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Abstract 
This paper presents a method for realistic real-time rendering of clouds suitable for flight simulation and games.  It 
provides a cloud shading algorithm that approximates multiple forward scattering in a preprocess, and first order 
anisotropic scattering at runtime.  Impostors are used to accelerate cloud rendering by exploiting frame-to-frame 
coherence in an interactive flight simulation.  Impostors are shown to be particularly well suited to clouds, even in 
circumstances under which they cannot be applied to the rendering of polygonal geometry.  The method allows 
hundreds of clouds and hundreds of thousands of particles to be rendered at high frame rates, and improves 
interaction with clouds by reducing artifacts introduced by direct particle rendering techniques. 

  

1. Introduction 

“Beautiful day, isn’t it?”  
“Yep.  Not a cloud in the sky!” 

Uncommon occurrences such as cloudless skies often elicit 
such common figures of speech.  Clouds are such an integral 
feature of our skies that their absence from any synthetic 
outdoor scene can detract from its realism.  Unfortunately, 
outdoor scenes in interactive applications such as flight 
simulators often suffer from cloudless skies.  Designers of 
these applications have relied upon similar techniques to 
those used by renaissance painters in ceiling frescos: distant 
and high-flying clouds are represented by paintings on an 
always-distant sky dome.  In addition, clouds in flight 
simulators and games have been hinted at with planar 
textures – both static and animated – or with semi-
transparent textured objects and fogging effects.   

 There are many desirable effects associated with clouds 
that are not achievable with such techniques.  In an 
interactive flight simulation, we would like to fly in and 
around realistic, volumetric clouds, and to see other flying 
objects pass within and behind them.  Current real-time 
techniques have not provided users with such experiences.  
This paper describes a system for real-time cloud rendering 
that is appropriate for games and flight simulators. 

 In this paper we focus on high-speed, high-quality 
rendering of constant-shape clouds for games and flight 
simulators.  These systems are already computationally and 
graphically loaded, so cloud rendering must be very fast.  For 
this reason, we render realistically shaded static clouds, and 

do not address issues of dynamic cloud simulation.    This 
choice enables us to generate clouds ahead of time, and to 
assume that cloud particles are static relative to each other.  
This assumption speeds the rendering of the clouds because 
we need only shade them once per scene in a preprocess.  

 The rest of this section presents previous work.  Section 2 
gives a derivation and description of our shading algorithm.  
Section 3 discusses dynamically generated impostors and 
shows how we use them to accelerate cloud rendering.  We 
also discuss how we have dealt with issues in interacting 
with clouds.  Section 4 discusses our results and presents 
performance measurements.  We conclude and discuss ideas 
for future research in section 5. 

Figure 1: Realistic clouds in the game “Ozzy’s Black Skies”.
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1.1 Previous Work 
We segment previous work related to cloud rendering into 
two areas: cloud modeling and cloud rendering.  Cloud 
modeling deals with the data used to represent clouds in the 
computer, and how the data are generated and organized.  
We build our clouds with particle systems.  Reeves 
introduced particle systems as an approach to modeling 
clouds and other such “fuzzy” phenomena in [Reeves1983].  
Voxels are another common representation for clouds.  
Voxel models provide a uniform sampling of the volume, 
and can be rendered with both forward and backward 
methods.  Procedural solid noise techniques are also 
important to cloud modeling as a way to generate random but 
continuous density data to fill cloud volumes [Lewis1989, 
Perlin1985, Ebert1998]. 

 Much previous work has been done in non-interactive 
rendering techniques for clouds.  Rendering clouds is 
difficult because realistic shading requires the integration of 
the effects of optical properties along paths through the cloud 
volume, while incorporating the complex scattering within 
the medium.  Previous work has attempted to approximate 
the physical characteristics of clouds at various levels of 
accuracy and complexity, and then to use these approximate 
models to render images of clouds.  Blinn introduced the use 
of density models for image synthesis in [Blinn1982], where 
he presented a low albedo, single scattering approximation 
for illumination in a uniform medium.  Kajiya and Von 
Herzen extended this work with methods to ray trace volume 
data exhibiting both single and multiple scattering 
[Kajiya1984].  Nelson Max provided an excellent survey in 
which he summarized the spectrum of optical models used in 
volume rendering and derived their integral equations from 
physical models [Max1995].  David Ebert has done much 
work in modeling “solid spaces”, including offline 
computation of realistic images of smoke, steam, and clouds 
[Ebert1990, Ebert1997].  Nishita et al. introduced 
approximations and rendering techniques for global 
illumination of clouds accounting for multiple anisotropic 
scattering and skylight [Nishita1996]. 

