
Fast and Simple Occlusion Culling using Hardware-Based
Depth Queries

K. Hillesland B. Salomon A. Lastra D. Manocha
University of North Carolina at Chapel Hill
{khillesl,salomon,lastra,dm}@cs.unc.edu

http://www.cs.unc.edu/∼walk/FSOC

Abstract: We present a conservative occlusion culling
algorithm for large environments. As part of a preprocess,
we decompose the scene using a spatial subdivision and
render the primitives at runtime in a front-to-back order.
Our algorithm uses hardware accelerated occlusion queries
to test the visibility of more distant volumes of space in a
progressive manner. The resulting algorithm is simple to
implement and makes use of hardware features including the
occlusion queries and vertex shaders for fast performance.
We have implemented it on a PC with an NVidia GeForce3
card and are able to render a powerplant model composed
of 12.5 million triangles at10− 20 frames a second. We are
able to achieve a speedup of from four to ten times in frame
rate with no loss in image quality.

1 Introduction
In spite of the rapid progress in the performance levels of
graphics hardware, it is still not possible to render very large
models at interactive rates. The models used in common ap-
plications including CAD, virtual environments, visualiza-
tion and simulations are getting more complex. At the same
time, the bandwidth to the graphics cards is not increasing
as fast as computational power. Therefore, to achieve peak
rates requires that rendering be done in retained mode. Since
models must be stored on the memory of the graphics card,
there is a hard limit on the size of models that can be ren-
dered at full rates. Given that the rendering of very large
models is bandwidth limited, our first priority is to ensure
that we minimize the number of primitives sent to the graph-
ics card.

In massive models many of the underlying primitives do
not contribute to the final image. We can classify these prim-
itives into three categories.

1. Those outside the view frustum.

2. Those that project to less than a pixel in screen space
and are not rendered due to the sampled nature of the
frame buffer.

3. Those fully occluded by other primitives (including
backfacing primitives).

The goal of view frustum culling is to quickly reject prim-
itives in category one. Level-of-detail (LOD) and image-
based impostor techniques are commonly used to reduce the
number of type two primitives, while occlusion culling aims
to eliminate primitives of type three. View frustum culling
is used routinely, and the use of automatically-generated
LODs or impostors is becoming more common. However,
no simple and general solutions are known for occlusion
culling. Current occlusion culling algorithms fall into two
main categories. Some are specific to certain types of mod-
els, such as architectural or urban environments and not
applicable to general environments. The more general ap-
proaches either require very specialized hardware, extensive
pre-processing of visibility, multiple passes using multiple
graphics pipelines, or the presence of large, easily identifi-
able occluders in the scene.

Main Results: We present a novel occlusion culling method
that is simple, conservative, general, and progressive in na-
ture. It begins by precomputing a spatial subdivision of the
model. Based on the subdivision, we render the primitives in
approximate front-to-back order. As rendering progresses,
we use hardware-based occlusion or depth queries to test the
visibility of more distant volumes of space. We disable color
and z buffer writes, scan convert the boundaries of the spa-
tial cells, and query the hardware to see whether any pixels
would have been rendered. If the primitives in a cell would
be occluded, we avoid sending them to the graphics card.
We present results from both uniform and hierarchical spa-
tial subdivisions. We also use the user-programmable vertex
engine for efficient traversal of the subdivisions.

The occlusion-query hardware scan converts the speci-
fied primitives to determine whether any frame-buffer pix-
els would be affected. These queries vary in functional-
ity. The first ones widely available, such as the OpenGL
culling extension from Hewlett Packard1, performed one
query at a time. Unfortunately, this test could result in a
pipeline stall while waiting for results. More recent ver-
sions of culling tests, including a newer one from HP, avoid
the stall by pipelining queries on multiple primitives. These
tests also separate the procedure calls to render the query
primitives from the call to obtain the results. Thus the
pipeline can be kept full with either other queries or normal
rendering. We are using the NVIDIA OpenGL extension
GL NV occlusionquery2, which exploits the occlusion-
query hardware available on the GeForce3 and GeForce4

