HO-OOH

A RENOVATION OF THE UNC CAI SYSTEHM

by

Paul C. Clements

A Thesis submitted to the faculty of
the University of North Carolina at
Chapel Hill in partial fulfillment
of the rTeguirements for the degree
of Master of Science in the Department
of Computer Science.

Chapel Hill
1980

Ap yed by.

j;é,\wé.k./"’“

Adviser

4(1?Aﬂ4&1 2/ J/dd@tbﬂ

Beade:

l&zﬁﬁ?hé_; ﬁ’/<d/229p7

{f eadér

PAUL CHABLES CLENENTS. A Renovation of the UNC CAI System

{Under the direction of Peter cﬁii&gaert.;.

This thesis describes soﬁk undectaken to modify the Com-
puter-Assisted Iastruction systes ai.the University of North
Carolina at Chapel Hill. The modificatioans inciude enhaﬁced
iatetnal documentation of the PL/I source code,.'and re~
structu:ing of local code sectioms to eliminate confusing -
branches. The architecture of the system has beem changed
by deleting the lightpen feature, replacimg its functions
With keyhoafd'coaaands. color~codiag of system information
apd uarning gessages, and the inplanaﬁtation in the author
language of integer snhttaction.' Suggestions for future
work aﬁe offered. The mew System Prograamer*s HNaauval is

attached as an apperdix to this docusment.

TABLE OF CONTENTS

Chapter _ page
e INPRODUCTION o « o o o m o « = = o o « o = o o o oo 1
2. DEFICIENCIES IN THE CAI SYSTEN < o « o o o o = « o = 5
3. THE MODIFICATIONS UNDERTAKEN « v v v o « n o o« « » « 12

4. SUGGESTIONS FOR FUTURE DEVELOPMENT + v « o o o o « o 23

Appendix | page
l-' . CAI S!STEH ?ROGR-!H!ER.S Hisﬂllt * # £ = a4 & o - & o 29

The host operating eavironment for the CAI system was
developed at roughly the same time by Gary Schultz [5]. The
CAl system runs uader the Chapel Hill Alphanumeric Terminal
(CHAT) system, a single-region resident time-sharing monitor
that runs under the 05/360 HVT operatiang systez at URC,
CHAT allows the interaction of aultiple application programs
with CRTl display statiors, aad provides inpﬁt/oﬁtput-pro-
graaning sapport for that interaction. CAI is oamly come sub-
task (application programs) that runs ia the CHAT emnviron-
ment; others inc;ude a graphics interface packdgg, a text
editor, ana.;-nnSP monitor program. Cﬂar.was designed And
built with one kiad of display terminal in mind: a Coamputer
Comrunications Incorporated CC-30 Communications Statioa.
This is a four-color CRT with a lightpen, and a fox:i:—y-—char-
acter by twenty-line screen. 1In addition, each terminal has
a prograa-contrelled randoa-access slide projector. CHAT
software includes support for controlling the projector aad

iightpen as well as reading and writing the CAT screan.

Mudge paid close attentibn to the working eavironment of
his users, and carefully designed special CAI workstatioans.
Bach station consists of a €C-30 CRT and its keyboard,
lightpen, slide projector, and a desk-type ¥riting surface.
All 6f'this is enclosed in am acoustically treated cuhible

approxisately six feet sguars.

The CAI system vas put iato test production im 1972, aad
was used to teach beginning PL/C to Computer Scieance and
Library science students of UNC until the fall of 1978. -The
original course material was writtem by Dr. Prederick P.
Brooks, dJr. 1[23’ and has served as the curriculoas of the
systes, excepéhfof ainor modification, throaghout the entire

iife 6f CAI here.

During its creation amd testing, the CAI system enjoyed
the services of a systeas programming team, whose responsi-
bility it was to isolate and fix bugs in the new system; a
group of course proctors, #ho oversaw the instructiom pro-
cess, and smoothed the way for the student users of the sys-
tem; and a corps of studeants in several sectioans of progras-
ming courses, who learned froa the system, and evaluated its
ease of use and effectiveness for Hudge and his colleagues.

CAI was a major effort of the Department.

Any large systea will show signs-of age as time passes,
and the CAI syster has been no exception. By early 1979, it
" was omly a minor responsibility of the Department's software
panager. No ome used it for instructioral work or research
at all. The team originally respoasible for its creation:
had long since graduated, and the workstations fell into

disrepair.

Chapter 2

DEFICIENCIES IR THE CAL SYSTEHN

Why did the CAI system fall from proainence iate. obscur-
ity? For ome thing, the people who built it left. For
another, it was alvays intended to be a research tool above
all; any production use it found would merely be a bonas.
Horeover, one or two Of the design decisions sees to have
created needless restrictions in the handling of the lesson
files. ﬁorg.igpqttant, I believe, is that Hadge's full
design was nevér. isplemented, and the omission. éf several
features from the final.vefsion of the system rendered it
awkward and impractical to use. And finally, since Hudge
chose to implement his own author language, rather tham use
a general-purpose langaage airea&y existent, he automati-
cally incurred the expense and overhead of writing what is
essentially an interactive compiler £or that language, and
imbedding that compiler into the systéa. Now, writing a bad
compiler is a sizable task; writimg a good one is ar enor~
aous task, and ip ay judgment the DIAL tramslator lies some~-
where between the two exiremes. In any case, it does not
give its user the kind of support to vwhich many bave become

accustoned.

The uninplgnented features of the CAI system were primar-
ily features of the author language. The control structures
of DIAL are basically those found in PL/Y, with a few major
'exteasiens. Therefore, the DIAL architecture defines the
'IP-THEN, IP-THEN-ELSE, and DO-WHILE statements, all of which
are sesmantically defined aé in PL/I. Hone of these three
was actually inmpleaented in the systen. Consider for a
moment their use im a tespoase-analysis situation, by exa-
mining the following possible uses:

iF answer -= expected_ansver
Tﬁz! SHOW "¥Wreng auswer; try again.®;

ELSE SHO§ ‘*Your answer is correct.';

ors:
IF answer = Nrong_answer_1
THER SHOW hint_1;
ELSE IF answer = wrong_aaswer_2
THEN SHOW hint_2; |
ELSE IF answer = wréng;ahs&er_3
THEN SHOW hint_3;

ELSE SHOW big_himt; = =

{Read answer)

DO WHILE (answer wé'expected_answer);

SHOW *'Wrong answer; try again.?;

{Read answver)

END;

or, finally:
I = 0;

(Read answer)

DO ¥HILE (I<N & answer -~= expected_answer) ;

SHOW 'Not right yet; try again.?;

I =14 1;
{Read answer)

END;

DIAL's control structure for answer analysis is the MATCH

statement. Syntactically, it is of the fore

MATCH expected_answer, label

and if the student response is
“"expected answer®”, them a braanch takes
Implicit in the first HATCH statement

statement is the command to read am imaput

equivalent to
place to "label™.
following a SHOW

lire from the dis-

play screen. Similarly, there is the UNREC statement:

UNREC labell, label2, label3, ...

where the i-th umrecognized response to thé mnost recently
executed SHOW statement will cause a branch to the i-th
iabel in the UNREC label list. An unrecognized résponse is
one that has not been .specified in the HNATCH statenment(s)
following the controllin§ SHO¥ statement. The UNREC state-
ment corresponds to the diﬂERHISE statement of the PL/I
SELECT construction. It #elieves an author from having to
test {via MATCH statements) for every possible student
input. Rather, it allows the autho; to specify an action to
be takeh when the student‘§ response falls through all of

the associated NATCH statements.

There are more complex f@rms of both the MATCH and UNREC
statements, offering moreéflexible actions, but the fact
that both rely on explicit bramching to do what could be
accomplished without it seems to me to be unwieldy. As a
result, DIAL prograsms mns£ rely heavily on branching, and
this offers little chance for structured author programming;
which in turn makes course writing all the more time-~consum~

ing and awkward.

For instance, consider ho¥ the first exanmple abbve voald
be formulated with only the incomplete DIAL available:
READ: HATCH expected_answer, RIGHT;
SHOW 'Wrong answer; try again.';
GOTO DONE; |
RIGHT: SHOW ?*Your anéser is correct.?;

DONE: /7% end of if~then-else simulation */

Oor, for the third example:
READ: MATCH expected_answer, OUT_OF_LOOP;
SHOW"Hrong answer; ;Fy again.'; .
GOTO READ;

OQUT_OF_L00P: /* end of do-while simulation */

The case statement simulated in the second example above
would offer an even more dramatic display of labels and
branching. As for the foarth example, which branches condi-
tionally after testing the%ialue of a counter variable, it
is not clear to me that in the limited version of DIAL that

would be possible at all.

It is for this réasoa thét 1 believe ﬁAI has fallen dor-
mant; no one has been williﬁg to compose new lesson pmaterial
for the system, and as a result, the PL/C course originally
vritten for the system is now embarrassingly outdated. it
¥as written in conjunctionﬁuith a textbook no longer used,
and does not reflect the doétrines of stractured programming

espoused by the books nowv in vogue.

Another major reason conﬁrihuting to the overall problen
is the hardware involved in the CHAT systen. It is all
showing its age. By today{s standards, the CC-~30 terminals
are archaic. The display ié hard on the eyes, the screen is
gquite small; and as time ﬁgsses; they are becoming less and

less mechanically reliable. Spare parts are no longer

available, In fact, each component of each workstation is
- extremely suasceptible to hardware failure. Most of the
lightpens were long ago discomrnected; the slide projectors

and their controllers are all moth-balled.

Since the <CAI system depends so heavily on CHAT, and
since the CAI hardware supported by CHAT seems to be on its
last leg, the project could very well have ended here. Any
work on modifying and rebuidding the CAI system would have
been pointless, except that under development at the ti@e of
my work was a new version of CHAT that woulid allow ité
application programs to run either on the CC-30 terminals or
on the Hewlett-Packard 2621 or 2645 terwminals recently
acquired oy the Department of Compuiet Science. With this
new system over the horizon, a future for CAI no longer

seened implausible.

Before that work could be completed, however, the age of
the system once again proved an impediment. Recall that the
iessons in the CAI system vere no longer useful because they
Were written before structured prograemiag was dgenerally
espoused, let alone practiced. Naturally, the implementa-
tion of the system itself predates the creation of thosé
lessons. The original code contained dozens of indiscrimi-
nate {and unnecessary) braaches; folloving the flow of con-
trol ia many of the code sections was quite difficult. The

internal comments were sketchy, and not generally helpful.

Little attention was paid to indentation and 1layout of the
statements. The file structures are quite complex, and
nowhere were they explained in detail. A System Program-
mer's Manual éid exist, but was only about half coampleted.
Nowhere 4id there exist an accounting of precisely which
elements of the.architecture were actually impilemented.
More of a hindrance than any of this, however, was the fact
that the seventeen nodules (PL/I external procedures) of the
system overlapped in terms of task and effect. Most commu-
nicated with each other through a large number of external
variables, and only a few were responsible for discrete,
well-defined tasks. Modifying such a system is a risk at
best; at Qorst, it may spawn a disaster. Because each
moduie makes assumptions about what changes others have {or
have not) made to therfiles or data structures, a small
change in one maf have far-reaching and gquite unforeseen
side effects in any number of others. The CAI systen serves
as a shining tribute-by-counterexample to the doctrines of

structured progranning.

Chapter 3

THE MODIFICATIONS UNDERTAKEN

My work on the CAI system was divided into two catego-
cies: architectural modifications which will be visible to
the production user of the system, and modifications which

Will be visible only to a CAI system programmer.

Included in the latter category are the enhancement of
internal documentation, restracturing of Jlocal code sec-

tions, and the completion of the System Programmer®s Hanual.

The internal documentation that I supplied to the modules
coﬁsisted of enhanced header paragraphs, as well as in-line
comments. The aeader documentation for each module followed
the sape format, and consisted of the following information:
1) Fﬁnction. This is a general prose definition of what the

particular module is supposed to do. Because of the

rebulous nature of each module's task, this information
1s necessarily imprecise. It is meant to give a program-
mer who 1is searching for the cause of a problem a good

idea of which module to pay special attention to. In a

few cases, I was able to use descriptions that already

existed, provided by the original CAI programming team.

2)

3)

4)

3)

Parameters. This is a list of the parameters for this
rodule, with a brief description of the information car-
ried by each. Included is whether the parameter is given
{that is, its value is set externally, and only used
here) , returned {its value is set in this mnodule to be
used exteraally), or both.

Input. This is a specific description of what input this
Eodule expects. By "input®, I mean input from the user
or input from the CAI éysten files, not input through
parameters from other Hodules. There is an exception to
this distinction, houevér. The CAI system has a module
calied FILEIO, £he putpdse of which is to read and write
one of the systen files;. a parameter is the information
to be transmitted. A call to this procedure has the same
effect as performing file iaput/output; therefore, in the
interest of providing more <complete information, I have
used the "Input" paragraph in many cases to describe such
calls. However, I was careful to make it clear in cach
case that I Qas in fact describing the effect of a call
to FILEIG, and not "real" input.

Cutput. Similarly, this describes what output this

- module generates for the user, or onto the files.

Functions called. This is a list of all of the proce-~-
dures called by this aodule, with a brief decription of
the task of each. Imnternal procedures are differentiated

from external procedures, but both are described.

6) References. For those modules where external sources of
information may be helpful, such sources are cited.

7) Compilation ianformation. Designed to help bring about a
successful compilationr and linking of this modﬁle, this
section gives a cozplete transcript of the necessary JCL,
including a list of compiler options to use.

8) Use of Branching in this Procedure. This is a list of
all the relevant statement labels to be found in the
procedure, with an explanation of wvhen and how each one
is ysed in branching.

9) Cther information. Some modules may call for special
docunentation; for imstance, in the wrain procedure, 1
included a diagram of the overall system call structure,
and a paragraph explaining the changes made to the archi-
tecture and documentation of the 1980 systen. In the
DIAL conmpiler routine, the productions of the grammar are
catalogued, and in the AUTHOR routime, there is a list of

all of the valid author commands.

The heading descfiptions for internal procedures followed
the same conventions, with one extersion. I included a list
of all of the externally-defined variables used 1locally by
each internal procedure. 0f course, PL/I¥s block structure
rakes it perfectly legal to use {without declaration) any
variable defimed in a comtaining block, but imprudent use of
such variables can very easily give rise to side effects,
and tends to obscure the precise nature of the role of the
internal procedure. |

- 14 =

I followed no guide for providimg in-line comments for
the code, other than a loose and subjective one, First, any
major segment of code which accomplished a fairly discrete
task warranted a paragraph of commentary. If_dne was lack-
ing, I provided it. I decided quite subjectively which vere
'"major segnents” and waich were not. Second, any other
statement oOFC segment whose purpose was not clearly
explained, and that seemed important eaough to try to under-
-stand, received an explanatory comment. Again, the deci-

sions here vere subjective. I tried not to be terse.

Often, I was forced to understand a group of stateaments
in order to effect my architectural modifications, and then
it was a simple matter to record what I had learned about a
certain section. By the same token, those parts of the éys~
tem that clearly did not apply to my work may remain some-

what under-docutented.

While my modifiéd system actually comprises rouéhly tyo
percent fewer executable PL/I staﬁements than its predeces-
sor, the source listings occupy some fifty more pages, an
increase of about eighteen percent. I attribute nmost of
that to new internal documentation. Natarally, that does
. not speak to the quality of the added information, but

should at least offer evidence of my good intentions.

An adjunct to ‘the internal documentation was the work I

did to to improve the visual quality of the code. The rules

applied were quite simple. They incladed wuniformly
indenting the bodies of loops and compound sStatements
(inciuding any contained comments describing parts therein),
aligning eaé# END with its associated DO, and indenting each
code section beneath the comment describing it. The result-
ing physical structure of the code 1is meant to aid the

understanding of its logical structure.

My restructuring of the code was fairly modest in nature,
but extremely widespread. Like the internal comments, this
_was as much a tool for my own understarding of the system as
anything else. My first strategy was to delete every GOTO
Statement that I could; my tactic was to identify and elimi-
naie every statement label witkin each procedure. | The
labels that were branch targets served to point to the
branches themselves. The other labels served no useful pur-
pose, and were summarily erased. Any mnemonic sigmificance
they offered was replaced with a comment. Host of the
branches that I was able to delete were used to simulate
large alternative-selection {IF-THEN-ELSE) statements, by
branching around a section if some condition were not true,
and falling through it otherwise. I replaced those with
IF-THEN~-ELSE statements., Others were used to build loops {I
replaced those with loop statements), and still others simu-

lated procedures {which I replaced with real procedures).

After all of the dust has cleared, it is evident that the
CAI system still suffers from a plethora of GOTO statements.
Some are used ﬁerely to terminate loops, and I juéged those
to be inmrocuous; others are simply too deeply embedded in
the logic to be easily replaced. For the latter group, I
adopted another strategy: if it can®t pe eliminated, then
it must be explained. Therefore, as explained'above, the
documentation for each module 1includes a paragraph entitled
"Use of Branching in this Procedure", vhich lists every
statement label not used just as a loop escape, and explains

how and when it is used,

Another modification to the system code was not so modest
in nature. The modules of the CAI system communicate with
each other through a large agygregation of external varia-
bles. The system was originally built so that all of those
#ariables vere stored imn a single large PL/I structure, and
then any procedure which referenced any of those variables
vas passed the entire structure as a paranmeter {4]. This
vas done because the load module must be reentrant; there
may be several users at once, and each invocation must have
its own copy of the externél variables. The super—-struciure
approach worked well, but had drawbacks in terms of clarity.
Por instaace, many of the modules use only two or three of
the external variables; but had to declare the entire set
{taking.almost two pages in the listing). H. James Sneer-

inger [{6] has proposed a more reasonable solution. By dec-

laring each such variable with the attribute CONTROLLED
EXTERNAL and then allocating them all in the main procedure,
‘only those variables actually needed by a procedure need be
declared there. Reentrancy is preserved, and Sneeringer
argues that the compiled code obtained by this method in

fact produces less overhead than that of the structure par-
ameter approaci. Therefore, I set out to replace the struc-
ture in each procedure with only those variables actually
uwsed, and I believe that the géins in clarity are well worth
the effort. Even though the modules still commnunicate
through external variables, each module at least contains a
list explicitly definisg the only variables it may change.
In addition, I discovered that half of the fifty external
variables did not in fact need to be known to more than one
external procedure, and they were gquickly demoted to ldcal

variables.

The new System Programmer's Manual is included as an
appendix to this document. The sections that I supplied are
listed in an appendix to the manual. It should be noted
that much of the information added to the @anual came
directly from the internal documentation of the system. For
instance, the nrodule descriptions are from each procedure?s

"function® paragraph in the header comment.

Althouyh time has not permitted removing all of the defi-

ciencies pointed out in Chapter 2, the architectural modifi-

cations I have made include extraction of the lightpen from
the system, color-coding and re-wording of the system mes-
sages to the uéer, and the implementation of five new author

cormand features.

The ligatpen facility was taken from the system for three
reasons. The first is that, for all .practical purposes,
there are none 1left; nearly all are out of service. The
second reason 1s that the Hewlett-Packard terminais do not
feature lightpens; henée neither wili the envisioned new
version of the CAI systeh. Fiﬁally, the deletion of the
lightpen facility has served to reduce the amount of run-
time memory reﬁuired by the system, and to streamline tre
system, in the sense that input can now only be done via the
terminal keyboard. This, I believe, is important‘from a
human factors standpoint. Neither the student nor the
author need worry apout using the lightpen, which seems to
me to be a rather unnatural input mechanisn. It was the
deletion of the 1lightpen that allowed my system to use
slightly fewer PL/I statements than its predecessor, while

actually doing more worka.

The system diagnostic messages were modified in tvo ways.
First, I attempted to make them more informative and more
congenial., For instance, the sign-on greeting "UNC CAI 5Y5-
TEM® (displayed in bland blue) was replaced with “Welcome to

the UNC CAI System"™ (shosn in a more congenial green). I

added some messages. For instance, some commands in the
systém ask an author whether he really wants something done;
if he fails to'confirm it, the command is nullified. The
old system responds merely by waiting for another command.
My version acknowledges the cancellation, and displays {in
green) "Command_canceled." Finally, I paid special atten-
tion the color of the displayed message. Previously, umost
diagnostics appeared in blue. I adopted a more varied
schene. It the purpose of the message is to confirm or
inform, it appears in green. Special words within are high-
lighted by appearing in yellow. Fo£ instance, one nessage
is Y"The COMPILE switch is now OFF." The mes#age is green,
except for "OFFY", which is yellow. if the purpose of the
messége is to warn or report failure, it appears in yellow.
For instance, "You already have a lesson Dby that name"r
appears in yellow when am author tries to create a lesson
with the same name as another. When the system halts in
case of unrecoverable error, the error code appears in red.
Basically, the philosophy is this: when the message reports
sorething the user shbuld expect, it appears in green; when
it reports sometﬁing he should be concetned about, it
appears in yellow; when it announces abnormal termination,
it appears in red. Blue, then, is left to be the color.of

the text tnat the user himself enters.

