TR~78—014
December 1978

FREDERICK . o2

A ROUTING NETRORK POR A HACHINE

TO EXECUTE RELUGCTION LQNGUAGES

by
David R. Kehé

h dissertation submitted to the faculty
of the University of North Carolina at
Chapel Hill in partial fulfillment of
the requirements for the degree of
Coctor of Philosophy in the Department
cf Computer Science

Chapel Hill

1978

Approved by:
Cocde Moy

ﬁ?"‘*— C»L»:ew“(—-"

N s

Reader

DAVID R. KEHS. A Routing Network for a Machine
to Execute Reduction Languages. (OUnder the
direction of DR. GYULA A. HAGS.) '

ABSTRACT

A netvork of cells arranged to form a binary tree with
connections between horizontally adjacent cells is
investigated. Properties of shortest paths between leaf
cells in such a network are established.

Algorithms are developed to broadcast copies of a data
item from one of the leaf cells to other leaf cells of the
network. . Using different types of guiding information
stored in the cells, these algorithms are modified to avoid
broadcasting copies to cells which do not need them.
Analysis shows that, at best, these algorithms reguire
L {n) steps to accomplish such patterns as reversal,
transposition, or translation of the contents of n leaf

cells.

A theoretical bound of 8 (n/log{n)) steps is established
for the problem of reversing the contents of n adjacent leaf
cells. This result is generalized to obtain upper bounds
for reversal of the contents of non-adjacent leaf cells and
for arbitrary movement patterns which do not require
multiple copies of data items.

I would like to thank Dr. Gyula Magé for his invaluable
guidance and encouragement throughout the progress of this
dissertation and throughout my graduate school career. 1In
addition to suggesting the topic for this research, he read.
many drafts of this dissertation and made many helpful
suggestions to imfprove its organization and clarity.

The remainder of my committee, Dr. Don Stanat,
Dr. Peter Calingaert, Dr. Frederick Brooks, Jr, and
Dr. flehdi Jazayeri, provided many useful comments and
criticisms. Don Stanat, in particular, was helpful in
pointing me toward clearer and more elegant proofs of many
of the mathematical results.

Finally} I would like to thank my family and friends
for encouraging and supporting me in this work and
especially for distracting me from it.

YD) TS M) e D

-1II INTRODGCTION .0.0..0.'6“..BGIOCQC.QICGQOOOGQ‘-..ﬂﬁcﬂll-1
131 The Prcblem -.‘0.-50...0-..l--DCCGOGCCDDD.‘DQQOGCOOO?
1.2 Related ReS€AICh cucceccsnccncnenccoounonsnssasnnmael
1.3 Crganization of the Dissertation cveeeeceoscscsasinesll

2. SHORTEST PATHS IN THE NETWORK cemecccecaccccccncsscccald)d

3. DATA MOVEMENT IR A KETHWORK WITHOUT MEMORY cceawmecomsvvesadD2
3.1 Algorithms for One Data Item .cesevccccencsscsennend2
3.2 Algorithms for Multiple Data ItemMS cecesececcssanaeaed?

3.2.1 The Inevitability of C0lliSiONS ceccecsncnsannedB
3-2-2 Algorithms HS“—HS“’ ---;-a---oqv---no..o.a.-.as..sg

4. DATA HOVEMENT ALONG SHORTEST PATHS IN A NETHORK WITH
HEHORY Fttdon-a-----.--....ea.oqo.ct.don.acao...tbn--qsg
. 4.1 Complete Path Information--The G0al cecavcessconncab?
4.2 Range INfOrmMAatiOn sssoevceccsccscscncacccncsmsnnanans
4.3 Extended Bange Information aijaannaanq-q.ao.oq-.-nn?B
4.4 Hashing Information .ceccceecsccscccomncnscsvcosscncald
4.5 Consecutively Numbered Target LabelsS cecccccancscese82

5. PERFORHMANCE OF THE CP ALGORITHMS FOR SPECIFIC NOVEMENT
PATTERNS REtE o RO LE DD AN RIS TR -o-..-cn--qacuoa-.n1ao
5.1 Reversal ‘-ﬂ-.-.‘ﬂ.ﬂﬂd‘ﬂd....‘.‘.‘“.o.’ﬁ.‘..ﬂ.l...10}
5n2 TranSIQtion -ooo-l.fweccOcooheoqlooldﬂ......ncc.n-103
5.3 Perfect Shuffle g 1
5.4 CONClUSiONS ceccccovssvncscncnercnnesacsssesusocance 108

6. BOURDS ON THE PERFORMANCE OF DATA HEOVEMENT

ALGORITHHS obooe-co.ao-..o.-ooa.a;o.o.-oco---o-n-naou118
6.1 The Problem of Reversal cacascessscocsaccssssscacas 119
6.2 Reversal of Non-Adjacent Cells ccccanvcecneccovenas 131
6.3 Alternative Generalizations of Proposition 1. as..137
684 Pivotiﬂg llC...ﬂOO-.CDOOGOQOQOOOU.....COODOOGQC-GOO13_9
6.5 Trans—lation...Q-.-9“‘0‘0.0QOOOCJlDOCGOHOOQ-OOQOCQ1“0
6.6 Arhitrary Movement Patterns ccesseeencccevscavocess 140
6.7 Summary Of BeSULlLS cvececcescssscsswsccscunnacaaceas 104

?. SUHHABY AHD COHCLUSIOHS 0-‘.-..'I..ﬁ.ﬂ.ba-.-..ﬂ‘ﬂ.‘..162
7.1 Summary ..‘-.-ﬂ..-...-Oﬂﬂlﬂ..IIQ-.--.Q‘.QOIQB.GI..162

7.2 Suggestions for Further WOLK cosececscscsaccosasses 164

REFEBENCES ..Qﬂ..‘.ﬂﬂ.‘---ﬂ..Dﬂ.“.ﬂﬂ.ﬂ.ﬁ’--..-O..ﬂ.ﬂﬂ.'- 165

1. INTRODUCTION

b

2]
.
0
i=

1.1 IThe Ex

In a recent paper, Magd { 1] outlines the organization
of 2 machine which efficiently executes the reduction
languages described by Backus [2]. Informal discussions 6f
these 1anguages can be founﬁ in [1] as well as the
dissertations of Pozefsky [3] and Koster [4]. Figure 1.1
sho¥s a schematic diagram of a portion of the machine as

described ir [1].

The program text is normally stored in a lineaf array
of cells. L. These cells form the leaves of a binary tree
{T) of microprocessors. These processofs are provided with
.enough-logic to.manipulate the program tekt according to the

rules of the language. Further details can be found in [1]

At certain times during the computation, the machine
must move the contents of some of the cells of L to other
cells in such a way that the relative positions‘of some of
the symbols must change. For example, the array L may have
to be changed from _AB__C D to B__C DA . This process is

called data movement. (A similar process in which symbols

move but do_nbt change relative positions, as in a change
Storage management makes use of horizontal connections
between pairs of adjacent L cells. Since these connections
are not used for data movement, they are not shown in

Figures 1.1-1.3.}

hs described in [1], the data items (located in the
cells of 1) which are to be moved are labeled uith intégers.
{ictually, the labels may be pairs or triples of integets.. |
However, in this paper, we will use 6nly single integers.
This restriction does not affect any of the results
presented.) The cells to which the data items must move are
‘also assigned integer markers. Then each labeled data itém
moves through the tree T to the cell which has the same
integer marker. It is possible that a particular data item
¥ill have to be copied intc two or more different locations.
To handle this situvation, the same integer marker is
assigned to each target c¢ell. It is also possible that one
data item will have to replace ancther. In this case, the
contents of one cell will be assigned an integer label and
the cell will be assigned a different integer target marker.
An example of data movement is shown in Figure 1.2. In this
example, the data items to be moved are A, B, and C. VNotice
that B was copied into two different cells, one of which

originally centained C.

In the following paragraphs, and, in fact, in the whole
dissertation, we assume that the operation of all cells of
the machine is.synchronized. Though notrnecessary, this
assumption simplifies the descriptions of algorithms.
Details about how different data movement patterns could be

controlled asynchronously can be found, for exampie, in [5].

The data movement mechanism described in [1] works as
follows. When ﬁll of the data items and target cells have
been labeled properly, the data iﬁems begin to move to the
top of the "active area" [1), which is a subtree of T |
containing the'expression being evaluated. (A key féatufe
of this machine is that more than one expression can be
evaluated in parallel.) 'all of the data items move
simultaneously ﬁn1ess tvo items are trying to move up fo fhe
same node. In this case, the item with the smaller integer
label proceeds first. ~Each item must move to the top of the
active area. At this point, copies of the item are sent
ﬂounuard to each of the T and L cells in the active area.
The cells of L which are not looking for a data item with
this integer label will simply ignore it. It is possible
for a dowynward-moving data item to "pass"™ upward-moving
items. Thus, at any one time, a tree node may contain two
data items, one moving upward {or waiting to do so)'and the
other moving downward. Figure 1.3 shows how data movement

will proceed for the previous example.

The preceding description omits some of the details
needed to understand how the algorithm is implemented;
Below we will describe how the data items are transferréd
from cell tc cell in the machine of [1]. Figure 1.4 shows a
detailed view of three of the cells of T, named'ﬁ, B, and C.
Bach cell has six registers which hold data items. These
are named INTOP, QUTTOP, INLO, OUTLO, INHI, and OUTHI. 1In
the following description, names of the form A.INLO will be
used to refer to the IFLO register in cell A, etc; The
arrovs represent vires along which data can be transferred
from register to register. In the algorithm of [1], data
will flow only in the directioh of the arrows. Thus, each
register hkas only one {or two, in the case of INTOP)'othef
register to which its data item will be copied. The
registe:s can be described as "full" or Yempty". When a
register holds a data item, it is "full". When the data
item is copied into another regisfér, the original register
is said to be Yempty", i.e. ready to receive another value.
- Bach register contains one bit (or tac,'in the case of
INTOP) which tells if the associated destination register.is
#*full® or "empty®. For example, if data are sent from
A.OUTﬁO to B. INTOP, themn the "full" bit in A.OUTLO is set.
¥hen B.INTOP sends the data {to B.QUTLO and B.QUTHI), it
also sends a message to A which causes the "full® bit in

A. CUTLO to be turned off.

The complefe-alqorithm takes piace in two phases.
During the first'phase, data items are moved within the.-
cell, according to the arrovs of Figure 14%.. 0f course, no
data can be moved to a "full" register. Instead, the data

.must vait until the target register is "empty". During the
second phase, data items are moved from cell to cell, agéin

according to the arrows shown in Figure 1.4.

The time neéded.for the entife data movement opération
can be eﬁpressed as
t=2%h + n - 1
time unité wvhere h is the height of the active area aﬁd n-is
the pumber of data iters. fThe first data item'reachesrthe
top after h time units, the other n-1 items then pass
through thé top, and the last item descends to its target iﬁ

h time units.)

_ The data movement mechanism just described, to be knbwn
henceforth as the VERTICAL algorithm, was chosen in [1]
primarilj for its simplicity, both of.description aﬂd of
implementation. The purpose of this research is to devise
and investigate other data movement mechanisms in an attempt

to obtain a significant improvement in efficiency.

¥e propose to add to the machine horizontal connectibns
between the cells of T, as shown in Figure 1.5. Internally,
.each cell will be organizéd as shown in Figure 1.6. This

will shorten the paths between many of the pairs of nodes.

For example, the B in figure 1.7 caﬁ move to its destination
in four steps, following the path indicated. Gding through
the top of the tree would require six steps. When more
cells are involved, the savings can be even more
significant, as Qhown in Pigures 1.8-1.10 which will be

discussed belovw.

In Figure 1.8, five pairs of adjacent symbols are
interchénged in only one step. In fact, any number of pairs
could be interchanged in just one step. (Recall that in
[1], the horizontal connections between pairs of L cells are
not used for data novement and all cells rise to the top of
the active area. Therefore, all ﬁen items of Figure 1.8
would be sent through the top of the tree.) Figure 1.9
shows the reversal of a tem-element list in seven steps.
Since the shortest path between the cell labeled 1 and its
target has length seven, we know that at least seven steps
are regquired for this problem. Therefore, the given
movement pattern is optimal. In Figure 1.%0, two blocks of
five symbols_are exchanged in six steps. Using the
mechanism described in the paper [%], 17 steps would be

required for each of these three problems.

When horizontal connections are added, we can expect
that the nurber of steps required for data movement will not
necessarily depend directly on n, the number of moving data

items. This is because there is no longer a particular node

of T through which all meving data items are reguired_td-
pass. klso, since data itemé #ill no longer be required ﬁo
rise to the top of the active area, the number of steps will
no longer depend on h, the height of the active area. This
is particularly fortunate since in a large machine_the
height of the active area can be rather ﬁigh, depending on
uhére.the expression happens to be in L. Consider,.fpr
example, Figure f.i!. Here, the height of the active area
containing ABCD (circled in the figure) is either two_@r
five, depending on the location df ABCD. If ABCD‘ﬁad.heen
located elsewhere, the height of the active area could also

have been three or four.

In general? then, we can hope that the time required
for dafa movement.uill depend on the actdal distance that
the data items must move, rather than the number of items .
moving and the height of the active area. Of course, as
more and more cells become involved in data movement, the
distance hetqeen'a data item®s original location and its
destination may increase (as in Figure 1.9), and items may

interfere with each other {(as in Figure 1.10).

The patterns of mwovement shoﬁn in Figures 1.8-1.10 vere
obtained by inspecting the tree as a whole, including all of
the data labels and target markers, to deéide which path
each data item should follow. The machine itself will not

have the advantage of such an overview. When data movement

begins, paths for the data items must be directed by the
nodes of T. That is, when a data item arrives at a node of
T, there must be enough information in the node to decide
where the data item should go next. In the VERTICAL
algorithm, there is no information in the cells. The key
problem for this research, then, is to décideruhat
informatibn is to be stored in each node of T so that when a
data item arrives at a node, it can be routed to its proﬁer
destination along a reasonably short path. The information
itself must be easily calculated given the integer data
labels and target markers, together with their actual
positions in L. ®Basily" means that the information for all
the cells can be computed in O ({log({n)) parallel stéps. This
could be done, for example, by an upward cycle in which
information is propagated from son cells to their father and
then {perhaps) a downward cfcle during which further

information is passed from father to sons.

The literature provides little assistance in finding
solutions to this problem. A somewhat similar problem has
been studied by Sahin [6]. He considers a nétaork of
identical cells, one of which wants to communicate Qith
another. However, the cell with the source of the message
doesn't know the address of the cell with which it wishes to

communicate. Therefore, it broadcasts its message to all of

its neighboring cells. These cells remember the directibn
of arrival and pass the message'on. ¥hen the target cell
receives the message, it sends back its response. The
response is not broadcast throughout the entire network as’
the original message vwas. Instead, the response is sent to
only one cell, vhich passes it to another cell, and S0 on
until the response has returned to the source of the
original message. Each cell, on receiving £he response,
must decide vhich of its neighbors should receive the |
Tesponse next so.that it travels to the source on as short a
route as possible. If messages can flow in both directions
between tvwo cells, as is the case_with the reduction |
language machine, then this decision is trivial. 'Each'céll
merely remenmbers which of its neighboré first passed it ihé
original message. Then, when it zeceives'fhe :é5ponse, thé
cell passes it on to that neighbor. Host of Sahin's work is
devoted to the situation where messages can flov in only one
direction, so a respénse could not be sent directly to the
neighbor wheo sent the original message. Therefore,:most of
Sahin's work is not relevant to the proposed research.
Moreover, Sahin considers only one message and response at a
time. The reduction language machine must have many data
items moving through the network simultaneously. However,
it cannot afford to have several.copies of one data item
moving around unnecessarily since the tree.would be gquickly

saturated.

10

A number of other researchers have studied problems
involving intérconnecticn net¥orks. This work is summarized
by Thurber [7] and includes such applications as telephoﬁé
netyorks, sorting networks, and permutation networks. The
introduction of pafallel machines such as ILLIAC IV has |
generated increased interest in the problem of data routing
among the different computing elements of the processbr
{8,9,10)s This is similar to ocur problem of routing data
among the cells Qf.the array L. However, in all of the
schemes reported so far, one assumes that there is some
global controller which knows the destination of each data
item and which tells each processing element where to send
each data item it receives. 1In contrast, our problem
requires each node to decide for itself where to send a data
item wsing only the item®s marker and some information

stored in the node.