1http://oss.sgi.com/projects/ogl-sample/registry/HP/occlusiontest.txt
2http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusionquery.txt

Submitted to Journal of Graphics Tools Page 1



cards.
We tested the algorithm on a model containing 13 million

triangles. We obtain, on average, a factor of four speedup
over view-frustum culling alone. However, the performance
difference on difficult frames is more dramatic, with a frame-
rate speedup of over ten times. This, of course, includes
the overhead associated with the culling algorithm and the
depth queries. Note that performance will vary with depth
complexity. If there is no occlusion, the queries will slow
the system. We have not seen this on a complex model.

Our occlusion culling approach has several advantages.
These include:

• It requires no explicit occluder selection, which is a
very difficult problem [ZMHH97, KS01].

• Unlike purely hardware-based methods like ATI’s
Hyper-Z or NVIDIA’s Z-Cull, which are meant to re-
duce demands on fill, the method we present also re-
duces the bandwidth to the graphics card.

• Our approach involves very little preprocessing and
makes no assumption related to model format, connec-
tivity or any explicit information like big occluders.

• It performs conservative occlusion culling.

• It can be easily combined with view-frustum culling as
well as LOD- based algorithms for interactive display
of very large and complex environments.

Organization: The rest of the paper is organized in the fol-
lowing manner. Section 2 provides an overview of related
work. The algorithms based on uniform and hierarchical
spatial subdivision are presented in Section 3, and the per-
formance results in Section 4. We close with conclusions
and proposed future work in Section 5.

2 Related Work
In this section, we give a brief overview of previous work on
occlusion culling and related techniques for faster display of
large datasets.

2.1 Occlusion Culling
The problem of computing portions of the scene visible from
a given viewpoint is one of the fundamental problems in
computer graphics. It has been well studied for more than
three decades and a recent survey of different algorithms is
given in [COCS01]. In this section, we give a brief overview
of occlusion culling algorithms.

Many culling algorithms have been designed for spe-
cialized environments, including architectural models based
on cells and portals [ARB90, Tel92] and urban datasets
composed of large occluders [CT97, HMC+97, SDDS00,
WWS00, WWS01]. However, they may not be able to ob-
tain significant culling on large environments composed of a
number of small occluders.

Algorithms for general environments can be broadly clas-
sified based on whether they are conservative or approxi-
mate, whether they use object space or image space hier-
archies or whether they compute visibility from a point or
a region. The conservative algorithms compute thepoten-
tially visible set(PVS) that includes all the visible primi-
tives, plus a small number of potentially occluded primitives
[CT97, GKM93, HMC+97, KS01, ZMHH97]. On the other
hand, the approximate algorithms include most of the visible

objects but may also cull away some of the visible objects
[BMH99, KS00, ZMHH97].

Object space algorithms make use of spatial partitioning
or bounding volume hierarchies; however, it is hard to per-
form “occluder fusion” on scenes composed of small occlud-
ers with object space methods. Image space algorithms in-
cluding the hierarchical Z-buffer (HZB) [GKM93, Gre01] or
hierarchical occlusion maps (HOM) [ZMHH97] are gener-
ally more capable of capturing occluder fusion. The HZB
approach presents a progressive scheme that involves updat-
ing the Z-pyramid after rasterizing each primitive. However,
it needs special hardware to support that capability. Greene
et al. [GKM93] has also presented a two-pass approach,
where it renders the occluders, builds a HZB (e.g. in soft-
ware) and uses it to cull the geometry. The HOM is a two-
pass approach that makes use of texture-mapped rasteriza-
tion hardware for occlusion culling. It is also able to perform
approximate culling based on varying the opacity thresholds
parameters used in occlusion maps [ZMHH97]. However,
its effectiveness depends on being able to efficiently select
all the foreground occluders.

