
Parallel N-Body Simulation using GPUs

Francisco Chinchilla
fchinchi@cs.unc.edu

Todd Gamblin
tgamblin@cs.unc.edu

Morten Sommervoll
morten@cs.unc.edu

Jan F. Prins
prins@cs.unc.edu

Department of Computer Science
University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/GPGP

Technical Report TR04-032
December, 2004

Abstract

We present a novel parallel implementation of N-body grav-
itational simulation. Our algorithm uses graphics hardware
to accelerate local computation, and is optimized to account
for low bandwidth between the CPU and the graphics card,
as well as low bandwidth across the network. The number
of bodies that can be simulated with our implementation is
limited only by the memory of the graphics card, and re-
sults for small clusters indicate that it will scale well across
larger numbers of nodes. Finally, we show that our algo-
rithm significantly outperforms a comparable CPU imple-
mentation. Heretofore, commodity graphics hardware has
been used mainly for graphics and visualization applications.
This work shows that it can also be used effectively for sci-
entific computation.

1 Introduction

Programmable Graphics Processing Units (GPUs) are be-
coming ubiquitous on consumer PCs. Successive models
have increasingly rich feature sets, enabling the GPU to be
used effectively as a coprocessor for general purpose compu-
tation. The GPU is well suited to this task, as it provides
much higher potential floating point performance at a lower
cost than today’s CPUs. Also, the performance of GPUs is
increasing at a rate faster than Moore’s law, so harnessing
their power should prove to be a good investment. Further-
more, commodity hardware is being used more and more to
construct high performance clusters of machines.

The intersection of these trends makes the GPU an ap-
pealing option for accelerating scientific computation on
cluster systems. However, while the performance of the GPU
is increasing quite rapidly, memory performance is increasing
at a slower rate. Using the GPU as a coprocessor necessitates
read-back of data to the CPU. Current graphics processors
are not optimized for this operation: it causes a stall in the
GPU. Programmers must be careful to use it sparingly.

In this paper, we investigate the potential of the GPU
to speed up N-body gravitational simulation. N-body is an
important problem in cosmology and astronomy, as it en-
ables scientists to visualize and understand the behavior of
galaxies, nascent planetary systems, and the evolution of the
universe (to name a few applications). The problem requires
significant computational power, as each body may, in the
worst case, have a strong effect on every other body in the
system, leading to O(n2) performance. Large simulations
can thus take many CPU hours to complete. Accelerating
this process will speed the pace of discovery.

1.1 Related Work

Much work has been done on using the GPU to accelerate
scientific computation [9, 6, 5, 12, 10, 11]. Each of these pa-
pers covers a specific application and its implementation on
the GPU. None of these have yet covered N-body simulation,
and none have covered GPU applications on clusters.

A group at Stony Brook University [1] has constructed a
cluster from 32 Dual 3Ghz Pentium Xeon systems equipped
with nVidia GeForce 5800 graphics cards. They have imple-
mented the Lattice Boltzmann method to run on the clus-
ter’s GPUs. They report a speedup of 4.6 times the speed
of a CPU implementation, and this is approximately half
the performance of the algorithm on a 32 node IBM Power4
BladeServer cluster. Also, they find that a single GPU is
6.6 times faster than a single CPU in the system. Had they
used a GeForce 6800, this number would jump to 16.6.

Work has been done on analyzing the memory perfor-
mance of graphics hardware. Igehy, et al. [4] present a
graphics architecture optimized for rendering. While the
system they present is not implemented directly in any com-
mercial system, the optimizations they make and the trade-
offs they analyze are instructive in understanding design de-
cisions and expected memory reference patterns in modern
graphics hardware. Fatahalian, et al. [2] look at matrix-
matrix multiplication on modern GPUs, and discuss the
bandwidth limitations of the hardware. These two papers
are instructive in understanding optimization on the GPU.

