
 1

Technical Report TR03-017

Department of Computer Science
Univ. of North Carolina at Chapel Hill

DeCo: A Declarative Coordination Framework for

Scientific Model Federations

Dean Herington and David Stotts

Department of Computer Science
 University of North Carolina
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

May 21, 2003

DeCo: A DeclarativeCoordination Framework for Scientific Model Federations

DeanHeringtonandDavid Stotts
Departmentof ComputerScience

Universityof NorthCarolinaat ChapelHill
ChapelHill, NC 27599-3175USA

E-mail:
�
heringto,stotts� @cs.unc.edu

Abstract

Program federation is assemblinga software system
from cooperating but independentapplication programs.
We presentDeCo,a declarative approach to creatingand
coordinatingfederations,anddiscussits applicationin the
domainof scientificcomputing. Manualprogrammingis the
currentnormfor creatingmodelfederations; in oneexam-
ple westudied,80,000linesof Unix scriptswere manually
generatedto federate five weathersimulationmodelsinto
a systemthat can producea 12-hourforecastin under12
hours. DeCois meantto automateseveral aspectsof this
currentlymanualprocess.

Participating programsanddatafilesare describedfor-
mally. Theexpressionof a compoundexecution,a federa-
tion, is givenin the functionallanguage Haskell, extended
with operations for large-grain program descriptionand
coordination. Thedeclarativeexpressionof a federation in
termsof dataflowamongthecomponentprogramscaptures
synchronizationrequirementsimplicitly andexploitsthein-
herentconcurrencyautomatically. Haskell compilation,no-
tably its rigoroustypechecking, ensurestheconsistencyof
thefederation. Operation of thecoordinationframework is
demonstratedona federationof Fortranprogramsthatsim-
ulateenvironmentalprocessesin theNeuseRiverestuaryof
NorthCarolina.

1. Intr oduction

We usethe term program federation to refer to assem-
bling a softwaresystemfrom cooperatingbut independent
applicationprograms.Combiningexisting large-scalecom-
ponentshasseveral well-known benefits: reducedcost of
construction,bettermodularity, greaterconcurrency,andin-
creasedpotentialfor reuse.

Manualprogrammingis typically usedto combineand
coordinatethecomponentsof a programfederation.While
sucha manualprocesscanachieve someof thebenefitsof

programfederation,it fails to realizethesebenefitsfully.
Moreover, a manualprocessis unnecessarilytediousand
error-prone.

We have built anexperimentalsystemcalledDeCo(for
Declarative Coordination)to automateaspectsof the con-
structionof programfederations.A programfederationis
expressedin thefunctionalprogramminglanguageHaskell
[11, 7], extendedwith operationsfor large-grainprogram
descriptionandcoordination.TheDeCosystemitself con-
sistsof approximately2150linesof Haskell. It is built using
theGlasgow Haskell Compiler[12] andrunson theLinux
operatingsystem.

Therearetwo key elementsto DeCo’s approachto pro-
gramfederation.

� Federationcomponents,aswell asthefederationitself,
aredescribedin Haskell, facilitating manipulationby
theframework. Besidesenhancingcomprehensionand
documentationof thefederation,thisdegreeof formal-
ity allowsDeCoto checktheconsistency of thefeder-
ationandenablesseveralkindsof automation.Aspects
of programfederationthatareautomatedinclude: re-
formattingdata;convertingdatastreamsamongfiles,
channels,andprogramvalues;synchronizingtheexe-
cution of componentapplicationprograms;andman-
agingdirectoriesandfiles.

� The federationis specifieddeclaratively, to the great-
est extent possible. Declarative specificationmakes
both DeCo’s formal automationanda federationau-
thor’s informal automationsimpler and more effec-
tive. The declarative approachleadsto explicit, con-
cise,andseparatespecificationof programfederation
issues,muchasfor componentadaptationissuesasde-
scribedin [2].

DeCois targetedatscientificmodelfederationssuitedto
large-graincoordination,that is, wherethe unit of execu-
tion tendsto beanentireexecution(possiblyrepeatedmany
times) of a programcomponent. The constituentmodels

tendto beexisting applicationprograms,usuallylargeand
written in imperative programminglanguagessuchasFor-
tran. They communicate,aswholeprograms,throughfiles
andoperatingsystemchannels,ratherthanassubroutines
via sharedvariablesor messagepassing.The modelsdeal
with many, often largefiles containingdatain a varietyof
formats.

Theremainderof thispaperis structuredasfollows.Sec-
tion 2 givesan overview of the architectureof the frame-
work providedby DeCo. Section3 describesa casestudy
in which we usedDeCoto federatetwo existing scientific
models. Section4 reviews the ways DeCohelpsto auto-
matethe task of programfederation. Section5 discusses
our experienceto datewith DeCo. Section6 mentionsre-
latedwork. Section7 concludes.

2. Framework architecture

This sectionoutlinesthearchitectureDeCopresentsfor
creatingprogramfederations.We first introducethemajor
conceptsby describingthe main componentsof a federa-
tion. Subsequently, we treatDeCo’s typing andexecution
models. Thenwe describesomeof the operationsusedto
constructa federation,to preparefor later examples. Fi-
nally, we briefly discusssomepragmaticissuesconcerning
filesanddirectories.

2.1. Main components

The preexisting componentsfrom which a federationis
constructedareapplicationprogramsanddatafiles. DeCo
modelstheseentitieswith the moreabstractnotionsof ex-
ecutor and stream to presenta simple yet rich semantic
modelfor coordination.Theseabstractnotionsarerealized
asconcreteHaskell entitiesin theHaskell codethatconsti-
tutesthefederation.

