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Abstract— This paper discusses the development of a new
method for the automatic segmentation of anatomical struc-
tures from volumetric medical images. Driving application
is the segmentation of 3-D tumor structures from magnetic
resonance images (MRI), which is known to be a very chal-
lenging segmentation problem due to the variability of tu-
mor geometry and intensity patterns. Level set evolution
combining global smoothness with the flexibility of topol-
ogy changes offers significant advantages over conventional
statistical classification followed by mathematical morphol-
ogy. Level set evolution with constant propagation needs
to be initialized either completely inside or outside and can
leak through weak or missing boundary parts. Replacing
the constant propagation term by a signed local statistical
force overcomes these limitations and results in a region
competition method that converges to a stable solution.

Applied to MR images presenting tumors, probabilities
for background and tumor regions are calculated from a pre-
and post-contrast difference image and mixture-modelling
fit of the histogram. The whole image is used for initializa-
tion of the level set evolution to segment the blobby-shaped
tumor boundaries. Preliminary results on five cases pre-
senting different tumors with significant shape and intensity
variability demonstrate that the new method might become
a powerful and efficient tool for the clinic. Validity is demon-
strated by comparison with manual expert segmentation.

I. Introduction

Segmentation of volumetric image data is still a chal-
lenging problem, and successful solutions either are based
on simple intensity thresholding or by model-based defor-
mation of templates. The former implies that structures
are well separated by unique intensity patterns, whereas
the latter requires model templates characteristic for the
shape class. Snakes [1] are appealing to users as they only
require a coarse initialization but then converge to a stable,
fully reproducible boundary. Applications with real im-
agery, however, demonstrate that “snakes are only as good
a their initialization”, implying that a user would have to
provide an initial solution close to the optimal solution in
order to guarantee a successful result. In three dimensional
data, this is not a viable option. Snakes based on level set
evolution, on the other hand, are appealing especially for
volumetric data processing [2], [3], [4]. The formalism can
be naturally extended from 2D to higher dimensions, and
the resulting zero level sets offer flexible topology. A pow-
erful extension is obtained by combining level set evolution
with statistical shape constraints [5], but this is not pos-
sible in our driving application of segmenting tumors of
variable size and location. Level set evolution with fixed
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propagation direction is either initialized inside or outside
sought objects, and the propagation force is opposed by a
strong gradient magnitude at image discontinuities. At lo-
cations of missing or fuzzy boundaries, the internal force is
often strong enough to counteract global smoothness and
leaks through these gaps. Thus, there is no convergence
and the evolution has to be halted manually. This obser-
vation led to a new concept of region competition, where
two adjacent regions compete for the common boundary
[6], additionally constrained by a smoothness term.

The driving problem discussed in this paper is the seg-
mentation of 3-D brain tumors from magnetic resonance
image data. Tumors vary in shape, size, location, and in-
ternal texture, and tumor segmentation is therefore known
to be a very challenging and difficult problem. Intensity
thresholding followed by erosion, connectivity, and dilation
is a common procedure but only applicable to a small class
of tumors presenting simple shape and homogeneous inte-
rior structure. Warfield et al. [7], [8], [9] demonstrated a
methodology based on elastic atlas warping for brain ex-
traction and statistical pattern recognition for brain in-
terior structures. The intensity feature was augmented
by a “distance from the boundary” feature to account for
overlapping probability density functions. As a final step,
structures went through opening/closing steps to segment
blobby, connected structures. The method has been shown
to be successful for simply-shaped tumors with homoge-
neous texture.

The approach presented herein aims at providing a more
generic and fully automatic method for the segmentation of
blobby-shaped tumor structures. We developed a 3-D level
set method in a region competition framework. Variable
topology and smoothness serve as key features to group
tumor candiate regions to blobby-shaped, connected 3-D
objects. Crucial for potential clinical applications is also
the development of a highly efficient and robust method.

II. Tumor Segmentation Procedure

Our tumor segmentation procedure starts with an
intensity-based fuzzy classification of voxels into tumor and
background classes. The details of this initial classifica-
tion are given in Section IV-B. This tumor probability
map is then used to locally guide the propagation direc-
tion and speed of a level-set snake. The tumor probability
map is also used to derive an automatic initialization of the
snake. Image forces are balanced with global smoothness
constraints to converge stably to a smooth blobby tumor
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segmentation of arbitrary topology.

A. Multiparameter Image Data

Our images are multichannel 3D magnetic resonance im-
ages that show different aspects of the tumor region. High-
resolution T1-weighted MRIs are commonly used for de-
tailed imaging of neuroanatomy, but by themselves do not
distinguish tumor tissue well. T2-weighted MRIs do high-
light tumor tissue and surrounding edema, but are often
difficult to obtain in high resolution. Of great use is a
post-contrast T1-weighted MRI, where contrast agent has
been injected into the bloodstream to highlight the tumor.
In this work we use T1-weighted pre- and post-contrast 3D
images.

