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Abstract We present a methodology for identifying sensi- access to network packet payloads (e.g., [38]). To evaluate
tive data in packet payloads, motivated by the need to sarhe efficacy of such proposed defenses, therefore, it issaece
itize packets before releasing them (e.g., for network sesary to have access to payload-bearing network traffic srace
curity/dependability analysis). Our methodology accommo on which to test them.

dates packets recorded from an incompletely documented _ N )

protocol, in which case it will be necessary to consult a hu- While there has been 5|gp|f|cant progress in the release
man expert to determine what packet data is sensitive. Sinccg other types of network traffic traces for research purpose
expert availability for such tasks is limited, however, our” the Iast. dgcade, the reI.ease of packet payloads remains
methodology adopts a hierarchical approach in which mos§everely limited due to privacy concems, and this contin-
packet inspection is done by less-trained workers whose deles o hamper research progress in numerous types of net-
ignations of sensitive data in selected packets best miagch twork defense and performance tests. Packet payloads can

expert’s. At the core of our methodology is a data reduc-](foma"_1 sensitive m_formlatlon rz:;nglnggrom persor:(al uaelrl
tion and presentation algorithm that selects candidat&wor ormation to security-relevant data about network topglog

ers based on their evaluations of a small number of packetg‘,nOI service configuration. Thus, data publishers thatselea

that solicits these workers’ designations of sensitive dat pack_elt trgces mu_st first san?tize_ the traces by remoying the
a larger (but still minuscule) subset of packets; and then ap.sgnslltwe. |m|‘o(rjmat(;or|1 n anﬁ n V|rt|ualéy gver:y case, thua_sa
plies these designations to mark sensitive data in theeentillt'za,tlon includes deleting t e payloads in their entiraiyis
data set. We detail our algorithms and evaluate them in a ré’-bV'OUSIy destroys the utility of the trace for researchttha

alistic user study. We also analyze the effectiveness of thEEAUIres packet payloads.

sanitization achieved using our approach. The extreme rarity with which payload data is released is
due to numerous challenges that data publishers face in try-
ing to sanitize packet payloads. First, almost any intargst
trace contains too many packets for an administrator to ex-
amine exhaustively. Second, even if the trace contains-pack
ets of only one protocol (e.g., selected by filtering on ports
the packet formats within that protocol may be numerous or,

o even worse, undocumented. For example, the Samba project
Visibility into packet payloads supports numerous netWori?equired many researchers’ efforts over several years-to re

security d_efenses_and depe_ndablht_y analyses. For_exam_pk;erse engineer the file-sharing protocol in Microsoft Win-
technqlog|es ranging from simple signature-based intrusi dows networks, for which the protocol specification was not
detection sys.tems (e.9., Snm’v' snor.t .-or g) to ad- _released to the public. Third, packet payloads may contain
vanced techniques for developing exploit signatures requi many types of information that may be deemed sensitive,
Department of Computer Science. e.g., user names, IP addresses, passwords, host names, apd a
University of North Carolina at Chapel Hill range of user-generated content. Indeed, the sheer dyersi
Chapel Hill, NC, USA of content that one might deem as sensitive in a free-form
protocol like HTTP is overwhelming.
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As a step forward in this space, in this paper we proposé the representatives for each cluster, these identified to
a framework and tool to support packet trace sanitizationkens are mapped onto the entire dataset, in order to identify
To accommodate incompletely documented protocols, ousensitive tokens in packets that the workers never examined
framework is built around a humaxpertwho can explore We describe our design and implementation of a tool that
selected protocol packets well enough to accurately iderimplements this approach and present an evaluation based
tify the sensitive information they contain. However, ginc on a user study involving professional network administra-
dataset release is rarely a business priority, we presuate thtors as workers. Our results show that both clustering and
this expert has very little time to devote to this effort. Foralignment have a statistically significant, positive effen
this reason, we structure our framework hierarchically, ustheir abilities to identify sensitive data and that the ef§e
ing the expert’s input to select others from a set of candiof the two are additive. The study also reveals that even
dateworkers based on their abilities to mark sensitive datanetwork administrators show substantial variability irith
in packets similarly to the expert. These selected workerabilities to locate sensitive information in network data;
then mark sensitive data in a small group of packets thaderscoring the difficulty of the task at hand and the need to
can best represent the characteristics of the overall efatasdown-select workers on the basis of the similarity of their
which our technique then applies to automatically identifymarkings to an expert's. We show that combining the sensi-
sensitive data of the remaining packets in that dataset. Wivity determinations of the two best workers and using ¢éhes
stress that the expert is involved only in marking sensitiveo mark the entire dataset identifies sensitive data in tige or
data for a very small number of packets — generally farinal dataset very well. Lastly, we use an entropy-based ap-
fewer than the total number of packet formats available improach to quantitatively evaluate the ability of an adversa
the protocol. As such, we cannot impose upon the expert tto infer the contents of fields sanitized using our technique
analyze even one packet of each format, and of course, we
may not even know how many formats there are due to the
unavailability of the protocol specification. 2 Related Work

At the core of this technique is an algorithm that selects
and presents packet data to the workers in a fashion that bedver the past decade, there has been a marked increase in the
enables them to identify fields that they deem sensitive anumber of proposals for anonymizing network data (e.g., [17
then to extrapolate from those inputs on that selected datk 36, 30, 29, 12]). For the most part, these works attempt
to sanitize the entire dataset. (The expert examines only ¥ Sanitize network data by applying various transformaio
small subset of the representative packets selected for tri@ fields within packet headers (e.g., using prefix-presgyvi
workers.) Doing so in a way that achieves good accuracy iRnonymization [29]), by using domain knowledge to search
sanitizing the whole dataset requires that our technigue (for specific patterns (such as URLs or bytecode) using reg-
judiciously select the data that the workers will examifig; (Ular expressions [18, 13, 30], by shuffling payloads while
organize the presentation of the selected data to maximiZ&eserving the ability to search for short substrings [8t],
each one’s competence in identifying sensitive fields; an@Y deleting the payloads altogether. Unfortunately, mény,
(i) effectively draw inferences from their inputs to stine not all, of these proposals require specific parsers for each
fields in packet data not presented to them directly. protocol of interest.