The X-tree of Segquin [11] involves a similar network {(a
binary tree with horizontal cross connections}. However,
each leaf cell of the X~tree is assigned a permanent
address, and vhen a message (data item) is routed, it is
~ given the address of its destination. In our problem, the
“addresses® (tafget labels) change with each movement

pattern and may appear in any order.

n

Chapter 1 provided a description of the problemrto be
‘studied in this dissertation. In Chapter 2, certain |
propertiés concerning shortest baths in the network are:
established. These properties will be used in later
éhapters to analyze some of the algorithms for data-

movement,

In Chapter 3, tvo groups of algorithms are discusséd.
Algorithms $51-SS4 (Single Source data movement) show how to
broadcast copies of a single data item throughout the.tﬁee.
Algorithms HES1-HS4 (Hultipie Source data movement) extend
551-SS4 to the éituation in which a number of different data

items are broadcast simultaneously.

With Algorithms MS1-MS4, a copy of each data item is
sent to each cell of T and L. This involves the creation of
. many useless copies of data items. The presence of these
copies slovws the entire movement prbéess. Therefore, in
Chgpter 4, Algorithms HS1-MS4 are modified to include
different types of guiding information which can be stored
in the cells of T and used to re&uce the production of
useless copies of data items. The algorithms presented are
nsxi—nsau (Multiple Source with Range information), HSER1-
MSER4 (Multiple Source with Extended Range Information), and

MSH1-8¥SH4 (Multiple Source with Hashing Information).

12

In some cases, the guiding information is perfeci in
the sense that no useless copies of data items are created.
Such guiding information is called Complete Path Information
and any algorithm which has access to Complete Path

Information is called a CP algorithm. In Chapter S, CP
algorithms are analyzed for several data movemént ﬁatterns
such as reversal,rtranslation, and transposition of the
contents of L cells. All of these pétterns are fqund to
fequire time which is linear in the number of iteﬁs mdving.
This represents no improvement over the order-of-magnitude

behavior of the VERTICAL algorithm.

In Chapter 6, some theoretical bounds on the
performance‘of data movement algorithms are established. It
is shown that any movement pattern which does not regquire
multiple copies of data items can be accomplished in |
g{n*loglog(n} /log{n}) steps vhere n is the number of I cells
in the active area containing the expreséion_in guestion.
{In presenting order-of~-magnituade results,-we will use the
notation of Knuth [12] in which O(f{na) stands for any
- function whose magnitude is upper-bounded by a constant
times f{n) for large n, S\ {(f{n))} stands for any funct ion
whose magnitude is lower-bounded by a constant times £ (n)
for large n, and 8{f(n)) stands for any function lower-
bounded by cf{n) and upper-bounded by 4f{n) for two |

constants ¢ and 4 and for large n.)

Figure 1.1

13

Berore Data

MovemenT

DATA
TTEWS

SouReg

LAgELS

TARGET
LABRLS

Aeter Darn

MovewenT

Figure 1.2

14

1A 18

K~

=D

[

C
3
2

™8

AV

tc

AV

A,

B

AL

Al

u{

AV

Figuré 1.3 (Part 1)

15

ey

Y
BY BY Bl 'Y
A
cLy 2\ ACh b ey
BiA
O)
c B liA

Fipure 1.3 (Part 2)

16

17

1 @ang1yg

Figure 1.5

18

Figure 1.7

20

i
JAILAAR

Figure 1.9

22

Figure 1.10

24

QIBE]]en] DDOD00C

I O 1331

Figure 1.11

25

2. SHORTEST PATHS IN THE NETWORK

is a first step towvard a soiution, e might consider
the routing for.a single source item. 1In theIVERTICAL
algorithm, the item is sent to the top node of the tree and
then *"showered" to every cell of L. Then any cell which is
waiting for thai item can accept if while the'oihers ignore

it.

With horizontal connections, it is no longer neceésarj
to send the data item all the way to the top. Instead, it
can be broadcast in vaves as shown in Figuré 2.1. The
numbers in the diagram are included as an aid to the reaéer
and do not represent information which must be stored in the
cells. The data item starts in the cell labeled "0®". In
the first cycle, it spreads to all the adjacent cells
(marked by "1"). Then it spreads to the cells marked ﬁz“,
etc. Eventually, the data item will spread to all the cells
of T and L. W®ith this scheme, the number of steps used to
reach any cell in L is always a minimum. That is, the data
item alvays travels from the source to the target cell along

one of the shortest paths between the two. (There may be

26

more than one shortest path.)

Chapter 3 will discuss technigues for routing items
according to patterns similar to that of Figure 2.1. Since
these techniques involve shortest paths, or nearly shortest
paths, we will first develop some mathematical results abbut
paths in trees with horizontal connections. The
presentation of these results is intended to-bé,rigorous,
vet informal.r Aécordingly, we'sill use the following

inforwal definitions.

The tree is-treated as an undirected graph vwhose nodes
| are the cells of T and L and whose edges are the conneéfions
petween cells as shown in Pigure 1.5. & path bétueen two
cells is anp alternating sequence of cells and edges which
connect the twvwo cells. It is assumed that paths contain no
loops. That is, a given edge may appear only once in the
_séguence. The ;ggggg of a path is.the number of edges in
the“paihe In what follows, an edge is sometimes referred to
as a "stepf. Therefore, the number of steps on a path
betveen two cells is the same as the length of the path
between the cells. The edges which Connect fathers and sons
in the tree are called yertical edges while those which

" connect brother cells are known as horizontal edges. A
vertical path is a path which contains only vertical edges.
Similarly, a horizontal path is one which contains only

horizontal edges. If one cell is a descendant of another,

27

the length'of'the path connecting the two cells is called
the yertical distance between them. ¥e say that two cells

are on the same Jlevel if the vertical distance between each

of the cells and one of their common ancestors is the same.
The levels of the tree are numbered from fhe bottom up.

That is, the cells of L are on level 1, the fathers of the
cells of L are on level 2, and S0 on. ¥hen two cells are on
the same level, the length of the horizontal path which
connects them is known as the horizontal distance between
the cells. Finally, the notation ANC(A,k) is defined to

mean ¥cell A's ancestor on level k.%

ghggggg 1. Let A and B be two cells on the same level of T
which are separate& by a horizontal distance of n; Then the’
father of A and the father of B are separated by a
horizontal distance of:

n/2 if n is even

FLOOR (n/2) or CEIL(n/zj if n is odd.
Broof:
Case I. n is even.
The proof is by induction on n. For n=2, we have one of the
configurations of Figqure 2.2. For both of these cases, the
assertion holds. Now, suppose the assertion is true for n
(n even). let the horizontal distance between A and B be
nt*2 and let C be the cell two units from B (in the direction

of A}, as shown in Figure 2.3. Then the distance from A's

28

father to B's father
=dist. from A's father to C's father

+ disf..from C's father to B's father

{n/2) + 1 (by induction hypothesis)

0

{(n+2) /2.

case II. n is odd. Let the horizontal distance between 2
and B be n and let C be the cell adjacent to B {in the
direction of A). Then the distance from B to € is n-1,
which is even. If B and C have the same father {(Figure 2.4)
then the distance from A's father to Bt!s father is (n—-1)/2 =
" PLOCE{n/2). If B and C have different fathers (Figure 2.5)

then the distance from A's father to B's father is (n—1)/2¢1%

= (n+1} /2 = CEIL(n/2).
Qe EcDw

Theorem 2. Let A and B both be at level k, separated by a
horizontal distancé of n. Then there are more than n steps
in any path from & to B which uses éome cells on levels
below ?, but no cells on levels above k.
Proof: Since A and B are separated by n horizontal steps,
there are n~-1 cells between them on level k. Call these
(N, ¥{2), ewe X{n-1). Then the path from A to B which
uses only cells on level k or lower must contain the |
following segmwents:

- path from some descendant of A4 to some descendant of

X .

29

-for i=1,2,0e.4n~2, a path from some descendant of X (i)
to some descendant of X {i+1).
-3 path from some descendant of X(n~1).to some
descendant of B.
Fach of these paths must contain at_ieast one horizontal
sgep. Furfhermore, any path which uses cells below level k
must have at least 2 vertical edges {one edge to get from
level X to.level k-1 and one edge to return to level k).
Therefore, ahy'path from & to B which uses levels below k

must have at least n+2 steps.

Q. E-D-.

Theorem g; Suppose A and B are two cells in T or L which
are at the same level and are separated by a horizontal
distance 6f n>4. Then there is a path from A to B of length
less than n whichk consists of the edge from A to its faéher,
a path from the father of & to the father of B, and the edge
from the father of B to B.
Proof: The proof consists of a construction of the required
path. It consists of paths from:
| =4 to his father (1 edge)
-A's father to B's father {no more than CEIL({n/2) edges
by Theorem 1)
-B*s father to B (1 edge)
S50 the total path length is no more than CEIL (n/2)+2. But

for n>4, CEIL(n/2) ¢# 2 < n Qe Ea Do

30

Theorem 3. Suppoée A and B are as ih Theorem,é. Then'one
of the shortest paths between A and B consists of the edge
from & to his father {dencted by C), a path from ¢ to the
-féther of B {dencted by D) and the edge from D to B.

Proof: Suppose A and B are on levei k, with A4 to the left of
B Then by Theo;em 2,.no shortest patﬁ between A and B can
use any level below k. The path between & and B which
remains on level k has n steps. But Theorem 3 shows hou:to
construct a shorter ?aih using highei lewels. Therefore;
any shortest path hetueén A and B must_uée level k+¢1.
Consider an axbitﬁary shortest path betw¥een A& and B. Let E
be the leftnost level-{k+1) cell on this path and let F be
the rightmost level-({k+#1) cell. {See Figure 2.6.) If C=E
and ?=D; then we are finished. 1If not, then let G be tbé
cell on level k which immediately precedes E on the path.
{¢ will be the left son of E.} By Theorem 2, it follows
that the arbitrarily chosen shortest path must begin with a
horizontal path from A to 6 followed by the edge from G to
E. ®e will call this initial sub-path A...GE. But the path
which consists of the edge connecting & to C followed by a
horizontal path from € to B {(we will call this path AC...E)
is no longer than R...GE because the horizontal distance
between C and E is no longer than the horizontal distancé
between A and G (by Theorem 1). Therefore, AC...E is a
~shortest path from & to E. Similarly, we can show that the

path consisting of the edge comnecting D to B preceded by

N

the horizontal path from F to D (we will call this path

P...DB) is a shortest path from F to B.

Using these facts, we can construct a new path which -
consists of the path AC...E, followved by the path from E to
F which uses the same edges as the original arbitrarily.
chosen path, followed by the path F...DB. This new path ié
a shortest fath which uses cells C and D.

RQeE.Do

Theorem 5. Let k be the lowest level such that the
horizontal distance between ANC(A,k) and ANC(B,k) is less
than or_equai to 4. Then the.path from A to ANC(A,k), from
ANC(A,k) to ANC(B,k) (horizontally), and from ANC(B,k) to B
is a shortest path from A to B.

. Proof: The proof is by induction on the horizontal distance
between A and B. If A and B are separated by 4% or fewer
edges, then k £s such that ANC{A,k)=a and ANC{B,k)=B. In
this case, A and B must fit one of the configurations of
‘Figure 2.7, or a mirror image of one. For all of these

configurations, it is easy to verify that the horizontal

path from A to B is a shortest path.

Now suppose the horizontal distance between A and B is
n, vhere n>4%. Let C be the father of A and let D be the
father of B. By Theorem 4, we know that a shortest path

from & to B contains the edges AC and DB. But the

32

horizontal distance between C and D is less than n {by
Theorem 1) so ‘the induction hypothesislapplies to D and C.
This means that one shortest path from C to D consists of .
the vertical path C...ARC(C, k), the horizontal path
ANC({C,K} ... ANC{D,k} and the vertical path ANC(D,k)...D. But
ANC{C,k)=ANC{A,k) and AHé(D,k)=ANC(B,k) 80 _
a..,AﬂC(A,k).maANC{B,k)...B is a shortest path between A and

B.
 QuEeDe

‘It will be useful to examine the value of k, as defined

in Theorem 5, given the distance between A and B. The
folloving table shovs the value of %X for some small values

of n {the horizontal distance between A and B).

33

n k

1 1

2 1

3 1

4 1

5 2

6 2

7 2

8 .2

9 2 or 3
10 3

11 3

12 3

13 3

14 3

15 3

16 3

17 3 or 4
18 3 or 4
19 3 or 4
20 4
21 -4
22 4
23 i}
214 4

The first four entries are derived from the fact that for
n<t, the path of Theorem 5 wiil have no vertical edges,"The
othei entries can be found using Theorem 1. For example,
for n=9, the father of A and the father of B are separated
by four or five steps so the path from the father of A to
the father of B will use one or two levels. Adding one more
1e§e1 to get from A to his father, we get two or three
1evels_for n=9. The general formula for k follows by

induction.

Theorem 6. Let A, B, and k be as in Theorem 5, with A and B
on level 1 separated by a horizontal distance of n. Then,

using the notation m=CBEIL(log{(n)), the walue of k is:

34

m-1 or m-2 if n < 2%*#(m-1) + 2%%(x-3), and
m=1 othervise.
Proof: The proof is by inducticn on k. For small values of

k, the theorer can be established by inspection.

suppose cells A and B are separated by a horizontal
distance of n, and k is as in Theorem 5. Consider C, a son
of R, and D, a son of B. These sdns are separéted by a
horizontal distance of N, which must equal 2n-1, 2n, or
2n#1. If K is the lowest level at which ANC(C,K) and
ANC(D,K) are separated by four or fewer horizontal-steps,
then K=k+1. let M=CEIL{N). To establish the theorem, vwe
must compute K in terms of M. There are four cases
corresponding to different possibie values bf n:
I. n € 2%%{g-1}+2%¢(m~-3). Then k=m1 or m-2, by induction,
Huitiplying by 2, we get
2n £ 2%%me 2% % (p-2) .
Since both sides of this inequality répresént even
integers, we also have
2n+ i € 28%me 2%% (m-2) .
But N<2n+¢1 and M=m¢1, so
N < 2%% (H=1) ¢ 2% % (§=3) .
Since k=nm-1 or m-2 {by induction} and K=k+1, we have
k=n-1 or H-2.
iI. n=2%% (m=-1) +2%% {m-3). There are two subcases, depending
on the value of ¥. 1In botﬁ cases, k=m~1 {(by induction)

and H=m+¢i.

35

1« N=2pn-1. Then N=2**(H-1)+2**(H-3)-1 and K=K-1.
2. W22n. Then N 2 2%*(N-1) ¢+2#*(M~3) and K=Hf1.
I1I. 2%% (m=-3)+2%%({m=-1) < n < 2%%*m. The restriction'nia*%ﬁi
assures that ¥=m¢+1. Hultiplying by 2, ve get
2n > 2%%¥me %% (m-2) |
which implies
2n-1 > 2%%m + 2%% (m-2)
since bcth.sides of the first inequality represent even
integers. Since N22n-1 and M=m+¢1, we have
N > 2%% (K-1) +2%% (8-3) and K=H-1.
IV, n=2%%np. Again, there are two sub-cases.
1. ﬁ=2n;1 or ¥=2n. Then since H=m#1, we have N=2%%H-1
or N=2%*%M and since k=m—1 (by_induction), K=M-1. ° |
2. N=2n+§. In this case, H=m+2'so.N=2**(m+1}+1=2**(n-
1)+1 and since k=m-1, K=M-2.
Now, in cases I, IX.1, and IV.2, we have N<2#%& (M=1) ¢+2%% (M~
3). 1In eachk of these cases, K=H-1 or K=8-2. Similarly, in
cases II.2, I1XI and IV.2, we have 2%% [(M-1)+2%%(K-3) £ N £
2%%M. In each of these cases, K=k-1. |

Qo En D.