It is widely believed that none of the current algorithms
can compute the PVS at interactive rates for complex envi-
ronments on current graphics systems [ESSS01]. Recently,
three different approaches have been proposed to improve
their performance.

Region-based visibility algorithms: These pre-compute
visibility for a region of space to reduce the runtime overhead
[DDTP00, SDDS00, WWS00]. Most of them work well for
scenes with large or convex occluders. Nevertheless, there
is a tradeoff between the quality of the PVS estimation for
a region and the memory overhead. These algorithms may
be extremely conservative or not able to obtain significant
culling on scenes composed of small occluders.

Hardware visibility queries: A number of image-space
visibility queries have been added by manufacturers to
their graphics systems to accelerate visibility computa-
tions. These include the HP occlusion culling exten-
sions, item buffer techniques, ATI’s HyperZ extensions etc.
[BMH99, KS01, Gre01, MBH+02]. Their effectiveness
varies based on the model and the underlying hardware.
[KS01] has presented a two-pass approach that utilizes the
GL HP occlusiontest and [Gre01] has proposed a modifi-
cation to improve the performance of HZB. As compared to
these approaches, we present a simple and effective progres-
sive occlusion culling algorithm that makes use of the new
features of graphics cards, including depth query tests and
vertex programs.

Separate visibility server: The use of an additional graph-
ics system as a visibility server has been proposed by
[WWS01]. It computes the PVS for a region at runtime in
parallel with the main rendering pipeline and works well for
urban environments. However, it uses theoccluder shrinking
algorithm [WWS00] to compute the region-based visibility,
which works well only if the occluders are large and volu-
metric in nature. The method also makes assumptions about
the user’s motion. More recently, Baxter et al. [BSGM02]
have used a two-pipeline based occlusion culling algorithm
for interactive walkthrough of complex 3D environments. It
uses a variation of two-pass HZB algorithm and combines it
with hierarchies of levels-of-detail.

Submitted to Journal of Graphics Tools Page 2



2.2 Interactive Display of Large Datasets
Other approaches to faster display rely on the use of image-
based representations or the use of multiple acceleration
techniques. Image-based impostors can be used to replace
geometry distant from the viewpoint and thereby speed up
the frame rate. Impostors can be combined with LODs and
occlusion culling using a cell based decomposition of the
model [ACW+99]. However, the use of impostors can lead
to popping or dis-occlusion artifacts because of poor sam-
pling.

A framework to integrate occlusion culling and LODs has
been presented in [ASVNB00]. It tries to estimate the de-
gree of visibility of each object in the PVS and uses it to se-
lect an appropriate LOD. However, no general and efficient
algorithms are known for accurately estimating the degree
of visibility in scenes composed of small occluders. An-
other integrated approach uses the prioritized-layered projec-
tion visibility approximation algorithm with view-dependent
rendering [ESSS01]. The resulting rendering algorithm per-
forms approximate visibility, as opposed to conservative, and
the runtime overhead for large complex environments can be
high.

The UC Berkeley Architecture Walkthrough system
[FKST96] combined hierarchical algorithms with visibility
computations [Tel92] and LODs for architectural models.
The BRUSH system [SBM+94] used LODs with hierar-
chical representation for large mechanical and architectural
models. The QSplat system [RL00] elegantly uses a single
data structure that combines view frustum culling, backface
culling and LOD selection with point rendering for progres-
sive display of large meshes at interactive rates. Another
fast approach to render large models is based on interactive
ray-tracing. It also provides a solution to the visible surface
computation or the occlusion problem. A fast algorithm for
distributed ray-tracing of highly complex models has been
described in [WSB01]. It can render the Powerplant model
at 4 − 5 frames a second at640 × 480 pixel resolution on a
cluster of seven dual processor PCs.

3 Algorithm
We begin by sorting the model geometry into bins based on a
spatial subdivision. We can test the visibility of each subdi-
vision cell to determine if its contents should be rendered.
Each cell can only be tested against geometry previously
drawn in the current frame. Therefore, we would like to test
the spatial subdivision cells in a front-to-back ordering from
the eye.

