Static-priority scheduling on multiprocessors

Bjorn Andersson Sanjoy Baruah Jan Jonsson

Abstract

The preemptive scheduling of systems of periodic tasks datbopn comprised of several
identical multiprocessors is considered. A schedulingatigm is proposed for static-priority
scheduling of such systems; this algorithm is a simple ektenof the uniprocessor rate-
monotonic scheduling algorithm. It is proven that this aidyon successfully schedules any
periodic task system with a worst-case utilization no mér@nta third the capacity of the
multiprocessor platform; for the special case of harmomidqalic task systems, the algorithm
is proven to successfully schedule any system with a wasg¢-aitilization of no more than
half the platform capacity.

Keywords. Multiprocessor scheduling; periodic tasks; global schiedustatic priorities.

1 Introduction

Over the years, the preemptive periodic task model [17, &8]groven remarkably useful for the
modelling of recurring processes that occur in hard-reaetcomputer application systems. Ac-
cordingly, much effort has been devoted to the developmeata@mprehensive theory dealing
with the scheduling of systems comprised of such indepedrnuenodic real-time tasks. Particu-
larly in the uniprocessor context — in environments in whadhhard-real-time jobs generated by
all the periodic tasks that comprise the hard-real-timdiegfon system must execute on a single
shared processor — there now exists a wide body of resultg$sary and sufficient feasibility tests,
optimal scheduling algorithms, efficient implementatiofishese algorithms, etc.) that facilitate
the application systems designer who is able to model higordal-time application system as a
collection of independent preemptive periodic real-timeks. Some of these results have been ex-
tended to the multiprocessor context — environments in vtiiere are several identical processors
available upon which the real-time jobs may be executed.

The periodic task model. In the periodic model of hard real-time tasks, a task= (C;, T;)

is characterized by two parameters — an execution requivefieand a periodl; — with the
interpretation that the task generates a job at each intag#iple of 7;, and each such job has
an execution requirement @f; execution units, and must complete by a deadline equal to the
next integer multiple off;. A periodic task system consists of several such periodikstahat

*Supported in part by the National Science Foundation (Giast CCR-9704206, CCR-9972105, CCR-9988327,
and ITR-0082866).

are to execute on a specified processor architecture. Wenasthat each job is independent in
the sense that it does not interact in any manner (acceskargd data, exchanging messages,
etc.) with other jobs of the same or another task. We alsonasgbat the model allows for job
preemptioni.e., a job executing on a processor may be preempted pricormpleting execution,
and its execution may be resumed later, at no cost or penalty.

In this paper, we will study the scheduling of systems ofqdid tasks. Let = {7, 75,...,7,}
denote gperiodic task systepin which each periodic task = (C;,T;) is characterized by its
execution requirement and its period. For each tasttefine itsutilizationU; to be the ratio of;’s
execution requirement to its period; < C;/T;. We define the utilizatio/(7) of periodic task
systemr to be the sum of the utilizations of all tasksinU(7) £ 32, ., Us.

Without loss of generality, we assume tHat< 7;,, for all i, 1 < i < n; i.e., the tasks are
indexed according to period.

Dynamic and static priorities Run-time scheduling the process of determining, during the
execution of a real-time application system, which jobfspid be executed at each instant in
time. Run-time scheduling algorithms are typically impented as follows: at each time instant,
assign gpriority to each activejob, and allocate the available processors to the highastity
jobs.

With respect to certain run-time scheduling algorithmssipossible that some tasksand
7; both have active jobs at times and¢, such that at time,, 7;'s job has higher priority than
7;'s while at timet,, 7;'s job has higher priority tham;’s. Run-time scheduling algorithms that
permit such “switching” of the order of priorities betweeasks are known adynamic priority
algorithms.

By contrast,static priority algorithms satisfy the property that for every paf tasksr; and
7;, wheneverr; and7; both have active jobs, it is always the case that the dasies jobs have
priority. An example of a static-priority scheduling alggom is therate-monotonic scheduling
algorithm[16], which assigns each task a priority inversely proporél to its period — the smaller
the period, the higher the priority, with ties broken arbitty but in a consistent manner:if and
7; have equal periods angls job is given priority overr;’s job once, then all of;’s jobs are given
priority overT;’s jobs.

It is beyond the scope of this document to compare and cdritragelative advantages and
disadvantages of static-priority versus dynamic-prjositheduling. Observe that in the context of
static-priority scheduling, the run-time scheduling problem — determimindng run-time which
jobs should execute at each instant in time — is exactly edgmi to the problem of assigning
priorities to the tasks in the system, since once the prariare assigned run-time scheduling
consists of simply choosing the currently active jobs wité highest priorities.

A hard-real-time task system is defined todiatic-priority feasibldf it can be scheduled by
a static-priority run-time scheduler in such a manner thigiphas will always complete by their
deadlines under all permissible circumstances. Givenpkeications for a system of hard-real-
time tasksstatic-priority feasibility analysiss the process of determining whether the system is
static-priority feasible.

linformally, a job becomeactiveat its ready time, and remains so until it has executed fonaouat of time equal
to its execution requirement, or until its deadline has stap

Partitioned versus global scheduling. In this paper, we will study the static-priority scheduling
of systems of periodic tasks on identical multiprocessorsy > 2. In scheduling such systems,
there are (at least) two distinct approaches possible.

e In partitioned scheduling, all jobs generated by a task are required toutgen thesame
processor.

¢ In global schedulingfask migrations permitted. That is, we do not require that all jobs of
a task execute on the same processor; rather, we permiteiff@bs to execute on different
processors. In additiofpb migrationis also permitted — a job that has been preempted on a
particular processor may resume execution on the same ffiegedit processor. We assume
that there is no penalty associated with either task or jogration. Howeverjob-level
parallelismis expressly forbidden; i.e., it is not permitted that mdrart one processor be
executing a job at any given instant in time.

In the partitioned approach, static-priority schedulieguires that (i) the set of tasksbe
partitioned among the: available processors, and (ii) a total order be defined antib@dasks
within each partition. Then at each instant during run-tithe active job generated by the highest-
priority task within each partition is chosen for executmmthe corresponding processor; if there
IS no active job in a partition, then the corresponding pssce s left idle. In the global approach,
on the other hand, we must define a total order among all tke tas, and at each instant during
run-time choose for execution the highest-priority active jobs (with some processors renmgn
idle if there are fewer tham active jobs).

It has been proven by Leung and Whitehead [15] that the peti@nd global approaches to
static-priority scheduling on multiprocessors ameomparablein the sense that (i) there are task
systems that are feasible @n processors under the partitioned approach but for whichrios-p
ity assignment exists which would cause all jobs of all taskseet their deadlines under global
scheduling onn processors; and (ii) there are task systems that are feamsilab processors under
the global approach, but which cannot be partitioned intdistinct subsets such that each indi-
vidual partition is uniprocessor static-priority feagblThis result of Leung and Whitehead [15]
provides a very strong motivation to study both the panti¢id and the non-partitioned approaches
to static-priority multiprocessor scheduling, since heitapproach is strictly better than the other.

This research. The partitioned approach to static-priority multiproc@sscheduling has been
extensively studied (see [18] for an excellent overivew)this paper, we present a global static-
priority scheduling algorithm for scheduling systems ofipdic tasks. We prove that this algo-
rithm successfully schedules any periodic task systewith utilization U(7) < m?/(3m — 2)

on m identical processors — as& — oo, this bound approaches /3 from above; hence, it
follows that our algorithm successfully schedules anyqaiid task system with cumulative uti-
lization < m/3 onm identical processors. We consider our proof of this resulbé interesting
in its own right, in that we exploit an interesting result dfilps et al. [19] (Theorem 1 below)
that bounds from below the amount of execution that must biymeed by any multiprocessor
work-conserving scheduling algorithm; we expect that tegult will prove useful for determining
other useful properties of multiprocessor systems, and paesented the result and its proof in the
appendix.

For the special case dfarmonicperiodic task systems — task sets in which the perigdsd
T; of any two tasks; andr; satisfy the relationship that eithé is an integer multiple off},
or T; is an integer multiple of; — we show that our algorithm offers an even better perforraanc
guarantee. Specifically, we prove that our algorithm susfedly schedules any harmonic periodic
task systermr with utilization U (7) < m?/(2m — 1) onm identical processors; as — oc, this
bound approaches /2 from above.

