
Noname manuscript No.
(will be inserted by the editor)

Amplifying Limited Expert Input to Sanitize Large Network Traces:
Framework and Privacy Analysis

Xin Huang · Fabian Monrose · Michael K. Reiter

Received: / Accepted:

Abstract We present a methodology for identifying sensi-
tive data in packet payloads, motivated by the need to san-
itize packets before releasing them (e.g., for network se-
curity/dependability analysis). Our methodology accommo-
dates packets recorded from an incompletely documented
protocol, in which case it will be necessary to consult a hu-
man expert to determine what packet data is sensitive. Since
expert availability for such tasks is limited, however, our
methodology adopts a hierarchical approach in which most
packet inspection is done by less-trained workers whose des-
ignations of sensitive data in selected packets best match the
expert’s. At the core of our methodology is a data reduc-
tion and presentation algorithm that selects candidate work-
ers based on their evaluations of a small number of packets;
that solicits these workers’ designations of sensitive data in
a larger (but still minuscule) subset of packets; and then ap-
plies these designations to mark sensitive data in the entire
data set. We detail our algorithms and evaluate them in a re-
alistic user study. We also analyze the effectiveness of the
sanitization achieved using our approach.

Keywords Sanitization· Packet payloads· Sensitive data·
User study· Privacy· Entropy

1 Introduction

Visibility into packet payloads supports numerous network
security defenses and dependability analyses. For example,
technologies ranging from simple signature-based intrusion
detection systems (e.g., Snort,www.snort.org) to ad-
vanced techniques for developing exploit signatures require

Department of Computer Science,
University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

access to network packet payloads (e.g., [38]). To evaluate
the efficacy of such proposed defenses, therefore, it is neces-
sary to have access to payload-bearing network traffic traces
on which to test them.

While there has been significant progress in the release
of other types of network traffic traces for research purposes
in the last decade, the release of packet payloads remains
severely limited due to privacy concerns, and this contin-
ues to hamper research progress in numerous types of net-
work defense and performance tests. Packet payloads can
contain sensitive information ranging from personal user in-
formation to security-relevant data about network topology
and service configuration. Thus, data publishers that release
packet traces must first sanitize the traces by removing the
sensitive information — and in virtually every case, this san-
itization includes deleting the payloads in their entirety. This
obviously destroys the utility of the trace for research that
requires packet payloads.

The extreme rarity with which payload data is released is
due to numerous challenges that data publishers face in try-
ing to sanitize packet payloads. First, almost any interesting
trace contains too many packets for an administrator to ex-
amine exhaustively. Second, even if the trace contains pack-
ets of only one protocol (e.g., selected by filtering on ports),
the packet formats within that protocol may be numerous or,
even worse, undocumented. For example, the Samba project
required many researchers’ efforts over several years to re-
verse engineer the file-sharing protocol in Microsoft Win-
dows networks, for which the protocol specification was not
released to the public. Third, packet payloads may contain
many types of information that may be deemed sensitive,
e.g., user names, IP addresses, passwords, host names, and a
range of user-generated content. Indeed, the sheer diversity
of content that one might deem as sensitive in a free-form
protocol like HTTP is overwhelming.
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As a step forward in this space, in this paper we propose
a framework and tool to support packet trace sanitization.
To accommodate incompletely documented protocols, our
framework is built around a humanexpertwho can explore
selected protocol packets well enough to accurately iden-
tify the sensitive information they contain. However, since
dataset release is rarely a business priority, we presume that
this expert has very little time to devote to this effort. For
this reason, we structure our framework hierarchically, us-
ing the expert’s input to select others from a set of candi-
dateworkers, based on their abilities to mark sensitive data
in packets similarly to the expert. These selected workers
then mark sensitive data in a small group of packets that
can best represent the characteristics of the overall dataset,
which our technique then applies to automatically identify
sensitive data of the remaining packets in that dataset. We
stress that the expert is involved only in marking sensitive
data for a very small number of packets — generally far
fewer than the total number of packet formats available in
the protocol. As such, we cannot impose upon the expert to
analyze even one packet of each format, and of course, we
may not even know how many formats there are due to the
unavailability of the protocol specification.

At the core of this technique is an algorithm that selects
and presents packet data to the workers in a fashion that best
enables them to identify fields that they deem sensitive and
then to extrapolate from those inputs on that selected data
to sanitize the entire dataset. (The expert examines only a
small subset of the representative packets selected for the
workers.) Doing so in a way that achieves good accuracy in
sanitizing the whole dataset requires that our technique (i)
judiciously select the data that the workers will examine; (ii)
organize the presentation of the selected data to maximize
each one’s competence in identifying sensitive fields; and
(iii) effectively draw inferences from their inputs to sanitize
fields in packet data not presented to them directly.

At a high level, our technique accomplishes these goals
through a multistep process. Packets in the trace are first di-
vided into contiguous tokens, each with a type. Stratified
sampling is applied to these typed token sequences in or-
der to select a fraction of the packets for further analysis,
while minimizing the likelihood of excluding any particular
packet type. These selected packets are clustered into groups
with similar structure; intuitively (and ideally), these clus-
ters correspond to packet formats. We then select represen-
tatives from each cluster, which we present to a worker in an
aligned fashion so as to best reveal their common structures,
a technique known to accelerate visual recognition of homo-
geneous structures [11]. The best workers are selected from
a group of workers by comparing each one’s performance to
that of the expert in marking a small subset of representa-
tives; the selected workers then mark sensitive fields in all
representatives. After the workers identify sensitive tokens

in the representatives for each cluster, these identified to-
kens are mapped onto the entire dataset, in order to identify
sensitive tokens in packets that the workers never examined.

We describe our design and implementation of a tool that
implements this approach and present an evaluation based
on a user study involving professional network administra-
tors as workers. Our results show that both clustering and
alignment have a statistically significant, positive effect on
their abilities to identify sensitive data and that the effects
of the two are additive. The study also reveals that even
network administrators show substantial variability in their
abilities to locate sensitive information in network data,un-
derscoring the difficulty of the task at hand and the need to
down-select workers on the basis of the similarity of their
markings to an expert’s. We show that combining the sensi-
tivity determinations of the two best workers and using these
to mark the entire dataset identifies sensitive data in the orig-
inal dataset very well. Lastly, we use an entropy-based ap-
proach to quantitatively evaluate the ability of an adversary
to infer the contents of fields sanitized using our technique.

2 Related Work

Over the past decade, there has been a marked increase in the
number of proposals for anonymizing network data (e.g., [17,
14, 36, 30, 29, 12]). For the most part, these works attempt
to sanitize network data by applying various transformations
to fields within packet headers (e.g., using prefix-preserving
anonymization [29]), by using domain knowledge to search
for specific patterns (such as URLs or bytecode) using reg-
ular expressions [18, 13, 30], by shuffling payloads while
preserving the ability to search for short substrings [31],or
by deleting the payloads altogether. Unfortunately, many,if
not all, of these proposals require specific parsers for each
protocol of interest.