At a high level, our technique accomplishes these goals In what follows, we attempt to move the field forward by

through a multistep process. Packets in the trace are first dtla_klng advantage of tet_:hmques for mfernn_g_ papket fosnat
ithout relying on having a protocol specification at hand.

vided into contiguous tokens, each with a type. Stratifie . .
In particular, we extend prior work from the protocol revers

sampling is applied to these typed token sequences in or- " . .
der to select a fraction of the packets for further analysis,englneerlng community (e.g. [3, 21]) where byte-based se-

while minimizing the likelihood of excluding any particula quence alignment has been applied to raw network traces for

packet type. These selected packets are clustered impgrouuncovenng protocol message formétslowever, as Cui et

with similar structure; intuitively (and ideally), theséus- al. [9] discovered, byte-based sequence alignment is net pa

ters correspond to packet formats. We then select repres ficularly well swteq for th|§ task yvhen messages of t_he same
. . ._tormat can have high variance in the bytes of certain fields.
tatives from each cluster, which we present to a worker in a

aligned fashion so as to best reveal their common structuresO address this, we further exploit sequence alignment to
atechnique known to accelerate visual recognition of homo- 1 giher protocol reverse-engineering works infer messagespy
geneous structures [11]. The best workers are selected froamalyzing process execution traces (e.g., [22]). In thikwee do not
agroup of workers by Comparing each one’s performance t@ave the luxury of taking advantage of such information beean the

. - vast majority of cases the network traces that publishersting to
t,hat 9f the expert in marking a small SUbse_t_Of r?presgmamake available have already been collected. Moreoveryuitisalistic
tives; the selected workers then mark sensitive fields in allp presume that data publishers would collect process érectiaces

representatives. After the workers identify sensitiveetod&  (or even know how to) for all protocols appearing in theicts.
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Fig. 1 Framework of network trace sanitization by leveraging bestker input

derive a new measure of similarity for packet payloads, andbads, we consider discussions regarding the utility of the
then generate compact clusters suitable for human inspepesulting data beyond the scope of this paper, as any such
tion afterwards. analysis would be subjective in nature.
Ourwork is also inspired by the rich history of research [6,
35] that takes advantage of human cognition to explore the
spatio-temporal multivariate patterns in high dimenslpna
large datasets. These approaches combine computational te
niques and human capacities to discover novel and useful in-
formation, in ways that may be difficult to do (_)the_rwige. As 3 Our Approach
Duncan and Humphreys [11] have shown, highlighting the

similarity between objects can be an effective way to accel- ) o o
erate visual recognition, e.g, quickly rejecting homogare At the core of our approach to identifying sensitive informa

non-targets. Indeed, Avraham and Lindenbaum [1] extendOn in packet payloads is an algorithm that selects a sub-
the work of Duncan and Humphreys to show that dynamic€t Of packet payloads to present to workers (a subset of
visual search can be enhanced with the usage of inner-scefich is also presented to the expert). At a high level, this

similarity. Their intuitive hypothesis was that the morewi ~ &/gorithm can be viewed as a natural application of cluster-

ally similar objects are, the more likely they are to shaee th N9 and sequence alignment techniques for assisting work-
same identity. Using these studies as a guide, we propose & In more readily identifying sensitive information inthe

approach for presenting streams of network data to a user fOrk data. Our proposed solution requires that we first tok-
a visually aligned form. enize the payloads of the packets by labeling them in a more

Concurrent to our work, interactive tools have been re.compact representation composed of generic types of fields.

cently proposed as ways to help anonymize microdata Bd\lext, we cluster the tokenized packets in order to organize

10]. Barros et al. [2] even suggest ideas for involving an exthem roughly according to their formats.

pert to validate the correctness of methods for sanitizerg p Obviously, presenting a large corpus of data—even in
sonally identifiable information (PII) in microdata. Undik an aligned form—to a human being, and expecting her to
our work, however, these approaches are not used to helfffectively sift through such data would not be a fruitful
data publishers better identify sensitive informationtie t task, to say the least. In order to ease the arduous job of
trace, but only allow them to choose how such data shouléinding potentially sensitive information in a large cormis
be anonymized. Furthermore, because of the complexity adata, we present to the workers only representatives fdr eac
network data compared to microdata [8], these tools cannajluster that capture the most mutual information (and that
be directly applied to network traces. have low redundancy). As the worker marks tokens in the
Lastly, the role of network trace anonymization has comeview displayed to her (e.g., by highlighting regions within
under scrutiny in the past few years, especially as it relatethe visually-aligned representatives), these annotstae
to the utility of anonymized traces [4]. Lakkaraju et al. ][20 recorded. Once the interactive session has completed, her
for example, evaluate the impact of single field anonymizaselections made during the process are then used to auto-
tion on the utility of data from the perspective of intrusion matically infer other sensitive tokens in the remainder of
detection. More recently, McSherry et al. [25] extend the nothe corpus, without further participation from the worker.
tion of differential privacy into the domain of network teac The overall process is depicted in Figure 1. We discuss the
analysis, and advocate an approach for extracting statistspecifics of how we select representatives from the corpus in
cal information in a differentially private manner. Sincg&ro more detail in Sections 3.1-3.5 and then discuss how we use
goalis to provide techniques to assist data publisherin th the tokens marked sensitive by a worker to identify senssitiv
efforts to sanitize potentially sensitive fields in packayp fields in the larger corpus in Section 3.6.
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3.1 Tokenization each stratum of size proportional to the stratum size the.,
number of sequences it contains.

We remind the reader that in order to be protocol agnos-

tic, we deliberately assume no prior knowledge of the pro- ] o

tocol format, and so before we can select the best candi-3 Grouping Similar Packet Formats

dates to present to workers, we must first tokenize the data, . ) ) .

To do so, we abstract each packet by grouping its byteg"ven as_elecuon of sequences (i.e., tokenized packhts),t
into tokens, each of a certain type. The token types we u ext task is to eﬁectwely cluster these sequences mtquro
take advantage of a growing body of work on protocol re_r.eprese_ntmg different packet formats. To do so, we _flrst de-
verse engineering (e.g., [9, 22]) that suggests suitable tJme a distance between sequences, and then provide an al-

ken types for text protocols (e.g., HTTP, FTP), binary proto gorithm for performing clgstering using those dis.tances.
cols(e.g., DNS, DHCP) and so-called hybrid protocols (e.g. Our chosen distance is based on sequence alignment [15].

SMB). Specifically, our three token types are: (&ngth That is, to define a distance between two packets, we first
fields: consecutive printable characters proceeded byea by[Ind the_opt.|matok_en—based sequence alignmefthe pack-
value indicating the number of characters to follow. Both®tS: which ISan alignment of the pair of sequences of tokens
the printable characters and the byte are combined into a Siﬁorresp;ondmgkto those packets. Shpequlce(lj:ly, for fan kallgn_—
gle length field. (2)rext fields: several consecutive printable mer_lto ;WO to en sequences, ?ac a:jlgnfe hpa|ro toh ens(;s
characters, the length of which is greater than some thresf@SSIgned a positive score (an “award’) if they match, an

old2 And (3) Binary fields: any single byte except those & Negdative score (a “penalty”) if they are a mismaich or
defined as a length field or text field. Each packet is tok ©n€ Of them is a gap inserted by the alignment process.