Finally, a tremendous amount of work has gone into op-
timizing the performance of N-body algorithms for tradi-
tional parallel architectures [8, 3, 13]. These algorithms use
far more sophisticated numerical methods and optimizations
than does our implementation. As we are interested only in
showing that N-body can be run with a good speedup across
multiple GPUs in a cluster, we chose a simpler algorithm for
this first attempt.

1.2 Main Contribution

The main contributions of this paper are outlined as follows:

Algorithm: We present an algorithm for all-pairs N-body
simulation and show how it can be adapted and opti-
mized for the GPU. We describe the steps we took to
optimize the application both for low CPU-GPU band-
width and for low bandwidth over the network.

Cluster: We describe how to build an ad-hoc cluster out of
commodity hardware and graphics cards.

Speedup: We show that by using a cluster of GPUs, the
speed of an N-body simulation can be increased by al-

mailto:fchinchi@cs.unc.edu
mailto:tgamblin@cs.unc.edu
mailto:morten@cs.unc.edu
mailto:prins@cs.unc.edu
http://gamma.cs.unc.edu/GPGP

most eight times. We also show that with our algo-
rithm, this speedup scales linearly with the number of
nodes in the cluster.

1.3 Organization

The rest of this paper is organized as follows: In §2 we outline
the N-body problem. We present an N-body algorithm for a
single GPU in §3. In §4, we describe the implementation of
our GPU cluster. In §5, we present our algorithm adapted
for use on multiple GPUs. We improve on this algorithm in
§6 and optimizes it to limit CPU-GPU data transfer. We
discuss our results in §7, and address the issue of numerical
error in N-body systems. Finally, §8 outlines our conclusions
and future directions for this work.

2 The N-body Problem
In this section, we give a brief overview of the N-body grav-
itation problem.

The initial inputs to the problem are a set of n bodies,
b1, b2, ..., bn, where each body bi has a mass mi, a velocity
vi, and position ri. The distance between any two bodies bi

and bj is written rij , and the gravitational force on bi as a
result of bj is written fij .

Let the total gravitational force on a body bi be written fi.
For each iteration, given a timestep ∆t, we want to compute
the new positions of each body after has elapsed. This can
be done in three phases:

1. First we compute partial forces fij for all pairs of bod-
ies:

fij =
Gmimjrij

|rij
3| , i 6= j (1)

G here is the universal gravitational force constant, and
it is equal to 6.673e− 11 m3/kg s2.

2. Next, we compute the total force fi on each bi:

fi =
∑
j,j 6=i

fij (2)

3. Finally, we update the velocity vi and position ri of
each body using the classical force equation, F = ma:

∆vi =
fi∆t

mi
(3)

v′i = vi + ∆vi (4)

r′i = ri + vi∆t +
∆vi

2
∆t2 (5)

Now, we have the updated positions in ri, and can repeat
for another timestep ∆t. To measure the performance of an
N-body algorithm, we typically refer to the interaction rate,
or the number of interactions between bodies we calculate
per unit time, defined as:

R(n, tk) =
n(n− 1)

tk
(6)

Where tk is the average time per iteration. We will use this
metric for our results in §7.

Figure 1: Force Matrix. Each of the red buffers is a texture
containing bodies’ positions and mass, and each pair (shown as
yellow and blue) of bodies is interacted to find a partial force
(shown in green).

3 Single GPU Implementation
In this section, we present a single-GPU N-body algorithm,
built with code from [7]. This implementation follows the
steps described in §2 very closely, and we focus mainly on
the key issue of mapping this algorithm to the programming
model of modern graphics hardware.

Our single-GPU implementation stores the bodies as a
standard red, green, blue, alpha (RGBA) texture with ei-
ther 16 or 32 bits per color value, depending on whether we
use half or single precision floating point numbers for com-
putation on the GPU. Each texel represents a single body.
The R, G, and B channels are used to store the x, y, and z
coordinates of the body’s position, and the A channel is used
to store its mass. This texture is stored on the GPU with
arbitrary dimensions. Its total size need only be n texels.

