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Summary

Think of a quaternion Q as a vector augmented by a real number
to make a four element entity. It has a real part Qcre and a vector

part Qcve: If Qcre is zero, Q represents an ordinary vector; if Qcve is
zero, it represents an ordinary real number. In any case, the ratio be-
tween the real part and the magnitude of the vector part jQcvej plays
an important role in rotations, and is conveniently represented by the
parameter � = tan�1(jQcvej=Qcre): A unit magnitude quaternion U has
a Pythagorean sum of 1 over its four elements, and its product with any
vector Sv gives another vector having the same magnitude as Sv but
rotated in space. If Sv ? Ucve; the rotation is by an angle � about the
vector Ucve (or simply about U). If Sv is arbitrary, however, certain
cross-terms of the product spoil this convenient relationship. Even in
this general case however, these cross-terms cancel in the triple product
Rv = USvU

�1; where U�1 � 1=U . The rotations of the two successive
products are in the same direction, so Rv represents a rotation of Sv
about Ucve by an angle 2�; which depends only on U: Thus, the oper-
ation USvU

�1 performs a rotation of Sv which is entirely characterized
by the unit quaternion U: The rotation occurs about an axis parallel
to U by an amount 2 tan�1(jUcvej=Ucre): Quaternion notation conve-
niently handles composition of any number of successive rotations into
one equivalent rotation: U = U1U2 � � �Un where each unit quaternion Ui

represents one of the succession of rotations. Other operations useful in
inertial navigation problems are also presented.
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1 Historical background

Quaternions were devised by Sir William Hamilton in his extensions of vector algebras
to satisfy the properties of division rings (roughly, quotients exist in the same domain as
the operands). In [1], Art.112, Hamilton notes, \...that for the complete determination,

of what we have called the geometrical QUOTIENT of two Co-initial Vectors, a System of

Four Elements, admitting each separately of numerical expression, is generally required.

... we have already a motive for saying, that `the Quotient of two Vectors is generally a
Quaternion.' "

Quaternions can also be considered to be an extension of classical algebra into the
hypercomplex number domainD, satisfying a property that jpj2 �jqj2 = jp�qj2 for (p; q) 2 D
[2]. This domain consists of symbolic expressions of n terms with real coe�cients where n
may be 1 (real numbers), 2 (complex numbers), 4 (quaternions), 8 (Cayley numbers), but
no other possible values (proved by Hurwitz in 1898). Thus, quaternions also share many
properties with complex numbers.

While Hamilton provides geometrical interpretations of various proved properties
throughout [1], the development itself is fundamentally algebraic, that is, based on the
properties of a particular axiomatic set of symbolic operations. The geometric properties
of quaternions are nevertheless sweeping, the composition of successive rotations through
successive multiplications being just one, albeit an important one.

2 Axiomatic properties of quaternions

Quaternions are de�ned as sums of 4 terms of the form Q = 1 � q1+ i � q2+ j � q3+k � q4
where q1; q2; q3; q4 are reals, 1 is the multiplicative identity element, and i; j; k are symbolic
elements having the properties:

i2 = �1; j2 = �1; k2 = �1;

ij = k; ji = �k;

jk = i; kj = �i;

ki = j; ik = �j:

Customarily, the extension of an algebra should attempt to preserve the properties of the
operators de�ned in the original algebra. Generalizing from the classical algebra of real
and complex numbers to quaternions motivates the following operator rules.

2.1 Addition of quaternions

The addition rule for quaternions is component-wise addition:

P+Q = (p1+ip2+jp3+kp4)+(q1+iq2+jq3+kq4) = (p1+q1)+i(p2+q2)+j(p3+q3)+k(p4+q4):

This rule preserves the associativity and commutativity properties of addition, and provides
a consistent behavior for the subset of quaternions corresponding to real numbers, i.e.,

Pr +Qr = (p + 0i + 0j + 0k) + (q + 0i+ 0j + 0k) = p+ q:
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2.2 Multiplication of quaternions

The multiplication rule for quaternions is the same as for polynomials, extended by
the multiplicative properties of the elements i; j; k given above. Written out for close
inspection, we have:

PQ = (p1 + ip2 + jp3 + kp4)(q1 + iq2 + jq3 + kq4)

= (p1q1 � p2q2 � p3q3 � p4q4) + i(p1q2 + p2q1 + p3q4 � p4q3)

+ j(p1q3 + p3q1 + p4q2 � p2q4) + k(p1q4 + p4q1 + p2q3 � p3q2):

A term-wise inspection reveals that commutativity is not preserved. Associativity and
distributivity over addition are preserved, however, the proof being left to the reader. And
as desired for the subset of reals, PrQr = pq.