Organization of this paper. The remainder of this paper is organized as follows. In $ac#,
we briefly describe two major results that we will be usinghie temainder of this paper. In Sec-
tion 3 we present AlgorithnRM-US[m/(3m-2)], our static-priority multiprocessor algorithm for
scheduling arbitrary periodic task systems, and proveAkgrithm RM-US[m/(3m-2)] success-
fully schedules any periodic task system with utilizationn? /(3m —2) onm identical processors.
In Section 4, we present an algorithm based upon AlgoriRivikUS[m/(3m-2)], optimized for
scheduling harmonic task sets. In Section 5, we describres s experiments we have conducted
to evaluate the performance of AlgoritHRM-US[m/(3m-2)] on randomly-generated task sets. In
Section 6, we briefly review related research on the topic oltiprocessor real-time scheduling,
and conclude in Section 7 with a brief summary of the resutgained in this paper. Some proofs
are postponed to the appendix.

2 Results we will use

Some very interesting and important results in real-timdtipnocessor scheduling theory were
obtained in the mid 1990’s. We will make use of two of thesaultssin this paper; these two
results are briefly described below.

Resource augmentation. It has previously been shown [6, 5, 4] that on-line real-tsalkeduling
algorithms tend to perform extremely poorly under overkeéddonditions. Phillips, Stein, Torng,
and Wein [19] explored the use msource-augmentaticdiechniques for the on-line scheduling of
real-time jobs; the goal was to determine whether an on-line algorithmydf/juied with faster
processors than those available to a clairvoyant algoritould perform better than is implied by
the bounds derived in [6, 5, 4]. Although we are not studyingine scheduling in this paper — all
the parameters of all the periodic tasks are assumed a kniown — it nevertheless turns out that a
particular result from [19] will prove very useful to us inostudy of static-priority multiprocessor
scheduling. We present this result below; a proof may bedanrSection A in the appendix.

The focus of [19] was the scheduling of individual jobs, awd periodic tasks. Accordingly,
let us define gob J;, = (r;,e;,d;) as being characterized by an arrival timg an execution
requirement;, and a deadlin€;, with the interpretation that this job needs to executefarmnits
over the intervalr;, d;). (Thus, the periodic task = (C;, T;) generates an infinite sequence of
jobs with parameters: - 7;, C;, (kK + 1) - T;), k = 0,1, 2, ...; in the remainder of this paper, we
will often use the symbait itself to denote the infinite set of jobs generated by thesaskeriodic
task system.)

2Resource augmentation as a technique for improving th@peance on on-line scheduling algorithms was for-
mally proposed by Kalyanasundaram and Pruhs [13].

4

Let 7 denote any set of jobs. For any algoritirand time instant > 0, let W (A, m, s, I, 1)
denote the amount of work done by algoritbhon jobs off over the interval0, ¢), while executing
onm processors of speedeach. Awork-conserving scheduling algorithm is one that never idles
a processor while there is some active job awaiting exegutio

Theorem 1 (Phillips et al.) For any set of jobd, any time-instant > 0, any work-conserving
algorithm A, and any algorithmy’, it is the case that

1
W(A,m,(2——)-s,1,t)>W(A m,s,I,t). (1)

m

u
That is, anm-processor work-conserving algorithm completes at leashach execution as

any other algorithm, if provided processors that @e- —) times as fast.
m

Predictable scheduling algorithms. Ha and Liu [11, 12, 10] have studied the issue of pre-
dictability in the multiprocessor scheduling of real-tisystems from the following perspective.

Definition 1 (Predictability) Let A denote a scheduling algorithm, ahd= {.J;, .J5, ..., J,} any
setofn jobs, J; = (r;, e;.d;). Let f; denote the time at which joly, completes execution when
is scheduled using algorithi.

Now, consider any set' = {J, J;,...,J,} of n jobs obtained fron7 as follows. JobJ; has
an arrival timer;, an execution requiremen} < ¢;, and a deadlin€; (i.e., job J; has the same
arrival time and deadline ag;, and an execution requirement no Iarger thiais). Let f] denote
the time at which jobJ; completes execution whehis scheduled using algorithm. Schedullng
algorithm A is said to beoredictable if and only if for any set of jobg and for any sucti’ obtained
from /, itis the case that; < f; forall .

[|

Informally, Definition 1 recognizes the fact that the specifexecution-requirement parameters
of jobs are typically onlyupper boundn the actual execution-requirements during run-time,
rather than the exact values. For a predictable schedulgugitnm, one may determine an upper
bound on the completion-times of jobs by analyzing the sibmaunder the assumption that each
job executes for an amount equal to the upper bound on itsiEgeaequirement; it is guaranteed
that the actual completion time of jobs will be no later thiis determined value.

Since a periodic task system generates a set of jobs, Defirditmay be extended in a straight-
forward manner to algorithms for scheduling periodic tag&tems: an algorithm for scheduling
periodic task systems is predictable iff for any periodgktaystems = {7, 7, ..., 7,} itis the
case that the completion time of each job when every joh bhs an execution requirement ex-
actly equal taC; is an upper bound on the completion time of that job when ejarf 7; has an
execution requirement of at mast, forall 7, 1 < i < n.

Ha and Liu define a scheduling algorithm to jmority driven if and only if it satisfies the
condition thatfor every pair of jobs/; and .J;, if .J; has higher priority than/; at some instant in
time, thenJ; alwayshas higher priority thanJ;. Notice that any global static-priority algorithm
for scheduling periodic tasks satisfies this condition, enldence priority-driven. However, the

5

converse is not true in that not all algorithms for schedyeriodic tasks that meet the definition
of priority-driven are global static-priority algorithm®.g., notice that the earliest deadline first
scheduling algorithm, which schedules at each instantaihnetly active job whose deadline is
the smallest, is a priority-driven algorithm, but is not at&t-priority algorithm).

The result from the work of Ha and Liu [11, 12, 10] that we wi# lnasing can be stated as
follows.

Theorem 2 (Ha and Liu) Any priority-driven scheduling algorithm is predictable.

3 Algorithm RM-US[m/(3m-2)]

In this section, we present AlgorithRM-US[m/(3m-2)], a static-priority global scheduling al-
gorithm for scheduling periodic task systems, and derivéileation-based sufficient feasibility
condition for AlgorithmRM-US[m/(3m-2)]; in particular, we will prove that any task system
satisfyingU(7) < m?/(3m—2) will be scheduled to meet all deadlinesmrunit-speed processors
by Algorithm RM-US[m/(3m-2)]. This is how we will proceed. In Section 3.1, we will consider
restricted category of periodic task systems, which we“tight” systems; we will prove that the
multiprocessorate-monotonic scheduling algorithm (we will henceforth refer to the mpittices-
sor rate-monotonic algorithm as AlgorithRM), which is a global static-priority algorithm that
assigns tasks priorities in inverse proportion to theiiqus, will successfully schedule any light
system. Then in Section 3.2, we extend the results conaetight systems to arbitrary systems
of periodic tasks. We extend AlgorithRM to define a global static-priority scheduling algorithm
which we call AlgorithmRM-US[m/(3m-2)], and prove that AlgorithnRM-US[m/(3m-2)] suc-
cessfully schedules any periodic task system with utiliwaat mostn? /(3m — 2) onm identical
processors.

3.1 “Light” systems

Definition 2 A periodic task system is said to be dight system omn processordf it satisfies the
following two properties

Property P1: Foreachr; € 7, U; < m
3m — 2

P ty P2: <
roperty U(r) < EY—
[|

We will consider the scheduling of task systems satisfyirapBrty P1 and Property P2 above,
using the rate-monotonic scheduling algorithm (AlgoritRidl).

Theorem 3 Any periodic task system that is light onm processors will be scheduled to meet all
deadlines omn processors by AlgorithrRM.

Proof: Let us suppose that ties are broken by AlgoritRiM such that; has greater priority than
141 forall i, 1 < i < n. Notice that whether jobs of, meet their deadlines under AlgorithRiV
depends only upon the jobs generated by the tésks», ..., 7}, and are completely unaffected
by the presence of the tasks,,,...,7,. Fork = 1,2,...,n, let us define the task-set*) as
follows:

k) & {m1, 72y, Tk}

Our proof strategy is as follows. We will prove that AlgorithRM will scheduler®) in such
a manner that all jobs of the lowest-priority tagkcomplete by their deadlines. Our claim that
Algorithm RM successfully scheduleswould then follow by induction or.

Lemma 3.1 Task system (¥ is feasible onm processors each of computing capacify™).