enized by scanning the payload from beginning to end. Fig!/€ USePenalty.;; andPenalty,,, to represent the mismatch

ure 2 shows an example of the tokenized representation &nd 9ap pr)]gnaltlis, respectively. lln assg;nngr?vyards fy)f;m
two packets. For the remainder of the paper, all subsequeH’f’O matching tokens, we not only consider their types, but

operations are on tokenized sequences, and we denote t?rl:éo consider the'(; vallues. In parpcularl, if two tokehr)smav
tokenized sequence of a packét by tokenize(pkt). the same type and value, we assign a arger matching score
Award,,. If they are of the same type but different values,

we assign a smaller matching scdk@ard,,,. The overall

Tokenization
Packet1: b6 b8 81 80 00 01 00 04 00 06 00 06 04 74 69 6d 65 05 61 70 70 6¢
65 03 63 6f 6d 00 00 01 00 01 c0 Oc
Packet 2: 31 35 30 20 41 53 43 49 49 20 64 61 74 61 20 63 6f 6e 6e 65 63 74

69 6f 6e 20 66 6f 72 20 78 63 72 69 70 74 2e 68 20 28 31 37 32 2e
31 36 2e 31 31 34 2e 35 30 2c 39 36 34 34 29 20

alignment score between packets, pkt’, denoted

Scorean (pkt, pkt'), is computed using the matching scores,
mismatch penalties and gap penalties. Our scoring function
is formulated asScore,, (pkt, pkt') = Nya x Award,a +

! Niyp X Awardey, + Nimis X Penalty,is + Ngap X Penalty,,,
whereNyai, Niyp, Nmis andNg,, correspond to the number

of tokens with matched values, tokens with matched types,
mismatched tokens and inserted gaps, respectively, for an
alignment oftokenize(pkt) and tokenize(pkt') that maxi-
mizesScore, i, (pkt, pkt’). We then define the distance as

Packet 1:

Packet 2:

Lengthfield:[__]  Textfield:1_ _!  Binary field

Fig. 2 Example tokenization of two packet payloads.

Score,in (pkt, pkt’)

dist(pkt, pkt') = 1 —
ist(pkt, pkt') Scoremax (pkt, pkt’)

1)

3.2 Sampling the Data ,
whereScoremax(pkt, pkt’) = max{Score,, (pkt, pkt),

For improved performance, we next sample packets fron®coreain(pkt’, pkt’)} denotes that largest possible value of
the entire dataset and use only the selected packets in-subS&oreain (pkt, pkt’). The optimal sequence alignment for two
guent stages. However, sampling packets uniformly at raffoken sequences, and hence the distance (1), can be com-
dom risks omitting packet formats present in the full daase Puted efficiently using the well-known Needleman-Wunsch
especially if those formats are rare. To overcome this ebste/gorithm [26].

cle, we usestratified sampling27, 7] in order to preserve the ) _ o _

diversity of the entire dataset. Specifically, we partittor Clu_stenn_g methodG_Nen this (j|stance calcu_lgnon, we ap-
tokenized sequences into homogeneous subgroups; IackiH&’ lterative K'meqo'ds clustering [16] t(_) partition theghat .
information about packet semantics or formats, we simplfequences _mto dl_fferent clusters. Unllke, K-means, _Wh'Ch
partition sequences according to their lengths (i.e., thran takes the arithmetic mean of each cluster’s points as its cen

ber of tokens in each). We then draw a random sample frorHo'd’ the I.<-med0|d.s algorithm choo;es a.member of the
cluster as its centroid, namely that which minimizes the av-

erage distance to all cluster members. Instead of deciding

2 Similar to [9], we choose a threshold of 3 printable chanacte
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the number of clusters in advance, we employ the followingdThis call aligns the chosen packet and a reference alignment
algorithm to iteratively grow the number of clusters, which denotedconsensusSeq| |, which is updated bylign. In ad-

is parametrized by a valug 0 < r < 1: dition, align outputs a boolean arrayNewGap][ | of length
&qual to the updategnsensusSeq| |, such thatsNewGap|j]

is true iff consensusSeq[j] is a gap inserted in this call to
dmlign. As its last stepalign outputs the aligned form of the

1. Assign all packets into one cluster, and find the medoi
of the cluster.
2. For each cluster, find the packet furthest from its medoi
as a candidate for a new medoid. Choose the furthest Or%msen packet.
among these candidates as the medoid of a new cluster.
3. Re-cluster all packets, assigning each packet to the clos
est existing medoid. After that, re-compute the medoida|gorithm 1 ClusterAlign (cluster)
of each cluster. 1. medoid « arg min avg  dist(pkt, pkt’)
4. Repeat steps 2 and 3 until no packet is further than PECcluster picy’ € cluster

times the average medoid-to-medoid distance. 2: mst < {medoid}; mstSize < |mst|
3: consensusSeq[ ] < tokenize(medoid)

Therefore, the number of generated clusters depends on th& WhilemstSize < |cluster| do _
. 5: pkt* « arg min min  dist(pkt, pkt’)
|nput parametef pktE cluster\ mst pkt’ €cluster

6:  (consensusSeq]],isNewGap| ], seq[mstSize + 1][])

«— align(consensusSeq][ |, tokenize(pkt*))

3.4 Alignment of Packets 7 fork=1...mstSizedo
8: i — 1;temp[] < []
. . 9: for j =1...[isNewG do
The clusters output from the procedure described in Sec. ff isNeWG';sp[;jvzh;?[”
tion 3.3 are the clusters from which our algorithm selectsii: templ[j] < gap
representatives (with at least one representative being sé2: else

h 13 templj] < seqlk][i]; i — i+ 1

lected from each cluster). In preparation for performinig t
14: seqlk][] « temp][]

selection, we first align all of the packets in each clustér co 15
lectively. We now detail how the alignment is done, and dis-
. . 16: returnseq[l ... |cluster|][ ]
cuss the selection of representatives later.
A key challenge in performing multiple sequence align-
ment in our setting is the fact that we may need to operate
over clusters with thousands of packets. For efficiency, we

Use a progressive methqd,_wh|ch generates an alignment k@f\lewGap[ ], are then propagated to the aligned forms of
first aligning the most similar sequences and then succeg:-

sively adding less similar sequences to the growing align:, € packets already integrated into the tree, i.e., by fimger

. . . he gaps into the same positions in those sequences. This is
ment until all packets in the cluster have been mcorporatedt gap P d

