detail.
Once particles have been moved to their new location the par-
ticles are rendered. To render a particle group with each parti-
cle being a primitive (such as a point) the application calls
pDrawGroupp. For each particle to be rendered as a model
stored in a display list the application calls pDrawGroupl. Al-
ternatively, calling pGetParticles will return the particle data
to the application for any desired rendering or processing.

As an example of the ability to rapidly and simply define in-
teresting particle effects with the API, in figure 1 we give the
C++ code for creating a simple water fountain. A still image
resulting from running the code is shown in figure 2.

One of our principal goals was for the API calls to be homo-
geneous. Whenever sensible, we desire multiple action func-
tions to take the same parameters in the same order with the
same default values. For example, many functions specify a
target value for some particle attribute and asymptotically ap-
proach that value over time. These functions are pTarget-
Color, pTargetSize, pTargetVelocity, and pAvoid (steer to
avoid a physical obstacle). All these functions take the blend-
ing parameter as a single float called scale. This allows users
to learn the behavior of scale once and apply that knowledge
to all similar functions.

Many action functions require a falloff of the effect of the ac-
tion based on the particle’s distance from some influence. We
describe our method of specifying this falloff, which is an-
other example of the API’s homogeneity. Some functions that
use the falloff are pOrbitPoint (accelerate toward a point
gravity source), pMatchVelocity (match each particle’s veloc-
ity to those of its neighbors), and pVortex. The force of these
actions and their falloffs are specified using three floats:
magnitude, epsilon, and max_radius. We use a modified
inverse-square falloff as a function of range, f(r), given by

max

max

2
,

0
)(

rr

rr

r

mrfm <
≥







+
=

ε
ε

Epsilon serves to dampen the inverse square so that f(r) does
not approach infinity as r approaches zero. An epsilon near in

UNC-CH TR 00-007

size to magnitude can yield a much slower falloff and gives
the action a wider neighborhood. Figure 3 shows an example
of f(r). max_radius clamps the influence to zero beyond a
given range. This can provide sharper falloffs than are possi-
ble with just magnitude and epsilon and can also increase effi-
ciency in some implementations.

4.3 Action Lists
Actions may be compiled into action lists, which encapsulate
all the operations required to produce a particular effect. Not
only do action lists provide abstraction of effects but they also
provide an interface to programmability within graphics
hardware, if the particle system computations are being per-
formed in such hardware, as on PixelFlow [Eyles 1997]. This
is akin to the problem of defining an API for programmable
shading on graphics hardware and our simple solution may
have some applicability to that problem as well.

Action lists are generated using pGenActionLists followed by
pNewActionList. Then all subsequent action and state change
calls are stored in the action list instead of being executed im-

mediately. Finally, pEndActionList finishes the list and re-
turns the API to normal execute mode. pCallActionList
executes the calls within action list as if they were called ex-
plicitly at that point. An exception is that the scope of state
changes made within the action list ends when the list returns,
so that action lists to be executed on different processors do
not require synchronization of state afterward.

Action lists can improve performance in two ways. First, they
reduce the communication between the application and the
hardware that computes the particle dynamics. Second, action
lists allow certain combinations of actions to be recognized
and replaced by optimized, hard-coded routines. For example,
an implementation of the API could recognize the sequence of
actions in figure 1 and call an optimized fountain function that
does a single pass over all particles.

4.4 Attributes and Domains
One of the API’s most important actions is pSource, which
creates new particles. These particles must be given a color,
velocity, size and initial age. To avoid placing all of these val-
ues in a single call to pSource and to increase the API’s flexi-
bility we store the current color, velocity, size, etc. of particles
yet to be created as API state. This is similar to calling
glNormal, glColor, or glTexCoord before creating a vertex
with glVertex in OpenGL. The functions pColor, pSize,
pStartingAge and pVelocity perform similar functions for
particles, which are then created using pVertex or pSource.

Many particle effects require the particles’ initial attribute val-
ues to vary, which the above state setting calls do not do. To
handle this and other issues, we introduce the concept of a
domain. Domains provide a uniform mechanism for specify-
ing a region of three-space to the API. The function pColorD
takes a domain that specifies a region of color space from
which to stochastically choose the color of each new particle.
Likewise, pVelocityD specifies a region of vector space from
which to choose the velocity of each particle. Figure 4 illus-
trates randomly chosen velocity vectors within a disc domain.

