
TR-78-014
December 1978

A ROU1LNG NETSOR~ FOR A 8ACHINE

TO EXECUTE REtUCTION LANGUAGES

by

David fl. KE!hS

A dissertation sutmitt€d to the faculty
of the University of North Carolina at
Chafel Hill in partial fulfillment of
the reguirements for the degr~e of
~actor of Philosophy in thE Department
cf Computer science

Chapel Hill

1978

Approved by:

~~~~ -~ - --A er (v 

- ~ .... J ..... :,._e_;.~-
Be~.ader ~. . -~ 

'\. . '. ~---L. _ _:::__L 
t; . '~-\-__ &~- ------

Reader 



DAVID R. IEHS. A Routing Network 
to Execute Reduction Languages. 
direction of DR. GYULA A. ftAGe.) 

for a !lachine 
(Under the 

A network of cells arranged to form a binary tree with 
connections between horizontally adjacent cells is 
investigated. Properties of shortest paths between leaf 
cells in such a network are established. 

Algorithms are developed to broadcast copies of a data 
item from one of the leaf cells to other leaf cells of the 
network. Using different types of guiding information 
stored in the cells, these algorithms are modified to avoid 
broadcasting copies to cells which do not need them. 
Analysis shows that, at best, these algorithms require 
Jl (n) steps to accomplish such patterns as reversal, 

transposition, or translation of the contents of n leaf 
cells. 

A theoretical bound of e(njlog(n)) steps is established 
for the problem of reversing the contents of n adjacent leaf 
cells. This result is generali.zed to obtain upper bounds 
for reversal of the contents of non-adjacent leaf cells and 
for arbitrary reovement patterns which do not require 
multiple copies of data items. 



I would like to thank Dr. Gyula Mag6 for his invaluable 
guidance and encouragement throughout the progress of this 
dissertation and throughout my graduate school career. In 
addition to suggesting the topic for this research, he read 
many drafts of this dissertation and made many helpful 
suggestions to im~rove its organization and clarity. 

The remainder of my committee, Dr. Don Stanat, 
Dr. Peter Calingaert, Dr. Frederick Brooks, Jr, and 
Dr. Sehdi Jazayeri, provided many useful comments and 
criticisms. Don Stanat, in particular, vas helpful in 
pointing me toward clearer and more elegant proofs of many 
of the mathematical results. 

Fina'lly, I would like to thank my family and friends 
for encouraging and supporting me in this work and 
especially for distracting me from it. 



1. INTRODUCTION •••••••••••••••••••••••••••••••••••••••••• 1 
1. 1 
1. 2 

The Problem •••••••••••••••••••••••••••••••••••••••• 1 
RelatEd Research ••••••••••••••••••••••••••••••••••• 8 

1.3 organization of the Dissertation •••••••••••••••••• 11 

2. SHORTEST PATHS IN THE NETWORK •••••••••••••••••·••••••25 

3. DATA MOVEMENT IN A NETWORK WITHOUT MEMORY •••••••••••• 52 
3.1 Algorithms·for One Data Item •••••••••••••••••••••• 52 
3.2 Algorithms for Multiple Data Items •••••••••••••••• 57 

3.2.1 The Inevitability of Collisions ••••••••••••••• 58 
3.2.2 Algorithms ~S1-MS4 ···6························59 

4. DATA MOVEMENT ALONG SHORTEST PATHS IN A NETWORK WITH 
MEHOBY •••••••••••••••••••••••••••••••••••••••••••••••69 

4.1 Complete Path Information--The Goal ••••••••••••••• 69 
4. 2 Ra.nge Information .................................... 7 0 
4=3 Extended Bange Information ~--~~···••••••••••••••••73 
4.4 Hashirig Information ••••••••••••••••••••••••••••••• 79 
4. 5 Consecutively Numbered Target Labels •••••••••••••• 82 

5. PERFORMANCE OF THE CP ALGORITHMS FOR SPECIFIC MOVEMENT 
PATTERNS •••••••••••••••••••••••••••••••••••••••••·••100 

5.1 Reversal ••••••••••••••••••••••••••••••••••••••••• 101 
5.2 Translation •••••••••••••••••••••••••••••••••••••• 103 
5.3 Perfect Shuffle •••••••••••••••••••••••••••••••••• 105 
5.4 Conclusions •••••••••••••••••••••••••••••••••••••• 108 

6. BOUNDS ON THE PERFORMANCE OF DATA !OVEMENT 
ALGORITH!S ••••••••••••••••••••••••••••••••••••••••••118 

6.1 The Problem o-f Reversal ............................ 119 
6.2 Reversal of Non-Adjacent Cells ••••••••••••••••••• 131 
6. 3 Alternative Generalizations of Proposition 1 ••••• 137 
6.4 Pivoting ••••••••••••••••••••••••••••••••••••••••• 139 
6. 5 Trans1a tion ....................................... 140 
6.6 Arbitrary Movement Patterns ···•••••··~·····~·····140 
6.7 summary of Results ••••••••••••••••••••••••••••••• 144 

AND CONCLUSIONS •••••••••••••••••••••••••••••162 7. SUMMARY 
7. 1 Summary ··•·······4·······························162 
7.2 Suggestions for Further Work ••••••••••••••••••••• 164 

REFERENCES •••••••••••••••••••••••••••••••••••••••••••••165 



1. INTRODUCTION 

In a recent paper, Magb [ 1] outlines the organization 

of a machine which efficiently executes the reduction 

languages described by Backus [2]. Informal discussions of 

these languages can be foun~ in [ 1] as well as the 

dissertations of Pozefsky [3] and Koster [4]. Figure 1.1 

shows a schematic diagram of a portion of the machine as 

described i r1 [ 1 ]. 

1 

The program text is normally stored in a linear array 

of cells, 1. These cells form the leaves of a binary tree 

(T) of microprocessors. These processors are provided with 

enough logic to manipulate the program text according to the 

rules of the language. Further details can be found in [ 1 ]. 

At certain times during the computation, the machine 

must move the contents of some of the cells of L to other 

cells in such a way that the relative positions of some of 

the symbols must change. For example, the array L may have 

to be changed from _!l__f_Q to &__£_Q!_. This process is 

(A similar process in which symbols 



move but do not change relative positions, as in a change 

from _!§ __ £_~ to ! __ §_£~-' is called ~!2f~g~-~D~~ID~D!· 

Storage management makes use of horizontal connections 

between pairs of adjacent L cells. Since these connections 

are not used for data rroverrent, they are not shown in 

Figures 1.1-1.3.) 

2 

As described in [1], the data items (located in the 

cells of L) which are to be moved are labeled with integers. 

(Actually, the labels may be pairs or triples of integers. 

However, in this paper, we will use only single integers. 

This restriction does not affect any of the results 

presented.) The cells to which the data items must move are 

also assigned integer markers. Then each labeled data item 

moves through the tree T to the cell which has the same 

integer marker. It is possible that a particular data item 

will have to be copied into two or more different locations. 

To handle this situation, the same integer marker is 

assigned to each target cell. It is also possible that one 

data item will have to replace another. In this case, the 

contents of one cell will be assigned an integer label and 

the cell will be assigned a different integer target marker. 

An example of data movement is shown in Figure 1.2. In this 

example, the data items to be moved are A, B, and c. Notice 

that B was copied into two different cells, one of which 

originally contained c. 



3 

In the following paragraphs, and, in fact, in the whole 

dissertation, we assume that the operation of all cells of 

the machine is synchronized. Though not necessary, this 

assumption simplifies the descriptions of algorithms. 

Details about hov different data ~ovement patterns could be 

controlled asynchronously can be found, for example, in [5~ 

~he data movement mechanism described in [1] works as 

follows. When all of the data items and target cells have 

been labeled properly, the data items begin to move to the 

top of the "active area" [ 1 ], which is a subtree of T 

containing the e.xpression being evaluated. (A key feature 

of this machine is that more than one expression can be 

evaluated in parallel.) All of the data items move 

simultaneously unless tvo items are trying to move up to the 

same node. In this case, the item with the smaller integer 

label proceeds first. Each item must move to the top of the 

active area. At this point, copies of the item are sent 

downward to each of the T and L cells in the active area. 

The cells of L which are not looking for a data item with 

this integer label will simply ignore it. It is possible 

for a downward-moving data i tern to "pass" upward-moving 

items. Thus, at any one time, a tree node may contain two 

data items, one moving upward (or waiting to do so) and the 

other moving downward. Figure 1.3 shows how data movement 

will proceed for the previous example. 



The preceding description omits some of the details 

needed to understand how the algorithm is i1rplemented. 

Below we will describe how the data items are transferred 

from cell tc cell in the machine of [ 1 ]. Figure 1. 4 shows a 

detailed view of three of the cells of T, named A, B, and c. 

Bach cell has six registers which hold data items. These 

are named INTOP, OUTTOP, INLO, OUTLO, INHI, and OUTHI. In 

the following description, names of the form A.INLO will be 

used to refer to the INLO register in cell A, etc. The 

arrows represent wires along which data can be transferred 

from register to register. In the algorithm of [1], data 

will flow only in the direction of the arrows. Thus, each 

register has only one (or two, in the case of INTOP) other 

register to which its data i tern will be copied. The 

registers can be described as "full" or "empty". When a 

register holds a data item, it is "full". When the data 

item is copied into another register, the original register 

is said to be "empty", i.e. ready to receive another value. 

Each register contains one bit (or two, in the case of 

INTO.P) which tells if the associated destination register is 

"full" or "empty". For example, if data are sent from 

A. OUTLO to B. INTOP, then the "full" bit in A. OUTLO is set. 

When B.INTOP sends the data (to B.OUTLO and B.OUTHI), it 

also sends a message to A which causes the "full" bit in 

A.OUTLO to be turned off. 



The co~plete algorithm takes place in two phases. 

During the first phase, data it.ems are moved within the 

cell, according to the arrows of Figure 1.4. Of course, no 

data can be moved to a "full" register. Instead, the data 

must wait until the target register is "empty". During the 

second phase, data i terns are moved .from cell to cell, again 

according to the arrows shown in Figure 1.4. 

The titT-e needed for the entire data movement operation 

can be expressed as 

t=2*h + n - 1 

5 

time units where h is the height of the active area and n is 

the number of data items. (The first data item reaches the 

top after h titTe units, the other n-1 items then pass 

through the top, and the last item descends to its target in 

h time units.) 

The data movement mechanism just described, to be known 

henceforth as the VERTICAL algorithm, was chosen in {1) 

primarily for its simplicity, both of description and of 

implementation. The purpose of this research is to devise 

and investigate other data movement mechanisms in an attempt 

to obtain a significant improvement in efficiency. 

We propose to add to the machine horizontal connections 

between the cells of T, as shown in Figure 1.5. Internally, 

each cell will be organized as shown in Figure 1.6. This 

will shorten the paths between many of the pairs of nodes. 



For example, the Bin Figure 1.7 can move to its destination 

in four steps, following the path indicated. Going through 

the top of the tree would require six steps. When more 

cells are involved, the savings can be even more 

significant, as shown in Figures 1.8-1.10 which will be 

discussed below. 

In Figure 1.8, five pairs of adjacent symbols are 

interchanged in only one step. In fact, any number of pairs 

could be interchanged in just one step. (Recall that in 

[1 ], the horizontal connections between pairs of L cells are 

not used for data novement and all cells rise to the top of 

the active area. Therefore, all ten items of Figure 1. 8 

would be sent through the top of the tree.) Figure 1.9 

shows the reversal of a ten-element list in seven steps. 

Since the shortest path between the cell labeled 1 and its 

target has length seven, we know that at least seven steps 

are required for this problem. Therefore, the given 

movement pattern is optimal. In Figure 1.10, two blocks of 

five symbols are exchanged in six steps. Using the 

mechanism described in the paper [ 1 ], 17 steps would be 

required for each of these three problems. 

When horizontal connections are added, we can expect 

that the nurrber of steps required for data movement will not 

necessarily depend directly on n, the number of moving data 

items. This is because there is no longer a particular node 



7 

of T through which all moving data items are required to 

pass. Also, since data items will no longer be required to 

rise to the top of the active area, the number of steps will 

no longer depend on h, the height of the active area. This 

is particularly fortunate since in a large machine the 

height of the active area can be rather high, depending on 

where the expression happens to be in L. Consider, for 

example, Figure 1. 11. Here, the height of the active area 

containing ABCD (circled in the figure) is either two or 

five, depending on the location of ABCD. lf ABCD had been 

located elsewhere, the height of the active area could also 

have been three or four. 

ln general, then, we can hope that the time required 

for data movement will depend on the actual distance that 

the data items must move, rather than the number o£ items 

moving and the height of the active area. Of course, as 

more and more cells become involved in data movement, the 

distance between a data item's original location and its 

destination may increase (as in Figure 1. 9), and items may 

interfere with each other (as in Figure 1.10). 

The patterns of novement shown in Figures 1.8-1.10 were 

obtained by inspecting the tree as a whole, including all of 

the data labels and target markers, to decide which path 

each data item should follow. The machine itself will not 

have the advantage of such an overview. When data movement 



8 

begins, paths for the data items must be directed by the 

nodes of T. That is, when a data item arrives at a node of 

T, there must be enough information in the node to decide 

where the data item should go next. In the VERTICAL 

algorithm, there is no information in the cells. The key 

problem for this research, then, is to decide what 

information is to be stored in each node of T so that when a 

data item arrives at a node, it can be routed to its proper 

destination along a reasonably short path. The information 

itself must be easily calculated given the integer data 

labels and target markers, together with their actual 

positions in L. "Easily" means that the information for all 

the cells can be computed in O(log(n)) parallel steps. This 

could be done, for example, by an upward cycle in which 

information is propagated from son cells to their father and 

then {perhaps) a downward cycle during which further 

information is passed from father to sons. 

The literature provides little assistance in finding 

solutions to this problem. A somewhat similar problem has 

been studied by Sabin [6]. He considers a network of 

identical cells, one of which wants to communicate with 

another. However, the cell with the source of the message 

doesn't know the address of the cell with which it wishes to 

communicate. Therefore, it broadcasts its message to all of 



9 

its neighboring cells. These cells remember the direction 

of arrival and pass the message on. When the target cell 

receives the message, it sends back its response. The 

response is not broadcast throughout the entire network as· 

the original message vas. Instead, the response is sent to 

only one cell, which passes it to another cell, and so on 

until the response has returned to the source of the 

original message. Each cell, on receiving the response, 

must decide which of its neighbors should receive the 

response next so that it travels to the source on as short a 

route as possible. If messages can flow in both directions 

between two cells, as is the case with the reduction 

language machine, then this decision is trivial. Each cell 

merely remembers which of its neighbors first passed it the 

original message. Then, when it receives the response, the 

cell passes it on to that neighbor. Most of Sabin's work is 

devoted to the situation where messages can flow in only one 

direction, so a response could not be sent directly to the 

neighbor who sent the original message. Therefore, most of 

Sabin's work is not relevant to the proposed research. 

Moreover, Sabin considers only one message and response at a 

time. The reduction language machine must have many data 

items moving through the network simultaneously. However, 

it cannot afford to have several copies of one data item 

moving around unnecessarily since the tree would be quickly 

saturated. 



10 

A number of other researchers have studied probiems 

involving interconnection networks. This work is summarized 

by Thurber [7] and includes such applications as telephone 

·networks, sorting networks, and permutation networks. The 

introduction of parallel machines such as ILLIAC IV has 

generated increased interest in the problem of data routing 

among the dif.ferent computing elements of the processor 

[8,9,10]. This is similar to our problem of routing data 

among the cells of the array L. However, in all of the 

schemes reported so far, one assumes that there is some 

global controller which knows the destination of each data 

item and which tells each processing element where to send 

each data item it receives. In contrast, our problem 

requires each node to decide for itself where to send a data 

item using only the item's marker and some information 

stored in the node. 

The X-tree of Seguin [11] involves a similar network (a 

binary tree with horizontal cross connections). However, 

each leaf cell of the X-tree is assigned a permanent 

address, and when a message (data item) is routed, it is 

given the address of its destination. In our problem, the 

"addresses" (target labels) change with each movement 

pattern and may appear in any order. 



Chapter 1 provided a description of the problem to be 

studied in this dissertation. In Chapter 2, certain 

properties concerning shortest paths in the network are 

established. These properties will be used in later 

chapters to analyze some of the algorithms for data 

movement • 

. In Chapter 3, two groups of algorithms are discussed. 

11 

Algorithms 551-554 (Single Source data movement) show how to 

broadcast copies of a single data item throughout the tree. 

Algorithms 8S1-HS4 (Multiple Source data movement) extend 

SS1-SS4 to the situation in which a number of different data 

items are broadcast simultaneously. 