In what follows, we attempt to move the field forward by
taking advantage of techniques for inferring packet formats,
without relying on having a protocol specification at hand.
In particular, we extend prior work from the protocol reverse
engineering community (e.g. [3, 21]) where byte-based se-
quence alignment has been applied to raw network traces for
uncovering protocol message formats.1 However, as Cui et
al. [9] discovered, byte-based sequence alignment is not par-
ticularly well suited for this task when messages of the same
format can have high variance in the bytes of certain fields.
To address this, we further exploit sequence alignment to

1 Other protocol reverse-engineering works infer message types by
analyzing process execution traces (e.g., [22]). In this work, we do not
have the luxury of taking advantage of such information because in the
vast majority of cases the network traces that publishers are willing to
make available have already been collected. Moreover, it isunrealistic
to presume that data publishers would collect process execution traces
(or even know how to) for all protocols appearing in their traces.
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Fig. 1 Framework of network trace sanitization by leveraging bestworker input

derive a new measure of similarity for packet payloads, and
then generate compact clusters suitable for human inspec-
tion afterwards.

Our work is also inspired by the rich history of research [6,
35] that takes advantage of human cognition to explore the
spatio-temporal multivariate patterns in high dimensional,
large datasets. These approaches combine computational tech-
niques and human capacities to discover novel and useful in-
formation, in ways that may be difficult to do otherwise. As
Duncan and Humphreys [11] have shown, highlighting the
similarity between objects can be an effective way to accel-
erate visual recognition, e.g, quickly rejecting homogeneous
non-targets. Indeed, Avraham and Lindenbaum [1] extend
the work of Duncan and Humphreys to show that dynamic
visual search can be enhanced with the usage of inner-scene
similarity. Their intuitive hypothesis was that the more visu-
ally similar objects are, the more likely they are to share the
same identity. Using these studies as a guide, we propose an
approach for presenting streams of network data to a user in
a visually aligned form.

Concurrent to our work, interactive tools have been re-
cently proposed as ways to help anonymize microdata [39,
10]. Barros et al. [2] even suggest ideas for involving an ex-
pert to validate the correctness of methods for sanitizing per-
sonally identifiable information (PII) in microdata. Unlike
our work, however, these approaches are not used to help
data publishers better identify sensitive information in the
trace, but only allow them to choose how such data should
be anonymized. Furthermore, because of the complexity of
network data compared to microdata [8], these tools cannot
be directly applied to network traces.

Lastly, the role of network trace anonymization has come
under scrutiny in the past few years, especially as it relates
to the utility of anonymized traces [4]. Lakkaraju et al. [20],
for example, evaluate the impact of single field anonymiza-
tion on the utility of data from the perspective of intrusion
detection. More recently, McSherry et al. [25] extend the no-
tion of differential privacy into the domain of network trace
analysis, and advocate an approach for extracting statisti-
cal information in a differentially private manner. Since our
goal is to provide techniques to assist data publishers in their
efforts to sanitize potentially sensitive fields in packet pay-

loads, we consider discussions regarding the utility of the
resulting data beyond the scope of this paper, as any such
analysis would be subjective in nature.

3 Our Approach

At the core of our approach to identifying sensitive informa-
tion in packet payloads is an algorithm that selects a sub-
set of packet payloads to present to workers (a subset of
which is also presented to the expert). At a high level, this
algorithm can be viewed as a natural application of cluster-
ing and sequence alignment techniques for assisting work-
ers in more readily identifying sensitive information in net-
work data. Our proposed solution requires that we first tok-
enize the payloads of the packets by labeling them in a more
compact representation composed of generic types of fields.
Next, we cluster the tokenized packets in order to organize
them roughly according to their formats.

Obviously, presenting a large corpus of data—even in
an aligned form—to a human being, and expecting her to
effectively sift through such data would not be a fruitful
task, to say the least. In order to ease the arduous job of
finding potentially sensitive information in a large corpusof
data, we present to the workers only representatives for each
cluster that capture the most mutual information (and that
have low redundancy). As the worker marks tokens in the
view displayed to her (e.g., by highlighting regions within
the visually-aligned representatives), these annotations are
recorded. Once the interactive session has completed, her
selections made during the process are then used to auto-
matically infer other sensitive tokens in the remainder of
the corpus, without further participation from the worker.
The overall process is depicted in Figure 1. We discuss the
specifics of how we select representatives from the corpus in
more detail in Sections 3.1–3.5 and then discuss how we use
the tokens marked sensitive by a worker to identify sensitive
fields in the larger corpus in Section 3.6.
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3.1 Tokenization

We remind the reader that in order to be protocol agnos-
tic, we deliberately assume no prior knowledge of the pro-
tocol format, and so before we can select the best candi-
dates to present to workers, we must first tokenize the data.
To do so, we abstract each packet by grouping its bytes
into tokens, each of a certain type. The token types we use
take advantage of a growing body of work on protocol re-
verse engineering (e.g., [9, 22]) that suggests suitable to-
ken types for text protocols (e.g., HTTP, FTP), binary proto-
cols(e.g., DNS, DHCP) and so-called hybrid protocols (e.g.,
SMB). Specifically, our three token types are: (1)Length
fields: consecutive printable characters proceeded by a byte
value indicating the number of characters to follow. Both
the printable characters and the byte are combined into a sin-
gle length field. (2)Text fields: several consecutive printable
characters, the length of which is greater than some thresh-
old.2 And (3) Binary fields: any single byte except those
defined as a length field or text field. Each packet is tok-
enized by scanning the payload from beginning to end. Fig-
ure 2 shows an example of the tokenized representation of
two packets. For the remainder of the paper, all subsequent
operations are on tokenized sequences, and we denote the
tokenized sequence of a packetpkt by tokenize(pkt).

Fig. 2 Example tokenization of two packet payloads.

3.2 Sampling the Data

For improved performance, we next sample packets from
the entire dataset and use only the selected packets in subse-
quent stages. However, sampling packets uniformly at ran-
dom risks omitting packet formats present in the full dataset,
especially if those formats are rare. To overcome this obsta-
cle, we usestratified sampling[27, 7] in order to preserve the
diversity of the entire dataset. Specifically, we partitionthe
tokenized sequences into homogeneous subgroups; lacking
information about packet semantics or formats, we simply
partition sequences according to their lengths (i.e., the num-
ber of tokens in each). We then draw a random sample from

2 Similar to [9], we choose a threshold of 3 printable characters.

each stratum of size proportional to the stratum size, i.e.,the
number of sequences it contains.

3.3 Grouping Similar Packet Formats

Given a selection of sequences (i.e., tokenized packets), the
next task is to effectively cluster these sequences into groups
representing different packet formats. To do so, we first de-
fine a distance between sequences, and then provide an al-
gorithm for performing clustering using those distances.