An occlusion queryis accomplished by sendingquery ge-
ometryto the graphics card for transformation and rasteriza-
tion. To complete the occlusion query, we make a function
call that returns whether or not any fragment of the query
geometry passed the depth test.

We first describe a simple implementation using a uni-
form grid. We then proceed to describe how to use a hierar-
chical spatial subdivision (nested grid). Section 3.4 describes
approaches we take to reduce the amortized cost of making
the necessary occlusion queries.

The choice of spatial subdivision type determines the
simplicity or complexity of traversal. We use a uniform or
nested grid. Other choices for spatial subdivision could have
been made, such as a BSP tree, or a simple octree. Choosing
the best subdivision scheme is non-trivial, and model depen-
dent, as is evidenced by experience in the raytacing litera-

Figure 1: Algorithm Overview. The first cell is tested and
deemed visible (green), so all intersecting geometry is ren-
dered. All the cells in the first ”slab” are deemed visible.
Some of the cells in the second ”slab” are disovered to be
not visible (gray).

ture. Our choice of a uniform grid and nested grid is based
on amortizing the setup cost in our iterative traversal scheme.

We may also have used a bounding box hierarchy. How-
ever, bounding box hierarchies raise further complications in
terms of traversal order and intelligent construction. Further-
more, the original object definitions are often quite ineffec-
tive for the purpose of visibility testing.

3.1 Uniform Grid Decomposition
Model triangles are first sorted into a uniform grid. A Tri-
angle that intersects more than one grid element, or cell, is
assigned to each cell that it intersects. We return to the issue
of shared triangles at the end of this section.

At render time, the grid is traversed in a front-to-back
order with respect to the eye-point. Each cell is tested for
visibility. If the cell is found to be visible, all triangles that
intersect the cell are rendered.

An occlusion query for a uniform grid cell is as follows:

1. Turn off z and color writes

2. Render the cell (a cube) as query geometry

3. Obtain the result as to whether any part of the query
geometry passed the z-test.

The result of the occlusion query is in terms of how many
fragments passed the z-test. If the result is zero, the cube
would not be visible. Since the bounding cube is not visi-
ble, none of its contents are visible. This occlusion query
mechanism is provided by the NVIDIA OpenGL extension
GL NV occlusionquery.

If a triangle intersects more than one grid element, a
frame counter is checked to see if the triangle has already
been rendered in the current frame. This is to avoid render-
ing it multiple times. We found that this is faster than simply
re-rendering any triangles shared between two cells.

Submitted to Journal of Graphics Tools Page 3



Figure 2:This view shows a screen shot from the running system with the grid cells rendered in wireframe. A third person
view from the side shows the view frustum with the visible cells rendered again in wireframe. The geometry extends outside
the cells because all triangles that intersect the visible cells are rendered (triangles are not clipped to cells.) The third image
shows the same third person’s view using only view frustum culling.

3.2 Nested Grid Decomposition

The effectiveness of a uniform grid is highly dependent on
triangle distribution. Cells that contain many primitives tend
to also contain many occluded primitives that are not culled.
In order to alleviate this problem, we extend the algorithm
presented above to include a hierarchy of grids. Cells found
to have an associated set of triangles above some threshold
are subdivided further, recursing until a maximum depth is
reached, or no cell (leaf) has more than the threshold number
of triangles associated with it.

The nested grid is traversed in the same front-to-back
manner as the uniform grid, testing for visibility of each cell.
In this case, however, if a cell is determined to be visible, and
contains a subgrid, we recurse to traverse its contained grid.

3.3 Traversal

Efficient traversal in a front-to-back manner is important.
We need to quickly determine the next cell. Choosing cells
such that geometry in later cells does not occlude geometry
in earlier cells is important to the success of a progressive
approach. Our traversal is a variant of the axis aligned slabs
used in volume rendering. We use slabs that are equivalent to
rasterized planes approximately orthogonal to the view vec-
tor.