For our force calculation, we render an nxn quad into a
force texture, where each pixel rendered represents a partial
force fij . We use a Cg fragment program and a lookup
texture to compute the color values of each pixel in the force
quad. The lookup texture is a standard RGBA texture of
the same dimensions as the body texture. Its values map
linear indices from 1..n to two-dimensional indices in the
position texture of bodies to interact. For each rendered
pixel (x, y) in the force quad, we look up the xth and yth

texels in the lookup texture and use the resulting values to
find the appropriate texels in the body texture. We then use
the retrieved position and mass values to compute fij and
store this value in the force texture.

Once all fij are computed, we compute each fi using a
parallel log reduction. We begin with the n x n force texture,
and render a quad half its height into a texture. The ith row
in the rendered quad is the sum of the ith and 2ith rows in
the force texture. We then successively render log2(n) − 1
more quads in a similar fashion, where each is half the size
of the previous one. When we are finished, we are left with
an n x 1 quad, where the ith element corresponds to an fi.

Finally, we use very simple fragment programs to update
velocities and positions. The velocity program takes as its
inputs the fi texture and the body texture, and it renders
the updated vi into the velocity texture. Similarly, the body
program takes as its inputs the velocity and body textures,
and renders updated body positions back into another body
texture.

For simplicity, our simple single-GPU version is restricted
to datasets no larger than 2048x2048. This is the maximum
allowed texture size on a GeForce 6800 card. Our parallel
algorithms, described in §5 and §6, demonstrate how this
limitation can be circumvented.

Node(s) CPU Configuration GPU Configuration
0-2 3GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 GT

3 3.4 GHz Pentium 4 with Hyperthreading nVidia GeForce 6800 Ultra
4 2.8 GHz AMD Athlon 64 FX-53 nVidia GeForce 6800 Ultra
5 Dual 2.8GHz Pentium Xeon nVidia GeForce 6800
6 2.4GHz Pentium Xeon nVidia GeForce 6800

Table 1: Configurations of Cluster Nodes

4 Cluster Description
In this section we describe the hardware configuration of our
cluster. We also describe the software infrastructure used for
message-passing between nodes.

4.1 CPU/GPU Configuration

Our cluster was constructed ad-hoc from computers around
the department. We used all available machines with an
nVidia GeForce 6800 series graphics card. We chose this
card for four reasons:

1. Full 32-bit floating point support: At the time of
the cluster’s inception, the 6800 had the highest -
precision floating point implementation of any commer-
cially available card.

2. Memory: The 6800 series can be outfitted with up
to 256MB DDR video memory. This was both the
largest and highest-throughput memory available on
any graphics card at the time of writing.

3. Speed: Save for the ATI Radeon X800 XT series, the
GeForce 6800 series was the fastest GPU available to us
at the time of writing. We chose the nVidia cards over
the ATI cards primarily because the ATI cards support
only up to 24-bit floating point numbers.

4. Programmability: The GeForce 6800 series offers sup-
port for custom vertex and pixel shaders, written in
nVidia’s Cg shader language. This enabled us to im-
plement our custom N-body algorithm.

The names and configurations of all machines in our clus-
ter are shown in Table 4. All nodes in our system ran Mi-
crosoft Windows XP Professional, with Service Pack 2. Al-
though there are drivers for the GeForce 6800 series for both
Windows and Linux, we chose to run Windows because of
driver quality. In our experience, the nVidia drivers for Win-
dows tend to stay slightly ahead of those for Linux in terms
of performance optimizations.

4.2 Network Configuration

The network infrastructure for our cluster was Ethernet. For
our measurements on the algorithm described in §5, we used
an 8-port 3com Superstack-3 Gigabit Ethernet switch. For
measurements on the algorithm presented in §6, we used a
NetGear FS108 8-port 100baseT switch. During the exper-
iments, the cluster machines had exclusive access to these
switches so that there would be no interference from other
traffic.

