
1 RENOVATION OF THE UNC CAI SYSTEM

by

Paul c. Clements

1 Thesis submitted to the faculty of
the University of North carolina at
Chapel Hill in partial fultillment
of the requirements for the degree
of Master of Science in the Department
of Computer Science.

Chapel Hill

1980

PAUL CHARLES CLBilEI'lS. A Renovation Of the UNC CAI Systea

(Under tke direction of Peter caliagaert.)

This thesis describes work undertaken to modify the Coa­

puter-Assisted Instruction systea at the University of North

Carolina at Chapel Hill. . The aodifications include enhanced

internal docuaentation of tke PL/I sonrce code, aad re­

structuring of local code sectioas to eliminate confusing

branches. The architecture of tae system has been changed

by deleting the lightpen feature., replaciag its functions

with keyboard coaaaads., color-codiag of system information

and warning messages. and the impleaentation in the author

language of integer subtraction. Suggestions for future

work are offered. Tke aev system Prograaaer•s Manual is

attacbed as an appendix to tbis docuaeat.

- i -

TABLE OF CONTENTS

Chapter page

1. INTRODUCTION . - . . . - - . .
2. DEl'ICIEBCIES IN THE CAI SYSTEII

.............. 1

• • • • • .. • • - 5

3.

4.

THE IIODIPICATIONS UNDERTAKEN • • . . - - - •• 12

SUGGESTIONS FOR FUTURE DEVELOPIIENT

BIBLIOGRAPHY .. ,. -.- -.-
Appendix

A. CAI SYSTEK PROGR1KKEB 1 S KARUAL --

- ii-

• 23

• 28

page

- 29

Tke aost operating eavironment for the CAI systea vas

developed at rougkly tae saae time by Gary SChultz [5]. Tke

CAI systea runs under the Ckapel Hill Alphanuaeric Terminal

(CHAT) system, a single-region resident time-sharing monitor

that runs under the OS/360 KYT operatiag system at OIC.

CHAT allows tae interaction of aultiple application prograas

with CRT display stations, and provides input/output pro­

giaaaing support for that interaction. CAI is only one sub-

task (application prograa) that runs in tile CHAT environ-

aent; others iaclude a grapucs interface pac.kage, a text
' '.•

editor, and a HASP monitor prograa. CHAT vas designed and

built with one ltiad of display terainal in mind: a Computer

Coaaunications Incorporated cc-30 communications Station.

This is a four-color CRT with a lightpen, and a forty-char­

acter by twenty-line screen. In addition, each terminal has

a prograa-coatrolled raadoa-access slide projector. CHAT

software includes support for coatrolling the projector and

lightpea as well as reading and writing tile CRT screen.

Kudge paid close attention to the vorkillg eavironaent of

his users. and carefully designed special CAI workstations.

Each station consists of a CC-30 CIT and its keyboard,

lightpen, slide projector, and a desk-type writing surface.

All of this is eaclosed ia an acoustically treated cubicle

appro.riaately six feet sqaare.

- 3 -

The CAL systea vas pat iato test production in 1972, aad

vas used to teaca begianiag PL/C to coaputer Science and

Library science students of UNC until the fall of 1978. The

original course aaterial vas written by Dr. Predericlt P.

Brooks, Jr. [2], and has served as the curriculua of the
I·,.

systea, except for ainor aodification, throughout the entire

life of CAI here.

Duriag its creation and testing, the CAI systea enjoyed

the ·services of a systeas prograaaiag teaa. whose responsi-

bility it vas to isolate and fix bugs in the new systea; a

group of course proctors, who oversaw the instruction pro-

cess, aad saoothed the way for the student users of the sys-

tem; and a corps of students in several sections of prograa­

ming courses, who learned froa the systea, and evaluated its

ease of use and effectiveness for Rudge and his colleagues.

CAl vas a major effort of the Departaent.

Any large systea will show sigas of age as tiae passes.,

and tie CAI syst;ea llas heen 11.0 exceptio-. By early 1979, it

vas only a aiaor responsibility of tae Department's software

aanager- No one used it for instructional vor.lt or researc·a

at all. The teaa originally responsible for its creation

had long since graduated. and the workstations fell into

disrepair.

- 4 -

Chapter 2

DBPICIEICIES Itf THE CAI SIS'fE!l

iky did the CAI systea fall fro• proaiaence into, obscur­

ity? For oae thing, the peopl~ who built it left. For

another, it vas alvars iatended to be a research tool above

all; any production use it found vonld aerely be a bonus.

aoreover, one or two of the design decisions seem to have

created needless restrictions in the handling of tae lesson

files. aore iaportant, I believ~. is that lndge•s full

desiga vas never iapleaeated# and the oaission of several

features from the final version of the systea rendered it

awkward and iapractical to use. And finally, since Rudge

chose to impleaent his ovn author language, rather tilan use

a general-purpose language already existent, iae automati­

cally incurred the expense and overhead of writing vilat is

essentially an interactive coapiler for that language, and

iabedding that compiler into the systea. »ow, writing a bad

compiler is a sizable task; writing a good one is an enor­

aous task, and in ay judgment ,the DIAL translator lies some-

where between the tvo extremes. In any case, it does not

give its user the kind of support to which many have becoae

accustoaed.

- 5 -

The unimplemented features of the CAI system were primar­

ily features of the author language. The control structures

of DilL are basically those found in PL/I, with a few major

extensions. Therefore., the DIAL architecture defines the

, IF-THEN, IF-TBBIII-ELSE, and DO-IUli.LE stateme.nts., all of which

are semantically defined as in PL/I- Roae of these three

was actually implemented in the system. consider for a

moment their use in a response-analysis situation, by exa-

mining the following possible uses:

Or:

IF answer ,: expected_ansver
' .

TBBIII SHOW •wroag answer; try again.•;

ELSE SHOW • Your aaswer is correct. •;

IF answer = vrong_answer_1

THEM SHOW hint_1;

ELSE IF answer = vrong_ansver_2

THEM SHOW hint_2;

ELSE IF aaswer = vrong_answer_3

THEM SHOW hint~3;

ELSE SHOll big_.hiat;

- 6 -

or:

(Read answer)

DO WHILE (answer ~= expected_ansver) ;

SHOW •wrong answer; try again.•;

(Bead answer)

END;

Or, finally:

I = 0;

(Bead answer)

DO WHILE (1<11 & answer ~= expected_answer) ;

SHOW 'Not right yet; try again.•;

i = I + 1;

(Read answer)

END;

DIAL's control structure for answer analysis is the IIATCH

statement. Syntactically, it is of the form

MATCH expected_answer, label

and if the

"expected_answer",

Implicit in the

student

then

first

response is equivalent to

a branch takes place to "label".

MATCH statement following a SHOW

statement is the command to read an input line from the dis­

play screen. Similarly, there is the UIIBEC statement:

UNBEC label1, label2, label3, •••

- 7 -

where the i-th unrecognized response to the most recently

executed SHOW statement will cause a branch to the i-th

label in the U~BEC label list. An unrecognized response is

one that has not been specified in the !lATCH statement (s)

following the controlling SHOW statement. The UNREC state­

ment corresponds to the OTHERWISE statement of the PL/I

SELECT construction. It relieves an author from having to

test (via !lATCH statements) for every possible student

input. Rather, it allows the author to specify an action to

be taken when the student's response falls through all of

the associated !lATCH statements.

There are more complex forms of both the !lATCH and UNREC

statements,. offering more flexible actions, but the fact

that both rely on explicit branching to do what could be

accomplished without it seems to me to be unwieldy. As a

result, DIAL programs must rely heavily on branching, and

this offers little chance for structured author programming,

which in turn makes course writing all the mo1:e time-consum­

ing and awkward.

For instance, consider how the first example above would

be formulated with only the incomplete DIAL available:

READ: !lATCH expected_answer, RIGHT;

SHOW •wrong answer; try again.•;

GOTO DONE;

RibHT: SHOW 'Your answer is correct.•;

DONE: /* end of if-then-else simulation */

- 8 -

Or, for the third example:

READ: IIATCH elCpected_answer .• OUT_OF _LOOP;

SHOW •wrong answer; try again.•;

GOTO READ;

OUT OF_LOOP: /* end of do-while simulation */

The case statement simulated in the second example above

would offer an even more dramatic display of labels and

branching. As for the fourth example, which branches condi-
i ' tionally after test:ing the :value of a counter variable, it

is not clear to me that in the limited version of DIAL that

would he possible at all.

It is for this reason that I believe CAI bas fallen dor-

mant; no one has been willing to compose new lesson material

for the system, and as a result, the PL/C course originally

written for the system is nov embarrassingly outdated. It

was written in conjunction with a textbook no longer used,

and does not reflect the doctrines of structured programming

espoused by the books now in vogue.

Another major reason contributing to the overall problem

is the hardware involved in the CHAT system. It is all

showing its age. By today•s standards, the CC-30 terminals

are archaic. The display is hard on the eyes, the screen is

quite small; and as time passes, they are becoming less and

less mechanically reliable. Spare parts are no longer

- 9 -

available. In fact, each component of each workstation is

extremely susceptible to hardware failure. Most of the

lightpens were long ago disconnected; the slide projectors

and their controllers are all moth-balled.

since the CAI system depends so heavily on CHAT, and

since the CAI hardware supported by CHAT seems to be on its

last leg. the project coald very well have ended here. Any

work on modifying and rebuilding the CAI system would have

been pointless, except that under development at the time of

my work was a new version of CHAT that would allow its

application programs to run either on the CC-30 terminals or

on the Hewlett-Packard 2621 or 2645 terminals recently

acquired oy the Department of computer science. With this

new system over the horizon, a future for CAI no longer

seemed implausible.

Before that work could be completed, however, the age of

the system once again proved an impediment. Recall that the

lessons in the CAI system were no longer useful because they

were written before structured programming was generally

espoused, let alone practiced. Naturally, the implementa­

tion of the system itself predates the creation of those

lessons. The original code contained dozens of indiscrimi­

nate (and unnecessary) branches; following the flow of con­

trol ia many of the code sections vas quite difficult. The

internal comments were sketchy, and not generally helpful.

- 10 -

Little attention was paid to indentation and layout of the

statements. The file structures are quite complex, and

nowhere were they explaiaed in detail.
}··. ··;

A . System Program-

mer's llanual did exist, but was only about half collpleted.

Nowhere did there exist an accounting of precisely which

elements of the architecture were actually implellented.

!lore of a hindrance than any of this, however, was the fact

that the seventeen modules {PL/I external procedures) of the

system overlapped in terms of task and effect. !lost commu-

nica ted with each other througa a large number of external

variables, and only a few were responsible for discrete,

well-defined tasks. llodifying such a system is a risk at

best; at worst, it may spawn a disaster. Because each

module makes assumptions about what changes others have (or

have not) made to the files or data structures, a small

change in one 11ay have far-reaching and quite unforeseen

side effects in any number of others. The CAl: system serves

as a shining tribute-by-counterexample to the doctrines of

structured programming.

- 11 -

Chapter 3

THE MODIFICATIONS UNDERTAKEN

My work oa the CAI system vas divided into two catego-

ries.: architectural modifications which will be visible to

the production user of the system, and modifications which

will be visible only to a CAI system programmer.

Included in the latter category are the enhancement of

internal documentation, restructuring of local code sec-

tions, and the completion of the system Programmer's Manual.

The internal documentation that I supplied to the modules

consisted o.f enhanced header paragraphs, as well as in-line

comments. The aeader documentation for each module followed

the same format, and consisted of the following information:

1) FuDCtion. This is a general prose definition of w.llat the

particular module is supposed to do. Because of the

nebulous nature of each module's task, this information

is necessarily imprecise. It is meant to give a program­

mer who is searching for the cause of a problem a good

idea of which module to pay special attention to. In a

few cases, I was able to use descriptions that already

existed, provided by the original CAI programming team.

- 12 -

2) Parameters. This is a list of the parameters for this

module, with a brief description of the information car­

ried by each. Included is whether the parameter is gi•en

{that is, its value is set externally, and only used

here) , ret11rned (its value is set in this module to be

used externally), or both.

3) Input. This is a specific description of vhat input this

module expects. By •input", I mean input from the user

or inp11t from the CAI system files, not input throug.h

parameters from other modules. There is an exception to

this distinction, however. The CAl system has a module

called FILEIO, the purpose of which is to read and write

one of the system files: a parameter is tb.e information

to be transmitted. A call to this procedure has the same

effect as performing file iDpu t;output; therefore, in the

interest of providing more complete information, I have

used the "Input" paragraph in many cases to describe such

calls. However, I was careful to make it clear in each

case that I was in fact describing the effect of a call

to FILEIO, and not "real" input..

4) Output. Similarly, this describes what output this

module generates for the user, or onto the files.

5) Functions called. This is a list of all of the proce-

dures called by this module, with a brief decription of

the task of each. Internal procedures are differentiated

from external procedures, but both are described.

- 13 -

6) References. For those modules where external sources of

information may be helpful, such sources are cited.

7) Compilation information. Designed to help bring about a

successful compilation and linking of this module, this

section gives a complete transcript of the necessary JCL,

including a list of compiler options to use.

8) Use of Branching in this Procedure.

all the relevant statement labels

This is a list of

to be found in the

procedure, with an explanation of when and how each one

is used in branching.

9) Other information. some modules may call for special

documentation; for instance, in the main procedure, I

included a diagram of the overall system call structure,

and a paragraph explaining the changes made to the archi­

tecture and documentation of t.he 1980 system. In the

DIAL compiler routine, the productions of the grammar are

catalogued, and in the AUTHOR routine, there is a list of

all of the valid author commands.

The heading descriptions for internal procedures followed

the same conventions, with one extension. I included a list

of all of the externally-defined variables used locally by

each internal procedure. Of course, PL/I' s block structure

makes it perfectly legal to use (vithout declaration) any

variable defined in a containing block., but imprudent use of

such variables can very easily give rise to side effects,

and tends to obscure the precise nature of the role of the

internal procedure.

- 14 -

I followed no guide for: providing in-line comments for

the code, other: than a loose and subjective one. First, any

major segment of code which accomplished a fairly discrete

task warranted a paragraph of commentary. If one was lack­

ing, I provided it. I decided quite subjectively which were

"major segments" and .vaich were not. Second, any other

statement or segment whose purpose vas not clearly

explained, and that seemed important enough to try to under­

stand, received an explanatory comment. Again, the deci­

sions here were subjective. I tried not to be terse.

Often, I was forced to understand a group of st.ate•ents

in order to effect my architectural modifications, and then

it was a simple matter to record what I had learned about a

certain section. By the same token, those parts of the sys­

tem that clearly did not apply to my work may remain some­

what under-documented.

While my modified system actually comprises roughly two

percent fewer executable PL/I statements than its predeces­

sor, the source listings occupy some fifty more pages, an

increase of about eigateen percent. I attribute most of

that to new internal documentation. Naturally, that does

not speak to the guality of the added information, but

should at least offer evidence of my good intentions.

An adjunct to the internal documentation was the work I

did to to improve the visual quality of the code. The rules

- 15 -

applied were quite simple. They included uniformly

indenting the bodies of loops and compound statements

(including any contained comments describing parts taerein),

aligning each END with its associated DO, and indenting each

code section beneath the comment describing it.

ing physical structure of the code is meant

understanding of its logical structure.

The result­

to aid the

lly restructuring of the code was fairly modest in nature,

but extremely widespread. Like the internal comments, this

was as much a tool for my own understanding of the system as

anything else. lly first strategy was to delete every GOTO

statement that I could; my tactic was to identify and elimi­

nate every statement label within each procedure. The

labels that were branch targets served to point to the

br-anches themselves. The other labels served no useful pur­

pose, and were summarily erased. Any mnemonic significance

they offered was replaced with a comment. Most of the

branches that I was able to delete were used to simulate

large alternative-selection (IF-THEN-ELSE) statements, by

branching around a section if some condition were not true,

and falling through it otherwise. I replaced those with

IF-THEN- ELSE statements. Others were used to build loops (I

replaced those with loop statements), and still others simu­

lated procedures (which I r-eplaced with real procedures).

- 16 -

After all of the dust has cleared, it is evident that the

CAI system still suffers from a plethora of GOTO statements.

Some are used merely to terminate loops, and I judged those

to be innocuous; others are simply too deeply embedded in

the logic to be easily replaced. For the latt:er group, I

adopted another strategy: if it can't be eliminated, then

it must be explained. Therefore, as explained above, the

documentation for each module includes a paragraph entitled

"Use of Branchinq in this Procedure", which lists every

statement label not used just as a loop escape, and explains

how and when it is used.

Another modification to the system code was not so modest

in nature. The modules of the CAI system communicate with

each other through a large aggregation of external varia­

bles. The system was originally built so that all of those

variables were stored in a single large PL/I structure, and

then any procedure which referenced any of those variables

was passed the entire structure as a parameter £4]. This

was done because the load module must be reentrant; there

may be several users at once, and each invocation must have

its own copy of the external variables. The super-structure

approach worked well, but had drawbacks in terms of clarity.

For instance, many of the modules use only two or three of

the external variables, but had to declare the entire set

(taking almost two pages in the listing). 11. James sneer-

inger [6) has proposed a more reasonable solution. By dec-

- 17 -

laring each such variable with the attribute CONTROLLED

EXTERNAL and then allocating them all in the main procedure,

only those variables actually needed by a procedure need be

declared there. Reentrancy is preserved, and Sneeringer

argues that the compiled code obtained by this method in

fact produces less overhead than that of the structure par­

ameter approac~. Therefore, I set out to replace the struc­

ture in each procedure with only those variables actually

used, and I believe that the gains in clarity are well worth

the effort. Even though the modules still communicate

through external variables, each module at least contains a

list explicitly defining the only variables it may change.

In addition, I discovered that half of the fifty external

variables did not in fact need to be known to more than one

external procedure, and they were quickly demoted to local

variables.

The new System Programmer's Manual is included as an

appendix to this document. The sections that I supplied are

listed in an appendix to the manual. It should be noted

that much of the information added to the manual came

directly from the internal documentation of the system. For

instance, the module descriptions are from each procedure's

".Function" paragraph in the header comment.

Although time has not permitted removing all of the defi­

ciencies pointed out in Chapter 2, the architectural modifi-

- 18 -

cations I nave made include extraction of the lightpen from

the system, color-coding and re-wording of the system mes­

sages to the user, and the implementation of five new author

command features.

The lightpen facility was taken from the system for three

reasons. The first is that, for all pcactical purposes,

there are none left; nearly all are out of service. The

second reason is that the Hewlett-Packard tecminals do not

feature ligbtpens; hence neither will the envisioned new

version of the CAI system. Finally. the deletion of the

liglttpen facility has served to reduce the amount of run­

time memory cequired by the system, and to streamline tne

system, in the sense that input can now only be done via the

terminal keyboard. This, I believe, is important from a

human factors standpoint. Neither the student nor the

author need worry aoout using the ligbtpen, which seems to

me to be a rather unnatural input mechanism. It was the

deletion of the lightpen that allowed my system to use

slightly fewer PL/I statements than its predecessor, while

actually doing more work.

The system diagnostic messages were modified in two ways.

First, I attempted to make them more informative and more

congenial. For instance, the sign-on greeting "UNC CAI SYS­

TEM" {displayed in illand blue) was replaced with "Welcome to

the UNC CAI System" (shown in a more congenial 9reen). .I

- 19 -

added some messages. Fo~ instance, some commands in the

system ask an autho~ whethe~ he really wants something done;

if he fails to'confi~m it, the command is nullified. The

old system responds merely by waiting for another command.