Proof: Sincem > 2, notice thaBm — 2 > 2m — 1. SincelU; < ;- for each task; (by Property

P1 above), it follows that
m

i < Cy— 2)
Similarly fromU (1) < 3;’]; (Property P2 above) and the fact thét C 7, it can be derived that
m2
Y U < 51" (3

TiET(k)

As a consequence of Inequalities 2 and 3 we may conclude thatan be scheduled to meet
all deadlines omn processors each of computing capacify”~): the processor-sharing schedule
(which we will henceforth denotepT), which assigns a fractiofy; of a processor ta; at each
time-instant bears witness to the feasibilityrof).

m End proof (of Lemma 3.1).

Since ™~ x (2 — L) = 1, it follows from Therorem 1, the existence of the schedoikr

described in the proof of Lemma 3.1, and the fact that AlponiRM is work-conserving, that

W(RM,m, 1,7 1) > W (0PT,m, 7, 1) (4)

m
2m —1
forall ¢ > 0;i.e.,at any time-instant, the amount of work done o) by AlgorithmRM executing
on m unit-speed processors is at least as much as the amount &fdemre onr*) by opT onm

m
om—1 -speed processors.

Lemma 3.2 All jobs of 7, meet their deadlines wher*) is scheduled using AlgorithiRM.

Proof: Let us assume that the firfgt— 1) jobs of , have met their deadlines under AlgorithRiv;
we will prove below that thé’th job of 7, also meets its deadline. The correctness of Lemma 3.2
will then follow by induction or¥, starting with/ = 1.

The ¢'th job of 7, arrives at time-instan{/ — 1)7;, has a deadline at time-instafif;,, and
needsC), units of execution. From Inequality 4 and the fact that thecpssor-sharing schedule
oPT schedules each taskfor (¢ — 1)T}, - U; units over the intervdl, (¢ — 1)T}), we have

W(RM,m,1,7® (¢ —1)T},) > (¢t = 1T}, (i Uj) (5)

Also, at least(¢ — 1) - T}, - (¥~} U;) units of this execution by AlgorithnRM was of tasks
T1,To, ..., Tr_1 — this follows from the fact that exactlyy — 1)7,.U; units of 7,’s work has been
generated prior to instanft — 1)7}; the remainder of the work executed by AlgoritiRM must

therefore be generated by, 7o, ..., 7% _1.

The cumulative execution requirement of all the jobs geteerdy the tasksy, 7o,..., 7 1
that arrive prior to the deadline af’s /’'th job is bounded from above by

k—1 ﬁTk >
< — +1]C;
Z (Ti J
k-1 k-1
= (T, > Ui+> Cj (6)
=1 j=1

As we have seen above (the discussion following Inequa)igt feast(¢ — 1) - 7}, - 2_’;;} U, of this
gets done prior to time-instafgt — 1)7}; hence, at most

k—1 k—1
(Tk D Ui+ Ci) (7)

remains to be executedter time-instant(¢ — 1)7}.

The amount of processor capacity left unusedby. . , 7. ; during the interval(¢—1)T}, (T},)
is therefore no smaller than

J=1 J=1

k—1 k—1
m-Tk<TkZUJ+ZCJ) (8)

Since there aren processors available, the cumulative length of the interveer((¢ — 1)7}., (T})

during whichry, ..., 7,_; leave at least one processor idle is minimized if the difieprocessors
tend to idle simultaneously (in parallel); hence, a loweuit on this cumulative length of the
intervals over{(¢ — 1)Ty, ¢T) during whichr, ..., 7, leave at least one processor idle is given

by (m - Ty, — (T $A21 U; + $2521 C5)) /m, which equals

j=

1 k—1 k—1
T~ — (TkZUjJrZCi) (©)

J=1 J=1

For the/'th job of 7, to meet its deadline, it suffices that this cumulative inaktgngth be at least
as large at;’s execution requirement; i.e.,

k—1 k—1

1
Tk*E(TkZUj“’ZC]')ZCk

J=1 J=1

RIS
= (SinceT), > T; for j < k)
1 k—1
Uk+a(2ZUj) <1 (10)
j=1

Let us now simplify the Ihs of Inequality 10 above:

1 k—1
Uk + ;(2 > Uj)

J=1

1 k
U, + E(QZUj — 2Uk)

J=1

IN

< (By Property P2 of task system
2 2m
1— =
Uk m) + 3m — 2
< (By Property P1 of task system
m 2 2m
1—— 11
3m—2(m)+3m—2 (11)
— 1 (12)

From Inequalities 10 and 12, we may conclude that/ithejob of 7, does meet its deadline.
m End proof (of Lemma 3.2).

The correctness of Theorem 3 follows from Lemma 3.2 by inidumodn £, with £ = m being
the base case (that, 7, . . . 7, meet all their deadlines directly follows from the fact tkiare are
m processors available in the system).

B End proof (of Theorem 3).

3.2 Arbitrary systems

In Section 3.1, we saw that AlgorithRM successfully schedules any periodic task systemith
utilizationU(7) < m?/(3m — 1) onm identical processorgrovided each; € 7 has a utilization
U; <m/(3m — 2). We now relax the restriction on the utilization of each indual task; rather,
we permit anylU; < 1 for eachr; € 7. That is, we will consider in this section the static-prigri
global scheduling of any task systensatisfying the condition

m2

U <)
(T)_Bm—Q

9

For such task systems, we define the static priority-assggstheme AlgorithrRM-US[m/(3m-2)]
as follows.

Algorithm RM-US[m/(3m-2)] assigns (static) priorities to tasks#raccording to the following
rule:

if U; > ==~ then 7; has the highest priority (ties broken arbitrarily)

3m—2

if U; < =2 then 7; has rate-monotonic priority.

3m—2

Example 1 As an example of the priorities assigned by AlgoritRiv-US[m/(3m-2)], consider
a task system

TE{n = (1,7),7 = (2,10), 73 = (9,20), 74 = (11,22), 75 = (2,25)}

to be scheduled on a platform ®fidentical unit-speed processors. The utilizations of ¢hfiage
tasks arex 0.143, 0.2, 0.45, 0.5, and0.08 respectively. Fom = 3, m/(3m — 2) equals3/7

~ 0.4286; hence, taskss; and 7, will be assigned highest priorities, and the remaining éhre
tasks will be assigned rate-monotonic priorities. The fodspriority assignments are therefore as
follows (highest-priority task listed first):

T3, T4, T1,T2,Ts

or
T4,T3,T1,7T2,T5

Theorem 4 Any periodic task system with utilization U (7) < m?/(3m — 2) will be scheduled
to meet all deadlines om unit-speed processors by AlgoritiRM-US[m/(3m-2)].

Proof: Assume that the tasks in are indexed according to the priorities assigned to them by
Algorithm RM-US[m/(3m-2)]. First, observe that sindé(7) < m?/(3m — 2), while each task
7; that is assigned highest priority h&s strictly greater thann/(3m — 2), there can be at most
(m — 1) such tasks that are assigned highest priority. A,eenote the number of tasks that are
assigned the highest priority; i.em, 7, ..., 7, €ach have utilization greater tham/(3m — 2),
andr, .1, ... 7, are assigned priorities rate-monotonically. ket m — k.

Let us first analyze the task systein consisting of the tasks in each having utilization
<m/(3m — 2):

e \ r(ko)

The utilization of7 can be bounded from above as follows:

U(#) = U(r) = U(r")

2

_ m L m
3m — 2 ? 3m—2
_om(m — k)
- 3m — 2
< (m — k,) - (m — k)
- 3(m — ky) — 2
2
m
= 9 13
3m, — 2 (13)

10

Furthermore, for each € 7, we have

m
U, < 2

< < : (14)
3m—2 " 3m, — 2

From Inequalities 13 and 14, we conclude thais a periodic task system that is light on,
processors. Hence by Theoremr3zan be scheduled by AlgorithRM to meet all deadlines on
m, Processors.

Now, consider the task systefmobtained fromr by replacing each task € 7 that has a
utilization U; greater thann/(3m — 2) by a task with the same period, but with utilization equal
to one:

722U (Vamersa {(TLT)Y) -

Notice that AlgorithmRM-US[m/(3m-2)] will assign identical priorities to corresponding
tasks inT and7 (where the notion of “corresponding” is defined in the obwananner). Also
notice that when scheduling, Algorithm RM-US[m/(3m-2)] will devote &, processors exclu-
sively to thek, tasks inr(#) (these are the highest-priority tasks, and each have aaitdn equal
to unity) and will be executing AlgorithnRM on the remaining tasks (the tasks7ipupon the
remainingm, = (m — k,) processors. As we have seen above, AlgoritRsh schedules the tasks
in 7 to meet all deadlines; hence, AlgoritHRM-US[m/(3m-2)] schedules to meet all deadlines
of all jobs.