2.3 Conjugates of quaternions

Consistent with complex numbers, let us de�ne the conjugate operation on a given
quaternion Q to be,

Q = (q1 + iq2 + jq3 + kq4) � (q1 � iq2 � jq3 � kq4):

As with complex numbers, note that both (Q + Q) and (QQ) are real. Moreover, if we
de�ne the absolute value or norm of Q to be,

jQj =
q
q21 + q22 + q23 + q24 ;

then apparently QQ = QQ = jQj2. The conjugate operation is distributive over addition,
that is, P +Q = P + Q: With respect to multiplication however, PQ = Q P; the proof
of which is left as an exercise to the reader.

3 Other properties of quaternions

The axioms in the previous section completely de�ne quaternions in terms of the
desired properties under three basic operations. Many other properties may be proved.

3.1 General properties

Mathematically, the most important property is that the quaternions form a division
ring (i.e., quaternion quotients exist).

3.1.1 Division of quaternions

Since multiplication is not commutative, let us derive both a left quotient Q�1
L and a

right quotient Q�1
R by de�ning the symbolic expression P=Q to be solutions of the following

two identities,
QQ�1

L = P; Q�1
R Q = P:

TR01-014 UNC Chapel Hill, Department of Computer Science page 3



Leandra Vicci, Quaternions and Rotations in 3-Space 27 April 2001

Multiplying both sides of these identities respectively on the left and right by Q=jQj2 we
have immediately,

Q�1
L =

QP

jQj2
; Q�1

R =
PQ

jQj2
:

Thus in general two distinct quotients will occur, however in the special case where P = 1,
we have by de�nition the multiplicative inverse of a quaternion,

Q�1
L = Q�1

R = Q�1 =
Q

jQj2

3.1.2 Quaternion multiplication is distributive over addition

A term-wise expansion of P (Q+S) = PQ+PS proves this property and is left as an
exercise for the reader.

3.1.3 Unit quaternions

The subspace U of unit quaternions which satisfy the condition jU j = 1 have some
important properties. A trivially apparent one is,

U�1 = U:

A less obvious, but very useful one is,

U = Urcos �+ Uvsin� = cos �+ Uvsin�;

where Ur = (1; 0; 0; 0) is a real unit quaternion, Uv = (0; iu2; ju3; ku4) is a vector unit
quaternion parallel to the vector part of U; and � is a real number. The proof is straight-
forward:

jU j2 = UU = (Urcos �+ Uvsin�)(Urcos �+ Uvsin�)

= UrU rcos
2�+ (UrUv + UvUr)sin� cos� +UvU vsin

2�

= cos2�+ sin2� = 1:

At this time, let's interpret � as simply quantifying the ratio of the real part to the
magnitude of the vector part of a quaternion. Its geometrical representation as specifying
an angle of rotation will be presented later.

3.2 Vector properties of quaternions

The quaternion Q = (q1+ iq2+ jq3+ kq4) can be interpreted as having a real part q1,
and a vector part (iq2+jq3+kq4), where the elements fi; j; kg are given an added geometric

interpretation as unit vectors along the x; y; z axes, respectively. Accordingly, the subspace
Qr = (q1+0i+0j+0k) of real quaternions may be regarded as being equivalent to the real
numbers, Qr = q. Similarly, the subspace Qv = (0+ iq2 + jq3+ kq4) of vector quaternions
may be regarded as being equivalent to the ordinary vectors, Qv = q � (iqx + jqy + kqz).
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3.2.1 Products of real quaternions

The product of real quaternions is real, and the operation is commutative:

PrQr = pq = qp = QrPr:

Moreover, the operation is associative:

(PrQr)Sr = (pq)s = p(qs) = Pr(QrSr):

