
Technical Report TR03-003

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Virtual Teaming:
Experiments and Experiences with

Distributed Pair Programming

David Stotts1, Laurie Williams2, Nachiappan Nagappan2,
Prashant Baheti2, Dennis Jen1, Anne Jackson2

1Department of Computer Science

 University of North Carolina
Chapel Hill, NC 27599-3175

2Department of Computer Science

North Carolina State University
Raleigh, NC 27695

stotts@cs.unc.edu

williams@csc.ncsu.edu

March 1, 2003

- 1 -

mailto:stotts@cs.unc.edu
mailto:williams@csc.ncsu.edu

Virtual Teaming: Experiments and Experiences with
Distributed Pair Programming

David Stotts1, Laurie Williams2, Nachiappan Nagappan2, Prashant Baheti2,
Dennis Jen1, Anne Jackson2

1Dept. of Computer Science, University of North Carolina, Chapel Hill, NC 27599
{stotts, dsjen}@cs.unc.edu

2Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695
{lawilli3, nnagapp, ppbaheti, amjackso}@unity.ncsu.edu

Abstract. Pair programming is a practice in which two programmers work together at one computer,
collaborating on the same design, algorithm, code or test. Previous studies have shown that pair
programmers produce higher quality code in essentially the same amount of time as solo
programmers. Additional benefits include increased job satisfaction, improved team
communication, and efficient tacit knowledge sharing. However, it may not always be possible for
all team members to be collocated due to the rise in teleworking and geographically distributed
teams. This paper analyzes the results of two distributed pair programming case studies done at
UNC Chapel Hill and at NC State University. Participants used readily available off-the-shelf
applications for collaborative software development. The results indicate that software development
collaboratively “over the wire” is feasible, effective, and pleasant for the participants; distributed
development is better done as synchronous pairs than as individuals who integrate; and distributed
pairs maintain many of the advantages of collocated pairs.

1. Introduction
Distributed team projects are becoming more common in the software industry. The power of
distributed development can increase an organization's opportunities to win new work by opening
up a broader skill and product knowledge base, coupled with a deeper pool of potential employees
[12]. Major corporations have launched global teams with the expectation that technology will
make virtual collocation a feasible alternative [15]. Additionally, distance education (DE) has also
come into prominence in recent years. Team projects in DE computer science courses call for
distributed development. These teams need to communicate and work effectively and
productively. Through the vehicle of groupware, team members can communicate with each other
and complete their projects even when they are remotely located or when they work at
incompatible hours.

Previous research [14,20] has indicated that pair programming is better than individual
programming in a co-located environment. Do these results also apply to distributed pairs? It has
been established that distance matters [15]; face-to-face pair programmers will most likely
outperform distributed pair programmers in terms of sheer productivity. However, the
inevitability of distributed work in industry and education calls for research in determining how to
make this type of work most effective. Additionally, Extreme Programming (XP) [3] usually has
co-located pairs working in front of the same workstation, a limitation that ostensibly hinders use
of XP for distributed development of software.

This paper discusses results of our research on distributed pair programming (dPP). By dPP
we mean that two members of the team (which may consist solely of these two people)
synchronously collaborate on the same design or code from different locations. This means that

- 2 -

both must view a copy of the same screen, and at least one of them should have the capability to
change the contents on the screen. To be able to do this, they require technological support for
sharing desktops and verbal conversation, and perhaps even video conferencing capabilities.

Our first dPP experiments have been previously reported [1,2]. This paper gives results of two
other case studies done jointly between grad students1 at the University of North Carolina at
Chapel Hill (UNC-CH) and grad students at North Carolina State University (NCSU) in the spring
and fall of 2002. Section 2 gives background work on virtual teams, a summary of prior dPP
results, and a description of the technical infrastructure to support dPP. Sections 3 and 4 discuss
the details of the two case studies. Section 5 outlines the lessons extracted from the experiments.
General observations, limitations, and conclusions are presented in Section 6.

2. Background and Related Work

Virtual teaming
Our studies involve a specific form of virtual team. In general, a virtual team can be defined as a
group of people who work together towards a common goal but operate across time, distance,
culture and organizational boundaries [8]. The members of a virtual team may be located at
different work sites, or they may travel frequently and need to rely upon communication
technologies to share information, collaborate, and coordinate their work efforts. As the business
environment becomes more global and businesses are increasingly in search of more creative ways
to reduce operating costs, the concept of virtual teams is of paramount importance [7]. In the
context of this paper, the common goal of the virtual team is the development of software.

