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Simulation of Non-penetrating Elastic Bodies Using Distance Fields

Gentaro Hirota Susan Fisher Ming C. Lin

Abstract: We present an e�cient algorithm for simula-
tion of non-penetrating exible bodies with nonlinear elastic-
ity. We use �nite element methods to discretize the con-
tinuum model of non-rigid objects and the fast marching
level set method to precompute a distance �eld for each un-
deformed body. As the objects deform, the distance �elds
are deformed accordingly to estimate penetration depth, al-
lowing enforcement of non-penetration constraints between
two colliding elastic bodies. This approach can automati-
cally handle self-penetration and inter-penetration in a uni-
form manner. We combine quasi-viscous Newton's iteration
and adaptive-stepsize incremental loading with a predictor-
corrector scheme. Our numerical method is able to achieve
both numerical stability and e�ciency for our simulation.
We demonstrate its e�ectiveness on a moderately complex
animated scene.

Keywords: Deformation, physically-based animation, nu-
merical analysis.

1 Introduction

Due to recent advancements in physically-based modeling,
simulation techniques have been increasingly used to improve
the quality and e�ciency in the generation of computer ani-
mation for major �lm productions [FM96, DKT98], medical

simulation [KGC+96, Gib98] and computer games. These
techniques produce animation directly from input objects,
simulating natural motions and shape deformations based
on mathematical models that specify the physical behavior
of characters and complex structures.
Modeling deformation is a key component of physically-

based animation, since many real-world objects are not rigid.
Some examples include realistic motion generation of ar-
ticulated characters with passive objects (such as clothing,
footwear and other accessories), deformation of soft tissues
and organs, and interaction among soft or elastic objects.
Automatic, predictable and robust simulation of realistic de-
formation is one of the many challenges in computer anima-
tion and medical simulation.
When two exible objects collide, they exert reaction

forces on each other resulting in the deformation of both ob-
jects. Similarly when one exible body self collides, it may
deform and result in self-intersection. The reaction force
is called contact force, and where the two surfaces touch is
often called the contact surface. Simulating such events is
non-trivial. It is known as the contact problem in compu-
tational mechanics, and has been actively investigated for
decades [CL94]. The di�culty of this problem arises from
unclear boundary conditions; neither the contact force nor
the position of the contact surface is known a priori.
Previous work on deformable object animation uses

physically-based methods [TPBF87, TF88, PW89, GTT89,
WW90, BW92, CZ92, MT92], variational techniques
[WW92, TQ94], as well as local and global deformations
applied directly to the geometric models [Bar84, SP86,
TQ94, RE99]. Earlier work in computer animation has
focused mostly on the active simulation of primary char-
acters [vFV90, RH91, Coh92, BPW93, HWBO95]. Sec-
ondary motions, i.e. motions of passive objects gener-

Figure 1: A snapshot of the animation automatically gener-
ated by our algorithm: Bulging e�ect around the neck of the
snake due to its swallowing of an apple

ated in response to environmental forces or to the move-
ments of characters and other objects, add visual complex-
ity to an animated scene and bring it to life [OHZ97]. Re-
cently passive simulations of �re, gas, sand, uids and cloth
[SF95, CVT95, FM96, FM97, BW98, SOH99] have been
gaining attention, as they add distinct realism to the ani-
mated scene.
In this paper, we address the problem of simulation of non-

linear elastic bodies, such as soft tissue or synthetic materials
like rubber or plastics. Linear approximations are often used
to generate deformation of elastic bodies for computational
e�ciency. This is acceptable for some applications. How-
ever, large deformation is essential to create exaggeration
e�ects in computer animation, and often bending of joints
causes global deformation of tissues in medical simulation.
In these situations, linear approximation can generate un-
desirable and unrealistic behavior. Methods such as spring-
network systems are somewhat limited and are not applica-
ble to modeling material properties like incompressibility.
In many cases where the movement of animated characters

and articulated �gures is relatively slow, simulating static
behavior of passive elements is fast and su�cient. Each
keyframe or motion sequence, generated by kinematics, in-
verse dynamics or other means, can provide positional con-
straints. Simulation can be used to generate the deformation
of passive elements, such as the folding of skin or the bulging
of muscles, to greatly enhance the realism of animation.

1.1 Main Results
We present an e�cient approach for passive simulation of
non-penetrating elastic bodies. The underlying geometric
models are composed of polygonal meshes. Models consist-
ing of implicit representations or parametric surfaces, such
as NURBS, can be tessellated into polygonal meshes with
bounded error.
Our technique is based on the nonlinear elasticity theory

[Ogd84, Cia88, Tal94b] of continuum mechanics. We use
�nite element methods (FEM) [Tal94a] to model the non-
rigid bodies. We employ the fast marching level set meth-
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ods [OS88, Set99] to precompute the internal distance �eld
of each undeformed model. When two exible bodies come
into contact and deform, the distance �elds are likewise de-
formed to compute the estimated penetration depth between
two deforming objects. This penetration measure is incor-
porated into a penalty-based formulation to enforce the non-
penetration constraint between two elastic bodies. This en-
ables e�cient computation of the contact force and yields a
versatile and robust contact resolution algorithm. Our algo-
rithm e�ciently computes the minimum energy equilibrium
state of deformation by combining quasi-viscous Newton's
iteration and adaptive-stepsize incremental loading with a
predictor-corrector scheme [CL94]. We have successfully in-
tegrated these techniques to simulate collision response be-
tween two elastic bodies e�ciently.
Speci�cally, our algorithm has the following characteris-

tics:

� Both self-collisions and contacts between soft objects are
handled in a uniform manner with our robust and ef-
�cient contact processing algorithm. This is achieved
by �rst deforming the pre-computed distance �elds to
quickly estimate a penetration depth and thereby cal-
culating penalty forces to resolve contacts.

