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JON LOUIS BENTLEY. Divide and Conquer Algorithms for Closest Point 
Problems in Multidimensional Space (Under the direction of 
DONALD F. STANAT.) 

The contributions contained in this dissertation can be broadly 

classified as falling into three areas: multidimensional algorithms, 

the "divide and conquer" strategy, and principles of algorithm design. 

Contributions to multidimensional algorithms are twofold: 

basic results and basic methods. The results deal with algorithms for 

determining properties of sets of N points in k dimensional space. 

Among other results it is shown that the closest pair among the N 

points can be found in time proportional to N log N and that the 

nearest neighbor to each point among the N can be found in time 

k-1 proportional to N(log N) (fork~ 2). The basic methods include 

an algorithm schema applicable to many multidimensional problems 
' 

and fundamental concepts for dealing with such problems. 

The algorithms in this dissertation demonstrate the power of 

the divide and conquer strategy. The strategy is shown to be 

applicable to multidimensional problems. The basic technique is 

modified in many interesting ways to create faster algorithms. 

The final area to which this dissertation contributes is 

algorithm design. Instead of merely presenting the results herein 

as finished products, they are arrived at through a detailed 

development process. This development is one of the few written 

records of the development of an asymptotically fast algorithm; 

as such it is a suitable basis for teaching algorithm design. The 

general principles of algorithm design employed are enumerated. 
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1. Introduction 

This introduction is designed to serve as a guide in reading this 

thesis. In this chapter we describe the overall content of the thesis 

and give a brief summary of each chapter. Such an overview should 

allow the reader to decide which chapters he should read. 

The main topic of this thesis is the application of divide and 

conquer algorithms to multidimensional closest point problems. For 

the time being, one can think of a multidimensional closest point 

problem as one concerned with the proximity of points in a multi­

dimensional vector space. The primary subtheme of this thesis 

concerns techniques for designing fast computer algorithms. 

Chapter 2 is a review of previous work in multidimensional 

closest point problems and in divide and conquer algorithms. The 

reader already familiar with these areas ought to read only Section 

2.1.1, which describes the notation used in the thesis. 

The heart of this thesis is Chapter 3; there we give fast algo­

rithms for the problems we are studying. The algorithms given there 

are the first algorithms '"ith less than quadratic running times for 

general multidimensional problems. The techniques for divide and 

conquer algorithms described in that chapter are applicable to a 

broad class of problems. Finally, we derive lower bounds on the 

problems we study. 

The presentation of the material of Chapter 3 is unusual. 

Instead of simply describing the completed work, the chapter 



reconstructs the actual development of the algorithms. The author 

believes that Polya's [1945] comments are just as applicable to 

solving programming problems as they are to solving mathematical 

problems: "Solving problems is a practical skill like, let us say, 

swimming. We acquire any practical skill by imitation and practice. 

Trying to swim, you imitate what other people do with their hands 

and feet to keep their heads above water, and, finally, you learn to 

swim by practicing swimming." The author knows of few written 

examples of the algorithm development process suitable for the 

imitation to which Polya refers; this presentation of Chapter 3 is 

the author's attempt to help fill that void. The material presented 

in that chapter covers a broad range; certainly parts of the chapter 

will prove too easy or too difficult (or both!) for any given reader. 

But just as no reader will go away from that chapter totally 

satisfied, the author believes that consideration of the algorithm 

development process in that chapter will be beneficial to anyone 

interested in learning more about how to design algorithms. 

In Chapter 4 we extend the algorithms of Chapter 3 to other 

metrics and other (similar) problems. This chapter is not essential 

to a basic understanding of the results of this thesis, but extends 

the applicability of those results at a small cost. 

Questions of how the algorithms of Chapter 3 could be efficiently 

implemented as computer programs are discussed in Chapter 5. Section 

5.1 is concerned with implementing the algorithms given in Chapter 3. 

Section 5.2 discusses the problem of transforming those worst-case 

algorithms into fast average-case algorithms. 

In Chapter 6 we enumerate some of the basic principles of 
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algorithm design we employed in Chapters 3 through 5. Though the 

principles are grouped into four sections within the chapter, they 

are not further organized within the sections. Sections 6.1 through 

6.3 deal primarily with principles employed in Chapter 3; Section 

6.4 is based mostly on Chapter 5. Though it is not absolutely 

necessary to have read the earlier chapters to have some understanding 

of the principles given, a familiarity with them will enhance the 

reader's appreciation of the techniques described. 

Areas for further work are described in Chapter 7, and in Chapter 

8 we summarize the primary contributions of this thesis. 

We will use standard mathematical notation throughout this 

thesis. The only atypical notation we will employ is the 8 notation 

due to Knuth [1976], which is similar to the common "big-oh" notation. 

By Knuth's definition 0(f(n)) denotes the set of all g(n) such that 

there exist positive constants C, C', and n0 with Cf(n) s g(n) s C'f(n) 

for all n ~ n
0

. The 8 notation provides both lower and upper bounds 

on the function while the "big-oh" notation gives only an upper bound. 

Thus 6N2 = O(N2) and l.SN = O(N2), while 6N2 = 8(N2) but l.SN ~ 8(N2). 
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2. Previous Work 

In this section we briefly review previous work in two areas: 

multidimensional closest point problems and the divide and conquer 

technique. The reader familiar with these subjects need read only 

Section 2.1.1 which introduces notation for the problems with which 

we shall deal. 

2.1 Multidimensional closest point problems 

Much work has been done recently on multidimensional closest 

point problems. In Section 2.1.1 we define a specific subset of 

the problems with which we shall be interested. Section 2.1.2 

gives examples of potential practical applications of solutions to 

these problems. We give a brief survey of previous work in Section 

2.1.3. 

2.1.1 Problem definitions 

In order to describe accurately the problems we are to solve 

in this thesis, we must define the tools with which we will solve 

them. Throughout this thesis we assume that all problems are to 

be solved by an algorithm in the form of a computer program running 

on a Random Access Machine (RAM) or a Random Access Stored Program 

machine (RASP) as described in Aho, Hopcroft and Ullman [1974]. 

Since the problems deal essentially with real numbers, we will assume 

that each word of the RAM/RASP memory can contain one real number 

(which may be an integer) or instruct~on. (Thus we assume an 



"infinite precision" machine.) This abstract lnachine suitably 

models most high speed computers which would actually be used to 

solve the problems we will treat. 

The closest point problems we deal with in this thesis all 

have as input N points ink dimensional space; the input is des­

cribed by Nk real numbers (we often refer to the collection of N 

points as "the file"). Thus we will usually measure the complexity 

or cost of applying the algorithms as a function of N and k. 

We will shortly describe a number of problems which we shall 

denote by names and abbreviations composed of one or ffiore capital 

letters. For instance, ANN is the abbreviation for the "All 

nearest neighbors" problem. We will denote the worst case running 

time of the best possible worst case algorithm to solve problem 

ANN on a RAM/RASP machine by ANN(N,k); ANN(N,k) is often referred 

to as the minimax complexity of ANN. We will denote the minimean 

complexity of ANN by ANN(N,k) (the minimean complexity is the 

average case time of the best possible average case algorithm). 

We will mention minimean complexities only rarely in this thesis. 

To speak precisely of mean times, one must have an accurate model 

of the probability of different inputs, and the well known uni­

dimensional models (such as permutations for sorting) are not 

obviously extendible to multivariate cases. We will also determine 

the amount of storage required by the algorithms we discuss, though 

it will be clear that our algorithms use linear storage. 

We now describe the multidimensional closest point problems 

which will be the center of this thesis. All of them deal with a 

set F of N points in k dimensional space and assume the existence 
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of a distance function D on the space. (We discuss later what 

properties this function must have.) 

Closest pair (CP) 

Given N points in k dimensional space, determine which two 

points are closest together. That is, find the points W, X E F 

such that D(W,X) min D(Y,Z). Ties may be broken arbitrarily. 
Y,ZEF 
y~ 

All nearest neighbors (ANN) 

Determine the nearest neighbor of each point X E F. The 

nearest neighbor of X is defined to be that point Y such that 

D(X,Y) =min D(X,Z). 
ZEF 
Z7X 

Ties may be broken arbitrarily. The solution to this problem is 

N pairs of points. 

Minimal spanning tree (MST) 

Define the weighted graph induced by F to be an N vertex, 

complete undirected graph with a vertex at each point in F; the 

weight of each edge is the distance between the two corresponding 

points. The MST problem is to construct the minimal spanning tree 

of the weighted graph induced by F. The solution to this problem 

is a set of N-1 edges composing the minimal spanning tree, where 

each edge is specified by a pair of points. For more detail on this 

problem, see Bentley and Friedman [1975]. 

Fixed radius near neighbors (FR) 

Given N points and a parameter 6, find all pairs of points in F 

within 6 of each other in the space. The solution is a set of q pairs 

of points; where 0 ~ q ~ (~). The fact that the size of the output 
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can be 0(N2) makes the problem very difficult to solve. We shall 

therefore restrict our attention to the special case of this problem 

given as the next problem. The general case is investigated by 

Bentley, Stanat and Williams [1976]. 

Sparse fixed radius near neighbors (SFR) 

This problem is the same as problem FR given above with the 

addition of a constraint that the set F is sparse. The exact definition 

of sparsity that we will use is that there is some constant c such that 

no a-ball (sphere of radius 6) in the multidimensional space contains 

more than c points of F. This guarantees that no point in the set 

will have more than c fixed radius near neighbors and therefore the 

output of the problem will be between zero and eN pair,; of points. 

Nearest neighbor (NN) 

Given N points of F and an additionql point X, which point of 

F is nearest to X? Preprocessing of the original N points is permitted. 

A generalization of this problem is the m nearest neighbor problem, in 

which the output is the set of the m closest points among F to X. We 

will use NNP(N,k) to denote the time required by the preprocessing 

phase of the NN algorithm. 

These are the problems with which we shall deal. It is interest­

ing to note that because the closest pair graph is a subgreph of the 

all nearest neighbors graph, which is in turn a subgraph of the minimal 

spanning tree, we can immediately deduce that 

CP(N,k) ~ ANN(N,k) ~ MST(N,k). 

2.1.2 Applications 

In this section we will examine briefly some of the applications 
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of multidimensional closest point problems. Knowing applications of 

the problems not only motivates the work, but also enables us to 

evaluate the reasonableness of our assumptions concerning the nature 

of the problems. 

The closest pair is in a sense a contrived problem. The author 

knows of no application which actually requires the solution of this 

problem. Identification of the closest pair could be used as a 

signature of the size of a set which is invariant under translation. 

Its relevance to this work, however, lies in the fact that it is in 

many senses the "simplest" multidimensional problem; a solution to 

this problem is implicit in many more complex problems. One example 

of this is Kruskal's minimal spanning tree algorithm [1957]; its 

first step is to find the closest pair in the space. (An historic 

note here is perhaps appropriate. Professor M. I. Shamos reports 

[personal communication] that until late 1974 many people conjectured 

that CP(N,2) = 8(N2). Since this was a lower bound on most other 

closest point problems, no one looked for the existence of fast 

algorithms for the other problems. When it was shown that 

CP(N,2) = 8(N log N), many other fast algorithms were soon discovered. 

The author has noted similar occurrences in his work on multi­

dimensional problems.) 

We now turn to the all nearest neighbor problem. Given two 

multidimensional point sets, how can we tell if they were drawn from 

the same underlying probability function? A nonparametric test to 

determine this is described by Friedman, Steppel and Tukey [1973]. The 

basis of this test is the solution to a generalization of the all 
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nearest neighbors problem in which all m nearest neighbors are sought 

for each point. Zahn [1971] describes how the all nearest neighbors 

graph can be used in cluster analysis, which is one basis for 

mathematical taxonomy. 

There are many applications in the literature of the minimal 

spanning tree problem. The classical formulation is in finding the 

minimal cost communications network for cities on a map (Prim, [1957]). 

Its application in producing efficient breadboard wirings is described 

in Loberman and Weinberger [1957]. Zahn [1971] describes some very 

elegant algorithms which use minimal spanning trees for cluster 

analysis. An algorithm for mapping points in a high dimensional 

space into a lower dimensional space while preserving as much locality 

as possible is described by Lee, Slagle and Blum [1975]; the algorithm 

is based on the minimal spanning tree of the point set. The minimal 

spanning tree can be used to find a good approximate solution to 

the travelling salesman problem; this is discussed in Rosenkrantz, 

Stearns and Lewis [1974]. This is especially important in view of 

the proof by Garey, Graham and Johnson [1976] that the travelling 

salesman problem in the plane is NP-hard (which means that it is as 

difficult as the NP-complete problems, which many suspect are of 

exponential complexity); we are thus forced to use heuristic 

solutions for problems of even moderate size. 

The fixed radius near neighbor problem arises whenever an agent 

has the capability of acting on another agent within a given distance. 

This arises in molecular graphics (Levinthal, [1966]) and gestalt 

clustering (Zahn, [1971]). We will see in this thesis that the fixed 

radius near neighbor problem arises naturally in the solution of other 
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closest point problems. Sparsity is sometimes guaranteed by nature; 

we will later see how we can induce it. 

Applications of nearest neighbor searching in document retrieval 

are described by Van Rijsbergen [1974]. It can be used in many pattern 

classification problems (Cover and Hart, [1967]), including speech 

recognition (Smith [1975]). It can also be used in estimating values 

of a probability distribution function from a sample of points drawn 

from the distribution (Loftsgaarden and quesenberry, [1965]). 

2.1.3 Previous approaches 

This section is an overview of previous work on computer alga-

rithms for multidimensional closest point problems. The descriptions 

of individual methods are quite brief; the interested reader is 

referred to either the original works or to Bentley's survey article 

[1975a] which examines these methods at a somewhat more detailed 

level. 

The simplest procedures for solving these problems make no use 

of the geometric nature of the problem. For problems involving pairs 

of points, all (~) pairs are examined. This approach leads to algo­

rithms which are quadratic in N for CP, ANN, MST, FR and SFR and a 

linear algorithm for NN. Dijkstra [1959] describes such a "brute 

force'' solution to MST. 

The simplest method employing the geometry of the space is to 

project all the points onto a line and use linear sorting and searching 

algorithms to work with the projected set. This technique is referred 

to by Knuth [1973] as "inverted lists". A natural choice of the line 

used for projection is one of the coordinate axes. This technique was 
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employed by Friedman, Baskett and Shustek [1975] to show that 

ANN(N,k) ~ G(N2-l/k) for points drawn from a multivariate normal 

distribution. Lee, Chin and Chang [1975] discuss the idea of 

projecting onto lines other than coordinate axes. The projection 

technique can be used for many closest point problems. It seems, 

however, to yield algorithms which are asymptotically slow as well 

as being difficult to analyze. 

A common approach for dealing with multidimensional closest 

point problems is to divide k-space into equally sized cells and 

store the points in the file in the corresponding cells. This usually 

involves representing the points in the cell as a set (typically by 

a linked list) and the cells by a multidimensional array. This idea 

was first described in the literature by Levinthal [1966]. Knuth 

[1973] suggests the idea of recursively subdividing a cell that is 

too crowded with points. Yuval pointed out [1975] that the cells 

need not be represented by a multidimensional array; a hash table 

or binary tree is more appropriate for sparse spaces. These cell 

approaches are described in Bentley's survey [1975a]. They are quite 

well suited to the fixed radius problem, but are inappropriate in other 

applications of closest point problems becaus'e they are not "locally 

adaptable". The fixed radius problem does arise in other closest 

point problems; both Yuval [1976] and Rabin [1976] have used cell 

techniques to solve the closest point problem. The cell technique 

is analyzed in detail by Bentley, Stanat and Williams [1976]. 

