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Abstract

We study the multi-view geometry of 1D radial cameras.
A broad a class of both central and non-central cameras,
such as fish-eye and catadioptric cameras, can be reduced
to 1D radial cameras under the assumption of known center
of radial distortion. For cameras in general configuration,
we introduce a quadrifocal tensor that can be computed lin-
early from 15 or more features seen in four views. From this
tensor a metric reconstruction of the 1D cameras as well as
the observed features can be obtained. In a second phase
this reconstruction can then be used as a calibration ob-
ject to estimate a non-parametric non-central model for the
cameras. We study some degenerate cases, including pure
rotation. In the case of a purely rotating camera we ob-
tain a trifocal tensor that can be estimated linearly from 7
points in three views. This allows us to obtain a metric re-
construction of the plane at infinity. Next, we use the plane
at infinity as a calibration device to non-parametrically es-
timate the radial distortion. We demonstrate the results of
our approach on real and synthetic images.

1. Introduction

There has been a growing interest in the vision com-
munity for omnidirectional cameras. By providing a wider
field of view these cameras are better suited for a range of
applications such as visualization and robot navigation [4].
Two different approaches are used to obtain single images
with a very wide field of view. The first approach consists of
using a fish-eye lens which typically yields a field of view
of around 180 degrees. The second approach consists of
using a camera in combination with a curved mirror to ob-
tain a cata-dioptric camera. The mirror surface is typically a
quadric that is symmetric around the optical axis of the cam-
era. When the center of projection of the camera is placed at
one of the foci, an image with a single center of projection

is obtained [2]. Otherwise, the catadioptric sensor corre-
sponds to a non-central camera [23, 14]. The main topic of
this paper is the calibration of omnidirectional cameras.

Many different techniques have been proposed to cali-
brate omnidirectional cameras. Most approaches are spe-
cific to one particular type of camera. For fish-eye lenses
most approaches that have been proposed require some
knowledge of the scene [21, 24, 6, 3, 16]. An approach
based on pure rotation was proposed in [29]. By using a
stratified approach in which the calibration model is grad-
ually refined Pajdla et al. [18] have recently proposed a
fully automatic approach that does not require any specific
knowledge of the scene structure or the camera motion. For
cata-dioptric cameras different types of techniques have
also been proposed. Some techniques require knowledge
about the scene [9, 30], others require knowledge about the
camera motion [15]. Geyer and Daniilidis [8] proposed
an approach that estimates the camera motion as well as
the intrinsics of a parabolic cata-dioptric system. There
has also been work on calibrating non-central cata-dioptric
cameras [1, 18]. Besides this, there has also been work on
generalized camera models. All the approaches that have
been proposed for this require knowledge about the scene
structure or the camera motion [10, 22].

In this paper we present two approaches for calibra-
tion of omnidirectional cameras based on multi-linear con-
straints between projection of point features. The first ap-
proach requires 15 or more point correspondences in four
views and can deal with central and non-central cameras.
The second approach works only for central cameras that
perform pure rotation, but only requires 7 points in three
views and is therefore ideally suited for automated calibra-
tion. Both approaches use non-parametric models of distor-
tion so that all types of radially symmetric cameras can be
modeled. The method requires to know the center of radial
distortion. Both approaches consist of two main steps. First,
the scene is reconstructed independently of the unknown ra-
dial distortion. Then, the reconstructed scene is used as a
calibration object to estimate a non-parametric model of ra-



dial distortion. A different distortion can be estimated for
each image so that different cameras can be calibrated si-
multaneously or the camera intrinsics can vary.

2. Radial 1D Camera

Suppose that the center of radial distortion is known. For
most omnidirectional cameras the image center is a good
approximation for the center of distortion [28]. 1 The im-
age can then be transformed such that the center of radial
distortion is the origin.

Consider a point in the world X that projects onto xd =
(xd, yd, 1)T in the distorted (input) image. Further let C
be the camera center. Because of large unknown and pos-
sibly varying distortion, the point X does not lie on the ray
passing through C and xd (see Figure 1(a)).

(a) (b)

Figure 1. Radial 1D Camera

However, consider the line passing through the center of
radial distortion and xd in the image (lrad = xd × crad).
The undistorted image point (one that would have been
obtained if the camera had followed a pin-hole projection
model) xu, would lie on this line. This is because though
the distance of an image point from the center of radial dis-
tortion is not preserved by radial distortion, the direction
(which is what the radial line lrad encodes) is. If instead
of back-projecting a ray, we back-project the line lrad using
the camera center, it would contain the ray passing through
C and xu, and thus would contain X.