Of the five new author features implemented, three merely
replace functions lost when the 1lightpen was renoved from
“the system; two are truly newa.

- 20 -

The three replacement functions are "CLEARY", which allovs
an author to ask for a blank screen so he may enter a DIAL
statement thét;aas too long to be entered where the cursor
was previously positioned; “EDIT", vhich allows an author to
maké changes to DIAL text by merely typing in the changes,
rather than ré-enteriug the entire statement; and "CSH",
“which coatrols: the compile switch, the bit which decides
whether or not to re-compile an author®s entire lesson every

"time the author makes a change to it.

The two new features are integer subtraction and the
-HRESEQUENCE" conmmand. Just as the IF~THEN and DO=-WHILE
Statements appéated in the DIAL ¢grammar but were never actu-
ally implemented, neither was most of the arithmetic expres-
sion evaluation nmechanism. Since integer addition was
already in place, it vas a simple matter to mirror the pro-

cess and implement subtraction.

The "RESEQUENCE" command allows an author to renumber the
statements in a lésson according to a given starting value
ana increment. Implementing that command brought about an
unexpected change to the system architecture elsewhere. It
turned out tha£ renumbering a lesson was a decidedly montri-
vial task if, as was the.case, each statezeni's nunber field
was not of uniform lenyth. For instance, #1 DCL J INTEGER"
and "000% DCL J INTEGER™ are both equally valid rTepresenta-

tions of statement number one of some DIAL lesson. However,'

- 21 =~

the renumbering became quite straightforward when one
assumed numeric fields of constant length. Because the sys-
tem limits statement npumbers to positive integers not
exceeding 9999, I adopted the policy of four-digit number
fields for all statements. In addition to the gain in ease
of renuabering{ this poiicy has a valuable human engineering
effect. It aids an author in preparing more readable DIAL
source text by forcing all statements to begin in the sanme
column, independent of the statement number, Thus, syste-
matic alignment and indentation become easier. This policy
is certainly not without precedent; - TS0, for exanmple,
employs it. One may argue that I made this decision for the
wrong reason (ease of implementation), but I submit that the

final result is in fact a better architecture.

irn fact, I would hope that my modifying work has produced
exactly that: a.better architecture throughout. I am confi-~
dent that it has ptodnéed a better implementation in terms
of clarity, efficiency, and ease of future change. The ﬁAi
system is stilli not the invaluable aid hoped for by any of
its creators; ;t is, however, a viable tool which I have

tried to make easier to use.

- 22 -

Chapter 4

SUGGESTIONS FOR FUTURE DEVELOPHMENT

The event that may breathe new life into the CAI system
vill also precipitate the next Qajor reguirement for change.
When CHAT is able to tun on Hewlett-Packard terminals, a
major overhaul of the CAI syster will be in order. Two

“strategyies are possible.

The first is to adapt the system to the new terminals by
applying local fixes. Even though terminal input and output
are technically done by only one procedure in the systen,
almost a dozen procedures make the assumption that the
screén size of the termimal is that of a CC-30, which is
guite different from that of the Hewlett-Packards. The.ﬁost
common example of this is creating a multi-line display.mes~
sage by inserting the appropriate number of blanks, rather
than a new-line command, at the end of each screen line.
Sone modules display'entire screens at one tiné, and the
formatting for such a display depeéds heavily on the screen
size. Rooting out all such assumptions would require care-
- ful examination of nearly all of the procedures constituting

the CAI systea, and a tedious modifijication of many.

-23 -

The second strategy for adapting to the new termihals
reguires more imitial work, but would be much more satisfy-
ing in.the long run. The ﬁeulett-Packard terminals are emi-
nently more so#histicated than the CC-30s. They offér fea~-
tures such as on-screen editing, programmable fumction keys,
screen paging or scrolling, tabs, and blinking éisplay;” and
some can read and write a cassette tape. Hést importantly,
all of the advanced features are programmable; that is, they
can be initiated and controlled by special control charac-
ters received by.the terminal from a progranm. The new CHAT
.system will take advantage of all of these features, many of
which could add an exciting power to the.output capabiiity

.0f the CAI systen.

Consider the following excerpt fror a hypothetical stu-
‘dent session. The system displays a screea of new lesson
material by issuing the command for the terminal to read and
display one of many files on its builtim cassette tape. The
student presses the RETURN key to signal that he has read
the information. The system commands the terminal to move
the material off?screen, and lock it into a page of its
MEeROT Y. The system displays a question, and the Student
responds. The systen instrﬁcts the terminal toe record the
response on its other cassette tape, for later analysis.
On-line response analysis takes place as usual, and the CAI
syster discovers that the student's answver is utong.' it

orders the terminal to page the lesson material back onto

- 24 -

the screen; this time, however, key words and lines ofi the
screen are highlighted with an inverse video or a flashing
display. The student is asked the question again, and this
time he responds correctly. The system displays the congra-
tulatory message, £ings the terminal's bell, and gées on to

present the next topic.

Oof course, to gealize such a situation would take an
inordinate amount of work. But such powerful capabilities
present a broad range of possible enhancements to the CAI
sSysten. It seems to me that a teasonable first step.uoulé
be to build a CAI systém so that only one module truly knew
of the terminal characteristics. It would be responsible
for fitting given text strings to the avajilable screen size.
‘Perhaps the calling procedures would adopt command param-
eters similar to what might be found in an elementary text-

formatter:; ‘“center", Yunderscore®, "newline", %“table", eotc.

After that, nev DIAL commands may be created. For
instance, one nmnight visualize a feature that wouid allow an
author to define a screen-£full of text, specifying which
¥ords or lines should be highlighted on subsequent displays,
and another coamand that would allow that text to be uritten
onto a cassette tape, and referred to symbolically there-
after {(much like the SLIDE data type curtently implemented
in DIAL). Then, there might be a SHOW_TAPE command, and a
SHOW_HIGHLIGHTED_TAPE command. The possibilities are pro-

fuse.

- 25 -

A second major improvement to the CAIL system would be the
implementation of an on~line file maintenance subsysten.
This was envisioned by the“original team of CAT syﬁtem pro-
| grammers, and still seems a good idea. There are three
major files used by the CAI system. One contains informa-
tion about all authors known to the system, another about
all students knowa to the system, and the third contains
everything else {for example, the source and object code for
all t&e lessons; the list of lessons constituting each
course; the status of each student currently taking a
course, and so forth). To add or delete or change records
in these files, single-purpose batch programs must be sub-
mitted. A more elegant solution would be to invoke an on-
line CHAT program which would be able accomplish any of the
tasks now handled by the batchk programs. The list would
~include adding an authot or a student to the system; delet-
ing an auathor or a student from the systenm; deleting all
students enrolled 1in a particular course from the systerm;
reporting on a particulér student's progressg displaying a
directory of all students or authors currently in the sys-
tem; removing lessoas from a course; <creating or removing a
course; and displaying formatted information about the con-
tents or available space on the files. The directory or
information tequests could offer a print option, causing a

print job to be submitted to the batch job stream.

- 26 =

Implementing such a system would not be very difficule,
as programs already exist which perform each transaction
listed above. ._ The ptinti=option has been implemented in
another CHAT application progrém, and so that logic is also
available. finally, such a system could employ some of the
wmodules of the on-iiﬁe CAl system, such as the main driver,
‘the input/output interface module, and the module which
updates the author directory, with very 1little (if any)

modification.

- 27 -

1"

4.

5@

BIBLICGRAPHY

Barrier, 0. Jack, Clements, Paul C., and Mudge, J. Craig.
UNC CAI System Programmer?’s Manual. Uaiversity of North
Carolina at Chapel Hill. 1980.

Brooks, Frederick P. Lessons on PLC programming, written
for the UNC CAIL system. 1973.

#Hudge, J. Craig. Human Factors in the Design of a
Computer-assisted Instructijon System. Ph.D.
Dissertation. University of North Carolina at Chapel
Hill. 1973.

Mudge, J. Craig. On Writing Reentrant Prograas in PL/I.
SACH Newsletter--a Publication of the University of North
Carolina Student Chapter of the Association of Computing
Machinery, Chapel Hill {(November 1971), 2-3.

Schultz, Gary D. The CHAT System: An 0S/360 MVT Time-
Sharing Subsystem for Displays aand Teletype. Master's
Thesis. University of North Carolima at Chapel Hill.
1973.

Sneeringer, James. More on Writing Beentrant Programs in
PL/I. SACH Newsletter--a Publication of the University
of North Carolina Student Chapter of the Association of
Computing Hachinery, Chapel Hill {December, 1971}, 5-7.

-28_

Appendix A

CAI SYSTEM PROGEAAMEBR'S HMANUAL

- 29 -

PREFACE: USING THIS MANUGAL

This manual is intended for anyone eagaging in modifica-
tion, documentation, enhancement, or maintenance of the UNC
CAI Systen. A user of this manual should already have per-
formed the following: :

1‘-

4.

Read the CAI Operatioms Mamual, written by Mitchell
J. Bassman; this gives an overall viev of the files
ased by CAI and the atility programs whichk exist to
maintain then.

Read chapters 4 and 5 of Human Factors in the Design
of a Computer-Assisted Instructjon Systen, by
Ja Craig Mudge. These chapters explaia the architec-
ture of the DIAL programming lamguage, and the opera-
tional environment of the CAI systen.

Beconme fagiliar ¥ith CHAT and the CC-30 termimals.

Become ifamiliar with the CAI system. Using the file
procedures listed in the Operations Nanual, enter
yourself as a student iato the systen, and then go
through some of the course material in student mode.
Enter yourself as an author in the system, and write
a smalli isstructional lesson in DIAL. BExplore. the
author commands. Try executing your lesson. Experi-
ment with celor displays, the DIAL pattern matching
facility, the SQZ amd CASE systea variables.

- ii -

CONTENTS

PREPACE: USING THIS MANUAL = « = = = = o o o » o o « o o ii

Chapter
1. QVEBRVIEW OF THE CAI SYSTEN o« o o o =

24 THE EXTEBNAL PROCEDURES CONSTITUTING

CAINAIN
SNONOFF
FULLCAI
STUONLY
AUTHOR
ACBPROC
COMPLER
TABLES
CODEGEN
SOURCE
EXECTOR
PATPROC
LOGGER
FILEIO
ALLOTOR
#4E0DQ
#CC3010

¢ & o » B 4
e & & @

[

T I

[T

B e B+ 3 ¢ &

$ & b 3 & 4 b B

[T T]

[. |
B & &
¢ b & 3 & s

¢ & & ¢« 4 & & & 3
a

[T T T T
[]
0« ¥ % a 3 & 8 3
8 & 9 3
] ¥
¢ ¥ & 8
B8 v
[
[]

¢ 8 o § &t
] L]

I T SR T RN T T T R |
« 3 & B % & & 5 & @ 3
L DL T |
8 e b o @& F 3
¢ & 0 3 £ &
R
s 6 8 2 & & ¥
« o 3
€« ¢ ¢ g4 @
& b 4 0
LN T I T S SR |
¢ 0 O8% 4 & & & @

4 & 9 & § & &

3. CAI SYSTEM GENERATION o w« &+ o « = «

THE

« B e 4 4 & B & & & 3 & & 53 W

Generating the Full System—~-CAIAUTH
Generating the Stadent-Only Version—--CAIl

Notes Concerning System Generation

»

s a ¢ 8 &

a & % & &

L S S I]

[
-
8 6 8 o & & ¥ & K a4 -

§ & 4 & 8§ 8 ¥ & § & B B @
[

U T T
v & ¢ 8

- =

Generating a Syster to Run under CHATHP .

4. THE TRANSLATION AWD EXECUTION OF DIAL CODE .

5a CAI S5YSTEK DISK INPUT/OUTIPUT - . -

STUREC - The Student Record File
AUTHREC - The Author ERecord File

CAIFILES -~ The Heart of the CAI Systenm

6a OPERATING IKSTRUCTIONS 2 = o = = = =

Moth~-Balling the CAI System o . .

- iii =

-

- »

- - - -

page

« L - L] 1

W

SYSTENM

% B & 8 & & 4 &
B & & & & 8 3 8 ¥ &
e & & § @
[] [I R R T B |

¢ &8 § & @

a & s @
s & o &
8 & +
i ¢ @ 3
COWWLOEOOJOOS MU E WW

e

i
+
[
]
—
[4®]

« 13
- 14
14
- 15

i« 8 & »

LI T T

¥ 2 5 4
H

- « 21
. » 23

Author Command Facilities « « o « & o = &
Addenda to the DIAL Specifications .
Proctor Override Facility o« = o « = «
OPEXEC « a « o = o = 2 = « 2 = = « =
Using the PL/I Optimizing Compiler .
Debugging AidS .« 2 4 o o 2 @ = 4 a2 e «
Generating a New Version of the Compiler

7 ABNORMAL TERMINATION CODES o = = = = = = » =
8. PROTECTION OF CAISYSTEM DATASETS o o o + =

Usiag the OS “ENQ" and "DEQ"™ PFacilities
Dataset Backiips and Restorations . . -

¢ &

9. THE CAISYSTEM UTILITY PROGRAMS + v« 2 o = o a

On—-Line Production {Jtilities . « o =« « =
Off-Line Production Utilities . . -
Non~Production Off-Line Utilities

10 FUTURE HOBK «w « = # © = = 2 a = 2 = =« = = =

Removing AUTHREC froa the On-Line Systen
Rejuvenating the CAI Operations HManual
The CAISYSTEM Daily Jobs . « o« . - -
A ®)HELP" Comrand for AUTHOR & = o =«
Writing a CAI System User's Nanual .
Improving Lesson Re-Conmpile Time . .
Modifying DIAL =« 2 o 2 = = » 2 = ® =

&

5 8 @ ¥

o+ & 3

Appendix
A. NOTES ABOUT THE MANUAL = ¢ = 2 o o o o o «

History of this Manual -
Generating this Manual . . « ¢ = 2 = 2 =

$
L]
]
i
¥
&
]
)

Ba THE 1975 CAI SYSTEM .« o o % « = « % = 2 = =

REFERENCES 4 o = « = = = = @« « @ a 2 =« =« @ « » =

- iy -

4 & & 8 ¥ ¥

s o

@ 2 8 0 & 1

- 48
- 49
- 49
- 50
- 50
- 51
- 232

5%
60

- 61
- 62
- 65

- 67
- 67
. 68
- 68
- 68
- 69

Chapter 1

OVERYIEE OF THE CAI SYSTEM

The CAI System can be thougat of as consisting of two
constituent sets of PL/I procedures. One set makes up the
on-line system, that is, that systesm which appears to the
user sitting down at a CC~-30 terminal and signing on to a
CAI program under CHAT. The other routines are off-line;
executed by batch jobs, they perform file maiatenance tasks
and the 1likel. There are three oa-line systems of CAI.
They are invoked by signing on to CHAT and entering the
appropriate program name.

The first is caliled COURSE; it is an on-lime prograam for
displaying and removing lessons from a CAI course. This is
important, because a course caspnot be deleted from the CAI
System uatil all of its lessons have been removed.

The second on-line program is called CAIOLFI {for *“CAI
On-Line File Iagquiry%) and provides information about a
given student's file status. There is currently no external
documentation about this proegram, but it is well-eagineered
and its use should be self-explanatoiy. Unfortunately, it
depends on user iaput through a lightpean, and so its use is
restricted to those CC-30 termimals with a functioning
lightpen.

The third on-line syster is that which is described in
Mudgye's dissertation, and exists in two forms: CAL or
CAIAUTH. The former is for student use; it presents lesson
material, analyzes responses, and logs progress. The latter
does all of that as well, but it also supports the author
environment of the systea. The source handler, conpiler,
and code generator for DIAL statements are contained here,
as is the large module which serves as the interface between
an author and the system.

Over the years, some sSpecialized terminology has sprang
up, which bears explaining. The term YCAISYSTEMY refers to
all of the production programs having to do with CAI at UKC;

T T 88 A A A S A W Al WP IS ke S

! There is in fact a small set of hybrid routines that may
be executed either from a batch prograam or called by an
on~line program; these will be pointed out aamd described
in Section 9.Z.

this includes oa-line and off-line routines. Cn the other
hand, the "CAY System® typically refers to either the CAI or
CAIAUTH on-line programsa. This manual deals primarily with
the CAI Systen. The other om-line programs and the rest of
CAISYSTEN {i.€., the cff-line progrars) are described
herein, but only briefly.

Chapter 2

THE EXTERNAL PROCEDURES CONSTITUTING THE CAI SYSTEM

There are seventeen distinct external procedares which,
when linked together, form the on-lime programs CAI or
CAIAUTH. This chapter contains a description of each omne.
Note that the text comes directly from the header paragraphs
for each module. Information anbout the logic of each proce-
dure may be found by consulting the comments in the source
code listing of that procedure. The overall functiom will
. be emphasized herein, not the actual implementation strategy
enmployed to achieve that function.

2.1 CAINAIN

CAIMAIN is the main procedure of the on-line CAI Systen.
It contains the OF ERECR on-unit which allows the system to
display fatal-crror diagaostics before it dies. It also
calls SNONOFP, the sign-on/off routine, to see whether an
aythor or a student is the user. On the basis of that call,
CAIMAIN either calls AUTHOR or EXECTOR. Finally, another
call to SNONOFF occurs for siyn-off, and the task termi-
nates.

2.2 SNONOFF

This routine perforas user sign-on aand sign-off fuac-
tions, depending on the value of a given bit parameter.

If thke function is to sign ON a user, SNONOFF reads the
user id from the screen, and accesses the AUTHREC and STUREC
files to see if it belongs to a student or an author {(res-
.pectively), or neither.

A sign~on attempt may fail if (1) two incorrectliy-format-
ted ids are given; (2} two uanknown ids are given; or (3} an
attempt to enquene a required resource fails. :

If the sign-on is successful and the user is a student,
then either a "resume™ or a Yrecover" sequence takes place,
according to the RECOVNEEDED bit in the student's SREC
structure {read from file STUREC)a. A Yresume® is what hap-

—3...

pens when the student’s last session ended norrally. The
system restores his run-time eavironment by reading it into
core from his "resume area® omn disk, vwhere it was stored
when he signed off from bis last session. This time, there-
fore, he will start in a lesson about vhere he left off last
time. A M"recover" is what bhappens when the student®s last
session ended abnormally (e.g., the system crashed before
sign-off). For more about resuming/recovering and the file
I/0 involved, see the declarations for MAINFILE, SCB, and
SREC; also, the in-line commeats of SNONOFF attempt to give
a good idea of the protocol involved.

'If the user is an author, SNONOFF calls SYS_S¥ to make
sure that this system was generated with complete author
facilities. If not, the siga-on fails.

The record of the stadent ot author {SREC or AREC) is
updated, written, and freed. The structuyres SREC and AREC
{and therefore the ISAN files STUREC and AUTHREC) will not
be used again until signoff. SNONOFF them returans to CAI-
MAIN, informing it whether the user is a student or an
augthor. :

. If the function is to sign off a user, thern SHOKCFF
recalls whether the user is a student or am author. If an
author, his record is updated with data from this sessiosn,
.and written back onto AUTHREC. If a student, his SCB is
written onto the SCB_PART of his SREC, for use in his next
session's residne sequence; he will begin work next time at a
place near where he left off this time. His SREC is then
apdated, and re-written onto file STUREC.

2.3 PULLCAI

The module FULLCAI consists solely of the procedure
SYS_S¥H. All this procedure does is return a bit value of
"false™, to be tested by SNOROFF. ¥hen an author signs on
to the system, SNONOFF calls the procedure SYS_S¥ to see
vhether this is the version of the system that supports
aunthor facilities. When that version of the syster is gen-
erated, this moduale is included. When the student-only ver-
sion of the system is generated, the STUONLY module is
included instead; its version of SYS_SW returans a "true® bit
value, and informs SNONOFF that only students may use that
systel. :

See Section 3.1 of this manual for farther information.

2.8 STHONLY

This module, like FULLCAI, consists only of a version of
the procedure SYS_S¥ that returns a "true®™ bit value,
informing SNONOFF that the system that has beean generated
does not include the author facilities. This allows SHONOFF
to prevent an author from signing on to a stuﬁent-only ver-
sion of the sysien.

See Section 3.2 of this manual for further ianformation.

