TR80-008

THE POETABLE DPL COMPILER PROJECT

by

John E. Bishop

A thesis submitted to the faculty of the
University of JYNorth Carolina at Chapel
Hill ip partial fulfillment of the
requirements for the degree of Master of
Science in the departzent of Coasputer

Science.
Chapel Hill

1980

Approved by:

;f§;21443£ /(f /E§L4ﬁ3

pavid L. Parnas, Advisor

Peter Calingaert, “Reader

L - .
Steplifen F. Weiss, keader

THE PORTABLE DPL COMPILER PROJECT

by John E. Bishop (under the direction of David L. Parnas}.

Portability of a compiler is achieved by generating code
for a pseudo-machine. This code is then translated into code
for various real machines. The technique is comzbined with
the use of templates, which are fixed translations of source
code structures, to aid in the design of the compiler. A
formal use of these templates partially specifies the
source-to~object translation. Problems associated with the
implementation of these techniques and with the project are

documented, and solutions are suggested.

- if -

ol
-~
o]

ACKROWLEDGENENTS

I would 1like to acknowledge =y debt to Peter Parker
{(alias Spidetnan) for his demonstration that an acaderic
career can come to an end, take it ever so long, and to
Howard the Duck, for his example of courage and perseverance
in the face of a strange and demanding world. Special
thanks are due to my co-workers on the project, particularly

Dan and Jim, who introduced me to the mountainms.

CONTENTS

ACKNOHLEDGB!EHS 0-6-.0.-6--..-.-_...-1'

Chapter page

I. INTBOCDUCTION & o « =« ® 2 = =« = = a o« » « . » o« s » » 1
The DPLCOlpiler.....--- e o & o @ 8 e e 1
Content Of this ThESis - & = . = -» * & = e & * = 2
Point Of vie' - - - - - - - = - - - - - . - - 3
What the Reader Should Know, What ®ill Be

learned . o =« ¢« ¢ @ ©c o & @ * ¢+ 2 o e e = 3

II. THE DPL PROJECT o o o = = = 0 . % 2 ©¢ o« = # » = « « = 5

GmlsogthePrOject--o.--.0..---- 5
Pottahility..---.-..-..-‘Oono 6
Inforlation-ﬂiding * * ® @ & e @ ® % ® e ® w 7
stuaent Orientation - - - - - - - - L - - [. 1 9
Provahility e o = s ® & % % % e « s = . v « = = 10
Program Holder * 2 o 2 ® s o s 2 u »v.» e o= 1%

Structure Of the Conpiler « o o o o o a =« =« o .= 11
Major Division . o ¢ ¢ =« ¢« o ¢ ¢ o o o = =« « 1
ﬂotivations - L J L] » - N - - - - - - - - » - - 12

Module Goals and S5€CIetS o o o o o o« o a o o« o « 13
The Abstract Machine and its Assembler , « .. 15
The AITAYy MARAGEL o o = « o « « = « = « »« » =« 15
The Code Generator . o« « o = o » v .o o« = =« o« 17

JII. HMACHINE INDEPENRDENCE &« = o o .2 = o o & o « =« =« = =« 19
The Problen e ®» @ % & ®w v % » s = ®» & s & s = = 19
The General Intermediate Language Solution . . . 19
Our Interrediate LanquagesS « « « « = « o .0 o« =« » 20
The AN-~code as Intermediate Language , « « « =« o 2%

Justification of Features + « + ¢ ¢ o =« « .« 21
Begister-File Machine . . ¢ « « ¢ o o « + 22

Data Types and Strong TYPing « o « o « « o 23
Sipilarity to Hachine Language « - = « « « - 28
Differences from Machine Language « « « « « » 25
Bffects on the Rest of the CoBpiler «+ o« « .« ¢ « 26

Iv.

V.

Vi.

VII.

Definition . . - «
DPL Templates . . .
Uses of Templates .
Advantages « o « o «

e

Disadvantages . .
Fix-ups for Templates

THE CODE GENEBATOR . . .

A Short Description .
Scope of Chapter .
Overview . « « -
The Parser . « « «
Semantic Routines .
Stack Nodule . . .
Symbol Table Nodule
Begister Allocation

AMA Interface Buffer Routine

L
L
]

e & 5 ¢ 0 0

Possible Iaprovments to the CG

Better Templates .
Reuse of AM storage

- = '»

Removal of Indeterainacy

Biscellaneous + <« -
Following the Rules

THE DPL COMPILER AND ITS GOALS

Running DPL programs as Written
Differences between our DPL and the book?*

VELSIiONL o » = «

Input and Output .
CARD rather than AND

Onenforced Rules .

Exponentiation . .

Portability . . . - =

Student Orientation .
Yariable Names in Ne

& & 4
§ &8 ¢ 8 0

- - -

ssages

......'

o 2 4 o 0

Line and Statement Numbering

findetected Errors .

- = 9

Lack of Diagnostic Aids « . =

Modularity and Information Hiding

Provability . « - « »
Delivery Date . « « =

BEficiency o« « =« = o o o o = =

Judgement orn the DPL Co
CORCLUSIONS, RECOMMENDATIO

Why Things Went Wrong

mpiler

NS .

-

Beginner's Luck and its Lack
Internediate Langquage Improvements

You Meant THAT? . .

8 o # & & a2 s & & 8 8 8% &
YRR

LI B B R T L]

B % 8 % 8 " b b o0

R EEEEEEERENEEEE

*« 5 & 2 2 0
LI N T B R]

4 6 2 8 & 0 8 N 8 80 4 s @
I EEEEEEE NN

L J -

2 & 2 & 0 & 2 9 8 0 8 N 00

- »

S8 s 9 8

NN RN

‘l.l.llllllllll'

llj!lanulilolitnmo

N

NN E RN

8 % & & & 0 & 0 BN QR

[S I A]

NN

N I E R R

e & & 2 & 0 & 0 4 0 B N ¥ 0 []

L]

N T

¢ &8 0 @

4 0 0 2 0 s 4 8 B 8 8 B N g

Problers with the Book .
Misunderstandings . . .
Onbroadcast NeWsS . o« = «

Conceptual Integrity and Idle

How to PiX Things o« o « o o «
Shortening the Time Needed
Student-Orientation . « «
Imsplementing DPL .« o o « =
Efficiency and Portability
Bpilog « « o o & ¢ o « = =

Appendix

A. ATTEIBUTE GREANHNAR . o « o o o = =«
Notation Used . « =« » o o « «
The GramRaAr o« « « o + = = « =

B. INTERNEDIATE LAKRGUAGE MNEMOKICS .

C. SEMANTICS OF THE ABA AND THE AN .

Addressing Options . -
The Instruction Set .
Trapping Mechanism . .

Instructions Not Used By The CG

D. DOCUMENTATIOR OF THE CG . « o = &

‘The Symbol Table .

Error Reporting ard Detection
AMA Buffer BRoutines . « . ..
The StackS = = o = « =« =
The PATSEL o v o » » = =
Memory Managerent . « «
Checking of Assignament Ta
Assignment Code Generatio
Register Allocation . .

Run=-time Support o « = « =
Array-Pop Operation
Other Array Operations . <
The Driver, Initialization
Semantic Action Selection

1ffi and Dood Coastructs .
EXPreSSionS o+ o« « o » « =«
Fortran Coding Practices in t

me & s 0

"

grlnog.nolsttlnal-to-

£y
ion

- = -

S & & s ¢ & &
u .