Thus, by representing the distorted image as a 1D image
of radial lines passing through the center of radial distor-
tion, we can factor out the unknown deviation from the pin-
hole model (which is along the radial line), but preserve the
known information (direction of radial line). The radial 1D
camera can be thought of as projecting the bundle of planes
containing the optical axis onto the bundle of lines passing

1However if additional information is known, for example one can see
the rim of a fish-eye lens or the rim of a curved mirror, the center of the rim
can be used as a better approximation for the center of radial distortion.

through the crad (Figure 1(b)). A radial line can be repre-
sented as l = (y,−x)T if crad has been mapped to the ori-
gin. Note that a radial 1D camera can be obtained for most
single effective viewpoint cameras (standard pin-hole cam-
eras, low radial distortion cameras, fish-eye lenses, cata-
dioptric cameras [2]). Infact we can deal with non-central
cameras also. The only requirement is that all points that lie
in one plane, of the bundle around the optical axis, project
onto the same radial line (passing through crad). For cata-
dioptric systems, this corresponds to the requirement that
all the normals on the mirror have to be contained within
radial planes. This constraint is automatically satisfied for
mirror shapes that are symmetric around the optical axis.

Definition: The radial 1D camera represents the map-
ping of a point in P 3 onto a radial line in the image. A
P 3 → P 1 projective mapping, it can be represented by a
2 × 4 matrix and has 7 degrees of freedom.

The projection of a 3D point X on a radial line l using
radial camera P is then given by:

λl = εPX with ε =
[

0 1
−1 0

]
(1)

with λ a non-zero scale factor. Note that a point O on the
optical axis does not have a proper image in P 1 as we obtain
PO = (0, 0)T . The backprojection of a radial line to a
plane is given by:

λΠ = PT l (2)

3. Radial Quadrifocal Tensors

Figure 2. The Quadrifocal Constraint

Let us examine the possible multi-view constraints using
these 1D radial cameras in general configuration. Note that
we only have back-projected planes and no back-projected
rays (as the distance information from the crad is unknown,
only the radial line is preserved as a set). Three planes
in 3D-space always intersect at a point and hence 3 views
give us no constraints. However, four planes intersecting at
a common point yields a non-trivial constraint (Figure 2).



Thus we have multi-view constraints among four 1D radial
cameras.

Consider a point X in P3 that projects onto the ra-
dial lines, l, l′, l′′, l′′′. Then the radial projection equations
(Eq. 1), can be collected in the following matrix equation:




εP l 0 0 0
εP′ 0 l′ 0 0
εP′′ 0 0 l′′ 0
εP′′′ 0 0 0 l′′′







X
−λ
−λ′

−λ′′

−λ′′′


 = 0 (3)

Since we know that a solution exists, the right null-space
of the 8 × 8 measurement matrix should have non-zero di-
mension, which implies that the determinant of the matrix
has to be zero.

Following the approach of [26], expansion of the deter-
minant yields the quadrilinear constraint for 1D radial cam-
eras:

lil′jl
′′
kl

′′′
l Qijkl = 0 (4)

Qijkl is the 2×2×2×2 homogenous quadrifocal tensor of
four 1D cameras. We use the Einstein summation conven-
tion in which indices repeated in covariant and contravariant
positions denote implicit summations.

The radial quadrifocal tensor has 2× 2× 2× 2− 1 = 15
degrees of freedom. Subtracting from these the degrees of
freedom required to describe four uncalibrated 1D radial
cameras (4 × (2 × 4 − 1) − (4 × 4 − 1) = 13), we ob-
serve that the radial quadrifocal tensor has only 2 internal
constraints. Compare this to (80 − 29) internal constraints
for the quadrifocal tensor of 4 perspective views.2 The ra-
dial quadrifocal tensor can thus be linearly estimated given
15 corresponding quadruplets. Given more than 15 corre-
sponding quadruplets, a linear least squares solution can be
obtained. It can further be proven that there exist no higher-
order tensors for 1D cameras.