Much work has recently been done on closest point problems in 

the plane. Most of that work is due to Shames [1975a,b] (see also 

Shames and Hoey [1975]). He has shown that 
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CP(N,2) = ANN(N,2) = SFR(N,2) = MST(N,2) = 0(N log N). 

He has also shown that NN(N,2) = 0(log N) with NNP(N,2) = 0(N2) and 

quadratic space requirements and NN(N,2) = 0(log 2 N) with 

NNP(N,2) = 0(N log N) and linear space. In [1975b] he describes an 

algorithm due to Strong for finding closest pairs in the plane which 

inspired the algorithms in this thesis. Unfortunately, very few of 

Shames's algorithms seem to be easily generalizable to k-space. 

Tree structures have long been known to facilitate many 

unidimensional sorting and searching problems (see Knuth [1973]). 

The first tree structured approach to multidimensional problems is 

the quad tree of Finkel and Bentley [1974]. Its efficiency in solving 

a problem similar to fixed radius near neighbor searching is analyzed 

in the average case by Bentley and Stanat [1975] and in the worst case 

by Lee and Wong [1976]. The quad tree employs 2k-way branching in 

k dimensional space, which is a serious drawback for most applications. 

A tree structured approach which overcomes this difficulty by 

employing binary trees is described by Bentley [1975b]. It employs a 

data structure called the "k-d tree". The worst case performance of 

the k-d tree seems very difficult to analyze; the only bounds attained 

so far (Lee and Wong [1976]) do not appear to be tight. There are 

strong heuristic arguments given by Friedman, Bentley and Finkel [1975] 

to indicate that use of the k-d tree gives 

CP(N,k) = ANN(N,k) = 0(N log N), 

though these are not rigid arguments. The same paper suggests that 

- k 
NN(N,k) = 0(log N + 2 ) where NNP(N,k) = 0(kN log N) and linear space 

is required. Bentley and Friedman [1975] discuss the application of 

k-d trees to the MST problem. They give heuristic arguments indicating 
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that for many probability distributions MST(N,k) = 8(N log N) for 

fixed k. The basic idea underlying the k-d tree is very similar to 

the idea underlying the algorithms described in this thesis. In a 

certain sense one of the major benefits of the work described here is 

to give a theoretical explanation of the empirically observed good 

performance of k-d trees. 

A problem area distinct from but conceptually related to the 

area studied in this thesis is retrieval from a file with multi­

attribute records which assume discrete values. Such a problem is 

often characterized by a large number (say, over 30) of binary keys 

in each record. Rivest examines this area in [1974a]; further 

approaches are described by Burkhard [1976] and Bentley and Burkhard 

[1976]. Though these fields are relatively distinct, insights gained 

in one often yield application in the other. 

A number of different approaches to closest point problems have 

been published recently. An algorithm by Elias for finding nearest 

neighbors is studied by Burkhard and Keller [1973] and Rivest [1974b]. 

Tree structured approaches based on clustering are described by 

Fukunaga and Narendra [1975], McNutt [1973] and Smith [1975]. A 

structure used by Shamos in the plane is generalized to k-space by 

Dobkin and Lipton [1976]. Those algorithms use a prohibitive (8(Nk)) 

amount of storage for practical applications; in addition it is not 

clear that all the required preprocessing algorithms are known. Karp 

gives approximate algorithms for the travelling salesman problem in 

the plane in [1976]. 

A summary of the results mentioned in this section is given in 

Table 2.1. 
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RESULT STORAGE REFERENCE COMMENTS 

CP(N,2) = G(N log N) G(N) Shamos [1975b] 

CP(N,k) $ G(N(log N + 2k)) G(Nk) Friedman, Bentley, Finkel [1975] Heuristic argument 

CP(N,k) = G(f(k)N log N) G(N) Yuval [1975] 

CP(N,k) = G(f(k)N) G(N) Rabin [1976] 

ANN(N,2) = G(N log N) G(N) Shamos [1975b] 

ANN(N,k) = G(N2-(l/k)) G(Nk) Friedman, Baskett, Shustek [1975] Normal distribution 

ANN(N,k) = G(N(log N + 2k)) G(N) Friedman, Bentley, Finkel [1975] Heuristic argument 

f-' ..,.. MST(N,2) = G(N log N) G (N) Shamos [1975b] 

MST(N,k) = G(f(k)N log N) G(N) Bentley, Friedman [1975] Heuristic argument 

NN(N,2) $ G(log2 N) G(N) Shamos [1975b] NNP(N,2) = G(N log N) 

NN(N,2) = G(log N) G(N2) Shamos [ 19 7 5b] NNP(N,2) = G(N2) 

NN(N,k) $ G(k log N) G(Nk) Dobkin, Lipton [1976] NNP not defined 

NN(N,k) $ G(2k + log N) G(N) Friedman, Bentley, Finkel [1975] NNP(N,k) = G(kN log N) 
Heuristic argument 

Table 2.1. Summary of previous work 



2.2 Divide and conquer 

Divide and conquer is one of the most commonly used tools in 

the construction of algorithms. The basic idea underlying the 

technique is that to solve a given problem of a certain size, one 

divides the problem up into similar problems of smaller size, solves 

them, and then combines those answers to form an answer to the 

original problem. Most commonly, the same technique is applied to 

the smaller problems, making the procedure recursive. The recursion 

is terminated when the problem becomes small enough to solve using 

some straightforward method. An example of such a recursive divide 

and conquer algorithm is the MERGESORT algorithm described by Aha, 

HoP,croft and Ullman [1974]. To MERGESORT a set of N numbers, divide 

the set into two subsets of N/2 numbers each, sort those subsets 

recursively using MERGESORT, then merge those answers to form the 

sorted list desired. Such recursive divide and conquer algorithms 

are usually very easy to program and can often be analyzed by the 

use of recurrence relations. The technique of divide and conquer 

is nicely described by Aha, Hopcroft and Ullman [1974]; the reader 

unfamiliar with recurrence relations is referred to Liu [1968]. 

Divide and conquer has found application in many different 

areas. It is the philosophy underlying Cooley and Tukey's discrete 

Fast Fourier Transform algorithm [1965]. Strassen used the technique 

to reduce the time required to multiply two N by N matrices from 

0(N3) to 0 N 2 
( 

log 7) 
[1969]. It was used by Blum, et al., [1972] to 

reduce the time required to find the median of N elements from the 

previous best known 0(N log N) to G(N). Many other applications 

of divide and conquer are found in Aha, Hopcroft and Ullman [1974] 
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(listed in the index under "divide and conquer"). 

The divide and conquer technique has recently been applied to 

multidimensional problems. Warnock's algorithm [1969] for hidden 

line elimination uses the strategy in 2-space. Many of the algo­

rithms described in Shamos's workbook [i975] use divide and conquer; 

as mentioned previously, the algorithms in this thesis are inspired 

by an especially elegant application of divide and conquer attributed 

therein to Strong. An algorithm by Kung, Luccio and Preparata 

[1975] for finding the maxima of a set of multidimensional vectors 

is of a flavor very simila~ to the algorithms described in this 

thesis. 
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3. The Algorithms 

In this chapter we describe the algorithms that are the basis 

of this thesis. In Section 3.1 we develop a simple algorithm for 

the sparse fixed radius near neighbor problem and then modify it to 

reduce the running time . Section 3. 2 is devoted to the closest 

pair problem; we show how the algorithm schema developed in Section 3. 1 

can be applied to the closest pair problem. The a l l nearest neighbors 

problem is the topic of Section 3.3 ; in that section we extend even 

further the schemata developed in the first two sections. In Section 

3.4 we prove lower bounds on various problems discussed in Sections 

3. 1 through 3 . 3. 

The sections in which we describe algorithms share a common theme. 

Instead of merely presenting the algorithms as finished products , we 

will start by "inventing" a very simple algorithm and develop more 

complex algorithms until we arrive at the final version, trying to 

reflect the developmen t of the algorithm in our presentation. We will 

comment along the way on the tools and techniques of algorithm design 

employed . To make these easier to note we shall underline such 

comments. Hopefully the reader will go away from this section with 

both the understanding of some specific algorithms and insights into 

the general process of algorithm design. The principles which we 

employ in this section are discussed more fully in Chapter 6. 

We will describe the algorithms in a very high level, abstract 

language. It should be obvious how such programs could be implemented 



on a RAM/RASP machine; when it is not so we will comment accordingly. 

Chapter 5 discusses questions of implementation in more detail. It 

will be necessary to adopt certain notations. We will denote the 

value of the m-th point in the i-th coordinate by X.(m). The distance 
1 

measure used throughout this chapter is the L
00 

norm; that is 

D(£,m) = max 
lSiSk 

X.(~)- X.(m). 
1 1 

3.1 Sparse fixed radius near neighbor algorithms 

In this section we develop algorithms for the sparse fixed radius 

near neighbors problem. It is perhaps appropriate to review the 

problem briefly. By the definition of sparsity, we know that no 

a-ball in the space contains more than some constant c points. For 

the L
00 

metric which we are using, this means that no hypercube of 

side 26 in the space contains more than c points. Our problem is to 

enumerate all pairs of points which lie within 6 of each other in the 

space. 

A fundamental rule in algorithm design is to start with a simple 

problem. So instead of starting with the full k dimensional problem, 

let us restrict ourselves to a simple case. The simplest is the one 

dimensional case; we are given a sparse collection of real numbers 

and asked to enumerate all pairs within 6 of one another. The solution 

that immediately leaps to mind is to sort the points into a sorted 

list, then proceed down the sorted list, checking ahead 6. The sorting 

of the first stage can be done in time of O(N log N) by any one of a 

number of sorting algorithms (see Knuth [1973]). The scan of the 

second stage can be done in linear time; this is guaranteed by sparsity, 

which says that checking ahead 6 will require examining at most 
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c elements. Thus the second stage requires at most eN steps. We 

therefore have an algorithm that demonstrates SFR(N,l) ,; G(N log N). 

Though this may appear to be but a trivial exercise, we will see 

later that this result is extremely useful. We therefore feel 

justified in stating always start with the simplest case possible, 

even it if appears trivial at the time. 

We proceed now to the next case in order of decreasing 

simplicity: suppose the points lie in a plane. The first technique 

to which our search for a good algorithm leads us is iteration; we 

ask is there a strategy which, when iterated for each point in the 

file, will solve the problem as a whole? The answer is clearly· 

yes; we examine all pairs of points. Unfortunately, this yields a 

0(N2) algorithm. We could give up here, accept a quadratic algorithm, 

and try to prove a quadratic lower bound. However, we are motivated 

to search for a better algorithm by the fact that we know that we 

can do better than quadratic in the one dimensional case. Thus we 

see one important psychological effect of solving simpler problems 

first--motivation to keep looking for answers. The next technique 

of algorithm construction we consider is divide and conquer: is there 

some way to divide the problem into smaller parts, such that the 

solution of those parts could be combined to form a solution to the 

whole? As the principle of starting with the easiest dictates, we 

ought to look first for a divide and conquer algorithm that divides 

the problem into two parts (instead of more); we should also try to 

keep them of approximately the same size (that is, balanced; see Aho, 

Hopcroft and Ullman [1974] for details). 

19 



At this point our creativity (or whatever it is psychologists 

have left us with) suggests the following strategy, which is 

illustrated in Figure 3.1-1: Divide the file F into two point sets 

A and B by a vertical line £ such that both A and B contain 

N/2 points ( r N/21 and L N/~ points for odd N). Solve the sub­

problems for A and B recursively by enumerating all fixed radius 

near neighbor pairs with both elements in A or both in B. Note 

now that to solve the problem after having done this, all we need 

to do is to enumerate all near neighbor pairs with one point in A 

and one point in B. To find these pairs we need only consider 

points in the slab of width 2o with center £, noted by S in Figure 

3.1-1. Note that up to all N points could lie in region S. 

£ 

A B 
0 

0 
• • 

• • • • 
• • • • 

• • • • • • • • • • • • • • • 

s 

Figure 3.1-1: Illustration of Algorithm SPARSE2 

How do we solve the reduced problem of enumerating all fixed 

radius pairs i.n S with members of the pair on different sides of .Q,? 
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Although this appears to be another problem in the plane, we can 

view this as an essentially one dimensional problem. That is, we can 

solve the reduced problem by projecting all points in S onto £, and 

then solving the one dimensional sparse problem using our previously 

developed algorithm for one dimension. (Note that projection of 

points within 6 onto £preserves sparsity; any points in a 6-ball 

on the line were within the same 6-ball in the plane, thus there can 

be at most c within any 6-ball on the line.) We may, however, have 

to throw out some "false drops"--pairs which were on the same side 

of £ or greater than 6 apart in the plane. First examining the 

simpler one dimensional case paid off both in giving us a mind set 

which allowed us to see a method of solution for the reduc.ed problem, 

as well as providing the tool to solve the problem once we slightly 

modified it. 

Thus we have the basic idea for a divide and conquer algorithm 

for the SFR problem in the plane. The next step in developing such 

an algorithm is to describe it in an appropriate high level language, 

using notation as fits the problem. Let the input to the problem be 

a set of points F. We will want to have available the algorithm for 

the one dimensional case described earlier; call it SPARSE! (for 

reasons that will become obvious later). The procedure call SPARSEl(F) 

enumerates all fixed radius near neighbor pairs in the one dimensional 

file F. We now describe our algorithm (which we call SPARSE2) as 

Algorithm 3.1-1. 

(It is appropriate to mention here that the cut line £ is 

"fuzzy" in the following sense: If many points lie on £ then they 

are arbitrarily assigned to A and· B such that both A and B contain 
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N/2 points. All further cut lines we use in this thesis will be 

"fuzzy" in this sense.) 

Algorithm 3.1-1 

Procedure SPARSE2(set F) 

1. If IFI ~ 1, then return. 

2. Choose a vertical line ~ partitioning F 
into two collections of N/2 points each, A 
and B. (Note that this can be accomplished by 
finding the median element of F in the x

1 direction; the line is defined by that xl 
value.) 

3. Solve the subproblems with the recursive 
calls SPARSE2(A) and SPARSE2(B). 

4. Let S be the set of all points within 
o of ~. projected onto ~. (Note that the 
projection preserves sparsity with the 
sparsity constant c unchanged.) 

5. Call SPARSEl(S) to solve the sparse 
problem on the line. Check the pairs 
enumerated there to insure (a) they are 
on different sides of ~ and (b) they are 
within o in the plane. 