A streamis representedby theabstractdatatype

newtype Data t

An entity of type(Data �) representsan aggregationof
dataof type � . Thetypeof a streamis arbitrary, andthusso
alsois its size.

Note that a streamis not necessarilya sequenceof el-
ements.(Data Char) denotesa streamconsistingof a
singlecharacter, while(Data [Char]) denotesonecon-
sisting of a sequenceof characters.The useof the term
“stream” is intendedto indicatethat the stream’s contents
arereadandwritten in orderfrom thebeginningtowardthe
end,not that the streamimplicitly containsa sequenceof
elements.At thesametime, the nameData is chosenfor
theabstracttype to emphasizethata stream’s contentscan
betreatedasa whole,aswill beseen.

A stream’scontentscanexist in oneof threeforms: asa
Haskell value, asthecontentsof a file, or asthecontentsof
achannel(thedatareadfrom or writtento anoperatingsys-
temfile descriptor).By makingData anabstracttype,the
framework allows the threeformsof streamto be usedin-
terchangeablywhile accommodatingdifferentsortsof data
connectionbetweenprocessesin anefficientmanner.

An executoris representedby a Haskell function with
abstractresulttype

newtype EX t

Having aresulttypeof (EX �) allowsafunctionto manip-
ulatestreams.

The most importantkind of executoris onethat serves
as a proxy in the federationprogramfor an existing ex-
ternal applicationprogram. Such an executor invokes a
DeCo-suppliedutility to starta subordinateprocess,having
setup input andoutputconnectionsappropriately. On the
otherhand,anexecutormayalsobeimplementedpurelyin
Haskell, creatingno subordinateprocess.Suchanexecutor
might beusedto transformstreamcontentsfrom onesetof
typesto another, for example.However anexecutoris im-
plemented,it is usedin thesameway. Moreover, sincean
executoris simplyaHaskell function,it is first-class:it may
behigher-order, it maybepartially applied,etc.

A streamconnectionrepresentsa unidirectional data
flow betweenexecutors.Theexecutorproviding thestream
(andhencedefiningthecontentsof thestream)is termedits
producer. Theexecutorusingthestream(andhencerelying
on thecontentsof thestream)is termedits consumer.

The fact that federationmetadata—descriptionsof the
federation’s components—areexpressedin Haskell is cru-
cial to DeCo’scapabilities.First, it meansthatHaskell type
checkingensuresthe consistency of a federation.Second,
it allows DeCoto mediatestreamconnectionsbetweenex-
ecutorswherethereexist discrepancies.

The expressionof the federationitself is also given in
Haskell. A federationis castsimply asanexecutorthat in-
terconnectspreexistingexternalcomponents,usingstreams,
otherexecutors,andmetadata.

The abstract datatype (EX �) is an extension of
Haskell’s built-in type (IO �), which is used for in-
put/output actions. Hence, an executor, whose type is
(EX �), may perform suchside effectsaspart of its ex-
ecution.

io :: IO a -> EX a

Thisability is crucialfor executorsthatserveasproxiesfor
applicationprograms,asthey needto createprocesses,files,
anddirectories.

A federationis executedwith

runEX :: [String] -> EX a -> IO a

ThefunctionrunEX is passedalist of optionstringsandan
executor. Theexecutoris executedandits resultreturned.

The designof the executor abstraction—inparticular,
that an executorcan serve as a proxy for an application
program—hasanotheradvantage.A federationexpressed
asaHaskell programcanbeusedasanapplicationprogram
in a yet larger federation. Thus, federationsareappropri-
atelycompositional.

2.2. Typing model

To allow for widely varying datastorageformatswhile
providing maximumflexibility for datastreams,DeCode-
finesa two-level typingscheme.
� The(abstractor high-level) typeof astream,expressed

asa Haskell type,capturesthehigh-level semanticsof
thestreamdata.

� The(concreteor low-level) representationof astream,
encodedseparately, specifiesthe storageformat of
streamdatain a particularcontext.

This two-level schemeseparatesthe essentialtype of data
from its packagingasastream.Theseparationis akinto the
differencebetweenabstractandconcretesyntaxin a pro-
gramminglanguage.

Thetwo-levelapproachtostreamtypingprovidesseveral
key benefits.
� DeCo’s notion of streamcompatibility is simpleand

clear, beingdefinedin termsof Haskell types.

� Streamcompatibilityis verygeneral,asit is definedto
ignoremattersof representation.

� DeCo can automaticallymediatebetweena stream
produceranditsconsumerwhentheproducedandcon-
sumedrepresentationsdiffer.

Recall that a stream has the Haskell abstract type
(Data �), for some � . The type parameter� exactly
encodesthe high-level type of the stream. As a result,
Haskell’s type checkingensuresthat streamsare usedin
a type-safemanner. Moreover, Haskell’s type inferencing
relievesthe federationprogrammerin mostcasesfrom the
needto declarestreamtypesexplicitly.

At thelevel of datastorage,thecontentsof a streamare
deemedto consistof a sequenceof bytes. The low-level
representationof a streamis castasa translationbetween
a streamof bytesand a Haskell value of the appropriate
type. A decodingfunction translatesa streamof bytesto
a Haskell value.An encodingfunctiontranslatesa Haskell
valueto a streamof bytes.