Virtual teams are also used in education. Distributed learning, or distance education, is
experiencing explosive growth. “Online learning is already a $2 billion business; Gerald Odening,
an analyst with Chase Bank, predicts that the figure will rise by 35% a year, reaching $9 billion by
2005” [17]. Programming students have benefited from this growth. Virtual teaming is a boon for
distance education as it allows geographically remote students to participate in team projects.

Organizing and managing virtual teams is a topic of ongoing research. From our earlier studies
and experiences comparing co-located solo programmers with co-located pair programmers [1,2],
we surmise significant benefits for virtual teams that use dPP. Operating via dPP may help
establish team trust and create a “virtual culture [13]“. When programmers pair with each other,
and especially when the pairs rotate among the group, they get a chance to get to know many on
their team more personally. This familiarity helps to break down many communication barriers.
Team members find each other much more approachable. As a result, they will struggle with
questions or lack of information for less time before asking the right person a question. The
rotation of team members also gives each student a broader understanding of the project through
observing the work of each new partner. Additionally, they feel better about their jobs because
they know their teammates on a more personal level. In short, better communication between
team members leads to increased confidence levels and more effective time usage. A primary
consideration, then, in virtual teaming (and so dPP) is good support for communication [10].

1 The validity or generalizability of empirical studies with students is sometimes questioned because student

projects do not deal with issues of size or scale, as is realistic in industry. Several research studies have
indicated, however, that student test-beds represent ideal environments for empirical software engineering,
providing sufficient realism while allowing for controlled observation of important project parameters
[6,11].

- 3 -

Prior Distributed Pair Programming Results
In the Fall 2001 semester a structured experiment was conducted in a graduate class, Object-
Oriented Languages and Systems, taught by Dr Edward Gehringer at NCSU [1,2]. This course
introduces students to object technology and covers object-oriented analysis and design, Smalltalk,
and Java. This course has a five-week team project that was used for our experiment. A total of
132 students took this course, including 32 distance education students. For the team project, the
students were divided into teams of two to four students and worked as collocated teams,
collocated team with pair programming, distributed teams, and distributed team with pairs.

The results of this experiment show that distributed teams had a slightly greater productivity as
compared to collocated teams but the difference was not statistically significant. Also the
distributed teams outperformed the collocated teams in terms of software quality measured by the
average grade obtained by the group in the project. Again, the difference was not statistically
significant. Anecdotally, the co-located pairs outperformed the co-located non-pair teams, and the
distributed pairs outperformed the distributed non-pairs.

Another area under study is the communication among team members. We measured this with
an exit survey. The distributed pairs reported the best communication, followed by the collocated
(pair and non-pair) teams. This is consistent with earlier findings on the benefits of pairing on
team communication [18,20].

Technical Infrastructure Considerations for dPP
For collaborating over the Internet, we chose COTS solutions that are affordable, readily available,
and easy to learn and use. One goal of our work has been to see how effective dPP can be with a
simple, non-custom setup. Table 1 lists the programs and technologies used at various times and
in various combinations during our two case studies and our previous experiments.

Technology Capabilities Comments from users
NetMeeting Program Sharing, Whiteboard,

Text Messaging, Voice
Communication

We continued to refer to the
whiteboard stored on NetMeeting.

pcAnywhere Desktop Sharing Some firewall issues.
WS FTP File Transfer
TextPad Text Editing
Notepad Text Editing
Crimson Editor Text Editing Color codes JSP files.
Visio Diagram Creating Software Used to create our web flow diagram.
Yahoo
Messenger

Text messaging, File Transfer,
Voice Communication

We initially used this, but decided
against it because MSN Messenger
can start NetMeeting easily, while
also having the same features as
Yahoo Messenger.

MSN Messenger Text messaging, File Transfer,
Voice Communication, Start
NetMeeting

WinZip Zip and Unzip Files
HomeSite HTML Editor Used to write the meeting minutes.
CVS File Repository and Management It was too difficult to set up and

- 4 -

Technology Capabilities Comments from users
seemed unnecessary.