T(N) 2T(N/2) + (c2 + c
3 

+ c
4

)N + c1 + SFR(N,l) 

2T(N/2) + G(N log N) 

T(l) = T(O) = c
1 

.".T(N) = 8(N log2 N) 

N 

2T(N/2) 

The next step in the design process is to analyze the resulting 

algorithm. As with all of the algorithms developed in this thesis, 

we present a worst-case analysis with the algorithm itself, giving 

the running time in the 8 notation. We will go through the analysis 

of SPARSE2 now at a fairly close level of detail; later in this 

thesis we will only examine critical steps of the run time analysis 

in the text, presenting the analysis summarily with the algorithm 
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itself. For each step we will count the number of RAM/RASP 

operations employed. Step 1 requires constant time. The median 

selection of Step 2 requires time linear in N using the selection 

algorithm of Blum, et al., [1972]. The recursive call of Step 3 

will require two invocations of SPARSE2, each on a file of size 

approximately N/2 (the effect of approximation is discussed in 

Aho, Hopcroft and Ullman [1974]; it is negligible). The projection 

of Step 4 can be accomplished in linear time by processing each 

point individually. By our analysis of SPARSEl, the call in Step 5 

could cost up to SFR(N,l) = 8(N log N) (since all N points could 

be inS). Since only up to eN pairs could be enumerated (by sparsity 

of the projection), we can check those in time linear inN for the 

stated conditions. (Note that we assume c to be a constant 

independent of N.) We thus arrive at the recurrence system given 

in the presentation of the algorithm, which is well known to have 

the stated solution. We have therefore shown that 

SFR(N,2) s 8(N log2 N) (where we use logk N as a shorthand for 

(log Nl). 

We must now determine how much storage the algorithm requires 

(in addition to the storage of theN points). The median selection 

algorithm requires 8(N) work storage. Up to 8(N) storage could be 

required to hold the projected point set built in Step 4. The same 

storage areas for this data could be used by different invocations 

of the algorithm SPARSE2 (since it is not required to save any of 

the information contained there). Thus the total storage required by 

SPARSE2 is linear inN. All of the algorithms described in this 

thesis require linear storage; because the analyses are. very 
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straightforward we will omit them in future algorithms. A more exact 

analysis of the storage requirements is contained in Section 5.1. 

Our, development of SPARSE2 could now proceed in any one of three 

directions. In the first direction we would begin by describing the 

algorithm in a more detailed language. The resulting program is then 

analyzed in detail for its running time (many refer to this as the 

"Knuthian analysis"), and costly segments of code are fine-tuned. 

Though this step should certainly be made at some point in the 

algorithm design process, it would not be appropriate at this stage. 

The second direction in which one could proceed is to see if any 

standard "speed-up tricks" can be applied to the algorithm. In our 

algorithm we note that a great deal of sorting is being done by calls 

on SPARSEl. It is fairly well known that repetitive sorting can often 

be avoided by "presorting" the file (in this case on the x1 key); 

after this presorting the algorithm would have to maintain point sets 

in sorted order. Calls on SPARSEl, however, would take only linear 

time, and the resulting running time of SPARSE2 would be 8(N log N). 

This is the direction that the author actually took in the development 

of the algorithms in this thesis; we will not, however, proceed in 

this manner now. It turns out that the speed-up achieved by presorting 

can be achieved more elegantly in a different way, so the mention 

made thus far of presorting will suffice. We have, however, observed 

another general rule for algorithm development: try to apply standard 

speed-up techniques, such as presorting. 

The third direction open to us, and that which we shall now take, 

is to generalize the current algorithm. A first step in the process 

of generalization is to describe the algorithm in abstract terms--terms 

24 



which convey the essential idea of the algorithm without getting 

cluttered up in details. Such an abstraction of SPARSE2 might be 

"to solve the problem in the plane, solve two subproblems in the 

plane (each operating on half the points), and one subproblem on the 

line". The next step in the generalization process is to generalize 

the current algorithm to the next most simple case; for this problem 

we should now try three dimensions. The obvious generalization of 

the abstraction of SPARSE2 to the abstraction of SPARSE3 is "to 

solve the problem in 3-space, solve two subproblems in 3-space 

(each operating on half the points), and one subproblem in the plane". 

As we mentally sketch first versions of SPARSE3, we see that it is 

very similar to SPARSE2. Instead of choosing a cut line to divide 

the problem into smaller subproblems, we choose a cut plane. After 

solving the subproblems in 3-space, to solve the reduced problem we 

will project all points within o of the plane onto the plane, and 

solve the sparse problem in the plane (for which we can use SPARSE2). 

It would be appropriate at this point to write down algorithm 

SPARSE3 in the same format we used for SPARSE2, and do a similar 

rough worst-case analysis (which would yield its running time as 

0(N log 3 N)). 

We are now equipped to develop a fully general algorithm. We 

guess by induction from the cases k 1, 2, 3 that the running time 

k of algorithm SPARSEk will be 0(N log N). (Such guesses by induction 

can never hurt and are often helpful in finding the algorithm behind 

the running time.) Next we would generalize the abstraction to 

k-space. Finally we are ready to write down our generalization 

SPARSEk as Algorithm 3.1-2. 
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Algorithm 3.1-2 

Procedure SPARSEk(set F) 

1. If IF! ~ 1, then return. 

2. Choose a k-1 dimensional hyperplane P orthogonal 
to the x1 axis partitioning F into two collections 
of N/2 points each, A and B. (Note that this can 
be accomplished by finding the median element of F 
in the xl direction; the hyperplane is defined by 
the median x1 value.) 

3. Solve the subproblems with the recursive calls 
SPARSEk(A) and SPARSEk(B). 

4. Let S be the set of all points within 6 of P 
projected onto P. Note that the projection preserves 
sparsity with the sparsity constant c unchanged. 

5. Call SPARSE(k-1) (S) to solve the sparse problem 
in the k-1 dimensional space. Check the pairs 
enumerated there to insure (a) they are on different 
sides of P and (b) they are within 6 of each other in 
k-space. 

T(l,k) T(O,k) = c
1 

T(N,l) = G(N log N) [Using SPARSEl] 

T(N,k) 

,', T(N,k) 

2T(N/2,k) + T(N,k-1) + G(N) 

G(N lol N) 

2T(N/2,k) 

In the analysis of SPARSEk given in Algorithm 3.1-2 we use the 

notation T(N,k) to denote the worst-case running time of SPARSEk on 

a collection of N points. It is important to note that ou·r analysis 

is indeed of the worst case; we have assumed that all N points will 

lie in region S. By the existence of SPARSEk we have shown that 

SFR(N,k) ~ G(N logk N). 

At this point we do well to "meditate" on our algorithm. Its 

abstraction is "to solve a problem of N points in k-space, solve 

two problems of N/2 points in k-space, and one problem of up to 

N points in (k-1)-space". We might recall that we have seen such 
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a schema before in the algorithm of Kung, Luccio and Preparata 

[1975] for finding the maxima of a set of N vectors in k space, and 

its running time of S(N logk-Z N) is very similar to G(N logk N). 

We should now familiarize ourselves with the related work, to gain 

deeper insight into the problem and perhaps avoid reinventing a 

wheel (for reinvented wheels often have flat sides!). 

We are now faced with a decision similar to one we faced 

previously about SPARSE2: should we try to prove a lower bound 

k of SFR(N,k) ~ 8(N log N), or should we try to develop better 

algorithms? This decision is not so clear cut as before, and we 

should proceed down both paths simultaneously, with insights in 

one area helping our advance in the other until we eventually see 

on which path we should concentrate our attention. It turns out 

that the correct decision (that is, the profitable path) is to try 

to reduce the running time of the algorithms. 

A technique we have already seen for reducing the running time 

of an algorithm was presorting. When applied to SPARSE2, the running 

time was reduced from G(N log2 N) to G(N log N). Unfortunately this 

method can be used in general to remove only one log N factor from 

the running time; it gives rise to a SPARSEk algorithm with 

k-1 8(N log N) performance. We will therefore keep this technique in 

mind, but look elsewhere for other speedups, temporarily ignoring 

presorting to keep our vision clear for larger gains. 

As we seek to reduce the running time of SPARSEk, the principle 

of 11starting with the easiest" dictates that we first concentrate our 

attention on reducing the running time of SPARSE2. We set our goal 

as reducing the running time of SPARSE2 to G(N log N). We have two 
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reasons for choosing this goal. First, G(N log N) was achievable for 

SPARSE!, and secondly, it was achievable for SPARSE2 with presorting. 

It is often helpful in alg-orithm design to have in mind a specific 

performance bound as a goal. 

We should now investigate SPARSE2 to find out why it does not 

achieve G(N log N); we should ask why is it so expensive? We see 

that .the factor in the recurrence system of Algorithm 3.1-1 that 

raises the cost to G(N log2 N) is the call on SPARSE! with up to N 

points, which costs G(N log N). Thus we have identified the aspect 

of our algorithm which causes the increase in running time; we should 

now concentrate on reducing this cost. 

There are two ways in which we can decrease the cost of the call 

on SPARSE!. The first is to make SPARSE! faster; this is essentially 

the way in which presorting brought about a speedup. Apart from 

presorting, however, we can see no way to speed up SPARSE!. The second 

way to speed up our call on SPARSE! is to reduce the cardinality of 

the set S which we pass to the procedure. We have assumed that all 

N points will be in S; let us study exactly what that situation entails 

by observing Figure 3.1-2. If all N points lie in a vertical slab 

of width 26, then the obvious strategy for reducing the cardinality 

of S is to choose as the cut line ~ a horizontal line dividing F into 

two equally sized sets. The cardinality of Swill then be at most c 

and the call on SPARSE! will take only constant time. It turns out 

that not all cases are this easy, but examination of the most 

degenerate case has led us to an idea for reducing the size of S: 

sophisticated choice of cut lines. We thus note the importance of 

examining the degenerate cases. 
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Bad cut 
line £ 

9 • • • 
• • • 
• • • • • • • 

• • • • 
• • 

• • • • 
• • •• 
• • 
~6~ 

~6~ 

Figure 3.1-2: A degenerate case 

Good cut 
line £ 

We now look for a strategy for choosing cut lines. What we 

need is a strategy which keeps the subproblems A and B balanced, 

allows a cut line to be found in linear time, and gives a set S such 

that the call SPARSEl(S) takes at most linear time. If we assume 

that the running time of SPARSE! cannot be reduced below 8(N log N), 

this implies that the cardinality of S will have to be O(N/log N) 

(note that for a 8(M log M) function to be O(N), M must be 

O(N/log N)). Because of our good fortune in the degenerate case 

we examined in Figure 3.1-2, we might guess that the strategy we 

should employ is to try a vertical cut line, and then if that fails, 

try a horizontal, hoping that at least one of the two will yield a 
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set S of acceptable size. The counterexample depicted in Figure 3.1-3 

shows that this strategy will not always work. Both the horizontal 

and vertical cut lines which partition F by finding median elements 

have resulting values of jsj N/2, which is greater than O(N/log N). 

Hence we see that our strategy for choosing the cut line will have 

to become more sophisticated in one of two ways: by choosing a cut 

line which is not necessarily orthogonal to one of the axes, or by 

choosing a cut line which does not partition the set into subproblems 

of exactly equal size. 

N/2 points 
• 
• 
• 
• 
• 

• • • • • • • • • • • N/2 points 

• 
• 
• 
• 
• 

Figure 3.1-3: A second degeneracy 

Though choosing a cut line which is not orthogonal to one of the 

axes is attractive at first glance, it seems to be a difficult strategy 

to implement. In Figure 3.1-3 it is obvious to the human eye to choose 

a cut line that makes a 45° angle with the axes and passes through 
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the center of the set; it is not obvious that an algorithm could 

choose that as easily. After devoting much effort to this strategy, 

the author could make no progress. 

We now concentrate our search for a cut line selection strategy 

on a cut line which is orthogonal to one of the coordinate axes but 

does not necessarily divide F exactly in two. A suitable strategy 

must insure three things about the cut line ~ it chooses: First, ~ 

must be locatable in linear time. Secondly, only O(N/log N) points 

can lie within 6 of ~- Thirdly, the sets A and B induced by ~ must 

be of almost the same size (that is, balanced). The definition we 

have used of balanced so far is that the cardinality of A and B 

differ by at most one. For many divide and conquer algorithms, 

however, such a strict definition of balanced is not required. A 

suitable definition of balanced, which preserves the asymptotic 

G(N log N) behavior but changes the constants, is that the size 

of each subproblem is at least as large as some constant nroportion 

p of the total problem size. This is a generalization of the 

principle employed in the definition of balanced trees due to 

Adel'son-Vel'skii and Landis [1962]. A node in a tree which is 

balanced by their definition does not necessarily have the same 

number of left and right descendants, but each of the subtrees is 

. -1 
known to contain at least 1 - ~ (or approximately 38%) of the 

descendants of the node (see Knuth [1973] for a proof). This 

condition, which is weaker than demanding totally balanced (or 

complete) trees, is enough to guarantee logarithmic search behavior 

in balanced trees. Thus the third condition that our cut line 

selection strategy must meet is that both A and B partition the 
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input set and each contain at least pN points, where p is some constant 

the strategy must choose. 

Now that we have a fairly clear idea of what we are looking for, 

we must choose a value of p and show that such a cut line £ will exist. 

Once again we derive a benefit from having examined the degenerate 

case--we know from the degeneracy in Figure 3.1-3 that p must be less 

than 1/4. We thus have reduced our problem of algorithm development 

to a problem of constructing a geometric proof. We must now don hats 

of both algorithm designers and mathematicians and proceed to con-

jecture and prove the following theorem. 

Theorem 3.1-1: (Existence of a cut line in the plane.) Given 

a sparse collection of N points in the plane (where N is greater than 

some constant N
2
), there exists a cut line£ perpendicular to one of 

the original coordinate axes with the following properties: 

1. No more than 7N/8 points are on either side of £. 

2. There are at most 2cN1/ 2+1 points within distance 

o of L 

Proof: To prove this theorem we will show that the assumption 

of its negation leads to a contradiction. To do this we demonstrate 

that a set without the properties described in the theorem must be 

both very dense and very sparse. Consider the points indexed in 

increasing order by x-coordinate (thus the point with the least x 

value has index 1, etc.; points with tied x values are indexed 

arbitrarily). Let us now restrict out discussion to M , the middle 
X 

3N/4 points in the indexing (only a cut line which passes through 

the restricted set will satisfy Condition 1 of the theorem). The 

assumption of the negation implies that every collection of 
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2cN112+1 points contiguous in the indexing projects onto a segment 

of the x-axis less than 26 in length (if a given collection projects 

onto a longer segment then the center of that segment could be used 

to define a cut line£ with the desired properties). The situation 

that we have described is depicted in Figure 3.1-4. The regions R 
X 

and L contain the rightmost and leftmost N/8 points in the indexing, 
X 

respectively. The region C is that to which we have restricted our 
X 

discussion; it is the smallest vertical slab containing M . We now 
X 

subdivide C into closed regions T. by drawing vertical lines through 
X l 

the 1-st, 1(2cN1 / 2)+1 -st, 2(2cN112)+1 -st, 3(2cN112)+1 -st, ••. 

points of M (ordered by index); note that there are 2cN112+1 points 
X 

in any region T .. Because the boundary point (on the line) is in 
l 

two regions Ti and Ti+l' there are only 2cN112 points uniquely 

associated with region Ti (associate the boundary point with Ti and 

Since each T. is defined by 2cN112+1 points contiguous 
l 

in the x dimension, its width is bounded by 26. We can now bound 

the width of C by observing that C is comprised of (3N/4) I (2cNl/Z) 
X X 

regions T., each of which is of width less than or equal to 26, so we 
l 

have 

width(C ) :; 
X 

(3N/4) 

2cN112 
• 26 = 

We have thus far considered only C , the center region in the 
X 

x dimension; similar arguments hold for C , the center region in the 
y 

y dimension. Let us now examine C , the intersection of C and C . 
~ X y 

Since at most N/4 points lie outside each of C and C , there must be 
X y 

at least N/2 points in C 
~ 

On the other hand, since 
3Nl/Z6 

the sides of C~ is bounded by 4c , the total area 
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above by that length 9No 2 
squared, or ----. 