My version acknowledges the cancellation, and displays (in

g~een) "Command canceled." Finally, I paid special atten­

tion the color of tlle displayed message. Previously, most

diagnostics appeared in blue. I adopted a more varied

scheme. If tne purpose of the message is to confirm or

inform, it appears in g~een. Special words within are high­

lighted by appearing in yellow. Fo~ instance, one message

is "The COMPILE switch is now OFF." The message is green,

except for: "OFF", which is yellow. If the purpose of the

message is to warn or report failure, it appears in yellow.

For: instance, "You already have a lesson by that name"

appears in yellow when an author: tries to create a lesson

with the same name as another. When the system halts in

case of unrecoverable error:, the error: code appears in red.

Basically, tne philosophy is this: when the message reports

something the user should expect, it appears in green; when

it reports something .he should be concerned about, it

appears in yellow; when it announces abnormal termination,

it appears in red. Blue, then, is left to be the color of

the text tnat the use~ himself enters.

Of the five new author features implemented, three merely

replace functions lost when the lightpen was removed from

the system; two are truly new.

- 20 -

The three replacement functions a1:e "CLEAR", which allows

an author to ask for a blank screen so he may enter a DIAL

statement that vas too long to be entered where the cursor

was previously positioned; "EDIT", which allows an author to

make changes to DIAL text by merely typing in the changes,

~:ather than re-entering the entire statement; and "CSW",

which controls the compile switch. the bit which decides

whether 01: not to re-compile an author's enti~:e lesson every

time the author makes a change to it.

The two new features a~:e

"RESEQUENCE" command. Just

integer subtraction and the

as the IF-THEN and DO-WHILE

statements appeared in the DIAL grammar but were never actu­

ally implemented, neithe1: was most of the arithmetic expres-

sion evaluation mechanism. Since integer addition was

already in place, it was a simple matter: to mirror the pro­

cess and implement subtraction.

The "RESEQUENCE" command allows an author to r:enumber the

statements in a lesson according to a given starting value

and increment. Implementing that command brought about an

unexpected change to the system architecture elsewhere. It

turned out that renumbering a lesson was a decidedly aontri­

vial task if, as was the case, each statement's number field

was not of uniform length. For instance, "1 DCL J INTEGER"

and "000 1 DCL J INTEGER" are both egually valid representa­

tions of statement number one of some DIAL lesson. However,

- 21 -

the renumbering became quite straightforward when one

assumed numeric fields of constant length. Because the sys­

tem limits statement numbers to positive integers not

exceeding 9999., I adopted the policy of four-digit number

fields for all statements. In addition to the gain in ease

of renumbering, this policy has a valuable lluman engineering

effect. It aids an author in preparing more readable DIAL

source text by forcing all statements to begin in the same

column, independent of the statement number. Thus, syste­

matic alignment and indentation become easier. This policy

is certainly not witllout precedent; TSO, for example,

employs it. one may argue that I made this decision for the

wrong reason (ease of implementation), but I submit that the

final result is in fact a better architecture.

In fact, I would hope that my modifying work has produced

exactly that: a better architecture throughout. I am confi­

dent that it has produced a better implementation in terms

of clarity, efficiency, and ease of future change. The CAI

system is still not the invaluable aid hoped for by any of

its creators; it is, however, a viable tool which I have

tried to make easier to use.

- 22 -

Chapter 4

SUGGESTIONS FOR FUTURE DEVELOPMENT

The event that may breathe new life into the CAl system

will also precipitate t.he next major requirement for change.

When CHAT is able to run on Hewlett-Packard terminals, a

major overhaul of the CAI system will be in order. Two

strategies are possible.

The first is to adapt the system to the new terminals by

applying local fixes. Even though terminal input and output

are technically done by only one procedure in the system,

almos·t a dozen procedures make the assumption that the

screen size of the terminal is that of a CC-30, which is

quite different from that of the Hewlett-Packards. The most

common example of this is creating a multi-line display mes-

sage by inserting the appropriate

than a new-line command, at the

number of blanks, rather

end of each screen line.

Some modules display entire screens at one time, and the

formatting .tor such a display depends heavily on the screen

size. Rooting out all such assumptions would require care-

ful examination of nearly all o.f the procedures constituting

the CAl system, and a tedious modification of many.

- 23 -

The second strategy for adapting to the new terminals

requires more initial work, but would be much more satisfy­

ing in the long run. The Hewlett-Packard terminals are emi­

nently more sophisticated than the CC-30s. They offer fea­

tures such as on-screen editing, programmable function keys,

screen paging or scrolling, tabs, and blinking display; and

some can read and write a cassette tape. ~ost importantly,

all of the advanced features are programmable; that is, they

can be initiated aud controlled by special control charac­

ters received by the terminal from a program. The new CHAT

system vill take advantage of all of these features, many of

which could add an exciting power to the output capability

of the CAI system.

Consider the followin'} excerpt from a hypothetical stu­

dent session. T4e system displays a screen of new lesson

material by issuing the command for the terminal to read and

display one of many files on its builtill cassette tape. The

student presses the RETURN k.ey to signal that he has read

the information. The system com!lands the terminal to move

the material off-screen, and locx it into a page of its

memory. The system displays a question, and the student

responds. The system instructs the terminal to record the

response on its othei: cassette tape, for later analysis.

on-line response analysis takes place as usual, and the CAI

system discovers that the student's answer is wrong. It

orders the terminal to page the lesson material back onto

- 24 -

the screen; this time, however, key words and lines of the

screen are highlighted with an inverse video or a flashing

display. The student is asked the question again, and this

time he responds correctly. The system displays the congra­

tulatory message, rings the termindl 1 s bell, and goes on to

present the next topic.

Of course, to realize such a situation would take an

inordinate amount of work. But such powerful capabilities

present a broad range of possible enhancements to the CAl

system. It seems to me that a reasonable first step would

be to build a CAI system so that only one module truly knew

of the terminal characteristics- It would be responsible

for fitting given text strings to the available screen size.

Perhaps the calling procedures would adopt command param­

eters similar to what might be found in an elementary text­

formatter; "center", "underscore", "newline", "table", etc.

After that. new DIAL commands may be created. For

instance, one might visualize a feature that would allow an

author to define a screen-full of text, speci,fying which

words or lines should he highlighted on subsequent displays,

and anothec command that would allow that text to be written

onto a cassette tape, and referred to symbolically there­

after {much like the SLIDE data type currently implemented

in DIAL). Then, there might be a SHOW_TAPE command, and a

SHOW_HIGHLIGHTBD_TAPE command. The possibilities are pro­

fuse..

- 25 -

A second major improvement to the CAI system would be the

implementation of an on-line file maintenance subsystem.

This was envisioned by the original team of CAI sys'tem pro­

grammers, and still seems a good idea. There are three

major files used by the CAI system. One contains informa­

tion about all authors known to the system, another about

all students known to the system, and the third contains

everything else (for example, the source and object code for

all the lessons; the list of lessons constituting each

course; the status of each student currently taking a

course, and so forth). To add or delete or change records

in these files, single-purpose batch programs must be sub­

mitted. A more elegant solution would be to invoke an on­

line CHAT program which wollld be able accomplish any of the

tasks now handled by the batch programs. The list would

include adding an author or a student to the system; delet­

ing an author or a student from the system; deleting all

students enrolled in a particular course from the system;

reporting on a particular student's progress; displaying a

directory of all students or authors currently in the sys­

tem; removing lessons from a course; creating or removing a

course; and displaying formatted information about the con­

tents or available space on the files. The directory or

information requests could offer a print option, causing a

print job to be submitted to the batch job stream.

- 26 -

Implementing such a system would not be very difficult,

as programs already exist which perform each transaction

listed. above.. The print option has been implemented in

another CHAT application program, and so that logic is also

available. Finally, such a system could employ some of the

modules of the on-line CAl system, such as the main driver.

the input/output interface module, and the module which

updates the author directo~:y, with ve1:y little (if any)

modification.

- 27 -

BIBLIOGRAPHY

1. Barrier, o. Jack, Clements, PaGl c.,
UNC CAI System Programmer's Manual.
Carolina at Chapel Hill. 1980.

and MGdge, J. craig.
University of North

2. Brooks, Frederick P. Lessons on PLC programming, written
for the UNC CAl system. 1973.

3. Mudge, J. craig. Human Factors in the Design of a
computer-assisted Instruction system. Ph.D.
Dissertation. University of North carolina at Chapel
!iill. 1973.

4. Mudge, J. craig. On Writing Reentrant Programs in PL/I.
SACH Newsletter--a Publication of the university of North
carolina Student Chapter of the Association of Computing
Machinery, Chapel Hill (November 1971), 2-3.

5. Schultz, Gary D. The CHAT System: An OS/360 MVT Time­
Sharing Subsystem for Displays and Teletype. Master's
Thesis. University of North carolina at Chapel Hill.
1973.

6. Sneeringer. James. More on Writing Reentrant Programs in
Pl/I. SAC& Newslett~--a Publication of the University
of North carolina Student Chapter of the Association of
Computing Machinery, Chapel Hill {December, 1971), S-7.

- 28 -

Appendix A

CAI SYSTEM PROGRAMMER'S MANUAL

- 29 -

PBEFACE: USIJG THIS !AIDAL

This manual is intended for anyone engaging in modifica­
tion, documentation, enhancement, or maintenance of the UNC
CAI systeL A user of tais manual should already have per­
formed the following:

1. Read the CAI Operations Manual, written by Mitchell
J. Bassman; this gives an overall view of the files
used by CAI and the utility programs which exist to
maintain them.

2. Read chapters 4 and 5 of Hqman Factors ili the Design
Qf a Coaputer-Assisted IostructiQn system, by
J. craig l!udge. These chapters explain the architec­
ture of the DIAL prog.ramaing laaguage, and the opera­
tional environment of the CAI system.

3. Become faailiar with CHAT and the CC-30 terminals.

4. Becoae familiar with the CAI system. Using the file
procedures listed in the Operations l!anua~. enter
yourself as a st11dent iato the system, and then go
through some ot: the course material in student mode.
Enter yourself as an author in the system, and write
a small instructional lesson in DIAL. Explore the
author commands. Try executillg your lesson. Experi­
ment with color displays, tae DIAL pattern matchiny
facility, the SQZ aad CASE system variables.

- ii -

COIITENTS

PREFACE: USING THIS MANUAL ••••••••••••••• ii

1.

2-

3.

4.

5.

6.

OVERVIEW OF THE CAl SYSTEM • • ••• • • • • • • • • 1

THE EXTERNAL PROCEDURES CONS~lTUTING THE CAI SYSTEM 3

. .. . - •• • • . . .
• • a • • . - .

CAJ:MAIN ••
SNONOFF ••••
FULLCAI •
STUONLY

. . . • • . . - -
AUTHOR •• - -ACBPROC • • • • • •
COliPLER • • • •

. . - . . . - . .. ,. - . .
TABLES ••••••••••••••••
CODEGEN ••
SOURCE • • • • - •• . .
ElECTOR • • • ... ~ • .. • • • • •
PATPROC •• . . - . . . - -
LOGGEB • • • • • • • • • • • • • •
FILEIO • • • • . - . .
ALLOTOR • • • • • • • • • • • • • • • •
itEQDQ • • • . - - ...
iCC30IO •••••••• ~ •••••••

. . . . -
. . .
. - -

. . .. -

.
• •

3
3
4
5
5
5
6
6
6
7
8
8
8
9
9

10
10

CAI SYSTEM GENERATION - - ~ • • - 12

THE

CAl

Generating the Full System--CAIAUTH ••••••• 13
Generating the Student-only Version--CAl • • 14
Notes Concerning System Generation • • • • • • • 14
Generating a System to Run under CHATHP ••• 15

TRANSLATION AND EXECUTION OF DIAL CODE • 16

SYSTEII DISK I NP UT/OU'I PUT . . - • - 18

STUREC - The Student Record File - - . 18
AUTHREC - The Author Record File . . • • - . 21
CAIFILES • The iieart of the CAI system . . . 23

OPERATING INSTRUCTIONS . • - • - 47

CHATJCL • • • • • • • • • • • .. • • ...
!oth-Balling the CAI System ••••••

- iii -

. . • 47
47

7.

8.

9.

1 o.

Autho~ Command Facilities • • • • • • •••• 48
Addenda to the DIAL Speci£ications • • • •• 49
Procto~ ove~~ide Facility • • • • • • • • • • • • 49
OPEXEC .. • • • • • .. • • • .. • • .. • • • ... • 50
Using the PL/I Optimizing Compiler • • • • • • • 50
Debugging Aids - ~ • • • • ... 51
Gene~ating a New Version of the Compile~ • • • • 52

ABNORMAL ~ERMINATION CODES ••• . - ,.. • - • 55

PROTECTION OF CAISYSTEM DATASETS • • - ... 59

using the OS "ENQ" and "DEQ" Facilities ••
Dataset Backups and Resto~ations •••••

• - - 59
60

THE CAISYSTEM UTILITY PROGRAMS •• .. - . ..
on-Line Production Utilities •••••
Of£-Line P~oduction Utilities • • •
Non·P~oduction Of£-Line Utilities •

FUTURE liiORK - - . .. - . .
Removing AUTiiREC £~om the on-Line system
Rejuvenating the CAI Operations Manual
The CAISYSTEM Daily Jobs • • • • •
A ")HELP" Command fo~ AUTHOR •••••
Writing a CAI System User's Manual
Imp~ovi.ng Lesson Re-Compile Time •••
Modifying DIAL • • .. • • .. • • • ~

.. • 61

.. • 61
• 62

,. .. • • .. 65

. - - - • 66

- • 66
• - .. 67

• - .. 67
.. .. - 68

.... - 68
.. • • 68

..... 69

Appendix

A.

B.

NOTES ABOUT THE MANUAL ••• . .
Histo~y of this Manual
Generating this Manual

...... -

....... - ..
THE 1975 CAI SYSTEM . - - .

. . . 70

• 70
• 70

... - .. 72

BEFEBENCES ••• - ~ ••••••••••••• ~ • 73

- iv -

Cllapter 1

OVEBYXE& OF THE CAX SYSTBB

The CAI System can be thought of as consisting of two
constitueat sets of PL/I procedures. One set makes up the
on-line system, that is, that system which appears to the
user sitting down at a CC-30 terminal and signing on to a
CAl program under CHAT. The other routines are off-line;
executed by batch jobs, they perform file maiatenance tasks
and the like'- There are three on-line systems of CAI.
They are invoked by signing on to CHAT and entering the
appropriate program name.

The first is called COURSE; it is an on-liRe p.rogram for
displaying and removing lessons from a CAI course. This is
important, because a course cannot be deleted from the CAl
System until all of its lessons have been removed.

The second on-line program is called CAIOLFI {for "CAl
On-Line File Inquiry") and provides information about a
given student's file status. There is currently no external
documentation about this program, but it is well-elllgineered
and its use should be self-explanatory. Unfortunately, it
depends on user input throug.la a lightpen, and so its use is
restricted to those CC-30 terminals with a functioning
lightpen.

The third on-line system is tbat which is described in
Mudge's dissertation, and exists in two forms: CAI or
CAIAUTH. The former is for student use; it presents lesson
material, analyzes responses, and logs progress. The latter
does all of that as well, but it also supports the author
environment of the system. The source handler, compiler,
and code generator for DIAL statements are contained here,
as is the large module which serves as the interface between
an author and the system.

Over tne years, some specialized terminology has sprung
up. which bears explaining. The term °CAISYSTEK" refers to
all of the production programs aaving to do witn CAX at UNC;

a There is in fact a small set of
be executed either from a batch
on-line program; these will be
in section 9. 2.

- 1 -

hybrid routines that may
program or called by an

poointed out and described

this includes on-line and off-line routines. On the other
hand. the "CAI system" typically refers to either tae CAl or
CAIAUTH on-line programs. This manual deals primarily with
the CAI System. The other on-line programs and the rest of
CAISYSTEII (i.e., the off-line programs) are described
herein, but only briefly.

- 2 -

Clt.apter 2

THE EITERJAL PROCEDURES COHST~TOTIJG TBB CAI SYS~BB

There are seventeen distinct external procedures which,
when linked together, for111 the on-liae programs CAl or
CAIAIJTH. This cliapter contains a doescription of each one.
Note that the text coaes directly fro111 the header paragraphs
for each 111odule. Information about the logic of each proce­
dure may be found by consulting the comments in the source
code listing of that procedure. Tile ol'erall function will
be emphasized herein, not the actual impleaentation strategy
employed to achieve that function.

2..1 CUUIB

CA.IIIAIN is the aain procedure of the on-line CAl System.
It contains the 011 ERBOB on-unit which allows the system to
display fatal-error diagnostics before it dies. It also
calls SNONOl'P, the sign-on/off routine, to see whether an
author or a student is the user. On the basis of that call,
CAIIIAIN either calls AUTHOR or EXECTOR. Finally, another
call to SNONOl'.f' occurs for sign-off, and the task termi­
nates.

2.2 SHOifOfl

This routine performs user sign-on and sign-off func­
tions, depending on the value of a given bit parameter.

If the function is to sign ON a user1 SNONOFF reads the
user id from the screen, and accesses the AUTHREC and STUBEC
files to see if it belongs to a student or an author (res­
pectively), or neither.

A sign-oa atteapt may fail if (1) two incorrectly-format­
ted ids are givea; (2) two llllknown ids are given; or (3) an
attempt to enqueae a required resource fails.

If Ute sign-on is successful and the user is a student~
then either a "resume" or a "recover" sequence takes place,
according to tke RECOVIIEEDED bit in the student's SBEC
structure {read from file STUBEC). A "resume" is wllat hap-

- 3 -

pens when the student's last session ended normally. The
system restores his run-time environment by reading it into
core from his •resume area" on disk, where it vas stored
when he signed off from his last session. This time, there­
fore, he will start in a lesson about where he left off last
time. A •recover" is what happens w,hen the student's last
session ended abnormally (e.g., t,he system crashed before
sign-off). For more about resuming/recovering and the file
I/O involved, see the declarations for KAINFILE, SCB, and
SREC; also, the in-line comaeats of SNONOPF attempt to give
a good idea of the protocol involved.

If the user
sure that this
facilities. If

is an author, SNONOFP calls srs_sw to make
system vas generated with csmplete author
not, the sign-on fails.

The record of the student
updated, written, and freed.
(and therefore the ISAK files
be used again until signoff.
KAIN, informing it whether
autllor.

or author (SREC or AREC) is
T,he structures SREC and ABEC

STUREC and AUTHREC) will not
SNDNOFF then returns to CAl­

the user is a student or an

If t,he function is to sign off a user, then SliONOFF
recalls whether tae user is a student or an author. If an
author, his record is updated with data from this session,
and written back onto ADTHl!EC. If a student, his SCB is
written onto the SCB PART of his SREC, for ase in his next
session's resume sequence; he •ill begin work next time at a
place near ,where he left off this time. His SREC is then
updated, and re-written onto file STUREC.

2.3 FDJ.LCU

The modale FULLCAI consists solely of the procedure
SYS_sw. All this procedure does is return a hit value of
•false", to be tested hy SNO!iOFF. When an author signs on
to the system, SNONOFF calls the procedure srs_sw to see
whether this is the version of the system that sapports
aathor facilities. When that version of the system is gen­
erated, this module is included- When the student-only ver­
sion of the system is generated, the STUONLY module is
included instead; its version of SYS SW returns a "true" bit
value, and informs SNONOFF that oniy stadents 111ay ase that
system.

See Section 3.1 of this manual for further information.

- 4 -

2. 4 STUOifi. Y

This module, like PULLCAI, consists only of a version of
the procedure SIS sa that returns a "true" bit value,
informing SNONOPF that the system that has been generated
does not include the author facilities. This allows SMONOFF
to prevent an author from signing on to • student-only ver­
sion o.f the system.