Our chosen distance is based on sequence alignment [15].
That is, to define a distance between two packets, we first
find the optimaltoken-based sequence alignmentof the pack-
ets, which is an alignment of the pair of sequences of tokens
corresponding to those packets. Specifically, for an align-
ment of two token sequences, each aligned pair of tokens is
assigned a positive score (an “award”) if they match, and
a negative score (a “penalty”) if they are a mismatch or
if one of them is a gap inserted by the alignment process.
We usePenaltymis andPenaltygap to represent the mismatch
and gap penalties, respectively. In assigning awards for any
two matching tokens, we not only consider their types, but
also consider their values. In particular, if two tokens have
the same type and value, we assign a larger matching score
Awardval. If they are of the same type but different values,
we assign a smaller matching scoreAwardtyp. The overall
alignment score between packetspkt, pkt′, denoted
Scorealn(pkt, pkt′), is computed using the matching scores,
mismatch penalties and gap penalties. Our scoring function
is formulated asScorealn(pkt, pkt′) = Nval × Awardval +

Ntyp × Awardtyp + Nmis × Penaltymis + Ngap × Penaltygap,
whereNval, Ntyp, Nmis andNgap correspond to the number
of tokens with matched values, tokens with matched types,
mismatched tokens and inserted gaps, respectively, for an
alignment oftokenize(pkt) and tokenize(pkt′) that maxi-
mizesScorealn(pkt, pkt′). We then define the distance as

dist(pkt, pkt′) = 1 −
Scorealn(pkt, pkt′)

Scoremax(pkt, pkt′)
(1)

whereScoremax(pkt, pkt′) = max{Scorealn(pkt, pkt),
Scorealn(pkt′, pkt′)} denotes that largest possible value of
Scorealn(pkt, pkt′). The optimal sequence alignment for two
token sequences, and hence the distance (1), can be com-
puted efficiently using the well-known Needleman-Wunsch
algorithm [26].

Clustering methodGiven this distance calculation, we ap-
ply iterative K-medoids clustering [16] to partition the packet
sequences into different clusters. Unlike K-means, which
takes the arithmetic mean of each cluster’s points as its cen-
troid, the K-medoids algorithm chooses a member of the
cluster as its centroid, namely that which minimizes the av-
erage distance to all cluster members. Instead of deciding
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the number of clusters in advance, we employ the following
algorithm to iteratively grow the number of clusters, which
is parametrized by a valuer, 0 < r < 1:

1. Assign all packets into one cluster, and find the medoid
of the cluster.

2. For each cluster, find the packet furthest from its medoid
as a candidate for a new medoid. Choose the furthest one
among these candidates as the medoid of a new cluster.

3. Re-cluster all packets, assigning each packet to the clos-
est existing medoid. After that, re-compute the medoid
of each cluster.

4. Repeat steps 2 and 3 until no packet is further thanr

times the average medoid-to-medoid distance.

Therefore, the number of generated clusters depends on the
input parameterr.

3.4 Alignment of Packets

The clusters output from the procedure described in Sec-
tion 3.3 are the clusters from which our algorithm selects
representatives (with at least one representative being se-
lected from each cluster). In preparation for performing this
selection, we first align all of the packets in each cluster col-
lectively. We now detail how the alignment is done, and dis-
cuss the selection of representatives later.

A key challenge in performing multiple sequence align-
ment in our setting is the fact that we may need to operate
over clusters with thousands of packets. For efficiency, we
use a progressive method, which generates an alignment by
first aligning the most similar sequences and then succes-
sively adding less similar sequences to the growing align-
ment until all packets in the cluster have been incorporated.

With progressive alignment, the quality of the final align-
ment generally depends on the order with which the sequences
are incorporated. To determine this order, we treat the cluster
as a graph with vertices being the packets and an edge be-
tween each pair of packets weighted by their distance (1).
We then use Prim’s algorithm [32] to create a minimum
spanning tree, and integrate (i.e., align) the vertices together
in the order in which they are included in the tree. Since
Prim’s algorithm adds vertices in increasing order of their
distance to their nearest vertex already in the tree, aligning
vertices in this order should intuitively delay the insertion of
gaps in the overall alignment as long as possible (and hope-
fully render most gaps unnecessary).

The detailed algorithm is shown as Algorithm 1. The
nodes of the minimum spanning tree are denotedmst, which
is initialized to the medoid of the cluster (line 2). The use of
Prim’s algorithm is evident in thewhile loop on lines 4–15,
which selects the next closest packet to incorporate (line 5)
and adds it (line 15). The construction of a mutual alignment
for the packets is done using thealign function in line 6.

This call aligns the chosen packet and a reference alignment
denotedconsensusSeq[ ], which is updated byalign. In ad-
dition, align outputs a boolean arrayisNewGap[ ] of length
equal to the updatedconsensusSeq[ ], such thatisNewGap[j]

is true iff consensusSeq[j] is a gap inserted in this call to
align. As its last step,align outputs the aligned form of the
chosen packet.

Algorithm 1 ClusterAlign (cluster)
1: medoid← arg min

pkt∈cluster
avg

pkt′∈cluster

dist(pkt, pkt′)

2: mst← {medoid}; mstSize← |mst|
3: consensusSeq[ ]← tokenize(medoid)
4: while mstSize ≤ |cluster| do
5: pkt∗ ← arg min

pkt∈cluster\mst
min

pkt′∈cluster
dist(pkt, pkt′)

6: (consensusSeq[ ], isNewGap[ ], seq[mstSize + 1][ ])
← align(consensusSeq[ ], tokenize(pkt∗))

7: for k = 1 . . . mstSize do
8: i← 1; temp[ ]← [ ]
9: for j = 1 . . . |isNewGap[ ]| do

10: if isNewGap[j] then
11: temp[j]← gap

12: else
13: temp[j]← seq[k][i]; i← i + 1

14: seq[k][ ]← temp[ ]

15: mst← mst ∪ {pkt∗}; mstSize← |mst|

16: return seq[1 . . . |cluster|][ ]

The gaps inserted byalign, in locations indicated by
isNewGap[ ], are then propagated to the aligned forms of
the packets already integrated into the tree, i.e., by inserting
the gaps into the same positions in those sequences. This is
shown in lines 7–14, where the new version of the aligned
sequence for thek-th integrated packet is assembled in an
arraytemp[ ] and then copied back intoseq[k][ ] (line 14).