16c2 
By sparsity we know that 

the number of points in C is therefore bounded above by 
xy 

__ c_ = 9N/64c points (where c ~ 1). 
4o 2 

We have thus arrived 

at the contradiction that C contains at least N/2 points, but at 
xy 

most 9N/64c points. 

proved our theorem. 

Therefore the negation is false and we have 

(Certain assumptions, such as C being composed 
X 

of many collections of 2cN112 points, required "large enough" N. 

We included the phrase "N > N2" in the statement of the theorem for 

that reason.) 0 

L c R 
X X X 

Tl T2 T. 
• ]. 

• • • 
• • • • • • • 

• • • • • • • • 
• • • • • • • • 

• • • 

Figure 3 .. 1-4: N points in the plane 

Theorem 3.1-1 leads immediately to a 8(N log N) algorithm for 

the SFR problem in the plane. Before the first invocation of our 

faster recursive procedure (which ~e will call FSPARSE2), we presort 

the points on all coordinates to allow rapid sequential processing of 
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the file. A recursive invocation of FSPARSE2 would then choose the 

cut line £ by scanning down both sorted lists until it found a gap 

26 wide which contained not more than 2cN1/ 2+1 points. It would use 

the middle of that gap for L The existence of such a gap is 

guaranteed by the theorem. After the resulting subcollections are 

recursively processed the algorithm would project all points in the 

slab to form setS; its cardinality would be O(N112). Hence the 

call SPARSEl(S) would require O(N) time. The recurrence relation 

describing the worst case running time of FSPARSE2 would be 

T(N) = T(N/8) + T(7N/8) + 8(N) 

which has solution T(N) = 8(N log N). 

In the actual algorithm design process one would at this point 

write down a description of FSPARSE2. We will skip that stage for 

brevity, and proceed to generalize to FSPARSEk. The generalization 

should be obvious. We start by proving Theorem 3.1-2, and then give 

FSPARSEk as Algorithm 3.1-3. 

Theorem 3.1-2: (Existence of a cut plane ink-space.) Given 

a sparse collection of N points in k-space (where N is greater than 

Nk)' there exists a cut plane P perpendicular to one of the original 

coordinate axes with the following properties: 

1. No more than,N(l-l/4k) points are on either side 

of P. 

2 Th t k Nl-1/k 1 . . h. d . . ere are a most c + po1nts w1t 1n 1stance 

o of P. 

Proof: ·The proof proceeds in the same manner as that of 

Theorem 3.1-1. Assuming the negation of the theorem leads us to 

the contradiction that the hypercube in k-space corresponding to 
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r 1 ,k 

I 
(l-2k) I C contains at least N/2 points, but at most k • eN points, 

xy .__ c . .-1 
which is less than N/2 for k > 1, c ~ 1. D 

Algorithm 3.1-3 

Procedure FSPARSEk(set F) 

1. If IFI $ 1, then return. 

2. Choose a k-1 dimensional hyperplane P 
partitioning F into two point sets A and B in 
the following way. For each of the k dimensions, 
scan down the list of the points sorted by that 
dimension from the (N/4k)-th element to the 
(N-N/4k)-th element. In the scan keep two 
pointers active, one kcNl-l/~1 elements ahead 
of the other. For each pair examined, calculate 
the distance between them. When a distance 
greater than 28 is found, stop the scan and 
choose the center of that interval as the value 
defining the hyperplane. Theorem 3.1-2 guarantees 
that such an interval will be found. 

3. Divide F into the two subsets A and B 
determined by P. Maintain the sorted lists 
for each dimension for both A and B. 

4. Solve the subproblems with the recursive 
calls FSPARSEk(A) and FSPARSEk(B). 

5. Let S be the set of all points within o 
of P projected onto P. Note that projection 
preserves sparsity. As in Step 3, maintain 
the orderings by dimension for set s. 
6. Call FSPARSE(k-1) (S) to solve the sparse 
problem and check enumerated pairs for false 
drops. 

T{l,k] 

T[N,l] 

T[O,k] = c1 

8 (N log N) 

T[ (l/4k)N,k] + 
T[ (1-1/ 4k)N,k] 

c
4
N 

T[ckNl-l/k+l,k-1] 

T[N,k] 

:. T[N,k] 

T[(l/4k)N,k] + T[(l-l/4k)N,k] + El(kN) + T[El(Nl-l/k),k-1] 

G(kN log N) 

Algorithm FSPARSEk is easily understood as the reader keeps 

algorithm SPARSEk in mind. It is essential for the G(kN log N) 
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running time that the representation of a set of points in k-space 

include the point set sorted in order by each of the k dimensions. 

This can be easily accomplished by presorting the file on each 

of the k dimensions, and then keeping a linked list representation 

of each sorted list. When a set is partitioned into two subsets 

the list is "unzipped" to form two sorted lists (by an "inverse 

merge" procedure), and then merged back together again when the 

partitioning is no longer required. 

The worst-case behavior of FSPARSEk occurs when the sets A 

and B. are most unbalanced, hence we assume that condition in our 

worst-case analysis, giving the stated recurrence relation. We 

can easily prove by induction that the solution to the recurrence 

system is as stated. The thrust of the argument is that if we 

have shown that T(N,k-1) is 8((k-l)N log N), and we invoke that 

on a set of O(N/log N) points, then the cost of the procedure 

is O(kN). The rest of the analysis for the k dimensional case 

is standard, and FSPARSEl = SPARSE! gives the basis for the induction. 

Should we try to reduce the running time of FSPARSEk below 

8(kN log N)? It certainly seems that the factor of k cannot be 

decreased, for the amount of information describing each point 

increases linearly with k. The question of whether the 8(N log N) 

can be reduced seems to be very hard. We show in Section 3.4 that 

in general, 0(N log N) is a lower bound for SFR(N,k) by examining 

the degenerate case of o = 0. For nonzero o, however, Bentley, 

Stanat and Williams [1976] have shown that SFR(N,k) = G(kN) and 

have also given an algorithm which shows SFR(N,k) = 8(kN) if an 
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arbitrary amount of random access storage is available. The author 

conjectures that 8(kN log N) is a lower bound on the minimax 

complexity of the SFR problem if only 8(kN) work storage is permitted. 

As we come to an end of our development of algorithms for the 

SFR problem, we should ask what we have gained by examining the problem. 

We have observed many general principles of algorithm design of which 

we should be conscious and employ in the development of further algo­

rithms. The algorithms which we have developed are important tools 

for us to keep in our tool bag as we examine further closest point 

problems. 

We have also gained insight into a particular class of divide 

and conquer algorithms for multidimensional space. There are three 

important themes in the algorithms in this section. The first theme 

is the abstract schema of solving a problem by dividing it into two 

smaller problems in the same space, and one problem in a space of 

lower dimensionality. The second theme is the use of sparsity, 

which we employed to limit output size as well as an invariant 

condition (of sorts) for our reduced sets. The third particular 

principle of multidimensional algorithm design we observed is that 

of prudent choice of cut planes. We will find these three techniques 

very useful in further problems which we study. 

3.2 Closest pair algorithms 

We now turn our attention to algorithms for the closest pair 

problem. In review, we are to develop a procedure which will tell 

what are the two closest together among N points in k-space. In 

this development we will use the results of Section 3.1 both as 
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available tools and as a source of experience in multidimensional 

problem solving. 

In developing a closest pair algorithm we will follow our 

well established rule and start with the simplest case. Finding 

the closest pair in one dimensional space can be easily accomplished 

by sorting the points and then scanning down the sorted list, 

looking for the closest point to each (which will be either its 

left or right neighbor) and remembering the pair with minimum 

separating distance. The sort will take 8(N log N) time and the 

scan 8(N), so the running time of the algorithm as a whole will 

be 8(N log N). Thus we know that CP(N,l) $ 8(N log N). 

The next most simple case is that of the plane. The obvious 

iterative strategy that examines all(~) pairs of points and finds 

the minimum distance requires quadratic time, and knowing that the 

complexity of the problem is 8(N log N) on the line makes us 

hesitant to settle for quadratic in the plane. We are therefore 

encouraged to look for faster algorithms in the plane Rnd the first 

technique that occurs to us is divide and conquer. 

The logical way to proceed in our attempt to apply divide and 

conquer to the closest pair problem in the plane is to employ as 

much as possible of a strategy for solving a similar problem. In 

this case the CP problem is similar to the SFR problem, so we will 

attempt to apply aspects of algorithm SPARSE2 to algorithm PAIR2 

(which solves the CP problem in the plane). (Starting with the 

easiest dictates that we should not try to apply FSPARSE2.) A 

divide and conquer procedure typically has three identifiable stages: 

breaking the problem into subproblems, recursively solving the 
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subproblems, and combining the solutions of the subproblems to 

yield a solution to the problem as a whole. In our development 

of PAIR2 we should try to use as many of these stages from SPARSE2 

as possible. 

We will now attempt to synthesize PAIR2 using components from 

SPARSE2. SPARSE2's first stage of dividing the file F into two 

point sets A and B by a vertical line £ seems to be applicable to 

the CP problem, so we will take that as the "divide" stage of PAIR2. 

For the "recursive" stage we will find the closest pairs among both 

A and B. Is there some way in which we can now combine these 

solutions to the subproblems to form a solution to the CP problem? 

In order to answer this question we should examine what properties 

are true in the plane after the subproblems have been solved; to 

investigate this we shall employ Figure 3.2-1. The letters, A, B, 

and £ all have their obvious meanings in the figure. We use oA to 

denote the L distance between the closest pair in A and similarly 
"' 

A B 
• • • • • 

• • • • 
• 

oA\._ • • 
.4B 

• • • • 

Figure 3.2-1: The plane with solved subproblems 
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The closest pair in the whole plane might very well be the closest pair 

in A or the closest pair in B. Let us use 6 = min(6A,6B); 6 is the 

distance between the closest pair we have discovered so far. To combine 

the solution of the parts to form a solution to the whole we must find 

any pairs in the plane that are closer than 6 to one another; the 

closest pair in the whole plane (if not 6 A or 6B) will be among these. 

We must make two observations before we can synthesize the third 

stage of PAIR2. First, if a pair is within 6 in the plane, then the 

points of the pair must be on opposite sides of £. Were they not, 

then the previous values of oA and 6B must have been inaccurate. 

Secondly, we note that the set A is sparse with respect to radius 6A. 

The sparsity constant c = 9 can be found by examining the worst-case 

configuration of points given in Figure 3.2-2 (nine points are in the 

6A ball with center x); no 6A ball could contain more than 9 points, 

for if it did then two of the points would be closer than 6A together, 

which denies that 6A is the distance separating the closest pair in A. 

Region B is likewise sparse with respect to oB and c = 9. It is thus 

clear that the plane as a whole is sparse with respect to radius 6 and 

c = 2·9 = 18 (because no 6-ball contains more than 9 points from A or 

9 points from B, or 18 points all together); the bound of 18 could be 

tightened. 

• • • 

• 

• • 

Figure 3.2-2: A worst-case configuration 
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We are now equipped to synthesize the "combining" stage 

of PAIR2. We.must locate any pairs in the space within 6 of 

each other and we have shown that the space is sparse; we need 

only solve the SFR problem in the plane. Our experience with 

SPARSE2 suggests that in doing that we might be doing more 

work than we need to do, and our first observation above 

(that the pair for which we are looking must have its points 

on opposite sides of £) implies that we need only examine 

points in the slab of width 26 and c~nter £, just as in 

SPARSE2. To do this we project all points within 6 of £ 

onto £, and then solve the resulting SFR problem on the line. 

Having synthesized the third and final stage, we are 

ready to present the resulting divide and conquer algorithm 

PAIR2 as Algorithm 3.2-l'which returns the distance separating 

the closest pair in the space. (The bookkeeping required to 

give the points comprising the pair is obvious and giving 

it would only serve to obscure the structure of the algorithm.) 
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Algorithm 3. 2-1 

Procedure PAIR2(set F) 

1. If IFI = 2 then return the interpoint distance. 

2. Choose a vertical line ~ partitioning F into two 
collections of about N/2 points each, A and B. 

3. Use the procedure recursively to find 

oA + PAIR2(A), and 

oB + PAIR2 (B). 

4. Set 6 + min(6A,6B). 

5. Project all points within 6 of ~ onto ~; call this 
set S. (Note that this collection is sparse on the line 
with sparsity constant c = 18.) 

6. Use SPARSEl(S) to enumerate all pairs within 6 in S. 
Check for any pairs enumerated that are within 6 in 
the space and on different sides of ~. Let E be the 
distance between the closest pair enumerated. 

7. Return min(6,s). 

T(N) = 2T(N/2) + G(N log N) 

:. T(N) = G(N log2 N) 

2T(N/2) 

SFR(N,l) 

We should now inspect PAIR2 to see what principles of multi-

dimensional problem solving we employed that might be valuable in our 

further development of closest pair algorithms. The technique of 

dividing a problem by a vertical cut line proved useful once again. 

One of the most interesting aspects of this problem is that sparsity, 

though not present in the original point set, was induced in the 

problem after the subproblems were solved. We were then able to use 

the induced sparsity to our advantage in putting together the sub·-

problems to form a solution to the whole problem. The abstract 

description of PAIR2 is the same as for SPARSE2. 

Our development of PAIR2 could now proceed in two directions, 
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corresponding to the two directions in which we modified SPARSE2. 

The first is to generalize PAIR2 to PAIRk; the second is to speed 

up PAIR2 to yield FPAIR2. We see here an important principle of 

algorithm development: the development of new algorithms should 

follow as closely as possible the development paths of established 

algorithms. Following a development path similar to that of 

FSPARSEk helps make the decision of which path to follow now seem 

less important. We assume that we are aiming eventually toward 

an algorithm we will probably call FPAIRk; we will therefore 

probably have to follow both paths before we reach our goal. The 

order in which we pursue the paths does not at this point seem to 

be crucial. 

Let us first generalize PAIR2 to higher dimensional spaces. 

In the actual development process we would try to develop an alga-

rithm for 3-space at this point; for brevity, however, we will skip 

that stage and attempt now .to develop PAIRk, which will find the 

closest pair in k-space. We should keep both SPARSEk and PAIR2 

in mind as we develop PAIRk. The first stage of PAIRk is the same 

as the first stage of SPARSEk--choosing a (k-1)-dimensional hyper-

plane P dividing F into two almost equally sized sets A and B. The 

second stage is also fairly obvious, both from PAIR2 and SPARSEk--we 

should find oA and oB by recursive use of PAIR2. Note that we have 

now guaranteed sparsity in both A and' B with constant c = 3k, by 

an argument similar to that in our development of PAIR2. We can 

also show that if we let o = min(oA,oB)' then the set as a whole 

k is sparse with constant c = 2•3 • With this condition insured, 

the last stage of our divide and conquer algorithm becomes 
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clear--project all points within 6 of P onto P, then check that 

projection for pairs within 6 using FSPARSE(k-1). Lets be the 

distance in k-space between the closest pair in S, then return the 

minimum of 6 and s. 