2.5 AUTHOR
AUTHOR is the prime interface between an author and the
CAI Systen. It is called as soon as CAIMAIN learns from

SNONOFF that it is aa author {(hot a student} who has signed
on. AUTHOR converses with its user via the command language
and line-numbering nmechasisn. It is the facility that
allows an author to eater DIAL statements and have ther com-
piled, by invoking the syntax-directed compiler for each
statement received.

This procedure, not COMPLER, builds the object code and
source code files for a lesson. CONPLER compiles one state-
ment at a time; it merely returns {(in the structure TEHP)
the object code and literals for that one statement. AUTHOR
takes the contents of TENP and adds them to the instruction
and literal files for the lesson being worked on. AUTHOR is
forever unpdating the lesson's Lesson Coatrol Block {LCB), to
keep track of, for example, the page transiation tables aad
CAIFILES region allocation.

Also, AUTHOR sets up and controls calls to EXECTOR, in
response to an author®s request to view the execatiom of one
of his lessoas.

2.6 ACBEBOC

This procedure is called by AUTHOR to perform processing
on the Author Contrel Block {ACB), held on Begion 3 of CAl-
FILES. Giver a lesson nanme, it performs according to the
requested functior parameter., Its functions include search-
ing the ACB directory to find out where the given lessont's
Lesson Coatrol Bleck (LCB) is stored; removing the given
lesson fror the ACB, returning its LCB locatiomn to AUTHOR;
adding a lesson, and returning to AUTHOR the regiom number
allocated for its LCB; returning a formatted 1ist of all of
the lessons *owned® by the author now signed on; and search-
ing the ACB directory to see whether a givem author id num-
ber occurs there. '

e

The ACB is brought into core {and hemce, engqueued) for
the duration of the procedure. Error conditiomns vwhich
ACBPROC discovers are coded and returned in a parameter.

2.7 COBPLER
COMPLER is called by AUTHOR with a single DIAL soutce
statement to parse. The main compilation loop receives

tokens from SCAN, the intermal lexical scanner. CONPLER in
turn calls CODEGEN just before a reduction takes place to
emit object code imstructions into the TEMP stracture. Upon
returs to AUTHOR, those instruactions and literals are then
appended to the appropriate system files. The code genera-
tion phase, then, is external to COMPLER; COMPLER is essen-
tially just a parser.

COMPLER attempts no etror recovery; as soon as it discov-
ers an error, it returns to AUTHOR with a diagnostic nmessage
stored in TXT, and LP holding the place in the statenent
which COMPLER thimks is in error. The emphasis was placed
on diagnostic intelligence, not trecovery.

2.8 TABLES

¥o compating is done in TABLES; it nmerely conatains the
parser recognition tables for CONPLER. This module merely
declares and imitializes then. The tables are produced by
the compiler generator PLICONS5T. Because the tables are
declared to be ERITERNAL, they are therefore known to COM-
PLER.

These declarations and initializationas are held in a
rodule all to themselves for convenience; they are produced
by the parser generator (See Section 6.9), ard it is a sim-
ple matter to store that output in a distinct module. There
is really no other reason not to internalize them within
COMPLER.

2.9 CODEGEN

CODEGEN is the semantic action routime of the compiler;
it is called with a production namber just before a reduc-
tion is made by the parser. Its basic task is to emit DIAL
object~code insiructioas into the structure TEHNP. There is
a section in CODEGEN for each possible reduction in the
parse; each such section does at least one of the following:

1. Nothing (e.g., in the case of <IDENTIFIER> 3::=
- <LEXICAL Ib>);

2a ﬂpdates the symbol table,: especially the TYPE iafor-
mation;

3. Builds a DIAL object-code instructiom and puts it
into TEMP.TEMP_INSTES by a call to its internal
procedure EMIT.

-DIAL forward branches are héndled ¥with a fixup chain, as
described under "Labels aad Braanches® in Gries {(1971), page
280.

Run-time storage £for DIAL character variables is allo-
cated by CODEGEN when a construction Teduces to <DCL STATE-
MENT> unless the variable is taking the default attribute
(text), in which case its storage is allocated as the seman-
tic action for the W<VAR> ::= <IDENTIFIER> * reductioa.

¥hen an error condition is detected {almost always mis-
matched operand types), ERROR: is set to the appropriate
code, and CODEGEN returas. COMPLER uses ERROK as an index
into its array of dxaqaostlcs, and causes that message to be
displayed. b _

2.10 SOURCE

This routine is called from AUTHOR to operate omr the
source code file for the lesson currently loaded. It has
taree entry poimts: GSOURCE, ASOURCE, and DSOURCE.

GSOURCE finds the lowest-numbered source statement whose
number is greater than or egual to the parameter S_LNO, and
returns that statement's text, its statepent nuasbetr, and its
lenqgth.

ASOURCE adds to tie source file the statement whose text,
length, and number are passed in as parameters. AUTHOR
tells ASOURCE whether the statcment goes at the end of tae
source file, or somewhere in the middie. If necessary,
ASOURCE creates a new block of source code for the added
statement. :

SSOBRCE deletes the statement wihose number is passed ina
as a parameter. If that statemeat does not exist in the
file, DSCURCE returns a *failure' code.

2.11 EXIECTOR

EXECTOR's prime respomsibility is to execute DIAL "Delta-
machine® inst{ructions and maintain the activation records.
Since the machine instructions are stored in regions of the
file CAIFILES, EXECTOR is also respoasible for controlling
the pagimg of instructions and literals. That is, when it
needs to access a nevw block of instructions, it must fetch
that page into core {via a call to FILEIO).

EXECTOR is called fronm CAIHAiN if a student has signed
Ofla In that case, it uses the current run—-time eavironment
for that student {(which w#as set up by SNONOFF daring the
resume/recover seguence) to disceran the statement in the
lesson in the course to begin execution with., J¥hen the les--
son is finished, EXECTOR asks the studemt whether he wishes
to continue to the next one, and perforas according to the
given response.

EXECTOR is called from AUTHOE if the user 1is an author.
In that case, there is no rum~-time environaent for the "stu-
dent¥; EXBECTOR creates a dummy activation record, which
disappears when execution is complete.

EXECTOR knows who is callimg it by checking the value of
the external variable SNONCODE.

2.12 PATPROC

PATPROC contains EXECTOR®*s external subroutine for imple-
menting the DIAL system pattern-patching function. Basi-
cally, the student®’s response is passed in, and checked for
the occurrence of a given character-string pattern, also a
parazeter. PATPROC returns a bit value indicating matck or
ao-match. The pattern may contain cent-sigm (®don't-care®)
symbols. _

For an explanation of the architecture of the DIAL systen
pattern-matching function, see Section 4.7 of Hudye's dis-
sertation.

2.13 LOGGER

This module is called by EXECTOR while in studeat mode;
its purpose is to record every typed response issued by a
student to a guestion, and to record the executior of every
statemrent of a lesson. This 1is a statistical and apalytic
tool, designed to let the auther see the responses evoked by
his qnestlons. i

Bach student's log record consists of a chain of the
structures LOGRECORD. MAINFILE keeps track of all of the
chains. Each structure is stored on a region of CAIFILES.
A student's LOGRECORD stafs allocated throuaghout the execu-
tioa of a lesson, and is writtean to disk when the execution
is terminated. Froa time to time, all of the log records.
are repoved Erom CAIFILES and writtea onto tape by the off-
line utility program CAILOG; MAINFILE is cleared of all of
the references. The tape may then be analyzed and summar-
ized by an off-line prograr (vhich does noet yet exist).

2.%4 FILEXO

FILEIO is the genmeralized file input/outpat procedure
which the system uses to comhunicate with its main file,
CAIFILES. The functions which FILEIO caa perform include
reading, writing, opening, closing, and rewriting the file.
Moreover, if a read is to take place on Regions 1 through &4
of the file, vhich are serially-reusable resocurces of the
- system, FILEIO makes the necessary calls to the enqueulng
and dequeuing procedare, ##EQDQ.

For further information about the CAIFILES file, see Sec-
tion 5.3 of this mamunal. For informatioa about the parts of
that file which are serially-reusable resources, see Section
8. 1.

2.15 ALLOTOR

ALLOTOR is a utility routine called by other procedures
of the CAI System which need to use blocks of storage
{("regions®) on the main syster file, CAIFILES. ALLOTOR
keeps track of which regions are currently in use and which
are currently free by maintaining the Free-Block List.
There are 1499 regiomns on CAIFILES; region 1 holds NAINFILE,
region 2 holds the Course Control Block {CCB), and regioan 3
holds the Author Control Block {ACB).

The Free-Block List {FBL) itself occupies regions &
through 10 of the file. All of the other regions {11
through 1499) are coatrolled by ALLOTOR. ALLOTOR can either
claim a free block for user by the calliag procedure (thus
removing its number £froa the rBL) or return a Ro-longer-
needed block to the FBlL.

Por aa explanation about the mechanism of the FBL, see
the declarations for the structures FBL_TOP and FBL_SEC,
illustrated in Pigures 6 and 7 of thls manaal.

2.16 $8EQDQ

This routine issues calls to ENQ and DEQ, which are CHAT
routines that provide a PL/I interface to the 0OS ENQ/DEQ
supervisor macros. ##EQDQ also maintains the status of each
of the serially-reuasable resources whose use is being con~-
trolled.

i

For an explanation about th system's serially-reusable
resoutces and the engueue and dequeue protocol, see Section
8.1 of this manual.

The most heavily-used eatry point of this module is the
$4STOP routine. $#STOP is called when the system discovers
an error coadition with which it can't cope. For imstance,
if the CAIPILES Pree-Block List empties, ALLOTOR calls
##5TOP. Each caller supplies its own stop code,. which
##STOP passes on to IHESARC, the OS routine which sets the
task return code. Hence, the stop code is displayed to the
user. For an explanation of the stop codes and the mechan-
isa of ##STOP, see Chapter 7 of this manual.

Other eptry points in the nohule include:

#4INIT -- Called from CAINAIN, ##INIT defines all of the
systea resocurces, and enqueues the "systex" resource, to
lock out off-line programs; ‘

##ENQ -~ Called fron FILEIG t0 enqueue the first four
regions of CAIFILES;

~ ##DEQ -~ Called from FILEIO, after writing on the first
four regions of CAIFILES, to dequeue;

##EQEYT {##DQBLT) ~- Called Erom SNONOFF before (after)
sign-on {sign-off) to engueue {dequeue) the student or
agthor resources; .

#4EQID (##DQID) =-- Called ' from SNONOFF before (after)
sign-on (sign-off) te enqueue {degneue) a particular user id
namber.

2.17 $CC3010

This is the interface to the CHAT syster input/output
routines; as such, it is the only nodule that needs to know
about them. All other routines merely address entry points
of this module, without actually talkiag to CHAT at all.
There are several entry po;nts. each of which serves a spe-
cial purpose:

- 10 -

#¢DISP and ¥DSPURC display the given text on the curreat-
row {designated by the extermal variable RO¥); the latter is
also passed columa information, while the former begins the
display ima columa one of ROW.

#RD_T and #RD2_T read input from the CRT screen; the
former uses coiuymn informatiom passed in as a parameter; the
latter begins the 1ead in the colamn where the cursor last
Wa S«

$SETROW sets the value of RO¥.

#§SETCRS positions the cursor on the ro¥ of the previous
display, in the columm specified by the parameter. '

$SLIDE displays the slide specified by the given paras-
eter. A specially encoded parameter may also signal #SLIDE
to turn the projector on or off.

$DELAY calls the CHAT system delay function, to cause a
pause of the given number of seconds.

#D_DIAG &isplay$ the given text {usually a system diag-
nostic message for ‘am author) in the bottom two rows of the
CHT. .

#CAR asks the user to mount a particular slide tray on
the slide projector. '

#EbIT isplements the "EDIT" aathor command, asking the
user to move the cursor to the rov on which he would like to
enter input. #EDIT sets ROW to that rowu.

- 11 -

Chapter 3
CAI SYSTEM GE!EBLT;OI

Each sosrce mnodule defined im Cahapter 2 should be conm-
piled and linked accordimg to the procedure givem in its-
header paragraph. The object modules bhave usually been
stored in the partitioned dataset UNC.CS.ES557C.CAT.SYSLIB.

Remenber, there are two versions of the CAI 3ysten. The
first, called CAl, is for student use only; it does not con-
tain any of the author facilities. The second, called
CAIAUTH, may be used by both studeants and authors. However,
CATAUTH uses a large amount of core for modules that a stu-
dent user #ill never employ. That is why the simplified
student version exists.

Each system knows vwhich version it is by calling the
exterral procedure SYS_SH. There are two versions of-
SYS_SH; one returms a true bit, amnd is stored in the module
STHONLY. The other returas a false bHit, and is stoered in
the module FULLCAI. Xaturally, the module STUONLY is linked
into the student-only version, and PULLCAI is linked iata
the full-blown edition. When an author signs om to the sys-
tem, the SNOROFF module calls SYS_SKN. If *1*B is returned,
a Mstudent—only" message is displayed, and the sign-on
fails. '

-12 -

3.1 GENERATING THE FULL SYSTEN--CALAGTH

The full student/anthor CAIAUTH system is generated as
follows:

//jobnare JOB acct,name,paras
/S/7*pi=password
/7 EXEC PLFLD,PARN.L="XREF,LIST,MAP,RENT"®
//L.SYSLIB DD DISP=SHR,DSN=UNC.CS.ES557C.CHAT.PL1LIB
/7 DD DISP=SHR,DSK=0NC.CS.E557C.CHAT.SYSLIB
/7 DD DISP=5HR,DSN=SYS1.PL1LIB
//L.SYSLEOD DD DISP=SHRE,DSE=UNC.CS.ES557C.(CHATICL. CAY. LOADLIB,YOL=
//L.OLDMOD DD DISP=SHR,DSN=UNC.CS.ES557C.CAI.SYSLIB
/7L SYSIN bh *
INCLUDE OLDMOD{SNONOFF)
INCLUDE OLDNOD(AUTHOCR)
INCLUDE OLDHMOD (ACBPROC)
INCLUDE OLDHOD{SCURCE)
INCLUDE OGLDNMOD(TABLES)
INCLUDE OLDMOD {CONPLER)
INCLUDE OLDMOD{CODEGEN)
INCLUDE OLDMOD{EXECTOR)
INCLUDE OLDHOGD(CAINMAIN)
INCLUDE OLDMOD(#CC3010)
INCLUDE OLDMOD{LOGGER)
INCLUDE OLDMOD{ALLOTOR)
INCLUDE OLDMOD{FILEIOD)
INCLUDE OLDHROD{PATPROC)
. INCLUDE OLDMOD{(##EQDQ}
INCLUDE OLDMOD{PULLCAI)
ENTRY IHENTRY
NAME CAIAUTH({R)

4

‘The order of the included object modules is not impor-~
tant, with one exception. The module TABLES must appear in
the list before the mnodule COMPLER. The reason is that
TABLES initializes certain COMPLER data structires, declar-
ing them STATIC EBITERNAL INITIAL. The COMPLER module knowss
them as STATIC EXTERNAL, and so the linker must be given the
initialized variable references first.

‘The load nmodule created by this procedare takes abOut
fourteen tracks of a 3330 disk volunme.

- 13 -

3.2 GENERATING THE STUDENT-OMLY YEBSION--CAI

The procedure for geaerating the student-only version of
the system follows. Notice that the AUTHOR, COMPLER, CODE-
GEN, ACBPROC, SGURCE, and TABLES modules are not included;
this results in a dramatic savings im the amount of core
required. Because the system nmakes extensive use of dynamic
storage ailocation, measurements of the run-time mnmemory -
requirerment are necessarily isprecise. Hovever, the author
version of the system requires approximately 226K, while the
- stadent-only version uses only about 134K. The LET option
and the LIBRARY statemeni promise the linker that AUTHOR
{and hence, the other omitted procedares) will never be
called. . :

//jobnanre JOB accoant,nale,paras
//7*¥PH=passuord
/S EXEBC PLFLD,PABH.L=‘XREF,LIST,BENT,LET'
/7L« SYSLIB DD DISP=SHR,DSN=UNC.{S-ES55T7TC.CHAT.-PLILIB
V4 DD DISP=SHR,DSN=UNC.CS.ES57C.CHAT.SYSLIB
7/ DD DISP=SHER,DSN=S5YS51.PLILIB
//L.SYISLMOD DD DISP=SHR,DSN=UNC.CS5.E557C,CHATICL.CAL. LOADLIB,VOL=
/7L 0LDXOD DD DISP=SHR,DSN=UNC.CS.ES55TC.CAI.SYSLIB
/7L SISIN Db = ‘

INCLUDE OLDNOD{SNONOFF}

IRCLUDE OLDROD{EXBCTOR)

IHCLUDE OLDNOD {CAIMAIN)

INCLUDE OLDMOD (#CC30I0)

INCLUDE OLDAOD{LOGGER)

INCLUDE OLDMOD{ALLOTOR})

INCLUDE OLDMOD({FILEIO)

IRCLUDE OLDHOD {PATPROC)

IRCLUDE OLDMOD{##%EQLQ)

INCLUDE OLDNOD{STUONLY)

LIBRARY *({AUTHOR)

ENTEY IHENTRY

NAME CAI{R)
/7

3.3 NOTES CONCEREING SYSTEW GENERATION

The OLDMOD DD line peoints to the PDS where the object
modules for the source routines are stored. The SYSLMOD
dataset is where the load module for the generated syster
will goa Hote that there is another dataset reserved for
test versions of the CAI Systean; you may want the load
nodule to go there. That dataset is
UNC.CS.ES557C.CHATICL.CAL.TEST. The ®NAME" coamand in the
linker input specifies the member name given to the load
moduie, and it is this name that must be givem wher signing
on under CHAT ia order to invoke that load module. The

- JY4 =

"{R) " specifies that if a member with the given name already
exists, it is to be written over with the rew load module.
If “(R)" is not specified and a member with the given name
already exists, then the linker stores the 1load module in
member TEMPNAME, unless a aember already exists with that
nape, in which case the job step fails.

‘3.4 GENERATING A SYSTEN TQ RUN UNDER CHATHP

A version of CHAT that willi allow its applicatioa pro-
grams to rum either on the CC-30 or the Hewlett-Packard ter-
minals is now under development; it is called CHATHP. A CAI
Syster may be generated to run under CHATHP. Since the CHAT
interface appears only in the #CC30I0 module, only that
module will have to be changed. Re-compile that wmodule
according to the following JCL, and then gemerate the (full
or student-only) system as usual, as shown above.

//jobname JOB acct,nanme,T=2,E=200K
77 EXEC PLFCL,PARM.C='N',PARM.L='XREF,LIST,NCAL'
//C.SYSLIB DD DISP=SHR,DSN=DNC.CS.ES557C.CHAT.SOURCE
//C.CHATSRC DD DISP=SHR,DSN=UNC.CS.E557C.CHAT.SOURCE
//C«SYSIN DD BSN-UNC.CS¢E557C-CAI SOURCE{#CC3010} ,DISP=SHR
//7LaSYSLIB DD 'DISP=S5SHE, DSN=UNC.CS.E557C.CHAT.PLILIB
Yy DD DISP=S5HR,DSN=UNC.CS.ES57C.CHAT.SYSLIB
77 Db DISP*SHR,DSK=SYS§.PL1LIB
//L.SYSLNOD DD . DISP=SHR,DSN=UNC.CS.E557C.CAI.SYSLIB,VOL=
//7L.SYSIN DD *

INCLUDE SYSLIB{HPNTRYS)

BAME $CC30I0(R)
/7

The generated system should run on the HP terminals.
Now¥, all is not agtomatically sell. The HP teraminals have
a larger screen than the CC~-30%s, and all of CAI expects a
CC-30 screen. Hessages are formatted with that im mind, and
variables {such as THROW_LIM, ROK, COL, etc.} are set
accordiangly. Until the CAI System can be rewritten for
CHATHP, try reducing the screen size on the HP's by using
the aargzn~sett1ng and memory-liock features. However, the

CHATHP version should also run as usual on the CC-30 ternminals.

- 15 =

Chapter &

THE TRANSLATIOK A¥D EXECUTIOE OF DIAL CODE

The main purpose of the CAISYSTEM is to provide a pro-
grameing system for the DIAL language. This chapter is
intended to give the internal representations of source and
object code for DIAL programs, and to explaia the relation-
ships among the AUTHOR, COMPLER, and BXECTOR routines.
Oversimplified, the relationship is this: CONMPLER trauas-
lates into object code the single DIAL soarce statement
given to it by AUTHOR; the object code is later executed by
EXECTOR.

The object code generated by COMPLER is not System/360
machine code, but an intermediate form which Hudge chose to
call *peita code®™. ' This Delta code is executed by EXECTOR.
Thus, EXECTOR caa be thought of as an implerentation of a
“Delta machine¥. This machine has a single-address imstruc-
tion format; each iastructioa consists omly of an eight-hit
opcode, followed by a two-byte operand. Instructions are
paged by the Delta machine. Character striag {read-only)
literals addressed by Delta machine ipstructioms are also
paged.