With Algorithms 851-HS4, a copy of each data item is 

sent to each cell of T and L. This involves the creation of 

many useless copies of data items. The presence of these 

copies slows the entire movement process. Therefore, in 

Chapter 4, Algorithms MS1-MS4 are modified to include 

different types of guiding information which can be stored 

in the cells of T and used to reduce the production of 

useless copies of data items. The algorithms presented are 

MSR1-MSR4 (Multiple Source with Bange information), KSER1-

MSER4 (Multiple source with Extended Bange Information), and 

KSH1-MSH4 (Multiple Source with Hashing Information). 



12 

In some cases, the guiding information is perfect in 

the sense that no useless copies of data items are created. 

such guiding information is called Complete Path Information 

and any algorithm which has access to Complete Path 

Information is called a CP algorithm. In Chapter 5, CP 

algorithms are analyzed for several data movement patterns 

such as reversal, translation, and transposition of the 

contents of L cells. All of these patterns are found to 

require time which is linear in the number of items moving. 

This represents no improvement over the order-of-magnitude 

behavior of the VERTICAL algorithm. 

In Chapter 6, some theoretical bounds on the 

performance of data movement algorithms are established. It 

is shown that any movement pattern which does not require 

multiple copies of data items can be accomplished in 

S(n*loglog(n)/log(n)) steps where n is the number of L cells 

Ul the active area containing the expression in question. 

(In presenting order-of-magnitude results, we will use the 

notation of Knuth [12] in which O(f(n)) stands for any 

function whose magnitude is upper-bounded by a constant 

times f(n) for large n, SL (f(n)) stands for any function 

whose magnitude is lover-bounded by a constant times f(n) 

for large n, and S(f(n)) stands for any function lower­

bounded by cf (n) and upper-bounded by df (n) for two 

constants c and d and for large n.) 



13 

• 

T 

l 

Figure 1.1 



8€l"ORE DitTA 

MoveMewT 

D#ITA 
't"T€11~ 

So~c.a 

I. AlGI.\ 

T~MI.T 

LAS II.$ 

A 

1 

~ 

AFTEII!. DI\TA 

Hove !-\€NT 

14 

c. 

-a 

~ d. l. 

A 

Fi~;ure 1.2 



15 

® 

Figure 1.3 (Part 1) 



16 

Figure 1.3 (Part 2) 



17 



18 

Figure 1.5 



l<l 

Figure 1.6 



20 

Figure 1. 7 



21 

Figure 1. 8 



22 

Figure 1.9 



23 

Figure 1.10 



24 

Figure 1.11 



25 

2. SHORTEST PATHS IN THE NETWORK 

As a first step toward a solution, we might consider 

the routing for a single source itere. In the VERTICAL 

algorithm, the item is sent to the top node of the tree and 

then "showered" to every cell of L. Then any cell which is 

waiting for that item can accept it while the others ignore 

it. 

With horizontal connections, it is no longer necessary 

to send the data item all the way to the top. Instead, it 

can be broadcast in waves as shown in Figure 2.1. The 

numbers in the diagram are included as an aid to the reader 

and do not represent information which must be stored in the 

cells. The data i tern starts in the cell labeled "0". In 

the first cycle, it spreads to all the adjacent cells 

(marked by "1 "). Then it spreads to the cells marked "2", 

etc. Eventually, the data item will spread to all the cells 

of T and L. With this scheme, the number of steps used to 

reach any cell in L is always a minimum. That is, the data 

item always travels from the source to the target cell along 

one of the shortest paths between the two. (There may be 



26 

more than one shortest path.) 

Chapter 3 will discuss techniques for routing items 

according to patterns sirnilar to that of Figure 2.1. Since 

these techniques involve shortest paths, or nearly shortest 

paths, we will first develop some mathematical results about 

paths in trees with horizontal connections. The 

presentation of these results is intended to be rigorous, 

yet informal. Accordingly, we will use the following 

informal definitions. 

The tree is treated as an undirected graph whose nodes 

are the cells of T and L and whose edges are the connections 

between cells as shown in Figure 1.5. A RA!h between two 

cells is an alternating sequence of cells and edges which 

connect the two cells. It is assumed that paths contain no 

loops. That is, a given edge may appear only once in the 

sequence. The ~ng!h of a path is the number of edges u' 

the path. In what follows, an edge is sometimes referred to 

as a "§!!ll!"· Therefore, the number of steps on a path 

between two cells is the same as the length of the path 

between the cells. The edges which connect fathers and sons 

in the tree are called !§I!i~~l edges while those which 

connect brother cells are known as A2Iil2D!~! edges. A 

!~I!i~!l R~!h is a path which contains only vertical edges. 

Similarly, a A2Ii!2D1!! ~!h is one which contains only 

horizontal edges. If one cell is a descendant of another, 



27 

the length of the path connecting the two cells is called 

the !~I!i~al gi§!aD~2 between them. We say that two cells 

are on the same 1~!21 if the vertical distance between each 

of the cells and. one of their common ancestors is the same. 

The levels of the tree are numbered from the bottom up. 

That is, the cells of L are on level 1, the fathers of the 

cells of L are on level 2, and so on. When two cells are on 

the same level, the length of the horizontal path which 

connects them is known as the h2Iil~D!al gi§!An~~ between 

the cells. Finally, the notation !]fJ!~!l is defined to 

mean "cell A's ancestor on level k." 

lhi~I~m 1· Let A and B be tva cells on the same level of T 

which are separated by a horizontal distance of n. Then the 

father of A and the father of B are separated by a 

horizontal distance of: 

n/2 if n is even 

FLOOR (n/2) or CEIL (n/2) if n is odd. 

ii~~t: 

Case I. n is even. 

The proof is by induction on n. For n=2, we have one of the 

configurations of Figure 2.2. For both of these cases, the 

assertion holds. Now, suppose the assertion is true for n 

(n even}. let the horizontal distance between A and B be 

n+ 2 and let C be the cell two units from B (in the direction 

of A) , as shown in Figure 2. 3. Then the distance from A's 



father to B's father 

=dist. from A's father to C's father 

+ dist. from C's father to B's father 

= {n/2) + 1 (by induction hypothesis) 

= {n+2)/2. 

28 

case II. n is odd. Let the horizontal distance between A 

and B be n and let c be the cell adjacent to B (in the 

direction of A). Then the distance from A to Cis n-1, 

which is even. If B and c have the same father (Figure 2.4) 

then the distance from A's father to B's father is (n-1)/2 = 

FLOOR{n/2). If Band c have different fathers (Figure 2.5) 

then the distance from A's father to B's father is (n-1)/2+1 

= (n+1)/2 = CEIL(n/2). 

Q.E.D. 

Ih!.2!!i!!!l l· Let A .and B both be at level It, separated by a 

horizontal distance of n. Then there are more than n steps 

in any path from A to B which uses some cells on levels 

below k, but no cells on levels above k. 

!I.2.2!: Since A and B are separated by n horizontal steps, 

there are n-1 cells between them on level lt. Call these 

X{1), X(2), ••• X(n-1). Then the path from A to B which 

uses only cells on level k or lower must contain the 

following segments: 

-A path from some descendant of A to some descendant of 

X ( 1) • 



29 

-l'or i=1,2, ••• ,n-2, a path from some descendant of X(i) 

to some descendant of X(i+1). 

-A path from some descendant of X(n-1) to some 

descendant of B. 

Each of these paths must contain at least one horizontal 

step. Furthermore, any path which uses cells below level k 

must have at least 2 vertical edges (one edge to get from 

level k to level k-1 and one edge to return to level k). 

Therefore, any path from A to B which uses levels below k 

must have at least n+2 steps. 

Q.E.D. 

!h~2I~~ ~· Suppose A and B are two cells in T or L which 

are at the same level and are separated by a horizontal 

distance of n>4. Then there is a path from A to B of length 

less than n which consists of the edge from A to its father, 

a path from the father of A to the father of B, and the edge 

from the father of B to B • 

.f£22!: The proof consists of a construction of the requh'ed 

path. It consists of paths from: 

-A to his father (1 edge) 

-A's father to B's father (no more than CEIL(n/2) edges 

by Theorem 1) 

-e•s father to B (1 edge) 

So the total path length is no more than CEIL(n/2)+2. But 

for n>4, CEIL (n/2) + 2 < n Q.E.D. 



!.IH!£!!~ !!· Suppose A and B are as in Theorem 3. Then one 

of the shortest paths between A and B consists of the edge 

from A to his father (denoted by C), a path from C to the 

father of B {denoted by D) and the edge from D to B. 

30 

f!£!£!!: suppose A and B are on level k, with A to the left of 

B. Then by Theorem 2, no shortest path between A and B can 

use any level below k. The path between A and B which 

remains on level k bas n steps. But Theorem 3 shows how to 

construct a shorter path using higher levels. Therefore, 

any shortest path between A and B must use level k+1. 

Consider an arbitrary shortest path between A and B. Let E 

be the leftnost level- (k.+1) cell on this path and let P be 

the rightmost level-(k.+1) cell. (See Figure 2.6.) If C:E 

and l'=D, then we are finished. If not, then let G be the 

cell on level k which immediately precedes E on the path. 

(G will be the left son of E.) By Theorem 2, it follows 

that the arbitrarily chosen shortest path must begin with a 

horizontal fath from A to G followed by the edge from G to 

E. We will call this initial sub-path A ••• GE. But the path 

which consists of the edge connecting A to c followed by a 

horizontal path from C to E (we will call this path AC ••• E) 

is no longer than A ••• GE because the horizontal distance 

between c and E is no longer than the horizontal distance 

between A and G (by Theorem 1). Therefore, AC ••• E is a 

shortest path from A to E. Similarly, we can show that the 

path consisting of the edge connecting D to B preceded by 



the horizontal path from F to D (we will call this path 

F ••• DB) is a shortest path froro F to B. 

31 

Using these facts, we can construct a new path which 

consists of the path AC ••• E, followed by the path from E to 

F which uses the same edges as the original arbitrarily 

chosen path, followed by the path F ••• DB. This new path is 

a shortest Fath which uses cells C and o. 

Q.E.D. 

Ih!gi!m ~. Let k be the lowest level such that the 

ho.rizontal distance between ANC (A ,.k) and ANC {B, k) is less 

than or equal to 4. Then the path from A to ANC (A, k), from 

ANC(A,k) to AIIC(B,k) (horizontally), and from AIIC (B,k) to B 

is a shortest path from A to B • 

.f);;gg£: The proof is by induction on the horizontal distance 

between A and B. If A and B are separated by 4 or fewer 

edqes, then k is such that ANC(A,k)=A and ANC(B,k)=B. In 

this case, A and B must fit one of the configurations of 

Figure 2.7, or a mirror image of one. For all of these 

configurations, it is easy to verify that the horizontal 

path from A to B is a shortest path. 

Now suppose the horizontal distance between A and B is 

n, where n>4. Let c be the father of A and let D be the 

father of B. By Theorem 4, we know that a shortest path 

from A to B contains the edges AC and DB. But the 



horizontal distance between c and D is less than n (by 

Theorem 1) so the induction hypothesis applies to D and c. 

This means that one shortest path from C to D consists of 

the vertical path c ••• ANC(C,k), the horizontal path 

32 

AIIC(C,lr.) ••• ANC(D,k) and the vertical path ANC (D,k) ••• D. But 

ANC{C,k);ANC(A,k) and ANC(D,k)=ANC(B,k) so 

A ••• ANC(A,kj ••• ANC(B,k) ••• B is a shortest path between A and 

B. 

Q.E.D. 

It will be useful to examine the value of k, as defined 

in Theorem 5, given the distance between A and B. The 

following table shows the value of k for some small values 

of n (the horizontal distance between A and B). 



33 

n It 

1 1 
2 1 
3 1 
4 1 
5 2 
6 2 
7 2 
8 2 
9 2 or 3 

10 3 
11 3 
12 3 
13 3 
14 3 
15 3 
16 3 
17 3 or 4 
18 3 or 4 
19 3 or 4 
20 4 
21 4 
22 4 
23 4 
24 4 

The first four entries are derived from the fact that for 

~4, the path of Theorem 5 will have no vertical edges. The 

other entries can be found using Theorem 1. For example, 

for n=9, the father of A and the father of B are separated 

by four or five steps so the path from the father of A to 

the father of B will use one or two levels. Adding one more 

level to get from A to his father, we get two or three 

levels for n=9. The general formula for It follows by 

induction. 

!h~BI~m 2· Let A, B, and It be as in Theorem 5, with A and B 

on level 1 separated by a horizontal distance of n. Then, 

using the notation m=CEIL(log(n)), the value of It is: 



m-1 or rr-2 if n < 2**(m-1) • 2**(m-3), and 

m-1 otherwise. 

g~9g!: The proof is by induction on k. For small values of 

k, the theorerr can be established by inspection. 

Suppose cells A and B are separated by a horizontal 

distance of n, and k is as in Theorem 5. Consider C, a son 

of ll., and D, a son of B. These sons are separated by a 

horizontal distance of N, which must equal 2n-1, 2n, or 

2n•1. If K is the lowest level at which li.NC(C,K) and 

li.NC(D,K) are separated by four or fever horizontal steps, 

then K=k+1. Let M=CEIL(N). To establish the theorem, we 

must compute K in terms of M. There are four cases 

corresponding to different possible values of n: 

I. n < 2**(rr-1)+2**(m-3). Then k=m-1 or m-2, by induction. 

Multiplying by 2, we get 

2n < 2**m+2** (m-2). 

Since both sides of this inequality represent even 

integers, we also have 

2n+1 < 2**m•2**(m-2). 

But NS2n+1 and M=m+1, so 

N < 2**(M-1)+2**(M-3). 

Since k=m-1 or m-2 (by induction) and K=k+1, we have 

K=!l-1 or 11-2. 

II. n=2**(m-1)+2**(m-3). There are two subcases, depending 

on the value of N. In both cases, k=m-1 (by induction) 

and M=m+1. 



1. N=2n-1. Then N=2**(8-1)+2**(M-3)-1 and K=ll-1. 

2. N~2n. Then N ~ 2**(11-1) +2**(11-3) and K=M-1. 

Ill. 2**(m-3)+2**(m-1) < n < 2**m. The restriction n<2**m 

assures that M=m+1. Multiplying by 2, we get 

2n > 2**m+2**(m-2) 

which inplies 

2n-1 > 2**m + 2**(m-2) 

35 

since both sides of the first inequality represent even 

integers. Since N~2n-1 and M=m+1, we have 

N > 2**(8-1)+2**(11-3) and K=M-1. 

IV. n=2**m. Again, there are two sub-cases. 

1. N=2n-1 or N=2n. Then since !!=m+1, we have N=2**!!-1 

or N=2**M and since k=m-1 (by induction}, K=M-1. 

2. N=2n+1. In this case, ll=m+2 so N=2** (m+l) +1=2** (11-

1)+1 and since k=m-1, K=M-2. 

Nov, in cases I, II.1, and IV.2, we have N<2**(11-1)+2**(11-

3). In each of these cases, K=M-1 or K=M-2. Similarly, in 

cases II.2, III and IV.2, we have 2** (11-1) +2**(11-3) :f N ::f 

2**11. In each of these cases, K:k-1. 

Q.E.D. 

!h~2I~m 1· Let A and B be two cells in L and let k be the 

lowest level such that ANC(A,k} and AHC(B,k) are separated 

by two or fever steps. Then the path that rises from A to 

ANC(A,k}, moves horizontally to ANC(B,k), and then down to B 

is at most one step longer than a shortest path from A to B. 



fi9.Q£: Let C=ANC(A,k), D=AIIC(B,k), E=AIIC(A,k-1), and 

F=AIIC(B,k-1). Then C, D, E, and F must be arranged in one 

of the configurations of Figure 2.8. Let A ••• E ••• F ••• B 

refer to the path which rises from A to E, moves 

horizontally to F, and descends to B and let A ••• c ••• o ••• B 

refer to the path which rises from A to c, moves 

horizontally to D and descends to B. 

In cases (i) and (iii), A ••• E ••• F ••• B is a shortest 

path by Theorem 5. But A ••• c ••• n ••• B has the same length 

and is therefore a shortest path also. In case (ii), 

A ••• c ••• o ••• B is a shortest path and in case (iv), 

A ••• E ••• F ••• B is a shortest path and A ••• c ••• D ••• !l is one 

step longer than A ••• E ••• r ••• B. Therefore, in each case, 

36 

A ••• c ••• o ••• B is a shortest path or has one more step than a 

shortest path. 

Q.E.D. 