Domains are used as parameters to some actions and state
functions. For example, pSource creates particles with posi-
tions randomly chosen within a domain, pSink kills particles
that enter or leave a domain, pAvoid specifies a domain of
space for the particle to steer away from, and pBounce causes
particles to bounce off the surface of a domain.

Domains come in a variety of shapes. Most domains define a
3D volume: PDSphere, PDPlane (which represents the half-

pVelocityD(PDCylinder, 0.01, 0.0, 0.35, 0.01, 0.0, 0.37,
0.021, 0.019);

Choose particle velocities in a ring, like a nozzle.

pColorD(1.0, PDLine, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0);
Particle colors are between light blue and white.

pSource(100, PDLine, 0.0, 0.0, 0.401, 0.0, 0.0, 0.405);
Generate particles along a small line in the nozzle.

pGravity(0.0, 0.0, -0.01);
Accelerate particles downward.

pBounce(0.0, 0.35, 0, PDDisc, 0, 0, 0, 0, 0, 1, 5);
Bounce particles off a horizontal disc of radius 5.

pSink(false, PDPlane, 0,0,-3, 0,0,1);
Kill particles below horizontal plane.

pMove();
Step particles forward in time.

Figure 1: The particle system code used to simulate a wa-
ter fountain.

Figure 2: A fountain created with the code in figure 1.

magnitude=1 epsilon=1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

range

fo
rc

e

Figure 3: Graph of damped inverse-square falloff function.

UNC-CH TR 00-007

space bounded by the plane), PDBox, PDBlob, PDCylinder,
and PDCone. Other domains are of lower dimension: PDTri-
angle, PDRectangle, PDDisc, PDLine, and PDPoint.

Nine or fewer floats can specify any domain. For example,
PDTriangle has three 3D points, PDCylinder has an axis
vector, a point on the axis, and scalars for length and an inner
and outer radius. All API calls using a domain take an enu-
merated domain type having one of the values listed above,
followed by nine floats with default values so that simpler
domains can be specified more succinctly.

The PDBlob domain probabilistically defines a fuzzy region
of space by specifying a center and a standard deviation of the
gaussian probability density. This probability density is used
both for choosing a random point in the domain and for choos-
ing whether a given point is said to be within the domain. The
PDBlob domain is very important to the API’s simulation
quality because many natural phenomena have been shown to
follow a normal distribution [Ross 1976]. Specifying particles
with colors, positions, or velocities taken from a normal distri-
bution gives natural-looking results, free of distracting discon-
tinuities at the boundaries. For this same reason, the
pStartingAge state call takes an optional standard deviation
argument so that initial particle ages are taken from a normal
distribution. This way not all particles created at a given time
will die at the same upon a call to pKillOld because of their
normally distributed age range.

4.5 Particle Simulation
Since many action functions simulate physical forces, the ac-
celeration of each particle must be computed using Newton’s
Law, F = ma. We treat all particles as having unit mass so we
can implement actions directly using accelerations and yet
think of them as forces.

Particle action functions specify the first or second derivative
of some particle attribute over time. The method of numeric
integration of this function affects the physical accuracy (for
effects meant to simulate the physical world) and visual qual-
ity of the resulting simulation.

The purpose of a particle system simulation is to compute
each particle’s attributes – position, size, color, etc. – as they
vary over time. Each particle attribute is a function of time, al-
beit a rather complicated function that is difficult or impossi-
ble to express in closed form. This function is instead
expressed as a differential equation – the particle actions spec-
ify the change to the particle’s attributes at a given time, rather
than specifying their value. For example, the pGravity action
specifies that each particle’s velocity vector undergo a con-
stant acceleration. The task of computing each particle’s posi-

tion given this differential equation is a numeric integration
problem.

