
UNC Report No.
TR-76-103
December 1976

DIVIDE AND CONQUER ALGORITHMS FOR CLOSEST

POINT PROBLEMS IN MULTIDIMENSIONAL SPACE

by

Jon Louis Bentley

A dissertation submitted to the faculty
of the University of North Carolina in
partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill

December, 1976

Approved by:

Advisor

Reader

Copyright by

JON LOUIS BENTLEY

1976

This dissertation is dedicated

to the glory of God.

Acknowledgments

I would like to express sincere thanks to many friends who

helped bring this dissertation into being. The technical contri­

butions herein have profitted from fruitful discussions with

Ray Finkel, Jerry Friedman, Mike Shames, Don Stanat, and Andy and

Frances Yao. The pain of preparing a dissertation was mitigated

to a large degree by my advisor Don Stanat, my committee, and

Anne Edwards, typist.

Portions of this research were conducted while I visited the

Stanford Linear Accelerator Center and Carnegie-Mellon University.

I was supported also by the National Science Foundation both as a

Graduate Fellow and under Grant MCS75-19681.

On a personal level thanks are due firstly to my parents. In

this endeavor, as always, they gave all the support I needed. It

was Don Knuth who encouraged me by his words and his example to

attempt to earn a Ph.D. in Computer Science. Pastor Dick Henderson

and all the folks at his Friday Night Bible Study were a source of

constant encouragement during my time at UNC. Marilyn Roper, who

will soon be my wife, gave the abundant emotional and spiritual

support that made the writing of this dissertation a joy.

JON LOUIS BENTLEY. Divide and Conquer Algorithms for Closest Point
Problems in Multidimensional Space (Under the direction of
DONALD F. STANAT.)

The contributions contained in this dissertation can be broadly

classified as falling into three areas: multidimensional algorithms,

the "divide and conquer" strategy, and principles of algorithm design.

Contributions to multidimensional algorithms are twofold:

basic results and basic methods. The results deal with algorithms for

determining properties of sets of N points in k dimensional space.

Among other results it is shown that the closest pair among the N

points can be found in time proportional to N log N and that the

nearest neighbor to each point among the N can be found in time

k-1 proportional to N(log N) (fork~ 2). The basic methods include

an algorithm schema applicable to many multidimensional problems
'

and fundamental concepts for dealing with such problems.

The algorithms in this dissertation demonstrate the power of

the divide and conquer strategy. The strategy is shown to be

applicable to multidimensional problems. The basic technique is

modified in many interesting ways to create faster algorithms.

The final area to which this dissertation contributes is

algorithm design. Instead of merely presenting the results herein

as finished products, they are arrived at through a detailed

development process. This development is one of the few written

records of the development of an asymptotically fast algorithm;

as such it is a suitable basis for teaching algorithm design. The

general principles of algorithm design employed are enumerated.

Table of Contents

1. Introduction

2. Previous work

2. 1 Multidimensional closest point problems

2.1.1 Problem definitions

2.1. 2 Applications

2.1.3 Previous approaches

2.2 Divide and conquer

1

4

4

4

7

10

15

3. The algorithms 17

3. 1 Sparse fixed radius near neighbor algorithms 18

3.2 Closest pair algorithms 38

3. 3 All nearest neighbor algorithms

3.4 Lower bounds

4. Extensions

4.1 Other metrics

4.2 Other problems

5. Issues of implementation

5 .1 Worst-case algorithms

5 . 2 Average-case algorithms

6. Principles of algorithm construction

6.1 Principles of a l gorithm design

6.2 Principles for divide and conquer

6. 3 Principles for multidimensional problems

51

67

71

71

72

79

79

81

84

84

87

88

6.4 Principles for turning algorithms into programs 89

7. Further work

8. Conclusions

Bibliography

91

94

96

1. Introduction

This introduction is designed to serve as a guide in reading this

thesis. In this chapter we describe the overall content of the thesis

and give a brief summary of each chapter. Such an overview should

allow the reader to decide which chapters he should read.

The main topic of this thesis is the application of divide and

conquer algorithms to multidimensional closest point problems. For

the time being, one can think of a multidimensional closest point

problem as one concerned with the proximity of points in a multi­

dimensional vector space. The primary subtheme of this thesis

concerns techniques for designing fast computer algorithms.

Chapter 2 is a review of previous work in multidimensional

closest point problems and in divide and conquer algorithms. The

reader already familiar with these areas ought to read only Section

2.1.1, which describes the notation used in the thesis.

The heart of this thesis is Chapter 3; there we give fast algo­

rithms for the problems we are studying. The algorithms given there

are the first algorithms '"ith less than quadratic running times for

general multidimensional problems. The techniques for divide and

conquer algorithms described in that chapter are applicable to a

broad class of problems. Finally, we derive lower bounds on the

problems we study.

The presentation of the material of Chapter 3 is unusual.

Instead of simply describing the completed work, the chapter

reconstructs the actual development of the algorithms. The author

believes that Polya's [1945] comments are just as applicable to

solving programming problems as they are to solving mathematical

problems: "Solving problems is a practical skill like, let us say,

swimming. We acquire any practical skill by imitation and practice.

Trying to swim, you imitate what other people do with their hands

and feet to keep their heads above water, and, finally, you learn to

swim by practicing swimming." The author knows of few written

examples of the algorithm development process suitable for the

imitation to which Polya refers; this presentation of Chapter 3 is

the author's attempt to help fill that void. The material presented

in that chapter covers a broad range; certainly parts of the chapter

will prove too easy or too difficult (or both!) for any given reader.

But just as no reader will go away from that chapter totally

satisfied, the author believes that consideration of the algorithm

development process in that chapter will be beneficial to anyone

interested in learning more about how to design algorithms.

In Chapter 4 we extend the algorithms of Chapter 3 to other

metrics and other (similar) problems. This chapter is not essential

to a basic understanding of the results of this thesis, but extends

the applicability of those results at a small cost.

Questions of how the algorithms of Chapter 3 could be efficiently

implemented as computer programs are discussed in Chapter 5. Section

5.1 is concerned with implementing the algorithms given in Chapter 3.

Section 5.2 discusses the problem of transforming those worst-case

algorithms into fast average-case algorithms.

In Chapter 6 we enumerate some of the basic principles of

2

algorithm design we employed in Chapters 3 through 5. Though the

principles are grouped into four sections within the chapter, they

are not further organized within the sections. Sections 6.1 through

6.3 deal primarily with principles employed in Chapter 3; Section

6.4 is based mostly on Chapter 5. Though it is not absolutely

necessary to have read the earlier chapters to have some understanding

of the principles given, a familiarity with them will enhance the

reader's appreciation of the techniques described.

Areas for further work are described in Chapter 7, and in Chapter

8 we summarize the primary contributions of this thesis.

We will use standard mathematical notation throughout this

thesis. The only atypical notation we will employ is the 8 notation

due to Knuth [1976], which is similar to the common "big-oh" notation.

By Knuth's definition 0(f(n)) denotes the set of all g(n) such that

there exist positive constants C, C', and n0 with Cf(n) s g(n) s C'f(n)

for all n ~ n
0

. The 8 notation provides both lower and upper bounds

on the function while the "big-oh" notation gives only an upper bound.

Thus 6N2 = O(N2) and l.SN = O(N2), while 6N2 = 8(N2) but l.SN ~ 8(N2).

3

2. Previous Work

In this section we briefly review previous work in two areas:

multidimensional closest point problems and the divide and conquer

technique. The reader familiar with these subjects need read only

Section 2.1.1 which introduces notation for the problems with which

we shall deal.

2.1 Multidimensional closest point problems

Much work has been done recently on multidimensional closest

point problems. In Section 2.1.1 we define a specific subset of

the problems with which we shall be interested. Section 2.1.2

gives examples of potential practical applications of solutions to

these problems. We give a brief survey of previous work in Section

2.1.3.

2.1.1 Problem definitions

In order to describe accurately the problems we are to solve

in this thesis, we must define the tools with which we will solve

them. Throughout this thesis we assume that all problems are to

be solved by an algorithm in the form of a computer program running

on a Random Access Machine (RAM) or a Random Access Stored Program

machine (RASP) as described in Aho, Hopcroft and Ullman [1974].

Since the problems deal essentially with real numbers, we will assume

that each word of the RAM/RASP memory can contain one real number

(which may be an integer) or instruct~on. (Thus we assume an

"infinite precision" machine.) This abstract lnachine suitably

models most high speed computers which would actually be used to

solve the problems we will treat.

The closest point problems we deal with in this thesis all

have as input N points ink dimensional space; the input is des­

cribed by Nk real numbers (we often refer to the collection of N

points as "the file"). Thus we will usually measure the complexity

or cost of applying the algorithms as a function of N and k.

We will shortly describe a number of problems which we shall

denote by names and abbreviations composed of one or ffiore capital

letters. For instance, ANN is the abbreviation for the "All

nearest neighbors" problem. We will denote the worst case running

time of the best possible worst case algorithm to solve problem

ANN on a RAM/RASP machine by ANN(N,k); ANN(N,k) is often referred

to as the minimax complexity of ANN. We will denote the minimean

complexity of ANN by ANN(N,k) (the minimean complexity is the

average case time of the best possible average case algorithm).

We will mention minimean complexities only rarely in this thesis.

To speak precisely of mean times, one must have an accurate model

of the probability of different inputs, and the well known uni­

dimensional models (such as permutations for sorting) are not

obviously extendible to multivariate cases. We will also determine

the amount of storage required by the algorithms we discuss, though

it will be clear that our algorithms use linear storage.

We now describe the multidimensional closest point problems

which will be the center of this thesis. All of them deal with a

set F of N points in k dimensional space and assume the existence

5

of a distance function D on the space. (We discuss later what

properties this function must have.)

Closest pair (CP)

Given N points in k dimensional space, determine which two

points are closest together. That is, find the points W, X E F

such that D(W,X) min D(Y,Z). Ties may be broken arbitrarily.
Y,ZEF
y~

All nearest neighbors (ANN)

Determine the nearest neighbor of each point X E F. The

nearest neighbor of X is defined to be that point Y such that

D(X,Y) =min D(X,Z).
ZEF
Z7X

Ties may be broken arbitrarily. The solution to this problem is

N pairs of points.

Minimal spanning tree (MST)

Define the weighted graph induced by F to be an N vertex,

complete undirected graph with a vertex at each point in F; the

weight of each edge is the distance between the two corresponding

points. The MST problem is to construct the minimal spanning tree

of the weighted graph induced by F. The solution to this problem

is a set of N-1 edges composing the minimal spanning tree, where

each edge is specified by a pair of points. For more detail on this

problem, see Bentley and Friedman [1975].

Fixed radius near neighbors (FR)

Given N points and a parameter 6, find all pairs of points in F

within 6 of each other in the space. The solution is a set of q pairs

of points; where 0 ~ q ~ (~). The fact that the size of the output

6

can be 0(N2) makes the problem very difficult to solve. We shall

therefore restrict our attention to the special case of this problem

given as the next problem. The general case is investigated by

Bentley, Stanat and Williams [1976].

Sparse fixed radius near neighbors (SFR)

This problem is the same as problem FR given above with the

addition of a constraint that the set F is sparse. The exact definition

of sparsity that we will use is that there is some constant c such that

no a-ball (sphere of radius 6) in the multidimensional space contains

more than c points of F. This guarantees that no point in the set

will have more than c fixed radius near neighbors and therefore the

output of the problem will be between zero and eN pair,; of points.

Nearest neighbor (NN)

Given N points of F and an additionql point X, which point of

F is nearest to X? Preprocessing of the original N points is permitted.

A generalization of this problem is the m nearest neighbor problem, in

which the output is the set of the m closest points among F to X. We

will use NNP(N,k) to denote the time required by the preprocessing

phase of the NN algorithm.

These are the problems with which we shall deal. It is interest­

ing to note that because the closest pair graph is a subgreph of the

all nearest neighbors graph, which is in turn a subgraph of the minimal

spanning tree, we can immediately deduce that

CP(N,k) ~ ANN(N,k) ~ MST(N,k).

2.1.2 Applications

In this section we will examine briefly some of the applications

7

of multidimensional closest point problems. Knowing applications of

the problems not only motivates the work, but also enables us to

evaluate the reasonableness of our assumptions concerning the nature

of the problems.

The closest pair is in a sense a contrived problem. The author

knows of no application which actually requires the solution of this

problem. Identification of the closest pair could be used as a

signature of the size of a set which is invariant under translation.

Its relevance to this work, however, lies in the fact that it is in

many senses the "simplest" multidimensional problem; a solution to

this problem is implicit in many more complex problems. One example

of this is Kruskal's minimal spanning tree algorithm [1957]; its

first step is to find the closest pair in the space. (An historic

note here is perhaps appropriate. Professor M. I. Shamos reports

[personal communication] that until late 1974 many people conjectured

that CP(N,2) = 8(N2). Since this was a lower bound on most other

closest point problems, no one looked for the existence of fast

algorithms for the other problems. When it was shown that

CP(N,2) = 8(N log N), many other fast algorithms were soon discovered.

The author has noted similar occurrences in his work on multi­

dimensional problems.)

We now turn to the all nearest neighbor problem. Given two

multidimensional point sets, how can we tell if they were drawn from

the same underlying probability function? A nonparametric test to

determine this is described by Friedman, Steppel and Tukey [1973]. The

basis of this test is the solution to a generalization of the all

8

nearest neighbors problem in which all m nearest neighbors are sought

for each point. Zahn [1971] describes how the all nearest neighbors

graph can be used in cluster analysis, which is one basis for

mathematical taxonomy.

There are many applications in the literature of the minimal

spanning tree problem. The classical formulation is in finding the

minimal cost communications network for cities on a map (Prim, [1957]).

Its application in producing efficient breadboard wirings is described

in Loberman and Weinberger [1957]. Zahn [1971] describes some very

elegant algorithms which use minimal spanning trees for cluster

analysis. An algorithm for mapping points in a high dimensional

space into a lower dimensional space while preserving as much locality

as possible is described by Lee, Slagle and Blum [1975]; the algorithm

is based on the minimal spanning tree of the point set. The minimal

spanning tree can be used to find a good approximate solution to

the travelling salesman problem; this is discussed in Rosenkrantz,

Stearns and Lewis [1974]. This is especially important in view of

the proof by Garey, Graham and Johnson [1976] that the travelling

salesman problem in the plane is NP-hard (which means that it is as

difficult as the NP-complete problems, which many suspect are of

exponential complexity); we are thus forced to use heuristic

solutions for problems of even moderate size.

The fixed radius near neighbor problem arises whenever an agent

has the capability of acting on another agent within a given distance.

This arises in molecular graphics (Levinthal, [1966]) and gestalt

clustering (Zahn, [1971]). We will see in this thesis that the fixed

radius near neighbor problem arises naturally in the solution of other

9

closest point problems. Sparsity is sometimes guaranteed by nature;

we will later see how we can induce it.

Applications of nearest neighbor searching in document retrieval

are described by Van Rijsbergen [1974]. It can be used in many pattern

classification problems (Cover and Hart, [1967]), including speech

recognition (Smith [1975]). It can also be used in estimating values

of a probability distribution function from a sample of points drawn

from the distribution (Loftsgaarden and quesenberry, [1965]).

2.1.3 Previous approaches

This section is an overview of previous work on computer alga-

rithms for multidimensional closest point problems. The descriptions

of individual methods are quite brief; the interested reader is

referred to either the original works or to Bentley's survey article

[1975a] which examines these methods at a somewhat more detailed

level.

The simplest procedures for solving these problems make no use

of the geometric nature of the problem. For problems involving pairs

of points, all (~) pairs are examined. This approach leads to algo­

rithms which are quadratic in N for CP, ANN, MST, FR and SFR and a

linear algorithm for NN. Dijkstra [1959] describes such a "brute

force'' solution to MST.

The simplest method employing the geometry of the space is to

project all the points onto a line and use linear sorting and searching

algorithms to work with the projected set. This technique is referred

to by Knuth [1973] as "inverted lists". A natural choice of the line

used for projection is one of the coordinate axes. This technique was

10

employed by Friedman, Baskett and Shustek [1975] to show that

ANN(N,k) ~ G(N2-l/k) for points drawn from a multivariate normal

distribution. Lee, Chin and Chang [1975] discuss the idea of

projecting onto lines other than coordinate axes. The projection

technique can be used for many closest point problems. It seems,

however, to yield algorithms which are asymptotically slow as well

as being difficult to analyze.