Ih~.QI£m §. Let A, B, and k be as in Theorem 7, with A and B 

on level 1 separated by a horizontal distance of n. Then, 

using the notation m=CEIL(log(n)), the value of k is: 

m-1 or rr-2 if n < 2**m- 2**(m-2), and 

m-1 otherwise. 

fi.!l.Qf: As with Theorem 6, the result follows by induction. 

Q.E.D. 

!k~m 2· Let A and B be two cells in L and let k be the 



37 

lowest level such that the horizontal distance between 

ANC(A,k) and ANC(B,k) is one. Then the path that rises from 

A to ANC(A,k), moves horizontally to ANC{B,k), and then down 

to B is at most two steps longer than a shortest path from A 

to B. 

Et!l9!: If lt:S2, then the theoretr can be established by 

inspection. Otherwise, we will use the same notation as in 

the proof of Theorem 7, with G=ANC(A,It-2) and H=ANC(B,k-2). 

A ••• G ••• a ••• B will denote the path which rises vertically to 

G, moves horizontally to H, and descends vertically to B. 

Then c, D, E, F, G, and 8 must be configured as in Figure 

2.9. In cases (i), (ii), and (iii), the path A ••• E ••• F ••• B 

is a shortest path by Theorem 5 and the path A ••• c ••• o ••• B 

has the same length. In case (iv), the path A ••• c ••• o ••• B 

is one step longer than A ••• E ••• F ••• H, which is a shortest 

path. In cases (v) and (vi), the path A ••• c ••• D ••• B is one 

step longer than the shortest path A ••• G ••• H ••• B. In case 

(vii), the path A ••• c ••• o ••• B is two steps longer than the 

shortest path A ••• G ••• u ••• B. Therefore, in each case, the 

path A ••• c ••• o ••• B is a shortest path or has one or two more 

steps than a shortest path. 

Q.E.D. 



38 

~!2I~ 12· Let A, B, and k be as in Theorem 9, with A and 

B separated by a horizontal distance of n. Then, using the 

notation m=CEIL(log(n)), the value of k is: 

m if n=2**rr, and 

m or m-1 otherwise (i.e. if n<2**m). 

~I2Q!: Again, as with Theorem 8, ve omit the details of the 

inductive proof. 

Q.E.D. 

I.h~S!I!l!l! 11· Let A and B be cells of I.. Let k be a level 

such that ANC(A,k) and ANC(B,k) are separated by n edges, 

n~4. Then every shortest path between A and B must include 

some cells on level k. 

Proof: If k=1, then the theorem is trivially true because -----
ANC(A,k)=A. Suppose k>1 and consider any path from A to B 

which does not use level t. Suppose the highest level used 

by this path ism, m<l!:. (See Figure 2.10.) Then, since 

ANC(A,m) and ANC(B,m) are separated by at least (n-1)*2**(k-

m) +1 horizontal edges, this path must have at least 2*m+(n-

1)*2**(k-m)+1 steps. To get this number, notice that 

ANC(A,m) and ANC(B,m) are separated by n-1 sub-trees, each 

of which has 2** (k-m) leaves. But there is a path using 

ANC(A,k) and ANC(B,k) which takes 2*m + 2*(k-m) + n steps. 

The path using level k is shorter than the one which used 

only level rr because 

(n-1)*2**(k-m) + 1 > 2*(k-m) + n 



39 

for n ~ 4 and k-m > 0. Therefore, level k must be used for 

the shortest path. 

Q.E.D. 

!h~gr~m 1~· Let A be inLand let B=ANC(A,k) for some k~1. 

Let C be adjacent (horizontally) to B and suppose D is n 

horizontal edges away from B on the same side as c, n~1. 

(See Figure 2.11.) Then any shortest path from A to D must 

use cell B or cell c. 

,!!I,.Q.Q!: If k=1, then A=B, so any shortest path must use B. 

Suppose k>1. Then the shortest path between A and D must 

include some cell on level k (if only D). Without loss of 

generality, assume B is to the left of D, as in Figure 2.11. 

Let E be the leftmost cell on level k which is on some 

shortest path. We will show that E is either B or c. 

Clearly, E can not be to the left of B. (If it were, ve 

could construct a shorter path which did not use E. But E 

is assumed to be on some shortest path.) If E is not one of 

B or c, then there must be m~2 horizontal steps from B to E. 

(See Figure 2.12.) The (supposedly shortest) path A ••• E 

must then include k vertical steps plus the following 

horizontal steps: 

-a descendant of B to a leftmost descendant of c (at 

least 1 step) 

-leftmost descendant of C to rightmost descendant of c 

{at least 1 step) 



-rightmost descendant of c to a descendant of E (at 

least m-1 steps since C and E are separated by m-1 

steps) 

40 

(See Figure 2.12.) This gives a total of at least 1+1+(m-1) 

= m+1 horizontal steps. But we can easily construct a path 

from A to E using only m horizontal steps. (This path rises 

directly to A and then moves horizontally to E.) Therefore, 

the assumption that E is not one of B or c must be false. 

Q. E. 0. 

Theorerrs 11 and 12 give us a method of counting the 

number of shortest paths between two cells of L. 

lh!g!~ID 11· Let A and B be cells of L which are separated 

by a horizonta 1 distance of n. Let k be the highest level 

such that the horizontal distance between ANC(A,k) and 

AJIC(B,k) is greater than or equal to four. If n<4, then let 

k=1. Then every shortest path from A to B consists of three 

segments: 

{1) A segment from A to c where c is either ANC(A,k) 2! 

cell adjacent to ANC (A ,Jq (towards B) 

(2) A segment from c to o, where 0 is either ANC (B, k) 2I 

cell adjacent to ANC(B,k) (towards A) 

(3) A segment from D to B 

such that the horizontal distance between ANC(A,k) and 

ANC(B,k) is greater than or equal to four. (See Figure 

2. 13.) 

the 

the 



41 

RI2.Q!: The theorem is trivially true if n<4. If n~4, then 

by Theorem 11, every shortest path must use some cells on 

level k and by Theorem 12, every shortest path must use 

ANC(A,k) or the cell adjacent to it, and ANC(B,k) or the 

cell adjacent to it. Therefore, c and D, as defined above 

must be intermediate cells on any shortest path. 

Q.E.D. 

Ih~.QI~-1~· Let A be in L and let C be the right (or left) 

brother of ANC(A,k)=B, where k~1. (See Figure 2.14.) Then 

the number of shortest paths between c and A is one more 

than the number of consecutive right (or left) branches 

beginning at B in the path from B to A. 

gi.Q.Q!: Consider the diagram of Figure 2.15. A shortest path 

from A to C may use any one of the hatched cross edges to 

get to a descendant of c, and then go up to c. The number 

of cross paths is the same as the number of consecutive 

right (or left) branches. 

Q.E.D. 

f2I.2ll!II• An algorithm for determining the number of 

shortest paths between two cells A and B which are separated 

by a horizontal distance of n in L. 

1. If n<4, let k=1. Otherwise, let k be the highest level 

such that ANC(A,k) and ANC(B,k) are separated by a 

horizontal distance greater than or equal to four. Let 



42 

C, D, E, and F be as shown in Figure 2.16. 

2. Let s{AE) = t of shortest paths from A to E which do not 

use c, as computed in Theorem 14. (s (AE) could be 0.) 

let s(BF) = # of shortest paths from B to F which do 

not use D, as computed in Theorem 14. (s (BF) could be 

0.) 

let s (CF) , s (CD) • s ( EF) , s (ED) be the numbers of 

shortest paths from c to F, C to D etc. {Since c and D 

are separated by at most seven steps, a finite table 

could be constructed to compute these values.) 

3. Then the total number of shortest paths from A to B is: 

s (CF) * s (FB) 

+ s (CD) 

+ s(AE) * s(EP) * s(FB) 

+ s ( AE) * s (ED) 

fi22!: Any shortest path is of the form A ••• x ••• Y ••• B, where 

X=C or E, and Y=F or D. The number of such paths is s(AX) * 
s(XY) * s(YB) • Substituting all possible values for X and 

Y and using the fact that s(AC)=s{DB)=1, we get the result. 

Q.E.D. 



43 



44 

~ ,:. ,A, ~ ' • • ' • ' • • ' I ' \ ' \ , \ 

' ' , 
' ' \ • ' ' , \ 

I \ ' 
\ . \ \ 

' ' \ ' \ ' • 6 b 0. ...••. .b d-------1> d "' A '8 A B 

Figure 2. 2 

t:l 0 
' ' 

, 
' , \ , , ' 

, • , ' I 
I \ , • I ' ' I \ ' ' \ , • \ , 

' ' .... • ' \ 
, 

d d b 6 b d 
A c. B 

Figure 2.3 



' I 
I 

' d 
A 

q--
• 
' ' • 

o--

t.I 

. . . 

. . . 

V\ 

Figure 2.4 

" 
Figure 2.5 

... ------- ... _ 

Figure 2.6 

', 
' ' 

45 

~ 
' ' I \ 

I \ 

' 
\ 

6 b 
c a 

---(q~----? 
' . ' ' ' ' ' . ' . 
~ 

c a 

~ · · · .\ .. 

0 

levo\ ko~-1 
~ · · · ~ le11al k 

H 



46 

B 

Figure 2.7 



47 

C D 

(i) 1\1\ 
e. F 

c c 

(ii) !\!\!\ 
c D 

(HD !\ 1\ I 
F 

6 F 

Figure 2.8 



48 

Cr 
(i) (ii) 

c. b 

·(i£)· 
(iii) 

c. 1:1 

~)x 
(v) (vi) 

· <;. (vii) 

Fl~>.ure 2.9 



49 

: 

\ 
Figure 2.10 

1'\ 

Figure 2.11 

/( 
... 

I I 
' 

' ' 
' ' • 

' ' 

I \ 
I .~ 

J 
A Figure 2.12 



J 

k 

A 

I 
I 

50 

\ 
Figure 2.13 

c 

Figure 2.14 



51 

c 

Figure 2.15 

F 0 

----<0~\ 

\ 
Figure 2.16 



52 

3. DATA MOVEMENT IN A NETWORK WITHOUT !IE!IORY 

In this chapter, we discuss techniques for broadcasting 

items to every cell of L. We will assume that the cells of 

T have no memory. That is, there will be no information in 

these cells to guide a data item to a particular target cell 

of L. Instead, copies of the item will be broadcast to all 

of the cells of L. Those cells in L which need the item 

will accept it while the rest of the cells will discard it. 

In Chapter 4, we will consider techniques which utilize 

memory in the cells. 

To implement a broadcast algorithm, we need rules which 

each cell will use for deciding to which of its neighbors it 

should send the data i tern. This decision will be based on 

the direction from which the data item arrived and the 

previous history of the item. Broadcasting is accomplished 

by Algorithtr 551, in which each copy of the data item will 

carry a "state" bit to keep track of its recent history. 

J!g~!i~hm a~· <a!Dil~ 52U!£! g!!! m2~D!> 

This algorithm broadcasts a data item throughout the tree in 



such a way that each cell of T and L receives exactly one 

copy of the data i tern. 

There are two possible states which will be called 

"From loson" and "From bison". Initially, the data item 

occupies a source cell in L and is treated as if it had 

arrived frorr. the left(lo) son. It is assigned the state 

"From loson". During each cycle, each cell applies the 

following rules, which are diagrammed in Figure 3.1, to 

decide where to send the data item it contains (if any): 

(a) If the data item arrived from the left(lo) son, assign 

it the state "Prom loson" and send copies of it to the 

father, the left brother and the right brother. 

53 

(b) If the data item arrived from the right(hi) son, assign 

it the state "From bison" and send copies of it to the 

father, the left brother, and the right brother. 

(c) If the data item arrived from the left brother, then 

send a copy of it to the right (hi) son. If the state of 

this item is "Prom loson", then send another copy to the 

left(lo) son. In either case, erase the state bit. 

(Erasing the state implies that the state information is 

no longer needed. The state bit can be set to an 

arbitrary value.) 

(d) If the data item arrived from the right brother, then 

send a copy of it to the left(lo) son. If the state of 

this item is "From bison" then send another copy to the 

right(hi) son. In either case, erase the state bit. 



(e) If the data item arrived from the father, then send 

copies of the item and its state bit (which will have 

been erased by this time) to both sons. 

54 

The paths created by this algorithm for a tree of size 

16 and a data item originating in the 8th cell of L are 

shown in Figure 3.2. Dotted lines represent connections not 

used by copies of this data item. 

fi2R2§i!i2D• Using Algorithm SS1, exactly one copy of the 

data item will be broadcast to every cell of T and L. 

fi.Qgf: The proof is by induction on h, the height of the 

active area. The specific inductive assertion is that each 

horizontal level of the active area of the tree consists of: 

- n cells which receive exactly one copy from above (n may 

be 0.) 

- 0 or 1 cells which receive exactly one copy from the right 

(if this number is 0, then n=O.) 

1 cell which receives one copy from below 

0 or 1 cells which receive exactly one copy from the left. 

m cells which receive exactly one copy from above (m may 

be 0.) 

(See Figure 3.3.) 

The assertion can be verified directly for h=1. Assume 

the assertion holds for the upper h levels and consider the 

(h+1)th level (from the top). Let A be the cell on level h 



55 

(from the top) which receives one copy from below. Let B be 

the cell which sends the copy to A. Since the rules are 

symmetrical, we need only treat the case where B is the left 

son of A. Finally, let C,D,E,F, and G be as in Figure 3.4. 

{If the active area contains fewer than 6 cells on this 

level, then sorr.e of C,D,E,F, and G may be missing.) Then B 

must send items according to rule (a) or (b) since a copy is 

sent upwards only vi th rules (a) and (b). In either case, c 

and D will receive exactly one copy from the left and right, 

respectively (by rule (a) or (b)). Cell E will receive 

exactly one copy from cell H by rule (d). (If E is part of 

the active area, then H must be also.) Cells F and G will 

receive exactly one copy each from cell J by rule (c). Each 

of the other cells will receive exactly one copy from above 

by rule (e) • This establishes the induction assertion for 

level h+1 (from the top). 

Q.E.D. 

Algorithm ss1 then can be used to broadcast a data item 

to every cell of the tree along a path which has exactly one 

horizontal edge. That is, the path between the source cell 

A and a target cell B in L will consist of a path going up 

from A to one of its ancestors, then across one horizontal 

edge to an ancestor of B and then down to B. To see this, 

consider any level k and let C;ANC(A,k) and D=ANC{B,k). If 

C and D are separated by one horizontal edge, then the path 

from A to B will use this edge because of rules (a) or (b). 



56 

Otherwise, C will send a copy upwards and D will receive its 

copy from above so the path from A to B will use no 

horizontal edges on level k. 

~!2E2~i!i2E• The path followed by a data item io Algorithm 

SS1 is no more than two steps longer than a shortest path. 

R!22!: This follows immediately from the above discussion 

and Theorem 9 (Chapter 2). 

Q.E.D. 

Algorithms which broadcast along shorter paths can be 

developed by allowing the data items to travel horizontally 

for more than one step. This will be done in Algorithms 

SS2, SS3, and SS4. The complete details of these algorithms 

a.re rather complicated. However, the operation of the 

algorithms is easy to understand with the aid of diagrams 

wh.ich show how the data items are routed at the "turning 

point". For example, Algorithm SS1 can be represented as 

shown in Figure 3.5. In Figure J.S(a), an item arrives from 

the left (lo) son. By rule (a) of Algorithm ss 1, copies of 

the data item will be sent both left and right to B and c 

respectively. (A copy will also be sent to A's father, not 

shown.) B will send its copy to its left son by rule (d). 

And C will send copies to both of its sons by rule (c). 

{The sons, of course, will send the item to their 

descendants by rule (e) until L is reached.) Figure 3.5(b) 

shows arrival from the right son and is symmetric to the 



first. In discussing further algorithms, we will present 

only the diagram corresponding to Figure 3.5(a). 

!!g~~i!~!§ ~~£, ~§1• !Dg §a!· (Single Source data 

movement.) 

These algor ithros are represented by Figures 3. 6, 3. 7, and 

3. 8. 

57 

As with Algorithm SS1, these algorithms all have the 

property that exactly one copy of the data item will be sent 

to each cell of T. Furthermore, it follows from Theorems 5 

and 7 that the path between a source and a target both in L 

will be a shortest path if Algorithm SS4 is used and will be 

no more than one step longer than a shortest path if 

Algorithm SS2 or Algorithm SS3 is used. 

Algorithms SS1-SS4 show how to broadcast a single data 

item through the network. In this section and the remaining 

chapters, we will investigate techniques for moving more 

than one item simultaneously. That is, different cells of L 

will contain different data items, each of which is aiming 

for a different target cell. 



