
ON OPERATOR STRENGTH REDUCTION

John H. Crawford
Mehd i Jazayer i

TR 80-003

ON OPERATOR STRENGTH REDUCTION

John H. Crawford
Intel Corporation

3065 Bowers Avenue
Santa Clara, California

ABSTRACT

l.

Mehdi Jazayeri
Department of Computer Science
University of North Carolina

Chapel Hill, North Carolina

Strength reduction is a program optimization technique which attempts

to replace expensive operations in a program by a series of equivalet,

cheaper operations. We discJss the global application of this

technique and present an approach to its implementation. This approach

is based on well-known optimization techniques of live variabl~ analysis

and redundant computation elimination. A discussion of the safety and

profitability of the technique is also included.

Key Words and Phrases: Program optimization; strength reduction; safety

and profitability of optimization; time vs. space tradeoffs.

1. Introduction

Strength reduction is the name given to a class of program improving

techniques that replace expensive operations by a series of equivalent,

cheaper operation's, if such a replacement results in an overall perform-

ance gain. For example, if two additions cost less than one multiply, then

3*A can be replaced by A+A+A. Similarly, X**2 can be replaced by X*X.

This form of strength reduction is highly machine dependent; it is also

local in that it encompasses only one statement. This kind of improvement

is best left to the code generator.

2.

The kind of strength reduction considered here is the kind traditionally

associated with loops. It replaces multiplies of the form l*LC where I is

an inductive variable and LC is a loop constant, by:

a. initializing a temporary T to l*LC prior to entrance to the loop, and

b. adding statements T=T+ (LC*LC') after statements of the form I=I+LC'.

The value of LC*LC' can be computed outside the loop. The temporary

Twill then hold the current value of I*LC throughout the loop. The major

targets of strength reduction are the multiplications used to calculate the

addresses of array elements.

In this paper we present a slight generalization of strength reduction,

formulate a strategy for its implementation, and discuss the safety and

profitability of the operation.

Schaefer (1) discusses the problem of strength reduction.

Algorithms for strength reduction appear in (2), (3) and (4). The

major characteristic of the approach presented here is that it is entirely

based on other, simpler optimization techniques. We assume the reader

is familiar with (very) live variable analysis and redundant computation

elimination.

2. Terminology

A loop initialization node or loop init node is the only immediate

predecessor of the loop entry node that is not in the loop. If no such

node exists for a loop, one may be created by adding a dummy node whose

successor is the loop entry node, and whose predecessors are the

predecessors of the loop entry node not in the loop. The loop init

node dominates every node inside the loop.

3.

J

With respect to a particular loop, L:

A variable, v, is a loop constant if no assignments are made to

it inside the loop;

An expression, e, is a loop constant if its constituent operands

are loop constants;

A variable i, is an inductive variable if every statement assigning a

value to i is of the form i :=j:_i:LC where LC is a loop constant and j is

either i or an inductive variable. Control variables of iterative

DO loops are almost always inductive variables.

3. Generalization and Applications

Strength reduction need not be limited to loops, inductive variables,

and loop constants. We will show that no special consideration of inauctive

variables is required. We will present a method that attempts strength

reduction of multiplies of all variables. This method can easily be

extended to other operations, as well as to smaller or larger regions

of the program. This generalization only requirEs that the variables

corresponding to loop constlnts be constant throughout the scope of the

strength reduction. This generalized form of strength reduction may be

implemented using the well-known redundant computation elimination

and live analysis techniques.

4.

As shown in the introduction, strength reduction inserts multiplies

of the form (LC*LC') into the program. Unless these multiplies can be folded

or removed from the loop, the technique may actually degrade program

performance. Even if they can be moved out of the loop, these multiplies

will increase the program's size. It is expected that mose of the "loop

constants" encountered by strength reduction wi 11 be true constants.

One consequence of the application of strength reduction is the

removal of references to the iterative variable. If all references

to the iterative variable can be removed, then- the assignments to the

iterative variable can be eliminated as dead. Test replacement is

used to replace more uses of the iterative variable. Since the

temporaries involved in strength reduction are just multiples of the

iterative variable, tests of the form "I relation Ct" can be replaced

by a test of the form "Ti relation Ct*Ci". Test replacement has no

beneficial effect on the progr·am by itself, but it improves the effect

of applying strength reduction by helping to allow the elimination of

assignments to the iterative variable.

4. Examples

I : = 1 ;

LOOP: A:=I*Cl;

B:=I*C2;

I:=I+C3;

IF I (C4 THEN GOTO LOOP;

This loop can be improved by the application of strength reduction

and test replacement by:

5.

a. initializing Tl in the loop init node to I*Cl=l*Cl=Cl, and

initializing T2 to C2.

b. inserting the statements

Tl:= Tl + (C3*Cl);

T2:= T2 + (C3*C2);

after the statement I:=I+C3;

c. replacing the test I<C4 by Tl(Cl*C4.

