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Abstract We present a whole-body motion planning algorithm for human-like
robots. The planning problem is decomposed into a sequence of low-dimensional
sub-problems. Our formulation is based on the fact that a human-like model is a
tightly coupled system and uses a constrained coordination scheme to solve the
sub-problems in an incremental manner. We also present a local path refinement
algorithm to compute collision-free paths in tight spaces and satisfy the statically
stable constraint on CoM. We demonstrate the performance of our algorithm on an
articulated human-like model and generate efficient motion strategies for walking,
sitting and grabbing objects in complex CAD models.

1 Introduction
The problem of modeling and simulating human-like motion arises in different ap-
plications, including humanoid robotics, biomechanics, digital human modeling for
virtual prototyping, and character animations. One of the main goals in this area
is to develop efficient motion strategies for whole-body planning for various tasks
including navigation, sitting, walking, running, object manipulation, etc. The entire
human body consists of over 600 muscles and over 200 bones, and half of those
are found in the hand and feet. Even the simplest human-like models represent the
skeleton as an articulated model with 34−40 joints to model the different motions.
The underlying complexity makes it hard for a planner to efficiently compute the
motion due to the dimension of the configuration motion. In addition to collision-
free constraints, the resulting planner also needs to satisfy the posture and dynamics
constraints to generate realistic motions.

Recent research in robotics has focused on motion planning of humanoids due to
the commercial availability of humanoid robot hardware [11, 20]. Many of these ap-
proaches use a simple bounding volume (e.g. a cylinder) approximation of the entire
human model [19] or the lower body [1, 24] to compute the collision-free motions,
and design appropriate gaits or locomotion controllers to follow those trajectories
[14, 16]. Other approaches compute the motion for the whole body [13]. Most of
these approaches are efficient for open environments, but their performances may
degrade for cluttered environments. Besides humanoids, another driving application
of human-like robots is digital modeling of humans or mannequins for design, as-
sembly and maintenance in CAD/CAM and virtual prototyping. The digital human
models can be inserted into a simulation or virtual environment to facilitate the pre-
diction of performance, safety and ergonomic analysis of the CAD models [6, 21].
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For example, human-line models are used in validating vehicle or aircraft designs
and ensure that there will be sufficient clearance in the CAD model for a human op-
erator to remove a complex part. In order to perform these tasks, we need to develop
capabilities for complex motion strategies (e.g. sitting, bending), handling narrow
passages, and planning in cluttered environments.

One strategy to solve high DOF planning problems is to decompose a problem
into a set of lower dimensional sub-problems [1, 2, 15]. A human-like robot can
be decomposed, for instance, into the lower body and the upper body. In order to
deal with CAD/CAM applications, we need to handle cluttered environments and
model many other motions, which cannot be efficiently generated by simple decom-
positions. In addition to collision-free constraints, the motion of human-like robots
subjects to statically or dynamically stable constraints. There is a general perception
that actual human motion results from simultaneously performing multiple objec-
tives in a hierarchical manner, and researchers have developed similar models for
dynamics control [27]. It would also be useful to develop approaches that use hier-
archical decompositions for planning human-like motions.

Main Results: We present a whole-body motion planning approach for human-
like robots by coordinating the motions of different body parts. Our approach uses
a hierarchical decomposition and takes into account that a human body is a tightly
coupled system. We describe a new constrained coordination scheme that incre-
mentally computes the motion for different parts and satisfies both collision-free
and statically stable constraints. In order to deal with cluttered or tight scenar-
ios, we present a local path refinement algorithm which can take into account the
workspace distance information to control the amount of modification on the path.
The whole-body planning algorithm is decomposed into a sequence of low-DOF
planning sub-problems, and we use constrained sampling and local interpolation
techniques to compute the paths for each sub-problem. If any sample generated by
the constrained coordination algorithm is not statically stable, we further modify
the sample by using inverse kinematics (IK) so that the CoM at the new sample
lies inside the approximate foot support polygon. We demonstrate the performance
of our algorithm on an articulated human-like model. We generate various motion
strategies corresponding to bending, standing-up, walking, sitting, and grabbing ob-
jects in different complex scenarios. In practice, our planner is able to compute a
collision-free and statically stable motion in tens of seconds. Within the two-stage
framework for planning dynamic motions, our approach can improve the efficiency
of the stage of computing collision-free and statically stable motions.