Theorem 7. Let A and B be two cells in L and let k be the
lovest level such that ANC({A,k) and ANC(B,k) arte sepatated
by two or fewer steps. Then the path that rises from A to
ARC{A,k), moves horizontally to ANC{B,k), and then down to B

is at most one step longer than a shortest path froem A to B.

36

Proof: Let C=ANC(A,k), D=ANC(B,k), E=ANC(A,k-1), and
P=ANC({B,k-1). Then C, D, B,'and F must be arranged in one
of the cdnfiﬁuraticns of Figure 2.8. Let AveoBeeoFouaB

- refer to the path which rises from A to E, moves
horizontally to F, and descends to B and let BeveConaDauaB
refer to the path which rises from A to C, moves
hsrizontaliy to D and descends to B.

In cases (i) and (iii), Ae.eEov.F...B is a shortest
path by Theorem 5. But AcesCe..De..B has the same length.
and is theréfore a shortest path also. In case {ii),
BowoCossDewsB is a shortest path and in case (iv),
BueeEeeoFao.B is a shortest path and A...C...D...B is one
step longer ihan'a...z...E...B. Therefore,-in each case,
BensCowsDesoB is a shortest path or has one more step than a
shortest path.

Qu B2 Do

Theoren 8. Let'a, B, and k be as in Theorem 7, with A and B
on level 1 separated by a horizontal distance of n. Then,
-using the notation m=CEIL{log{n}), the value of k is:

m=-1 or n—2 if n £ 2%%*pm - 2%%{m=-2), and

n-1 otherwisea.
Proof: As with Theorem 6, the result folliows by induction.

Qe Ea Da

heorem 9. Let A and B be two cells in L and let kX be the

37

lowest level such that the horizontal distance between
ANC{A,k) and ANC({B,k) is oné. Then the path that rises.from
A to ANC{A,k), moves horizontallf.to ANC{B,k), and then down
to B is at mosf twvo steps longer than a shortest path froﬁ A
to B.

2;_“§: If k<2, then the theoren can be established by
~inspection. Othervise, we will uée the same notation as in
the proof of Theorem 7, with G=ANC(A,k-2) and H=ANC(B,X-.2).
-A...G...H.;.B will denote the path which iiées vertically to
G, moves hdrizontally to H, and descendé ve:ticélly to B.-
Then C, D, E, F, G, and H must be configured as in Figure
2.9. 1In cases (i), {ii), ané (iii), the path A...E...F..;B
is a shortest path by Theorem 5 and the path A..aCesoD.o.B
has the same léngth. In case (iv), the péth Ae.oCauoDo..B
is one step longer than BeacBawoeFauoH, which is a shdrtest
path. In cases (v) and (vi), the péth BeoeCussDeweB is one
step longer than the shortest paﬁh AcooG.w.H.u.B. In case
{vii), the path AccwCeseDeo.B is two steps longer than the
shortest path AecaGeasaHaooBa .Therefore, in each case, the
path BeseCeeeDe..B is a shortest path or has one or tvwo more

steps than a shortest path.
Q! E- D-

38

Theorem 10. Let'ﬁ, B, and k be as in Theorem 9, with A'and
B separated by a horizontal distance of n. Then, using the
notation'm=CEIL(loq(n)), the value of.k is: |

m if n=2¥*n, and

m or ﬁ—i otherwise (i.e. if ndl2*=m).
Proof: Again, as with Theorem 8, we omit the details of the
inductive proéf.

Q- EOD-

Theorem 11. Let & and B be cells of 1. Let k be a level
such that ANC{A,k) and ANC (B,k) are separaﬁed by n edges,
nz#. Then every shortest path between A and B must include
some cells on level k. |

Proof: If k=1, then the theorem is trivially true because
ANC{A,k)=A. Suppose k>1 and consider any path from A té B
wvhich does not use level k. Suppose the highest level used
by this path is m, m<k. (See Figure 2,16.) Then, since
ANC{A,m) and AFC{(B,m are separated by at least {(n-1)#*2%#{k-
m) +1 horizontal edges, this path must have at least 2#m+{n-
1) #2%% {k-m) +1 steps. To get this number, notice that
ANC(A,m) and ANC({B,m) are separated by n-% sub~trees, each
of which has 2%*¢ {k-m) leaves. But there is a path using
ANC(R,R) and ANC({B,k) which takes 2*m ¢ 2% (k-m) ¢ n steps.
The path using level k is shorter than the one which used
only level n because |

(n=1)%2%% (k-m) + 1 > 2% {k-m) + n

39

for n 2 4 ard k-m > 0. Therefore, level k must be used for

the shortest path.
Qll E.- D.

Theorem 12. Let A be in L and let B=ANC(A,k) for some k21.
Let C be addjacent (ﬁorizontally) to B and suppose D ié n
hofizontal edges avay from B on the same side as C, n21.
{See Figure 2.11.} . Then any shortest pat& from A to D must
use cell B or cell C. |
Proof: If X=1, then A=B, so any shortest patﬁ must use B.
Suppose k>1. Then the shortest path between A and D must
include some cell on level k (if bnly D). #W®Without loss of"
generality, assume B is to the left of D, as in Figqure 2.11.
Let E be the leftmost cell on level k which is on socme
shortest path. ¥%e will show that E is either“B or C.
Clearly, E can not be to the left of B. {(If it vwere, ve
could construct a shorter path which did not use E. But E
is assumed to be on some shortest path.) If E is not one of
B or C, then-tﬁere must be m22 horizontal steps from B to E.
{See Figure 2.12.) The (supposedly shortest) path A...E
must then include X vertical steps plus the following
horizontal stepsi

-a deséendant of B to a leftmost descendant of C {at

least 1 step)

~leftmost descendant of C to rightmost descendant of C

{at least 1 step)

40

—rightmosﬁ descendant of C to a descendant of E {at
least m-1 steps since C and E are separated by m-1
steps)
{See Figure 2.12.) This gives a total of at least 1&1¥(m-j)
= m+1 horizontal stepéa But ¥e can easily construct a path
from A to E using dnly m horizontal-steps..'(This path rises
directly to A and then moves horizontally to E.) Therefore,
the assumption that E is not one of B or C must be false. .

QoE.Do

Theorens 11 and 12 give us a method of cdunting the

number of shortest paths between two cells of L.

by a horizontal distance of n. Let k be the highest level

_ such that the horizontal distance between ANC({A,k) and

ANC({(B,k} is greater than or equal to four. If n<4, then let

k=1. Then every shortest path from A to B consists of three

segments: |

{1) A segment from A to C vwhere C is either ANC(A,k) or the
cell adjacent to ANC(A,k) (towards B) |

{2) A segment from C to D, where D is either ANC(B,k) or the
cell adjacent to ANC(B,k) (towards A)

(3) A segmeht from D to B

such that the horizontal distance between ANC (A ,k) and

ANC(B,k} is gréater than or equal to four. {See Figure

2.13.)

41

Proof: The theorem is trivially true if n<¢. If ﬁzu, tﬁén
by'Theorem 11, every shortest path must use some cells on
level k and by Theorem 12, every shortest path must use
ANC{A,k) or the cell adjacent to it, andlANC(B,k)-or the
cell adjacent to it. .Therefore, C and D, as defined above

must be intermediate cells on any shortest path.

Q. Eo Do

Theorem_13. Let A be in L and let C be the right (or left)
brother of ANC(A,k)=B, where k21; {(See Figure 2.14.) Thén
the number of shortest paths between C and A is one.mo:e_
than the numbef of consecutive right {or left) branches
beginning at B in the path from B to A.

2roof: Coﬁsider the diagram of Figure 2.15. A shortest path
from A to C may use any one of the hatched cross edges fo
get to a descendant 6f C, and then go up to C. The.number

of cross paths is the same as the number of consecutive

right {or left) branches.
CuFuDe.

Corolliary. An algorithm for determining the number of
shortest paths between two cells A and B which are separated

by a horizontal distance of n in L.

1. If n<i, let k=1. Otherwvise, let k be the highest level
such that ANC(A,k) and ANC(B,k) are separated by a

horizontal distance greater than or equal to four. Let

42

C, D,'E, gnd ¥ be as shown in figure 2. 16,

2. Let S{AE) = # of shortest paths from A to E which do not
use C, as:computed in Theorem 14. ({s(AE) could be 0a)
Let.s{BF} = ¢ of shortest paths frqm B to F which do
not use D, as computed in Theorem 14. ({s(BF) could be
0y _ _

Let S(CF), s{CD), S(EF), S(ED) be the numbers of
shortest paths from € to F, C to D etc. (since-c.énd'b
are separated by at most seven steps, a finite tahlé}
coﬁid be constructed to compute these values.)

3. Then the totél nﬁmber of shortest paths from A to B is:

s {CF) * S{EB)'

¢+ s{CD)

+ s{AE) *'S(EF).* s (FB)
+ s{AE) * s(ED)

Progf: Any shortest path is of the form BReesXuveYoseB, where

I=C or E, and ¥Y=F or D. The number of such paths is s {AX} #*

é(xt) * s{YB) . Substituting all possible values for X and

Y and using the fact that s(AC)=s(DB)=1, we get the result.
Qe E«D.

5 N\

ARSI

RV/AVANET
e)T

44

R pa
[7/ F)
‘\ ”' ‘\\ "’ . ’l’
P A3 . ’ . \ ¢
F GO U SO P I S
A B
Figure 2.2
h/3
A
e, -
f . oa A %
g s < ha) 7
% N % lJ
I' s 7 " 4
1] : (4 [} 4
d’ : Jh _.ff ’ Y ¢
Yo B ly———pd
A c
L Y

Figure 2.3

45

o S -
" ! LY
| 7 LY
| 'f \
&— o K :
A : Es
R " -
| 2t
Figure 2.4
» - :‘{‘ _?
o O——0
1) : g
L : ")
n
Figure 2-5
'3 e/ s 3
N - level kel
| . level k
& ")

Figure 2.6

Figure

2.

7

46

(1)

(i1)

(1i1)

(1v)

i

W

> o

Figure 2.8

47

(vii)

Figure 2.9

48

Figure 2.10

49

Figure 2.11

Figure 2.12

Figure 2.13

50

A

Figure 2.14

51

Figure 2.15

q11ﬂ

Figure 2.16 8

52

3. DATA MOVEHEKNT IN A& NETWORK WITHOUT MENORY

3.7 Algorithms for Ope Data Itenm

In this chapter,-we'discuss technigues for broadcasting
items ¢o every cell of L. We wili assume that the cells of
‘T have no memory. That is, there will be no information in
these cells to guide a data item to a particular target cell
of L. Instead, copies of the item will be broadcast to all
of the cells of L. Those cells in L which need the item
will accept it while the rest of the cells will discard it.
In Chapter u;.me #ill consider techniques which utilize

memory in the cells.

To implement a broadcast algorithm, we need rules which
each cell will use for deciding to which of its neighbers it
should send the data item. This decision will be based on
the direétion from vhich the data item arrived and the
previous histofy of the item. Broadcasting is accomplished
by Algorithm SS1, in which each copy of the data item will

carry a "state"™ bit to keep track of its recent history.

Algorithm SS1. (Single Sgource data mgvement)

This algorithm broadcasts a data item throughout the tree in

such a way that each cell of T and I receives exactly one

copy of the data item.

There are two possible states which will be called
“From loson® and "From hison". Initially, the data item
occupies a source cell in L and is treated as if it had
arrived fror the left(lo) son. It is assigned the state
"From loson". During each cfcle, each cell applies the
folloving rﬂles, which are diagrammed in Figure 3.1, to
decide vhere to send the data iiem it contains (if -any):
{a) If the_data item arrived from the left{lo) somn, assign

it the state "From loson® and send copies of it to the
father, the left brother and the right brother.
{(b) If fhe data item arrived from the right{hi) son, assign
it the state "From'hison" and send copies of it to the
father, the left brother, and the right-brother."

{c) If the data item arrived from the left brother, then

send a copy of it to the right(hi) son. If the state of

this item is "From loson®, then send another copy to the

left(lo) son. 1In either case, erase the state bit.

(Erasing the state implies that the state information is

no longer needed. The state bit can be set to an

arbitrary value.)

{d) If the data item arrived from the right brother, then

send a copy of it to the left{lo) son. If the state of

this item is "From hison" then send another copy to the

right{hi) son. In either case, erase the state bit.

54

{e) If the data item arrived from the father, then send
copies of the item and its state bit (which will have

been erased by this time) to both sons.

The paths created by this algorithm for a tree of size
16 and a data item origipating in the 8th dell of 1 are
shown in Figure 3.2. Dotted lines represent comnections not
used by copies of_this'data item. |
Proposition Using Algorithm SS1, exactly one copy of the
data item wiil be broadcast to every cell of T and L.
Proof: The proof is by induction oﬁ'h. the height of the
active areag The specific inductive assertion is that each
horizontal level of the active area of the tree consists of:
- n celis which receive exactly one copy from above (n may
"be 0.)
- 0 or 1 cells which receive exactly one copy from the right -
(lf this number is 0, then n=0.)
~ 1 cell which receives one copy from below
- 0 or 1 cells which receive exactly one copy from the left.
~ m cells which receive exactly one copy from above (m may

be 0.)

{See Pigure 3.3.)

The assertion can be verified directly for h=1. Assume
‘the assertion holds for the upper h levels and consider the

{ht1)th level {(from the top). Let A be the cell on level h

55

{(from the top} which receives one copy from below. Let B be
the cell which sends the copy to A. Sinqe the rules are
symmetriéal, wé need only treat the case where B is the left
son of A. Finally, let C,D,E,F, and G be as in Figure 3.4.
{1f the active aréa'contains fewer than 6 cells on this |
level, then some of C,D,E,P, and G maf be missing.) Then B
must send items according to rule {a) or (b} since a copy is
sent ﬁpwards‘only ¥ith rules {a) and {b). In either case, C
and D will receive exactly one.copy from the left and right,
~ respectively (bj rule (a) or (b)). Cell E will receivé |
exactly one copy from éell H by rule (d). (If E'is.part of
the activé area, then H pust be also.) Cells F and G will
receive'exactlyrone copy each from cell J by rule (c}. EBach
of the other cells will receive exactly one qbpy from,ahdve
by rule (e). This establishes the induction assertidn for

level h+1 {from the top).
Q. Ea Dn

Algorithm SS1 then can be used to broadcast a data item
to every cell of the tree along a path which has exactly one
horizontal edge. That is, the path betweeh the source cell
A and a target.cell B in L will consist of a path going up
from A to one of its ancestors, then across one horizontal
edge to an ancestor of B and then dovn to B. To see this,
consider any level k and let C=ANC(A,k) and DzﬁNC{B,k}. if
C and D are separated by one hérizontal edge, then the péth.

from A to B will use this edge because of rules (a) or {b).

56

Otherwise, C will send a copy upwards and D will receive its
copy from above so the path from A to B will use no

horizontal edges on level k.

Proposition. The path followed by a data item in Algorithm

$S1 is no more than two steps longer than a shortest path.
Proof: This follows immediately from the above discussion

and Theorem 9 (Chapter 2).
Q- E. Do

Algorithms which broadcast along shorter paths can be
. developed by allowing the data items té travel horizontally.
for more than one step. This will be done in Algorithms
Sszg 553, and 584%. The complete details of these algorithms
.are rather complicated. Howvever, the qperation of the
algorithms is easy to understand with the aid of diagrams
which show how the data items are routed at the "turning
point®. For example, Algorithm S51 can be represented as
sho¥n in Figure 3.5. In PFigure 3.5{a), an item arrives from
the left(lo) son. By rule (a) of Algerithm SS1, copies of.
the data item will.be sent both left and right to B and C
resPeétively. (A copy will also be sent to A's father, not
shown.) B will send its copy to its left son by rule (d).
And C will send copies to both of its sons by rule {(c).
{The sons, of course, will send the item to their |
descendants by rule {e} until L is reached.) Figure 3,5(b)

shows arrival from the right son and is symmetric to the

57

first. In discussing further algorithms, we will present

only the diagram corresponding to Figure 3.5(a).

Algorithms SS2., $53, and §S4. (Single Source data

_movement.)

These algorithms are represented by Figures 3.6, 3.7, and

3.8.

