
Static-priority scheduling on multiprocessors�
Bjorn Andersson Sanjoy Baruah Jan Jonsson

Abstract

The preemptive scheduling of systems of periodic tasks on a platform comprised of several
identical multiprocessors is considered. A scheduling algorithm is proposed for static-priority
scheduling of such systems; this algorithm is a simple extension of the uniprocessor rate-
monotonic scheduling algorithm. It is proven that this algorithm successfully schedules any
periodic task system with a worst-case utilization no more than a third the capacity of the
multiprocessor platform; for the special case of harmonic periodic task systems, the algorithm
is proven to successfully schedule any system with a worst-case utilization of no more than
half the platform capacity.

Keywords. Multiprocessor scheduling; periodic tasks; global scheduling; static priorities.

1 Introduction

Over the years, the preemptive periodic task model [17, 16] has proven remarkably useful for the
modelling of recurring processes that occur in hard-real-time computer application systems. Ac-
cordingly, much effort has been devoted to the development of a comprehensive theory dealing
with the scheduling of systems comprised of such independent periodic real-time tasks. Particu-
larly in the uniprocessor context – in environments in whichall hard-real-time jobs generated by
all the periodic tasks that comprise the hard-real-time application system must execute on a single
shared processor – there now exists a wide body of results (necessary and sufficient feasibility tests,
optimal scheduling algorithms, efficient implementationsof these algorithms, etc.) that facilitate
the application systems designer who is able to model his or her real-time application system as a
collection of independent preemptive periodic real-time tasks. Some of these results have been ex-
tended to the multiprocessor context – environments in which there are several identical processors
available upon which the real-time jobs may be executed.

The periodic task model. In the periodic model of hard real-time tasks, a task�i = (Ci; Ti)
is characterized by two parameters – an execution requirement Ci and a periodTi – with the
interpretation that the task generates a job at each integermultiple of Ti, and each such job has
an execution requirement ofCi execution units, and must complete by a deadline equal to the
next integer multiple ofTi. A periodic task system consists of several such periodic tasks that�Supported in part by the National Science Foundation (GrantNos. CCR-9704206, CCR-9972105, CCR-9988327,
and ITR-0082866).

1

are to execute on a specified processor architecture. We assume that each job is independent in
the sense that it does not interact in any manner (accessing shared data, exchanging messages,
etc.) with other jobs of the same or another task. We also assume that the model allows for job
preemption; i.e., a job executing on a processor may be preempted prior to completing execution,
and its execution may be resumed later, at no cost or penalty.

In this paper, we will study the scheduling of systems of periodic tasks. Let� = f�1; �2; : : : ; �ng
denote aperiodic task system, in which each periodic task�i = (Ci; Ti) is characterized by its
execution requirement and its period. For each task�i, define itsutilizationUi to be the ratio of�i’s
execution requirement to its period:Ui def= Ci=Ti. We define the utilizationU(�) of periodic task
system� to be the sum of the utilizations of all tasks in� : U(�) def= P�i2� Ui.

Without loss of generality, we assume thatTi � Ti+1 for all i, 1 � i < n; i.e., the tasks are
indexed according to period.

Dynamic and static priorities Run-time schedulingis the process of determining, during the
execution of a real-time application system, which job[s] should be executed at each instant in
time. Run-time scheduling algorithms are typically implemented as follows: at each time instant,
assign apriority to each active1 job, and allocate the available processors to the highest-priority
jobs.

With respect to certain run-time scheduling algorithms, itis possible that some tasks�i and�j both have active jobs at timest1 and t2 such that at timet1, �i’s job has higher priority than�j ’s while at timet2, �j ’s job has higher priority than�i’s. Run-time scheduling algorithms that
permit such “switching” of the order of priorities between tasks are known asdynamic priority
algorithms.

By contrast,static priority algorithms satisfy the property that for every pair of tasks�i and�j, whenever�i and�j both have active jobs, it is always the case that the sametask’s jobs have
priority. An example of a static-priority scheduling algorithm is therate-monotonic scheduling
algorithm[16], which assigns each task a priority inversely proportional to its period – the smaller
the period, the higher the priority, with ties broken arbitrarily but in a consistent manner: if�i and�j have equal periods and�i’s job is given priority over�j ’s job once, then all of�i’s jobs are given
priority over�j ’s jobs.

It is beyond the scope of this document to compare and contrast the relative advantages and
disadvantages of static-priority versus dynamic-priority scheduling. Observe that in the context of
static-priorityscheduling, the run-time scheduling problem — determiningduring run-time which
jobs should execute at each instant in time — is exactly equivalent to the problem of assigning
priorities to the tasks in the system, since once the priorities are assigned run-time scheduling
consists of simply choosing the currently active jobs with the highest priorities.

A hard-real-time task system is defined to bestatic-priority feasibleif it can be scheduled by
a static-priority run-time scheduler in such a manner that all jobs will always complete by their
deadlines under all permissible circumstances. Given the specifications for a system of hard-real-
time tasks,static-priority feasibility analysisis the process of determining whether the system is
static-priority feasible.

1Informally, a job becomesactiveat its ready time, and remains so until it has executed for an amount of time equal
to its execution requirement, or until its deadline has elapsed.

2

Partitioned versus global scheduling. In this paper, we will study the static-priority scheduling
of systems of periodic tasks onm identical multiprocessors,m � 2. In scheduling such systems,
there are (at least) two distinct approaches possible.� In partitioned scheduling, all jobs generated by a task are required to execute on thesame

processor.� In global scheduling,task migrationis permitted. That is, we do not require that all jobs of
a task execute on the same processor; rather, we permit different jobs to execute on different
processors. In addition,job migrationis also permitted – a job that has been preempted on a
particular processor may resume execution on the same or a different processor. We assume
that there is no penalty associated with either task or job migration. However,job-level
parallelismis expressly forbidden; i.e., it is not permitted that more than one processor be
executing a job at any given instant in time.

In the partitioned approach, static-priority scheduling requires that (i) the set of tasks� be
partitioned among them available processors, and (ii) a total order be defined amongthe tasks
within each partition. Then at each instant during run-time, the active job generated by the highest-
priority task within each partition is chosen for executionon the corresponding processor; if there
is no active job in a partition, then the corresponding processor is left idle. In the global approach,
on the other hand, we must define a total order among all the tasks in � , and at each instant during
run-time choose for execution them highest-priority active jobs (with some processors remaining
idle if there are fewer thanm active jobs).

It has been proven by Leung and Whitehead [15] that the partioned and global approaches to
static-priority scheduling on multiprocessors areincomparable, in the sense that (i) there are task
systems that are feasible onm processors under the partitioned approach but for which no prior-
ity assignment exists which would cause all jobs of all tasksto meet their deadlines under global
scheduling onm processors; and (ii) there are task systems that are feasible onm processors under
the global approach, but which cannot be partitioned intom distinct subsets such that each indi-
vidual partition is uniprocessor static-priority feasible. This result of Leung and Whitehead [15]
provides a very strong motivation to study both the partitioned and the non-partitioned approaches
to static-priority multiprocessor scheduling, since neither approach is strictly better than the other.