See Section 3.2 of this manual for further information.

AUTHOR is the prime interface between an author and the
CAl System. It is called as soon as CAIMAIN learns from
SNONOFF that it is an author (not a student) who has signed
on. AUTHOR converses with its user via the command language
and line-numbering mechanism. It is t.he facility that
allows an author to enter DIAL statements and have them com­
piled, by invoking the syntax-directed compiler for each
statement received.

This procedure, not COKPLER, builds the object code and
sou.rce code files .for a lesson. COI!PLER compiles one state­
ment at a time; it merely returns (in the structure TEIIP)
the object code and literals for that one statement. AUTHOR
takes the contents of TEI!P and adds them to the instruction
and literal files for the lesson being worked on. AIJ'l'HOR is
forever updating the lesson's Lesson Control Block (LCB), to
keep track of, for example, the page translation tables and
CAIFILES region allocation.

Also, AUTHOR sets up and controls calls to EXECTOR, in
response to an author's request to view the execution of one
of his lessons.

2.6 ACBHO~

This procedure is called by AUTHOR to perform processing
on the Author Control Block (ACB), held on Region 3 of CAl­
FILES. Given a lesson name, it performs according to the
requested function parameter. Its functions incLude searca­
ing the ACB directo~y to find out where the given lesson's
Lesson Control Block (LCB) is stored; ~emoving the given
lesson f~om the ACB, returning its LCB location to AUTHOR;
adding a lesson, and returning to AUTHOR the ~egion number
allocated for its LCB; retu~ning a formatted list of all of
the lessons "owned,. by the author aow signed on; and search­
ing the ACB directory to see whether a given author id num­
ber occurs there.

- 5 -

The ACB is brought
the daration of the
ACBPROC discovers are

2. 7 ~O!IPLIB

into core (and hence, enqueued) for
procedure. Error conditions which

coded and returned in a parameter.

COIIPLEB is call.ed by AUTHOR with a single DIAL source
statement to parse. The main compilation loop receives
tokens from SCAN. the inter,nal lexical scanaer. COI!PLER in
tarn calls CODEGEN just before , a reduction takes place to
emit object code instructions into the TE!IP structure. Upon
return to AUTHOR, those instructions and literals are then
appended to the appropriate system files. The code genera­
tion phase, then, is external to CO!IPLER; COBPLER is essen·
tially just a parser.

CO!IPLER attempts no error recovery; as soon as it discov­
ers an error, it returns to AUTHOR with a diagnostic message
stored in TXT, and LP holding the place in the statement
which COIIPLER thiaks is in error. The emphasis was placed
on diagnostic intelligence, not recovery.

2.8 TABUS

llo compating is done in TABLES; it merely contains the
parser recognition tables for COIIPLER- This module merely
declares and initializes thea. The tables are produced by
the compiler generator PLICOHST. Because the tables are
declared to be EXTERNAL, they are therefore known to COII­
PLER.

These declarations and initializations are hel.d in a
module all to themselves for convenience; they are produced

,1Jy the parser generator (See Section 6.. 9) • and it is a sim­
ple matter to store that oatput in a distinct module. There
is reall.y no other reason not to internalize them within
COIIPLEB.

2.9 ~ODEGBB

CODEGEII is the semantic action routine of the compiler;
it is called witn a prodaction nuaber just before a reduc·
tion is made by the parser. Its basic task is to eait DIAL
object-code instructioas into tne structure TEIIP. There is
a section in CODEGEII for each possible reduction in the
parse; each such section does at least one of the following:

- 6 -

1. Nothing (e.g.~
<LEXICAL ID>);

in the case of <IDENTIFIER> ::=

2. Updates the symbol table., especially the TYPE infor­
mation;

3. Builds a DIAL object-code instruction and puts it
into TEKP. TEIIP_INSTIIS by a call to its internal
procedure E!IIT.

DIAL forward branches are handled with a fixup chain, as
described under "Labels and Branches" in Gries (1971), page
280.

Run-tiae storage for DIAL character variables is allo­
cated by CODEGEN when a construction reduces to <DCL STATE­
!IENT> unless the variable is taking the default attribute
(text), in which case its storage is allocated as the seman­
tic action for the "<VAR> ::= <IDENTIFIER> "reduction.

When an error condition is detected (almost always mis­
matched operand types), ERROR is set to the appropriate
code, and CODEGEN returns. CQI!PLER uses ERROR as an index
iato its array of diagnostics, and causes that message to be
displayed.

2.10 SOQCE

This roatine is called from AUTHOR to operate on the
source code file for the lesson currently loaded. It has
three entry points: GSOURCE, ASOURCE, and DSOURCE.

GSOURCE finds the lowest-numbered source statement whose
numbet: is greater than or eqaal to the parameter s_LNO, and
returns that stateaeat•s text, its statement number, and its
length.

ASOURCE adds to tee source file the statement whose text,
length, and number are passed in as parameters. AUTHOR
tells ASOURCE whether the statement goes at the end of the
source file., or somewhere in the middle. If necessary,
ASOURCE creates a new block of source code for the added
statesent.

DSOURCE deletes the statement whose number is passed in
as a paraseter. If that statemeat does not exist in the
file, DSOUR,CE ret11rns a • failure • code.

- 7 -

2.11 Bll!C'fQB

EXECTOB's prime respoasibility is to execute DIAL "Delta­
machine" instructions and mai~tai.n the activation records.
Since the machine instructions are stored in regions of the
file CAIFI.LES., EXECT.OR is also t:espoasible for controlling
the pagiag of inst~:uctions and literals. Taat is, when it
needs to access a new bloc~ of instructions, it must fetch
that page into co1:e (via a call to FILEIO).

EXECTOB is called from CAIIU.IN if a student has signed
on. In that case., it uses the current run-time envi~:onment
for that student (which was set up by SNONOFF dut:ing the
resume;recovel: sequence) to discern the statement in the
lesson in the course to begin execution with. When the les­
son is finished, EXECTOR asks the student whether he wishes
to continue to the next one, aad performs according to tb.e
gi van response.

EXECTOR is called from AUTHOR if tae user is an author.
In tilat case., thet:e is no run-time envit:onaent for the "stu­
dent"; EXECTOR creates a dummy activation record, which
disappears when execution is complete.

EXECTOR ltnovs who is calling .it by checking the value of
the external variable SIIONCODE.

2.12

PATPROC contains EXECTOR 1 s external subroutine for imple­
menting the DIAL system pattern-matching function. Basi­
cally, the student's 1:esponse is passed in, and checked for
the occurrence of a given character-string pattern, also a
parameter. PATPROC 1:eturns a bit value indicating match or
no-match. The patte1:n may contain cent-sign ("don•t-cat:e")
symbols.

Fo1: an explanation of the at:chitecture of the DIAL system
pattern-aatching function. see section 4.7 of Mudge's dis­
sertation.

2.13 LOGGEB

This aodule is called by EXECTOR while in student aode;
its purpose is to recot:d evet:y typed response issued by a
student to a question, and to record the execution of every
statement of a lesson. This is a statistical and analytic
tool# designed to let the author see the responses evoked by
his questions. ,

- 8 ..

Each student's log record consists of a chain of the
structures LOGRECORD. IUI!IFILE keeps track of all of the
chains. Each structure is stored on a regioa of ~AIFILES.
A student's LOGRECQIID stays al~ocated Uu:oughout the execu­
tion of a lesson, and is written to disk when the execution
is terminated. From time to time. all of the log records
are removed f~:om CAIFILES and vrittea onto tape by t.he off­
line utility program CAILOG; IIAI!IFILE is clea~:ed of all of
the references. The tape may then be analyzed and sumaar­
ized by an off-line program (which does not yet exist).

2.14 HLEIQ

FILEIO is the generali~ed file input/output procedure
which the system uses to communicate with its main file,
CAIFILES. The functions which FILEIO caa perform include
reading, writing, opening, closing, aad rev1:iting tlle file.
Moreover, if a read is to take place on Regions 1 th1:ough 4
of the file, vltich are serially-reusable resoarces of the

· system, FILEIO makes the necessary calls to the enqueuing
and dequeuing procedure, ttEQDQ.

For further information about the CAIFILES file., see Sec­
tion 5. 3 of this maaual. For informatioa about the parts of
that file which are serially-reusable resources, see Section
8. 1.

UJ,QTOR

ALLOTOB is a utility routine called by other procedures
of the Cli System which need to use blocks of storage
{"regions") on the main syste11 file, CAIFl:LES. lLLOTOll.
keeps track of which regions are currently in use and which
are currently free by 11aintaining the Free-Block List.
There are 1499 regioas on CAIF~LES; region 1 holds KliNPILE,
region 2 holds the Course Control Bloclt (CCB) • and region 3
holds the Author Control Block (ACB).

The Free-Block List (FBL) itself occupies 1:egions 4
through 10 of the file. All of the other regions (11
thro11gh 1499) are controlled by lLLO'l'OR. ALLOTOli can either
claim a free block .for user by the calliag procedure (thus
re11oving its number from the FBL) or return a no-longer­
needed block to the FBL.

For an explanation
the declarations for
illustrated in Figures

about the aechanis• of
the structures PBL_TOP
6 and 7 of this 11anual.

- 9 -

the FBL, see
and FBL_SEC,

2.16 !UODQ

This routine issues calls to ENQ and DEQ, which are CHAT
routines that provide a PL/I interface to the os ENQ/DEQ
supervisor macros. #iEQDQ also maintains the status of each
of the serially-reusable resources whose use is being con­
trolled.

For an explanation about thf system's serially-reusable
resources and the enqueue and dequeue protocol, see Section
8.1 of this manual_

The most heavily-used eotryi point of this module is the
tiSTOP routine. #iSTOP is called when the system discovers
an error condition with which i~ can•t cope. For instance,
if the CAIFILES Free-Block List empties, ALLOTOB calls
iiSTOP. Each caller supplies: its own stop code,. which
#iSTOP passes on to IHESABC, the OS routine which sets the
task return code. Hence, the ~top code is displayed to t.he
user. Poe an explanation of the stop codes and the mechan­
ism of #ISTOP, see Chapter 7 of, this manual.

Other entry points in the moijule include:

UINIT -- Called from CAIIIAiiN, UIIIIT defines all of the
system resources, and enqueue's the •system" resource, to
lock out off-line programs;

UENQ -- Called from FILEI6, to enqueue the first four
regions of CAIFILES;

iiDEQ -- Called from FILEIO, after writing on the first
four regions of CAIFILES, to dequeue;

UEQEXT (UDQEXT)
sign-on (sign-off) to
author resources;

Called from SliOliOFF before (after)
enqueue (dequeue) the student or

iiEQID (iiDQID) -- Called! from SNONOFF before (after)
sign-on (sign-off) to enqueue (dequeue) a particular user id
number.

2.11 t\CCJOIQ

This is the interface to tae CHAT system inputtoutput
routines; as such, it is the only module that needs to know
about them. All other routines merely address entry points
of this module, without actually talkiag to CHAT at all.
There are several eatry points, each of which serves a spe­
cial purpose:

- 10 -

#DISP and #DSPURC display the given text on the current
row (designated by the external variable ROW); the latter is
also passed column information. while the former begins the
display in coluJIB one of ROW.

#RD_T and IIRD2_T read input £rom
former uses column information passed
latter begins the read in the coluan
was.

IISETROi sets the value of ROW.

the CRT screen; the
ia as a parameter; the
where the cursor last

#SETCRS positions the cursor on the ro.w of the previous
display, in the column specified by the parameter.

#SLIDE displays the slide specified by the given param­
eter. A specially encoded parameter may also signal #SLIDE
to turn the projector on or off.

#DELAY calls the CHAT system delay functioa, to cause a
pause of the given number of seconds.

IID_DIAG displays the given
nostic message for an author)
CRT.

text (usually a system diag­
in the bottom two rows of the

#CAR asks the user to mount a particular slide tray on
the slide projector.

#EDIT implements the "EDIT" author command, asking the
user to move the cursor to the row on which he would like to
enter input. #EDIT sets ROW to .that row.

- 11 -

caapter 3

ClX S!S~Bft GEIEal~XOI

Each source module defined ill Chapter 2 should be com­
piled and linked according to the procedure given in its
header paragraph.. The object 11odllles aave usually been
stored in the partitioned dataset UNC.CS.E557C.CAI.SYSLIB.

Re11ember, there are tvo versions of the CAl System. The
first, called CAI, is for student use only; it does not con­
tain any of the autAor facilities. The second, called
CAIAOTH, may be used by both students and authors. However,
CAIADTH uses a large amount of core for aodules that a stu­
dent user will never employ. That is why the simplified
student version exists.

Each system knows whica Yersion it is by calling the
external procedure sxs_sli. There ace two versions of
SYS_Sii; one returns a true bit, and is stored in the module
STIJONLY. The other returns a false bit, and is stored in
the module PDLLCAI. Naturally, the aodule STUONLY is linked
into the student-only version, and FOLLCAI is linked into
the full-blown edition. ihen an author signs on to the sys­
tem, the SNONOPP module calls SYS_Si. If '1'5 is returned,
a "student-only" message is displayed. and the sign-on
fails.

- 12 -

3.1 GB!fEiAfiBG til~ ~IStEB--C!XAU!B

The full student/author CAIAUTH system is generated as
follows:

//jobaame JOB acct,name,parms
/ /*Pli=password
1/ EXEC PLPLD,PAB!-L='XREF,l.IST,MAP,RENT'
I /L• SYSLIB DD DISP=SHB,DSN=U!IC. CS. E557C.CHJI T. PL 1 LIB
I/ DD DISP=SHB,DSH=UNC.CS.E557C.CHAT.SYSLIB
I/ DD DISP=SHR,DSN=SYS1.PL1LIB
1/L.SYSLBOD DD DISP=SHR,DSH=UNC.CS.E557C.CBATJCL.CAI.LOADLIB,VOL=
IlL. OLD!IOD DD ' DISP=SHR,DSN=UNC. CS. E557C.C.U. SYSLIB
/IL.SYSIN DD *

II

INCLUDE OLDIIOD (SNONOFF)
INCLUDE Ol.DBOD(AUTHOR)
INCLUDE OLDMOD{ACBPBOC)
INCLUDE OLDIIOD(SOURCEj
I IICLUDE OI.D!IOD (TABLES)
INCLUDE OJ.DBOD{COBPLEB)
INCLUDE OLDIIOD(CODEGEN)
INCLUDE OLD!IOD(EXECTOR)
INCLUDE OLDHOD(CAI81IIi1)
INCLUDE OLD HOD (#CC30IO)
INCLUDE OLDBOD(LOGGER)
INCLUDE OLDMOD(ALLOTO.Ii)
INCLUDE OLDHOD(FILEIO)
INCLUDE OLDMOD(PATPROC)
INCLUDE OLDHOD (U EQDQt
INCLUDE OLDBOD(PULLCli)
ENTRY IHENTRY
NAME CAIAUT!I (R)

The order of the included object modules is not impor­
tant, with one exception. The module TABLES must appear in
the list before the module COMPLER. The reason is that
TABLES initializes certain CO!PLER data structures, declar­
ing them STATIC EXTEBNAL Ilili'l'IAL. The COI!Ii>LER module knows
them as STATIC EXTEBNU., and so the linker must be given the
initialized variable references first.

The load module created by this procedure takes about
fourteen tracks of a 3330 disk volume.

- 13 - •

3.2 G.BIQAT.IJG HI StQPBit=O!ILI !BiSJOJ--cU

The procedure for generating the student-only version of
tile system follows., Notice that the AUTHOB, COIIPLER, CODE­
GEN, ACBPROC, SOURCE, and TABLES modules are not included;
this results in a dramatic savings in the amount of core
required. Because tlle system makes extensive use of dynamic
storage allocation, measurements of the run-time memory
requirement are necessarily imprecise. However., the author
version of the system requires approximately 226K, while the
student-only version uses only about 134K. The LET option
and the LIBRARY statement promise the linker that AUTHOR
(and hence, the other omitted procedures) will never be
called.

lljobname JOB account,name,parms
II*PII=password
II EXEC PLFLD,PARII.L= 1 IBEF,LIST,RENT,LET 1

IIL.SYSLIB DD DISP=SHR,DSN=UNC.CS.E557C.CHAT.PL1LIB
II DD DISP=SHB,DSN=UNC.CS.E557C.CHAT.SYSLIB
II DD DISP=SHR,DSN=SYS1.PL1LIB
IIL.SYSLHOD DD DISP=SHR,DSN=UHC.CS.E557C.CHATJCL.CAI.LOADLIB,VOL=
I /L. OLD!!OD DD D.ISP=SHR,DSN=UNC. CS. E557C.CAI.SYSLIB
IIL.SYSIN DD *

1/

INCLUDE OLDIIOD(SNONOFF)
INCLUDE OLDIIOD(EXECTOR)
INCLUDE OLDilOD(CAIIIAilll)
INCLUDE OLD!!OD(tCCJOIO)
INCLUDE OLDilOD(LOGGEB)
.INCLUDE OLDI!OD (ALLOTOR)
INCLUDE OLDIIOD(FILEIO)
.INCLUDE OLDI!OD(PATPROC)
.INCLUDE OLD!lOD(UEQDQ)
INCLUDE OLDIIOD(STUONLY)
LIBRARY *(AUTHOR)
ENTRY IHENTBY
NAIIE CAI (B)

3.3 I!IO'l'BS COHCBUUG StS'l'BII iEBBUUOI!I

The OLDMOD DD line points to the PDS where the object
modules for the source routines are stored. The SYSLIIOD
dataset is where the load module for the generated system
will go. Note that there is another dataset reserved for
test versions o£ the CAI System; you may want the load
module to go there. That dataset is
UNC.CS.E557C.CHATJCL.CAI.TEST. The "NAME" command in the
linter input specifies the member naae given to the load
module, and it is this name that must be given when signing
on under CHAT in order to invoke that load module. The

- 14 -

"(R)" specifies that if a aember wita the given name already
exists, it is to be written over with the new load module.
If "(R) 11 is not specified and a aeaber with the given name
already exists, then the linker stores the load module in
member TEMPNAME, unless a aember already exists with 1h!1
name, in which case the job step fails.

A versioa of CHAT that will allow its application pro­
grams to run either on the CC-30 or the Hewlett-Packard ter­
minals is now under development; it is called CHATHP. A CAI
system may be generated to run under CHATHP. Since the CHAT
interface appears only in the #CCJOIO module, only that
module will have to be changed. Re-compile that module
according to the following JCL, and then geaerate the (full
or student-only) system as usual, as shown above.

//jobname JOB acct,name,T=2,Ii=200K
II EXEC PL~CL,PARM.C= 1 M 1 ,PABM.L='XREF,LIST,NCAL 1

//C. SYSLIB DD DISP=SHR,DSN=UNC. CS. E557C.CHAT. SOURCE
//C.CHATSRC DO ,DISP=SHB,DSN=UNC.CS.E557C.CHAT.SOURCE
I /C• SYSIN DD DSN=IJNC.CS. E557C.CAI•SOUBCE(#CC30IO), DISP=SHR
1/L.SYSLIB DO DISP=SHi,DSB=UNC.CS.E557C.CHAT.PL1LIB
/1 DD DISP=SHR,DSN=UNC.CS.E557C.CHAT.SYSLIB
II DO DISP=SHR,DSN=SYS1.PL1LIB
I /L. SYSL!!OD DD DISP=SHR,DSli=UNC.CS.. E557C. CAI- SYSLIB. VOL=
//L.SYSIN DD *

II

INCLUDE SYSLIB{HPNTRYS)
NAME #CCJOIO (R)

Tile generated system saould run on the HP terminals.
Now, all is not autoaatically -11. Tile HP terminals have
a larger screen than the CC-30 1 s, and all of CAl expects a
CC-30 screen. Messages are formatted with that in mind, and
variables (such as THBOW_LIM, BOW, COL, etc.) are set
accordingly. U!ltil the CAl SysJ:em can be rewritten for
CHATHP, try redllcing tae screen size on the HP's by using
the margin-setting and memory-lock features. However, the
CHATHP version ~hould also run as usual on the CC-30 terminals.