� Material properties, including nonlinear elasticity and
resistance to volume change, are taken into account to
generate realistic behavior. Using �nite element analy-
sis, our numerical method can e�ciently minimize the
total energy in the system due to large deformation sub-
ject to the desired physical constraints.

� Due to our choice of discretization methods based on
FEM, the simulated objects can be represented as poly-
hedra of arbitrary shapes and topology.

� No prior assumption or knowledge about the locations of
contacts is required when using the resulting algorithm.

We demonstrate the e�ectiveness and potential of our ap-
proach on a moderately complex animated scene. Figure 1
shows a snapshot of the simulation results. The natural de-
formation of the snake's skin due to swallowing of a large
apple has been automatically generated by our algorithm.

1.2 Organization

The rest of the paper is organized in the following manner.
We briey survey the state of the art on simulating defor-
mation in section 2. In section 3, we give an overview of our
algorithm. In section 4, we present our approach based on
�nite element methods for modeling elastic bodies. Section
5 describes the numerical methods used in our simulation.
Section 6 presents our new contact determination method
for deformable objects based on linear interpolation of pre-
computed distance �elds and the resulting collision response.
Section 7 describes the system implementation and demon-
strates the e�ectiveness of our approach.

2 Previous Work

Modeling deformation has been studied in several �elds, in-
cluding computer graphics, geometric modeling, computer
vision, computational mathematics, biomechanics, engineer-
ing and many others. An excellent survey of literature on
deformable modeling in computer graphics can be found in
[GM97]. In this section, we focus on physically-based mod-
eling techniques and mechanics for modeling deformation of
soft tissues or other highly nonlinear materials.

2.1 Modeling Deformation

Linear elastic models have been successfully used in real-time
applications where only small deformations and strains occur
[BNC96, JP99]. Mass-spring systems have been widely used
to model deformation (e.g. [Mil88, LTW95, BW98]), due to
their simplicity. However, they are notorious for their dif-
�culty in determining the sti�ness parameter and modeling
incompressibility. Finite element methods (FEM) have been
regarded as a versatile, e�ective and more accurate technique
for discretization of continuum models. They are especially
suitable for modeling nonlinear elasticity. Although they
have been frequently employed in engineering applications,
their use has been rather limited in computer graphics and
animation (e.g. [CZ92, OH99]) due to their mathematical
complexity and associated computational costs.

2.2 Contact Surfaces and Contact Forces

In some applications, the contact relationship can be pre-
determined. Donzelli [Don95] analyzed articular cartilage in
2D, where the \contactor" and \target" are pre-determined.
The method is not applicable to general geometric con�gu-
rations. Similar \master-slave" relationships have also been
de�ned in other approaches [HGB87]. If deformation can be
expressed as a function of time a priori, geometric algorithms
for �nding collision points between time-dependent surfaces
can be found [VBZ90, SWF+93].
Once collisions have been detected, repulsive forces be-

tween particles are often used to prevent inter-penetration
(e.g. [BHW94]). In this type of method, many particles on
the boundary surfaces repulse each other to keep the sur-
faces from colliding. In a situation where the boundary sur-
face signi�cantly stretches, the gaps between particles widen
with increasing chance of interpenetration. A high density
of particles is required to prevent penetration. The \pinball"
method [BN91, BY92] uses sphere trees to quickly reject the
particles not intersecting the surface, but also requires a large
number of spheres to achieve desired accuracy.
Precise contact modeling between exible solids using im-

plicit functions has been described in [Gas93, DG95]. Its
applications, however, are limited to scenarios where objects
can be represented as speci�c types of implicit functions.

2.3 Numerical Methods

Explicit integration techniques (e.g. [ZC99]) are often used
in dynamic simulation of deformable objects. They are usu-
ally fast, but su�er from numerical stability problems. In
addition, they are unsuitable for static analysis of highly
nonlinear systems. Recently the advantages of implicit inte-
gration have been extensively discussed in [BW98, DSB99],
which are kindred to the numerical method chosen by our
algorithm. A more detailed discussion about our numerical
method will be presented in section 5. We refer the readers
to [KO88] for a complete, formal treatment of the numerical
solutions of contact problems using FEM.

3 Algorithm Overview

In this section, we describe the problem statement and give
an overview of our approach.