This research. The partitioned approach to static-priority multiprocessor scheduling has been
extensively studied (see [18] for an excellent overivew). In this paper, we present a global static-
priority scheduling algorithm for scheduling systems of periodic tasks. We prove that this algo-
rithm successfully schedules any periodic task system� with utilization U(�) � m2=(3m � 2)
on m identical processors — asm ! 1, this bound approachesm=3 from above; hence, it
follows that our algorithm successfully schedules any periodic task system with cumulative uti-
lization� m=3 onm identical processors. We consider our proof of this result to be interesting
in its own right, in that we exploit an interesting result of Phillips et al. [19] (Theorem 1 below)
that bounds from below the amount of execution that must be performed by any multiprocessor
work-conserving scheduling algorithm; we expect that thisresult will prove useful for determining
other useful properties of multiprocessor systems, and have presented the result and its proof in the
appendix.

3

For the special case ofharmonicperiodic task systems – task sets in which the periodsTi andTj of any two tasks�i and�j satisfy the relationship that eitherTi is an integer multiple ofTj,
or Tj is an integer multiple ofTi – we show that our algorithm offers an even better performance
guarantee. Specifically, we prove that our algorithm successfully schedules any harmonic periodic
task system� with utilizationU(�) � m2=(2m � 1) onm identical processors; asm ! 1, this
bound approachesm=2 from above.

Organization of this paper. The remainder of this paper is organized as follows. In Section 2,
we briefly describe two major results that we will be using in the remainder of this paper. In Sec-
tion 3 we present AlgorithmRM-US[m/(3m-2)], our static-priority multiprocessor algorithm for
scheduling arbitrary periodic task systems, and prove thatAlgorithm RM-US[m/(3m-2)] success-
fully schedules any periodic task system with utilization� m2=(3m�2) onm identical processors.
In Section 4, we present an algorithm based upon AlgorithmRM-US[m/(3m-2)], optimized for
scheduling harmonic task sets. In Section 5, we describe a series of experiments we have conducted
to evaluate the performance of AlgorithmRM-US[m/(3m-2)] on randomly-generated task sets. In
Section 6, we briefly review related research on the topic of multiprocessor real-time scheduling,
and conclude in Section 7 with a brief summary of the results contained in this paper. Some proofs
are postponed to the appendix.

2 Results we will use

Some very interesting and important results in real-time multiprocessor scheduling theory were
obtained in the mid 1990’s. We will make use of two of these results in this paper; these two
results are briefly described below.

Resource augmentation. It has previously been shown [6, 5, 4] that on-line real-timescheduling
algorithms tend to perform extremely poorly under overloaded conditions. Phillips, Stein, Torng,
and Wein [19] explored the use ofresource-augmentationtechniques for the on-line scheduling of
real-time jobs2; the goal was to determine whether an on-line algorithm, if provided with faster
processors than those available to a clairvoyant algorithm, could perform better than is implied by
the bounds derived in [6, 5, 4]. Although we are not studying on-line scheduling in this paper – all
the parameters of all the periodic tasks are assumed a prioriknown – it nevertheless turns out that a
particular result from [19] will prove very useful to us in our study of static-priority multiprocessor
scheduling. We present this result below; a proof may be found in Section A in the appendix.

The focus of [19] was the scheduling of individual jobs, and not periodic tasks. Accordingly,
let us define ajob Jj = (rj; ej; dj) as being characterized by an arrival timerj, an execution
requirementej, and a deadlinedj, with the interpretation that this job needs to execute forej units
over the interval[rj; dj). (Thus, the periodic task�i = (Ci; Ti) generates an infinite sequence of
jobs with parameters(k � Ti; Ci; (k + 1) � Ti), k = 0; 1; 2; : : :; in the remainder of this paper, we
will often use the symbol� itself to denote the infinite set of jobs generated by the tasks in periodic
task system� .)

2Resource augmentation as a technique for improving the performance on on-line scheduling algorithms was for-
mally proposed by Kalyanasundaram and Pruhs [13].

4

Let I denote any set of jobs. For any algorithmA and time instantt � 0, letW (A;m; s; I; t)
denote the amount of work done by algorithmA on jobs ofI over the interval[0; t), while executing
onm processors of speeds each. Awork-conservingscheduling algorithm is one that never idles
a processor while there is some active job awaiting execution.

Theorem 1 (Phillips et al.) For any set of jobsI, any time-instantt � 0, any work-conserving
algorithmA, and any algorithmA0, it is the case thatW (A;m; (2� 1m) � s; I; t) � W (A0; m; s; I; t): (1)

That is, anm-processor work-conserving algorithm completes at least as much execution as

any other algorithm, if provided processors that are(2� 1m) times as fast.

Predictable scheduling algorithms. Ha and Liu [11, 12, 10] have studied the issue of pre-
dictability in the multiprocessor scheduling of real-timesystems from the following perspective.

Definition 1 (Predictability) LetA denote a scheduling algorithm, andI = fJ1; J2; : : : ; Jng any
set ofn jobs,Jj = (rj; ej; dj). Let fj denote the time at which jobJj completes execution whenI
is scheduled using algorithmA.

Now, consider any setI 0 = fJ 01; J 02; : : : ; J 0ng of n jobs obtained fromI as follows. JobJ 0j has
an arrival timerj, an execution requiremente0j � ej, and a deadlinedj (i.e., jobJ 0j has the same
arrival time and deadline asJj, and an execution requirement no larger thanJj ’s). Let f 0j denote
the time at which jobJj completes execution whenI is scheduled using algorithmA. Scheduling
algorithmA is said to bepredictable if and only if for any set of jobsI and for any suchI 0 obtained
from I, it is the case thatf 0j � fj for all j.

Informally, Definition 1 recognizes the fact that the specified execution-requirement parameters
of jobs are typically onlyupper boundson the actual execution-requirements during run-time,
rather than the exact values. For a predictable scheduling algorithm, one may determine an upper
bound on the completion-times of jobs by analyzing the situation under the assumption that each
job executes for an amount equal to the upper bound on its execution requirement; it is guaranteed
that the actual completion time of jobs will be no later than this determined value.

Since a periodic task system generates a set of jobs, Definition 1 may be extended in a straight-
forward manner to algorithms for scheduling periodic task systems: an algorithm for scheduling
periodic task systems is predictable iff for any periodic task systems� = f�1; �2; : : : ; �ng it is the
case that the completion time of each job when every job of�i has an execution requirement ex-
actly equal toCi is an upper bound on the completion time of that job when everyjob of �i has an
execution requirement of at mostCi, for all i; 1 � i � n.

Ha and Liu define a scheduling algorithm to bepriority driven if and only if it satisfies the
condition thatfor every pair of jobsJi andJj, if Ji has higher priority thanJj at some instant in
time, thenJi alwayshas higher priority thanJj. Notice that any global static-priority algorithm
for scheduling periodic tasks satisfies this condition, andis hence priority-driven. However, the

5

converse is not true in that not all algorithms for scheduling periodic tasks that meet the definition
of priority-driven are global static-priority algorithms(e.g., notice that the earliest deadline first
scheduling algorithm, which schedules at each instant the currently active job whose deadline is
the smallest, is a priority-driven algorithm, but is not a static-priority algorithm).