As with Algorithm SS1, these algorithms all have the
property tﬁat ex&ctly ome copy of the dataritem wili'be:sent
to each cell of T. FPurthermore, it follows from Theorems 5
“and 7 that the path between a source and a targef both.ian
will be a shortest path if Algorithm SS4 is used and.kill be
no more than one step longer than a shortest path if
Algorithm SS2 or Algorithm SS3 is used.

3.2 Alqgorithms for Multiple Data Items

Algorithms SS1-SS4 show how to broadcast a single data
item through the.netuork. In this section and the remaining
chapters, we will investigate techniques for moving more
than one item simultaneously. That is, different cells of L
will contain different data items, each of which is aiming

for a different target cell.

58

3.2.1 The Ipevitability of Collisions

One approach to developing a multiple—item data
movement algorithm is to use Algorithm-ssu or some other -
 technique to identify a shortest path between each source
and 1its cbrreépondihg target (s) and then route the data.

'~ items along these paths. For somé configurations, this may
inevitably lead to conflicts, even if there are no extra
copies of any of the data items_(a$ there are using
Algorithm SSQ).‘ That is, twe data items may try to occupy
the same ;egister of a cell at the same time, thus forcing
one of them to wait. For exahple, consider the pattern of
Figure 3.9. By inspection, ve seé that.the minimum number
0of edges between each source and its corresponding target is

six. But:

Proposition. If every data item travels along a shortest
path to its target in the configuration of Figure 3.9, then
simultaneous data mwovement cannot be accomplished in six

steps.

Proof: (By contradiction) Hovement in six steps is possible

oniy if each data iter can move along a shortest path.
Suppose this is so. Then on the first step, A must moie to
cell #8 and C must move to cell #9 (because all shortest
paths for A go through cell #8 and aill shortest paths for B
go through cell #9). 1In order to avoid conflict at step 1,

B must choose for it3s shortest path 17-18-9=-10-11-12-25 and

59

D must choose 19-20-10-11-12-13-27. These paths are shown
'in‘Figure 3.10. Therefore, after step 1, we Must have the
‘configuration of Figure 3.11. Fof step 2, B and D a;e_.. |
committed to cells #9 and #10 respectively, since the:erare
no other shortest paths given their start in step 1.
Therefore, A musﬁ move io cell &4 (to follow shortesf path
16-8—3-5-6-?2?2u). But since cells 4 and'?G-are dccﬁpied,
this leaves no second move for C. Therefore, é cannot

follow anj shortest path without havihg to wait.

Q-E.D.

This means that, in general, we cannot expect data
movement to be completed in the number of steps it would
take any one data item to move by itself. That is, for some

configurations, some data item will have to wait or follow a

longer path.

One obvious way to handle more than one data item is to
allow each item to move according to the rules of one of the
Algorithms SS1-SS4. When a conflict occurs and two
different items are routed to the same register of a cell,
one will be required to wait. There are various possible
schemes for deciding which item(s) should have to wait. The
one adopted in our implementations is to give first priority

to the item which has vaited the longest, with ties troken

- 60

in favor of the lowest valued data item. The élgorithms
" which can be obtained in ihis fashion from SS1-SS4 will be

:eferred to as MS1=-M58% ({(for Hultiple Source).

These algorithms sclve some of the problems mentioned-
in the introduction. it is no longer necessary to have each
item climb all the way to the top of the active area. As
soon as the item gets high enough, it begins its descent.
Therefore, the time for data movement no longer depends on
the configuration of the active area, as vas the case in the
. VERTICAL algorithm. (Recall Figure 1.11.) Also, if the
active area can be partitioned into segments in such a way
that the sources for all the targets in a segment are also
in that segment, then the time for data movement will depend
on the number of items in the largest segment rather than
the total number of items moving. As an extreme example,
swapping adjacent pairs {Pigure 1.8) reguires only t¥o
cfcles using any of algorithms 4S1-MS4, no matter how many

pairs are tc be svapped.

In the general case, hosvever, MS1-H54 offer little or
no improvement over the VERTICAL algorithm. 1In fact, a
simulation showed that MS2 required two more steps than the
YERTICAL algorithm to reverse 64 items. It was not
immediately obvious that this should happen since both the
VERTICAL algorithm and MS2 broadgast every source item to

every cell of T and L. The reason for the difference

61

involves the way in which the item is split into two {or
more} copies. In the VERTICAL algorithm,'a cell will make
tvo copies of the data item and send them to both of its
s@ns, who will alvays be ready to receive them. Therefore,
the sending cell will always be free to accept another data
item. However, in MS2, when a cell makes two coPies.of a
data item, it is‘possibie that one copy will have to wait.
This means that the sending cell cannot acceﬁt another data
item on ihis cycle. Therefore, it could (and sometimes

dces) take more than n-1 steps for n data items to move

through a given cell.

To avoid these problems, we must find a way to limit
the namber of.useless copies of data items which clog the
network. This can be done by giving the cells some memory,

as in the algorithms to be discussed in Chapter 4.

62

RuLe (a | | Ruce (b)

Ww ” . . '’
From loson ! * Frow loton “Frow lmsun"i “Frowm hison
Z Y L. LY
<]‘f 4 < >

Ruee (0)
 MErom !'\‘Spv, Y Brom logom
Rure (d)
N\ From huson Frow IOSCM
RuLe (&)

T Figure 3.1

63

Figure 3.2

64

Figure 3,3

Flgure 3.4

B A c
P4 £ Mo
eim DL T/' 0 - - - A

Filgure 3.5

65

66

Figure 3.6

Figure 3.7

Figure 3.8

1
a
5) 7
9 i T E 3 14—,
I HITHITHIG HACOHal H{aaHaA3 Had 25‘136_ a7 QEJ 19 H30H3],
A B ¢ D &« SourRec e l } ‘ \
A B C D € TarceTs

Figure 3.9

67

G SURF RGO MBI uumutmmn%

’ & N T
-0 eogqumwd © o© © © b o ©
0 R | , 25 a1
8 ‘

Figure 3.10

1+

68

L
f‘ \\ .I' \\ "’ \\
” \\ !', “ ! L
A’ \!; . -a.gl’ \1 ab " ‘\\
6 b---{r}---f1gh--- g) --- {20k - far

Figure 3.11

69

4 DATA MOVEMENT ALONG SHORTEST PATHS IN A NETWORK HITH

'MEMORY

4.1 Complete Path Information--IThe Goal

In this chapter, we éxamine techniques for storing
information in the cells of T to guide data items to their
proper destinations. The items uill still follow thé.pathS'
pteScribed by one of the broadcast algorithms S5S1-SSi4. The
information in.the cells will be used only to'decidé when
not to make extra copies of the items. Ideally, ve would
like each item to reach its destination(s) without the |
production of any unnecessary copies. Consider Figqure 4.1.
Here a data item originating in cell A is to be sent to
cells B and C. The figure shows the paths which the item
would taie using Algorithm $S1. Of course, vith Algorithm
SS1, many useless copies of the data item would be created
and later discarded. ¥We see from the figure that only at
cell D is it mecessary to make two copies of the data item.
. Everyvhere else; an item arriving at a cell of T is routed
in only one direction, according to the pattern established

by SSi.

70

- This chapter describes several types of information
which can be stored in each cell so that, upon receiving a
data item, the cell can decide where to send the item. The
cell must also be able to decide if the item must be copied
and must know which way to send the copy {or copies). 1If
the cells always have enough information to avoid generating
useless copies, as in Figure 4.1, we will say that the cells
have Complete Path Information. The mmemonic CP1 will refer
to the algorithm in which all items move égcording to the
rules of SST and all of the cells have complete ?ath
V.ihformation.. Similarly, €P2, CP3 and CP4 will refer to the
algorithms in which the cells have complete path infgrmatian
- and move according to the rules of 532, 553, and sS4,
respectively. Figare 4.2, for example, éhows how the item
in the configuration of Pigure 4.1 would reach its

destination using CPY4.

Of course, CPi-CPU are not practical algorithms éince
we do not knov how the machine could compute the information
needed for each cell. Instead, they are the goal for thiis
chapter since they represent the best algorithms that can be

obtained from the broadcast patterns of SS1-SS4.

The original draft of the Mag® paper [1] suggests one

approach toward the goal of the preceding section. ¥With

71

each vertical edge, we associaie two integers which
represent the lowest and highest target values in the cells
of L which can be reached vertically from that edge. The

to these two integers. Consider, for example, Figure &4.3.
The edge marked A has {4,6) as its range information because
the two cells with target values h_and 6 can be reached from
it. Edge B has range information (1,6)'becaﬁse the target
values of the cells which it can reach lie between 1 and 6

inclusive,

Of course, the edges have no memory, so the range
information must be stored in the cells of T. This can be
done if each cell has four registers called RINLO, MAXLO,
MINHI, and MAXEI. HMINLO and HAXLb will store the range
information associated with the edge'which connects the cell
to its left son, while MINHI and MAXHI will store the
information associated with the edge which connects the cell
to its right son. Rather than refer to ¥INLO and HAILC
individually, we will henceforth refer only to the pair
(MINLO,MAXLC) which we give the name GLO (for Guiding
information for the LO edge.) Similarly, we will use GHI to
refeé to the pair (MINHI, MAXHI). Figure 4.4 shows the

contents of the four tegisters-for cell C of Figure #.3.

The range information is easy to compute in one upward

pass through the tree. This computation proceeds one level

72

at a time as follows:
Algorithm CYR (Compute Yertical Range Information)
The operation "merge" betwveen two range information pairs is
defined as follows:
merge{{a,b}, (c,d)) = (min{a,c),max{b,d))
1. 1Initialization. |
For each cell of L, if that cell has a target label of
k, set GLO to ({k,k) and GHI to (k,k),- Fo# all othég
cells of L and-r, set GLO an& GHI to (h;O), wheré.n is
larger than any target label used in this movemént
paite;m.. |
II. Transfer of information from son to father{
This step is repeated at h levels, where h is the
keight of the active area. GLO and GHI will refer to
the registers in the cell which 1is sending_information
upwards. GLO{father) and GHl{father) will refer to the
registers in the father of that cell. For each cell of
L and T, if thé cell is a left{lo) son, then set
GLC(father) <€- merge (GLO,GRI) |
If the cell is a right{hi) son, then set

GHI{father) <- merge{GLO,GHI)

Given this range information, Algorithms SS1-SS4 can be
modified so that the data item is sent downwards only if the
range information indicates that there may be a target
needing that data item. That is, the item is sent along an

'edge only if its label falls within the range associated

73

‘with that edge. For example, in Figure 4;3; if a data item
with label 5 arrives at cell C from above, then it need only
be sent to the right son because the range inforﬁation (3,4
guarantees that there are no targets labeled 5 among the

descendants of the left son of cell C.

The algorithms which can be deriied frbm NS5 1-KS4 in
this manner will be referred to as HSR1-MSR4 (for Multiple
Sources with Bange Information). A few simulations showed
that these algorithms performed somewhat (abouﬁ 30%) better
.than MS1-MS4 on movement patterns involving 100 or so data
items. Houeier; they do not come near the performance of
‘the CP algorithms because useless copies can still be
created and passed through the network. For example, in
Figure 4.3, if a data item labeled 3 arrives at edge B, it
may still pass even though there are no 3's in the area
below B. Furthermore, no copies are discarded until they
start moving downward. Therefore, there may be many useless
upward-moving, left-moving, and right-moving copies. 1In the
next section, we will present an improvement of MSR1-MSR4

vhich alleviates the latter problem.

4.3 Extended Range Information

In the previous section, range information was
associated only with the vertical channels which send data

items downward. It is possible, however, to associate range

74

information Qith all of the channels. Consider, for
example, Figure 4.5, in which target values and cell indices
coincide. Suppdse h data item arrives at cell A from below.
Then with S51, the item would be sent to cells #7 and #8 via
the upper channel. {Copies would be éent to‘the rest of the
cells using other channels.) 1If we associate the range
information (7,8) with this channel, then we Xnow that when
an item arrives at A from below, a copy should be sent

upwafd only if the label of the item is in the range 7 to 8.

The horizontal edges can be treated similarly, except.
for one complication. Consider Figure 4.6 which shows the
same configuratibm as Pigure 4.5. The channel to the right
of cell A will send a data item to cells #5 and #6 if the
item arrived at A from the left son (Figure 4.6 {a))-.
However, if the item arrived at B from the right son (Figure
4.6({b)), then the right channel will send the item anlj'to
cell #6. Therefcxe; ¥e need to store both pairs (5,6) and
{6,6) and use one when the item arrives from the left son
and the other when the item arrives from the right son.
Alternatively, we could apply the mergé operation of
Algorithm CVR to the two pairs, in this case keeping only
{5,6). This altermative is simpler and requires less
storage in each cell. However, it may result in the
production of more useless copies. For example, if an item
labeled 5 a:rivés at cell A from the right son, then it

vould be unnecessarily sent to the right if (5,8) were the

75

only range information stored. 1In what follows, we will

assume that two pairs are stored for horizontal channels.

Figure 4.7 shows all of the range information which.
must be stored for the configuration of Figure 4.5 and 4.6.
As mentioned above, the horizontal connections have t¥o sets
of range infdrmation for each direction. 1In Figure 4.7, wvwe
have adopted the following convention. For channels which
send information to the right, the range information to be
used vhen the iteﬁ arrived from the left.son is written
above the horizontal line. For channels_uhich send items to
the left, the range information t¢ be used vhen thé item
arrived from'the_riéht son is written above the horizontal

line. This is consistent with Figure 4.6.

Before éhouing how to compute the range information,
let us examine how the information is used as we follow one
data item through the tree. Suppbse a data item labeled 6
originates a£ cell #2. (See Figure 4.8{a).) According the
Klgorithm 551, the item would be sent upwards, to the left
and to the right. However, the range information (t, 1
makes it unnecessary to sénd it to the left and the range
information {3,3) makes it unnecessary to sepd it'to the
right. Therefore, the item is sent only to the father. At
this point (4.8(b)), the range information again dictates
that a copy need only be sent upwards, giving 4.8(c). Now

since the item is arriving from the left son, we must use

76

{5,8) as the range information to decide whether or not to
- send the item to the right. Since 6 is between 5 and 8, we
db send'it, giving 4.8(d). At this point, Algorithm SS1
vould send copies ¢of the item.to hoth sons. quever,'since
{7,8) is the range information associated with the lover
right channel, a copy need only be seht to the lower left
son {(4.8{e)). In the last step, the range information
specifies that fhe item need only be sent to the right son,

-and the itenm reaches its destipation {4.8{f)).

As with the MSR alqbrithms, the range information must
be stored in the cells of T. This will reguire fourteen
registers in each cell. GLO=(MINLO,HAXLO) and
GHI=(MINHI,HAXHI) serve the same purpose as in the MSR
algorithms. Gﬁ?f(HINUP,EAXU?) ¥ill store the range
information associated with the upper channel.

GRT 1= (MINRT 1, HAXRT1) will have range informatiom associated
vith the right channel for a data item arriving from the
left son while GRT2=(HINRT2,MAXRT2) will have range
information associated with the right channel for a data
item arriving from the right son. Similarly,
GL??E(HIHLFi,HAXLF1) vill have range information associated
'with the 1eft channel for an item arriving from the right
son and GLPZf(HIHL?z,MAXLFZ) will have range information
associated with the left channel for an item arriving from
the left son. Figure 4.9 shovs the contents of these

registers for cell A of Figure 4.7.

77

The computation of the range information proceeds as

follows:

I'

II.

Algorithm CER (Compute Extended Range Information)

o iy T s AP A LB

Initialization
1. For each cell of L, if that cell has a target label .

of k, set GLO€-(k,k) and GHI<¢-({k,k). For all other

cells cf L and T, set GLO and GHI to (n,0), where n is

larger than any target label used in this movement
pattern. |

2. For all cells of T and L, set GUP, GLF1, GLF2,
GRT1, and GRT2 to (n,0).

Transfér information to all neighbors.