3.4 Efficient Querying

The performance of the overall algorithm is determined by
the number of depth queries that we can perform in the
given time frame. The more occlusion queries we can per-
form, the more model geometry we can potentially cull. We
have therefore made an effort to reduce the cost of occlusion
queries. This section highlights our approach to minimize
both the time to render the query geometry, and the pipeline
stalls caused by waiting on query results.

The result of an occlusion query on a particular set of
query geometry is not available until the geometry has fin-
ished rasterization. This creates a potential for pipeline
stalls. We therefore try to keep the pipeline busy by submit-
ting a number of query geometry sets at once. This is, in fact,
an explicit design intention of the GLNV occlusionquery
extension.

The algorithm to keep the pipeline full is as follows:

For each slab, where a slab is a collection
of cells as described in Section 3.3:

1. Get the next n cells within the slab,
where n is the maximum number of occlu-
sion queries that may be in the pipeline
at one time

2. For i = 1 to n

• Render Ci query geometry (z and
color writes off)

3. For i = 1 to n

• Get result of query for Ci query
geometry

• If Ci is visible:

– Render the model geometry asso-
ciated with cell Ci

Between the time a query is submitted, and the time we
need the results, a number of other queries and model geom-
etry has been submitted. This will reduce pipeline stalls.

We want all visible geometry intersecting slabi to be ren-
dered before beginning the visibility determination of slab
i + 1. Otherwise, we stand to loose some amount of culling
due to occlusion of parts of slabi+ 1 by geometry in slabi.

The regularity of our occlusion representation allows us
to exploit a programmable vertex shader to more efficiently
render the cubes of the subdivision. We reduce the necessary
host to graphics data transfer size, and provide for more ef-
ficient transformation of the subdivision cube vertices. For
each subdivision grid, we transfer world space origin of the
grid, and its scale. For each cube, we send the cube indices
for a canonical cube, and the indices defining which grid ele-
ment the cube will represent. The vertex program computes
the positions of all eight vertices of the cube.

3.5 Levels-of-detail
The algorithm we have so far described helps to reduce the
number of primitives sent to the graphics card that are oc-
cluded or fall outside the view frustum. In some circum-
stances, the remaining triangles may be too many to render

Submitted to Journal of Graphics Tools Page 4



Average Frame Time and Average Number 
of Queries vs. Cell Size

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120
Number of Cells in Largest Dimension

T
im

e 
(s

ec
)

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
 Q

u
er

ie
s

Uniform Grid Frame Time Nested Grid Frame Time

Uniform Grid Query Count Nested Grid Query Count

Figure 3: Avg Frame Rate and Avg Queries vs Cell-Size:
The average framerate and query count of the two imple-
mentations are graphed here as a function of the grid res-
olution. The uniform grid implementation is more sensitive
to smaller cell sizes while the nested grid implementation
can compensate through subdivision. This can be seen by
the query plots. However, the frame time mimina are nearly
identical and the plots converge as cell size decreases.

at interactive rates. The use of levels- of-detail (LODs) can
be used to alleviate this problem.

Our system does not preclude the use of LOD techniques.
Triangles could still be sorted into cells as already described.
Occlusion culling of primitives would still be determined on
the basis of the spatial subdivision. However, the primitives
would be stored such that they are identified with the original
object and which representation of the object they belong to.
At run time, when the contents of a cell are to be rendered,
an LOD selection is made, and only those triangles within
the cell that belong to that LOD are rendered. This makes it
possible to maintain the integrity of the original LODs, while
still allowing for occlusion culling with the spatial subdivi-
sion.

4 Implementation and Performance

In this section, we describe our implementation and highlight
its performance on a complex model. In particular, we tested
its performance on a model of a coal-fired power plant with
more than13 million triangles. Much of the upper portion
of the model consists of a complex network of piping. Most
occlusion in this section arises not from individual pipes, but
from an aggregation of the occlusion provided by the pipes.
We found that this portion of the model provided one of the
most challenge scenario for our occlusion system aside from
outside views of the whole model.