 Our rendering approach draws most directly from recent 
work by Dobashi et al,. which presents both an efficient 
simulation method for clouds and a hardware-accelerated 
rendering technique [Dobashi2000].  The shading method 
presented by Dobashi et al. implements an isotropic single 
scattering approximation.  We extend this method with an 
approximation to multiple forward scattering and anisotropic 
first order scattering.  The animated cloud scenes of Dobashi 
et al. required 20-30 seconds rendering time per frame.  Our 
system renders static cloudy scenes at tens to hundreds of 
frames per second, depending on scene complexity. 

2. Shading and Rendering 
Particle systems are a simple and efficient method for 
representing and rendering clouds. Our cloud model assumes 
that a particle represents a roughly spherical volume in 
which a Gaussian distribution governs the density falloff 
from the center of the particle.  Each particle is made up of a 
center, radius, density, and color.  We get good 
approximations of real clouds by filling space with particles 
of varying size and density.  Clouds in our system can be 
built by filling a volume with particles, or by using an 
editing application that allows a user to place particles and 
build clouds interactively.  The randomized method is a good 
way to get a quick field of clouds, but we intend our clouds 
for interactive games with levels designed and built by 
artists.  Providing an artist with an editor allows the artist to 
produce beautiful clouds tailored to the needs of the game. 

 We render particles using splatting [Westover1991], by 
drawing screen-oriented polygons texture-mapped with a 
Gaussian density function.  Although we choose a particle 
system representation for our clouds, it is important to note 
that both our shading algorithm and our fast rendering 
system are independent of the cloud representation, and can 
be used with any model composed of discrete density 
samples in space. 

2.1 Light Scattering Illumination 
Scattering illumination models simulate the emission and 
absorption of light by a medium as well as scattering through 
the medium.    Single scattering models simulate scattering 
through the medium in a single direction.  This direction is 
usually the direction leading to the point of view.  Multiple 
scattering models are more physically accurate, but must 
account for scattering in all directions (or a sampling of all 
directions), and therefore are much more complicated and 
expensive to evaluate.  The rendering algorithm presented by 
Dobashi et al. computes an approximation of illumination of 
clouds with single scattering.  This approximation has been 
used previously to render clouds and other participating 
media [Blinn1982, Kajiya1984]. 

 In a multiple scattering simulation that samples N 
directions on the sphere, each additional order of scattering 
that is simulated multiplies the number of simulated paths by 
N.  Fortunately, as demonstrated by [Nishita1996], the 
contribution of most of these paths is insignificant.  Nishita 

Figure 2: A view from an interactive flight through 
clouds. 
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et al. found that scattering illumination is dominated by the 
first and second orders, and therefore they only simulated up 
to the 4th order.  They reduce the directions sampled in their 
evaluation of scattering to sub-spaces of high contribution, 
which are composed mostly of directions near the direction 
of forward scattering and those directed at the viewer.  We 
simplify further, and approximate multiple scattering only in 
the light direction – or multiple forward scattering – and 
anisotropic single scattering in the eye direction.   

 Our cloud rendering method is a two-pass algorithm 
similar to the one presented in [Dobashi2000]: we 
precompute cloud shading in the first pass, and use this 
shading to render the clouds in the second pass.  The 
algorithm of Dobashi et al., however, uses only an isotropic 
first order scattering approximation.  If realistic values are 
used for the optical depth and albedo of clouds shaded with 
only a first order scattering approximation, the clouds appear 
very dark [Max1995].  This is because much of the 
illumination in a cloud is a result of light scattered forward 
along the light direction.  Figures 8 and 9 show the 
difference in appearance between clouds shaded with and 
without our multiple forward scattering approximation. 