The behavior ofalign differs in an important way from
sequence alignment as described in Section 3.3. To avoid the
introduction of gaps into the aligned sequencesseq[k][ ] to
the extent possible, we alteralign in line 6 to (i) output in
consensusSeq[j] the disjunctionof the tokens from inputs
consensusSeq[ ] andtokenize(pkt∗) that it aligns to position
j (under an optimal alignment as defined in Section 3.3);
and (ii) assign a matching award (in value or type) to to-
kens if the token oftokenize(pkt∗) matchesany disjunct
of the token of inputconsensusSeq[ ] (and where a gap in
consensusSeq[ ] type-matches nothing). Consequently, after
propagating gaps to the other sequences already integrated
into the tree (lines 7–14), an invariant of the loop 4–15 is
that consensusSeq[j] =

∨mstSize

k=1 seq[k][j]. Figure 3 shows
the result of aligning a cluster of ten packets using this algo-
rithm. Notice that fields with similar type or value have been
correctly aligned.
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3.5 Selecting Representatives for Inspection

At this stage in our overall process, the elements of each
cluster are aligned in equal-length sequences denoted as
seq[1 . . . |cluster|][ ]. To select representatives and present
them to the worker for inspection, we borrow a technique
from Pan et al. [28]. The input required by this technique is
a collection of equal-length feature vectors. To generate this
input, we simply define feature vectorsseqFV[1 . . . |cluster|][ ]

so thatseqFV[k][i] = 0 if seq[k][i] = gap andseqFV[k][i] =

1 otherwise. Due to the alignment ofseq[1 . . . |cluster|][ ],
the tokens of all sequences at positioni typically have the
same type, and so a binary gap/no gap representation for
these feature vectors suffices. The technique of Pan et al.
then uses these feature vectors to select representatives that
maximize their mutual information and minimize their re-
dundancy.

Figure 3 shows representative sequences generated for a
particular cluster. The most closely similar sequences, grouped
via the method of Pan et al. [28], are labeled with the same
shape (e.g., star). One representative is picked per group
of similar sequences, based on maximizing the mutual in-
formation and minimizing redundancy. In this way, the ap-
proach for selecting representatives improves the efficiency
of worker inspection by dramatically decreasing the number
of sequences presented for inspection.

Fig. 3 Example of representative selection; each representativeand its
most similar packets are denoted by the same shape (e.g., star).

3.6 Applying Worker Feedback

The representatives selected as described in Section 3.5 are
presented to a group of workers, via an interface such as that
described in the appendix. Our technique does not require a
specific interface, though it should present the representa-
tives to the worker in a way that promotes the identification
of sensitive fields and that provides the worker an ability

to mark which fields she believes to be sensitive. In Sec-
tion 4.2, we evaluate two features of such a user interface
that we believe, based on previous findings about user per-
ception [11, 1], can ease the worker’s task, namely present-
ing similar representatives from one cluster at a time and
presenting tokenized representatives in their aligned form.

The distinct capacities of the workers in identifying sen-
sitive fields make it challenging to apply their markings to
the full dataset — recruited workers may have diverse skill
levels and training. This motivates our attempt to achieve
better accuracy by leveraging inputs from only the most skilled
in the worker pool. To identify these most skilled workers,
we compare the fields indicated as sensitive by each worker
in a small subset of the representatives that worker exam-
ined, to ground truth for those representatives as determined
by the expert. We make this comparison on the basis of stan-
dard measures, namely precision and recall:

Precision =
|{identified fields}

⋂
{sensitive fields}|

|{identified fields}|

Recall =
|{identified fields}

⋂
{sensitive fields}|

|{sensitive fields}|

To select thebestworkers, however, it is necessary to reduce
these two measures to one, on which worker performance
can be ordered. For this, we use the F-score [34] statistic,
which computes a weighted average of recall and precision:

Fα = (1 + α2) ·
Precision · Recall

α2 · Precision + Recall

Essentially,Fα measures the effectiveness of identification
with respect to the participant who placesα times as much
importance to recall as precision [34]. (We will comment on
the values ofα we employ in Section 4.)

Those workers with the highest F-scores on these repre-
sentatives are selected for applying their inputs to the entire
dataset, in a manner described below. For the remainder of
our discussion, we presume that the best two workers are
used. Once these best workers are selected, the goal is to
utilize their identification of sensitive fields in the represen-
tatives they examined to identify sensitive fields in the rest
of the dataset.

To do so, we process each new packet not directly ex-
amined by the workers by first finding the examined rep-
resentative that is closest to this packet (i.e., for which the
distance (1) is the smallest). Pairwise sequence alignmentis
then performed between the new packet and each represen-
tative of the cluster that contains this closest representative.
We then adopt the most liberal strategy in marking tokens;
that is, we mark a token in the new packet as sensitive if
it aligns to a field in any of these representatives that either
worker marked as sensitive. We do so because in the domain
of packet sanitization, higher recall is typically favoredover
precision.
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4 Evaluation

In this section, we evaluate the effectiveness of our approach
when it is used to identify the sensitive fields contained in
packet payloads. For the purpose of our evaluation, we deemed
several types of fields as sensitive. These fields were do-
main names, IP addresses, file names (and directories), user
names, passwords, host (server) names, and email addresses.
These seven types of fields were used as ground truth for
what in the data is “sensitive”. We emphasize that these spe-
cific fields were chosen only to measure the recall and preci-
sion achieved by subjects using our approach. The datasets
we used are:

The UNV-DNS dataset. This dataset consists of 20,000
network packets recorded at a university campus. The trace
contains bidirectional traffic to a DNS server. Of the seven
specified sensitive fields, DNS packets contain domain names
and IP addresses.

The KDDCup-FTP dataset. This dataset was selected from
the International Knowledge Discovery and Data Mining
Tools Competition.3 We prepared the dataset by specifically
choosing the raw FTP Control packets, which contain 31,020
FTP queries and responses. The specified sensitive fields
contained in FTP Control traffic are domain names, IP ad-
dresses, file names (directories), user names, passwords, host
(server) names, and email addresses.

The Wireshark-SMB dataset. This dataset is from the
WiresharkTM trace repository. It contains 22,807 SMB (server
message block) requests and responses. The specified sensi-
tive fields it contains are domain names, file names (directo-
ries), user names, passwords, and host (server) names.

The motivation for selecting these three datasets is that
they contain packets with diverse types of sensitive fields
and complex message formats. For example, the DNS re-
sponse packets in theUNV-DNS dataset are very diverse
and can be quite complex (e.g., with IP addresses appear-
ing in many different places in the response packets). The
KDDCup-FTP dataset has packets with all the sensitive fields
specified above, and also has many different types of mes-
sage formats in FTP reply packets. Similar reasons justify
our choice of theWireshark-SMBdataset. For these datasets,
we wrote a parser that read the XML packet detail exported
by Wireshark to automatically locate all instances of the
seven specified fields contained in the payloads. The number
and locations of these fields are used only as ground truth.

3 While this dataset has been criticized as being too unrealistic as a
basis for evaluating intrusion detection systems (e.g., [24]), we use it
here for a completely different purpose, namely as a source of payload-
bearing packets that contain some of the sensitive field types listed
above.