An importantpropertyof (low-level) representationsis
that theremaybemorethanoneof themfor a given(high-
level) type. The alternative representationsfor a type are

expressedasdistinct Haskell types. A representationtype� is associatedwith a Haskell type � with an instancedec-
laration for ReprType � � . In this way, both new rep-
resentationsandnew associationsbetweenrepresentations
andtypescaneasilybedefined.

Data representationsare declarative and, in particular,
compositional.For example,therepresentation

TailSeq (ILenSeq 3 (UInt BE 16))

specifiesa tail sequence(a sequencedelimited by endof
stream)whoseelementsare implicit-length sequencesof
length 3 consistingof elementsthat are unsigned,big-
endianintegersof length 16 bits. Such a representation
is suitablefor the two types[[Integer]] (lists of lists
of unboundedintegers) and [[Int]] (lists of lists of
boundedintegers).

2.3. Executionmodel

A federationis essentiallyexpressedasa directeddata-
flow graph,wherethenodesareexecutorinvocations(exe-
cutions) andtheedgesarestreamconnectionsamongthem.
Federationcontrol flow—that is, the temporalsequenceof
executions—isderived automaticallyfrom the data flow.
The characteristicsof the streamconnectionsamongexe-
cutionsimply theappropriatesynchronizationamongthose
executionsandallow DeCoto realizethe inherentconcur-
rency of the federationautomatically. The complexities
of this data-flow machineryarehiddenfrom thefederation
programmerby theabstracttype(EX �).

Complexities of a relatedsortarehiddenby theabstract
type(Data �). In certainsituations,it is essentialthata
streambe accessedincrementally. That is, it mustnot be
necessaryfor laterportionsof a streamto be generatedby
its producerbeforeearlierportionsof that streammay be
consumedby anotherconcurrentexecution.For example,if
a streamconnectingtwo executorscould be of unbounded
size,it maynot beacceptablefor theconsumerto wait for
theentirestreamto beproducedbeforestartingto consume
it. Similarly, if thestreamconnectingtwo executorsis not
of unboundedsize but rathersubjectto unboundeddelay
duringits production,it maynot beacceptablefor thecon-
sumerto wait for theentirestream.

At the same time, it is useful to treat the contents
of a stream in its entirety, as a single Haskell da-
tum. Streamprocessing—especiallydatatransformation—
is greatlysimplifiedif theentirecontentsof astreamcanbe
directly patternmatched,passedamongfunctions,mapped
over, etc. Eliminating the needfor explicit, incremental
manipulationof streamcontentsallows for a much more
declarativetreatmentof streamdata.

Fortunately, thesetwo seeminglycontradictoryviewsof
a streamcanbe reconciledby exploiting Haskell’s ability

to readlazily. A Haskell input/outputoperationthat reads
andreturnstheremainingcontentsof afile or channel(such
asreadFile) returnsanunevaluatedstringwhosesucces-
sive charactersaresubsequentlyreadfrom thefile or chan-
nel whentheir valuesare later demandedby the program.
(This featurereliescrucially on Haskell’s nonstrictevalua-
tion semantics.)Usingthis feature,DeCois ableto provide
a fully declarativetreatmentof streams.

2.4. Federationconstruction

Although a streamusually can andshouldbe manipu-
latedwithout regardto its form (asvalue,file, or channel),
this is clearlynot alwayspossible.A federationmustcom-
mit to the form of a streamwhereit originatesandwhere
it terminates,including at the interfaceto an externalpro-
gram.For this purposeDeCoprovidestypeswith which to
describetheformsof astream.

� A (File �����
	 ��� � � :: File �) representsa
file with pathname����
	 containingdataof type � in
representation��� � � .

� A (Channel ����� ��� � � :: Channel �) rep-
resentsa channelwith extendedfile descriptor �����
containingdataof type � in representation��� � � .

� A (Value ����������� :: Value �) representsa
value ����� with finishvalue ����� . (Althoughthedetailed
mechanismis beyondthe scopeof this paper, the fin-
ish valueenablesdetectionof “run-on” streamsin the
context of lazy readingof streamcontents.)

Thesetypesareusedwith the following conversionfunc-
tions.

fromFile :: File t -> EX (Data t)
toFile :: File t -> Data t -> EX ()
fromChannel :: Channel t -> EX (Data t)
toChannel :: Channel t -> Data t -> EX ()
fromValue :: Value t -> EX (Data t)
toValue :: Data t -> EX (Value t)

Whenimmediateconversionto or from a valueis desired,
thefollowing functionsareuseful.

fromVal :: t -> EX (Data t)
toVal :: Data t -> EX t

In addition,the functionfrom is overloadedandcansub-
stitutefor fromFile, fromChannel, andfromValue,
and the function to is overloadedand can substitutefor
toFile andtoChannel.

2.5. Files and Dir ectories

Duringtheexecutionof afederation,threedirectoriesare
maintainedby DeCo.

� The top directory is the directory that was current
whenthe federationbeganexecution. The top direc-
tory remainsfixedfor thedurationof federationexecu-
tion. It servesasa referencepoint within theinvoker’s
directoryenvironment.

� The run directoryis a new directorycreatedwhenthe
federationbeginsexecution.It is therootof adirectory
subtreethatservesasa repositoryfor new filescreated
by thefederation.Therundirectorynameandlocation
areundercontrolof theinvokerof thefederation.The
run directoryremainsfixedfor thedurationof federa-
tion execution.

� The current directory is a directory within the sub-
tree rootedat the run directory that associatesa por-
tion of thatsubtreewith thecurrentlyexecutingfeder-
ationcode.Thecurrentdirectorystartsoutequalto the
run directorybut mayvary undercontrolof federation
code. It definesa “directory scope”duringexecution;
in particular, it providesthedefault initial directoryfor
externalprograminvocations.