Algorithm PAIRk is so similar to PAIR2 that it is not necessary 

to describe it formally. The recurrence relation describing its 

running time is the same, and the running time is also G(N log2 N) 

for fixed k. The reason that the logarithmic term is only squared 

and not raised to the k-th power is that we used the faster 

algorithm FSPARSEk as a tool. (Though it would have been imprudent 

to use it as a model because it is so complicated, it is quite 

helpful to have it lying in our tool bag.) Algorithm PAIRk shows 

that for fixed k, CP(N,k) $ G(N log2 N). 

Should we be satisfied with the G(N log2 N) performance of 

PAIRk, or should we try to speed it up? Both our bound of 

CP(N,l) ~ G(N log N) and our experience in building FSPARSEk 

suggest that we should try to reduce the running time. Should we now 

try to speed up the general algorithm PAIRk, or should we attempt 

to modify PAIR2 first? The author hopes that by now the principle 

of "starting with the easiest" is so firmly established that the 

reader's response is immediate--we start with PAIR2. 

Before we attempt to modify PAIR2 we should familiarize 

ourselves with our previous work on FSPARSE2--though different in 

some ways, the problems share many similarities. As in our develop­

ment of FSPARSE2, we should have ip mind a specific performance 

bound as a goal; many signs point to G(N log N) as a reasonable goal. 

As we analyze our failure in reaching that goal we see that it is the 
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same that led to SPARSE2's 0(N log N) running time: poor choice of 

cut line could lead to all N points being within o of £. Because 

PAIR2 suffers from the same problem as SPARSE2, it is prudent for 

us now to seek the same cure, namely a strategy for intelligent 

choice of the cut line. 

Our task now is to develop a cut plane selection strategy 

which will turn PAIR2 into FPAIR2. To fully employ what we learned 

in turning SPARSE2 into FSPARSE2 we should ask two questions about 

the CP and SFR problems: How are the problems similar? How are 

the problems different? The problems share many similarities. In 

both cases the goal is to find a cut line with O(N/log N) points 

near it. In both cases cases the collection of points is guaranteed 

to be sparse after the subproblems are solved. In both cases the 

sparsity constant c is known at the invocation of the procedure 

(c = 2•32 = 18 for PAIR2). The crucial difference is that in 

SPARSE2 we knew the sparsity radius o at the invocation of the 

procedure whereas with PAIR2 we learn o only after the subproblems 

have been solved. This is indeed an important difference, for we 

must choose the cut line in order to divide the set into the sub-

problems to be solved. 

We must develop, therefore, a cut line selection strategy that 

is promised a value of o, but does not know that value at the time 

it executes. We should try to use as much of our selection 

strategy from SPARSE2 as possible. The essential step in that 

process (scanning until the distance between points 2cN112+1 apart 

on the list was greater than o) is impossible without a priori 
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knowledge of 6. At this point the author was forced to rely on . . 

intuition, and the following idea arose. Instead of scanning until 

we find an "interpoint span" (as we might call the distance between 

points 2cN1/ 2+1 apart on a projected list) of at least 26, and then 

stopping, why don't we just scan all lists, find the maximum 

"interpoint span", then use the center of that 11 interpoint spann as 

our cut line. As before, we insist that both A and B contain at 

least N/8 of the points, and we conjecture that when a value for 6 

is finally known, at most 2cN1/ 2+1 points will lie within 6 of ~. 

Once one conjectures the above, it is quite easy to prove. 

Assuming the nagative (that is, that more than 2cN112+1 points 

lie within 6 of t) leads to the same contradiction as in the proof 

of Theorem 3.1-2. Let us call the length of the maximum interpoint 

span m. Assuming that more than 2cN1/ 2+1 points lie within 6 of ~ 

implies that m < 26; this is illustrated in Figure 3.2-3. Thus the 

length of the maximal interpoint span is less than 26. From this 

it immediately follows that every collection of 2cN112+1 points 

projects onto a length of at most 26; if it projected onto a 

greater length, then the stated span would not be maximal. We can 

therefore assert that every collection of 2cN112+1 points projects 

onto an interval of length at most 26. But this, along with sparsity, 

was the essential step in the proof of Theorem 3.1-1; the rest of that 

theorem follows from this. Thus we have shown that at most 2cN112+1 

points will lie within 6 of t (after 6 is found) when ~ is chosen 

in the above way. 
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0 Exactly 

2cN1/ 2+1 

• .points 
• • 

• • • • • • • • • • • • • • • • • . . 
• • • • • • m More than 

2cN112+1 
points 

Figure 3.2-3: The maximum interpoint span 

There is a subtlety about the above method that deserves study. 

It is interesting that we can choose our cut line before we know the 

value of 6. We observe here the value of following the development 

of FSPARSE2. We certainly could not have made the conjecture we did 

without the basis of our experienc.e with FSPARSE2. With that 

experience, however, the conjecture was quite natural, and we were 

even able to "borrow" most of its proof. 

We are now equipped to give a high level description of FPAIR2. 

For the sake of brevity, however, we will not actually give such 

a description in this thesis. FPAIR2 is the obvious mixing of 

PAIR2 and FSPARSE2; we will proceed now to develop and describe 

FPAIRk. 
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In our development of FPAIRk we will rely heavily on both 

FPAIR2 and PAIRk. Figure 3.2-4 shows how we can view those as two 

orthogonal directions in a "development vector space" which we now 

combine to yield a fast algorithm in k-space. Our task can be 

viewed as modifying PAIRk to employ a sophisticated cut plane 

selection strategy. Our experience with FPAIR2 and FSPARSEk 

immediately suggests a strategy: scan all dimensions, looking 

for the maximum interpoint separation of kcNl-l/k points, then 

choose the center of that interval for the cut plane (while, of 

course, guaranteeing that both· A and B contain at least N/4k points). 

One can prove that such a selection strategy yields a cut plane 

within o of which there are at most kcNl-l/k points after o is known; 

the essential step in the proof is the same as that in the proof of 

FPAIR2. 

Speed-up 
using 
sophisticated 
cut planes 

T 

FPAIR2 

PAIR2 
Generalization to 
higher dimensionality 

FPAIRk 

PAIRk 

Figure 3.2-4: An algorithm development vector suace 
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We are now ready to describe FPAIRk as Algorithm 3.2-2. As with 

FSPARSEk, it assumes that the representation of point sets includes a 

sorted list of the projection of the set in each dimension. This can 

be accomplished by presorting at a cost of 8(kN log N) time and 8(kN) 

storage used to represent the lists. 

Algorithm 3.2-2 

Procedure FPAIRk(set F) 

1. If IFI = 2 then return the interpoint distance. c1 
2. Choose a k-1 dimensional hyperplane P partitioning c2kN 
F into two point sets A and B in the following way. For 
each of the k dimensions, scan down the list of the points 
sorted by that dimension from the (N/4k)-th element to the 
(N-N/4k)-th element. In the scan keep two pointers active, 

one kcNl-l/k+l elements ahead of the other. For each pair 
examined, calculate the distance between them. Record the 
maximum interval so encountered, and use the center of that 
interval as the value defining the cut plane P. 

3. Use the procedure recursively to find 
8A + FPAIRk(A), and 

8B + FPAIRk(B). 

(Note that this requires maintaining the sorted lists.) 

4. Set 8 + min(8 A' 8B). 

5. Project all points within 8 of P onto P; call 

this setS. Note that lsi ~ kcNl-l/k and that S is 
sparse for c = 2·3k. 

6. Use FSPARSE(k-1) (S) to enumerate all pairs 
within 6 in S. Check for any pairs enumerated 
that are within 6 in the space and on different 
sides of P. Let s be the distance between the 
closest pair enumerated. 

7. Return min(6,s). 

T(2) c
1 

T[N/4k] 
+ T[N(l-l/4k)] 

SFR(G(Nl-l/k),k-1) 

T(N) = T[N/4k] + T[N(l-l/4k)] + 8(kN) + SFR[G(Nl-l/k),k-1] 

= T[N/4k] + T[N(l-l/4k] + 8(kN) 

,', T(N) 8(kN log N) 
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What lessons can we learn from our development of FPAIR2? An 

important principle of algorithm 'development which we employed was 

to follow closely the development paths of algorithms for related 

problems. We should adhere closely to this principle in our work 

on the ANN problem. The following observation is a tool for multi­

dimensional algorithm design which allowed us to use our work on 

the SFR problem to help us in the CP problem: Although sparsity 

is not present in the original problem, it can be induced in sub­

problems. 

3. 3 All nearest neighbor algorithms 

The all nearest neighbor problem is the topic of this section. 

The output of an ANN algorithm is to be N pairs of points. The 

first element of the pairs will range over all N points, and the 

second element will be the closest point among the N to the first 

element (with ties broken arbitrarily). 

By now it should be almost natural to start with the one 

dimensional case, because it is the most simple. After sorting the 

points to form a sorted list, the nearest neighbor of each point 

is either the right or left neighbor in the sorted list. The 

running time o= such an algorithm is dominated by sorting; thus the 

algorithm described above shows ANN(N,l) $ G(N log N). 

As we examine the planar problem it is obvious that the straight­

forward iterative procedure requires 8(N2) time. Both our previous 

experience in this area and the fact that the problem is G(N log N) 

on the line motivates us to look for a divide and conquer approach 

that will yield a faster algorithm• As we observed in Section 3.2, 

51 



it will be very beneficial to our development to follow closely the 

development paths of our SFR and CP algorithms. 

We will now attempt to synthesize an ANN algorithm for the 

plane, which we will call ALL2. In this synthesis we will use both 

insights and components from SPARSE2 and PAIR2. Our resulting 

divide and conquer algorithm will have three stages: break the 

problems into subproblems, solve the subproblems, then combine 

the solutions to the subproblems to yield a solution to the ANN 

problem. The first two stages should be fairly obvious to us by 

now. The divide stage will consist of choosing a vertical line t 

which divides the points into two almost equally sized subcollections 

A and B. The second stage will consist of finding all nearest 

neighbors for all points in A and B (recursively). 

Before we look for a way to combine these subsolutions to form 

a solution to the whole, we should ask what properties are true of 

the subsolutions? We will probably need to know certain crucial 

properties to be able to combine the answers, and observing the 

problem at this stage with an unbiased eye might help us to observe 

properties we would miss later on. From our previous experience we 

are most tempted to look for a property of sparsity. We have no 

fixed radius to work with as in the CP and SFR problems, but is some 

other type of sparsity present? We observe that in the CP and SFR 

problems, we had available a single distance that characterized 

sparsity for the whole space in the solution to the problem (namely 8 

for the SFR and the minimum interpoint distance for the CP problem). 

For the ANN, however, no such global distance is available; instead 
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we have a local distance for each point, namely the distance to its 

nearest neighbor. Whereas before we described sparsity in terms 

of a-balls, where a was the same over all the space, for the ANN 

problem we should seek a definition of sparsity in terms of spheres 

of varying radii. It seems feasible to expect that the mathematical 

construct appropriate to describe the sparsity in the ANN problem 

is what we might call the NN-ball. We define the NN-ball for point X 

to be the closed ball of center X and radius equal to the distance 

to X's nearest neighbor. 

We now look for a condition that can be predicated of the space 

in terms of NN-balls. To fully employ the similarity present in the 

problems, let us recall the definition of sparsity in SFR in terms 

of a-balls. For the SFR problem we asserted that no a-ball in the 

space contained more than some consta~t c points in the file (or 

"file points", as we call them to distinguish them from an arbitrary 

point in the space). Notice that this is equivalent to saying that 

no point in the space is contained in more than c a-balls centered 

at file points. This viewpoint helps us to make the following 

conjecture: No point in the plane is contained in more than some 

constant c NN-balls. By analogy with the CP problem, we might also 

conjecture that c = 9. 

Once we have conjectured the above it is easy to prove its 

truth. Recall that we are dealing with a collection of N points 

in the plane, and we know the nearest neighbor of each. To help 

the reader's insight one can view the NN-ball corresponding to 

each point in the file as the smallest rectilinearly oriented square 

centered at that point that contains another file point; A 
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collection of points and their corresponding NN-balls are depicted 

in Figure 3.3-1. What we must prove now is that no point x in the 

file is contained in more than 9 such NN-balls. We will first show 

that if point x is contained in the NN-ball of point y, and point y 
' 

is in quadrant 1 of x (this will hold true for any quadrant), then 

x is contained in no other NN-ball of a point in quadrant 1. We 

illustrate this in Figure 3.3-2. No other file point can be in 

y's NN-ball; if it were, then y's NN-ball was not accurately 

calculated. Thus any other NN-ball with center in quadrant 1 which 

contains x must have its center in the shaded area marked S. But 

any L
00 

ball centered inS and containing x must also contain y, in 

which case it cannot be an NN-ball. Thus we have shown that x can 

be contained in at most one NN-ball centered in each quadrant. It 

is clear that x can be contained in at most one NN-ball centered 

on each ray dividing the four quadrants, and finally x could be 

contained in an NN-ball centered at x itself. Thus there are 

at most nine positions in which points whose NN-balls contain x 

could lie: in the four quadrants, on the four rays dividing 

quadrants, and on x itself. That a point can actually be in 

nine NN-balls is illustrated in Figure 3.3-3; point x lies in the 

NN-balls centered at each of the nine points pictured. We 

state this observation formally as Theorem 3.3-1. 
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Figure 3.3-1: A collection of NN-balls 

Figure 3.3-2: The NN-ball with center y is the only enclosing 
NN-ball in quadrant 1 of x 
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Figure 3.3-3: Point xis contained in 9 NN-balls 

Theorem 3.3-1: Given a collection of N file points in the 

plane, no point in the plane lies in more than nine NN-balls. 

Furthermore, it is possible for some point in the plane to lie in 

nine NN-balls. 

Equipped with this theorem we are prepared to synthesize the 

combining stage of Algorithm ALL2. Recall that the first two stages 

of ALL2 have divided the points in the file into two collections A 

and B and all nearest neighbor pairs in A and B have been found. 

Assume that for each point x in A we associate with x its nearest 

neighbor in A and likewise·for all points in B. The recombining 

stage must check and see for all points x in A if there is any 

point y in B that is nearer to x than x's nearest neighbor in A 

(which has been recorded), and likewise for all points in B. This 

situation is illustrated in Figure 3.3-4. Points 1 and 2 in A and 
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points 3 and 4 in B are shown with the NN-balls as determined in the 

"intraset" calculations. The only mistake that needs to be corrected 

is the fact that 3's nearest neighbor is 2, not 4. Thus we see that 

the recombining stage can be accomplished by first checking for every 

point x in A if there is any point y in B nearer to x than x's 

nearest neighbor in A, then doing the same for all points in B. 

A B 

3 

2 4 
1 

Figure 3. 3-4; Two so 1 ved subproblems 

Since these problems are obviously symmetric, we do well to 

concentrate our attention on only one of them; after we solve that 

we can apply its solution immediately to the other. We will con­

centrate on checking for all point~ in A if there is any point in 

B nearer to that point than its calculated nearest neighbor in A. 
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This situation is illustrated in Figure 3.3-5. Points 1 through 5 

are in A and points 6 through 10 are in B. The NN-balls for the 

subsolution of A are shown. The mistakes in A that need to be 

corrected are that 6 is the nearest neighbor to 3, and 7 is the 

nearest neighbor to both 4 and 5 (because they lie in the sub­

solution NN-balls). We can observe a number of things about the 

recombining process from Figure 3.3-5. It was not necessary to 

check for points in B lying in the NN-balls belonging to 1 and 2 

because neither of their NN-balls intersected £. In the projection 

of points in B onto £, both points 6 and 7 lie in the NN-balls of 

point 3 and points 4 and 5, respectively. 