3.1 Problem De�nition

Suppose we are given a set of elastic objects represented as
polyhedra. Let V be the set of the vertices of these poly-
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Figure 2: (a)-(c) show a simulation sequence generated by our algorithm: (a) A snake retreating through a exible torus.
(b) A close-up look at the torus deforming as the snake slides through. (c) The snake coiling up without self-penetration. (d)
Visually displeasing self-penetration of the snake without penetration avoidance. Its neck penetrates its body as the snake bends
backward (highlighted by the red circle).

hedra. Given the new positions for a subset of vertices Vc

as positional constraints, the problem is to deform each ob-
ject by computing the new positions of the remaining ver-
tices fV � Vcg, taking into consideration material proper-
ties and external forces. Interpenetration between objects
and self-intersections need to be avoided. Given the above
constraints, the total energy stored in all objects must be
minimized.
Examples of this problem can be found in computer an-

imation and medical simulation. For instance, assume that
the motions of the skeleton of an articulated �gure are given
(by dynamics controller or inverse kinematics) as positional
constraints. We would like to automatically generate the
static behavior of the deformable soft tissues, skin and mus-
cles, as the skeleton �gure moves.
Another example is shown in Figure 2(a)-(c). Our algo-

rithm simulates a snake retreating through a exible torus
ring and coiling itself up with the non-penetration con-
straints, given only a few simple positional constraints pro-
vided by the user. In comparison, Figure 2(d) shows visually
disturbing self-penetration of the snake in the same simula-
tion without the penetration avoidance mechanism.

3.2 Outline of Our Approach

We solve the problem described above by using the following
steps:

1. Given the input models, construct a tetrahedral ele-
ment mesh as a discretized representation for each ob-
ject (section 4).

2. Generate an internal distance �eld for each input object
using the fast marching level set method (section 6.2).

3. Apply �nite element analysis (section 4):

(a) Estimate the penetration depth based on the de-
formed distance �elds for penetration avoidance
(section 6.1).

(b) Minimize the total energy due to deformation,
taking into account all material properties and
external forces, using our synthesized numerical
method (section 5).

Figure 3 shows the ow of our system.

3.3 Notation Convention

In the next few sections, we will describe each step of our
algorithm in greater detail. Here we de�ne some conventions
for the notations that we will use throughout the paper. A
lower-case, bold-face letter, such as p, denotes a position in
the 3D Euclidean space. A upper-case, bold-face letter, such
as A, denotes a matrix or a displacement vector in R3.

Mesh
Generation

Distance Field
Computation

Finite Element Analysis

External 
Forces

Rendering

Avoidance
PenetrationEnergy

Minimization

Positional
Constraints
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w/ Material Prop.

Figure 3: A system overview showing various components
of our algorithm

4 Finite Element Methods

In this section, we describe the discretization method we
use, namely �nite element analysis, to model deformation
based on the nonlinear elasticity theory. We reformulate the
problem of simulating deformable objects as a constrained
minimization problem using Constitutive Law.

4.1 Discretization Methods

Deformation induces movement of every particle within an
object. It can be modeled as a mapping of the positions of
all particles in the original object to those in the deformed
body. Each point p is moved by the deformation function
�(�):

p! �(t;p)

where p represents the original position, and �(t;p) repre-
sents the position at time t. We limit the discussion to the



4

static analysis, hence t is omitted:

p! �(p)

Simulating deformation is in fact �nding the �(�) that sat-
is�es the laws of physics. Since there are an in�nite number
of particles, �(�) has in�nite degrees of freedom. In order
to model a material's behavior using computer simulation,
some type of discretizationmethod must be used. For simu-
lation of deformable bodies, spring networks, the �nite di�er-
ence method (FDM), the boundary element method (BEM),
and the �nite element method (FEM) have all been used for
discretization.
A spring network approximates the laws of physics by pair-

wise relationship between node points. It is very di�cult to
map continuum mechanics to such pairwise relationships cor-
rectly. Namely, it is impossible to describe a potential energy
associated with volume change.
In the FDM, the independent approximations happen at

a �nite number of sampled points. A FDM usually requires
\regular" structures for mesh topology, which constrains our
choices of geometric representations.
The BEM uses node points sampled only on boundary

surfaces. The use of the BEM is limited to linear di�erential
equations, hence cannot be used to simulate nonlinear elastic
bodies.
The FEM uses a piecewise approximation of the deforma-

tion function �(�). Each \piece" is called an element, which
is de�ned by several node points. The elements constitute
a mesh. Since the FEMs pose relatively small restrictions
on the mesh topology, they are suitable for representing a
variety of shapes and topology.

4.2 Tetrahedral Elements

Our algorithm uses a FEM with 4-node tetrahedral elements
with linear shape functions. We have chosen this element
because:

� In a mesh composed of 4-node tetrahedral elements,
each node has a relatively small number of neighbors.
This results in fewer non-zero elements in the sti�ness
matrix and less expensive computation. Higher order
elements such as 6-node hexahedral elements, on the
other hand, produce denser sti�ness matrices.