Many numeric integration methods exist, but few of them are
suitable to real-time particle system simulation for computer
graphics. Most methods adapt the step size to the function it-
self (the path of each particle), but giving each particle its own
step size requires much more computation and storage. This
would also cause each attribute of a particle to require a dif-
ferent, conflicting step size. Also, some action functions are
random and some yield discontinuous attribute values over
time, causing adaptive and predictive methods to fail. We use
Euler’s method of numeric integration with a user-specified
step size dt to adjust accuracy. Euler’s method simply steps
the attribute value by the derivative (the action function in our
case) evaluated over the interval dt. Using a smaller dt re-
quires more integration steps per unit time but increases accu-
racy by treating the attribute function as piecewise-linear over
shorter intervals.

The API is independent of the time unit – no physical con-
stants are hard-coded into the API. The most common time
unit is a single frame time. Although the value of dt can be
anything, it is most often a whole number of time steps per
unit time so that attribute values are computed exactly at each
frame time, rather than interpolated from nearby integration
step times to the rendered frame times.

4.6 Parallelization
The API has been implemented both on the parallel geometry
processors (GPs) of PixelFlow and on UNIX and Win32 sys-
tems. In the PixelFlow implementation, the API library is a
thin layer that passes the calls to the GPs. The core of the par-
ticle system implementation runs on a subset of the GPs, with
each GP being responsible for a subset of the particle groups,
or for a subset of the particles in a particle group1. The parti-
cles themselves never exist on the host, only in the GP, and
are rendered directly by that GP. This makes for a very fast
implementation, free of communication bottlenecks.

Our UNIX/Win32 implementation works on both uniprocessor
and multiprocessor shared memory systems. The simulation of
large particle systems is easy to parallelize on these systems
by using multiple threads. However, the API and the program
must both be carefully written to avoid race conditions. Any
thread can execute actions on a particle group, but typically
only the thread that created the particle group does so. On SGI
Origin systems this ensures that the computation is performed
on the processor that contains that particle’s memory.

In most implementations of OpenGL it is forbidden for multi-
ple threads to be executing an OpenGL call concurrently. The
fundamental reason for this is that OpenGL calls do not re-
ceive a context parameter. The current context is a global vari-
able within the library, and is thus not thread safe. We wish to
keep the elegance of not passing a context parameter, but
make the Particle System API thread safe so that it can run on
large SMP machines. We solved this problem by having each
API call find its calling thread’s current context within a hash
table keyed off a thread identification number. This number is

1 This prevents inter-particle forces, so pFollow, pGravitate,
pMatchVelocity, and pGetParticles are not supported.

Disc Cx,Cy r1 , r2

Figure 4: Velocities chosen from a PDDisc domain.

Particle
centers

UNC-CH TR 00-007

not passed to the API, but is determined using an implementa-
tion-dependent call such as getpid.

5 Results
5.1 Ease of Use
The Particle System API has been publicly available on the
Internet since July 1998 and has been downloaded by over a
thousand people. Although the extent of its use by the public
is impossible to determine, it has been used in a number of dif-
ferent applications of which we are aware. Within the Com-
puter Science Department at UNC, the Particle System API
was used to create an immersive Fountain Construction Sys-
tem and to make water flowing from a faucet interact with the
shape of a person’s moving hand.

Flow [Allen 1999] is a publicly available animation scripting
system for Linux and IRIX that uses the Particle System API
to implement particle dynamics. Flow is similar to many other
commercial computer animation systems. It allows all anima-
tions to be edited and previewed online in an OpenGL win-
dow, with all particle system effects simulated in real-time.
Flow synthesizes RenderMan RIB files that are rendered by
Blue Moon Rendering Tools or Photorealistic Renderman.

The Stage 3 Research Group at Carnegie Mellon University
has included the Particle System API in its Alice virtual
worlds authoring system [Conway 2000]. Alice allows its us-
ers to create virtual worlds by loading models and images in
standard formats and then using the Python scripting language
[Beazley 1999] to add behaviors to them and integrate them
into a virtual world. The Particle System API was integrated
into Alice such that every API function becomes a Python
function in Alice. Alice was used in a Building Virtual Worlds
course at CMU that contained a mix of Computer Science,
Art, Architecture, and Drama undergraduates. Approximately
one fourth of the 65 projects submitted by the students in-
cluded particle system special effects – usually rain, snow or
fountains, as well as some explosions. We feel that this gives
some indication of the ease of use of the Particle System API.