58 

One approach to developing a multiple-item data 

movement algorithm is to use Algorithm 554 or some other 

technique to identify a shortest path between each source 

and its corresponding target(s) and then route the data 

items along these paths. For some configurations, this may 

inevitably lead to conflicts, even if there are no extra 

copies of any of the data items (as there are using 

Algorithm SS4). That is, two data items may try to occupy 

the same register of a cell at the same time, thus forcing 

one of them to wait. For example, consider the pattern of 

Figure 3.9. By inspection, we see that the minimum number 

of edges between each source and its corresponding target is 

six. But: 

~t2R2§!!i2D• If every data item travels along a shortest 

path to its target in the configuration of Figure 3.9, then 

simultaneous data movement cannot be accomplished in six 

steps. 

g~gg£: (By contradiction) Movement in six steps is possible 

only if each data item can move along a shortest path. 

suppose this is so. Then on the first step, A must move to 

cell #8 and c must move to cell #9 (because all shortest 

paths for A go through cell #8 and all shortest paths for B 

go through cell #9). In order to avoid conflict at step 1, 

B must choose for its shortest path 17-18-9-10-11-12-25 and 



59 

D must choose 19-20-10-11-12-13-27. These paths are shown 

in Figure 3.10. Therefore, after step 1, we must have the 

configuration of Figure 3.11. For step 2, B and D are 

committed to cells t9 and t10 respectively, since there are 

no other shortest paths given their start in step 1. 

Therefore, A must move to cell t4 (to follow shortest path 

16-8-4-5-6-12-24). But since cells 4 and 10 are occupied, 

this leaves no second move for c. Therefore, C cannot 

follow any shortest path without having to wait. 

Q.E.D. 

This means that, in general, we cannot expect data 

movement to be completed in the number of steps it would 

take any one data item to move by itself. That is, for some 

configurations, some data item will have to wait or follow a 

longer path. 

One obvious way to handle more than one data item is to 

allow each item to move according to the rules of one of the 

Algorithms SS1-SS4. ihen a conflict occurs and two 

different items are routed to the same register of a cell, 

one will be required to wait. There are various possible 

schemes for deciding which itern(s) should have to wait. The 

one adopted in our implementations is to give first priority 

to the item which has waited the longest, with ties broken 



in favor of the lowest valued data item. The algoritnms 

which can be obtained in this fashion from SS1-SS4 will be 

referred to as MS1-MS4 (for Multiple source). 

60 

These algorithms solve some of the problems mentioned 

in the introduction. It is no longer necessary to have each 

item climb all the way to the top of the active area. As 

soon as the item gets high enough, it begins its descent. 

Therefore, the time for data movement no longer depends on 

the configuration of the active area, as was the case in the 

VERTICAL algorithm. (Recall Figure 1.11.) Also, if the 

active area can be partitioned into segments in such a way 

that the sources for all the targets in a segment are also 

in that segment, then the time for data movement will depend 

on the number of items in the largest segment rather than 

the total number of items moving. As an extreme example, 

swapping adjacent pairs (Figure 1.8) requires only two 

cycles using any of algorithms MS1-MS4, no matter how many 

pairs are to be swapped. 

In the general case, however, MS1-MS4 offer little or 

no improvement over the VERTICAL algorithm. In fact, a 

simulation shoved that KS2 required two more steps than the 

VERTICAL algorithm to reverse 64 items. It was not 

immediately obvious that this should happen since both the 

VERTICAL algorithm and KS2 broadcast every source item to 

every cell of T and L. The reason for the difference 



61 

involves the way in which the item is split into two (or 

more) copies. In the VEBTICAL algorithm, a cell will make 

two copies of the data item and send them to both of its 

sons, who will always be ready to receive them. Therefore, 

the sending cell will always be free to accept another data 

item. However, in MS2, when a cell makes two copies of a 

data item, it is possible that one copy will have to wait. 

This means that the sending cell cannot accept another data 

item on this cycle. Therefore, it could (and sometimes 

does) take rrore than n-1 steps for n data items to move 

through a given cell. 

To avoid these problems, we must find a way to limit 

the number of useless copies of data items which clog the 

network. This can be done by giving the cells some memory, 

as in the a lg ori thms to be discussed in Chapter 4. 



~F I II C"'OM 0\0l"\ 

"F h • roM iso.,.. 

Ru1..i. tel) 

Figure 3.1 

62 

Rut... e. {b) 

''Frow. 



: 

' ' 

- .. -. ~ 

O·,_lt.J[_l-L. H 

Figure 3.2 

' ' 
' 

' 

63 

' 



64 

Figure 3. J 

Fipur!' 3.4 



65 

A c 

(~) 

{b) 

Ftgure 3.5 



it .. Jt ... ::: 

I 

Figure 3.6 

Figure 3.7 

' ' I 

66 

' I 
' ' d16' be' r~ :-,.)\_K_}\ 

Figure 3.8 



67 

I I \ \ 
A 13 C D ~ TA~GE.TS 

Figure 3.9 



0 

0 

,cr - - - · · • ~ltiiiliulllfuiliPffiilqllllltTuiliiujQ IIIIIIIIUIIIIIlln"*' 
: # \ \ 

C> ·- • -0 OlliUIIIICf 0 0 0 0 0 0 ~ 
n ~ u ~ 

'8 b 

_"i:lr----. ----
,·-~-

' 
' ' 

Figure 3.10 

JIA / ' c w-- ---- ----~w-- --------- ·-w 
' ' I \ \ 

I \ I \ \ 

I\ I' /·, 
1 \ ~I • 1 , 

I ' ...::;..,.. ' -?b, ' 

@--- {ti}- -- -®--. ·0---§-- --.[~ 

Figure 3.11 

68 

0 0 

0 () 0 



4 DATA MOVEMENT ALONG SHORTEST PATHS IN A NETWOBK WITH 

MEMOBY 

69 

In this chapter, we examine techniques for storing 

information in the cells of T to guide data items to their 

proper destinations. The items will still follow the paths 

prescribed by one of the broadcast algorithms SS1-SS4. The 

information in the cells will be used only to decide when 

not to make extra copies of the items. Ideally, we would 

like each item to reach its destination(s) without the 

production of any unnecessary copies. Consider Figure 4.1. 

Here a data item originating in cell A is to be sent to 

cells B and c. The figure shows the paths which the item 

would take using Algorithm ss1. Of course, with Algorithm 

SS1, many useless copies of the data item would be created 

and later discarded. We see from the figure that only at 

cell D is it necessary to make two copies of the data item. 

Everywhere else, an item arriving at a cell of T is routed 

in only one direction, according to the pattern established 

by 551. 



70 

This chapter describes several types of information 

which can be stored in each cell so that, upon receiving a 

data item, the cell can decide where to send the item. The 

cell must also be able to decide if the item must be copied 

and must know which way to send the copy (or copies). If 

the cells always have enough information to avoid generating 

useless copies, as in Figure 4.1, we will say that the cells 

have f9m2l~i~ E~ih !nt9Im!1i2D• The mnemonic CP1 will refer 

to the algorithm in which all items move according to the 

rules of 551 and all of the cells have complete path 

information. Similarly, CP2, CP3 and CP4 will refer to the 

algorithms in which the cells have complete path information 

and move according to the rules of 552, 553, and SS4, 

respectively. Figure 4.2, for example, shows how the item 

in the configuration of Figure 4.1 would reach its 

destination using CP4. 

Of course, CP1-CP4 are not practical algorithms since 

we do not know how the machine could compute the information 

needed for each cell. Instead, they are the goal for this 

chapter since they represent the best algorithms that can be 

obtained from the broadcast patterns of 551-554. 

The original draft of the Mag& paper {1] suggests one 

approach toward the goal of the preceding section. With 



71 

each vertical edge, we associate two integers which 

represent the lowest and highest target values in the cells 

of l which can be z:·eacbed vertically from that edge. The 

term I~Dg~ iD!~msll2D will be used in what follows to refer 

to these two integers. Consider, for example, Figure 4.3. 

The edge marked A has (4 ,6) as its range information because 

the two cells with target values 4 and 6 can be reached from 

it. Edge B has range information (1,6) because the target 

values of the cells which it can reach lie between 1 and 6 

inclusive. 

Of course, the edges have no memory, so the range 

information must be stored in the cells of T. This can be 

done if each cell has four registers called MINLO, MAXLO, 

MINHI, and MAXHI. MINLO and MAXLO will store the range 

information associated with the edge which connects the cell 

to its left son, while MINHI and MAXHI will store the 

information associated with the edge which connects the cell 

to its right son. Rather than refer to MINLO and MAXLO 

individually, we will henceforth refer only to the pair 

(MINLO,MAXLC) which we give the name GLO (for ~uiding 

information for the LQ edge.) Similarly, we will use GHI to 

refer to the pair (MINHI,MAXHI). Figure 4.4 shows the 

contents of the four registers for cell C of Figure 4.3. 

The range information is easy to compute in one upward 

pass through the tree. This computation proceeds one level 



72 

at a time as follows: 

!1..9.2Ii!!U!l £.!.!! (££!.!1.11.\!!i !i!:U!:a! .!!.i!!!!U! ID!2.t!!!a tj,gnl 

The operation "merge" between two range information pairs is 

defined as follows: 

merge{(a,b), (c,d)) = (min (a,c) ,max (b,d)) 

I. Initialization. 

For each cell of L, if that cell has a target label of 

k, set G.LO to (k,k) and GBI to (k,k). For all other 

cells of L and T, set GLO and GHI to (n,O), where n is 

larger than any target label used in this movement 

pat terr.. 

II. Transfer of information from son to father. 

This step is repeated at h levels, where h is the 

height of the active area. GLO and GHI will refer to 

the registers in the cell which is sending information 

upwards. GLO(father) and GHI(father) will refer to the 

registers in the father of that cell. For each cell of 

Land T, if the cell is a left(lo) son, then set 

GLC(father) ~- merge(GLO,GBl) 

If the cell is a right(hi) son, then set 

GHl(father) ~- merge(GLO,GHI) 

Given this range information, Algorithms SS1-SS4 can be 

modified so that the data item is sent downwards only if the 

range information indicates that there may be a target 

needing that data item. That is, the item is sent along an 

edge only if its label falls within the range associated 



73 

with that edge. For example, itl Figure 4. 3, if a data item 

with label 5 arrives at cell C from above, then it need only 

be sent to the right son because the range information (3,4) 

guarantees that there are no targets labeled 5 among the 

descendants of the left son of cell c. 

The algorithms which can be derived from KS1-KS4 in 

this manner will be referred to as MSB1-MSR4 (for Multiple 

Sources with Range Information). A few simulations shoved 

that these algorithms performed somewhat (about 30~) better 

than MS1-KS4 on movement patterns involving 100 or so data 

items. However, they do not come near the performance of 

the CP algorithms because useless copies can still be 

created and passed through the network. For example, in 

Figure 4.3, if a data item labeled 3 arrives at edge B, it 

may still pass even though there are no 3 's in the area 

below B. Furthermore, no copies are discarded until they 

start moving dovnvard. Therefore, there may be many useless 

upward-moving, left-moving, and right-moving copies. In the 

next section, we will present an improvement of MSR 1-IISR4 

which alleviates the latter problem. 

In the previous section, range information was 

associated only with the vertical channels vbich send data 

items dovnvard. It is possible, however, to associate range 



74 

information with !1! of the channels. Consider, for 

example, Figure 4.5, in which target values and cell indices 

coincide. suppose a data item arrives at cell A from below. 

Then with SS1, the item would be sent to cells #7 and #8 via 

the upper channel. (Copies would be sent to the rest of the 

cells using other channels.) If we associate the range 

information (7 ,B) with this channel, then we know that when 

an item arrives at A from below, a copy should be sent 

upward only if the label of the i tern is in the range 7 to 8. 

The horizontal edges can be treated similarly, except 

for one complication. Consider Figure 4.6 which shows the 

same configuration as Figure 4.5. The channel to the right 

of cell A will send a data i tern to cells #5 and #6 if the 

item arrived at A from the left son (Figure 4.6(a)). 

However, if the item arrived at A from the right son {Figure 

4.6(b)), then the right channel will send the item only to 

cell #6. Therefore, we need to store both pairs (5,6) and 

(6,6) and use one when the item arrives from the left son 

and the other when the item arrives from the right son. 

Alternatively, we could apply the merge operation of 

Algorithm CVR to the two pairs, in this case keeping only 

(5,6). This alternative is simpler and requires less 

storage in each cell. However, it may result in the 

production of more useless copies. For example, if an item 

labeled 5 arrives at cell A from the right son, then it 

would be unnecessarily sent to the right if (5,6) were the 



only range information stored. In what follows, we will 

assume that two pairs are stored for horizontal channels. 

75 

Figure 4.7 shows all of the range information which 

must be stored for the configuration of Figure 4.5 and 4.6. 

As mentioned above, the horizontal connections have two sets 

of range information for each direction. In Figure 4.7, we 

have adopted the following convention. For channels which 

send information to the right, the range information to be 

used when the item arrived from the left son is written 

above the horizontal line. For channels which send items to 

the left, the range information to be used when the item 

arrived fro~ the right son is written above the horizontal 

line. This is consistent with Figure 4.6. 

Before showing how to compute the range information, 

let us examine how the information is used as we follow one 

data item through the tree. Suppose a data item labeled 6 

originates at cell #2. (See Figure 4. 8 (a).) According the 

Algorithm 551, the item would be sent upwards, to the left 

and to the right. However, the range information (1,1) 

makes it unnecessary to send it to the left and the range 

information (3,3) makes it unnecessary to send it to the 

right. Therefore, the item is sent only to the father. At 

this point (4.8(b)), the range information again dictates 

that a copy need only be sent upwards, giving 4.8(c). Now 

since the item is arriving from the left son, we must use 



76 

(5,8) as the range information to decide whether or not to 

send the item to the right. Since 6 is between 5 and 8, we 

do send it, giving 4.8(d). At this point, Algorithm SS1 

would send copies of the item to both sons. However, since 

(7,8) is the range information associated with the lower 

right channel, a copy need only be sent to the lover left 

son (4.8(e)). In the last step, the range information 

specifies that the item need only be sent to the right son, 

and the iterr reaches its destination (4 •. 8 (f)). 

As with the MSR algorithms, the range information must 

be stored in the cells of T. This will require fourteen 

registers in each cell. GLO!(MINLO,MAXLO) and 

GHI!(MINHI,MAXHI) serve the same purpose as in the MSR 

algorithms. GUP!{M!NUP,MAXUP) will store the range 

information associated with the upper channel. 

GRT1!(MINRT1,MAXRT1) will have range information associated 

with the right channel for a data item arriving from the 

left son while GRT2!(KINRT2,MAXRT2) will have range 

information associated with the right channel for a data 

item arriving from the right son. Similarly, 

GLF1! (!!INLF1,1!AXLF1) will have range information associated 

with the left channel for an item arriving from the right 

son and GLF2!(MINLF2,11AXLF2) will have range information 

associated with the left channel for an item arriving from 

the left son. Figure 4.9 shows the contents of these 

registers for cell A of Figure 4.7. 



77 

The co~putation of the range information proceeds as 

follows: 

I. Initialization 

1. For each cell of L, if that cell has a target label 

of k, set GLO~-(k,k) and GHI~-(k,k). For all other 

cells cf LandT, set GLO and GHI to (n,O), where n is 

larger than any target label used in this movement 

patter11. 

2. For all cells of T and L, set GUP, GLF1, GLF2, 

GRT1, and GRT2 to (11,0). 

II. Tral'lsfer information to all neighbors. 

This step is repeated 2h times, where h is the height 

of the active area. The neighbors of a cell sending 

information will be called "father", "left", "right", 

"loson" and "hison". The registers in these cells will 

be referred to as GLO(father), GRT(left), and so on. 

The operation "merge" from the previous section is 

extended to three arguments by the rule that for pairs 

X, Y, and z, 
merge(X,Y,Z) - merge(merge(X,Y),Z) 

For each cell of T and L, send information to all 

neighbors as follows: 

GR'!1 (left) ~- merge(GLO,GHI) 
GRT2(left) ~- GHI 
GLFl (right) ~- merge(G.LO,GHI) 
GLP2(right) ~- GLO 
GOP (loson) ~- merge (GOP, GLP2, GRT 1) 
GUP(hison) ~- merge(GOP,GLF1,GBT2) 

' 



78 

If the cell sending information is a left(lo) son, then 

set 

GLC(father) ~- merge(GLO,GHI) 

If the cell sending information is a right(hi) son, 

then set 

GHI (father) ~- merge (GLO ,GHI) 

Figure 4.7 contains an example of the result of this 

computation of the range information. 