This step is repeated 2h times, where¢ h is the height
of the active area. The neighbors of a cell sending
information will be called "father", "left", ¥right¥,
“losén“ and "hison". The registers in these cells uiil
be referred to as GLO(father), GRT(left), and so on.
The operation "merge®™ from the previous section is
extended-to three arguments by the rule that for pairs
X, ¥, and 3%, .

merge (X,Y,2)

merge (nerge (X,Y) ,Z)
For each cell of T and L, send information to all
neighbors as follows:

GRT1{left} <€- merge{GLO,GHI)
GRT2(left) €- GHI

GLFP1{right) <€- merge(GLO,GHI)
GLF2({right) <€- GLO

GUP(loson) <€- merge{GUP,GLFZ,GRT1)
GUP {hison) <- nmerge{GUP,GLF1,GRTZ)

78

If the cell sending information is a left(lo) son, then
set |

GLC(father) - mwerge {GLO,GHI)
If the cell sending information is a right (hi) son,
then set

GHI{father) <€- merge (GLO,GHI)

Figure 4.7 contains an example of the result of this

computaticen of the range information.

The data movement algorithm which uses this information
¥ill be known as HSER1, for Multiple Sources with Extended
Range Informaticn. The ®1%* refers to the fact that this
algorithm is based on the novement pattern of Algorithm SS1.
It is also possible to devise BMSER2, ASER3 and MSER4. These
require increasing amounts of memory in each cell because
the horizontal channels have to serve a largér number of
different regions {groups of consecutive cells in i}y. To
see this, consider Pigure 4.10, in which information is
being sent by Algorithm SSd4. A data item can arrive at edge
A through any of the cells marked #1-#8. For each of these,
the regibn to which the item will be sent after crossing
channel A can be found by consulting Figure 3.8 and is shosn

in the follcwing table:

Arrival at A from cell # Region'reached

1 9-10
2 9-30

19

3 9-12
4 9-12
5 10-14
6 11-14
7 12-16
8 13-16

Since there aré six distinct regions, (9-10 and 9-12 are
repeated) , we upulé need six pairs of registers tb s£0té_the
rahge information associated with each direction 6f movement
across each horizontal channel. Though we will not present
the details, the aldorithm for computing'all of this range

information is a straightforvard extension of Algorithm CER.

In the example of the preVioﬁs section (Pigure R.B),
the data item reached its destination without being copied
unnecessarily. This is because of a fortuitous (and
fortunate) arrangement of the target labels and is not
inherent in the algorithm. 1In general, unnecessary copies
may be generated. Consider, for example, Figure #.31. An
item labeled 2 which originates at cell A should only he
sent to the left. However, the range information is such
that an extra copy will be sent upwards.and to the right,
reaching cell B. Therefore, Algqrithms MSER1-MSER4 will
not, in general, perform as well as CP1-CP4, and it is still
useful to look for other types of guiding information to

"store in the cells.

80

One alternative is to replace the two inteqers of :anée
information associated with a channel with a bit vector
which somehow represents all of the target labels which can
be reached through that channel (and perhaps other labels as
well)., For example, we might use a hashing function which
maps target labels into bit positions. The vector
0100100000, then, would be associated with a channel which
only reaches,cells'uhose target labels hash to 2 or 5.'then '
a data iiem érrives'at this channel, it will be sen£ BCross
the channel only if its integer label hashes to 2 or 5. Of
course, it is-s;ili possible that the item will be seht
across the channel unnecessarily. The algorithms uhiéh'use

this hashing apprcoach will be called HSH1-MSH4.

Computing the bit vectors requires the same genetal
téchnigue as that used to compute the extended range
information. In CEB, each register pair GOP, GLO, GHI,
GLP1, GLF2, GRT1, GRT2, corresponds to a group of adjacent
cells in L. FPach tegister pair contains a condensed {and
incomplete) reptesentaiion of the data item labels which may
appear as targets in this group of cells. The merge
operation combines the information about two adjacent groups
of cells. .USing the hashing information, GOP, GLO, GHI,
GLFt, GLP2, GRT1, GBRT2 will be bit vectors which correspond
to the same groups of L-cells, but in a different way. The
merge operation must be modified accordingly. The algorithm

to compute the bit vectors for NSHY proceeds as follows:

81

lgorithm CHY (Compute Hashing Vector)

[

I. 1Initialization. .
For each cell of L vhich has a.target label k, compute
i=h(k) , where h is the hashing function chosen. Set
the ith bit of GLO and GHI to 1 and all other bits to
0. Por the :eé£ of the cells of L and T, set GLO and.
GHI to all O's. For all cells of L and T, set Gup,
GLF1, GLF2, GRT1, and GRT2Z2 to 0O's.

11, Transfer of information_betveen_cells.
This section is the same as part II of Algorithm CRE
using

merge(i,¥) = X OR Y

The introduction of the hashing function makes it
extremely difficult to analyze the performance of MSH1-HSH&.
However, it should be clear that if the hashing function is
chosen well enoﬁgh, the performance of NSH1-HSHY can
approach that of CP1-CP4. As an extreme, if the length of
the bit vector is equal to the number of distinct targets,
then using the identity function for h will provide complete
pathk information. Even uith fewer bits, the performance of
MSH1-BESH4 can be quite close to CP1-CP#, especially if
hashing information is stored in addition to range
information, forming hybrid algofithms HASERH1-MSERHA4.
Therefore, in Chapter 5, we will concentrate analysis

efforts on the cohceptually simpler CP algorithms.

82

4.5 Consecutively Numbered Target Labels.

In the previous sections, we made no assumptions about
the distribution of the target labels and the location of
the source items. An item could originate anywhere in the
active area and be sent anywhere. In fact, data movement
for many of the operations of the machine of [1] is more
orderly. In most cases, data movement involves translations
of no more than a fixed number of contiguous regions in L.
Each region, in which the non-empty cells are labeled
consecutively, may need to be copied an arbitrary number of
times. Pigure 4.12, for example, shouws a 10-cell region
vhich must be copied to two places. The exact percentage of
movement patterns which are of this form depends on the
particular reduction language dialect of the machine (that
is, the choice of primitive operations) and the
characteristics of user programs. However, one would expect
the case of translation of contiguous regions to be quite
common since it is used to implement some of the most basic
features of the language. For now, we will consider only
one source region, as in Figure 4.12, and assume that data

items move according to the rules of SSt.

The region (group of consecutive cells in L) reached by
any horizontal or downward-moving vertical channel is always
a set of contiguous cells of L. Therefore, the target

labels in the area reached by a horizontal or downward-

83

moving channel is always a group of cohsecuﬁive integers; as
with edge A of Pigure 4.13, or twe groups of integers, one
ending Hith.n {the number of labels in the segment) and the
other beginning with 1, as with edge B of Figure 4.13. (It
'is assumed that the item arrived from the left of cell X.)
In the first caée, the range information {({3,6) in_the |
exampie) is sufficient to specify the complete confents 6f
the area. In the other case, we still heeé only tuo-
.-integers to repreéent the contents of the area. In the.
example, we could use (9,2) to meaﬁ 1...2 and 9...10. 1In

general, {m,k), where k<m can represent the groups 1..k and

Me s o Noa

3 chahnei which sends items upward can reach one group
of contiguous éells {(edge C in Pigure 4.13) or two:grdups of
cells (edge D in Pigure 4.13). If the channel :egches one
group of cells, then, as with the horizontal and downward-
moving vertical channels, only two integers are needed to
specify the contents of the area. If the channel reaches
tvo groups, thern one group must be at the very left of the
active area and the other group must be at the very right.
The region on the left must contain labels 1,2,..-k and the
reqgion on the right must contain labels m,m+1,...n—1,n.' if
k<m, then the pair ({m,k) is sufficient to represent the
contents of the entire area reached by the channel. If k>m,
then (1,n) represents the contents of this area. Therefore,

it is alvays possible to use only two integers to represent

84

all of the target labels in the area.reached by an edge.
That is, uhder the assumption of copseCutively numbered
target cells, it is possible to store complete path
information using two integers per vertical channel and four
per horizontal channel. (This is the same amount of

information required by MSER1.)

The pairs of integers can be computed using an -
algorithm which is aimost the same as CER.
Algorithm CECI (Compute Bange Inforwation for Consecutively

Labeled Targets)

‘I. Initialization.
Por each cell of L which has a target label k, set
GLO®€-(k, k) and GHI<-(k,k). Set all oti:er :egisters to
(0,0 | o

I7. Transfer of information betueen cells.
This is the same as part II of CEB except for the
deflnltlon of the "merge® functzon. He define
merge((a,b},(c,d))isx,Y), wvhere z and y are computed by
the PL/I-like algorithm below. This algorithm makes
use of the fact that we merge information about
adjacéht regions of L only. 1In the algorithm, N is the
largest target label in the segment. {In Figure 4.12, |
N=10.) Figqure 4. 14 shows the different cases which
must be handled by thé algorithm. In the figure,

{Ae..B] represents a region vhose first target label is

A and uhose last target label is B. For clarity, the

two regions to be merged are'drawn on two horizontal

levels even though all of the regions are in L.

IF 2=0 & B=0
THEN DO;

c
D

R &

X
Y ERD;
IF C=0 & D=0
THEN DO; X=A;
, Y=B: END;
IF A<B & C%XD

THEN DO; /* FIGURE 4.14(A) */

X=NIN(A,C);
Y=MAX (B,D) ;

IF A<B & DZC
THEN DO; IF A=D+1
' THEN DO:

ELSE DO;
IF X<Y

THEN DO;

IF'B<A & C<D
THEN DO: IF C=B+1
THEN DO:

ELSE DO;
IF X<Y

THEN DO:

IF B<A & ILC

END;

/% PLGURE
X=C;

Y=B:; END;
/% FIGURE
X=A: :

Y=D; END:.

/% FIGURE
X=1;

Y=D; END;

/% FIGURE
X=A;
Y=D; END;

/¥ FIGURE

I=C;
Y=B; END;

/% PIGURE

=1
Y=R; END;

THEN DO; /% FIGURE 4. 14(G} %/

1=1;
Y=H; END;

4. 14 (B)
4.14{C)

4.14(D)

END;

4. 14 (E)

4. 14 (F}

4. 14(D)

END;

4

*/

*/

*/

*/

85

86

The pféceding.diSCussion shoWs how to move the
items when one source segment is involved. In geheral,
there pay be more than one. Multirle source segments
could be handled seguentially in time by reusing ihe
same set of registers for guiding information. This
increases the total time needed for data movement while
limiting the amount of memory needed in each ceill.
Alternatively, each cell could have.multiple sets of
registers so that rultiple segments could.be ﬁandled
simultaneously. This'gould require ea&h'data item to
carry a segment number with it so that it would know
which set of registers to use as guidingrinformaiioh.
Since some operations may involve an unboﬁndéd number
of segmehts, it will not always be possible to handle

all of the segments simultaneously;

For the case of consécutively numbered target
iabels, ve have achieved the goal stated in the
introduction of this chapter. VNamely, we now have a
wvay of sto:ing complete path information in the cells.
That is, we now have a way of mowing items in such a
vay that no useless copies of data items are produced.
Therefore, it is no¥ necessary to discuss the
performance of the CP {Complete Path Information)

algorithms.

Niviviviv.vivivill
IR

88

b

& Simoy
v YL ~> T

- | -

2-3

\fs

Figure 4,3

Figure 4.4

TARGETS

12 345 6 1 %

Figure 4.5
i
%
\ M
g = - L - r
(a)

(L)

Figure 4.6

90

91

Figure 4.7

g9

(o)

()

}

(¢

)

<+

(e)

Figure 4.8

7 3
Jnee MAXUP
- “uP, E€RTA
MINLFA HAXLFE4 MINRTL MXRTL :
1 2 § | 6
1 1 6 3
MINLF& MAxLrQ MINRTA MAXRTA
. e) 1Y ~ -
GLFQ GRT3I

Figure 4.9

93

95

Figure 4,11

96

S l3ouVL gl b &8 L TS BE BT Wb Sy e ET
S e T
L H H R

A

| a 8 L9
| o P®eos o ioi Pl iobRBL9sbE
A HH K .‘. LHHHHHHH] .‘. LK H H H .-‘
L
P-— 424 4ib— 7:>4i P-P N PA 4: P— 4 ‘ b-

— h . A

ATEEA :

{ NN _
,,, -

/

o

VARV,

Figure 4.12

97

@ A9 pipery

e

v »_ YRy

m\f 1..%«&

Q. hn_ 10500&N¢

].\f.‘!J
2 49 BﬁSm

Figure 4,13

)

Eﬂ ...B%mﬂ o [CMD]D_“B] |

(B) |

(1

-Y]
E\,{ N]
(®)

Figure 4.14 (Part 1)

99

Figure 4.14 (Part

2)

160

5. PERFORMANCE OF THE CP ALGOBITHHS FOR SPECIFIC MOVEHENT

PATTERNS -

It is difficult to make general statements about the
performance of the CP algorithms. Therefore, we will
investigate their performance for specific movement

patterns.

Certainly, there are some patterns for which CPY4, wﬁich
routes items along shortest paths, is optimal. Consider a
right rotation by a single cell {assuming no empty cells) as
ih Figure 5.1. Notice that the shortest path between the
| cell containing B {source label #1713} and its target has
seven steps. The shortest paths betveen all of the other
data items and their respectife targets have length one.
Therefore, datﬁ movement for this pattern must require at
least seven steps. But CP4 will require exactly seven steps
since it sends each item along a shortest path and none of
the paths overlap. Therefore, CP4 is optimal in this

example.

In general, CP4 will be optimal vhenever the paths

between corresponding source and target cells do not

101

overlap. However, in most interesting patterns, the paths
do overlap. In.this chapier, ve will examine the
performance of the CP algorithms on some of these patterné.
Chapter 6 will give a negative ansuef to thé guestion of
whether or not the CP algorithms are optimal for these

patterns.

5.1 Beversal

Consider the problem of reversing the contents of a
group of adijacent cells in L. Por simplicity, assume that
n, the number of cells, is a power of twc and that all of
the cells are descendants of a single cell at level log(n).
{See Figufe 5.2.) Using CP1 or CP2, all of the data items
in region X must move along the path C-A-B~F to region Y.
Similarly, all of the items in region Y will use path F-B-A-
€ to reach region X. Since all channels are two-~
directional, data movement along C-A-B-F and F=B~A=C can
.take place simultaneously. WNow region X and region Y both
contain n/4 items. Therefore, the number of steps reguiied
to interchange the items in regions X and Y is
{n/%) ¢ 2%(log{n)~-1)

{The first items reach 4 and B in (log(n)-1) vertical steps.
Then the two sets of n/4 items cross from R to B or from B
to A. Pinally, it takes (log(n}-1) steps for the last items
to descend to L.) The other items (those not inm X and ¥)

can be reversed in fewver steps because they do not use cells

102

- B; C, and F and will not interfere with the items from
regions X and ¥. Therefore, using CP{ or CP2, the total
time required for data movement is |

(n/4) ¢ 2#(log(n)-1)

steps.

Using CP4, each item in region X will be sent to ¥
along the path C~-D=-E-F and items in region Y will be sent to
¥ along path P=E=D=C. Again, assuming n>4, the other items
¥ill not interfere, so the total time using CP§ will be

{n/4%) + 2%{log(n}-2) + 2

{The extra ¢2 accounts for the fact that there are now three

horizontal steps instead of one.)

When the items are not all descendants of a sihgle
cell, but the number of cells is a power of two, the number
of steps required for data movement with CP1 is still
linear. Consider Pigure 5.3. Cells A and D are separated
by a distance of n-1=d while B and C are separated by a
distance of (n/2)+1=d. But since A is a pover of two,
CEIL{log (d) }=CEIL(log(c})=m. Thus, by Theorem 10 (Chapter
2}, all of the items between 4 and B (inclusive) must rise
to level m or m-1 before descending to their destimations
between cells € and P-. But this includes n/2 of the items,
with n/4 moving in'each direction. Therefore, at least n/8

items must use one edge on level m or level m-1. This

103

implies that ns/8 is a lower bound on the time required by

CP1 for reversal.

By a similar arqument using Theorems 6 and 8, the time
required for reversal of adjacent items with CP2 and CP# can
- be shown to be linear in n, the number of items moving. The
coefficient on n is less than 1/2, since only half of the
items move iﬁ each direction, with the exact coefficient

depending on the specific configuration.