Our results are generated from a path through the model
that begins on an upper floor, along an exposed walkway (as
shown in the video). The path enters an enclosure contain-
ing thousands of pipes through a small window, and wanders
through this area.

The test runs were performed on a dual processor Pen-
tium 4 machine with a NVIDIA GeForce 4 card and2 GB
of RAM. Note that our application is single threaded. More-
over, the configurations used for optimal performance do not
require more than1GB of RAM for the power plant model.

Frame Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e 
(s

ec
)

Uniform Grid Nested Grid View Frustum Culling Only

Figure 4:Frame Time: This figure compares frame time of
our best configuration for the nested grid implementation,
uniform grid implementation, and view frustum culling only
implementation. It is clear that both systems with occlusion
culling vastly outperform view frustum culling only. Frame
times for nested grid and uniform grid implementations are
comparable.

Triangle Count

1

10

100

1000

10000

100000

1000000

10000000

T
ri

an
g

le
 C

o
u

n
t 

(l
o

g
 s

ca
le

)

Uniform Grid Nested Grid
View Frustum Culling Only Item Buffer

Figure 5:Triangle Count: This graph shows the number of
triangles rendered per frame versus the actual number vis-
ible as determined by an item buffer. Triangle counts are
given for the nested grid, uniform grid, and view frustum
only implementations. The item buffer rendering used the
same screen resolution (800x800) as our other tests.

4.1 Timing Results
There are a number of user specified parameters associated
with the performance of our method. For a uniform grid, we
can vary the resolution of the grid, and the threshold on the
number of triangles in a cell that warrant an occlusion test.
If the time to render the model geometry associated with a
particular cell is less than the time to perform an occlusion
query, then we could simply render the cell contents without
the occlusion test. In practice, it is hard to predict the precise
values of these times. A cell may intersect a few very large
triangles which when rendered may have higher fill-rate re-
quirements, as compared to the cell itself.

Timing comparisons indicated negligible performance
differences among threshold values ranging from1 to 50.
For the results presented here, we used a threshold value of
1.

Figure 4 shows the average frame time of our test path
with varying grid resolution. We have found that for the

Submitted to Journal of Graphics Tools Page 5



Visible Cell Percentage

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

P
er

ce
n

t 
V

is
ib

le

Unifrom Grid Nested Grid

Figure 6: This graph shows what percentage of the cells
were determined to be visible. Given that the top level reso-
lution of the nested grid system is comparable to the resolu-
tion of the uniform grid, we see that it is much more difficult
to identify geometry to be culled beyond the top level of the
hierarchy.

power plant model, a resolution between35 and50 in the
maximum dimension gives the best results. The nested grid
implementation is much less sensitive to the grid resolution,
as a deeper tree makes up for a coarse top level subdivi-
sion. It is clear from Figure 4 that the overall performance
of our algorithm is much better than using only view frus-
tum culling. The average frame time for the view frustum
culling was0.36 seconds while for our uniform and nested
grid approaches were0.087 and0.088 seconds, respectively.
Moreover, large spikes in the frame time obtained with us-
ing only view frustum culling are reduced by the occlusion
culling algorithm.

For the nested grid scheme, we used two additional pa-
rameters: branching factor, and splitting threshold. If the tri-
angle count of a grid cell is greater than the threshold value,
the cell is subdivided according to the branching factor. We
have found that a branching factor of4 in each dimension,
or a total of64 cells, and a threshold of10, 000 produced the
best results.

4.2 Efficiency in Occlusion Culling
We compare the number of triangles in the potentially vis-
ible set computed per frame by our method against the ex-
act visible set determined by an item buffer in Figure 5. In
the item buffer test each triangle is rendered using a differ-
ent color. By reading back the color buffer, we were able
to determine the number of primitives visible in each frame,
up to the screen space resolution. Ideally, we would like
our algorithm to exactly compute this visible set, which is
also governed by the discrete sampling nature of the frame
buffer. By setting our splitting threshold to150 (an imprac-
tical value with regards to performance), we were able to
approach within a factor of10 of the number of triangles de-
termined visible by the item buffer method. View frustum
culling alone produces triangle counts that on average are
13 times higher than the fastest configuration for nested grid
approximation and7 times higher than that for the uniform
grid.