3.2.2 Product of a real quaternion with a vector quaternion

The product of a real and a vector quaternion is a vector, and the operation is com-
mutative:

PrQv = (0 + p1q2i+ p1q3j + p1q4k) = (0 + q2p1i + q3p1j + q4p1k) = QvPr:

3.2.3 Products of vector quaternions

The product of two vector quaternions has the remarkable property,

PvQv = �(p2q2 + p3q3 + p4q4) + (p3q4 � p4q3)i+ (p4q2 � p2q4)j + (p2q3 � p3q2)k

= �p � q+ p� q;

where the \�" and \�" operators are respectively the \dot" and \cross" products of classical
vector algebra. This is clearly a general quaternion except in two special cases: if Pv k Qv

the product is a real quaternion equal to �p � q and if Pv ? Qv the product is a vector
quaternion equal to p� q.

3.2.4 Parallel and perpendicular quaternions

We call quaternions P and Q parallel (P k Q) if their vector parts P cve= (P � P )=2

and Qcve= (Q�Q)=2 are parallel; i.e., if (S�S ) = 0; where S = P cveQcve: Similarly, we

call them perpendicular (P ? Q) if P cve and Qcve are perpendicular; i.e. if (S + S ) = 0:

3.2.5 Product of a unit quaternion and a perpendicular vector quaternion

Properties of this curiously specialized case are useful in understanding how quater-
nions can be used to rotate vectors in 3-space. Let Sv be a vector quaternion, U be a unit
quaternion, and Sv ? U . Then according to section 3.1.3, we can write,

T = USv = (cos �+ sin�Uv)Sv = cos �Sv + sin�UvSv;

where Uv k U . The �rst term is a vector Tv(1)k Sv. Since Sv ? Uv, the second term must
also be a vector Tv(2); moreover Tv(2)? Sv and Tv(2)? U k Uv: Since the product T is a
sum of vectors it must also be a vector, i.e., T = Tv. Both Tv(1) and Tv(2) lie in a plane
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perpendicular to U . Thus Tv = Tv(1)+Tv(2) can be geometrically interpreted as a rotation
of Sv by an angle � in this plane, i.e., about an axis parallel to U .

Now consider the product,

Rv = TvU
�1 = TvU = cos �Tv + sin�TvUv = cos �Tv � sin�TvUv:

The vector identity TvUv = �UvTv can be used to rewrite this as,

Rv = cos �Tv + sin�UvTv;

which is another rotation of angle � about U . The rotation � is in the same sense for these
two products, so the operation

Rv = USvU
�1

performs a rotation of Sv about U by an angle 2�.

3.3 General rotations in 3-space; Reference frames

In section 3.2.5 we saw how the operation USvU
�1 rotated a perpendicular vector

Sv about a unit quaternion U . Now let's consider how this operation behaves with an
arbitrary vector Vv. We can decompose Vv =Wv + Sv where Wv k U and Sv ? U: Then,

UVvU
�1 = U(Wv + Sv)U

�1 = UWvU
�1 + USvU

�1 = UWvU
�1 +Rv;

where Rv is Sv rotated about U by an angle 2�. To evaluate the �rst term, note that since
Wv k U we can write Wv = zUv; where z is a real number and unit vector Uv k U . Thus,

UWvU
�1 = UzUvU

�1 = zUUvU
�1 = zUvUU

�1 = zUv = Wv:

That UUv = UvU is left as an exercise to the reader. Finally then, we have:

UVvU
�1 =Wv +Rv:

Geometrically, we interpret this as a rotation of Vv about U by an angle of 2�.

Figure 1:

Arbitrary vector Vv is rotated by
unit quaternion U about a unit
vector Uv k U , through angle 2�.

