

Real-Time Cloud Rendering

Mark J. Harris and Anselmo Lastra

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
{harrism, lastra}@cs.unc.edu

Abstract
This paper presents a method for realistic real-time rendering of clouds suitable for flight simulation and games. It
provides a cloud shading algorithm that approximates multiple forward scattering in a preprocess, and first order
anisotropic scattering at runtime. Impostors are used to accelerate cloud rendering by exploiting frame-to-frame
coherence in an interactive flight simulation. Impostors are shown to be particularly well suited to clouds, even in
circumstances under which they cannot be applied to the rendering of polygonal geometry. The method allows
hundreds of clouds and hundreds of thousands of particles to be rendered at high frame rates, and improves
interaction with clouds by reducing artifacts introduced by direct particle rendering techniques.

1. Introduction

“Beautiful day, isn’t it?”
“Yep. Not a cloud in the sky!”

Uncommon occurrences such as cloudless skies often elicit
such common figures of speech. Clouds are such an integral
feature of our skies that their absence from any synthetic
outdoor scene can detract from its realism. Unfortunately,
outdoor scenes in interactive applications such as flight
simulators often suffer from cloudless skies. Designers of
these applications have relied upon similar techniques to
those used by renaissance painters in ceiling frescos: distant
and high-flying clouds are represented by paintings on an
always-distant sky dome. In addition, clouds in flight
simulators and games have been hinted at with planar
textures – both static and animated – or with semi-
transparent textured objects and fogging effects.

 There are many desirable effects associated with clouds
that are not achievable with such techniques. In an
interactive flight simulation, we would like to fly in and
around realistic, volumetric clouds, and to see other flying
objects pass within and behind them. Current real-time
techniques have not provided users with such experiences.
This paper describes a system for real-time cloud rendering
that is appropriate for games and flight simulators.

 In this paper we focus on high-speed, high-quality
rendering of constant-shape clouds for games and flight
simulators. These systems are already computationally and
graphically loaded, so cloud rendering must be very fast. For
this reason, we render realistically shaded static clouds, and

do not address issues of dynamic cloud simulation. This
choice enables us to generate clouds ahead of time, and to
assume that cloud particles are static relative to each other.
This assumption speeds the rendering of the clouds because
we need only shade them once per scene in a preprocess.

 The rest of this section presents previous work. Section 2
gives a derivation and description of our shading algorithm.
Section 3 discusses dynamically generated impostors and
shows how we use them to accelerate cloud rendering. We
also discuss how we have dealt with issues in interacting
with clouds. Section 4 discusses our results and presents
performance measurements. We conclude and discuss ideas
for future research in section 5.

Figure 1: Realistic clouds in the game “Ozzy’s Black Skies”.

2 Harris and Lastra / Real-Time Cloud Rendering

1.1 Previous Work
We segment previous work related to cloud rendering into
two areas: cloud modeling and cloud rendering. Cloud
modeling deals with the data used to represent clouds in the
computer, and how the data are generated and organized.
We build our clouds with particle systems. Reeves
introduced particle systems as an approach to modeling
clouds and other such “fuzzy” phenomena in [Reeves1983].
Voxels are another common representation for clouds.
Voxel models provide a uniform sampling of the volume,
and can be rendered with both forward and backward
methods. Procedural solid noise techniques are also
important to cloud modeling as a way to generate random but
continuous density data to fill cloud volumes [Lewis1989,
Perlin1985, Ebert1998].

 Much previous work has been done in non-interactive
rendering techniques for clouds. Rendering clouds is
difficult because realistic shading requires the integration of
the effects of optical properties along paths through the cloud
volume, while incorporating the complex scattering within
the medium. Previous work has attempted to approximate
the physical characteristics of clouds at various levels of
accuracy and complexity, and then to use these approximate
models to render images of clouds. Blinn introduced the use
of density models for image synthesis in [Blinn1982], where
he presented a low albedo, single scattering approximation
for illumination in a uniform medium. Kajiya and Von
Herzen extended this work with methods to ray trace volume
data exhibiting both single and multiple scattering
[Kajiya1984]. Nelson Max provided an excellent survey in
which he summarized the spectrum of optical models used in
volume rendering and derived their integral equations from
physical models [Max1995]. David Ebert has done much
work in modeling “solid spaces”, including offline
computation of realistic images of smoke, steam, and clouds
[Ebert1990, Ebert1997]. Nishita et al. introduced
approximations and rendering techniques for global
illumination of clouds accounting for multiple anisotropic
scattering and skylight [Nishita1996].