BIBLIOGBAPHY - - - - - - - - - - - - -

e C

-

" 8 ¢ % & 4 IDu 0 8

¢
£ 3 8 0 4 % 4 4 0 0 s L

[«

¢ & 4 4 4 & & & 8 o 0 40 2

Gis b o

»

4 2 & 2

6 & & 8 0 0 8 B & 8 B o 8N e

=7

e & »

R
R T

¢« 4 0 % 5 8 & 8 0

4

. 8 5 0 0 & 0 8 4 s

lli.“lli.'l“llcnl

0 & & 0 8 s 80 @

4 & & ¢ 4 & 8 8 & % 8 & 8N 3

4+ 3 % &

e 2 o % 2 8 2 0 B

T e

4 8 6 4 8 0 8 0 8 0

R EREE

63

64
64

65
66
66
68

114
116
118

- 120

124
131

133

Chapter 1

INTRODUCTION

1.1 THE DPL CONPILER
In 1976 EBEdsger ¥. Dijkstra published A Discipline of Pro-

gramming [Pijkstra, 19761, in which he introduced and used a
procedural algorithaic notation. In this notation, non-de-
terminacy was a property of the major control structures.
The fact that the order of evaluation was not speéified ena-
bled algorithms to be derived fror a problea statement more
easily. The notation was not a programning language; the
book was not a manual. Despite the lack of formal presenta-
tion =-- Dijkstra did anot even give a full BNF syﬁtai -~ the

notation was not hard to understand.

Dr. David L. Parnas, of the Computer Science Department
of the University of North Carolina at Chapel Hill, initi-
ated a project to develop a compiler that would allow the
book's notation to be used as a programrming lanéuage. Ye
called this language Dijkstra's Programming Languagé {DPL) .
Our implementation was to be portable, modular, studenf-bri--
ented, and provide for inclusion of a program=-holder abdule.
Initially Dr. Parnas, Dr. Robert Wagner of Duke University,

and two graduate students -- James D. George and I -~ were

2
involved. ¥e started planning the compiler in Janvary of
1978, and by that summer added two other graduate studeants
- to aid in =more detailed planning and in the writing of code.
The next year was spent programming, and by the end of the
suzaer of 1979 the compiler was running. During part of this

tise we were under the direction of Dr. NMehdi Jazayeri.

1.2 CONTENT OF THIS THESIS

In this thesis I plan to discuss the organization of the
conmpiler, covering the design of the compiler, the method
used to achieve machine independence and the effect this
method had on the nodule that generated code (the CG). I
also describe a planning tool for code generation called
'templates®, and show hov it made the task easier but amade
the code that was generated slightly less efficient. The
faults of the compiler as a whole are discussed, and recom-

mendations are suggested.

The module I wrote is described in broad terms in chapter
five, and in detail in the last appendix. Readers wvho are
not interested in the internal details of this module need

not read either.

There are four appendices. The first is an attribute
gramnmar describing the translation the CG performed. part of
this description 1is a BNF grammar of the input to the CG.

This input, a tokenized form of the source, vas the

3

Intermediate Language (IL). The tramnslation of a construct
is given in the fors of the template for that construct.
The second appendix is a listing of the real values of'the
elements of the IL, rather than the mnemonics used in the
first appendix. The third is a short explanation of the
semantics of the Abstract Machine (the AH), for which the
codé was generated, and of the AM assembly language in which
the templates are written. The 1last appendix is the doca-

mentation for the module I wrote.

1.3 POINT QF VIEW

My responsibility was to design and write the module (the
CG) that generated all but the array operation code from the
intermediate language {(IL) produced by the Front End (FE).
The code I generated was not machine code for any naéhine,
but a series of calls to another wmodule, the Abstract
Machine Assembler (AMA), whose role in achieving indepen-
dence of a particular machine is detailed later. The tasks

of these modules are sketched in the next chapter.

1.4 FHAT THE READER SHOULD KNOW, HHAT WILL BE LEARNED

I assume that any reader knows what a compiler does, and
how. Some familiarity with formal grammars is needed, as is
an acguaintance with FORTRAN and PL/I. It is notinecessary
to have read A Qiggipline of Proqramming, nor ahy of the

other theses that came out of this project.

4
The f£ifth chapter is not part of the discussion of the
project. only those interested in the C6 module need read

it.

This thesis is about one particular project, and has two
goals: fo describe the DPL compilet project in p#rticnlar,
and to show how and vhere it failed or succeeded. I hope
that readers may become better softvare project leaders {or

followers) by analyzing this exasple.

Chapter II

THE DPL PROJECT

2.1 GOALS OF THE PROJECT
Our major goal was the implementation of DPL by a compiler
that sould allow us to run.all of Dijkstra‘s alg&githns 3s
wpitten with the addition of input and output staielents to
confirm their actions. Dr. Parnas wished to use DPL as the
programming language din an introductory programming course
at UNC, and thus wished to have a working compiler by the
fall of 1978. It became clear that other goals would have to
be sacrificed if this deadline were to be met, and delivery

was postponed a year.

Correct execution of Dijkstra's algorithms was only one
goal of several. A set of goals that was sutually-reinforc-
ing consisted of portability, construction from amodules that
were independently designed and written, and the use‘ of
information-hiding. Other goals were that the compiler would
be student-oriented, and allow addition of a programéhdlder
module. ¥We were also interested in the compilerts provabil-
ity. These goals were not offically ranked, but portability
was the mnmost important after the execution of VDijkstra's

algorithms, vith information-hiding and modularity close

6
behind. These goals were all net, to some degree. This will
be dicussed in chapter five. Efficiency and small size were

never goals.

2.1.1 Portabiljty

A portable program is one that is easily made t; work on
many computers., An exanple is a ANSI-standard FORTEAN
subroutine that calculates cube roots, vwhile an exasple of a
non—~portable progras is a machine-language keyhoaid driver
asable with only one kind of keyboard with one kind of
interface to one particular machine. Since different loca-
tions have different machines, it is more couplicated for a
compiler to be portable: a portable compiler must generate
code for these different machines, as well as run on then.
This requires either generation of a high-level language or
some re-writing of the code-generation module(s). If the
compiler is written ir a language the local aachine cannot
use, then the compiler itself wmust be transiétéd. cur
approach tried to alleviate both of these problems. OQur com-
piler was written in ANSI-standard FORTRAN, for which almost
every installation has a compiler, and it did not generate
code for any particular machine, but for a simple machine we
had designed, called the Abstract Machine (AM). This code
was designed to be easily translated into the appropriaté
Yreal” machine code. This had certain repercussioss onithe

CG, and these will be discussed in chapter five. This

7

‘approach to portability is treated in more detail in chapter

three.

2.1.2 Rodylarity

Modularity is a familiar goal [Parnas, 1972]. A.iarge
task is divided into sub-tasks called modules. These sub-
tasks can be further sub-divided, and those sub-divided,
until a sub-task is sufficiently simple that a small progranm
can do it. ™Good" divisions are ones that lead to elegant,
simple and independent sub-tasks; %“bad¥, those that do not.
A module is not necessarily a sub-routine, but subroutines
are often part of a module. A good example would be the
division of an interpreter into a driver, a progran-holder
module, a data-storage module, a parser and an operations

sodule.

2.1.3 Inforeation~-Hiding

Information~hiding is Dr. Parnas's tera for a method of
designing modules [Pacnas, 1972 (again)). Each module con-
ceals something. It may be the algorithm, the kind of data
structure, or the répresentation of externally 'presented
information. Such secrets belong to a particular module: no
other.module may know about them. This means that a user of
a module cannot assume a certain internal structuré or form
of representation, nor can a used mnodule assume ihat it is

used for a specific purpose or by a specific user. The

8
module and its user share knowledge only of the function the
module is to perfora. Inter-aodule connunicatio#. is thus
confined to the explicit interface of calls andipafaiéter
passing, or reference to specified global variableé. ﬁy not
specifying the internal workings of a module, we have made
it possible to change these workings, without forcing
changes to other modules. As the specification of ihe inter-
face describes all that need be known about the module, and
all that its writer need knos, the module aay be written in
isolation, without the need to consult with other program-

ners.