The operatingsystemmaintainsa “current working di-
rectory” for a processthat may vary during processexe-
cution. Varying the currentworking directoryduring fed-
eration execution, however, would lead to unpredictable
results,becauseexecutorsare implementedas concurrent
Haskell threads. Instead,DeCo leaves the actualcurrent
workingdirectoryunchangedandprovidesavirtual one(the
currentdirectoryintroducedabove) thatworks properlyin
thepresenceof multiple threads.

Federationcode managesthe current directory with
inDir.

inDir :: FilePath -> EX a -> EX a

(inDir ��� � �����) createsa directory named ��� � in the
currentdirectory, thenperforms����� with ��� � asthecurrent
directory. In otherwords,inDir opensa new, temporary,
directory scopefor the executionof a subordinateaction.
Note that, althoughthe currentdirectory reverts after the
subordinateactioncompletes,the file subtreerootedat the
newly createddirectorypersists.

DeCo’s interpretationof pathnamesis extendedto pro-
videaccessto thetop,run,andcurrentdirectories,asshown
in the following table. The remainderof a pathnamewith
the indicatedinitial characteris interpretedrelative to the
correspondingdirectory.

@ top
run
$ current

In addition,a pathnamebeginningwith a/ characteris in-
terpretedas usual,whereasa pathnamebeginning with a

characterother than thesefour (@ # $ /) is interpreted
relative to thetopdirectory(asif it wereprecededby @).

Having describedthe designof DeCo,we now proceed
to applyit to a realisticcasestudy.

3. Casestudy

DeCowasappliedto a realisticallycomplex casestudy
in orderto assessits effectiveness.Thecasestudyinvolved
the federationof two existing environmentalmodels for
aspectsof the NeuseRiver estuaryin easternNorth Car-
olina. Thefirst modelsestuarywaterquality throughtime,
giveninitial concentrations,inflow rates,andoutflow rates
of waterconstituents,plusmeteorologicaldatafor themod-
eled time period. The secondmodelschemicalprocesses
in the sedimentunderlyingthe river, computingfluxesof
constituentsbetweenwaterandsediment.

The watermodel is a singleprogramof approximately
9300lines. Thesedimentmodelconsistsof two programs,
whosetotal size is approximately4700 lines. Both mod-
els are written in Fortran 77. (Note that DeCo makesno
restrictionwith respectto thesourcelanguageof a compo-
nentprogram. Externalprogramsto be federatedmay be
written in any language.)Togetherthetwo modelsreadand
write dozensof filesduringtheir execution.

The goal of combiningthesetwo modelswasto obtain
a more precisesimulationof the physical,chemical,and
biological processesoccurringin the NeuseRiver estuary.
When run separately, eachmodel makes simple assump-
tionsabouttheother’s medium:thewatermodelaboutthe
sediment,andthe sedimentmodelaboutthe water. In the
federation,eachmodelprovidesamoresophisticatedsimu-
lationof its mediumfor theothermodel.

The watermodeloperatesin two spatialdimensions.It
modelsdepthby dividing theriverinto half-meter-thick lay-
ers.It modelslengthalongthecourseof theriverby divid-
ing theriverinto 59segments,with anaveragelengthof just
overonekilometer. Width of theriver is notmodeled.

Besidesthe two spatial dimensions,the water model
modelstime. Thedesiredsimulationperiodis dividedinto
many time intervalsor steps.During eachtime step(from
earlier to later times), the variousphysicalparametersare
computedfor eachlayerof eachsegment,moving alongthe
river in the downstreamdirection. The sizeof a time step
is varied heuristically to save computationtime: Longer
time stepsareusedwhenphysicalprocessesoperatemore
slowly.

Thesedimentmodel,ontheotherhand,is spatiallyzero-
dimensional;its calculationsapply to a singlepoint where
waterandsedimentmeet.Givenconcentrationsof relevant
chemicalsin thebottomwater, it computesfluxesfor these
chemicalsbetweensedimentandwater.

In federatingthewaterandsedimentmodels,thedesired
effectis thatthetwo modelsactascoroutines.Thatis,asthe
watermodelstepsthroughtime for a particularsegmentof
theriver, aninstanceof thesedimentmodelfor thatsegment
takesthesamestepsthroughtime. Notethat thedifference
in dimensionalitybetweenthetwo modelsisaccommodated
by replicatingthe sedimentmodelalongthe lengthof the
river. Eachmodelevolves its own medium,taking initial
conditionsfrom anddeliveringfinal conditionsto theother
modelfor eachtimestep.

While conceptuallysound,the approachjust described
suffersseveralpracticalproblems.� Representingthe two modelsas actualcoroutinesof

each other would require major rework of the ex-
isting programs,involving either merger of the two
programs—therebylosing modularity—orsignificant
restructuringof both to allow them to interoperate
moreintimately.

� The much greaterexecution cost for the sediment
model comparedto the water model (approximately
five times)makesit prohibitively expensive to run the
sedimentmodelwith thesamefrequency asthewater
model.

� Moreover, andfortunatelyso,sedimentchangesmuch
moreslowly thanwater, soit is fruitlessto run thesed-
imentmodelat thesamefrequency asthewatermodel.

� Becausethe calculationsof the sedimentmodel de-
pendon environmentalparametersmeasuredat only
four samplingstationsalong the river, the sediment
model can only sensiblybe replicatedfour times to
cover thelengthof theriver.