 Our rendering approach draws most directly from recent
work by Dobashi et al,. which presents both an efficient
simulation method for clouds and a hardware-accelerated
rendering technique [Dobashi2000]. The shading method
presented by Dobashi et al. implements an isotropic single
scattering approximation. We extend this method with an
approximation to multiple forward scattering and anisotropic
first order scattering. The animated cloud scenes of Dobashi
et al. required 20-30 seconds rendering time per frame. Our
system renders static cloudy scenes at tens to hundreds of
frames per second, depending on scene complexity.

2. Shading and Rendering
Particle systems are a simple and efficient method for
representing and rendering clouds. Our cloud model assumes
that a particle represents a roughly spherical volume in
which a Gaussian distribution governs the density falloff
from the center of the particle. Each particle is made up of a
center, radius, density, and color. We get good
approximations of real clouds by filling space with particles
of varying size and density. Clouds in our system can be
built by filling a volume with particles, or by using an
editing application that allows a user to place particles and
build clouds interactively. The randomized method is a good
way to get a quick field of clouds, but we intend our clouds
for interactive games with levels designed and built by
artists. Providing an artist with an editor allows the artist to
produce beautiful clouds tailored to the needs of the game.

 We render particles using splatting [Westover1991], by
drawing screen-oriented polygons texture-mapped with a
Gaussian density function. Although we choose a particle
system representation for our clouds, it is important to note
that both our shading algorithm and our fast rendering
system are independent of the cloud representation, and can
be used with any model composed of discrete density
samples in space.

2.1 Light Scattering Illumination
Scattering illumination models simulate the emission and
absorption of light by a medium as well as scattering through
the medium. Single scattering models simulate scattering
through the medium in a single direction. This direction is
usually the direction leading to the point of view. Multiple
scattering models are more physically accurate, but must
account for scattering in all directions (or a sampling of all
directions), and therefore are much more complicated and
expensive to evaluate. The rendering algorithm presented by
Dobashi et al. computes an approximation of illumination of
clouds with single scattering. This approximation has been
used previously to render clouds and other participating
media [Blinn1982, Kajiya1984].

 In a multiple scattering simulation that samples N
directions on the sphere, each additional order of scattering
that is simulated multiplies the number of simulated paths by
N. Fortunately, as demonstrated by [Nishita1996], the
contribution of most of these paths is insignificant. Nishita

Figure 2: A view from an interactive flight through
clouds.

 Harris and Lastra / Real-Time Cloud Rendering 3

et al. found that scattering illumination is dominated by the
first and second orders, and therefore they only simulated up
to the 4th order. They reduce the directions sampled in their
evaluation of scattering to sub-spaces of high contribution,
which are composed mostly of directions near the direction
of forward scattering and those directed at the viewer. We
simplify further, and approximate multiple scattering only in
the light direction – or multiple forward scattering – and
anisotropic single scattering in the eye direction.

 Our cloud rendering method is a two-pass algorithm
similar to the one presented in [Dobashi2000]: we
precompute cloud shading in the first pass, and use this
shading to render the clouds in the second pass. The
algorithm of Dobashi et al., however, uses only an isotropic
first order scattering approximation. If realistic values are
used for the optical depth and albedo of clouds shaded with
only a first order scattering approximation, the clouds appear
very dark [Max1995]. This is because much of the
illumination in a cloud is a result of light scattered forward
along the light direction. Figures 8 and 9 show the
difference in appearance between clouds shaded with and
without our multiple forward scattering approximation.