� 4-node tetrahedral elements simplify the integration of
the derivatives of the potential energy. This integration
is essential for computing the sti�ness matrix. Precise
integrations for higher order elements are expensive,
and usually require numerical integration techniques
such as Gauss quadrature.

� A tetrahedron does not self-penetrate. As a result the
penetration problem is reduced to pairwise element-
element problem. A higher order element can deform
and result in self-intersection, which makes the pene-
tration problem much more complicated.

�(�) maps a point in a tetrahedral element at p = [x; y; z]T

to a new position �(p). As shown in Fig. 4, by de�nition, �(�)
moves four nodes of an element from their original positions

ni = [nix; niy; niz]
T
; 1 � i � 4;

to the new positions

~ni = [~nix; ~niy; ~niz]
T ; 1 � i � 4:

The displacements of the four nodes due to the deformation
is

Ui = [Uix; Uiy; Uiz]
T

= [~nix � nix; ~niy � niy; ~niz � niz]
T
; 1 � i � 4:
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Figure 4: �(�) maps four nodes of a tetrahedral element,

n1; :::;n4 to their new position at ~n1; :::; ~n4. U1; :::;U4 are
the corresponding displacement vectors.

Clearly this deformation is an a�ne transformation of the
form:

�(p) = Fp+T

where F is a 3 � 3 matrix and T is 3 � 1 column vector
representing translational displacement. ~ni and ni satisfy
the linear system:

~n1 = Fn1 +T

~n2 = Fn2 +T

~n3 = Fn3 +T

~n4 = Fn4 +T

Since T, representing the translational components, has no
e�ect on the elastic energy, it is omitted from the rest of
derivation. By solving the linear system, we have

F = BA�1 = (A+H)A�1 =HA�1 + I

where I is a 3� 3 identity matrix and

A = [n2 � n1;n3 � n1;n4 � n1]
B = [~n2 � ~n1; ~n3 � ~n1; ~n4 � ~n1]
H = [U2 �U1;U3 �U1;U4 �U1]

with ni � nj representing vector di�erences. F is known as
the deformation gradient [CL94]. The right Cauchy-Green

tensor, C = FTF, is often used to characterize deformation,
and is insensitive to rigid motions.

4.3 Constitutive Law & Energy Minimization

Given the basics of FEM, we reformulate the problem of
simulating deformable objects as a constrained minimization
problem using Constitutive Law in this section.
Since the use of 4-node tetrahedral elements simpli�es the

energy integration, we use an energy minimization scheme
to derive the equilibrium equations. This greatly simpli�es
the derivation. The same result is obtained by the Galerkin
method, which is commonly used in standard FEM text-
books [CL94].
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A constitutive law de�nes the relationship between the de-
formation gradient F and the elastic energy stored per unit
volume for a speci�c material. The simplest and most com-
monly used is the Saint-Venant-Kirchho� material [CL94].
It is characterized by the energy

Wsvk(F) =
�

2
(tr(E))2 + � tr(E2):

where E = 1

2
(C�I), � and � are Lam�e constants, and tr(E)

is the trace of the matrix E.
This material has a weak characteristic to resist volume

change, but can be compressed in�nitely (i.e. zero-volume)
without raising its energy to in�nity. This also means that
negative compression rates will be allowed under high stress.
Such materials exhibit unrealistic deformations. Avoiding
in�nite and negative compression is also important to proper
computation of penetration penalty forces.
Therefore, we use the following constitutive law [Cia88]

with a slightly more complex energy function:

Wcg(F) = C1(I1�3)+C2(I2�3)+a(I3�1)�(C1+2C2+a)ln(I3)

where

I1 = tr(C)

I2 =
1

2
tr(C)2 � tr(C2)

I3 = det(C)

and, C1; C2; C3 and a are material dependent constants. The
energy goes to in�nity as the material is compressed in-
�nitely.
F and Wcg are constant in a tetrahedral element. The

integration of the energy stored in an element is expressed
as:

Wtetra(Utet) =

Z
V

Wcg dp = V Wcg

where Utet is a vector that contains all the displacements of
nodes and V is the volume of the tetrahedron.
@Wtetra(Utet)=@Utet represents the elastic forces acting

on nodes. Note that @Wtetra(Utet)=@Utet is a nonlinear
function of Utet. This implies that the force acting on each
node is a nonlinear function of the displacements. If it were
a linear function, the solution of the following minimization
problem could be solved by using a linear system solution.
But it is well known that such a linear function cannot retain
essential properties of �nite elasticity [Ogd84, Tal94b], which
is crucial for simulating realistic behavior of deformable ob-
jects.
The total elastic energy Welastic is a function of the dis-

placements of all nodes. It is obtained as the summation
of Wtetra for all elements. The displacements of nodes can
be decomposed into two parts, U�x and Ufree. U�x rep-
resents constant displacements corresponding to predeter-
mined vertex coordinates. Ufree represents the displace-
ments of \free" nodes. Thus we denote the total elastic
energy as Welastic(U�x;Ufree). U�x serves as the bound-
ary condition. If U�x is the only boundary condition and
the object is in a stationary and stable con�guration, Ufree

locally minimizes Welastic(U�x;Ufree).
To incorporate the penetration avoidance constraint into

the same energy minimization scheme, an energy function
Wpenet representing the amount of \penetration" between
polyhedra is added. Together with Wext, the energy due to

external forces (e.g. the potential energy for gravity), the
total energy W in the system is:

W (U�x;Ufree) = Welastic(U�x;Ufree) +

Wpenet(U�x;Ufree) +Wext(U�x;Ufree)

In the discretized domain, all forces can be considered as
point forces acting on nodes. The total forces acting on free
nodes are @W (U�x;Ufree)=@Ufree. At the equilibrium, this
force must vanish. That is,

@W (U�x;Ufree)

@Ufree

= 0

The solution of the minimization problem below satis�es
this equilibrium condition:

Find Ufree s:t: it minimizesW (U�x;Ufree)

The details of our numerical method are presented in the
next section.

5 Numerical Methods for Minimiza-
tion

In addition to the non-linear nature of elastic materials, pen-
etration introduces discontinuity to the deformation energy
function. Therefore, a relatively robust numerical method
must be used. In this section, we present a relatively stable
numerical method by combining quasi-viscous Newton's it-
eration and adaptive-stepsize incremental loading with Euler
and two-point predictors.

5.1 Basic Newton's Iteration

Newton's method �nds the minimum of the deformation en-
ergy function by repeatedly approximating the total energy
W with quadratic functions. We use the following approxi-
mation:

W (U�x;Ufree +�Ufree) � W (U�x;Ufree) +

�Ufree
T R(U�x;Ufree) + �Ufree

T K(U�x;Ufree) �Ufree

where

R(U�x;Ufree) =
@W

@Ufree

(U�x;Ufree)

K(U�x;Ufree) =
@2W

@Ufree
2
(U�x;Ufree)

Newton's iteration is given as

initialize
Ufree = Ufree's initial guess

repeat

�Ufree = K(U�x;Ufree)
�1(�R(U�x;Ufree))

Ufree = Ufree +�Ufree

until Ri < �;8i, where Ri are entries of R

This is the same as �nding an solution of the equilibrium
equation:

�R(U�x;Ufree) = 0

Using linear approximation, we have

�R(U�x;Ufree +�Ufree) �
�R(U�x;Ufree)�K(U�x;Ufree) �Ufree
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If the above iteration converges and K(U�x;Ufree) is pos-
itive de�nite, the algorithm �nds a local minimum. The
treatment of inde�nite matrices are discussed in section 5.3.
Newton's method requires the expensive computation of

the tangent or sti�ness matrix, K(U�x;Ufree). But once
it is computed, it provides a better global idea about the
shape of W (U�x;Ufree) than just the gradient (i.e. the
residual R(U�x;Ufree)). Gradient descent methods that
rely only on gradients require far more iterations than New-
ton's methods. The computations of R(U�x;Ufree) and
K(U�x;Ufree) both require collision checking to perform
penetration avoidance. Since collision detection between de-
formable bodies is an expensive process, the computational
costs for R(U�x;Ufree) and K(U�x;Ufree) are nearly the
same. Hence, the expensive computation of the sti�ness ma-
trix pays o� in the long run.
In dynamic simulation, implicit integration methods take

advantage of sti�ness matrices, whereas explicit integration
methods use only residuals. We can obtain the minimum
energy point by explicitly integrating a viscous system to the
point where the system loses all kinetic energy and converges
to a stationary point. But, the sti�ness of common materials
such as human tissue or a block of rubber may be more a
dominating factor than inertia in determining the stepsize.
Thus, for many realistic applications, a very small time step
must be chosen for integration.

5.2 Incremental Loading with Euler and 2-
Point Predictors

To handle large values of U�x, incremental loading is intro-
duced. This method successively solves the problem:

Find Ufree s:t: it minimizes W (�U�x;Ufree)

where � is a scalar incremented from 0 to 1. A solution
curve is obtained by plotting Ufree against �, shown in blue
in Figure 5.
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Figure 5: Tracing solution curve

For each incremented �, a new initial guess of Ufree is es-
timated (predictor) and Newton's iteration �nds the solution
(corrector).
Since W (�) is highly nonlinear, Newton's iteration con-

verges only if the initial guess is close to the solution. If an
initial guess lies in the shaded area as shown in Figure 5,
convergence cannot be achieved.
Euler and two-point predictors are used to compute the

initial guess of Newton's iteration. An Euler predictor esti-
mates the tangent vector of the solution curve and extrapo-
lates the new initial guess on the tangent line. This involves
solving a linear system. If the linear system cannot be solved,

then a two-point predictor is used. The two-point predictor
extrapolates the two previous solutions to make an initial
guess.
The predictors determine the direction in Ufree space.