A common approach for dealing with multidimensional closest

point problems is to divide k-space into equally sized cells and

store the points in the file in the corresponding cells. This usually

involves representing the points in the cell as a set (typically by

a linked list) and the cells by a multidimensional array. This idea

was first described in the literature by Levinthal [1966]. Knuth

[1973] suggests the idea of recursively subdividing a cell that is

too crowded with points. Yuval pointed out [1975] that the cells

need not be represented by a multidimensional array; a hash table

or binary tree is more appropriate for sparse spaces. These cell

approaches are described in Bentley's survey [1975a]. They are quite

well suited to the fixed radius problem, but are inappropriate in other

applications of closest point problems becaus'e they are not "locally

adaptable". The fixed radius problem does arise in other closest

point problems; both Yuval [1976] and Rabin [1976] have used cell

techniques to solve the closest point problem. The cell technique

is analyzed in detail by Bentley, Stanat and Williams [1976].

Much work has recently been done on closest point problems in

the plane. Most of that work is due to Shames [1975a,b] (see also

Shames and Hoey [1975]). He has shown that

11

CP(N,2) = ANN(N,2) = SFR(N,2) = MST(N,2) = 0(N log N).

He has also shown that NN(N,2) = 0(log N) with NNP(N,2) = 0(N2) and

quadratic space requirements and NN(N,2) = 0(log 2 N) with

NNP(N,2) = 0(N log N) and linear space. In [1975b] he describes an

algorithm due to Strong for finding closest pairs in the plane which

inspired the algorithms in this thesis. Unfortunately, very few of

Shames's algorithms seem to be easily generalizable to k-space.

Tree structures have long been known to facilitate many

unidimensional sorting and searching problems (see Knuth [1973]).

The first tree structured approach to multidimensional problems is

the quad tree of Finkel and Bentley [1974]. Its efficiency in solving

a problem similar to fixed radius near neighbor searching is analyzed

in the average case by Bentley and Stanat [1975] and in the worst case

by Lee and Wong [1976]. The quad tree employs 2k-way branching in

k dimensional space, which is a serious drawback for most applications.

A tree structured approach which overcomes this difficulty by

employing binary trees is described by Bentley [1975b]. It employs a

data structure called the "k-d tree". The worst case performance of

the k-d tree seems very difficult to analyze; the only bounds attained

so far (Lee and Wong [1976]) do not appear to be tight. There are

strong heuristic arguments given by Friedman, Bentley and Finkel [1975]

to indicate that use of the k-d tree gives

CP(N,k) = ANN(N,k) = 0(N log N),

though these are not rigid arguments. The same paper suggests that

- k
NN(N,k) = 0(log N + 2) where NNP(N,k) = 0(kN log N) and linear space

is required. Bentley and Friedman [1975] discuss the application of

k-d trees to the MST problem. They give heuristic arguments indicating

12

that for many probability distributions MST(N,k) = 8(N log N) for

fixed k. The basic idea underlying the k-d tree is very similar to

the idea underlying the algorithms described in this thesis. In a

certain sense one of the major benefits of the work described here is

to give a theoretical explanation of the empirically observed good

performance of k-d trees.

A problem area distinct from but conceptually related to the

area studied in this thesis is retrieval from a file with multi­

attribute records which assume discrete values. Such a problem is

often characterized by a large number (say, over 30) of binary keys

in each record. Rivest examines this area in [1974a]; further

approaches are described by Burkhard [1976] and Bentley and Burkhard

[1976]. Though these fields are relatively distinct, insights gained

in one often yield application in the other.

A number of different approaches to closest point problems have

been published recently. An algorithm by Elias for finding nearest

neighbors is studied by Burkhard and Keller [1973] and Rivest [1974b].

Tree structured approaches based on clustering are described by

Fukunaga and Narendra [1975], McNutt [1973] and Smith [1975]. A

structure used by Shamos in the plane is generalized to k-space by

Dobkin and Lipton [1976]. Those algorithms use a prohibitive (8(Nk))

amount of storage for practical applications; in addition it is not

clear that all the required preprocessing algorithms are known. Karp

gives approximate algorithms for the travelling salesman problem in

the plane in [1976].

A summary of the results mentioned in this section is given in

Table 2.1.

13

RESULT STORAGE REFERENCE COMMENTS

CP(N,2) = G(N log N) G(N) Shamos [1975b]

CP(N,k) $ G(N(log N + 2k)) G(Nk) Friedman, Bentley, Finkel [1975] Heuristic argument

CP(N,k) = G(f(k)N log N) G(N) Yuval [1975]

CP(N,k) = G(f(k)N) G(N) Rabin [1976]

ANN(N,2) = G(N log N) G(N) Shamos [1975b]

ANN(N,k) = G(N2-(l/k)) G(Nk) Friedman, Baskett, Shustek [1975] Normal distribution

ANN(N,k) = G(N(log N + 2k)) G(N) Friedman, Bentley, Finkel [1975] Heuristic argument

f-' ..,.. MST(N,2) = G(N log N) G (N) Shamos [1975b]

MST(N,k) = G(f(k)N log N) G(N) Bentley, Friedman [1975] Heuristic argument

NN(N,2) $ G(log2 N) G(N) Shamos [1975b] NNP(N,2) = G(N log N)

NN(N,2) = G(log N) G(N2) Shamos [19 7 5b] NNP(N,2) = G(N2)

NN(N,k) $ G(k log N) G(Nk) Dobkin, Lipton [1976] NNP not defined

NN(N,k) $ G(2k + log N) G(N) Friedman, Bentley, Finkel [1975] NNP(N,k) = G(kN log N)
Heuristic argument

Table 2.1. Summary of previous work

2.2 Divide and conquer

Divide and conquer is one of the most commonly used tools in

the construction of algorithms. The basic idea underlying the

technique is that to solve a given problem of a certain size, one

divides the problem up into similar problems of smaller size, solves

them, and then combines those answers to form an answer to the

original problem. Most commonly, the same technique is applied to

the smaller problems, making the procedure recursive. The recursion

is terminated when the problem becomes small enough to solve using

some straightforward method. An example of such a recursive divide

and conquer algorithm is the MERGESORT algorithm described by Aha,

HoP,croft and Ullman [1974]. To MERGESORT a set of N numbers, divide

the set into two subsets of N/2 numbers each, sort those subsets

recursively using MERGESORT, then merge those answers to form the

sorted list desired. Such recursive divide and conquer algorithms

are usually very easy to program and can often be analyzed by the

use of recurrence relations. The technique of divide and conquer

is nicely described by Aha, Hopcroft and Ullman [1974]; the reader

unfamiliar with recurrence relations is referred to Liu [1968].

Divide and conquer has found application in many different

areas. It is the philosophy underlying Cooley and Tukey's discrete

Fast Fourier Transform algorithm [1965]. Strassen used the technique

to reduce the time required to multiply two N by N matrices from

0(N3) to 0 N 2
(

log 7)
[1969]. It was used by Blum, et al., [1972] to

reduce the time required to find the median of N elements from the

previous best known 0(N log N) to G(N). Many other applications

of divide and conquer are found in Aha, Hopcroft and Ullman [1974]

15

(listed in the index under "divide and conquer").

The divide and conquer technique has recently been applied to

multidimensional problems. Warnock's algorithm [1969] for hidden

line elimination uses the strategy in 2-space. Many of the algo­

rithms described in Shamos's workbook [i975] use divide and conquer;

as mentioned previously, the algorithms in this thesis are inspired

by an especially elegant application of divide and conquer attributed

therein to Strong. An algorithm by Kung, Luccio and Preparata

[1975] for finding the maxima of a set of multidimensional vectors

is of a flavor very simila~ to the algorithms described in this

thesis.

16

3. The Algorithms

In this chapter we describe the algorithms that are the basis

of this thesis. In Section 3.1 we develop a simple algorithm for

the sparse fixed radius near neighbor problem and then modify it to

reduce the running time . Section 3. 2 is devoted to the closest

pair problem; we show how the algorithm schema developed in Section 3. 1

can be applied to the closest pair problem. The a l l nearest neighbors

problem is the topic of Section 3.3 ; in that section we extend even

further the schemata developed in the first two sections. In Section

3.4 we prove lower bounds on various problems discussed in Sections

3. 1 through 3 . 3.

The sections in which we describe algorithms share a common theme.

Instead of merely presenting the algorithms as finished products , we

will start by "inventing" a very simple algorithm and develop more

complex algorithms until we arrive at the final version, trying to

reflect the developmen t of the algorithm in our presentation. We will

comment along the way on the tools and techniques of algorithm design

employed . To make these easier to note we shall underline such

comments. Hopefully the reader will go away from this section with

both the understanding of some specific algorithms and insights into

the general process of algorithm design. The principles which we

employ in this section are discussed more fully in Chapter 6.

We will describe the algorithms in a very high level, abstract

language. It should be obvious how such programs could be implemented

on a RAM/RASP machine; when it is not so we will comment accordingly.

Chapter 5 discusses questions of implementation in more detail. It

will be necessary to adopt certain notations. We will denote the

value of the m-th point in the i-th coordinate by X.(m). The distance
1

measure used throughout this chapter is the L
00

norm; that is

D(£,m) = max
lSiSk

X.(~)- X.(m).
1 1

3.1 Sparse fixed radius near neighbor algorithms

In this section we develop algorithms for the sparse fixed radius

near neighbors problem. It is perhaps appropriate to review the

problem briefly. By the definition of sparsity, we know that no

a-ball in the space contains more than some constant c points. For

the L
00

metric which we are using, this means that no hypercube of

side 26 in the space contains more than c points. Our problem is to

enumerate all pairs of points which lie within 6 of each other in the

space.

A fundamental rule in algorithm design is to start with a simple

problem. So instead of starting with the full k dimensional problem,

let us restrict ourselves to a simple case. The simplest is the one

dimensional case; we are given a sparse collection of real numbers

and asked to enumerate all pairs within 6 of one another. The solution

that immediately leaps to mind is to sort the points into a sorted

list, then proceed down the sorted list, checking ahead 6. The sorting

of the first stage can be done in time of O(N log N) by any one of a

number of sorting algorithms (see Knuth [1973]). The scan of the

second stage can be done in linear time; this is guaranteed by sparsity,

which says that checking ahead 6 will require examining at most

18

c elements. Thus the second stage requires at most eN steps. We

therefore have an algorithm that demonstrates SFR(N,l) ,; G(N log N).

Though this may appear to be but a trivial exercise, we will see

later that this result is extremely useful. We therefore feel

justified in stating always start with the simplest case possible,

even it if appears trivial at the time.

We proceed now to the next case in order of decreasing

simplicity: suppose the points lie in a plane. The first technique

to which our search for a good algorithm leads us is iteration; we

ask is there a strategy which, when iterated for each point in the

file, will solve the problem as a whole? The answer is clearly·

yes; we examine all pairs of points. Unfortunately, this yields a

0(N2) algorithm. We could give up here, accept a quadratic algorithm,

and try to prove a quadratic lower bound. However, we are motivated

to search for a better algorithm by the fact that we know that we

can do better than quadratic in the one dimensional case. Thus we

see one important psychological effect of solving simpler problems

first--motivation to keep looking for answers. The next technique

of algorithm construction we consider is divide and conquer: is there

some way to divide the problem into smaller parts, such that the

solution of those parts could be combined to form a solution to the

whole? As the principle of starting with the easiest dictates, we

ought to look first for a divide and conquer algorithm that divides

the problem into two parts (instead of more); we should also try to

keep them of approximately the same size (that is, balanced; see Aho,

Hopcroft and Ullman [1974] for details).

19

At this point our creativity (or whatever it is psychologists

have left us with) suggests the following strategy, which is

illustrated in Figure 3.1-1: Divide the file F into two point sets

A and B by a vertical line £ such that both A and B contain

N/2 points (r N/21 and L N/~ points for odd N). Solve the sub­

problems for A and B recursively by enumerating all fixed radius

near neighbor pairs with both elements in A or both in B. Note

now that to solve the problem after having done this, all we need

to do is to enumerate all near neighbor pairs with one point in A

and one point in B. To find these pairs we need only consider

points in the slab of width 2o with center £, noted by S in Figure

3.1-1. Note that up to all N points could lie in region S.

£

A B
0

0
• •

• • • •
• • • •

• • • • • • • • • • • • • • •

s

Figure 3.1-1: Illustration of Algorithm SPARSE2

How do we solve the reduced problem of enumerating all fixed

radius pairs i.n S with members of the pair on different sides of .Q,?

20

Although this appears to be another problem in the plane, we can

view this as an essentially one dimensional problem. That is, we can

solve the reduced problem by projecting all points in S onto £, and

then solving the one dimensional sparse problem using our previously

developed algorithm for one dimension. (Note that projection of

points within 6 onto £preserves sparsity; any points in a 6-ball

on the line were within the same 6-ball in the plane, thus there can

be at most c within any 6-ball on the line.) We may, however, have

to throw out some "false drops"--pairs which were on the same side

of £ or greater than 6 apart in the plane. First examining the

simpler one dimensional case paid off both in giving us a mind set

which allowed us to see a method of solution for the reduc.ed problem,

as well as providing the tool to solve the problem once we slightly

modified it.

Thus we have the basic idea for a divide and conquer algorithm

for the SFR problem in the plane. The next step in developing such

an algorithm is to describe it in an appropriate high level language,

using notation as fits the problem. Let the input to the problem be

a set of points F. We will want to have available the algorithm for

the one dimensional case described earlier; call it SPARSE! (for

reasons that will become obvious later). The procedure call SPARSEl(F)

enumerates all fixed radius near neighbor pairs in the one dimensional

file F. We now describe our algorithm (which we call SPARSE2) as

Algorithm 3.1-1.

(It is appropriate to mention here that the cut line £ is

"fuzzy" in the following sense: If many points lie on £ then they

are arbitrarily assigned to A and· B such that both A and B contain

21

N/2 points. All further cut lines we use in this thesis will be

"fuzzy" in this sense.)

Algorithm 3.1-1

Procedure SPARSE2(set F)

1. If IFI ~ 1, then return.

2. Choose a vertical line ~ partitioning F
into two collections of N/2 points each, A
and B. (Note that this can be accomplished by
finding the median element of F in the x

1 direction; the line is defined by that xl
value.)

3. Solve the subproblems with the recursive
calls SPARSE2(A) and SPARSE2(B).

4. Let S be the set of all points within
o of ~. projected onto ~. (Note that the
projection preserves sparsity with the
sparsity constant c unchanged.)

5. Call SPARSEl(S) to solve the sparse
problem on the line. Check the pairs
enumerated there to insure (a) they are
on different sides of ~ and (b) they are
within o in the plane.

T(N) 2T(N/2) + (c2 + c
3

+ c
4

)N + c1 + SFR(N,l)

2T(N/2) + G(N log N)

T(l) = T(O) = c
1

.".T(N) = 8(N log2 N)

N

2T(N/2)

The next step in the design process is to analyze the resulting

algorithm. As with all of the algorithms developed in this thesis,

we present a worst-case analysis with the algorithm itself, giving

the running time in the 8 notation. We will go through the analysis

of SPARSE2 now at a fairly close level of detail; later in this

thesis we will only examine critical steps of the run time analysis

in the text, presenting the analysis summarily with the algorithm

22

itself. For each step we will count the number of RAM/RASP

operations employed. Step 1 requires constant time. The median

selection of Step 2 requires time linear in N using the selection

algorithm of Blum, et al., [1972]. The recursive call of Step 3

will require two invocations of SPARSE2, each on a file of size

approximately N/2 (the effect of approximation is discussed in

Aho, Hopcroft and Ullman [1974]; it is negligible). The projection

of Step 4 can be accomplished in linear time by processing each

point individually. By our analysis of SPARSEl, the call in Step 5

could cost up to SFR(N,l) = 8(N log N) (since all N points could

be inS). Since only up to eN pairs could be enumerated (by sparsity

of the projection), we can check those in time linear inN for the

stated conditions. (Note that we assume c to be a constant

independent of N.) We thus arrive at the recurrence system given

in the presentation of the algorithm, which is well known to have

the stated solution. We have therefore shown that

SFR(N,2) s 8(N log2 N) (where we use logk N as a shorthand for

(log Nl).