Finally, notice that an execution of AlgorithRM-US[m/(3m-2)] on task system can be con-
sidered to be an instantiation of a run of AlgoritfRM-US[m/(3m-2)] on task systend, in which
some jobs — the ones generated by tasks/in — do not execute to their full execution require-
ment. By the result of Ha and Liu (Theorem 2), it follows thdagéithm RM-US[m/(3m-2)] is a
predictablescheduling algorithm, and hence each job of each task dthmgxecution of Algo-
rithm RM-US[m/(3m-2)] on task systemr completes no later than the corresponding job during
the execution of AlgorithnRM-US[m/(3m-2)] on task system. And, we have already seen above
that no deadlines are missed during the execution of
Algorithm RM-US[m/(3m-2)] on task systen.

B End proof (of Theorem 4).

4 Harmonic task systems

In Section 3, we studied the static-priority global multipessor scheduling of systems of periodic
tasks. Inharmonic periodic task systems, the periofisand7; of any two tasks; andr; are re-
lated as follows: eith€f; is an integer multiple of’;, or 7} is an integer multiple of ;. With respect
to the static-priority global multiprocessor schedulirfdharmonic periodic task systems, we now
present a variant of AlgorithrRM-US[m/(3m-2)], which we call AlgorithmRM-US[m/(2m-1)],
and prove below a stronger bound on the performance of AlgorRM-US[m/(2m-1)].

First, let us refine the definition dight systems for harmonic task systems. Specifically, let us
call a harmonic task systerlight onm processorsf U(7) < m?/(2m—1) andU; < m/(2m—1)
forall r; € 7.

11

Algorithm RM-US[m/(2m-1)] assigns (static) priorities to tasks in harmonic periodgktsys-
temr according to the following rule:

if U; > ==~ then 7; has the highest priority (ties broken arbitrarily)

if U; < =2— then 7; has rate-monotonic priority.

Theorem 5 Any periodic task system with utilization U (7) < m?/(2m — 1) will be scheduled
to meet all deadlines om unit-speed processors by AlgorithRM-US[m/(2m-1)].

Proof Sketch:

e The analog of Theorem 3 — that any harmonic periodic taskeaystthat is light onm
processors will be scheduled to meet all deadlinesnoprocessors by AlgorithnRM —
can be proved in a manner that closely parallels the proohebfem 3.

— It may be verified that the proof of Lemma 3.1 goes through anged ifr(*) is as-
sumed to be a light harmonic periodic task system; Lemmas3ttierefore applicable
to light harmonic periodic task systems as well.

— The proof of the analog of Lemma 3.2 is provided in Section Bhie appendix; the
crucial difference arises from the simplification that isin Inequality 6. While in

. . T /T, . . .
obtaining Inequality 6 we replace[le—ﬂ by (?'“ + 1), notice that in the harmonic
j j

. (T, Te , .
tasks case we may simply repl ef—k by Tk; this is because in a harmonic task set it
j j
is guaranteed thaf, is an integer multiple of;. The remainder of the proof is merely
algebraic manipulation and proceeds directly; details bwfjound in the appendix.

e The correctness of Theorem 5 for light harmonic task systemasfollows directly from the
correctness of this analog of Lemma 3.2, by induction.

e To prove Theorem 5 for arbitrary harmonic task systems, ved@shniques identical to those
used in Section 3.2. l.e., we consider the schedulingnqirocessors of any task system
with U(7) < m?/(2m — 1); for such a system, (i) we “inflate” to unity the utilizatioosalll
tasks int that have utilizations>- m/(2m — 1) (ii) we prove that, as a consequence of the
correctness of the theorem on light systems (as describmgebnve may conclude that the
remaining tasks will be successfully scheduled by AlganfRM-US[m/(2m-1)] on the re-
maining processors to meet all deadlines,and (iii) usedbelt of Ha and Liu (Theorem 2) to
conclude that AlgorithnRM-US[m/(3m-2)] will therefore successfully schedule the entire
task system.

12

5 Experimental Evaluation

The purpose of this section is to show that, altho®M-US[m/(3m-2)] can fail to meet dead-
lines at a system utilization that is slightly higher than(3nmi-2), it often performs much better
than that for general task sets. To that end, we compare ttierpance of different techniques
for static-priority preemptive scheduling on multiprosess, namely partitioning, non-partitioning
and non-partitioning pfair [20]. Section 5.1 describesdkperimental setup in terms of simulation
parameters and scheduling algorithms used. Section 5s2methe results from the experiments
and the observations made. Finally, Section 5.3 compaeah#oretical utilization bounds for the
scheduling algorithms used.

5.1 Experimental Setup

Our experimental setup is similar to the experimental setf0], but for completeness the setup
is described below.

Each simulation experiment represents simulatiof(of task sets, organized 30 different
buckets, each witB0 task sets. Bucketcontains task sets with a system utilization greater than
Uiow = (1 — 1)/30, but no greater tha#; ,;,, = ¢/30. For each bucket, we compute the success
ratio as the number of successfully scheduled task setsatrbticket divided by the number of
scheduled task sets in that bucket. The task set of each tbuiskgenerated by starting with a
current task set that is empty, and then adding a new tasketauhrent task set as long as the
system utilization is lower thatv; ,,,,. When the system utilization of the current task set has
become higher thafy; ;,,,, we decide whether or not the current task set should betewserto
the bucket. If the system utilization of the current taskisédbwer thanl; 5., and the number of
tasks is greater than the number of processors, then the¢ask put into the bucket; otherwise,
a new task set is generated. Our experiment differs fromithg0] in that we only simulat&0
buckets with30 tasks in each bucket (in contrast, [20] simulatéd buckets withl 00 tasks in each
bucket.)

The periods and the execution time of a task are selectesmnalgd The period of a task is
drawn from a set of discrete periods, each period having aingesprobability of being selected.
In our experiments, we draw the period of taskom one of the following two different period
sets:T; € {100, 200, 300, 400, ..., 1000} andT; € {2,4,6,8, ...,20}. Note that, in [20], the type of
period sets used in the experiments was not stated at atle 8ia study synchronous task sets, all
generated tasks arrive for the first time at time 0 and areckdied until timelcm (Ty, Ty, . .., T;,)°.

The execution time of a task is computed from the utilizatbthat task and rounded down to
the nearest integer. The utilization of a task is given blyezita uniform distribution or a binomial
distribution. To determine which distribution to use, wangete a random variable with uniform
distribution in the rangg0, 1). If the variable is less than or equal to(a simulation parameter),
we then choose the uniform distribution; otherwise, thehiral distribution is chosen. In case of
a uniform distribution, the utilization of a task is drawoin the rangg0, 1. In case of a binomial
distribution, the utilization of a task is generated in tbdwing way. Perforn9 trials with the
probability of success being (another simulation parameter). Count the number of ssesesnd

SAt time t > lem(T),Ts,...,T,), the tasks that execute is the same as the tasks that exdcute a
lcm(Tl,Tg. . ,Tn)

13

divide by 29. Then add a random number with a uniform distidouin the rangg—1/29, 1/29]. If
the utilization of a task less than or equal to zero, or grdatn 1, then generate a task again. Note
that, with this procedure, a high value afmakes it more likely that a task has a high utilization.
We evaluate one partitioning scheme, R-BOUND-MPrespaapfair non-partitioning scheme:
WNMpfair [20], and three non-partitioning schemes, RM [B8aptive TkC [1] andRM-US[m/(3m-2)].
R-BOUND-MPrespan is a modification of the R-BOUND-MP schéi#g where a necessary and
sufficient schedulability test is used during task-to-psor assignment instead of the sufficient
test used in the original version. Since the partitionind aan-partitioning schemes use different
strategies for assigning a task to a processor, the conténiazessfully scheduled’ needs to be
clearly defined. For R-BOUND-MP, we consider a task to be sssftilly scheduled if and only if
the schedulability test in the partitioning algorithm caragantee that the task set on each unipro-
cessor is schedulable. For the other schemes, we considsk &otbe successfully scheduled if it
met all its deadlines durinf), lem(Ty, T, ..., T,). Note that, in [20], WM was considered to be
successfully scheduled if and only if a certain pfairnesgpprty was satisfied. Since all evaluated
scheduling algorithms, except WM, was primarily designadpleriodic scheduling rather than to
satisfy the pfairness property, we chose to evaluate aflcidimg algorithms under the assumption
of periodic scheduling. Since the pfairness property ig@ngfer condition than periodicity, WM
will show no worse performance in our study than in [20].