The data movement algorithm which uses this information 

will be known as MSER1, for Multiple Sources with Extended 

Range Inforiration. The "1" refers to the fact that this 

algorithm is based on the movement pattern of Algorithm SS1. 

It is also possible to devise MSER2, MSER3 and MSER4. These 

require increasing amounts of memory in each cell because 

the horizontal channels have to serve a larger number of 

different regions (groups of consecutive cells in L). To 

see this, consider Figure 4.10, in which information is 

being sent by Algorithm SS4. A data item can arrive at edge 

A through any of the cells marked #1-#8. For each of these, 

the region to which the item will be sent after crossing 

channel A can be found by consulting Figure 3.8 and is shown 

in the following table: 

Arrival at A from cell # 

1 
2 

Region reached 

9-10 
9-10 



79 

3 9-12 
4 9-12 
5 10-14 
6 11-14 
7 12-16 
B 13-16 

Since there are six distinct regions, (9-10 and 9-12 are 

repeated), we would need six pairs of registers to store the 

range inforrration associated with each direction of movement 

across each horizontal channel. Though we will not present 

the details, the algorithm for computing all of this range 

information is a straightforward extension of Algorithm CER. 

In the example of the previous section (Figure 4.8), 

the data item reached its destination without being copied 

unnecessarily. This is because of a fortuitous (and 

fortunate) arrangement of the target labels and is not 

inherent in the algorithm. In general, unnecessary copies 

may be generated. Consider, for examfle, Figure 4.11. An 

item labeled 2 which originates at cell A should only be 

sent to the left. However, the range information is such 

that an extra copy will be sent upwards and to the right, 

reaching cell B. Therefore, Algorithms MSER1-MSER4 will 

not, in general, perform as well as CP1-CP4, and it is still 

useful to look for other types of guiding information to 

sto.re in the cells. 



80 

One alternative is to replace the two integers of range 

information associated with a channel with a bit vector 

which somehow represents all of the target labels which can 

be reached through that channel (and perh"ps other labels as 

well). For example, we roigh t use a hashing function which 

maps target labels into bit positions. The vector 

0100100000, then, would be associated with a channel which 

only reaches cells whose target labels hash to 2 or 5. When 

a data item arrives at this channel, it will be sent across 

the channel only if its integer label hashes to 2 or 5. Of 

course, it is still possible that the item will be sent 

across the channel unnecessarily. The algorithms which use 

this hashing approach will be called SSH1-MSH4. 

Computing the bit vectors requires the same general 

technique as that used to compute the extended range 

information. In CEB, each register pair GOP, GLO, GHI, 

GLF1, GLF2, GRT1, GBT2, corresponds to a group of adjacent 

cells in t. Each register pair contains a condensed (and 

incomplete) representation of the data item labels which may 

appear as targets in this group of cells. The merge 

operation combines the information about two adjacent groups 

of cells. Using the hashing information, GOP, GLO, GH!, 

GLF1, GLF2, GRT1, GRT2 will be bit vectors which correspond 

to the same groups of L-cells, but in a different way. The 

merge operation must be modified accordingly. The algorithm 

to compute the bit vectors for MSH1 proceeds as follows: 



!! gg1;: !!.!.l..!P ~.!!I <£.2!\l.I?.Y!i !!l§!tirut !~5:!5!£ I 

I. Initialization. 

81 

For each cell of L which has a target label k, compute 

i=h(k), where h is the hashing function chosen. set 

the ith bit of GLO and GHI to 1 and all other bits to 

D. For the rest of the cells of L and T, set GLO and 

GHI to all o•s. Par all cells of L and T, set GUP, 

GLF1, GLF2, GRT1, and GRT2 to O•s. 

II. Transfer of information between cells. 

This section is the same as part ll of Algorithm CRE 

using 

merge(X,Y) -X 2~ Y 

The introduction of the hashing function makes it 

extremely difficult to analyze the performance of MSH1-MSH4. 

However, it should be clear that if the hashing function is 

chosen well enough, the performance of IISH1-IISH4 can 

approach that of CP1-CP4. As an extreme, if the length of 

the bit vector is equal to the number of distinct targets, 

then using the identity function for h will provide complete 

path information. Even with fewer bits, the performance of 

IISH1-IISH4 can be quite close to CP1-CP4, especially if 

hashing information is stored in addition to range 

information, forming hybrid algorithms IISERH1-IISERH4. 

Therefore, in Chapter 5, we will concentrate analysis 

efforts on the conceptually simpler CP algorithms. 



82 

. 
4.5 £9D§~£Y!i~ll ~~-!II~ IAig!! ~!R!l§· 

In the previous sections, we made no assumptions about 

the distribution of the target labels and the location of 

the source items. An item could originate anywhere in the 

active area and be sent anywhere. In fact, data novement 

for many of the o perations of the machine of [1] is more 

orderly. In most cases, data movement involves translations 

of no more than a fixed number of contiguous regions in L. 

Each region, in which the non-empty cells are labeled 

consecutively, may need to be copied an arbitrary number of 

times. Pigure 4.12, for example, shows a 10-cell region 

which must be copied to two places. The exact percentage of 

movement patterns which are of this form depends on the 

particular reduction language dialect of the machine (that 

is, the choice of primitive operations) and the 

characteristics of user progra~s. Hovever, one would expect 

the case of translation of contiguous regions to be quite 

common since it is used to i~plement some of the most basic 

features of the language. For nov, ve will consider only 

one source region, as in Figure 4.12, and assume that data 

items move according to the rules of 551. 

The region (group of consecutive cells in L) reached by 

any horizontal or downward-moving vertical channel is always 

a set of contiguous cells of L. Therefore, the target 

labels in the area reached by a horizontal or downward-



83 

moving channel is always a group of consecutive integers, as 

with edge A of Figure 4.13, or two groups of integers, one 

ending with n (the number of labels in the segment) and the 

other beginning with 1, as with edge B of Figure 4.13. (It 

is assumed that the item arrived from the left of cell X.) 

In the first case, the range information ((3,6) in the 

example) is sufficient to specify the complete contents of 

the area. In the other case, we still need only two 

integers to represent the contents of the area. In the 

example, we could use (9,2) to mean 1 ••• 2 and 9 ••• 10. In 

general, (m,k), where k<m can represent the groups 1 •• k and 

m ••• n. 

A channel which sends items upward can reach one group 

of contiguous cells (edge C in Figure 4.13) or two groups of 

cells (edgeD in Figure 4.13). If the channel reaches one 

group of cells, then, as with the horizontal and downward­

moving vertical channels, only two integers are needed to 

specify the contents of the area. If the channel reaches 

two groups, ~hen one group must be at the very left of the 

active area and the other group must be at the very right. 

The region on the left must contain labels 1,2, ••• k and the 

region on the right must contain labels m,mt1, ••• n-1,n. If 

k<m, then the pair (m,k) is sufficient to represent the 

contents of the entire area reached by the channel. If k~m, 

then (1,n) represents the contents of this area. Therefore, 

it is always possible to use only two integers to represent 



84 

all of the target labels in the area reached by an edge. 

That is, under the assumption of consecutively numbered 

target cells, it is possible to store complete path 

information using two integers per vertical channel and four 

per horizontal channel. (This is the same amount of 

information reguired by MSER1.) 

The pairs of integers can be computed using an 

algorithm which is almost the same as CER. 

Algg&l!~m £]£! (£2m2~!~ !!nqe !D12~m~!!2n 12! £2n~£Y~!~ll 

1~~!1!~ !~~g~!§l 

I. Initialization. 

For each cell of L which has a target label k, set 

GLO~-(k,k) and GHl~-(k,k). Set all other registers to 

(0,0). 

II. Transfer of information between cells. 

This is the same as part II of CER except for the 

definition of the "merge" function. lie define 

merge((a,b), (c,d))!(X,y), where x andy are computed by 

the PL;I-lik:e algorithm below. This algorithm makes 

use of the fact that we merge information about 

adjacent regions of L only. In the algorithm, N is the 

largest target label in the segment. (In Figure 4. 12, 

N=10.) Figure 4.14 shows the different cases which 

must be handled by the algorithm. In the figure, 

[A ••• B) represents a region whose first target label is 

A and whose last target label is a. For clarity, the 



two regions to be merged are drawn on tvo horizontal 

levels even though all of the regions are in L. 

IF A=O & B=O 
'IHEN DO; X=C; 

Y=D; END; 
IF C"'O & D=O 

THEN DO; X=A; 
Y=B; END; 

IF A5B & CSD 
THEN DO; I* FIGURE 4.14(A) *I 

X= III N (A ,C) ; 
Y=!IAX(B,D); END; 

II' A5B & D<C 
THEN DO; IF A=D+ 1 

THEN DO; I* FIGURE 
X=C; 
Y=B; END; 

ELSE DO; I* FIGURE 
X=A; 
Y=D; END; 

IF X:SY 
THEN DO; I* FIGURE 

X=1; 
Y=D; END; 

IF B<A & C:SD 
'IHEN DO; IF C=B+1 

THEN DO; I* FIGURE 
X=A; 
Y'=D; END; 

ELSE DO; /* FIGURE 
X=C; 
Y=B; END; 

IF HY 
THEN DO; I* FIGURE 

X=1; 
Y= li; EliD; 

IF B<A & D<C 
'IHEN DO;/* FIGURE 4.14(G) */ 

X= 1; 
Y= li; END; 

4. 14 (B) *I 

4.14(C) */ 

4.14(0) *I 

END; 

4. 14 (E) */ 

4.14(F) */ 

4.14(0) */ 

END; 

85 



86 

The preceding discussion shows how to move the 

items when one source segrr~nt is involved. In general, 

there 1ray be more than one. llultiple source segments 

could be handled sequentially in time by reusing the 

same set of registers for guiding information. This 

increases the total time needed for data movement while 

limiting the amount of memory needed in each cell. 

Alternatively, each cell could have multiple sets of 

registers so that multiple segments could be handled 

simultaneously. This would require each data item to 

carry a segment number with it so that it would know 

which set of registers to use as guiding information. 

Since some operations may involve an unbounded number 

of segments, it will not always be possible to handle 

all of the segments simultaneously. 

For the case of consecutively numbered target 

labels, we have achieved the goal stated in the 

introduction of this chapter. Namely, we now have a 

way of storing complete path information in the cells. 

That is, we now have a way of moving items in such a 

way that no useless copies of data items are produced. 

Therefore, it is now necessary to discuss the 

performance of the CP (Complete Path Information) 

algorithms. 



87 

Figure 4.1 

Figure 4.2 



3-3 88 

-;-~ 
0-L 

b-'-

e-e 

1-D 

Figure 4. 3 



89 

Figure 4.4 



90 

Figure 4.5 

{to) 

Figure 4.6 



91 

~~ l~ 
:..'1 II) 

~~ J~ 

tZ c:''f' r-

o, ../!"' 
~~ '!I 

(o ..., 
'::t 

t~ ~t 
~,'\. ~ 

~.!. ! -b 

Figure 4, 7 



92 

(C) 

(e) 

Figure 4.8 



93 

7 ~ 
H lfi.)UP MAXUP .J \.. ., 

~Fi. ~P. E'~T1. 
w .A. r ---- .. r ' MltJL.F1. HA>CI.H MI~RT1 

1 ~ 5" 
1 1 b 

MINL.F ~ t-IAXLF~ MltJRTa MAi<RTQ 

GL.F;;l. G-RTa 

Figure 4.9 



94 

'-0 ..... 

~~ \, 
~ -
-~~ o;j--

("\ -
rJ -

-~ --
0 -

Figure 4.10 



95 

--.:;;. a 1-<1 
i- <! ,;_; ... )?',~ ~ 

' l? 

"-
...... ~ ., 

4 
:l.-:t 1-1 
d.-;! A 

,_, 
1 4 E- ~ 

® 't ;11 
TARGETS 

Figure 4.11 



96 

Ul 1-
u w 
(\<' ~ :> 
0 <! 

IJ1 1-

0 

... .,. 
. • . D" 

·I' 

... '"' 
In 

.,... 
("'' 

<1 
.... 
~ 

<> 
()<> 

r--

"' 
In 

<I" 

... ['1 

... ~ 

... '" 
Figure 4.12 



97 

Figure 4.13 



98 

OR fA ·•· e] 
[c ... "D 

(A) 

[A ... 13] 
1c··· NI1 ... e] 

(C) 

[ 1 . . . y J 
[x · · · N J 
lb) 

Figure 4.14 (Part 1) 



99 

[A ... ~It · ·. a l 
Tc ... b J 

(E) 

(F) 

(G-) 

Figure 4.14 (Part 2) 



100 

5. PERFORMANCE OF THE CP ALGORITHMS FOR SPECIFIC MOVEMENT 

PATTERNS 

It is difficult to make general statements about the 

performance of the CP algorithms. Therefore, we will 

investigate their performance for specific movement 

patterns. 

Certainly, there are some patterns for which CP!I, which 

routes items along shortest paths, is optimal. Consider a 

right rotation by a single cell (assuming no empty cells) as 

in Figure 5.1. Notice that the shortest path between the 

cell containing 8 (source label #13) and its target has 

seven steps. The shortest paths between all of the other 

data items and their respective targets have length one. 

Therefore, data movement for this pattern must require at 

least seven steps. But CP4 will require exactly seven steps 

since it sends each item along a shortest path and none of 

the paths overlap. Therefore, CP4 is optimal in this 

example. 

In general, CP4 will be optimal whenever the paths 

between co.rresponding source and target cells do not 



101 

overlap. However, in most interesting patterns, the paths 

do overlap. In this chapter, we will examine the 

performance of the CP algorithms on some of these patterns. 

Chapter 6 will give a negative answer to the question of 

whether or not the CP algorithms are optimal for these 

patterns. 

consider the problem of reversing the contents of a 

group of adjacent cells in L. For simplicity, assume that 

n, the number of cells, is a power of two and that all of 

the cells are descendants of a single ce.ll at level log (n) • 

(See Figure 5.2.) Using CP1 or CP2, all of the data items 

in region X must move along the path C-A-B-F to region Y. 

Similarly, all of the items in region Y will use path F-B-A-

c to reach region x. Since all channels are two-

directional, data movement along c-A-B-F and F-B-A-C can 

take place simultaneously. !low region X and region Y both 

contain n/4 items. Therefore, the number of steps required 

to interchange the items in regions X and Y is 

(n/4) • 2* (log (n) -1) 

(The first items reach A and B in (log(n)-1) vertical steps. 

Then the two sets of n/4 items cross from A to B or from B 

to A. Finally, it takes (log(n)-1) steps for the last items 

to descend to L.) The other items (those not in X and Y) 

can be reversed in fever steps because they do not use cells 



A, B, C, and F and will not interfere with the items from 

regions X and Y. Therefore, using CP1 or CP2, the total 

time required for data movement is 

(n/4) t- 2*(log(n) -1) 

steps. 

102 

Using CP4, each item in region X will be sent to I 

along the path C-D-E-F and items in region Y will be sent to 

X along path .F-E-D-C. Again, assuming n>4, the other items 

will not interfere, so the total time using CP4 will be 

(n/4) + 2*(log(n)-2) + 2 

(The extra +2 accounts for the fact that there are nov three 

horizontal steps instead of one.) 

When the items are not all descendants of a single 

cell, but the number of cells is a power of two, the number 

of steps required for data movement with CP1 is still 

linear. Consider Figure 5.3. Cells A and Dare separated 

by a distance of n-1;:d while B and c are separated by a 

distance of (n/2) +1;:d. But since n is a power of two, 

CEIL(log(d))=CEIL(log(c));:m. Thus, by Theorem 10 (Chapter 

2), all of the items between A and B (inclusive) must rise 

to level m or m-1 before descending to their destinations 

between cells c and D. But this includes n/2 of the items, 

with n/4 moving in each direction. Therefore, at least n/8 

items must use one edge on level m or level m-1. This 



implies that n/8 is a lower bound on the time required by 

CP1 for reversal. 

, 03 

By a similar argument using Theorems 6 and 8, the time 

required for reversal of adjacent items with CP2 and CP4 can 

be shown to be linear in n, the number of items moving. The 

coefficient on n is less than 1/2, since only half of the 

items move in each direction, with the exact coefficient 

depending on the specific configuration. 