5.2 Flexibility
Jason Pratt, who integrated the Particle System API into Alice,
has created three virtual worlds that each include a particle ef-
fect that we did not envision the API being capable of. These
effects are ocean waves, a rubber sheet model, and a simulated
snow globe with the snow swirling around in response to user
motion. The fact that the API succeeded in simulating effects
far different from those we imagined helps indicate our
achievement of the flexibility design goal.

5.3 Performance
See the accompanying video for an illustration of the practical
performance of the existing implementations of the API. All
but the animation from Flow were recorded in real time. To
measure numerical performance of the API we simulated
20,000 points orbiting two gravity sources, with one bounce
plane and velocity dampening, with particles emitted using a
normal distribution. Particles were rendered using aliased
GL_POINTS in a 512x512 window. A a 500 MHz Pentium III
processor with an nVidia GeForce 256 achieved 24.9 fps. Our
300 MHz R12000 SGI InfiniteReality2 reached 32.9 fps.

6 Future Work
Particle systems are beginning to come of age in the interac-
tive computer graphics world. Many video games use particle
systems and still more are in development. As these develop-
ers have approached us they always ask the question of
whether they will be able to get the effect that they want. Oc-
casionally they can’t. The API needs user-definable particle
attributes. For example, we have been asked for separate dif-
fuse and specular colors. Rather than creating many special at-
tributes we desire the API to be extensible in this regard while
still conforming to its original design goals.

Related to this, particle attributes should be treated more
generically. For example, rather than having a pTargetColor
for fading particle colors and a pTargetSize for interpolating
size, we would like to have a generic attribute fade function.
Most actions currently affect the particle’s position. Making
the computation itself orthogonal to which attribute it is being
performed on would increase the API’s flexibility.

Another interesting area of future work is to implement the
API in graphics hardware on additional systems. The Pix-
elFlow implementation benefited greatly from having the par-
ticles computed on the same processor that then rendered
them. We suspect that the same would be true in PC graphics
cards that have a geometry processor. The advantages of this
are that AGP bus bandwidth, a major bottleneck in PC 3D
graphics, is greatly reduced since the particles only exist
within the graphics card; and also the CPU is then free for
other computation.

7 Acknowledgements
We wish to thank Jon Leech of Silicon Graphics, Inc. for ex-
ample code and the domain concept. We appreciate the loan of
graphics cards from nVidia and Evans and Sutherland. The
PixelFlow video is courtesy of Hewlett-Packard Corp. This
work was supported by a fellowship from Integrated Device
Technologies. Thanks to Jason Pratt of CMU for the PDTri-
angle domain and for help with the Alice demo video. Thanks
to Mark Allen, the creator of Flow, for helpful discussion, mo-
tivation, and really making particle systems look good.

8 Appendix – List of API Functions
8.1 Particle Group Functions
void pCopyGroup(int p_group_num, int index = 0, int

copy_count = P_MAXINT)

Copy particles from the specified group into the current
group.
void pCurrentGroup(int p_group_num)

Change which group is current.
void pDeleteParticleGroups(int p_group_num, int

p_group_count)

Delete one or more consecutive particle groups.
void pDrawGroupl(int dlist, bool const_size = false, bool

const_color = false, bool const_rotation = false)

Draw each particle as a model using OpenGL display lists.
void pDrawGroupp(int primitive, bool const_size = false,

UNC-CH TR 00-007

bool const_color = false)

Draw a particle group using OpenGL primitives.
int pGenParticleGroups(int p_group_count = 1, int

max_particles = 0)

Create particle groups, each with max_particles allocated.
int pGetGroupCount()

Returns the number of particles existing in the current group.
int pGetParticles(int index, int count, float *position =

NULL, float *color = NULL, float *vel = NULL, float
*size = NULL, float *age = NULL)

Copy particles from the current group to application memory.
int pSetMaxParticles(int max_count)

Change the maximum number of particles in the current
group.
8.2 Attribute State Functions
void pColor(float red, float green, float blue, float alpha =

1.0)

Specify the color of new particles.
void pColorD(float alpha, PDomainEnum dtype, float a0 =

0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 =
0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 =
0.0)

Specify the color domain of new particles.
void pSize(float size_x, float size_y = 0.0, float size_z = 0.0)