4.3 MPI Software

Communication between cluster nodes was accomplished us-
ing MPI (Message Passing Interface), the de-facto standard
for inter-node communication in distributed-memory clus-
ters. For our tests of the algorithm in §5, we used MPI/Pro
from VerariSoft, Inc, a commercial implementation available

Computation

M
em

or
y

on
 e

ac
h

pr
oc

es
so

r

Processors

Computation

M
em

or
y

on
 e

ac
h

pr
oc

es
so

r

Processors

Figure 2: Initial Parallel N-body implementation.

for Windows, Linux, and Mac OS X. We used MPI/Pro for
our first set of tests, but we experienced serious stability
problems with the implementation. We then switched to
MPICH a freely available, open-source implementation avail-
able from Argonne National Laboratory. MPICH proved to
be remarkably robust, and we used it in tests of our final
algorithm in §6.

5 Initial Parallel Implementation
In this section we discuss our first attempt at designing a
parallel algorithm to run on the cluster. This algorithm was
intended as a simple extension to the sequential algorithm
described in §3. Our main goal was efficient scaling.

At the high level, our parallel implementation follows the
same basic steps as the sequential algorithm. We first com-
pute partial forces, then sum them, and then use this infor-
mation to update positions and velocities. The key change
is the way that work is divided up among processors in this
version. For ease of illustration, we have again required cer-
tain restrictions on the input of this problem. We require
that the total number of bodies n be of the form n′∗p, where
n′ = n/p. For any one node in the cluster, we say that n′

bodies belong to that node. Last, we require that n′ be a
power of two.

One simple way to think of our modification to the force
computation is as a repeated application of the sequential
case. Figure 2 provides an instructive illustration of this ap-
proach. We break up the all-pairs force texture into four
chunks of size n′ ∗ n, each to be computed by a particular
node. Each node can now use the sequential algorithm as a
subroutine for computing chunks of n′ bodies. To compute
partial forces, we run the sequential algorithm p times, in-
teracting our “own” n′ bodies p times, once for each set of
n′ chunks belonging to a node.

The reduction we used in the simple GPU algorithm was
fairly time consuming, as it required iterative rendering of
quads. To minimize this overhead, rather than having each
node compute a reduction on an entire column, we accumu-
late force values as we apply the sequential algorithm. Each
pixel in the rendered quad is the sum of corresponding pixels

in chunks rendered so far. After p iterations, we are left with
one chunk of pixels representing accumulated forces, and we
perform the same reduction as before on this chunk.

Each node is left with the total forces on its own n′ bod-
ies. The node updates its own velocities and positions in the
same way that was done in the sequential algorithm. The
only difference here is that the operation is performed for
the local n′ and not the global n bodies. Once this update
completes, we use MPI All gather to transfer all the posi-
tions to all processors. Once this is done, we are back to the
start, and can begin another iteration.

This algorithm incurs additional overhead over the single-
GPU implementation because it repeatedly swaps sets of n′

bodies in and out of the GPU in the force accumulation
stage. Note, however, that this is only for the multi-GPU
case, as for a single GPU we only have to interact with our-
selves, and we have all the information for our own bodies
on-hand. Thus, there is no swap as we accumulate down
columns for 1 GPU, but there is an additional copy over-
head for multiple GPUs.

6 Optimized Parallel Algorithm

We made two main modifications to the algorithm in our
final, optimized version. First, we removed the restrictions
on input size that we had placed on previous implementa-
tions. This enabled us to put more bodies on the GPU, and
to take much greater advantage of the GeForce 6800 series’
256 MB main memory. This change required a slight modi-
fication to the algorithm, as well. Our final algorithm works
much like our unoptimized N-body algorithm, but instead
of distributing each of the columns shown in Figure 2 to an
individual GPU, it is capable of allocating multiple columns
to the same GPU. This effectively removes the dependence
on number of nodes, from which our earlier algorithms suf-
fered, and it enables us to perform N-body computations
with very high body counts on GPU-equipped machines.