An example would be the specification of a syambol table
by the calls to enter a syabol with certain attributes, or
to retrieve the attributes of a syabol. The user neither
knows or cares whether the symbol is inserted in a binary
tree, hashed into an array, or linked into arn unordered
list, nor whether the attributes are kept separately,
encoded into a bit vector or passed on to another attribute-
saving module. 1If the user knew, for example, that symbols
were stored into an alphabetically ordered bipary tree, he
might try to present the symbols in such an order that the
tree was well-balanced. or the user might want Vto use the
sampe encoding of the attributes as the symbol tabie, and the
end result is that the symbol table and its user fora one
module., The two programmers must talk every day,’énd neithe:

module can be changed without changing the other; Program=-

9
metrs have enough information about their own module already;
the technique of inforamation-hiding prevents swamping them
with information about others. The thesis of information-
hiding is that the efficiency lost by hidiag a:‘secret is
traded for the ease in writing and maintaining modules that

do not know it.

But there is a proviso: the interface must be vell speci-
fied. For a simple module, this can be easy, though even the
siaplest can have hiddén subtleties, but for a complex
rodule, it can be very hard. Consider the specification of a
compiler. The attribute grammar appended to this thesis is
not enoygh, as the translation of source names into memory
locations is not specified. To specify that requires knowing
the rules of scope and tariahle-feference in DPL. ©We used
English and tables, and had difficulties in deternmining

which module checks which rules (see'6.1.3.2).

2.1.84 Stuydent Orientatjon

Undergraduates who are taking an introductory programming
course are, by definition, unable to understand the workings
of a large program like a compiler. If the compiler is writ-
ten with neophyte use in mind, it will try to coamunicate
with its users in terms of the code that they wroie., Thus,
for example, error messages should give the nuﬁber of the
source line in which the error was found, refer to all vari-

ables by their source namres, and explain the nature of the

10
error. Our policy of information-hiding made this harder
than it othervise would have been: the CG often knew the
nature of the error, the FE knew the name of the variable.
Thus printing an error BRmessage that used a variable name
required the co-operation of both modules, lacking;at tines

(see 6.1.2 and 6.1.3.2).

2.1.5 Provabjljity

If a program is provably correct, it cam be ihthe;ati-
cally shown that it generates correct output fronm ;valid
input. If the compiler were proven correct, this would mean
that the final machine language program was always a trans-
latior of the DPL source and had the same sSemantics as the
source. To shov that one program had been correctly trans-
lated would not be enough. To prove the compiler, it would
have to be shown that any wvalid DPL program would be cor-

rectly translated.

An attempt at starting to show the correctness of the
compiler is showing that the AMA code sequences (the
‘templates?!, which we hope the compiler implements) are
semantically the same as the DPL constructs they translate.
If they are, and if the compiler can be proven to implement

ther, ther it would be proven correct.

An attempt at the task of proving the templates was

undertaken by another graduate student at UNC. Whether or

11
not the compiler was correct, proving it so would be easi-
er—--perhaps possible~-if it were well specified and;divided
into isolated modules with fixed interfaces. Thus our inter-
est in provability reinforced ouar desire to use the techni-

que of information-hiding.

2.1.6 Program Holder

A program holder [Parnas and Robinson, 1973} would hold
some form of a DPL (or other language) program, perhaps in a
tokenized or parsed form. It would allow editing, preferably
interactive, at the source code level. This editing would be
syntax-oriented, not character-oriented. Thus one could
change all occurrences of the variable *AA' to ?'BB' without
changing other occurrences of the character string 'AA'. A
program holder is not included as part of the coapiler, bauat
the break-down of the task into modules was influenced by

our desire to allow the introductioﬁ of one later.?
2,2 STRUCTURE OF THE COMPILER

2.2.1 Major Division

To achieve these goals the compiler was divided into five
modules, each with its own secrets. The Front End (FE) knew

the nature of the source language and the names of the vari-

Ay . A N NP S A = A — - - =

1 A program holder for DPL had been built as one of the pro-
jects in the course 'Software Engineering' in the spring
of 1978. We knew it could be done. e

12
ables. It also knewvw the rules for the inheritance of varia-
bles from one block into another. The code genératof kCG)
knew the method of code generation, the inheritance and
scope rules, and the nature of the tranmnslation (ii.g. 'the
teaplates), while the Array Manager (ARX) knew the method
for implementing the DPL extensible arrays. The Abstract
Machine Assembler (AMA} knew how the Abstract Héchiné code
wvas stored, what the real values of the mnemonics used as
parameters were, and the timing and order of the production
of the Abstract Machine code. Finally, the Abstract Machine
{AE) knew how the code was transiated into the appropriate

actions.2

2.2.2 Motivations

This division vas motivated, in part, by the nature of
the improvements'ue vished to add later. The division of the
FE from the C6 at a level close to the source made the
Interrediate Language (IL), vwhich was the major interface,
more like the source: the disadvantage of this was that the
CG had to know a great deal about the rules of DPL, as the
PE could not hide these rules by presenting a simpler IL to
the €CG. If a program-holder were to be added, however, the

IL's closeness to the souarce would becore a najor asset,

g — O i s o o . S o > —

2 This can be accomplished either by interpretation or by
further translation to some language ({(machine code) which
the hardware then interprets. For wider coverage of these
tactics, see the thesis by James Dalton George [George,
1979]. -

13
. making the translation froem the internal IL to source and

back easier.

The division of the Abstract Machine into the AMA and the
Anraas intended to simplify portablility; at first the fﬁnc-
tions of the AMA were provided by the AM. The separatior of
the assembly-like functions is intended to make the re~writ-

ing of the AM for different machines an easier task.

We envisiored future changes in the scope rules of the
language. Dr. Parnas wished to be able to change these
rules without changiﬂg the.conpiler [éarnas, Elliot, and
Shore, 1975]}. This meant that those parts of the compiler
that knew the rules should be limited. To aid in the
change, the FE was required to replace all variables in the
DPL source by unique symbols in the IL, thus making it pos-
sible for the CG to assume that an occurrence of a particu-
lar symbol always referred to the same variable, and allow~
ing changes in the scope rules td be restricted in their
impact to the FE. The isolation of the ABRM made improve-
ments or modifications to the array implementation easier,

though we had no specific plans there.

2.3 NODULE GOALS AND SECRETS

14

2.3.1 the Front End
The FE was required to do the following: provide tokens
from the IL version of a prograe, one at a time, upon
request. The IL progra® vas g¢uaranteed to be syntactically
correct up to the most recent token. If there were no more
source, or if an error were detected in the source, no more
tokens uouid be produced, and a flag would be set to tell
the CG that no more IL tokens would be produced. The IL is
described in the first appendix by the Backus-Naur gramsar
elements of the attribute grammar that presents the temp-
lates. Its most notable characteristics were that expres-
sions were in postfix notation, and that variables had
unigue integer names. These names were to be consecutive

integers, starting at one.

Another set of functions in the FE was associated with
constants in the program: each constant was present in the
IL as an integer constant nasme., Upon inquiry, the length of
the constant (number of characters) could be found, and the
ti'th character of any corstant could be read. The charac-

ters could be read in any order, or re-read.