The rest of the paper is organized in the following manner. We give a brief survey
of related work in Section 2. We describe our hierarchical representation and give
an overview of our approach in Section 3. Section 4 presents the constrained coordi-
nation algorithm as well as local path refinement. We describe our implementation
in Section 5 and highlight its performance.

2 Previous Work
There is an extensive literature on motion planning, motion coordination and dy-
namic control of human-like robots. In this section, we give a brief overview of
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prior work on motion planning for human-like robots, dimensionality reduction and
path replanning.

2.1 Motion Planning for Human-Like Robots
Sampling-based approaches have been successfully applied to human-like robots
to plan various tasks. These include efficient planning algorithms for reaching and
manipulation that combine motion planning and inverse kinematics [7, 8] or com-
puting the whole body motion [13]. The motion strategies for human-like robots
such as walking can also be computed by walking pattern generators [14, 18, 16].
To plan collision-free and dynamically stable motions, most previous approaches
use a decoupled two-stage framework [12, 20, 33]. Task-based controllers have also
been presented to plan and control the whole-body motion [11, 27]. In the domain of
computer animation, motion capture data are often used to synthesize natural human
motion [30].

2.2 Dimensionality Reduction
Decomposition techniques can reduce the overall dimensionality of motion planning
problems and have been applied to articulated robots or multi-robot systems [2, 15].
Different coordination schemes for combining the solutions of lower dimensional
sub-problems are presented in [9, 23, 26]. Simple decomposition schemes based on
lower-body and upper-body can be used for planing the motion of human-like robots
[1]. Another effective scheme for dimensionality reduction is to use the reduced
kinematic models, such as using a bounding cylinder to approximate the lower body
[19, 24]. A multi-level method to adjust the activated DOF according to the envi-
ronment is presented in [32]. Finally, PCA-based analysis or various task constraints
can also be used to guide the sampling towards the lower dimensional space [5, 28].

2.3 Path Modification and Replanning
The step of path modification is often required by many motion planning ap-
proaches. Retraction-based sampling approaches can effectively deal with narrow
passages and cluttered environments [4, 34]. By performing randomly perturba-
tion or penetration depth computation, a path with colliding configurations can be
repaired. For motion planning among dynamic obstacles, local path modification
algorithms modify the portion of the path to avoid the moving obstacle or to ac-
commodate changes in the connectivity [25, 31]. Since global modification needs to
replan for the entire connectivity data structure, they are usually much more expen-
sive [10, 17].

3 Overview
In this section, we introduce our notation and give an overview of our planning al-
gorithm. Planning a path for a human-like robot by taking into account all the DOF
is often difficult due to the underlying high dimensional search space. Our approach
represents a human-like robot by using a set of body parts, i.e. {A0,A1, ...,An}. We
decompose the problem into multiple sub-problems of lower dimensions, and com-
pute the motion for the body parts in a sequential order. A key feature of our al-
gorithm is that planning the path of the kth body part is coordinated with the paths



4 Motion Planning of Human-Like Robots using Constrained Coordination

Head LArm RArm

Lower-body 
(torso, legs)

Head LArm RArm

Torso

LLeg RLeg

Head LArm RArm

Lower-body 
(legs and pelvis)

Head LArm RArm

Torso

LLeg RLegTorso

A0

A1 A2 A3 A4

Fig. 1 Our decomposition scheme for a human-like model. In this decomposition, we show a 2-
level tree hierarchy. Our approach also extends to multiple level hierarchies. We compute the mo-
tion for the body parts sequentially by starting from the root of the hierarchy.

of the first k− 1 body parts computed earlier. Furthermore, all these paths can be
refined using a local refinement scheme. In this manner, the paths for the first k−1
body parts can possibly be updated during the planning of the kth body part. This
form of sequential planning along with path refinement helps us treat the whole-
body as a tightly-coupled system.