Translation involves moving a group of items to another 

region of the tree, preserving the original order of the 

items. An example in which neither sources nor targets have 

gaps is shown in Figure 5.4. Assuming that the source cells 

and the target cells are disjoint, as in Figure 5.4, then 

the time used by the CP algorithms to accomplish translation 

will be linear in the number of items moving. This is 

because all of the items are moving the same distance and 

must therefore rise to the same level, or perhaps the same 

two levels, and use the same horizontal cross-connections. 

This follows from Theorems 6, 8, and 10 of Chapter 2. 

Consider again Figure 5.4. Using CP1, every item must 

pass through edge x. Using CP2, every item must pass 

through edge Y, and using CP4, every item must pass through 

edge z. In general, the items may be divided among two 



104 

horizontal levels as in Figure 5. 5. In this example, eight 

items are being shifted ten positions each. Using CP1, for 

example, three of the items (A, B, and C) would use edge W, 

two items (D and E) would use edge V, and the other three 

items would use edge X. Using CP2, three items (A, D, and 

E) would use edge II, four items (B, c, F, and G) would use 

edge Y, and H would use edge X. Finally, using CP4, all 

eight items would use edge Y. 

In general, using CP4 for translations in which the 

source cells and the target cells do not overlap, all of the 

items which use the same level to move horizontally must use 

at least one edge in common (because the path followed by 

any item must have at least two horizontal edges on this 

level). Since no more than two levels are used, at least 

n/2 items must use each level. Therefore, the time required 

for translation with CP4 is at least n/2 plus the O(log(n)) 

steps required for the items to rise to the correct level 

and then descend. 

With CP1 and CP2, there may be a choice between two 

edges on one level (as with edges W and X in the example of 

Figure 5.5). Therefo.re, all of the items must pass through 

one of three horizontal edges ('II, X, or Y in the example) so 

CP1 and CP2 require at least n/3 + O(log(n)) steps for 

translation. 



105 

If the target cells and source cells do overlap, then 

the time required for translation depends on the distance by 

which the items are being moved. As an extreme case, if 

each item is to be shifted by one position, then any of the 

CP algorithms will use only one step for data movement. At 

the other extreme, if each of the n items is to be shifted 

by n-1 positions, then, as shown above, data movement takes 

e(n) steps. In between, the number of steps required 

appears to be linear in the shift distance. If the shift 

amount is m, as in Figure 5.6 where m=4, then the m items on 

the end must be translated by m positions, requiring O(m) 

time. Therefore, S{m) is a lower bound on the time 

required. l'ly conjecture is that S(m) is an upper bound 

also. 

If there are gaps between source or target items, then 

the preceding analysis does not hold since all of the items 

no longer move the same distance. In this case, the time 

for translation depends on how the occupied cells are 

distributed among the empty cells. 

The pattern of perfect shuffle, or 2-by-n transpose, is 

shown in Figure 5.7. In this pattern, the items are divided 

into two groups. Those in the left group shift to the 

right, each item shifting a different distance, so that when 



106 

data movement is completed, the items occupy every other 

cell (Figure 5.7a). Similarly, the items in the group on 

the right shift to the left (Figure 5. 7b). The effect is to 

interleave the two groups as if each were half of a deck of 

cards being perfectly shuffled. Suppose n, the number of 

items to be shuffled, is a power of two and suppose these 

items occupy adjacent cells which are all descendants of a 

single cell at level log(n). Then let us examine the time 

reguired for CP1 to complete the shuffle. First, consider 

the right-moving items (Figure 5.8). In this figure, all of 

the items in region X must move to region z. Using CP1, all 

of these items (and there will be n/8 of them) will cross 

edge A-B. Similarly, all n/8 items in region II will cross 

edge C-D to reach region Y. The paths for items in these 

two regions do not inter.fere with each other. Paths for 

items in regions W and X do cross at cell C, but we assume 

that paths from different regions use different registers of 

c. Therefore, the time required to move all of the items 

from regions II and X is 

n/8 • 2• (log (n) -1) 

The 2* (log (n) -1 term is the number of vertical steps used by 

items in region x. The other right-moving items (those in 

region T) can be moved in fewer steps since these items do 

not move as far and their paths do not interfere with the 

path for items in regions W and X. Therefore, the right­

moving items can be moved in 



1 07 

n/8 + 2* (log (n) -1) 

steps. By symmetry, the left-moving items require the same 

amount of time. However, left and right movement can take 

place simultaneously even though there is some overlap of 

paths. Consider, for example, Figure 5. 9. This shows the 

path of eight of the items in a shuffle of n=32 items. 

Notice that one vertical edge carries both left-moving items 

(G and H) and right-moving items (C and D) so the paths 

overlap. However, no vertical edge except perhaps w, X, Y, 

or Z can possibly carry more than n/8=11 items because for 

any edge other than w, X, Y, or z, only n/8 or fewer cells 

of L can be reached vertically via that edge. But edges W 

and Z carry only n/8=11 items while X and Y carry none. 

Therefore, no edge -- horizontal or vertical -- carries more 

than n/8 items. So the longest "waiting line" for any edge 

is of length n/8 and the total time for data movement is 

n/8 + 2*(log(n)-1) 

Similar analysis yields 

t = P/16) *n + 2* (log (n) -2) + 1 

for CP2 and 

t = (7 /32)*n + 2* (log (n) -3) • 3 

for CPII. Notice that the coefficient on n increases when 

the individual items travel along shortest paths. This is 

because with CP4, the paths have more horizontal edges than 

with CP1 and it is more likely that two paths will have at 

least one horizontal edge in common. In particular, there 



108 

is one edge which must carry (7/32)*n different items. 

The VEBTICAL algorithm requires the same amount of time 

to move n data items, regardless of the movement pattern. 

By contrast, the performance of the CP algorithms varies 

greatly with the movement pattern. However, for most of the 

interesting patterns, the CP algorithms require time 

proportional to n, as does the VERTICAL algorithm. In some 

cases, the CP algorithms have a linear coefficient which is 

less than one, which indicates a linear improvement over the 

VERTICAL algorithm. However, there is no order of magnitude 

improvement. That is, the time required is still e(n). In 

the next chapter, ve vill study whether it is possible to 

use a different algorithm to obtain a n order-of-magnitude 

time improvement for these and other patterns. 



109 

lO ll IS\ IS 

q 10 II 1a 

Fi gure 5.1 



110 

X y 

Figure 5.2 



111 

h/~ c.~l\s r./4 cell-s 

f -A. I 

A 'B c D 

0 0 I 0 0 
) 

C: 11'1 1 -+ 
2 

d = n-1 

Figure 5.3 



112 

••• (;1:> 

r--
..1) 

In 

<r 
('i') 

C"tl 

... ~ 

"' VI Vl 
Ill i <.) 

~ 
::l 
0 Q:' 

V1 1-

~ 

Figure 5.4 



113 

lj' 
IJ' II\ 

g) r 
U! 

c.) \!) 
0! ~ 

Figure 5.5 ;) a: 0 
Ill t-



SouRcliS i ~ 

TAR~S ~ 

4 s E:> 

1 ~ 
l ... 

1'1'\ 

Figure 5.6 

114 

4 S" b 7 '6 
) 



115 

(GI) 

BeFo~li 

~j~(5;J~~J0[~J0 1. 

(b) 

Figure 5.7 



'-------J l..__,,..­• 
T w 

116 

L., A \..._.._ __ , __ _.) \....._ __ ..,.. .. __ _.J 

y 

Figure 5.8 



1-t;. 

Figure 5.9 

0 

1.!> 

IJ 

117 



118 

6. BOUNDS ON THE PERFORMANCE OF DATA MOVEMENT ALGORITHMS 

The algorithms of Chapter 4 represent a significant 

improvement over the VERTICAL algorithm. However, they do 

not improve the order-of-magnitude behavior. That is, they 

still require S(n) time. In this chapter, we ask whether it 

is possible to obtain a better order-of-magnitude 

performance than that of the VERTICAL algorithm. That is, 

ve ask if data movement can be accomplished in less than 

linear time for any of the patterns investigated in Chapter 

5. We will no longer require data items to follow shortest 

paths or almost shortest paths. We are interested only in 

the total time required for data movement. 

Re will approach this question by first concentrating 

on one problem, namely that of reversing the contents of a 

group of cells. To simplify the discussion that follows, we 

vill assume in all formal propositions that the data items 

of interest occupy the leaves of a complete binary tree. In 

some cases, we vill then indicate how the proofs must be 

modified to handle the more general case. 



119 

Suppose n=2**k and we wish to reverse the contents of n 

adjacent cells of L, all leaves of a complete binary tree of 

height k, as in Figure 6.1. The n/2 items on the left must 

move to the right side of the tree and the n/2 items an the 

right must move to the left side of the tree. If only paths 

below the root are used, then there are only log(n) 

horizontal connections by which items can get from one side 

of the tree to the other. This can be seen by drawing a 

vertical line which divides the n cells and all of their 

ancestors in half, as in Figure 6.1. This vertica~ line 

will cut log(n) horizontal connections. The idea of the 

algorithm to be presented below is to assign approximately 

n/(2*log(n)) items to each of the log(n) horizontal cross­

connections and then mark out paths by which an item can get 

to its assigned horizontal connection. The paths will be 

such that if two items are assigned to a different 

horizontal cross-connection, then the paths for those two 

items will be disjoint. 

Consider Figure 6.2, which shows the reversal of 32 

items. Since log(32)=5, the 16 items in each half have been 

divided into five regions (groups of horizontally adjacent 

cells) labeled 1-5. Since the two regions labeled 5 are 

adjacent, they may be treated as one .region. The ~abels are 

such that if an item (call it X) is in the kth region from 



120 

the left, then the item which is to be interchanged with X 

is in the kth region from the righto Each pair of items to 

be interchanged is labeled with the same integer. Some of 

the channels connecting cells.of T have also been given 

l11.bels between 1 and So These labels have been assigned so 

as to connect each region from the left side of the tree 

with the corresponding region on the right side. That is, a 

data item can reach its destination using only channels 

which are labeled with that item's region number. For all 

of the data items in one region to reach their destinations, 

they must queue up at the channel which crosses to the other 

side of the tree (bold lines in Figure 6.2.) Then these 

items must cross the channel one at a time and disperse to 

their destinations in the other half of the tree. This will 

involve a delay of no more than three steps since there are 

no more than four items in a region and there is no 

interference between items in different regions. (There are 

two cells in Figure 6.2 which must handle data items 

originating in different regions, namely regions 3 and 4. 

However, if we examine the internal structure of a node, as 

in Figure 1.6, we see that an item entering from tbe left 

and leaving from the top will not use the same internal 

registers and connections as an item entering from below and 

leaving from the right. Therefore, it is possible for two 

items to pass through the same cell simultaneously without 

interference.) 



121 

An upper bound for the number of time steps required 

for data movement can be found by adding the number of steps 

in the longest path to the maximum number of cycles which an 

item may have to wait to cross the central horizontal 

channel. Since each region contains no more than four 

items, no item will have to wait more than three cycles. 

The longest path (between cells A and B, or between c and D, 

for example) is nine steps long. Since all channels are 

two-directional, movement can take place in both directions 

simultaneously. Therefore, reversing the 32 items will take 

no more than twelve steps. 

lie will now show that it is always possible to 

partition nodes and edges of a binary tree in a manner 

similar to that shown in Figure 6.2. Further, we will show 

that the total data movement time is e(n/(log(n)). 

First, we will specify a way of dividing the n leaf 

cells into regions of approximately equal size, except for 

the middle region, which will be about twice as large as the 

other regions. We will let k=log{n) and divide the n cells 

into 2*k-1 regions. To get equal sized regions, we would 

need n/(2*k) cells per region, except for the middle region 

which would have n/k cells. However, since n/(2*k) may not 

be an integer, each region except the middle region must 

contain FLOOR(n/(2*k)) or CEIL(n/(2*k)) cells. In choosing 

between FLOOR (n/ (2*.k)) and CEIL (n/ (2*k)) , we must be sure 



122 

that the jth region from the left has the same number of 

cells as the jth region from the right. For j<k (that is, 

for regions other than the middle region), we will use the 

notation S(n,j) to represent the number of cells in the jth 

region from .the end. 

Before giving a formal definition for S(n,j), we will 

describe a physical procedure for computing it. Draw a line 

of length n and divide it into 2*k equal sub-intervals with 

dotted lines. Using solid lines, divide the same line into 

n equal sub-intervals. (See Figure 6. 3 with n=32 and k=S.) 

Then, for each dotted line except the middle line, find the 

closest solid line and use this solid line as a marker 

between regions. In Figure 6.3, the markers are represented 

by arrows. S(n,j) will be the number of solid-lined sub­

intervals between the jth and the (j+1)th marker. By 

symmetry, j can be counted from either end. Formally, if 

lt=log (n) , set 

S{n,1) = f'L008(n/(2*k)+1/2) 

S(n,j) = FLOOR(j*n/(2*k)+1/2)- FLOOR((j-1)*n/(2*k)+1j2) 

for 1<j<lt. 

We can nov show that it is possible to partition a tree of 

arbitrary size as in Figure 6.2. 

g•2E2~AgD 1· Consider a complete binary tree with n=2**k 

leaf cells and suppose the n leaf cells are divided into 

2*k-1 regions so that for j<k, the jth regions from the left 



123 

and right contain S(n,j) cells and .the middle region 

contains the remainder of the cells. Suppose also that each 

cell in region j is labeled j and each edge which connects 

cells in region j is labeled j. Then the remainder of the 

cells and edges in the tree can be labeled with integers 1 

thru k so that there is a path between any of the original n 

cells and any cell in the symmetrically opposite region such 

that 

1. this path includes only cells and edges labeled with 

the same integer as the source and target regions 

(except for the tvo cells in region II, level 4 from the 

top, which must be used by paths with edges labeled 3, 

as in Figure 6.2); 

2. the number of horizontal steps in the path is no more 

than {2*n) jk. 

~221: The proof uses induction on k. For k$5, Figure 6.2 

shows how to label the edges. For k>S, suppose we have n 

cells and 2*k-1 regions. We must show how to label the 

edges of the tree into k sets which satisfy the statement of 

the proposition. The set of edges associated with the 

innermost region is simply the set of all horizontal 

connections in the region. By hypothesis, these edges are 

labeled with the number of the middle region. Thus, any 

item in the middle region can reach any cell in the middle 

region by moving along the bottom level. Since the middle 

region contains no more than 2*CBIL(n/{2*k)) cells, there 



will be no n:ore than FLOOR (n/ltl + 1 horizontal steps on the 

path for such an item. 

124 

To label the edges corresponding to the other k-1 pairs 

of regions, consider the m immediate ancestors of the 

original n cells. Since n is even, m=n/2 by Theorem 1 of 

Chapter 2. If we let h=log(m), then h=k-1. If we divide 

the m cells into 2*h symmetric regions each of size 

FLOOR(m/(2*h)) or CEIL(m/(2*h)), then the induction 

hypothesis holds and we can conclude that the upper portion 

of the tree (which contains the m cells and their ancestors 

but not the original n cells) can be labeled with the 

integers 1 through h. 

Figure 6.4 shows the situation for k=4. Notice in the 

figure that each region on the upper level overlaps the 

corresponding region in the lower level. That is, the jth 

region from the left (or right) in the upper level alllays 

contains the father of some cell in the jth region from the 

left (or right) in the lower level. This means that, in 

this figure, there is always a path connecting cells in 

opposite regions and this path uses edges only from the set 

associated with those regions. 

For each vertical edge which connects two regions with 

the same label (region number), we can label that vertical 

edge with the number of the regions it connects. This gives 

the required partition. Therefore, any item in region j of 



125 

the bottom level can move horizontal'ly in its region towards 

the middle of the tree until it reaches a vertical edge 

labeled j. At this point, it can move to the upper level 

and follow a path to the other side of the tree. Such a 

path is known to exist by induction. Finally, the item can 

move to the bottom level and reach its destination by moving 

horizontally within region j of the other side of the tree. 

Therefore, if we can show that corresponding regions on 

different levels overlap for k~5, we will always be able to 

label the edges as required. 

Consider Figure 6.5, in which cells A and Bare the end 

cells of the jth region from the left on one level and cells 

C and D are the end cells of the jth region from the left on 

the next upper level. If we assign each cell an integer 

index 1,2, ••• starting at the left, then we can compute q, 

the index of B, from the definition of S(n,j). Referring 

again to Figure 6.3, the value of q is the distance between 

the first arrow marker and the (j+1)th arrow marker. The 

(j+1)th arrow marker is located at the solid line closest to 

the (j+1)th dotted line, which is j*k/{2*n) units from the 

left end. Therefore, 

q = FLOOR(j*(n/(2*k))+1/2). 