3.1. 3D Reconstruction

3.1.1. Projective Reconstruction

We now consider the problem of 3D reconstruction of points
whose correspondences have been specified across the in-
put images. Given a radial quadrifocal tensor, we can easily
compute the four uncalibrated camera matrices [12]. For
every valid radial quadrifocal tensor, two non-equivalent
projective reconstructions are obtained. As we can not dis-
ambiguate between them at this stage we will carry them
through to the metric reconstruction stage and potentially
the radial calibration where in general only a single solu-
tion will yield consistent results. Once the projection matri-
ces have been recovered, points in 3D can be reconstructed

2In fact, for perspective cameras, the radial quadrifocal tensor corre-
sponds to the upper 2 × 2 × 2 × 2 part of the full quadrifocal tensor.

by back-projecting planes. This corresponds to computing
the right nullspace of the following matrix:

[
PT l P′T l′ P′′T l′′ P′′′T l′′′

]T

(5)

Since only three planes are required to define a point
uniquely in 3D space, we can infact reconstruct all points
seen in atleast three views.

3.1.2. Metric Reconstruction

The dual absolute quadric, Ω∗
∞ encodes both the absolute

conic and the plane at infinity. To upgrade our reconstruc-
tion to metric, we need to estimate this degenerate quadric
in the projective frame in which the cameras and the points
have been determined [27, 19]. Ω∗

∞ projects into the radial
1D image as,

K̃K̃T = ω̃∗ = PΩ∗
∞PT (6)

with K̃ =
[

fx s
0 fy

]
the upper 2 × 2 part of the cal-

ibration matrix. Using the assumptions of (i) zero skew
(s = 0) (ii) known aspect ratio (fy = afx), we obtain 8
linear constraints on Ω∗

∞, from the 4 views. Since Ω∗
∞ is

a 4 × 4 homogenous symmetric matrix it has 9 d.o.f (10
upto scale). Using the additional rank-3 constraint we ob-
tain a fourth-degree equation ( detΩ∗

∞ = 0) and thus obtain
upto 4 solutions. Only positive semi-definite solutions for
the absolute quadric have to be considered. If more than
one solution persists, we can generate multiple alternative
metric reconstructions and disambiguate them later by ver-
ifying the radial symmetry in the next section. If Ω∗

∞ is
decomposed as Ω∗

∞ = Hdiag(1, 1, 1, 0)HT , then H−1 is
the point homography that takes the projective frame to the
metric frame [13].

3.2. Radial calibration

Once a metric reconstruction has been obtained using the
1D radial property of the camera, it can be used to calibrate
the remaining unknowns of the projection. In this section
we will present a non-parametric approach to calibrate cen-
tral and non-central radially symmetric cameras. This pro-
cess can be done independently for each image and it is
thus possible to calibrate four different cameras -or a cam-
era with different settings- using a single quadrifocal tensor.

For each cameras, all reconstructed feature points can be
represented in a cylindrical coordinate system relative to the
optical axis of the camera, i.e. (ρ, φ, z). The origin along
the z-axis can in a first phase be chosen arbitrarily. Because
we assume radial symmetry, the φ coordinate is irrelevant
for us. The goal of our calibration procedure is to obtain an
expression for rays, r, in the ρz-plane as a function of the
radius r, i.e. r(r) : a1(r)ρ + a2(r)z + a3(r) = 0. This can



be done by fitting lines to all the points that have (almost)
the same r value.

3.3. Synthetic Experiments

We will now describe simulations that we carried out to
test the validity and robustness of reconstruction using the
quadrifocal tensor. The following 4 cameras were chosen:
a pin-hole camera looking at a spherical mirror, a pin-hole
camera looking at a hyperbolic mirror (satisfying the sin-
gle effective view-point condition [2]), a perspective camera
and a fish-eye camera. Only the points which were imaged
in all the 4 views were considered (a total of 2300 points
were imaged, see Figure 4). To every point in every image,
Gaussian noise with σ = 1 pixel (in an image of 2000x2000
pixels) was added. The final 4 images are shown in Fig-
ure 3. The 4 cameras were modeled to have zero skew and
unit aspect ratio.

In Figure 5 the results of the metric reconstruction are
shown. Only the difference vectors, between the ground
truth and the reconstruction obtained, are plotted. The ratio
of the RMS reconstruction error and the standard deviation
of the ground truth point set is less than 1 percent. This ratio
grew to around 3-5 percent when noise of σ = 2 pixel was
introduced.