3.1 Decomposition of A Human-like Model
The simplest decomposition of a human-like robot decomposes the whole-body into
different body parts {A0,A1, ...,An}. In this case, it is assumed that each Ai has few
DOF. Fig. 1 shows a decomposition scheme, where a human model is decomposed
into parts: a lower-body (including legs and pelvis), torso, head, left arm and right
arm. In this decomposition, the lower body is treated as the root of the tree. It is
possible to compute another decomposition where the root node (A0) corresponds
to the torso. Furthermore, we build a hierarchical representation based on the inter-
connection between the parts. For example, each arm can be further decomposed
into upper arm, lower arm, hand, etc.

We use the symbol q to denote the configuration of a human-like robot. q is
composed of configurations qi for each body part, i.e. q = {q0,q1, ...,qn}, where qi

corresponds to the configuration of Ai. Since we are dealing with articulated models,
the configuration qi for Ai is determined by all of its actuated joints, including the
joint through which Ai is connected to its parent body part in the decomposition tree.
For the lower body part A0, 6 additional unactuated DOF can be added to the system
to specify the position and orientation of the coordinate frame associated with the
pelvis For instance, The basic motion planning problem for a human-like robot is to
find a collision-free path between the starting configuration qs = (q0

s ,q1
s , ...,qn

s ) to
the goal configuration qg = (q0

g,q1
g, ...,qn

g). In practice, the resulting motion should
also satisfy with statically or dynamically stable constraints.

3.2 Whole-Body Motion Planning using Constrained Coordination
A human-like model is a tight-coupled system and the inter-connection between the
body parts needs to be maintained during planning. One possibility is to decom-
pose this high dimensional robot into a multi-robot planning problem by treating
each part as a separate robot. There is rich literature on multi-robot motion plan-
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Fig. 2 Whole-Body Motion
Planning using Constrained
Coordination. We first com-
pute the path for A0 while
ignoring all the other parts.
When planning the motion
for the system {A0,A1}, the
motion of A0 is constrained on
the path M0

0 (t) but this path
can be locally refined. We
refer this step as constrained
coordination (Fig. 3).

Plan A0

Constrained Coordination
{A1, A0}

0
0M

0
1M1

1M

. . .
Constrained Coordination

{A2, A1, A0}

Constrained Coordination
{An, …, A1, A0}

n
nM 1

nM… 0
nM

1
1

n
nM −
−

1
1nM −… 0

1nM −

Stage 0

Stage 1

Stage 2

Stage n

ning and at a broad level prior approaches for multi-robot planning can be classified
into centralized or decentralized methods. The centralized methods compose all the
different robots into one large coupled system. The DOF of the coupled system
corresponds to the sum of DOF of all the robots. Such an approach could be ex-
tremely inefficient for a human-like robot due to the high DOF configuration space.
The decentralized planners compromise on the completeness by using a decoupled
approach. The decentralized planner typically proceeds in two phases. In the first
phase, a collision-free path is computed for each robot with respect to the obstacles
and the collisions between the robots are handled in the second phase by adjusting
their velocities. Since a human-like robot is a tightly coupled system, it would be
hard using purely decoupled methods to maintain the inter-connection constraints
between adjacent links of the robot.

We propose a hybrid coordination scheme that is based on prior work on pri-
oritized or incremental coordination approaches [9, 26]. Our algorithm proceeds
hierarchically using the decomposition of the human model and computes the path
of different nodes in the tree in a breadth first manner. The path computed for a part
corresponding to a node, also takes into the account the path of its parent node and
other paths computed so far.

We describe the main idea behind constrained coordination by taking into ac-
count two objects, A and B. Lets say A has m DOF and B has n DOF. By considering
the two objects as a composite system, {A,B}, a centralized planner needs to search
over a m + n dimensional space. On the other hand, decentralized approaches plan
each object independently by searching the m and n dimensional spaces correspond-
ing to each robot. We improve the decentralized planning by using an incremental
coordination strategy. A collision-free path MA(t) for A is computed by ignoring B.
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Fig. 3 Constrained coordination algorithm: It includes a path computation stage for the new part
and refinement of the paths of the other parts.

Fig. 4 Within the decoupled
two-stage framework for plan-
ning a motion satisfying with
both collision-free and dy-
namically stable constraints,
our approach can improve the
efficiency of the first stage of
collision-free and statically
stable motion computation.