With this first optimization, we also see some significant
memory advantages. Earlier algorithms required that each
buffer of bodies use a separate all-pairs render buffer, i.e.
1024 bodies on one GPU required a 1024x1024 all-pairs ren-
der texture where we accumulated the results. By using
multiple local buffers of bodies on each node, we are able to
reuse our all-pairs render texture.

The second optimization we performed with the new al-
gorithm was changing the mechanism by which bodies not
local to the GPU were transferred there. The algorithm de-
scribed in §5 has one texture for bodies belonging to other
nodes, and it swaps these in and out of the GPU during each
iteration of force accumulation. We noted that on the GPU,
doing two write-backs in different places was more than twice
as slow as doing two write-backs to the GPU back to back.
We changed our approach to store the positions of all other
nodes on the GPU at all times, and we write all of them to
the GPU in a batch, once per timestep.

7 Results

In this section we describe our results for all of our imple-
mentations of N-body for the GPU. We compare interaction
rates, as well as speedup and efficiency on multiple GPUs.
We also compare our interaction rates to those of an equiva-
lent single-CPU algorithm, and to the interaction rates of a
parallel CPU algorithm. Finally, we examine the numerical
stability of our algorithm as compared to a CPU implemen-
tation.

Figure 3: Optimized N-body algorithm. Black squares represent
force matrices on different processors, and different color rectan-
gles represent different subsets of body positions.

1 2 3
0

50

100

150

200

250

300

Number of Processors

M
i
l
l
i
o
n
s

o
f

I
n
t
e
r
a
c
t
i
o
n
s
/
s

CPU (1024 bodies/processor)
CPU (2048 bodies/processor)
GPU (1024 bodies/processor)
GPU (2048 bodies/processor)

M
il
li
o
n
s
 o

f
In

te
ra

c
ti
o
n
s

Processors

Figure 4: Single GPU vs. First Parallel Implementation

1024 2048 4096 8192 16384 32768 65536
100

200

400

600

800

1000

1200

1400

Bodies per Node

M
i
l
l
i
o
n
s

o
f

I
n
t
e
r
a
c
t
i
o
n
s
/
s

1 Node
2 Nodes
3 Nodes
4 Nodes
5 Nodes
6 Nodes
7 Nodes

M
ill

io
n

s
 o

f
In

te
ra

c
ti
o

n
s

Bodies per Node

Figure 5: Millions of Interactions vs. Bodies per Node

7.1 Single-GPU and First Parallel Implementation

Figure 4 shows results for our single-GPU algorithm, our
unoptimized parallel algorithm, and a corresponding unop-
timized CPU implementation. The CPU implementations
shown use the same steps and the same order of computa-
tions as our GPU algorithms. We observe that the single-
GPU implementation runs at a rate of 71 million inter-
actions per second, which is nearly three times as fast as
the corresponding CPU-based algorithm’s 24million interac-
tions/second. The CPU implementation scales perfectly to
two and three processors, but its interaction rate remains
almost the same when a larger number of bodies are used
per processor.

Our GPU implementation scales almost identically to the
CPU version for both 1024 and 2048 bodies. However, we
do see that for the single-GPU the interaction rate is higher
for 2048 bodies, while for 2 and 3 processors the opposite
is true. This can be attributed to the additional copying
overhead for the force accumulation, which was described in
§5.

7.2 Optimized Implementation

We ran the optimized n-body implementation discussed in
§6 for all node counts from 1 to 7. We started with only
node 0, and added node 1, 2, and so on to node 6 for each
successive run. For each of these configurations, we varied
the number of bodies on each GPU from 1024 to 65,536.
The performance results are shown in Figures 5 and 6. We
should note that the nodes were ordered in such a way that
nodes 1-4 are no slower than node0, but node6 is slower than
node5, which in turn is slower than node4 in terms of GPU
computational power. We intentionally refrained from using
the fastest nodes first, in order to show a smoother speedup
as we added nodes to the cluster. Our optimized version
runs at 182 million interactions per second when simulating
65,536 bodies on a single node, whereas our seven-node sim-
ulation performs as well as 1.26 billion interactions per sec-
ond. There is a performance decrease when running 65,536
bodies on seven nodes, and this is due to the slower node6.