For the remainder of this paper, we apply standard mea-
sures of effectiveness when evaluating our approach, specif-
ically the F-scoreFα (see Section 3.6) achieved for identi-
fying all sensitive fields either in the entire dataset or simply
in the representatives for each cluster. (We will clarify which
is used in each case.) Because in the context of packet trace
sanitization, recall is often more important than precision —
after all, the most common practice when releasing network
traces is simply to remove all payload information, yielding
a recall of1.0 but potentially very low precision — we will
generally setα ≥ 1 in our analysis.

In the analysis that follows, we present results from a
user study in which professional administrators were recruited
to participate, in order to gain a better understanding of the
effectiveness of our approach in enabling them to identify
sensitive fields. To estimate parameter settings for this study,
we first conducted a simulation-based analysis (with no hu-
man interaction) to evaluate the effectiveness of propagating
marked tokens in the representatives (i.e., tokens identified
as sensitive) to the remainder of the dataset.

4.1 Exploring the Parameter Space

One advantage of our technique is in generating a limited
number of representative packets that capture the character-
istics of the packets in the dataset. That said, the manner in
which we do so could impact our identification accuracy.
Therefore, to choose the most appropriate parameters for
our user study (in particular, the number of clusters to use),
we performed an analysis in which we simulated a single
worker who marked (identified) each instance of a sensitive
field independently and with a fixed probability. We reiterate
that the sole purpose of the simulation-based analysis was to
provide guidance on parameter choice for the field study that
followed. With that in mind, we made certain assumptions
(about independence) for the simulated user to simplify the
task of exploring the parameter space. We then measured
the F-score when mapping these random markings of sen-
sitive fields to the full dataset, as described in Section 3.6
(though using the inputs of only a single simulated worker,
not two in combination). In this evaluation, the simulated
worker did not mark non-sensitive fields as sensitive, lead-
ing to higher precision than might occur in practice (though
the precision on the full dataset was nevertheless always less
than1.0). This was done to focus on the effects of recall or,
more specifically, F-score withα ≥ 1.

We selected 2000 samples from each original dataset
using the sampling described in Section 3.2. We also con-
trolled the number of representative packets by fixing it ir-
respective of the number of clusters. Specifically, the num-
ber of representative packets was chosen to be 140 in the
UNV-DNS dataset, 108 in theKDDCup-FTP dataset and
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(b) KDDCup-FTP
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(c) Wireshark-SMB

Fig. 4 AverageFα when 40%, 80% or 100% of the sensitive tokens in representatives are marked (at random) by a simulated worker.

120 in theWireshark-SMB dataset; these numbers con-
stituted only 0.70%, 0.34% and 0.54% of the total number
of packets in each dataset, respectively. These numbers of
representatives resulted from using the technique described
in Section 3 at the finest clustering (i.e., yielding the most
clusters). This number was then fixed as the target number
of representatives in Algorithm 1 when fewer clusters were
allowed.

The average F-score for each combination ofα (1.0,
1.2, 1.6), simulated user (40%, 80%, 100%), and dataset
(UNV-DNS, KDDCup-FTP, Wireshark-SMB) is shown
in Figure 4. Each point in this figure is the average of five
runs of the experiment. The standard deviation is0.006,0.020
and0.025 across all datapoints for theUNV-DNS,
KDDCup-FTP andWireshark-SMB datasets, respectively.
While our primary use for these simulations is parameter

selection (see below), we pause to make three observations
from these figures. First, the number of clusters has a large
impact on how well the process works, even when identi-
fication of sensitive tokens in the representatives is perfect.
For example, in Figures 4(b)–4(c), a clustering with too few
clusters decays the F-score to roughly only 60% of its op-
timal. We presume this occurs because with enough clus-
ters, clusters better separate the packets of different mes-
sage types, yielding higher quality representatives. Second,
once an adequate number of clusters is attained, the F-scores
are robust to imperfect identification of sensitive tokens in
the representatives. Third, when there are sufficiently many
clusters, the F-scores that can be realized indicate that the fi-
nal outcome can be quite successful (e.g., F-scores near1.0

in all cases).
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Based on these tests, we selected 40 clusters for the tests
described in the rest of the paper. For our datasets, this pro-
vides a good balance between minimizing the number of
clusters that workers are asked to inspect and providing the
opportunity for good accuracy in identifying sensitive data,
once worker markings are applied to the full dataset. When
selecting the number of clusters in practice, we expect that
an expert would be helpful here, as well; that is, the expert
can be used to judge the quality of the clustering based on
the visual similarity of the packets in each cluster. There-
after, these clusters can be refined iteratively using the ap-
proach presented in Section 3.3. Since we observed similar
trends for F-scores across different values ofα, we settled
on a single value ofα (α = 1.2) when analyzing the perfor-
mance of real users below.

4.2 User Study with Professional Network Administrators

Our techniques for selecting representatives and incorporat-
ing user feedback about those representatives to sanitize the
full dataset (Section 3) are not dependent on any particular
method for soliciting that feedback from users. However, we
expect that the method of presenting representative packets
to users will have a large impact on their abilities to iden-
tify and mark sensitive tokens. Two design decisions we
made—based on what is known about visual pattern recog-
nition by humans—were to present representative packets as
groups based on the clusters to which they belonged (Sec-
tion 3.3) and to present the representatives in their aligned
forms (Section 3.4).

To determine the impact of these design decisions, and
more generally, to evaluate the utility of our overall approach,
we conducted an IRB-approved user study with participants
recruited from our department’s Technical Support Center
and the university’s Information Technology Service group.
All participants were professional administrators with good
networking background and familiarity with inspecting packet
traces as part of routine network monitoring or diagnostic
duties. We targeted professional administrators as they are
the natural audience for our tool; after all, they are likely
the people who would be tasked with the job of sanitizing
network data before its release. This stringent criterion for
selecting study participants, however, severely limited the
available pool of participants at our university, resulting in
our study population of size 15. We note that we obtained
consent from these 15 participants only after significant ef-
forts to recruit them. These participants are considered our
“workers” in the remaining discussion.

4.2.1 Study Design

Recall that our primary goal was to assess the impact of
both clustering and alignment in helping workers uncover

potentially sensitive fields in packet payloads. To that end,
each worker was tasked with identifying the seven specified
fields of interest within the packets displayed via a graphi-
cal user interface (see appendix). The study itself comprised
four trials in which the payloads of packets were presented
to the subjects in different ways. Each trial employed a set
R of representative packets. However, the payloads of these
representatives were displayed in different forms in the four
trials as follows:

Trial I (Clustering+Alignment). The representative pack-
etsR were partitioned according to the clusters from which
they were selected. The representative packets were displayed
to the worker, one cluster per page, in their aligned forms
produced during their selection (Section 3.4).