2.1.1 Multiple Forward Scattering
The first pass of our shading algorithm computes the amount
of light incident on each particle P in the light direction, l.
This light, I(P, l), is composed of all direct light from
direction l that is not absorbed by intervening particles, plus
light scattered to P from other particles. The multiple
scattering model is written

,),(),(
0

)()(

0
0 ∫

∫
+

∫
⋅=

−− P

PD

s

PD
D dttdtt

dsesgeIPI
ττ

ωω (1)

where DP is the depth of particle P in the cloud along the
light direction, and

')',()',,(),(
4
∫=
π

ωωωωω dxIxrxg (2)

represents the light from all directions ω ′ scattered into
direction ω at the point x. Here r(x,ω,ω ′) is the bi-
directional scattering distribution function (BSDF), and
determines the percentage of light incident on x from
direction ω ′ that is scattered in direction ω. It expands to
r(x,ω,ω ′) = a(x)⋅τ(x)⋅p(ω,ω ′), where τ(x) is the optical depth,
a(x) is the albedo, and p(ω,ω ′) is the phase function.

 A full multiple scattering algorithm must compute this
quantity for a sampling of all light flow directions. We
simplify our approximation to compute only multiple
forward scattering in the light direction, so ω = l, and ω ′ = -l.
Thus, (2) reduces to g(x,l) = r(x,l,-l) ⋅I(x,-l) / 4π.

 We split the light path from 0 to DP into discrete segments
sj, for j from 1 to N, where N is the number of cloud particles

along the light direction from 0 to DP. By approximating the
integrals with Riemann Sums, we have

∑ ∏∏
= +=

−

=

− +⋅=
N

j

N

jk
k

N

j
P

kj egeII
1 11

0 .ττ (3)

I0 is the intensity of light incident on the edge of the cloud.
In discrete form g(x,l) becomes gk = ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(l,-l)⋅⋅⋅⋅Ik / 4π. We
assume that albedo and optical depth are represented at
discrete samples (particles) along the path of light. In order
to easily transform (3) into an algorithm that can be
implemented in graphics hardware, we cast it as a recurrence
relation:

.
1 ,

 2 ,

0

111





=
≤≤⋅+

= −−−

kI
NkITg

I kkk
k (4)

 If we let Tk = ke τ− be the transparency of particle pk, then
(4) expands to (3). This representation can be more
intuitively understood. It simply says that starting outside
the cloud, as we trace along the light direction the light
incident on any particle pk is equal to the intensity of light
scattered to pk from pk-1 plus the intensity transmitted through
pk-1 (as determined by its transparency, Tk-1). Notice that if gk
is expanded in (4) then Ik-1 is a factor in both terms. Section
2.3.1 explains how we combine frame buffer read back with
hardware blending to evaluate this recurrence.

2.1.2 Eye Scattering
In addition to our multiple forward scattering approximation,
which we compute in a pre-process, we also implement
single scattering toward the viewer as in [Dobashi2000].
The recurrence for this is subtly different:

.1 ,1 NkETSE kkkk ≤≤⋅+= − (5)

 This says that the light, Ek, exiting any particle pk is equal
to the light incident on it that it does not absorb, Tk · Ek-1, plus
the light that it scatters, Sk. In the first pass, we were
computing the light Ik incident on each particle from the light
source. Now, we are interested in the portion of this light
that is scattered toward the viewer. When Sk is replaced by
ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(ω, -l)⋅⋅⋅⋅Ik / 4π, where ω is the view direction and Tk is
as above, this recurrence approximates single scattering
toward the viewer. It is important to mention that (5)
computes light emitted from particles using results (Ik)
computed in (4). Since illumination is multiplied by the
phase function in both recurrences, one might think that the
phase function is multiplied twice for the same light. This is
not the case, since in (4), Ik-1 is multiplied by the phase
function to determine the amount of light Pk-1 scatters to Pk
in the light direction, and in (5) Ik is multiplied by the phase
function to determine the amount of light that Pk scatters in
the view direction. Even if the viewpoint is directly opposite
the light source, since the light incident on Pk is stored and

4 Harris and Lastra / Real-Time Cloud Rendering

used in the scattering computation, the phase function is
never taken into account twice at the same particle.