Collision-free and 
statically stable motion

Satisfy dynamically 
stable constraint

Next, a collision-free path for the system {A,B} is computed by coordinating A and
B. During the coordination, a path constraint for A is imposed so that the config-
uration of A should lie on the path MA(t). The coordination of the system {A,B}
is the n + 1 dimensional search space, since A is constrained on a one dimensional
path with the parameter t and A1 has n DOF. Intuitively, this approach computes
a path for B (i.e. MB(t)), based on the original trajectory (MA(t)) computed for A.
However, it is possible that the original path computed for A, may not result in a
feasible path for B such that {A,B} may satisfy all the collision and dynamics con-
straints as shown in Fig. 5. In case of human-like motion, such a hard constraint can
result in either an inefficient planner or a failure to compute a solution that satisfies
all the constraints. In order to address this issue, we use a local refinement scheme
that modifies the computed trajectory MA(t), as it computes a collision-free path for
B. In Section IV, we present an implicit local path refinement algorithm based on
constrained sampling and interpolations.

3.3 Planning Stable Motions
In addition to collision-free and joint limit constraints, the motion of human-like
robots subjects to statically or dynamically stable constraints. The computed pos-
tures should either be statically stable, i.e. the projection of the center of mass of the
robot (CoM) lies inside the foot support polygon, or dynamically stable, i.e. the zero
moment point (ZMP) lies inside the support polygon [29]. However, due to the com-
putational complexity to plan the collision-free and dynamic motion together, most
previous approaches tend to use a decoupled two-stage framework [12, 20, 33]. For
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Fig. 5 Given an articulated robot with two links A0 and A1, a path M0(t) for A0 is first computed.
However, when A0 moves along M0(t), it comes very close to the obstacle (shown in blue), as the
separation distance d is very small. This leads to no feasible placement for A1, as it collides. To
resolve such cases, our constrained coordination scheme locally refines the path M0(t) by moving
it upwards (shown with green arrow), while planning the motion for A1. In practice, such a local
refinement approach is more efficient as compared to global replanning.

instance, a collision-free path can be first computed. The path then is transformed
into a dynamically stable trajectory. Each of these stages is iterated until both types
of constraints are satisfied (Fig. 4). Our approach can be extended to compute a
statically stable motion. If any sample generated by the constrained coordination
algorithm is not statically stable, we further modify the sample by using inverse
kinematics (IK) so that the CoM at the new sample lies inside the approximate foot
support polygon. Within the two-stage framework, our approach can improve the
efficiency of the first stage on computing a collision-free and statically stable path.
Such path is further processed by the second stage.

4 Constrained Coordination
In this section, we present our constrained coordination approach. It is primarily
designed for human-like or tightly coupled robots that have high DOF. Our approach
consists of two parts: a modified incremental coordination algorithm and local path
refinement.

4.1 Path Computation
Our algorithm proceeds in multiple stages, as shown in Fig. 2. We use the symbol
Mi

j(t) to denote the path of part Ai computed after stage j. After stage j, the algo-
rithm has computed the following paths: Mi

j(t) for Ai, for i = 0,1, . . . , j. As shown
in Fig. 3, during this stage, the algorithm computes paths for A0, A1, . . . , A j by si-
multaneously searching the C-space of A j and the 1 dimensional time space of the
set of paths (M0

j−1(t),M
1
j−1(t), . . . ,M

j−1
j−1(t)), and locally refining each of the paths

M0
j−1(t),M

1
j−1(t), . . . ,M

j−1
j−1(t). Later, we show the local path refinement can be per-

formed implicitly within a sample-based planner. The algorithm traverses the entire
hierarchy of body parts, {A0, ...,An}, sequentially in the breadth-first order of the
tree. After stage n, the algorithm has computed a path for all the parts that satisfy
the constraints.



8 Motion Planning of Human-Like Robots using Constrained Coordination

Fig. 6 A human-like robot
with 40 DOF used in our sim-
ulations. We also highlight the
DOF of each part according
to the decomposition shown
in Fig. 1.