Trial II (Alignment+NoClustering). The representative
packetsR were partitioned randomly into blocks. The to-
tal number of blocks was the same as the number of clus-
ters in Trial I, but the representatives were evenly distributed
across all blocks. The representatives were displayed to the
worker, one block per page. Since the packets in each block
were randomly selected and not aligned with each other, we
aligned these packets using the method described in Sec-
tion 3.4 and presented them in that aligned form to the worker.

Trial III (Clustering+NoAlignment). The representative
packetsR were partitioned according to the clusters from
which they were selected. The representatives were displayed
one cluster per page, in their original form (unaligned).

Trial IV (NoClustering+NoAlignment). The representa-
tive packetsR were partitioned randomly into blocks. The
total number of blocks was the same as the number of clus-
ters in Trial I, but the representative packets were evenly
distributed across all the blocks. The representative packets
were displayed to the worker, one block per page, with each
packet displayed in its original form (unaligned).

For the user study, we chose to use theUNV-DNS and
KDDCup-FTP datasets because they contain diverse types
of potentially sensitive information. Two groups of repre-
sentative packets, one for each dataset, were generated by
applying the techniques in Section 3 to the two datasets sep-
arately. In each trial for a given subject, only one set of rep-
resentative packets were used, that is, eitherR(UNV-DNS)

orR(KDDCup-FTP).
Each worker undertook all four trials in individual meet-

ings over a period of several weeks, with at least three days
between trials. To avoid any learning effects across trials,
we incorporated several additional design elements into our
study. First, for the trials taken by each worker, we ensured
that the datasets used were evenly split across the trials.
Second, to prevent displaying the same representatives on
the same page in any two trials for a particular user, we
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ensured that Trials I and III displayed different represen-
tative packets. This constraint was also applied to the two
non-clustering trials (i.e., Trials II and IV). Third, the or-
der of the trials was randomly chosen (per subject), and
we ensured that no two trials that used the same data (e.g.,
R(UNV-DNS)) were undertaken back-to-back.

Moreover, to limit any factors due to fatigue, the worker
was restricted to only one trial per meeting. Meetings were
limited to roughly 30 minutes in length, with the exception
of the first meeting where the worker was given a brief in-
troduction (with ample time for questions and answers), and
time to familiarize herself with the GUI using an artificial
dataset. All trials were administered on a dedicated laptop,
in a location of the subject’s preference. At each meeting,
the worker was asked to mark any occurrence of the spec-
ified field types, with timeliness as a secondary goal. Care
was taken to ensure that the subject wasnot asked to mark
content shethoughtcould be sensitive, as doing so would
be subjective and would inevitably lead to uncertainty about
what should, or should not, be marked.4 That is, her job was
to simply mark any tokens in the displayed sequences that
she believed to be a domain name, an IP address, a file (or
directory) name, a user name, a password, a host name, or
an email address.

4.2.2 Results
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Fig. 5 F-scores (α = 1.2) per worker in Trial I

Figure 5 shows box-and-whisker plots ofFα of Trial I
for all workers, withα = 1.2. Note that these F-scores were
computed using the worker’s precision and recall on the rep-
resentatives only, rather than after applying their markings
to the full dataset. Each box represents the first, second, and
third quartiles; whiskers cover the remaining points. Fig-
ure 5 illustrates that the workers were generally much more
successful in identifying sensitive fields in FTP packets, in

4 Consider, for example, the username “anonymous” which is not
uncommon in FTP; is it sensitive, or not?

some cases reaching an F-score exceeding0.95. The results
onR(UNV-DNS) were not as encouraging; no F-score greater
than0.70 was achieved by any worker. We believe this re-
flects the substantial challenge represented by DNS pay-
loads, where the variety of locations in which IP addresses
can appear makes identification of such fields a real chal-
lenge.

This motivates the need to select only the best workers
for identifying sensitive data, and then to employ multiple
workers; see Section 3.6. For the remainder of our study, we
chose the two best workers as determined by their F-scores
on a randomly selected 20% of the representatives that each
marked. This choice simulates a scenario in which the expert
marked 20% of the representatives, and then workers were
tasked with marking the remaining 80%. The chosen work-
ers were selected based on their F-scores using the expert-
marked data as ground truth. In our tests, we possessed ground
truth and so did not need to involve an expert directly.

(a) UNV-DNS

Best worker Recall Precision F-score
1 0.504 0.991 0.631
2 0.833 0.674 0.760

Combined 0.900 0.930 0.912

(b) KDDCup-FTP

Best worker Recall Precision F-score
1 1.000 0.974 0.989
2 0.958 0.974 0.964

Combined 1.000 0.974 0.989

Table 1 Results of applying markings to the full dataset for a single
worker and the combined workers

Once the two best workers were selected in this way,
their markings were applied to the full dataset as described
in Section 3.6. Table 1 provides the F-scores for the full
datasets when applying each of these workers’ markings in-
dividually and then in combination. As these results show,
in the case of theUNV-DNS dataset (Table 1(a)), the recall
of the combined case increases up to 0.9 with a small loss of
precision when we incorporate the opinions of the two best
workers. For theKDDCup-FTP dataset, the measurement of
the single worker versus the combined result remains very
close (nearly 1.0) because each worker already had high re-
call and precision on that dataset.

4.2.3 On Understanding Mixed Effects

While the previous results show that substantial improve-
ment in accuracy can be achieved by picking the best work-
ers and combining their input, it is yet to be shown that the
clustering and/or alignment aspects of our approach are in-
deed factors in boosting the workers’ performance. To ex-
plore the extent to which these two components influence a
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worker’s performance, we first show (in Figure 6) box-and-
whisker plots ofFα across the four trials for the selected best
workers. Notice that Trials I–III generally outperform Trial
IV. Notice as well that in Figure 6(b), Trial I performs the
best, and offers a substantial improvement over Trial IV.
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Fig. 6 F-scores (α = 1.2) of the best workers

To gain a deeper understanding of the statistical signif-
icance of these trends, we apply a mixed-effect regression
model to analyze the four trials of the selected best work-
ers shown in Figure 6. A mixed-effect model is an extension
of the general linear regression model that allows for cor-
relations within observations [19]. For instance, in our con-
text, this would mean that we consider the performance (say,
in terms of efficiency) of a particular worker across differ-
ent datasets to be correlated, but consider that of different
workers to be independent. Conceptually, the mixed effect
regression model can be formulated as:y = fixed effects +

random effects+error, where the random effects control for
variables that are not of particular interest (i.e., the datasets
used or different skill levels of our workers), while the fixed
effects incorporate the variables that are of interest (i.e., clus-
tering, alignment, and the interaction between the two). The
model can be formulated as:

(a) Fα, α = 1.2

Effect Estimate p-value
βc 0.217 0.011
βa 0.197 0.017
βca −0.160 0.123

(b) Efficiency

Effect Estimate p-value
βc 3.311 0.007
βa 1.092 0.271
βca −2.097 0.147

Table 2 Results of mixed-model tests (Section 4.2.3)

y = βc · xc + βa · xa + βca · xc · xa + ǫ (2)

wherexc, xa are booleans indicating whether clustering or
alignment is used, andy is the performance measure under
consideration (i.e.,Fα or efficiency). The interaction effect
of clustering and alignment, i.e., the effect of clusteringafter
alignment is used, or vice versa, is expressed by the product
of xc and xa (xc · xa). The random effects derived from
workers and datasets are included in termǫ.