In short, the goal for the FE3 was the production of a
simpified and urnanrbiguous version of the source, with as
many of the syntactic rules of DPL hiddem within it as was

possible.

T S T A D A T AR -

3 Further detail on this module is available in the thesis
by Karl M. Freund [Freund, 1979].

15

2+.3.2 The Abstract HSachine and jts Assesbler
The AMA provided the CG with a set of callable roufines
whose parameters looked like the elements of assembly ian-
guage statements: there were calls to generate éoﬂe, to
reserve and to initialize storage, and to create aﬁd define
labels. The syntax of these calls was sieple and the seman-

tics of the call, as opposed to the semantics of the code

generated, were equally so.

An unusual feature was that the name for a label had to
be created by a special call before amy reference to its
name could be used in a code generation call. There cénld
be forward reference to a label once the label had been

created. No forwvard reference to storage was allowed.

The Ank.hid the AM completely. The CG d4id not know the
‘real' format or values of AM code, nor when the translation
to real machine actions took place. Thus from the point of
view of the CG, the AMA was the AM, The goal of the AMA vas
to provide a flexible and powerful language £for the CG,
wvhile assuring that the AM vwould remain simple, and thus

ensure portability.

2.3.3 The Array Hanager

The Array Manager (ARM) module was large and complex, but
its complexity did not affect the rest of the compiler. It

consisted of the compile~timre routines that generated the

16
run-time support routines, as well as the conpile-éile rou-
tines that generated the code to 1link to the supéort rou~
tines. It implemented the array operations of Dijkstta's
language, which meant that the ABM hid the secret of the
semantics and implementation of these operations within
itself. Note that neither the FE nor the CG knew the seman-
tics of array operations, as the FE knew only their syntax,

and the CG khew only when the ARM would have to be called.

Like the CG, the ARM generated code through calls to the
AMA. These routines were invoked at run-time by calling
seqguences .generated at compile-time by calls to certain
fanctions in the ARMK. The interface to the CG aight sound
complex: a run-time environment with certain parameters in
certain registers had to be produced by the code generated
at compile~tine before the ARN was called at compile-~time to
generate the run-time calling of an array routine, yet des-
pite the double calling structure, the ARM was easy for the
CG to use as its syntax was simple. It was not as easy as it

might have been (see 7.1.3.2).

The secrets of the ARM were Rmany and though perhaps
interesting in themselves, had no effect on the rest of the
project once the planning stage was past. In the beginning,
though, it was the knowledge that the ARN would be allocat-
ing and copying arrays of AM storage that sparkedfthe crea-

tion of special AM operations, of which two are not found in

LK
any machine. One would allocate storage, one free it.* The
others copied wvalues from one sub-array to another. As
these instructions were not used by the CG, the pﬁint of
view of this thesis, and as the interior of the ARM wvas sub-
ject to information-hiding, little will be said about the

ARH.

2.3.8% The Code Generator

Wwithin the CG there were submodules that hid ihfoén#tion
from each other, and sub~goals for these modules. The over=-
all goal was the translation of the IIL to calls to the ANMA,
and insuring that the IL program presented vas semantically
correct. Hidden within the CG wvas its amethod, its data
structures, and the semantics of DPL. It also isolated the

FE from the ARM and the AMA, and the ARM and ANA from the

FE.

Given that the FE vas to have an interface to the progras
holder, and the ARKM was to implement the infinitely-extensi-
ble Dijkstra arrays, and the AMA-AM pair machine indepen-
dence, one would have expected the CG to be experiﬁental,
too. It was designed using information-hiding and modular-
ity, and vith student use in mind, and it was written in

portable FORTRAN, but the CG was not innovative. Any

¢ This kind of storage had to be assigned a type {integer,
boolean, or character) before it could be used. In this
respect, the AM is unlike any real machire (see 3.4.1.2).
The assignment of a type was called allocation; un-typing
was called freeing. _

18
interesting aspects follow froer its place in the compiler,
and its relation to the other modules, not from a new pﬁrs—
ing or generating method. It did perfora alone the tfﬁdi--
tional task of coampilation: it parsed a high-levei soﬁrce
language, checked it for errors, and generated code for a

machine.

Chapter III
NACHINE INDEPENDENCE

3.1 THE PROBLENM

A cursory definition of machine independence has been
given. It is a problem of several inputs and severai out-
puts, which can be called the M-by-N problem: givén N input
languages, to be translated into N output machine codes, how
many translators must be built? In 6ur case, M equals one,
Dijkstra's Progranming Language, and N equals the number of
pachines on which will the compiler will eventually run. In
general, the straightforward ansver ;s MN tramslators, one
for each possible pairing. There are ways to reduce the
total nunrber of tramslators, one of which gives an M4N solu-

tion.

3.2 THE GENERAL INTERMEDIATE LANGUAGE SOLUTION

If we divide each +translator imto two partial-transla-
tors, and add a suitably-defined new language, the first
half can be given the task of producing this new language
fror one of the ¥ inputs, and the second that of ttranslating
from the new language to one of the N outputs.. The new lan-
guage is an intermediate between the input and the output

languages. This means two translatioms for each'paiping' of

20
of input and output forms where the other had ome, but the
total number of translators is reduced, to one for each of
the B inputs,' and one for each of the N outputs. This is
the 'intermediate language® solution, and has been widely

used.s

3.3 OUR INTERNEDIATE LANGUAGES

For M equal to one (our case) there would seem to be no
advantage to using an interamediate language as measured in
teres of the total number of translators. Our intermsediate
language, however, is chosen so that writing the ¥ second-
half translators is far easier than writing N complete

translators.

In fact, we have not one but two intermediate languages:
the one that functions as the intermediate for purposes of
portability is called Abstract Machine code (AM code), while
the other is called Intermediate Language (IL). This latter
is a tokenized and processed form of the source that is the
input for the CG module. Either or both of these could func-
tion as intermediate langquages. Thus several input languages
could be processed into IL, vwhich could be the input to any

nupber of translation programs, just as is AN code.

S An early proposal was for UNCOL, a Universal Computer Qri-
ented Language, in 1958 [Strong, et al., 1958], but the
idea is older, and may pre-date coamputers or writing.
[George, 1979] lists later references in his bibliography.

21

This use of IL as an intermediate language is not as
likely as is the use of the AM language, because IL is very
much like DPL, and not general enough to allow easy transla-
tion of an arbitrary high-level language into it. Another
language like DPL, er a modificatios or extension of DPL,
could easily be translated into IL, allowing a compiler for

such a new language to be built very guickly.

Any intermediate language must be specified both syntac-
tically and semantically. Good methods exist £for context-
free syntactic definition, and adequate ones for semantic
definition (which is usually given the burden of defining

the context-sensitive parts of the syntax, too}.

3.4 THE AM-CODE AS INTERMEDIATE LANGUAGE
3.4.1 Justification of Featyres

We designed an intermediate language that looks -like an
assembly language for a register-file machine (see 3.4.1.1)
This decision, and others about the AN, Rust be justified.
Why didn't we choose some other fora for AM code? As an
example, the IL is already partially in postfix and par-
tially in prefix form, and a little more processing would
give a completely pre- or postfixed version of the progras,
suitable for execution by a stack-oriented_intetpretér, or
translation into real machine bodé- Quadruples$ are well

& Also known as t'three—-address—code'. Corrands have four

22
known as an intermediate code, too; why not use them?
Again, the AM is defined as having bit, integer, character,
pointer and instruction data types, but it could bave been
defined with floatirng~point numbers also, or with only
strings of bits. #luch of the design of the AN may be Jjust
the personal preference of the designer, but the foregoing
questions show the need for justification of the features of

the AN and AMA.7

3.4.1.1 Register-Pile Nachine

A *register-file' nackine is one that has two levels of
meaory: the *file' is the larger of the two, and allows only
linited operations on its contents, while the 'registers!®
allow a much larger sét of operations. Typically, the con-
tents of an elenrent of the file must be read into a register
before ar arithmetic or logical operation may be performed
on it. Some Bmachines sub-divide each of these two levels.
The PDP-11/45 and the IBM Systea/360-75 are Dboth

‘register~-file!' machines.