2.1.1 Multiple Forward Scattering 
The first pass of our shading algorithm computes the amount 
of light incident on each particle P in the light direction, l.  
This light, I(P, l),  is composed of all direct light from 
direction l that is not absorbed by intervening particles, plus 
light scattered to P from other particles.  The multiple 
scattering model is written 
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represents the light from all directions ω ′ scattered into 
direction ω at the point x.  Here r(x,ω,ω ′) is the bi-
directional  scattering distribution function (BSDF), and 
determines the percentage of light incident on x from 
direction ω ′ that is scattered in direction ω.  It expands to 
r(x,ω,ω ′) = a(x)⋅τ(x)⋅p(ω,ω ′), where τ(x) is the optical depth, 
a(x) is the albedo, and p(ω,ω ′) is the phase function. 

 A full multiple scattering algorithm must compute this 
quantity for a sampling of all light flow directions.  We 
simplify our approximation to compute only multiple 
forward scattering in the light direction, so ω = l, and ω ′ = -l.  
Thus, (2) reduces to g(x,l) = r(x,l,-l) ⋅I(x,-l) / 4π. 

 We split the light path from 0 to DP into discrete segments 
sj, for j from 1 to N, where N is the number of cloud particles 

along the light direction from 0 to DP. By approximating the 
integrals with Riemann Sums, we have 
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I0 is the intensity of light incident on the edge of the cloud.  
In discrete form g(x,l) becomes gk = ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(l,-l)⋅⋅⋅⋅Ik  / 4π.  We 
assume that albedo and optical depth are represented at 
discrete samples (particles) along the path of light.  In order 
to easily transform (3) into an algorithm that can be 
implemented in graphics hardware, we cast it as a recurrence 
relation: 
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 If we let Tk = ke τ− be the transparency of particle pk, then 
(4) expands to (3).  This representation can be more 
intuitively understood.  It simply says that starting outside 
the cloud, as we trace along the light direction the light 
incident on any particle pk is equal to the intensity of light 
scattered to pk from pk-1 plus the intensity transmitted through 
pk-1 (as determined by its transparency, Tk-1).  Notice that if gk 
is expanded in (4) then Ik-1 is a factor in both terms.  Section 
2.3.1 explains how we combine frame buffer read back with 
hardware blending to evaluate this recurrence. 

2.1.2 Eye Scattering 
In addition to our multiple forward scattering approximation, 
which we compute in a pre-process, we also implement 
single scattering toward the viewer as in [Dobashi2000].  
The recurrence for this is subtly different: 

.1      ,1 NkETSE kkkk ≤≤⋅+= −                (5) 

 This says that the light, Ek, exiting any particle pk is equal 
to the light incident on it that it does not absorb, Tk · Ek-1, plus 
the light that it scatters, Sk. In the first pass, we were 
computing the light Ik incident on each particle from the light 
source.  Now, we are interested in the portion of this light 
that is scattered toward the viewer.  When Sk is replaced by 
ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(ω, -l)⋅⋅⋅⋅Ik / 4π, where ω is the view direction and Tk is 
as above, this recurrence approximates single scattering 
toward the viewer.  It is important to mention that (5) 
computes light emitted from particles using results (Ik) 
computed in (4).  Since illumination is multiplied by the 
phase function in both recurrences, one might think that the 
phase function is multiplied twice for the same light.  This is 
not the case, since in (4), Ik-1 is multiplied by the phase 
function to determine the amount of light Pk-1 scatters to Pk 
in the light direction, and in (5) Ik is multiplied by the phase 
function to determine the amount of light that Pk scatters in 
the view direction.  Even if the viewpoint is directly opposite 
the light source, since the light incident on Pk is stored and 
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used in the scattering computation, the phase function is 
never taken into account twice at the same particle. 

2.1.3 Phase Function 
The phase function, p(ω,ω’) mentioned above is very 
important to cloud shading.  Clouds exhibit anisotropic 
scattering of light (including the strong forward scattering 
that we assume in our multiple forward scattering 
approximation).  The phase function determines the 
distribution of scattering for a given incident light direction.  
Phase functions are discussed in detail in [Nishita1996], 
[Max1995], and [Blinn1982], among others.  The images 
shown in this paper were generated using a simple Rayleigh 
scattering phase function, p(θ) = 3/4(1 +cos2θ), where θ is 
the angle between the incident and scattered directions.  
Rayleigh scattering favors scattering in the forward and 
backward directions.  Figures 10 and 11 demonstrate the 
differences between clouds shaded with and without 
anisotropic scattering.  Anisotropic scattering gives the 
clouds their characteristic “silver lining” when viewed 
looking into the sun.   