B. Image Forces

In a deformable model segmentation scheme, the model
is driven by image forces and constrained by prior infor-
mation on the shape of the model. In classical snakes, the
image forces are generally governed by the gradient mag-
nitude, and the shape prior is a form of smoothness. Us-
ing the level-set snakes framework, the image forces and
smoothness constraints are simply separate terms in the
partial differential equation governing the evolution of the
implicit function defining the snake.

The traditional “balloon” snakes, with a constant prop-
agation term, have the issue that the propagation term has
a fixed sign; i.e. the balloon can only grow or only shrink.
Hence the snake must be initialized either completely inside
the target object, or completely circumscribing the target
object. In our snake model, the propagation term is lo-
cally modulated by a signed image force factor between -1
and +1, causing the snake to shrink parts outside the tu-
mor and expand parts inside the tumor. Hence our snake
can be initialized partially inside and partially outside the
tumor; it is more robust to initialization.

C. Smoothness Constraints

If the snake were only guided by image forces, it would
leak into many small noisy structures in the image that are
not part of the tumor. A commonly used, standard way to
constrain level-set snakes is to apply mean curvature flow
to the snake contour; in the level-set formalism this is easily
done by adding a term to the snake evolution equation. We
also apply a smoothing to the implicit function in order to
aid numerical stability of the algorithm.

III. Level Set Snake Evolution

A classical level set snake is defined as the zero level set
of an implicit function φ defined on the entire image. The
evolution of the snake is defined via a partial differential
equation on the implicit function φ.

Consider a level set snake which propagates normal to
its boundary uniformly at a constant speed α:

∂φ

∂t
= α |∇φ|

Our region competition-based snake modulates this
propagation term using image forces to change the direc-
tion of propagation, so that the snake shrinks when the
boundary encloses parts of the background (B), and grows
when the boundary is inside the tumor region (A):

∂φ

∂t
= α(P (A)− P (B)) |∇φ|

The image forces need to be balanced with some smooth-
ness constraints; a standard technique is to apply mean
curvature flow to the snake contour. The strength of the
smoothing is controlled with a constant multiplicative fac-
tor cMCF:

∂φ

∂t
= α(P (A)− P (B)) |∇φ|

+ cMCF∇ ·
(
∇φ
|∇φ|

)
|∇φ|

Lastly, to help ensure numerical stability of the forward-
in-time, centered-in-space (FTCS) solution of the partial
differential equation, we apply a uniform smoothing to the
implicit function φ. An additional constant factor csm con-
trols the strength of this smoothing:

∂φ

∂t
= α(P (A)− P (B)) |∇φ|

+ cMCF∇ ·
(
∇φ
|∇φ|

)
|∇φ|

+ csm∇2φ

IV. Application to tumor segmentation

A. MRI methods

Our image datasets are from patients with meningioma
and glioblastoma brain tumors, acquired on a 1.5T clin-
ical scanner (except for one acquired on a 3T scanner).
T1-weighted and T2-weighted images were acquired of the
whole head, as well as T1-weighted images after gadolinium
MRI contrast agent was injected into the patient’s blood-
stream in order to highlight the tumor. The T1-weighted
images have an in-plane resolution of 256x256 and about
120 slices (depending on the individual dataset), with a
voxel resolution of 1× 1× 1.5mm3.

Fig. 1. Axial cross-section of T1-weighted 3D MRI, without (left)
and with (right) contrast agent.
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B. Tumor probability map

Of critical importance in the formulation of the compe-
tition level-set snake is the probability map, a scalar field
on the image which specifies, voxel by voxel, a probability
that the given voxel belongs to the tumor or to the back-
ground. The two T1-weighted images, with and without
contrast agent, are registered using MIRIT [10] and a dif-
ference image is obtained voxel-by-voxel. The histogram
of this difference image (see Fig. 2) clearly shows a sym-
metric distribution around zero and a second distribution
related to regional changes caused by contrast. The sec-
ond distribution is asymmetric but strictly on the posi-
tive axis, which relates to larger regions accumulating a
small amount of contrast and very small regions strongly
highlighted by contrast. In this preliminary work, we fit
the histogram by a mixture density of two distributions, a
Gaussian function to model small differences around zero
and a Poisson distribution to model the changes due to
contrast. We use the NonlinearFit package provided by
Mathematica. The scalar field derived from the posterior
probability with range [−1, 1] is passed into the level-set
algorithm as the probability map P (A) − P (B) shown in
Figure 3(a).
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Fig. 2. Histogram of post- and pre-contrast difference image and fit
with two distributions (left) and posterior probabilities (right). Dif-
ferences around zero are fitted with a Gaussian, whereas the contrast
uptake is fitted with a Poisson function. The resulting threshold is
shown as a dotted vertical line. Posterior probabilities for background
(straight) and tumor (dotted) as a function of difference image value
are shown in the right figure.

For computational speed, the datasets are subsequently
cropped to the region around the tumor, however the algo-
rithm works just as well on the whole brain.