5.2 Experimental Results

The results of the experiments for different values of thepeeters” and A are shown in Figures 1
through 6 in Section C (in the appendix). From the plots, vadihe following conclusions.

We first observe thaRM-US[m/(3m-2)] often succeeds at much higher system utilizations
than is suggested by its utilization bound. For examplefoe= 32 processors andl < 0.3,
RM-US[m/(3m-2)] breaks down at a system utilization around 80%, while theesponding
theoretical bound is 34%. Note that, when = 32 and A = 0.5, RM-US[m/(3m-2)] has a
significant performance drop. Here, the breakdown utilizais as low as 50%. This phenomenon
is actually an effect of the chosen experimental setup. @(itithoice of distributions, the expected
value of the utilization of a task is approximately 0.5 fortibohe uniform distribution and the
binomial distribution, thus resulting in a very large pogidn of tasks with that utilization. A
similar behavior was observed in [20].

We then observe th&M-US[m/(3m-2)] outperforms RM when many processors are available
andA is small (tasks have a low average utilization). The reasothis is thaRM-US[m/(3m-2)]
always succeeds to schedule task set with a system utlizbgss than m/(3m-2) while RM can
potentially fail due toDhall’s effect[9]. As A becomes larger RM an@M-US[m/(3m-2)] offer
comparable performance since most tasks then have a titihzgreater than the guarantee bound
of m/(3m-2). For example, whem = 32 andA > 0.7, most tasks have a utilization greater than
32/(3 x 32 — 3) = 0.34, which means that RM anldM-US[m/(3m-2)] produce the same priority
assignment and hence similar performance.

We can also see th&M-US[m/(3m-2)] performs worse than WMpfair and adaptiveTkC for
systems with a large number of processors. However, therdiite in performance is typically
no more than 20%, which shows trRM-US[m/(3m-2)] does not suffer from the drawbacks of
RM. RM-US[m/(3m-2)] also performs worse than R-BOUND-MPrespan as long as0.5. For

14

higher values of4, the fundamental limitations of the assignment strateggdua R-BOUND-
MPrespan (a bin-packing algorithm) reveal themselves andes a significant performance drop.
When the task periods are drawn from the set of long periodglp¥&ir performs significantly
better than both R-BOUND-MPrespan and adaptive TKC. Theores that when periods are long
(relative to the time unit base), WMpfair approximates @ssor sharing, which is optimal. When
task periods are drawn from the set of short periods, WMitier a performance similar to R-
BOUND-MPrespan and adaptiveTkC.

It is worth noting that all scheduling algorithms performlia® one processor. The reason for
this is that all the evaluated scheduling algorithms, ek®pipfair and R-BOUND-MPrespan,
perform scheduling in the same manner as RM. The reason WwBQBND-MP schedules tasks
differently than RM is because of a special task set transdtion. In the beginning of R-BOUND-
MP-algorithm, a task set is transformed inta;/, to make the ratio between periods lower. After
the transformation, it may then be the case that there eagktsets such thatis schedulable on
one processor, but is not.

Note that, for 32 processors withi = 0.1 and A = 0.01, the success ratio of RM is heavily
changing. The reason is that, with these parameters, nalst tae likely to have a low utiliza-
tion, but there is a 10% probability for each task that itdizgtion will be drawn from a uniform
distribution and hence have a higher likelihood of becontarge. Now, if there is a task with a
large utilization in a population of low-utilization taskben RM can fail to meet deadlines at low
system utilization due to Dhall’s effect.

Finally, we make a comment on the performance of WMpfair. $imeulation results show
that the success ratio of WMpfair is higher foy € {100, 200, 300, 400, ..., 1000} than it is for
T; € {2,4,6,8,...,20}. As mentioned above, this effect occurs because WMpfaircqapates
processor sharing (which is optimal) when periods are largrigh (in comparison to the time unit
base). For all other scheduling algorithms, the periodsat@afiect the success ratio. One notable
exception is when” = 1, m = 1 and the system utilization is greater than 95%. In this case,
T; € {2,4,6,8, ...,20} yields higher success ratio because of the way task seteaezajed. The
reason is as follows. Most of the task sets have only 2 tasksg(tasks often yields a utilization
higher than 1, and are hence rejected). Often the only wayglukaing a utilization within the
bounds is to generate task sets until the periods are haomani hose task sets can be scheduled
by all algorithms except WMpfair.

5.3 Utilization bounds

We conclude our performance evaluation by comparing theréteal bounds of the studies schedul-
ing schemes. To this end, we will begin by deriving an uppeargntee bound of system utilization.
Considerthetaskset= {(7y =2L-1,C, = L), (T, =2L-1,Cy = L),..., T, =2L-1,C,, =

L), T,.1 =2L-1,C,,, = L)} to be scheduled om processors (L is a positive integer) when all
tasks arrive at time 0. For this task set, the system utibnas L /(2L — 1)+ (L/(2L—1))/m. For

all studied approaches (partitioning, non-partitionimgl gofair non-partitioning) of using static-
priority scheduling, deadlines will be missed for this tasi. Partitioning will not succeed be-
cause it is necessary for two tasks to execute on one pracessbthat processor will then have
a utilization greater tham; hence, the task set is unschedulable. For non-partitip(rmether
pfair or not), allm highest priority tasks will execute at the same time and pgdutime units

15

during [0,2L-1). There will be. — 1 time units available for a lower priority tasks, but the I@sve
priority task needd. time units and thus misses its deadline. By letting> oo andm — oo, the
task set is unschedulable at a system utilization of 1/2 s€guently, for any particular scheduling
algorithm addressed in this paper, the utilization bountho&be higher than 1/2.

Among the studied approaches, oR¥-US[m/(3m-2)] has a tight utilization bound, namely
the derived bound Of?/(3m 2). For adaptiveTKC, the utilization bound has been shown tmbe
greater thar2 - mm» - [2]. For RM, the utilization bound is known to be no greatém
[9]. For WM, no known utlllzatlon bound has hitherto beenyan; however, due to the reasoning
above the utilization bound cannot be higher than 1/2.

We can thus conclude that, in general, no static-priorityesitiling algorithm on a multipro-
cessor can achieve a utilization bound that is greater tlddf. 5To that end, it is interesting to
note that the utilization bound of a static multiprocesstresiuling algorithm has previously been
shown to be 41% or higher [18].

6 Related Work

The problem of scheduling a given set of periodic tasks omtidal multiprocessor machines
was posed by Liu [17] in 1969. Liu derived conditions underichhthe earliest deadline first
scheduling algorithm would successfully schedule suchstesy; these conditions translate into a
sufficient (albeit not necessary) feasibility test. MuctetaBaruah et al. [3] obtained a necessary
and sufficient conditions for determining feasibility, asliaas an optimal scheduling algorithm for
successfully scheduling feasible systems.

The partioned approach to the static-priority multipramesscheduling of periodic task sys-
tems has also been extensively studied [9, 7, 8, 18]. Muckisfresearch has considered the
problem of using bin-packing like algorithms for partitiog a given set of periodic tasks among
a set of processors such that each partition is uniprocésasible under the rate-monotonic algo-
rithm; e.g., Dhavri and Dhall [7] presented an efficient aitjon which they proved would parti-
tion a set of periodic tasks into no more than twice as manitigars that an optimal algorithm
would (equivalently, they devised an efficient algorithmpartitioned static-priority multiproces-
sor scheduling that uses at most twice as many processorsa@gimal algorithm would). More
recently, Oh and Baker [18] presented a partitioned staimrity multiprocessor scheduling al-
gorithm that schedules any task system with utilizatonn(v/2 — 1) on m processors — this
represents a utilization of approximatel®% of the capacity of the multiprocessor platform. For
m = 2 andm = 3, Algorithm RM-US[m/(3m-2)] offers a superior bound; however as— oo,
the Oh & Baker bound, at2%, proves superior to AlgorithnRM-US[m/(3m-2)]'s 33%. (We
would like to point out that the results in the current papanain significant despite this — since
Leung and Whitehead [15] have proven that the partioned #otthbapproaches are in general
incomparable, it behooves us to better understand bottslahdcheduling systems.)