The result from the work of Ha and Liu [11, 12, 10] that we will be using can be stated as
follows.

Theorem 2 (Ha and Liu) Any priority-driven scheduling algorithm is predictable.

3 Algorithm RM-US[m/(3m-2)]

In this section, we present AlgorithmRM-US[m/(3m-2)], a static-priority global scheduling al-
gorithm for scheduling periodic task systems, and derive a utilization-based sufficient feasibility
condition for AlgorithmRM-US[m/(3m-2)]; in particular, we will prove that any task system�
satisfyingU(�) � m2=(3m�2) will be scheduled to meet all deadlines onm unit-speed processors
by AlgorithmRM-US[m/(3m-2)]. This is how we will proceed. In Section 3.1, we will considera
restricted category of periodic task systems, which we call“light” systems; we will prove that the
multiprocessorrate-monotonicscheduling algorithm (we will henceforth refer to the multiproces-
sor rate-monotonic algorithm as AlgorithmRM), which is a global static-priority algorithm that
assigns tasks priorities in inverse proportion to their periods, will successfully schedule any light
system. Then in Section 3.2, we extend the results concerning light systems to arbitrary systems
of periodic tasks. We extend AlgorithmRM to define a global static-priority scheduling algorithm
which we call AlgorithmRM-US[m/(3m-2)], and prove that AlgorithmRM-US[m/(3m-2)] suc-
cessfully schedules any periodic task system with utilization at mostm2=(3m� 2) onm identical
processors.

3.1 “Light” systems

Definition 2 A periodic task system� is said to be alight system onm processorsif it satisfies the
following two properties

Property P1: For each�i 2 �; Ui � m3m� 2
Property P2: U(�) � m23m� 2

We will consider the scheduling of task systems satisfying Property P1 and Property P2 above,
using the rate-monotonic scheduling algorithm (AlgorithmRM).

Theorem 3 Any periodic task system� that is light onm processors will be scheduled to meet all
deadlines onm processors by AlgorithmRM.

6

Proof: Let us suppose that ties are broken by AlgorithmRM such that�i has greater priority than�i+1 for all i, 1 � i < n. Notice that whether jobs of�k meet their deadlines under AlgorithmRM
depends only upon the jobs generated by the tasksf�1; �2; : : : ; �kg, and are completely unaffected
by the presence of the tasks�k+1; : : : ; �n. For k = 1; 2; : : : ; n, let us define the task-set� (k) as
follows: � (k) def= f�1; �2; : : : ; �kg:
Our proof strategy is as follows. We will prove that Algorithm RM will schedule� (k) in such
a manner that all jobs of the lowest-priority task�k complete by their deadlines. Our claim that
Algorithm RM successfully schedules� would then follow by induction onk.

Lemma 3.1 Task system� (k) is feasible onm processors each of computing capacity(m2m�1).
Proof: Sincem � 2, notice that3m� 2 > 2m� 1. SinceUi � m3m�2 for each task�i (by Property
P1 above), it follows that Ui � m2m� 1 (2)

Similarly fromU(�) � m23m�2 (Property P2 above) and the fact that� (k) � � , it can be derived thatX�i2� (k) Ui � m22m� 1 : (3)

As a consequence of Inequalities 2 and 3 we may conclude that� (k) can be scheduled to meet
all deadlines onm processors each of computing capacity(m2m�1): the processor-sharing schedule
(which we will henceforth denoteOPT), which assigns a fractionUi of a processor to�i at each
time-instant bears witness to the feasibility of� (k).

End proof (of Lemma 3.1).

Since m2m�1 � (2 � 1m) = 1, it follows from Therorem 1, the existence of the scheduleOPT

described in the proof of Lemma 3.1, and the fact that AlgorithmRM is work-conserving, thatW (RM; m; 1; � (k); t) � W (OPT; m; m2m� 1 ; � (k); t) (4)

for all t � 0; i.e.,at any time-instantt, the amount of work done on� (k) by AlgorithmRM executing
onm unit-speed processors is at least as much as the amount of work done on� (k) by OPT onmm2m�1 -speed processors.

Lemma 3.2 All jobs of �k meet their deadlines when� (k) is scheduled using AlgorithmRM.

Proof: Let us assume that the first(`�1) jobs of�k have met their deadlines under AlgorithmRM;
we will prove below that thè’th job of �k also meets its deadline. The correctness of Lemma 3.2
will then follow by induction oǹ , starting with` = 1.

7

The `’th job of �k arrives at time-instant(` � 1)Tk, has a deadline at time-instant`Tk, and
needsCk units of execution. From Inequality 4 and the fact that the processor-sharing schedule
OPT schedules each task�j for (`� 1)Tk � Uj units over the interval[0; (`� 1)Tk), we haveW (RM; m; 1; � (k); (`� 1)Tk) � (`� 1)Tk 0� kXj=1Uj1A (5)

Also, at least(` � 1) � Tk � (Pk�1j=1 Uj) units of this execution by AlgorithmRM was of tasks�1; �2; : : : ; �k�1 — this follows from the fact that exactly(`� 1)TkUk units of�k’s work has been
generated prior to instant(` � 1)Tk; the remainder of the work executed by AlgorithmRM must
therefore be generated by�1; �2; : : : ; �k�1.

The cumulative execution requirement of all the jobs generated by the tasks�1; �2; : : : ; �k�1
that arrive prior to the deadline of�k’s `’th job is bounded from above byk�1Xj=1 &`TkTj 'Cj< k�1Xj=1 `TkTj + 1!Cj= `Tk k�1Xj=1Uj + k�1Xj=1Cj (6)

As we have seen above (the discussion following Inequality 5) at least(`� 1) �Tk �Pk�1j=1 Uj of this
gets done prior to time-instant(`� 1)Tk; hence, at most0�Tk k�1Xj=1 Uj + k�1Xj=1Cj1A (7)

remains to be executedafter time-instant(`� 1)Tk.
The amount of processor capacity left unused by�1; : : : ; �k�1 during the interval[(`�1)Tk; `Tk)

is therefore no smaller than m � Tk � 0�Tk k�1Xj=1Uj + k�1Xj=1Cj1A (8)

Since there arem processors available, the cumulative length of the intervals over[(`� 1)Tk; `Tk)
during which�1; : : : ; �k�1 leave at least one processor idle is minimized if the different processors
tend to idle simultaneously (in parallel); hence, a lower bound on this cumulative length of the
intervals over[(`� 1)Tk; `Tk) during which�1; : : : ; �k�1 leave at least one processor idle is given
by (m � Tk � �TkPk�1j=1 Uj +Pk�1j=1 Cj�)=m, which equalsTk � 1m 0�Tk k�1Xj=1Uj + k�1Xj=1Cj1A (9)

8

For the`’th job of �k to meet its deadline, it suffices that this cumulative interval length be at least
as large at�k’s execution requirement; i.e.,Tk � 1m(Tk k�1Xj=1Uj + k�1Xj=1Cj) � Ck� CkTk + 1m(k�1Xj=1Uj + k�1Xj=1 CjTk) � 1((SinceTk � Tj for j < k)Uk + 1m(2 k�1Xj=1Uj) � 1 (10)

Let us now simplify the lhs of Inequality 10 above:Uk + 1m(2 k�1Xj=1Uj)� Uk + 1m(2 kXj=1Uj � 2Uk)� (By Property P2 of task system�)Uk(1� 2m) + 2m3m� 2� (By Property P1 of task system�)m3m� 2(1� 2m) + 2m3m� 2 (11)= 1 (12)

From Inequalities 10 and 12, we may conclude that the`’th job of �k does meet its deadline.
End proof (of Lemma 3.2).