As an IBM System/360-75 and a PDP-11/45 were available to
@S in the University at Chapel Hill, we chose a register-

file organization for the AM to simplify inmplementation

A A e " A A o W A

parts: an operation, the two operand addresses, and an
address where the result is to be stored. Thus %4 A,B,C*
is the equivalent of the PL/I *C=A+4B;'. -

? Some answers to these questions may be found in [George,
1979}, along with much more detail on the design decisions
of the AM. : : A

§

23
faere. Another reason was the fact that aost installations
have such a machine. HMaking AN code close to real lacgine
language makes translation into real machine code 'eaéier
tharm for any other fore, and generation, rather ihan
interpretation, was our goal. This was one of the fev deci-
sions made on the basis of efficiency.® The AM had three
kinds of memory. Two were the register(s).'and file of a
register—-file machine, and the third was allocated and freed
by certain AM operations. This kind of nemory was introduced
to make the ARM simpler, as well as to allow the AN to check
the references to array elements. As I am not familiar with
the ARM, I know little of this feature, and will say little

of it. It was, however, not efficient.

Thus pre- or postfix code was ruled out, as being unlike
real machine 1language, wheras the use of guadruples was
ruled out to make register allocation the responsibility of

the CG, not of the programmer of the local ANM.

3.8.1.2 Data Types and Strong Typing

Most machines have'only one type of storage: a string of
bits (usually of specific length: 4, 8, 12, and others).
This string can be interpreted in many vays: as a humber,

characters, boolean values, or (part of) an instruction.

8 James D. George's estimate for his IBM-360 version of the
AM was that each AM instruction was translated by 4.2
IBM-360 instructions, while AM data were not expanded in
translation. See 6.3. : '

24
Kbhich interpretation is being used by a program cannot be
told by irnspection of the bits. This is not true of the AN
memory: each piece oflln storage has a type associaté&léith
it, and references to it that try to use it as a different
type cause a trap to occar. This association is called
"strong typing®™, and was introduced to enhance the ease with
which errors in variable reference could be detected. The Al
is a machine that checks operands to ensure they have the
correct type before each operation. This helped find errors
in the CéG. It also simplifies the task of tténsporting the
AM.9? As bits and integers can not be converted to &each
other, for example, the nusber of bits in an integer does
not have to be specified. The particular set of types was
chosen for convenience; bits, integers and characters occur-

red in DPL, pointers and instructions in the templates.

3.4.2 Similarity to Machine Languyage

Though a compiler could generate code with no forﬁard
references, it would regquire the ability to hold at least
part of the translated program in the code generator. This
function is readily separable from that of code generation,
and it was soAseparated, beboming the task of the AHNA
{Abstract Machine Assenbler). The code generator pnow can

make forward reference to locations in code, which simpli-

W W e T T

9 But the extra expense of run-time checking in the AN makes
transporting the compiler more difficult. This part of the
AM will probably be ignored (see 6.2).

25
fies its task, while the AMA resolves them for use by the
AM. This means that the AM code looks like an assembly ian-
guage to the CG, but a machine language to the AN. It

should thus be easier to transport.

3.4.3 Differences fros Machjne Langunage

The important differences between AN code and real
machine code are the fact that a given mesmory location is
bound to a particular type, and that only instructions may
have aliases'{nore than one name). The special tallocate!
and 'free' instructions are another difference. The AM is
not a Von Neumann machime as instructions may not be changed
by the action of other instructions. Type conversions are
usually impossible, as noted in 3.4.1.2. The only conver-
sions that are legal are from the iategers 0 through 9 to
the correspoanding characters and yice versa, and this must
be done explicitly with an instruction. This means that
tricks available to other coapilers like doubling a number
by shifting logically left one position are not allowed. The
lack of aliasing means that there is only ome way to access
any memory location that is not an instruction. This.helps

reduce errors that otherwise could not easily be detected.

These differences enhance portability, as it is precisely
in the area of type conversiorn and instruction-modification
that machines differ most. One machine will be like another

in the way integers are added (assuming no over- or ander-

26
flow) but they will differ on which bits of the instruction
specify the use of an index register, or whether lSCII or

EBCDIC is used.

A difference that hinders portability is the speciai kind
of memory allocated and freed by the ARN. The major justifi-
cation for this feature was that it alloved the AM to know
the type of each element at rum-time, and thus to check tkhe
use of each element. The tallocate' command gives this kind
of memory a type, and ‘free' removes the type. Free measory
of this kind cannot be accessed. The AM is made larger and

more cosmplicated by this feature.

3.5 EFEECTS ON THE REST OF IHER CONPILER

The effects on the rest of the compiler were limited by
our use of the principles of information-~hiding ard modular-
ization to one module. This was the user of the AN, the CG.
The module in between these two, the AMA, was not affected

at all by the design of our machine.

Even so, there vere only a few effects on the CG: in the.
use of forward references as explained previously, and in
mepory management and the choice of AM inmstructions the CG
produced. There was a minor effect on the régister alloca-

tion sub-module.

In terms of A¥ Remory Ranagement, the strongly typed

nature of AK memory names and labels meant that reuse could

27
not change the type, that arrays could be reused only as
arrays of the same size (I speak here of AM arrays, not'DPL
arrays), and that labels could never be reused. This meant
that any prograe for reusing memory had to segregate all
mezory by type and arrays by size. For this reason no reuse
of memory was assumed in the initial design, though the cur-

rent version does reuse scalars.to

As I did ot know the relative costs of instructions or
of the various addressing methods, because they changed from
one target machine to another, I was not motivated to avoid
using an expensive intruction or kind of BRemory access
within an instruction, replacing thea by two or more cheaper
accesses or instructions. Thus there are no machine-lan-
guage tricks in the CG,*! such as using repeated éddition

rather than multiplication.

Finally, the AM definition did not specify the number of
registers, beyond granting at least three for use by the CG.
A simple register-allocation algorithm was used to allocate
these registers, with an AM parameter to the CG giving the

number of registers hidden within the sub~module.

Ay S e . . W (- D . —— -

10 The FE detects the potential for reuse; the CG implements
it.

11 Except for the routine CONVRT, which translates IL char-
acters, coming from FORTRAN through the FE, into AM char-
acters, which are AM-defined. This routine should be
thought of as part of the AM, rather than the CG, as it
is machine-dependent. :

Chapter IV

TENPLATES

5.1 FIN 1) |

In machine~-shop or sewing terms, a template is a pattern
that aids in the cutting or shaping of material.i2 It is
usually not of the same material as the final product and it
may be different in other ways. For example, a template may
be a mirror image, or a negative, or convex where the final
product is concave. A simple instance of a teaplate is a
straight-edge. The final product is a straight line, on a
surface, in pencil, ink or as a groove, while the template

is a solid object.