5.2 Izamslation

Translation involves moving a group of items to another
region of_the'tree._preserving the original order df the
items.. An example in which neither sources nor targets have
gaps is shown in Figure 5.4. Assuming that the source cells
and the target cells_are disjoint, as in Figure 5.4, then
the time used by the CP algorithms to accomplish translation
will be linear in the number of items mofing. This is
because all of the items are moving the same distance and
must therefore rise to the same level, or perhaps the same
twvo levels, and use thé same horizontal cross-connections.

This follows from Theorems 6, 8, and 10 of Chapter 2.

Consider again Pigqure 5.4. Using CP1, every item must
pass through edge X. Using CP2, every item must pass
through edge Y, and using CP4, every item must pass through

edge Z. In general, the items may be divided among tw¥o

104

horizontal levels as in Pigure 5.5. 1In this example, eight
itéms are'being'shifted ten positions each. Using CP1, for
gxanxple, three of the items {h, B, and C) would use edge ¥,
two items {B-and E) would use edge V, and the other tﬁree
items would use edge X. Using CP2, three items {A, D, and
E) would use edge ¥, four items (B, €, F, and G) would use
edge ¥, and 4 would use edge X. Finally, using CP4, all

eight items vwould use edge Y.

In general, using CPY4 for translations in which the
source cells and the target cells do not overlap, all of the
- items ahlch use the same level to move horizontally must use
at least one edge in common {because the path followed by
any item must.have at least tvo horizontal edges on this
level). Since no more than two levels are used, at least
n/2 items must use each level. Therefore, the time required
for translation with CP4 is at least n/2 plus the 0(log{n§)

steps required for the items to rise to the correct lewel

and then descend.

With CP1 and CP2, there may be a choice between tvo
edges on one level (as with edges W and X in the example of
Figure 5.5). Therefore, all of the items must pass thrbugh
one of three horizontal edgeé {9, X, or Y in the example} so
CP1 and CP2 reguire at least n/3 ¢ 0{log(n)) steps for

transiation.

105

If the target cells and source cells do overlap, then
the time required for translation.depends on the distance by
which the items are being moved. As aﬂ extreme case, if
each item is to be shifted by one position, then any 6f the
CP algorithms will use only one step for data movement. At
the other extreme,rif each of the n items is to he'shifted
by n-1 positions, then, as shown above, data mdvemént takes
| 9(n) steps. In between, the number of steps required
appears to be linear in the shift distance. If the shift
amount is m, as in Figure 5.6 where m=%4, then the m items on
the end must be translated by m poSitions, requiring O(mj
time. Thereforé, 6{(m) is a lower bound on the time
required. My conjecture is that e{m) is én upper bound

also.

if there are gaps.hetween soﬁrce or target items, then
the preceding analysis does not hold since all of the items
no longer move the same distance. In this case, the time
for translation depends on how the occupied cells are

distributed among the empty cells.

5.3 Perfect Shuffle

The pattern of perfect shuffle, or 2-by-n transpose,'is
shown in Figure 5.7. In this pattern, the items are divided
into two grqups; Those in the left group shift to the

right, each item shifting a different distance, so that when

106

data mévement is completed, thé items occupy-every other'
cell (Figure 5.7a). Similarly, the items in the group on
the right shift to the left (Figure 5.7b). The effect is to
interleave the two groups as if each were half of a decx.of
cards being perfectly shuffled. Suppose n, the nuﬁﬁer of
itens to be shuffled, is a power.of t¥o and suppose these
| items occupy adjacent cells which are all descendants of a
single cell at level log{(n). Theﬁ let us examine the time
required for CP1 to complete the shuffle. First, consider
the right-moving items (Figure 5.8). 1In this figure, all of
the items in region.x must move td region Z. Using CP1, all
of these items'{an& there will be ns8 of them} will cross
edge A-B. similaxly} all n/8 items in region ¥ will cross |
edge C-D to reach region Y. The paths for items in thesé
two regions do not interfere with each other. Paths for
items in regions ¥ and X do cross at cell €, but ¥e assume
that paths from different regions use different registers of
C. Therefore, the time required to move all of the items
from regions ¥ and X is

| n/8 ¢ 2%{log{n)-1)
The 2*(10§(n}~1 term is the number of vertical steps used by
items in region X. The other right-moving items {(those in
region T) can bermoved in fever steps since these itéms do
not‘move as far and their paths do not interfere with the
path for items in regions ¥ and X. Therefore, the right-

moving items can be moved in

107

n/8 ¢ 2#{log(n})-1)
steps. By symmetry, the left-moving items require the s&me
aﬁount of time. However, left and right movement can také
place simultaheously even though there is some overlap of
paths. Consider; for example, Figure 5.9. This shows the
path of eight of.thé items in a shuffle of n=32 items.
Notice that pne vertical edge carries both left-moving items
{6 and H) and tight-moving itenms (C and D) so the paths
overlap. quéver}'no vertical edge except perhaps ¥, X, Y,
or Z can possibly carry more than n/8=4 items becausé for
any edge other than W, X, Y, or Z, only n/B or fewer cells
of L can be reached vertically via that edge. .But edges ¥
and 2 carry.only.n/8=u itéms vhile X and Y carry none. =
Therefore, no edge -- horizontal or vertical =-- carries more
than n/8 items. So the longest "waiting line" for any edge
is of length n/8 and the total time for data movement is
n/8 ¢ 2*(login}~-1H

Similar analysis yields

t = {3/16)*n ¢ 2%({log(n)~-2) #+ 1
for CP2 and

t = {(7/32)*n ¢ 2*(log(n)f3) ¢ 3
for CPU. PNotice that the coefficient on n increases vhen
the individual items travel along shortest paths. This is
because with CP4, the paths have more horizontal edges than
with CP1 and it is more likely that tvo paths will have at

least one horizontal edge in common. In particular, there

108

is one edge which must carry (7/32)*n different items.

5.4 Conclusions

The VEBTICAL algorithm requires the same amount of time
to move n data items, regardless of the movement pattern.
By contrast, the performance of the CP algorithms varies
greatly with the movement pattern. However, for most of the
interesting patterns, the CP algorithms require time
proportional to n, as does the VERTICAL algorithm. In some
cases, the CP algorithms have a linear coefficient which is
less than one, which indicates a linear improvement over the
VERTICAL algorithm. However, there is no order of magnitude
improvement. That is, the time required is still 6(n). In
the next chapter, we will study whether it is possible to
use a different algorithm to obtain an order-of-magnitude

time improvement for these and other patterns.

109

Berore RoTAaTION

MHAHBHCc HO HEHFHG HHHT HT HX Hw

ArTeR RoraTion

Figure 5.1

119

Figure 5.2

111

h/q | ce\\s | | | V\/4 cen‘s
r~ A‘_ \ r - ™~
A B C D
O—- | B 1]
]
= N
C-a-\-i
d=n-1

Figure 5.3

112

_mp&mvmm« G SLTOwY L

$S3JY0es ~» L L 9SS hbeeld

._..___..._....___.‘..___..._....‘...‘..___. ._.E.._._@.n_,_,_g.

5.4

Figure

- 113

BL9sbeet & S1z9yYL

i

 :;:
\VARVARN

A

Figure 5.5

114

HAHRAHCHDODHE HF MG A M I Tl
Sourees 1 2 3 4 S & 7 %
TARGETS =P 1 A
v
™

Figure 5.6

Before

Ele v g lir]{]{m][n][o

115

116

Figure 5.8

117

T A—
EFGH

T
0
G
8)
u
4*7 (i 0]
<
|
e
&

"TARGETS

Figure 5.9

118

6. BOUNDS ON THE PERFCRMNANCE OF DATA MOVEHNERT ALGORITHHS -

‘The algorithms of Chapter 4 represent a significant
imptovement over the VERTICAL algorithm. However, they do
not improve the order—of-magnitude behavior. That is, they
still'reguire 8{n} time. In this chapter, we ask uhetﬁer it
is possihle to obtain a better order-of-magnitude
performanbe than that of the VERTICAL algorithm. That is,
we ask if data movement can be accomplished im less than
linear time for any of the patterns investigated in Chapter
5. ¥We will no longer require data items to follow shortest
paths or almost shortest paths. We are interested only in

the total time reguired for data movement.

He ﬁill appreach this question by first concentrating
on one problem, namely that of reversing the contents of a
group of cellsa. To simplify the discussion that follows, we
will assume in all formal propositions that the data items
of interest occupy the leaves of a complete binary tree. In
some cases, %e will then indicate how the proofs must be

modified to handle the more general case.

119

6.1 The Problem of Rexersal

Suppose n=2%¥k and we wish to reverse the contehts”of n
adjacent cells of L, all leaves of a complete binary tree of
height_k,'as in Figure 6.1. The n/2 items on the left must
move to. the right side of the tree and the n/2 items-dn the
right must move to the left side of the tree. If only pafhs
below the root are used, then there are only log(n)
horizontal connections by which iteﬁs can get from one side
of the tree to tﬁe other. This can be seen by dréuing a
vertical line which divides the n cells and all of their
ancestors in half, as in Piqure 6.1. This vertical line
vill cut log(n) horizontal connections. The idea of the
algorithm to be presented below is to assign approximately
n/(2*log{n)) items to each of the log{n) horizontal cross-
connections ahd then mark out paths by which an item can get
to its assigned horizontal connection. The paths will be
such that if two items are assigned to a different
horizontal cross-connection, then the paths for those two

items will be disjoint.

Consider Figure 6.2, which shows the reversal of 32
items. Since log{32)=5, the 16 items in each half have been
 divided into five regions (groups of horizontally adjacent
cells) labeled 1-5. Since the two regions labeled 5 are
adjacent, they may be treated as one region. The labels are

such that if an item (call it X) is in the kth region from

120

the left, then the item which is to be interchanged with X
is in the kth region from the right. Each pair of items to
be interchanged is labeled with the same integer. Some of
the channeis'connecting cells of T have also been given
labels between 1 and 5. These labels have been assigned so
as to connect each region from the left side of the tree
with the corresponding region on the right side. ﬁThat is, a
data item can reach its destination using only channels.
which are 1ahe1e&,w1th that item's region number. For all
of the data items in one region to reach their destinatidns;
they must queue up at the channel which crosses td the_other
side of the t?re-e (bold lines in Figure 6.2.) Then these.
items must cross the channel one at a time and disperse to
their destinations in the other half of the tree. This will
inveolve a delagrdf ne mére than three steps since there are
no more than four items in a region and there is no
interference betﬁeen items in different regiong. ({There ére
tvo cells in Piqure 6.2 which must handle data items
originating in different regions, namely regiomns 3 and 4.
However, if ve examine the internal structure of a node; és
in Eigure 1.6, ve see that an item entering from the left
and leaving from the top wili not use the sawe internal
registers and connections as an item entering from below and
leaving from the right. Therefore, it is possible for two

items to pass through the same cell simultaneously without

interference.)

121

An upper bound for the number of time steps required
for data movement can be found by adding the number of steps
in the longest path to the maximum number of cycles which an
item may have to wait to cross the central horizontal
channel. Since each region contains no moré éhan four
items, no item will have to wait more than three cycles.

The longest path (between cells A and B, or between C and b,
for example) is nine_steps long. Since all channels are

t¥o-directional, movement can take place in.both directions
siﬁultaneously. Therefore, reversing the 32 items will.také

no more than twelve steps.

We will nov showv that it is always possible to
pattition nodes and edges of a binary tree in a manner
similar to that shown in Figure 6.2. Further, we will show

that the total data movement t ime is B(n/(log(n)).

First, we will specify a way of dividing the n leaf
cells into regions of approximately equal size, except for
the middle :égion, vhich will be about twice as large as the
other regions. ¥e will let Xk=log{n) and divide the n cells
into 2%k~1 regions; To get equal sigzed regions, we would
need n/(2*k) cells per region, except for the middle region
vhich wsould have n/k cells. However, since n/(2%X) may not
be an integer, gach region except the middle region must
_ contain FLOOR {n/{(2%k}) or CRIL({n/{2%k)) cells. 1In choosing

betveen FLOOR (n/(2%*k)) and CEIL{n/(2%k)), we must be sure

122

that the jth region from the left has the samé numbet of
cells as the §th region'from the right. For j<k (that is,
for regions other than the middle region), ve will use the
notation S5{n,j) %o represent the number of cells in.thé jth

region from .the end.

Before giving a formal definition for S(n, j)., we will -
describe a physical procedure for computing it. Dréu a line
of length n and divide it into 2#k equal sub-intervals with
‘dotted lines. Using solid lines, divide the same line into
-n_egual_sub=inte§vals. {See Fiqure 6.3 with n=32 and k=5.}
Then, fér each dotted line except the middle line, find the
closest soiid line and use this solid line as a markér_
between regions. In Figure 6.3, fhe markers are represented
by arrows. S{n,Jj} will be the number of solid-lined sub-
intervals between the jth and the {j#1) th marker. By
sjmmetry, j can be counted from either end. Formally, if

‘k=log (n), set

S{n,1) = FLOOR{n/ (2%k)¢1/2)
S{n,3j) = FLOOR{j*n/(2%k}+1/2) ~ FLOOR({j~1) *n/(2%k) +1/2)
for 1<j<k.

¥e can now show that it is possible to partition a tree of

arbitrary size as in Figure 6. 2.

Proposition 1. Consider a complete binary tree with n=2%%xk
leaf cells and suppose the n leaf cells are divided into

2%¥k-1 regions so that for j<k, the 3jth regions from the left

123

and right contain S{n,j) cells and the middle region
contains the remainder of the cells. Suppose also that eaéh
cell in region j is labeled j and each edge which connects
cells in region j is labeled j. Then the remainder of the
cells and édges in the tree can be labeled with integers 1.
thru kX so that there is a path between any of the original n
cells and any cell in the symmetrically opposite region such
that |

1. this path includes only cells and edges labeled with

the sanme integer as the source and target regions".

(except for the two cells in region 4, level 4 from the

top, which must be used by paths with edges labeled 3,

as in Fiqure 6.2);

2. the nﬁmber of horizontal steps in the path is no more

than {2%*n)/k.
" Prgof: The proof uses induction on k. For ks5, Figure 6.2
shovws hovw to label the edges. For k>5, suppose ve have n
cells and 2#*k-1 regions. ¥e must show how to label the
edges of the tree into k sets which satisfy the statement of
the proposition. The set of edges associated with the
innermost region'is simply the set of all hofizontal
connections in the region. By hypothesis, these edges are
iabeled with the number of the middle region. Thus, any
item in the middle region can reach any cell in the middle
region by moving along the bottom level. Since the middle

region contains no more than Z*CEIL{n/(Z*k)) cells, there

124

#ill be no worée than FPLOOR{n/k) +1 hor izontal steps on the

path for such an item.

To label the edges corxesponding to the other k-1 pairs
of regions, consider the m immediate ancestors of the
original n cells. Since n is even, m=n/2 by Theorer 1 of
Chapter 2. If we let h=log{m), then h=k-1. If we divide
the m cells into 2%h symmetric regions each of size
FLOOR (m/ (2%h}} or CEIL{m/(2*h)}, then the,ihductien
hypothesis hoids and we can conclude that the upper portion
of the tree (uhich contains the m cells and their ancestors
but not the original n cells) can be iabeled ¥ith the

integers 1 through h.

Figuie 6.4 éhows the situation for k=4. Notice in the
figure that each reqion on the upper level overlapélthe
corresponding region in the lower level. That is, the Jjth
.Tegion from the left {or right) in the upper level always.
contains the father of some cell in the jth region from the
left {or right) in the lower level. This means that, in
this figure, there is aluays a path connecting cells in
opposité.regions and this path uses edges only from the set

associated with those regions.

For each vertical edge which connects two regions with
" the same label {region number), we can label that vertical
edge with the number of the regions it comnects. This gives

the required giartitione Therefore, any item in region j of

125

the bottom level can move horizontérly in its #egion tovards
the middle of the tree until it reaches a vertical edge
labeled j. At this point, it can move to thé upper levelz
and follo¥w a path to the other side of the tree. Such a
path is known to exist by induction. Finally, the item éan'
move to the bottom level and reach its destination by moving

horizontally within region j of the other side of the tree.

Thereforé, if wve can shov¥ that corresponding regions on
different levéls overlap for k25, we will alwvays be able to

label the edgéé as required.