We must now determine how much storage the algorithm requires

(in addition to the storage of theN points). The median selection

algorithm requires 8(N) work storage. Up to 8(N) storage could be

required to hold the projected point set built in Step 4. The same

storage areas for this data could be used by different invocations

of the algorithm SPARSE2 (since it is not required to save any of

the information contained there). Thus the total storage required by

SPARSE2 is linear inN. All of the algorithms described in this

thesis require linear storage; because the analyses are. very

23

straightforward we will omit them in future algorithms. A more exact

analysis of the storage requirements is contained in Section 5.1.

Our, development of SPARSE2 could now proceed in any one of three

directions. In the first direction we would begin by describing the

algorithm in a more detailed language. The resulting program is then

analyzed in detail for its running time (many refer to this as the

"Knuthian analysis"), and costly segments of code are fine-tuned.

Though this step should certainly be made at some point in the

algorithm design process, it would not be appropriate at this stage.

The second direction in which one could proceed is to see if any

standard "speed-up tricks" can be applied to the algorithm. In our

algorithm we note that a great deal of sorting is being done by calls

on SPARSEl. It is fairly well known that repetitive sorting can often

be avoided by "presorting" the file (in this case on the x1 key);

after this presorting the algorithm would have to maintain point sets

in sorted order. Calls on SPARSEl, however, would take only linear

time, and the resulting running time of SPARSE2 would be 8(N log N).

This is the direction that the author actually took in the development

of the algorithms in this thesis; we will not, however, proceed in

this manner now. It turns out that the speed-up achieved by presorting

can be achieved more elegantly in a different way, so the mention

made thus far of presorting will suffice. We have, however, observed

another general rule for algorithm development: try to apply standard

speed-up techniques, such as presorting.

The third direction open to us, and that which we shall now take,

is to generalize the current algorithm. A first step in the process

of generalization is to describe the algorithm in abstract terms--terms

24

which convey the essential idea of the algorithm without getting

cluttered up in details. Such an abstraction of SPARSE2 might be

"to solve the problem in the plane, solve two subproblems in the

plane (each operating on half the points), and one subproblem on the

line". The next step in the generalization process is to generalize

the current algorithm to the next most simple case; for this problem

we should now try three dimensions. The obvious generalization of

the abstraction of SPARSE2 to the abstraction of SPARSE3 is "to

solve the problem in 3-space, solve two subproblems in 3-space

(each operating on half the points), and one subproblem in the plane".

As we mentally sketch first versions of SPARSE3, we see that it is

very similar to SPARSE2. Instead of choosing a cut line to divide

the problem into smaller subproblems, we choose a cut plane. After

solving the subproblems in 3-space, to solve the reduced problem we

will project all points within o of the plane onto the plane, and

solve the sparse problem in the plane (for which we can use SPARSE2).

It would be appropriate at this point to write down algorithm

SPARSE3 in the same format we used for SPARSE2, and do a similar

rough worst-case analysis (which would yield its running time as

0(N log 3 N)).

We are now equipped to develop a fully general algorithm. We

guess by induction from the cases k 1, 2, 3 that the running time

k of algorithm SPARSEk will be 0(N log N). (Such guesses by induction

can never hurt and are often helpful in finding the algorithm behind

the running time.) Next we would generalize the abstraction to

k-space. Finally we are ready to write down our generalization

SPARSEk as Algorithm 3.1-2.

25

Algorithm 3.1-2

Procedure SPARSEk(set F)

1. If IF! ~ 1, then return.

2. Choose a k-1 dimensional hyperplane P orthogonal
to the x1 axis partitioning F into two collections
of N/2 points each, A and B. (Note that this can
be accomplished by finding the median element of F
in the xl direction; the hyperplane is defined by
the median x1 value.)

3. Solve the subproblems with the recursive calls
SPARSEk(A) and SPARSEk(B).

4. Let S be the set of all points within 6 of P
projected onto P. Note that the projection preserves
sparsity with the sparsity constant c unchanged.

5. Call SPARSE(k-1) (S) to solve the sparse problem
in the k-1 dimensional space. Check the pairs
enumerated there to insure (a) they are on different
sides of P and (b) they are within 6 of each other in
k-space.

T(l,k) T(O,k) = c
1

T(N,l) = G(N log N) [Using SPARSEl]

T(N,k)

,', T(N,k)

2T(N/2,k) + T(N,k-1) + G(N)

G(N lol N)

2T(N/2,k)

In the analysis of SPARSEk given in Algorithm 3.1-2 we use the

notation T(N,k) to denote the worst-case running time of SPARSEk on

a collection of N points. It is important to note that ou·r analysis

is indeed of the worst case; we have assumed that all N points will

lie in region S. By the existence of SPARSEk we have shown that

SFR(N,k) ~ G(N logk N).

At this point we do well to "meditate" on our algorithm. Its

abstraction is "to solve a problem of N points in k-space, solve

two problems of N/2 points in k-space, and one problem of up to

N points in (k-1)-space". We might recall that we have seen such

26

a schema before in the algorithm of Kung, Luccio and Preparata

[1975] for finding the maxima of a set of N vectors in k space, and

its running time of S(N logk-Z N) is very similar to G(N logk N).

We should now familiarize ourselves with the related work, to gain

deeper insight into the problem and perhaps avoid reinventing a

wheel (for reinvented wheels often have flat sides!).

We are now faced with a decision similar to one we faced

previously about SPARSE2: should we try to prove a lower bound

k of SFR(N,k) ~ 8(N log N), or should we try to develop better

algorithms? This decision is not so clear cut as before, and we

should proceed down both paths simultaneously, with insights in

one area helping our advance in the other until we eventually see

on which path we should concentrate our attention. It turns out

that the correct decision (that is, the profitable path) is to try

to reduce the running time of the algorithms.

A technique we have already seen for reducing the running time

of an algorithm was presorting. When applied to SPARSE2, the running

time was reduced from G(N log2 N) to G(N log N). Unfortunately this

method can be used in general to remove only one log N factor from

the running time; it gives rise to a SPARSEk algorithm with

k-1 8(N log N) performance. We will therefore keep this technique in

mind, but look elsewhere for other speedups, temporarily ignoring

presorting to keep our vision clear for larger gains.

As we seek to reduce the running time of SPARSEk, the principle

of 11starting with the easiest" dictates that we first concentrate our

attention on reducing the running time of SPARSE2. We set our goal

as reducing the running time of SPARSE2 to G(N log N). We have two

27

reasons for choosing this goal. First, G(N log N) was achievable for

SPARSE!, and secondly, it was achievable for SPARSE2 with presorting.

It is often helpful in alg-orithm design to have in mind a specific

performance bound as a goal.

We should now investigate SPARSE2 to find out why it does not

achieve G(N log N); we should ask why is it so expensive? We see

that .the factor in the recurrence system of Algorithm 3.1-1 that

raises the cost to G(N log2 N) is the call on SPARSE! with up to N

points, which costs G(N log N). Thus we have identified the aspect

of our algorithm which causes the increase in running time; we should

now concentrate on reducing this cost.

There are two ways in which we can decrease the cost of the call

on SPARSE!. The first is to make SPARSE! faster; this is essentially

the way in which presorting brought about a speedup. Apart from

presorting, however, we can see no way to speed up SPARSE!. The second

way to speed up our call on SPARSE! is to reduce the cardinality of

the set S which we pass to the procedure. We have assumed that all

N points will be in S; let us study exactly what that situation entails

by observing Figure 3.1-2. If all N points lie in a vertical slab

of width 26, then the obvious strategy for reducing the cardinality

of S is to choose as the cut line ~ a horizontal line dividing F into

two equally sized sets. The cardinality of Swill then be at most c

and the call on SPARSE! will take only constant time. It turns out

that not all cases are this easy, but examination of the most

degenerate case has led us to an idea for reducing the size of S:

sophisticated choice of cut lines. We thus note the importance of

examining the degenerate cases.

28

Bad cut
line £

9 • • •
• • •
• • • • • • •

• • • •
• •

• • • •
• • ••
• •
~6~

~6~

Figure 3.1-2: A degenerate case

Good cut
line £

We now look for a strategy for choosing cut lines. What we

need is a strategy which keeps the subproblems A and B balanced,

allows a cut line to be found in linear time, and gives a set S such

that the call SPARSEl(S) takes at most linear time. If we assume

that the running time of SPARSE! cannot be reduced below 8(N log N),

this implies that the cardinality of S will have to be O(N/log N)

(note that for a 8(M log M) function to be O(N), M must be

O(N/log N)). Because of our good fortune in the degenerate case

we examined in Figure 3.1-2, we might guess that the strategy we

should employ is to try a vertical cut line, and then if that fails,

try a horizontal, hoping that at least one of the two will yield a

29

set S of acceptable size. The counterexample depicted in Figure 3.1-3

shows that this strategy will not always work. Both the horizontal

and vertical cut lines which partition F by finding median elements

have resulting values of jsj N/2, which is greater than O(N/log N).

Hence we see that our strategy for choosing the cut line will have

to become more sophisticated in one of two ways: by choosing a cut

line which is not necessarily orthogonal to one of the axes, or by

choosing a cut line which does not partition the set into subproblems

of exactly equal size.

N/2 points
•
•
•
•
•

• • • • • • • • • • • N/2 points

•
•
•
•
•

Figure 3.1-3: A second degeneracy

Though choosing a cut line which is not orthogonal to one of the

axes is attractive at first glance, it seems to be a difficult strategy

to implement. In Figure 3.1-3 it is obvious to the human eye to choose

a cut line that makes a 45° angle with the axes and passes through

30

the center of the set; it is not obvious that an algorithm could

choose that as easily. After devoting much effort to this strategy,

the author could make no progress.

We now concentrate our search for a cut line selection strategy

on a cut line which is orthogonal to one of the coordinate axes but

does not necessarily divide F exactly in two. A suitable strategy

must insure three things about the cut line ~ it chooses: First, ~

must be locatable in linear time. Secondly, only O(N/log N) points

can lie within 6 of ~- Thirdly, the sets A and B induced by ~ must

be of almost the same size (that is, balanced). The definition we

have used of balanced so far is that the cardinality of A and B

differ by at most one. For many divide and conquer algorithms,

however, such a strict definition of balanced is not required. A

suitable definition of balanced, which preserves the asymptotic

G(N log N) behavior but changes the constants, is that the size

of each subproblem is at least as large as some constant nroportion

p of the total problem size. This is a generalization of the

principle employed in the definition of balanced trees due to

Adel'son-Vel'skii and Landis [1962]. A node in a tree which is

balanced by their definition does not necessarily have the same

number of left and right descendants, but each of the subtrees is

. -1
known to contain at least 1 - ~ (or approximately 38%) of the

descendants of the node (see Knuth [1973] for a proof). This

condition, which is weaker than demanding totally balanced (or

complete) trees, is enough to guarantee logarithmic search behavior

in balanced trees. Thus the third condition that our cut line

selection strategy must meet is that both A and B partition the

31

input set and each contain at least pN points, where p is some constant

the strategy must choose.

Now that we have a fairly clear idea of what we are looking for,

we must choose a value of p and show that such a cut line £ will exist.

Once again we derive a benefit from having examined the degenerate

case--we know from the degeneracy in Figure 3.1-3 that p must be less

than 1/4. We thus have reduced our problem of algorithm development

to a problem of constructing a geometric proof. We must now don hats

of both algorithm designers and mathematicians and proceed to con-

jecture and prove the following theorem.

Theorem 3.1-1: (Existence of a cut line in the plane.) Given

a sparse collection of N points in the plane (where N is greater than

some constant N
2
), there exists a cut line£ perpendicular to one of

the original coordinate axes with the following properties:

1. No more than 7N/8 points are on either side of £.

2. There are at most 2cN1/ 2+1 points within distance

o of L

Proof: To prove this theorem we will show that the assumption

of its negation leads to a contradiction. To do this we demonstrate

that a set without the properties described in the theorem must be

both very dense and very sparse. Consider the points indexed in

increasing order by x-coordinate (thus the point with the least x

value has index 1, etc.; points with tied x values are indexed

arbitrarily). Let us now restrict out discussion to M , the middle
X

3N/4 points in the indexing (only a cut line which passes through

the restricted set will satisfy Condition 1 of the theorem). The

assumption of the negation implies that every collection of

32

2cN112+1 points contiguous in the indexing projects onto a segment

of the x-axis less than 26 in length (if a given collection projects

onto a longer segment then the center of that segment could be used

to define a cut line£ with the desired properties). The situation

that we have described is depicted in Figure 3.1-4. The regions R
X

and L contain the rightmost and leftmost N/8 points in the indexing,
X

respectively. The region C is that to which we have restricted our
X

discussion; it is the smallest vertical slab containing M . We now
X

subdivide C into closed regions T. by drawing vertical lines through
X l

the 1-st, 1(2cN1 / 2)+1 -st, 2(2cN112)+1 -st, 3(2cN112)+1 -st, ••.

points of M (ordered by index); note that there are 2cN112+1 points
X

in any region T .. Because the boundary point (on the line) is in
l

two regions Ti and Ti+l' there are only 2cN112 points uniquely

associated with region Ti (associate the boundary point with Ti and

Since each T. is defined by 2cN112+1 points contiguous
l

in the x dimension, its width is bounded by 26. We can now bound

the width of C by observing that C is comprised of (3N/4) I (2cNl/Z)
X X

regions T., each of which is of width less than or equal to 26, so we
l

have

width(C) :;
X

(3N/4)

2cN112
• 26 =

We have thus far considered only C , the center region in the
X

x dimension; similar arguments hold for C , the center region in the
y

y dimension. Let us now examine C , the intersection of C and C .
~ X y

Since at most N/4 points lie outside each of C and C , there must be
X y

at least N/2 points in C
~

On the other hand, since
3Nl/Z6

the sides of C~ is bounded by 4c , the total area

33

the length of

of C is bounded
~

above by that length 9No 2
squared, or ----.

16c2
By sparsity we know that

the number of points in C is therefore bounded above by
xy

__ c_ = 9N/64c points (where c ~ 1).
4o 2

We have thus arrived

at the contradiction that C contains at least N/2 points, but at
xy

most 9N/64c points.

proved our theorem.

Therefore the negation is false and we have

(Certain assumptions, such as C being composed
X

of many collections of 2cN112 points, required "large enough" N.

We included the phrase "N > N2" in the statement of the theorem for

that reason.) 0

L c R
X X X

Tl T2 T.
•].

• • •
• • • • • • •

• • • • • • • •
• • • • • • • •

• • •

Figure 3 .. 1-4: N points in the plane

Theorem 3.1-1 leads immediately to a 8(N log N) algorithm for

the SFR problem in the plane. Before the first invocation of our

faster recursive procedure (which ~e will call FSPARSE2), we presort

the points on all coordinates to allow rapid sequential processing of

34

the file. A recursive invocation of FSPARSE2 would then choose the

cut line £ by scanning down both sorted lists until it found a gap

26 wide which contained not more than 2cN1/ 2+1 points. It would use

the middle of that gap for L The existence of such a gap is

guaranteed by the theorem. After the resulting subcollections are

recursively processed the algorithm would project all points in the

slab to form setS; its cardinality would be O(N112). Hence the

call SPARSEl(S) would require O(N) time. The recurrence relation

describing the worst case running time of FSPARSE2 would be

T(N) = T(N/8) + T(7N/8) + 8(N)

which has solution T(N) = 8(N log N).

In the actual algorithm design process one would at this point

write down a description of FSPARSE2. We will skip that stage for

brevity, and proceed to generalize to FSPARSEk. The generalization

should be obvious. We start by proving Theorem 3.1-2, and then give

FSPARSEk as Algorithm 3.1-3.

Theorem 3.1-2: (Existence of a cut plane ink-space.) Given

a sparse collection of N points in k-space (where N is greater than

Nk)' there exists a cut plane P perpendicular to one of the original

coordinate axes with the following properties:

1. No more than,N(l-l/4k) points are on either side

of P.

2 Th t k Nl-1/k 1 . . h. d . . ere are a most c + po1nts w1t 1n 1stance

o of P.

Proof: ·The proof proceeds in the same manner as that of

Theorem 3.1-1. Assuming the negation of the theorem leads us to

the contradiction that the hypercube in k-space corresponding to

35

r 1 ,k

I
(l-2k) I C contains at least N/2 points, but at most k • eN points,

xy .__ c . .-1
which is less than N/2 for k > 1, c ~ 1. D

Algorithm 3.1-3

Procedure FSPARSEk(set F)

1. If IFI $ 1, then return.

2. Choose a k-1 dimensional hyperplane P
partitioning F into two point sets A and B in
the following way. For each of the k dimensions,
scan down the list of the points sorted by that
dimension from the (N/4k)-th element to the
(N-N/4k)-th element. In the scan keep two
pointers active, one kcNl-l/~1 elements ahead
of the other. For each pair examined, calculate
the distance between them. When a distance
greater than 28 is found, stop the scan and
choose the center of that interval as the value
defining the hyperplane. Theorem 3.1-2 guarantees
that such an interval will be found.