2.1 Rendering Algorithm 
Armed with recurrences (4) and (5) and a standard graphics 
API such as OpenGL or Direct3D, computation of cloud 
illumination is straightforward.   Our algorithm is similar to 
the one presented by [Dobashi2000] and has two phases: a 
shading phase that runs once per scene and a rendering phase 
that runs in real time.  The key to the implementation is the 
use of hardware blending and pixel read back. 

 Blending operates by computing a weighted average of 
the frame buffer contents (the destination) and an incoming 
fragment (the source), and storing the result back in the 
frame buffer.  This weighted average can be written 

destdestsrcsrcresult cfcfc ⋅+⋅=                   (6) 

If we let cresult = Ik, fsrc  = 1, csrc = gk-1, fdest = Tk-1, and  
cdest = Ik–1, then we see that (4) and (6) are equivalent if the 
contents of the frame buffer before blending represent I0.  
This is not quite enough, though, since as we saw before, Ik-1 
is a factor of both terms in (4).  To solve the recurrence for a 
particle pk, we must know how much light is incident on 
particle pk-1 beforehand.  To do this, we employ pixel read 
back. 

 To compute (4) and (5), we use the procedure described 
by the pseudocode in figure 3.  The pseudocode shows that 
we use a nearly identical algorithm for preprocess and 
runtime.  The differences are as follows.  In the illumination 
pass, the frame buffer is cleared to white and particles are 
sorted with respect to the light.  As a particle is blended into 
the frame buffer, the transparency of the particle modulates 
the color and adds an amount proportional to the forward 
scattering.  The percentage of light that reaches pk, is found 
by reading back the color of the pixel in the frame buffer to 
which the center of the particle projects immediately before 

rendering pk..  Ik is computed by multiplying this percentage 
by the light intensity.  Ik is used to compute multiple forward 
scattering in (4) and eye scattering in (5). 

 In the runtime phase we use the same algorithm, but with 
particles sorted with respect to the viewpoint, and without 
reading pixels.  The precomputed illumination of each 
particle Ik is used in this phase to compute scattering toward 
the eye. 

In both passes, particles are rendered in sorted order as 
polygons textured with a Gaussian function.  The polygon 

Source_blend_factor = 1;

dest_blend_factor = 1 – src_alpha;

texture mode = modulate;

l = direction from light;

if (preprocess) then

ω = -l;

view cloud from light source;

clear frame buffer to white;

particles.Sort(<, distance to
light);

else

view cloud from eye position;

particles.Sort(>,distance from
eye);

endif

[Sort(<, distance from x) means
sort in ascending order by distance
from x, and > means sort in
descending order]

foreach particle pk

[pk has extinction τk, albedo ak,
radius rk, color, and alpha]

if (preprocess) then

x = pixel at proj. center of pk;

ik = color(x) * light_color;

pk.color = ak * τk * ik / 4π;

pk.alpha = 1 - exp(-τk);
else

ω = pk.position – view_position;

endif

c = pk.color * phase(ω, l);

render pk with color c, side 2*rk;

end

Figure 3: Pseudocode for cloud shading and rendering. 
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color is set to the scattering factor ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(ω,l)⋅⋅⋅⋅Ik / 4π and the 
texture is modulated by this color.  In the first pass, ω is the 
light direction, and in the second pass it is the direction of 
the viewer.  The source and destination blending factors are 
set to 1 and one minus source alpha, respectively.  All cloud 
images in this paper and the accompanying video were 
computed with a constant τ of 8.0, and an albedo of 0.9. 

2.2.1 Skylight 
The most awe-inspiring images of clouds are provided by the 
multi-colored spectacle of a beautiful sunrise or sunset.  
These clouds are often not illuminated directly by the sun at 
all, but by skylight – sunlight that is scattered by the 
atmosphere.  The fact that light accumulates in an additive 
manner provides us with a simple extension to our shading 
method that allows the creation of such beautiful clouds.  We 
simply shade clouds from multiple light sources and store the 
resulting particle colors (ik in the algorithm above) from all 
shading iterations.  At render time, we evaluate the phase 
function at each particle once per light.  By doing so, we can 
approximate global illumination of the clouds. 