, . . . . . ~“shown in lines 7-14, where the new version of the aligned
With progressive alignment, the quality of the final align- . . )
. . seguence for thé-th integrated packet is assembled in an
ment generally depends on the order with which the sequeng(reraytemp[] and then copied back intaq[k][ ] (line 14)
are incorporated. To determine this order, we treat theetus '
as a graph with vertices being the packets and an edge be- The behavior oklign differs in an important way from
tween each pair of packets weighted by their distance (1sequence alignment as described in Section 3.3. To avoid the
We then use Prim’s algorithm [32] to create a minimumintroduction of gaps into the aligned sequensegk][ | to
spanning tree, and integrate (i.e., align) the verticesttogy  the extent possible, we altelign in line 6 to (i) output in
in the order in which they are included in the tree. SinceconsensusSeq[j] the disjunctionof the tokens from inputs
Prim’s algorithm adds vertices in increasing order of theirconsensusSeq| | andtokenize(pkt®) that it aligns to position
distance to their nearest vertex already in the tree, algni j (under an optimal alignment as defined in Section 3.3);
vertices in this order should intuitively delay the inserntiof ~ and (ii) assign a matching award (in value or type) to to-
gaps in the overall alignment as long as possible (and hopéens if the token oftokenize(pkt®) matchesany disjunct
fully render most gaps unnecessary). of the token of inputonsensusSeq[ | (and where a gap in
The detailed algorithm is shown as Algorithm 1. The consensusSeq[ | type-matches nothing). Consequently, after
nodes of the minimum spanning tree are denaied which  propagating gaps to the other sequences already integrated
is initialized to the medoid of the cluster (line 2). The u$e o into the tree (lines 7-14), an invariant of the loop 4-15 is
Prim’s algorithm is evident in thehile loop on lines 4-15, that consensusSeq[j] = /7" seq[k][j]. Figure 3 shows
which selects the next closest packet to incorporate (ljne She result of aligning a cluster of ten packets using thisalg
and adds it (line 15). The construction of a mutual alignmentithm. Notice that fields with similar type or value have been
for the packets is done using thégn function in line 6.  correctly aligned.

mst «— mst U {pkt* }; mstSize <« |mst|

The gaps inserted kylign, in locations indicated by
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3.5 Selecting Representatives for Inspection to mark which fields she believes to be sensitive. In Sec-
tion 4.2, we evaluate two features of such a user interface
At this stage in our overall process, the elements of eacthat we believe, based on previous findings about user per-
cluster are aligned in equal-length sequences denoted as ception [11, 1], can ease the worker’s task, namely present-
seq[l...|cluster|][ ]. To select representatives and presening similar representatives from one cluster at a time and
them to the worker for inspection, we borrow a techniquepresenting tokenized representatives in their aligneahfor
from Pan et al. [28]. The input required by this technique is  The distinct capacities of the workers in identifying sen-
a collection of equal-length feature vectors. To geneldte t sitive fields make it challenging to apply their markings to
input, we simply define feature vectagiFV[1 . . . |cluster|][] the full dataset — recruited workers may have diverse skill
so thakeqFV[k][i] = 0if seq[k][i]] = gap andseqFV[k][i] = levels and training. This motivates our attempt to achieve
1 otherwise. Due to the alignment eéq[1 ... |cluster|][ ],  better accuracy by leveraging inputs from only the mostestil
the tokens of all sequences at positiotypically have the in the worker pool. To identify these most skilled workers,
same type, and so a binary gap/no gap representation fare compare the fields indicated as sensitive by each worker
these feature vectors suffices. The technique of Pan et ah a small subset of the representatives that worker exam-
then uses these feature vectors to select representdiates tined, to ground truth for those representatives as deteuhnin
maximize their mutual information and minimize their re- by the expert. We make this comparison on the basis of stan-

dundancy. dard measures, namely precision and recall:
Figure 3 shows representative sequences generated fora |{identified fields} () {sensitive fields}|
particular cluster. The most closely similar sequencesyged Precision = [{identified fields}]

via the method of Pan et al. [28], are labeled with the same

shape (e.g., star). One representative is picked per group Recall =
of similar sequences, based on maximizing the mutual in-
formation and minimizing redundancy. In this way, the ap-
proach for selecting representatives improves the effigien

of worker inspection by dramatically decreasing the numbtheSE two dmea(ljsu;es ttr? one, on wtr;:cthorker %eélrfo;mtgr:_ce
of sequences presented for inspection. can be ordered. For this, we use the F-score [34] statistic,

which computes a weighted average of recall and precision:

|{identified fields} [ {sensitive fields}|
|{sensitive fields}|

To select théestworkers, however, it is necessary to reduce

Precision - Recall

x| Network packets with aligned fields a=( ) o2 - Precision + Recall
1% 1|74 3www 14was 3com 6aka 3net 4 12 129 147 65 i . . . .
2x|[8 3www 14was 3com 6Gaka 3net 4 12 129 147 65 Essentially,F, measures the effectiveness of identification
3% (|5 3www Sappl 3com 6aka 3net 4 17 112 152 32 H i ~i 7
ax || 206 swww Sappl Jcom Baka anet 4 17 12 152 32 Wlth respect to the parUmpa_nF who pIaaeSwn_es as much
5% (17 2us  2rd  6yaho 6aka 3net 4 216 109 118 82 importance to recall as precision [34]. (We will comment on
6e|(78 Sanrt 4gslb 6taco 3net 4 69 7 234 203 the Values Obf we employln Sectlon 4)
7e||232 5ycs- 6yaho 6aka 3net 4 209 73 188 78 . .
ge||3 Stim 1 6goog 3com 4 72 14 207 176 Those workers with the highest F-scores on these repre-
Om||64 Sfarm 6stat 6fic  6yaho Gaka 3net 4 69 147 123 56 sentatives are selected for applying their inputs to theent
100 | |67 3www 14kri  2de 4 8 190 2 45 dat ti d ibed bel For th ind f
| Selected representatives I ataset, in a manner described below. For the remainder o
se|[3 5yim 11 6goog doom W 72 14 207 176 our discussion, we presume that the best two workers are
om||64 S5farm 6stat 6fic 6yaho Gaka 3net 4 69 147 123 56 used. Once these best workers are selected, the goal is to
L4*] (67 Swww 14kri 2de 4 85 190 2 45 utilize their identification of sensitive fields in the repes-
Fig. 3 Example of representative selection; each representatidéts  tatives they examined to identify sensitive fields in thet res
most similar packets are denoted by the same shape (eny., sta of the dataset.

To do so, we process each new packet not directly ex-
amined by the workers by first finding the examined rep-
resentative that is closest to this packet (i.e., for whiah t
distance (1) is the smallest). Pairwise sequence aligniment
3.6 Applying Worker Feedback then performed between the new packet and each represen-
tative of the cluster that contains this closest represiepta
The representatives selected as described in Sectione.5 alfe then adopt the most liberal strategy in marking tokens;
presented to a group of workers, via an interface such as th#ttat is, we mark a token in the new packet as sensitive if
described in the appendix. Our technique does not requireitialigns to a field in any of these representatives that eithe
specific interface, though it should present the representavorker marked as sensitive. We do so because in the domain
tives to the worker in a way that promotes the identificationof packet sanitization, higher recall is typically favorager
of sensitive fields and that provides the worker an abilityprecision.
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4 Evaluation For the remainder of this paper, we apply standard mea-
sures of effectiveness when evaluating our approach,fspeci
In this section, we evaluate the effectiveness of our amtroa ically the F-score-, (see Section 3.6) achieved for identi-
when it is used to identify the sensitive fields contained infying all sensitive fields either in the entire dataset orgyn
packet payloads. For the purpose of our evaluation, we deerimghe representatives for each cluster. (We will clarifyigrh
several types of fields as sensitive. These fields were das used in each case.) Because in the context of packet trace
main names, IP addresses, file names (and directories), usanitization, recall is often more important than precisie
names, passwords, host (server) names, and email addressdter all, the most common practice when releasing network
These seven types of fields were used as ground truth fdraces is simply to remove all payload information, yielglin
what in the data is “sensitive”. We emphasize that these spe-recall of1.0 but potentially very low precision — we will
cific fields were chosen only to measure the recall and precgenerally setv > 1 in our analysis.
sion achieved by subjects using our approach. The datasets In the analysis that follows, we present results from a
we used are: user study in which professional administrators were rigedu