3. Divide F into the two subsets A and B
determined by P. Maintain the sorted lists
for each dimension for both A and B.

4. Solve the subproblems with the recursive
calls FSPARSEk(A) and FSPARSEk(B).

5. Let S be the set of all points within o
of P projected onto P. Note that projection
preserves sparsity. As in Step 3, maintain
the orderings by dimension for set s.
6. Call FSPARSE(k-1) (S) to solve the sparse
problem and check enumerated pairs for false
drops.

T{l,k]

T[N,l]

T[O,k] = c1

8 (N log N)

T[(l/4k)N,k] +
T[(1-1/ 4k)N,k]

c
4
N

T[ckNl-l/k+l,k-1]

T[N,k]

:. T[N,k]

T[(l/4k)N,k] + T[(l-l/4k)N,k] + El(kN) + T[El(Nl-l/k),k-1]

G(kN log N)

Algorithm FSPARSEk is easily understood as the reader keeps

algorithm SPARSEk in mind. It is essential for the G(kN log N)

36

running time that the representation of a set of points in k-space

include the point set sorted in order by each of the k dimensions.

This can be easily accomplished by presorting the file on each

of the k dimensions, and then keeping a linked list representation

of each sorted list. When a set is partitioned into two subsets

the list is "unzipped" to form two sorted lists (by an "inverse

merge" procedure), and then merged back together again when the

partitioning is no longer required.

The worst-case behavior of FSPARSEk occurs when the sets A

and B. are most unbalanced, hence we assume that condition in our

worst-case analysis, giving the stated recurrence relation. We

can easily prove by induction that the solution to the recurrence

system is as stated. The thrust of the argument is that if we

have shown that T(N,k-1) is 8((k-l)N log N), and we invoke that

on a set of O(N/log N) points, then the cost of the procedure

is O(kN). The rest of the analysis for the k dimensional case

is standard, and FSPARSEl = SPARSE! gives the basis for the induction.

Should we try to reduce the running time of FSPARSEk below

8(kN log N)? It certainly seems that the factor of k cannot be

decreased, for the amount of information describing each point

increases linearly with k. The question of whether the 8(N log N)

can be reduced seems to be very hard. We show in Section 3.4 that

in general, 0(N log N) is a lower bound for SFR(N,k) by examining

the degenerate case of o = 0. For nonzero o, however, Bentley,

Stanat and Williams [1976] have shown that SFR(N,k) = G(kN) and

have also given an algorithm which shows SFR(N,k) = 8(kN) if an

37

arbitrary amount of random access storage is available. The author

conjectures that 8(kN log N) is a lower bound on the minimax

complexity of the SFR problem if only 8(kN) work storage is permitted.

As we come to an end of our development of algorithms for the

SFR problem, we should ask what we have gained by examining the problem.

We have observed many general principles of algorithm design of which

we should be conscious and employ in the development of further algo­

rithms. The algorithms which we have developed are important tools

for us to keep in our tool bag as we examine further closest point

problems.

We have also gained insight into a particular class of divide

and conquer algorithms for multidimensional space. There are three

important themes in the algorithms in this section. The first theme

is the abstract schema of solving a problem by dividing it into two

smaller problems in the same space, and one problem in a space of

lower dimensionality. The second theme is the use of sparsity,

which we employed to limit output size as well as an invariant

condition (of sorts) for our reduced sets. The third particular

principle of multidimensional algorithm design we observed is that

of prudent choice of cut planes. We will find these three techniques

very useful in further problems which we study.

3.2 Closest pair algorithms

We now turn our attention to algorithms for the closest pair

problem. In review, we are to develop a procedure which will tell

what are the two closest together among N points in k-space. In

this development we will use the results of Section 3.1 both as

38

available tools and as a source of experience in multidimensional

problem solving.

In developing a closest pair algorithm we will follow our

well established rule and start with the simplest case. Finding

the closest pair in one dimensional space can be easily accomplished

by sorting the points and then scanning down the sorted list,

looking for the closest point to each (which will be either its

left or right neighbor) and remembering the pair with minimum

separating distance. The sort will take 8(N log N) time and the

scan 8(N), so the running time of the algorithm as a whole will

be 8(N log N). Thus we know that CP(N,l) $ 8(N log N).

The next most simple case is that of the plane. The obvious

iterative strategy that examines all(~) pairs of points and finds

the minimum distance requires quadratic time, and knowing that the

complexity of the problem is 8(N log N) on the line makes us

hesitant to settle for quadratic in the plane. We are therefore

encouraged to look for faster algorithms in the plane Rnd the first

technique that occurs to us is divide and conquer.

The logical way to proceed in our attempt to apply divide and

conquer to the closest pair problem in the plane is to employ as

much as possible of a strategy for solving a similar problem. In

this case the CP problem is similar to the SFR problem, so we will

attempt to apply aspects of algorithm SPARSE2 to algorithm PAIR2

(which solves the CP problem in the plane). (Starting with the

easiest dictates that we should not try to apply FSPARSE2.) A

divide and conquer procedure typically has three identifiable stages:

breaking the problem into subproblems, recursively solving the

39

subproblems, and combining the solutions of the subproblems to

yield a solution to the problem as a whole. In our development

of PAIR2 we should try to use as many of these stages from SPARSE2

as possible.

We will now attempt to synthesize PAIR2 using components from

SPARSE2. SPARSE2's first stage of dividing the file F into two

point sets A and B by a vertical line £ seems to be applicable to

the CP problem, so we will take that as the "divide" stage of PAIR2.

For the "recursive" stage we will find the closest pairs among both

A and B. Is there some way in which we can now combine these

solutions to the subproblems to form a solution to the CP problem?

In order to answer this question we should examine what properties

are true in the plane after the subproblems have been solved; to

investigate this we shall employ Figure 3.2-1. The letters, A, B,

and £ all have their obvious meanings in the figure. We use oA to

denote the L distance between the closest pair in A and similarly
"'

A B
• • • • •

• • • •
•

oA\._ • •
.4B

• • • •

Figure 3.2-1: The plane with solved subproblems

40

The closest pair in the whole plane might very well be the closest pair

in A or the closest pair in B. Let us use 6 = min(6A,6B); 6 is the

distance between the closest pair we have discovered so far. To combine

the solution of the parts to form a solution to the whole we must find

any pairs in the plane that are closer than 6 to one another; the

closest pair in the whole plane (if not 6 A or 6B) will be among these.

We must make two observations before we can synthesize the third

stage of PAIR2. First, if a pair is within 6 in the plane, then the

points of the pair must be on opposite sides of £. Were they not,

then the previous values of oA and 6B must have been inaccurate.

Secondly, we note that the set A is sparse with respect to radius 6A.

The sparsity constant c = 9 can be found by examining the worst-case

configuration of points given in Figure 3.2-2 (nine points are in the

6A ball with center x); no 6A ball could contain more than 9 points,

for if it did then two of the points would be closer than 6A together,

which denies that 6A is the distance separating the closest pair in A.

Region B is likewise sparse with respect to oB and c = 9. It is thus

clear that the plane as a whole is sparse with respect to radius 6 and

c = 2·9 = 18 (because no 6-ball contains more than 9 points from A or

9 points from B, or 18 points all together); the bound of 18 could be

tightened.

• • •

•

• •

Figure 3.2-2: A worst-case configuration

41

We are now equipped to synthesize the "combining" stage

of PAIR2. We.must locate any pairs in the space within 6 of

each other and we have shown that the space is sparse; we need

only solve the SFR problem in the plane. Our experience with

SPARSE2 suggests that in doing that we might be doing more

work than we need to do, and our first observation above

(that the pair for which we are looking must have its points

on opposite sides of £) implies that we need only examine

points in the slab of width 26 and c~nter £, just as in

SPARSE2. To do this we project all points within 6 of £

onto £, and then solve the resulting SFR problem on the line.

Having synthesized the third and final stage, we are

ready to present the resulting divide and conquer algorithm

PAIR2 as Algorithm 3.2-l'which returns the distance separating

the closest pair in the space. (The bookkeeping required to

give the points comprising the pair is obvious and giving

it would only serve to obscure the structure of the algorithm.)

42

Algorithm 3. 2-1

Procedure PAIR2(set F)

1. If IFI = 2 then return the interpoint distance.

2. Choose a vertical line ~ partitioning F into two
collections of about N/2 points each, A and B.

3. Use the procedure recursively to find

oA + PAIR2(A), and

oB + PAIR2 (B).

4. Set 6 + min(6A,6B).

5. Project all points within 6 of ~ onto ~; call this
set S. (Note that this collection is sparse on the line
with sparsity constant c = 18.)

6. Use SPARSEl(S) to enumerate all pairs within 6 in S.
Check for any pairs enumerated that are within 6 in
the space and on different sides of ~. Let E be the
distance between the closest pair enumerated.

7. Return min(6,s).

T(N) = 2T(N/2) + G(N log N)

:. T(N) = G(N log2 N)

2T(N/2)

SFR(N,l)

We should now inspect PAIR2 to see what principles of multi-

dimensional problem solving we employed that might be valuable in our

further development of closest pair algorithms. The technique of

dividing a problem by a vertical cut line proved useful once again.

One of the most interesting aspects of this problem is that sparsity,

though not present in the original point set, was induced in the

problem after the subproblems were solved. We were then able to use

the induced sparsity to our advantage in putting together the sub·-

problems to form a solution to the whole problem. The abstract

description of PAIR2 is the same as for SPARSE2.

Our development of PAIR2 could now proceed in two directions,

43

corresponding to the two directions in which we modified SPARSE2.

The first is to generalize PAIR2 to PAIRk; the second is to speed

up PAIR2 to yield FPAIR2. We see here an important principle of

algorithm development: the development of new algorithms should

follow as closely as possible the development paths of established

algorithms. Following a development path similar to that of

FSPARSEk helps make the decision of which path to follow now seem

less important. We assume that we are aiming eventually toward

an algorithm we will probably call FPAIRk; we will therefore

probably have to follow both paths before we reach our goal. The

order in which we pursue the paths does not at this point seem to

be crucial.

Let us first generalize PAIR2 to higher dimensional spaces.

In the actual development process we would try to develop an alga-

rithm for 3-space at this point; for brevity, however, we will skip

that stage and attempt now .to develop PAIRk, which will find the

closest pair in k-space. We should keep both SPARSEk and PAIR2

in mind as we develop PAIRk. The first stage of PAIRk is the same

as the first stage of SPARSEk--choosing a (k-1)-dimensional hyper-

plane P dividing F into two almost equally sized sets A and B. The

second stage is also fairly obvious, both from PAIR2 and SPARSEk--we

should find oA and oB by recursive use of PAIR2. Note that we have

now guaranteed sparsity in both A and' B with constant c = 3k, by

an argument similar to that in our development of PAIR2. We can

also show that if we let o = min(oA,oB)' then the set as a whole

k is sparse with constant c = 2•3 • With this condition insured,

the last stage of our divide and conquer algorithm becomes

44

clear--project all points within 6 of P onto P, then check that

projection for pairs within 6 using FSPARSE(k-1). Lets be the

distance in k-space between the closest pair in S, then return the

minimum of 6 and s.

Algorithm PAIRk is so similar to PAIR2 that it is not necessary

to describe it formally. The recurrence relation describing its

running time is the same, and the running time is also G(N log2 N)

for fixed k. The reason that the logarithmic term is only squared

and not raised to the k-th power is that we used the faster

algorithm FSPARSEk as a tool. (Though it would have been imprudent

to use it as a model because it is so complicated, it is quite

helpful to have it lying in our tool bag.) Algorithm PAIRk shows

that for fixed k, CP(N,k) $ G(N log2 N).

Should we be satisfied with the G(N log2 N) performance of

PAIRk, or should we try to speed it up? Both our bound of

CP(N,l) ~ G(N log N) and our experience in building FSPARSEk

suggest that we should try to reduce the running time. Should we now

try to speed up the general algorithm PAIRk, or should we attempt

to modify PAIR2 first? The author hopes that by now the principle

of "starting with the easiest" is so firmly established that the

reader's response is immediate--we start with PAIR2.

Before we attempt to modify PAIR2 we should familiarize

ourselves with our previous work on FSPARSE2--though different in

some ways, the problems share many similarities. As in our develop­

ment of FSPARSE2, we should have ip mind a specific performance

bound as a goal; many signs point to G(N log N) as a reasonable goal.

As we analyze our failure in reaching that goal we see that it is the

45

same that led to SPARSE2's 0(N log N) running time: poor choice of

cut line could lead to all N points being within o of £. Because

PAIR2 suffers from the same problem as SPARSE2, it is prudent for

us now to seek the same cure, namely a strategy for intelligent

choice of the cut line.

Our task now is to develop a cut plane selection strategy

which will turn PAIR2 into FPAIR2. To fully employ what we learned

in turning SPARSE2 into FSPARSE2 we should ask two questions about

the CP and SFR problems: How are the problems similar? How are

the problems different? The problems share many similarities. In

both cases the goal is to find a cut line with O(N/log N) points

near it. In both cases cases the collection of points is guaranteed

to be sparse after the subproblems are solved. In both cases the

sparsity constant c is known at the invocation of the procedure

(c = 2•32 = 18 for PAIR2). The crucial difference is that in

SPARSE2 we knew the sparsity radius o at the invocation of the

procedure whereas with PAIR2 we learn o only after the subproblems

have been solved. This is indeed an important difference, for we

must choose the cut line in order to divide the set into the sub-

problems to be solved.

We must develop, therefore, a cut line selection strategy that

is promised a value of o, but does not know that value at the time

it executes. We should try to use as much of our selection

strategy from SPARSE2 as possible. The essential step in that

process (scanning until the distance between points 2cN112+1 apart

on the list was greater than o) is impossible without a priori

46

knowledge of 6. At this point the author was forced to rely on . .

intuition, and the following idea arose. Instead of scanning until

we find an "interpoint span" (as we might call the distance between

points 2cN1/ 2+1 apart on a projected list) of at least 26, and then

stopping, why don't we just scan all lists, find the maximum

"interpoint span", then use the center of that 11 interpoint spann as

our cut line. As before, we insist that both A and B contain at

least N/8 of the points, and we conjecture that when a value for 6

is finally known, at most 2cN1/ 2+1 points will lie within 6 of ~.

Once one conjectures the above, it is quite easy to prove.

Assuming the nagative (that is, that more than 2cN112+1 points

lie within 6 of t) leads to the same contradiction as in the proof

of Theorem 3.1-2. Let us call the length of the maximum interpoint

span m. Assuming that more than 2cN1/ 2+1 points lie within 6 of ~

implies that m < 26; this is illustrated in Figure 3.2-3. Thus the

length of the maximal interpoint span is less than 26. From this

it immediately follows that every collection of 2cN112+1 points

projects onto a length of at most 26; if it projected onto a

greater length, then the stated span would not be maximal. We can

therefore assert that every collection of 2cN112+1 points projects

onto an interval of length at most 26. But this, along with sparsity,

was the essential step in the proof of Theorem 3.1-1; the rest of that

theorem follows from this. Thus we have shown that at most 2cN112+1

points will lie within 6 of t (after 6 is found) when ~ is chosen

in the above way.

47

£

0 Exactly

2cN1/ 2+1

• .points
• •

• • • • • • • • • • • • • • • • • . .
• • • • • • m More than

2cN112+1
points

Figure 3.2-3: The maximum interpoint span

There is a subtlety about the above method that deserves study.

It is interesting that we can choose our cut line before we know the

value of 6. We observe here the value of following the development

of FSPARSE2. We certainly could not have made the conjecture we did

without the basis of our experienc.e with FSPARSE2. With that

experience, however, the conjecture was quite natural, and we were

even able to "borrow" most of its proof.

We are now equipped to give a high level description of FPAIR2.

For the sake of brevity, however, we will not actually give such

a description in this thesis. FPAIR2 is the obvious mixing of

PAIR2 and FSPARSE2; we will proceed now to develop and describe

FPAIRk.