- 15 -

c&apter 4

THE TBAISLATIOI AID BXBCUTZOI OF DIAL CODE

The main purpose of the CAISYSTEM is to provide a pro­
gramming sys:tem for the DIAL language. This chapter is
intended to give t.he internal representations of source and
object code for DIAL programs, and to explaia the relation­
ships among the AUTHOR, COMPLER, and EXECTOH routines.
oversimplified, the relationship is this: COMPLER trans­
lates into object code the single DIAL source statement
given to it by AUTHOR; the object code is later executed by
EX ECTOR.

The object code generated by COMPLEH is not System/360
machine code, but an intermediate form which Mudge chose to
call "Delta code". This Delta code is executed by EXECTOR.
Thus, EXECTOR can be tbought of as an implementation of a
"Delta machine". This machine has a single-address instruc­
tion format; each iastructioa consists only of an eight-bit
opcode, followed by a two-byte operand. Instructions are
paged by the Delta machine. Character string (read-only)
literals addressed by Delta machine instructions are also
paged.

Thus, object code consists of a set of instruction pages,
a set of literal pages, and the associated page translation
tables.

For an explanation of
see the CODEGEN module,
opcode mnemonic variables

the object code instruction set,
especially the section where the
are declared.

The object code is reentraBt, all<Uiing for multiple stu­
dent execution of , the same copy of a lesson. A st11dent•s
activation record contains lais current Delta machine status
(including state definitions and register contents) • and his
storage for DIAL program integer variables. This informa­
tion is is held in the student's Student Control Block
(SCB). An activation record also contains of the storage
necessary for DIAL character strings. This is held in two
structures known as POOL1 aad POOL2, each of which may be
thought of as forming half of one very long PL/I character
string. The SCB contains indexing and pointer information
about POOL1 and POOL2. 1 student's activation record, then,
consists of one occurrence of each of SCB, POOL1, and POOL2.

- 16 -

Each DIAL lesson has taree main parts: a source code
file, an object csde file, and a symbol table. Bach of
these parts is stored on a region or regions of the system's
main file, CAIFILES; the lesson's Lesson Control Block (LCB)
contains a directory pointing to each such region. Of tlaese
three parts, all are used at compile time, whereas only
object code (pl.us, of course, an SCB) is used at lesson-exe­
cution ti111e.

Now for a more detail.ed l.ook at the DIAL compilation pro­
cess. The first step in the process is started when AUTHOR
receives a)LESSON command from an author. That causes the
initialization of the symbol table, the page-translation
tables, the LCB, and the source and object code files.

DIAL statements may then be entered for the new lesson.
AUTHOR passes each one to COKPLER for compilation and object
code generation. If COKPLEli finds an error, it specifies a
diagnostic message to AUTHOR, and returns; AUTHOR then dis­
plays the diagnostic and tae offending statement, and reads
the author's correction. If COKPLER does not find an error,
it reports that all is well, and AUTHOR prompts the user for
another command or DIAL statement.

Now for each DIAL statement taat AUTHOR receives from the
user, it passes that statement to COftPLER, along with the
current symbol table. COl!PLEB operates on that statement
onl.y, emitting its object code into TEMP~INSTNS and
TEMP_LIT. on retura, if no error has beea detected, AUTHOR
does the followiag:

1. adds TEMP_I~STNS to the end of the file of INSTNS
pages;

2. adds TEMP_LIT to the end of the file of LIT pages;

3. adds the source statement to the end of the source
code file;

4. performs housekeeping. e.g •• fixing up forward-refer­
ence chains in the file of INSTilS;

5. saves all the foregeing on taeir respective disk
files.

- 17-

CJaapter 5

Cli SYSfBft DISI IIPUr/ODTPU~

There ace three on-line disk files used by the CAl System
during a session. Two are LSAK files. and contain student
and author directories, respectively. Tae tb.ird is a
direct-access file, containing everytb.ing else: all the
LCB's, the source and object code files, the sca•s, etc.

The !SAM files are accessed only by the SNONOPF routine
at sign-on or sign-off. During the rest of the session,
only the direct-access file, with its muca faster access
method, is ever used.

s.1 sru••c = t~~ sxu»•rr •~eoa» l!kl

STUREC is an LSAM dataset containing student enrollment
records. For a description of the creatioa and maintenance
of this file, consult Chapter 2 of tlle CAl Operations
Manual. STUREC is declared thus:

DECLARE STUREC FILE RECORD KEYED UPDATE DIRECT
ENVIRONKENT(INDEXED);

Input/output is by the usual PL/I statements

READ FILE {STUB EC) INTO {structure_name) KEY (STU_ID) ;

WRITE FILE(S'fUREC) PRO!! (structure;..name) KEYFlWK (STU_ID);

The records in file STUREC are instances of the PL/I
structure SREC.. STUREC contains all pertinent student per­
sonal data and CAI status. See Figure 1 for a complete des­
cription of the record format of the STUREC file.

- 18 -

DECLARE
1***1
I* SREC is what one record on the !SAil file CAI.STUREC looks like. */
I* It contains everything there :is to know about a particular stu- */
I* dent in the CAl System. In particular, SREC is composed of two */
I* major kinds of information. The part consists of all the */
I* bureaucratic information alfailable (name, address, course, etc.). */
I* The second is tile copy of th<e student's Delta machine actilfation */
I* record, vh1ch is stored on SREC between sessions, and used to */
/* create the on-line (in-core) actilfation record at sign-on. SBEC */
I* is ns<ed in the oa-line CAI System only by SNONOFF (since it's the */
I* only module that acc<eSS<eS the ISlft files). It is also used by */
I* some of the off-line utilities programs, and by the on-line */
I* student-file-inspector CAIOLFI. */
I* I INCLUDED from DCLLIB (SRECDE.F). *I
I*** I

1 SREC CONTROLLED, /*STUDENT RECORD*/

/**/
/* PART I: Bureaucratic information about the student. The */
/* data that does not change from session to session (e.g., naae, */
/* id, creation date, etc.) vas put here by the off-line utility */
I* program STUl'IAINT. T1le rest is updated by the on-line system. *I
I* see the Operations Manual to learn about STUBAINT. */
/**/
2 ID CHAR(9), /*** KEY *** Student's id number; */

2 NAIIE

2 PERSONNEL,
3 PHONE

3 YEAR

3 !IAJOR

3 UNC_COURSE

2 DATE

2 TERIIHRS

CHAR(24j,

CHAR(7),

CHAR(1),

CHAR(4) ..

CHAR(9),

CBAR{6),

/* the file's record key. *I

I* '1'-'4' .. 'G', or 'F' (faculty) */

I* Format.: standard UNC department*/
I* abbreviation; e.g.: 'COilP'. */

I* Format: 1 AAAABBBBN 1 , where */
I* 'AAAA' = standard UNC dept. */
/* abbreviation; 'BBBB• = course */
I* number {rigat-justified) ; and */
I* 'N' = tile section number. For */
I* example, •cORP 161• stands */
I* for COMP 16. Section 1. */

I* Date this record was created; */
/* format = 'YIK!!DD'. */

FIXED BIN(15,0), /*Number of terminal hours this */
/* student has spend on the course*/
I* he's now enrolled in. Excludes */
I* time from abnormally-ended */
I* sessions. *I

- 19 -

2 SESSIONS,
3 lll!ECOYEBS FIXED BIII(15,0).

3 IIRESUIIES FIXED 8111(15,0).

2 COURSE CHAI!ACTER(6),

2 RECOVNEEDED BIT(1),

2 COURSE_END BIT(1),

I* How many recovers have been *I
I* done foe this student; i.e., *I
I* how many sessions have ended *I
I* abnormally so fac? *I

I* How many resume sequences have *I
I* taken place for this student; *I
I* i.e., how many sessions have *I
I* ended normally so far? *I

I* llhat CAl course is this student*/
I* taking? *I

I* Oil means last session ended */
I* ahnocmally, and the student's */
I* activation record will have to */
I* De obtained from the RECOVER */
/* area at sign~on time. Can also */
I* mean that this student has a */
/* session in progress right nov. */
/*Has student finished the course?*/

/**/
/* PABT II: The copy of the studeot•s activation record, saved *I
/* in his SBEC on the ISAII file STUREC between sessions. The *I
/* activation record is composed of three parts: the Student *I
/* Control Block (SCB), POOL 1, and POOL2. *I
1**1
2 SCB_PART LIKE SCB, /* Copied into the in~core SCB at */

2 POOL1_PABT CHAR(2032),

2 POOL2_PART CHAR(2036);

/* sig.n~on time; sea copied into */
I* here at sign-off time. */

/* Copied into POOL1.POOL1DATA at *I
I* sign~on time; copied from *I
/* there at sign-off time. *I

/* Copied into POOL2. POOL2D AT A at *I
I* sign-on time; copied from *I
I* there at sign-off time. *I

Figure 1: ftodel of a STUREC Record - SREC

- 20 -

AUTHBEC is an ISAft dataset containing author
For a description of the creation and •aintenance
file, consult Chapter 3 of the CAl Operations
AUTHREC is declared thus:

records.
of this
llanual.

DECLARE AUTHREC FILE JlECOBD KEUD UPDATE DIRECT
EIVIROBIIEIT(INDEIED);

Input/output is by tile usual PL/I state•ents

BEAD FILE(AUTHREC) INTO(structure_na•e) KEY(AUTH_ID);

II RITE FILE(AUTIUtEC) FROif (structure_na•e) KEYFROif (AUTH_ID};

The records in file AUTHREC are instances of the PL/I
structure AREC. AUTHREC contains all pertinent author per­
sonal data and CAI status. see Figure 2 for a complete des­
cription of the record format of the AUTHREC file.

- 21 -

DECLARE
1 AREC CONTROLLED,

I** I
I* Each instance of this structure is a record on the keyed ISAM */
/* file CAI.AUTHREC.CHATJCL. The file contains personnel and work */
I* information about each author known to the CAISYSTEM. The file*/
I* is used by the on-line module SNONOFF to compare the given */
I* sign-on id to know author id•s •. It is also used by off-line *I
I* maintenance routines such as AUTHBEPT and AUTMAINT. It is *I
I* initialized by AUTMAINT wheB an author is added to the system. *I
I* The on-line system updates TEBMHRS and NSESSIONS, and uses *I
I* ID. It is possible to completely remove AUTHREC from the on- */
I* line system and from the CHATJCL. See the System Programmer's *I
I* Manual, under "Suggestions for Future work". *I
I* UHCLUDEd from DCLLIB(ARECDEF). *I
1**1

2 ID

2 NA!IE

2 PERSONNEL,
3 PHONE

CHAB(9),

CHAR (24),

3 UNIY_ADDRESS
CHAB (7),
CHAR (20) •

2 DATE_EST CHAR (6) •

2 TERMHRS Fl:XED Bilf(15,0).

2 NSESSIONS . FIXED Bl:N(15,0);

/**RECORD KEY** Author's id #. *I

I* Date this record added to *I
/* AUTHREC. *I

/* Number of terminal hours *I
I* spent. Fora: nnn.nn *I

I* Number of successful sign-ons*l
/* accomplished by this author. *I

Figure 2: Model of an AUTHREC Record - AREC

- 22 -

5.3 £AiflLES = til HBll% if 11J £AI SJSJIB

The most important of tbe oa-line datasets is CliFILES.
The creation and maintenaace of CAIFILES is described in
Chapter 4 of the CAl Operations ltanual. CllFILES is dec­
lared thus:

DECLARE CAIFILES FILE RECORD DIRECT UPDATE KEYED
ENVIRONIIEIT(.BEGIOHAL (1));

Note the disparity betweea tile DD name (CAI) and the last
qualifier of the dataset name (CAIFI.LES); this is the only
file with that unfortunate quality. In this manual, it will
be re.ferred to by tile less ambiguous of Ue two names, "CAl­
FILES".

CAIFILES is a dicect-access dataset divided logically
into blocks or ".regions•. Each region is exactly 2036 bytes
in length, because that vas an attribute given it when it
was created. In PL/I, REGIONAL(1) files have the property
that each block holds exactly one record. Hence, there is
exactly one key for each region, since the file is also
KEYED RECORD- Keys for PL/I files are character striags;
when CAIFILES was created, KEYLEN=9 was specified. So, each
region has a nine-character key, and the key for each region
is simply the character form of the region nuaber. For
example, Region 192 has a key of 1 192 1 • All input and
output to CAIFILES by tl:le CAI system is done by the proce­
dure FILEIO; it is the only routine that "knows" the file.
Many routines logically cause I/O with that file, but only
via calls to FILEIO.

There are 1499 regions on CAIFILES; it occupies about 250
tracks of a 3330 disk pack. The first ten regions are fixed
in purpose; they uill always contain tl:le same kind of infor­
mation. Figures 3 through 7 offer descriptions of the
information contained on the first ten regions of CAIFILES.

- 23 -

DCL 1 MAINFILE BASED (HAIIPTB),
/**/
I* This file is held on Region 1 of CAIFILES; it is accessed */
I* by on-liae routines LOGGER (to find where to write new log *I
I* information) and SIIOIIOFF (to effect recover;resume sequence) ;*/
I* by the on-line program COURSE, to check password information,*/
I* and by o£f-line programs. */
I* IIIICLUDEd from DCLLIB(MAINDEF). */
1**1

!*** LOGFILES: ***/
2 LOGF_COUNT FIXED BIN (15, 0}, I* How full is LOGFILES? *I

2 LOGFILES {.300)
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

FIXED BIN(15,0), I* Each student has his
own logfile. A "logfile" is a chain of "log­
records"; a logrecord is defined by the DCLLIB
member LOGBDEF. A logfile is where the on­
line system {via the LOGGER module) stores all
of the lesson-execution information: which
statements were executed, and what responses
were given by the student. Each logrecord is
held in a region on CAIFILES. This array
points to the first logrecord of each logfile
chain.

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

/*** CHECKPOINT INFOBltATIOI: ***/
I* llhen a student signs on, SWONOFF puts into I!AINFILE the */
I* CAIFILES block number where his RESUME area SCB and his */
I* RECOVER area SCB are stored. T.ilat way, if the session ends */
I* abnormally, they can be recovered tile next time that studeat */
/* signs on. If the session ends normally, then SNOWOFF stores */
/* the RESUME area in the student's SREC, deletes his RECOVER *I
/* area, and removes from MAINFILE the pointers to them. Another*/
/* way to put it is that MAIHFILE.CHECKPOINT lists all students */
I* who are sig.ned on right BOll, plus all those whose last */
I* session terminated abnormally. *I
2 CHP_COUNT FIXED BIN(15,0), /*How many students have */

I* checkpoint information in MAINFILES right now? */

2 CHECKPOINT{50~,
3 STU_ID CHABACTEB(9}, I* This student's id nbr. *I

3 RECOV FIXED BIN (15.0}, I* Block number of this */
I* student's RECOVER area SCB copy. *I

3 RESUM FIXED BIN (15,0), /* Block number of this */
/* student's RESUME area SCB copy. *I

/*** LOG OF PASSIIORD ACCESSES ***/
I* This log is cleared by running the off-line program */
I* ACCSLOG. See CAl Operations Manual ·for details. */

2 ACC_COUNT FIXED BII(15,0), /* HOII many accesses now stored? */

2 ACCESS_LOG(37),

- 24 -

3 U CHAR(9),
3 l'Gll CHAR(8),

I* lao mad~ tae restricted access?
I* What program vas accessed?

*I
*I

/***,l'ASSVORD ACCESS KEYS ***I
2 FILE_ACCESS (9), I* Room to store 9 restricted pgm names and *I

I* their associated password keys. *I
3 PGM CHAR{S),
3 KEY CHAR(3),

I*** DAILY-JOB COMMAND VECTOR ***I
2 DJCOilV BIT(16); I* See CAl Operations Manual

I* especially sections about
I* DJCVllNT utility programs.

Figure 3: IUINFILE - Region 1 of CAIFILES

- 25 -

for explanation;*/
the CAILOG and */

*I

OCL 1 CCB BASBD(CCB_PTR),
I** I
I* This is the course control Block, held on Region 2 of file *I
I* CAI (CAI.CAIFILES.CHATJCL). Like all blocks on CAIPILES, it *I
I* is 2036 bytes long. The CCB contains information about all *I
I* of the production courses in tae CAl system. In particular., *I
I* it lists all the course naaes, the number and names of each *I
I* course's lessons, and in which block of CAIPILES the LCB for *I
I* each lesson is stored. The CCB can hold inforaation for up *I
I* 40 courses, and 204 associated lessons. *I
I* ~INCLUDEd from DCLLIB(CCBDEP). *I
1**1

2 COUNT

2 NEXT_PREE

FIXED BIH{15,0), /* Nuaber of courses currently
I* in the CAl System.

*/
*I

FIXED BIN(15,0), I* The next free element in
/* CCB.RECS. So, NEXT_PBEE-1
I* the nbr of lessons in the

*I
is *I
CCB.*I

2 COUBSES(40) 1

/**/
/* For the i-th course, CCB.COURSE(i) holds the name of tllat *I
/* course, the nuaber of lessons comprising it, and the index *I
I* in CCB.RECS of the information about its first lesson. *I
1**1

3 COURSE_ID CHAR (6) • /* The name of the course. *I

3 REC_lNDEX FIXED BI11(15,0), I* Index of this course's first *I
/* lesson's data in CCB. RECS. *I

3 REC_LEII FIXED BIN (15., 0), I* Nuaber of lessons in this *I
I* course. *I

2 RECS (204) I

I** I
I* For each lesson of each course, CCB.RECS holds the lesson *I
I* name and the block number of CAIFILES where that lesson's *I
I* LCB is stored. The lessons are gro11ped together by co11rse.*l
1**1

3 LESSON CHAR (6), I* Name of this lesson. *I
3 LCB FIXED BIN(15.0); /*Block nbr of this lesson•s LCB.*I

1**1
I* For example, the CCB can hold information about 40 - COUNT *I
I* more co11rses 1 and 204 - HEXT_PREE + 1 more lessons. The *I
I* LCB for the first lesson of course #i is held in the block *I
I* of CAIFILES given by CCB.RECS(COURSES(i).REC_INDEX).LCB. *I
I* The LCB block for the j-ta lesson of course #i is given by *I
I* CCB.RECS(CCB.COURSES(i).REC_INDEX + j- 1).LCB. The *I
I* i-th co11rse has CCB.COURSES(i).REC_LEN lesso11s attached. *I

- 26 -

/**/

Figure 4: The Course control 5lock - Region 2 of CAIPILES

- 27 -

DCL 1 ACB BASED(ACB_PTR),
I** I
I* AUTHOR COJITBOL BLOCK: He.ld oa Regioa 3 of CAIFILES, this *I
I* structure gives status inforaatioa about all aut£ors known *I
I* to the system. Basically, it is a list of all authors, with */
/* information about WAere all the LCB's are for the lessons */
I* currently in each one's library. */
/* liNCLUDEd from DCLLIB(ACBDEF). */
1**/

2 COUNT FIXED BIN(15,0), I* Number of authors currently *I
/* known by the system; how full */
/* ACB.AUTHORS is. */

2 NEXT_f'REE FIXED BIN(15,0), I* Next free element in ACB.RECS.*/
I* NEXT_FREE - 1 is the total */
I* number of unattached lessons */
I* in all authors• libraries. */

2 AUTHORS (40),
I* Each instance of ACB.AUTHORS holds a particular author's *I
I* id number, the index in ACB.RECS of information about that */
I* author• s first lesson, and the aumber of lessons that tile */
I* currently has in his library (un-attached to courses). *I

3 AUTH_ID CHAR (9)"

3 REC_INDEX FIXED BIN(15,0), /*INDEX OF AUTHOR'S FIRST LESSON *I

3 REC_LEN

2 RECS (184),

/*Ill RECS. *I

FIXED BIN(15,0), I* How many unattached lessons *I
/*this author has in his library.*/

/* Each instance of ACB. BECS holds a lesson name and the *I
/* block number in CAIFILES of that lesson's Lesson Control */
I* Block. */

3 LESSON

3 LCB

CHAR {6), /* The lesson name.