The computer language equivalent to a straight-edge could
be a simple macro skeleton: it defines a final product, it
is not of the same material (format or language) as the
final product, and it can be used again and again. Hacro
skeletons can become more sophisticated, defining and rede-
fining themsélves, with internal variables and conditions,
but when they do so, they become a new string-processing
language rather than a simple, rigid, unchanging £form on

iy oy dol) D A A e s . e T

12 yYebster's New ¥orld Dictionary calls it 'a patterr, usu~
ally a thin plate, for forming an accurate copy of an

object or shape'.

29
vhich a final product can be shaped. They are no longer

teaplates.

8.2 DPL TEBPLATES

our templates were very much like simple macros. The
skeleton or form of the AM tramslation of an IL source comn-
struct was described by giving source constructs with formal
parameters, and listing for each construct a sequence of AMA
calls, using those paraneters, and A¥ variables created
within the amacro. Templates included the Abstract néchine
Assembler (AMA) calls that generated code (given here as
pseudo~assembly statements to avoid explaining the syntax of
the AMA), and calls to the Pront End (FE) and the Array Man-
ager {(ARM), as well as a few simple control statements such

as 'for each object{i] do action{i]'."

A simple example of a DPL-style template should clarify
the foregoing, and make the the second example, the real

template for the %do od? construct, easier to understand.

Suppose that DPL had a data type of 'COUNTER', with three
operations, 'zerof, ‘increment' and 'decrement'. Then each

operation would require a template.l3

13 The meaning of the AMA language used in these templates
is described in detail in appendix C.

tw
o

sSource: INCREMENT SYMNBOL

teaplate: LOADF Ra, AM name of SYMBOL
ADDF Ra, 1, NR, N
STOF Ra, AN name of SYMBOL

sources: DECREMENT SYMBOL

template: LOADF Ea, AM name of SYMBOL
SUBF Ra, 1, MR, N
STOF Ra, AN name of SYMBOL

source: ZERO SYNBOL
template: LOADF Ra, O, MR, M
STOF Ra, AKX nare of SYMBOL

o e S G e Gms Sasin BN e S Bt See Em dme G Swns e o
s e s S S T UL e G Sy e A e She S e

FPirst, note that while the translation of a construct
implies more than generation, such acticons as syabol table
managenment and checking of the correctness of variable
reference are not included in the templates, as they are
implementation~dependent. Also, the templates describe the

translation of correct input only.

Further, as register allocation is machine-dependent, it
is not explicit either here or in the £first appendix.
Register management is implied by use of Ra, Rb, or R1, R2,
R3 to specify the names of registers. The directive that a
certain guantity is to appear in a certain register, or to
appear in a register that is not a certain register, is seen
in the template for the t‘do od' construct below. However,
in the templates we used during planning and coding, regis-

ter allocation and freeing were explicit, as vwe had decided

n
on a particular allocation method (described in section

Valo?) e

source: DOOD one or more {(n) of
{ <expression i> <lstmtln i>] ENDLST

template: JUMPL START, NR, D
for each of the n sets <expression i> <lstatln i>

h
[GUARDi: STOP R%1, SAVE, KR, D
terplate for <expression i>
into register Ra |
CJCB _ Ra, TRUE, ER, D, NB, SAVE, NR, I
template for <Istatin i>
JUMPL SUCCESS, NR, D

]
GUARDS <-- GUARD1, GUAED2, ..., GUARDn
GHUN ' pC n
SAVE DS POI
SUCCESS:
START: HNNP GUARDS, NR, M, SKAKE, NR, D

MMMF GNUM, NR, M, SNUNM, NR, D
JLEL SHUFL, ¥R, D
LOADF Eb, [n - 1], NR, ¥
LOOP: JLKL R1, GUARDS, Ri, XI
SUBF Rb, 1, KR, M
CJCF Rb, 0, NR, M, GE, LOOP, NR, D

BRb may not be R1

-h-..“-—‘--.-a—.ﬂ-—-hh-_h-_.-&-h“h--q
lu--_—-—-—_h-h-_-“-h—-—-n-—-“——ui

Here a template refers to other templates, and there are
local variables, such as *SAVE' and °"GNUM', as well as para-
meters such as *n', the number of guards, and the use of

control statements.

‘4.3 DSES QOF TEMPLATES
These templates are only a way for describing transla-

tions, and a tool for thinking about these translations of

32

source language constructs, and not an original invention.t¢
Many cospiler-writers may already use some sisilar method of
specifying the translation. However, we tried to use ienp-
lates in a formal, consistent way, writing 'tenplatés:for
each of the constructs, trying to find errors in the temp~
lates, trying to simplify them, and make relationships in
the source language, as between the 'if £i' and 'do od' con-
structs, imply relationships in the templates and thus in
the AM code. Only when this had been done did I start cod-
ing the CG. W#e used templates as planming tools and a
record of the translation we intended to make, and as a for-
mal specification that could be proven correct. For if a
template could be proven formally to be semantically egquiva-
lent to the source construct, then that part of the coapiler
would be proven correét, insofar as it realized the transla-
tion specified by the template. The attempt to prove the
templates uncovered several errors that might have otherwise
gone undetected until late in system-testing time.13 This
shows the worth of templates in the debugging process.

S A A i . e . i W e g ——

14 Templates have various names in different books. Calinga~
ert uses the macro analogy, and calls themr 'skeletons®
f{ Calingaert, p183). Aho and Ullman, treating the more
general case of 'syntax directed translation?!, call then
tsemantic actions', and give a template-~like example for
simple expressions [Aho and Ullman, pp245~295, with the
exanple pp 266-267]. _ :

15 These were sometimes very subtle errors which would have
been very hard to discover, let alone track down. How-
ever, the compiler that was proven correct is the one
that existed at a certain time: later changes, though
minor, may have invalidated this proof. See Steve Bello-
vints dissertation [Bellovin, in preparation]. -

33

8.4 ADYANTAGES
It vas as a planning and design tool that the templates
were most useful. They could be developed and changed inde-
pendentlj. e could postpone definition of the exact tréns-
lations of sub-constructs while defining the translation of
Ba jor constructs. fénplates were also independent of the
method chosen to parse the 1IL or of the method chosen to
generate code. As templates specified only the result, they
vere independent of the structure of the compiler, and yet
could be used to predict probleas and to determine what
inforsation would have to be available at a giver point in
the compilation. A template could say, for example, that a
certain constryct required two distinct registers, or a juap
to the code that was the translation of the construct that
followed this obe, or that a certain construct would require
its own save location. If there was difficulty in writing a
template, this might =mean that the source construct being
considered for translation was poorly divided iﬁto subcon-
struéts, and that we should try rewriting the source gra -
mar. Last, the AM code for a given construct could be inves-
tigated for possible optimizations, for functions that could
become sub-templates, and, in the early stages of design,
for often used code sequences that might be candidates for a

nev AM instruction.

34

5.5 DISADYANTAGES
The templates we used, despite their virtues, did not
take the place of designing and writing the actna; compiler,
as they do not specify a program, a representation of d?ta,
or the various support routines that a compiler aust have
(such as a symbol table, a register allocator, OF EemorYy
manager). The actions the compiler is to take may be speci-

fied, but hov these actions are to be accomplished is not.

But the real objection aims at the heart of any use of
templates: they are too rigid and too siaplistic, and sake
no allowances for inter-construct optimization. Not oanly do
they not allov for the detectior of common sub-expressions,
they do not even allow for the siample avbidance of
jumps-to;juups, or elimination of store-load pairs. Indeed,
if one investigates the templates in the first appendix, he
vill notice that all arithmetic operards are loaded imnto
registers, wvhereas many loads could be saved by not loading
the right-hand operand, and using anothef of the wmeamory
addressing options. This is an inefficiency we avoided in
the CG, but not by modifying the templates (hut this could

have been done, as is explained in the next section).