Thesolutionto theproblemsdescribedabove is to leave
the modelsas separateprogramsand to arrangefor their
executionsto alternate. The sedimentmodel is replicated
four times, oncefor eachregion of the river. Thesefour
instancesof thesedimentmodelarerunatalowerfrequency
than the watermodel. Datapassedfrom the watermodel
to thesedimentmodelareaveragedwithin eachregion and
over groupsof watermodeltime stepsthatcorrespondto a
singlesedimentmodeltimestep.Conversely, datafrom the
four instancesof thesedimentmodelarereplicatedfor the
segmentscorrespondingto a region andthenjoined along
theriver’s lengthbeforebeingpassedto thewatermodel.

Figure1 illustrateshow thetwo modelsdivide thestudy
areaof NeuseRiver estuarydifferently andhow this spa-
tial mismatchis resolved. Thenarrow bandsthatcrossthe
river’s width representthe water model’s segments,num-
bered2 through60 above the river. Thesesegmentsare
groupedinto four regions,numbered1 through4 below the
river. Eachregion containsonesedimentsamplingstation,
shown in thefigureasa thick dot.

�

�

�

�

�

�
�

�

 ! " # $ % &

' % (" &) * +

, " - . " #

/ 0 1 1 / 21 0 0 30 4 5 6 1
7 8 9 : ; <= < > ? @

A
B

C D
A E A F

G F G H I I I B

E D
A D

Figure 1. Neuse River stud y area

In additionto thedifferencesin dimensionalityandgran-
ularity describedabove, thereareother, smallerdifferences
to bemediatedbetweenthetwo models.

� Theunitsin which dataareexpressedin thetwo mod-
elsdiffer.

� The forms and formats in which the dataare stored
differ betweenmodels.

Theprogramfederationfor theNeuseRiver studyis too
large to show herein its entirety. Insteadwe give several
fragmentsasexamplesof federationcode. We do not at-
temptto explain every detail of theseexamples;their pur-
poseis ratherto give a senseof the level of expressionof
federationcode.

We startby consideringa singlestepof the main itera-
tion,duringwhichthewatermodelis executedonceandthe
sedimentmodel four times,asdescribedearlier. Figure2
shows the flow diagramfor a singlestepof the main iter-
ation. The stepbegins—andends—atthe lower left, with
flow proceedingclockwise. Comparethis diagramwith
thecorrespondingportionof federationcode,shown below.
Functionstep first converts the pathnamefrom the pre-
vious step(argumentprev) andthe stepinformation(ar-
gumentiter) to simpleHaskell values.Thenit createsa
freshsubdirectorynamedby the stepnumber(n). In this

subdirectory, the currentfluxes are derived from the pre-
viousstep’s results,the watermodel(representedby func-
tion wat) is invoked in subdirectorywat, the information
neededby the sedimentmodelis extractedfrom the water
model’smainoutput,theinputto thesedimentmodelis pre-
pared,the sedimentmodel (representedby function sed,
whichinvokesfour copiesof theactualsedimentmodelpro-
gram)is invokedin subdirectorysed, thenewly computed
fluxesarestored,andthe currentstep’s subdirectorypath-
nameis returnedfor useby thenext step.

step prev iter = do
prevElts <- toVal prev
(n, times) <- toVal iter
inDir (show n) $ do
watIn <- watFluxes prevElts
watOut <- inDir "wat" (wat times watIn)
watToSed <- toVal watOut >>= extractParams
sedIn <- sedInput n times watToSed
sedOut <- inDir "sed" (sed prevElts sedIn)
fromVal sedOut >>= to fluxesFile
curDirElts >>= fromVal

ThevaluefluxesFile definesa file streamwith type
SedAllOut andrepresentationsedAllOut (not shown
here).(In Haskell, thenamesfor typesbeginwith uppercase
lettersandthosefor valuesbegin with lowercaseletters.)

fluxesFile :: File SedAllOut
fluxesFile = File "$fluxes" sedAllOut

Figure 2. Neuse River stud y flo w diagram

ThefunctionodePOC definestheproxyexecutorfor ex-
ternalprogramodePOC, oneof thetwo programscompris-
ing thesedimentmodel. Thesingleargument7 to thepro-
gramselectsbatch-likebehavior; theprogramwasdesigned
for interactiveuseaswell.

odePOC pocIn = executor $ do
pocIn’ <- wantChannel (Just sedRegIn) pocIn
(chk, chk’) <- makeFile (Just "Parameter.chk")

(Just text)
body $ \ bh -> do

chan <- pocIn’ Nothing
awaitTrigger bh
process <- startProgram "odePOC" False ["7"]

Nothing Nothing [(0, chan)]
awaitTermination process >>= checkStatus
chk’ Nothing Nothing

return (chk :: Data String)

4. Automating model federation

In this section we review the ways in which DeCo
helps to automatethe tasksof programfederation. The
first threesubsectionsnotespecificfeaturesof the frame-
work, whereasthelastdescribesgeneralcapabilitiesresult-
ing from thefactthatDeCois basedonandbuilt in Haskell.

4.1. Streammediation

Automaticstreammediationis oneof DeCo’smajorben-
efits.Providedtheproducerandconsumerof astreamagree
onthestream’stype,mismatchesin bothdatarepresentation
andform areautomaticallyresolved.