A0: 14 DOFs, with 4 
additional unactuated DOFs

A3: 7 DOF A4: 7 DOF

A1: 3 DOF

A2: 3 DOF

4.2 Implicit Local Path Refinement
A key aspect of constrained coordination algorithm is refining the path that was
computed at the previous stage. In this section, we present a local replanning algo-
rithm that takes into account the decomposition of human-like robot and the path
computation algorithm highlighted above. We observe that within an incremental
coordination scheme for two objects {A0,A1}, the motion of A0 is strictly con-
strained on the path computed earlier. This can lead to the difficulty of planning
a motion for the overall robot, or it fails in terms of finding a solution. Fig. 5 shows
such an example for an articulated robot with two links A0 and A1. When A0 moves
along the path M0

0(t), its distance d to the obstacle becomes too small, which re-
sults in no feasible placement for A1. This issue can arise when we are attempting
to compute a collision free path in a cluttered environment or in a narrow passage.
Since the robot is decomposed into many body parts, each body part is constrained
by predecessors, as given by the breath first order of the tree. In this case, we refine
the path for A0, given as M0

0(t), and compute a new path M0
1(t).

Our algorithm uses a sample-based planner to compute a path during each stage
and we design an implicit local refinement scheme that can be integrated with any
sample-based approach. The two main steps of sample-based planning is generating
samples in the free space and computing an interpolating motion between those
samples using local planning. Instead of explicitly modifying the path computed in
the previous stage, our algorithm performs constrained sampling and constrained
interpolation so that the generated samples or local motions are allowed to move
away from the constraining path up to a threshold. In this way, we achieve the path
refinement implicitly. In the following, we present the algorithm for a composite
system with two robots, which can be generalized to a system with n robots.
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4.2.1 Constrained Sampling

Our algorithm (Alg. 1) generates a configuration for the system {A0,A1} subject to
the path constraint. A free configuration for A1 is computed by randomly sampling
its configuration space and performing collision checking with the obstacles. A con-
figuration of A0 for the system is computed by randomly generating a value trand on
the path M0(t), which lies in the coordination space [0,1]. As part of the refinement
step, we perturb these free-space configurations such as M0(trand).

We determine the closest points between A0 at the configuration M0(trand) and
the obstacles. Lets denote the closest point on A0 using p and let r be the vector from
the closest point of the obstacles to p. The basic idea for perturbing the configuration
M0(trand) for A0 is to increase the distance between A0 and the obstacles so that
we can avoid the situations that are shown in Fig. 7. In order to perform such a
perturbation, we randomly choose a scale factor λ between an interval of 1 and
the maximum scale factor ε/||r||, where ε is a user-control input. Furthermore, a
Guassian distribution function can be used when randomly choosing λ within the
interval computed earlier so that the probability of choosing a value near to 1 is
higher. Finally, we compute the amount of perturbation δq0 for A0 by solving the
following equation by using an inverse kinematic solver:

λr = J0
pδq0, (1)

where J0
p is the Jacobian for the point p on A0.

4.2.2 Constrained Interpolation

We address the issue of motion interpolation during our refinement algorithm. Given
two configurations of the system {A0,A1}, our goal is to interpolate a motion be-
tween them that satisfies the path constraint. The interpolation between the two
configurations of the body part A1 can be computed by linear or other interpolation
algorithm. Differently, when interpolating the two configurations of A0, the result-
ing motion of A0 should be constrained on the path M0(t) computed earlier. Let us
denote t0 and t1 as the parameters of the two configurations of A0 on the path M0(t).
In order to perform the constrained interpolation for A0, we first determine all the
nodes (i.e. samples) along the path M0(t) between t0 and t1 as shown in Fig. 7. Next,
we locally perturb these nodes by using the perturbation describe above. This results
in a new interpolating motion for A0. Together with the interpolating motion for A1,
we finally obtain a constrained interpolating motion for the entire system, which can
be used by a sampling-based planner.

4.3 Statically Stable Motion
Our constrained coordination algorithm can be extended to generate a statically sta-
ble motion for the robot. In the coordination algorithm, we modify the last stage
for coordinating between An and {A0,A1, . . . ,An−1}. At this stage, we additionally
check whether the configuration q generated from constrained sampling is statically
stable, i.e. the projection of the center mass (CoM) point of the robot at q lies inside
the support polygon defined by the robot’s support feet (foot for single foot support
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Algorithm 1: Constrained Sampling
Input: Body parts A0 and A1;