Specify the size of new particles.
void pSizeD(PDomainEnum dtype, float a0 = 0.0, float a1 =

0.0, float a2 = 0.0, float a3 = 0.0, float a4 = 0.0, float a5 =
0.0, float a6 = 0.0, float a7 = 0.0, float a8 = 0.0)

Specify the size domain of new particles.
void pStartingAge(float age, float stdev = 0.0)

Specify the initial age of new particles.
void pTimeStep(float new_dt)

Specify the time step length.
void pVelocity(float x, float y, float z)

Specify the initial velocity of new particles.
void pVelocityD(PDomainEnum dtype, float a0 = 0.0, float

a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 = 0.0, float
a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 = 0.0)

Specify the initial velocity domain of new particles.
void pVertexB(float x, float y, float z)

Specify the secondary position of new particles.
void pVertexBD(PDomainEnum dtype, float a0 = 0.0, float

a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 = 0.0, float
a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 = 0.0)

Specify the secondary position domain of new particles.
void pVertexBTracks(bool do_copy)

Specify how the secondary position of each new particle is
chosen.
8.3 Action Functions
void pAvoid(float magnitude, float epsilon, float look_ahead,

PDomainEnum dtype, float a0 = 0.0, float a1 = 0.0, float

void pBounce(float friction, float resilience, float cutoff,
PDomainEnum dtype, float a0 = 0.0, float a1 = 0.0, float
a2 = 0.0, float a3 = 0.0, float a4 = 0.0, float a5 = 0.0, float
a6 = 0.0, float a7 = 0.0, float a8 = 0.0)

Bounce particles off a domain of space.
void pCopyVertexB(bool copy_pos = true, bool copy_vel =

false)

Set the secondary position from current position.
void pDamping(float damping_x, float damping_y, float

damping_z, float vlow = 0.0, float vhigh = P_MAXFLOAT)

Dampen particle velocities, with threshold.
void pExplosion(float center_x, float center_y, float cen-

ter_z, float velocity, float magnitude, float stdev, float epsi-
lon = P_EPS, float age = 0.0)

An Explosion.
void pFollow(float magnitude = 1.0, float epsilon = P_EPS,

float max_radius = P_MAXFLOAT)

Accelerate toward the next particle in the group.
void pGravitate(float magnitude = 1.0, float epsilon =

P_EPS, float max_radius = P_MAXFLOAT)

Accelerate each particle toward each other particle.
void pGravity(float dir_x, float dir_y, float dir_z)

Accelerate particles in the given direction.
void pJet(float center_x, float center_y, float center_z, float

magnitude = 1.0, float epsilon = P_EPS, float max_radius =
P_MAXFLOAT)

Accelerate particles that are near the center of the jet.
void pKillOld(float age_limit, bool kill_less_than = false)

Remove old particles.
void pMatchVelocity(float magnitude = 1.0, float epsilon =

P_EPS, float max_radius = P_MAXFLOAT)

Modify each particle’s velocity to be similar to that of its
neighbors.
void pMove()

Move particle positions based on velocities.
void pOrbitLine(float p_x, float p_y, float p_z, float axis_x,

float axis_y, float axis_z, float magnitude = 1.0, float epsi-
lon = P_EPS, float max_radius = P_MAXFLOAT)

Accelerate toward the closest point on the given line.
void pOrbitPoint(float center_x, float center_y, float cen-

ter_z, float magnitude = 1.0, float epsilon = P_EPS, float
max_radius = P_MAXFLOAT)

Accelerate toward the given center point.
void pRandomAccel(PDomainEnum dtype, float a0 = 0.0,

float a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 = 0.0,
float a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 = 0.0)

Accelerate particles in random directions.
void pRandomDisplace(PDomainEnum dtype, float a0 =

0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 =
0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 =

UNC-CH TR 00-007

0.0)

Immediately replace position with a position from the do-
main.
void pRandomVelocity(PDomainEnum dtype, float a0 =

0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4 =
0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8 =
0.0)

Immediately replace velocity with a velocity from the domain.
void pRestore(float time_left)

Over time, restore particles to their secondary positions.
void pSink(bool kill_inside, PDomainEnum dtype, float a0

= 0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0, float a4
= 0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0, float a8
= 0.0)