- Thus, object code consists of a set of iastructiom pages,
a set of literal pages, and the associated page traaslation
tables.

For an explanation of the object code iastruction set,
see the CODEGEN module, especially the section where the
opcode mnemonic variables are declared.

The object code is reentrant, allowiag for multiple stu-~-
dent execution of | the same copy of a lesson. A studentt's
activation record contains his caurrent Delta machine status
{including state defimitions and register coatents), and his
storage for DIAL program integer variables. This informa-
tion is is held in the student's Stadent Control Block
{SCB) . An activation record also contaias of the storage
necessary for DIAL character strings. This is held in two
structures known as POOLY and POOL2, each of which may be
thought of as foraming half of one very 1long PL/I character
string. The SCB coatains indexing and poimter information
about POOL! and POOL2. A student's activation record, then,
consists of ome occurrence of each of SCB, POOL1, and POOL2.

- 16 -

Each DIAL lesson has three main parts: a Source code
file, an object code file, and a symbol table. Each of
these parts is stored on a region or regions of the systea's
main file, CAIFILES: the lesson's Lesson Control Block {LCB)
contains a directory pointing to each such region. Of these
three parts, all are used at compile tize, vhereas only
object code {(plus, of course, an SCB} is used at lesson-exe-
cution time.

Now for a more detailed look at the DIAL compilation pro-
CeSSa The first step inm the process is started vhen AUTHOR
receives a) LESSON conmand from am author. That causes the
initialization of the symbol table, the page-translation
tables, the LCB, and the source aad object code files.

DIAL statements may then be entered for the new lesson.
AUTHOR passes each one to COMPLER for compilation aad object
code generation. If COMPLER finds an error, it specifies a
diagnostic message to AUTHOR, and returms; AUTHOR then dis-
plays the diagnostic and the offending statement, and reads
the authort!s correction. If COMPLER does mot find am error,
it reports that all is well, and AUTHOR prompts the user for
another coamand or DIAL statement.

Nov for each DIAL statement that AUTHOR receives from the
user, it passes that statemeat to CONPLER, along with the
current symsbol table. CONPLER operates on that stateasment
only, emitting its object <code into TEMP_INSTNS and
TEMP_LIT. On return, if no error has been detected, AUTHOR
does the following: '

- 1. adds TEEP_IMNSTNS to the end of the file of INSTHS
' pages;

2. adds TEKP_LIT to the end of the file of LIT pages;

3. adds the sonrce statement to the end of the source
code file;

4. performs housekeeping, €.g., fixing up forwvard-refer-
ence chains in the file of INSTAS;

5. saves all the foregeing on their respective disk
files. ‘

Chapter 5
CAXI SYSTEN DISK IHPUT/0UTPUT

There are three on-lime disk files used by the CAI System
during a session. Two are ISAM files, and contain student
and author directories, respectively. The third is a
direct-access file, coatajining everything else: all the
LCB's, the source and object code files, the SCB's, etc.

The ISAM files are accessed only by the SNOKOFF routine
at sign-on or siga-off. During the rest of the session,
only the direct-access file, with its much £faster access
method, is ever used.

5.1 STUEEC - THE STUDENT BECORD PILE

STUREC is an ISAM dataset comtaining student earollment
records. For a descriptiom of the creatiom and maintenance
of this file, consult Chapter 2 of the CAI Operations
Marual. STUREC is declared thus: '

DECLARE STUREC FILE RECORD KEYED UPDATE DIRECT
ENVIRONMENT (INDEXED) ;

Input/output is by the usual PL/I stateaments
READ PFILE(STUREC) INTO(structure_name) KEI{STU‘IDs;
WRITE FILE{STUBEC) PRON {structure_name) KEYFRQSiSTU_ID);
The records in file STUREC are instances of the PL/I
structure SREC. STUREC contains all pertinent student per-

sonal data and CAI status. See Figure 1 for a complete des-
cription of the record format of the STUREC file.

- 18 -

DECLARE
/****t*##**##***#i#t*****##**** e 2 e A e ok ol o o o oge o e kK R ol o ke o ok ok ok kol okl kool ok ok /

/*
¥
/*

Sx

/¥

/¥

V.
Vi
S¥
Sx
¥
Vi
P

1 SREC CONTROLLED,

SREC is what one record on the ISAH file CAI.STUREC looks like. */
It contains everything there 'is to kmov about a particular stu- */
dent in the CAI System. 1In particular, SREC is composed of two * 7/
major xinds of information. The part consists of all the */

bureaucratic information available (mame, address, course, etc.). */
The second is the copy of the student's Delta Bachine activation */
record, which is stored on SREC between sessioas, and used to %/
create the on-line {in~-core) activation recerd at sign-on. SREC */
is used in the on-line CAI System oaly by SNONOFF {since it's the */
only module that accesses the ISAM files). It is also used by */
sone of the off-line utilities programs, and by the on-line */
student~file~inspector CAIOLFI.

®INCLUDED from DCLLIB({SRECDEF). */
JEREEERTERE R R RER ARk AR RO R R KR ERRRR R B R R Rk Tk kk hkk ok kR R fdokk kX /

/¥ STUDENT RECORD®/

JEEEE R RS AEERRAE R KRR TR E R R ER AR E RS R Rk Rk ok bk Rk ko kk &
PART I: Bureaucratic informatiom about the studeat. The * /
data that does not change from Sessiomn to session {e.g., Rame, */

¥
/¥

- 19 =

/* id, creation date, etc.) was put here by the off-line atility */
/* program STUMAINT. The rest is updated by the on-line system. */
/% See the Operations Manual to learn about STUMAINT. */
e it Rt Ry R e R e L T T g
2 Ip CHAR (%), /*¥*¥% KRY *** Student's id number; */
- /¥ the file's record key. L4
2 BAME CHAR{2H#) ,
'2 PERSONNEL,
3 PHONE CHAR(T),
3 YEAR CHAE (1), % V11<04% 9GS, op TP (faculty) */
3 MAJOR CHAR{4), /* Format: standard UNC department®/
' /% abbreviation; e.g.: *CORP'. */
3 UNC_COURSE CHAR(9), /* Format: 'AAAABBBBHN', where ¥/
/% YAAAR' = standard UNC dept. * s
/% abbreviation; *BBBBY = course ¥/
/% number {rigat-justified); and %/
/% *NY = the section number. For %/
/% examrple, "COMP 161' stands */
/* for COMP 16, Section 1. */
2 DATE CHAR({®), /% Date this record was created; *x/
/% format = "YYHMDD®. _ */
2 TERMHRS FIXED BIN(15,0), /* Number of terminal hours this */

student bhas spend on the course*/

he's now enrolled ian. Excludes */
tize from abnoramally-ended */
sessions. */

2 SESSIONS,.
3 NRECOVERS FIXED BIN(15,0), /% Hov many recovers have been L ¥4
/% done for this student; i.e., x/

/% how many sessious have ended */

/% abmnormally so far? x/

3 NRESUMES FIXED BIN({15,0}, /% How maay resume sequences have */
/% takea place for this student; */
- /% i.e., how many sessions have */

/7% ended normally so far? */
2 COURSE CHABAC?ER(63,3 /% #hat CAI course is this students/
/% taking? _ */
2 EECOVNEEDED BIT(1). : /% OF means last session ended x/

/* abnormally, and the student®s */
/* activation record will have to */
/% be obtained from the RECOVER L4
/% area at siga-on time. Can also */
/¥ mean that this student has a */
- i /* session in progress right now. */
2 COURSE_END BIT{(1), g /¥Has student finished the course?*/

SERREERR R R R X RER R AR R AR NR R SRR R R TR Rk ok ok dol Rk R okok Rk kR KRR Rk /
/* PART II: The copy of the student's activation record, saved x/

/% in his SREC on the ISAM file STUREC between sessions. The */
/% activation record is coaposed of three parts: the Student x/
/% Contrel Block (SCB), POOL1, and POCL2. */
/**#**#************t**#*tt**#****t##*********t********#**#t******#*/
2. SCB_PART - LIKE S5CB, /% Copied into the in~core SCB at #/
/* sign-on time; SCB copied into */

/* here at sign-off time. */

.2 POOL1_PART CHAR(2032), /% Copied into POOL1. POOL1DATA at */
/* sign-on time; copied fro=m 74

/% there at sign-off tinme. */

2 POOLZ_PART CHAR {2036) ; /% Copied into POOL2.POOL2DATA at %/
' . . /* sign-on time; copied from L4
/% there at sign-off time. *x/

Figure 1: #odel of a STUREC Record - SREC

- 20 -

52 AUTHREC - THE AUTHOR RECORD FILE
AUTHREC is an 1ISAN dataset containing anthor rTecords.
For a description of the creation and maintenance of this

file, consult Chapter 3 of the CAI Operations HNanual.
AUTHREC is declared thus:

DECLARE AUTHREC FILE RECORD KEYED UPDATE DIRECT
ENVIBONNERT (INDEXED) ;

Input/output is by the usual PL/I statements
READ FILE{AUTHREC) INTO{(structure_name) KEY{AUTH_ID) ;
S§RITE PILE{AUTHREC) FRONM{Structure_nanme) KEYFROM{AUTH_ID},
The records in £ile AUTHREC are instamces of the PL/I
structure AREC. AUTHREC coatains ail pertinent agthor per-

sonal data anrd CAI status. See Pigure 2 for a complete des-
cription of the record format of the AUTHREC file.

- 21 -

DECLARE
1 AREC CONTROLLED,
JEEEERE AR R RS RRETRER R TR EEERR R AR RRER BRI KRR R R R KRR RER R R R SRR AN/
/* Each instance of this structure jis a record on the keyed iISAM */
/* file CAI.AUTHREC.CHATJCL. The file contains personmel and work */
/% information about each aathor khown to the CAISYSTEN. The file*/

/% is used by the on-line module SNONOFF to compare the given */
/% sign-on id to knov author id?*s. It is also used by off-line */
/% maintenance routines such as AUTEREPT and AUTHAINT. It is */
/% initialized by AUTMAINT when an author is added to the system. */
Ve, The on-line systen updates TERNHBS and NSESSIONS, and uses */

/% ID. It is possible to completely resmove AUTHREC from the on- */
/% line system and from the CHATJCL. See the System Progranmmer's */
/% Hanunal, under "Suggestions for Future Work". */
/* _ %INCLUDEA from DCLLIB{ARECDEF). */
SRRk kR ok Rk R kR R Rk kR Rk gokk ok ko ok ok ok ok Kok kR ok Rk Rk Rk

2 ID CHAR (9), - /#%RECORD KEY#%* Author's id #. */
2 NAME CHAR (24),
2 PERSONNEL,

3 PHONE CHAR(7),
3 UNIV_ADDRESS CHAR{20),

2 DATE_EST CHBAR(B) 4 /% Date this record added to L4
: /¥ RAUTHREC. 4

-2 TERMHRS PIXED BIN(15,0), /% Number of terminal hours ¥/
_ /¥ spent. Form: anp.un */

2 NSESSIONS " PIXED BIN{15,0); /% Number of successful sign-ons*/

/* accomplished by this author. %/

Figure 2: HNodel of an AUTHREC BRecord - AREC

22 -

5.3 CALFILES - THE HEART OF THE CAL SISIEM

The most important of the oan~line datasets is CAIFILES.
The creation and maintenamce of CAIPILES is described in
Chapter 4 of the CAI Operations Maaual. CAIFILES is dec-~-
lared thas:

DECLARE CAIFILES FILE RECORD DIRECT UPDATE KEYED
ENVIRONNENT {REGIONAL{1});

Note the disparity between the DD name {CAI) and the last
gualifier of the dataset name (CAIFILES); this is the only
file with that unfortunate gumality. In this manual, it will
be referred to by the less ambiguous of the two names, "CAI~«
FILES".

CAIFILES is a direct-access dataset divided logically
into blocks or *regions¥. Each region is exactly 2036 bytes
in length, because that was an attribute given it when it
was created. In PL/I, REGIONAL{1) files have the property
‘that each block holds exactly one record. Hence, there is
exactly one key for each regior, since the file is also
KEYED RECGRD. Keys for PL/I files are character strings;
when CAIFILES vas created, KEYLEN=9 was specified. S50, each
region has a nine-character key, and the key for each region
is simply the character form of the region number. For
exanple, Region 192 has a key of * 192, All input and
output to CAIFILES by the CAI System is done by the proce-
dure PILEIO; it is the only routine that "knows® the file.
Many routines logically cause I/0 with that file, but osmly
via calls to FILEIC. :

There are 1499 regions on CAIFILES; it occupies about 250
tracks of a 3330 disk pack. The first ten regions are fixed
in purpose; they will alvays contain the same Xkind of ianfor-
mation. Pigures 3 through 7 offer descriptions of the
information contained on the first ten regions of CAIFILES.

- 23 -

DCL 1 HAINFILE BASED (MAINPTR),
JEREREAREREERRREEERRRE IR Rk Rk Rk AR SRk ok Rk R ROk Rk Aok Rk KR kg /

Sk
/¥
Vi
./*
V.
/¥

This file is held om Region 1 of CAIFILES; it is accessed */
by on-line routines LOGGER (to find where to write new log *
information) and S¥ONOFF (to effect recover/resume sequence) ;*/
by the om-line progtam COURSE, to check password imformation,*/
and by off-line programs. */

' XINCLUDEd from DCLLIB{MAINDEF). */

/*#**#**************#**#*#******#*****#*i**####**#****#********##/

/¥%% LOGFILES: #u%%/
2 LOGF_COUNT FIXED BIN(15,0), /* How full is LOGFILES? */

2 LOGFILES {300) FIXED BIN{15,0), /* Each student has his */

/* own logfile. A "logfile® is a chain of ¥log- */
/% records¥; a logrecord is defined by the DCLLIB */

/* member LOGRDEF. A logfile is where the on- x*/
/% line system {via the LOGGER module) stores all */
/* of the lesson-execution information: which */

/* statements sere executed, and what responses %/
/* were given by the student. Each logrecord is */

/% held in a region on CAIFILES. This array */

/% points to the first ilogrecord of each logfile */

/* chain. */
JSEEX CHECKPGINT INFORNATION: *¥%x/ :
/% idhen a student signs on, SNONOFF puts into HAINFILE the */
/¥ CAIFILES block number where his RESUNE area SCB and his ¥/
/% RECOVER area SCB are stored., That way, if the session ends */
/% abnormally, they can be recovered the next time that student */
/* signs on. If the session ends normally, then SNONOFF stores */
/% the RESUME area in the student's SREC, deletes his RECOVER */
/* area, and removes from HAINFILE the pointers to them. Another*/
/% vway to put it is that MAINFPILE.CHECKPOINT lists all stadeants */
/* who are signed on right now, plus all those whose last */
/* session terminated abnormally.. */
2 CHP_COUNT FIXED BIN{(15,0), /* How many students have ¥/

/¥ checkpoint xnfarmatlon in MAINFILES right now? ¥/

2 CHECKPOINT{SG;,

3 STU_ID CHARACTER (9) , /* This student’s id nbr. */

3 RECOV FIXED BIN(15,0), /* Block mumber of this */

/7% student?s RECOVER area SCB copy. */

3 RESUHM FI1IXED BIN{15,0)}, /* Block number of this L4

/% student's RESUME area SCB copy. */

/*%¥% LOG OF PASSWORD ACCESSES %%/
/% This log is cleared by rumning the off-line program */
- /% ACCSLOG. See CAI Operatioms Hanual for details. ®/

2 ACC_COUNT FIXED BIN{15,0), /* How many accesses now stored? =/

2 ACCESS_LOG{3T},

- 24 -

3 ID CHAR{9), /*.iho-nade the restricted access? ®/
3 PGN CHAR(8), /% What program was accessed? L ¥4

/¥*% PASSHORD ACCESS XEYS *%%/ .
2 PILE_ACCESS(9), /* Room to store 9 restricted pgm nanmes and */
/% their associated passvord keys. */
3 PGM CHAR({B), : '
3 KEY CHAR(3),

J¥%% DATLY~JOB COMMAND VECTOE *%%/
2 DJCONV BIT({16): /% See CAIl Operations Manual for explanation;*/

/* especially sections about the CAILOG and */
/% DIJCVMET atility programs. */

Figure 3: MAINFILE -~ Region 1 of CAIFILES

- 95 -

DCL 1 CCB BASED(CCB_PTR),
JEE Rk Rk kR R R R Rk Rk R R R SRR R R R ROk Rk Rk R Rk

/% This is the Course Control Block, hkeid on Region 2 of file x/
/% CAI {CAI.CAIPILES.CHATJCL). Like all blocks on CAIFILES, it */
/% is 2036 bytes long. The CCB contains information about all */
/* of the production courses in the CAI Syster. In particular, */
/% it lists all the course names, the number and names of each */
/% course's lessons, and in which block of CAIFILES the LCB for */
/* each lesson is stored. The CCB can hoid information for up %/

/*¥ 40 courses, and 204 associated lessons. x/
/* XINCLUDEA from DCLLIB{CCBDEF). */
ZFddokok i fakokk ook k ok Rk ok R kopokk kR gk kR ok R Aok ok ok ko okok ok kR kKK
2 COUNT FIXED BIN(15,0}, /% Number of courses cutrently */

/% in the CAI Systen. */
2 NEXT_FREE FIXED BIN{15,0), /* The next free element in */

/¥ CCB.RECS. So, NEXIT_FREE-1 is */
/% the nbr of lessons in the CCB.X*/

2 COURSES {40},
/***t****#*#*#********t#*****#*##**#*******#*****************t*/
/* For the i-th course, CCB.COURSE(i) holds the name of that */
/% course, the number of lessons comprising it, and the index */
/% in CCB.HECS of the information about its first lesson. */
/R ok sk ok e g ol kR ok sk ok ook SRk ok ok R R ok ok ok ok ok ok ok Kok ok /

3 COURSE_ID CHAR({6), /% The name of the course. */
3 REC_INDEX PIXED BIN{15,0), /* Index of this course's first %/
/% lesson's data in CCB.RECS. 74
3 REC_LEN FIXED BIN{15,0), /* Number of lessons in this */
/¥ course. */

2 RECS{(204),
/*‘***#*M* L2 £ F2 2 2 23+ 7 33 *****#*****t** *****#*****#******#******/

/% For each lesson of each course, CCB.RECS holds the lesson */
/* name and the block number of CAIFILES where that lesson's #*/

/* LCB is stored. The lessons are grouped together by course.*¥/
JAEFI R R R E Rk R AR ok R R ok ok X B ok o ook ok KR ok kR Rk

3 LESSON CHAR (6) » /* Name of this lesson. */
3 LCB FIXED BIN{15,0): /*Block nbr of this lesson*s LCB.%/

/AR & ok ok ok ok kR A kR ok ook ok dok e Rk ook okl R Rk Rk Rk
/% For example, the CCB cam hold ianformation about %0 - COUNT */
/* more courses, and 204 - NEXT_PREE 4+ 1 more lessons. The /.
/% LCB for the first lesson of course #i is held ia the block */
/% of CAIFILES given by CCB.RBECS{ COURSES {i) .REC_INDEX).LCB. */
/% The LCB block for the j-th lesson of course #i is given by */
/* CCB.RECS{ CCB.COURSES{i).REC_INDEX 4+ § - 1 }-LCB. The */
/* i~th course has CCB.COHBSES(;) REC_LEN lessons attached. x/

- 25 -

JEERE RS F R R C R R R R E R R AR kF SRk dok ok ko dokok Sk kokak ¥k kok k% /

Figure 4: The Course Control Block -~ Region 2 of CAIFILES

-.'27-

DCL 1 ACB BASED(ACB_PIR),
JEBERRAREERERRFERRRE AR EER R R R TR KRRk R Rk R Rk R Rk Kk ARk hE)

/% AUTHOR CONTROL BLOCK: Held on Eegion 3 of CAIFILES, this L4
/% structure gives status informatiom about all autaors known */
/% to the system. Basically, it is a list of all authors, with */

/* information about where all the LCB's are for the 1essons I Vs
/* currently ian each one's library. x/
/* RINCLUDEd from DCLLIB(ACBDEF)- *x/
SRRk Rk kAR Rk Rk KRR Rk kR ok R kR ok R Rk R G R R ko kR kg
2 COUNT -FIXED BIN{15,0), /* Number of authors currently */

/% known by the system- how full */

/% ACB.AUTHORS is. x/

2 NEXT_FREE FIXED BIN(15,0), /* Next free element in ACB.RECS.*/
/% NEXT_FREE - 1 is the total x/
/¥ number of unattached lessons %/
/% in all authors* libraries. */