. ) to participate, in order to gain a better understanding ef th
The UNV- DNS dataset. This dataset consists of 20,000 gffectiveness of our approach in enabling them to identify

network packets recorded at a university campus. The tracgsitive fields. To estimate parameter settings for thiyst
contains bidirectional traffic to a DNS server. Of the sevenye first conducted a simulation-based analysis (with no hu-
specified sensitive fields, DNS packets contain domain namgs,, interaction) to evaluate the effectiveness of propagat
and IP addresses. marked tokens in the representatives (i.e., tokens ideditifi

The KDDCup- FTPdataset. This dataset was selected from as sensitive) to the remainder of the dataset.

the International Knowledge Discovery and Data Mining
Tools Competitior?. We prepared the dataset by specifically
choosing the raw FTP Control packets, which contain 31,028.1 Exploring the Parameter Space
FTP queries and responses. The specified sensitive fields
contained in FTP Control traffic are domain names, IP adOne advantage of our technique is in generating a limited
dresses, file names (directories), user names, passwosis, hnumber of representative packets that capture the characte
(server) names, and email addresses. istics of the packets in the dataset. That said, the manner in
which we do so could impact our identification accuracy.
The W r eshar k- SMB dataset. This dataset is from the Therefore, to choose the most appropriate parameters for
Wireshark™ trace repository. It contains 22,807 SMB (servepur user study (in particular, the number of clusters to use)
message block) requests and responses. The specified seRpg- performed an analysis in which we simulated a single
tive fields it contains are domain names, file names (directoyorker who marked (identified) each instance of a sensitive
ries), user names, passwords, and host (server) names.  field independently and with a fixed probability. We reiterat
that the sole purpose of the simulation-based analysisavas t
The motivation for selecting these three datasets is tha§rovide guidance on parameter choice for the field study that
they contain packets with diverse types of sensitive fieldgo|jowed. With that in mind, we made certain assumptions
and complex message formats. For example, the DNS rgapout independence) for the simulated user to simplify the
sponse packets in theNV- DNS dataset are very diverse task of exploring the parameter space. We then measured
and can be quite complex (e.g., with IP addresses appeafie F-score when mapping these random markings of sen-
ing in many different places in the response packets). Thgitjve fields to the full dataset, as described in Section 3.6
KDDCup- FTP dataset has packets with all the sensitive fieldﬁhough using the inputs of only a single simulated worker,
specified above, and also has many different types of megpot two in combination). In this evaluation, the simulated
sage formats in FTP reply packets. Similar reasons justifyyorker did not mark non-sensitive fields as sensitive, lead-
our choice of th&V r eshar k- SMBdataset. For these dataseﬂ;&J to higher precision than might occur in practice (though
we wrote a parser that read the XML packet detail exporteghe precision on the full dataset was nevertheless alwags le

by Wireshark to automatically locate all instances of theihan1.0). This was done to focus on the effects of recall or,
seven specified fields contained in the payloads. The numbg{qre specifically, F-score with > 1.

and locations of these fields are used only as ground truth.  \ye selected 2000 samples from each original dataset

using the sampling described in Section 3.2. We also con-
° While this dataset has been criticized as being too untiaéis a  trolled the number of representative packets by fixing it ir-
basis for evaluating intrusion detection systems (e.@])[2ve use it respective of the number of clusters. Specifically, the num-
here for a completely different purpose, namely as a sourpaydoad- . ’ ! .
bearing packets that contain some of the sensitive fieldstyiseed ~ P€r Of representative packets was chosen to be 140 in the

above. UNV- DNS dataset, 108 in th&DDCup- FTP dataset and
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Fig. 4 AverageF, when 40%, 80% or 100% of the sensitive tokens in represgatatire marked (at random) by a simulated worker.

120 in theW r eshar k- SMB dataset; these numbers con- selection (see below), we pause to make three observations
stituted only 0.70%, 0.34% and 0.54% of the total numbefrom these figures. First, the number of clusters has a large
of packets in each dataset, respectively. These numbers imfipact on how well the process works, even when identi-
representatives resulted from using the technique destrib fication of sensitive tokens in the representatives is jperfe

in Section 3 at the finest clustering (i.e., yielding the most-or example, in Figures 4(b)—4(c), a clustering with too few
clusters). This number was then fixed as the target numbetusters decays the F-score to roughly only 60% of its op-

of representatives in Algorithm 1 when fewer clusters wereimal. We presume this occurs because with enough clus-
ters, clusters better separate the packets of different mes

N sage types, yielding higher quality representatives. Se&co
The average F-score for each combinationoof1.0, once an adequate number of clusters is attained, the Fsscore

1.2, 1.6), simulated user (4(.)%’ 80%, 100%),.and dataseére robust to imperfect identification of sensitive tokems i
.(UN\./' DNS, KDDCup-_FT_P, W ' gshar_k- SMB) is shown_ the representatives. Third, when there are sufficientlyyman
in Figure 4. Each point in this figure is the average of flVeclusters the F-scores that can be realized indicate thdi-th
runs of the experiment. The standard deviatidn(§6,0.020 |, outc,ome can be quite successful (e.g., F-scoreslrear
and0.025 across all datapoints for tHéNV- DNS, in all cases). '
KDDCup- FTPandW r eshar k- SVBdatasets, respectively.
While our primary use for these simulations is parameter

allowed.
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Based on these tests, we selected 40 clusters for the tegtstentially sensitive fields in packet payloads. To that,end
described in the rest of the paper. For our datasets, this preach worker was tasked with identifying the seven specified
vides a good balance between minimizing the number ofields of interest within the packets displayed via a graphi-
clusters that workers are asked to inspect and providing theal user interface (see appendix). The study itself coragris
opportunity for good accuracy in identifying sensitivealat four trials in which the payloads of packets were presented
once worker markings are applied to the full dataset. Whemo the subjects in different ways. Each trial employed a set
selecting the number of clusters in practice, we expect thaR of representative packets. However, the payloads of these
an expert would be helpful here, as well; that is, the expentepresentatives were displayed in different forms in the fo
can be used to judge the quality of the clustering based otmials as follows:
the visual similarity of the packets in each cluster. There-

after, these clusters can be refined iteratively using the ap '@ | (Clustering+Alignment). The representative pack-

proach presented in Section 3.3. Since we observed simil&iSR were partitioned according to the clusters from which
trends for F-scores across different valuesiofve settled  theYy were selected. The representative packets were yiepla

on a single value of (o« = 1.2) when analyzing the perfor- to the worker, one cluster per page, in their aligned forms
mance of real users below. produced during their selection (Section 3.4).