A measure of the overhead incurred to attain these results
is the change in triangle throughput, not counting the primi-
tives used only for occlusion. We have found the throughput

Figure 7:Powerplant Model: This image shows the outside
view. It consists of more than 13 million triangles.

for the system with view frustum culling only to be5.23 mil-
lion triangles per second (MTPS). This is primarily limited
by AGP bandwidth, as we are not able to feed the graph-
ics card fast enough. The system presented here obtains
3.79MTPS and2.17MTPS for the uniform grid and nested
grid, respectively. We used standard OpenGL vertex arrays
to render model geometry.

Our algorithm renders the grid boundaries to perform oc-
clusion queries. The additional geometry rendered for occlu-
sion querying accounts for part of the decrease in through-
put. The remaining throughput reduction is attributed to the
stalls that occur when waiting for model geometry rendering
to finish, before rendering additional query geometry. This
drop in throughput is the cost of performing the occlusion
queries using our algorithm. In general, our algorithm will
result in improved performance, if occlusion detection can
cull a higher percentage of the triangles in the view frustum
than the percentage reduction in triangle throughput.

We have shown that for a complex model such as the
power plant, the potentially visible set determined by our
algorithm on average is18% of the geometry in the view
frustum for a uniform grid method and9% for a nested
grid method. These measures are far less than the triangle
throughput utilization of72% and41%, and therefore, result
in an overall performance increase.

5 Conclusion

We have shown how to effectively use a hardware z-query to
accelerate the rendering of models with high depth complex-
ity. The presented data also illustrates the effectiveness of
our scheme in terms of achieving the goal of rendering only
visible triangles, keeping the pipeline full, and the overhead
costs associated with our method. We believe that using our
approach, a flat grid will be suitable for most scenarios.

Submitted to Journal of Graphics Tools Page 6



Figure 8:Powerplant Model: Internal View from our path

6 Future Work
There are many avenues for future work. We would like to
exploit frame-to-frame coherence, perform approximate oc-
clusion culling, and integrate different approaches for LODs.
We can further the reduce pipeline stalls caused by waits for
query results, and wish to pursue more effective techniques
for keeping the pipeline full. Our current algorithm does not
address large amounts of visible geometry. We would like to
incorporate LODs as discussed in Section 3.5.

Currently, all cells in the view frustum are checked for
occlusion corresponding to uniform spatial subdivision. For
the nested grid, we check all the cells in the view frustum that
are in the top level of the hierarchy. It should be possible to
terminate the traversal of the grid in regions of the screen, as
they are filled.

Another feature of the GLNV occlusionquery exten-
sion is the ability to return the number of fragments that
actually pass the depth test. This could be used in an ap-
proximate occlusion culling scheme where rendering prior-
ity would be influenced by the number of fragments passing
the z-test. It can be used to select an appropriate static LOD,
as suggested in the current OpenGL extension specification.
We would also like to extend our occlusion culling algorithm
to dynamic environments, which would basically involve an
incremental update of the spatial subdivision hierarchies at
runtime.

References
[ACW+99] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,

K. Hoff, T. Hudson, W. Stuerzlinger, E. Baker, R. Bastos,
M. Whitton, F. Brooks, and D. Manocha. Mmr: An inte-
grated massive model rendering system using geometric and
image-based acceleration. InProc. of ACM Symposium on
Interactive 3D Graphics, 1999.

[ARB90] J. Airey, J. Rohlf, and F. Brooks. Towards image realism
with interactive update rates in complex virtual building en-
vironments. InSymposium on Interactive 3D Graphics, pages
41–50, 1990.