Uv

Vv

UVvU
 -1

2o

This operation performs the same rotation on all vectors including the unit vectors of a
coordinate system. Therefore, it can be used to rigidly transform the coordinates of any
reference frame into a new frame of di�erent orientation. This is a very useful property.
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3.4 Composition of successive rotations

Let Q1 and Q2 be two unit quaternions representing arbitrary rotations in 3-space as
described in section 3.3. Applying them in succession to a vector Vv,

Q2(Q1VvQ
�1
1 )Q�1

2 = (Q2Q1)Vv(Q
�1
1 Q�1

2 ) = (Q2Q1)Vv(Q2Q1)
�1 = QiVvQ

�1
i ;

where the unit quaternion Qi = Q2Q1 is the successive composition of two rotations.
This property generalizes to the composition of any number of rotations. In this reverse
order composition, each successive rotation is relative to the initial reference frame as is
illustrated in Figure 2a.

z'''
x'''

y'''

x

y

z

z'

x'

y'

z''

x''
y''

Figure 2a: 90� rotations of a reference frame about the initial x; y; z axes, respectively

Composing a rotation in the forward order,Qc = Q1Q2 : : :, has the e�ect of performing
each successive rotation relative to its current reference frame, illustrated in Figure 2b.

z'''

x'''

y'''

x

y

z

z'

x'

y'

z''

x''

y''

Figure 2b: 90� rotations of a reference frame about its current x; y; z axes, respectively.

4 Strapdown inertial navigation system (INS) applications

Usage of quaternions by this branch of engineering is common, but the notation often
di�ers in some respects from the above, and a more detailed annotation is provided to
relate variables to reference frames. Speci�cally in this section, I'll follow the notation
used in Titterton and Weston [3]. I will introduce this notation, then derive expressions
for some of the commonly used operations for INS engineering.
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4.1 Frames and coordinates

It is often convenient to represent the same physical situation in a number of di�erent
frames of reference which may di�er by displacement, rotation, and system of coordinates.
Each frame comprises a complete de�nition of these parameters. A privileged, inertial
family of frames are those in which physical objects experience no inertial forces.

Cartesian coordinate systems, while not necessary, are generally used as coordinate
systems of the frames discussed in [3]. The non-scalar data types used are vectors, matrices,
and quaternions. Distinct from the data types, are the kinds of variables treated, i.e.,
positions, linear velocities, and angular rates.

4.2 Superscripts and subscripts

Superscripts and subscripts are used to associate certain attributes of a variable with
coordinate frames. On a gross level, the notation is consistent, but there are �ne nuances,
depending on the kind of the variable but not its type.

Superscripts are used consistently for all kinds of variables. Si indicates that the
variable S is expressed in the coordinates of the ith frame.

4.2.1 The position variable Xi
j

Xi
j represents the position of a point relative to the origin of the jth frame, expressed

in the coordinates of the ith frame. In most cases i = j, and it is common to use implicit
notations. Xj and Xj both represent Xj

j , where the choice of super- or subscript depends
on what is being emphasized.

4.2.2 The velocity variable V i
j

The variable V i
j represents a velocity taken relative to the jth frame, expressed in

coordinates of the ith frame. The velocity in any frame is not dependent on the location
of the origin of the frame; rather it may be taken relative to the velocity of any �xed point

in that frame. Just as for position variables, Vj = V j
j is implied.

4.2.3 The angular rate variable 
i
jk

The variable 
i
jk represents an angular rate of rotation of the kth entity relative to the

jth frame, expressed in coordinates of the ith frame. Just as for velocities, the location of
origin of reference frame j is not relevant; rather the angular rate is taken relative to the
angular rate of any �xed point in the jth frame. Often, the kth entity is another frame, so
this notation conveniently expresses the angular rate of rotation of the kth frame relative
to the jth.

4.3 A pure vector representation of a rotation

It is also possible to completely represent a 3D rotation with a pure vector. The
geometric properties of algebraic operations on this representation are naturally quite
di�erent than for unit quaternions. For some purposes these properties are particularly
useful.
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Let vector a = aâ represent a rotation where its unit vector â speci�es the axis of
rotation and its magnitude a speci�es the angular amount of rotation. From this we can
uniquely construct a unit quaternion, A = cos(a=2)+ sin(a=2)â; such that ASvA performs
a rotation of Sv about â by an angle equal to a.