3 • 6 

l• 2 .s 

•9 
• 10 

4 

• 7 

5 

Figure 3.3-5: One solved subproblem 
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Having made these observations we are ready to construct an 

algorithm to combine the subsolutions. First project every point 

in B onto ~. then project all NN-balls in A which overlap ~ onto ~­

In the example, the NN-balls for points 3, 4 and 5 are projected 

onto ~. By Theorem 3.3-1 no point on~ was in more than nine 

NN-balls from A; this condition is not changed by the projection 

(because we project only NN-balls which intersect£). Therefore 

none of the projected points in B lies in more than nine projected 

NN-balls. After having made the projections we sort the projection 

of the points in B and the end-points of the projections of the 

NN-balls in A. We then make a linear scan down the sorted lists, 

for each point in B having to check at most nine projected NN-balls 

in A. For every ball and point pair checked, determine if the 

unprojected point lies in the unprojected ball, and if so, modify 

the ball's nearest neighbor. Since for each point in B we have to 

check only at most a constant number of balls in A, the scan will 

take time linear inN (after sorting). Thus the total cost of the 

combining stage is G(N log N). 

Now that we have the three stages of the divide and conquer 

algorithm ALL2, we can describe it formally as Algorithm 3.3-1. 
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Algorithm 3. 3-1 

Procedure ALL2(set F) 

1. If IFI = 1, then assign as the nearest neighbor to the 
point in F a "dummy" point infinitely far from all points. 

2. Choose a vertical line £ partitioning F into two 
collections of N/2 points each, A. and B. 

3. Solve the subproblems by the calls ALL2(A) and 
ALL2(B). Now we have noted for every point x in A the 
closest point among A to x, and likewise for all points 
in B. 

4. Repeat steps 5 through 7 twice, the first time just 
as they are written, and the second time interchanging 
the roles of A and B. 

5. Project every point in B onto £. 
NN-ball in A that overlaps £ onto £. 
represented by its two end points.) 

6. Sort the above projections. 

Project every 
(Such a ball is 

7. Scan down the lists simultaneously. As each new 
point in B is scanned, keep track of what balls are 
either left or entered. (This will require constant 
time, because at most nine could be left or entered 
each step.) Then for every point y in B and every 
ball containing y, check to see if y is closer to the 
center of that ball than its nearest neighbor so far. 
If so, make y the new nearest neighbor to that point. 

2T (N/ 2) 

8. Now that any mistakes made have been "patched up", c
5 return. For every point x in F we have recorded its 

nearest neighbor in F. 

T(l) = c1 

T(N) = 2T(N/2) + G(N log N) 

.".T(N) = G(N log2 N) 

What general methods for multidimensional algorithm design did we 

employ in our construction of ALL2? The general schema we used was 

the same as that for SPARSE2 and PAIR2: solve a problem of N points 

in the plane by dividing it into two subproblems of N/2 points each 

in the plane and one subproblem of up to N points on the line. The 
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subproblem on the line that we solved was of a type we have not seen 

previously; it might be called a "sparse local fixed radius" search. 

Each point had its own search radius, but a sparsity of sorts was 

guaranteed. We should keep this problem in mind; we should look for 

it in a generalized form as we develop the ANN algorithm for higher 

dimensions. 

Before we generalize ALL2 to higher dimensions, we should note 

that the asymptotic running time of the procedure could be decreased 

by the use of presorting. It is obvious that the presorting of the 

points in Bin Step 6 would make unnecessary one sort of Step 7. 

Likewise the sort of Step 7 for the balls would be unnecessary. 

Because at most nine balls can overlap any point, the farthest 

the end points of the balls would have to "sift down" in an already 

sorted list is nine elements. Therefore the presorted list of 

centers of the NN-balls could be transformed in linear time into a 

sorted list of end points. Thus both sorts of Step 7 are made 

unnecessary by presorting and the additive term in the recurrence 

relation becomes linear, yielding a 0(N log N) algorithm. Thus we 

have shown that ANN(N,2) ~ 0(N log N). 

We are now ready to attempt to develop ALL3, an algorithm 

for the ANN problem in 3-space. The first two stages of the divide 

and conquer algorithm are obvious. The divide stage chooses a cut 

plane P which divides the set F into two equally sized points sets A 

and B. The recursive stage will then find all nearest neighbors 

among A and likewise for B. At this point we ask what property can 

be predicated of the subsolutions, and we arrive at a generalization 
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of Theorem 3.3-1, which we express as Theorem 3.3-2. 

Theorem 3.3-2: Given a collection of N file points in 3-space, 

no point in 3-space lies in more than 27 NN-balls. Furthermore, it 

is possible for some point in 3-space to lie in 27 NN-balls. 

Proof: The proof proceeds in a way similar to that of Theorem 

3.3-1. One can show that at most one NN-ball centered in each octant 

defined by a point can overlap that point, and likewise for the planes 

separating the octants. A final NN-ball could have its center on the 

point itself, thus showing the upper bound of 27. That 27 is attainable 

is shown by considering points on a rectangular lattice in 3-space. D 

With this theorem we are ready to synthesize the combining stage 

of ALL3. We must first locate any points in B that are in NN-balls of 

A, and then do the same, switching A and B. Since the problems are 

symmetric, let us consider only the first. The obvious way to proceed 

to solve this problem is to project all points in B onto P and then 

project all NN-balls that overlap P onto P. After this projection we 

can locate all points in NN-balls and see if the inclusion holds in 

3-space, and if so modify the appropriate nearest neighbors. (Note 

that since each point can be in at most 27 balls, the amount of 

"patching up" to be done is at most linear.) 

Let us now focus our attention on the reduced problem in the 

plane. We are given N/2 points and up to N/2 balls. We know that 

any point in the plane is in at most 27 balls. We are asked to 

enumerate all points that lie within a ball and tell in which balls 

they lie. Dr. Gideon Yuval has suggested that thi~ be called the 

"Territorial Waters" problem due to the similarity to the inter­

national situation of each country claiming a different radius as 
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its territorial limits. We will refer to this subproblem as the 

"STW" for "Sparse Territorial Waters". We will find it tractable 

for the parameter N of the STW problem to have the significance 

that the number of points plus the number of balls in the problem 

is N; then having exactly N/2 points and N/2 balls becomes a special 

case. We further assume that each ball is described by a point and 

a radius. 

We will call the algorithm for the STW problem in the plane 

TER2. The first stage of TER2 will choose a cut line £ such that 

a total of N/2 points and centers of balls are to the left of £ and 

a total of N/2 points and centers are to the right of £. (Note 

that in this stage we do not distinguish between a point in the 

space and a point which defines the center of a ball.) The recursive 

stage of TER2 will solve the subproblems for A and B. The combining 

stage must enumerate all points in B which are in a ball in A and 

likewise for balls in B and points in A. But note that this 

combining problem is exactly the combining stage we faced in ALL21 

Hence we can use the same process we used there. 

We now describe ALL3 and TER2 formally as Algorithms 3.3-1 

and 3. 3-2. 
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Algorithm 3. 3-2 

Procedure ALL3(set F) 

1; If IFI = 1, the~ assign as the nearest neighbor c1 to the point in F a "dummy" point infinitely far 
from all points. 

2. Choose a cut plane P partitioning F into 
two collections of N/2 'points each, A and B. 

3. Solve the subproblems by the calls ALL3(A) and 
ALL3(B). Now we have noted for every point x in A 
the closest point among A to x, and likewise for 
all points in B. 

4. Repeat Steps 5 through 7 twic:, the first time 
just as they are written, and the second time inter­
changing the roles of A and B. 

2T(N/2) 

5. Project every point in B onto P. Project c3N 
every NN-ball in A that overlaps P onto P (such 
a projection is represented by a point and a radius), 
Note that the balls have the property that any 
point in the plane is in at most 27 balls. 

6. Let S be the collection of points and balls 
projected in Step 5. Call TER2(S) to enumerate all 
points which lie within balls (note that there 
will be at most 27N, because each point can lie 
in at most 27 balls). 

7. For each point and ball enumerated in Step 6 
see if the point is in the corresponding ball 
in 3 space. If so, modify that point's 
recorded nearest neighbor. 

8. Return. 

T(l) = c1 

T(N) = 2T(N/2) + 0(N) + STW(N,2) 

2T(N/2) + 0(N log3 N) 

.'. T (N) O(N log2 N) 
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Algorithm 3. 3-3 

Procedure TER2(set F) 

1. If IF I ·= 1, then return. 

2. Choose a vertical line t partitioning F 
into two collections of N/2 points and 
balls each, A and B. 

3. Solve the subproblems by the calls TER2(A) 
and TER2(B). 

4. Locate points in balls which have their 
centers on the other side of t using Steps 4 
through 7 of Algorithm 3.3-1. The only change 
necessary is to replace ''nine" by "27" 
(and instead of "patching up" discovered 
near neighbors, merely enumerate them; they 
will be "patched up" by ALL3). 

5. Return. 

T(l) = c
1 

T(N) 

,',T(N) 

2T(N/2) + EI(N log N) 

El (N log2 N) 

2T(N/2) 

El (N log N) 

Because we used the components from ALL2 in our construction 

of TER2, we can apply the same speedup of presorting. Presorting 

will reduce the combining overhead of TER2 from EI(N log N) to EI(N), 

and thus reduce the total running time from EI(N log2 N) to 

EI(N log N). If we use this modified version of TER2, the running 

time of ALL3 is decreased to EI(N log2 N). Thus we have shown that 

ANN(N,3) ~ EI(N log2 N). 

Examination of the schema employed in the construction of ALL3 

shows that it is similar to all of our other algorithms: To solve 

a problem of N points in 3-space, solve two problems of N/2 points 

in 3-space, then two problems of up to N points in 2-space. The 

subproblems in the plane are of a new type, which we have called 
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the "Sparse Territorial Waters" problem. Notice that the sub-

problem we encountered in the combining stages of ALL2 and TER2 

is merely a one dimensional STtAJ problem. We therefore make the 

important observation that the way the TER2 algorithm works is to 

solve two STW problems of N/2 points in the plane and then two 

STW problems of up to N points on the line. 

We are now prepared to build Algorithm ALLk, using as 

examples ALL2, ALL3, and PAIRk. The first stage of ALLk will 

partition the file into two subsets A and B by a k-1 dimensional 

hyperplane P. The second stage will find all nearest neighbor 

pairs for A and B recursively. At this point the k dimensional 

analog of Theorem 3.3-2 will hold, namely that no point in the space 

k is contained in more than 3 NN-balls from either A or B. The 

combining stage of ALLk will consist of two calls on TER(k-1), 

which will so,lve the STW problem of the subsets projected onto P. 

Algorithm TERk i9 the obvious generalization of TER2. The 

first stage divides the collection into two almost equal sized sets 

(of points and balls). The second stage solves the subproblems 

recursively, and the third stage makes two recursive calls on 

TER(k-1) to solve the subproblems. The recurrence relation des-

cribing this algorithm is identical to that describing SPARSEk, 

so the running time of TERk is G(N logk N). If the speedup trick 

of presorting is applied, the running time becomes G(N logk-l N) 

for k ~ 2. Using this as a tool for ALLk, the running time of 

ALLk is G(N logk-l N). Algorithms TERk and ALLk are so similar to 

Algorithms TER2 and ALL3 that it is unnecessary to present them 

formally. 
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The existence of Algorithm TERk with speedup by presorting shows 

k-1 that ANN(N,k) ~ e(N log N) for k ~ 2. The divide and conquer schema 

used is the same as for the CP problem in k-space. The subproblem to 

be solved in the dividing hyperplane is the STW problem, a new closest 

point problem. 

The next step in the development of an ANN algorithm is to attempt 

to reduce the running time of ALLk even further. Both the performance 

of e(N log N) in the plane and the empirically observed average case 

performance of e(N log N) of the algorithm of Friedman, Bentley, and 

Finkel [1975] would make us guess that ANN(N,k) ~ 8(N log N). From 

our experience with FSPARSEk and FPAIRk we would guess that the 

appropriate next step in the development is to try to find a strategy 

which uses intelligent choice of cut planes. Even with all of this 

help, though, the author is still unable to develop a faster algo-

rithm for the ANN problem in k-space. This discussion of the ANN 

problem must therefore end here, and further development is left as 

an exercise for the reader. 

3.4 Lower bounds 

How does an algorithm designer know when he has finally "solved" 

the problem on which he is working? One suitable definition of a 

solved problem is that one has given matching lower and upper bounds 

on the complexity of the problem. In this section we develop some 

lower bounds for the problems we have examined in this chapter. 

There are many techniques for the construction of lower bounds. 

Two of the most popular are "oracles" (or 11adversaries 11
) and 

information theoretic arguments. Reingold's survey [1972] mentions 
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a number of other techniques for lower bound construction. Perhaps 

the most valuable technique, however, of lower bound construction 

for the practicing algorithm designer is "reducibility". A typical 

reducibility argument runs something along the following lines: It 

is known that F(N) is a lower bound on problem X. If one could 

solve problem Y in less than G(N) time then one could use that 

algorithm to solve problem X in less than F(N) time. Since it 

is known that one can not solve problem X in less than F(N) time, 

however, G(N) must be a lower bound on the amount of time required 

to solve problemY. We will see this technique applied shortly. 

The specific lower bound which we will employ in our arguments 

was derived by Dobkin and Lipton [1975]. They showed that in the 

worst case the problem of determining if all the elements in an 

ordered set of N elements are unique must require EI(N log N) 

comparisons, and therefore EI(N log N) time on a RAM/RASP. Shamos 

and Hoey [1975] observed that this implies that the problem of 

determining the two closest among N points on a line requires 

EI(N log N) time in the worst case (for if the two closest elements 

are distance zero apart, then the elements are not unique). 

We will now use reducibility to show a lower bound of 

EI(N log N) on CP(N,k). Assume CP(N,k) < EI(N log N). To find the 

two closest among N points on a line, imbed the line in k-space 

then call the fast CP algorithm. Imbedding requires only linear 

time, so the whole algorithm would run in El(max{CP(N,k),EI(N)}) time 

which by assumption is less than EI(N log N). But such an algorithm 

is impossible by the lower bound of Shames and Hoey, so we have 
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shown a lower bound of 8(N log N) for the CP problem. We can use 

this bound immediately to show a lower bound of 8(N log N) on the 

ANN problem; if we had a faster algorithm for ANN then we could just 

scan all N near neighbors and find the closest, giving a faster 

CP algorithm which is impossible. It is important to remember that 

these are lower bounds on the worst-case complexities of the problems; 

indeed, Rabin [1976] has shown that CP(N,k) = G(N). Our lower 

bound on CP(N,k) together with Algorithm FPAIRk establishes the fact 

that CP(N,k) = G(N log N) for fixed k. We are still unable to close 

the gap G(N log N) ~ ANN(N,k) ~ 8(N logk-l N). 

We turn our attention now to the SFR problem. It seems to be 

difficult to establish lower bounds for arbitrary values of 6, 

but the degenerate case of o = 0 is easier. We thus observe that 

examining degenerate cases is important in proving lower bounds. 