Tomcat Server Allowed us to view JSP.
Internet Information and Communication

Medium

Group Web Site Web Site Used to store meeting minutes and
project documents

Internet Explorer Web Browser
Netscape Web Browser
Email Text Communication/File Transfer
Putty Shell
Eclipse Integrated development

environments (IDE)
We tested the Sangum plug-in for
dPP.

Table 1. Programs and technologies used in our studies

We have developed systems with dPP infrastructures based on both NetMeetingTM (Microsoft) and
pcAnywhere (Symantec). Some pairs have preferred one, some the other; we have recorded the
various reasons given for the preferences. Both programs, though, share important functions and
characteristics needed for dPP:

remote desktop sharing, program sharing, file transfer, session security (password login,
authentication, encrypted transmissions)

In addition, these capabilities are needed (or desirable) for dPP:
audio conferencing, whiteboard, text chat

NetMeeting provides them integrally; but pcAnywhere requires third-party programs that are then
shared with the desktop. Finally, video may have uses in dPP; this is a point for further research.

3. Spring 2002 Comparative Study
In Spring 2002, eight graduate students (four at NCSU, four at UNC-CH) participated in a five-
week dPP/dXP experiment. We formed four distributed pairs, each having one student at UNC
and one at NCSU. About 30 miles separates these locations so there was no face-to-face contact
within a group, and all communication was done via the Internet connection between the
campuses.
 Two of the groups worked as virtual synchronous pairs (utilizing dPP); we refer here to them as
“dPP pairs”. The remaining two worked as more traditional virtual teams (no pair programming);
we refer to them as distributed, non-paired teams, or “dNP teams”. Allocation of students to
groups was done randomly without regard to preferences. All four groups had to conform to the
13 XP practices (except the two dNP teams did not practice pair programming). Each group
worked independently on a card game, so four separate versions of the same game were produced.
The dPP pairs first tried pcAnywhere for desktop sharing, but they had trouble passing through
each other’s firewalls as they worked from different universities. Ultimately, they chose
NetMeeting for development, but Yahoo Messenger was favored over MSN Messenger for voice
communication. The dNP teams wrote their code independently and e-mailed it back and forth.
All four groups had a common storage area where they could upload their code after modifications

- 5 -

and view the other programmer’s code. Programming was done in Java, and JUnit2 testing was
used for all projects.

The results reported here came from analysis of programmer feedback and project output
throughout the experiment. The number of test cases passed is the metric used for program
quality. Since all groups developed the same product, the productivity measure is mean total time
for development; this frees the analysis from typical concerns with lines of code measures.

D evelo p ment T ime

0

2

4

6

8

10

12

14

16

Dist r ibut ed Pair Disrt ibut ed Team

Average output analysis of test cases

0

10

20

30

40

50

60

70

Distributed Pair Distributed Team

N
um

be
r o

f t
es

t c
as

es
 p

as
se

d

 Fig. 1. Development Time (days) Fig.2. Unit tests written and passed

Figure 1 shows that the dNP teams took a greater amount of time (in days) compared to the dPP
pairs. The dNP teams spent considerable time coordinating their activities and integrating their
code. Whenever a question arose, they took more time to clear it due to the limitations of
communication. The dPP pair members made “appointments” with each other for virtual
collaboration sessions; the partners always kept their commitments to these appointments and
made significant progress during each session. Conversely, the dNP team members often delayed
progress because they felt they were “too busy to work on the project right now”. Ultimately, this
caused a significant delay in project completion; one dNP team never finished the project to
completion. This supports earlier findings that pairs put a positive form of “pair pressure” on each
other [5,18-20]. One can easily see a parallel between the student work ethic effects of pair
programming and similar effects among professional industrial programmers.

Since programming was in Java, the groups wrote unit test cases using JUnit. Figure 2 shows
the average number of test cases that were written and passed in JUnit testing. DPP pairs wrote
just over 60 tests, whereas dNP teams wrote just under 40 tests. XP requires test-driven
development (TDD), meaning programmers write unit test cases prior to implementing code [4].
In general, we consider that groups writing more unit test cases have better tested code than
groups writing fewer test cases. Particularly with TDD, writing more test cases is associated with
producing better structured code that is more likely to ultimately pass acceptance tests [9].