In the second phase, we perform radial calibration. For
each camera, the first phase would have given us a precise
optical axis in metric space. We select an arbitrary point
on the optical axis and compute (ρ, z) pairs for each re-
constructed point . In this 2D coordinate system, all points
which project onto the same radial circle, in the input im-
age, should lie on the same line. Given a sufficiently dense
set of points, we can estimate these incoming rays (see Fig-
ure 3). Note that all the incoming rays for the three central
cameras (views 2,3 and 4) pass through a point on the op-
tical axis, as expected. This happens without enforcing any
explicit constraint. For a non-central camera (view 1), the
envelope of rays corresponds to the caustic of a spherical
mirror as expected.

4. Radial Trifocal Tensor

Suppose that three optical axes, A,A′ and A′′ intersect
at C. Also, suppose that a 3D point X projects onto the lines
l, l′and l′′ in the three views (Figure 6) . Consider the plane,
Π containing C and the line l (corresponding to the back-
projection of the radial line l). Similarly, one has the planes
Π

′
and Π

′′
. Note that for every 3D point, X, the corre-

sponding planes back-projected from the 3 views intersect
in the line passing through C and X. Three planes in 3D
space intersecting in a line is a non-trivial constraint. This
non-trivial constraint between the three 1D radial views is

Figure 4. The scene that is imaged by the 4 cameras.
Plus (+) signs mark the points imaged in all cameras
and dot (.) mark points which werent.

Figure 5. These line segments connect the ground-
truth points to the metric reconstruction obtained.
Compare the length of the segments to the extent of
the scene to get an idea of the error in reconstruction.

encoded by the radial trifocal tensor. We can now formulate
this constraint mathematically.

Without loss of generality we can assume that the three
optical axes intersect in the origin (0, 0, 0, 1)T . Since
PC = (0, 0)T , the 1D radial cameras whose optical axes
contain the origin must have the following form P = [P̃|0].
Let X̃T correspond to the first three coefficients of X. In

Figure 6. The Trifocal Constraint



Figure 3. (L to R) Spherical mirror, Hyperbolic mirror, Pin-Hole Camera, Fish-eye Lens. Top:Images obtained by the
four cameras Bottom: (ρ, z) plots for reconstructed features and estimated incoming rays. Notice the caustic of the
spherical-mirror camera (extreme left)

this case, the first 6 rows of Eq. (3) can be rewritten as:


 εP̃ l 0 0

εP̃′ 0 l′ 0
εP̃′′ 0 0 l′′







X̃
−λ
−λ′

−λ′′


 = 0 (7)

The non-zero dimension of the right null-space implies that
the 6×6 measurement matrix must have a zero determinant.
Expansion of the determinant produces the unique trilinear
constraint for 1D views yields

lil′jl
′′
kT

ijk = 0 (8)

Tijk is the 2 × 2 × 2 homogeneous radial trifocal ten-
sor of the three 1D radial cameras. The expression for the
coefficients of the trifocal tensor is

Tijk = det
[
P̃T

i P̃′
j
T P̃′′

k
T
]

(9)

The radial trifocal tensor is a minimal parameterization of
the three P 2 → P 1 mapping cameras as the d.o.f can be
shown to match, 2×2×2−1 = 7 = 3× (2×3−1)− (3×
3−1) (with the LHS being the d.o.f of T and the RHS being
the d.o.f of the three uncalibrated views upto a projectivity)
and has no internal constraints.

The radial trifocal tensor can be linearly estimated given
seven corresponding triplets (where every triplet gives a lin-
ear constraint on the parameters of the radial trifocal ten-
sor using equation (8)) Given more than seven correspon-
dences, we can obtain the linear least squares solution.

It is interesting to verify the relation between the ra-
dial trifocal constraint and the radial quadrifocal constraint.
When three optical axes intersect, adding a fourth view

doesn’t yield any additional constraint and the quadrifocal
constraint becomes degenerate. Since in P3 a line and a
plane always intersect, we no longer need the precise plane
Π

′′′
, back-projected from l′′′. Instead we could choose any

of the planes among the bundle back-projected by the fourth
camera. Let us examine the radial quadrifocal constraint,
Eq. (4), in this scenario:

(lil′jl
′′
kQ

ijk1)l′′′1 + (lil′jl
′′
kQ

ijk2)l′′′2 = 0 (10)

Choosing an arbitrary back-projected plane from the fourth
camera corresponds to arbitrary values for l

′′′
1 and l

′′′
2 . Since

Eq. (10) is valid for arbitrary values of l
′′′
1 and l

′′′
2 , it implies

that the coefficients are zero. Further, the above condition
is valid for any 3D point X. Comparing this to the trifocal
constraint, we see that in this case the quadrifocal tensor
must be related to the trifocal tensor as follows

Qijkl = (λ1Tijk, λ2Tijk) (11)

and can only be determined up to one degree of freedom,
i.e. λ1

λ2
.