F-Score In the analysis that follows, we first test the null
hypothesesβc = βa = βca = 0, by fitting all observations
of Fα of the best workers using (2), the results of which
are presented in Table 2(a) withα set to 1.2. We consider
p-value < 0.05 as the requirement for rejecting a null hy-
pothesis. As Table 2(a) shows,Fα is positively related to the
clustering, since the hypothesisβc = 0 is rejected and the
estimate of coefficientβc is positive (0.217). Similarly, the
alignment significantly increasesFα by 0.197. There is lit-
tle evidence of an interaction effectxc · xa sincep-value=

0.123, i.e., the hypothesisβca = 0 stands. Even if the hy-
pothesis had been rejected, the estimate ofβca in Table 2(a)
is smaller (in absolute value) than bothβc andβa, suggest-
ing that there is an additive effect of these two factors in
improvingFα.

EfficiencyYet another important consideration is how clus-
tering and alignment influence efficiency; that is, do they
impede or advance a worker’s ability to complete the task at
hand? Let “efficiency” be defined as|{identified fields}|

t
, where

t represents the total time to completion in each trial. Ta-
ble 2(b) shows the results for a similar hypothesis test for
efficiency. The estimate for the clustering term, 3.311, shows
that there is a strong, statistically significant, correlation be-
tween efficiency and clustering. Although no statistically
significant effect of the alignment or the interaction term
is found (p-values of0.271 for βa and0.147 for βca), our
tests still indicate that a user’s efficiency benefits from both
clustering and alignment together, due to the strong positive
influence of the clustering.

5 Application to Trace Sanitization

A natural question is whether the workers’ F-scores were
“good enough” to provide a basis for sanitizing the full datasets,
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and more generally, whether our approach gives enough con-
fidence to data publishers so that they can release network
payloads without the fear of privacy leakage. Answering
this question depends ultimately on the data owner’s goals
for sanitization, which are notoriously difficult to specify
or measure for network data, given the difficulties associ-
ated with applying existing microdata anonymization defi-
nitions (e.g.,k-Anonymity [37], ℓ-diversity [23], and(c, t)-
isolation [5]) in this domain [8]. To provide a degree of in-
sight, however, we perform a quantitative evaluation of the
ability of an adversary to infer the contents of sanitized fields
by using a custom, information theoretic measure of privacy.

Recall that our methodology provides a framework for
identifying the best workers to mark sensitive fields in packet
payloads and applying their markings to the entire dataset.
Once this is done, additional steps must be taken to anonymize
those values determined to be sensitive, using whatever poli-
cies the data publisher desires, e.g., consistently mapping
sensitive values to others in a one-way fashion, and perhaps
in ways that preserve certain structures (such as a prefix-
preserving mapping of IP addresses). For the purpose of
evaluation, we employ the same sanitization strategies for
all seven types of sensitive fields specified in the user study.
Specifically, for each value determined to be sensitive by
applying the tokens marked by the best workers to the full
dataset, we sanitize this value by deleting it but preserving
its type information (e.g., length, text or binary).

5.1 Adversarial Model

Our analysis simulates a realistic adversary whose goal is
to infer the contents of the sanitized sensitive fields. For the
two datasetsUNV-DNS andKDDCup-FTP used in the user
study, we simulate a scenario in which data publishers re-
lease sanitized packet payloads, and afterwards the adver-
sary tries to recover the real value of each sanitized field.
To do so, we presume the attacker can make use of traces
collected from the same network shortly thereafter — a very
powerful form of attack similar to Ribeiro et al. [33].

To simulate this adversary capability for a particular dataset,
we first sort the packets ofUNV-DNS andKDDCup-FTP in
the ascending order of time, respectively. Then we assign
the first half of the packets into one datasetSANI-TRACE,
and assign the second half to another datasetRAW-TRACE.
Intuitively, the splitting of the dataset simulates the scenario
that the data publisher sanitized and released one trace of his
network collected in a specific period and the adversary ac-
quired another trace of this network collected at a later time.
SANI-TRACE is sanitized using the approach described in
Section 3, whileRAW-TRACE is utilized by an adversary
whose main objective is to infer the real values of the sani-
tized fields inSANI-TRACE.

In what follows, we represent a sanitized packet of
SANI-TRACE as pkt∗. Our simulation methodology first
performs sequence alignment (as described in Section 3.3)
between the sanitized packetpkt∗ and each raw packet in
RAW-TRACE. For each sanitized sensitive fieldfld in pkt∗,
we generate a distribution of values aligned withfld from all
the packets inRAW-TRACE. This distribution can be used
to measure the adversary’s ability to infer the real value of
fld. For example, if one value is aligned withfld much more
frequently than the others, then this suggests that this value
is more likely to be the value offld that was sanitized. To
make this precise, we use an entropy-based measure of this
distribution of aligned values.

5.2 Entropy-based Measure

Rather than computing the entropy of this distribution di-
rectly, however, we adjust this distribution to account forthe
fact that the packets inRAW-TRACE will generally include
some that are different in structure frompkt∗; the adversary
would presumably give these dissimilar packets less weight
in determining the value offld. Specifically, letpSet[v] de-
note the subset ofRAW-TRACE including each packet that,
when aligned withpkt∗, align valuev with field fld. Then,
we take the probability offld taking on valuev to be

Pr(fld = v) =

∑
pkt∈pSet[v] sim(pkt∗, pkt)

∑
v′ 6=gap

∑
pkt∈pSet[v′] sim(pkt∗, pkt)

(3)

wheregap denotes a gap (possibly inserted during sequence
alignment) and

sim(pkt∗, pkt) = 1−dist(pkt∗, pkt) =
Scorealn(pkt∗, pkt)

Scoremax(pkt∗, pkt)
.

From this probability distribution on the value offld, the
entropyH(fld) of fld is then

H(fld) = −
∑

v 6=gap

Pr(fld = v) log Pr(fld = v) (4)

Intuitively, the aforementioned computation measures the
ambiguity (from the attacker’s point of view) of the value of
a field that is masked using our approach. That is, a higher
entropy implies more uncertainty in the attacker’s inference
of the real value offld. Therefore, the entropy is beneficial
in understanding the risk of exposing the real values of san-
itized fields to a determined adversary.