2.1.3 Phase Function
The phase function, p(ω,ω’) mentioned above is very
important to cloud shading. Clouds exhibit anisotropic
scattering of light (including the strong forward scattering
that we assume in our multiple forward scattering
approximation). The phase function determines the
distribution of scattering for a given incident light direction.
Phase functions are discussed in detail in [Nishita1996],
[Max1995], and [Blinn1982], among others. The images
shown in this paper were generated using a simple Rayleigh
scattering phase function, p(θ) = 3/4(1 +cos2θ), where θ is
the angle between the incident and scattered directions.
Rayleigh scattering favors scattering in the forward and
backward directions. Figures 10 and 11 demonstrate the
differences between clouds shaded with and without
anisotropic scattering. Anisotropic scattering gives the
clouds their characteristic “silver lining” when viewed
looking into the sun.

2.1 Rendering Algorithm
Armed with recurrences (4) and (5) and a standard graphics
API such as OpenGL or Direct3D, computation of cloud
illumination is straightforward. Our algorithm is similar to
the one presented by [Dobashi2000] and has two phases: a
shading phase that runs once per scene and a rendering phase
that runs in real time. The key to the implementation is the
use of hardware blending and pixel read back.

 Blending operates by computing a weighted average of
the frame buffer contents (the destination) and an incoming
fragment (the source), and storing the result back in the
frame buffer. This weighted average can be written

destdestsrcsrcresult cfcfc ⋅+⋅= (6)

If we let cresult = Ik, fsrc = 1, csrc = gk-1, fdest = Tk-1, and
cdest = Ik–1, then we see that (4) and (6) are equivalent if the
contents of the frame buffer before blending represent I0.
This is not quite enough, though, since as we saw before, Ik-1
is a factor of both terms in (4). To solve the recurrence for a
particle pk, we must know how much light is incident on
particle pk-1 beforehand. To do this, we employ pixel read
back.

 To compute (4) and (5), we use the procedure described
by the pseudocode in figure 3. The pseudocode shows that
we use a nearly identical algorithm for preprocess and
runtime. The differences are as follows. In the illumination
pass, the frame buffer is cleared to white and particles are
sorted with respect to the light. As a particle is blended into
the frame buffer, the transparency of the particle modulates
the color and adds an amount proportional to the forward
scattering. The percentage of light that reaches pk, is found
by reading back the color of the pixel in the frame buffer to
which the center of the particle projects immediately before

rendering pk.. Ik is computed by multiplying this percentage
by the light intensity. Ik is used to compute multiple forward
scattering in (4) and eye scattering in (5).

 In the runtime phase we use the same algorithm, but with
particles sorted with respect to the viewpoint, and without
reading pixels. The precomputed illumination of each
particle Ik is used in this phase to compute scattering toward
the eye.

In both passes, particles are rendered in sorted order as
polygons textured with a Gaussian function. The polygon

Source_blend_factor = 1;

dest_blend_factor = 1 – src_alpha;

texture mode = modulate;

l = direction from light;

if (preprocess) then

ω = -l;

view cloud from light source;

clear frame buffer to white;

particles.Sort(<, distance to
light);

else

view cloud from eye position;

particles.Sort(>,distance from
eye);

endif

[Sort(<, distance from x) means
sort in ascending order by distance
from x, and > means sort in
descending order]

foreach particle pk

[pk has extinction τk, albedo ak,
radius rk, color, and alpha]

if (preprocess) then

x = pixel at proj. center of pk;

ik = color(x) * light_color;

pk.color = ak * τk * ik / 4π;

pk.alpha = 1 - exp(-τk);
else

ω = pk.position – view_position;

endif

c = pk.color * phase(ω, l);

render pk with color c, side 2*rk;

end

Figure 3: Pseudocode for cloud shading and rendering.

 Harris and Lastra / Real-Time Cloud Rendering 5

color is set to the scattering factor ak⋅⋅⋅⋅τk⋅⋅⋅⋅p(ω,l)⋅⋅⋅⋅Ik / 4π and the
texture is modulated by this color. In the first pass, ω is the
light direction, and in the second pass it is the direction of
the viewer. The source and destination blending factors are
set to 1 and one minus source alpha, respectively. All cloud
images in this paper and the accompanying video were
computed with a constant τ of 8.0, and an albedo of 0.9.