2 AUTHORS (40),
/% Each instance of ACB.AUTHCRS holds a particular author's x/
/% id number, the index in ACB.RECS of information about that */
/% author's first lesson, and the apmpber of lessons that the */
/¥ currently has in his library {(un-attached to courses). 74

3 AUTH_ID CHAR(9),

3 REC_INDEX FIXED BIN(15,0), /#INDEX OF AUTHOR®S FIRST LESSON »/
' /7*IR RECS. */

3 REC_LEN FIXED BIN{15,0), /% How many unattached 1es$ons */
/¥this author has in his librarcy.*/

2 RECS (184),

/% Bach instance of ACB.RECS holds a lessom name and the */
/% bilock nuaber in CAIFILES of that lesson?!s Lesson Control * /
/¥ Block. _ &/
3 LESSON CHAR({O) , /% The lesson name. x/
3 LCBEB PIXED BIN{15,0}; /* Block number of the LCB for ®/

/% this lesson. ¥/

P L L L
/* For instaace, Author #i's id is im ACB.AUTHORS{i).AUTH_ID. */
/* He has ACB.AUTHORS({i)-REC_LEKN lessons in his library. The x/
/% LCB for the first one is held on the CAIFILES block specified*/
/* ACB.RECS{ ACB.AUTHORS{i}).REC_I¥DEX).LCB. The LCB for the %/
/* 3j-th one is in ACB.RECS{ ACB.AUTHORS (i)-BEC_INDEX + 3-1).LCB.*%/
/* There is roon for (184 - ACB.NEXT_FREE + 1) more lessons in */
/¥ the ACB. There is room for (40 ~ COUNT) more authors in the ¥/
/% system. ¥/
SRR ERRE AR AR R A AR AR AR R Rk SRR AR R R SRR RS EREERRRRRER SR LR &%/

- 28 -

Figure 5: <The Aathor Control Block - Region 3 of CAIFILES

- 29 -

/*t*****#**t*ttt**¢¢¢****tt:t:ttt******ttttt****#t****tt*t**¢¢t¢*¢**t¢/
/* The Free-Block List (PBL) is a list of all of the CAIPILES regions*/
/% that are not currently im use. ({(Regions 1 thru 10 are alvays in */
/* use, containing MAINFILE, the CCB, the ACB, and the FBL. The */
/* other regions may, for example, contain sections of DIAL source */
/¥ code or object cade, an LCB, an SCB, a LOGFILE, etc.} The FBL */

/% is a stack, composed of eight sections. Each section can list */
/* 500 entries. Sections 0 and 1 are both on Region &4 of CAIFILES; =%/
/¥ although they are defined to be two sections, they in fact act */
/* one double-large section of the stack. The rest of tie stack */
/* {(Sections 2 thru 7) are oa Regions 5 thru 108, respectively, with */
/* one section per region. The tep of the stack {(i.e., where the */

/* pushes/pops take place) is Sectioa 0 or 1 {depending onm how full */
/7% the 1000-element free-block 1list in FBL_TOP is). They are the only*/
/* sections of the stack that fills up or empties out one element at */
/7% a time. When Section § fills up, the whole stack is shifted down */
/* A SECTION (500 ENTRIES) AT A TIME. Section 0 is then empty once ¥/
/* again, and ready to be filled up again, entry by entry. On the %/
/* other hand, when Sections 0 and 1 are both empty because of many */
/% allocations, the entire stack is shifted up, a section at a time; */
/% all 500 entries of Section 2 are put into Section 1, and so forth.*/

Medhdddisiidditindibiibitidt ittt iilidy */
/* */

DCL 1 FBL_TOP BASEDP (FBL_TOP_PTRj, /* : */
. E /

/*******t*#*t**t******#***t**ttttt#ttt* ‘ %/

/¥ FBL_TOP holds the top of the FBL stack. Sections 0 and 1 of the %/
/* stack reside here, and the entire siructure resides on Region 4 */
/* of CAIFILES. #hen Section 0 fills up, it triggers a stack shift %/
/* to move all sectious down. Similatrly, when Sections 0 and 1 are */
/% both eapty, it triggers a stack shift to move all sections up one.*y
/¥ RINCLUDEd4 from DCLLIB{BTOPDEF). ¥/
/******#********#*t****###**t##*#***************#**t*t*****#*#*t##**t*/

2 NEXT_FREE FIXED BIN{15,0), /* Ehich is the next empty*/
/7% elerent of FBL_TOP.FREE_BLOCKS. */
/% FBL_TOP.FREE_BLOCKS(NREXT_FREE) is the ¥/
/* absolute top of the stack. NEXT_FRER */
/* varies from 1 to 1000. R®hen it*s 1, */
/% it's time to shift the whole stack down ¥/
/% a section to empty out Section 0. When */
/% 1000, both Section 0 and Section 1 are */
/% enpty, and the whole stack must be shif-*/
/% ted up a section to fill up Section 1. */

2 BOS_SECYION FIXED BIN{15,0), /* Tells which section of */
: /% the stack is the last one used; i.e., */

/% which section is the stack botton. L F4

/* Varies from 0 to 7. */

2 FREE_BLOCKS {1000) PIXED BIN{15,0), /% Sections { and 1 of */
/% the stack. Section 1 is defined to be x/
/% FREE_BLDCKS {501) thru FREE_BLOCKS {1000} ,*/
/% inclasively, while Section 0 is * s

2 FILL

Figure 63

/7% FREE_BLOCKS (1) thru FREE_BLOCKS{500),
/% inclusively. Section 0 fills up froa
/% from the bottom; i.e., FREE_BLOCKS (500)
/% is filled before FREE_BLOCKS (499); when
/% PREE_BLOCKS(1) is filled, Section 0 is
/% £ull, amd a section shift must occur.

CHARACTER {32) ; /% HNot used; hrings the

*/
*x/
x/
*/
*/
*/

x/

/* structure up to 2036 bytes, the size of */

/% one CAIFILES region.

FBL_TOP -~ Region 4 of CAIFILES

=371 -

4

DCL 1 FBL_SECTION BASED{FBL_SEC_PTR),
/*******#****************#*#*****************#************************/

/* FBL_SECTION is what each of the remaining sections (2 thru 7) of */
/% the FBL stack look like. These sections reside on Regions 5 thru */
/% 10 of CAIFILES. None of the elements of any section is ever %/
“/* handled individually; rather, an entire section may be shifted */
/% all at once. , */
/% $INCLUDE4 from DCLLIB(BSECDEF). */

/******************#*#****#***#****i*#t**#*****#*******#**#***********[

2 FREE_BLOCKS (500) FIXED BIN(15,0), /* The list of the 500 */

/* free blocks held in this section. */
2 PILL CHARACTER {1036) ; /* Not used; makes this */
/¥ structure the exact size of one region ¥/
/7% of CAIFILES: 2036 bytes. : */

/##*#**##*#*##**#****#****#t*#*#*****#****#***************t*****#*t***/

S¥
Vi
/*

So, for instance, the element at the absolute bottom of the stack */
is FBL_SECTION. FREE_BLOCKS (500) of Section # FBL_TOP.BOS_SECTION., */
There are { 7 - FBL_TOP.BOS_SECTION } stack sections not current- %/

/7% ly in use, and { 999 - PFBL_TOP.NEXT_FREE) more regions may be */
/% allocated before a stack-shift must be done to re-f£fill Sectioans */
/¥ 0 and 1. FRemenber, allocating blocks empties out the FBL, and x/
/% freeing blocks fills it up. ®/

RS Rk ok Rk ok Rk o kR Rk Rk ok ko Rk kR Rk Rk Rk ek bk ko kR ko Rk

Figurte 7: PBL_SEC - Regions 5-10 of CAIFILES

- 37 -

The rest of CAIPILES (Regions 11 tarough 1499) may hold
one of several kinds of information, or nothing at all. In
particular, such a region may hold

1-
- 2a

3.
4.

5

a block of DIAL source code {see Pigure B);
a lesson's compile-time symbol table (see Figure 9};

a block of a lesson's object-code instractions (see
Figure 10};

a2 block of a lesson's object-code literal pages {see
Figure 11};

a block of storage for a 1lesson's character-string
variables {see Fiqure 12):

a block of a student's log file (see Figare 13) :

a Student Coantrol Block for a particular student {see
Figure 14);

a particular lesson's Lessom Control Block (see Fig-
are 15).

- 33 -

DCL 1 SOUBRCE BASED {SRC_PTR},

/****##t*##***t#*****t*****#****tt#*#**#****t*#*#t*#**tt**##********t/
/% SOURCE is what a CAIPILES source-code block looks like. The x/
/¥ LCB for a lesson contains a list of all the blocks for that * /
/* lesson which coatain its source. Each one looks like this. The */
/% actual soarce is held in SOURCE.DATA. The index of that space */

/% is contained im SOURCE.DIR_Z2. Each bleck of source code can */
/* contain forty statements, or 1792 bytes, whichever is less. */
S ®INCLUDEA from DCLLIB(SCEDEF).#*/

JERREEE R ER RS S RSN KA AR R AR RREERR AR EE RN R Rk okl ik Rk Rk kR bR Ak dk /
2 DIR_2(u40),
/% The directory into SOURCE.DATA. The I-th source state~ %/
/* sent held in this block has a statement nusmber of 74
/¥ SOURCE-BLHQ{I), is SOURCE.DLEK{I) bytes long, and is */
/% in SUBSTR{ SOURCE.DATA, SOURCE.DLDC(I). SOURCE.DLEN(I)).*/
3 DLNO FIXED BIN{(15,0),
3 DLEN FIXED BIN{(15,0),.
3 DLOC FIXED BIN(15,0),

2 FREE_LINE FIXED BI¥(15,0), /%* The next free elezment of */
- /* SOURCE.DIR_2. I.e., there are FREE_LINE ~ 1 statements %/
/% currently held on this block (i.e., ia this s&ructure). */

2 FREE_POINT FIXED BIN{(15,0), /* The next free 1ocat10n in ®/

/¥ the pool of source code, SOURCE.DATA. */
2 DATA CHARACTER{1732); /* The pool of characters which */
/% make up the source statements held on this block. */

‘Figure 8: Template for a Block of DIAL Source Code

- 34 -

DECLARE

1 C_SYN_BCD BASED(C_SYM_B_PTR),
/******t*************#**t**#*#*****#***#tt********t***t*******#**#/

/7% C_SYN_BCD is the first half of the compile-time symbol table */
/% for this lesson. The second part is C_SYM_DOPE. This part */

/% is just a list of the identifiers curcrrently in the table; x/
/% all information about them is contained in the other part. */
/* §hen not in core, each instance of C_SYM_BCD resides on a . V4
/* region of CAIPILES, pointed to by the lesson's LCB. The */
/% index of an identifier im C_SYH_BCD is also its index in */
/% C_SYN_DOPE. */
Vdd ZINCLUDEA from DCLLIB{SYMBDEPF). */

JFEEERRIORE R AR KA RN Rk RORR R E R RRE R R R AR AR ARk kR Rk R RNk /
2 BCD{200) CHARACTER (10), /% List of variables® identifiers. */

2 PILL CHARACTER (36) ; /* Unused; exists just to make the */
/¥ structure the exact size of one */

/% CAIFILES region: 2036 bytes. */

DECLARE
/t*ttt*t#t**t*#t**#*#*t**t##tt*&*t**#t**&*&*****t****t##**t*tm#**t***t/

/* This is the second part of the symbol tabie. It holds the actual */

/* type information about each entry whose identifier appears in ®/
/¥ C_SYM_BCD. The irdex of an entry im C_SYM_BCD is also its index */
/* in here. _ ' ' */
/¥ - RINCLUDEd from DCLLIB{SYMDDEF}. %/

/***********************#**#*****#****#**#*********#**i#*********#****/

1 C_SYM_DOPE BASED (C_SYM_D_PTR),
ARkl ok ok Rk ko ok Aok Rk Rk Rk kR

2 TYPE (339) FIXED BIN{15,0}, /% Explained in the following Type */

2 ADDR({339) FIXED BIN{(15,0). /* Definition Table: ¥/
J Rk okok ok ok ook ok ok ook ok kokkok Kok * /
/% TYPE] MEANING { CONTENTS OF ®ADDR® | PUT THERE BY %/
/* ==== —===============_i._..‘— S eSS mSSS s s s Sl SE S SRSsoaRsRRanne */
/* 0 jundefined. i0. | * /
/¥ ¢ i } */
S* 1 §Character string]SCB.STORAGE.S_PTR ICODEGEN <DCL ST> %/
/¥ { variable. { index. } or default. */
/¥ i ¢ ' i *x/
/% 2 |[CCNAME {2ddress in LIT {an JCODEGEE <DCL ST> %/
Vi § i enceding of page { using ABSOLUTE_ %/
7* i { and offset). i NEXT_LIT.. 74
/¥ i - i § */
/¥ 3 JCHAER STR CONST B ' - - i - %/
/* i i , i *y
Vi 4 {Integer variable.]SCB.STCEAGE.INT index. {CODEGE¥ <DCL ST> */
/* t i . § */
/¥ 5 jInteger coanstant.i -] - *
/* i _ i i *y
/¥ 6 §51ide variable. {SCB.STCRAGE.IKY index. jCODEGEN <DCL ST> %/
/¥ i ' i i ' */
ki 7 §s8lide Constant jActual value. JCODEGER <DPCL ST> *,
/¥ { {5C).. i i ' *y
/% i : 1 i ' *,
VA 8 | {~-not used--) ' _ *y

- 35 -

Vi
Vi
/*
S*
Vd
/¥
/¥
Fis
/%
Vi,
/¥
7
¥
¥
/*

i i | : */

3 JLabel. iBranch address ia }CODEGEN <LABEL */
i I INSTNS {encoding of | | x/

| § page and offset). | */

i i : i : */

10 jLabel needing jPointer to last ele- |CODEGEN, when */
i <£fixup. { ment added to the } forward branch */

1 { £fixup chain. § situation. */

i i : 4

11 {PROC NANE i ~= pot iasplemented -- */
12 §PLISUB Fi -~ not jsplemented -- L ¥4
13 {SLOBAL CCRAXE i -=- pot implemented -- */
14 JGLOBAL INT VAR i -~ not implemented -- *®/
15 j{ARRAY i -- not implemented -- */
i | : "y

/t#*#**#*###*##*###*t*%**&***##*#**?*#*#********t*************t****#/

/* The following is a list of information needed to be retained from ¥/

/* o
2

2

ne author session to another.
P_COUNTER FIXED BIN{15,0), /%

SYM_FREE FIXED BIN(15,0), /*

/*

2 INT_FKEE FIXED BIN{15,0), /%
Je

STH_FREE FIXED BIN{15,0), /%

2

Fi

/¥ FOLLOWING IS NEEDED TO COMPILE

2
2

[S NN

SH_LAST BIT{1),

*/
Next free location {page,offset) in*/

/*INSTN PART GF OBJCODE BEING BUILT. */

Next free element in this syabol x/

table. ¥/
Next available element in the run- */
time integer storage area, */
SCB. STORAGE. INT. ' S x/
Next free element in the list of L

string pointers, SCB.STORAGE.S_PTR.*/

YCONTROLLING SHOWY iHFORHATION: x/

CTRL_SW BIT (1}, /*FOR “CONTROLLING SHOWY - SIGNALS PROC AUTHOR */
/*T0 GO CHANGE LAST INSTRUCTION (A NOP) GENEBR~- */
/¥ATED BY PREVIOUS DIAL STATHT TO A ZEROUNREC. */

UNREC_P FIXED BIN{(15,0).
BEP_STACK{10) FIXED BIN (15,0},
REPEAT_STACK_TOS FIXED BIN{15,0),
SYM_SPARE{23) FIXED BIN(15,0},
FILL CHARACTER {600); /* Not used; exists just to bring the */
- /% structure up to the size of one L4
/% CAIPILES region: 2036 bytes. */

Figure 9: 1A Lesson's Compile-Time Symbol Table

- 36 -

DCL 1 INSTNS BASED(INS_PTR),
JEEREEE AR KR EFRRERRER R ARRRFER AR EE R ER RN R TR E IR KRR kR R ko ko k)
/* This is what a page (CAIPILES region} of object-code instructions *,
/* looks like. Delta-machine instructions are single-address; each *,
/* consists of an B8-bit opcode, following by a two-byte operand. ¥,
/* The instruction pages for each lesson are pointed to by that *
/* lesson's LCB. PFor more information about Delta-machine code and *,
/* DIAL translation, see Chapter of the System Programmer's Manual. */
/* %SINCLUDEQ from DCLLIB(INSTDEF).*,
/% % sk ok ek e ot o o ok kol o o ok ok ook ok ok ook ok ol Ak oK Sl e ok ook sk ok e ok ok ok kolok ROK K
2 NEXT_FREFE "FIXED BIN{15 0y, /7% The next free instruction *y

/* location in OPCODE and GPND *,

/% below. Will be 513 ({i.e., signallimg ®*full") for all x,

/%* but the last page of instructions filled by AUTHOR. *y

2 OPCODE{512) BIT({8)., /* The opcode parts. For a list*,
: /* of all opcodes and their *,

/¥ associated mpemonics, see procedure CODEGEN. *,

2 OPND(512) FIXED BIN(15,0), /* The operand parts. *
2 FILL CHAR{498); /% Not used; exists only to *,
/* bring the structure up to %

/% 2036 bytes: the size of a CAIFILES region. *,

Figure 10: Tenmplate for a Block of DIAL Object Code

- 37 -

DCL 1 LIT BASED (LIT_PTR),
JEERRR kR kR kRN kR Rk Rk Rk R kR kR kR Rk R kR R Rk kR Rk ok kR kR kR ok ok

/* This is what a page (CAIFILES block) of object-code character- */
/% string literals looks like.: The literals pages for a lesson are %/
/% pointed to by the lessont's LCB. */
Via %®INCLUDEQ from DCLLIB{LITDEF). */

/********t***********#*##******%******#*t**t****##****t*t*t***t***t***/
2 NEXT_FREE FIXED BIN{15,0}, /% The next free location in LIT.DATA.*/

/% Used by AUTHOR when adding a */

/* literal to this page, from TENP.TEMP_LIT. %/

2 DATA CHARACTER {2034); /% The actual character-string lit- */
/* erals for this page. Each literal #*/

/* begins with two bytes of length information, and a */

/¥ two-byte header containing START_COL screen formatting */

/% information for DIAL SHOEAS statements at execution = */

/% time. The length, then, is the length of the literal */
/% plus two. The START _COL information is used by the */
/7% lexical SCAN routine in COMPLER, and by EXECTOR. */

. Figure 11: Template for a Block of String Literals

- 38 =

DECLARE

1 POOL1 BASED(PLI1_PTE}, _
JEREEERKEREEEEHERE R RS TR TR SRR R R ER AR F R R FR A SRR D kX SR KRR R RRR RN K,

/* POOL1 is the first half of the run-time storage for DIAL ¥/
/% character-string variables. The lengths and pointers of/to *
/% each string are held in SCB.STORAGE.S5_PTR. The second half *
/* of the run-time string-variable storage is POOL2. Each of %/
/% POOL1 and POOLZ is the size of a region of CAIFILES. Together *,
/% with SCB, they make up a student's entire Delta machine run- */
" /* time activation record. #Hhen there is not enough room left L
/% on POOLY1/POCL2 to store another string, EXECTOR's internal ¥
/* routine COMPACTIFY operates, to compress the striangs and *
/% the pointers in S5CB.STORAGE.S_PTR. */
A Between sessions for a particular student, POOL1 and POOL2 *,
/% data patrts {as well as SCB) are copied into the student?s SRECx,
/* on file STUREC. The reason that all three are the size of *
/% CAIFILES regions is the resume/recover protocol of SNONOFF. *
/* ¥hen a student signs on, his activation record is stored in *,
/% CAIFILES. When he signs off, it is saved in SREC, and deleted *,

/% from CAIFILES. That way, if the session ends abnormally, ¥,
/* before the save onto STUREC, the system will have saved a *,
/* reasonably up-to-date activation record for him. *,
/¥ Renenber, only the DATA parts are stored imr SREC. The LY
/* whole structures POOL1 and POOL2 are used either in core, or ¥,
/* in a studentts RESUKE arnd RECOVER areas on CAIFILES. *
Vi, %INCLUDED from DCLLIB (PL1DEF). *,

3 ok o e bl ok ol 3k oo ok Rl AR ok ok e R ok e ok ok ok e ko ok o okok oo ok o ok ok Rk
2 BOOL1DATA CHARACTER {2032) ,

2 PCOL2BLK# PIXED BIN{15,0), /* Points to the CAIFILES block ¥,
' /¥ holding this student?s ¥,
/% BESUNE area POOLZ2 structure. *,

2 C_POOL2BLK& PIXED BIR!?S,O), /% Points to the CAIFILES block ¥,
/* holding this student's *,
/% RECOVER area POOL2 structure.*

DECLARE

1 POOLZ2 BASED (PL2_PTR), '
/7% SRR o s e ek ok ol o ke kol ook okl Aok ek o ok o o ok ok stk B0k ko sk ol ok ook ok ok

/
/* POOL2 is the second half of the run-time storage space for *
/* character-string variables. See the declaration for SCB and ¥,
/% POOL1 for information. *,
S* %INCLUDED from DCLLIB({PLZ2DEF). *,

/***#****#***#*******t#************t#*#*****#*********###**t******
2 POOLZDATA CHARACTER{2036).