Recall that the representationfor a streamis specified
separatelyfrom its type. The type specifiesthe concep-
tual format for the streamcontents,while the representa-
tion extendsthatspecificationto thecontents’actualformat
in termsof a byte string. A representationmismatchoc-
curs when an actualand a desiredstreamhave the same
type but differentrepresentations.In this situation,DeCo
insertsadaptationcodeautomaticallyto resolve the repre-
sentationaldiscrepancy. The adaptationcodedecodesthe
bytestreamof theactualstreamaccordingto theactualrep-
resentation,thenencodesit accordingto thedesiredrepre-
sentation.The additionof this extra stepis transparentto
thefederationprogrammer.

The contentsof a streamcan exist as a file, an oper-
ating systemchannel,or a Haskell value. With DeCo a
stream’s form is independentof both its type and its rep-
resentation,so that streamsof all threeforms canbe used
interchangeably. DeComediatesmismatchesin actualand
desiredstreamform by converting the actual form to the
desiredone. As for streamrepresentation,insertionof the
adaptationcodeis transparentto thefederationprogrammer.

4.2. Program synchronization

BecauseDeCo usesa data-flow executionmodel, the
federationprogrammeris relieved of the responsibilityfor
synchronizingtheexecutionof thecooperatingapplication
programs.Programsarerun whentheir input datastreams
areavailable.For example,if aprogramtakesafile asinput,
its executionwill not bestarteduntil thefile hasbeencom-
pletely written. On the otherhand,if the programreadsa
streamvia its standardinput, theprogramcanbegin execu-
tion onceits correspondingchannelhasbeenopened,even
thoughnot all of thestreamhasyetbeenwritten.

The fact that DeCo managesprogramsynchronization
reducesthe context dependenceof a componentprogram.
As a result,a componentprogramcanmoreeasilybeused
in differentfederations,or in differentcontexts in thesame
federation.As aprogramfederationevolves,changesto the
forms of inputs to componentprogramsareautomatically
reflectedin thesynchronizationof theseprograms.

A further benefitof the data-flow approachis that the
potential concurrency amongcomponentprogramexecu-
tions is evident. DeConaturallyexploits this concurrency.
Indeed,in caseswheretwo or morecomponentprograms
communicatein pipelinefashion,it is often importantthat
theseprogramsexecuteconcurrently.

4.3. File and dir ectory management

Themanagementof filesanddirectories,thoughconcep-
tually trivial, canbea practicalheadachefor a sizablepro-
gramfederation.DeCoeasesthis burdenwith two simple,
declarativefeatures.

� A portion of federationexecutioncan be performed
in a freshsubdirectoryof the currentdirectoryusing
(inDir JLKNMO�����), whichperformsaction ����� in the
newly createdsubdirectoryJLK�M . The effectivenessof
this simpleconstructrelieson theeasewith which an
arbitrary portion of federationexecution can be ex-
pressedasa singleexpressionin Haskell.

� File pathnamesyntaxandsemanticsareextendedby
treatingseveral additionalinitial charactersspecially.
File pathnamesbeginningwith the characters@ # $
referto files relative to thetop, run,andcurrentdirec-
tories,respectively. By reducingthe dependenceof a
filenameon its context, this featurefacilitateschanges
to theoveralldirectorystructureof a federation.

4.4. Substratesupport

This subsectionmentionstwo waysthat DeCohelpsto
automateprogramfederationnot throughspecificfeatures
but ratherdueto theuseof Haskell asa substrate.

1. The useof Haskell as the basefor the programfed-
erationlanguagemeansthat Haskell compilationper-
formsconsistency checkingfor a programfederation.
As the interfacesfor program componentsare ex-
pressedin thefederationlanguage,federationcompila-
tion ensuresthat theconstituentcomponentsarecom-
bined correctly. In particular, Haskell’s strong type
systemguaranteesthatthetypesof components’input
andoutputstreamsmatchappropriately. As a further
benefit,Haskell’s typeinferencerelievesthefederation
programmerof specifyingtype informationexplicitly
in mostcases.

2. Programfederationscan be complicated,either be-
causethey comprisemany andvariedcomponents,or
becauseconsiderablecodemay be requiredto adapt
somecomponentsto others,or both. A commonex-
ampleof the latter situationis the needto changenot
only the representationbut also the type of a stream
output by one componentand input to another. The
complicationsof a particularprogramfederationare
opportunitiesfor ad hoc automation.The abstraction
facilitiesof ahigh-level languagesuchasHaskell pro-
vide a powerful setof toolsfor realizingsuchautoma-
tion.

5. Discussion

In this sectionwe give brief assessmentsof our experi-
enceusingandimplementingDeCo.

5.1. Casestudy experience

Theuseof DeCoin theNeuseRivercasestudyhasbeen
both pleasantandeffective. The separatespecificationof
streamtype andstreamrepresentationcopeswith varying
dataformatswhile allowing streamsto betreatedabstractly.
The abstractionof the form of a stream’s content(asfile,
channel,or value)successfullysupportsthe data-flow ap-
proach while allowing (in cooperationwith lazy stream
reading)the contentsof a streamto be treatedasa whole.
Synchronizationof componentprogramsaccordingto their
mutualdataflowsmakesfor ahighly declarativeexpression
of control flow. Simplebut declarative DeCofeaturesre-
ducetheburdenof file anddirectorymanagementto amini-
mum.Overall,thesefeaturesmaximizeinteroperabilityand
reusabilityfor federationcomponentsandmake DeCoef-
fectiveat automatingprogramfederation.