The correctness of Theorem 3 follows from Lemma 3.2 by induction onk, with k = m being
the base case (that�1; �2; : : : �m meet all their deadlines directly follows from the fact thatthere arem processors available in the system).

End proof (of Theorem 3).

3.2 Arbitrary systems

In Section 3.1, we saw that AlgorithmRM successfully schedules any periodic task system� with
utilizationU(�) � m2=(3m� 1) onm identical processors,provided each�i 2 � has a utilizationUi � m=(3m � 2). We now relax the restriction on the utilization of each individual task; rather,
we permit anyUi � 1 for each�i 2 � . That is, we will consider in this section the static-priority
global scheduling of any task system� satisfying the conditionU(�) � m23m� 2 :

9

For such task systems, we define the static priority-assignment scheme AlgorithmRM-US[m/(3m-2)]
as follows.

Algorithm RM-US[m/(3m-2)] assigns (static) priorities to tasks in� according to the following
rule:

if Ui > m3m�2 then �i has the highest priority (ties broken arbitrarily)

if Ui � m3m�2 then �i has rate-monotonic priority.

Example 1 As an example of the priorities assigned by AlgorithmRM-US[m/(3m-2)], consider
a task system� def= f�1 = (1; 7); �2 = (2; 10); �3 = (9; 20); �4 = (11; 22); �5 = (2; 25)g
to be scheduled on a platform of3 identical unit-speed processors. The utilizations of these five
tasks are� 0:143, 0:2, 0:45, 0:5, and0:08 respectively. Form = 3, m=(3m � 2) equals3=7� 0:4286; hence, tasks�3 and �4 will be assigned highest priorities, and the remaining three
tasks will be assigned rate-monotonic priorities. The possible priority assignments are therefore as
follows (highest-priority task listed first):�3; �4; �1; �2; �5
or �4; �3; �1; �2; �5
Theorem 4 Any periodic task system� with utilizationU(�) � m2=(3m� 2) will be scheduled
to meet all deadlines onm unit-speed processors by AlgorithmRM-US[m/(3m-2)].

Proof: Assume that the tasks in� are indexed according to the priorities assigned to them by
Algorithm RM-US[m/(3m-2)]. First, observe that sinceU(�) � m2=(3m � 2), while each task�i that is assigned highest priority hasUi strictly greater thanm=(3m � 2), there can be at most(m � 1) such tasks that are assigned highest priority. Letko denote the number of tasks that are
assigned the highest priority; i.e.,�1; �2; : : : ; �ko each have utilization greater thanm=(3m � 2),
and�ko+1; : : : �n are assigned priorities rate-monotonically. Letmo def= m� ko.

Let us first analyze the task system̂� , consisting of the tasks in� each having utilization� m=(3m� 2): �̂ def= � n � (ko) :
The utilization of�̂ can be bounded from above as follows:U(�̂) = U(�)� U(� (ko))< m23m� 2 � ko � m3m� 2= m(m� ko)3m� 2� (m� ko) � (m� ko)3(m� ko)� 2= m2o3mo � 2 (13)

10

Furthermore, for each�i 2 �̂ , we haveUi � m3m� 2 � mo3mo � 2 : (14)

From Inequalities 13 and 14, we conclude that�̂ is a periodic task system that is light onmo
processors. Hence by Theorem 3,�̂ can be scheduled by AlgorithmRM to meet all deadlines onmo processors.

Now, consider the task system~� obtained from� by replacing each task�i 2 � that has a
utilizationUi greater thanm=(3m � 2) by a task with the same period, but with utilization equal
to one: ~� def= �̂ [�[(Ci ;Ti)2� (ko)f(Ti; Ti)g� :

Notice that AlgorithmRM-US[m/(3m-2)] will assign identical priorities to corresponding
tasks in� and �̂ (where the notion of “corresponding” is defined in the obvious manner). Also
notice that when scheduling~� , Algorithm RM-US[m/(3m-2)] will devote ko processors exclu-
sively to theko tasks in� (ko) (these are the highest-priority tasks, and each have a utilization equal
to unity) and will be executing AlgorithmRM on the remaining tasks (the tasks in�̂) upon the
remainingmo = (m� ko) processors. As we have seen above, AlgorithmRM schedules the tasks
in �̂ to meet all deadlines; hence, AlgorithmRM-US[m/(3m-2)] schedules~� to meet all deadlines
of all jobs.

Finally, notice that an execution of AlgorithmRM-US[m/(3m-2)] on task system� can be con-
sidered to be an instantiation of a run of AlgorithmRM-US[m/(3m-2)] on task system~� , in which
some jobs — the ones generated by tasks in� (ko) — do not execute to their full execution require-
ment. By the result of Ha and Liu (Theorem 2), it follows that Algorithm RM-US[m/(3m-2)] is a
predictablescheduling algorithm, and hence each job of each task duringthe execution of Algo-
rithm RM-US[m/(3m-2)] on task system� completes no later than the corresponding job during
the execution of AlgorithmRM-US[m/(3m-2)] on task system~� . And, we have already seen above
that no deadlines are missed during the execution of
Algorithm RM-US[m/(3m-2)] on task system~� .

End proof (of Theorem 4).

4 Harmonic task systems

In Section 3, we studied the static-priority global multiprocessor scheduling of systems of periodic
tasks. Inharmonic periodic task systems, the periodsTi andTj of any two tasks�i and�j are re-
lated as follows: eitherTi is an integer multiple ofTj, orTj is an integer multiple ofTi. With respect
to the static-priority global multiprocessor scheduling of harmonic periodic task systems, we now
present a variant of AlgorithmRM-US[m/(3m-2)], which we call AlgorithmRM-US[m/(2m-1)],
and prove below a stronger bound on the performance of AlgorithmRM-US[m/(2m-1)].

First, let us refine the definition oflight systems for harmonic task systems. Specifically, let us
call a harmonic task system� light onm processorsif U(�) � m2=(2m�1) andUi � m=(2m�1)
for all �i 2 � .

11

Algorithm RM-US[m/(2m-1)] assigns (static) priorities to tasks in harmonic periodic task sys-
tem� according to the following rule:

if Ui > m2m�1 then �i has the highest priority (ties broken arbitrarily)

if Ui � m2m�1 then �i has rate-monotonic priority.

Theorem 5 Any periodic task system� with utilizationU(�) � m2=(2m� 1) will be scheduled
to meet all deadlines onm unit-speed processors by AlgorithmRM-US[m/(2m-1)].