FIXED BIN(15,0); /*Block number of the LCB for
/* this lesson.

*I

*I
*I

1**/
/*For instance, Author ti's id is in ACB.AUTHORS(i).AUTH_ID. *I
/* He has ACB. AUTHORS (i). REC_J.JU lessons in his library. The */
/* LCB for the first one is held on the CAIFIL.ES block specified*/
I* ACB.RECS(ACB.AUTHOBS(i).BEC_I.DEX).LCB. The LCB for the *I
I* j-th one is in ACB.RECS(ACB.AUTHORS(i).REC_IJIDEX + j-1) .LCB.*/
/* There is room for (184 - ACB.IIEI'l'_FBEE + 1) more lessons in *I
I* the ACB. There is room for (40 - COUNT) more authors in the *I
I* system. *I
I** I

- 28 -

Figure 5: The Author Control Block - Begion 3 of CAIFILES

- 29 -

I*** I
/* The Free-Block List (FBL) is a list of all of the CAIFILES regions*/
I* that ace not currently ia use. (Regions 1 thru 10 ace always in */
I* llSe, containiag llAINFILE, the CCB, the ACB, and the FBL. The */
I* othec regions aay, for exaaple, contain secti.ons of DIAL source */
I* code or object code, an LCB, an sea, a LOGFILE, etc.) The FBL */
/* is a stack, composed of eight sections. Each section can list */
I* 500 entries. Sections 0 and 1 are both on Region 4 of CAIFILES; */
I* although they are defined to be two sections, they in fact act */
/* one double-large section of the stack. The rest of the stack */
/* (Sections 2 thcu 7) are oa Regions 5 thru 10, respectively, with */
I* one section per region. The top of the stack (i.e. • where the */
/* pushes/pops take place) is Section 0 or 1 (depending on how full */
I* the 1000-eleaent free-block list in FBL_TOl' is). They are the only*/
/* sections of the stack that fills ap or empties out one element at */
/* a time. When Section 0 fills up, tile waole stack is shifted down */
/* A SECTION (500 ENTRIES) AT A TI~E. Section 0 is then empty once */
/* agai.n, and ready to be filled up again, entry by entry. on the */
/* other hand, when Sections 0 and 1 are hoth empty because of many */
I* allocations, the entire stack is shifted up, a section at a time; */
/* all 500 entries of Section 2 are put into section 1, and so focth.*/
/************************************** *I

/* *I
DCL 1 FBL_TOP BASED (FBL_TOP_PTR), /* *I

I* *I
/************************************** *I
/* FBL_TOl' holds tae top of the FBL stack. Sections 0 and 1 of the */
/* stack reside here, and the entire stxuc~ure resides an Region q */
/* of CAIFILES. When Section 0 fills up, it triggers a stack shift */
I* to move all sectioas down. Similarly • when Sections 0 and 1 are */
/* both empty, it triggers a stack shift to move all sections up one.*/
/* "INCLIJDEd from DCLLIB{BTOPDEF). *I
/***/

2 NEXT_FBEE

2 BOS_SECTIOlf

FIXED BIN(15,0), /* Which is the next empty*/
/* element of FBL_TOP •. Fli.EE_BLOCKS. */
/* FBL_TOP.FR&E_BLOCKS (NEIT_FREE) is the */
/* absolute top of the stack. NEXT_PBEE */
/* varies from 1 to 1000. When it's 1, */
I* it•s time to shift tbe wbole stack down */
/* a sectioa to empty out Section 0. When */
/* 1000, both Section 0 and Sectian 1 are *I
/* empty, and tae whole stack must be shif-.*/
I* ted up a section to fill up Section 1. */

FIXED BIN {15, 0) • /* Tells which section of * /
/* the stack is tae last one used; i.e., *I
I* which section is the stack bottom. */
I* Varies from 0 to 7. *I

2 FREE_BLOCKS(1000) FIXED Bilf(15,0), /* Sectians 0 and 1 of */
/* the stack. Section 1 is defined to be */
/* FREE_BLOCKS (501) thru FREE_BLOCKS (1000) ,*/
/* inc14sively, while Section 0 is */

- 30 -

2 FILL

/* FREE_BLOCKS(1) taru FREE_BLOCKS(500), *I
/* inclusively. Section 0 fills up from *I
/* froa the bottoa; i.e., FREE_BLOCKS(500) *I
I* is filled before FREE_BLOCKS (499) ; vllen *I
I* FREE_BLOCKS(1) is filled. Section 0 is *I
I* full, aad a section shift must occur. *I

CHARACTER (32) ;
I* structure up
I* one C.Ul'ILES

I* Hot used; brings the
to 2036 bytes, the size of
region.

*I
*I
*I

Figure 6: FBL_TOP - Region 4 of CUFILES

- 31 -

DCL 1 FBL_SECTION BASED(FBL_SEC_PTB,,
1***1
I* FBL_SECTION is waat eacA of the remaining sections (2 thru 7) of *I
I* the FB.L stack look like. These sections reside on Regions 5 thru *I
I* 10 of CAIFILES. None of the elemeats of any section is ever *I
I* handled individually; rather, an entire section may be shifted *I
I* all at once. *I
I* ~INCLUDEd from DCLLIB (BSECDEF). *I
1***1

2 FBEE_BLOCKS(500} FIXED BIN(15,0), /* The list of the 500 */
I* free blocks held in this section. *I

2 FILL CHARACTER {1036) ; I* Not used; aakes this *I
I* structare tae exact size of one region *I
I* of CAIFILBS: 2036 bytes. *I

1***1
I* So, for instance, the element at the absolute bottom of the stack *I
I* is FBL_SECTION. FiEE_BLOCKS (500) of Section t FBL_TOP.BOS_SECTI<>N. *I
I* There are (7 - FBL_TOP. BOS_SECTIOIII) stack sections not current- *I
I* ly in use. and (999 - PBL_TOP.NBXT_FBEE) more regions may be *I
I* allocated before a stack-shift mast be done to re-fill sections *I
I* 0 and 1. Remember, allocating bloeks empties out the FBL, and *I
I* freeing blocks fills it up. *I
1***1

Figure 7: FBL_SBC - Regions 5-10 of CAIFILES

- 32 -

The rest of CAIFILES (Regions 11 through 1499) may hold
one of several kinds of inforaat.io,a. or not,aing at all. In
particular, such a region may hold

1. a block of DIAL source code (see Figure 8) ;

2. a lesson's compile-time symbol table (see Figure 9);

3. a block of a lesson's object-code instructions (see
Figure 10~;

ij. a block of a lesson's object-code literal pages (see
Figure 11);

5. a block of storage for a lesson's character-string
variables (see Figure 12);

6. a block of a student's log file (see Figure 131:

1. a Student control Block for a particular student (see
Figure 14);

8. a particular lesson's Lesson Control Block (see Fig­
ure 15).

- 33 -

DCL 1 SOURCE BASED (SRC_PTR),
1**1
I* SOURCE is what a CAIFILES soarce-code block looks like. The *I
I* LCB for a lesson contains a list of all the blocks for that *I
I* lesson which contain its source. Each one looks like this.. The */
I* actaal source is held in SOURCE-DATA. The index of that space */
I* is contained in SOURCE.DIR_2. Each block of source code can *I
I* contain forty statements, or 1792 bytes, whichever is less. */
I* UIICLUDEd from DCLL~B(SCEDEF).*/
1**1

2 DIR_2(40),
I* The directory into SOURCE.DATA. The I-th source state­
/* me.nt held in this block has a statement namber of
I* SOURCE.DLIIO(I), is SOURCE.DLEH(I) bytes long, and is
I* in SUBSTR(SOURCE.DATA. SOURCE.DLOC(I), SOURCE.DLEN(I)
3 DLNO FIXED BIII(15,0),
3 DLEII FIXED BIII(15,0),
3 DLOC FIXED BIN(15,0),

*I
*I
*I

I· *I

2 FRBE_LIIIE FIXED Bill (15,0), I* The next free element of *I
I* SOURCE.DIR_2. I.e-, taere are FREE_LIIIE- 1 statements */
I* currently held on this block (i.e., ia this st:racture). *I

2 FREE_POINT FIXED BIII(1S,O), /*The next free location in *I
/* the pool of source code, SOURCE.DATA. *I

2 DATA CHARACTER(1792); /*The pool of characters which *I
I* make up the source statements held on this block. */

Figure 8! Template for a Bl~lt of DIAL Source Code

- 34 -

UECLARE
1 C_SY!_BCD BASED(C_SYM_B_PTB),
1***1
/* c_sYII_BCD is the first half of the coapile-tiae symbol table *I
I* for this lesson. Tae second part is c_SY!_DOPE. This part *t
I* is just a list of tae identifiers currrently in the table; *I
I* all information about thea is contained in the other part. *I
I* i.llen not in core, each instuce of c_SY!_BCD resides on a *I
I* region of CAIPILES, pointed to by the lesson's LCB. The *I
I* index of an identifier in c_SY!_BCD is also its index in *I
I* C_SY!_DOPE. *I
I* ~INCLUDEd from DCLLIB(SYKBDEF). *I
1***1

2 BCD(200) CHARACTER (10), I* List of variables• identifiers. *I
2 PILL CHARACTER(36); I* unused; exists just to make the *I

I* structure the exact size of one *I
I* CAIFILES region: 2036 bytes. *I

DECLARE
1***1
/* This is the second part of tae symbol table. It holds the actual *I
/* type information about each entry vhose identifier appears in *I
I* c_SY!_BCD. The index of an entry in c_sYM_BCD is also its index *I
I* in here. * 1
I* IIIICLUDEd froa DCLLIB (SYMDDE.F). *I
I*** I
1 C_SYM_DOPE BASED (C_SYK_D_PTR),

1************************************1
2 TYPE(339) FIXED BIII(15,0), I* Explained in the following Type */
2 ADDR(339) FIXED BU(1S,O). I* Definition Table,: *I
I******************************** *I
I* TYPE! MEAN~NG I CONTENTS OF 0 ADDR" I PUT THERE BY *I
/* ====+================-·--=========---========+================= *I
I* 0 I Undefined. i 0. I *I
I* I I I *I
I* 1 !Character string ISCB.STORAGE.S_PTR ICODEGEN <DCL ST> *I
I* 1 variable. 1 index. 1 or default. *I
/* I I I *I
I* 2 I CCNAHE I Address in LIT (an JCODEGEII <DCL ST> */
I* I I encoding of page I using ABSOLUTE_ *I
/* I I and offset). I NEXT_LIT. *I
I* I I I *I
I* 3 I CHAR STR CONST I I *I
I* I I I */
I* 4 !Integer variable.ISCB.STOB1GE.IBT index.jCODEGEN <DCL ST> *I
I* i I I *I
I* 5 jinteger constant.& 1 */
I* I I I *I
I* 6 !Slide variable. tSCB.STORAGE.!IT index.jCODEGEN <DCL ST> *I
I* J I I *I
/* 7 I Slide Constant I Act11al value. I CD DEGEN <DCL ST> *I
I* I {SC) • I I * 1
I* I I I * 1
I* 8 I {--not used--) I ; *1

- 35 -

I* I I I *I
I* 9 I Label. j Branch address in JCODEGEN <LABEL> *I
I* l I IIISTBS (encoding of j *I
I* I I page and offset)- I *I
I* I I I *I
I* 10 jLabel needing &Pointer to last ele- !CO DEGEN, wJ!en *I
I* I fixup. I ment addced to the I forward branch *I
I* I I fixup chain. I situation.. *I
I* j I *I
I* 11 l PROC lUllE I not implemented *I
I* 12 IPLISUB A not implemented *I
I* 13 I GLOBAL CCBAJ!lE I not implemented *I
I* 14 I GLOBAL IliT VAB I not implemented *I
I* 15 I ARRAY I not implemented *I
I* I I *I
1***-**1

I* The following is a list of information needed to be retained from *I
I* one author session to another. * 1

2 P_COUNTER FIXED BIN(15,0), I* Next free location (page,offset) in*/
I*IIISTN PART OF OBJCODE BEING BUILT. *I

2 SYK_FREE FIXED BIN(15,0), I* Next free element in this symbol *I
I* table. *I

2 INT_FREE FIXED BIN(15,0), I* Next available element in the run- *I
I* time integer storage area, *I
I* SCB. STORAGE. INT. *I

2 STR_FREE FIXED BIN(15,0), I* Next free element in the list of */
I* string pointers, SCB.STORAGE.S_PTR.*/

/* FOLLOWING
2 SH_LAST
2 C'l'RL_Sil

2 UNREC_P

IS NEEDED TO CO!IPILE "CONTROLLING SHOW" INFORMATION: *I
BIT(1),
BIT (1), /*FOB "CONTROLLING SHOll" - SIGNALS PB.OC AUTHOR */

/*TO GO CHANGE LAST INSTRUCTION (.A NOP) GENER· */
I*ATED BY PREVIOUS DIAL STATMT TO A ZEROUNREC. */

FIXED BIN { 15,0),
2 REP _STACK(.10) FIXED BIN(15,0},

FIXED BIN t 15.0),
FIXED BIN (15. 0),

2 REPEAT_STACK_TOS
2 SYI'I_SPABE {23)

2 FILL CHARAC~ER(600); /*Not used; exists just to bring the*/
I* structure up to the size of one */
I* CAIFILES region: 2036 bytes- *I

Figure 9: A Lesson's Compile-Time Symbol Table

- 36 -

DCL 1 INSTNS BASED(INS_PTR),
I*** I
I* This is what a page (CAIPILES region) CJf object-code instructions *1
I* looks like. Delta-111achine instructions are single-address; each *1
I* consists of an 8-bit opcode, following by a two-byte operand. *1
I* The instruction pages for each lesson are pointed to by that *I
I* lesson's .LCB. For more infor111ation about Delta-machine code and *1
I* DIAL translation, see Chapter of the system Programmer's ftanual. *I
I* %INCLUDEd from DCLLIB(INSTDEF).*I
1***1

2 NEXT_FREE FIXED BIN{15,0), I* The next free instruction *1
I* location in OPCODE and OPND *1

I* below. Will be 513 (i.e., signalliBg "full") for all *1
I* but the last page of instructions filled by AUTHOR. *1

2 OPCODE(512) BIT(8), I*
I*

For a
their

I* associated mne111onics, see

The opcode parts.
of all opcodes and
procedure CODEGEN.

2 OPND (512)

2 FILL

FIXED BIN (15, 0), I* The operand pa~:ts.

CHAR (4 98);

I* 2036 bytes: the size

I* Not used;
I* bl: ing the

of a CAIFILES

exists only to
structure up to
region.

Figure 10: Template for a Block of DIAL Object Code

- 37 -

DCL 1 LIT BASED (LIT_PTB),
1***1
I* This is what a page (CAIFILES block) of object-code cha~acte~- *I
I* st~ing lite~als looks like. The lite~als pages fo~ .a lesson a~e *I
I* pointed to by the lesson's LCB. *I
I* %INCLUDEd from DCLLIB{LITDEF). *I
1***1

2 NEXT_FREE FIXED BIN(15,0), I* The next free location in LIT.D~T~.*I

2 DATA

/* used by AUTHOR when adding a *I
I* literal to this page, from TEftP.TEMP_LIT. *I

CHARACTER{20.34); /*The actual cha~acter-string lit- *I
I* e~als for this page. Each lite~al *I

I* begins with two bytes of length info~mation, and a *I
I* two-byte header containing START_CO.L screen formatting *I
I* information for DIAL SHOWAS statements at execution */
I* time. The length, then, is the length of the lite~al */
I* plus two. The START_COL information is used by the *I
I* lexical SCAN routine in COftPLER, and by EXECTOB. */

Figure 11~ Template for a Block of String Literals

- 38 -

DECLARE
1 POOL1 BASED(PL1_PTR),
1***1
I* POOL1 is the first llalf of the run-time storage for DIAL *I
I* charact.er-st:cing variables.. The lengths and pointers oflto *I
I* each string are held in SCB.STORAGE-S_PTR. The second half *1
I* of tae rwn-time string-variable storage is POOL2. Each of *I
I* POOL1 and POOL2 is the size of a region of CAIFILES. Together *1
I* with SCB, they make up a stud,ent•s entire Delta machine run- *I
I* time activation record. When there is not enough room left *1
I* on POOL11POOL2 to store another string, EXECTOR•s internal *1
I* routine COMPACTIFY operates, to coap:cess the strings and *1
I* the pointers in SCB. STORAGE- S_PTR. * 1
I* Between sessions for a particular student, POOL1 and POOL2 *I
I* data parts (as well as SCB) are copied into the student's SREC*I
I* on file STUREC. The reason that all three are the size of *I
I* CAIF~LES regions is the resume1recover protocol of SNONOFF. *I
I* When a student signs on, his activation record is stored in *1
I* CAIFILES. WAlen he signs off, it is saved in SREC, and deleted * 1
I* from CAIFILES. That way, if tAle session ends abnormally, *1
I* before the save onto STUREC, the system will have saved a *1
I* reasonably up-to-date activation record for him. *1
I* Remember, only tAle DATA parts are stored in SREC. The ,.1
I* whole structures POOL1 and POOL2 are used eitAler in core, or *1
I* in a student 1 s R ESUIIE and RECOVER areas on CAIFILES. * 1
I* %INCLUDED from DCLLIB(PL1DEF). *1
1***1

2 POOL 1DATA CHARACTER {2032) ,

2 POOL2BLK# FIXED BIN{15,0). I* Points to the CAIPILES block *;
I* holding this student's *1
I* RESUME area POOL2 structure. *1

2 C_POOL2BLKt FIXED BIN(15,0); I* Points to the CAIPILES block *1

I* holding this student's *1

I* RECOVER area POOL2 structure.*,

DECLARE
1 POOL2 BASED(PL2_PTR),
1***,
I* POOL2 is the second half of the run-time storage space for *,
I* character-string variables. See the declaration for SCB and *,
I* P0011 for information. •,
I* %INCLUDED from DCLLIB (PL2DEF). *·
I***·

2 POOL2DATA CHARACTER(2036);

Figure 12: Template for a Block of String Variable Storage

- 39 -

1DCL 1 LOGRECORD BASED(LOG_PTR),
1***1
I* Each student's log file is a chain of LOGRECORDs. The first *I
/* LOGRECOBD of each chain is pointed to by MAINFILE.LOGFILES. Each *I
/* LOGRECORD occupies one CAIPILES region. , *I
/* %INCLUDEd from DCLLIB (LOGRDEF). *I
1***1

/* LOGFILF HEADER: the first 16 bytes of each LOGRECORD. *I
2 COURSE CHAR (6), /* Name of course this st11dent is in. *I

2 STU_ID

2 FLAGS (8)

I* DATA: *I

CHAR(9), /*THE FIRST BLOCK OF A GIVEN STUDENT'S *I
/* LOG; FILLED BY 'LOGGER' DURING AN 'OPEN' */
/* OPERATION. *I

BIT(1) • /* INDICATOR DESCRIBING TliiS SESSION.
I* FLAGS(1) = 1 0 1 B IF SESSION IS A RESUIIE;
I* = 1 11 8 IF SESSION IS A RECOVER;
I* FLAGS(2) THRU PLAGS(S) ARE UNUSED.