Let us de�ne a transform Q of the vector representation a to the unit quaternion
representation A of a 3D rotation:

A = Q(a) = Q(aâ) = cos(a=2) + sin(a=2)â:

Likewise, let us de�ne the inverse transform,

a = Q�1(A) = Q�1(Ar +Avâ) = 2tan�1(Av=Ar)â:

4.4 Time derivative of a rotation quaternion

Assume a b-frame that is rotating with respect to a reference n-frame. At any instant,
let the unit quaternion U represent a rotation of an arbitrary constant vector Cb in the b-
frame into a vector Cn = UCbU in the n-frame. Since this rotation progresses continuously
in time, U = U(t) has a time derivative _U which we now derive.

Applying the derivative of products rule to Cn, we have, (since _Cb = 0),

_Cn = _U CbU + U Cb _U = _U CbU + _U C
b
U = _U CbU � _U CbU:

In the vector formulation of classical mechanics [4], a vector p is used to represent
an instantaneous rate of rotation, _c = p � c; where c is an arbitrary vector, and _c is its
variation with time. In the n-frame, a quaternion formulation of this equation is,

_Cn = (PnCn � PnCn)=2:

Since c is arbitrary, this equation can be applied to an entire coordinate system, and we
can represent the rate of rotation of the b-frame in the n-frame as Pn = Pn

nb:

Equating the expressions for _Cn, we have, _UCbU = Pn
nbC

n=2 = Pn
nb(UC

bU)=2; or
_U = Pn

nbU=2: It is often the case that the rotational rate is measured in the rotating

b-frame, so we can substitute the identity Pn
nb = UP b

nbU; to obtain

_U = UP b
nb=2:

4.5 Interpolation between rotations

Given two arbitrary rotations U10; U20 from the 0-frame to the 1 and 2-frames respec-
tively, geometric intuition would suggest an interpolation between them would be along
the single rotation U21 taking the 1-frame into the 2-frame. In fact, this can be visualized
as a great circle on a unit 4-sphere which connects the images of U10 and U20. This great
circle lies in a plane normal to U21cve. The locus of points lying between U10 and U20 on
the great circle corresponds to a rotational angle of between 0 and cos�1(U21cre).

Now U20 = U10U21 ) U21 = U10U20: Let U21 = cos(�21) + û21sin(�21); whence we
can calculate �21 = cos�1(U21cre) and û21 = U21cve=sin(�21):

Given �x1 3 (0 � �x1 � �21) we construct Ux1 = cos(�x1) + û21sin(�x1); from which
we calculate the interpolated rotation,

Ux0 = U10Ux1:
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APPENDIX A { Summary of formal properties

A.1 Notation

r a scalar (real) number

v a vector

û a unit vector, u � u = 1

i; j; k symbolic constants with special properties (section 2)

Q a quaternion [q1; q2; q3; q4] = q1 + iq2 + jq3 + kq4
Q the conjugate [q1;�q2;�q3;�q4] of quaternion Q

jQj the norm, or magnitude
p
q21 + q22 + q23 + q24 of quaternion Q

Q�1 the reciprocal Q=(QQ), or multiplicative inverse of quaternion Q

Qr a (purely) real quaternion [q1; 0; 0; 0]

Qv a (purely) vector quaternion [0; q2; q3; q4]

U a unit quaternion, jQj = 1

Qcre the real part q = q1 of quaternion Q

Qcve the vector part q = [q2; q3; q4] of quaternion Q

QjjP (the vector parts of) P and Q are parallel

Q ? P (the vector parts of) P and Q are perpendicular

A.2 Properties

P + (Q + S) = (P +Q) + S addition is associative

P +Q = Q+ P addition is commutative

P (QS) = (PQ)S multiplication is associative

PQ 6= QP multiplication is not commutative

pQ = Qp scalar multiplication is commutative

P (Q + S) = PQ+ PS left multiplication is distributive over addition

(P +Q)S = PS +QS right multiplication is distributive over addition

jQj =
p
QQ =

p
QQ the norm of Q

Qcre = (Q +Q)=2 the real part of Q

Qcve = (Q �Q)=2 the vector part of Q

Q�1 = Q=jQj2 the reciprocal of Q

U�1 = U the reciprocal of unit U

Q�1P = QP=jQj2 the left quotient

PQ�1 = PQ=jQj2 the right quotient

PQ = Q P conjugate of a product

PvQv = �p � q+ p� q product of vector quaternions
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