16

v

Conclusions

We have studied the preemptive scheduling of systems obgliertasks on a platform comprised
of several identical multiprocessors. We have proposedutlgn RM-US[m/(3m-2)], a new
static-priority multiprocessor algorithm for schedulipgriodic task systems. We proved that
Algorithm RM-US[m/(3m-2)] successfully schedules any periodic task system withzatithn

< m?/(3m—2) onm identical processors. For the special case of harmoniogiertask systems,
we obtained a better sufficient utilization-based feaisjbiest — any harmonic task set with uti-
lization< m?/(2m—1) is successfully scheduled by AlgoritHRM-US[m/(3m-2)] onm identical
processors.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

ANDERSSON B., AND JONSSON J. Fixed-priority preemptive multiprocessor schedulifig parti-
tion or not to partition. InProceedings of the International Conference on Real-Timmaiiding Sys-
tems and ApplicationfCheju Island, South Korea, December 2000), IEEE Computeie§/ Press,
pp. 337-346.

ANDERSSON B., AND JONSSON J. Some insights on fixed-priority preemptive non-pantigd
multiprocessor scheduling. Froceedings of the Real-Time Systems Symposium — WorlodmneBs
Session(Orlando, FL, November 2000).

BARUAH, S., GHEN, N., PLAXTON, G., AND VARVEL, D. Proportionate progress: A notion of
fairness in resource allocatiomlgorithmica 15 6 (June 1996), 600-625.

BARUAH, S., HARITSA, J., AND SHARMA, N. On-line scheduling to maximize task completions.
In Proceedings of the Real-Time Systems Sympao&am Juan, Puerto Rico, 1994), IEEE Computer
Society Press.

BARUAH, S., KOREN, G., MAO, D., MISHRA, B., RAGHUNATHAN, A., ROSIER, L., SHASHA, D.,
AND WANG, F. On the competitiveness of on-line real-time task sclieglu Real-Time Systems 4
(1992), 125-144. Also iRroceedings of the 12th Real-Time Systems Symposium, Sandiiiexas,
December 1991

BARUAH, S., KOREN, G., MISHRA, B., RAGHUNATHAN, A., ROSIER, L., AND SHASHA, D. On-
line scheduling in the presence of overload.Pimceedings of the 32nd Annual IEEE Symposium on
Foundations of Computer Scien¢®an Juan, Puerto Rico, October 1991), IEEE Computer Societ
Press, pp. 100-110.

DAVARI, S.,AND DHALL, S. K. On areal-time task allocation problem.Rroceedings of the 19th
Hawaii International Conference on System Sciefttenolulu, January 1985).

DAVARI, S.,AND DHALL, S. K. An on-line algorithm for real-time tasks allocatidn. Proceedings
of the Real-Time Systems Sympos{lif86), pp. 194-200.

DHALL, S. K.,AND LIu, C. L. On areal-time scheduling problef®perations Research 28978),
127-140.

17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

HA, R. Validating timing constraints in multiprocessor and distrited systemsPhD thesis, Depart-
ment of Computer Science, University of lllinois at Urba@ihampaign, 1995. Available as Technical
Report No. UIUCDCS-R-95-1907.

HA, R.,AND LIu, J. W. S. Validating timing constraints in multiprocessadalistributed real-time
systems. Tech. Rep. UIUCDCS-R-93-1833, Department of @CeenScience, University of lllinois
at Urbana-Champaign, October 1993.

HA, R.,AND L1u, J. W. S. Validating timing constraints in multiprocessadalistributed real-time
systems. IfProceedings of the 14th IEEE International Conference astribiuted Computing Systems
(Los Alamitos, June 1994), IEEE Computer Society Press.

KALYANASUNDARAM , B., AND PRUHS, K. Speed is as powerful as clairvoyance. 36th Annual
Symposium on Foundations of Computer Science (FOC8.@5)Alamitos, Oct. 1995), IEEE Com-
puter Society Press, pp. 214-223.

LAauzAc, S., MELHEM, R., AND M0OsSsSeE D. An efficient RMS admission control algorithm and
its application to multiprocessor scheduling. Rroceedings of the International Parallel Processing
SymposiunfApril 1998), IEEE Computer Society Press, pp. 511-518.

LEUNG, J.,AND WHITEHEAD, J. On the complexity of fixed-priority scheduling of periodreal-
time tasks.Performance Evaluation £1982), 237-250.

Liu, C., AND LAYLAND, J. Scheduling algorithms for multiprogramming in a hardl+#ttme envi-
ronment.Journal of the ACM 201 (1973), 46-61.

Liu, C. L. Scheduling algorithms for multiprocessors in a hadlitime environmentJPL Space
Programs Summary 37-60 (1969), 28-31.

OH, D.-I., AND BAKER, T. P. Utilization bounds for N-processor rate monotoneesiciting with
static processor assignmemeal-Time Systems: The International Journal of Time-&itComput-
ing 15(1998), 183-192.

PHILLIPS, C. A., STEIN, C., TORNG, E., AND WEIN, J. Optimal time-critical scheduling via re-
source augmentation. IRroceedings of the Twenty-Ninth Annual ACM Symposium oory e
Computing(El Paso, Texas, 4-6 May 1997), pp. 140-149.

RAMAMURTHY, S.,AND MOIR, M. Static-priority static scheduling on multiprocessolrs Proceed-
ings of the Real-Time Systems SympogiOmando, FL, November 2000), IEEE Computer Society
Press.

18

A Proof of Theorem 1

The proof below is from [19]; it is restated here in the naiatand terminology used in the rest of
this paper.

The statement of the theorem is:
For any instance of jobg, any time-instant > 0, any work-conserving algorithrd, and any
algorithm A’, it is the case that

1
W(A,m,(2——)-s,1,t)>W(A m,s,I,t).

m

The proof is by contradiction. Suppose then that it is na;tiie., there is some time-instant by
which a work-conserving algorithm executing onn speedf2 — %) - s processors has performed
strictly less work than some other algorith# executing onn speeds processors. Lef; € 1
denote a job with the earliest arrival time such that thesoise time-instant, satisfying

1
W(A,m,(2——)s,1,t,) <W(A m,s,I,t,),
m
and the amount of work done on jghby time-instant, in A is strictly less than the amount of
work done ofJ; by time-instant, in A’. One such/; must exist, because there is a time: ¢;
suchW (A, m, (2 — %) s, 1, ty) =W(A",m,s, I,ty) —t = 0 gives one such equality.
By our choice ofr;, it must be the case that

1
W(A,m, (2 —=)-s,I,r;) >W(A m,sI,r;).
Therefore, the amount of work done by over|r;,t,) is strictly more than the amount of work
done byA over the same interval. The fact that the amount of work dang;an [r;,¢,) in A is
less than the amount of work done @nin [r;,t,) in A’, implies that/; does not complete before
to.
Letz denote the cumulative length of time over the intefvalt,) during whichA is executing
on allm processors; lej = (t, — ;) —) denote the length of time over this interval during which
A idles some processor.

We make the following two observations.

e Since A is a work-conserving scheduling algorithm, job, which has not completed by
instantt, in the schedule generated by must have executed for at leastime units by
timet, in the schedule generated Hy while it could have executed for at mdst+ y) time
units in the schedule generated Ay therefore,

(w+y)><2—%)-y- (15)

e The amount of work done byt over|r;. t,) is at least

<2—i) -s(mx +y),

m

19

while the amount of work done hy’ over this interval is at most
ms(x +y);

therefore, it must be the case that
m(z +y) > (2%) (mz+) . (16)
Adding (m — 1) times Inequality 15 to Inequality 16, we get
(m— 1) +y) +m(z+y) > (m—1) (2— %) yt (2— %) - (mz +y)
= m—1)(z+y)> (2— %) - (my —y +max +y)
= 2m-1)(z+y) > (2 %) m(x + y)

= 2m—-1)(z+y)>2m—1)(z+7v)

which is a contradictiors

B Proof of the analog of Lemma 3.2 for harmonic task sets

The proof here is essentially a reproduction of the proofefima 3.2 from Section 3.1, appropri-
ately modified to take advantage of the unique additiongb@mies of harmonic task sets. In this,
recall thatr is a harmonic task set (and hence so3). In particular, note that for alt; € %), it

is the case thatl},/T;] = T}/1;.