Proof Sketch:� The analog of Theorem 3 – that any harmonic periodic task system � that is light onm
processors will be scheduled to meet all deadlines onm processors by AlgorithmRM —
can be proved in a manner that closely parallels the proof of Theorem 3.

– It may be verified that the proof of Lemma 3.1 goes through unchanged if� (k) is as-
sumed to be a light harmonic periodic task system; Lemma 3.1 is therefore applicable
to light harmonic periodic task systems as well.

– The proof of the analog of Lemma 3.2 is provided in Section B inthe appendix; the
crucial difference arises from the simplification that results in Inequality 6. While in

obtaining Inequality 6 we replaced

&`TkTj ' by

 `TkTj + 1!, notice that in the harmonic

tasks case we may simply replace

&`TkTj ' by
TkTj ; this is because in a harmonic task set it

is guaranteed thatTk is an integer multiple ofTj. The remainder of the proof is merely
algebraic manipulation and proceeds directly; details maybe found in the appendix.� The correctness of Theorem 5 for light harmonic task systemsnow follows directly from the

correctness of this analog of Lemma 3.2, by induction.� To prove Theorem 5 for arbitrary harmonic task systems, we use techniques identical to those
used in Section 3.2. I.e., we consider the scheduling onm processors of any task system�
with U(�) � m2=(2m� 1); for such a system, (i) we “inflate” to unity the utilizationsof all
tasks in� that have utilizations> m=(2m � 1) (ii) we prove that, as a consequence of the
correctness of the theorem on light systems (as described above), we may conclude that the
remaining tasks will be successfully scheduled by Algorithm RM-US[m/(2m-1)] on the re-
maining processors to meet all deadlines,and (iii) use the result of Ha and Liu (Theorem 2) to
conclude that AlgorithmRM-US[m/(3m-2)] will therefore successfully schedule the entire
task system.

12

5 Experimental Evaluation

The purpose of this section is to show that, althoughRM-US[m/(3m-2)] can fail to meet dead-
lines at a system utilization that is slightly higher than m/(3m-2), it often performs much better
than that for general task sets. To that end, we compare the performance of different techniques
for static-priority preemptive scheduling on multiprocessors, namely partitioning, non-partitioning
and non-partitioning pfair [20]. Section 5.1 describes theexperimental setup in terms of simulation
parameters and scheduling algorithms used. Section 5.2 presents the results from the experiments
and the observations made. Finally, Section 5.3 compares the theoretical utilization bounds for the
scheduling algorithms used.

5.1 Experimental Setup

Our experimental setup is similar to the experimental setupin [20], but for completeness the setup
is described below.

Each simulation experiment represents simulation of900 task sets, organized in30 different
buckets, each with30 task sets. Bucketi contains task sets with a system utilization greater thanUi;low = (i � 1)=30, but no greater thanUi;high = i=30. For each bucket, we compute the success
ratio as the number of successfully scheduled task sets in that bucket divided by the number of
scheduled task sets in that bucket. The task set of each bucket i is generated by starting with a
current task set that is empty, and then adding a new task to the current task set as long as the
system utilization is lower thanUi;low . When the system utilization of the current task set has
become higher thanUi;low , we decide whether or not the current task set should be inserted into
the bucket. If the system utilization of the current task setis lower thanUi;high and the number of
tasks is greater than the number of processors, then the taskset is put into the bucket; otherwise,
a new task set is generated. Our experiment differs from thatin [20] in that we only simulate30
buckets with30 tasks in each bucket (in contrast, [20] simulated100 buckets with100 tasks in each
bucket.)

The periods and the execution time of a task are selected randomly. The period of a task is
drawn from a set of discrete periods, each period having the same probability of being selected.
In our experiments, we draw the period of taski from one of the following two different period
sets:Ti 2 f100; 200; 300; 400; :::; 1000g andTi 2 f2; 4; 6; 8; :::; 20g. Note that, in [20], the type of
period sets used in the experiments was not stated at all. Since we study synchronous task sets, all
generated tasks arrive for the first time at time 0 and are scheduled until timelm(T1; T2; : : : ; Tn)3.

The execution time of a task is computed from the utilizationof that task and rounded down to
the nearest integer. The utilization of a task is given by either a uniform distribution or a binomial
distribution. To determine which distribution to use, we generate a random variable with uniform
distribution in the range[0; 1). If the variable is less than or equal toF (a simulation parameter),
we then choose the uniform distribution; otherwise, the binomial distribution is chosen. In case of
a uniform distribution, the utilization of a task is drawn from the range(0; 1℄. In case of a binomial
distribution, the utilization of a task is generated in the following way. Perform29 trials with the
probability of success beingA (another simulation parameter). Count the number of successes and

3At time t � lm(T1; T2; : : : ; Tn), the tasks that execute is the same as the tasks that execute at t �lm(T1; T2; : : : ; Tn).
13

divide by 29. Then add a random number with a uniform distribution in the range[�1=29; 1=29℄. If
the utilization of a task less than or equal to zero, or greater than 1, then generate a task again. Note
that, with this procedure, a high value ofA makes it more likely that a task has a high utilization.

We evaluate one partitioning scheme, R-BOUND-MPrespan, one pfair non-partitioning scheme:
WMpfair [20], and three non-partitioning schemes, RM [17],adaptiveTkC [1] andRM-US[m/(3m-2)].
R-BOUND-MPrespan is a modification of the R-BOUND-MP scheme[14] where a necessary and
sufficient schedulability test is used during task-to-processor assignment instead of the sufficient
test used in the original version. Since the partitioning and non-partitioning schemes use different
strategies for assigning a task to a processor, the concept of ’successfully scheduled’ needs to be
clearly defined. For R-BOUND-MP, we consider a task to be successfully scheduled if and only if
the schedulability test in the partitioning algorithm can guarantee that the task set on each unipro-
cessor is schedulable. For the other schemes, we consider a task to be successfully scheduled if it
met all its deadlines during[0; lm(T1; T2; : : : ; Tn). Note that, in [20], WM was considered to be
successfully scheduled if and only if a certain pfairness property was satisfied. Since all evaluated
scheduling algorithms, except WM, was primarily designed for periodic scheduling rather than to
satisfy the pfairness property, we chose to evaluate all scheduling algorithms under the assumption
of periodic scheduling. Since the pfairness property is a stronger condition than periodicity, WM
will show no worse performance in our study than in [20].

5.2 Experimental Results

The results of the experiments for different values of the parametersF andA are shown in Figures 1
through 6 in Section C (in the appendix). From the plots, we draw the following conclusions.

We first observe thatRM-US[m/(3m-2)] often succeeds at much higher system utilizations
than is suggested by its utilization bound. For example, form = 32 processors andA � 0:3,
RM-US[m/(3m-2)] breaks down at a system utilization around 80%, while the corresponding
theoretical bound is 34%. Note that, whenm = 32 andA = 0:5, RM-US[m/(3m-2)] has a
significant performance drop. Here, the breakdown utilization is as low as 50%. This phenomenon
is actually an effect of the chosen experimental setup. Withour choice of distributions, the expected
value of the utilization of a task is approximately 0.5 for both the uniform distribution and the
binomial distribution, thus resulting in a very large population of tasks with that utilization. A
similar behavior was observed in [20].