The magnitude of a step is determined by the stepsize of
�. If the stepsize is too large, Newton's iteration may not
converge. On the other hand, too small a stepsize degrades
the performance. Therefore, the stepsize must be adjusted
according to the current situation. If Newton's iteration fails
to converge, it backtracks to the previous step and the step-
size of � is decreased. If the iteration was successful, the
stepsize is slightly increased. Thus, the stepsize is automat-
ically adjusted for optimized performance.
We also implemented the arc-length continuation method

[Tal94b], which is known to be a more sophisticated tech-
nique than incremental loading. In this method, Newton's
iteration searches for the solution on the arc that is at a
certain distance from the previous solution. This method
is superior in the sense that it can overcome limit points.
However, in our experience, the performance of this method
is limited, because of its ability to decrement �. It may be
trapped in a loop in the solution curve, or return back to the
starting point.

5.3 Newton's Iteration with Viscosity

The methods described above including arc-length contin-
uation are all vulnerable to ill-conditioned and inde�nite
sti�ness matrices. Viscosity is introduced to alleviate this
problem.
Imagine the entire mesh immersed in viscous uid. The

tetrahedral elements can move through the uid without any
resistance, but the nodes encounter drag forces due to the
friction between the nodes and the uid. The drag force is:

�D _Ufree

where

D = diag[d1; d1; d1; d2; d2; d2; : : : ; dn; dn; dn]

_Ufree is the \velocity" vector of nodes and D is the diagonal
matrix that contains drag force scalars. di is the drag force
scalar for node i, and proportional to the total volume of
the tetrahedra surrounding the node. This ensures that the
drag forces have similar magnitude as the elastic forces. This
scalar value can be viewed as the radius of the node. The
size of the node is set to the average size of elements to which
the node belongs. Larger nodes experience more drag forces
from the surrounding uid.
The resulting equilibrium equation in Newton's iteration

is
�R(U�x;Ufree +�Ufree)�D _Ufree = 0

Our goal is mainly to stabilize Newtons' iteration. Hence
the \current" velocity is set to zero, and the \next" velocity,
_Ufree, is set to be �Ufree=�t where �t is the time step,
which can be set to 1. Thus

�R(U�x;Ufree +�Ufree)�D �Ufree = 0

Using linear approximation, it simpli�es to

�R(U�x;Ufree)�K(U�x;Ufree)�Ufree �D �Ufree = 0

�R(U�x;Ufree)� (K(U�x;Ufree) +D)�Ufree = 0

�Ufree = (K(U�x;Ufree) +D)�1 (�R(U�x;Ufree))

As a result, we simply add positive values to the diagonal
elements of the sti�ness matrix K(U�x;Ufree). Since the
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diagonal elements of K(U�x;Ufree) are usually the largest
positive values in a row, with a large enough value of D,
K(U�x;Ufree) remains positive de�nite, preventing the al-
gorithm from climbing energy hills. This also decreases the
condition number of K(U�x;Ufree) and helps in solving lin-
ear systems.

6 Resolving Penetration

In section 4, we described the �nite element analysis frame-
work and how the static analysis of deformation can be
solved using minimization techniques with the numerical
methods described in section 5. In this section, we address
the issue of formulating the non-penetration constraint, so
to include it in the optimization process. We present an
e�cient contact processing technique that can handle both
self-collision and inter-penetration between objects in a uni-
form manner.
Ideally, no two tetrahedral elements should share the

same space. This is the non-penetration constraint. The
non-penetration constraint can be imposed using techniques
such as constrained optimization techniques or penalty-
based methods. For example, in an augmented Lagrangian
method, each Lagrangian multiplier corresponding to a con-
tact relationship is updated in an iterative manner [Pow69].
The di�culty lies in the integration of the update loop with
Newton's iteration that changes node positions and hence
contact relationships. Instead of treating it as a hard con-
straint, we used penalty methods. Thus, a small amount of
penetration is allowed. In practice, su�ciently large penalty
constant is good enough to prevent visually displeasing pen-
etration, unless the simulated objects are very thin.

6.1 Penetration Potential Energy

When using the penalty based method, we need to �rst de-
�ne a penetration potential energy Wpenet(�) that measures
the amount of intersection between two polyhedra or the de-
gree of self-intersection of a polyhedron, and thereby �nds
an e�cient method to compute it, its �rst and second deriva-
tives.

6.1.1 De�ning the Extent of Intersection

There are several known methods to de�ne the extent of in-
tersection. The node-to-node method is the simplest way
to compute Wpenet(�). This method computes Wpenet(�) as
a function of the distances between sampled points on the
boundary of each objects. The repulsive particle method
mentioned in section 2 belongs to this category. The draw-
back of this method is that, once a node penetrates boundary
polygons, the repulsive force ips its direction, and induces
further penetration. Such penetration often occurs in inter-
mediate steps of the aggressive Newton's iterations. Further-
more, once a node is inside a tetrahedral element, it is no
longer clear which boundary polygon the node has actually
penetrated.
A more accurate approach is to compute the penetration

depth, commonly de�ned as the minimum translational dis-
tance required to separate two intersecting objects. No gen-
eral and e�cient algorithm for computing penetration depth
between two non-convex objects is known. In fact, an O(n6)
time bound can be obtained for computing the Minkowski
sum of two non-convex polyhedra to �nd the minimum pen-
etration depth in 3D [DHKS93].
The most complicated yet accurate method is to use the

intersection volume. Using this method, Wpenet(�) is de�ned

Figure 6: (a) The distance �eld of a sphere. (b) The dis-
tance �eld of a deformed sphere computed using linear inter-
polation of the precomputed distance �eld.

based on the volume of intersection between two penetrat-
ing polyhedra. Since polyhedra deform as simulation steps
proceed, it is di�cult to create and reuse previous data from
the original model. Furthermore, it is susceptible to accuracy
problems and degenerate contact con�gurations. So, e�cient
computation of the intersection volume is rather di�cult to
achieve.