That is, 

j*{n/(2*k))-1/2 < q ~ j*(n/(2*k))+1;2. 

Similarly, the index of cell c, which is one cell past the 



last cell of the (j-1)th region of the upper level, is 

1+FLOOR(((j-1)*n/2)/(2*(k-1))+1/2) 

126 

and the index of cell D, the last cell of the jth region of 

the upper level, is 

FLOOR (j* (n/2) I (2* (lt-1)) + 1/2). 

Now E, the father of B, has index q/2 or (q+1)/2, depending 

on whether B is the right or left son. Therefore, the index 

of E is bet~een (j*n/(2*k)-1/2)/2 and (j*n/(2*k)+3/2)/2. To 

verify that E is between C and o, we need only verify that 

1+(j-1)*(n/2)/{2*(k-1)) •112 ~ (j*n/(2*k)-1/2)/2 

and 

(j*n/(2*k)+3/2)/2 ~ j*(n/2)/(2*(k-1))-1;2. 

The first of these inequalities is equivalent to 

j s k- 7*k*(k-1)/n 

while the second is equivalent to 

S*.k* (k-1) ;n :5 j. 

Since 1:5j~k-1 and k=log(n), both of these inequalities hold 

for k~10 (or n~1024). Since the inequalities hold only for 

.lt:C:10, we must use another technique to establish the 

assertion that corresponding regions on consecutive levels 

overlap for 6~k~10. To see that this is true, consider the 

following table which shows the indices of the cells in each 

region of one half of the tree for k=5,6,7,8,9 and 10. 

These cell indices are computed according to the definition 

of s (n,j). 



127 

region # I k=5 k=6 k=7 k=8 k=9 k=lO 
-+-------

I 
1 I 1-3 1-5 1-9 1-16 1-28 1-51 
2 I 4-6 6-11 10-18 17-32 29-56 52-102 
3 I 7-10 12-16 19-27 33-48 57-85 103-154 
4 I 11-13 17-21 28-36 49-64 86-114 155-205 
5 I 14-16 22-27 37-46 65-80 115-142 206-256 
6 I 28-32 1n-55 81-96 142-171 257-307 
7 I 56-61.1 97-112 172-199 308-358 
8 I 113-128 200-228 359-1.110 
9 I 229-256 411-461 

10 I 462-512 

For example, when k=5, the first region consists of cells 1, 

2, and 3, the second region consists of cells 4, 5, and 6, 

and so on. Now consider some arbitrary region. For 

example, choose region 5 when k=9. This region includes 

cells 115-142 (counting from the left), so the rightmost 

cell in the region has index 1q2. Therefore, the father of 

the rightmost cell has index 71. Now for k=B, region 5 

consists of cells 65-80 which include cell 71. Therefore, 

region 5 for k=8 overlaps region 5 for k=9. We can perform 

a similar process for each table entry and verify that all 

corresponding regions on consecutive levels overlap for 

6SkS10. Therefore, the regions overlap for all k. 

Given this construction, we can compute the number of 

horizontal steps in the path. Since we are computing only 

bounds, we will not require all quantities to be integers. 

For example, one region may contain FLOOB(n/(2*k)) or 

CEIL(n/(2*k)) cells. Therefore, the horizontal distance 

between the end cells of this region is either 



128 

FLOOR{n/(2*k))-1 or FLOOR(n/(2*k)). In either case, the 

horizontal distance is no greater than the quotient n/(2*k). 

Any path between cells of L using edges labeled vith 

the same integer will have the ziggurat shape of Figure 6.6. 

Each horizontal line represents a path over one of the 2*k-1 

regions each of which contains n/(2*k) items (except the 

middle region). For the outermost lines, this path has no 

more than n;(2*k) edges. The path on the second level has 

no more than (1/2)*(n/(2*k)) edges since any group of n 

cells has n;2 immediate ancestors in the tree. The path on 

the third level has (1/2)*(1/2)*(n/(2*k)) edges, and so on. 

Therefore, for region j, the number of horizontal steps in 

any path is no more than 2*(n/(2*k)) * (1 + 1/2 + 1/4 + 1/8 

+ ••• + 1/ (2**j) l· Since (1 + 1/2 + 1/4 + 1/8 + ••• ) = 2, 

we find that the number of horizontal steps is less than 

(2*n) ;k. 

Q.E.D. 

£2£oll~rz. There is a labeling according to Proposition 1 

which is syrrmetrical for the line dividing the tree into two 

equal subtrees. 

!lith this partitioning scheme, we can now discuss how 

this algorithm could be implemented on the machine described 

in [ 1 ). .In the preparation phase, all the cells and edges 

are labeled as in Proposition 1. To do this, the cells of 

each horizontal level must decide which region they are in. 



129 

Each cell can compute this easily using its index (distance 

from the boundary of the area to be reversed) and the 

definition of S(n,j). Then the edges connecting cells with 

the same label are given that label. As a special case, the 

label 3 must be assigned to four edges which are connected 

to two cells labeled 4, as in Figure 6.2. 

ilhen data movement begins, each data item originating 

in region j moves upwards and toward the middle of the tree, 

always using edges and cells labeled j. Conflicts among 

items using edges with the same label can be resolved at 

random. Eventually, all the elements originating in one 

region will be waiting to cross the middle channel 

corresponding to that region. The items cross the channel 

one by one. Upon reaching the other side, these items are 

broadcast throughout the corresponding region on the other 

side of the tree. The target cells pick out the items they 

are waiting for and discard the rest. Figure 6.7 shows the 

path of item c moving through the tree partitioned as in 

Figure 6.2. 

ile now compute a bound on the time required for data 

movement using the above technique. The first data item to 

reach its middle horizontal channel will do so in no more 

than (k-1)+n/k steps since the path it follows will have no 

more than k-1 vertical steps and n/k horizontal steps. This 

item will be followed by no more than CEIL(n/(2•k))-1 items 



l30 

which orig,inated in the same region. These items must cross 

the middle channel one at a time. Finally, the last item 

will reach its destination after crossing the horizontal 

channel in no more than (k-1)+n/k steps. Therefore, the 

total number of time units is bounded by (5/2) •n;k + 2*k-2, 

which is 6(n;log(n)). 

The construction of Proposition 1 does not necessarily 

give the best partition of the tree and the analysis gives 

only a bound on the number of steps required, so it may .be 

possible to improve on the coefficient 5/2. However, since 

n/2 items must somehow be squeezed through the log(n) 

central horizontal channels, at least (n/2)/log(n) steps are 

required for reversal. Therefore, no partition will give 

better than S(n/log(n)) asymptotic behavior. 

As noted previously, Proposition 1 assumes that n, the 

number of items to be reversed, is a power of two and that 

the n items are the leaves of a complete binary tree. If we 

relax these restrictions and let k=FLOOR (log (n)), then the 

result of Proposition 1 is still true. To prove this 

.requires the examination of a number of dif.ferent cases. If 

n is odd, then m, the number of cells on the next level, is 

(n+1)/2. If n is even, then the number of cells on the next 

level is either n/2 or n/2+1. For each of these cases, one 

must establish the fact that regions of the same number 

overlap as in Figure 6.4. This can be done with the same 



technique as that used in the proof of Proposition 1. We 

will omit further details. 

131 

The preceding algorithm is practical in the sense that 

it can be irrplemented on a machine of the kind described in 

[ 1]. However, it is unrealistic in that it requires the 

data items being reversed to occupy adjacent cells. If we 

relax this restriction, we cannot always apply the algorithm 

directly. consider Figure 6.8, which shows 16 data items 

occupying a 32-cell area. If these 32 cells are divided 

into the regions as in Figure 6.2, then region 2 will 

include three data items on the left and two items on the 

right. Therefore, two of the items on the left will have to 

use edges labeled with a different region number to reach 

their destinations. This would invalidate the analysis of 

the previous section. 

Therefore, we will generalize Proposition 1 by dividing 

the n cells of L into regions such that each region contains 

the same number of ~~~~ cells. Specifically, each 

region except the middle region will include FLOOR(n/(2*k)) 

or CEIL(n/(2*k)) occupied cells, where k=FLOOR(log(n)). The 

total number of cells in a region will depend on how many 

empty cells surround the occupied cells. Therefore, the 

number of regions will depend on the percentage of occupied 



132 

cells in the active area of L which contains the symbols to 

be reversed. 

~12RQSiti2D ~- Let n=2**k and consider a complete binary 

tree of n leaf cells. suppose the n cells are divided into 

an odd number of regions so that, with the possible 

exception of the middle region, the jth regions from the 

.left and right contain at least s (n, j) cells. (Each region 

of the bottom level will contain S(n,j) occupied cells plus 

all of the empty cells in between.) Suppose also that each 

cell in region j is labeled j and each edge which connects 

cells in region j is labeled j. Then if the number of 

regions is 2*h-1, then the cells and edges of the tree can 

be labe led with the integers 1 thru h so that there is a 

path connecting any two cells in symmetrically opposite 

regions such t hat: 

1. the path includes only cells and edges labeled with 

the same i nteger as the source and target regions (with 

the possible exception of the two cells in region 4, 

level 4, which may be used by paths vith edges labeled 

3) ; 

2. the number of horizont al steps in the path is no more 

than ( 2*n) jk. 

~221: (The proof is analogous to that of Proposition 1.) 

The proof is by induction on k. Por kSS, we can exhibit the 

partition explicitly. Suppose ve have n cells and 2*h-1 



• 

133 

regions, hSk, numbered 1,2, ••• ,h-1,h,h-1,1, ••• ,2,1. Then, 

as in the proof of Proposition 1, we vill diYide the m 

fathers of the original n cells into regions, and shov that 

corresponding regions on tvo consecutiYe levels of the tree 

can be connected. That is, the ith region from the left of 

the upper level contains the father of a cell in the ith 

region from the left on the lower level. 

For each side of the tree, ve compute the first h-1 

regions of the upper level (with m cells) one at a time, 

starting vith the outermost region. To define one region 

(say region i from the left) start at the cell immediately 

adjacent to the pre•ious region and include all cells up to 

and including the father of the rightmost cell of region i 

in the lover level. Then add to these as many cells as 

needed to give a total of at least S(m,i) cells in this 

region. The remaining cells of the upper level, if any, 

will belong to the middle region, region h. (See Figure 

6.9.) Note that there vill be cells in region h of the 

upper levels only if h<k, vhich implies hSk-1=log(m) so the 

induction hypothesis still holds. If the tvo regions 

labeled h-1 overlap (as in Figure 6.10), then they should be 

merged to give a nev middle region. 

Before continuing vith the proof of Proposition 2, let 

us examine an example of this construction. Figure 6.11 

shovs hov the partition vould be constructed for a tree of 



134 

size 64 which has 40 occupied cells and 24 empty cells in L. 

For the first level (L), n=64, k=6, q=FlOOR(n/(2*k))=S and 

r=4. To mark out the regions, we first count off the first 

6 occupied cells (since 5(64,1)=6). This defines the left 

and right regions labeled 1. We then do the same for left 

and right regions 2 and 3. At this point, there are only 4 

occupied cells left so they are all assigned to region 4, 

the middle region. On level 2, we have n=32, k=S, q=3 and 

r=2. The left region 1 consists of the first 6 cells, all 

of which a.re fathers of region 1 cells from the first level. 

5irililarly, the right region 1 consists of the first 5 cells. 

Now, for region 2 on the left, only the next 3 cells are 

fathers of region 2 cells in the first level. But 

5(32,2)=4. Therefore, region 2 on the left must include the 

next 4 cells. The rest of the regions are defined 

similarly. on level 3, we have n=16, k=4, q=2, and r=O; on 

level 4, n=8, k=3, q=1, and r=2: on level 5, n=4, k=2, q=1 

and r=O. Finally, on level 6, n=2, k=1, q=1, and r=O. This 

construction labels each cell with an integer between 1 and 

4. To label the edges, we merely apply the following rule: 

if the connected cells have label i, then the edge 

connecting them should be given label i. Figure 6.12 shows 

the edges which would be labeled '2' in the example of 

Figure 6. 11. 

lie now resume the proof of Proposition 2. By the same 

argument as in the proof of Proposition 1, we can show that 



135 

the ith region on the upper level always contains the father 

of some cell in region i of the lower level for k~S. 

Furthermore, the method of constructing the regions in the 

upper level guarantees that only the middle region can 

contain fewer than F.LOOR (m/ (k-1)} cells. Since 

FLOOR(m/(k-1) )SS(m,j), the induction hypothesis holds and 

edges and cells of the upper portion of the tree can be 

labeled. Labeling the edges which connect corresponding 

upper and lower regions on the same side of the tree 

completes the construction. The path of any item will be a 

ziggurat shape as in the proof of Proposition 1 {Figure 

6.6). The longest horizontal path for one level is shown in 

Figure 6.13. Here an item on the left end of region j must 

travel horizontally under region j-1 of the upper level. 

Then it can move vertically to the next level. We need to 

calculate the length of this path and the other horizontal 

paths. But if region j-1 of the lower level contains enough 

cells, then region j-1 of the upper level may not have to 

overlap the lover region j. (Recall, for example, the lower 

left regions (j=2) of Figure 6.11.) In this case, there 

would be no horizontal steps in going from the lover level 

to the upper level. Therefore, the longest horizontal path 

will be needed when region j-1 (and regions j-2,j-3, ••• ,1) 

of the lover level are as small as possible. That is, the 

number of horizontal steps will be greatest if each region j 

has only S (n, j) cells. But this is exactly the case which 



136 

was analyzed in Proposition 1. Therefore, the result is the 

same. Namely, there are no more than (2*n)/k horizontal 

steps. 

Q.E.D. 

With Proposition 2, we can develop an algorithm for 

reversal which does not assume that the items to be reversed 

occupy adjacent cells. The algorithm follows: 

1. Let the items to be reversed occupy some of the leaf 

cells of a complete binary tree of size nand let k=log(~. 

2. Count off the leftmost S(n,1) occupied cells and the 

rightmost S(n,1) occupied cells and assign them and all 

intervening empty cells a region number of 1. {This will 

create two regions, one on the left and one on the right.) 

3. Por j=2,3, ••• ,k-1 but only as long as there are 2*S(n,j) 

occupied cells which haven't been labeled, count off the 

next S(n,j) occupied cells from the left and the next S(n,j) 

occupied cells from the right and assign them and all of the 

empty cells between them the region number j. 

4. Place the "leftover" cells in one region in the middle. 

5. Using these regions, partition the tree as described in 

Proposition 2. 

Once the edges have been labeled, data movement may 

begin. Each item rises as high as it can, remaining on 

edges assigned to its region. (By rising as high as 

possible, the item can follow the shortest path among those 



137 

paths which use edges of the same label.) The item then 

crosses the "middle line" and is broadcast to all the cells 

in its region on the other side of the tree. 

As before, the total number of steps required for 

reversal is bounded by 

2*njlog (n) 
+ 2*log(n) 
+ n/ ( 2*log (n) ) 

horizontal steps 
vertical steps 
steps used crossing the middle 
horizontal channel. 

Again, the number of steps is e(n/log(n)). Recall that n is 

the total number of cells of L in the active area, rather 

than the number of items moving. 

The preceding algorithm based on Proposition 2 is not 

the only way to generalize the algorithm of Proposition 1 •. 

Here we examine some of the other possibilities. 

If there are p data items in an n-cell area (leaving n-

p empty cells), then the algorithm just presented will 

divide each side of L into (p/2) 1 (n/ ( 2*log (n))) = (p/n) + log(n) 

regions since each regio.n contains n/ (2*log (n)) occupied 

cells. Therefore, only (p/n)*log(n) of the edges which 

connect one side of the tree to the other will be used. We 

might try to use all log(n) such edges, dividing each half 

of the occupied cells into log(n) regions of size 



(p/2)/~og(n), and connecting corresponding regions~ This 

can work well if the non-empty ce~ls are scattered 

reasonably vell in then-cell area. (See Figure 6.14.) 

138 

However, if the items to be moved are all located on 

the edges of the area as in Figure 6. 15, then some of the 

paths can get very long. In fact, the path connecting cells 

in the innermost region can take almost n steps if p<<n. 

Therefore, while the number of items in each group is 

smaller, (namely, p/(2*log(n))), the path length could 

increase alwost to n. That is, the time for data movement 

could be linear in the size of the area. 