Let us assume that the firgt— 1) jobs of7,, have met their deadlines under AlgoritiiM, and
consider the’'th job of 7. This job arrives at time-instaigt — 1)7}, has a deadline at time-instant
(Ty, and needg;, units of execution. As long asPT schedules”* such that the tasks complete
no later than their deadlines, the amount of work done@Bby in a time interval(¢ — 1)7} is the
utilization of the task set multiplied by the time intervéihen processors have the spged™—),
the tasks complete no later than their deadlines accordihgima 3.1. Therefore we have:

W(OPT, m,——— 7% 1) =t- (S U;) .

2m — 1 =
Applying Inequality 4 yields:
k
WRM,m, 1,7®) (¢ — 1)T},) > (£~ 1)T; (Z U]-) (17)
=1
Also, at least¢ — 1) - T} - (f;;} U;) units of this execution was of tasks, 7», . .., 7,1 — this

follows from the fact that exactl{? — 1)7, Uy units ofr,’s work has been generated prior to instant
(¢ — 1)Ty; the remainder of the work executed by AlgoritHRM must therefore be generated by
T13T9y ooy Th—1-

20

The cumulative execution requirement of all the jobs geteerdy the tasks,, 7, ..., 7._;
that arrive prior to the deadline af’s /’'th job is bounded from above by

k—1 ﬁTk-‘
—* .
ijTj ’
k—1 /Tk
T;

< C;

J=1

k—1
— T, YU, (18)

Jj=1

As we have seen above (the discussion following Inequall}yat least¢ — 1) - T}, - ’;;]1 U, of
this gets done prior to time-instafit— 1)7}; hence, at most

k—1
T,y U (19)
=

remains to be executedter time-instant(¢ — 1)7}.

The amount of processor capacity left unusedby. . , 7. ; during the interval(¢—1)T}, (T},)
is therefore no smaller than

=1

Since there aren processors available, the cumulative length of the interveer((¢ — 1)7}., (T})

during whichry, ..., 7,_; leave at least one processor idle is minimized if the difieprocessors
tend to idle simultaneously (in parallel); hence, a loweutb on this cumulative length of the
intervals over{(¢ — 1)Ty, ¢Ty) during whichr, ..., 7, leave at least one processor idle is given

by (m - T — (Ti 2521 U;)) /m, which equals

1 k—1
T, — — (Tk > U_,-) (21)
A=

For the/'th job of 7, to meet its deadline, it suffices that this cumulative inaktgngth be at least
as large at;’s execution requirement; i.e.,

1 k—1
Ti = —(T, 3 Uj) > Gy

j=1

Cp 111

L _Nu)<i
T +m(jZ] j) <

(SihceT,C > T; for j < k)

1 k—1
Up+—(>_Uj) <1 (22)
m =

21

Let us now simplify the Ihs of Inequality 22 above:

1 k—1
U, — U
Kt m(; J)

1 k
U + E(Z U; —2Uy)

<
S J=1
<
1 m
U(l — —
k(m) 2m — 1
<
m (171)+ m
2m — 1 m 2m — 1
= 1 (23)

From Inequalities 22 and 23, we may conclude that/ithejob of 7, does meet its deadline.

C Graphical depiction of experimental results
The results of the experiments described in Section 5.2 raqghgd in Figures 1 through 6 below.

For each experiment, we have plotted the performance (saaedio) as a function of the system
utilization (with a resolution given by the bucket intersil

22

[m=32,f=0.100000,A=0.010000, T={100,200,

,1000}] [m=32,=0.100000,A=0.100000, T={100,200,...,1000}]
T T T T T T T T
o ir XX K
\ ‘
\ .
08 i Y 08 k
4 .
| X
] 4 2 4
g o6l X] S os i
] | g box
8 |] 4
8 4 8 H
a } 2 |
0.4 | 0.4 H
Pox }
L X
RM —— 1 RM (
02 - RM-US(m/(3m-2)) 4 02 - RM-US(m/(3m-2)) \
adaptiveTkC - H adaptiveTkC - \
R-BOUND-MPrespan & Vo R-BOUND-MPrespan &
WMpfair - | WMpfair --m-- X
0 h . ek 0 h . . NS
0 02 0.4 06 0.8 1 0 02 0.4 06 08 1
system utilization system utilization
[m=32,=0.100000,A=0.200000, T={100,200, .., 1000}] [m=32,=0.100000,A=0.300000, T={100,200,...,1000}]
T T T T T T T T
1 N 1t LS s
0.8 08
o o
S osf S os
] &
8 8
2 2
04 0.4
RM —+—
02 | RM-US(m/(3m-2)) 0.2 RM-US(m/(3m-2)) -
adaptiveTkC - daptiveTkC o
R-BOUND-MPrespan & R-BOUND-MPrespan
WMpfair - H WMpfair --m--
0 h . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=32,f=0.100000,A=0.400000,T={100,200,...,1000}] [m=32,=0.100000,A=0.500000, T={100,200,...,1000}]
T T T T T T T T
1t 1
08 I 08
. |
9 ° !
€ o6 € 06t §
o o
8 8 i
8 8
8 8
S S
® 04 ® 04
RM —— R
02 - RM-US(m/(3m-2)) 02 RM-US(m/(3m-2)) -
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan & R-BOUND-MPrespan
WMpfair - WNpfair ----
0 h . .) 0 h . .
0 02 0.4 06 08 1 0 02 0.4 06 1
system utilization system utilization
[m=32,f=0.100000,A=0.600000,T={100,200,...,1000}] [m=32,=0.100000,A=0.700000, T={100,200,...,1000}]
T T T T T T T T
1t 1
08 08
9 9 |
€ o6 i € o6 :
a a |
8 i 8 !
8 i 8 |
8 ' 8
El i El .
? 04 i ? 04 !
RM : RM —+— i
02 - RM-US(m/(3m-2)) H 02 - RM-US(m/(3m-2)) i
adaptiveTkC i adaptiveTkC - |
R-BOUND-MPrespan B R-BOUND-MPrespan 1
WMpfair WNpfair --m-- .
0 h . 0 h . .
0 02 0.4 06 08 1 0 02 0.4 06 1
system utilization system utilization
[m=32,f=0.100000,A=0.800000,T={100,200,...,1000}]
T T T T
s
08
.
2 |
g 06 |
2 !
8 !
8 |
El i
® 04 ;
RM —+— x
02 - RM-US(m/(3m-2)) -- 3
adaptiveTkC ---*
R-BOUND-MPrespan &
WNpfair --m--
0 h . . .
0 02 0.4 06 08 1
system utilization

23

Figure 1: Success ratio as a function of system utilizat@rdifferent scheduling algorithms on
32 processors, when F=0.1 and periods are selected gd0G; 200, 300, 400, ..., 1000

system utilization

[m=1,f=0.100000,A=0.010000,T={100,200,..., 1000}] [m=1,f=0.100000,A=0.100000,T={100,200,..., 1000}]
T T T T T T T T
1t 1t
08 08
o o
S o6 S o6
4 4
8 8
2 2
04 - 04
RM —+— RM —+—
02 | RM-US(m/(3m-2)) 02 | RM-US(m/(3m-2)) -
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan & o R-BOUND-MPrespan &
WMpfair - WMpfair --m--
0 h . . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,f=0.100000,A=0.200000,T={100,200,..., 1000}] [m=1,f=0.100000,A=0.300000,T={100,200,..., 1000}]
T T T T T T T T
1t 1t
08 08
o o
S o6 S o6
4 4
8 8
2 2
04 - 04
RM —+—
02 | RM-US(m/(3m-2)) 0.2
adaptiveTkC -
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair - WMpfair --m--
0 h . . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,f=0.100000,A=0.400000,T={100,200,..., 1000}] [m=1,f=0.100000,A=0.500000,T={100,200,..., 1000}]
T T T T T T T T
1t 1t
08 08
9 9
€ 06t € 06t
2 2
8 8
8 8
El El
® 04f ? o4l
RM —+—
02 - RM-US(m/(3m-2)) 02 -
adaptiveTkC - dapt
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair - WNpfair ----
0 h . . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,f=0.100000,A=0.600000,T={100,200,..., 1000}] [m=1,f=0.100000,A=0.700000,T={100,200,..., 1000}]
T T T T T T T T
1t 1t
08 08
9 9
€ 06t € 06t
2 2
8 8
8 8
8 8
S S
® 04f ? o4l
RM RM ——
02 - RM-US(m/(3m-2)) 02 - RM-US(m/(3m-2)) -
adaptiveTkC adaptiveTkC ---*
R-BOUND-MPrespan R-BOUND-MPrespan &
WMpfair WNpfair --m--
0 h . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08

system utilization

[m=1,{=0.100000,A=0.800000,T={100,200,...,1000}]