Figure 2 shows that dPP pairs wrote 70% more unit test cases than the dNP teams. Since the
dPP pairs were working synchronously, they could concurrently decide on the flow of the code
and on the test cases that could be implemented. These pairs never needed to integrate their code
because they worked on the entire project together. The dNP teams needed to separately and
specifically integrate their individual efforts. At times, they could not write as many test cases to
fully test the integration of newly written code because their partner’s code was not yet in the code
base. Other significant factors include pair pressure and pair brainstorming [18]. Pairs are more

2 See http://www.junit.org/ .

- 6 -

http://www.junit.org/

likely to write a thorough set of test cases because they are continually “watching over” each other
and can brainstorm more test cases by putting their brainpower together.

Conformation to given test cases

0

2

4

6

8

10

12

14

16

Distributed Pair Distributed Pair Distributed Team

N
um

be
r o

f t
es

ts

Fig. 2. Acceptance tests Passed

All four groups were required to record their user stories and the acceptance tests they
performed for the software using Bryce3, a Web-based software-process analysis system used to
manage projects and to record development metrics. The results of these measures are shown in
Figure 3. These results were obtained by running the code against a fixed set of 15 test cases
determined before the experiment. Both the dPP pairs satisfied all the test cases. One dNP team
satisfied 12 test cases, and the other did not complete the project. The sample size is too small to
do a statistically significant analysis of the data.

Teams Quality of Development

Experience
Communication Among

Team Members
dPP pair 1 Very good Very good
dPP pair 2 Very good Very good
dNP team 1 Good Good
dNP team 2 Poor Poor

Table 2. Qualitative Feedback

The developers were also required to give feedback about their overall development experience
and their team communication. The allowed response range was very good, good, fair and poor.
As shown in Table 2, the dPP pairs reported a better experience. The main reason for this was that
dNP team 2 was not able to complete the project on time due to lack of coordination between the
members. Moreover, dNP team 1 experienced difficulties when there was a difference in
understanding of the architectural model that took almost two days to rectify. From this case
study we can say we have further suggestive evidence that the synchronous paired teams
performed better than the non-paired teams.

4. Fall 2002 Case Study
The second case study we have completed was done in the fall of 2002. We created one pair,
distributed with one grad student at UNC and the other from NCSU. The NCSU student worked
from a home office, connected to the Internet via cable modem. The UNC programmer used a

3 See http://bryce.csc.ncsu.edu

- 7 -

http://bryce.csc.ncsu.edu/

campus office with a 100-megabit Internet connection. Unlike the prior comparative study, in this
development there was no face-to-face meeting to start the project. Email was used for initial
contacts and team organization. Four meetings online were needed over the course of the first
three weeks to try various technologies and settle on a collection of tools that worked well for the
computing environment the pair members had. Table 3 summarizes the computing environments
used by each programmer.

Property Remote system Host system
Net Connection Internet II backbone, UNC office Cable modem, home office
Communications Headset Speakers and microphone
Operating Sys Windows2000 Windows 98
Ram 128 MB 384 MB
Processor Speed 400 MHZ 933 MHZ

Table 3. Computing Platforms used by the pair members

 The pair sessions were divided into two main segments: infrastructure tests, and development.
The first few pair sessions were technology tests, spent trying various combinations of dPP
support programs for effectiveness and to establish their preferences. The pair settled on MSN
Messenger for voice communication and pcAnywhere for screen sharing. The first session after
that was used to code a simple magic square program as a “development shake down”, in which
the pair became accustomed to the behavior patterns needed to produce working code in the dPP
environment they chose. Once their dPP environment was established, the remaining sessions
comprised the measured development. Each development session had six activity blocks:

1. Each person logs onto MSN Messenger.
2. One of the pair would request a voice communication.
3. Start pcAnywhere (UNC as remote, NCSU as host)
4. Pair programming
5. Discussion about what to do in the next meeting and confirm next day to meet.
6. Post meeting minutes to website.