 While this technique is not completely physically-based, it 
is better than an ambient contribution, since it is directional 
and results in shadowing in the clouds as well as anisotropic 
scattering from multiple light directions and intensities.  We 
find that best results are obtained by guiding the placement 
and color of these lights using the images that make up the 
sky dome we place in the distance over our environments.  
Figure 12 demonstrates this with a scene at sunset in which 
we use two light sources, one orange and one pink, to create 
sunset lighting.  In addition to illumination from multiple 
light sources, we provide an ambient term to provide some 
compensation for lost scattered light due to our scattering 
approximation. 

3. Dynamically Generated Impostors 
While the cloud rendering method described above provides 
beautiful results and is fast for relatively simple scenes, it 

suffers under the weight of many complex clouds.  The 
interactive games for which we developed this system dictate 
that we must render complicated cloud scenes at fast 
interactive rates.  Clouds are only one component of a 
complex game environment, and therefore can only use a 
small percentage of a frame time, with frame rates of thirty 
per second or higher.  With direct particle rendering, even a 
scene with a few tens of thousands of particles is 
prohibitively slow on current hardware. 

 The integration required to accurately render volumetric 
media results in high rates of pixel overdraw.  Clouds have 
inherently high depth complexity, and require blending, 
making rendering them a difficult job even for current 
hardware with the highest fill rates.  In addition, as the 
viewpoint approaches a cloud, the projected area of that 
cloud’s particles increases, becoming greatest when the 
viewpoint is within the cloud.  Thus, pixel overdraw is 
increased and rendering slows as the viewpoint nears and 
enters clouds. 

 In order to render many clouds made up of many particles 
at high frame rates, we need a way to bypass fill rate 
limitations, either by reducing the amount of pixel overdraw 
performed, or by amortizing the rendering of cloud particles 
over multiple frames. Dynamically generated impostors 
allow us to do both. 

 [Maciel1995], [Schaufler1995], and [Shade1996] all 
discuss impostors.  An impostor replaces an object in the 
scene with a semi-transparent polygon textured-mapped with 
an image of the object it replaces (figure 4).  The image is a 
rendering of the object from a viewpoint V that is valid 
(within some error tolerance) for viewpoints near V.  
Impostors used for appropriate points of view give a very 
close approximation to rendering the object itself.  An 
impostor is valid (with no error) for the viewpoint from 
which its image was generated, regardless of changes in the 
viewing direction.  Impostors may be precomputed for an 
object from multiple viewpoints, requiring much storage, or 
they may be generated only when needed.  We choose the 
latter technique, called dynamically generated impostors by 
[Schaufler1995]. Figure 4: Impostors, outlined here, are textured 

polygons oriented toward the viewer. 

Figure 5: Impostor generation and translation error metric.
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 We generate impostors using the following procedure.  A 
view frustum is positioned so that its viewpoint is at the 
position from which the impostor will be viewed, and it is 
tightly fit to the bounding volume of the object (figure 5).    
We then render the object into an image used to texture the 
impostor polygon. 

 As mentioned above, we can use impostors to amortize 
the cost of rendering clouds over multiple frames.  We do 
this by exploiting the frame-to-frame coherence inherent in 
three-dimensional scenes: the relative motion of objects in a 
scene decreases with distance from the viewpoint, and 
objects close to the viewpoint present a similar image for 
some time.  This lack of sudden changes in the image of an 
object allows us to re-use impostor images over multiple 
frames.  We can compute an estimate of the error in an 
impostor representation that we use to determine when the 
impostor needs to be updated.  Certain types of motion 
introduce error in impostors more quickly than others.  
[Schaufler1995] presents two worst-case error metrics for 
this purpose.  The first, which we will call the translation 
error, computes error caused by translation from the 
viewpoint at which the current impostor was generated.  The 
second computes error introduced by moving straight toward 
the object, which we call the zoom error.   