The trifocal tensor for 1D cameras and its properties
were first studied by Quan and Kanade [20] in the context
of structure and motion using line correspondences under
affine cameras. They showed that by neglecting the posi-
tion of the lines and considering only their direction, this
problem was equivalent to the structure and motion prob-
lem for points in one lower dimension. Faugeras et. al. [7]
studied the 1D trifocal tensor in the context of planar mo-
tion recovery. Our prior work [25] uses the radial trifocal
tensor to calibrate cameras with large radial distortion us-
ing a polynomial distortion function3.

3This paper only dealt with the trifocal tensor, not the quadrifocal ten-



Figure 7. The triplet of images input to the system with features that were automatically matched overlaid. Top:
Fish-eye images Bottom: Catadioptric images

4.1. Reconstruction

4.1.1. Projective Reconstruction

Let us now consider the problem of reconstructing direc-
tions from C. Directions correspond to points on Π∞.
Given the radial trifocal tensor, T, we can estimate the three
uncalibrated camera matrices, P̃, P̃′ and P̃′′ [25]. These
projection matrices can be thought of projecting points on
Π∞ to radial lines in the corresponding views.

Suppose a point on Π∞, M (or direction M in 3D space)
projects onto l, l′ and l′′ in the three views. The point can be
reconstructed by back-projecting the corresponding radial
lines to produce lines on Π∞. This corresponds to comput-
ing the right null-space of the following matrix.

[
P̃T l P̃′T l′ P̃′′T l′′

]T
(12)

The ray corresponding to features seen in two or more views
can be reconstructed.

4.1.2. Metric Reconstruction

Let p̃1, p̃2 be the two rows of the projection matrix, P̃2×3.
Similarly let p̃′

1, p̃
′
2 be the rows of P̃′ and p̃′′

1 , p̃′′
2 be the

rows of P̃′′. Let ω∗
∞ be dual of the absolute conic in the

projective frame in which we have reconstructed the points
on Π∞ (directions). It is a 3 × 3 homogenous symmetric
matrix and hence has 5 degrees of freedom (6 upto scale).

sor, and because of the restrictive parametric model this prior work could
not model either catadioptric cameras or non-central cameras.

To upgrade the projective reconstruction to metric it is suf-
ficient to estimate ω∗

∞ [13].
We have the assumptions of (i) zero skew and (ii) con-

stant (but possibly unknown) aspect ratio. It can be shown
the assumption of zero skew in the three views gives us the
following set of equations linear in the parameters of ω∗

∞ :

p̃1ω
∗
∞p̃T

2 = 0
p̃′

1ω
∗
∞p̃′T

2 = 0
p̃′′

1ω∗
∞p̃′′

2
T = 0

(13)

Further, the assumption of constant aspect ratio gives us
the following equations:

p̃1ω
∗
∞p̃T

1

p̃2ω∗∞p̃T
2

=
p̃′

1ω
∗
∞p̃′

1
T

p̃′
2ω

∗∞p̃′
2
T

=
p̃′′

1ω∗
∞p̃′′

1
T

p̃′′
2ω∗∞p̃′′

2
T

= A (14)

If the aspect ratio is known (A is known in Eq. (14)), we
have 3 more equations, linear in the parameters of ω∗

∞. If
the aspect ratio is unknown, then we have two equations,
quadratic in the parameters of ω∗

∞. Using the linear equa-
tions in Eq. (13), we can compute the parameters of ω∗

∞ as
the intersection of two conics in a plane 4

4.2. Radial Calibration

Once a metric reconstruction of Π∞ has been obtained
using the 1D radial property of the camera, it can be used to
calibrate the remaining unknowns of the projection. In this

4The intersection of two conics can be exactly solved analytically



section we present a non-parametric approach to calibrate
purely rotating central radially symmetric cameras. Again,
this process can be done independently for each image and
it is thus possible to calibrate three different cameras using
a single trifocal tensor.