2.2.1 Skylight
The most awe-inspiring images of clouds are provided by the
multi-colored spectacle of a beautiful sunrise or sunset.
These clouds are often not illuminated directly by the sun at
all, but by skylight – sunlight that is scattered by the
atmosphere. The fact that light accumulates in an additive
manner provides us with a simple extension to our shading
method that allows the creation of such beautiful clouds. We
simply shade clouds from multiple light sources and store the
resulting particle colors (ik in the algorithm above) from all
shading iterations. At render time, we evaluate the phase
function at each particle once per light. By doing so, we can
approximate global illumination of the clouds.

 While this technique is not completely physically-based, it
is better than an ambient contribution, since it is directional
and results in shadowing in the clouds as well as anisotropic
scattering from multiple light directions and intensities. We
find that best results are obtained by guiding the placement
and color of these lights using the images that make up the
sky dome we place in the distance over our environments.
Figure 12 demonstrates this with a scene at sunset in which
we use two light sources, one orange and one pink, to create
sunset lighting. In addition to illumination from multiple
light sources, we provide an ambient term to provide some
compensation for lost scattered light due to our scattering
approximation.

3. Dynamically Generated Impostors
While the cloud rendering method described above provides
beautiful results and is fast for relatively simple scenes, it

suffers under the weight of many complex clouds. The
interactive games for which we developed this system dictate
that we must render complicated cloud scenes at fast
interactive rates. Clouds are only one component of a
complex game environment, and therefore can only use a
small percentage of a frame time, with frame rates of thirty
per second or higher. With direct particle rendering, even a
scene with a few tens of thousands of particles is
prohibitively slow on current hardware.

 The integration required to accurately render volumetric
media results in high rates of pixel overdraw. Clouds have
inherently high depth complexity, and require blending,
making rendering them a difficult job even for current
hardware with the highest fill rates. In addition, as the
viewpoint approaches a cloud, the projected area of that
cloud’s particles increases, becoming greatest when the
viewpoint is within the cloud. Thus, pixel overdraw is
increased and rendering slows as the viewpoint nears and
enters clouds.

 In order to render many clouds made up of many particles
at high frame rates, we need a way to bypass fill rate
limitations, either by reducing the amount of pixel overdraw
performed, or by amortizing the rendering of cloud particles
over multiple frames. Dynamically generated impostors
allow us to do both.

 [Maciel1995], [Schaufler1995], and [Shade1996] all
discuss impostors. An impostor replaces an object in the
scene with a semi-transparent polygon textured-mapped with
an image of the object it replaces (figure 4). The image is a
rendering of the object from a viewpoint V that is valid
(within some error tolerance) for viewpoints near V.
Impostors used for appropriate points of view give a very
close approximation to rendering the object itself. An
impostor is valid (with no error) for the viewpoint from
which its image was generated, regardless of changes in the
viewing direction. Impostors may be precomputed for an
object from multiple viewpoints, requiring much storage, or
they may be generated only when needed. We choose the
latter technique, called dynamically generated impostors by
[Schaufler1995]. Figure 4: Impostors, outlined here, are textured

polygons oriented toward the viewer.

Figure 5: Impostor generation and translation error metric.

6 Harris and Lastra / Real-Time Cloud Rendering

 We generate impostors using the following procedure. A
view frustum is positioned so that its viewpoint is at the
position from which the impostor will be viewed, and it is
tightly fit to the bounding volume of the object (figure 5).
We then render the object into an image used to texture the
impostor polygon.

 As mentioned above, we can use impostors to amortize
the cost of rendering clouds over multiple frames. We do
this by exploiting the frame-to-frame coherence inherent in
three-dimensional scenes: the relative motion of objects in a
scene decreases with distance from the viewpoint, and
objects close to the viewpoint present a similar image for
some time. This lack of sudden changes in the image of an
object allows us to re-use impostor images over multiple
frames. We can compute an estimate of the error in an
impostor representation that we use to determine when the
impostor needs to be updated. Certain types of motion
introduce error in impostors more quickly than others.
[Schaufler1995] presents two worst-case error metrics for
this purpose. The first, which we will call the translation
error, computes error caused by translation from the
viewpoint at which the current impostor was generated. The
second computes error introduced by moving straight toward
the object, which we call the zoom error.