 The pair produced a tool to support future XP projects: a pair matcher that takes factors such as
experience, personality type, and preferences into account to try to form pairs that are likely to be
effective. This project ended up as a set of about 20 Java server pages with a web interface. The
pair spent a total of 37.25 hours in development from 9/19/02 to 11/25/02, using 18 online
sessions averaging 2.07 hours each. The longest session was 3.25 hours, and the shortest was 0.75
hours. Minutes and observations were kept of all meetings; they can be reviewed online at the
project web site http://www.cs.unc.edu/~dsjen/pair/ along with user stories for the program and an
architecture diagram of the system they produced.

Observations on the dPP technical infrastructure

The software used fir dPP must compensate as much as possible for the lack of physical contact
between team members. The team in this study decided that pcAnywhere best emulated the co-
located environment (the prior study participants used NetMeeting). Alternate environments, such
as NetMeeting and Eclipse with a pair programming plug-in4, also allowed the sharing of
programs, but the methods for doing so were deemed less effective for the pair. The following are
technical problems observed with the dPP infrastructure:

4 See http://www.industriallogic.com/software/sangam.html

- 8 -

http://www.cs.unc.edu/~dsjen/pair/
http://www.industriallogic.com/software/sangam.html

• Inability to copy and paste from one computer to another. The person connecting to the
other’s desktop was not able to copy and paste from his own desktop, which would have been
a convenient feature.

• In NetMeeting, mouse locus behavior prevented use of a PC when the other pair member was
driving.

• NetMeeting exhibited graphics problems drawing cursors that pcAnywhere solved.
• Network-based voice communication occasionally would break up, making hearing one’s

partner very difficult.
• One partner was using speakers instead of a headset, producing an audible echo in the headset

of the partner (who would hear himself talking with a delay). Initially the partner found this
distracting, and spoke slowly and haltingly to compensate. However, he reported becoming
used to it, could ignore it, and even expected it as an indication of a live connection.

• When using pcAnywhere, transferring control to another is much easier.
• Remote machine should have a screen size slightly larger than the host machine; this allows

the window showing the host PC to fit entirely on the remote, requiring no scroll bars.
• There was some lag in mouse motion and editor scrolling; however, it was minimal, easily

adapted to, and not noticeable after a few initial sessions.

5. Lessons Learned
These new studies, and our earlier ones, have allowed us to gathered some observations we think
characterize effective virtual team development of software with dPP using an inexpensive,
COTS, easy to learn/use technical environment. These lessons include:

� At least one, but perhaps periodic, face-to-face meeting is beneficial. In the comparative
study, the students used one such meeting to get to know each other and to brainstorm their
initial system architecture.

� The developers have been found to work better when they strike a good rapport with their
partner at a personal level. Groups in the beginning exchanged URLs to their personal Web
homepages so that one developer could learn about the other.

� Using a tool that allows for the distributed teams to quickly switch between a design view,
such as a class diagram, and a code view is beneficial. The TogetherSoft Control Center5 has
this capability.

� Distributed pair programmers absolutely must be willing to speak while they work. They
must explain what they are doing as they are doing it or the navigator quickly gets lost.
Programmers who are not willing to speak almost continuously should probably not try to
work this way.

� Beyond the necessary basics (screen sharing, audio communications, file transfer), the
appropriate technical infrastructure for dPP appears to vary with individual tastes; some teams
were forced to one product or another by specific computing platform issues (firewalls,
communication speeds), but overall different teams ended up selecting different combinations
of NetMeeting, pcAnywhere, MSN Messenger, and Yahoo Messenger. All combinations
worked effectively once the programmers were happy.

� Screen sharing programs used in dPP alleviate potential file duplication, data coherence and
consistency problems that could occur with integrating forms of virtual teaming; one member
of the pair is always the host and work is always off one project base.

5 See http://togethersoft.com

- 9 -

http://togethersoft.com/

Advantages of dPP over co-located PP

In exit interviews, the participants noted they had benefited from many of the previously observed
advantages of co-located pair programming, such as pair learning, pair pressure, two-brains better
than one, etc. Our studies indicate that distribution does not destroy or hinder these co-located PP
advantages. In addition, distributed PP has these advantages over co-located PP:
• Visibility is improved over collocated pair programming at a single PC/monitor, since each

dPP participant has a screen.
� The navigating dPP participant can use the PC to search the Web for resources
� No office changing or travel is needed to meet one’s partner; work on other projects can

continue until dPP appointment time.
� Although not tested, meetings are possible when on trips, out of town, etc.
� Pairs are forced to keep electronic copies and records of our work and ideas. For example,

instead of drawing on a physical whiteboard, the participants used NetMeeting’s whiteboard.
This ensured they would be able to go back and look at earlier plans.