A collision-free path M0(t), t ∈ [0,1] for A0

Output: A random configuration {q0,q1} for {A0, A1} where q0 subjects to the path
constraint M0

begin
q1 = Random configuration of A1

// Sampling the path M0

trand = Rand(0,1)
q0 = M1(trand)
// Perturbation
r = Shortest vector between points from any obstacle to A0

λ = A random scale factor (See Section IV.B)
∆r = λr
∆q0 = InverseKinematics(A0, q0, ∆r) // Eq. 1
q̃0 = q0 +∆q0

return {q̃0,q1}
end

t0
t1M1(t)

A1

A2 2
0q 2

1q

t0 t1
M0(t)

A0

Fig. 7 Our constrained coordination approach does not strictly constrain the motion of A0 on the
path M0(t). Rather, A0 is allowed to move away from the path locally based on refinement. The
extent of perturbation is determined by a Gaussian distribution function. Within a sample-based
planner, the local path refinement is implicitly performed by using our constrained sampling and
constrained interpolation schemes.

case). If the configuration q is not statically stable, we perturb it to generate a stati-
cally stable configuration q′ meanwhile ensuring the foot placement is not changed.
The process of perturbation can be reduced as an inverse kinematic problem. The
projection of CoM point is treated as one end-effector in the IK problem. The Ja-
cobian of this end-effector can be easily derived according to the kinematics of the
robot and the mass of each body part. In the IK problem, this end-effector needs to
be moved towards the center of the support polygon until it becomes inside the poly-
gon. In order to maintain the foot contacting constraint, we choose three contacting
points from each contacting foot as additional end-effectors. In the IK problem, the
positions of these end-effectors are not changed. To solve the IK problem, a damped
least squares method can be employed [3].

The modified constrained sampling allows us to generate statically stable sam-
ples for sampling-based planners. We also need to check whether the interpolating
motion between samples are statically stable motion. One simple way is to dis-
cretely sample along the interpolating motion and check each sample individually.
If any sample is not statically stable, we can perturb it by using our IK-based CoM
perturbation algorithm.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 The crouching robot picks the object from the ground and puts it on the table (a-e). When
performing this task, the robot needs to avoid the collision with the environment and maintain
its balance. Our algorithm can efficiently compute a valid motion for the robot within 10.117s.
The entire motion is shown in (f). We highlight the center of mass (CoM) of the robot at each
configuration. The projection of CoM onto the ground shows that the robot maintains the statically
stable along the motion we have computed.

5 Implementation and Results
In this section, we describe our implementation and performance of our algorithm
in many complex scenarios. We use a human-like robot with 40 DOF as shown in
Fig. 6. The robot model is mobile and able to bend the torso or head, and sit. Six of
the 40 DOF are unactuated and used to specify the position and the orientation of
the virtual base. The robot is modeled by 22K triangles and it is decomposed into
five body parts {A0,A1, ...,A4} in our benchmarks. The number of DOF for each
body part are specified in Fig. 6.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 The robot walks towards one chair and sits down. To avoid the collision with the overhead
light, the robot needs to bend itself. This scenario has narrow passages and tight spaces, and
therefore, the planner takes more time.

The underlying planner uses a sample-based path computation algorithm - bidi-
rectional RRT [22]. We also augment the sampling and motion interpolation com-
ponents to perform local path refinement. When planning the motion for first k parts
of the robots, we ignore the rest of the body parts by temporarily deactivating those
parts from motion. Moreover, we use PQP library for collision detection and closest
distance queries with the obstacles and also among various parts of the robot. We use
a damped least squares method for computing IK [3]. Our current implementation
is not optimized and it is possible to improve the running time.

Figs. 8,9,10,11 show four complex scenarios that are used to analyze the perfor-
mance of our algorithm. The resulting algorithm computes motion strategies cor-
responding to walking, sitting, bending and grabbing objects in complex scenarios.
In Fig. 8, the robot is crouching. In order to pick the object from the ground and
put it on the table, the robot needs to first stand up and then bend its torso. Our
algorithm can efficiently compute a collision-free motion to achieve this task within
10.1s on a Pentium IV PC. The second benchmark scenario shows the motion of the
human-like robot in a dining room (see Fig. 9). In this case, the robot walks from
its initial position towards the dining table and eventually sits on the table. In Fig.
10, a whole-body motion for the robot is computed by our planner. The robot is able
to pass through a tight space or a narrow passage between the two bookshelves and
eventually sit down on the chair. When the robot passes through the narrow passage,
it needs to coordinate its arm motion as well as the lower body motion to avoid col-
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Bookshelves Dinning Room Car Crouching
Stage Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