Since all the nodes have to synchronize at a barrier before
exchanging position data, the simulation will only run as
fast as the slowest machine. Node 6 is unable to keep up
with the other nodes when simulating 65,536 bodies and the

10
3

10
4

10
5

10
6

10
7

0

200

400

600

800

1000

1200

1400

Total Number of Bodies

M

i

l

l

i

o

n

s

o

f

I

n

t

e

r

a

c

t

i

o

n

s

/

s

1 Node

2 Nodes

3 Nodes

4 Nodes

5 Nodes

6 Nodes

7 Nodes

10
3

10
4

10
5

10
6

10
7

0

200

400

600

800

1000

1200

1400

Total Number of Bodies

M

i

l

l

i

o

n

s

o

f

I

n

t

e

r

a

c

t

i

o

n

s

/

s

1 Node

2 Nodes

3 Nodes

4 Nodes

5 Nodes

6 Nodes

7 Nodes

M
ill

io
n
s
 o

f
In

te
ra

c
ti
o
n
s

Bodies per Node

Figure 6: Millions of Interactions vs. Total bodies

0 1 2 3 4 5 6 7

x 10
4

0.6

0.8

1

Total Number of Bodies

E
f
f
i
c
i
e
n
c
y

2 GPUs
4 GPUs

Total Number of Bodies

E
ffi

c
ie

n
c
y

Figure 8: Efficiency of GPU Implementation

entire cluster is forced to wait for it as a result.
Figure 6 shows the same data as Figure 5, only the total

number of bodies are used instead of the number of bodies
per node.

Finally, we compared our GPU implementation to evans,
our department’s SGI Origin 2000 system. Figure 7 shows
the performance achieved on this machine by [13]. Our sin-
gle GPU implementation reaches 190 million interactions
per second, whereas 15 processors on this system achieve
only 125 million interactions per second when performing an
equivalent shared memory implementation of the N-body al-
gorithm. Furthermore, Figure 8 shows that the efficiency of
our algorithm increases with the number of bodies on each
node, so we can reasonably expect far better results with a
comparable number of GPUs.

7.3 Divergence of GPU results from CPU

It is well known [3, 8] that N-body algorithms diverge at an
exponential rate, and that small errors can balloon incred-
ibly quickly in these systems. The very nature of the force
calculation should trigger some degree of alarm in the reader,
as it requires us to sum n force values with widely varying

Figure 7: Interaction rates on evans.

10
0

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

10
2

10
4

Iteration

M

a

x

2

-

n

o

r

m

o

f

R

o

w

i

n

D

i

f

f

M

t

x

1024 Bodies

2048 Bodies

4096 Bodies

8192 Bodies

 Iteration

M
a

x
 d

is
ta

n
c
e

 G
P

U
/C

P
U

 D
iv

e
rg

e
n

c
e

Figure 9: Divergence of GPU from CPU results

magnitudes. Because gravity propagates based on an in-
verse square law, it is entirely possible in an n-body system
to see very small forces incident on bodies from very distant
masses, while closer objects exert a much larger amount of
pull. The sum of these sorts of floating-point values can
easily result in the loss of low-order bits.

Typically when scientists refer to N-body error, it is in
terms of crossing time. Without delving into unnecessary
detail, this is the average time that it takes for any one
particle in the system to move from one side of it to the other.
In a typical N-body system today, if the relative error per
crossing time is 10−p, then after p crossing times, particles
in the system will have error equal to its size [3]. Put simply,
we cannot know with any accuracy where any particle in the
system lies.