For each cameras, the rays corresponding to recon-
structed feature points can be represented in a coordinate
system relative to the optical axis of the camera, i.e. (θ, φ).
Because we assume radial symmetry, the φ coordinate is ir-
relevant for us. The goal of our calibration procedure is to
obtain a mapping of θ(r) in function of the radius.

5. Experiments

In our first experiment, a triplet of images obtained using
a rotating fish-eye camera was fed as input to the system.
The images were acquired using a Nikon 8mm FC-E8 fish-
eye converter mounted on a Nikon Coolpix 8400 camera.
An online implementation of Lowe’s feature matcher was
used to obtain triplets of corresponding points in the three
images. Note that despite the severe non-perspective dis-
tortion, most automatic feature matching techniques work
well because the views were obtained using a purely rotat-
ing camera.

The image resolution was 1024x768 pixels. Approxi-
mately 560 triplets were returned by the feature matcher.
Next, RANSAC based on the radial trifocal tensor identi-
fied about 220 inliers (the threshold was set to 3 pixels).
The input images, with the triplets of corresponding points
(those that were identified as inliers after RANSAC) marked
are shown in Figure 7. A projective reconstruction was ob-
tained and upgraded to metric based on the assumptions of
zero skew and known aspect ratio of unity. For every 3D
point that has correspondences across atleast two images,
we obtain the angle of the ray, passing through that point
and the camera center, and the optical axis of the corre-
sponding view. This gives us a point on the angle vs. dis-
torted radius curve. Figure 8 shows the plots for the three
views. We see that the angle of a ray with the optical axis
is related to the distorted radius almost linearly. This is ex-
pected as a fish-eye camera roughly follows the equidistant
model.

Note that at no point during the whole procedure did we
make any assumptions about the type/amount of radial dis-
tortion. Further, an automatic feature matcher has been able
to give us features that span the whole range of distorted
radii. Finally, note that no additional constraint (smooth-
ness etc) was enforced across the three views. Finally in
Figure 9 we show a cubemap of the undistorted left view.
Note that straight lines in the world are indeed mapped to
straight lines in the image. The unwarping was carried out
by computing the distorted radius for a given undistorted ra-
dius using a simple line interpolation on the plot in Figure 8.

Figure 8. Plot for fish-eye camera.
More complex models could also be used .

In our second experiment, three images obtained from a
purely rotating single viewpoint catadioptric camera were
used. The image resolution was 1280x960 pixels. Lowe’s
feature matcher [17] produced approximately 220 matching
triplets across the three views. An in the previous experi-
ment, RANSAC based on the radial trifocal tensor produced
around 130 inlier triplets. Figure 7 shows the input images
with the inlier triplets marked. We compute a projective
reconstruction and upgrade it to metric based on assump-
tions of zero skew and unit aspect ratio. Note that since our
method handles all types of radial distortion uniformly, the
complete procedure in this experiment in exactly the same
as in the previous experiment. Figure 10 shows the plots of
the Angle with Optical Axis vs. Distorted Radius for each of
the views. Finally, Figure 11 shows a cubemap of the undis-
torted left view. One can refine the estimates produced by
our method using techniques like bundle adjustment. In the
first experiment, it reduced the RMS reprojection error from
1.13 pixels to 0.43 pixels.

Figure 9. Cubemap of undistorted left image

6. Conclusion

In this paper we have introduced the 1D radial camera
which maps 3D points on radial lines. This allows us to
derive multilinear constraint between three and four views
recorded with central or non-central omnidirectional cam-
eras. Given 15 or more correspondences across four views



Figure 10. Plot for catadioptric camera.

Figure 11. Cubemap of undistorted left image
taken with a moving camera (or multiple cameras), the cor-
responding 1D radial cameras and a metric reconstruction
of 3D points can be computed. We have then demonstrated
how the reconstruction can be used as calibration object to
estimate non-parametric camera model for different cam-
eras, including a non-central cameras. Although the ap-
proach has been demonstrated to work well on synthetic
data, the required number of point correspondences makes
it hard to develop a robust automatic approach for real im-
ages.

For a purely rotating camera a simpler constraint is ob-
tained requiring 7 point correspondences across 3 views.
As with perspective cameras [11, 5], pure rotation turns out
to be particularly well suited for self-calibration of central
omnidirectional cameras. In particular, we present an au-
tomatic approach that recovers the accurate non-parametric
distortion curve relating image radius to angle of incoming
rays. We use our approach to automatically calibrate both
fish-eye lenses and cata-dioptric cameras from real images.
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