Consider Figure 6.5, in which cells A and B are the end
cells of the jth region from the left on one level and cells
C and D are the end cells of the jth region from the left én_
tSe next upper level. If we assign each cell an integer
index 1,2, ... starting at the left, then we can compute ¢,
the index of B, from the definition of S{n,j)- Referring
again to Figure 6.3, the value of ¢ is the distance between
the first arrow marker and the {j¢+1)th arrow marker. The
{j*+1)th arrow mafker is located at the solid line closest to
the (j+1)th dotted line, which is j*k/{2*n) units from the
left end. Therefore,

g = FLOOR(j*(n/(2%Kk})+1/2) .
That is, |
j* (n/(2%k))=1/2 < q € j*(n/(2%K)) ¢1/2.

Similarly, the index of cell C, which is one cell past the

26

last cell of the {j~1)th region éf the uppér level, is
T#FLOOR{{{J~ 1) *n/2) / (2% (k- 1)) +1/2)
and the index of cell D, the last cell of the jth region of
the upper level, is |
FLOOR(j* {n/2) /(2% (k-1)) +1/2) .
How E, the father of B, has index q/2 or (g+1)/2, depénding
on whether B is the right or left son. Therefore, the index
of E is between (j*n/(2*k)-1/2)/2 and (Jj*n/{(2%k)+3/2) /2. To
verify that E is between C and D, We need only verify that
e (3=1)*{ns2) /(2% (k=1)) 2172 £ {J¥n/(2%k) ~1/2)} /2
and ' |
{i*n/ (22%k) +3/2) /2 £ 3*(n/2) /(2% (k~V)) ~1/2.
The first of these inequalities is equivalent tor
j € k - 7ak*({k-1)/n
while the second is equivalent to
S¢k* (k-1) /n S Je
Since 1<j<k-1 an&'kxiog(n), both of these inequalities hold
for k210 (or n21024). Since the inequalities hold only for
k210, we must use another technigue to establish the
assertion that corresponding regions on consecutive levels
overlap for 5£k<10. To see that this is true, consider the
foliowing tabie which shows the indices of the cells in each
region of one half of the tree for k=5,6,7,8,9 and 10.

These cell indices are computed according to the definition

of S(n, 1.

127

. k=5 k=6 k=7 k=8 k=9 k=10

region # |
|}
[
1 | 1-3 1-5 1-9 =16 1-28 -51
2 i 4-8 6-11 10-18 17-32 29-56 52-102
3 | 7-10 12-16 19-27 33-48 57-85 103-154
4 t 11-=-13 17-21 28-36 49-64 86~-114 155-205
-5 I 14-16 22-27 37-46 65-80 115-142 206-256
6 § 28-32 8755 81-96 142171 257-307
7 | 56-64 97-112 172-199 308-358
8 § 113-128 200-228 359-410
g § 229-256 411-461
10 { 462=512

For example, uhep'kxs,‘the first region_consists of cells 1,
2, and 3, the second region cdnsists of cells 4, 5, and 6,
‘and so on. HNow éonsider some arbitrary region. For
gxample, choose region 5 vhen k=9. This region includes
cells 115-142 (cquntinq from the left), so the rightmost
éell in the region has index 142. Therefore, the father of
the rightmosﬁ cell has index 71. Now for k=8, regiomn 5
consists of cells 65-80 which include cell 71. Therefore,
region 5 foxr k=8 overlaps region 5 for k=9. We can perform
a éimilar process for each table entry and verify that ail
corresponding regions on consecutive levels overlap for

6<k<10. Therefore, the regions overlap for all k.

Given this construction, we can compute the number of
horizontal steps in the'path. Since we are computing only
bounds, we will not require all gquantities to be integers.
For example, one region may contain PLOOR({n/(2*k)) or
CEIL (n/(2*k)}) cells. Therefore, the horizontal distance

between the end cells of this region is either

128

FPLOCE{n/{2%k)¥-1 or FLQORgn/(zik)). In either case, the

horizontal distance is no greater than the guotient n/(2%k).

Any path between cells of L using edges labeled with
the same integer will have the ziggurat shape of Figure 6.6.
Each horizontal line represents a path over one of the 2%k-1
regidns each of which contains n/ {2#%k) itemé {except the
middle region). - For the outermost linmes, this path has no
' more than ny/(2%*k) edges. The path on the second level has
no more than (i/zgﬁgn/(z*k)) edges since any group of n
 ce1ls has n/2 immediate ancestors in the tree. The path on
the third level has (1/2)*(1/2)®{n/{2%k)) edges, and sSo on.
Therefore, for tegion js the number of horizontal steps.in
any path is noc more than 2%(n/(2%k)) ® (1 ¢ 1/2 ¢ 174 ¢ 178
t aes ¢ 1/(2%%4)}). Since (1 ¢ 1/2 ¢ /8 ¢ 1/8 % ...} = 2,
we find that the number of horizontal steps is less than
{2%n) /k.

QaBEuDe

gorollary. There is a labeling according to Proposition 1

which is symmetrical for the line dividing the tree into two

equal subtrees.

Hith this partitioning scheme, we can now discuss how
this algorithm <¢ould be implemented on the machine described
in [1J« In the preparation phase, all the cells and edges
are labeled as in Proposition %. To 4o this, the cells of

each horizontal level must decide which region they are in.

129

Each cell can compute this easily using its index (distance
from the boundary of the area to be reversed) and the
~definition of S(n,j). Then the edges connectinq cells'sitﬁ
the same label are given that label. As a special case, the
label 3 nmust 5e assigned to four edges which are connécted.

to two cells labeled 4, as in Figure 6. 2.

¥hen data movement begins, each data item originating
in region j moves upwards and toward the middle of the tree,
alvays using edges and cells labéled j. Conflicts among
items using edges with the same label can be resolved at
:.random. Eventually, all the elements origipating in one
region will_bg waiting to cross the middle channel
correspondinglto that region. The items cross the channel
one by one.: Upon reaching the other side, these items are
broadcast throughout the corresponding region on the other
side of the tree. The target cells pick out the items they
are waiting for amnd discard the_rest. Figure 6.7 shows the
path of item C moving through the tree partitioned as in

Figure 6.2.

We now compute a bound on the time required for data
movement using the above technigue. The first data item to
reach its middle horizontal channel will do so in no more
than {k-1)+n/k steps since the path it follows will have no
more than k-1 vertical steps and n/k horizontal steps. This

item will be followed by no more than CEIL{n/{2*k)) -1 items

130,

which originated in the same region. These items must cross
the middle channel one at a time. FPinally, the last item
%ill reach its destinatien:after-czossing the horizontal
channel in no more than (k-1)+n/k steps. Therefore, the
total numbér of time units is boundéd bf {5/22y%n/sk + 2%k-2,

which is 8 {n/log{n)).

The construction of Proposition 1_does not necessarily
give the best partitiom of the tree and the analysis gives.
only a bound on the number of steps required, so it may be
possible to improve on the coefficient 5/2. However, since
n/2 items must somehow be squeezed through the log{n)
central horizontal channels, at least (n/2)/log{n) steps are
required for reversal. Therefore, no partition will givé

better than 8 in/log{n)) asymptotic behavior.

as noted.previouslf, Proposition 1 assumes that n, the
number of items to be reversed, is a power of two and that
the n items are the leaves of a complete binary tree. If ve
relax these restrictions and let k=FLOOR(log{(n)), then the
result of Proposition 1 is still true. To prove this
requires the examination of a number of differemnt cases. If
n is odd, then m, the number of cells on the next level, is
{(n*1) /2. 1iIf n is even, then the number of cells on the pext
level is either n/2 or n/2+1. For each of these cases, one
must establish the fact that regions of the same number

overlap as in Figure 6.4. This can be done with the same

131

technique as that used in the proof of Proposition 1. Ve

will omit further details.

6.2 Reversal of Nom-adjacent Cells

.The precéding algorithm is practical in the sense that
it can be inplemented on a macﬁine of the kind described in
{1)- However, it is unrealistic in that it fequires the
data items being reversed to occupy adjacent cells. If we
relax this restrictidn, ve cannot al?ays apply the algorithm
directly. Consider FPigure 6.8, vhidh shows 16 daia items.
occupying a 32-§e11 area. If these 32 cells are divided
into the regions as in Fiqure 6.2, then region 2 will
include three data items on the left and two items oﬁ the
right. Thereforei two of the items on the left ¥ill have to
use edges labeled with a different region number to reach
their destinatiohs. This would invalidate the amalysis of

the previous section.

Therefore, we will generalize Proposition 1 by dividing
the n cells of L into regions such that each regiom contains
tﬁe same number of.ggggéggg cells. Specifically, each
region except the middle region will include FLOOR({n/ {2%k))
or CEIL({n/({2%k)) occupied cells, vhere k=FLOOR{log{n)). The
total number of cells in a region will depend on how many
empty cells surround the occupied cells. Therefore, the.

number of regions will depend on the percentage of occupied

132

cells in the active area of L which contains the symbols to

be reversed.

Proposition 2. Let n=2%*k and consider a complete binary
tree of n leaf cells. Suppose the n cells are divided into
an odd number of regions so that, with the possible
exception of the middle region, the jth regions from the
left and right contain at least S (n,j) cells. (Each region
of the bottom level will contain S(n, j) occupied cells plus
all of the empty cells in between.) Suppose also that each
cell in region j is labeled j and each edge which connects
cells in region j is labeled j. Then if the number of
regions is Z2*%*h-1, then the cells and edges of the tree can
be labeled with the integers 1 thru h so that there is a
path connecting any two cells in symmetrically opposite
regions such that:

1. the path includes only cells and edges labeled with

the same integer as the source and target regions (with

the possible exception of the two cells in region 4,

level 4, which may be used by paths with edges labeled

3

2. the number of horizontal steps in the path is no more

than (2*n)/k.
Proof: (The proof is analogous to that of Proposition 1.)
The proof is by induction on k. For k<5, we can exhibit the

partition explicitly. Suppose we have n cells and 2*h-1

133

regions, h<k, numbered 1,2,e<e,h-1,h,h=1,1,...,2,1. Then,
as in the proof of Proposition 1, we will divide the m
fathers of the original n cells into regions, and show that
corresponding regions on two consecutive levels of the tree
can be connected. That is, the ith region from the left of
the upper level contains the father of a cell in the ith

region from the left on the lower level.

For each side of the tree, ve compute the first h-1
regions of the upper level (with m cells) one at a time,
starting with the outermost region. To define one region
(say region i from the left) start at the cell immediately
adjacent to the previous region and include all cells up to
and including the father of the rightmost cell of region i
in the lower level. Then add to these as many cells as
needed to give a total of at least S(m,i) cells in this
region. The remaining cells of the upper level, if any,
will belong to the middle region, region h. (See Figure
6.9.) Note that there will be cells in region h of the
upper levels only if h<k, which implies h<k-1=log(m) so the
induction hypothesis still holds. If the two regions
labeled h-1 overlap (as in Figure 6.10), then they should be

merged to give a new middle region.

Before continuing with the proof of Proposition 2, let
us examine an example of this construction. Figure 6.11

shows how the partition would be constructed for a tree of

134

size 64 which has 40 occupied celis and 24 empty cells in L.
For the first level (L), n=64, k=6, gq=FLOCR({n/(2%k}}=5 and
r=4. To mark out the regions, we first count off the first
6 cccupied'cells {since S5(64,1)=6). This defines the left
and right regions labeled 1. ¥#e then do the same for left
and right regions 2 and 3. At this point, there are only 4
cccupied cells left so they are all assigned to region 4, |
the middle region. On level 2, we have n=32, k=5, g=3 and
r=2. The left région 1 consists of the first 6 cells, all
of which are fathers of region 1 cells from the first level.
Similarly; the right region 1 conéists of the first 5 cells.
Now, for regionlz on the left, only the hext 3 cells are
fathers of region 2 cells in the first level. But
${32,2)=4. Therefore, region 2 on the left must include the
next 4 cells. The rest of the regions are defined
similarly. On.level 3, we have n=16, k=4, g=2, and r=0; on
level 4, n=8, k=3, q=1, and r=2; on level 5, n=4, k=2, g=1
and r=0. Finally, on level 6, n=2, k=1, ¢=1, and r=0. This
-construction labels each cell with an integer between 1 and
. To label the edges, we merely apply the following rule:

' if the connected cells have label i, then the edge
connecting them should be given label i. Figure 6.12 shovs
the edges which would be labeled *2* in the example of

Figure 6.11.

He nov resume the proof of Propoesition 2. By the same

argument as in the proof of Proposition 1, we can show that

135

the ith region on the upper level always contains the father
of some cell in region i of the lower level for k25.
Furthermore, the method of constructing the regions in the
upper level guarantees that only the middle region can |
contain fewer than FLOOR({m/ (k-1})} cells. Since
FLOOR(m/(k—i)ysS{m,j), the induction hypothesis holds and
edges and cells of the upper portion of the tree can be
labeled. Labeling the edges whichlconnect corresponding
upper and lover regions on the same side of the tree
completes-the'const:uction. The path of any item will be a
ziggurat shape as in the proof of Propdsition 1 {Figure
6.6). The longest horizontal path for one level is shown'ih
?igure,6.13. Here an item on the left end of region j must
travel hdrizoﬁtaily under region j-1_of the upper level.
Then it can move vertically to the next level. ¥®e need to
calculate the length of this path and the chér horizontal
paths. But if region j-1 of the lower level contains enough
cells, then region j-1 of the upper level may not have to
overlap the lower region j. (Recall, for example, the lower
left regions {j=2) of Figure 6.11.) In this case, there
would be no horizontal steps in going from the lowet 1evé1
to the upper level. Therefore, the longest horizontal path
will be needed when region j-1 (and regions j-2,j<3,sa.,1)
of the lower level are as small as possible. That is, the
number of horizontal steps will be greatest if each region j

has only S(n,3j) cells. But this is exactly the case which

136

was analyzed in Proposition 1. Therefore, the result is the
same. Namely, there are no more than {2*n)/k horizontal

s5teps.

QuBoD.

¥ith Propesition 2, we can déveloP an algorithm for
reversal which does not assumé that the items to be reversed
occupy adjacent cells. The algorithm follows:
1« Let the items.to be reversed occupy scme of the leaf
cells of a ccmplete_binary tree of size n and let k=log{n} .
2. Count 6ff the leftmost S{n,1) occupied cells and the
.rightmost S{n,1) occupied cells and assign them and ail
intervenihg empty cells a region number of 1. (This will
create tvo reqgions, one on the left and one on the tight.)
3. For j=2,3,a..,k~1 but only as long as there are 2%S{n, j)
occupied cells which haven't been labeled, count off the
next S{n,j) occupied cells from the left and the next Sin,)
eccupied cells from the right and assign them and all of the
empty cells between them the region number i,
4. Place the "leftover®" cells in one region in the middle.

5. Using these regions, partition the tree as described in

Proposition 2.

Once the edges have been labeled, data movement may
begin. Each item rises as high as it can, remaining on
edges assigned to its region. (By rising as high as

possible, the item can follow the shortest path among those

137

paths which use edges of the same label.) The item then
crosses the "middle line® and is broadcast to all the cells

in its region on the other side of the tree.

As before, the total number of steps required for
reversal is bounded by
2*n/log {n) horizontal steps
+ 2*log{n) vertical steps
+ n/{2*%log{n)) steps used crossing the piddle
horizontal channel.
Again, the number of steps is e{nflog(n)). Recall that'n is

thé total number of cells of L in the active area, rather

than the number of items moving.

- 6.3 Alternative Generalizations of Proposition 1.

The preceding algorithm based on Proposition 2 is not
the only way to generalize the algorithm of Propesition 1.

Here we exanine some of the other possibilities.

If there are p data items in an n-cell area (leaving n-
p empty cells), then the algorithm just presented will
divide each side of L into (p/2)/(n/(2*log(n)))=(p/n)+log{n)
regions since each region contains n/ (2*log{n)) occupied
cells. Therefore, only {(p/n)*log(n) of the edges which
connect one side of the tree to the other will be used. Fe
might try to use all log(n) such edges, dividing each half

of the occupied cells into log({n) regions of size

138

{p/2) /log{n), and connecting corresponding regions. This
¢an work well if the non-empty cells are scattered

reasonably well in the n-cell area. (See Figure 6. 14.)