� Pair members are less likely to start conversations off topic; meetings are almost completely
focused on the task. The computer is the medium for all exchanges, and participants can’t turn
away from their computers and chat one-on-one.

Disadvantages of dPP compared to co-located PP

The study participants observed these disadvantages of dPP over co-located PP:
• Users can’t point, making it difficult to describe where a problem is; line number naming

helps, but it takes a noticeable amount of time for the other to find the line number.
• A problem with one computer forces both to stop working; this theoretically doubles the

MTTF over using a single computer (as in co-located PP)
• Pair members can’t see facial expressions; Webcams are too small, too limited in frame rate,

and too expensive in bandwidth consumption to help here.
• Passers-by often don’t know a programmer is in a dPP session, and will enter an office and

begin a conversation; a specific sign must be used to tell this if one does not want a shut door.
• There was a learning curve with dPP that is not present in co-located PP.
• Lack of physical proximity means large amounts of time spent on verbal explanations that

could rapidly be resolved by a visual diagrams; although NetMeeting has a whiteboard, it is
cumbersome to use and does not adequately solve this problem.

6. Conclusions and Future Work
Our experiments support these conclusions about the efficacy of distributed pair programming:
• Pair programming in virtual teams is a feasible way of developing software.
• Our earlier work found that dPP programs were equal in quality to those produced both by co-

located pairs and by teams not synchronously paired; these new studies continue to uphold
this as well, in that dPP pairs produced better programs than dNP teams.

• Effective collaborative software development is possible with a few simple, non-custom,
widely-available tools (screen sharing, Internet-based audio communications)

• Feedback from the participants indicates that synchronous pairing (pair programming)
engenders better teamwork and communication within a virtual distributed team.

• Distributed pairs maintain many of the benefits (pair pressure, pair learning, two brains) seen
in co-located pairs

The studies have some limitations, which we seek to get beyond with further experiments. We are
currently studying the following dPP and dXP issues and questions:

- 10 -

Sample size. We plan to repeat these case studies to build up a larger base of results.

Teams vs. pairs. We plan to run larger dPP efforts requiring more than a single pair per team.

Whiteboard, pointing, and facial expressions. As in earlier experiments, we continue to see
pairs needing better capabilities for indicating areas of interest (“pointing”) and whiteboard use.
While NetMeeting has a built-in whiteboard, the participants found it limited and awkward to use,
and we suspect all software whiteboard programs will be the same. The problem is size, and using
wrist muscles to do drawing (not natural). The participants also indicated a desire to see facial
expressions, but Webcam’s were ineffective for the reasons cited above.
 To investigate these problems we are doing follow-on experiments with a video-enhanced dPP
environment [16]. The environment uses 2 PCs: one with the screen sharing infrastructure used
here, and the other projecting a full screen image of the partner on a wall to the side of the
programmer, in arm’s reach. We have a whiteboard digitizer on this projection surface. Pair
members can easily shift off video, then reach out and draw normally (with virtual ink); the
drawings are shared and are projected at the partner’s site. A button push restores video.

No “chit chat”. We had one programmer make an interesting comment about the technical
infrastructure and the fact that it is not as “seamless and glitchless as face-to-face conversation.”
This participant had developed several programs using co-located pair programming in a class at
UNC. He then participated in one of the dPP developments. When asked to compare the
experiences, he noted that in co-located pair programming he and his partner has spent a fair
amount of time “chit chatting” and that this was not possible (or did not happen to near the same
degree) in the dPP infrastructure. This comment could be taken to mean the dPP infrastructure
provides a decreased capability for human, team-building interactions; his implication, however,
was that the dPP infrastructure oddly enough increased productivity by offering slightly less fluid
interactions. He suggested that the communications mechanisms, while adequate and effective for
code development, were not smooth enough to encourage extraneous talking. We find this an
interesting point for further investigation.