The expressions I*Cl and l*C2 are now available throughout the loop,

and the program can be optimized by redundant computation elimination. Note

that the expressions C3*Cl and C3*C2 can be folded, since Cl, C2, and C3

are all constants. Also, if I is not live on exit from the loop, the

two assignments to I can be eliminated by dead assignment elimination,

yielding:

Tl :=Cl;

T2:=C2;

LOOP: A:=Tl;

B:=TZ;

Tl :=Tl+(C3*Cl);

T2:=T2+(C3*C2);

IF Tl<'.(C4*Cl) THEN GOTO LOOP;

This has eliminated two multiplies and one add from the loop body,

and inserted three adds. Two assignments were inserted in the loop init

node, and one assignment was deleted. The loop will execute somewhat faster,

but the program size has increased by one statement. If n1ultiplies take

considerablY longer than adds to execute, and the loop is traversed many

6.

times, this transformation will substantially reduce the execution time

of the program.

An exa~ple of the application of strength reduction outside of loops is:

A:= I*Cl;

I:=I+C2;

B:= I*Cl;

which if I is dead after the last statement can be transformed to:

A:= I*Cl;

B:= A + (C2*Cl);

Note that the expression CZ*c; can be folded, since Cl and C2 are both

constants.

5. Strategy

The approach is heavily based on other optimization techniques. We

assume that the reader is familiar with the basic optimization techniques.

a. If expression l*Ci is available inTi immediately before a

statement of the form I :=I:!:Cj, make it also available after S by

tentatively inserting Ti:=Ti:!:(Cj*Ci) after S.

b. Insert computations of the form I*Ci in the appropriate loop

init nodes.

c. Apply (tentative) redundant computation elimination.

d. Retain all computations tentatively inserted in step (a) that are

either very live after the computation, or (if this is a loop strength

reduction) very live at entrance to the loop. Delete all other inserted

computations.

e. Redo (this time permanent) redundant computation elimination

to reflect the effects of the inserted computations.

7.

6. Safety and Profitability

The standard code motion safety requirements will be met if the

expression temporary of a strength reduced multiply is very live at all

points where a computation of the corresponding exp~ession was inserted.

The profitability of this transformation cannot be guaranteed

unless the multiplies removed by strength reduction would have been

executed at least as frequently as the inserted additions. As with the

other code motion techniques, this can be assured if the expression

temporary for the multiply is very live at each instruction inserted

by the technique, both in the loop init node and after the increment

s ta temen ts .

This technique tends to trade space for time. When used outside of

loops, the usual case is to break about even on space, since the usual

case is that one add is inserted for each multiply removed. l4hen used

in loops, a space increase usually results, since two statements must

usually be inserted (one in the loop, one in the init node) to remove

one multiply. If the assignments to the iterative variable can be

removed, some of this space loss can be recouped.

One special case where this technique is extremely profitable is

where the inserted additions can be done with the auto-increment hardware

found on machines like the PDP-11. Unfortunately, global optimizations

such as this are usually too far from the machine representation of the

object code to perform such an optimization effectively. However,

may be possible to set things up properly so that a later improvement

phase could do the adds with the autoincrement hardware.

8.

Because this technique tends to increase the size of the program, it

seems unreasonable to apply it indiscriminately throughout the program.

It can be profitably applied to the few criti ca 1 inner loops of the

program. In these loops with high execution frequencies, this technique

would yield a large improvement in execution speed for a small increase in

program size, In the less frequently executed parts of the program,

however, the slight improvement in execution time that could be realized

may not be worth the increase in program size incurred.

It seems reasonable to strength reduce wherever it does not

require initializations, i.e., where it does n~:: rro11;rc in:,crtirl0

computations in the loop init node. Due to the space/tiliiC tradeoff

involved with strength reduction in loops, some restrictions are needed

on that form of the technique. It seems reasonable to apply that

technique to only the innermost, most deeply nested loops in the

program which permit the elimination of their iterative variable.

With this restriction, most of the expected time imorovement is

obtained, with a minimal increase in program size.

Acknowledgements

The algorithm and analyses were developed for the PLCD cross­

compiler at the University of North Carolina. Drs. Steve l1eiss and

Dave Parnas of UNC read and made valuable comments on the earlier

versions of this paper.

9.

References

(1)

{2)

(3)

(4)

M. Schaefer, A Mathematical Theory of Global Program p_p_t:._i~TI_f}ation_,
Prentice Hall, Englewood Cliffs, N.J., 1973.

F. E. Allen, "Program Optimization," Annual Review of Automatic
Programming, Vol. 5, Pergamon, Elmsford, 11.Y., pp. 239-307, 1969.

J. Cocke and K. Kennedy, "An Algorithm for Reductionof Operator
Strength, '' Technical Report 476-093-2, Dept. of Mathematical
Sciences, Rice University, Houston, Texas. 1974.

F. E. Allen, J. Cocke and K. Kennedy, "Reduction of Operator
Strength, • Technical Report 476-093-6, Dept. of Mathematical
Sciences, Rice University, Houston, Texas, 1974.