Figure 12: Template for a Block of String Variable Storage

- 39 -

10CL 1 LOGRECORD BASED(LOG_PTR},
P T T e T T T T T T TR R e R R e T S PP T PR LY

/* Bach studeat's log file is a chain of LOGRECORDs. The first %/
/* LOGRECORD of each chain is pointed to by MAINFILE.LOGFILES. Each */
/* LOGRECORD occupies one CAIFILES region. */
/* %INCLUDEd from DCLLIB (LOGRDEF). */
7 e o ook o sk o ok ok o e o e sk ot o o o ek ok ok ko R R Kok ok okl okl ok kR ok ek KRk Rk
/* LOGFILFE HEADER: the first 16 bytes of each LOGRECORD. */
2 COURSE CHAR{6), /* Name of course this student is in. ¥/
2 STU_ID CHRR{9), /* THE FIRST BLOCK OF R GIVEN STUDENT?!S */
' /¥ LOG; FILLED BY *LOGGER?! DURING AN fOPEN? */
/% OPERATION. */
2 FLAGS (8) BIT{(1}, /% INDICATOR DESCRIBING THIS SESSION. %/
/* FLAGS{1) = '0'B 1IF SESSION 15 A RESUME; */
Vi = *1*B IF SESSION IS A RECOVER; * /
/% FLAGS(2) THRU FLAGS({8) ARE UNUSED. *
/* DATA:; */
2 ENTRIES_CT FIXED BIN(15,0}, /% Number of entries in thlS */
/* this student's LOGRECORD.DATA. */
2 FREE_POINT FIXED BIK{15,0), /* Next free byte in LOGRECORD */
/% DATA; USED WHEN BUILDING LOGRECORD. ®/
2 DATA CHAR {2014), /% FORMAT: */
Vi, 1. DIAL lesson line # - FIIED BIN{15,0) %y
Vi 2. Length of response - FIXED BIN(15,0) %/
Vs 0 means no response vas given; jast */
/* a plain interrupt wvas received; %y
/% 1-880 means the actual response length. */
/= 801 means no response at all was *)
/* given {er expected}; used in the *,
Vi open/close operations. *,
Vi 3. ¥hat time response ¥as made - CHAR(H) *

¥ 4. Actual student response - CHARACTER {*} ¥,

2 NEXT_LOG_BLOCK PIXED BIN(15,0); /* The number of the block ¥/
/7% in CAIFILES holdimg the continuation of this *,
/* student?s log information. If this is zero, *,
/* it means there is no continuation; this is *
/¥ the last block in this student®s list. *,

Figure 13: & Block of a Student's Log Information'

- 40 -

As mentioned before, each of the regions 11 through 1499
may be called upon to hold different kinds of information at
different times. Consider a contrived exaaple. Assume that
region 476 currently holds the LCB for a particular lesson
in some author's library. Suppose that author signs om to
the systes, and requests a)PURGE of that lesson. The
AUTHOR procedure would calli ACBPROC to remove the lesson
from the author'’s directory. Since the lesson is to be
purged, its LCB is no longer needed. Region 476 would then
be released, and contain nothiag.

Now further assume that the author begins inserting
statements into another lesson he is workimg on. AUTHOR
handles that by calling the SOURCE module. Suppose that the
block of source code fills up, and there is no room for any
more source statenments op that block. SOURCE vwould then
need to create a new block of source code, and region 476
just happens to be free at the moment. Region 476 could
then find itself holding source code, vhen -just seconds
before it held an LCB.

This example illustrates the notiomn of a 1list of all of
the free blocks, and some orderly mechanism for claiming
blocks for use {i.e., removing them from the free-block
iist) and freeinyg blocks from use {i.e., returniag thenm to
the free-block list). Such a nmechanisa is embodied im the
ALLOTOR routine. ' ALLOTOR maintains the free~-block 1list,
which is held on Regions 4 through 10 of CAIFILES; any rou-
tine which needs a newv region for whatever purpose calls
ALLOTOR with the request. ALLOTOR responds with the nunmber
of the block which the caller may use. Similarly, to free a
block, a procedure calls ALLOTOR with the number of the .
block no longer used. :

—u"‘;-

DCL 1 SCB BASED {(SCB_PTR),
ok A R 20K K AR K Ko KK ok K kR R gk RO Rk R ok R ok ok kKo Rk K

/¥
S*
/*
/¥
S*

A Student Control Block exists for each student in the system. It
is in effect an activation record for a particular studeat; it
contains current Delta machine status (register contents and
state switches) and run-time storage for DIAL lesson variables
{integers (for INTEGER and SLIDE types) and pointers intoc POOL1

" and PODL2 {(for CHARACTER types)). 4&n SCB also points to its

student*s RESUME and RECOVER file areas. EXECTOR®*s internal

procedure INIT_SCB performs all iaitialization of the SCB, except

for GLOBALS, durimg its heginning-of-neﬁ-lesson sequence. The
procedare EXECTOR is the prxnary nser/manipulator of SCB. Betvween
sessions, a student?'s SCB is stored in the SREC.SCB_PART for that
student.

Because of the re-enirancy of the system, each student must (and
does) have his owa SCB, and thus has his very own private Delta
machine. However, it is easier not to think about many students

~and many SCBs and many Delta machines all operating at once. In-

stead, nothing is lost by pretending there is only one of each;

the re-entrancy takes care of itself.
%INCLUDE4 from DCLLIB(SCBDEF)

*/
*/
*/
*/
*/
*/
*/
*/

¥/
*/
*/
*/
*/
*/
*/
*/
*/
*/

- ¥/

EERRckR ok koob kR okl kiR ok gk R kk ok RR Rk dokdok Kok kol kR kR kR R dok kR Rk kK /

/*#***t***#&i******#t&******#t**********##******#****#*****#******/

/* Current register contents of this student®s Delta machine.

*/

/R o ko ook ko sk okl o e ol skl ok ookl kb R ok sk ok ok kol ook ok R ok ok /

2 IC PIXED BIN(15,0), /¥ The instruction counter..
/% IC tells what statement in

/* the carrent iesson is being executed for this
/* student. Erncoded in the IC is the instruction
/% page, and the offset within the page. Special
/% valaes of IC are:
Vi IC = 0 - Student has nof yet started into a
/* course (thus, SCB.LESSON is meaningless).
/* IC = 513 - Execution is at Instructioa #1 in
/* SCB.LESSON.
/* IC <0 =~ Student has finished SCBE.LESSON;
/% he should begin the next session at the start
/* his course?'s next lesson.

2 PAUSE_LEN FIXED BIN{15,0), /* How long {in secoads) ¥ill
/% the system patse between
/% SHOWs? Set by the PPAUSE <~ n" DIAL statement.

2 UNREC_CTR FIXED BIN{(15,0), /% How Rmrany untecognized Te-

*/
*/
*/
x/
*/

*/
*/
x/
x/
*/

%

*/
*/
*/
*/

x/

/¥ sponses to a SHOW have been*/

/* received? This is used to process the DIAL
/% UNREC statement to control branching.

2 STATES,

/#*#******##**#***l*********************#***********************/é

/* Current states of this student?s belta machined

/3% e ol ok A oo o K R HOR o K dk dRR R ORRok Rk ROk Rk /|

- 42 -

/0
*/;

*/

3 READ_ISSUED BIT{(l,

3 SHOW_UP BIT(1}, _
3 CASE BIT{Y), /% Translate alphabetic case? Set by */
IE DIAL YCASEONY, BCASEOFFY stmts. */
3 SQZ BIT{1), /* Squeeze blanks from a response? LV
/¥ Set by "“SQZOKY, HSQZOFF" stmts. */
KRR of o BIT(1), /% Condition code - set by some DIAL ¥/

/¥ instructions, tested by others., */

2 STORAGE,
JEBEFFRERRERERRRR R FE R RN RS TR kR SRR T E KRR R RK KKK RE KRR kX /

/¥ Run~time storage for variables. JInstructions with operand *x/
/* type 2{3) reference this area. A type—-2(3) operand means */
/* that the operand is a pointer into SCB.STORAGE.INT (if the */
/* opcode is appropriate to integers) or S5CB.STORAGE.S_PTR. */
/R R ok R R R kAR R R KRR R R X ok kR R R R R ROR KRR KKK/
3 INT{190) FIXED BIN{15,0}, /* Run-time integer values are¥/

' /% held here. Such a value %/

/* may belong to a DIAL variable of type INTEGER */

/% or of type SLIDE. 1In addition, the DIAL systenm */

/% integer comnstants are held here: _ */
/% SCB.STORAGE.INT({1) holds PAUSE; */
/¥ SCBaSTORAGE.INT (2} holds S5QZ; */
7* SCB.STORAGE.INT{3) holds CASE; *®/
/* SCB.STORAGE.INT{4) holds QVAL; _ */
/% SCB.STORAGE.INT{5) holds AVAL; */
VA SCB.STORAGE.INT (6) holds RVAL. */

3 5_PTR, _ _
/* The 1list of character-string value pointers, pointing */
/% into POOLY and POOL2. */
4 LEN{400) PIXED BIN{15,0),/%¥ How long is the character- %/
/% string value pointed to */
/* by this entry of SCB.STORAGE.S_PTR? * /
L ADDR{400) FIXED BIN(15,0),/*% dhere in POCLI/POOL2 does ¥,
/* it start? %y
4 FREE_POINT FIXED BIN({15,0),/% Which is the next free xy

/* position in the character =,
/% storage area POOL1.POOL1DATA j| PCOLZ.POCLZDATA.*,

2 LESSON CHARACTER {6}, /* Lessonr currently being D,
/% executed; held on the SCB *,

/% instead of just this student's SREC, because it *,
/* BAay change duriag the course of the sessjion. *,

2 GLOBALS({18) FIXED BIN{15,0),

2 POOL1BLK¢ FIXED BIN{15,0), /* Next block in student's *,
/* RESUMEDUMP file. "y

2 C_POOLIBLK# FILED BIN{15,0); /* Hext block im student's L

- §3 =

Pigure 14:

/* RECOVDUMP file.

A student Conirol Block

- 44 -

*/

'DCL 1 LCB BASED{LCB_PTR},

J AR Rk KR R kKR R R ok R ROk ok Rk R ok ok Rk ok ko Rk ok /
/% There is a Lesson Control Block, or LCB, for each lesson in the %/
/% CAI System, whether it is attached to a course, or ia an author's %/
/% library. The LCB for each lesson points to all the source and */
/% object code blocks for that lesson, and contains the usual direc- */
/% tory information {like how many source code blocks there are, and */
/% does this lesson need recoampiling, etc.). If the lesson is one */
/% that is attached to a course, then this LCB is pointed to by that */

/% course's CCB. If it is in an author library, them this LCB is */
/% pointed to by the ACBE, */
Vel FINCLUDEd fronm DCLLIB(LCBDEF). LV4

S ek ek ok kol kokk *******#****t****#*** Fokdokrtkkkkkkkdok ko kk ko kkkkkkkk /

SERETEER AR R SRS R RBREEERE R IR RREEF ARG SRR EFEE R R R R ER R Rk o & ok ko /
/* Object Code Part */
/3 ook sk kol stk dof o ok ok o o o ol ok ek Ok ok ekl kR R ok ol kR ok ek ok ok ok ok
2 C_SYM_B_BLK# FIXED BIN{(15,0), /% The CAIFILES block numbers */

2 C_SYM_D_BLK# FIXED BIN(15,0), /* where this lesson’s coapile-%/
/% time symbol table (C_SYM_BCD*/

/% and c _SYM¥_DOPE, respectively) are stored. These */

Ve blocks are loaded when AUTHOR receives a) LOAD */

/* command, for iater use by COMPLER. x/

2 1I_PAGES_CT FIXED BIN{15,0), /* How many instractions pages */
/* {blocks of object code in~ =%/

/% structions) have been used so far; also, how mamy */
/% elements of LCB.I_PAGES are currently filled. */

2 L_PAGES_CT PIXED BIN {15,0}, /* How many pages {blocks) of */
/* character~string literals * /

/* have been used so far. Also, how many elements of */
/% LCB.LITAREAS are currently filled. */

2 I_PAGES{64), /* Thais lesson's inStructionSfpages directory: %/

3 BLK# FIXED BIN({15,0), /* The page translation table =*/
/% for th instructions pages. *x/

/* The table is in logical page order; i.e., the %/

/% n~-th logical page of instructions is held oa ¥/

_ /% CAIFILES block number LCB.I_PAGES{n).BLK#. ¥/

3 LARGEST_LN FIXED BIN{15,0}, /* The highest source code * s
/* line number in the page. %/

/% This is used to translate the "M% into instruction *,

/*¥ counter {(IC) form, when AUTHOR receives a *)

/¥ "3XEQ N,NY command, or EXECTOR receives a L

/¥ ")PBOCTOB N¥ comaand. ' _ *y

2 LITAREAS{32) FIXED BIN{15,0), /* The page translation table */
/¥ for the literal areas. The *, :

/% n-th logical literal page is on CAIFILES block *,
/* number LCB.LITAREAS{n). This is built by COMPLER; *, :
/% it is used (read-only) by EXBCTOR. X,

- 45 =

2 S_PTR_COUNT FIXED BIN{(15,0), /* The number of elements now */

/¥
/*
S
Vi
V.

/*

in SCB.STORAGE.S_PTR, which */

is the list of poirters into POOLY and POOL2, the */

run—-time storage pools

This is set from C_SYN_

for character variables. */
DOPE.STR_FREE by AUTHOR. It */

seems like it ought to alsc be equivalent to */
S5CB.STORAGE.S_PTE.FREE_POIKT - 1, but I'm not sure.*/

/#**************#*************#*#**#***************#****#******#**/

Source Code Part */
R R AR AR A A R A R AR R R Ak R R ok ok Rk ok

2 BLOCK_COUNT FIXED BIN{15,0), /¥ Number of CAIFILES blocks x/

/¥

/% used so far to store source %/

/% Also, the number elements in LCB.MAX_LNO and */

/* LCB.BLOCK that are currently in use. */

2 MAX_L¥O{418) FIXED BIN({15,0), /* Naximum line number in each */
/% block. Used primarily to */

/* find on which block number a particular source */

/* statement resides. */

2 R_MIHN_LNO FIXED BIN{15,8), /¥ Lowest line number of the */
; /¥ source code changed since */

/% the last compile of thais lesson. Used in AUTHOR. */

2 COBPILBD BIT{1), /* Has this lesson been recon- %/
: /* piled since the last change?*/

2 SPARE1

CHARACTER (13), /*

2 BLOCK{418) FIXED BIN(15,0), /%

{Apparently not used) */

The.sonrce code directory. */

. /% The n-th logical block of */

/% source code:resides on CAIFILES block LCB.BLOCK{n).*/

2 CDATE CHAEACTE§{6), /% The date this lesson was %/
/* last changed. */

2 CTIME CHABACTER {9}, /% The time this lesson was * /
: /% last changed. * /

2 SPARE2 CHAR{1); Ve {Apparently not uased) *

Figure 153

A Lesson Control Block

- 46 =~

Chapter 6
OPBRATING IﬁSIBﬂCTIOHS

This chapter deals with various operational aspects of
the CAI System that may be useful for a CAI Systea Program-
Rel.

6.1 CHATICL

CHATJICL is that set of job centrol language that keeps
CHAT and its application programs up and running. The CAI
System files must be specified in the CHATJICL. in partica-
lar, the following two datasets .must appear in CHAT's
w//STEPLIBY specification:

7/ DD DISP=SHR,DSN=UNC.CS.ES557C.CHATJCL.CAI.TEST
Va4 DD DISP=SHR,DSN=UNC.CS.E557C.CHATJCL.CAI.LOADLIB

Kext, the three on-line file datasets must be identified.
This is done in the section of the CHATJCL eantitled ®CHAT DD
CARDS"Y:

/ /78 UTHREC DD_BISP=SHR,DSN=UNC-CS.ES§?C.CHATJCL.CAI-AUTHREC
//7STUREC DD DISP=SHR,DSN=UNC.CS.ES557C.CHATICL.CAI.STUREC
//CAT Db DISP=5HR,DSN=UNC.CS.ES557C.CHATICL.CAI.CAIFILES

Traditionally, there has been someohe in the Department
‘respomnsible for maintaining the CHATJCL; a CAI System Pro-
gramerer will norzally not have to do it.

6.2 MOTH-BALLING THE CAI SYSTEH

Daring long periods of inactivity in the CAI System, it
is a good idea to moth-ball it. This saves valuable on-line
disk space, and reduces the possibility of file danmage
brought about Dy an unauthorized person Bamnipulatiang the CAI
system files. To moth-ball the CAI System: :

1. Remove the referesces to CAI in the CHATICL, des-
cribed above. = Traditiomally, the 1lines have not
actually been taken out, but merely transformed iato
JCL comments. In this wvay, restoration of CAI in the
CHATJCL is quite simple.

- 7 -

2-

4.

6.3

Move the files to off-line disk packs.

Since CHATJCL.CAI.TEST is only for test versioas of
the on-line system, it may be possible to delete it
corpletely, provided there are po load modules cesid-
ing thereia that warramt presecvatjon. This dataset
is often reduced in size to one track, in 1lieu of
actual deletion.

Follow the wrap-up procedures outlined in Section
7.2.2 of the CAI Operations Kanual.

AUTHOR CONMAND FACILITIES

The author command facilities are described in Section
5.5 of Mudge's dissertation. The following addenda now

apply:

1'

Only the first three letters of any command ate sig-
nificant. The command may be entered in upper and/or
lower case letters.

The)include command was never implemesated. Hence,
neither was)group.

The) course author command was never implemented; it
was instead built as an independent on-line CHAT pro-
gran.

The }number command was renamed. It is now) line.

The)resequence command «as renamned. It is now
jrenumber.

The }print coamand was never implemented, but there
is an off<line PRINT progran. It is described in
Section 7.1 of the CAI Operatioas HNanual.

There is a)csu coumand, which flips the <COMNPILE
svwitch on and off. This bit controls whether or not
the lesson is recompiled each time ar out-of-sequence
statement 1is entered. This command replaces tae

- lightpen button *#C*' described in NHadge.

The *35UBST* and *THROW* lightpen commands do not
exist. The *#*THROW* feature wvas replaced with a key- .
board command,)cle, vhich gives the author a clear
screen on which to enter the next (presumably long)
GIAL statement., C

- 48 -

8. There exists a)copy command, which lets one author
bring a copy of another author's lesson into his own
library. The syntax is:

)COPY <author-id> <lesson-named> ; _
where <author-id> is the sign-on identification of
the author whose lesson 1is to be «copied, and
<lesson~name> is the name of the lesson to be copied.

10- There is an)edit command, which allows the author to
specify the row on which bhe wishes to enter input.
This is meant to allow an author to make changes to a
lesson by listing the lesson and making the changes
directly to the affected lines, rather than having to
re-type entire statenents.

6.4 ADDENDA TO THE DIAL SPECIFICATIONS

The author language described in Chapter 4 of Hudge is
not quite the author language that was actually implemented
in the CAI Systen.

1. The following features are not implemented: FRAME,
S5UBSTR, LENGTH, INDEX, PLISUB, procedures, vectors,
IF-THEN, IF-THEN-ELSE, and DO-WHILE. Default branch-
ing for a MATCH statement is not implemented.

2. All DIAL keywords and their abbreviations are
‘ reserved. They may not be used for any other pur-
pose.

3. Setting the system variable CASE may be done only via
- WCASEON" and MCASEQPF" statements. Setting CASE by
assignmert of integer value was pever supported.:

4. Setting the system variable S5QZ may be done either
via the MSQZON" and "SQZOFFY statenents, or by
assignomeat of an integer value. Assigning zero to
S5QZ is equivalent to "SQZOFF®; assigning any other
value is equivalent to ®SQZONY.