Trial Il (Alignment+NoClustering). The representative

4.2 User Study with Professional Network Administrators Packetsk were partitioned randomly into blocks. The to-
tal number of blocks was the same as the number of clus-

Our techniques for selecting representatives and incatpor t€rsin Trial |, butthe representatives were evenly disie

ing user feedback about those representatives to sartitize tacross all blocks. The representatives were displayedeto th
full dataset (Section 3) are not dependent on any particula¥orker, one block per page. Since the packets in each block
method for soliciting that feedback from users. However, wevere randomly selected and not aligned with each other, we
expect that the method of presenting representative packetligned these packets using the method described in Sec-
to users will have a large impact on their abilities to iden-tion 3.4 and presented them in that aligned form to the worker

tify and mark sensitive tokens. Two design decisions w

made—based on what is known about visual pattern reco%'acketsR were partitioned according to the clusters from

hition by humans—were to present rgpresentanve packets Which they were selected. The representatives were display
groups based on the clusters to which they belonged (Seg—

; ) _ ; ne cluster per page, in their original form (unaligned).
tion 3.3) and to present the representatives in their atigne perpag g ( gned)

forms (Section 3.4). Trial 1V (NoClustering+NoAlignment). The representa-

To determine the impact of these design decisions, anflve packetsk were partitioned randomly into blocks. The
more generally, to evaluate the utility of our overall apgeh,  total number of blocks was the same as the number of clus-
we conducted an IRB-approved user study with participantgers in Trial |, but the representative packets were evenly
recruited from our department’s Technical Support Centetjistributed across all the blocks. The representative giack
and the university’s Information Technology Service group were displayed to the worker, one block per page, with each
All participants were professional administrators wittodo  packet displayed in its original form (unaligned).
networking background and familiarity with inspecting gat
traces as part of routine network monitoring or diagnostic ~ For the user study, we chose to use Wiv- DNS and
duties. We targeted professional administrators as they aKDDCup- FTP datasets because they contain diverse types
the natural audience for our tool; after all, they are likelyOf potentially sensitive information. Two groups of repre-
the people who would be tasked with the job of sanitizingSentative packets, one for each dataset, were generated by
network data before its release. This stringent criterion f applying the techniques in Section 3 to the two datasets sep-
selecting study participants, however, severely limiteel t arately. In each trial for a given subject, only one set of rep
available pool of participants at our university, resujtin ~ resentative packets were used, that is, eifREUNV- DNS)
our study population of size 15. We note that we obtained@’ R(KDDCup- FTP).
consent from these 15 participants only after significant ef ~ Each worker undertook all four trials in individual meet-
forts to recruit them. These participants are considered oungs over a period of several weeks, with at least three days

Crrial 111 (Clustering+NoAlignment). The representative

“workers” in the remaining discussion. between trials. To avoid any learning effects across trials
we incorporated several additional design elements into ou
4.2.1 Study Design study. First, for the trials taken by each worker, we ensured

that the datasets used were evenly split across the trials.
Recall that our primary goal was to assess the impact dbecond, to prevent displaying the same representatives on
both clustering and alignment in helping workers uncovethe same page in any two trials for a particular user, we
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ensured that Trials | and Il displayed different represensome cases reaching an F-score excee@ig The results
tative packets. This constraint was also applied to the twonR(UNV- DNS) were not as encouraging; no F-score greater
non-clustering trials (i.e., Trials Il and V). Third, the-o than0.70 was achieved by any worker. We believe this re-
der of the trials was randomly chosen (per subject), andlects the substantial challenge represented by DNS pay-
we ensured that no two trials that used the same data (e.dpads, where the variety of locations in which IP addresses
R(UNV- DNS)) were undertaken back-to-back. can appear makes identification of such fields a real chal-
Moreover, to limit any factors due to fatigue, the worker lenge.
was restricted to only one trial per meeting. Meetings were  This motivates the need to select only the best workers
limited to roughly 30 minutes in length, with the exception for identifying sensitive data, and then to employ multiple
of the first meeting where the worker was given a brief in-workers; see Section 3.6. For the remainder of our study, we
troduction (with ample time for questions and answers), an@hose the two best workers as determined by their F-scores
time to familiarize herself with the GUI using an artificial on a randomly selected 20% of the representatives that each
dataset. All trials were administered on a dedicated laptopmarked. This choice simulates a scenario in which the expert
in a location of the subject’s preference. At each meetingmarked 20% of the representatives, and then workers were
the worker was asked to mark any occurrence of the spetasked with marking the remaining 80%. The chosen work-
ified field types, with timeliness as a secondary goal. Carers were selected based on their F-scores using the expert-
was taken to ensure that the subject wasasked to mark marked data as ground truth. In our tests, we possesseddjroun
content shehoughtcould be sensitive, as doing so would truth and so did not need to involve an expert directly.
be subjective and would inevitably lead to uncertainty abou
what should, or should not, be marké@hat is, her job was

) : . UNV- DNS
to simply mark any tokens in the displayed sequences that (@

she believed to be a domain name, an IP address, a file (or Best Xvorker EZ%T Prz.céznfn (I;-Gs?():;)re
directory) name, a user name, a password, a host name, or 2 0.833 0.674  0.760
an email address. Combined | 0.900 0.930  0.912
(b) KDDCup- FTP
4.2.2 Results Best worker | Recall Precision F-score
1 1.000 0.974  0.989
2 0.958 0.974  0.964
Combined | 1.000 0.974  0.989
. ‘ _— Table 1 Results of applying markings to the full dataset for a single
ool L i worker and the combined workers
> — | Once the two best workers were selected in this way,
o o ] their markings were applied to the full dataset as described
u” 08¢ ! ] in Section 3.6. Table 1 provides the F-scores for the full
osf ‘ ] datasets when applying each of these workers’ markings in-
0al | dividually and then in combination. As these results show,
oal T | in the case of th&JNV- DNS dataset (Table 1(a)), the recall
of the combined case increases up to 0.9 with a small loss of
o R(UNV-DNS) RKDDCup-FTP) precision when we incorporate the opinions of the two best
workers. For th&DDCup- FTP dataset, the measurement of
Fig. 5 F-scores = 1.2) per worker in Trial | the single worker versus the combined result remains very

close (nearly 1.0) because each worker already had high re-

Figure 5 shows box-and-whisker plots ef of Trial | call and precision on that dataset.