*I
*I
*/
*/

2 ENTRIES_CT FIXED BIN(15,0), /*Number of entries in this *I
/* this student's LOGRECORD.DATA. *I

2 FREE_PO.INT FIXED BIN(15,0), /* Next free byte in LOGRECORD *I

2 DATA

/* .DATA; USED WHEN BUILDING LOGRECORD. *I

CHAR(2014), I* FORMAT: *I
/* 1. DIAL lesson line t - FIXED BIN (15,0) */
/* 2. Length of response - FIXED BIN (15,0) */
/* 0 means no response was given; j11st */
/* a plain interr11pt was received; *I
/* 1-800 means the act11al response length. *I
/* 801 means no response at all was *I
/* given (or expected); used in the *1
/* open/close operations. *;
I* 3. What time response was made - CHAR(4) *1
I* 4- Actual student response- CHARACTER(*) *1

2 NEXT_10G_BLOCK
I*
I*
I*
I*

FIXED BIN(15,0); /*The number of the block *J
in CAIFILES holdiag the continuation of this *1
student's log information. ~f this is zero, *;
it means there is no continuation; this is *1
the last block in this st11dent•s list. *1

Figure 13: A Block of a Student's Log Information

- 40 -

As mentioned before, each of the regions 11 through 1499
may be called upon to .bold different kinds of information at
different times. Consider a contrived example. Assume that
region 476 currently holds the LCB for a particular lesson
in some aut.aor•s library. suppose that author signs on to
the system, and requests a) PURGE of that lesson. The
AUTHOR procedure would call ACBPROC to remove the lesson
from the author's dicectory. Since the lesson is to be
purged, its LCB is no longer n~ded. Region 476 would then
be released, and contain nothing.

Now further assume that the author begins inserting
statements into another lesson he is working on. AUTHOR
handles that by calling the SOURCE module. Suppose that the
block of source code .fills up. and there is no room for any
more source statements on that block. SOURCE would then
need to create a new block of source code, and region 476
just happens to be free at the moment. Region 476 could
then find itself .holdinq source code,. when just seconds
before it held an LCB.

This example illustrates the notion of a list of all of
the free blocks, and some orderly mechanism for claiming
blocks for use (i.e., removing them from the free-block
list) and freeing blocks from use (i.e., retnrning t.aem to
the free-block list). Such a mechanism is embodied in the
A LLOTOR routine. ALLOTOR maintains tb.e free-block list,
which is held on Regions 4 through 10 of CAIFILES; any rou­
tine which needs a new region for lihatever purpose calls
Al..LOTOR with the request. ALLOTOR responds with the number
of the block which the caller may use. Similarly. to free a
block, a procedure calls ALLOTOR with the number of the
block no longer used.

- 41 -

DCL 1 SCB BASED tSCB_PTi) ,
/***/
/* A student Control Block exists for each student in the system. It */
/* is in effect an activation record for a particular student; it */
/* contains current Delta machine status (register contents and */
/* state switches) and run-time storage for DIAL lesson variables */
/* (integers (for INTEGER and SLIDE types) and pointers into POOL1 */
/* and POOL2 (for CHARACTER types)). An SCB also points to its */
/* st11dent 1 s RESUME and RECOVE.R file areas. EXECTOB's internal */
/* procedure INIT_scB performs all i.Aitialization of the SCB, except */
I* for GLOBALS, dtlring its beginning-of-new-lesson sequence. The *I
/* procedtlre EXECTOR is the primary user/manipulator of SCB. Between *I
/* sessions, a student's SCB is stored in the SREC.SCB_PART for that *I
I* student. *I
I* *I
/* Because of the re-entrancy of the system, each student must (and */
I* does) have his own SCB, and thus has his very own private Delta */
I* machine. However, it is easier not to think about many students */
I* and many SCBs and many Delta machines all operating at once. In- */
/* stead, nothing is lost by pretending there is only one of each; */
/* the re-entrancy takes care of itself. *I
/* ~INCLUDEd from DCLLIB (SCBDEFJ. *I
/***1

/***/
/* current register contents of this student's Delta machine. */
/***/

2 IC FIXED BIN (15,0), I* The instruction counter. */
/* IC tells w.hat statement in *I

/* the current lesson is being executed for this *I
I* student. Encoded in the IC is the instruction *I
/* page, and the offset within the page. Sp€cial *I
/* values of IC are:
/* IC = 0 - Student has not yet started into a *I
/* course (thus, SCB.LESSON is meaningless). *I
I* IC = 513 - Execution is at Instruction t1 in *I
/* SCB.LESSON. */
/* IC < 0 Student has finished SCB.LESSON; */
/* he should begin the next session at the start *I
/* his course's next lesson~ *I

2 PAUSE_LEN FIXED BIN(15,0), /*How long {in seconds) will*/
/* the system pause between *I

I* SHOWs? Set by the "PAUSE <- n" DIAL statement. *I

2 UNREC_CTR FIXED BIN(15,0), /*How many unrecognized re- */
I* sponses to a SHOW have been*/

/* received? T.his is used to process the DIAL *I
/* UNREC statement to control branching. *I

2 STATES,
/***1
/* Current states of this student's Delta machine. *I
!***/

- 42 -

3 RE~D_ISSUED BIT(H,
3 SHOW_UP BIT (1},
3 CASE BIT(1), I* Translate; alphabetic case? Set by *I

I* DIAL "ClSEON", "ClSEOFF" stmts. *I
3 SQZ BIT(1). I* squeeze blanlts from a response? *I

I* Set by "SQZON 11 , "SQZOFF" stmts. *I
3 cc BIT(t), I* Condition code - set by some DIAL *I

I* instructions, tested by others. *I

2 STORAGE,
1***1
I* Run-time storage for variab.l.es. Instructions with operand */
I* type 2{3) reference this area. A type-2(3) operand means */
I* that the operand is a pointer into SCB.STORAGE.INT (if the */
I* opcode is appropriate to integers) or SCB.STORAGE.S_PTR. */
I*** I

3 INT(190) FIXED BIN(15,0), I* Run-time integer values are*/

3 S_PTR,

I* held here. Sac.h a valae */
I* may be.l.ong to a DilL variable of type INTEGER *I
I* or of type SLIDE. In addition, the DIAL system */
I* integer constants are held here: */
I* SCB.STORAGE.INT(l) holds PAUSE; */
I* SCB-STORAGE.IN'l' (2} holds SQZ; *I
I* SCB.STORlGE.INT{3) holds CASE; */
/* SCB.STORAGE.INT(4) holds QVAL; *I
/* SCB.STORlGE..INT(5) holds AVAL; *I
I* SCB.S'l'ORAGE.INT(6) holds RVAL. */

I* The list of character-string value pointers, pointing */
I* into POOL1 and POOL2. *I

4 LEN (4 00) FIXED BIN(lS,O),I* How long is the character-*/
I* string value pointed to */

I* by this en try of SCB. STORAGE. S_PTR? *I

4 ADDR\400) FIXED BIN(15,0),/* Where in POOL1/POOL2 does *1
I* it start? *1

4 FREE_POINT FIXED BIN (15,0) ,/* Which is the next free *1
I* position in the character *1

/*storage area P0011.POOL1DATA jj POOL2.POOL2DATA.*I

2 LESSON CHARACTER(6), /* Lesson currently being *1

2

2

I* executed; neld on the sea *1
/* instead of just this student's Sll.EC, because it *1

/* may change durinq the course of the session. *1

GLOBALS(18) FIXED BIN(15,0),

POOL1BLK# FIXED BIN{15,0), I* Next bloclt in student's *t
/* RES!li!EDU!!P file. .,

2 C_POOL1BLKi FIXED BIN(15,0); I* Next bloclt in student's *,

- 43 -

I* RECOVDUHP file. *I

Figure 14: A Student Con~rol Block

- 44 -

DCL 1 LCB BASED (LCB_PTB),
/***/
/* There is a Lesson Control Block, or LCB, Lor each lesson in the *I
/* CAI SY,stem, whether it is attached to a coarse, or in an aothor•s */
/* library. The LCB for each lesson points to all the soorce and */
/* object code blocks for that lesson, and contains the usual direc- */
/* tory information (like how many source code blocks there are, and */
I* does this lesson need recompiling, etc.). If the lesson is one *I
/* that is attached to a course, tllen this LCB is pointed to by that */
I* course's CCB. If it is in an author library, then tbis LCB is */
I* pointed to by the ACB. *I
/* .%I NCLIJDEd from DCLLIB (f,.CBDEF) • *I
1***1

1*******"'*****-**1
/* Object code Part */
/***/

2 C_SYM_B_BLKi FIXED BIN(15,0), /*The CAIFILES block numbers *I
2 C_SYM_D_BLKt FIXED BIN(15,0), I* where this lesson's compile-*/

I* time symbol table (C_SIM_BCD*/
I* and c_SYM_DOPE, respectively) are stored. These */
I* blocks are loaded when AUTHOB receives a)LOAD *I
I* command, for later use by COKPLEB. */

2 I_PAGES_CT FIXED BIN(15,0), I* Bow many instructions pages*/
I* (blocks of object code in- *I

I* structions) have been used so far; also, how many */
I* elements of LCB.I_PAGES are currently filled. */

2 L_PAGES_CT FIXED BIN{15,0}, I* Bow many pages (blocks) of *I
I* character-string literals */

I* bave been used so far. Also, how many elements of */
/* LCB.LITABEAS are Cllrrently filled. */

2 I_PAGES(64), I* This lesson's instructions-pages directory: */

3 BLKll FIXED BIN (15,0), I* The page translation table *I
I* for th instructions pages. *I

I* The table is in logical page order; i.e., the *I
I* n-th logical page of instructions is held on *I
I* CAIFILES block number LCB.I_PAGES (n). BLKt. *I

3 LARGEST_LN FIXED BIN(15,0), /*The highest so11rce code *I
I* line number in the page. *I

I* Xhis is used to translate the 11.1!" into instruction *I
I* counter (IC) form, when AUTHOR receives a *I
I* ")XEQ M,N" command, or EXECTOB receives a *I
I* 11) PROCTOR M" com11and. *1

2 LITABEAS(32) FIXED Bill (15,0), I* The page translation table *I
/* for the literal areas. The *I

I* n-tb logical literal page is on CAIFILES block *;
/* number LCB.LITABEAS(n). This is built by CO.I!PLER; *;
I* it is used (read-only) by ElECTOR. *;

- 45 -

2 S_PTR_COUNT FIXED BIN(15,0), /*The number of elements now */
/* in SCB.STORAGE.S_PTR, which */

I* is the list of pointers into POOL1 and POOL2, the */
I* run-time storage pools for character variables. */
I* This is set from C_SYl'I_DOPE.STR_FREE by AUTHOR. It */
/* seems like it ought to also be equivalent to */
/* SCB.STORAGE.S_PTB.FREE_POINT - 1, but I'm not sure.*/

!***/
I* Source Code Part */
!***/

2 BLOCK_COUNT FIXED BIN{15.0), I* Number of CAIFILES blocks *I
I* used so far to store source *I

I* Also, the number elements in LCB.MAX_LNO and */
I* LCB.BLOCK that are currently in use. */

2 ltAX_LNO (418) FIXED BIN (15,0), I* !laximum line number in each *I
I* block. Used primarily to *I

I* find on which block number a particular source *I
I* statement resides. *I

2 R_!II li_LNO FIXED BIN{15,6}, I* Lowest line number of the *I
I* source code changed since *I

I* the last coapile of tais lesson. Used in AUTHOR. *I

2 COl'IPil.ED BIT(1), I* Has this lesson been recom- *I
I* piled since the last change?*/

2 SPABE1 CHARACTER (13), I* (Apparently not used) *I

2 BLOCK { 418) FIXED BIH(15,0), I* The source code directory. *I
I* The n-l:h logical block of *I

I* source code resides on CAIFILES block LCB.BLOCK(n).*l

2 COATE CHARACTER(6), I* The date this lesson was *I
I* last changed. *I

2 C'l'IItE CHARACTER(9), I* The time this lesson was *I
I* last changed. *I

2 SPARE2 CBA.R(1); I* (Apparently not used} *I

Figure 15: A Lesson Control Block

- 46 -

caapter 6

OPBBATZIG IIS!BUCTIOIS

This chapter deals with
the CAI System that may be
mer.

various operational aspects of
useful for a CAI System Program-

6. 1 CBl'l'JCft

CHATJCL is that set of job control langaage that keeps
CHAT and its application programs up and running. The CAI
System files mast be specified in the CHATJCL. In particu­
lar, the following two datasets ,mast appear in CHAT's
"//STEPLIB" specification:

I/ DD DISPocSHR,DSN=UNC.CS.E557C.CHATJCL.CAI.TEST
// DD DISP=SHR,DSN=UNC.CS.E557C.CHATJCL.CAI.LOADLIB

Next, the three on-line file datasets must be identified.
This is done in the section of the CHATJCL entitled "CHAT DD
CARDS":

//AUTHREC
//STUREC
//CAl

DD DISP=SHR,DSN=UNC.CS.E557C.CHATJCL.CAI.AUTHREC
DD DISP=SHB,DSN=UNC.CS.E557C.CHATJCL.CAI.STUREC
DD DISP=SHR,DSN=UNC.CS.E557C.CHATJCL.CAI.CAIFILES

Traditionally, there has been someone
responsible for maintaining the CHATJCL;
grammer will normally not have to do it.

6.2 MOTB-BALLZIG THE CAI ~~~

in the Department
a CAI system Pro-

During long periods of inactivity in the CAI System, it
is a good idea to moth-ball it. This saves valuable on-line
disk space, and redaces the possibility of file damage
brought about by an unauthorized person manipulating the CAI
system files. To moth-ball the CAl system:

1. Remove the references to Cli in the CHATJCL,. des­
cribed above. Traditionally, the lines have not
actua~ly been taken out, but merely transformed into
JCL comments. In this way, restoration of CAI in the
CHATJCL is quite simple.

- 47 -

2. MoYe the files to off-line disk packs.

3. Since CHATJCL.CAI.TEST is only for test Yersions of
the. on-line system, it may be possible to delete it
completely. proyided ther~ are ~ l2ij ~~~ testd­
.\.ng WJ;.§i!l !.U! warraat Pt"esel;ntion. This dataset
is often reduced in size to one track, in lieu of
actual deletion.

4. Follow the wrap-up procedures outlined in Section
7.2.2 of the CAI Operations Manual.

6.3 !UTBO& COftftAID f!CIL!TZIS

The author command facilities are described in Section
5.5 of Mudge's dissertation. Tae following addenda now
apply:

1. Only the first three letters
nificant. The command may be
lover case letters.

of any command are sig­
entered in upper and;or

2. The)include command vas never implemented.
neither was)group.

Hence,

3. The)£ourse author command was never implemented; it
was instead built as an independent on-line CHAT pro­
gram.

4. The)BumPer command was renamed. It is now)line.

5. The)resequenc~ command was renamed.
) {enumbeJ;.

It is now

6. The)print coaaand was never implemented, but there
is an off~line PRINT program. It is described in
Section 7.1 of the CAI Operations Manual.

7. There is a)csw command, which flips the COKPILE
switch on and off. This bit controls whether or not
the lesson is recompiled each time an out-of·seq11ence
statement is entered. This command replaces tlae
lightpen button '*C*' described in Kndge.

8. The *SUBST* and *THROW* lightpen commands do not
e~ist. The *THROW* feature was replaced with a key­
bdard command,)cle. which gives the author a clear
screen on which to enter the next {presumably long)
DIAL statement.

- 48 -

9. There exists a)£2£1 command, which lets one author
bring a copy of another author's lesson into his own
library. The syntax is;

)COPY <aathor-id> <lesson-name>
wb.ere <author-id> is the sign-on identification' of
the author whose lesson is to be copied, and
<lesson-name> is the name of the lesson to be copied.

10. There is an)edit command, which allows the author to
specify tae row on which he wishes to enter input.
This is meant to allow an author to make changes to a
lesson by listing the lesson and making the changes
directly to the affected lines, rather than having to
re-type entire statements.

6.4 ADDBJDl TO t!! ~i!L SPIClf!CAtlQJS

The author language described in Chapter 4 of !udge is
not quite the author language that was actually implemented
in the CAI System.

1. The following features are not implemented: FRA!E,
SUBSTR, LENGTH, INDEX1 PLISUB, procedures, vectors,
IF-THEN# IF-THEN-ELSE, and DO-WHILE. Default branch­
ing for a !ATCH statement is not implemented.

2.

3.

4.

All DIAL
reserved.
pose.

keywords
They may

and their abbreviations are
not be used for any other pur-

Setting the system variable CASE may
"CASEON" and "CASEOFF" statements.
assignment of integer value vas never

be done only via
Setting CASE by
supported.

Setting the system variable SQZ
via the "SQZON" and "SQZOFF"
assignment of an integer value.
SQZ is equivalent to 11 SQZOFF•;
value is equivalent to "SQZON".

may be done either
statements. or by

Assigning zero to
assigning any other

6.5 PRQCTOR OYEIRJDB PAClLl!l

In student. mode. the proctor oYerride facility can be
used to jump to any lesson or to any statement within a les­
son. There is alaost no on-line diagnostic nelp witn this
facility, in order to discourage student use of the facil­
ity. The proctor enters

) pro

- 49 -

w.hereupon the system responds with a ")" prompt. The
proctor enters

) ove <lesson>

) ove <line I>
where the lesson name is entered to override to the begin­
ning of that lesson, and a line number is entered to over­
ride to that line within the lesson currently being exe­
cuted.

If the override statement is invalid, then the)pro com­
mand must be entered to try again.

6.6 OtUK

The CHAT program OPEXEC may be used by
cover which CHAT terminals are in use, how
rently available, and many other things.
tion, see the OPEXEC Description document.

6.7 USXIG THE !L£! OPTII[siiG QQBPILEi

a proctor to dis­
much core is cur­
For more informa-

When CHAT was originally built, it supported application
programs written only in PL/I(F) or S/360 Assembly Language.
However, it has been modified fairly recently2 to accept
programs compiled with the PL/I Optimizing Compiler. The
source code accepted by the two compilers differs in a few
ways. Under the Optimizer, internal procedures max not be
declared, all builti• functions ~Y§1 be declared, and some
of the system functions have different names.

It may be advisable one day to generate a CAISYSTEM under
the optimizing compiler; IBK no longer offers programming
support for PL/I(F). The 1980 CAI System vas built with the
Optimizer in mind; all builtins have been declared. There­
fore, to generate a CAI system under the PL/I Optimizing
Coapiler., do the following:

1. Delete every declaration of an internal procedure in
each of the source modules. Most of the seventeen
modules do not contain any such declarations.

2. In the entry point tiSTOP of module itEQDQ, replace
the call to IHES!RC with a call to PLIBETC. Besides
this~ the source code should not have to be changed,
although you •ay want to take advantage of the DO

z by Lee Nackman

- 50 -

UNTIL, REPEAT, SELECT, and LEAVE statements that are
avai~able with the Optimizer.