If we let 6 = 0 and use the sparsity constant c=l, then an SFR 

algorithm can solve the element uniqueness problem as follows. The 

algorithm first imbeds the line containing the elements in k-space 

and then calls the SFR algorithm. If the elements are unique, then 

the algorithm will return in SFR(N,k) time with no pairs within 6 

observed. If the elements are not unique, however, it might take 

longer since sparsity (which the algorithm assumes) was violated. 

What one must do, therefore, is monitor the steps of the algorithm, 

and if it is taking longer than expected, halt it and return the 

answer that the elements are not unique. The monitoring can be 

accomplished by adding at most some constant cost c at each step, 

so all together the monitored algorithm would take at most 
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c · SFR(N,k) time, which is 0 (SFR(N ,k)). Since we can solve element 

uniqueness in 0 (SFR(N,k)) time , we have s hown that 

SFR(N, k) ~ 0 (N log N) , and therefore Algorithm FSPARSEk is optimal. 

(At least for the case of o = 0, and therefore among all truly 

general SFR algorithms . ) 

We have seen here some important general techniques for t he use 

of lower bounds in algorithm design . The fi rst is the method of 

reduction for proving lower bounds. We also employed the trick of 

imbedding a one dimensional problem i n a higher dimensional space . 

Finally, the lower bounds which we derived showed that some of our 

algorithms are optimal and that f urther attempts to speed up their 

asymptotic running t imes must prove vain. 
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4. Ext ensions 

In this chapter we describe how the algorithms given in Chapter 3 

can be extended to solve a broader class of problems. In Section 4 . 1 

we investigate extending the algori thms to employ other metrics . 

Section 4 . 2 deals with the application of the algorithms of Chapter 3 

to generalizations of the prob lems studied in that chapter . 

4.1 Different metrics 

All of the algorithms developed in Chapter 3 were based on the 

L
00 

metric; in this section we show that the algorithms are applicable 

for other metrics as well . We give three criteria which the metric 

must meet for the algorithms of Chapter 3 to be valid, and then show 

that the criteria are met for the L2 metric . The criteria seem to 

be applicable for any L metric, though proving applicability for a 
p 

particul ar p can be laborious. 

The first crite rion which the metric must meet is that projection 

preserves sparsity. Specifically we must show that if k-space is 

sparse and if all points within di stance o of a k-1 dimensional 

hyperplane P are projected onto P, then the projection will be 

sparse. Thi s was a crucial factor in Steps 4 of Algorithms 3.1-1, 

3.1-2 , and 3.1-3. For the L
00 

metric the sparsity constant c was 

preserved in the projection; for the L2 metric it may increase . 

Let us examine the planar case using the illus tration in Figur e 

4.1-1. All points that will be projected onto the one dimensional 



o-ball (which is the 2o segment of the line i contained in the 

square S) ar e necessarily contained in S. But the four o-balls 

also contain S, and since none of the four contain more tran c 

points (by sparsity), S as a whole can not contain more than 4c 

points. Therefore the projection of S onto the line will contain 

at most 4c points, so sparsity is preserved although the sparsity 

constant is increased . This same method of proof will work for any 

higher dimensional space , since fixed radius spheres can be used 

to cover any hyper- solid ink-space (in this case a hyper- cylinder) . 

--- i 
2o 

-- _l 

Flgure 4.1-1: Covering a cylinder with spheres in 2-space 

The second condition which a metric must meet is that after 

the lnterpoint distance between the closest pair in the space 

(say o) is found, sparsity can be guaranteed for the space . This 

was necessary for Steps 5 of Algorithms 3.2- 1 and 3.2- 2. Let us 
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assume for brevity that o = 2; then we know that no two points in 

the space are closer than distance 2 together. We must now show 

that no 2-ball in k-space can contain more than some constant 

sk points (and we will further choose sk so that it is attainable). 

A crucial step in our proof is a result from the "Sphere 

Touching" problem. That problem asks how many unit spheres can 

be made to touch a given unit sphere in k-space with no spheres 

overlapping (the spheres are defined by the 1 2 metric). We will 

call the answer to that question Tk (for the number of ~ouchings 

possible ink-space); lower and upper bounds on Tk are contained 

in Leach and Sloane [1971]. We assert that Sk = Tk + 1. 

To show that Sk ~ Tk + 1 it suffices to observe a collection 

of Tk spheres touching a given sphere in k-space . Notice that the 

centers arc all . at least distance 2 apart; were they not, the 

spheres would overlap. Notice also that all the Tk + 1 centers 

are within distance 2 of (i.e., they are exactly distance 2 f rom) 

the point which is the center of the given sphere. Given a touching 

of Tk spheres we have generated Tk + 1 points meeting the desired 

criteria (i.e., they are all within a 2-ball and no two are closer 

than 2 together) . Thus a sphere touching implies a pessimal 

arrangement of points (that is, one in which the sparsity constant c 

is realized). 

We will now use sphere touching to show that Tk + 1 is an 

upper bound on the number of points that can lie in any 2-ball in a 

s pace in which all points are at least 2 apart. We will consider 

the case in which the center of the 2-ball we are examini ng is a 

file point and show that no more than Tk file points can lie within 
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the ball; the other case is similar. Assume that m points lie 

within the ball; because they are separated from the center point 

by 2, they must be on the surface of the ball. Notice that this 

arrangement implies a sphere touching of m spheres by letting the 

given sphere have as its center the given point and centering the 

other spheres about the other m points. Since all points are 

separated by 2, no spheres overlap. Thus the maximum value of m is 

Tk; otherwise we have generated a "better" sphere touching. When 

we include the one point at the center of the ball, we have shown 

that no more than Tk + 1 points can lie in any 2~ball in the space. 

Thus we have shown that Tk + 1 is a suitable sparsity constant and 

that it is attainable. 

As an example the worst case arrangement of points in the plane 

is illustrated in Figure 4.1~2. The value of T
2 

is six; note that 

seven points are within the 2-ball centered at point x . 

• 

• • 

eX 2 

• • 

• 

Figure 4.1-2: A worst-case arrangement of points in the plane 
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The final criterion which a metric must meet is the analog of 

the generalization of Theorem 3.3-2; that theorem states that no 

point ink-space is contained in more than some constant c NN-balls. 

To show this for the L
2 

metric we will use sphere touching and 

employ c = Tk + 1 as our sparsity constant. We will give a 

construction showing that to every arrangement of m file points 

whose NN-balls overlap a given point x (which is not a file point), 

there exists a corresponding m-touching of spheres. Since Tk is 

an upper bound on sphere touching, we know that m ~ Tk; therefore 

x can lie in at most Tk NN-balls (or Tk + 1 if xis a file point). 

The touching is constructed by placing the center of the 

"touched" sphere at x, and placing the centers of the touching 

spheres at distance 2 from x, on the rays from x to each file point. 

To prove that the touching spheres do not overlap, we will demonstrate 

that the angle between any two rays is at least n/3 radians. Thus 

points at distance 2 from x must be at least distance 2 apart in 

space, showing that the spheres can not overlap. (Coxeter [1961] 

also used this angular definition of the problem.) 

We have called the overlapped point x; let p and q b~ two file 

points. Consider the plane P in Ek which is defined by p, q and x 

(the argument is trivial if the points are collinear; assume they 

are not). The plane Pis depicted in Figure 4.1-3. Let~ be the 

perpendicular bisector of the line segment px. Note that q can not 

be on p's side of ~; if it were, it would be closer top than it is 

to x, and thus could not contain x in its NN-ball (since 

D(q,p) < D(q,x)). Let c be the intersection of p's NN-ball and 

the plane P. By definition of NN-ball, q cannot lie in the interior 

75 



of c. Thus we have excluded q fr~m both c and p's side of ~. so q 

must lie in the shaded region S. 

-+ 
Consider now the ray xq; its angle a with xp is minimized when 

q is on the intersection of c and ~. Given this configuration, a is 

minimized when x is on c. At that point, a = TI/3 radians. Therefore 

we have shown that a ~ TI/3 radians. 

s 

Figure 4.1-3: The plane containing p, q and x 

Note thnt the bound of Tk + 1 is attainable. The pessimal 

arrangement for this criterion is the same as that for the second 

criterion of sparsity after the CP problem is solved. The pessimal 

planar arrangement is illustrated in Figure 4.1-2. Note also that 
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this third criterion implies the second; we have demonstrated both 

here to make the proofs easier to follow. 

4. 2 Different problems 

In this section we suggest straightforward extensions of the 

algorithms given in Chapter 3 to different problems. These problems 

are minor modifications of the problems studied in Chapter 3. We 

will not give complete algorithms, therefore, but rather sketch how 

the algorithms of that chapter might be modified to solve similar 

problems. 

An obvious extension of the CP problem is to ask for the three 

points (or in general, m points) in the space with least maximal 

interpoint separation. Algorithm FPAIRk could be modified to find 

such points easily. The crucial step in the development of such 

an algorithm would be in showing that sparsity holds in the sub­

solutions. 

A similar generalization of the ANN problem asks for the m 

nearest neighbors to each point to be enumerated. In such an algorithm 

the "m nearest neighbor ball" (the ball centered at a point with 

radius equal to the distance to its m-th nearest neighbor) would take 

the place of the NN-balls of Algorithm ALLk. A crucial step in the 

proof of the algorithm would be to show that no point in the space is 

contained in more than ~orne constant number of 11m-NN-balls 11
• 

Different definitions of sparsity might arise in practice from 

the one which we employed in our work on the SFR problem. If such 

definitions arose, it would not be difficult to use an alternative 

definition of sparsity to arrive at an algorithm similar to FSPARSEk. 
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In the STW problem we were given a sparse collection of hyper­

cubes; a similar problem occurs if we are given a sparse collection 

of hyper-rectangles. In addition to the sparse hyper-rectangles, 

we are given a collection of points and asked to enumerate all pairs 

of points within rectangles. The algorithm TERk can be trivially 

modified to accomplish this. The crucial insight is to view a 

hyper-rectangle as a center and k "dimensional radii" (the radius 

in each dimension is the same for a hypercube, but differs for a 

hyper-rectangle). 
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5. Issues of implementation 

Thus far in this thesis we have concerned ourselves only with 

asymptotic running times; in this chapter we will consider how the 

algorithms developed in Chapter 3 can be implemented on computers. 

The efficient implementation of the worst-case algorithms given in 

Chapter 3 is the subject of Section 5.1. In Section 5.2 we discuss 

how the worst-case algorithms can be modified to yield faster 

average-case algorithms which are more suited to many applications. 

5.1 Worst-case algorithms 

In this section we will describe how the algorithms of Chapter 3 

could be efficiently implemented. We assume that we are dealing with 

an ALGOL-like language (we will take any language constructs we 

require from ALGOLW; see Kieburtz [1975]), but our comments should 

be applicable to almost any algorithmic language. We will focus our 

attention primarily on the ANN algorithm ALLk because it is most 

general and in a sense subsumes the other algorithms. 

The implementation of the basic constructs used in the algo­

rithms is quite straightforward. The set of N points in k dimension 

could be represented by real array POINTS(l::N,l::k); POINTS(i,j) 

contains the j-th coordinate of the i-th point. Using this scheme 

a point can be referred to by an integer between 1 and N (instead 

of having to be described by k reals). For ALLk we must tell the 

nearest neighbor to each point; we can hold this information in 



integer array NN(l::N). If the nearest neighbor to point i is point 

j, then NN(i) = j. We can use the array NN to keep track of the 

nearest neighbors found in each subsolution; at the time the entire 

problem has been solved NN would contain the final answer. It would 

probably also be expedient to maintain the real array NN~DIST(l::N) 

with the condition that NN_DIST(i) = DISTANCE(i,NN(i)) (that is, at 

termination NN_DIST{i) is the distance from i to its nearest 

neighbor). The array NN DIST can serve as the radii of the NN-balls 

during the invocation of TERk. 

The sorted projections required by the algorithms can be easily 

maintained through the use of linked lists. The list for each 

dimension would require 2N words of storage (or pointers): one word 

for the identification of the point and one word for a "next pointer". 

Thus the total storage requirement for the linked list scheme is 2kN 

words of storage. The storage requirement can be reduced to kN 

words of storage by using integer array PROJ(l::N, l::k). The rows 

PROJ(*,m) will be pointers to the POINTS sorted by the m-th coordinate 

(formally, POINTS(PROJ(i,m),m) ~ POINTS(PROJ(j,m),m) iff i ~ j). 

The partitioning into subproblems is quite easy using linked lists: 

traverse down each dimension's list appending each point to one of 

two sorted sublists for that dimension (one sublist for each sub­

problem). After solving the subproblems the lists can be merged 

together again. The same basic strategy is used for the array 

technique; to break a problem into subproblems of size m and N-m, 

partition PROJ such that the subarrays PROJ(l::m,*) and 

PROJ(N-m+l::N,*) have the condition for the subproblems. For the 

array scheme, the work of partitioning and remerging is a bit more 

80 



difficult, but the storage savings could make that worthwhile. 

The task of projection onto a lower dimensionality subspace 

could be accomplished by making a copy of the point set reduced by 

one dimension, but that is wasteful of both time and storage. A 

more elegant solution is to keep a global integer array 

ACTIVE_DIMENSIONS(l::k) such that if the algorithm is currently 

dealing with m dimensions then those dimensions will be found in 

ACTIVE_DIMENSIONS(l::m). All references to a point would then be 

made by accessing this array to turn a "virtual" dimension into an 

actual dimension. Projection from the current m dimensional 

space onto the m-1 dimensional hyperplane defined by a value in the 

ACTIVE_DIMENSIONS(j) dimension could be accomplished by swapping 

the j-th and m-th elements of ACTIVE DIMENSIONS. 

The algorithms of Chapter 3 solved a subproblem by a direct 

solution for very small problem size (typically, N $ 2). In practice 

it would be more efficient to solve larger subproblems by "brute 

force" techniques rather than by divide and conquer. To this end, 

some value N0 should be chosen for each of the algorithms such that 

if the file size N is less than N
0

, then the problem is solved by 

brute force (for ease of presentation, we chose N0 = 1 or N
0 

= 2 in 

Chapter 3). 

5.2 Average-case algorithms 

The algorithms presented in Chapter 3 were developed for the 

purpose of displaying good worst-case behavior. In many applications, 

however, one is willing to tolerate the possibility of poor worst­

case behavior if that sacrifice leads to faster running times on 
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the average. In this section we will suggest certain techniques 

that one could use to transform the worst-case algorithms into 

faster average-case algorithms with the risk of poor worst-case 

performance. 

Many of the algorithms we developed depended on the ability 

of finding medians in linear time. For that task we proposed to 

use the selection algorithm of Blum,et al., [1972] which has linear 

worst-case time. A selection algorithm due to Hoare (modified by 

Floyd and Rivest [1975] to employ sampling) has a much faster 

average-case time but quadratic worst-case time. Using such an 

algorithm for selection would lead to faster average-case closest 

point algorithms. Instead of merely borrowing their algorithm, 

however, we could go even further and borrow the idea underlying 

the algorithm. Inst.ead of taking the time to find the true median 

of the points, why don't we just sample a subset of the points and 

use the median of the sample? In the worst case that could give us 

very unbalanced subproblems, but it would not hurt much on the 

average. 