T T T T
1k T
08
9
S g6k
2
8
g
)
? 04t
RM —+—
02 - RM-US(m/(3m-2)) --
adaptiveTkC ---*
R-BOUND-MPrespan &
WNpfair --m--
0 h . . .
0 02 0.4 06 08 1

system utilization

24

Figure 2: Success ratio as a function of system utilizatmrdffferent scheduling algorithms on 1
processor, when F=0.1 and periods are selected a§ID@, 200, 300, 400, ..., 1000

[m=1,f=1.000000,A=0.000000,T={100,200,...,1000}] [m=2,{=1.000000,A=0.000000,T={100,200,...,1000}]

T T T T T T T T
1k 1t N
NOR B LN
\ /)(B * L]
-
08 08
9 9
€ 06t € 06t
2 2
8 8
8 8
8 8
S S
® 04f ? o4l
RM —+— RM —+—
02 - RM-US(m/(3m-2)) ---*--- 02 - RM-US(m/(3m-2)) ---*---
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair - WNpfair ----
0 h . . . 0 h . .
0 02 0.4 06 08 1 0 02 0.4 06
system utilization system utilization

[m=32,f=1.000000,A=0.000000, T={100,200,...,1000}]

T T T T
1t L et L R]
08 - *
o i
8 o
8
2
04 i
RM —+— }
02 1 RM-US(m/(3m-2)) ---*--- it
adaptiveTkC - d
R-BOUND-MPrespan & g
WMpfair --m--
0 h . .
0 02 0.4 06 08 1

system utilization

Figure 3: Success ratio as a function of system utilizat@rdifferent scheduling algorithms on
1,2 and 32 processor(s), when F=1 and periods are selecled §500, 200, 300, 400, ..., 1040

25

[M=32,{=0.100000,A=0.200000,T=(2,4,...,18}]

[m=32,{=0.100000,A=0.300000,T={2.4,...,18}]

T T T T T T T T
1t 1t
i @
08 Vi 08
9 9
€ 06t € 06t
2 2
] ']
8 { 8
8 : 8
S ! S
® 04r Ly ® 04f o
RM RM ——
02 - RM-US(m/(3m-2)) 02 - RM-US(m/(3m-2)) -
adaptiveTkC ---* i adaptiveTkC -
R-BOUND-MPrespan & ikl R-BOUND-MPrespan &
WMpfair - N WNpfair ----
0 h . . 4 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08 1
system utilization system utilization
[m=32,£=0.100000,A=0.400000,T=(2.4,...,18}] [m=32,£=0.100000,A=0.500000,T=(2.4,...,18}]
T T T T T T T T
1t 1t
08 08
9 9
€ 06t € 06t
2 2
8 8
g g
® 04f 9 o o4l
RM —+— RM —+—
02 - RM-US(m/(3m-2)) i 02 - RM-US(m/(3m-2)) -
adaptiveTkC 1 adaptiveTkC -
R-BOUND-MPrespan & i R-BOUND-MPrespan &
WMpfair - 3 WNpfair ----
0 h . . . 0 h .
0 02 0.4 06 08 1 0 02 0.4 1
system utilization system utilization
[m=32,£=0.100000,A=0.600000,T={2.4,...,18}] [m=32,{=0.100000,A=0.700000,T={2.4,...,18}]
T T T T T T T T
1t 1t
08 - 08
o o
S osf S osf
4 4
8 8
2 2
04 - 04
RM —+— RM —+—
02 | RM-US(m/(3m-2)) - 02 | RM-US(m/(3m-2)) -
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan -8 R-BOUND-MPrespan -8
WMpfair - i WMpfair --m--
0 h . . 2 0 h . .
0 02 0.4 06 08 1 0 02 0.4 06 1
system utilization system utilization
[m=32,{=0.100000,A=0.800000,T={2.4,...,18}]
T T T T
s
08 -
o
S osf
4
8
2
04
RM —+—
02 | RM-US(m/(3m-2))
adaptiveTkC -
R-BOUND-MPrespan -8
WMpfair --m-- .
0 h . . S
0 02 0.4 06 08 1

system utilization

Figure 4: Success ratio as a function of system utilizatardifferent scheduling algorithms on
32 processors, when F=0.1 and periods are selected d274; 6, 8, ..., 20.

26

success ratio

success ratio

success ratio

success ratio

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

04

0.2

0.8

0.6

0.4

0.2

[m=1,/=0.100000,A=0.010000,T={2,4,...,18}] [m=1,f=0.100000,A=0.100000, T={2,4,...,18}]
T T T T T T T T
L s
L 08|
°
L g ol
4
8
2
L 04
RM —+— RM —+—
' RM-US(m/(3m-2)) 02 | RM-US(m/(3m-2)) -
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair - WMpfair --m--
h . . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,f=0.100000,A=0.200000,T={2,4,...,18}] [m=1,f=0.100000,A=0.300000, T={2,4,...,18}]
T T T T T T T T
L s
L 08|
o
L g ol
4
8
2
L 04
RM —+—
' RM-US(m/(3m-2)) 0.2
adaptiveTkC -
R-BOUND-MPrespan & o R-BOUND-MPrespan &
WMpfair =~)) o WMpfair =~))
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,/=0.100000,A=0.400000,T=(2,4,...,18}] [m=1,=0.100000,A=0.500000,T={2,4,...,18}]
T T T T T T T T
L s
L 08
9
L 8 o6l
2
8
8
El
L ? o4l
RM —+—
r RM-US(m/(3m-2)) 02 -
adaptiveTkC - dap
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair =~)) WMpfair =~))
0
0 02 0.4 06 08 1 0 02 0.4 06 08
system utilization system utilization
[m=1,/=0.100000,A=0.600000, T=(2,4,...,18}] [m=1,=0.100000,A=0.700000,T={2,4....,18}]
T T T T T T T T
L s
L 08
°
L 8 o6l
2
8
8
El
b o ? 04t
RM —+— RM —+—
F RM-US(m/(3m-2)) - 02 - RM-US(m/(3m-2)) -
adaptiveTkC adaptiveTkC ---*
R-BOUND-MPrespan R-BOUND-MPrespan &
WMpfair))) WMpfair =~))
0
0 02 0.4 06 08 1 0 02 0.4 06 08

system utilization

system utilization

[m=1,/=0.100000,A=0.800000,T={2 4,...,18}]

T T T T
s -
08
9
S o6 &
2
8
8
El
? 04t
RM —+—
02 - RM-US(m/(3m-2)) --
adaptiveTkC ---*
R-BOUND-MPrespan &
WNpfair --m--
0 h . . .
0 02 0.4 06 08 1

system utilization

27

Figure 5: Success ratio as a function of system utilizatmrdffferent scheduling algorithms on 1
processor, when F=0.1 and periods are selected a$ZT 4, 6, 8, ..., 2G.

[m=1,=1.000000,A=0.000000,T={2,4....,18}] [m=2,/=1.000000,A=0.000000, T=(2,4,...,18}]
T T T T T T T T
1r] 1r
-
\a’\
08 08
o8
9 9
€ 06t € 06t
2 2
8 8
8 8
S S
® 04f ? o4l
RM —+— RM —+—
02 - RM-US(m/(3m-2)) ---*--- 02 - RM-US(m/(3m-2)) ---*---
adaptiveTkC - adaptiveTkC -
R-BOUND-MPrespan & R-BOUND-MPrespan &
WMpfair - WNpfair ----
0 h . . . 0 h . . .
0 02 0.4 06 08 1 0 02 0.4 06 08 1
system utilization system utilization
[m=32,f=1.000000,A=0.000000,T={2.4,...,18}]

T T T T
1 b .
: R
%
08 - H
o i
£ 06t |
a ai
8 i
8
8 i
g i
04
RM —+—
02 | RM-US(M/(3m-2)) -—--X%---
adaptiveTkC -
R-BOUND-MPrespan &
WMpfair --m--
0 h . .
0 02 0.4 06 1

system utilization

Figure 6: Success ratio as a function of system utilizatardifferent scheduling algorithms on
1,2 and 32 processor(s), when F=1 and periods are selected 2, 4, 6, 8, ..., 2G.

28