3. Re-compi~e all the modules using the Optimizer. The
options for compilation may have different names;
make sure the same options are in fact 1:equested.
!!oreove1:, invoke the optimization feature of the com­
piler; the Optimizer does not optimize unless
requested to do so.

ij. When the new system is generated, it will have to be
linked in with CHAT's PL/I Optimizer interface (as
opposed to the PL/I(F) interface cur~:ently linked
in). consult the current CHAT expert to make sure
which CHAT dataset(s) to use.

This section deals with methods
the CAI system to gene1:ate output
use~:• s display sc1:een.

by which you can cause
e~sewhere than on the

The CHAT system maintains a log file where sign-on and
sign-off information are stored fol: a limited period of
time. To write to this log file, use the CHAT routine
LOGIT. To use LOGIT, declare it in each external procedu1:e
you expect wi~l invoke it.

DECLARE LOGIT ENTBY(CHABACTEB(*) VARYING);

When a new CAI System is generated, LOGIT will be known
because it resides in the CHAT SYSLIB. To invoke LOGIT,
call it with a character string. To see the results, sign
on to OPEXEC under CHAT, and enter the command "SHO LOG".
Your message sllould appear. Be warned, however, that dis­
playing the log file also clears it. Also, the file is not
very large.. Writing many messages to the file will cause
earlier messages to be lost. Therefore, it is advisable to
display the file frequently.

Anotller llay to obtain output from the system. is to
include a print file in the system. The most convenient
file to use is the system priat file, SYSPRIMT. However, it
is more convenient to direct the output to a print dataset
in the CHATJCL, as the contents may thea be viewed iaterac­
tively. Snch a dataset must have the DCB characteristics of
a print file. one such file that cUJ:rently exists in the
CHATJCL has the ddnaae FACPRUI'l'. so. to send output to the
file FACPRINT, include the folloainq statement in the main
routine of the Cli.I System:

- 5t -

OPEN FILE(SYSPBIHT) STBE18 OUTPUT PRINT
PAGESIZE{nn) LINESIZE (yy) TITLE (1 FACPRINT 1) ;

The PAGESIZE and LIBESIZE parameters are optional, b~t spe­
cifying PAGESIZE(20) and LINESIZE(40} should fit the output
to a CC-30 screen. Bow, any conventional PL/1 print state­
ment (e.g., PUT LIST, PUT DATA, etc.) will direct output to
this file. This method has the additional benefit that when
the system ends abnormally, diagnostic information is auto­
matically sent to the print file., and without this file spe­
cifica ti011, such information would be lost.

The easiest way to view the contents of your output file
is by invoking the CHAT program DISPL. DISPL will prompt
you for the ddname; respond with 'FACPBINT'. The first
screen-full of tae file will be displayed; by pressing IBT
you can page through the file. If you enter a character
string, DISPL will scan the file for the next occurrence of
that string, and display its location. When yo~ reach the
end o.f the file. hovevec, the program ends. To look ~t any
part of the file again, yo~ must re-involte DISPL. An advan­
tage to tilis appcoach is that, unlike LOGIT, viewing your
o~tput file does not destroy it.

It may be p~:udent. one day to create a print file just fo~:
CAl; a likely ddname would be CAlPRUIT. To do that., allo­
cate an on-line dataset with print-file DCB characteristics.
Then, have the person in charge of the CHATJCL insert a DD
card that loots like this:

//CAIPBINT DD DISP=SHR,DSN=dataset_name

6.9 GBNEilTXNG l UBW !BBSlQI Ql til COaplLJi

The steps for generating a new version of the compiler
are:

1. Produce the grammar for the new version using BNP
programming and t£e XPL grammar analyzer. See McKee­
man, Horning. and Wortman, ! Compiler ~~nerator.

2. Once the grammar has been thoroughly tested, use the
BNP program as input to tile PL/I procedure COKSTRUC­
TOR. This procedu~:e p~:oduces punched output, which
replaces code sections of the compiler. (The compi­
ler is actually split into three routines. COHPLER,
CODEGEN, and TABLES.)

3. PARSER contains two procedures, PARSER and COMPILER.
once the code section changes have been made in COli­
PILER, then test data should be run against PARSER.
Note: the listing for the previous run of PARSER

- 52 -

contains inst~:uctions for
version of COMPILER into a
PARSER.

conve~:ting an existing
ve~:sion to be run against

4. once the changes have been verified, remove the com­
piler from PARSER (see instructions in the PARSER
listing). Compile the compiler roatines and link
them into the SYSLIB object code library.

5. Generate a nev version of CAISYSTEH 4 using the proce­
dures described in Chapter 3.

The datasets used a~:e:

1. For CONSTRUCTOB, UNC.CS.E557C.C1I.CONSTR, with member
XPLCONST fol: the XPL Constructoc, and member PLICONST
for the PL/I constructo~:.

2. The object module libracy UNC.CS.E557C.CAI.SYSLIB.

3. For the XPL program, UNC.CS.E557C.CAI-XPLOBJ.

The JCL is as follows:

Using XPLCONST:

II JOB
//XPL
//STEPLIB
//PROGRAM
//SYSPUNCH
//SYSPRINT
//SYSIN

I*
II

-
•

EXEC
DD
DD
DD
DD
DD

PGM=IPLCONST 1 REGION=150K
DSN=UNC.CS.E557C.CAI.CONSTR,DISP=SHR
DSN=UNC.CS.E557C.CAI.XPLOBJ,DISP=SHR
SYSOUT=B,DCB=(RECFM=FB,LRECL=SG~BLKSIZE=400)
SYSOUT=A

*

- 53 -

Using PLICONST:

II JOB
II .
IISTEPLIB
IISYSPBINT
IICOIII!ENT
1/DCLOUT
IIINI'l'OUT
//CODEGEII
IIEINPU'l'

I*
II

EXEC
DD
DD
DD
DD
DD
DD
DD

PG !!= PLICONST • ~EGION=JOOK
DSN=UNC.CS.E557C.CAI.CONSTR6 DISP=SHR
SYSOUT=A
SYSOUT=B6 DCBF(BECFH=EB,LRECL=80,BLKSIZE=400)
SYSOUT=B,DCB=(BBCFH=FB6 LRECL=80,BLKSIZE=400)
SYSOUT=B,DCBF(RECFH=PB,LRECL=80,BLKSIZE=400)
SYSOUT=B,DCB=(BECPII=FB,LRECL=80,BLKSIZE=400)

*

- 54 -

c&apter 1

ABJ0281L TBaftiJA!IOJ CODES

When a CHAT program in execution raises the ERROR condi­
tion, CHAT displays a message of the form:

SUBTASK BIDED annn
PLEASE CALL PROCTOR

and then aborts the subtask. (Tae "proct.or" reference is
historical: CHAT's original purpose was to provide a run­
time environment for CAI.) There are three forms the
returned code can take:

1. If the code begins vith "S"• it represents an OS sys­
tem completion code. Loolt ap the three-digit code in
the IB!I Messages and Codes manual, under "System Com­
pletion Codes {SCC} "· For instance, "S80A" means
that not enough storage Mas available for a success­
ful GET!IAIN operation.

2. If the code lies between 1001 aod 1099, inclusive, it
vas generated by the CAI System in response to an
error condition it detected, but could not fix. The
routine detecting the error issued a call to the
#tSTOP entry point of the iiEQDQ modale, which (among
other things) calls the PL/I system routine IHESARC.
IHBSARC generates a task return code by adding the
given parameter to the retura code noraally generated
by the system (1000). Therefore.

CALL US TOP (1 0)
yields a return code of 1010, vllich means that the
DIAL compiler's syabol tablce is full. Subtract 1000
£rom the returned code, and look up the error in
Table 1.

3. Tae returned code is 2000. This signals a PL/I exe­
cution-t.iae error. In this case, the EBBOR condition
is raised, and the associated ON-unit in the main
procedure takes control. CAIBAIJ calls tvo PL/I
builtin functions., OIIICODE and O!IILOC. ONCODE returns
the code of the error which raised the condition, and
ONLOC returns ~he entry point vhere the condition was
raised. CAIRAIIII displays taese tvo diagnostics, and
then calls liSTOP to halt the system.

- 55 -

1 SNONOJ.ll'

2 SNONOP'F

3 EXECTOll

4 EXECTOR

5 SNONOFP

6 ACBPllOC
7 ACBPIWC
8 CODEGEN

9 CODEGEN

10 COI!PLEB

11 AUTHOll
12 AUTHOR
13 SOURCE

14 SOURCE

15 SOURCE

16 SOURCE

17 AUTHOR
18
19 EXECTOR

20 EXECTOB

21 LOGGER

22 EXECTOB

23
24 CHIIAIN

25 CODEGEN

26 CODEGEN

TABLE 1

Table of STOP Codes

During recover p.llase, the s'tu.dent • s
checkpoint entry vas not found on
I!A.INI'.Il.E during signon.
student's checkpoint entry vas not
found oa ftA.IJPILB during sign off.
During setup for: studeat execution,
course was not found on tJle CCB.
During setup for student execution,
lesson vas not found on the CCB.
While setting up student's checkpoint
entries on I!A.INP.ILE, no room vas
found (CHP_COUJT > 50).
Author's ID not found on the ACB.
No rooa left in BECS (NEXT_FllEE>184).
No rooa left in STOBAGE.S_PTll; called
from internal procedure S_ALLOC.
No room left in TEI!P_INSTNS; called
from internal procedure EI!IT.
Symbol table full. Called from
internal procedure SCAN.
No LIT pages left; more tban 16 used.
No INSTNS pages left; over 64 used.
No room left on source code file for
a split.
No room left on source code file
while adding sequentially.
Statement n11mber not fo11nd in .first
level directory; called from ASOURCE.
Statement number not found in second
Level directory; called from ASOUBCE.
No room left on CCB to do an)ATTACH.

During change of lesson, lesson name
not found on the CCB.
During change of lesson, no more
lessons found for this course.
During opea operation, no room in
logfiles on I!AINPILE.
During processing of STORECH (OP(34))
instruction, COI!PACT.IFY was called but
did not free enoag& space for the next
string operation.

During execution o! the ON ERROR unit,
the ONCODE vas not found in the table
of codes, O!lCODES(0:.99.-
compiler Debug stop 1 -· in PLISEG
production.
No room left in STORAGE-INT.

- 56 -

27 EXECTOB Duriag setup for execution in the case
that IC<O. no next lesson found.

28 EXECTOR Addressing error. Page decoded from
IC is greater than I_PAGES_CT.

29 EXECTOR Addressing error. Page decoded from
IC is less than 1.

30 EXECTOR Addressing error in student-only mode.
No ENDLESSON instruction at end of
lesson; system tries to execute beyond
the lesson's last instruction.

31 EXECTOB Addressing error. IC was about to
retrieV'e an instruction in the last
page of the lesson but beyond
INSTNS.NEXT_PREE. This is a DIAL
system software error.

32
33
3~ EXECTOR

35 EXECTOR

36 AUTHOR

37
38 EXEC TOR

39 AUTHOR

40 SOURCE

41
42 UEQDQ

43 UEQDQ

44 FILEIO
45 l'ILEIO
46 FILEIO
47 FILEIO
48 FILEIO
49 FILEIO
50 ALLOTOB

51 AUTHOR

52 ALLO~OB

53 FILEIO

54 SNONOFF

In FETCH21, the page decoded is greater
than L PAGES CT.
In FETC821, the pages decoded is less
than 1.
During a)PURGE, lesson name was echoed
correctly. but ACBPROC failed to find
the lesson on t.he ACB.

ihen setting up for a student beginning
a cowrse (IC=O), no lessons were found
on the CCB.
In Stage 1 of recompiling, an error vas
found in a DIAL statement.
DIAL system error; s_LEN of a statement
is <1 or >809. Called from GSOURCE.

When ENDing on a CAI.FILES reso11rce, the
subtask already had control of it.
When DEQing on a CAIFILES resource, the
subtask did not haV'e control of it.
Called to read with BLK# < 1.
Called to write with BLKi < 1.
Called to rewrite with BLK# < 1.
Called to read with BLK# > 1499.
Called to vcite with BLKi > 1499.
Called to rewrite with BLK# > 1499.
Attempt to allocate block numbered higher
than 1499; no aore blocks on
FREE_BLOCK_LIST; some must be freed.
In stage 1 of recompiling, GSOURCE
returned a nonzero r"9turn code.
Stack cannot be shifted down any more.
software ercor caused by returning
mo:ce blocks thaa allocated.
Bottom-o.f-stack on .free-block list
has been ceached.
Attempt to DEQ on STUDENT r.esource

- 57 -

'

not successf11l.
55 SNONOFF ltteapt to DEQ on AUTHOR resource

not successful.
56 SNONOFF Atteapt to DEQ on a sign-on ID was

not successful.
60 EXECTOR A "read-pen" or "read-either" instruction

was encountered in a systea without
lightpen capabilities.

99 CAIMAIN ON CONDITION(ABNOBM) signalled aore
than 10 tiaes.

- 58 -

caapt:er 8

PROTBCfXOI OP ClXS!Sf!ft DlflS!YS

CAISYSTEM lives and dies with its files. Great care must
be taken that all datasets are protected from systea fail­
ure, CAISYSTEM bugs, and acts of God. Precautions fall into
two categories. First., any access to a shared file causes
that file to become ' enqueued; no other access may occur
until a dequeae operation bas been completed. This is true
whether t.he access request comes from the on-line system or
from an off-line program. Second, a general protocol for
taking backups of all datasets has been established.

8. 1 ~IIG !BE ~ ·~· liD ·~• fACILITUS

The CAI System module #IEQDQ calls the CHAT system rou­
tines ENQ and DEQ., vAiic.h serve as interfaces between CHAT
and the OS ENQ/DEQ Supervisor Macros. #IEQDQ has several
entry points3, each of which serves a various enq/deq func­
tion.

There are eight serially-reusable resources defined in
CAISYSTEK, but soae do not exist at times. They are divided
into three groups:

1. The first gro11p always exists. It consists of the
first four blocks of CAIFILES, which contain data
shared by several of tile ro11tines.

Resource 1: MAINFILE
Resource 2: CCB (Co11rse Control Block)
Resource 3: ACB (Author control Block)
Resource 4: FBL_TOP (Free-Block-List top)

2. Tile second group of resources eiists when tile on-line
system is running and an off-line program is in exe­
cution as well. Basically, it prevents an off-line
program from changing an author-related file while an
author is sig.aed on, cllanging a student-related file
while a studeat is signed on., etc.

Resource 5: CAISYSTEII (anyone signed on)

3 See the module description in S.ectio.n 2.1'6 for a descrip­
tion of each.

- 59 -

Resource 6: STODEIT (any student signed on)
Resource 7: AUTHOR (any author signed on)

3. Finally, the third "group" is used to prevent two
users from signing on to the on-line system with the
same identification number. When a user s~gns on1

whether student or author, his ideutification number
is enqueued, and remains so unt.i.l he signs off.

Resource 8: IDI

All enqueuing and deqlleuinq is done by the module UEQDQ;
however, only certain other modules call UEQDQ to request
such enqueuing/dequeuing. The module FILEIO controls allo­
cation of the CAIFILES shared blocks. A resource is
enqueued when a ~ to that block of the file is requested.
The dequeue request is issued when a REIIRITE to that file is
recei1'ed. The enqueue request is for excl.usj.ve control and
with the condition that the task wait until the resource is
available.

The CAISYSTEII resource is controlled by the module CAI­
IIAIN. The STUDENT, AUTHOR, and ID# are handled by the SNON­
OFF module. The enqueue request is for sh~red control, with
the condition that the task not wait if control is not
immediately available. If thar-is the case, SNONOFF dis­
plays a failure message to the user, returns to the main
procedure, and the syst.ea teaiaates.

Off-line utility routines requesting any
resources do so with exclusiye con~rol specified.
vides a lockout if tile resource is already in use.

of these
This pro-

For a description of the JCL and IIHCLODEs necessary to
use itEQDQ and ENQ/DEQ facilities, consult the header para­
graph in the li#EQDQ source list.ing. For a brief explanation
of the t#EQDQ module, see its description in Section 2.16 of
this manual.

Regular backups should be taken of eacll of the files.
The backup and restoration procedures are well-defined and
well-docuae.nted in tlle CAI Operations Manual. Note that
when the CAl daily jobs are running, backups are automati­
cally made. Otherwise, t.hey mus.t be done by submitting
batch jobs described in tile Operations Manual. Of course,
back11ps are only advisable when there is any system work
(test or production) currently in progress.

- 60 -

Chapter 9

THE CAZSISTEB UTZ~ITI PROGBAIS

In addition to the on-line routines of the CAI System 6

several other prograas exist to maintaiD CAI files, to pro­
duce reports, and to serve as tools for other programs.
This chapter briefly describes the £unction of each of these
utility programs. For each program, a list of ~INCLUDEd
modules on the DCLLIB PDS will be listed, followed by a list
of all the external procedures called. All are described
more fully in the CAl Operations Manual; the appropriate
section nuaber will be given for each program.

The source code for all of the utility programs resides
on the PDS

U NC. CS. 1!55 7C. CAI. UTILITY. SOURCE.

9.1 OJ-UIB !RODOa.IOii UJ'TH'fUS

These programs are invoked by CHAT on-line; their load
modules all reside in the PDS

UNC.CS.E557C.CHATJCL.CAI.LOADLIB
(along with the load modules for CAI and CAIAIJTH).

1. COURSE - list the lessons attached to a course, and
delete lessons from a coorse-
~lliCLODEd meabers: PBRIIDEF, CCBDEF, LCBDEF.
Procedures called: tDISP, #D~AI, tE_INIT, #SETROW,
PASS II RD.
Reference: Section 4.3.3.

2. CAIOLFI - view the record and current status of a
particular student.
%INCLUDEd members: CHAT.SOIJRCE(CCIDCL), SRECDEF. By
calling various entry points of #CC30IO, CAIOLFI
could no doubt effect its I/0 the way CAl and CAIAUTH
do; however, by ~INCLUDing the CHAT I/0 declarations,
CAIOLPI aakes the calls to tile CHAT I/0 routines
directly.
Reference: Chapter 8.

- 61 -

9.2 Ofl•LUB PIODUCUOI UfJLI'UJS

These utilities are invoked by batch programs, although
included here are soae subroutin.es that may be called by the
on-line programs. Their load modules reside on

UNC.CS.E557C.CAI.UjiLITY.LOAD.

1. ACCSLOG prints/clears the log of all password
accesses.
%INCLUDEd members:
Procedures called:
Reference: Section

IIAINDEF.
IIINIT, IIEQEXT.
4.4. 3.

I#DQEXT, HEADER.

2. AUTHREPT - prints report giYin.g all personal informa­
tion, lesson names, and vorlt times of all authors in
t.he System.
%INCLUDEd members: ARECDEF, ACBDEP.
Procedures called: HEADER.
Reference: Section 3.4.

3. AOTHAINT utility for adding/deleting/changing
author records in the System.
IINCLUDEd members: ARECDEF, ACBDEF. EQDQEXT.
Procedures called: iiiNIT, iiEQEXT, i#DQEXT.
Reference: section 3.3.

4. CAILOG - prints a log of all student activity since
the last ru.n of CAILOG; clears tae logfile blocks on
file CAIFILES.
IINCLUDEd members: IIAINDEF. LOGRDEF, EQDQEXT.
Procedures called: FREEBLK, HEADER, liiNIT, iiEQEXT,
UDQEXT.
Reference: Section 4.4.1.

5. CAIREST - restore CAIPILES recover/resume dump status
from tape backup.
%INCLUDEd members: KAINDEF, SCBOEF, PL1DEF, PL2DEF,
SRECDEF, EQDQEXT.
Procedures called: FREEBLK, tiiNIT, #iEQEXT,
UDQEXT. ,
Reference: Section 6.3~

I

6. CCBKAINT - inserts/deletes courses to/from the Course
control Block (and hence, the System).
%INCLUDEd members: CCBDEF, EQDQEXT.
Procedures called: liiNIT, IIEQEXT1 liDQEXT.
Reference: Section 4.3.2.

