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Strength reduction is a program optimization technique which attempts 

to replace expensive operations in a program by a series of equivalet, 

cheaper operations. We discJss the global application of this 

technique and present an approach to its implementation. This approach 

is based on well-known optimization techniques of live variabl~ analysis 

and redundant computation elimination. A discussion of the safety and 

profitability of the technique is also included. 
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1. Introduction 

Strength reduction is the name given to a class of program improving 

techniques that replace expensive operations by a series of equivalent, 

cheaper operation's, if such a replacement results in an overall perform-

ance gain. For example, if two additions cost less than one multiply, then 

3*A can be replaced by A+A+A. Similarly, X**2 can be replaced by X*X. 

This form of strength reduction is highly machine dependent; it is also 

local in that it encompasses only one statement. This kind of improvement 

is best left to the code generator. 
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The kind of strength reduction considered here is the kind traditionally 

associated with loops. It replaces multiplies of the form l*LC where I is 

an inductive variable and LC is a loop constant, by: 

a. initializing a temporary T to l*LC prior to entrance to the loop, and 

b. adding statements T=T+ (LC*LC') after statements of the form I=I+LC'. 

The value of LC*LC' can be computed outside the loop. The temporary 

Twill then hold the current value of I*LC throughout the loop. The major 

targets of strength reduction are the multiplications used to calculate the 

addresses of array elements. 

In this paper we present a slight generalization of strength reduction, 

formulate a strategy for its implementation, and discuss the safety and 

profitability of the operation. 

Schaefer (1) discusses the problem of strength reduction. 

Algorithms for strength reduction appear in (2), (3) and (4). The 

major characteristic of the approach presented here is that it is entirely 

based on other, simpler optimization techniques. We assume the reader 

is familiar with (very) live variable analysis and redundant computation 

elimination. 

2. Terminology 

A loop initialization node or loop init node is the only immediate 

predecessor of the loop entry node that is not in the loop. If no such 

node exists for a loop, one may be created by adding a dummy node whose 

successor is the loop entry node, and whose predecessors are the 

predecessors of the loop entry node not in the loop. The loop init 

node dominates every node inside the loop. 
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With respect to a particular loop, L: 

A variable, v, is a loop constant if no assignments are made to 

it inside the loop; 

An expression, e, is a loop constant if its constituent operands 

are loop constants; 

A variable i, is an inductive variable if every statement assigning a 

value to i is of the form i :=j:_i:LC where LC is a loop constant and j is 

either i or an inductive variable. Control variables of iterative 

DO loops are almost always inductive variables. 

3. Generalization and Applications 

Strength reduction need not be limited to loops, inductive variables, 

and loop constants. We will show that no special consideration of inauctive 

variables is required. We will present a method that attempts strength 

reduction of multiplies of all variables. This method can easily be 

extended to other operations, as well as to smaller or larger regions 

of the program. This generalization only requirEs that the variables 

corresponding to loop constlnts be constant throughout the scope of the 

strength reduction. This generalized form of strength reduction may be 

implemented using the well-known redundant computation elimination 

and live analysis techniques. 
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As shown in the introduction, strength reduction inserts multiplies 

of the form (LC*LC') into the program. Unless these multiplies can be folded 

or removed from the loop, the technique may actually degrade program 

performance. Even if they can be moved out of the loop, these multiplies 

will increase the program's size. It is expected that mose of the "loop 

constants" encountered by strength reduction wi 11 be true constants. 

One consequence of the application of strength reduction is the 

removal of references to the iterative variable. If all references 

to the iterative variable can be removed, then- the assignments to the 

iterative variable can be eliminated as dead. Test replacement is 

used to replace more uses of the iterative variable. Since the 

temporaries involved in strength reduction are just multiples of the 

iterative variable, tests of the form "I relation Ct" can be replaced 

by a test of the form "Ti relation Ct*Ci". Test replacement has no 

beneficial effect on the progr·am by itself, but it improves the effect 

of applying strength reduction by helping to allow the elimination of 

assignments to the iterative variable. 

4. Examples 

I : = 1 ; 

LOOP: A:=I*Cl; 

B:=I*C2; 

I:=I+C3; 

IF I ( C4 THEN GOTO LOOP; 

This loop can be improved by the application of strength reduction 

and test replacement by: 
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a. initializing Tl in the loop init node to I*Cl=l*Cl=Cl, and 

initializing T2 to C2. 

b. inserting the statements 

Tl:= Tl + (C3*Cl); 

T2:= T2 + (C3*C2); 

after the statement I:=I+C3; 

c. replacing the test I<C4 by Tl(Cl*C4. 