48

In our development of FPAIRk we will rely heavily on both

FPAIR2 and PAIRk. Figure 3.2-4 shows how we can view those as two

orthogonal directions in a "development vector space" which we now

combine to yield a fast algorithm in k-space. Our task can be

viewed as modifying PAIRk to employ a sophisticated cut plane

selection strategy. Our experience with FPAIR2 and FSPARSEk

immediately suggests a strategy: scan all dimensions, looking

for the maximum interpoint separation of kcNl-l/k points, then

choose the center of that interval for the cut plane (while, of

course, guaranteeing that both· A and B contain at least N/4k points).

One can prove that such a selection strategy yields a cut plane

within o of which there are at most kcNl-l/k points after o is known;

the essential step in the proof is the same as that in the proof of

FPAIR2.

Speed-up
using
sophisticated
cut planes

T

FPAIR2

PAIR2
Generalization to
higher dimensionality

FPAIRk

PAIRk

Figure 3.2-4: An algorithm development vector suace

49

We are now ready to describe FPAIRk as Algorithm 3.2-2. As with

FSPARSEk, it assumes that the representation of point sets includes a

sorted list of the projection of the set in each dimension. This can

be accomplished by presorting at a cost of 8(kN log N) time and 8(kN)

storage used to represent the lists.

Algorithm 3.2-2

Procedure FPAIRk(set F)

1. If IFI = 2 then return the interpoint distance. c1
2. Choose a k-1 dimensional hyperplane P partitioning c2kN
F into two point sets A and B in the following way. For
each of the k dimensions, scan down the list of the points
sorted by that dimension from the (N/4k)-th element to the
(N-N/4k)-th element. In the scan keep two pointers active,

one kcNl-l/k+l elements ahead of the other. For each pair
examined, calculate the distance between them. Record the
maximum interval so encountered, and use the center of that
interval as the value defining the cut plane P.

3. Use the procedure recursively to find
8A + FPAIRk(A), and

8B + FPAIRk(B).

(Note that this requires maintaining the sorted lists.)

4. Set 8 + min(8 A' 8B).

5. Project all points within 8 of P onto P; call

this setS. Note that lsi ~ kcNl-l/k and that S is
sparse for c = 2·3k.

6. Use FSPARSE(k-1) (S) to enumerate all pairs
within 6 in S. Check for any pairs enumerated
that are within 6 in the space and on different
sides of P. Let s be the distance between the
closest pair enumerated.

7. Return min(6,s).

T(2) c
1

T[N/4k]
+ T[N(l-l/4k)]

SFR(G(Nl-l/k),k-1)

T(N) = T[N/4k] + T[N(l-l/4k)] + 8(kN) + SFR[G(Nl-l/k),k-1]

= T[N/4k] + T[N(l-l/4k] + 8(kN)

,', T(N) 8(kN log N)

so

What lessons can we learn from our development of FPAIR2? An

important principle of algorithm 'development which we employed was

to follow closely the development paths of algorithms for related

problems. We should adhere closely to this principle in our work

on the ANN problem. The following observation is a tool for multi­

dimensional algorithm design which allowed us to use our work on

the SFR problem to help us in the CP problem: Although sparsity

is not present in the original problem, it can be induced in sub­

problems.

3. 3 All nearest neighbor algorithms

The all nearest neighbor problem is the topic of this section.

The output of an ANN algorithm is to be N pairs of points. The

first element of the pairs will range over all N points, and the

second element will be the closest point among the N to the first

element (with ties broken arbitrarily).

By now it should be almost natural to start with the one

dimensional case, because it is the most simple. After sorting the

points to form a sorted list, the nearest neighbor of each point

is either the right or left neighbor in the sorted list. The

running time o= such an algorithm is dominated by sorting; thus the

algorithm described above shows ANN(N,l) $ G(N log N).

As we examine the planar problem it is obvious that the straight­

forward iterative procedure requires 8(N2) time. Both our previous

experience in this area and the fact that the problem is G(N log N)

on the line motivates us to look for a divide and conquer approach

that will yield a faster algorithm• As we observed in Section 3.2,

51

it will be very beneficial to our development to follow closely the

development paths of our SFR and CP algorithms.

We will now attempt to synthesize an ANN algorithm for the

plane, which we will call ALL2. In this synthesis we will use both

insights and components from SPARSE2 and PAIR2. Our resulting

divide and conquer algorithm will have three stages: break the

problems into subproblems, solve the subproblems, then combine

the solutions to the subproblems to yield a solution to the ANN

problem. The first two stages should be fairly obvious to us by

now. The divide stage will consist of choosing a vertical line t

which divides the points into two almost equally sized subcollections

A and B. The second stage will consist of finding all nearest

neighbors for all points in A and B (recursively).

Before we look for a way to combine these subsolutions to form

a solution to the whole, we should ask what properties are true of

the subsolutions? We will probably need to know certain crucial

properties to be able to combine the answers, and observing the

problem at this stage with an unbiased eye might help us to observe

properties we would miss later on. From our previous experience we

are most tempted to look for a property of sparsity. We have no

fixed radius to work with as in the CP and SFR problems, but is some

other type of sparsity present? We observe that in the CP and SFR

problems, we had available a single distance that characterized

sparsity for the whole space in the solution to the problem (namely 8

for the SFR and the minimum interpoint distance for the CP problem).

For the ANN, however, no such global distance is available; instead

52

we have a local distance for each point, namely the distance to its

nearest neighbor. Whereas before we described sparsity in terms

of a-balls, where a was the same over all the space, for the ANN

problem we should seek a definition of sparsity in terms of spheres

of varying radii. It seems feasible to expect that the mathematical

construct appropriate to describe the sparsity in the ANN problem

is what we might call the NN-ball. We define the NN-ball for point X

to be the closed ball of center X and radius equal to the distance

to X's nearest neighbor.

We now look for a condition that can be predicated of the space

in terms of NN-balls. To fully employ the similarity present in the

problems, let us recall the definition of sparsity in SFR in terms

of a-balls. For the SFR problem we asserted that no a-ball in the

space contained more than some consta~t c points in the file (or

"file points", as we call them to distinguish them from an arbitrary

point in the space). Notice that this is equivalent to saying that

no point in the space is contained in more than c a-balls centered

at file points. This viewpoint helps us to make the following

conjecture: No point in the plane is contained in more than some

constant c NN-balls. By analogy with the CP problem, we might also

conjecture that c = 9.

Once we have conjectured the above it is easy to prove its

truth. Recall that we are dealing with a collection of N points

in the plane, and we know the nearest neighbor of each. To help

the reader's insight one can view the NN-ball corresponding to

each point in the file as the smallest rectilinearly oriented square

centered at that point that contains another file point; A

53

collection of points and their corresponding NN-balls are depicted

in Figure 3.3-1. What we must prove now is that no point x in the

file is contained in more than 9 such NN-balls. We will first show

that if point x is contained in the NN-ball of point y, and point y
'

is in quadrant 1 of x (this will hold true for any quadrant), then

x is contained in no other NN-ball of a point in quadrant 1. We

illustrate this in Figure 3.3-2. No other file point can be in

y's NN-ball; if it were, then y's NN-ball was not accurately

calculated. Thus any other NN-ball with center in quadrant 1 which

contains x must have its center in the shaded area marked S. But

any L
00

ball centered inS and containing x must also contain y, in

which case it cannot be an NN-ball. Thus we have shown that x can

be contained in at most one NN-ball centered in each quadrant. It

is clear that x can be contained in at most one NN-ball centered

on each ray dividing the four quadrants, and finally x could be

contained in an NN-ball centered at x itself. Thus there are

at most nine positions in which points whose NN-balls contain x

could lie: in the four quadrants, on the four rays dividing

quadrants, and on x itself. That a point can actually be in

nine NN-balls is illustrated in Figure 3.3-3; point x lies in the

NN-balls centered at each of the nine points pictured. We

state this observation formally as Theorem 3.3-1.

54

•
I

•
~

Figure 3.3-1: A collection of NN-balls

Figure 3.3-2: The NN-ball with center y is the only enclosing
NN-ball in quadrant 1 of x

55

• •

•

• • •

Figure 3.3-3: Point xis contained in 9 NN-balls

Theorem 3.3-1: Given a collection of N file points in the

plane, no point in the plane lies in more than nine NN-balls.

Furthermore, it is possible for some point in the plane to lie in

nine NN-balls.

Equipped with this theorem we are prepared to synthesize the

combining stage of Algorithm ALL2. Recall that the first two stages

of ALL2 have divided the points in the file into two collections A

and B and all nearest neighbor pairs in A and B have been found.

Assume that for each point x in A we associate with x its nearest

neighbor in A and likewise·for all points in B. The recombining

stage must check and see for all points x in A if there is any

point y in B that is nearer to x than x's nearest neighbor in A

(which has been recorded), and likewise for all points in B. This

situation is illustrated in Figure 3.3-4. Points 1 and 2 in A and

56

points 3 and 4 in B are shown with the NN-balls as determined in the

"intraset" calculations. The only mistake that needs to be corrected

is the fact that 3's nearest neighbor is 2, not 4. Thus we see that

the recombining stage can be accomplished by first checking for every

point x in A if there is any point y in B nearer to x than x's

nearest neighbor in A, then doing the same for all points in B.

A B

3

2 4
1

Figure 3. 3-4; Two so 1 ved subproblems

Since these problems are obviously symmetric, we do well to

concentrate our attention on only one of them; after we solve that

we can apply its solution immediately to the other. We will con­

centrate on checking for all point~ in A if there is any point in

B nearer to that point than its calculated nearest neighbor in A.

57

This situation is illustrated in Figure 3.3-5. Points 1 through 5

are in A and points 6 through 10 are in B. The NN-balls for the

subsolution of A are shown. The mistakes in A that need to be

corrected are that 6 is the nearest neighbor to 3, and 7 is the

nearest neighbor to both 4 and 5 (because they lie in the sub­

solution NN-balls). We can observe a number of things about the

recombining process from Figure 3.3-5. It was not necessary to

check for points in B lying in the NN-balls belonging to 1 and 2

because neither of their NN-balls intersected £. In the projection

of points in B onto £, both points 6 and 7 lie in the NN-balls of

point 3 and points 4 and 5, respectively.

3 • 6

l• 2 .s

•9
• 10

4

• 7

5

Figure 3.3-5: One solved subproblem

58

Having made these observations we are ready to construct an

algorithm to combine the subsolutions. First project every point

in B onto ~. then project all NN-balls in A which overlap ~ onto ~­

In the example, the NN-balls for points 3, 4 and 5 are projected

onto ~. By Theorem 3.3-1 no point on~ was in more than nine

NN-balls from A; this condition is not changed by the projection

(because we project only NN-balls which intersect£). Therefore

none of the projected points in B lies in more than nine projected

NN-balls. After having made the projections we sort the projection

of the points in B and the end-points of the projections of the

NN-balls in A. We then make a linear scan down the sorted lists,

for each point in B having to check at most nine projected NN-balls

in A. For every ball and point pair checked, determine if the

unprojected point lies in the unprojected ball, and if so, modify

the ball's nearest neighbor. Since for each point in B we have to

check only at most a constant number of balls in A, the scan will

take time linear inN (after sorting). Thus the total cost of the

combining stage is G(N log N).

Now that we have the three stages of the divide and conquer

algorithm ALL2, we can describe it formally as Algorithm 3.3-1.

59

Algorithm 3. 3-1

Procedure ALL2(set F)

1. If IFI = 1, then assign as the nearest neighbor to the
point in F a "dummy" point infinitely far from all points.

2. Choose a vertical line £ partitioning F into two
collections of N/2 points each, A. and B.

3. Solve the subproblems by the calls ALL2(A) and
ALL2(B). Now we have noted for every point x in A the
closest point among A to x, and likewise for all points
in B.

4. Repeat steps 5 through 7 twice, the first time just
as they are written, and the second time interchanging
the roles of A and B.

5. Project every point in B onto £.
NN-ball in A that overlaps £ onto £.
represented by its two end points.)

6. Sort the above projections.

Project every
(Such a ball is

7. Scan down the lists simultaneously. As each new
point in B is scanned, keep track of what balls are
either left or entered. (This will require constant
time, because at most nine could be left or entered
each step.) Then for every point y in B and every
ball containing y, check to see if y is closer to the
center of that ball than its nearest neighbor so far.
If so, make y the new nearest neighbor to that point.

2T (N/ 2)

8. Now that any mistakes made have been "patched up", c
5 return. For every point x in F we have recorded its

nearest neighbor in F.

T(l) = c1

T(N) = 2T(N/2) + G(N log N)

.".T(N) = G(N log2 N)

What general methods for multidimensional algorithm design did we

employ in our construction of ALL2? The general schema we used was

the same as that for SPARSE2 and PAIR2: solve a problem of N points

in the plane by dividing it into two subproblems of N/2 points each

in the plane and one subproblem of up to N points on the line. The

60

subproblem on the line that we solved was of a type we have not seen

previously; it might be called a "sparse local fixed radius" search.

Each point had its own search radius, but a sparsity of sorts was

guaranteed. We should keep this problem in mind; we should look for

it in a generalized form as we develop the ANN algorithm for higher

dimensions.

Before we generalize ALL2 to higher dimensions, we should note

that the asymptotic running time of the procedure could be decreased

by the use of presorting. It is obvious that the presorting of the

points in Bin Step 6 would make unnecessary one sort of Step 7.

Likewise the sort of Step 7 for the balls would be unnecessary.

Because at most nine balls can overlap any point, the farthest

the end points of the balls would have to "sift down" in an already

sorted list is nine elements. Therefore the presorted list of

centers of the NN-balls could be transformed in linear time into a

sorted list of end points. Thus both sorts of Step 7 are made

unnecessary by presorting and the additive term in the recurrence

relation becomes linear, yielding a 0(N log N) algorithm. Thus we

have shown that ANN(N,2) ~ 0(N log N).

We are now ready to attempt to develop ALL3, an algorithm

for the ANN problem in 3-space. The first two stages of the divide

and conquer algorithm are obvious. The divide stage chooses a cut

plane P which divides the set F into two equally sized points sets A

and B. The recursive stage will then find all nearest neighbors

among A and likewise for B. At this point we ask what property can

be predicated of the subsolutions, and we arrive at a generalization

61

of Theorem 3.3-1, which we express as Theorem 3.3-2.

Theorem 3.3-2: Given a collection of N file points in 3-space,

no point in 3-space lies in more than 27 NN-balls. Furthermore, it

is possible for some point in 3-space to lie in 27 NN-balls.

Proof: The proof proceeds in a way similar to that of Theorem

3.3-1. One can show that at most one NN-ball centered in each octant

defined by a point can overlap that point, and likewise for the planes

separating the octants. A final NN-ball could have its center on the

point itself, thus showing the upper bound of 27. That 27 is attainable

is shown by considering points on a rectangular lattice in 3-space. D

With this theorem we are ready to synthesize the combining stage

of ALL3. We must first locate any points in B that are in NN-balls of

A, and then do the same, switching A and B. Since the problems are

symmetric, let us consider only the first. The obvious way to proceed

to solve this problem is to project all points in B onto P and then

project all NN-balls that overlap P onto P. After this projection we

can locate all points in NN-balls and see if the inclusion holds in

3-space, and if so modify the appropriate nearest neighbors. (Note

that since each point can be in at most 27 balls, the amount of

"patching up" to be done is at most linear.)

Let us now focus our attention on the reduced problem in the

plane. We are given N/2 points and up to N/2 balls. We know that

any point in the plane is in at most 27 balls. We are asked to

enumerate all points that lie within a ball and tell in which balls

they lie. Dr. Gideon Yuval has suggested that thi~ be called the

"Territorial Waters" problem due to the similarity to the inter­

national situation of each country claiming a different radius as

62

its territorial limits. We will refer to this subproblem as the

"STW" for "Sparse Territorial Waters". We will find it tractable

for the parameter N of the STW problem to have the significance

that the number of points plus the number of balls in the problem

is N; then having exactly N/2 points and N/2 balls becomes a special

case. We further assume that each ball is described by a point and

a radius.

We will call the algorithm for the STW problem in the plane

TER2. The first stage of TER2 will choose a cut line £ such that

a total of N/2 points and centers of balls are to the left of £ and

a total of N/2 points and centers are to the right of £. (Note

that in this stage we do not distinguish between a point in the

space and a point which defines the center of a ball.) The recursive

stage of TER2 will solve the subproblems for A and B. The combining

stage must enumerate all points in B which are in a ball in A and

likewise for balls in B and points in A. But note that this

combining problem is exactly the combining stage we faced in ALL21

Hence we can use the same process we used there.