6.1.2 Estimating Penetration Depth

We have chosen a method that provides a balance between
the two extremes by computing an approximate penetra-
tion depth between deformable objects. With our method,
Wpenet(�) is de�ned as a function of distances between
boundary nodes and boundary polygons that the nodes pen-
etrate. We de�ne

Wpenet(�) = k � d2 (1)

where d is the minimum distance from a boundary node to
the intruded boundary and k is a penalty constant.
The convergence rate of Newton's iteration depends on the

smoothness of the energy function. Therefore, a quadratic
function was chosen. Accurate computation of the penetra-
tion depth d is very expensive, and d needs to be evaluated
at every Newton's iteration. Our algorithm estimates the
computation of the penetration depth d by replacing it with

the linear interpolation ~d of pre-computed distance values:

~d = u1 d1 + u2 d2 + u3 d3 + (1� u1 � u2 � u3) d4 (2)

where d1; d2; d3 and d4 are distance values at the four nodes
of each tetrahedral element. These distance values are sam-
pled from the distance �eld generated by the fast marching
level set method to be described in the next section. u1; u2
and u3 are the interpolation parameters, and 0 � ui � 1,
1 � i � 3.
Once an accurate value of distance is assigned to each

node, no matter how the mesh is deformed, the value of ~d is
quickly computed at any point inside the object. Figure 6
shows an example where the distance �eld of a sphere is
quickly re-computed as the sphere deforms.
This approximated distance �eld shares a few properties

with the exact distance �eld. Some of these properties are
essential for proper computation of penalty forces and their
derivatives:

1. It vanishes on the boundary polygons.

2. It is twice di�erentiable inside the elements and C0 con-
tinuous everywhere.

3. By following its negative gradient, an internal point can
reach the boundary within short distance, which helps
the Newton's iteration with high viscosity to quickly
converge to the solution.



8

n 2

n

n

n

4

3

1 m

Figure 7: A node m penetrates into another tetrahedral el-
ement. The distance between m and the red triangle is the
penetration depth.

A simple space subdivision method is used to �nd each in-
stance where a boundary node from one element penetrates
another element. Suppose a boundary node m is within
an element with nodes n1;n2;n3 and n4 as shown in Fig-
ure 7. m can be written in terms of linear interpolation of
n1; : : : ;n4:

m = u1 n1 + u2 n2 + u3 n3 + (1� u1 � u2 � u3) n4 (3)

~d at m is obtained by solving Eqn. 2 and Eqn. 3:

~d = [d1 � d4; d2 � d4; d3 � d4] G
�1 [m� n4] + d4 (4)

where
G = [n1 � n4;n2 � n4;n3 � n4]

Wpenet(�) is computed by using ~d instead of d in Eqn. 1.

The terms @Wpenet=@Ufree and @2Wpenet=@Ufree
2 are ob-

tained as the corresponding components of the �rst and
second derivatives of Wpenet(�) with respect to m and ni,
1 � i � 4. These derivatives can be easily computed by
applying chain rules to Eqn. 1 and Eqn. 4.

The estimated ~d is not di�erentiable on the boundary of
the elements, which causes abrupt changes in the residual
and the sti�ness matrix across the boundary and sometimes
confuses Newton's iteration. But, with proper viscosity, the
simulation progresses past the critical point.
This algorithm is insensitive to which object (or con-

nected mesh) the nodes m and n belong to. Therefore,
self-intersections and intersections between two objects are
treated in a uniform manner. It is also robust enough to
recover from deep penetrations. In the next section, we will
briey describe the method we use for pre-computing the
distance �eld.

6.2 Distance Field Computation

Computing the minimum geodesic distance from a point to
a surface is a well known complex problem [KAB95]. Osher
and Sethian [OS88, Set99], introduced a new perspective on
this problem by using a partial di�erential method to per-
form curve evolution. The fast marching level-set method
avoids the problems that traditional methods incurred, such
as the problems with corners and cusps, and changing topolo-
gies. The method has a basis in gas dynamics and hyperbolic
conservation laws.