The expressions I*Cl and l*C2 are now available throughout the loop, 

and the program can be optimized by redundant computation elimination. Note 

that the expressions C3*Cl and C3*C2 can be folded, since Cl, C2, and C3 

are all constants. Also, if I is not live on exit from the loop, the 

two assignments to I can be eliminated by dead assignment elimination, 

yielding: 

Tl :=Cl; 

T2:=C2; 

LOOP: A:=Tl; 

B:=TZ; 

Tl :=Tl+(C3*Cl); 

T2:=T2+(C3*C2); 

IF Tl<'.(C4*Cl) THEN GOTO LOOP; 

This has eliminated two multiplies and one add from the loop body, 

and inserted three adds. Two assignments were inserted in the loop init 

node, and one assignment was deleted. The loop will execute somewhat faster, 

but the program size has increased by one statement. If n1ultiplies take 

considerablY longer than adds to execute, and the loop is traversed many 
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times, this transformation will substantially reduce the execution time 

of the program. 

An exa~ple of the application of strength reduction outside of loops is: 

A:= I*Cl; 

I:=I+C2; 

B:= I*Cl; 

which if I is dead after the last statement can be transformed to: 

A:= I*Cl; 

B:= A + (C2*Cl); 

Note that the expression CZ*c; can be folded, since Cl and C2 are both 

constants. 

5. Strategy 

The approach is heavily based on other optimization techniques. We 

assume that the reader is familiar with the basic optimization techniques. 

a. If expression l*Ci is available inTi immediately before a 

statement of the form I :=I:!:Cj, make it also available after S by 

tentatively inserting Ti:=Ti:!:(Cj*Ci) after S. 

b. Insert computations of the form I*Ci in the appropriate loop 

init nodes. 

c. Apply (tentative) redundant computation elimination. 

d. Retain all computations tentatively inserted in step (a) that are 

either very live after the computation, or (if this is a loop strength 

reduction) very live at entrance to the loop. Delete all other inserted 

computations. 

e. Redo (this time permanent) redundant computation elimination 

to reflect the effects of the inserted computations. 
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6. Safety and Profitability 

The standard code motion safety requirements will be met if the 

expression temporary of a strength reduced multiply is very live at all 

points where a computation of the corresponding exp~ession was inserted. 

The profitability of this transformation cannot be guaranteed 

unless the multiplies removed by strength reduction would have been 

executed at least as frequently as the inserted additions. As with the 

other code motion techniques, this can be assured if the expression 

temporary for the multiply is very live at each instruction inserted 

by the technique, both in the loop init node and after the increment 

s ta temen ts . 

This technique tends to trade space for time. When used outside of 

loops, the usual case is to break about even on space, since the usual 

case is that one add is inserted for each multiply removed. l4hen used 

in loops, a space increase usually results, since two statements must 

usually be inserted (one in the loop, one in the init node) to remove 

one multiply. If the assignments to the iterative variable can be 

removed, some of this space loss can be recouped. 

One special case where this technique is extremely profitable is 

where the inserted additions can be done with the auto-increment hardware 

found on machines like the PDP-11. Unfortunately, global optimizations 

such as this are usually too far from the machine representation of the 

object code to perform such an optimization effectively. However, 

may be possible to set things up properly so that a later improvement 

phase could do the adds with the autoincrement hardware. 
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Because this technique tends to increase the size of the program, it 

seems unreasonable to apply it indiscriminately throughout the program. 

It can be profitably applied to the few criti ca 1 inner loops of the 

program. In these loops with high execution frequencies, this technique 

would yield a large improvement in execution speed for a small increase in 

program size, In the less frequently executed parts of the program, 

however, the slight improvement in execution time that could be realized 

may not be worth the increase in program size incurred. 

It seems reasonable to strength reduce wherever it does not 

require initializations, i.e., where it does n~:: rro11;rc in:,crtirl0 

computations in the loop init node. Due to the space/tiliiC tradeoff 

involved with strength reduction in loops, some restrictions are needed 

on that form of the technique. It seems reasonable to apply that 

technique to only the innermost, most deeply nested loops in the 

program which permit the elimination of their iterative variable. 

With this restriction, most of the expected time imorovement is 

obtained, with a minimal increase in program size. 
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