Kill particles with positions on wrong side of the specified
domain.
void pSinkVelocity(bool kill_inside, PDomainEnum dtype,

float a0 = 0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0,
float a4 = 0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0,
float a8 = 0.0)

Kill particles with velocities on wrong side of the specified
domain.
void pSource(float particle_rate, PDomainEnum dtype,

float a0 = 0.0, float a1 = 0.0, float a2 = 0.0, float a3 = 0.0,
float a4 = 0.0, float a5 = 0.0, float a6 = 0.0, float a7 = 0.0,
float a8 = 0.0)

Add particles in the specified domain.
void pSpeedLimit(float min_speed, float max_speed =

P_MAXFLOAT)

Clamp each particle’s speed to the given min and max.
void pTargetColor(float color_x, float color_y, float color_z,

float alpha, float scale)

Change color of all particles toward the specified color.
void pTargetSize(float size_x, float size_y, float size_z, float

scale_x = 0.0, float scale_y = 0.0, float scale_z = 0.0)

Change sizes of all particles toward the specified size.
void pTargetVelocity(float vel_x, float vel_y, float vel_z,

float scale)

Change velocity of all particles toward the specified velocity.
void pVertex(float x, float y, float z)

Add a single particle at the specified location.
void pVortex(float center_x, float center_y, float center_z,

float axis_x, float axis_y, float axis_z, float magnitude =
1.0, float epsilion = P_EPS, float max_radius =
P_MAXFLOAT)

Swirl particles around a vortex.
8.4 Action List Functions
void pCallActionList(int action_list_num)

Apply the specified action list to the current particle group.
void pDeleteActionLists(int action_list_num, int ac-

tion_list_count = 1)

Delete one or more consecutive action lists.

void pEndActionList()

End the creation of a new action list.
int pGenActionLists(int action_list_count = 1)

Generate a block of empty action lists.
void pNewActionList(int action_list_num)

Begin the creation of the specified action list.

9 Bibliography
Allen, M. B. Flow - a particle animation application.
http://www.dnai.com/~mba/software/flow/, 1999.

Beazley, D. Python Essential Reference, New Riders Publish-
ing, 1999.

Conway, M., S. Audia, et al. "Alice: Lessons Learned from
Building a 3D System for Novices". Proc. of CHI 2000, The
Hague, The Netherlands, April 2000, 2000.

Eyles, J., S. Molnar, et al. "PixelFlow: The Realization".
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
Los Angeles, CA, August, 1997.

Leech, J. P. and R. M. Taylor. "Interactive Modeling Using
Particle Systems". Proc. of 2nd Conference on Discrete Ele-
ment Methods, MIT, 1993.

McAllister, D. K. Particle System API Home Page.
http://www.cs.unc.edu/~davemc/Particle, 1999.

Neider, J., T. Davis, et al. OpenGL Programming Guide, Ad-
dison Wesley, 1993.

Reeves, W. T. "Particle Systems - A Technique for Modeling
A Class of Fuzzy Objects". Proc. of SIGGRAPH '83, Detroit,
Michigan, July, 1983.

Reeves, W. T. and R. Blau. "Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle
Systems". Proc. of SIGGRAPH '85, San Francisco, California,
July, 1985.

Reynolds, C. W. "Flocks, Herds, and Schools: A Distributed
Behavioral Model". Proc. of SIGGRAPH '87, Anaheim, Cali-
fornia, 1987.

Reynolds, C. W. "Not Bumping Into Things - Developments
in Physically-Based Modeling course notes". Course Notes of
SIGGRAPH '88, Atlanta, Georgia, August, 1988.

Ross, S. A First Course in Probability. New York, New York,
MacMillan College Publishing, 1976.

Sepúlveda, M. A. What is OpenGL?
http://mercury.chem.pitt.edu/~tiho/LinuxFocus/English/Janua
ry1998/article2.html, 1998.

Silicon Graphics, I. OpenGL: The Industry's Foundation for
High-Performancs Graphics.
http://www.opengl.org/Downloads/OpenGL_Datasheet.pdf,
1998.

Sims, K. "Particle Animation and Rendering Using Data
Parallel Computation". Proc. of SIGGRAPH '90, Dallas,
Texas, August, 1990.