 We use the same translation error metric, and replace
zoom error by a texture resolution error metric. For the
translation error metric, we simply compute the angle αtrans,
shown in figure 5, and compare it to a specified tolerance.
The zoom error metric compares the current impostor texture
resolution to the required resolution for the texture,
computed using the following equation [Schaufler1995]

.

distobject
sizeobjectresolutionresolution screentexture ⋅=

If either the translation error is greater than an error tolerance
angle or the current resolution of the impostor is less than the
required resolution, we regenerate the impostor from the
current viewpoint. We find that a tolerance of about 0.15
degree reduces impostor “popping” to an imperceptible level
while maintaining good performance. For added
performance, tolerances up to one degree can be used
without excessive popping.

 In the past, impostors were used mostly to replace
geometric models. Since these models have high frequencies
in the form of sharp edges, impostors have usually been used
only for distant objects. Nearby objects must have impostor
textures of a resolution at or near that of the screen, and their
impostors require frequent updates. We use impostors for
clouds no matter where they are in relation to the viewer.
Clouds do not have high frequency edges like those of
geometric models, so artifacts caused by low texture
resolution are less noticeable. Clouds have very high fill rate
requirements, so cloud impostors are beneficial even when
they must be updated every few frames.

3.1 Head in the Clouds
Impostors can provide a large reduction in overdraw even for
viewpoints inside the cloud, where the impostor must be
updated every frame. The “foggy” nature of clouds makes it
difficult for the viewer to discern detail when inside them. In
addition, in games and flight simulators, the viewpoint is
often moving. These factors allow us to reduce the
resolution at which we render impostor textures for clouds
containing the viewpoint by about a factor of 4 in each
dimension.

 However, impostors cannot be generated in the same
manner for these clouds as for distant clouds, since the view
frustum cannot be tightly fit to the bounding volume as
described above. Instead, we use the same frustum used to
display the whole scene to generate the texture for the
impostor, but create the texture at a lower resolution, as
described above. We display these impostors as screen-
space rectangles sized to fill the screen.

3.1.1 Objects in the Clouds
In order to create effective interactive cloudy scenes, we
must allow objects to pass in and through the clouds, and we
must render this realistically. Impostors pose a problem
because they are two-dimensional. Objects that pass through
impostors appear as if they are passing through images
floating in space, rather than through fluffy, volume-filling
clouds.

 One way to solve this problem would be to detect clouds
that contain objects and render their particles directly to the
frame buffer. By doing so, however, we lose the benefits
that impostors provide us. Instead, we detect when objects
pass within the bounding volume of a cloud, and split the
impostor representing that cloud into multiple layers. If only
one object resides in a certain cloud, then that cloud is
rendered as two layers: one for the portion of cloud particles
that lies approximately behind the object with respect to the
viewpoint, and one for the portion that lies approximately in
front of the object. If two objects lie within a cloud, then we
need three layers, and so on. Since cloud particles must be

Figure 6: An airplane in the clouds. On the left, particles
are directly rendered into the scene. Artifacts of their
intersection with the plane are visible. On the right, the
airplane is rendered between impostor layers, and no
artifacts are visible.

 Harris and Lastra / Real-Time Cloud Rendering 7

sorted for rendering anyway, splitting the cloud into layers
adds little expense. This “impostor splitting” results in a set
of alternating impostor layers and objects. This set is
rendered from back to front, with depth testing enabled for
objects, and disabled for impostors. The result is an image
of a cloud that realistically contains objects, as shown on the
right side of figure 6.

 Impostor splitting provides an additional advantage over
direct particle rendering for clouds that contain objects.
When rendering cloud particles directly, the billboards used
to render particles may intersect the geometry of nearby
objects. These intersections cause artifacts that break the
illusion of particles representing elements of volume.
Impostor splitting avoids these artifacts (figure 6).