for all workers, withaw = 1.2. Note that these F-scores were

computed using the worker’s precision and recall on the rePz 5 3 On Understanding Mixed Effects

resentatives only, rather than after applying their maggin

to the full dataset. Each box represents the first, secontl, afy jje the previous results show that substantial improve-

third quartiles; whiskers cover the remaining points. Fig—ment in accuracy can be achieved by picking the best work-
ure 5 illustrates that the workers were generally much more, . - 4 combining their input, it is yet to be shown that the

successful in identifying sensitive fields in FTP packets, i clustering and/or alignment aspects of our approach are in-
4 Consider, for example, the username “anonymous” which ts nodeed factors in boosting the workers’ performance. To ex-
uncommon in FTP; is it sensitive, or not? plore the extent to which these two components influence a
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worker’s performance, we first show (in Figure 6) box-and- @) Fa,a =12 (b) Efficiency

whisker plots of,, across the four trials for the selected best Ege‘:t | ESS’;‘?;e pa"glluf Ege‘:t | Esgrgﬁe pa’g‘g‘;
Workerg. Notice that Tr!als .I—III generally outperform @i 3, 0197  0.017 3, 1092 0271
IV. Notice as well that in Figure 6(b), Trial | performs the Bea ~0.160  0.123 Bea 92097  0.147

best, and offers a substantial improvement over Trial IV.

Table2 Results of mixed-model tests (Section 4.2.3)

y:ﬁc'xc‘Fﬁa'xa+ﬁca'a7c'$a+€ (2)

0.8

wherez,, z, are booleans indicating whether clustering or
alignment is used, angis the performance measure under
consideration (i.e.F,, or efficiency). The interaction effect
o5l ] of clustering and alignment, i.e., the effect of clustefigr
alignment is used, or vice versa, is expressed by the product
of x. andx, (x. - x,). The random effects derived from

0.6

0.4r

o3l — workers and datasets are included in term
| . I‘I [J1. [\ . .
Chligmeni  +NoCiusiaring  +NoARgnmant  ANoAlignment F-ScoreIn the analysis that follows, we first test the null
(a) UNV- DNS hypothese®. = (., = B.. = 0, by fitting all observations

of F, of the best workers using (2), the results of which
are presented in Table 2(a) withset to 1.2. We consider

098¢ ] p-value < 0.05 as the requirement for rejecting a null hy-
o.of ] pothesis. As Table 2(a) shows, is positively related to the
o08sf ] clustering, since the hypothesis = 0 is rejected and the
Lo 08 estimate of coefficiens,. is positive (0.217). Similarly, the
e alignment significantly increasés, by 0.197. There is lit-

tle evidence of an interaction effeet - z, sincep-value=
0.123, i.e., the hypothesis., = 0 stands. Even if the hy-

06sr 1 pothesis had been rejected, the estimaté.pfin Table 2(a)
0.6t | : m VR is smaller (in absolute value) than bath and,, suggest-
CAligment  NoCustering  +NoANgRmEnt  sNeAligament ing that there is an additive effect of these two factors in
(b) KDDCup- FTP improvingF,.

Fig. 6 F- = 1.2) of the best k _ . . .
9 scores ¢ ) of the best workers Efficiency Yet another important consideration is how clus-

tering and alignment influence efficiency; that is, do they

- ) d derstandi  the statistical si .fimpede or advance a worker’s ability to complete the task at
0 gain a deeper understanding of the statistical signi i " . identified fields}|
9 p g 9NThand? Let “efficiency” be defined agdertificd fdsi| ' here

icance of these trends, we apply a mixed-effect regression g resents the total time to completion in each trial. Ta-
model to analyze the four trials of the selected best workp|q (1) shows the results for a similar hypothesis test for
ers shown in Figure 6. A mixed-effect model is an extensionyiciency. The estimate for the clustering term, 3.311ygho
of the general linear regression model that allows for cory, 5t there is a strong, statistically significant, corielabe-

relations within observations [19]. For instance, in 0Un<o yeen efficiency and clustering. Although no statistically
text, this would mean that we consider the performance (sayjgficant effect of the alignment or the interaction term

in terms of efficiency) of a particular worker across differ- i t5nd (-values 0f0.271 for 3, and0.147 for f,,), our
ent datasets to be correlated, but consider that of diftereqggys giill indicate that a user's efficiency benefits frorthbo

workers to be independent. Conceptually, the mixed effect|,stering and alignment together, due to the strong pesiti
regression model can be formulated @s= fixed effects +  jhfuence of the clustering.

random effects+error, where the random effects control for

variables that are not of particular interest (i.e., theadats

used or different skill levels of our workers), while the fike 5 Application to Trace Sanitization

effects incorporate the variables that are of interest @les-

tering, alignment, and the interaction between the twog ThA natural question is whether the workers’ F-scores were
model can be formulated as: “good enough” to provide a basis for sanitizing the full ez,
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and more generally, whether our approach gives enough con- In what follows, we represent a sanitized packet of

fidence to data publishers so that they can release netwoBANI - TRACE as pkt*. Our simulation methodology first

payloads without the fear of privacy leakage. Answeringperforms sequence alignment (as described in Section 3.3)

this question depends ultimately on the data owner’s goalsetween the sanitized packghtt® and each raw packet in

for sanitization, which are notoriously difficult to specif RAW TRACE. For each sanitized sensitive fiefld in pkt™,

or measure for network data, given the difficulties associwe generate a distribution of values aligned withfrom all

ated with applying existing microdata anonymization defi-the packets irRAW TRACE. This distribution can be used

nitions (e.g.k-Anonymity [37], /-diversity [23], and(c,t)-  to measure the adversary’s ability to infer the real value of

isolation [5]) in this domain [8]. To provide a degree of in- fld. For example, if one value is aligned witlkd much more

sight, however, we perform a quantitative evaluation of thefrequently than the others, then this suggests that thiseval

ability of an adversary to infer the contents of sanitizeldifie is more likely to be the value did that was sanitized. To

by using a custom, information theoretic measure of privacymake this precise, we use an entropy-based measure of this
Recall that our methodology provides a framework fordistribution of aligned values.

identifying the best workers to mark sensitive fields in petck

payloads and applying their markings to the entire dataset.