We now describe ALL3 and TER2 formally as Algorithms 3.3-1

and 3. 3-2.

63

Algorithm 3. 3-2

Procedure ALL3(set F)

1; If IFI = 1, the~ assign as the nearest neighbor c1 to the point in F a "dummy" point infinitely far
from all points.

2. Choose a cut plane P partitioning F into
two collections of N/2 'points each, A and B.

3. Solve the subproblems by the calls ALL3(A) and
ALL3(B). Now we have noted for every point x in A
the closest point among A to x, and likewise for
all points in B.

4. Repeat Steps 5 through 7 twic:, the first time
just as they are written, and the second time inter­
changing the roles of A and B.

2T(N/2)

5. Project every point in B onto P. Project c3N
every NN-ball in A that overlaps P onto P (such
a projection is represented by a point and a radius),
Note that the balls have the property that any
point in the plane is in at most 27 balls.

6. Let S be the collection of points and balls
projected in Step 5. Call TER2(S) to enumerate all
points which lie within balls (note that there
will be at most 27N, because each point can lie
in at most 27 balls).

7. For each point and ball enumerated in Step 6
see if the point is in the corresponding ball
in 3 space. If so, modify that point's
recorded nearest neighbor.

8. Return.

T(l) = c1

T(N) = 2T(N/2) + 0(N) + STW(N,2)

2T(N/2) + 0(N log3 N)

.'. T (N) O(N log2 N)

64

STW(N,2)

Algorithm 3. 3-3

Procedure TER2(set F)

1. If IF I ·= 1, then return.

2. Choose a vertical line t partitioning F
into two collections of N/2 points and
balls each, A and B.

3. Solve the subproblems by the calls TER2(A)
and TER2(B).

4. Locate points in balls which have their
centers on the other side of t using Steps 4
through 7 of Algorithm 3.3-1. The only change
necessary is to replace ''nine" by "27"
(and instead of "patching up" discovered
near neighbors, merely enumerate them; they
will be "patched up" by ALL3).

5. Return.

T(l) = c
1

T(N)

,',T(N)

2T(N/2) + EI(N log N)

El (N log2 N)

2T(N/2)

El (N log N)

Because we used the components from ALL2 in our construction

of TER2, we can apply the same speedup of presorting. Presorting

will reduce the combining overhead of TER2 from EI(N log N) to EI(N),

and thus reduce the total running time from EI(N log2 N) to

EI(N log N). If we use this modified version of TER2, the running

time of ALL3 is decreased to EI(N log2 N). Thus we have shown that

ANN(N,3) ~ EI(N log2 N).

Examination of the schema employed in the construction of ALL3

shows that it is similar to all of our other algorithms: To solve

a problem of N points in 3-space, solve two problems of N/2 points

in 3-space, then two problems of up to N points in 2-space. The

subproblems in the plane are of a new type, which we have called

65

the "Sparse Territorial Waters" problem. Notice that the sub-

problem we encountered in the combining stages of ALL2 and TER2

is merely a one dimensional STtAJ problem. We therefore make the

important observation that the way the TER2 algorithm works is to

solve two STW problems of N/2 points in the plane and then two

STW problems of up to N points on the line.

We are now prepared to build Algorithm ALLk, using as

examples ALL2, ALL3, and PAIRk. The first stage of ALLk will

partition the file into two subsets A and B by a k-1 dimensional

hyperplane P. The second stage will find all nearest neighbor

pairs for A and B recursively. At this point the k dimensional

analog of Theorem 3.3-2 will hold, namely that no point in the space

k is contained in more than 3 NN-balls from either A or B. The

combining stage of ALLk will consist of two calls on TER(k-1),

which will so,lve the STW problem of the subsets projected onto P.

Algorithm TERk i9 the obvious generalization of TER2. The

first stage divides the collection into two almost equal sized sets

(of points and balls). The second stage solves the subproblems

recursively, and the third stage makes two recursive calls on

TER(k-1) to solve the subproblems. The recurrence relation des-

cribing this algorithm is identical to that describing SPARSEk,

so the running time of TERk is G(N logk N). If the speedup trick

of presorting is applied, the running time becomes G(N logk-l N)

for k ~ 2. Using this as a tool for ALLk, the running time of

ALLk is G(N logk-l N). Algorithms TERk and ALLk are so similar to

Algorithms TER2 and ALL3 that it is unnecessary to present them

formally.

66

The existence of Algorithm TERk with speedup by presorting shows

k-1 that ANN(N,k) ~ e(N log N) for k ~ 2. The divide and conquer schema

used is the same as for the CP problem in k-space. The subproblem to

be solved in the dividing hyperplane is the STW problem, a new closest

point problem.

The next step in the development of an ANN algorithm is to attempt

to reduce the running time of ALLk even further. Both the performance

of e(N log N) in the plane and the empirically observed average case

performance of e(N log N) of the algorithm of Friedman, Bentley, and

Finkel [1975] would make us guess that ANN(N,k) ~ 8(N log N). From

our experience with FSPARSEk and FPAIRk we would guess that the

appropriate next step in the development is to try to find a strategy

which uses intelligent choice of cut planes. Even with all of this

help, though, the author is still unable to develop a faster algo-

rithm for the ANN problem in k-space. This discussion of the ANN

problem must therefore end here, and further development is left as

an exercise for the reader.

3.4 Lower bounds

How does an algorithm designer know when he has finally "solved"

the problem on which he is working? One suitable definition of a

solved problem is that one has given matching lower and upper bounds

on the complexity of the problem. In this section we develop some

lower bounds for the problems we have examined in this chapter.

There are many techniques for the construction of lower bounds.

Two of the most popular are "oracles" (or 11adversaries 11
) and

information theoretic arguments. Reingold's survey [1972] mentions

67

a number of other techniques for lower bound construction. Perhaps

the most valuable technique, however, of lower bound construction

for the practicing algorithm designer is "reducibility". A typical

reducibility argument runs something along the following lines: It

is known that F(N) is a lower bound on problem X. If one could

solve problem Y in less than G(N) time then one could use that

algorithm to solve problem X in less than F(N) time. Since it

is known that one can not solve problem X in less than F(N) time,

however, G(N) must be a lower bound on the amount of time required

to solve problemY. We will see this technique applied shortly.

The specific lower bound which we will employ in our arguments

was derived by Dobkin and Lipton [1975]. They showed that in the

worst case the problem of determining if all the elements in an

ordered set of N elements are unique must require EI(N log N)

comparisons, and therefore EI(N log N) time on a RAM/RASP. Shamos

and Hoey [1975] observed that this implies that the problem of

determining the two closest among N points on a line requires

EI(N log N) time in the worst case (for if the two closest elements

are distance zero apart, then the elements are not unique).

We will now use reducibility to show a lower bound of

EI(N log N) on CP(N,k). Assume CP(N,k) < EI(N log N). To find the

two closest among N points on a line, imbed the line in k-space

then call the fast CP algorithm. Imbedding requires only linear

time, so the whole algorithm would run in El(max{CP(N,k),EI(N)}) time

which by assumption is less than EI(N log N). But such an algorithm

is impossible by the lower bound of Shames and Hoey, so we have

68

shown a lower bound of 8(N log N) for the CP problem. We can use

this bound immediately to show a lower bound of 8(N log N) on the

ANN problem; if we had a faster algorithm for ANN then we could just

scan all N near neighbors and find the closest, giving a faster

CP algorithm which is impossible. It is important to remember that

these are lower bounds on the worst-case complexities of the problems;

indeed, Rabin [1976] has shown that CP(N,k) = G(N). Our lower

bound on CP(N,k) together with Algorithm FPAIRk establishes the fact

that CP(N,k) = G(N log N) for fixed k. We are still unable to close

the gap G(N log N) ~ ANN(N,k) ~ 8(N logk-l N).

We turn our attention now to the SFR problem. It seems to be

difficult to establish lower bounds for arbitrary values of 6,

but the degenerate case of o = 0 is easier. We thus observe that

examining degenerate cases is important in proving lower bounds.

If we let 6 = 0 and use the sparsity constant c=l, then an SFR

algorithm can solve the element uniqueness problem as follows. The

algorithm first imbeds the line containing the elements in k-space

and then calls the SFR algorithm. If the elements are unique, then

the algorithm will return in SFR(N,k) time with no pairs within 6

observed. If the elements are not unique, however, it might take

longer since sparsity (which the algorithm assumes) was violated.

What one must do, therefore, is monitor the steps of the algorithm,

and if it is taking longer than expected, halt it and return the

answer that the elements are not unique. The monitoring can be

accomplished by adding at most some constant cost c at each step,

so all together the monitored algorithm would take at most

69

c · SFR(N,k) time, which is 0 (SFR(N ,k)). Since we can solve element

uniqueness in 0 (SFR(N,k)) time , we have s hown that

SFR(N, k) ~ 0 (N log N) , and therefore Algorithm FSPARSEk is optimal.

(At least for the case of o = 0, and therefore among all truly

general SFR algorithms .)

We have seen here some important general techniques for t he use

of lower bounds in algorithm design . The fi rst is the method of

reduction for proving lower bounds. We also employed the trick of

imbedding a one dimensional problem i n a higher dimensional space .

Finally, the lower bounds which we derived showed that some of our

algorithms are optimal and that f urther attempts to speed up their

asymptotic running t imes must prove vain.

70

4. Ext ensions

In this chapter we describe how the algorithms given in Chapter 3

can be extended to solve a broader class of problems. In Section 4 . 1

we investigate extending the algori thms to employ other metrics .

Section 4 . 2 deals with the application of the algorithms of Chapter 3

to generalizations of the prob lems studied in that chapter .

4.1 Different metrics

All of the algorithms developed in Chapter 3 were based on the

L
00

metric; in this section we show that the algorithms are applicable

for other metrics as well . We give three criteria which the metric

must meet for the algorithms of Chapter 3 to be valid, and then show

that the criteria are met for the L2 metric . The criteria seem to

be applicable for any L metric, though proving applicability for a
p

particul ar p can be laborious.

The first crite rion which the metric must meet is that projection

preserves sparsity. Specifically we must show that if k-space is

sparse and if all points within di stance o of a k-1 dimensional

hyperplane P are projected onto P, then the projection will be

sparse. Thi s was a crucial factor in Steps 4 of Algorithms 3.1-1,

3.1-2 , and 3.1-3. For the L
00

metric the sparsity constant c was

preserved in the projection; for the L2 metric it may increase .

Let us examine the planar case using the illus tration in Figur e

4.1-1. All points that will be projected onto the one dimensional

o-ball (which is the 2o segment of the line i contained in the

square S) ar e necessarily contained in S. But the four o-balls

also contain S, and since none of the four contain more tran c

points (by sparsity), S as a whole can not contain more than 4c

points. Therefore the projection of S onto the line will contain

at most 4c points, so sparsity is preserved although the sparsity

constant is increased . This same method of proof will work for any

higher dimensional space , since fixed radius spheres can be used

to cover any hyper- solid ink-space (in this case a hyper- cylinder) .

--- i
2o

-- _l

Flgure 4.1-1: Covering a cylinder with spheres in 2-space

The second condition which a metric must meet is that after

the lnterpoint distance between the closest pair in the space

(say o) is found, sparsity can be guaranteed for the space . This

was necessary for Steps 5 of Algorithms 3.2- 1 and 3.2- 2. Let us

72

assume for brevity that o = 2; then we know that no two points in

the space are closer than distance 2 together. We must now show

that no 2-ball in k-space can contain more than some constant

sk points (and we will further choose sk so that it is attainable).

A crucial step in our proof is a result from the "Sphere

Touching" problem. That problem asks how many unit spheres can

be made to touch a given unit sphere in k-space with no spheres

overlapping (the spheres are defined by the 1 2 metric). We will

call the answer to that question Tk (for the number of ~ouchings

possible ink-space); lower and upper bounds on Tk are contained

in Leach and Sloane [1971]. We assert that Sk = Tk + 1.

To show that Sk ~ Tk + 1 it suffices to observe a collection

of Tk spheres touching a given sphere in k-space . Notice that the

centers arc all . at least distance 2 apart; were they not, the

spheres would overlap. Notice also that all the Tk + 1 centers

are within distance 2 of (i.e., they are exactly distance 2 f rom)

the point which is the center of the given sphere. Given a touching

of Tk spheres we have generated Tk + 1 points meeting the desired

criteria (i.e., they are all within a 2-ball and no two are closer

than 2 together) . Thus a sphere touching implies a pessimal

arrangement of points (that is, one in which the sparsity constant c

is realized).

We will now use sphere touching to show that Tk + 1 is an

upper bound on the number of points that can lie in any 2-ball in a

s pace in which all points are at least 2 apart. We will consider

the case in which the center of the 2-ball we are examini ng is a

file point and show that no more than Tk file points can lie within

73

the ball; the other case is similar. Assume that m points lie

within the ball; because they are separated from the center point

by 2, they must be on the surface of the ball. Notice that this

arrangement implies a sphere touching of m spheres by letting the

given sphere have as its center the given point and centering the

other spheres about the other m points. Since all points are

separated by 2, no spheres overlap. Thus the maximum value of m is

Tk; otherwise we have generated a "better" sphere touching. When

we include the one point at the center of the ball, we have shown

that no more than Tk + 1 points can lie in any 2~ball in the space.

Thus we have shown that Tk + 1 is a suitable sparsity constant and

that it is attainable.

As an example the worst case arrangement of points in the plane

is illustrated in Figure 4.1~2. The value of T
2

is six; note that

seven points are within the 2-ball centered at point x .

•

• •

eX 2

• •

•

Figure 4.1-2: A worst-case arrangement of points in the plane

74

The final criterion which a metric must meet is the analog of

the generalization of Theorem 3.3-2; that theorem states that no

point ink-space is contained in more than some constant c NN-balls.

To show this for the L
2

metric we will use sphere touching and

employ c = Tk + 1 as our sparsity constant. We will give a

construction showing that to every arrangement of m file points

whose NN-balls overlap a given point x (which is not a file point),

there exists a corresponding m-touching of spheres. Since Tk is

an upper bound on sphere touching, we know that m ~ Tk; therefore

x can lie in at most Tk NN-balls (or Tk + 1 if xis a file point).

The touching is constructed by placing the center of the

"touched" sphere at x, and placing the centers of the touching

spheres at distance 2 from x, on the rays from x to each file point.

To prove that the touching spheres do not overlap, we will demonstrate

that the angle between any two rays is at least n/3 radians. Thus

points at distance 2 from x must be at least distance 2 apart in

space, showing that the spheres can not overlap. (Coxeter [1961]

also used this angular definition of the problem.)

We have called the overlapped point x; let p and q b~ two file

points. Consider the plane P in Ek which is defined by p, q and x

(the argument is trivial if the points are collinear; assume they

are not). The plane Pis depicted in Figure 4.1-3. Let~ be the

perpendicular bisector of the line segment px. Note that q can not

be on p's side of ~; if it were, it would be closer top than it is

to x, and thus could not contain x in its NN-ball (since

D(q,p) < D(q,x)). Let c be the intersection of p's NN-ball and

the plane P. By definition of NN-ball, q cannot lie in the interior

75

of c. Thus we have excluded q fr~m both c and p's side of ~. so q

must lie in the shaded region S.

-+
Consider now the ray xq; its angle a with xp is minimized when

q is on the intersection of c and ~. Given this configuration, a is

minimized when x is on c. At that point, a = TI/3 radians. Therefore

we have shown that a ~ TI/3 radians.

s

Figure 4.1-3: The plane containing p, q and x

Note thnt the bound of Tk + 1 is attainable. The pessimal

arrangement for this criterion is the same as that for the second

criterion of sparsity after the CP problem is solved. The pessimal

planar arrangement is illustrated in Figure 4.1-2. Note also that

76

this third criterion implies the second; we have demonstrated both

here to make the proofs easier to follow.

4. 2 Different problems

In this section we suggest straightforward extensions of the

algorithms given in Chapter 3 to different problems. These problems

are minor modifications of the problems studied in Chapter 3. We

will not give complete algorithms, therefore, but rather sketch how

the algorithms of that chapter might be modified to solve similar

problems.