Despite these depressing figures, N-body simulation is not
valued by cosmologists for its ability to predict precisely the
trajectories of individual objects in large systems. Typically,
scientists are interested more in the large-scale statistical
behavior of the system, e.g. the formation of clusters among
bodies, or the spiral motion of a galaxy. It is widely believed
(but not proven) that these simulations are valuable and
statistically accurate at this scale.

Both to assess the correctness of our algorithm, and to
compare floating point error of the GPU to that of the CPU,
we computed positions for 1000 .01 second timesteps for both
the CPU and GPU implementations. We then compared
results at each step.

Figure 9 shows the maximum Euclidean distance between
a body’s position in the GPU simulation and its position
as computed by the CPU at each iteration. We observe
that the difference remains very small (less than 10−3) for
at least the first 15 iterations, regardless of the number of
bodies simulated. We also observe that until approximately
100 iterations, the divergence is less than 1. After this point,
however, we can see that the error propagates more rapidly.

We believe that the closeness of our optimized GPU algo-
rithm to the CPU’s results through 15 iterations shows that
our implementation is correct. The error that we see after
this point can be explained in either of two ways:

1. Differences between CPU and GPU floating point im-
plementations. While CPU manufacturers like Intel
and AMD are loyal to the IEEE floating point stan-
dard, Graphics hardware companies such as nVidia are
not committed to compliance. GPU hardware is driven

by the game industry and applications in visualization,
where speed of implementation is far more important
than floating point accuracy or predictability. Further-
more, images that are realistic enough to fool the hu-
man eye can be generated with fewer bits of precision
than are necessary for most scientific computations.

2. Differences in C and Cg compilers. Our GPU computa-
tions are implemented in Cg, a shader language which
uses compilers from nVidia. Our CPU implementation,
on the other hand, was compiled using Microsoft Vi-
sual C++, version 7.1. The optimizations that either
of these compilers do (or do not) perform on our code
are unknown to us. Given that floating point opera-
tions are not commutative, associative, or transitive at
a high degree of precision, subtle optimizations in float-
ing point code could result in small perturbations which
might lead to very large differences between results of
these two codes.

8 Conclusions and Future Work
We have shown that the N-body gravitational simulation
can be implemented on the GPU. We have also shown that
such algorithms can scale efficiently, even in the presence of
limited CPU-GPU bandwidth and high-latency readbacks.

We showed that a system of seven cluster nodes built ad-
hoc from commodity parts and consumer graphics hardware
can significantly outperform a comparable CPU implemen-
tation of N-body. Our algorithm can achieve an interaction
rate of 182 million interactions per second, per node, while a
CPU implementation running on the latest microprocessors
can only attain a rate of 24 million interactions per second,
per node.

One conservative measure of FLOPS traditionally used
for CPU implementations of the Nbody algorithm states
that there are 23 FLOPS per body interaction [13]. Ap-
plying this to our GPU implementation yields a rate of 4.37
GFLOPS peak performance. The theoretical maximum per-
formance of the GeForce 6800 is 40 GFLOPS. This shows
that even thought we are significantly outperforming CPU
implementations of N-body, we are not yet close to utilizing
the entire power of the card. We believe that this is due
to the poor bandwidth to the first level texture cache, and
that our problems are similar to those discussed in [2]. The
reference pattern of the N-body force calculation is similar
to that of a matrix-matrix multiplication, in that it exhibits
little temporal locality and is spread over a large region of
memory.

The performance of our cluster could be easily improved
by incorporating the following changes:

• Faster memory access in the GPU, for reasons discussed
above.

• Faster interconnect between nodes: Our most op-
timized implementation was run using standard
100baseT connections. We could easily improve latency
and throughput by upgrading these to gigabit Ethernet,
or to a more advanced interconnect such as Infiniband.

• Faster bus between GPU and CPU: We showed with
our first parallel implementation that transfer of data
between CPU and GPU can impact performance. Im-
proving this data path can only serve to speed up our
algorithm.