Acknowledgements We gratefully acknowledge Intel for providing Webcam equipment,
Symantec for providing pcAnywhere software, and IBM for donating PC equipment in support of
our experiments. We would also like to recognize NCSU graduate student Vinay Ramachandran
for developing the Bryce tool for recording project metrics. Our research was also partially
supported by the US Environmental Protection Agency under grant # R82-795901-3.

References

[1] Baheti, P., Gehringer, E., and Stotts, D., "Exploring the Efficacy of Distributed Pair Programming,"

Proceedings Extreme Programming/Agile Universe, Chicago, IL, 2002.
[2] Baheti, P., Williams, L., Gehringer, E., and Stotts, D., "Exploring Pair Programming in Distributed

Object-Oriented Team Projects," Proceedings OOPSLA Educator's Syposium, Seattle, WA, 2002.
[3] Beck, K., Extreme Programming Explained: Embrace Change. Reading, Massachusetts: Addison-

Wesley, 2000.
[4] Beck, K., Test Driven Development -- by Example. Boston: Addison Wesley, 2003.
[5] Cockburn, A. and Williams, L., "The Costs and Benefits of Pair Programming," in Extreme

Programming Examined, G. Succi and M. Marchesi, Eds. Boston, MA: Addison Wesley, 2001, pp.
223-248.

[6] Dutoit, A. H., Bruegge, Bernd, "Communication Metrics for Software Development," IEEE
Transactions on Software Engineering, pp. 615-628, 1998.

- 11 -

[7] Foley, S. P., "The Boundless Team: Virtual Teaming," Seminar in Industrial and Engineering
Systems, Master of Science in Technology (MST) Graduate Program, Northern Kentucky
University MST 660, July 24, 2000.

[8] George, B. and Mansour, Y. M., "A Multidisciplinary Virtual Team," Proceedings Systemics,
Cybernetics and Informatics (SCI) 2002, 2002.

[9] George, B. and Williams, L., "An Initial Investigation of Test-Driven Development in Industry,"
Proceedings ACM Symposium on Applied Computing, Melbourne, FL, 2003.

[10] Gould, D., "Leading Virtual Teams," Leader Values (Electronic), http://www.leader-
values.com/Guests/Gould.htm, July 9, 2000.

[11] Humphrey, W. S., A Discipline for Software Engineering. Reading, Massachusetts: Addison
Wesley Longman, Inc, 1995.

[12] McMahon, P. E., "Distributed Development: Insights, Challenges, and Solutions," CrossTalk, pp.
http://www.stsc.hill.af.mil/CrossTalk/2001/nov/mcmahon.asp, 2001.

[13] McMahon, P. E., Virtual Project Management: Software Solutions for Today and the Future. Boca
Raton: St. Lucie Press, 2001.

[14] Nosek, J. T., "The Case for Collaborative Programming," in Communications of the ACM, vol.
March 1998, 1998, pp. 105-108.

[15] Olson, G. M. and Olson, J. S., "Distance Matters," Proceedings Human Computer Interaction,
2000.

[16] Stotts, D., Smith, J., and Williams, L. A., "A Video-Enhanced Environment for Distributed
Extreme Programming," Department of Computer Science. Univ. of North Carolina at Chapel Hill,
Chapel Hill, NC TR-02-009, March 1, 2002.

[17] Traub, J., "This Campus is Being Simulated," in The New York Times Magazine, 2000, pp. 88-93+.
[18] Williams, L. and Kessler, R., Pair Programming Illuminated. Reading, Massachusetts: Addison

Wesley, 2003.
[19] Williams, L., Kessler, R., Cunningham, W., and Jeffries, R., "Strengthening the Case for Pair-

Programming," in IEEE Software, vol. 17, 2000, pp. 19-25.
[20] Williams, L. A., "The Collaborative Software Process PhD Dissertation," in Department of

Computer Science. Salt Lake City, UT: University of Utah, 2000.

- 12 -

http://www.leader-values.com/Guests/Gould.htm
http://www.leader-values.com/Guests/Gould.htm
http://www.stsc.hill.af.mil/CrossTalk/2001/nov/mcmahon.asp

	Prior Distributed Pair Programming Results
	Technical Infrastructure Considerations for dPP
	Observations on the dPP technical infrastructure