An obvious extension of the CP problem is to ask for the three

points (or in general, m points) in the space with least maximal

interpoint separation. Algorithm FPAIRk could be modified to find

such points easily. The crucial step in the development of such

an algorithm would be in showing that sparsity holds in the sub­

solutions.

A similar generalization of the ANN problem asks for the m

nearest neighbors to each point to be enumerated. In such an algorithm

the "m nearest neighbor ball" (the ball centered at a point with

radius equal to the distance to its m-th nearest neighbor) would take

the place of the NN-balls of Algorithm ALLk. A crucial step in the

proof of the algorithm would be to show that no point in the space is

contained in more than ~orne constant number of 11m-NN-balls 11
•

Different definitions of sparsity might arise in practice from

the one which we employed in our work on the SFR problem. If such

definitions arose, it would not be difficult to use an alternative

definition of sparsity to arrive at an algorithm similar to FSPARSEk.

77

In the STW problem we were given a sparse collection of hyper­

cubes; a similar problem occurs if we are given a sparse collection

of hyper-rectangles. In addition to the sparse hyper-rectangles,

we are given a collection of points and asked to enumerate all pairs

of points within rectangles. The algorithm TERk can be trivially

modified to accomplish this. The crucial insight is to view a

hyper-rectangle as a center and k "dimensional radii" (the radius

in each dimension is the same for a hypercube, but differs for a

hyper-rectangle).

78

5. Issues of implementation

Thus far in this thesis we have concerned ourselves only with

asymptotic running times; in this chapter we will consider how the

algorithms developed in Chapter 3 can be implemented on computers.

The efficient implementation of the worst-case algorithms given in

Chapter 3 is the subject of Section 5.1. In Section 5.2 we discuss

how the worst-case algorithms can be modified to yield faster

average-case algorithms which are more suited to many applications.

5.1 Worst-case algorithms

In this section we will describe how the algorithms of Chapter 3

could be efficiently implemented. We assume that we are dealing with

an ALGOL-like language (we will take any language constructs we

require from ALGOLW; see Kieburtz [1975]), but our comments should

be applicable to almost any algorithmic language. We will focus our

attention primarily on the ANN algorithm ALLk because it is most

general and in a sense subsumes the other algorithms.

The implementation of the basic constructs used in the algo­

rithms is quite straightforward. The set of N points in k dimension

could be represented by real array POINTS(l::N,l::k); POINTS(i,j)

contains the j-th coordinate of the i-th point. Using this scheme

a point can be referred to by an integer between 1 and N (instead

of having to be described by k reals). For ALLk we must tell the

nearest neighbor to each point; we can hold this information in

integer array NN(l::N). If the nearest neighbor to point i is point

j, then NN(i) = j. We can use the array NN to keep track of the

nearest neighbors found in each subsolution; at the time the entire

problem has been solved NN would contain the final answer. It would

probably also be expedient to maintain the real array NN~DIST(l::N)

with the condition that NN_DIST(i) = DISTANCE(i,NN(i)) (that is, at

termination NN_DIST{i) is the distance from i to its nearest

neighbor). The array NN DIST can serve as the radii of the NN-balls

during the invocation of TERk.

The sorted projections required by the algorithms can be easily

maintained through the use of linked lists. The list for each

dimension would require 2N words of storage (or pointers): one word

for the identification of the point and one word for a "next pointer".

Thus the total storage requirement for the linked list scheme is 2kN

words of storage. The storage requirement can be reduced to kN

words of storage by using integer array PROJ(l::N, l::k). The rows

PROJ(*,m) will be pointers to the POINTS sorted by the m-th coordinate

(formally, POINTS(PROJ(i,m),m) ~ POINTS(PROJ(j,m),m) iff i ~ j).

The partitioning into subproblems is quite easy using linked lists:

traverse down each dimension's list appending each point to one of

two sorted sublists for that dimension (one sublist for each sub­

problem). After solving the subproblems the lists can be merged

together again. The same basic strategy is used for the array

technique; to break a problem into subproblems of size m and N-m,

partition PROJ such that the subarrays PROJ(l::m,*) and

PROJ(N-m+l::N,*) have the condition for the subproblems. For the

array scheme, the work of partitioning and remerging is a bit more

80

difficult, but the storage savings could make that worthwhile.

The task of projection onto a lower dimensionality subspace

could be accomplished by making a copy of the point set reduced by

one dimension, but that is wasteful of both time and storage. A

more elegant solution is to keep a global integer array

ACTIVE_DIMENSIONS(l::k) such that if the algorithm is currently

dealing with m dimensions then those dimensions will be found in

ACTIVE_DIMENSIONS(l::m). All references to a point would then be

made by accessing this array to turn a "virtual" dimension into an

actual dimension. Projection from the current m dimensional

space onto the m-1 dimensional hyperplane defined by a value in the

ACTIVE_DIMENSIONS(j) dimension could be accomplished by swapping

the j-th and m-th elements of ACTIVE DIMENSIONS.

The algorithms of Chapter 3 solved a subproblem by a direct

solution for very small problem size (typically, N $ 2). In practice

it would be more efficient to solve larger subproblems by "brute

force" techniques rather than by divide and conquer. To this end,

some value N0 should be chosen for each of the algorithms such that

if the file size N is less than N
0

, then the problem is solved by

brute force (for ease of presentation, we chose N0 = 1 or N
0

= 2 in

Chapter 3).

5.2 Average-case algorithms

The algorithms presented in Chapter 3 were developed for the

purpose of displaying good worst-case behavior. In many applications,

however, one is willing to tolerate the possibility of poor worst­

case behavior if that sacrifice leads to faster running times on

81

the average. In this section we will suggest certain techniques

that one could use to transform the worst-case algorithms into

faster average-case algorithms with the risk of poor worst-case

performance.

Many of the algorithms we developed depended on the ability

of finding medians in linear time. For that task we proposed to

use the selection algorithm of Blum,et al., [1972] which has linear

worst-case time. A selection algorithm due to Hoare (modified by

Floyd and Rivest [1975] to employ sampling) has a much faster

average-case time but quadratic worst-case time. Using such an

algorithm for selection would lead to faster average-case closest

point algorithms. Instead of merely borrowing their algorithm,

however, we could go even further and borrow the idea underlying

the algorithm. Inst.ead of taking the time to find the true median

of the points, why don't we just sample a subset of the points and

use the median of the sample? In the worst case that could give us

very unbalanced subproblems, but it would not hurt much on the

average.

Our fast algorithms went to great lengths to choose cut planes

with good worst-case properties. A fast average-cast strategy

might look instead for a cut plane which it expects to exhibit good

properties. One such strategy would replace scanning a sorted

list in ·each dimension by performing a similar scan on a sample of

the points from that dimension, and then choosing the dimension in

which to cut and the plane by which to cut from those samples. A

more heuristic strategy might choose the dimension in which to cut

82

as that exhibiting the maximum variance (variance chosen as an

estimator of dispersion, which suggests dimensional sparsity).

The value defining the cut plane might then be chosen by sampling.

Many isomorphisms exist between recursive divide and conquer

procedures and binary trees. One well known example is the isomorphism

between QUICKSORT and randomly built binary search trees; this is

mentioned by both Knuth [1973] and Sedgewick [1975]. When we view a

divide and conquer algorithm it is often helpful to think of the

tree corresponding to it. This insight allows us to see many

similarities between the divide and conquer algorithms of this thesis

and the multidimensional binary search trees due to Bentley [1975b].

The resemblances are even more noticeable in the version of the k-d

trees described by Friedman, Bentley and Finkel [1975]. The average­

case running time empirically observed for their k-d tree algorithm

ink dimensions for the ANN problem is 0(N log N), which is certainly

superior to ALLk's time of 0(N logkN). One reason for this superiority

is that the tree structure of the k-d trees allows the subsolutions to

be maintained, whereas in the ALLk algorithm, TERk makes no use of

the work done by the previous stages of the algorithm. Had not k-d

trees existed before the algorithms in this thesis were developed,

we probably would have developed them as a result of this work. As

it was, the intuition provided by the k-d tree algorithms proved

quite useful to the author in developing the algorithms presented

here.

83

6. P,inciples of algorithm construction

In this chapter we enumerate some of the general principles of

algorithm construction that we have employed thus far in our work.

We must limit burselves to enumeration; a more complete treatment

of even this small set of principles is beyond the scope of this

thesis. We therefore divide the chapter into four sections, in

each of which we shall investigate a particular class of algorithm

construction techniques.

6.1 Principles of algorithm development

General strategies. In our work in Chapter 3 we noted two

specific strategies for dealing with sets of elements. The technique

of iteration solved a problem by obtaining a subsolution for each

element in the set then combining those to form a solution to the

whole; in our work it led to quadratic algorithms. The second

general strategy we employed was divide and conquer, which is

discussed in detail elsewhere in this thesis.

High level description of algorithms. All of the algorithms

we described in Chapter 3 were described at a very high level. This

freed us from the cumbersome and unenlightening chores of bookkeeping

to concentrate our attention on algorithm design. Though we had to

have some idea as to how we were going to implement the constructs

we employed, we could postpone the implementation details until we

had developed algorithms with good asymptotic behavior.

Process of generalization. Our work in Chapter 3 was in many

ways a study of the psychological process of generalization. One

might view the algorithms we developed in that chapter as points in

a three dimensional space: the first dimension is the problem

being solved (SFR, CP, ANN, STW); the second is the dimensionality

of the space (1, 2, 3, k); and the third is the speed of the

algorithm (8(N logk N), 8(N log N)). We often made use of Polya's

[1954, p. 194] frank advice, "try the simplest thing first", even

when the simplest appeared trivial. After that we proceeded to the

next most simple algorithm, always moving to an adjacent point in

the algorithm development space. When we moved to a different

"plane" in the space (from SFR to CP or from CP to ANN) we tried to

choose our path on that plane to resemble as closely as possible

our path on the previous plane. By doing so we found that we were

able to employ many parts of previously developed algorithms.

Polya [1945, p. 42] refers to this process as using "both the

method and the result".

Abstract description. We saw that a very high level description

of an algorithm (i.e., solve two problems of N/2 points in the plane

and one problem of up toN points on the line), giving its structure

but not its task, is very helpful in understanding the algorithm

and generalizing it.

Identify expensive parts. A main point of Knuth's work [1971]

is that program optimization should usually be concerned with only

one relatively small part of the program. We saw that the same

principle applies to creating faster asymptotic algorithms. In

85

trying to reduce the running time of SPARSE2, for instance, we

first found where the major cost was incurred, and then we modified

that step.

Relationship between worst-case and average-case ("heuristic")

algorithms. In Chapter 5 we noticed an important relationship

between worst-case and heuristic algorithms: worst-case algorithms

often suggest faster average-case algorithms, and, conversely,

experience with heuristic algorithms can yield valuable insight

in developing worst-case algorithms.

Lower bounds. The construction of lower bounds gives the

algorithm designer both a target at which to aim and a good reason

for stopping his work. We saw three important techniques in dealing

with lower bounds: reduction allowed us to use previous results;

examining degenerate cases (i.e., 6 = 0) allowed us to make general

assertions about the complexity of the problem (for any correct

algorithm must work for the case of 6 = 0); and imbedding allowed

us to apply results in one dimensionality to problems in a higher

dimension.

Standard speed-up tricks. Presorting a set of numbers and

maintaining a sorted list of those numbers is a fairly standard

technique in algorithm design. The algorithm designer should be

familiar with such useful techniques.

Specific performance goals. In developing an algorithm it

·is helpful to have a specific performance bound in mind.

Examining degenerate cases. We saw this employed in establish­

ing lower bounds, in gaining insight into why worst-case behavior

86

occurs, and in determining· the boundary conditions of an algorithm.

Polya [1954, p. 23] refers to a similar process as "picking out

an extreme special case".

How to solve it. Polya's [1945] work of this title gives

valuable insight into solving programming problems. The book's

leaning toward geometric examples and its emphasis on problem

solving using analogy and generalization make it particularly

applicable to the work in this thesis. His later work,

Mathematics and Plausible Reasoning [1954], is also extremely

valuable for the algorithm designer.

6.2 Principles for divide and conquer

Uneven balancing. In most applications of divide and conquer

the original problem is divided into two subproblems, each containing

N/2 points. We observed that the exact fraction (l/2)N is not

necessary; guaranteeing that each subproblem contains at least some

constant fraction p of the N points is suitable (in many situations)

to insure balancing. This is similar to the idea behind the balanced

binary trees due to Adelson-Velskii and Landis [1962].

Speed-up techniques. We made frequent use of the speed-up

trick of presorting. This technique was also used in Shames's

[1975b] description of Strong's algorithm and in the balanced tree

construction algorithm of Finkel and Bentley [1974].

Division into subproblems. The asymptotic running times of

our algorithms were improved as we allowed our cut plane selection

strategy the freedon to choose among many cut planes. We eventually

chose a cut point that had good worst-case properties and was easy

87

to find. This technique is similar to the way the selection algorithm

of Blum, et al., [1972] chooses the partitioning element.

Reducing subproblem size below O(N/log N). If the size of a

subproblem is reduced to O(N/log N), then the cost of applying a

0(N log N) algorithm to that subproblem is at most linear. A

similar usage of this technique was made in the 0(N log log N) median

algorithm of Blum (see Knuth [1973]) and in Rabin's CP algorithm

[1976].

Multiple calls on the same procedure. The standard divide

and conquer schema consists of three parts: (1) divide the problem

into subproblems, (2) solve the subproblems, and (3) combine the

subsolutions into a solution to the whole problem. In the typical

application of divide and conquer Step 2 is recursive and Steps 1

and 3 are non-recursive. In our algorithms we usually used a

recursive call for Step 3 (though we reduced the dimensionality by

one). Other algorithms have deviated from the typical schema.

Kung, Luccio and Preparata [1975] used a recursive Step 3 as well.

In the linear median algorithm of Blum, et al., [1972] Step 1 was

accomplished recursively. One might accurately view Rabin's CP

algorithm [1976] as a divide and conquer algorithm in which all

three steps were accomplished non-recursively.

6.3 Principles for multidimensional algorithms

Divide and conquer. We have developed a divide and conquer

schema applicable to many multidimensional problems.

Sparsity. Sparsity was a key to many of our algorithms. We

have seen three different types of sparsity. In some problems

88

sparsity was given as a condition of the problem (SFR). In the CP

problem we induced global sparsity on the point set. In the ANN

problem we used a type of "local" sparsity.

Wise choice of cut planes. This reduced the asymptotic running

times of our algorithms.

Imbedding. Imbedding was a valuable technique for applying

results of lower bounds on unidimensional problems to multidimensional

problems.

Varying metrics. We saw that though all of our work was done

for one metric (the 1
00
), it was applicable to others (i.e., the 1

2
).

It is often convenient to work with the most tractable metric

available, then attempt later to apply results to other metrics.

Value of one-dimensional analogs. One-dimensional analogs proved

quite helpful to us in gaining insight in multidimensional problems.

The many results in the plane due to Shames [197Sb] might prove

invaluable to future workers in multidimensional algorithms.

6.4 Principles for turning algorithms into programs

Simulating work by representation. When our algorithms called

for working with a projected point set, we might have been tempted

to make a copy of the point set (reducing dimension by one).

Instead we accomplished the task by referencing dimension through

an array which represented the active dimensions.

Solving small problems. One often solves small problems most

efficiently in a way that is not asymptotically optimal. Though a

linear algorithm is asymptotically superior to a G(N log N) algorithm,

N log2 N < lSN for N < 32,000.

89

Fast average-case components. One can often turn a good worst­

case algorithm into a good average-case algorithm by substituting

average-case components for worst-case components. In our work we

substituted the fast average-case selection algorithm of Floyd and

Rivest [1975] for the good worst-case algorithm of Blum, et al.,

[1972].

Sampling. Though it is usually necessary to examine all

elements of a set to be a-ble to guarantee a property of that set, one

can often get a good expectation of that property by investigating

a sample (which is more efficiently accomplished).

Heuristics simulating guaranteeable properties. In our work we

suggested the heuristic of choosing the cut plane as the median

element in the dimension of maximum variance as a simulation of a

good worst-case cut plane.

Isomorphism between trees and divide and conquer. The natural

isomorphism between divide and conquer algorithms and tree data

structures often suggests one, given the other.

90

7. Further work

We have examined many different problem areas in this thesis.

Though we have made some contribution to each area, there is much

important work that still needs to be done. In this chapter we

mention a few outstanding problems that particularly merit further

research.