A0 4.719 269 24.328 559 0.407 51 0.100 102
A0, A1 2.180 115 5.719 134 0.563 100 1.063 104

A0, A1, A2 2.165 126 6.000 132 1.719 237 1.234 105
A0, A1, A2, A3 5.201 89 6.796 74 16.891 1,436 4.266 183

A0, A1, A2, A3, A4 3.504 80 14.641 168 5.453 257 3.375 109
Overall Planning 18.328(s) 56.809(s) 25.078(s) 10.117(s)

Table 1 Performance of our approach on various benchmarks. We show the timing and the nodes
in the resulting RRT at each stage of our constrained coordination. We also highlight the total
timing for each benchmark. Our approach computes a collision-free path for the human-like robot
with up to tens of seconds on various scenarios.

Bookshelves Dinning Room Car Crouching
Decomposition as Fig. 1 (s) 18.3 56.8 25.0 10.1

Decomposition of lower and upper bodies (s) 84.3 63.8 69.6 19.7
Centralized approach (s) 191.6 73.0 113.3 73.4

Table 2 Comparison of the performance between our approaches based on different decomposi-
tion schemes and the centralized approach.

lisions with the obstacles. The total computational time to compute a collision-free
path for this benchmark is 18.3s.

In Fig. 11, we show a scenario arising in CAD application. The human-like
robot’s right hand is grabbing a tool. The human-like robot needs to move his body
inside the to fix some parts using the tool. The CAD model of the car has 244k
triangles and the algorithm needs to check for collisions with the car seat, roof and
other parts. Our algorithm can efficiently compute a collision-free motion for this
benchmark in 25.1s.

In table 1, we show the timing and nodes corresponding to each stage of the con-
strained coordination algorithm. In these examples, the locomotion such as walking,
sitting, standing-up currently are generated using kinematic pattern generators (e.g.
a walking cycle generator).

We compared the performance of our approach based on the decomposition as
Fig. 1, our approach based on the lower-body and upper body decomposition, and
the centralized planner applied to the entire robot. The table 2 shows up to 10 times
performance speedups obtained by our approaches over the centralized approach.
Our approaches often achieve more speedups in more cluttered environments.

5.1 Limitations
Our approach has many limitations. The underlying planner is not complete and its
performance can vary with the scenario and the start or goal configurations. The
performance depends considerably on the specific path computed for the root A0

of the tree in the sub-space of the configuration. In the subsequent stages we only
use local refinement techniques to perform local modifications to the path. A poor
path computed for A0 can affect the performance of the entire planner. Secondly,
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Fig. 10 The robot is able to pass through a narrow passage between two bookshelves and sit down.

(a) (b)

(c) (d)

Fig. 11 The robot’s right hand is grabbing a tool. The robot needs to move its upper-body inside
a car to fix some parts with the tool. Our algorithm can efficiently compute a collision-free motion
for the robot in 25.1s.
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the motion computed by our planner can at times result in unnatural motion for the
robot. This can happen if the initial and goal configurations are far apart and our
constraints don’t guarantee that the computed motion will look realistic.

6 Conclusions and Future Work
In this paper, we have presented an algorithm to compute whole-body motion for
human-like robots. Our approach can handle high-DOF robots and uses decompo-
sition strategies to reduce the problem to a sequence of low-dimensional problems.
We use constrained coordination approach that solves each sub-problem incremen-
tally, and performs local refinement to satisfy collision-free and statically stable
constraints on CoM. We have demonstrated the performance on a 40-DOF robot in
complex scenarios and generate collision-free motion paths corresponding to walk-
ing, sitting, bending in complex scenes with tight spaces and narrow passages.

There are many avenues for future work. We would like to compute dynamically
stable motions by incrementally enforcing dynamics constraints within our coordi-
nation approach. In addition, we would like to apply our approach to more complex
scenarios that arise in virtual prototyping including ergonomic analysis. We would
like to demonstrate on complex models with more DOF and difficult narrow pas-
sages such as part removal from an engine.
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