 We use the same translation error metric, and replace 
zoom error by a texture resolution error metric.  For the 
translation error metric, we simply compute the angle αtrans, 
shown in figure 5, and compare it to a specified tolerance.  
The zoom error metric compares the current impostor texture 
resolution to the required resolution for the texture, 
computed using the following equation [Schaufler1995] 

.
 
 
distobject
sizeobjectresolutionresolution screentexture ⋅=  

If either the translation error is greater than an error tolerance 
angle or the current resolution of the impostor is less than the 
required resolution, we regenerate the impostor from the 
current viewpoint.  We find that a tolerance of about 0.15 
degree reduces impostor “popping” to an imperceptible level 
while maintaining good performance.  For added 
performance, tolerances up to one degree can be used 
without excessive popping. 

 In the past, impostors were used mostly to replace 
geometric models.  Since these models have high frequencies 
in the form of sharp edges, impostors have usually been used 
only for distant objects.  Nearby objects must have impostor 
textures of a resolution at or near that of the screen, and their 
impostors require frequent updates.  We use impostors for 
clouds no matter where they are in relation to the viewer.  
Clouds do not have high frequency edges like those of 
geometric models, so artifacts caused by low texture 
resolution are less noticeable.  Clouds have very high fill rate 
requirements, so cloud impostors are beneficial even when 
they must be updated every few frames. 

3.1   Head in the Clouds 
Impostors can provide a large reduction in overdraw even for 
viewpoints inside the cloud, where the impostor must be 
updated every frame.  The “foggy” nature of clouds makes it 
difficult for the viewer to discern detail when inside them.  In 
addition, in games and flight simulators, the viewpoint is 
often moving.  These factors allow us to reduce the 
resolution at which we render impostor textures for clouds 
containing the viewpoint by about a factor of 4 in each 
dimension. 

 However, impostors cannot be generated in the same 
manner for these clouds as for distant clouds, since the view 
frustum cannot be tightly fit to the bounding volume as 
described above.  Instead, we use the same frustum used to 
display the whole scene to generate the texture for the 
impostor, but create the texture at a lower resolution, as 
described above.  We display these impostors as screen-
space rectangles sized to fill the screen.   

3.1.1 Objects in the Clouds 
In order to create effective interactive cloudy scenes, we 
must allow objects to pass in and through the clouds, and we 
must render this realistically.  Impostors pose a problem 
because they are two-dimensional.  Objects that pass through 
impostors appear as if they are passing through images 
floating in space, rather than through fluffy, volume-filling 
clouds. 

 One way to solve this problem would be to detect clouds 
that contain objects and render their particles directly to the 
frame buffer.  By doing so, however, we lose the benefits 
that impostors provide us.  Instead, we detect when objects 
pass within the bounding volume of a cloud, and split the 
impostor representing that cloud into multiple layers.  If only 
one object resides in a certain cloud, then that cloud is 
rendered as two layers: one for the portion of cloud particles 
that lies approximately behind the object with respect to the 
viewpoint, and one for the portion that lies approximately in 
front of the object.  If two objects lie within a cloud, then we 
need three layers, and so on.  Since cloud particles must be 

Figure 6: An airplane in the clouds.  On the left, particles 
are directly rendered into the scene.  Artifacts of their 
intersection with the plane are visible.  On the right, the 
airplane is rendered between impostor layers, and no 
artifacts are visible. 
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sorted for rendering anyway, splitting the cloud into layers 
adds little expense.  This “impostor splitting” results in a set 
of alternating impostor layers and objects.  This set is 
rendered from back to front, with depth testing enabled for 
objects, and disabled for impostors.  The result is an image 
of a cloud that realistically contains objects, as shown on the 
right side of figure 6. 

 Impostor splitting provides an additional advantage over 
direct particle rendering for clouds that contain objects.  
When rendering cloud particles directly, the billboards used 
to render particles may intersect the geometry of nearby 
objects.  These intersections cause artifacts that break the 
illusion of particles representing elements of volume.  
Impostor splitting avoids these artifacts (figure 6).  

4. Results and Discussion 
We have implemented our cloud rendering system using both 
the OpenGL and DirectX 8 APIs.  We have tested the 
OpenGL-based system on both Windows PC systems and an 
SGI Onyx2 with InfiniteReality2 graphics.  On a PC with an 
NVIDIA GeForce graphics processor, we can achieve very 
high frame rates by using impostors and view-frustum 
culling to accelerate rendering.  We can render scenes 
containing up to hundreds of thousands of particles at high 
frame rates (greater than 50 frames per second).  If the 
viewpoint moves slowly enough to keep impostor update 

rates low, we can render a scene of more than 1.2 million 
particles at about 10 to 12 frames per second.  Slow 
movement is a reasonable assumption for flight simulators 
and games because the user’s aircraft is typically much 
smaller than the clouds through which it is flying, so the 
frequency of impostor updates remains low. 