Our fast algorithms went to great lengths to choose cut planes 

with good worst-case properties. A fast average-cast strategy 

might look instead for a cut plane which it expects to exhibit good 

properties. One such strategy would replace scanning a sorted 

list in ·each dimension by performing a similar scan on a sample of 

the points from that dimension, and then choosing the dimension in 

which to cut and the plane by which to cut from those samples. A 

more heuristic strategy might choose the dimension in which to cut 
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as that exhibiting the maximum variance (variance chosen as an 

estimator of dispersion, which suggests dimensional sparsity). 

The value defining the cut plane might then be chosen by sampling. 

Many isomorphisms exist between recursive divide and conquer 

procedures and binary trees. One well known example is the isomorphism 

between QUICKSORT and randomly built binary search trees; this is 

mentioned by both Knuth [1973] and Sedgewick [1975]. When we view a 

divide and conquer algorithm it is often helpful to think of the 

tree corresponding to it. This insight allows us to see many 

similarities between the divide and conquer algorithms of this thesis 

and the multidimensional binary search trees due to Bentley [1975b]. 

The resemblances are even more noticeable in the version of the k-d 

trees described by Friedman, Bentley and Finkel [1975]. The average­

case running time empirically observed for their k-d tree algorithm 

ink dimensions for the ANN problem is 0(N log N), which is certainly 

superior to ALLk's time of 0(N logkN). One reason for this superiority 

is that the tree structure of the k-d trees allows the subsolutions to 

be maintained, whereas in the ALLk algorithm, TERk makes no use of 

the work done by the previous stages of the algorithm. Had not k-d 

trees existed before the algorithms in this thesis were developed, 

we probably would have developed them as a result of this work. As 

it was, the intuition provided by the k-d tree algorithms proved 

quite useful to the author in developing the algorithms presented 

here. 
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6. P,inciples of algorithm construction 

In this chapter we enumerate some of the general principles of 

algorithm construction that we have employed thus far in our work. 

We must limit burselves to enumeration; a more complete treatment 

of even this small set of principles is beyond the scope of this 

thesis. We therefore divide the chapter into four sections, in 

each of which we shall investigate a particular class of algorithm 

construction techniques. 

6.1 Principles of algorithm development 

General strategies. In our work in Chapter 3 we noted two 

specific strategies for dealing with sets of elements. The technique 

of iteration solved a problem by obtaining a subsolution for each 

element in the set then combining those to form a solution to the 

whole; in our work it led to quadratic algorithms. The second 

general strategy we employed was divide and conquer, which is 

discussed in detail elsewhere in this thesis. 

High level description of algorithms. All of the algorithms 

we described in Chapter 3 were described at a very high level. This 

freed us from the cumbersome and unenlightening chores of bookkeeping 

to concentrate our attention on algorithm design. Though we had to 

have some idea as to how we were going to implement the constructs 

we employed, we could postpone the implementation details until we 

had developed algorithms with good asymptotic behavior. 



Process of generalization. Our work in Chapter 3 was in many 

ways a study of the psychological process of generalization. One 

might view the algorithms we developed in that chapter as points in 

a three dimensional space: the first dimension is the problem 

being solved (SFR, CP, ANN, STW); the second is the dimensionality 

of the space (1, 2, 3, k); and the third is the speed of the 

algorithm (8(N logk N), 8(N log N)). We often made use of Polya's 

[1954, p. 194] frank advice, "try the simplest thing first", even 

when the simplest appeared trivial. After that we proceeded to the 

next most simple algorithm, always moving to an adjacent point in 

the algorithm development space. When we moved to a different 

"plane" in the space (from SFR to CP or from CP to ANN) we tried to 

choose our path on that plane to resemble as closely as possible 

our path on the previous plane. By doing so we found that we were 

able to employ many parts of previously developed algorithms. 

Polya [1945, p. 42] refers to this process as using "both the 

method and the result". 

Abstract description. We saw that a very high level description 

of an algorithm (i.e., solve two problems of N/2 points in the plane 

and one problem of up toN points on the line), giving its structure 

but not its task, is very helpful in understanding the algorithm 

and generalizing it. 

Identify expensive parts. A main point of Knuth's work [1971] 

is that program optimization should usually be concerned with only 

one relatively small part of the program. We saw that the same 

principle applies to creating faster asymptotic algorithms. In 
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trying to reduce the running time of SPARSE2, for instance, we 

first found where the major cost was incurred, and then we modified 

that step. 

Relationship between worst-case and average-case ("heuristic") 

algorithms. In Chapter 5 we noticed an important relationship 

between worst-case and heuristic algorithms: worst-case algorithms 

often suggest faster average-case algorithms, and, conversely, 

experience with heuristic algorithms can yield valuable insight 

in developing worst-case algorithms. 

Lower bounds. The construction of lower bounds gives the 

algorithm designer both a target at which to aim and a good reason 

for stopping his work. We saw three important techniques in dealing 

with lower bounds: reduction allowed us to use previous results; 

examining degenerate cases (i.e., 6 = 0) allowed us to make general 

assertions about the complexity of the problem (for any correct 

algorithm must work for the case of 6 = 0); and imbedding allowed 

us to apply results in one dimensionality to problems in a higher 

dimension. 

Standard speed-up tricks. Presorting a set of numbers and 

maintaining a sorted list of those numbers is a fairly standard 

technique in algorithm design. The algorithm designer should be 

familiar with such useful techniques. 

Specific performance goals. In developing an algorithm it 

·is helpful to have a specific performance bound in mind. 

Examining degenerate cases. We saw this employed in establish­

ing lower bounds, in gaining insight into why worst-case behavior 
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occurs, and in determining· the boundary conditions of an algorithm. 

Polya [1954, p. 23] refers to a similar process as "picking out 

an extreme special case". 

How to solve it. Polya's [1945] work of this title gives 

valuable insight into solving programming problems. The book's 

leaning toward geometric examples and its emphasis on problem 

solving using analogy and generalization make it particularly 

applicable to the work in this thesis. His later work, 

Mathematics and Plausible Reasoning [1954], is also extremely 

valuable for the algorithm designer. 

6.2 Principles for divide and conquer 

Uneven balancing. In most applications of divide and conquer 

the original problem is divided into two subproblems, each containing 

N/2 points. We observed that the exact fraction (l/2)N is not 

necessary; guaranteeing that each subproblem contains at least some 

constant fraction p of the N points is suitable (in many situations) 

to insure balancing. This is similar to the idea behind the balanced 

binary trees due to Adelson-Velskii and Landis [1962]. 

Speed-up techniques. We made frequent use of the speed-up 

trick of presorting. This technique was also used in Shames's 

[1975b] description of Strong's algorithm and in the balanced tree 

construction algorithm of Finkel and Bentley [1974]. 

Division into subproblems. The asymptotic running times of 

our algorithms were improved as we allowed our cut plane selection 

strategy the freedon to choose among many cut planes. We eventually 

chose a cut point that had good worst-case properties and was easy 
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to find. This technique is similar to the way the selection algorithm 

of Blum, et al., [1972] chooses the partitioning element. 

Reducing subproblem size below O(N/log N). If the size of a 

subproblem is reduced to O(N/log N), then the cost of applying a 

0(N log N) algorithm to that subproblem is at most linear. A 

similar usage of this technique was made in the 0(N log log N) median 

algorithm of Blum (see Knuth [1973]) and in Rabin's CP algorithm 

[1976]. 

Multiple calls on the same procedure. The standard divide 

and conquer schema consists of three parts: (1) divide the problem 

into subproblems, (2) solve the subproblems, and (3) combine the 

subsolutions into a solution to the whole problem. In the typical 

application of divide and conquer Step 2 is recursive and Steps 1 

and 3 are non-recursive. In our algorithms we usually used a 

recursive call for Step 3 (though we reduced the dimensionality by 

one). Other algorithms have deviated from the typical schema. 

Kung, Luccio and Preparata [1975] used a recursive Step 3 as well. 

In the linear median algorithm of Blum, et al., [1972] Step 1 was 

accomplished recursively. One might accurately view Rabin's CP 

algorithm [1976] as a divide and conquer algorithm in which all 

three steps were accomplished non-recursively. 

6.3 Principles for multidimensional algorithms 

Divide and conquer. We have developed a divide and conquer 

schema applicable to many multidimensional problems. 

Sparsity. Sparsity was a key to many of our algorithms. We 

have seen three different types of sparsity. In some problems 
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sparsity was given as a condition of the problem (SFR). In the CP 

problem we induced global sparsity on the point set. In the ANN 

problem we used a type of "local" sparsity. 

Wise choice of cut planes. This reduced the asymptotic running 

times of our algorithms. 

Imbedding. Imbedding was a valuable technique for applying 

results of lower bounds on unidimensional problems to multidimensional 

problems. 

Varying metrics. We saw that though all of our work was done 

for one metric (the 1
00
), it was applicable to others (i.e., the 1

2
). 

It is often convenient to work with the most tractable metric 

available, then attempt later to apply results to other metrics. 

Value of one-dimensional analogs. One-dimensional analogs proved 

quite helpful to us in gaining insight in multidimensional problems. 

The many results in the plane due to Shames [197Sb] might prove 

invaluable to future workers in multidimensional algorithms. 

6.4 Principles for turning algorithms into programs 

Simulating work by representation. When our algorithms called 

for working with a projected point set, we might have been tempted 

to make a copy of the point set (reducing dimension by one). 

Instead we accomplished the task by referencing dimension through 

an array which represented the active dimensions. 

Solving small problems. One often solves small problems most 

efficiently in a way that is not asymptotically optimal. Though a 

linear algorithm is asymptotically superior to a G(N log N) algorithm, 

N log2 N < lSN for N < 32,000. 
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Fast average-case components. One can often turn a good worst­

case algorithm into a good average-case algorithm by substituting 

average-case components for worst-case components. In our work we 

substituted the fast average-case selection algorithm of Floyd and 

Rivest [1975] for the good worst-case algorithm of Blum, et al., 

[1972]. 

Sampling. Though it is usually necessary to examine all 

elements of a set to be a-ble to guarantee a property of that set, one 

can often get a good expectation of that property by investigating 

a sample (which is more efficiently accomplished). 

Heuristics simulating guaranteeable properties. In our work we 

suggested the heuristic of choosing the cut plane as the median 

element in the dimension of maximum variance as a simulation of a 

good worst-case cut plane. 

Isomorphism between trees and divide and conquer. The natural 

isomorphism between divide and conquer algorithms and tree data 

structures often suggests one, given the other. 
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7. Further work 

We have examined many different problem areas in this thesis. 

Though we have made some contribution to each area, there is much 

important work that still needs to be done. In this chapter we 

mention a few outstanding problems that particularly merit further 

research. 

The first area that deserves attention is reduction of upper 

bounds on time complexities. The author conjectures that 

ANN(N,k) = 0(N log N); it is conceivable that Algorithm AlLk could 

be modified to achieve that bound by making wise use of cut planes. 

The author also conjectures that the bound NN(N,k) = 0(log N) can 

be obtained using storage linear in Nk. The way to approach this 

problem using divide and conquer is to investigate data structures 

isomorphic to our algorithms (see especially Friedman, Bentley and 

Finkel [1975]). A third bound the author believes can be reduced is 

the quadratic bound on the MST problem. The minimal spanning tree 

has global properties that make a subtree hard to compute; one way 

of using divide and conquer for this problem might be to find a 

supergraph of the minimal spanning tree than apply Yao's [1975] fast 

graph MST algorithm to that supergraph. 

Shamos's notebook [1975b] is a rich source of planar problems 

and solutions; extending his work to multidimensional space is an 

important problem. Two especially attractive problems are finding 

the Voronoi diagram of points in k space and finding the diameter of 



a set in k space. 

It is desirable to shorten the gap between the "theoretical" 

algorithms described in this thesis and the "practical" algorithms 

such as described by Friedman, Bentley and Finkel [1975] and Bentley 

and Friedman [1975]. One way of "shortening the gap" is to decrease 

the running time of the algorithms in the thesis to actually run 

more efficiently than the "practical" algorithms. Another way to 

shorten the gap is to show that these algorithms give a "theoretical" 

explanation of the running times of the fast algorithms. 

Much further work needs to be done on the principles of 

algorithm construction. The typical way in which a computer science 

student is now taught how to build algorithms is to be shown twenty 

or thirty algorithms, then asked to go out and build some of his own. 

This was basically the way in which the author learned about algorithms; 

it was only during the writing of this thesis that he shared the 

experience of Descartes [1650]: "As a young man, when I heard about 

ingenious inventions, I tried to invent them by myself, even without 

reading the author. In doing so, I perceived, by degrees, that I was 

making use of certain rules". The author hopes that the reader is 

convinced that there are "certain rules" which an algorithm designer 

can use in his task. 

It is important to discover what principles competent algorithm 

designers employ. One way of doing so is for algorithm designers to 

include with future algorithms the main principles employed in 

constructing them. Another way of discovering such principles is 

to attempt to systematically reinvent the algorithms as Descartes 

did ("without reading the author"), and see what principles are' 
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employed. After such principles are discovered, they ought to be 

collected together and systematized in some way. 

In this thesis we have touched upon different areas that lend 

themselves to general principles. The first is algorithm develop­

ment; much further work needs to be done in describing the general 

approach an algorithm designer should take in attacking a problem. 

A second area is the divide and conquer strategy. Further work 

might describe more techniques that are commonly used in divide and 

conquer. Other strategies ought also to be analyzed; among those 

are dynamic programming and depth-first search. A third area which 

merits investigation is that of turning algorithms into programs. 

This is especially important as one observes the great distance 

between many "theoretical" algorithms that are now presented and 

the "real-life" task of solving real problems on real computers. 
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8. Conclusions 

In this chapter we will briefly review the major contributi.ons 

contained in this thesis. The contributions can be broadly classified 

as falling into three areas: multidimensional algorithms, the 

divide and conquer strategy, and principles of algorithm design. 

The contributions of this thesis to multidimensional algorithms 

have been twofold: basic methods and basic results. We have shown 

that divide and conquer is a fundamental tool which can be used in 

multidimensional algorithms; we developed one particular divide 

and conquer schema that was well suited to many problems. Another 

fundamental tool which we used often was the notion of sparsity. 

We saw three kinds of sparsity: given, induced and local. The 

basic results of this thesis can be summarized as follows: 

CP(N,k) = 8(N log N), 

SFR(N,k) = 8(N log N), and 

8(N log N) k-1 
~ ANN(N,k) ~ 8(N log N). 

These appear to be the first less-than-quadratic upper bounds for multi-

dimensional closest point problems. 

The algorithms in this thesis demonstrate the power of the divide 

and conquer strategy. We saw that the strategy was applicable to a 

problem domain fundamentally different from any in which it had been 

previously used. We also observed many ways in which divide 

and conquer algorithms can be employed. Among techniques we used 



were uneven balancing, ndouble recursion 11 (in problem size and 

dimensionality), and reducing subproblem size by intelligent cut 

point strategies. 

The final area to which this thesis contributes is algorithm 

design. Ghapter 3 of this thesis is one of the few examples of 

which the author knows of a written presentation of the algorithm 

design process. The author feels that Chapter 3 might be a valuable 

tool in communicating the algorithm design process to novices; in 

particular it might be the basis for one or two weeks of classroom 

discussion in an algorithms course. In addition to examples, Chapter 6 

provides a summary of principles used in the design process. Though 

the list of principles is small, it certainly contains some fundamental 

insights, and it is a suitable basis from which others can expand. 
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