The algorithm �rst constructs a band of points around the
initial surface. All of the initial points, with the exception of
the innermost band, are labeled as \Alive". Once an Alive
point is computed, it may not be recomputed. The remain-
ing points of this initial band are labeled as \Narrow Band"
points. These points form the surface that we will evolve.
The remaining, uninitialized points are termed \Far Away".
At each step, the gridpoint with the minimum distance

value is extracted from the Narrow Band. For e�ciency
reasons, the Narrow Band is implemented as a minimum
heap structure. Each extraction of the minimum grid point
from the Narrow Band is an O(1) operation. This point is
moved to the Alive points and recomputed by solving for T
in the following equation:

M = (max(D�xT +
�x

2
D
�x�x

T;D
+x
T +

�x

2
D

+x+x
T; 0))2

where the �nite di�erences are given by

D
+x =

Ti+1 � T

�x

D
�x =

T � Ti�1

�x

D
+x+x =

Ti+2 � 2Ti+1 + T

2�x

D�x�x =
T � 2Ti�1 + Ti�2

2�x

Similarly, we let

N = (max(D
�y
T +

�y

2
D
�y�y

T;D
+y
T +

�y

2
D

+y+y
T; 0))

2

O = (max(D�zT +
�z

2
D
�z�z

T;D
+z
T +

�z

2
D

+z+z
T; 0))2

Let 1

Fijk

=
p
M +N + O

The term Fijk represents the speed of the propagating front.
Because we wish to �nd the distance from each point to the
surface, this value is uniform (constant) in this implementa-
tion.
All Narrow Band and Far Away neighbors are also re-

computed, and the Far Away neighbors are moved into the
Narrow Band. The equations use a second order scheme
whenever possible to produce higher accuracy. That is, both
Ti+2 and Ti+1 must be Alive in order to compute D+x+x,
D+y+y or D+z+z, where Ti+2 > Ti+1. The choice of when
to use the second order scheme simply depends on whether
two known (Alive), monotonically increasing values exist as
neighbors of the test point. If not, then the �rst order scheme
is used.
For details on the accuracy and robustness of this algo-

rithm, see [OS88, Set99].

7 Results and Discussion

We have implemented the algorithm described in this pa-
per and have successfully integrated it into a moderately
complex animation (shown in the accompanying videotape).
We used Maya developed by AliasjWavefront to generate the
models used in our animation sequences. We used a public
domain mesh generation package, SolidMesh [MW95], to cre-
ate tetrahedral elements used in our FEM simulation. Ren-
dering of the simulation results was displayed using OpenGL
on a 300MHZ R12000 SGI In�nite Reality.
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Figure 8: Large Deformation: A snake coiling up

Figure 9: A snake swallowing an apple from a bowl of fruits

7.1 System Demonstration

Figure 8 shows a large deformation simulated by our algo-
rithm. Two sets of positional constraints were speci�ed for
internal nodes in the head part and the tail part. Given
the positional constraints, the head of snake is forced to
move toward its tail. The snake model has about 14,000
elements. The simulation automatically generates the natu-
ral coiling deformation. Simulating linear elasticity cannot
generate such e�ects. It is not obvious from the images, but
many small self-penetrations were resolved during the defor-
mation. The total simulation took 57 minutes (wall-clock
time).

Figure 9 are snapshots from an animation sequence where
a snake swallows a deformable red apple from a bowl of fruits.
The snake and the apple models have a total of 23,000 ele-
ments. Eight major keyframes were used to set the positional
constraints. A few nodes inside the apple and on a part
of snake's mouth follow linearly interpolated paths between
these keyframes. The deformation of the apple and the snake
was computed by our simulation. The entire sequence took
approximately six hours to generate. As the snake swallows
the apple, the snake tilts its head. Interesting e�ects such
as the bulging around the neck and the wiggling tail mo-
tions are all automatically generated by our algorithm. It
would have been di�cult to create these movements using
traditional keyframed animation or other deformation mod-
els with linear elasticity.

7.2 Limitations

Our method computes the distance �elds within each object.
Therefore, it is not best suited for handling self-penetration
of thin objects, such as cloth and hair. The viscosity pa-
rameter is not automatically speci�ed, and it needs to be
adjusted for each application. If the viscosity is too small,
Newton's iteration becomes unstable. If it is too large, the
convergence becomes very slow. Some automatic mechanism
to optimize the viscosity parameter should be investigated.

8 Summary and Conclusion

We have addressed the contact problem for passive simula-
tion of nonlinear elastic bodies. We use �nite element meth-
ods to model the elastic bodies undergoing deformation. Our
technique precomputes internal distance �elds for each ob-
ject, which are later used for enforcing the non-penetration
constraints using penalty methods. In conventional meth-
ods, the computation of penalty forces due to penetration
takes a long time, and it is often a bottleneck of the contact
problem in computational mechanics. By taking advantage
of precomputed distance �elds that deform as the �nite ele-
ment mesh deforms, our algorithm enables e�cient compu-
tation of penalty forces and their derivatives, and yields a
versatile and robust contact resolution algorithm.
This algorithm can be useful for many applications, such

as simulation of passive deformable tissues in computer an-
imation. It can also be incorporated into medical simula-
tion used for multi-modal image registration, surgical plan-
ning and instructional medical illustration. We have demon-
strated its promising potential in the generation of secondary
motions for an animated scene. In the future, we plan to
explore other applications and to develop a parallel imple-
mentation of the algorithm for predicting tumor movement
due to tissue deformation for image registration during an
image-guided surgical procedure.
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