We then observe thatRM-US[m/(3m-2)] outperforms RM when many processors are available
andA is small (tasks have a low average utilization). The reason for this is thatRM-US[m/(3m-2)]
always succeeds to schedule task set with a system utilization less than m/(3m-2) while RM can
potentially fail due toDhall’s effect[9]. As A becomes larger RM andRM-US[m/(3m-2)] offer
comparable performance since most tasks then have a utilization greater than the guarantee bound
of m/(3m-2). For example, whenm = 32 andA � 0:7, most tasks have a utilization greater than32=(3 � 32� 3) � 0:34, which means that RM andRM-US[m/(3m-2)] produce the same priority
assignment and hence similar performance.

We can also see thatRM-US[m/(3m-2)] performs worse than WMpfair and adaptiveTkC for
systems with a large number of processors. However, the difference in performance is typically
no more than 20%, which shows thatRM-US[m/(3m-2)] does not suffer from the drawbacks of
RM. RM-US[m/(3m-2)] also performs worse than R-BOUND-MPrespan as long asA � 0:5. For

14

higher values ofA, the fundamental limitations of the assignment strategy used in R-BOUND-
MPrespan (a bin-packing algorithm) reveal themselves and causes a significant performance drop.
When the task periods are drawn from the set of long periods, WMpfair performs significantly
better than both R-BOUND-MPrespan and adaptiveTkC. The reason is that when periods are long
(relative to the time unit base), WMpfair approximates processor sharing, which is optimal. When
task periods are drawn from the set of short periods, WMpfairoffer a performance similar to R-
BOUND-MPrespan and adaptiveTkC.

It is worth noting that all scheduling algorithms perform well on one processor. The reason for
this is that all the evaluated scheduling algorithms, except WMpfair and R-BOUND-MPrespan,
perform scheduling in the same manner as RM. The reason why R-BOUND-MP schedules tasks
differently than RM is because of a special task set transformation. In the beginning of R-BOUND-
MP-algorithm, a task set� is transformed into�i0, to make the ratio between periods lower. After
the transformation, it may then be the case that there exist task sets such that� is schedulable on
one processor, but� 0 is not.

Note that, for 32 processors withF = 0:1 andA = 0:01, the success ratio of RM is heavily
changing. The reason is that, with these parameters, most tasks are likely to have a low utiliza-
tion, but there is a 10% probability for each task that its utilization will be drawn from a uniform
distribution and hence have a higher likelihood of becominglarge. Now, if there is a task with a
large utilization in a population of low-utilization tasks, then RM can fail to meet deadlines at low
system utilization due to Dhall’s effect.

Finally, we make a comment on the performance of WMpfair. Thesimulation results show
that the success ratio of WMpfair is higher forTi 2 f100; 200; 300; 400; :::; 1000g than it is forTi 2 f2; 4; 6; 8; :::; 20g. As mentioned above, this effect occurs because WMpfair approximates
processor sharing (which is optimal) when periods are largeenough (in comparison to the time unit
base). For all other scheduling algorithms, the periods do not affect the success ratio. One notable
exception is whenF = 1, m = 1 and the system utilization is greater than 95%. In this case,Ti 2 f2; 4; 6; 8; :::; 20g yields higher success ratio because of the way task sets are generated. The
reason is as follows. Most of the task sets have only 2 tasks (more tasks often yields a utilization
higher than 1, and are hence rejected). Often the only way of achieving a utilization within the
bounds is to generate task sets until the periods are harmonious. Those task sets can be scheduled
by all algorithms except WMpfair.

5.3 Utilization bounds

We conclude our performance evaluation by comparing the theoretical bounds of the studies schedul-
ing schemes. To this end, we will begin by deriving an upper guarantee bound of system utilization.
Consider the task set� = f(T1 = 2L�1; C1 = L); (T2 = 2L�1; C2 = L); : : : ; Tm = 2L�1; Cm =L); Tm+1 = 2L�1; Cm+1 = L)g to be scheduled onm processors (L is a positive integer) when all
tasks arrive at time 0. For this task set, the system utilization isL=(2L�1)+(L=(2L�1))=m. For
all studied approaches (partitioning, non-partitioning and pfair non-partitioning) of using static-
priority scheduling, deadlines will be missed for this taskset. Partitioning will not succeed be-
cause it is necessary for two tasks to execute on one processor, and that processor will then have
a utilization greater than1; hence, the task set is unschedulable. For non-partitioning (whether
pfair or not), allm highest priority tasks will execute at the same time and occupy L time units

15

during [0,2L-1). There will beL � 1 time units available for a lower priority tasks, but the lowest
priority task needsL time units and thus misses its deadline. By lettingL!1 andm!1, the
task set is unschedulable at a system utilization of 1/2. Consequently, for any particular scheduling
algorithm addressed in this paper, the utilization bound cannot be higher than 1/2.

Among the studied approaches, onlyRM-US[m/(3m-2)] has a tight utilization bound, namely
the derived bound ofm=(3m�2). For adaptiveTkC, the utilization bound has been shown to beno
greater than2 m3m�1+p5m2�6m+1 [2]. For RM, the utilization bound is known to be no greater1=m
[9]. For WM, no known utilization bound has hitherto been proven; however, due to the reasoning
above the utilization bound cannot be higher than 1/2.

We can thus conclude that, in general, no static-priority scheduling algorithm on a multipro-
cessor can achieve a utilization bound that is greater than 50%. To that end, it is interesting to
note that the utilization bound of a static multiprocessor scheduling algorithm has previously been
shown to be 41% or higher [18].

6 Related Work

The problem of scheduling a given set of periodic tasks on identical multiprocessor machines
was posed by Liu [17] in 1969. Liu derived conditions under which the earliest deadline first
scheduling algorithm would successfully schedule such a system; these conditions translate into a
sufficient (albeit not necessary) feasibility test. Much later, Baruah et al. [3] obtained a necessary
and sufficient conditions for determining feasibility, as well as an optimal scheduling algorithm for
successfully scheduling feasible systems.

The partioned approach to the static-priority multiprocessor scheduling of periodic task sys-
tems has also been extensively studied [9, 7, 8, 18]. Much of this research has considered the
problem of using bin-packing like algorithms for partitioning a given set of periodic tasks among
a set of processors such that each partition is uniprocessorfeasible under the rate-monotonic algo-
rithm; e.g., Dhavri and Dhall [7] presented an efficient algorithm which they proved would parti-
tion a set of periodic tasks into no more than twice as many partitions that an optimal algorithm
would (equivalently, they devised an efficient algorithm for partitioned static-priority multiproces-
sor scheduling that uses at most twice as many processors as an optimal algorithm would). More
recently, Oh and Baker [18] presented a partitioned static-priority multiprocessor scheduling al-
gorithm that schedules any task system with utilization� m(p2 � 1) on m processors — this
represents a utilization of approximately42% of the capacity of the multiprocessor platform. Form = 2 andm = 3, Algorithm RM-US[m/(3m-2)] offers a superior bound; however asm ! 1,
the Oh & Baker bound, at42%, proves superior to AlgorithmRM-US[m/(3m-2)]’s 33%. (We
would like to point out that the results in the current paper remain significant despite this – since
Leung and Whitehead [15] have proven that the partioned and global approaches are in general
incomparable, it behooves us to better understand both kinds of scheduling systems.)