However, if the items ¢o be moved are all located on
the edges of the area as in Fiqure 6.15, then some of the
paths can get very long. In fact, the path connecting cells
in the innermost region can take almost n steps if p<<n.
Therefore, while the number of items in each group is
smaller, (namely, p/{(2%log{n)})., the'path length could
incréasé alnbét_to n. That is, the time for data move@ent

could be linear in the size of the area.

Another alternative is to make the number of regioﬁs
depend only on p, the number of occupied cells. ¥He might
expect to ﬁiﬁd an 8{p/log{p)} algorithm since if n#p {that
is, if there-are no empty cells in the area) we have an |
8{n/log(n)) algorithm. This might be done by using log{p}
regions in each half and logi{p) of the "middle® edge
cbnnections. However, as in the last example, this can give
very long paths if all the empty cells are in the middle of
the area. 1In fact, the length of the path could be close to
p giving -an € {p) aigorithm. The reason for the 8(p) term is
that if there are log{p) levels in use, then the béttom
level has 2**log(p)=p cells, but half of these could be
empty. Therefore, the middle region of the lowest level

could include p/2 empty cells.

139

To improve on this bound, we must use fewer than log{p)
levels, selecting levels in a way vwhich depends on the
distribution of the occupied cells. For example, using only
log {p)/r levels, with r>1, the longest path uoﬁld have
8 (2%* {log(p)/T)) = 8 (p**(1/r)) horizontal steps and
8(log{n)) vertical steps and each region would have
r*p/log{p} items, giving an 8 (p**(1/r)} + &(p/log(p)) +
8{log(n)) algprithm. This idea is workable but it is not a
generalization of the algorithm of the previous éection.

That is, if p=n, it does not give 8(n/log(n))} performance.

6.4 Pivoting

The prcbleﬁ of reversal is a special case of a more
._general problem which we will c¢all pivoting. PFor pivoting,
a position in L is chosen as the pivot point. Then all the
data items to the left of the pivot point are moved to the
right (in reverse order) and the items to the right of the
pivot point are moved to the left. Figure 6.16 shows two
such patterns. thice that the pivot point may be outside
the area vhich contains the data items to be moved.
Reversal is a special case of pivbting with the pivot

element chosen in the middle of the items to be moved.

Pivoting can be handled using the same techhiques as
those used for reversal. The only difference is that some

items will move to cells which vere not previously occupied.

140

This means that the regibns will have to be determined using
all of the cells involved in data movement (sources, and
targets), nct just the source cells. Specifically, we would
mark all of the cells which are eithér sources or targeté
and apply the reversal algorithm of section 6.2 using

"marked cells"™ in place of Yoccupied cells.?

6.5 Translation

-t

The solution for other patterns can be constructed ftom
a seguence of pivot operations. For example, suppose we |
gant to tfaﬁslate the contents of a group of {(not
necessarily adjacent) cells to a different area of L,
preserving the original order. ¥e can do this in two stepé
as shown in_Figure 6.17. Pirst, reverse the contents of the
cells (A ...;z in Pigure 6.17). Then pivot the entire group
to the targét area. The number of steps required for this
operation is e(n/logln) where n is the number of cells of L

~in the area where movement is taking place.

6.6 Arbitrary Movement Patterns

In general, any movement pattern which does not involve
multiple copies can be decomposed into a sequence of pivot
operations. ({Here, "can be decomposed® means.that there is
a way for a global observer to decompose the pattermn. It

does not imply that there is a practical way for the machine

141

of [1] to find the proper pivots.) To see that this can”be
done, consider any movement pattern and suppose all the
source and target cells occupy a region of size n. Divide
this region in half, giving two smaller regions of size
FLOCR {n/2) and.CEIL(n/2). Then take each half and-mark'all
the cells which contain items whose targets are in the other
half. SuppoSe we find 1 items in the left half which must
move to the right and r items in the right half which must
move to the left. _Hithout loss of generality, assume l>r.
Then there must'be at least l-r empty spaces somewhere in
the right half of the tree. Hark 1-r of these also and
perform a pivot operation on all marked cells. Use the
middle of the area as the pivot point. (See Figqure 6.18

where 1=5 and r=2.)

At this poini, it is quite possible that none of the
data items will have reached its final destination.
However, all of the items are known to be in the correct
half of L. So we can apply the procedure described above to
each half, as in Figure 6.19. This requires a pivot
operation for each half. But these can be performed
simultaneously since pivots take place in different areas of
the tree.l There will be no conflict at the boundary because
the reversal (and therefore the pivot) algorithm presented
previously does not use the outermost edges. That is, in
Figure 6.19, the F and the E will not try to use any of the

same edges even though they may have any number of ancestors

142

in common. <Clearly, the ptocedure just described can be
repeated log{n) times, at which time all of the items will

have reached their destinations.

The time required for the first step is roughly
ckns/log{n} for some C. The time for the second is
C* {n/2)/log {n/2}, since both pivots occur simultaneocusly.
Therefore, the time required for any movement pattern ié

C * {(n/log(n} + (n/2)/log(n/2) + «.. + 2/109(2)}

4s noted by Tolle[lB], there is a bound on the sum of this
series.

Lepma. Let n=2%%k, where k=2%%(m¢1)-1. Then

| 2%xk/k ¢ 2%% (k=1) /k=1) ¢ ... + 2/log{(2)
€ O{n*loglogn) /login))

{To increase the readability of some of the formulas in this
proof, ve wili use "loglog{n)” instead of "log{log{n))".
'Proof: Denote the sum by R(k). Reversing the order of the
summan&s, | '

R(k)=2/1 + 4,2 +8/3 + 16/84 ¢ .., & 2¥%(k-1) /k~1 & 2%%k/k
Replacing each denominator by tﬁe largest power of 2 which
is not larger than the denominator, we obtain |
R(k) < {2/1) + (472 + B/2) + (16/4 + 32/4 + 644 + 128/4) ¢

ces 4 ‘2**(2**m)/2#*m t nee + 2%F (2% {me1)-1) /2%2m)
since 8/3 < 8,2, 32/5 < 32/4, and so on. Combining terms
vith like denominators, we get

CR(K) < 2,1 + (20-22) /21 + (28-28) 722 + (216-28) /23

143

+ (232.218) /2% & ..,

+ (2%%2%% (me 1) = 2%x24%) /2%

ar
R(k) < (22-21) + (23-21) + (26-22) + (213-25) + 228-212) +

ces # {2%% (2%% (m#1) ~m) - 2%%(2%*p-m)).

'Resriting;‘ue get B(k) < S{m)~-U{m) where
S(m)= 0224234264213 42284 ., +2%%(2%ememe 1) ¢ 2% { %% (me 1) =15}
U(m) =21421422425428242274 _, . +2%% (2%%m-m).
Subtracting; we get S{m)~-U{m)=
(0-21)*(22-21y+(23-22)+ cee +(2**(2**m4m+1)-2*#(2**m~m)))
| +2*§(2**(ﬁ+1)~m) | '
o -21421422425420242274 ... $2%% (2¥%mem) ¢ 2%% (2%% (m+1) =m)
or S(m)4U(ﬁ)£
$214214202225421242274 . +2%& (2%%p-m)
¢ 2%% (2%% (m+1) ~m) =B,
Since there are m+1 terms on the top line of this
expression, we ge£

R(k) < (m#1)#(2%% (2%2m~m)) + zit(ztt{m+1)-m) -4.

Now m+1 is approximately loglog{n), 2**m is approximately
log(n) , and 2#%*(2%*m-m) is approximately n. Therefore,
R{k}) < O0({loglog{n})*n/log(n)) |
Qs ExDa

Therefore, any movement pattern which does not involve

T44

multiple copies can be accomplished in less than linear

timea.

As noted préviously, the preceding argument is an
"existence groof%" It shows that the movement in questioﬁ
can be accomplished in a certain time but it does not shov
that it is possible for the machine to figure out how to

move the data in that time.

6.7 3upmary Q; Besults

1 There is a technique for réversing the‘conteﬁts of a-
group of n adjacent cells of L in 8{n/log(n)) steps..
This technigue could be implemented on a machine of the
typé described in [1].

2. The contents of any set of p cells in an active area of
n cells fin_L) can be reversed in e{nslog(n)) steps.

3. Any movement pattern taking place in an active area of
size n and which does not require multiple copies of

data items can be completed in O{n*lqglog(n)/log(n))

steps.

145

m:uﬂ u

—A _ -

Ty

S ,ub.ﬁ

o = (bey #

Figure 6.1

Figure 6,2

il

F'F
.‘

| WSS SN g
pt

I

.‘II

a

146

147

I3

¢

T Lot M. S 14
.nlll.\!lnIJqll\rllJﬂ. A Ve ~ gillmee ye n' B Ay
¥ ¥ ¥ vooood _ X\ ¥ ¥ ¥
RN NN RSN |

Figure 6.3

148

- b 3 |4 A
m] 1 1 ‘ af 1 1]
T | K N. 0...... SO._+J3P+M§@U — M e . ..ﬂ
Ag p2|aop| sibpgy
J L — L 4L]
¥ e _ & e
|
£
& 4
A
v t_o._+03_osm Guisn Ww_ona .Wom.ow w |

T

S .:vu v

S|o W

Figure 6.4

149

Figure 6.5

150

Figure 6.6

151

152

l”l
#

::

... | ._..... ._._._.. ,
Al

FASEEVAN

<

EMATATAY
v VA, |

h-3

1

ali

I

h-4

JL

Figure 6.9

1 [

h-4

11

h-1

1§

- d

I

h- 1

—
«l
|
| <
3
|
<
-
Saarrd
— L)
'
£

i
o

<
-~
]
- ~
—
—
€
£
(g 1
[
£

Figure 6,10

153

154

L

\Illlll?rl\!iIJWlllilIIISIlllflrJ\lilll?l!lj\!illiflliz\\Iflill}r

Figure 6,11

L

i
—t

T
TR

~,

T

¥
|4

Figure 6.12

156

Figure 6.13

e
~ A ™ \
$
D—-.—.——O—O-—J
v J & ~"
-1 | J

157

Flgure 6.15

Figure 6.14

138

]

: Sources. |

"T-ﬁr-a e.+$- | “

Pivet Position

R

L

Sources

—i-arge."i's

Pivst Pogition
Figure 6.16

159

LA 2]
Tacgets

Soucrces

ReversaL STEP

& .

»
L]
)
1
)
!
t
H
'

e - - m s el .- -

12

PivoT Stee
N

Figure 6.17

160

Beroge:

SourcE

TarceT

AFTEQ:

o[W[JFl Je] Tole] [e]a
F H G B ADEZC

Figure 6.18

Berore:

Figure 6.19

lél

162

7. SUHMARY AND CONCLUSIORS

7.1 Surmary

In this dissertation, we have considered the problem df
data'movement.in 2 network of cells arranged to fofm a
cémplete binary tree with connections betséen horizontally
adjacent cells. Specifically, ve have studied ho# the
horizontal conneétions might be used in routing data among
the leaf cells. This problem arises in the design of a

machine to implement reduction languages, as described in

{11-

The first set of algorithms developed (SS1-554, Chapter
3) show how to breadcast copies of a single data item from
one of the leaf cells to the rest of the leaf cells. Using
the theorems of Chapter 2, these algorithms are shown to use
a shortest path or a path which is no more than two stebs
longer than a shortest path to route an item from one cell
in L to another. When these algorithms are extended to
handle several items simultaneously ({(Algorithms HS1-HS4),

many unnecessary copies of the items are created.

163

Chapter 4 presents techniqueé'whiéh reduce fhe numbéﬁ.
of unnecessary cépies being generated. This involves
storing information in the cells of T so that when a copy of
a data item arrives at a particular cell, the item may use
the stored information to decide where it should be routed.
In some cases {as discussed in Section 4%.5) ., thése
technigues gnaﬁantee that no extra copies of data items are
generated. in such cases, vwe say that the cells éohtain
Complete Path Information. Algorithms which are based on
the movemént patterns of SS1-554 and which use complete path

information are referred to as CP1~CP4.

fhe CP algorithms are analyzed briefly in Chapter 5.
The major result is that the cp algorithms require ©{(n)
steps to complete manf interesting movement patterns
. involving n data-items. The data'movement algorithm
presented in [1j, which does not use the horizont&l
conncetions, also reﬁuires @(n) steps for all movement
patterns inveolving n data items. ‘Therefdre, the algorithms
of Chapter & répresent only a linear improvement over the

algorithm which does not use horizontal connections.

In Chapter 6, we establish the fact that some patte:ns
can be completed in @({n/log(n)) steps. The applicability of
this result is limited since, except for the problem of
reversing the contents of n adjacent cells, we are not able

to shoy how to compute the information which must be stored

164

in the cells of T to guide data movement.

7.2 Suggestions for Further Hork

Since the machine of [1] is still in the paper design
stage, and since reduction languages and their derivatives.
are not in use for programming, this research has

- necessarily had a theoretical orientation.

If reduction language {or functional) programming
becomes more widespread, it uiil be possible to ask such
quésticns as what data mqvement'probleﬁs appéar most often
in reduction language piograms- These patterns should then'.'
be analyzed more precisely than those of Chapter-ﬁ, where |

only order-of-magnitude bounds were established.

Also, it may be possible to design specific algorithms
for these common problems, as waé done for the problem of
reversal in Chapter 6. Incorporating such special-purpose
algorithms into the hachine of [1] may be difficult.
However, the potential benefits are great since a large
portion of the execution time for reduction language

programs is spent in data movement.

[

{21

[31
[4]

[5]

{6]

{71

{8}

3]

165

BEFERENCES

G. Magé, "A Hetwork of Microprocessors to Execute
Reduction Languages®, to be published in the
Ipternational Journal of Computer apd Information
Sgiences.

J.®. Backus, "Programming Language Semantics and Closed
Applicative Languages™, in Conference Record of ACH
Symposivm on Principles of Programming Languages.
Boston, Mass., 1973, pp. 71-86.

Mark Pozefsky, ¥Programming in Reduction languages®, -
Ph.D. Dissertation, Department of Computer Science,
University of North Carolina, Chapel Hill, ¥.C. 1977.

Alexis Koster, "Execution Time and Storage Reguirements
of Reduction Language Programs on a Reduction Machine¥,
Ph.D. Dissertation, Department of Computer Science,
University of North Carolina, Chapel Hill, ¥.C. 1977.

S«.5. Patil and J.B. Dennis, "The Description and
Realization of Digital Systems®, Revue Francaise
dlAastomatigue, d'Informatique et de Becherche
Operationelle, Februwary, 1973, pp. 56-69.

K.E. Sahin, "Intermodular Communication without
Addressing in Planar Arrays of Modules Connected with
One-Way Channels", Ph.D. Dissertation, Massachusetts
Institute of Technology, Cambridge, Mass. 1969.

Kenneth J. Thurber, "Interconnection Networks--3A Survey

and Assessment", AFIPS Conference Progceedipgs. vol. 43,
1974, pp. 909-919.

CeJ. Chen and A.A. Frank, "On Programmable Parallel Data
Routing Networks via Crossbar Switches for Multiple
Element Computer Architectures®”, in Proceedings Qf the
1374 sagamore Computer Conference on Parallel _
Processing, Springer-Verlag, 1975.

Tse-yan Feng, "A Versatile Data Manipulator®, in
Proceedings of the 1373 Sagamore Computer Conference on
Parallel Processing, Department of Electrical and
Computer Engineering, Syracuse University, 1973, p. 101.

[10] Samuel E. Orcutt, "Implementation of Permutation

Functions in Illiac IV-Type Computers”™, IEEE
Transactions on Computers, vol. €-25, no. 9, September,
1976, pp- 929-936. :

166

{11} C.H. Sequin, A.H. Despain and D.A. Patterson,
#"Communication in X-tree, a Modular Multiprocessor
System¥, in Progceedings of the 1378 Anpual Conference,
Assocliation for Computing Machinery, 1978, vol. 1,
pp. 194-203.

{12) Donald Xnuth, “Big Omicron and Big Omega and Big
Theta%, in SIGACT Ne¥s, vol. 8, no. 2, 1976, pp. 18-24.

[13] D. Tolle, private communication.