The first area that deserves attention is reduction of upper

bounds on time complexities. The author conjectures that

ANN(N,k) = 0(N log N); it is conceivable that Algorithm AlLk could

be modified to achieve that bound by making wise use of cut planes.

The author also conjectures that the bound NN(N,k) = 0(log N) can

be obtained using storage linear in Nk. The way to approach this

problem using divide and conquer is to investigate data structures

isomorphic to our algorithms (see especially Friedman, Bentley and

Finkel [1975]). A third bound the author believes can be reduced is

the quadratic bound on the MST problem. The minimal spanning tree

has global properties that make a subtree hard to compute; one way

of using divide and conquer for this problem might be to find a

supergraph of the minimal spanning tree than apply Yao's [1975] fast

graph MST algorithm to that supergraph.

Shamos's notebook [1975b] is a rich source of planar problems

and solutions; extending his work to multidimensional space is an

important problem. Two especially attractive problems are finding

the Voronoi diagram of points in k space and finding the diameter of

a set in k space.

It is desirable to shorten the gap between the "theoretical"

algorithms described in this thesis and the "practical" algorithms

such as described by Friedman, Bentley and Finkel [1975] and Bentley

and Friedman [1975]. One way of "shortening the gap" is to decrease

the running time of the algorithms in the thesis to actually run

more efficiently than the "practical" algorithms. Another way to

shorten the gap is to show that these algorithms give a "theoretical"

explanation of the running times of the fast algorithms.

Much further work needs to be done on the principles of

algorithm construction. The typical way in which a computer science

student is now taught how to build algorithms is to be shown twenty

or thirty algorithms, then asked to go out and build some of his own.

This was basically the way in which the author learned about algorithms;

it was only during the writing of this thesis that he shared the

experience of Descartes [1650]: "As a young man, when I heard about

ingenious inventions, I tried to invent them by myself, even without

reading the author. In doing so, I perceived, by degrees, that I was

making use of certain rules". The author hopes that the reader is

convinced that there are "certain rules" which an algorithm designer

can use in his task.

It is important to discover what principles competent algorithm

designers employ. One way of doing so is for algorithm designers to

include with future algorithms the main principles employed in

constructing them. Another way of discovering such principles is

to attempt to systematically reinvent the algorithms as Descartes

did ("without reading the author"), and see what principles are'

92

employed. After such principles are discovered, they ought to be

collected together and systematized in some way.

In this thesis we have touched upon different areas that lend

themselves to general principles. The first is algorithm develop­

ment; much further work needs to be done in describing the general

approach an algorithm designer should take in attacking a problem.

A second area is the divide and conquer strategy. Further work

might describe more techniques that are commonly used in divide and

conquer. Other strategies ought also to be analyzed; among those

are dynamic programming and depth-first search. A third area which

merits investigation is that of turning algorithms into programs.

This is especially important as one observes the great distance

between many "theoretical" algorithms that are now presented and

the "real-life" task of solving real problems on real computers.

93

8. Conclusions

In this chapter we will briefly review the major contributi.ons

contained in this thesis. The contributions can be broadly classified

as falling into three areas: multidimensional algorithms, the

divide and conquer strategy, and principles of algorithm design.

The contributions of this thesis to multidimensional algorithms

have been twofold: basic methods and basic results. We have shown

that divide and conquer is a fundamental tool which can be used in

multidimensional algorithms; we developed one particular divide

and conquer schema that was well suited to many problems. Another

fundamental tool which we used often was the notion of sparsity.

We saw three kinds of sparsity: given, induced and local. The

basic results of this thesis can be summarized as follows:

CP(N,k) = 8(N log N),

SFR(N,k) = 8(N log N), and

8(N log N) k-1
~ ANN(N,k) ~ 8(N log N).

These appear to be the first less-than-quadratic upper bounds for multi-

dimensional closest point problems.

The algorithms in this thesis demonstrate the power of the divide

and conquer strategy. We saw that the strategy was applicable to a

problem domain fundamentally different from any in which it had been

previously used. We also observed many ways in which divide

and conquer algorithms can be employed. Among techniques we used

were uneven balancing, ndouble recursion 11 (in problem size and

dimensionality), and reducing subproblem size by intelligent cut

point strategies.

The final area to which this thesis contributes is algorithm

design. Ghapter 3 of this thesis is one of the few examples of

which the author knows of a written presentation of the algorithm

design process. The author feels that Chapter 3 might be a valuable

tool in communicating the algorithm design process to novices; in

particular it might be the basis for one or two weeks of classroom

discussion in an algorithms course. In addition to examples, Chapter 6

provides a summary of principles used in the design process. Though

the list of principles is small, it certainly contains some fundamental

insights, and it is a suitable basis from which others can expand.

95

Bibliography

Adel' son-Vel' skii, G. M. and E. M. Landis [1962]. "An algorithm
for the organization of information", Akademiia Nauk SSSR,
Doklady, Matematika, val. 146, no. 2, pp. 263-266. English
translation in Soviet Mathematics, vol. 3, pp. 1259-1263.

Bentley, J. L. [1975a]. A survey of techniques for fixed radius
near neighbor searching, Stanford Linear Accelerator Center
Report SLAC-186, August 1975, 33 pp.

Bentley, J. L. [19 7 5b] • "Multidimensional binary search trees
used for associative searching", Communications of the ACM,
voi. 18, no. 9, September 1975, pp. 509-517.

Bentley, J. L. and W. A. Burkhard [1976]. "Heuristics for partial
match retrieval data base design", Information Processing
Letters, vol. 4, no. 5, February 1976, pp. 132-135.

Bentley, J. L. and J. H. Friedman [1976]. Fast algorithms for
constructing minimal spanning trees, in coordinate spaces,
Stanford Computer Science Department Report STAN-CS-75-529,
January 1976, 29 pp.

Bentley, J. L. and M. I. Shamos [1976]. "Divide and conquer in
multidimensional space", Proceedings of the Eighth Symposium
on the Theory of Computing, ACM, May 1976, pp. 220-230.

Bentley, J. L. and D. F. Stanat [1975]. "Analysis of range searches
in quad t.rees 11

, Information Processing Letters, vol. 3, no. 6,
July 1975, pp. 170-173.

Bentley, J. L., D. F. Stanat, and E. H. Williams, Jr. [1976].
The complexity of near neighbor searching, in preparation.

Blum, M., et al. [1972]. "Time bounds for selection",
Journal of Computer and System Sciences, vol. 7, no. 4,
August 1973, pp. 448-461.

Burkhard, W. A. [1976]. "Hashing and trie algorithms for partial­
match retrieval", ACM Transactions on Data Base Systems,
vol. 1, no. 2, June 1976, pp. 175-187.

96

Burkhard, W. A. and R. M. Keller [1973]. "Some approaches to
best match file searching", Communications of the ACM,
vel. 16, no. 4, April 1973, pp. 230-236.

Cleary, J. G. [1975]. Finding nearest neighbors in Euclidean
space, University of Canterbury Preprint, Christchurch,
New Zealand, 1975, 18 pp.

Cooley, J. W. and J. W. Tukey [1965]. "An algorithm for the machine
calculation of complex Fourier series 11

, Mathematics of
Computation, vol. 19, pp. 297-301.

Cover, T. M. and P. E. Hart [1967]; "Nearest neighbor pattern
classification", IEEE Transactions on Information The.ory,
vol. IT-13, no. 1, January 1967, pp. 21-27.

Coxeter, H. S. M. [1961]. "An upper bound for the number of
equal nonoverlapping spheres that can touch another sphere
of the same size", in Proceedings of the Symposium in Pure
Mathematics, vol. 7, (Convexity), American Mathematical
Society, Providence, Rhode Island.

Descartes, R. [1650]. Rules for the Direction of the Mind.
Quoted in Polya [1945, p. 93].

Dijkstra, E. W. [1959]. "A note on two problems in connexion
with graphs", Numerische Mathmatik, vol. 1, no. 5,
October 1959, pp. 269-271.

Dobkin, D. and R. Lipton [1975]. On the complexity of computation
under varying sets of primitives, Yale University Computer
Science Department Technical Report No. 42, 1975.

Dobkin, D. and R. J. Lipton [1976]. "Multidimensional search
problems", SIAM Journal on Computing, vol. 5, no. 2, June 1976,
pp. 181-186.

Finkel, R. A. and J. L. Bentley [1974]. "Quad trees--a data
structure for retrieval on composite keys", Acta Informatica,
vol. 4, no. 1, pp. 1-9.

Floyd, R. W. and R. L. Rivest [1975]. "Expected time bounds for
selection", Communications of the ACM, vol. 18, no. 3,
March 1975, pp. 165-172.

Friedman, J. H. [1975]. A variable metric decision rule for
nonparametric classification, Stanford Linear Accelerator
Center Report SLAC-PUB-1573, April 1975, 30 pp.

97

Friedman, J. H., F. Baskett, and L. J. Shustek [1975]. "An algorithm
for finding nearest neighbors", IEEE Transactions on Computers,
vol. C-24, no. 10, October 1975, pp. 1000-1006.

Friedman, J. H., J. L. Bentley, and R. A. Finkel [1975]. An algorithm
for finding best matches in logarithmic time, Stanford Linear
Accelerator Center Report SLAC-PUB-1549, February 1975, 20 pp.

Friedman, J. H., S. Steppel, and J. W. Tukey [1973]. A nonparametric
procedure for comparing multivariate point sets, Stanford Linear
Accelerator Center Computation Research Group Technical Memo
No. 153, November 1973, 22 pp.

Fukanaga, K. and P. M. Narendra [1975]. "A branch and bound algorithm
for computing k-nearest neighbors", IEEE Transactions on
Computers, vol. C-24, no. 7, July 1975, pp. 750-753.

Garey, M. R., R. L. Graham, and D. S. Johnson [1976]. "Some
NP-complete geometric algorithms", Proceedings of the Eighth
Symposium in the Theory of Computing, ACM, May 1976, pp. 10-22.

Iverson, K. E. [1962]. A Programming Language, Wiley, New York.

Karp, R. M. [1976]. "Probabilistic analysis of heuristic search
methods", in the proceedings of the Carnegie-Mellon University
Symposium on New Directions and Recent Results in Algorithms
and Complexity, to be published by Academic Press.

Kieburtz, R. B. [1975]. Structured Programming and Problem Solving
with ALGOLW, Prentice-Hall, Englewood Cliffs, New Jersey.

Knuth, D. E. [1971]. "An empirical study of FORTRAN programs",
Software--Practice and Experience, vol. 1, no. 2, April-June
1971, pp. 105-133.

Knuth, D. E. [1973]. Sorting and Searching, The Art of Computer
Programming, vol. 3, Addison-Wesley, Reading, Massachusetts.

Knuth, D. E. [1976]. "Big omicron and big omega and big theta",
SIGACT News, vol. 8, no. 2, April-June 1976, pp. 18-24.

Kruskal, J. B. Jr. [1956]. "On the shortest spanning subtree of
a graph and the travelling salesman problem", Proceedings of
the American Mathematical Society, vol. 7, February 1956,
pp. 48-50.

Kung, H. T., F. Luccio, and F. P. Preparata [1975]. "On finding the
maxima of a set of vectors", Journal of the ACM, vol. 22,
no. 4, October 1975, pp. 469-476.

98

Lee, D. T. and C. K. Wong [1976]. Worst-case analysis for region
and partial region searches in multidimensional binary search
trees and quad trees, IBM Watson Research Center preprint, 18 pp.

Lee, R. C. T., Y. H. Chin, and S. C. Chang [1975]. Application of
principal component analysis to multi-key searching, National
Tsing Hua University, Republic of China, 28 pp.

Lee, R. C. T., J. R. Slagle, and H. Blum [1975]. "A triangulation
method for the sequential mapping of points from N-space to
2-space", Proceedings of the Conference on Computer Graphics,
Pattern Recognition and Data Structures, May 14-16, 1975,
IEEE, pp. 374ff.

Leech, J. 'and N. J. A. Sloane [1971]. "Sphere packings and error
correcting codes", Canadian Journal of Mathematics, vol. 23,
no. 4, pp. 718-745.

Levinthal, C. [1966]. "Molecular model building by computer",
Scientific American 214, June 1966, pp. 42-52.

Liu, C. L. [1968]. Introduction to combinatorial mathematics,
McGraw-Hill, New York.

Loberman, H. and A. Weinberger [1957]. "Formal procedures for
connecting terminals with a minimum total wire length",
Journal of the ACM, vol. 4, no. 4, October 1957, pp. 428-437.

Loftsgaarden, D. 0. and c. P. Quesenberry [1965]. "A nonparametric
density function", Annals of Mathematical Statistics, vol. 36,
pp. 1049-1051.

McNutt, B. [1973].
Knuth [1973],

Experiments by Bruce McNutt reported in
sec. 6.5, p. 555.

Newman, W. M. and R. F. Sproull [1973]. Principles of interactive
computer graphics, McGraw-Hill, New York.

Polya, G. [1945]. How to solve it, Princeton University Press,
Princeton, New Jersey.

Polya, G. [1954]. Mathematics and plausible reasoning, 2 vols.,
Princeton University Press, Princeton, New Jersey.

Prim, R. C. [1957]. "Shortest connection networks and some
generalizations", Bell Systems Technical Journal, vol. 36,
no. 6, November 1957, pp. 1389-1401.

Rabin, M. 0. [1976]. "Short expected time algorithms for the
nearest pair", in the Carnegie-Mellon University Symposium
on New Directions and Recent Results in Algorithms and
Complexity, to be published by Academic Press.

99

Reingold, E. M. [1972]. "Establishing lower bounds on algorithms--a
survey", Spring Joint Computer Conference 1972, AFIPS Press,
pp. 471-481.

Rivest, R. L. [1974a].
Stanford Computer
1974, 102 pp.

Analysis of associative retrieval algorithms,
Science Department Report STAN-CS-74-415,

Rivest, R. L. [1974b]. "On the optimality of Elias' algorithm
for performing best match searches", Proceedings IFIP Congress 74,
Stockholm, Sweden, August 1974, pp. 678-681.

Rivest, R. L. [1976]. "Partial-match retrieval algorithms",
SIAM Journal on Computing, vol. 5, no. 1, March 1976, ·PP• 19-50.

Rosenkrantz, D. J., R. E. Stearns, and P.M. Lewis [1974].
"Approximate'algorithms for the travelling salesperson problem",
Proceedings of the Fifteenth Symposium on Switching and Automata
Theory, IEEE, October 1974.

Shamos, M. 1. [197Sa]. "Geometric complexity", Proceedings of the
Seventh Symposium on the Theory of Computing, ACM, May 1975,
pp 0 224-233 0

Shamos, M. I. [1975b]. Problems in computational geometry,
unpublished manuscript.

Shamos, M. I. and D. J. Hoey [1975]. "Closest-point problems",
Proceedings of the Sixteenth Symposium on Foundations of
Computer Science, IEEE, October 1975.

Smith, A. R. [1975]. Nearest neighbor algorithms for speech,
Carnegie-Mellon University preprint, November 1975, 10 pp.

Strassen, v. [1969]. "Gaussian elimination is not optimal",
Numerische Mathmatik, vol. 13, no. 4, pp. 354-356.

Van Rijsbergen, C. J. [1974]. "The best-match problem in document
retrieval", Communications of the ACM, val. 17, no. 11,
November 1974, pp. 648-649.

Warnock, J. E. [1969]. "A hidden-surface algorithm for, computer
generated half-tone pictures", University of Utah Computer
Science Department Report TR4-15, 1969. Also in Newman and
Sproul [1973, pp. 297-312].

Yao, A. c. [1975]. "An o(IEI log log lvl) algorithm for finding
minimum spanning trees", Information Processing Letters,
val. 4, no. 1, September 1975, pp. 21-23.

100

Yao, A. C. and F. F. Yao [1974]. On computing the rank function of
a set of vectors, University of Illinois Computer Science
Department Report UIUCDCS-R-75-699, February 1975, 15 pp.

Yuval, G. [1975]. "Finding near neighbors ink-dimensional space",
Information Processing Letters, vel. 3, no. 4, March 1975,
pp. 113-114.

Yuval, G. [1976]. "Finding nearest neighbors", to appear in
Information Processing Letters.

Zahn, C. T. [1971]. "Graph-theoretical methods for detecting
and describing gestalt clusters", IEEE Transactions on
Computers, vel. C-20, no. 1, January 1971, pp. 68-86.

101