The probability map from the difference image is rather
noisy, and includes many regions that should not be con-
sidered part of the tumor. It is known that blood vessels
and bone marrow also take up gadolinium. In addition, the
ring-shaped gadolinium enhancement common in glioblas-
toma tumors results in misclassification of many voxels in
the center of the tumor. It is clear that intensity-based
tissue classification alone is insufficient for satisfactory seg-
mentation of the tumor. The level-set snake uses this fuzzy
classification heavily for its image forces, but adds needed
smoothness constraints. Future work will look at using
atlas-based fuzzy tissue classification with bias field in-
homogeneity correction to improve the tumor probability
map.

C. Initialization

Many conventional snakes require the user to initialize
the snake with a bubble either completely inside or com-

(a) (b)

Fig. 3. (a) Probability map of tumor vs. non-tumor. Voxels tenta-
tively classified as tumor are in orange; voxels classified as non-tumor
are in blue. (b) Initialization of the snake.

(a) (b) (c)

Fig. 5. Final segmentations (300 iterations) of other tumor datasets.
(a) Tumor022, (b) Tumor025, (c) Tumor026.

pletely outside the object to be segmented. The com-
petition snake does not have any constant-velocity in-
ward/outward propogation force, so it can be initialized
with some parts of the contour inside and some parts out-
side the object to be segmented. The competition snake is
more robust to variable initialization. We choose the level 0
set of the tumor probability map, where P(tumor)=P(non-
tumor), as the initialization. The implicit function is ini-
tialized to the distance map of the initial contour, as shown
in Figure 3(b). In this way we have an automatic initial-
ization of the snake; the user is not required to define seed
points or bubbles completely inside the object to be seg-
mented.

D. Level set evolution

Figure 4 shows the implicit function φ and the level-
set snake at several stages in the segmentation of one tu-
mor dataset. The initialization of the snake corresponds
to a simple intensity windowing of the image dataset and
shows the difficulty of segmenting tumors with the standard
erosion-connectivity-dilation morphological operators. Af-
ter 20 iterations the snake segmentation is essentially com-
plete; the small blobs in the perimeter artifacts of the edge
of the bounding box, and are easily removed by eliminating
all but the largest connected component.

Also shown is the snake after 300 iterations: the balanc-
ing force P (A)−P (B) makes the snake very stable; it does
not leak into neighboring structures. Classical snakes that
use the gradient magnitude as image force often have dif-
ficulty when the boundary of the object to be segmented
has gaps with weak step edges in the image; they have
a tendency to leak through these gaps when pushed by a
constant-sign propagation force.
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(a) (b) (c) (d)

Fig. 4. A slice through the implicit function (top) and the level-set snake (bottom) for dataset Tumor020, at (a) initialization, (b) 1 iteration,
(c) 20 iterations, and (d) 300 iterations. cMCF = 0.7, α = 3, and csm = 0.45

E. Validation

The level-set procedure was successfully run on several
tumor datasets, and compared with hand segmentation by
an in-house expert rater. The output of each segmentation
is a binary image on the same voxel grid as the original
MRI. We used the VALMET [11] image segmentation vali-
dation framework to examine various metrics of agreement
of segmentation. The results for three tumor datasets are
shown in Figure 6. The volume overlap measure is a nor-
malized count of voxels in the intersection of two segmen-
tations X and Y, given by (X∩Y )/(X∪Y ). The Hausdorff
distance from X to Y ismaxx∈Xdist(x, Y ). Since this is not
symmetric, the symmetric Hausdorff metric is the larger of
Haus(X,Y) and Haus(Y,X). We also calculate the average
distance inside or outside from a point on one surface to
the closest point on the other surface.

Dataset overlap Haus. in out avg
Tumor020 93.2% 6.92 0.47 1.07 0.59
Tumor022 89.5% 13.02 0.49 4.13 1.49
Tumor025 84.7% 10.73 0.83 1.07 0.85

Fig. 6. Comparison of automatic segmentation with manual segmen-
tation. Surface distances are in voxels.

V. Discussion

We demonstrate a stable, 3D level-set evolution frame-
work applied to automatic segmentation of large blobby-
shaped brain tumors in MRIs, using a probability map of
tumor versus background to guide the snake propagation.
A nonlinear fit of a mixture model to the histogram pro-
vides a fuzzy classification map of gadolinium-enhancing
voxels, and this probability map is used to guide the prop-
agation of the snake. The snake is very stable, converging
in 20-50 iterations and remaining at its solution without
“leaking”. The snake is also robust to initialization: in the
segmentation results shown here, we use an automatic ini-
tialization at the P (A) = P (B) boundary between tumor

(a) (b) (c)
Fig. 7. Comparison of automatic procedure with manual segmenta-
tion. Top: 2D slice: snake in white, manual in red. Bottom: surface
distance, -4 (red) to +4 (blue) voxels. Green is within ±2 voxels.
Datasets: (a) Tumor020, (b) Tumor022, (c) Tumor025.

and non-tumor regions. However, preliminary tests with
various initializations indicate the snake can grow into the
entire tumor even when the initalization covers only a small
portion of the tumor. Preliminary comparisons demon-
strate that the automatic segmentation comes close to the
manual expert segmentation. Currently, we are validating
the machine segmentation versus repeated segmentations
provided by several experts. We are also investigating the
sensitivity towards initialization and parameter settings on
a larger set of tumor datasets.
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