16

7 Conclusions

We have studied the preemptive scheduling of systems of periodic tasks on a platform comprised
of several identical multiprocessors. We have proposed Algorithm RM-US[m/(3m-2)], a new
static-priority multiprocessor algorithm for schedulingperiodic task systems. We proved that
Algorithm RM-US[m/(3m-2)] successfully schedules any periodic task system with utilization� m2=(3m�2) onm identical processors. For the special case of harmonic periodic task systems,
we obtained a better sufficient utilization-based feasibility test — any harmonic task set with uti-
lization� m2=(2m�1) is successfully scheduled by AlgorithmRM-US[m/(3m-2)] onm identical
processors.

References

[1] A NDERSSON, B., AND JONSSON, J. Fixed-priority preemptive multiprocessor scheduling: To parti-
tion or not to partition. InProceedings of the International Conference on Real-Time Computing Sys-
tems and Applications(Cheju Island, South Korea, December 2000), IEEE Computer Society Press,
pp. 337–346.

[2] A NDERSSON, B., AND JONSSON, J. Some insights on fixed-priority preemptive non-partitioned
multiprocessor scheduling. InProceedings of the Real-Time Systems Symposium – Work-In-Progress
Session(Orlando, FL, November 2000).

[3] BARUAH , S., COHEN, N., PLAXTON , G., AND VARVEL, D. Proportionate progress: A notion of
fairness in resource allocation.Algorithmica 15, 6 (June 1996), 600–625.

[4] BARUAH , S., HARITSA, J., AND SHARMA , N. On-line scheduling to maximize task completions.
In Proceedings of the Real-Time Systems Symposium(San Juan, Puerto Rico, 1994), IEEE Computer
Society Press.

[5] BARUAH , S., KOREN, G., MAO, D., MISHRA, B., RAGHUNATHAN , A., ROSIER, L., SHASHA, D.,
AND WANG, F. On the competitiveness of on-line real-time task scheduling. Real-Time Systems 4
(1992), 125–144. Also inProceedings of the 12th Real-Time Systems Symposium, San Antonio, Texas,
December 1991.

[6] BARUAH , S., KOREN, G., MISHRA, B., RAGHUNATHAN , A., ROSIER, L., AND SHASHA, D. On-
line scheduling in the presence of overload. InProceedings of the 32nd Annual IEEE Symposium on
Foundations of Computer Science(San Juan, Puerto Rico, October 1991), IEEE Computer Society
Press, pp. 100–110.

[7] DAVARI , S., AND DHALL , S. K. On a real-time task allocation problem. InProceedings of the 19th
Hawaii International Conference on System Science(Honolulu, January 1985).

[8] DAVARI , S., AND DHALL , S. K. An on-line algorithm for real-time tasks allocation.In Proceedings
of the Real-Time Systems Symposium(1986), pp. 194–200.

[9] DHALL , S. K.,AND L IU , C. L. On a real-time scheduling problem.Operations Research 26(1978),
127–140.

17

[10] HA , R. Validating timing constraints in multiprocessor and distributed systems. PhD thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 1995. Available as Technical
Report No. UIUCDCS-R-95-1907.

[11] HA , R., AND L IU , J. W. S. Validating timing constraints in multiprocessor and distributed real-time
systems. Tech. Rep. UIUCDCS-R-93-1833, Department of Computer Science, University of Illinois
at Urbana-Champaign, October 1993.

[12] HA , R., AND L IU , J. W. S. Validating timing constraints in multiprocessor and distributed real-time
systems. InProceedings of the 14th IEEE International Conference on Distributed Computing Systems
(Los Alamitos, June 1994), IEEE Computer Society Press.

[13] KALYANASUNDARAM , B., AND PRUHS, K. Speed is as powerful as clairvoyance. In36th Annual
Symposium on Foundations of Computer Science (FOCS’95)(Los Alamitos, Oct. 1995), IEEE Com-
puter Society Press, pp. 214–223.

[14] LAUZAC , S., MELHEM, R., AND MOSSE, D. An efficient RMS admission control algorithm and
its application to multiprocessor scheduling. InProceedings of the International Parallel Processing
Symposium(April 1998), IEEE Computer Society Press, pp. 511–518.

[15] LEUNG, J., AND WHITEHEAD, J. On the complexity of fixed-priority scheduling of periodic, real-
time tasks.Performance Evaluation 2(1982), 237–250.

[16] L IU , C., AND LAYLAND , J. Scheduling algorithms for multiprogramming in a hard real-time envi-
ronment.Journal of the ACM 20, 1 (1973), 46–61.

[17] L IU , C. L. Scheduling algorithms for multiprocessors in a hard real-time environment.JPL Space
Programs Summary 37-60 II(1969), 28–31.

[18] OH, D.-I., AND BAKER, T. P. Utilization bounds for N-processor rate monotone scheduling with
static processor assignment.Real-Time Systems: The International Journal of Time-Critical Comput-
ing 15(1998), 183–192.

[19] PHILLIPS, C. A., STEIN, C., TORNG, E., AND WEIN, J. Optimal time-critical scheduling via re-
source augmentation. InProceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing(El Paso, Texas, 4–6 May 1997), pp. 140–149.

[20] RAMAMURTHY , S.,AND MOIR, M. Static-priority static scheduling on multiprocessors. In Proceed-
ings of the Real-Time Systems Symposium(Orlando, FL, November 2000), IEEE Computer Society
Press.

18

A Proof of Theorem 1

The proof below is from [19]; it is restated here in the notation and terminology used in the rest of
this paper.

The statement of the theorem is:
For any instance of jobsI, any time-instantt � 0, any work-conserving algorithmA, and any
algorithmA0, it is the case thatW (A;m; (2� 1m) � s; I; t) � W (A0; m; s; I; t):

The proof is by contradiction. Suppose then that it is not true; i.e., there is some time-instant by
which a work-conserving algorithmA executing onm speed-(2� 1m) � s processors has performed
strictly less work than some other algorithmA0 executing onm speed-s processors. LetJj 2 I
denote a job with the earliest arrival time such that there issome time-instantto satisfyingW (A;m; (2� 1m) � s; I; to) < W (A0; m; s; I; to);
and the amount of work done on jobj by time-instantto in A is strictly less than the amount of
work done ofJi by time-instantto in A0. One suchJi must exist, because there is a timet < ti
suchW (A;m; (2� 1m) � s; I; to) = W (A0; m; s; I; t0) — t = 0 gives one such equality.

By our choice ofrj, it must be the case thatW (A;m; (2� 1m) � s; I; rj) � W (A0; m; s; I; rj):
Therefore, the amount of work done byA0 over [rj; to) is strictly more than the amount of work
done byA over the same interval. The fact that the amount of work done on Ji in [rj; to) in A is
less than the amount of work done onJi in [rj; to) in A0, implies thatJi does not complete beforeto.