4. Results and Discussion
We have implemented our cloud rendering system using both
the OpenGL and DirectX 8 APIs. We have tested the
OpenGL-based system on both Windows PC systems and an
SGI Onyx2 with InfiniteReality2 graphics. On a PC with an
NVIDIA GeForce graphics processor, we can achieve very
high frame rates by using impostors and view-frustum
culling to accelerate rendering. We can render scenes
containing up to hundreds of thousands of particles at high
frame rates (greater than 50 frames per second). If the
viewpoint moves slowly enough to keep impostor update

rates low, we can render a scene of more than 1.2 million
particles at about 10 to 12 frames per second. Slow
movement is a reasonable assumption for flight simulators
and games because the user’s aircraft is typically much
smaller than the clouds through which it is flying, so the
frequency of impostor updates remains low.

 As mentioned before, our shading phase is a preprocess.
For scenes with only a few thousand particles shading takes
less than a second, and scenes of a few hundreds thousand
particles can be shaded in about five to ten seconds per light
source.

 We have performed several tests of our cloud system and
present the results here. Our test machine is a PC with 256
MB of RAM and an Intel Pentium III processor running at
800 MHz. It uses an NVIDIA GeForce 256 graphics card
with 32MB of video RAM.

 The tests rendered scenes of increasing cloud complexity
(from 100 to 12800 clouds of 200 particles each) with and
without using impostors. We also tested the performance for
different types of movement. The first test moved the
camera around a circular path, and the second moved the
camera through the clouds in the direction of view. The
results of our tests are shown in figure 7. The chart shows
that using impostors was faster than not using them for the
large range of scene complexity that we covered, and that
even for scenes with several hundred thousand particles we
achieve interactive frame rates.

 Our cloud rendering algorithms have been incorporated
into the game “Ozzy’s Black Skies”, by iROCK Interactive.
In this game, players ride fantastical flying creatures through
beautiful environments with realistically shaded volumetric
clouds. The clouds are interesting in an interactive sense, as
players may momentarily hide in them as they pass through.
The steps we have taken to ensure high frame rates for cloud
rendering makes our system work well in an already
graphics- and computation-laden game engine. Impostors
provide a means of scalability that is necessary in games
intended to run on a wide range of hardware. Performance
and quality can be balanced by adjusting impostor error
tolerances and texture resolution.

5. Conclusion and Future Work
We have presented methods for shading and rendering
realistic clouds at high frame rates. Our shading and
rendering algorithm simulates multiple scattering in the light
direction, and anisotropic single scattering in the view
direction. Clouds are illuminated by multiple directional
light sources, with anisotropic scattering from each.

 Our method uses impostors to accelerate cloud rendering
by exploiting frame-to-frame coherence and greatly reducing
pixel overdraw. We have shown that impostors are an
advantageous representation for clouds even in situations
where they would not be successfully used to represent other
objects, such as when the viewpoint is in or near a cloud.
Impostor splitting is an effective way to render clouds that

0.1

1

10

100

1000

20
00

0
40

00
0

80
00

0

16
00

00

32
00

00

64
00

00

12
80

00
0

25
60

00
0

Number of particles

Fr
am

e
R

at
e

(f
ra

m
es

/s
ec

)

Linear path No Impostor s

Linear path Impostor s

Cir cular Path No Impos tor s

Cir cular Path Impos tor s

Figure 7: Results of performance measurements for
cloudy scenes of varying complexity rendered with and
without impostors.

8 Harris and Lastra / Real-Time Cloud Rendering

contain other objects, reducing artifacts caused by direct
particle rendering.

 Since our shading algorithm computes multiple forward
scattering during the illumination phase, it should be
straightforward to extend it to compute an approximation of
global multiple scattering. This would require running many
passes to evenly sample all directions, and accumulating the
results at the particles. We are also researching methods for
speeding cloud shading by avoiding pixel read back, so that
we can shade and render dynamic clouds in real time. This
will allow the visualization of cloud formation in an
interactive simulation.

 Currently we are limited in the size of clouds that we are
able to render at high frame rates, because large clouds
require high-resolution impostors that are expensive to
update. We would like to render dense fields of immense
cumulonimbus clouds in real time. In order to solve this
problem, we will explore hierarchical image caching
[Shade1996] and other work that has been done with
impostors.