[ASVNB00] C. Andujar, C. Saona-Vazquez, I. Navazo, and P. Brunet.
Integrating occlusion culling and levels of detail through
hardly-visibly sets. InProceedings of Eurographics, 2000.

[BMH99] D. Bartz, M. Meibner, and T. Huttner. Opengl assisted oc-
clusion culling for large polygonal models.Computer and
Graphics, 23(3):667–679, 1999.

[BSGM02] B. Baxter, A. Sud, N. Govindraju, and D. Manocha. Gi-
gawalk: Interactive walkthrough of complex 3d environ-
ments. Technical Report TR02-013, Department of Computer
Science, University of North Carolina, 2002.

[COCS01] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of
visibility for walkthrough applications.SIGGRAPH Course
Notes # 30, 2001.

[CT97] S. Coorg and S. Teller. Real-time occlusion culling for mod-
els with large occluders. InProc. of ACM Symposium on
Interactive 3D Graphics, 1997.

[DDTP00] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Con-
servative visibility preprocessing using extended projections.
Proc. of ACM SIGGRAPH, pages 239–248, 2000.

[ESSS01] J. El-Sana, N. Sokolovsky, and C. Silva. Integrating occlu-
sion culling with view-dependent rendering.Proc. of IEEE
Visualization, 2001.

[FKST96] T.A. Funkhouser, D. Khorramabadi, C.H. Sequin, and
S. Teller. The ucb system for interactive visualization of large
architectural models.Presence, 5(1):13–44, 1996.

[GKM93] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer vis-
ibility. In Proc. of ACM SIGGRAPH, pages 231–238, 1993.

[Gre01] N. Greene. Occlusion culling with optimized hierarchical z-
buffering. InACM SIGGRAPH COURSE NOTES ON VISI-
BILITY, # 30, 2001.

[HMC+97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow frusta.
In Proc. of ACM Symposium on Computational Geometry,
pages 1–10, 1997.

[KCCO00] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual occlud-
ers: An efficient intermediate pvs representation.Rendering
Techniques 2000: 11th Eurographics Workshop on Render-
ing, pages 59–70, 2000.

[KS00] J. Klowoski and C. Silva. The prioritized-layered projection
algorithm for visible set estimation.IEEE Trans. on Visual-
ization and Computer Graphics, 6(2):108–123, 2000.

[KS01] J. Klowoski and C. Silva. Efficient conservative visib-
lity culling using the prioritized-layered projection algo-
rithm. IEEE Trans. on Visualization and Computer Graphics,
7(4):365–379, 2001.

[MBH+02] M. Meissner, D. Bartz, T. Huttner, G. Muller, and
J. Einighammer. Generation of subdivision hierarchies for
efficient occlusion culling of large polygonal models.Com-
puter and Graphics, 2002. To appear.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes.Proc. of ACM SIG-
GRAPH, 2000.

[SBM+94] B. Schneider, P. Borrel, J. Menon, J. Mittleman, and
J. Rossignac. Brush as a walkthrough system for architec-
tural models. InFifth Eurographics Workshop on Rendering,
pages 389–399, July 1994.

[SDDS00] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Con-
servative visibility preprocessing using extended projections.
Proc. of ACM SIGGRAPH, pages 229–238, 2000.

[Tel92] S. J. Teller. Visibility Computations in Densely Occluded
Polyheral Environments. PhD thesis, CS Division, UC Berke-
ley, 1992.

[WSB01] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed
ray-tracing of highly complex models. InRendering Tech-
niques, pages 274–285, 2001.

[WWS00] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility pre-
processing with occluder fusion for urban walkthroughs. In
Rendering Techniques, pages 71–82, 2000.

Submitted to Journal of Graphics Tools Page 7



[WWS01] P. Wonka, M. Wimmer, and F. Sillion. Instant visibility. In
Proc. of Eurographics, 2001.

[ZMHH97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibil-
ity culling using hierarchical occlusion maps.Proc. of ACM
SIGGRAPH, 1997.

Submitted to Journal of Graphics Tools Page 8