6.5 PROCTOR QOVERRIDE FACILITY

In student mode, the proctor overcride facility can be
used to jump to any lesson or to any statement within a les-
son. There is almost no on-line diagnostic help with this
facility, in order to discourage student use of the facil-
ity.. The proctor enters '

) pro

- 349 ~

whereupon the system responds with a ")%" prosmpt. The
proctor enters
' yove {lesson>

or,

_ Jove <line #>
vhere the lessonh name is entered to coverride to the begin-
ning of that lessoan, and a line number is entered to over-
ride to that line within the lesson currently being exe-
cuted.

If the override statement is invalid, then the)pro com-
mand must be entered to try again.

6.6 QPEXEC

The CHAT program CPEXEC may be used by a proctor to dis-
cover which CHAT terminals are im use, how¥ much core is cur-
rently available, and many other things. For more informa-
tion, see the OPEXEC Description document.

6.7 USING THE PL/I OPTIALZING COMPILER

When CHAT was origimally built, it supported application
progtams written only in PL/I{F) or S/360 Assembly Language.
However, it has been modified fairly recently? to accept
programs compiled with the PL/I Optimizimg Conmpiler. The
source code accepted by the two compilers differs in a few
¥aySa. Under the Optimizer, internal procedures may pot be
declared, all builtim functions pust be declared, and some
of the system functions have different names. _

. It may be advisable one day to generate a CAISYSTEK under
the optimizing conmpiler; IBM no longer offers programsing
"support for PL/I{F). The 1980 CAI System vas built with the
Optimizer in mind; all builtias have been declared. There-
fore, to generate a CAI System under the PL/I Optimizing
Compiler, do the following:

1. Deleie every declaration of an internal procedure in
each of the source modules. Most of the seventeen
modules do not contain any such declarations.

2e In the entry point #&#STOP of module #$EQDQ, replace
the call to IHESARC with a call to PLIRETC. Besides
this, the source code shouild mot have to be changed,
although you may wvamt to take advantage of the DO

e —— -

2 by Lee Nackman

. = 50 -

UNTIL, REPEAT, SELECT, and LEAVE statements that are
available with the Optimizer. .

3. Be-coapile all the modules using the Optimizer. The
options for compilation may have differeat nanmes;
make sure the same options are in fact requested.
Moreover, invoke the optimization feature of the com-
piler; the Optimizer does not optimize unless
requested to do so.

4, When the nev system is generated, it will have to be
linked in with CHAT's PL/I Optimizer interface {as
apposed to the PL/I{F) interface currently linked
in) . Consult the current CHAT expert to make sure
which CHAT dataset({s) to use.

6.8 DEBUGGING AIDS

This section deals with methods by which foa can cause
the <CAI System to generate output elsewhere than on the
user's display screen.

The CHAT system maintains a 1log file where siga-on and
sign-off information are stored for a dlimited period of
timea. To write to this log file, use the CHAT routine
LOGIT. To use LOGIT, declare it im each external procedure
you expect w¥ill invoke it.

DECLARE LOGIT ENTRY {CHARACTER(*) VARYING);

#hen a new CAI System is generated, LOGIT will be known
because it resides in the CHAT SYSLIB. To invoke LOGIT,
call it with a character string. To see the results, sign
on to OPEXEC under CHAT, ard enter the <command "SHO LOGY.
Your message should appear. Be warned, however, that dis-
playing the log file also clears it. Alse, the file is not
very large. ¥riting many messages to the file will cause
earlier messages to be lost. Therefore, it is advisable to
display the file freguently. '

Another way to obtain output from the system is to
include a print file in the systen. The BOost convenient
file to use is the system primt file, SYSPRINKT. However, it
is nore convenient to direct the outpui to a priat dataset
in the CHATJCL, as the contents may then be viewed interac-
tively. Such a dataset must have the DCB characteristics of
a priat file. One such file that currently exists in the
CHATJCL has the ddname PFPACPRINT. - So, to send output to the
file FACPRINT, iaclude the following statement ian the main
roatine of the CAI Systen: '

- 51 -

OPEN FILE(SYSPRINT) STREAM OUTPUT PRINT
PAGESIZE{nn) LINESIZE{yy) TITLE('PACPRINT"};

The PAGESIZE and LINESIZE parameters are optional, but spe-
cifying PAGESIZE(20) and LINESIZE(40) should fit the output
to a CC-30 screen. Now, any comventional PL/I print state-
ment (e.g., PUT LIST, PUT DATA, etc.) will direct output to
this file. This method has the additional benefit that when
the system ends abnormally, diagnostic information is auto-
ratically seant to the print file, and without this file spe-
cification, such information would be lost.

The easiest way to view the contents of your outpat file

is by invoking the CHAT program DISPL. ‘DISPL will prompt
you for the ddname; respond with "FACPRINT'. The first
screen-full of the file will be displayed; by pressing INT
you can page through the file. If you enter a character

string, DISPL will scan the file for the next occurrence of
that string, and display its location. ¥hen you reach the
end of the file, however, the program ends. To look at any
part of the file again, you must re-invoke DISPL. An advan~
tage to this approach is that, uslike LOGIT, viewing your
output file does not destroy it.

It may be prudent one day to create a print file just for
CAI; a likely ddname would be CAIPRINT. Ta do that, allo-
cate an on~line dataset with print~-file DCB characteristics.
Then, have the person in charge of the CHATJICL insert a DD
card that looks like this:

//CAIPRINT DD DISP=SHR,DSN=dataset_nage

6.9 GENEEATING A HEY VERSION OF THE COMPILER

The steps - for generatiﬁg a fnew version of the compiler
are: Co

1. Produce the grammar for the new version using BNF
prograaming and the XPL grammar analyzer. See HcKee-
man, Horning, and Wortman, A Coapiler Geserator.

"2« Once the grammar has been thoroughly tested, use the
BNF program as input to the PL/I procedure COHSTRUC-
TOR. This procedure produces punched output, which
teplaces code sections of the compiler. {The compi-
ler is actuaily split into three routines, COMPLER,
CODEGEN, and TABLES.) :

3. PARSER contains tvwo procedures, PARSERE and COMPILER.
Once the code section changes have been made in CON-
PILER, then test data should be run against PARSER.
Note: the 1listing for the previous run of PARSER

“c¢ontains instructions for convertimg an existing
version of COMPILER into a vwversion to be run against
PARSER.

4. Once the changes have been verified, remove the conm-
piler from PARSER (see instructions in the PARSER
listing)a Compile the compiler routimes and link
them into the SYSLIB object code librarye.

5. Generate a new version of CAISYSTEM, using the proce-
dures described in Chapter 3.

The datasets used are:

1. For CONSTRUCTCOR, UNC.CS.ES557C.CAI.CONSTR, with member
IPLCONST for the AIPL Constructor, and member PLICONST
for the PL/I Constructor.

2. The object module library UNC.CS.E557C.CAI.SYSLIB.

3. For the XPL program, UNC.CS.ES557TC.CAI.XPLOBJ.
The JCL is as follous:
Using XPLCONST:

/7 JOB

//LXPL EXEC PGM=XPLCONST,REGION=150K

//STEPLIB Db DSR=UNC.CS.ES557C.CAI.CONSTR,DISP=SHR
//PROGRAN DD DSKE=UNC.CS.E557C.CAY. XPLOBJ, DISP=5HR
//7SYSPUNCH DD SYSouT=B8,DCB= (RECFH=¥B,LRECL=80,BLKSTIZE=400)
//SYSPRINT DD SYSouT=a

//SYSIN Bb *

/%
7/

- 53 -

Using PLICONST:

/S
4

JOB

//STEPLIB

//SYSPRINT
//COMMENT
//DCLOUT
//INITOUT
//CODEGEN
//EINPUT

Vi
//

EXEC PGM=PLICONST,REGION=300K

Db
DD
Dp
DD
DD
oD
DD

DSN=UNC.CS.ES557C.CAI.CONSTR,DISP=5HR
SYSOUT=A4

SYSOUT=B,DCB {(RECFMN=FB,LRECL=80,BLKSIZE=400)
SYS0UT=B,DCB= (RECFA=FB,LEECL=80,BLEKSIZE=400)
SYSOUT=B,DCB={RECFE=FB,LRECL=80,BLKSIZE=400)
5YS0UT=B, DL B= (RECFA=FB, LRECL=80,8BLESIZE=400)
*

- 54 -

Chapter 7

ABNORSAL TERMIBATION CODES

When a CHAT program in execution raises tae EBROR condi-
tion, CHAT displays a message of the form:

SUBTASK ENDED nann
PLEASE CALL PROCTOR

and then aberts the subtask. {The Yproctor" reference is
historical; CHAT's origimnal purpose was to provide a run-
~time environment for CAIL.) There are three forms the
returned code can take:

1. If the code begins with "5%", it represents an 0S sys-

: tem completion code. Look up the three-digit code in
the IBM Messages and Codes manual, under "System Con-
pletion Codes ({SCC)". For instance, HS80AY npeans
that not enough storage was available for a success-
ful GRTHAIN operation.

2« If the code lies betseen 1001 and 1099, incluasive, it
#as generated by the CAI System in response to an
error condition it detected, but could aot fix. The
routine detecting the error issuwed a call to - the
##STOP entry point of the ##EQDQ module, whichk {among
other things) «calls the PL/I system routine IHESARC.
IHESARC geaerates a task return code by adding the
given paraseter to the retura code pormally gemerated
by the syster (1000). Therefore,

CALL ##sTOP(10)
yieids a return code of 1010, vhich nmeans that the
DIAL corpiler's symbol table is full. Subtract 1000
from the returaned code, and look up the error in
Table 1.

3. The returned cede is 2000. This signals a PL/I exe-
cution-time error. In this case, the ERROR condition
is raised, and the associated ON-unit in the main
procedure takes coatroi. CAIBAIN calls two PL/I
builtin functions, ONCODE and OBLOC. QOECODE returns
the code of the error which raised the condition, and
ONLOC returns the eatry point where the condition was
raised. CAINAIN displays these two diagnostics, and
then calls ##STOP to halt the systenm.

- 55 =

W0 Q -~

10
1
12
13
14
15
16
17
18
19
20
21

22

23
24

25
26

SRONOFF

SNONOFF
EXECTOR
EXECTOR
SNONOFF
ACBPROC
ACBPROC
CODEGEN
CODEGEN
COMPLER
AUTHOR
AUTHOR
SOURCE
SOURCE
SOUKCE
SOURCE
AUTHOR
Ex;;TOB
EXECTOR
LOGGER

EXECTOR

CAINALN

CODEGEN

CODEGEN

TABLE 1

Table of STOP Codes

During recover phase, the siudeat's
checkpoint entry wvas aot found on
MAINFILE during sigaon.

Student's checkpoint entry wvas not
found on MAINPILE durimng sign off.
During setup for studeat execution,
course was not foand on the CCB.
buriag setup for student execution,
lesson was not found on the CCB.
¥hile setting up stadent's checkpoint
entries oa MAINFILE, no roomr was
found (CHP_COUNRT > 59).

Author's Ip not found on the ACB.

No rooa left in RECS {(NEXT_FREE>1i84).
No roos left in STORAGE.S_PTR; called
from internal procedure S_ALLOC.

No roor left in TEAP_INSTES; called
from internal procedure EMIT.

Symbol table full. Called fronm
interaal procedure SCAN.

No LIT pages left; more than 16 used.
Ho INSTNS pages left; over 64 used.
No room left on source code file for
a split.

No room left on source code file
vhile adding sequentially.

Statement number not found in first
level directory; called from ASOURBRCE.
Statesent nuaber not found in second
level directory; called from ASOURCE.
No room left on CCB to do an jATTACH.

puring change of lesson, lesson name
not found on the CCB.

Duriag change of lesson, no BOTe
lessons found for this course.

puring open operation, no room in
logfiles on MAINFILE.

During processing of STORECH (CP {34})
instruction, COMPACTIFY was called bat
did not free enough space for the next
string operation.

During execution of the ON ERROR unit,
the ONCODE was not foumd in the table
of codes, ONCODES(0:99). .

Compiler Debug Stop 1 -~ in PLISEG
production.

No room left in STORAGE.INT-

- 5§ =

27
28
29
30

31

32
33
34
35
36
37
38
39
40

41
42

43
44
45
56
47
48
49
50
51

52

53
54

EXECTOR
EXECTOR
EXECTOR

EXECTOR

EXECTOR

EXECTOR
EXECTOR
AUTHOR

EXECTOR

AUTHOR
SOURCE
$#EQDQ
$$EQDQ
FILEIO
FILEIO
FILEIO
FILEIO
FILEIO
FILEIO
ALLOTOR
AUTHOR

ALLOTOR

FILEIO

SNONOFF

During setup for execution in the case
that IC<0, no next lesson fouand.
Addressing error. Page decoded froa
IC is greater tham I_PAGES_CT.
Addressing error. Page decoded froan
IC is less than 1.

Addressing error in stndent-oaly aode.
No ENDLESSON instruction at end of
lesson; system tries to execute beyond
the lesson's last instructioen.
Addressing error. IC was about to
retrieve an instruction in the last
page of the lesson but beyond
INSTNS.NEXT FREE. Thkis is a DIAL
systen softvare error.

In FETCH21, the page decoded is greater
than L_PAGES_CT.

In FETCH21, the pages decoded is less
than t.

During a)PURGE, lesson name was echoed
correctly, but ACBPROC failed to find
the lesson on the ACB.

¥hen setting up for a studeat beginning
a coutrse (IC=0), no lessons were found
oA the CCB.

In Stage 1 of recompiling, an error was
found in a DIAL statepent.

DIAL system error; S_LEN of a statement
is <1 or >8006. Called from GSUOURCE.

When ENDing on a CAIFILES resource, the
subtask already Bhad control of it.

When DEQing on a CAIFILES resource, the
subtask did not have control of it.
Called to read with BLE# < t.

Called to write with BLK# < 1.

Called to rewrite with BLK# < 1.

Called to read with BLK# > 14899.
Called to srite with BLK# > 1499,
Called to rewrite with BLK# > 1499,
kttempt to allocate block numbered higher
than 1499; no more blocks on
FREE_BIOCK_LIST; some must be freed.

In Stage 1 of recompiling, GSOURCE
returned a nonzero return code.

Stack cannot be shifted down any more.
Softyare error caused by returning

more blocks thar allocated. _
Bottom—-of-stack on free-block list

has been reached.

Attempt to DEQ on STUDBET resource

- 57 -

55 SNONOFF
56 SNONOFF

60 EXECTOR

99 CAIMAIWN

not successful.

Attempt to DEQ oan AUTHCR resource

not successful.

Atteapt to DEQ on a sign-on ID was

not successful.

A "read-pen® or ®read-either® instruction
¥as encountered im a system without
lightpen capabilities. ,

ON CONDITION{ABNORM) signalled more

than 10 times.

-58_

Chapter 8
PROTECTION OF CAISYSTEN DATASETS

" CAISYSTEM lives and dies with its files. Great care nust
be taken that all datasets are protected {from system fail-
ure, CAISYSTEHM bugs, and acts of God. Precautioans fall into
two categories. Pirst, amy access to a shared file causes
that file to become : enqueued; no oither access may occur
until a degueune operation has been completed. This is true
whether the access request comes from the on-line system or
from an off-line program. Second, a general protocol for
taking backups of all datasets has been established.

8.1 JUS1EG THE QS “ENQ" AND "DEQ" PACILITIES

- The CAI System @module ##EQDQ calls the CHAT system rou-
tines ENQ ard DEQ, which serve as interfaces between CHAT
and the 0S5 ENQ/DEQ Supervisor Macros. #4EQDQ bhas several
entry points3, each of wvhich serves a variouas eng/deq func-
tiofn. :

There are eight serially-reusable resources defined in
CAISYSTEM, but some do not exist at times. They are divided
into three groups:

1. The first group alvays exists. It consists of the
first four blocks of CAIFILES, vwhich contain data
shared by several of the routines.

Resounrce 1: MAINFILE

Resource 2: CCB {Course Control Block)
Resource 3: ACB {Author Control Bleck)
Besource 4: FBL_TOP {Pree-Block-List top)

2. The second group of resources exists when the on-line
system is running and an off-line program is in exe-
cution as well. Basically, it prevents an off-line
prograr from changing an author~related file while an
author is sigaed on, changing a student-related file
vhile a studeat is signed on, etc. _

Resource 53 CAISYSTEM {anyone signred on)

o A O T 2 A) P T S e o AT D AT P

3 See the module description im Sectiopn 2.16 for a descrip-
tion of each. : '

- 59 =

Resource 6: STUDENT {(any student signed on)
Resource 7: AUTHOR (any author signed on)

3. Fipally, the third "group"™ is used to preveat two
: users from signing on to the om-line system with the
sape identificatioa number. $hen a user signs on,
vhether student or author, his identification number
is engueved, ard remains so until he signs off.
Resource 8: ID# '

All engueuing and degueuing is done by the module ##EQDQ; -
hoWwever, only certain other modules call ##EQDQ &0 request
such enqueaing/degqueuing. The moedule FILEIO controls alio-
cation of the CAIFILES shared blocks. A resource is
enqueued when a fead to that block of the file is regquested.
The degueue reguest is issued when a REWRITE to that file is
received. The enquene request is for excilusive control and
with the condition that the task wait until the resource is
available.

The CAISYSTEM resource is controlled by the mrodule CAI-
MAIN. The STUDERT, AUTHOR, and ID# are bandled by the SKNON-
OFF module. The engueae request is for shared control, with
the condition that the task pot wait if control is not
immediately available. If that is the case, SNONOFF dis-
piays a failure message to the uaser, returas to the main
procedure, and the system terminates. _

Off-l1ine utility routines requesting any of these
resources 4o so with exclusive control specified. This pro-
vides a lockout if the resource is already in use.

For a description of the JCL and XINCLUDEs necessary to
use ##EQDQ and ENQ/DEQ facilities, consult the header para~-
graph in the ##EQDQ source listing. Por a brief explanation
of the ##EQDQ module, see its description in Section 2.16 of
this manual.

8.2 DATASET BACKUPS AND EESTORATIONS

Regular backups should be takem of each of the fiies.
The backup and restoration precedures are well-defined and

vell-documented in the CAI Operations Manaal. Note that
when the CAI daily jobs are rumaing, backups are automati-
cally made. . Otherwise, they must be done by submitting.

batch jobs described ip the Operations Hamual. Of course,’
backups are only advisable vhen there is any systenm work
{test or production) curreatly im progress.

- 650 -

Chapter 9
THE CAISYSTEM UTILITY PROGRANS

In addition to the on-line routines of the C(AI Systen,
several other programs exist to maintain CAI files, to pro-
duce reports, and to serve as tools for other prograsas.
This chapter briefly describes the function of each of these
utility programs. ¥Por each program, a list of SINCLUDEd
rodules on the DCLLIB PDS will be listed, followved by a list
of all the external procedures called. A1l are described
more fully in the CAI Operations HManual; the appropriate
section humber will be given for each progran.

The source code for all of the utility programs resides

on the PDS
: UNCaCS-ES57C. CAL. UTILITY» SOURCE.

9.1 QE-LINE PRODUCTION UTILETIES

These programs are invoked by CHAT on-line; their load
rodules all reside in the PDS
ONCaCS.E557C. CHATJCLL.CAI. LOADLIB
{along with the load modules for CAI and CAIAUTH).

1. COURSE - list the lessons attached to a counrse, and
delete lessons from a course.
RINCILUDEd members: PERMDEF, CCBDEF, LCBDEF. ‘
Procedures called: $§DISP, &DELAY, #B_INIT, #SETROW,
PASS¥RD.
Reference: Section 4.3.3.

2. CAIQLFI - view the record and curreat statas of a
' particular student. :
XRINCLUDEd menbers: CHAT.SCURCE({CCIDCL), SRECDEF. By
calling various entry points of ¥CC301I0, CAIQLFI
conld no doubt effect its I/0 the way CAI and CAIAUTH
do; however, by RINCLUDing the CHAT I/0 declaratioans,
CAIOLPI makes the calls te the CHAT 1I/0 routines
directly.
Reference: Chapter 8.

- 61 -

9.2

OFF-LIEE PRODUCTION UTILITIRS

These utilities are invoked by batch programs, although
iancluded here are some subroutines that may be called by the
on—-line prograss. Their load modules reside on

1.

3’

T

UNC.CS.ES57C.CAT . UTILITY. LOAD.

ACCSLOG - prints/clears the log of all password
accesses.

%¥INCLUDEd members: MAINDEF.

Procedures called: ##¢INIT, ##BQEXT, ##DQEXT, HEADER.
Reference: Section 4.4.3.

AUTHREPT - prints report giving all personal informa-
tion, lesson names, and wvork times of all asthors in
the Systen.

%#INCLUDEd members: ARECDEF, ACBDEF.

Procedures called: HERDER.