 Beyond clouds, we think that other phenomena might
benefit from our shading algorithm. For example, we would
like to be able to render realistic interactive flight through
stellar nebulae. We have ideas for representing nebulae as
particle clouds with emissive properties, and rendering them
with a modified version of our algorithm.

Acknowledgements
This work would not have been possible without the support,
encouragement, and ideas of the developers at iROCK
Interactive, especially Wesley Hunt, Paul Rowan, Brian
Stone, and Robert Stevenson. Mary Whitton and Frederick
Brooks at UNC provided help and support. Rui Bastos gave
help with the paper and ideas for the future, and Sharif
Razzaque helped with modeling. This work was supported
by NIH National Center for Research Resources, Grant
Number P41 RR 02170 and iROCK Interactive.

References

[Blinn1982] J. Blinn, “Light Reflection Functions for Simulation
of Clouds and Dusty Surfaces”. SIGGRAPH 1982, pp. 21-29

[Dobashi2000] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita,
and T. Nishita. “A Simple, Efficient Method for Realistic
Animation of Clouds”. SIGGRAPH 2000, pp. 19-28

[Ebert1990] D. S. Ebert, R. E. Parent, “Rendering and
Animation of Gaseous Phenomena by Combining Fast Volume
Scanline A-Buffer Techniques,” SIGGRAPH 1990, pp. 357-366.

[Ebert1997] D. S. Ebert, “Volumetric Modeling with Implicit
Functions: A Cloud is Born,” Visual Proceedings of SIGGRAPH
1997, pp.147.

[Ebert1998] D. S. Ebert, F.K. Musgrave, D. Peachey, K. Perlin,
S. Worley, Texturing & Modeling: a Procedural Approach.
1998, AP Professional.

[Kajiya1984] J. Kajiya and B. Von Herzen. “Ray Tracing
Volume Densities”. SIGGRAPH 1984, pp. 165-174.

[Lewis1989] J. Lewis. “Algorithms for Solid Noise Synthesis”.
SIGGRAPH 1989, pp. 263-270.

[Maciel1995] P. Maciel, P. Shirley. “Visual Navigation of Large
Environments Using Textured Clusters”. Proceedings of the
1995 symposium on Interactive 3D graphics, 1995, Page 95

[Max1995] N. Max. “Optical Models for Direct Volume
Rendering”, IEEE Transactions on Visualization and Computer
Graphics, vol. 1 no. 2, June 1995.

[Nishita1996] T. Nishita, Y. Dobashi, E. Nakamae. “Display of
Clouds Taking into Account Multiple Anisotropic Scattering and
Sky Light.” SIGGRAPH 1996, pp. 379-386.

[Perlin1985] K. Perlin. An Image Synthesizer. SIGGRAPH
1985, pp. 287-296.

[Reeves1983] W. Reeves. “Particle Systems – A Technique for
Modeling a Class of Fuzzy Objects”. ACM Transactions on
Graphics, Vol. 2, No. 2. April 1983. ACM.

[Reeves1985] W. Reeves and R. Blau. “Approximate and
Probabilistic Algorithms for Shading and Rendering Structured
Particle Systems”. SIGGRAPH 1985, pp. 313-322.

[Schaufler1995] G. Schaufler, “Dynamically Generated
Impostors”, GI Workshop Modeling - Virtual Worlds -
Distributed Graphics, 1995, pp 129-136.

[Shade1996] J. Shade, D. Lischinski, D. Salesin, T. DeRose, J.
Snyder, “Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments”. SIGGRAPH 1996,
pp. 75-82.

[Westover1990] L. Westover, “Footprint evaluation for volume
rendering” SIGGRAPH 1990, Pages 367 - 376

 Harris and Lastra / Real-Time Cloud Rendering 9

 Figure 8: Shading with multiple forward scattering.

 Figure 9: Shading with only single scattering.

 Figure 10: Clouds with anisotropic scattering.

 Figure 11: Clouds with isotropic scattering.

Figure 12: An example of shading from two light sources to simulate sky light. This scene was rendered with two lights,
one orange and one pink. Anisotropic scattering simulation accentuates the light coming from different directions. See
section 2.