We use the entropy as calculated by (4) to measure the
anonymity of the sanitized fields for theSANI-TRACE of
datasetsUNV-DNS and KDDCup-FTP, respectively. Fig-
ure 7 shows the average entropy of the sensitive fields that
are masked by the best workers’ marked representatives (the
black bars). For comparison, we also show the entropy per
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(4) of the sanitized fields when the representatives were per-
fectly masked as if by an expert (the gray bars). Although
b bits of entropy do not necessarily imply2b equally likely
possibilities for a field,2b serves as an intuitive approxima-
tion to understand how many different values the adversary
might need to differentiate in order to reveal the real value
of the sanitized sensitive field. So, for example, Figure 7(a)
shows that the average entropy of either the best workers’
or the expert’s sanitization inUNV-DNS is more than 4 bits
for both IP address and domain name, which suggests that
from the adversary’s perspective there might be 16 different
values that appear to be possible for a particular sensitive
field. TheKDDCup-FTP dataset exhibits similar results in
Figure 7(b). Also noteworthy is that the workers hid sen-
sitive values nearly as well as the expert did, since the en-
tropy of the sensitive fields masked by the best workers re-
mains very close to that of the expert in bothUNV-DNS and
KDDCup-FTP.
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Fig. 7 The average entropy of the masked fields separated by sensitive
types; error bars show one standard deviation

To place these results in context, we also calculated a
rough lower bound on the average entropy that must be over-
come by the attacker (the white bars). To calculate the white
bars forUNV-DNS, we first separated the packets into dif-

ferent groups (i.e., their respective “formats”) according to
their record types (e.g., A, NS, MX) based on ground truth.
We then computed the entropy of each sensitive field in each
group, i.e., of the distribution of values that occur in that
sensitive field (at the same packet offset) across packets in
the same group. Because these entropies are computed per
group, packets need not be aligned and so entropies are not
adjusted based on similarities as in (4). The white bars for
KDDCup-FTP are calculated in a similar way, except that
the FTP control packets are grouped by their command types
(e.g., “USER”, “PASS”).

We believe these white bars offer an average lower bound
on the entropy faced by the attacker because they are com-
puted with exact knowledge of packet formats, which we do
not assume in this paper. In some cases, this lower bound is
significantly below the entropy estimated in the absence of
that format knowledge (the black and gray bars). The pri-
mary cause for large entropy differences is that the align-
ment between a sanitized packet and each of the raw pack-
ets inRAW-TRACE (an ingredient in the black and gray bars,
but not the white) sometimes led to instances where the val-
ues that aligned to a sanitized field included fields of packets
in RAW-TRACE that are of a slightly different structure. As
just one example, in theKDDCup-FTP dataset, sanitized IP
addresses inSANI-TRACE often aligned toIP address/port
pairs in RAW-TRACE, and so the variation in the port values
inflated the entropy of the sanitized IP addresses as calcu-
lated in (4).

These gaps between the white and black/gray bars are
particularly interesting because in our calculation of entropy
we deliberately attempted to minimize the effects of dissimi-
lar packets by incorporating similarity scores when comput-
ing the entropies of values as in (4). Nevertheless, the impact
of dissimilar packets still exists. An adversary who has de-
tailed knowledge of the packet formats will presumably face
uncertainty only to the extent suggested by the white bars on
average. That said, as already noted by Cui et al. [9], gain-
ing a full understanding of the structures of packet payloads,
especially for protocols that have varied and complex struc-
tures, can be quite challenging.

6 Discussion

The fact that our methodology yielded recall of0.9 and even
better precision for theUNV-DNS dataset (see Table 1) is,
we believe, a very encouraging result, particularly consid-
ering the complexity of the DNS protocol. We note that it
might be tempting to argue that the results herein could be
improved by permitting workers more time to mark packets;
recall that each trial lasted roughly30 minutes. We believe,
however, that permitting more time would yield diminish-
ing returns. Our perception was that packet inspection was a
tiresome process for the workers, an observation supported
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by the fact that none of our participants chose to continue a
trial past30 minutes, though they were given the opportunity
to do so. We thus expect that additional innovations will be
required to assist workers in identifying sensitive fields more
accurately; it is not clear that more time will help.

Our methodology provides a framework only for identi-
fying sensitive fields in packets. Subsequent steps must be
taken to sanitize those fields depending on the data owner’s
goals for privacy protection. Various data sanitization tech-
niques, such as data suppression, psuedonyms and prefix-
preserving mappings for IP addresses, can be applied to san-
itize the packet trace. In practice, data publishers must choose
sanitization policies depending on the levels of privacy and
utility they aim to achieve. Advising data publishers on these
policies is outside the scope of our work, however.

7 Conclusion

In this paper we presented a methodology for supporting the
daunting task of sanitizing network packet payloads. Our ap-
proach is inspired by studies in cognitive science that sug-
gests perceptual grouping of similar patterns can accelerate
visual detection. The need for involving humans during the
sanitization process is motivated by the complexity of many
of today’s protocols, and is compounded by the possibility
that such protocols may be incompletely documented. How-
ever, due to the sheer number of diverse packet formats and
the size of a typical network trace, it is unrealistic to expect
that an expert will have the time available to accurately sani-
tize them all. For this reason, our methodology adopts a hier-
archical approach in which an expert’s input on a small sub-
set of packets is used to select additional workers to examine
a larger subset. These selected workers’ markings are then
used to mark sensitive fields in the (typically much) larger
dataset in an automated fashion. At the heart of our method-
ology is an approach for selecting from the dataset relatively
few representative packets for workers to inspect, and pre-
senting these representatives to workers in a way that helps
them identify sensitive fields. Our evaluation demonstrated
the factors that influence the effectiveness of our methodol-
ogy, and showed through a user study that our methodology
can be effective in supporting sanitization of large network
datasets. We also showed, using an entropy-based measure
of privacy, that considerable privacy is achieved for packet
payloads when applying our framework.
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Appendix In what follows, we briefly describe our proto-
type graphical user interface (GUI) used in the user study
described in Section 4.2. The GUI (shown in Figure 8) is
composed of one main panel and two sub-panels. The main
panel is used to display the representative packets from one
cluster. Each row corresponds to one representative and each
column corresponds to one token in the tokenization of the
packet, after alignment with the other packets in its cluster.

Fig. 8 An example GUI for identifying potentially sensitive data

The two sub-panels display the raw bytes of the packet
currently in focus (i.e., that the worker last clicked); one
sub-panel shows hexadecimal format, and the other shows
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printable ASCII. The raw bytes for the token on which the
worker actually clicked are highlighted in each of these sub-
panels. The two sub-panels allow the worker to focus on one
particular token and to view it in different formats.

Through the flexible marking facilities provided by the
tool, a worker can interactively mark the tokens of the repre-
sentatives she considers sensitive. Figure 8 shows an exam-
ple of the sensitive fields identified (in red) by a particular
user while using our graphical interface.