Basedon the NeuseRiver casestudy alone,a conclu-
sion cannotyet be drawn concerningconcisenessandeffi-
ciency of programfederationusingDeCo.TheNeuseRiver
programfederationconsistsof approximately850 lines of
code.Althoughthis mayseemlike a largeamountof code

for coordinatingthe multiple executionsof three Fortran
programs,it shouldberememberedthattheseprogramsare
executedrepeatedlyin alternation,that their dataformats
are rathercomplex, and that considerabledatamanipula-
tion is requiredto combinethe programs. The very high
codedensityof theprogramfederationsuggeststhatits size
is not excessive for theproblem.

A current shortcomingin the Glasgow Haskell Com-
piler’sruntimesystemhaspreventedusfrom preciselycom-
paringthe time spentexecutingthe federationitself to the
time spentin the federation’s subordinateprogramexecu-
tions. However, coarsewall-clock timing during execu-
tion of the casestudy shows that the executionsof the
subordinateFortranprogramsheavily dominate.Although
moreprecisemeasurementis desirable,DeCoperformance
is clearlynota limiting factorin theNeuseRivercasestudy.

5.2. Useof Haskell

Theuseof Haskell hasbeenextremelypositive,bothas
abasefor theprogramfederationlanguageandasabasefor
theimplementationof DeCo.

As the basefor the federationlanguage,Haskell offers
a highly declarative foundationthatgreatlyeasesconstruc-
tion of a declarative domain-specificlanguage. Haskell’s
abstractioncapabilities—especiallymonads,higher-order
functions,polymorphism,andtypeclasses—allow thefed-
erationlanguageto bebothsimpleandpowerful. Haskell’s
strongtyping providesstaticconsistency checkingfor fed-
erationprograms,while its capabletypeinferencinggreatly
reducesthe numberof type annotationsneeded.Haskell’s
power and expressivenessmake it easy for a federation
programmerto provide the “connective tissue” that is in-
evitably requiredin federatingexistingcomponents.

As the basefor implementationof DeCo, Haskell has
beenverysuccessful.First,all of theadvantagescitedabove
concerningits use as a basefor the federationlanguage
pertainto its useasa basefor framework implementation.
More specifically, however, the power, simplicity, andef-
ficiency of Haskell’s concurrency (threads)supportmade
designof DeConot only feasiblebut alsoelegantandrela-
tively easy. Theavailability of aninterfaceto Posixcapabil-
ities madeprogrammingthe externalinteractionsof DeCo
quitecomfortable.Finally, theexpertandwilling assistance
of thevolunteerswhobuild, maintain,andusetheGlasgow
Haskell Compilersystemwasinvaluable.

6. Relatedwork

Threestrainsof prior researcharemostrelevant to our
work on DeCo: coordinationlanguages,domain-specific
embeddedlanguages,and functional shells and scripting
languages.

Coordination languages (alsocalledconfiguration lan-
guagesor moduleinterconnectionlanguages) aim to pro-
vide a framework in which to expressan applicationasan
aggregationof components.At thishigh level, DeCo’sgoal
is the same. However, therearesignificantdifferencesin
emphasis.Coordinationlanguagestendto focuson issues
of distributionandfiner-grainedparallelism,whereasDeCo
focuseson expressingcomponentsabstractlyto facilitate
adaptation,composability, and reuse. Also, coordination
languagesare usually deliberatelydistinct from the com-
putationlanguagesin which the federatedcomponentsare
written,whereasDeCoexploits thefactthatHaskell canbe
usednot only for coordinationbut alsofor asmuchcompu-
tationasis usefulfor agivenfederation(for dataadaptation,
for example).Examplesof coordinationlanguagesinclude
Polylith [13], StrandandPCL [5], andLinda [3].

A domain-specificlanguage(DSL) is a languagetailored
to a particularapplicationdomain. A domain-specificem-
beddedlanguage (DSEL) is a DSL built as an extension
to an existing base language. DeCo is constructedas a
DSEL basedon Haskell whosedomainis programfeder-
ation. As such it is part of a recenttrend toward basing
DSELson Haskell. (A goodexplanationof Haskell’s pop-
ularity in this role is given by Hudak [8].) Examplesof
otherapplicationdomains(andrepresentative DSELs) for
which Haskell-basedDSELs have beenbuilt include web
programming(HaXml [17] and WASH/CGI [15]), hard-
waredescription(Lava [1] andHawk [9]), animation([4]),
androbotics([10]).

Shellsandscripting languagessharewith coordination
languagesthe high-level aim of facilitating aggregationof
existing computationalcomponents,though their style is
thatof amoretraditionalprogramminglanguage.Although
onetendsto think of a shell language asinteractive anda
scriptinglanguageasbatch-oriented,thetwo notionsarees-
sentiallysimilar, andbothcanbeusedin bothways.DeCo
canbeviewedasascriptinglanguagefor federationsof ap-
plications. DeCo is not intendedparticularly for interac-
tive use,but it canbe usedthat way, andcould easily be
extendedto be more convenientfor suchuse. Shellsand
scripting languagesare numerous;however, many fewer
areespeciallyfunctional in natureas is DeCo. Examples
of functionalshellsandscriptinglanguagesincludeEs [6],
scsh[14], andtheshellincludedin Famke[16], aprototype
of astronglytypedoperatingsystem.

7. Conclusionsand futur e work

We have presentedDeCo, a declarative coordination
framework for scientificmodelfederations.Specifications
in DeCoareconciseandconvenient.Thenatureof DeCo’s
abstractionsandthe languageHaskell on which it is based
helpto automatethetaskof programfederation.