Another alternative is to make the number of regions 

depend only on p, the number of occupied cells. We might 

expect to find an 8{pjlog(p)) algorithm since if n=p (that 

is, if there are no empty cells in the area) we have an 

e(n/log{n)) a~gorithm. This might be done by using log(p) 

regions in each half and log(p) of the "middle" edge 

connections. However, as in the last example, this can give 

very long paths if all the empty cells are .in the middle of 

the area. In fact, the length of the path could be close to 

p giving an 8(p) algorithm. The reason for the e(p) term is 

that if there are log(p) levels in use, then the bottom 

level has 2**log(p)=p cells, but half of these could be 

empty. Therefore, the middle region of the lowest level 

cou~d include p/2 empty cells. 



139 

To improve on this bound, we must use fewer than log{p) 

levels, selecting levels in a way which depends on the 

distribution of the occupied cells. For example, using only 

log(p)/r levels, with r>1, the longest path would have 

e (2** (log (p) /r)) = 9 (p** (1/r)) horizontal steps and 

9(log(n)) vertical steps and each region would have 

r*p/log(p) items, giving an S(p**P/r)) ~ S(p/log(p)) ~ 

S(log(n)) algorithm. This idea is workable but it is not a 

generalization of the algorithm of the previous section. 

That is, if p=n, it does not give S(njlog(n)) performance. 

The problem of reversal is a special case of a Ircore 

general problem which we will call pivoting. For pivoting, 

a position in L is chosen as the pivot point. Then all the 

data items to the left of the pivot point are moved to the 

right (in reverse order) and the items to the right of the 

pivot point are moved to the left. Figure 6.16 shows two 

such patterns. Notice that the pivot point may be outside 

the area which contains the data items to be moved. 

Reversal is a special case of pivoting with the pivot 

element chosen in the middle of the items to be moved. 

Pivoting can be handled using the same techniques as 

those used for reversal. The only difference is that some 

items will move to cells which were not previously occupied. 



1110 

This means that the regions will have to be determined using 

all of the cells involved in data movement (sources, and 

targets), not just the source cells. Specifically, we would 

mark all of the cells which are either sources or targets 

and apply the reversal algorithm of section 6.2 using 

"marked cells" in place of "occupied cells." 

The solution for other patterns can be constructed from 

a sequence of pivot operations. For example, suppose we 

want to translate the contents of a group of {not 

necessarily adjacent) cells to a different area of L, 

preserving the original order. We can do this in two steps 

as shown in Figure 6.17. First, reverse the contents of the 

cells (A ••• z in Figure 6.17). Then pivot the entire group 

to the target area. The number of steps required for this 

operation is e (n/log (n) where n is the number of cells of L 

in the area where movement is taking place. 

In general, any movement pattern which does not involve 

multiple copies can be decomposed into a sequence of pivot 

operations. (Here, "can be decomposed" means that there is 

a way for a global observer to decompose the pattern. It 

does not imply that there is a practical way for the machine 



1~1 

of [ 1] to find the proper pivots.) To see that this can be 

done, consider any movement pattern and suppose all the 

source and target cells occupy a region of size n. Divide 

this region in half, giving two smaller regions of size 

FLOOR (n/2) and CE.IL (n/2). Then take each half and mark a 11 

the cells which contain items whose targets are in the other 

half. suppose we find 1 items in the left half which must 

move to the right and r items in the right half which must 

moYe to the left. Without loss of generality, assume l>r. 

Then there rr.ust be at least 1-r empty spaces somewhere in 

the right half of the tree. Mark 1-r of these also and 

perform a pivot operation on all marked cells. use the 

middle of the area as the pivot point. (See Figure 6.18 

where 1=5 and r=2.) 

At this point, it is quite possible that none of the 

data items will have reached its final destination. 

However, all of the items are known to he in the correct 

half of L. So ve can apply the procedure described above to 

each half, as in Figure 6.19. This requires a pivot 

operation for each half. But these can be performed 

simultaneously since pivots take place in different areas of 

the tree. There will be no conflict at the boundary because 

the reversal (and therefore the pivot) algorithm presented 

previously does not use the outermost edges. That is, in 

Figure 6. 19, the F and the E will not try to use any of the 

same edges even though they may have any number of ancestors 



142 

in common. Clearly, the procedure just described can be 

repeated log(n) times, at which time all of the items will 

have reached their destinations. 

The tirre required for the first step is roughly 

C*n/log (n) for some c. The time for the second is 

C*(n/2)/log(n/2), since both pivots occur simultaneously. 

Therefore, the time required for any movement pattern is 

c * (n;log (n) + (n/2) /log (n/2) + • • • + 2/log ( 2)) 

As noted by Tolle[ 13 ], there is a bound on the sum of this 

series. 

~mms· Let n:2**k, where k=2**(m+1)-1. Then 

2**k/k • 2**(k-1)/k-1) + ••• + 2/log(2) 

S O(n*loglog(n)/log(n)) 

(To increase the readability of some of the formulas in this 

proof, we will use "loglog(n)" instead of "log(log(n)) "· 

figg!: Denote the sum by R(k). Reversing the order of the 

summands, 

R(k)=2/1 + 4/2 +8/3 + 16/4 + ••• + 2**(k-1)/k-1 + 2**k/k 

Replacing each denominator by the largest power of 2 which 

is not larger than the denominator, we obtain 

R (k) < (2/1) + (4/2 + 6/2) + (16/4 + 32/4 + 64/11 + 128/11) + 

••• + (2**(2**m)/2**m + ••• + 2**12**(m+1)-1)/2**m) 

since B/3 < 6;2, 32/5 < 32/4, and so on. Combining terms 

with like denominators, we get 

R{k) < 2/1 + (2•-22)/2' + (2•-2•)/22 + (216-28)/23 



143 

+ (232-246)/2• + ••• 

+ (2**2**(m+1)-2**2**rn)/2**m 

or 

R(k) < (22-21) + (23-21) + (26-22) + (213-25) + 228-212) + 

... + (2** (2** (m+ 1) -m) - 2** (2**m-m)) • 

Rewriting, we get B(k) < S(m)-U{m) where 

... 
U(m)=2'+21+22+2S+2l2+227+ ••• +2**(2**m-rn). 

Subtracting, we get S{m)-U{m)= 

(0-2')+(22-21)+(23-22)+ ••• +(2**!2**rn-m+1)-2**(2**m-rn))) 

+2** (2** (rn+1) ·m) 

... = -2'+21+22+25+212+227+ 

or S(m)-U(m)= 

+21+21+22+25+212+227+ 

+2**(2**m-m) + 2**(2**(m+1)-m) 

... +2** (2**m-m) 

+ 2** (2** (m+ 1) -m) -4. 

Since there are m+1 terms on the top line of this 

expression, we get 

R (k) < (m+1) * (2** (2**m-m)) + 2** (2** {m+ 1) -m) -4. 

Nov m+1 is approximately loglog(n), 2**m is approximately 

log(n), and 2**(2**m-m) is approximately n. Therefore, 

R(k) < O(loglog(n)*n/log(n)) 

Q.E.D. 

Therefore, any movement pattern which does not involve 



multiple copies can be accomplished in less than linear 

time. 

144 

As noted previously, the preceding argument is an 

"existence proof." It shows that the movement in question 

can be accorrplished in a certain time but it does not show 

that it is possible for the machine to figure out how to 

mowe the data in that time. 

6.7 a~mm~!I 2! ~~§!!!! 

1. There is a technique for reversing the contents of a 

group of n adjacent cells of Lin e(n/log(n)) steps. 

This technique could be implemented on a machine of the 

type described in [1]. 

2. The contents of any set of p cells in an active area of 

n cells (in L) can be reversed in 9(n/1og(n)) steps. 

3. Any movement pattern taking place in an active area of 

size n and which does not require multiple copies of 

data items can be completed in O(n*loglog(n)/log(n)) 

steps. 



145 

_y_ 

Figure 6.1 



146 

\t) 

Figure 6.2 



147 

~} 
c"6 

] .... 

Figure 6.3 



148 

'\?' 
M 

c 
0 

-t 
)J 

:f 
"'11 

s: 
~ 

s: 
""1S -~ 

«") 

.. "t 
s: 

., :s 
II> 

..J) 

~ 
:J 

('{ 

<S 

"' ~ 
"'"G 

g) 0 

.. 
u 

.. 
G"l -i 

VI 
t]-1-.. 

IS"> 

L] M 

{'J 

Figure 6.4 



-fct 
+ 

~\n 
""'4 .. 

" 
~\'"' 

-IN 

~t 
+ 

<'T" ,.... .)1 - ..... 
. !, ('"( ...... 

+ 
..... 

Figure 6.5 

149 

-·~ 
+ 

'""" s:: I~ . .., 

11 

~ 

·~ 

• '""'> 

~ 
0 

$> 
1.. 



150 

{ 

Figure 6,6 



151 

Figure 6. 7 



152 

Figure 6.8 



153 

« 
• ..£ 

"' « I 
I 

..1: 
s 

('( 

I 
..£ 

.... 
I .s 

I 

.s 

..£ 

"" .... I 
• ..£ 

..s; 

.... 
• -' 

"' I 
...c 

" ('( 
I 

'"' I ..t: 4 
.s 

Figure 6.9 Figure 6.10 



154 

w.:- =: 
'<1 : 

==8 

r--v-·" ----- (~ 

1/ 1\ 
'"' I' .J 

~. ~ ~ 

K -------- =I 
[\ 

"'' "' 
+ ' '} I---

I 

--

"'"' 
(ll .... '!'"< '<t 

!~ 

K v v ~ 
1"\ 1"1 

I/ ----(( 

1\ !} ~ \"( 
::!: 

~ 
-; 
::!: 

<l( ---- ~ 
~ ~ 

1"--
~ . 

.-1 

~ 
.-1 

f'-, 

M 

Figure 6.11 



155 

Figure 6.12 



156 

j-1 J 

j-1 
• 

J 

Figure 6.13 



157 

-

-

-- {1 
--~ 

~==8~--J ---- ~ --
-----

Figure 6.14 Figure 6.15 



'Pill&t l'os',tio"' 
Figure 6.16 

158 



159 

I A ~I 

I~ 

Figure 6.17 



160 

"BEFORE: 

Sov~cll A 8 C IJ H E F G-

F H A 'DEC 

F H G- 'B A b E C 

Figure 6.18 



161 

G H F E 0 C 13 A 

F H G- S A DEC 

F H C. 13 At)EC 

Figure 6.19 



162 

7. SUMMARY AND CONCLUSIONS 

7.1 ~.!!l!!.!!!Yl 

In this dissertation, we have considered the problem of 

data movement in a network of cells arranged to form a 

complete binary tree with connections between horizontally 

adjacent cells. Specifically, we have studied bow the 

horizontal connections might be used in routing data among 

the leaf cells. This problem arises in the design of a 

machine to implement reduction languages, as described in 

( 1 ]. 

The first set of algorithms developed (SS1-SS4, Chapter 

3) show how to broadcast copies of a single data item from 

one of the leaf cells to the rest of the leaf cells. Using 

the theorems of Chapter 2, these algorithms are shown to use 

a shortest path or a path which is no more than two steps 

longer than a shortest path to route an item from one cell 

in L to another. When these algorithms are extended to 

handle several items simultaneously (Algorithms MS1-MSQ), 

many unnecessary copies of the items are created. 



163 

Chapter 4 presents techniques which reduce the number 

of unnecessary copies being generated. This involves 

storing information in the cells of T so that when a copy of 

a data item arrives at a particular cell, the item may use 

the stored information to decide where it should be routed. 

In some cases (as discussed in Section 4.5), these 

techniques guarantee that no extra copies of data items are 

generated. In such cases, we say that the cells contain 

Complete Path Information. Algorithms which are based on 

the movement patterns of SS1-SS4 and which use complete path 

information are referred to as CP1-CP4. 

The CP algorithms are analyzed briefly in Chapter 5. 

The major result is that the CP algorithms require S(n) 

steps to complete many interesting movement patterns 

involving n data items. The data movement algorithm 

presented in [1], which does not use the horizontal 

conncetions, also requires e(n) steps for all movement 

patterns involving n data items. Therefore, the algorithms 

of Chapter 4 represent only a linear improvement over the 

algorithm which does not use horizontal connections. 

In Chapter 6, we establish the fact that some patterns 

can be completed in e(n/log(n)) steps. The applicability of 

this result is limited since, except for the problem of 

reversing the contents of n adjacent cells, we are not able 

to show hov to compute the information which must be stored 



164 

in the cells of T to guide data movement. 

Since the machine of (1] is still in the paper design 

stage, and since reduction languages and their derivatives 

are not in use for programming, this research has 

necessarily had a theoretical orientation. 

If reduction language (or functional) programming 

becomes more widespread, it w.ill be possible to ask such 

questions as what data movement problems appear most often 

in reduction language programs. These patterns should then 

be analyzed more precisely than those of Chapter 5, where 

only order-of-magnitude bounds were established. 

Also, it may be possible to design specific algorithms 

for these common problems, as vas done for the problem of 

reversal in Chapter 6. Incorporating such special-purpose 

algorithms into the machine of [ 1 ] may be difficult. 

However, the potential benefits are great since a large 

portion of the execution time for reduction language 

programs is spent in data movement. 



[ 1] G. Mag6, "A Network of Microprocessors to Execute 
Reduction Languages", to be published in the 
!D!~IDa!!ona! ~.QYID!.l 2! £2mRY~~I !D~ !Di2Im!!~2D 
~£1~!.!£~.!!· 

165 

[2] J.W. Backus, "Programming Language Semantics and Closed 
Applicative Languages", in f2Dl!!t~!l£!i! !!!!S:2I.i! 2.t !f.!! 
Sjm.J2.Q.!il.!!Jll 2D !!UnSl!JJl.!! 2! ~1:2!lU!m~Sl l:s!!SlY!Sl~.!!• 
Boston, Mass., 1973, pp. 71-86. 

[3] Mark Pozefsky, "Programming in Reduction Languages", 
Ph.D. Dissertation, Department of Computer Science, 
University of North Carolina, Chapel Hill, N.C. 1977. 

( 4] Alexis Koster, "E.xecution Time and Storage Requirements 
of Reduction Language Programs on a Reduction Machine", 
Ph.D. Dissertation, Department of Computer Science, 
University of North Carolina, Chapel Hill, N.c. 1977. 

[5] s.s. Patil and J.B. Dennis, "The Description and 
Realization of Digital Systems", !!!!! !t!!!Si!~.!l!! 
.i!!!Y~2ms~!!• S!lD!2tmJ1lSlY!! !1 ~ !!~b~IS:h!! 
Q~!a!i.Qne!JJl, February, 1973, pp. 56-69. 

(6] K.E. Sabin, "Intermodular Communication without 
Addressing in Planar Arrays of Modules Connected with 
One-Way Channels", Ph.D. Dissertation, Massachusetts 
Institute of Technology, Cambridge, Mass. 1969. 

[7] Kenneth J. Thurber, "Interconnection Networks--A survey 
and Assessment", 1!1~ £2Di!t!!ls:! ~1:2Si!iS~Sl.!!• vol. 43, 
1974, pp. 909-919. 

(8] C.J. Chen and A.A. Frank, "On Programmable Parallel Data 
Routing Networks via Crossbar Switches for Multiple 
Element Computer Architectures", in .f~.!il~~~DS.!! g! !h.!! 
121! ~!a!m2ti £9ml!!!§t £2nl!!l:§DS! 2!! .f!t!llil 
!!!2.!ilissjng, springer-Verlag, 1975. 

[9] Tse-yan Feng, "A Versatile Data Manipulator", in 
.f!2S:i!!.i!i.!lu 2t !h.!! lill ~Sl!m21:!! f2mR.!!!!!t f2n!!I!!!l£i .Q.!l 
un.l!!!.l U~H~Sl· Department of Electrical and 
computer Engineering, syracuse University, 1973, p. 101. 

[ 10] Samuel E. Orcutt, "Implementation of Permutation 
Functions in .Illiac IV-Type Computers", !.!U;] 
II!!l.!!!S:!ions .Q!! £2ml!Y!!!I.!i• vol. c-25, no. 9, september, 
1976, pp. 929-936. 



166 

[11] C.H. Sequin, A.M. Despain and D.A. Patterson, 
"Communication in X-tree, a Modular Multiprocessor 
system", in f£2~~~JDS§ 21 1b~ 121~ !DD~!! ~2~f~~~D~~· 
Association for Computing Machinery, 1978, vol. 1, 
pp. 194-203. 

[ 12] Donald Knuth, "Big Omicron and Big Omega and Big 
Theta", in gQ~~! !!~.!!.!i!· vol. 8, no. 2, 1976, pp. 18-24. 

[13] D. Tolle, private communication. 