4.6 PIX-UPS FOR TENPLATES

A simple answer to these objections wmight follow the
identification of templates with macros and suggest condi-

tionally choosing which part of a template is to be used.

35
But now our templates are no longer simple, no longer
invariant. 1If ie do this, we have lost the major advantage
of templates, their simplicity. Thus a better answer would
be to build simple templates, design a compiler using then,
and then refine the cpnpiler;' Conditional tenmplates are
beginning to specify how rather than what. The latter is

more valuable as a planning tool.

A second pass over the AMA code generated by the ineffi-
cient templates might eliminate redundant store-load pairs,
and help with jump-to-jumps, and perhaps eliminate unneces-
sary loads in expression evaluation. This second pass, how-
ever, could know only the local structure, and would have to

be conservative in its changes.

A simple method exists, however, that can alleviate sore
of these problems. It does not provide for the optimization
of common sub-expressions, but can help in the expression
evaluations and eliminate some of the store~-load pairs.
Where the source construct leads to an inefficient template,
perhaps the source construct can be divided into two or more
related constructs, thus rewriting the grammar of the source
language. Each of these coanstructs would have its own temp-
late. The choice of templates is still unconditional, the ‘
source has not been changed, and some efficiency can be
gained. This was done for assignment statements. The ini-

tial IL had one assignment statement construct only, for

36
nutiple assignments. The teamplate for these was inefficient
for an assignment to only one target. The assignment stat-
ments vere divided into two classes: ‘'single' and *pluralt.
The old template vas assigned to ‘'plural*, and a nev one
avoiding a redundant store-load was made for *single'. The

IL was not changed.

As an example of this solution, expressions could also be
formally divided to avoid the unnecessary loading of a
right-hand operand. Distinguish betveen the production used
for an operation that has a variable or constant operand and
the production used for an operation both of whose operands
are sub-expressions. Each will have its own teasplate. The
template of the first kind can use the direct memory refer-
ence to the variable or the location holding the coanstant.
The template for ihe second type will wuse the register

reference of the old template.

This could be carried ever further, to allow the iapedi-

ate mode to be used in constant references.

Chapter Vv

THE CODE GENERATOR

5.1 A SHORT DESCRIPTJION

5.1.1 Scope of Chapter

The compiler was divided into several moduales, two of
which, the ARX and the CG, generated code. The ARM is not
covered in this thesis. The C6 module d4id call the FE, AMA
and ARM, but none of these needs to be documented other than
as sources or targets of information. Thus only the CG, as

I wrote it, will be described.ts

5.1.2 Overvies

The CG consisted of a parser, which called a set of
semantic routines on recognition of syntactic structures.
The semantic routines would sometimes generate code, calling
the AMA for that purpose, and sometimes would lodify.v&rions
tables that described the variables or the code that had

already been produced.

T S o T s db S sl b gl S T g A -

16 Modifications subsequently introduced by others to umy
code may be described without special notice where they
are corrections of bugs in my version. Where they are not
corrections, they will not be mentioned. .

38

The semantic routines also used various service routines
within the €6, such as the register allocator. Semantic rou-
tires also called routines in the ARN to genetate array-han-
dling code, and in the PE to get the description of a édn-

stant in the source program.

Each major division of the CG will be given a short des-
cription in the rest of this chapter, but for details the
reader is refered to the fourth appendix, where the FORTRAN

code is described.

5.1.3 ZThe Parser
The CG parses the IL source prograe with an LL(1) table-

driven parser. The tables were generated, prior to slight
modification to make them FORTRAN *DATA' statements rather
than PL/I initializations, by a program writter by a gradu-
ate student bhere, Robert Keeler, who had left before we

started the compiler.

The parser uses a service nmodule to maintain the stack
required by an LL{1) parse (see 5.1.5, where the stack

module is covered).

The entries in the table encode the actions to be taken
by the parser. If the parse cannot continue, the entry
reveals the error, and gives a unigue number for each kind
of error. If there is no error, the entry deterninesrthe

actions to be taken by the parser. The possible actions are

39
reading a new token, popping the top elemernt off the grammar
stack, and pushing the right-hand side of a production onto
the grammar stack. More than one action may be specified. If
a productiont's right-hand side is to be pushed, the table-
entry encodes the number of the production. The sequence of
popping the top element off the stack and pushing the
right-hand side of a production is called applying the pro-

duction.

If the table-entry says that no error has occurred, and
some production may be applied, a semantic routine caller is.
called. It has the form of a gigantic *case® statment (simu-
lated in FORTRAN) and calls small subroutines for most of
the possible productions. There is one case for each pro~-

duction in the IL graasmar.

In some of these cases, a small subroutine is called to
perform the associated semantic action, while for a few, the
action is simple enough that it is perforaed within the case
statement branch. Thus, on recognition of the beginning of
a tdood' construct, a routine is called to generate the
beginning of the template, and another when the end of the

construct is recognized.

5.1.8 Semantic Routines

These semantic Coutines communicate with each other by

means of four stacks, one for each of the major divisions of

40
the routines: there is one for the *do od* and ‘'if fi' conF
structs, one for expressions, one for the guards within an
*if £i' or 'do od', and one that helps in the gemeration of
code to evaluate the 'cand' amd *cor' operations. Another

stack serves the LL(1) parser, as mentioned before.

Some of the semantic routines will be sketched here; all

are covered in the fourth appendix.

5.1.5 Stack Bodule

Pive stacks in all are provided by the stack =module,
though some of thenm conldlbe replaced by ome stack. These
five are separate for tvwo reasons: some stacks could not be
coalesced, as their combined usage is not LIFO, and clarity
and maintainability are increased by having ome stack for
eéch function. Other LIFO elements in the coampiler are con-
tained within other modules, such as the symbol table, or
the 'YINDOOD' table that records;the nesting depth of 'dood's

within the nested blocks of the prograa.

5.1.6 Syebol Table Nodule

Variables in the IL are entered into a symbol table with
their aftributes. The symbol table and the functions associ-
ated with it form a separate sub-module vhich allows entry,
retrieval, block entry and exit, inheritance from an enclos-
ing block with new attributes, and dumping of the table as a

debugging aid.

41

The FPE also has a symbol table, used to tramslate source
nases into IL naaes. The CG's table holds the following
attributes for each IL nase: AM location that holds its
value, initilzation status, accessibility statas, initial
scope, current scope, and type. The source name is not

known.

5.1.7 Begister Allocation Nodule

The other semantic routines call the register allocation
module to allocate or release registers. The CG assusmes
there are at least three distinct registers, and possibly

more {the number is available from the AN).

In all cases, a request maust indicate the type of the
register and register life must be LIFO. 'Before a register
may be reléased, all registers allocated after its alloca-
tion must have been released. It is one of the most restric-
tive features of this module that both the coapile~time and
the run-time history must follow this rule. Both allocation
and release aust specify the same type. If these conditions
are not met, erroneous code will be generated--the module

cannot detect misuse.s

This module is easily both the most individeal and the
most far-reaching in its effects, and thus deserves some
discussion. I decided to make my register allocator LIFO in

order to make it simple to write, and to make the allocation

42
of an arbitrary number of registers independent of the num-
ber, as well as independent of the constructs of the larn-
guage and of the rest of the compiler. The LIFO restriction
proved confining, as an onexpected pﬁrt of the CG-ARM inter-
face (see 7.1.3.2) . The avkwardness of this module is due
to the fact that it was the first one I wrote, and that it
was designed before the CG-ARM interface was fixed in its

final forn.