Once this is done, additional steps must be taken to anoeynfz2 Entropy-based Measure

those values determined to be sensitive, using whatevier pol

cies the data publisher desires, e.g., consistently mgppirRather than computing the entropy of this distribution di-

sensitive values to others in a one-way fashion, and perhafgctly, however, we adjust this distribution to accounttfos

in ways that preserve certain structures (such as a prefifact that the packets iRAW TRACE will generally include

preserving mappmg of IP addresses)_ For the purpose Fome that are different in structure frqfht*; the adversary

evaluation, we employ the same sanitization strategies fotould presumably give these dissimilar packets less weight

all seven types of sensitive fields specified in the user studjn determining the value dfd. Specifically, letpSet[v] de-

Specifically, for each value determined to be sensitive byrote the subset d®AW TRACE including each packet that,

applying the tokens marked by the best workers to the fulvhen aligned withpkt®, align valuev with field fid. Then,

dataset, we sanitize this value by deleting it but presgrvinWe take the probability ofid taking on values to be

its type information (e.g., length, text or binary). ZpktEpSet[v] sim(pkt*, pkt)

Zv’;ﬁgap ZpktGpSet[u’] Sim(pkt*a pkt)

5.1 Adversarial Model wheregap denotes a gap (possibly inserted during sequence

alignment) and
Our analysis simulates a realistic adversary whose goal is
i iti itive fi ain (pkt™, pkt
to infer the contents of the sanitized sensitive flelds. Rer t sim(pkt*, pkt) = 1—dist(pkt*, pkt) = Scoreann (pkt", pkt)
two dataset&JNV- DNS andKDDCup- FTP used in the user Scoremax (pkt™, pkt)
study, we simulate a scenario in which data publishers re-

lease sanitized packet payloads, and afterwards the adveF-Om this probability distribution on the value 6, the

sary tries to recover the real value of each sanitized fleldeerpyH(ﬂd) of fid is then
To do so, we presume the attacker can make use of trac% fld)
collected from the same network shortly thereafter — a very
powerful form of attack similar to Ribeiro et al. [33].

To simulate this adversary capability for a particulardata  Intuitively, the aforementioned computation measures the
we first sort the packets &NV- DNS andKDDCup- FTPin  ambiguity (from the attacker’s point of view) of the value of
the ascending order of time, respectively. Then we assiga field that is masked using our approach. That is, a higher
the first half of the packets into one dataS&NI - TRACE,  entropy implies more uncertainty in the attacker’s infexen
and assign the second half to another datB8&%¥ TRACE.  of the real value ofld. Therefore, the entropy is beneficial
Intuitively, the splitting of the dataset simulates thereméo  in understanding the risk of exposing the real values of san-
that the data publisher sanitized and released one trags of htized fields to a determined adversary.
network collected in a specific period and the adversary ac- We use the entropy as calculated by (4) to measure the
quired another trace of this network collected at a lateetim anonymity of the sanitized fields for tH&ANI - TRACE of
SANI - TRACE is sanitized using the approach described indatasetdJNV- DNS and KDDCup- FTP, respectively. Fig-
Section 3, whileRAW TRACE is utilized by an adversary ure 7 shows the average entropy of the sensitive fields that
whose main objective is to infer the real values of the saniare masked by the best workers’ marked representatives (the
tized fields inSANI - TRACE. black bars). For comparison, we also show the entropy per

Pr(fld =v) = 3)

— Y Pr(fld = v) log Pr(fid = v) (4)
vF£gap
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(4) of the sanitized fields when the representatives were peferent groups (i.e., their respective “formats”) accoglin
fectly masked as if by an expert (the gray bars). Althougttheir record types (e.g., A, NS, MX) based on ground truth.
b bits of entropy do not necessarily imp®y equally likely ~ We then computed the entropy of each sensitive field in each
possibilities for a field2" serves as an intuitive approxima- group, i.e., of the distribution of values that occur in that
tion to understand how many different values the adversargensitive field (at the same packet offset) across packets in
might need to differentiate in order to reveal the real valughe same group. Because these entropies are computed per
of the sanitized sensitive field. So, for example, Figurg 7(agroup, packets need not be aligned and so entropies are not
shows that the average entropy of either the best workergidjusted based on similarities as in (4). The white bars for
or the expert’s sanitization ibNV- DNS is more than 4 bits KDDCup- FTP are calculated in a similar way, except that
for both IP address and domain name, which suggests th#ie FTP control packets are grouped by their command types
from the adversary’s perspective there might be 16 differen(e.g., “USER”, “PASS").
values that appear to be possible for a particular sensitive We believe these white bars offer an average lower bound
field. TheKDDCup- FTP dataset exhibits similar results in on the entropy faced by the attacker because they are com-
Figure 7(b). Also noteworthy is that the workers hid sen-puted with exact knowledge of packet formats, which we do
sitive values nearly as well as the expert did, since the emot assume in this paper. In some cases, this lower bound is
tropy of the sensitive fields masked by the best workers resignificantly below the entropy estimated in the absence of
mains very close to that of the expertin bafNV- DNSand  that format knowledge (the black and gray bars). The pri-
KDDCup- FTP. mary cause for large entropy differences is that the align-
ment between a sanitized packet and each of the raw pack-
ets inRAW TRACE (an ingredient in the black and gray bars,
. - but not the white) sometimes led to instances where the val-
b souns ues that aligned to a sanitized field included fields of packet
5 in RAW TRACE that are of a slightly different structure. As
just one example, in th€DDCup- FTP dataset, sanitized IP
addresses iBANI - TRACE often aligned tdP address/port
pairsin RAW TRACE, and so the variation in the port values
inflated the entropy of the sanitized IP addresses as calcu-
lated in (4).
These gaps between the white and black/gray bars are
particularly interesting because in our calculation ofepy
Sensitveypes we deliberately attempted to minimize the effects of dissim
(a) UNV- DNS lar packets by incorporating similarity scores when comput
ing the entropies of values as in (4). Nevertheless, thednpa
T T— of dissimilar packets still exists. An adversary who has de-
e ound tailed knowledge of the packet formats will presumably face
uncertainty only to the extent suggested by the white bars on
® average. That said, as already noted by Cui et al. [9], gain-
s ing a full understanding of the structures of packet paysoad
4 especially for protocols that have varied and complex struc
s tures, can be quite challenging.

IP address

6 Discussion

0 L
IP address file name user name password host name email address
Sensitive types

The fact that our methodology yielded recallbo$ and even
(b) KDDCup- FTP better precision for th&/NV- DNS dataset (see Table 1) is,
Fig. 7 The average entropy of the masked fields separated by sensiti W? believe, a Very_ encouraging result, particularly COHSI_d
types; error bars show one standard deviation ering the complexity of the DNS protocol. We note that it
might be tempting to argue that the results herein could be
improved by permitting workers more time to mark packets;
To place these results in context, we also calculated eecall that each trial lasted roughdy minutes. We believe,
rough lower bound on the average entropy that must be ovehowever, that permitting more time would yield diminish-
come by the attacker (the white bars). To calculate the whiténg returns. Our perception was that packet inspection was a
bars forUNV- DNS, we first separated the packets into dif- tiresome process for the workers, an observation supported
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Aligned packets in the cluster
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. The two sub-panels display the raw bytes of the packet
Shortest connection networks and . . . i
currently in focus (i.e., that the worker last clicked); one
sub-panel shows hexadecimal format, and the other shows
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printable ASCII. The raw bytes for the token on which the
worker actually clicked are highlighted in each of these-sub
panels. The two sub-panels allow the worker to focus on one
particular token and to view it in different formats.

Through the flexible marking facilities provided by the
tool, a worker can interactively mark the tokens of the repre
sentatives she considers sensitive. Figure 8 shows an exam-
ple of the sensitive fields identified (in red) by a particular
user while using our graphical interface.