7. CHECK - displays a "please cancel" message to the
console. This is tAle first step o.f each of the CAl
daily jobs, but is overridden by proper execution.
This prevents unauthorized users from running the
daily jobs.
Reference: Sect.ion 7.3.5.

- 62 -

a. DIR!CTRY - prints a directory
system, complete with personal
~INCLUDEd members: SRBCDEF.
Procedures called: HEADER.
Reference: Section 2.4.2.

of all students in the
information.

9. DJCY!BT - alters the Daily Job-Control Command vee-
tor.
%I IICLUDEd members:
Procedures called:
Reference: Section

HAINDEF.
HEADER, U INIT,
4. 3. 1-

#iEQEXT, iiDQEXT.

10. FIXCAIF - adds blocks to the free block list. This
saould be done by tBe on-line system, hut it isn't
always. A block may be no longer used, but somehow
not returned to the list. By running HAPCAIF (see
below), one can ascertain which blocks are no longer
used, yet not in the free bloclt list. Running FIX­
CAll returns them to that list.
%INCLUDEd members: EQDQEXT.
Procedures called: HEADER, UINIT, UEQEXT, ##DQEXT.
Reference: section 4. 3. 4.

11. FREEBLK - a subroutine. Given a block number, it
returns that block of CAIFILES to the free block
list..
~INCLUDEd members:
Procedures called:
Reference: Section

PERIIDBF.
ALLOTOR.
4.3. 5.

12. HEADER - a subroutine. Causes the printing of a CAI
header line at the top of a page of output.
Reference: Section 7.3.1.

13. LOCATE - given a string of data fields delimited by
'$•, LOCATE picks off tae leftmost field. This is
useful, because the input to other utilities (such as
CCBBAINT) is just such a string of fields.
Reference: Section 7.3.2.

14. MAPCAIF - prints a block accounting map of CAIFILES.
%INCLUDEd members: !!AIIIDEF • ACBDEF 1 CCBDEF,. LCBDE1' 1

LOGBDEt. SCBD&F, PL1D&P, BTOPDEl. BSECDEFo
Procedures called: HEADER, UINIT, UEQEXT, UDQEXT.
Reference: Section 4.4.2.

15. PASSiiRD - a suhcoutine- Called by o.n-line password­
protected programs. PASSWRD asks for an author id.
validates it, and then moves the cursor offscreen,
and requests a password. If tl1e password is correct
for the iavoking program {a parameter), PASSWRD
returns a '1 1 ; otherwise it returns a •o•.
%INCLUDEd members: PEB!!DEF, 8AIIIDEP, ACBDEF.

- 63 -

Procedures called: FILEIO, tD_DIAG, #DELAY, IDISP,
tRD2_T, IRKV_8IAG, LOGIT (a CHAT routine, provided at
load-module-generation tiae, as i~ is in the on-line
system).
Reference: Section 7.3.4.

16. PRINT - prints an author's directory, and the object
code, literals, and syabol table for a specified les­
son.. This is a substitute foe an envisioned on-line
) PRINT coaaand.
%INCLUDEd meabers: PElUIDBF, LCBDEF, SCEDEF, SYllBDEF,
SYKDDEF, INSTDEF, LITDEF, ARECDEF, EQDQEXT.
Procedures called: ACBPROC, GSOURCE, FILEIO, IIINIT,
UEQID, UDQID.
Reference: Section 7.1.

17. SA YIN IT - clears and initializes the LOGS AVE tape.
Reference: section 7.3.3.

18. STUDOIIP - prints part of the specified students• cur­
rent SREC file inforaation.
%INCLUDEd aeabers: SRECD&r.
Procedures called: HEADER-
Reference: section 2.4.3.

19. STUKAINT - inserts/deletes/changes student records in
the Systea.
%INCLUDEd aeabers: SRECDEP, SOKIIDEF, EQDQEXT.
Procedures called: ttiNIT, IIEQEXT, #tDQEXT, #IEQID,
iiDQID, HEADER, LOCATE.
Reference: Section 2.3.

20. STUREPT - prints a progress report for a given stu­
dent. Included are the aaount of time spent by the
student, nuaber of recovers and resumes, and course
and lesson currently being viewed by the student.
%INCLUDEd meabers: SRECDEF, EQDQEXT.
Procedures called: HEADER, ##!NIT, i#EQEXT, #iDQEXT.
Reference: section 2-4. 1.

21. STUREST restores students' RECOVHEEDED hits as
appropriate, after loss of file STUREC.
~INCLUDEd aeahers: SRECDEF, ftAIHDEF, EQDQEXT.
Procedures called: HEADER, #IINIT, IIEQEXT, iiDQEXT.
Reference: section 6. 2-

- 64 -

9.3 !QI-PIOD9c;IOI Ofp-LIIB O!JkiJIIS

The following utilities are not considered to
for production ase. They are not tested, or
implemented; some should never in fact have to
all. No load modules for these programs exist.

be ready
not fully

be used at

1. ACCESS - prints all password-protected programs and
their associated passwords.
SiliCLUDEd members: IIAIRDE.F.
Reference: section 4.4.3.

2. AUXHINIT - a one-shot initialization program for the
ISAR file AOTHREC. Should never have to be used
again. The source code ~ obsolite ~ skould be
_ysed ~2 ~ model only, should the file ever need to be
recreated. ~ NOT ~XECUT! ~ PROGBAil.

3. CAIINIT - a one-shot initialization program for file
CAIFILES. Should never have to be used again. The
version in the UTILITY.SOURCE dataset is obsolete,
!n£ i§ petained 19! historical purposes QRlz in case
another one should have to be written. ~ NOT !lj­
~ THIS fBOGBAII.
Reference: Section 4.2.

4. STOINIT - a one-shot initiali2ation program for the
ISAI'J file STOREC. Should n.ever have to be used
again; in fact, the retained source code is obsolete,
serving only as a procedural model should STOREC ever
have to be re·initialized. DO NOT EXEC.!ll:! THIS PRO­
a!_!!.

5.

Reference: Section 2.2.

SU!Il!ARY - extracts information from file
prints summary statistics at the end of
!lust be modified each semester to work at
%INCLUDEd members: SUI!l!DEF, SRECDEF.
Reference: section 2.4.4.

SUI'IRREC and
a semester.
all.

6. SOI!IIERG - merges summary information from two differ­
ent records into one. Used when a student is regis­
tered for a time under a temporary id,. and then later
under his real one.
%INCLUDEd members: SOMMDBF.
Reference: Section 2.3.8.

7. SUI!IINIT - a one-s.bot initialization program for the
ISAII file SUIII!REC. The source is obsolete, and this
program sb.ould set've only as a model,. should the file
ever need to be re-created. DO NOT EXEf.!ll:! ~ fRQ-
2liM·
%INCLUDEd members: SUIIIIDEF.
Reference: Section 2.2-

- 65 -

Chapter 10

PUTUB •oax

This chapter is an informal description of some projects
which might be uadertaken to streamline or improve the CAI
system. The order in which the suggestions appear is RQl
meant to suggest an order of importance.

There are two major projects Uat would greatly improve
the entire CAISYSTEM: a comprehensive conversion to CHATHP,
and the creation of the CAI On-Line File Maintenance
(CAIOLFM) system. Both of these tasks are described in !
Renovation 2! ~ !!£ CAl SYstem, in Chapter 4.

Another project would be to remedy some or all of the
known problems and deficiencies of the CAI System. These
are documented in a hand-written list,. kept in the .back of
the CAl Operations Manual. This list should be kept up to
date, as it serves as a valuable and convenient way to keep
up with system problems.

10. 1 BBBOJUG lUTUBC BU. m 01-I.UI $JSJBII

The keyed ISAH Lile CHATJCL.CAI-AUTHREC could be removed
from the on-line system. It is composed of instances of the
structure AREC, containing (for each author) his name and
address, his id, when he entered the CAISYSTEK. and how many
hours and sessions he has had at a terminal. The on-line
system sets the last two items, and SNONOFF accesses his id
as the key to the file. SNONOFF does this at sign-on time,
reading the author • s AREC into core. since all the id 1 s are
also stored in the ACB. SIIONOFF need not ever use AUTHREC.
The off-line program AOTHAIIT puts the information about a
new author into AUTHREC by creating a new instance of AREC.
It also must update the ACB. Bow, all that SN,OIIOFF would
have to do to see whether it had an author signed on would
be to mak~ a single call to ACBPROC, asking it to verify an
author id. AOTHREC need not ever appear in the on-1iae sys­
tem, and could in fact be taken out of the CHATJCL, and put
on an off-line volume somewhere. Mhat this would mean is
that the on-line system would no longer be able to record
the number of hours/sessions, but no one uses that informa­
tion anyway; the CAI system is no longer experimental.,

- 66 -

Now, if CAIOLFM were ever built (or CAIOLFI enhanced to
include author file inspection) then AUTHREC would have to
remain online in the CHATJCL; however, it still seems like a
streamlining to take it out of the CAI System.

10.2 JlEJUY:§U.TIIG n1 g{ QU!lUOIS UIUAL

The text for the CAI Operations Manual currently resides
on a disk dataset in the form of Hypertext iuput. Since
Hypertext is no longer available at UNC, an effort should be
made to convert the man11al to a form acceptable to a current
text-formatter. The easiest candidate might be TEXT360.
However, by using a text-editor, conversion to any other
formatter (e.g., FORIIAT, SCRIPT) mig.ht not be too difficult.
Once that is done, a comprehensive update is in order. The
Operations Manual is generally complete and well-written,
but many details are outdated. For instance, many dataset
names have been caanged over the years, and the JCL given
for some jobs has changed slightly.

At this writing, there is one copy of the Operations
Manual that has been updated by hand to reflect all such
changes. This vas done during the development of the 1980
CAI system. The Department •s Facilities llanager shoul.d know
where that annotated manual. is; it is clearly marked as the
updated version.

In the back of the updated Operations Manual is a hand­
written manual of class start-up procedut"es. It was written
(apparently hastily) by someone on the original CAl team,
and sbould one day be enhanced and text-formatted. such a
manual could, and undoubtedly did, serve quite a useful put"­
pose.

10.3

The CAISISTEM daily jobs described in Section 7.4, Appen­
dix A, and Appendix B of the Operations Manual need t"e-work­
ing. When CAI was in prime prodaction,. tae level of use of
the system warranted high-frequency backups and progt"ess
t"epot"ts. current department policy makes it clear that the
CAI System will never again support as many users as it once
did. Therefore, the daily jobs will probably no longet" be
needed. Instead, a single weekly job to handle file backups
and pt"int reports might make better sense.

- 67 -

10.4 ! ")Iikf" COSIAJD lQi AOTBOi

During an author session, it would be quite convenient to
pe able to invoke a help command0 to provide command syntax
information. A good first step would be merely to display a
static screen-full of suca information, and have the user
press INT to return to the prior screen format when finished
reading. Later, operands may be added to the command. For
instance, entering ")HELP LIST" would display usage informa­
tion about the LIST command. The information available via
")HELP" could be about author comands, DIAL syntax and
semantics, and even the abnormal termination codes.

10.5

No concise manual exists for an author who wishes to
learn to use the system. The DIAL arc~itecture and command
language description are given in Mudge's dissertation, but
both are outdated and incomplete. Peatures are described
wllich were never implemented, and later features have been
implemented which are not described in the dissertation. A
very important contribution to the CAI System would be made
by the person who wrote such a manual.

10.6 UPBO!Jii J&BSSOJ U=COSP.IJ& TUB

In his dissertation,
for greatly reducing the
compile:

Mudge {Chapter 8)
time it takes for a

offers a scheme
lesson to re-

Improving the recompile time involves a major
software change... An incremental compiler would
avoid producing a (completely) new object code
file for each source code change by structuring
the object code file as a chained list, with each
node being a set of object code instructions cor­
responding to one source code statement. This
would provide the important fast response to
author changes. It saould be the next task under=
taken in improving the implementation of the CAI
System. Note, however. that such a chained struc­
ture can, by introducing another level of indi­
rect.ness, result in a slower execution. So, at
say)ATTACH tiae, all references should be
resolved to absolute ones, and tae code linear­
ized, so that the execution speed is equivalent to
(that of) the directly compiled code in the cur­
rent implementation.-. Some reprogramming of the
current implementation could result in a language

: 68 -

processor closer (in nature) to the incremental
compiler. For example, the system could make some
gA il.oc determination of which parts of the object
code file need not be discarded.

Improvement in run-time performance might be attained by
optimizing the object code at)ATTACH time. In particular,
useless NOP instructions could be deleted. and object code
pages could be compressed.

10.7

Mudge (Chapter 9) offers some view about extending the
author language, and the reader is referred there. One
extension which seems especially useful and prom.ising would
be the PARSE system matchiag function, which would take a
grammatical specification of a construct, and see whether a
student's response parsed correctly under that construct.
Such a function, it seems, would greatly simplify answer
analysis in programming-language lessons, but its use would
certainly not be limited to such an application.

A more immediate task should be the creation of a new
DIAL grammar, whether for an extended or completely new
author language, or for the one which is now in place. The
grammar is needlessly complex; there are many unnecessary
productions of the form <nonterminal> :: = <terminal>.
Further, the grammar blurs the distinction between arith­
metic and string expressions (there is even one production
of the form <string expr> ~:= <arith expr>) and necessitates
much run-time type checking by the EXECTOR module. Kany
constructions which are syntactically legal are semantically
disallowed, forcing the code generator and the executor to
do more work than would otherwise he necessary.

Another example is the peculiar way in which the grammar
treats IF-THEN-ELSE and DO-WHILE statements. The ELSE part
is considered to be a statement in itself. Thus, it is syn­
tactically legal for an ELSE clause to appear, by itself.
anywhece in a DIAL program. Similarly, the ENDDO statement
may appear anywhere, and the syntax does not care whether or
not there is a corresponding DO WHILE. That currently
causes no problems, since neither feature of the language is
actually implemented. However, a new grammar would surely
be in order before their implementation is attempted.

Finally, the implementation of those two statements
should be attempted. They would provide much-needed relief
from the GOTO mania imposed by the rest of the DIAL lan­
guage. Moreover, the IF-THEN 1 IF-THEN-ELSE construction
should include compound statement ("do-group") capabilities.

- 69 -

Appendix A

NOTES ABOUT THE MANUAL

A.1 HISTORY Ql. !HIS MANOA~

Tne original CAl System Programmer's Manual was a hand­
typed documented prepared by J. craig Mudge in 1973. It was
modified later that year by 0. Jack Barrier, and again by
Mitchell J. Bassman in 1975. In 1980, it was text-formatted
and enhanced by Paul c. Clements, to complement the newly­
renovated CAl System.

The 1975 manual exists in the 1980 version as the follow­
ing parts: chapters 4, 7, and 8; Sections 3.1, 3.2, 6.5,
6.6, and 6. 9.

This manual was written using the SYSPUB commands of the
University of Waterloo SCRIPT text-formatter. The file des­
criptions in Chapter 5 are imbedded directly from the CAI
System declaration library,

UNC.CS.E557C.CAI.DCLLIB,
the same dataset. used by the procedures of the Cl\I system to
retrieve their declarations from. So, that dataset must be
specified to SCRIPT as the SYSLIB dataset. By using this
imbedding scheme, any changes to the file structures will
not make the SCRIPT text of this manual ~bsolete. Merely
make the changes to the declaration library {which would
have to be done anyway) and re-generate this manual. In
particular, the following DCLLIB members are imbedded into
this manual; they are listed in order of appearance:

SRECDEF, ARECDE.F, MAINDEF, CCBDEF, ACBDEF, BTOP­
DEF, BSECDEF, SCEDEF, SYMBDEF, SYMDDEF, INSTDEF,
LITDEF, PL1DEF, PL2DEF, LOGRDEF, SCBDEF, and
LCBDEF.

To generate a copy of this manual, submit the following
job;

//job name JOB account, name,T=2,PAGES= 100, FORMS=1lj 11
//*PW=password
I/ EXEC SCR IPT,REGION=300K, OPTIOIIS=' SEQC=73, C0=25, FNS= 1000',

- 70 -

Appendix B

THE 1975 Cli SYSTEft

The system that lludge and his associates built has
~emained unchanged since 1975. Even though the newly-~eno­
vated (1980) ve.:sion replaces that system as the production
system, it is still possible to use the 1975 system. The
student-only ve.:sion of the 1975 system is now called "OLD­
CAl". The full-powered ve.:sion of the 1975 system is now
called "OLDCAIA". It should be pointed out that the 1975
system and the 1980 system both operate on E£~~isely the
sam~ .!!Uaset§.

In terms of file handling and lesson manipulation • the
systems are almost completely compatible. That is, a lesson
created under one system may be loaded, listed, attached,
changed, purged, or renamed successfully 11sing the other
system. The resequencing command, howeve.:, is an excep­
tion. That command is not supported in the 1975 system, and
expects lessons to have four-digit line numbers in the 1980
system.

In terms of DIAL programming, the two systems are also
nearly compatible. That is, a lesson created using one sys­
tem may be re-compiled and/or executed using the other.
The~:e are two exceptions. The 1975 system does not support
integer addition. The 1980 system does not support lightpen
facilities. So, any lesson containing either of those two
features is bound to the system under which it vas created.

The source code for the 1975 system is on the partitioned
dataset UNC.CS.E557C.CAI75.SOURCE. It is also stored on a
tape. The 1975 system's object modules and DCLLIB dataset
are also on tape. See the Operations l!anual for details.

- 72 -

BBFIRENCES

1. Bassman, Mitchell J. UNC CAI System Operations Manual.
University of North carolina at Chapel Hill. 1975.

2. Gries, David. ~ompiler Construction ~ ~gjtal
£ompupers. Wiley. New York. 1971.

3. McKeeman, 11. 11., Horning, J. J, and Wortman., D. B. !
Compili~ veneratgr. Prentice-Hall.
Englewood Cliffs, N. J. 1970.

4. Mudge, J. Craig. Human Factors in the Design of a
Computer-assisted Instruction SysU!m. Ph. D.
Dissertation. University of North carolina at Chapel
Hill. 1973.

5. Schultz, Gary D. The CHAT System: AD OS/360 IIVT Time­
Sharing Subsystem for Displays and Teletype. l'l. s.
Thesis. University of North Carolina at Chapel Hill.
1973.

- 13 -

LIST 01 FIGUBBS

ili.Y~

1. Model of a STUBEC Record - SBEC ... -- - - - • - 20

2. Model of an AUTHREC Record - AREC . . - 22

3. MAINEILE - Region 1 of CAIFILES . . . • - - - - 25

14.

5.

6.

7.

a.

9.

10.

11.

12.

13.

14.

15.

The Course Cont.rol Block - Region 2 of CAIFILES 27

The Author Control Block - Region 3 of CAIFILES 28

FBL_TOP Region 4 of CAIFILES. • • • • • • •• 31

FBL_SEC -Regions 5·10 of CAIFILES ••••••• 32

Template for a Block of DIAL Source Code •••• 34

A Lesson's Compile-Time Symbol Table •••

Template for a Block of DIAL Object Code ••

• 36

- • - • 31

Template for a Block of String Literals •••••• 38

Template for a Block of String Variable Storage •• 39

A Block of a Student• s Log Information • • • • • • • 40

A Student Control Block • • • • • • • • • • • • 44

A Lesson Control Block •• . . . • • • 146

- 74 -

LIST OF TABLBS

Table

1. Table of STOP Codes •••••••••••••• - •

- 75 -

a9.!il.

• 56