Let x denote the cumulative length of time over the interval[rj; to) during whichA is executing
on allm processors; lety def= (to�rj)�x) denote the length of time over this interval during whichA idles some processor.

We make the following two observations.� SinceA is a work-conserving scheduling algorithm, jobJj, which has not completed by
instantto in the schedule generated byA, must have executed for at leasty time units by
time to in the schedule generated byA; while it could have executed for at most(x+ y) time
units in the schedule generated byA0; therefore,(x + y) > �2� 1m� � y : (15)� The amount of work done byA over[rj; to) is at least�2� 1m� � s(mx + y) ;

19

while the amount of work done byA0 over this interval is at mostms(x + y) ;
therefore, it must be the case thatm(x + y) > �2� 1m� � (mx+ y) : (16)

Adding (m� 1) times Inequality 15 to Inequality 16, we get(m� 1)(x + y) +m(x + y) > (m� 1)�2� 1m� � y + �2� 1m� � (mx+ y)� (2m� 1)(x+ y) > �2� 1m� � (my � y +mx + y)� (2m� 1)(x+ y) > �2� 1m�m(x + y)� (2m� 1)(x+ y) > (2m� 1)(x+ y)
which is a contradiction.

B Proof of the analog of Lemma 3.2 for harmonic task sets

The proof here is essentially a reproduction of the proof of Lemma 3.2 from Section 3.1, appropri-
ately modified to take advantage of the unique additional properties of harmonic task sets. In this,
recall that� is a harmonic task set (and hence so is� (k)). In particular, note that for all�j 2 � (k), it
is the case thatdTk=Tje = Tk=Tj.

Let us assume that the first(`�1) jobs of�k have met their deadlines under AlgorithmRM, and
consider thè ’th job of �k. This job arrives at time-instant(`� 1)Tk, has a deadline at time-instant`Tk, and needsCk units of execution. As long asOPT schedules�k such that the tasks complete
no later than their deadlines, the amount of work done byOPT in a time interval(` � 1)Tk is the
utilization of the task set multiplied by the time interval.When processors have the speed(m2m�1),
the tasks complete no later than their deadlines according to Lemma 3.1. Therefore we have:W (OPT;m; m2m� 1 ; �k; t) = t � (kXj=1Uj) :
Applying Inequality 4 yields:W (RM; m; 1; � (k); (`� 1)Tk) � (`� 1)Tk 0� kXj=1Uj1A (17)

Also, at least(` � 1) � Tk � (Pk�1j=1 Uj) units of this execution was of tasks�1; �2; : : : ; �k�1 — this
follows from the fact that exactly(`�1)TkUk units of�k’s work has been generated prior to instant(` � 1)Tk; the remainder of the work executed by AlgorithmRM must therefore be generated by�1; �2; : : : ; �k�1.

20

The cumulative execution requirement of all the jobs generated by the tasks�1; �2; : : : ; �k�1
that arrive prior to the deadline of�k’s `’th job is bounded from above byk�1Xj=1 &`TkTj 'Cj< k�1Xj=1 `TkTj Cj= `Tk k�1Xj=1Uj (18)

As we have seen above (the discussion following Inequality 17) at least(` � 1) � Tk �Pk�1j=1 Uj of
this gets done prior to time-instant(`� 1)Tk; hence, at mostTk k�1Xj=1Uj (19)

remains to be executedafter time-instant(`� 1)Tk.
The amount of processor capacity left unused by�1; : : : ; �k�1 during the interval[(`�1)Tk; `Tk)

is therefore no smaller than m � Tk � 0�Tk k�1Xj=1Uj1A (20)

Since there arem processors available, the cumulative length of the intervals over[(`� 1)Tk; `Tk)
during which�1; : : : ; �k�1 leave at least one processor idle is minimized if the different processors
tend to idle simultaneously (in parallel); hence, a lower bound on this cumulative length of the
intervals over[(`� 1)Tk; `Tk) during which�1; : : : ; �k�1 leave at least one processor idle is given
by (m � Tk � �TkPk�1j=1 Uj�)=m, which equalsTk � 1m 0�Tk k�1Xj=1Uj1A (21)

For the`’th job of �k to meet its deadline, it suffices that this cumulative interval length be at least
as large at�k’s execution requirement; i.e.,Tk � 1m(Tk k�1Xj=1Uj) � Ck� CkTk + 1m(k�1Xj=1Uj) � 1� (SinceTk � Tj for j < k)Uk + 1m(k�1Xj=1Uj) � 1 (22)

21

Let us now simplify the lhs of Inequality 22 above:Uk + 1m(k�1Xj=1Uj)� Uk + 1m(kXj=1Uj � 2Uk)� Uk(1� 1m) + m2m� 1� m2m� 1(1� 1m) + m2m� 1= 1 (23)

From Inequalities 22 and 23, we may conclude that the`’th job of �k does meet its deadline.

C Graphical depiction of experimental results

The results of the experiments described in Section 5.2 are graphed in Figures 1 through 6 below.
For each experiment, we have plotted the performance (success ratio) as a function of the system
utilization (with a resolution given by the bucket intervals).

22

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.010000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.100000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.200000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.300000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.400000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.500000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.600000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.700000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.800000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 1: Success ratio as a function of system utilization for different scheduling algorithms on
32 processors, when F=0.1 and periods are selected as T =f100, 200, 300, 400, ..., 1000g.23

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.010000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.100000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.200000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.300000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.400000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.500000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.600000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.700000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.800000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 2: Success ratio as a function of system utilization for different scheduling algorithms on 1
processor, when F=0.1 and periods are selected as T =f100, 200, 300, 400, ..., 1000g.24

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=1.000000,A=0.000000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=2,f=1.000000,A=0.000000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=1.000000,A=0.000000,T={100,200,...,1000}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 3: Success ratio as a function of system utilization for different scheduling algorithms on
1,2 and 32 processor(s), when F=1 and periods are selected asT = f100, 200, 300, 400, ..., 1000g.

25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.200000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.300000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.400000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.500000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.600000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.700000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=0.100000,A=0.800000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 4: Success ratio as a function of system utilization for different scheduling algorithms on
32 processors, when F=0.1 and periods are selected as T =f2, 4, 6, 8, ..., 20g.

26

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.010000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.100000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.200000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.300000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.400000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.500000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.600000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.700000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=0.100000,A=0.800000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 5: Success ratio as a function of system utilization for different scheduling algorithms on 1
processor, when F=0.1 and periods are selected as T =f2, 4, 6, 8, ..., 20g.27

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=1,f=1.000000,A=0.000000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=2,f=1.000000,A=0.000000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

su
cc

es
s

ra
tio

system utilization

[m=32,f=1.000000,A=0.000000,T={2,4,...,18}]

RM
RM-US(m/(3m-2))

adaptiveTkC
R-BOUND-MPrespan

WMpfair

Figure 6: Success ratio as a function of system utilization for different scheduling algorithms on
1,2 and 32 processor(s), when F=1 and periods are selected asT = f2, 4, 6, 8, ..., 20g.

28