• Faster algorithm: The all-pairs algorithm is the most
straightforward solution to the N-body problem. Our

performance could be improved by adopting a more so-
phisticated algorithm. Today’s N-body simulation al-
gorithms take into account spatial decomposition and
adaptive methods. These algorithms would take con-
siderably more effort to adapt for the GPU, but could
yield considerable improvements in performance. We
leave these improvements as future work.

References
[1] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover.

GPU cluster for high performance computing. In
Proceedings of Supercomputing 2004, Pittsburgh, PA,
November 6-12 2004.

[2] K. Fatahalian, J. Sugerman, and P. Hanrahan. Under-
standing the efficiency of GPU algorithms for matrix-
matrix multiplication. In Proceedings of Graphics Hard-
ware, 2004.

[3] W. B. Hayes. A brief survey of issues relating to the re-
liability of simulation of the large gravitational n-body
problem. Ph.D. qualifying depth paper, University of
Toronto, 1996. Available from: http://www.cs.toronto.
edu/∼wayne/research/thesis/depth/depth.html.

[4] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching
in a texture cache architecture. In Proceedings of the
1998 Eurographics/SIGGRAPH Workshop on Graphics
Hardware, 1998.

[5] W. Li, Z. Fan, X. Wei, and A. Kaufman. Gpu-based
flow simulation with complex boundaries. Technical Re-
port 031105, Computer Science Department, SUNY at
Stony Brook, November 2003.

[6] W. Li, X. Wei, and A. Kaufman. Implementing lattice
boltzmann computation on graphics hardware. The Vi-
sual Computer, 19(7-8):444–456, December 2003.

[7] L. Nyland, M. Harris, and J. Prins. Rapid evaluation of
potential fields using programmable graphics hardware.
In A. Lastra, M. Lin, and D. Manocha, editors, GP2,
the ACM Workshop on General Purpose Computing on
Graphics Hardware, 2004.

[8] U. of Washington. University of washington high perfor-
mance computing and communications group [online].
Available from: http://www-hpcc.astro.washington.
edu/.

[9] F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang,
S. Yoakum-Stover, A. Kaufman, and K. Mueller. Dis-
persion simulation and visualization for urban security.
In Proceedings of the IEEE Conference on Visualiza-
tion, Austin, Texas, 2004.

[10] F. Xu and K. Mueller. Towards a unified framework
for rapid computed tomography on commodity GPUs.
In IEEE Medical Imaging Conference (MIC), Portland,
OR, October 2003.

[11] F. Xu and K. Mueller. Ultra-fast 3d filtered backpro-
jection on commodity graphics hardware. In IEEE In-
ternational Symposium on Biomedical Imaging (ISBI),
Arlington, VA, April 2004.

[12] F. Xu and K. Mueller. Accelerating popular tomo-
graphic reconstruction algorithms on commodity PC
graphics hardware. IEEE Transactions on Nuclear Sci-
ence, 52(3):654–663, June 2005.

[13] A. G. Zaferakis, K. Hoff, and C. Weigle. BSP N-body
particle system with MPI parallel processing [online].
Spring 2000. Available from: http://www.cs.unc.edu/
∼andrewz/comp203/hw2.

http://www.cs.toronto.edu/~wayne/research/thesis/depth/depth.html
http://www.cs.toronto.edu/~wayne/research/thesis/depth/depth.html
http://www-hpcc.astro.washington.edu/
http://www-hpcc.astro.washington.edu/
http://www.cs.unc.edu/~andrewz/comp203/hw2
http://www.cs.unc.edu/~andrewz/comp203/hw2

	Introduction
	Related Work
	Main Contribution
	Organization

	The N-body Problem
	Single GPU Implementation
	Cluster Description
	CPU/GPU Configuration
	Network Configuration
	MPI Software

	Initial Parallel Implementation
	Optimized Parallel Algorithm
	Results
	Single-GPU and First Parallel Implementation
	Optimized Implementation
	Divergence of GPU results from CPU

	Conclusions and Future Work