Reference; Sectjion 3.4,

AUTHAINT -~ utility for adding/deleting/changing
author records in the Systesn.

%INCLUDEd members:z ARECDEF, ACBDEF, EQDQEXT.
Procedures called: ##INIT, #%EQEXT, ##DQEBXT.
Reference: Section 3.3.

CAILOG - prints a log of all student activity since
the last rum of CAILOG; clears the logfile blocks on
file CAIPILES.

FIFCLUDEd members: MAINDEF, LOGRDEF, EQDQEXT.
Procedures called: FREEBLK, HEADBR, ##INIT, ##EQEKT,
##DQEIT.

hReference: Sectktion 4.4.1.

CAIREST -~ restore CAIFILES recover/resunme dump sStatus
from tape backup.

%*INCLUDEd members: MAINDEF, SCBDEF, PL1DEF, PLZ2DEF,
SRECDEF, ERQDQEXT. .

Procedures called: FREEBLK, E#INIT, #$EQEXT,
##DQEXT. ;

Reference: Section 6.3:

CCBMAINT - imserts/deletes courses to/from the Course
Control Block {(and hence, the Systenm).

RINCLUDEd members: CCBDEF, EQDQEXT.

Procedures called: &#INIT, #8#EQEXT, ##DQEXT.
Reference: Section #4.3.2.

CHECK - displays a "please cancel” nessage to the
console. This is the first step of each of the CAI
daily jobs, but is overridden by proper execution.
This prevents unauthorzzed users from running the
daily jobs. :

Reference: Section 7.3.5.

..62 -

9-

10.

11.

12.

13.

14.

15.

DIRECTRY - prints a directory of all studenis in the

. System, complete with personal iaformation.

XIRCLUDEd members: SRECDEF.
Procedures called: HEADER.
Reference: Section 2.4.2.

DJCYMET - alters the bPaily Job-Controi Command Yec-
torl.

¥INCLUDEAQ members: MAINDEF.

Procedures calleds HEADEER, ##INIT, ##EQEXT, ##DQEXT.
Reference: Section 4.3.1.

FIXCAIF - adds blocks to the free block list. This
should be domne by the on-line systen, but it isn't
alwvays. A block may be no longer used, but somehow
not returned to the list. By running MAPCAIF (see
below), one can ascertain which blocks are no longer
used, yet not in the free block list. Running FIX-
CAIF returns them to that list.

%INCLUDEA members: EQDQEIT.

Procedyres calied: HEADER, ¥$INIT, ##EQEXT, ##DQEXT.
Reference: Section 4.3.4.

FREEBLX - a subroutine. Given a block aumber, it.
returns that block of CAIPILES to the free block
list.

RINCLODEd members: PERHDEF.

Procedyres called: ALLOTOR.

Reference: Section 4.3.5.

HEADER - a subroutine. Causes the printing of a CAI
header line at the top of a page of output. _
Reference: Section 7.3.1.

LOCATE - given a string of data fields delimited by
*$', LOCATE picks off the leftmost field. This is
useful, because the imput to other utilities {such as
CCBHAINT) is just such a string of fields.

Reference; Section 7.3.2.

MAPCAIF - prints a block accounting map of CAIFILES.
$INCLUDEd menmbers: MAINDEF, ACBDEF, CCBDEF, LCBDEF,
LOGEDEF, SCBDEF, PLI1DEF, BRTOPDEF, BSECDEF.

Procedures called: HEADER, ##IRIT, &#EQEXT, ##DQEXT.
keference: Section 4.4.2.

PASSWED - a subroutine. Calied by on-line password-
protected programs. PASSWRD asks for aa author id,
validates it, and then moves the cursor offscreen,
and requests a passvorda. If the password is correct
for the inaveoking program {a parameter), PASSHRD
returns a *1?; othervise it returns a '0Q*%.

XINCLUDEQ members: PERMDEF, NAINDEF, ACBDEF.

_63-

16.

i7.

18.

19,

© 20.

2l.

Procedures called: FILEIO, #D_DIAG, #DELAY, #DISP,
#RD2_T, #RMV_DIAG, LOGIT (a CHAT routine, provided at
load-module-generation time, as it is in the on-line
systen). ‘ h

Reference: Section 7.3.4.

PRINT -~ prints an aathort's directory, and the object
code, literals, and syabol table for a specified les-
500 This is a substitute for am epvisioned on-line’

_}PRINT comsmand.

$INCLUDEd members: PERMDEF, LCBDEF, SCEDEP, SYMBDEF,
SYMDDEF, INSTDEF, LITDEF, ARECDEF, EQDQEXT.
Procedures called: ACBPROC, GSOURCE, FPILEIO, #2INIT,
##EQID, #4DQID.

Reference: Section 7.1.

SAVINIT - clears aund initializes the LOGSAVE tape.
Reference: Section 7.3.3.

STUDUNP - prints part of the specified students*® cur-
rent SREC file information.

FINCLUDEd members: SRECDEF.

Procedures called: HEADER-

Reference: Section 2.4.3.

STUMAINT - inserts/deletes/changes studeant records in
the Systesm.

XINCLUDEd members: SRECDEF, SUNMDEF, EQDQEXT.
Procedures calied: #4$INIT?, #EBEQEXT, #8DQEXT, ##EQID,
#2DQID, HEADER, LCCATE.

Reference: Section 2.3.

STUREPT - prints a progress report for a given stu-
dent. Included are the amount of time spent by the
student, number of recovers and resumes, and course
and lesson currently being viewed by the student.
%INCLUDEd nembers: SRECDEF, EQDQEXT.

Procedures called: HEADER, ##INIT, #&#EQEXT, ##DQEXT.
Reference: Section 2.4.1. :

STUREST - restores students' RECOVNEEDED bits as
appropriate, after loss of file STYREC.

%INCLUDEd members: SRECDEF, NAINDEF, EQPQEXT. _
Procedures called: HEADER, ##INIT, ##EQEXT, ##DQEXT.
Reference: Section 6.2.

.- b4 -

9.3 NON-RRODGCTION OFF-LINE URJLITIES

The following utilities are not considered to be ready
for production use. They are not tested, or not fully
implemented; some should never in fact have to be used at
all. No load modules for these programs exist.

1. ACCESS - prints all password-protected programs and
their associated passwords. :
XINCLUDEd sembers: MAIKDEF.

Reference: Section #4.4.3.

2. AUTHINIT - a one-shot imitialization program for the
ISAM file AUTHREC. Should never have to be used
again. The source code jis obsoiete and shonld be
used as a model only, should the file ever need to be

d

recreated. DO NOT EXECUTE THIS PROGRAN.

3. CAIXIINIT - a one-shot imitialization program for file
CAIFILES. Should never have to be used again. The
version in the UTILITY.SOURCE dataset is obsclete,
and is retained for historical purposes omly in case
another one should have to be written. DO NOT EXE~-
CUTE THIS PROGEAM. '

Beference: Section 4.2.

4. STUINIT - a one-shot initialization program for the

' ISAM file STURBC. Should never have to be used
again; in fact, the retained source code is obsolete,
serving only as a procedural model should STUREC ever
have to be re-initialized. DO ¥OT EXECUTE THIS PRO-
GRAH.

Reference: Section 2.2.

5. SUMMARY - extracts information froem file SUMMREC and
prints summary statistics at the end of a semester.
¥ust be modified each semester to work at all.
%INCLUDEd members: SUMMDEF, SRECDEF.

Reference: Section 2.8.4.

6. SUMMERG - merges suapary information from two differ-
: ent records iato one. Used vhen a student is regis-
tered for a time under a temporary id, aand then later
under his real one.
%INCLUDEQ members: SUMMDEF.
Reference: Section Z2.3.8.

7. SUMBNIT - a one-shot initialization prograrm for the
ISAM file SUMNREC. The source is obsolete, and this
prograr should serve oaly as a model, should the file
ever need to be re-created. DO NOT EXECUTE THIS PRO-
GRAN.

%INCLUDEd members: SUMMDEF.
Reference: Section 2.2.

- §5 =

Chapter 10
POTURR WORK

- This chapter is an informal description of some projects
which might be undertaken to streamline or improve the CAI
System. The order in which the suggestioms appear is not
meant to suggest an order of importance.

There are two major projects that would greatly improve
the entire CAISYSTEM: a comprehensive conversion to CHATHP,
and the creation of the CAI On~Line File Maintenance
(CAIOLFN) syster. Both of these tasks are described in A

Renovatior of the UNC CAI System, in Chapter 4.

Another project would be to remedy some or all of the
known problems and deficiencies of the CAI Systea. These
are documented in -a hand-wsritten list, kept in the back of
the CAI Operations Manual. This list should be kept up to
date, as it serves as a valuable and convenient way to keep
up vith system probleas.

10.1 REMOVING AUTHREC FROE THE ON-LINE SYSEEN

The keyed ISAM file CHATJCL.CAI.AUTHREC could be removed
from the on-line system. It is composed of instances of the
structure AREC, coataining (for each author) bkis name and
address, his id, when he entered the CAISYSTEM, and how many
hours and sessions he has had at a terminal. The on-line
system sets the last two items, and SNONOFF accesses his id
as the key to the file. SNONOFF does this at sigan-on time,
reading the author's AREC into core. Since all the id's are
alsoc stored in the ACB, SKONOFF need not ever use AUTHREC.
The off-line prograam AUTMAINRT puts the information about a
nevw atthor into AUTHREC by creating a new instance of AREC.
It also must update the ACB. Now, all that SNOBGFF would
have to do to see whether it had an author signed on would
be to make a single call to ACBPROC, asking it to verify an
author id. AUTHREC need not ever appear in the on-line sys-
team, and could in fact be taken ocut of the CHATJCL, and put
on an off-line volume somevhere. What this would mean is
that the on-line system would nao 1longer be able to record
the number of hours/sessions, but no one uses that informa-
tion anyway; the CAI system is no longer experimeatal. '

- 66 =

Now, Aif CAIOLFM were ever built (or CAIOLFI enhanced to
include author file inspection) then AUTHREC would have to
remain online in the CHATJCL; however, it still seems like a
streamrlining to take it out of the CAI System.

10.2 REJUVENATING THE CAL QPERATIONS MANUAL

~The text for the CAI Operations Manunal currently resides
on a disk dataset imn the fors of Hypertext imput. Since
Hypertext is no longer available at UNC, an effort should be
nade to convert the manuyal to a form acceptable to a current
text-formatter. The easiest candidate =aight be TEXT360.
However, by using a text-editor, conversion to any other
forpatter {(e.g., FORMNAT, SCRIPT) might not be too difficult.
Once that is done, a comprehensive update is in order. The
Operations Nanual 1is generally cosplete and well-written,
but many details are outdated. For imstance, many dataset
names have been changed over the years, and the JCL given-
for some jobs has changed slightly.

At this writing, there is one copy of the Operations
Mantal that has beemn updated by hand to reflect all such
changes. This was done during the development of the 1980
CAI System. The Department's Facilities Hanager should know
vhere that annotated manual is; it is clearly marked as the
updated version.

In the back of the updated Operations Manual is a hand-
written manual of class start-up procedures. It was written
{apparently hastily) by someone on the original CAI tean,
and should one day be enhasced and text-formatted. Such a
manual could, and undoubtedly did, serve quite a useful pur-
pose.

10.3 mga;m_sxag;m JOBS

The CAISYSTEN daily jobs described in Section 7.4, Appen-
dix A, and Appendix B of the Operations Manual need re-work-
ing. Rhen CAI was ia prime production, the level of use of
the system warraanted high-frequency backups and progress
reports. Current department policy makes it clear that the
CAI System will never againm support as many users as it once
did. Therefore, the daily jobs will probably no longer be
needed. Instead, a single wveekly job to handle file backups
and print reports might make better sense.

- §7 -

10.6 A *)HELP"™ COMMAND FOR AUTHOR

During an author session, it would be quite convenient to
be able to invoke a help command, to provide command syntax
information. A good first step would be merely to display a
static screen-full of such information, and have the user
press INT to return to the prior screen format when finished
reading. Later, operands may be added to the cormand. For
instance, entering ") HELP LIST" would display usage informa-
tion aboat the LIST commzand. The information available via
) HELP" could be about author comands, DIAL syntax and
semantics, and even the abrormal termination codes.

10.5 WRITING A CAL SYSTEN USER'S NANUAL

No concise manual exists for an author who wishes to
learn to use the systesx. The DIAL architecture and command
language description are given in Nudge's dissertation, but
both are outdated and incomplete. FPeatures are described
which were never implemented, and later features have been
implemented which are mot described in the dissertation. A
very important contribution to the <CAI System wsould be made
by the person who wrote such a manual.

10.6 IAPROVING LESSON RE-COMPILE TINE

In his dissertation, MNudge {(Chapter 8) offers a schene
for greatly reducing the time it takes for a lesson to re-
compile:

Improving the recoapile time involves a nmajor
.software change... An incremental compiler vwould
avoid producing a (completely) pe¥ object <code
file for each source code change by structuring
the object code file as a chained list, with each
node being a set of object code iastructions cor-
responding to onhe soarce code statement. This
would provide the important fast response to
author changes. It should be the next task under-
taken in improving the implementation of the CAI
- System. Note, however, that such a chained struc-
ture can, by introducing another level of indi-
rectness, result in a slower executioa. So, at
sSay)}ATTACH time, all references should be
resolved to absolute ones, and the code limear-
ized, so that the execution speed is eguivalent to
{that of) the directly corpiled code in the cur-
rent implementation.... Some reprogramaing of the
current implemeatation could result in a language

- 68 =

processor closer (in nature) to the incremental
compiler. For example, the system could make some
ad hoc determination of which parts of the object
code file need not be discarded.

Improvement in run-time performance nmight be attained by
optimizing the object code at)ATTACH time. Ia particular,
useless NOP imstructions could be deleted, and object code
pages could be compressed.

10.7 MODIPYING DIAL

Mudge (Chapter 9) offers some view about extending the
author language, and the reader is referred there. One
extension which seeas especially useful ard promising would
be the PARSE system matchimg fuaction, which would take a
grasmatical specification of a construct, and see whether a
student's response parsed correctly under that construct.
Such a fanction, it seems, would greatly simplify aanswer
analysis in programming-language lessons, but its use would
certainly not be limited to such an application.

A more immediate task should be the creatior of a new
DIAL grammar, vhether for an extended or completely new
author language, or for the one which is now in place. The
granmar is needlessly complex; there are many unnecessary
productions of the forn <nonterminal> ::= <terminald>.
Further, the grammar blurs the distinction between aritha-
petic and string expressions {(there is even one production
of the form <string expr> ::= <arith expr>) and necessitates
much run-time +type checking by the EXECTOR module. Many
constructions which are syntactically legal are semantically
disallowed, forcing the code yenerator and the executor to
do more work than would otherwise be necessary. '

Another example is the peculiar wvay in which the grammar
treats IF-THER~ELSE and DO-WHILE statements. The ELSE part
is considered to be a statement in itseif. Thus, it is syn-
tactically legal for an ELSE clause to appear, by itself,
anywhere in a DIAL progran. Similarly, the ENDDO statement
may appear anywhere, and the syntax does not care whether or
not there is a corresponding DG WHILE. That currently
causes no problems, since neither feature of the language is
actually implemented. However, a new grammar would surely
be 1n order before their implementation is attempted.

Finally, the implementation of those two statements
should be attempted. They would provide much-needed relief
from the GOTC mania iaposed by the rest of the DIAL lan-
Jud§ee Moreover, the I¥-THEN ,/ IF-THEN~ELSE construction
should include compound statement ("do-group") capaosilities.

- 69 =

Appendix A

NOTES ABOUT THE MANUAL

A.1 HISTORY OF THIS MANUAL

.The original CAI System Programmer's Manual was a hand-
typed documented prepared by J. Craig Mudge in 1973. 1t was
modified later that year by O. Jack Barrier, and again by
Kitchell J. Bassman in 1975. In 1983, it was text-formatted
and enhanced by Paul C. Clements, to complement the newly-
renovated CAI Systen. '

The 1975 manual exists in the 1980 véersion as the follow-
ing parts: Chapters 4, 7, and 8; Sections 3.1, 3.2, 6.5,
6.6, and 6.9.

A.2 GENERATING THIS MANUAL

This manual was written using the SYSPUB commands of the
University of Waterloo SCRIPT text-formatter. The file des~-
criptions in Chapter 5 are imbedded directly from the CAX
System declaration library,

' , UNC.CS.ES57C.CAYI.DCLLIB,
the sapme dataset used by the procedures of the CAL System to
retrieve their declarations from. So, that dataset must be
specified to SCRIPT as the SYSLIB dataset. By using this
imbedding scheme, any changes to the file structures will
not make the SCRIPT text of this manual obsolete. Merely
make the changes to the declaration library {which woald
have to pe done anyway) and re-generate this manual. In
particular, the following DCLLIB members are imbedded into
this manual; they are listed in order of appearance:

SRECDEF, ARECDEF, MAINDEF, CCBDEF¥, ACBDEF, BTOP-
DEF, BSECDEF, SCEDEF, SYMBDEF, SYMDDEF, TINSTDEF,
LITDEF, PL1DEF, PLZ2DEF, LOGRDEF, SCBDEF, and
LCBDEF.

To generate a copy of this manual, submit the following
job:

//3jobname JOB account,name,T=2,PAGES=100,FORMS=1411
/S /*¥PH=passwvord

// EXEC SCRIPT,REGION=300K,OPTIONS=*SEQC=73,C0=25,FNS=1000",

- 70 -

- Appendix B

THE 1975 CAI SYSTEM

The system that Mudge and his associates built has
remained unchanged since 1975. Even though the newly-reno-
vated {1980) version replaces that system as tae production
system, it is still possible to wuse the 1975 systen. The
student-only version of the 1975 system is now called “"OLD-
CAI%, The full-povwered version of the 1375 system is now
called "OLDCAIA"™. It should be pointed out that the 1975
system and the 1980 system both operate on precisely the
same datasets. :

In terss of file handlimg and lesson manipulation, the
systems are almost completely compatible. That is, a lesson
created under one system may be loaded, 1listed, attached,
changed, purged, or renamed successfully using the other
system. The resequencing command, however, 1is an excep-
tion. That coamand is not supported in the 1375 system, and
expects lessons to have four-digit 1line numbers in the 1980
system.

In terms of DIAL programming, the two sSystems are also
nearly compatible. That is, a lesson created using one sys-
tem may be re-compiled and/or executed using the other.
There are two exceptions. The 1975 system does not support
integer addition. The 1980 system does not support lightpen
facilities. S0, any lesson containing either of tihose two
features is bound to the system under which it was created.

The source code for the 1975 system is on the partitioned
dataset UNC.(CS5.E557C.CAI75.SCURCE. it is also stored on a
tape. The 1975 system's object modules and DCLLIB dataset
are also on tape. See the Operations Manual for details.

- 72 -

1

3a

'u‘-

REFERENCES

Bassman, Mitchell J. UNC CAI System Operations Hamual.
Oniversity of North Carolina at Chapel Hill. 1975.

Gries, David. (Compiler gogstrgctiOQ-fgg Digital
Computers. Wiley. New York. 197%i.

McKeeman, K. K., Horuing, J. J, and Wortman, D. B. A

compiler Generator. Prentice-Hall.
Englewvwood Cliffs, N. J. 1970.

Mudge, J. Craig. Human Pactors in the Design of a
Copputer-assisted Instruction System. Ph.D.
Dissertation. University of North Carolina at Chapel
Hill. 1973.

Schultz, Gary P. The CHAT System: An 0S5/360 MVT Time-
Sharing Subsystem for Displays and Teletype. M. S.
Thesis. University of North Carolina at Chapel Hill.
1973

_73-

LIST OF PIGURES

-

L3

-

-

Eigure

1. .model of a STUREC Record = SREC & v 2 o o o = =
2. Model of an iUTHREC'Bécord - AREC . . .

3. MAINFILE - Begion 1 Of CAIFILES + = o « o « =
4. The Course Conirol Block - Region 2 of CAIFILES
5. The Author Control Block - Regqgion 3 of CAIFILES
6. FBL_TOP - Region 4 of CAIFILES w o « .

7. FBL_SEC - Regions 5-10 of CAIFILES . . .

8. Template for a Block of DIAL Source Code

9. A Lessoa's Compile-Time Symbol Table . .

i0. Template for a Block of DIAL Object Code

11. Template for a Block of String Literals

12. Template for a Block of String Variable Storage
13. A Block of a Student's Log Information .

14. A Student Control Block . «. 4 « o o o =« = =

15 A LeSSON COntrol BlOCK v = o = = = = « o = = = =

- 74 -

page

LIST OF TABLES

Table ' page
!- Table of STOP COG.ES a » «- - - - L I - - - - - - = - L] 56

- 75 -