 As mentioned before, our shading phase is a preprocess.  
For scenes with only a few thousand particles shading takes 
less than a second, and scenes of a few hundreds thousand 
particles can be shaded in about five to ten seconds per light 
source. 

 We have performed several tests of our cloud system and 
present the results here.  Our test machine is a PC with 256 
MB of RAM and an Intel Pentium III processor running at 
800 MHz.  It uses an NVIDIA GeForce 256 graphics card 
with 32MB of video RAM. 

 The tests rendered scenes of increasing cloud complexity 
(from 100 to 12800 clouds of 200 particles each) with and 
without using impostors.  We also tested the performance for 
different types of movement.  The first test moved the 
camera around a circular path, and the second moved the 
camera through the clouds in the direction of view.  The 
results of our tests are shown in figure 7.  The chart shows 
that using impostors was faster than not using them for the 
large range of scene complexity that we covered, and that 
even for scenes with several hundred thousand particles we 
achieve interactive frame rates. 

 Our cloud rendering algorithms have been incorporated 
into the game “Ozzy’s Black Skies”, by iROCK Interactive.  
In this game, players ride fantastical flying creatures through 
beautiful environments with realistically shaded volumetric 
clouds.  The clouds are interesting in an interactive sense, as 
players may momentarily hide in them as they pass through.  
The steps we have taken to ensure high frame rates for cloud 
rendering makes our system work well in an already 
graphics- and computation-laden game engine.  Impostors 
provide a means of scalability that is necessary in games 
intended to run on a wide range of hardware.  Performance 
and quality can be balanced by adjusting impostor error 
tolerances and texture resolution.  

5. Conclusion and Future Work 
We have presented methods for shading and rendering 
realistic clouds at high frame rates.  Our shading and 
rendering algorithm simulates multiple scattering in the light 
direction, and anisotropic single scattering in the view 
direction.  Clouds are illuminated by multiple directional 
light sources, with anisotropic scattering from each.  

 Our method uses impostors to accelerate cloud rendering 
by exploiting frame-to-frame coherence and greatly reducing 
pixel overdraw.  We have shown that impostors are an 
advantageous representation for clouds even in situations 
where they would not be successfully used to represent other 
objects, such as when the viewpoint is in or near a cloud.  
Impostor splitting is an effective way to render clouds that 
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Figure 7: Results of performance measurements for 
cloudy scenes of varying complexity rendered with and 
without impostors. 
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contain other objects, reducing artifacts caused by direct 
particle rendering. 

 Since our shading algorithm computes multiple forward 
scattering during the illumination phase, it should be 
straightforward to extend it to compute an approximation of 
global multiple scattering.  This would require running many 
passes to evenly sample all directions, and accumulating the 
results at the particles.  We are also researching methods for 
speeding cloud shading by avoiding pixel read back, so that 
we can shade and render dynamic clouds in real time.  This 
will allow the visualization of cloud formation in an 
interactive simulation. 

 Currently we are limited in the size of clouds that we are 
able to render at high frame rates, because large clouds 
require high-resolution impostors that are expensive to 
update.  We would like to render dense fields of immense 
cumulonimbus clouds in real time.  In order to solve this 
problem, we will explore hierarchical image caching 
[Shade1996] and other work that has been done with 
impostors.  

 Beyond clouds, we think that other phenomena might 
benefit from our shading algorithm.  For example, we would 
like to be able to render realistic interactive flight through 
stellar nebulae.  We have ideas for representing nebulae as 
particle clouds with emissive properties, and rendering them 
with a modified version of our algorithm.  
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   Figure 8: Shading with multiple forward scattering. 

   Figure 9: Shading with only single scattering.

   Figure 10: Clouds with anisotropic scattering.  

   Figure 11: Clouds with isotropic scattering.  

Figure 12: An example of shading from two light sources to simulate sky light.  This scene was rendered with two lights, 
one orange and one pink.  Anisotropic scattering simulation accentuates the light coming from different directions.  See 
section 2. 