With DeCo, dataare treatedabstractlyas streams, for
whichthedatatype,datarepresentation,andform (asvalue,
file, or operatingsystemchannel)arespecifiedseparately.
The type givesthe high-level semanticsof the streamand
is checked by Haskell. The representationgives the low-
level encodingof the stream. The set of representations
is easilyextendedto handleformatsparticularto a federa-
tion. Thevariousformsof streamcontentfacilitatereuseof
streamsin differentcontexts. DeCoautomaticallyresolves
mismatchesbetweentheactualanddesiredrepresentations
and/orformsof astream.

ExternalprogramsandHaskell functionsaretreatedsim-
ilarly and abstractlyas executors. Haskell type checking
ensuresthatexecutorsarecombinedproperly. Controlflow
is derived from the dataflow amongexecutorsratherthan
beingspecifiedexplicitly. Hence,DeCoautomaticallysyn-
chronizesthe executionof externalprogramsand realizes
the inherentconcurrency of a federation. DeCoalsopro-
videsconstructsto simplify thebookkeepingaspectsof pro-
gramfederation,suchasfile anddirectorymanagement.

An important characteristicthat distinguishesDeCo
from other coordination frameworks is that its basic
entities—streamsandexecutors—arecomposable.That is,
larger, morecomplex entitiescanbe built simply andpre-
dictably from smallerentities. Along with theabstractna-
ture of streamsand executors,this composabilitymakes
federationcomponentsmore flexible, more interoperable,
andmorereusable.

DeCowasappliedto a realisticallycomplex casestudy,
afederationof existingenvironmentalmodelsfor theNeuse
River of North Carolina. The experienceshowed that fed-
erationspecificationin DeCo can be comfortableand ef-
fective. However, moreapplicationexperienceis neededto
substantiatesucha conclusionon a usefullywide rangeof
modelfederations.We plan, therefore,to applyDeCoto a
numberof federationswith varyingcharacteristics.

The highly declarative natureof programfederationin
DeCowould have beendifficult to achieve hadDeConot
beenbasedon a languagesuchasHaskell. Unfortunately,
Haskell is not well-known in the communitywhereDeCo
wouldbemostuseful. However, it is plausiblethatDeCo’s
Haskell facecouldbemaskedby aveneermorecomfortable
to scientificmodelers.We would like to explore thepossi-
bility of usinga graphicaluserinterfaceto specifyfedera-
tions,while expressingmetadatain XML.

Acknowledgment

Thiswork wassupportedby theU.S.EnvironmentalPro-
tectionAgency, undergrantR82-795901-3.

References

[1] P. Bjesse,K. Claessen,M. Sheeran,and S. Singh. Lava:
Hardwaredesignin haskell. In InternationalConferenceon
FunctionalProgramming, pages174–184,1998.

[2] P. Boinot, R. Marlet, J. Noye, G. Muller, and C. Consel.
A declarative approachfor designinganddevelopingadap-
tive components.In Proceedingsof the PRQTSVU IEEE Interna-
tionalConferenceonAutomatedSoftwareEngineering(ASE
2000), Sept.2000.

[3] N. CarrieroandD. Gelernter. Linda in context. Communi-
cationsof theACM, 32(4):444–458,1989.

[4] C. Elliott and P. Hudak. Functional reactive animation.
In Proceedingsof the ACM SIGPLANInternational Con-
ferenceon Functional Programming(ICFP ’97), volume
32(8),pages263–273,1997.

[5] I. Foster. Compositionalparallelprogramminglanguages.
ACM Transactionson ProgrammingLanguages and Sys-
tems(TOPLAS), 18(4):454–476,1996.

[6] P. HaahrandB. Rakitzis.Es:A shellwith higher-orderfunc-
tions. In USENIXWinter, pages51–60,1993.

[7] Haskell homepage.http://www.haskell.org/.
[8] P. Hudak. Modulardomainspecificlanguagesandtools. In

P. Devanbu and J. Poulin, editors,Proceedings:Fifth In-
ternationalConferenceon Software Reuse, pages134–142.
IEEEComputerSocietyPress,1998.

[9] J. Matthews, B. Cook,andJ. Launchbury. Microprocessor
specificationin hawk. In InternationalConferenceonCom-
puterLanguages, pages90–101,1998.

[10] J. Peterson,P. Hudak,andC. Elliott. Lambdain motion:
Controllingrobotswith Haskell. LectureNotesin Computer
Science, 1551:91–105,1999.

[11] S.PeytonJones,editor. Haskell 98LanguageandLibraries:
TheRevisedReport. CambridgeUniversityPress,Apr. 2003.

[12] S.PeytonJonesetal. TheGlasgow Haskell Compilerhome
page.http://www.haskell.org/ghc/.

[13] J.M. Purtilo. ThePOLYLITH softwarebus. ACM Transac-
tions on ProgrammingLanguagesand Systems(TOPLAS),
16(1):151–174,1994.

[14] O. Shivers. A Scheme shell. Technical Report
MIT/LCS/TR–635,MassachusettsInstituteof Technology,
1994.

[15] P. Thiemann. WASH/CGI: Server-sideweb scriptingwith
sessionsandtyped,compositionalforms. In Practical As-
pectsof DeclarativeLanguages, pages192–208,2002.

[16] A. vanWeeldenandR.Plasmeijer. Towardsastronglytyped
functionaloperatingsystem. In SelectedPapers Proceed-
ings14th InternationalWorkshopon theImplementationof
FunctionalLanguages,IFL 2002, Madrid,Spain,2002.

[17] M. WallaceandC. Runciman. Haskell andxml: Generic
combinatorsor type-basedtranslation? In P. Lee, editor,
Proc. internationalconferenceon functionalprogramming
1999, pages148–259,New York, NY, 1999.ACM Press.