The initial version of the allocator gererated code to
stack the registers' contents at run time. An improved ver-
sion, saving time and space, generated loads and stores froa
Al temporaries, whereas the current version tries to reuse

these temporatries as well.

5.1.8 AHA Interface Buffer Boutines

To enable the compiler to continue to check the source
code after an error has been detected and code can no longer
be generated, the CG and the ARM call the aMA through buffer
routines that call the AMA only if an error flag is not set.

They can also print the AM code if a debug flag is set.

5.2 POSSIBLE IMPROVHENTS TO THE CG

FORTRAN space usage could be much improved by linearizing
the parse tables in the FE amrd the CG. But 'optimizing?

FPOETRAN code is beyond the scope of this thesis.

&3

Because the CG treats each language construct in isola-
tion, there is no easy way to modify it to reduce greatly
the amount of AM-cCode used by linking constructs together or
sharing code between constructs. The CG was not designed to
generate the most efficient AM code, but to implement the
templates. In view of the time constraints, efforts to make
the CG more efficient than it was already (due to its clear
and straight-forward design) would have been counter-produc-

tivea

There is, however, plenty of room for the maintainers of
the compiler to improve it. This might best be achieved by
reducing the amount of AM storage used for variables and

instructions. A few suggestions follow.

5.2.1 Better Templates

Improvement of the templates so that they would reguire
fever AM variables and generate fewer instructions is rela-
tively easy in concept, but I can think of no good candi-
dates other than ;he expression templates. They have

already been discussed in the chapter on tenmplates (4.6).

5.2.2 Beuse of AM storage |

First, the scalar variables and the CG's ténporariés'can
be reused. DPL arrays are already being reused, as they are
simulated by the ARN rather than being AM arrays. The'code

for this reuse has been written and tested.t? It is

4y
described the fourth appendix. While not assuming any
particular characteristic of the IL iariables, such as block
structure, it does assume that the IL is not in error when

it says that a certain variable may be freed.

5.2.3 Removal of Indeterminacy

Second, the shuffling of the arrays of pointers to guards
that introduces some uncertainty (to the writer of the DPL
program, not to the analyzer of the compiler) into the eval-
uation of guar&s within a 'do od! or 'if fi' requires a sub-
routine call, and the existence of a subroutine, let alone
the probable extra real machine code that aust be generated
to perfora all the imdirect references.1® This AR sub-rou-
tine and the calls to it could be eliminated, if the loss of
non-sequential and changing guard evaluation was not felt to

be damaging to the semantics of DPL.

S5.2.8 Miscellaneoys

Iaprovements of the kind often called 'optinizatibns'
such as elimination of jumps~to-jumps and redundant store-
load pairs across construct boundaries may be very difficult
to achieve given the current structure of the CG., If the ANMA

alloved reading and rewriting of its contents, a second pass

1?7 It is being used in the latest version in the register
allocator, but not in the rest of the CG. '

18 Byt this is precisely vhat the CG is not supposed to
know, and shows that old habits of programmers die hard.

85
over the code could improve it. It would take considerable
redesige to nmake the evaluation of comaon sub-expressions

take place only once.

Superficial improvenents can be made to the FORTRAN
itself in the CG which would make it more readable. These
are not listed here, as they are not related to the struc-

ture of the CG. They are in the fourth appendix, where they

apply.

5.2.5 Pollowing the Rules

Considerable work is also needed to make the DPL Eanpiler
follow all the rules of DPL that relate to initialization,
type, and inheritance. Dijkstra requires that corresponding
variables and expressions in nultiplg assignaent stateaents
have the same type. The CG does not check for type compati-
bility in =multiple assigments or ie array initializatiosms,
though where this would be done 1is noted in the appendix.
More recent versions of the compiler d0 perform some of

these checks.

Further, if one branch of an *if fi' has amn initializa-
tion for a variable, all the branches must have an initiali-
zation for the same variable, no matter how deeply buyried in

enclosed blocks or other constructs. Because initializationm

in 'if fi's must occur in parallel, two initializations for

the same variable are not tagged as an error by the CG.

46
The refinement of the initializatiorn rule enforcesent
would bring our version of DPL closer to that used in A Dis-

cipline of Programming. Other differences between the lan-

guage our compiler implements and the language we tried to

implerent are listed in 6.2.

Chapter VI
THE DPL COMPILER AND ITS GOALS

The DPL coapiler has been in use by students since the
beginning of 1980, no merber of the team that designed or
wrote it is now involved with the compiler, and so it is

fair to ask how well the project met its goals.

It is only fair to mention thét considerable work has
been done on the compiler since I left the project, result-
ing in much improvement, according to Dr. Parnas [Parnmas,
personal communication, 1980]. This chapter details the

state of the compiler for the early fall of 1979.

6.1 BUBNING DPL PROGRAMS AS ¥RITTEN

As yet, there has not been an effort to runm all of the
programs in Discipline of Programming though this would be
an obvious way to check the compiler's fulfillment of our
major goal. Certain differences between the DPL of the book
and our DPL exist, but will probably not cause problems.

The goal, however, is not met.

48

6.2 DIFFERENCES BETVEEN QUR DPL AND THE BOOK'S VERSION
There are three major differences: the addition of input
and output (I0), the fact that the binary boolean operations
have been implemented in a manner that changes their sesan-
tics, and the inability of the compiler to detect certain
errors of initialization status. None of these invalidates
correct programs, bat the third difference makes it barder

for students to find errors in incorrect ones.

6.2.1 Input and Output

Dijkstra describes no IO for his notation. We added input
and output in a way we feel follows the spirit of the lan-
guage: the user, as the outermost block, =may specify the
initialization of three input and three output arrays. EBach
of the two (input and output) consists of one array of each
type (integer, boolean and character). At the end of the

program's execution the output arrays are printed.

Rather than make the user write all the DPL for this
outer block, only the initial values of the input arrays
need be specified. Input is normally performed with the
'*lopop! operation on an input array, and oufput with the
thiext! operation on an output array, but the arrays may be

accessed in any legal fashion.!? The ability to perfora I0

N T A D T O D A T e

19 ¢1opop! removes the elenment with the lowest index from
the array, shortening it, ‘'hiext' adds a new element
above the one with the highest irdex, increasing the size
of the array.

49

should not affect the running of Dijkstra's programs.

6.2.2 CAND rather than AED

Oour compiler does not implement the 1logical operations
tand' and t'ort. Rather than evaluate both operands in all
cases, the second operand is not evaluatéd if the first det-
ermines the result (for example, 'true or x' is alvays
'true'). We call these nev operations *cand' ard ‘cor?. 1
do not know why the decision was made to implement these
operations rather than the logical ones. Given the lack of
side-effects to the evaluation of expressions, this should

not be detrimental either.

6.2.3 gnenforced gngg

" The rules about the use of initialized and uninitialized
variables that the coapiler does not enforce should have no
effect on the running of correct prograss. Tﬁe lack contri~
butes, however, +to my judgement on the compiler in the last
section of this chapter, and to the compiler's suitability
for student use. The errors that the compiler does not
detect and their effect on student use of the compiler are

 detailed in the section on student-orientation (5.4.3).

6.2.4 Exponentiation

Our compiler allows the binary operation of exponentia-
tion, which Dijkstra does not use. There is no effect on any

of the goals.

50

6.3 PROBRTABILITY
Until another coaputer facility uses our cosmpiler and its
own version of the AM to build a DPL compiler, the portabil-
ity of the compiler can only be the subject of an educated

guess.

James D. George, the designer of the AM and the only per-
son vho has written an AN to date, is pessimistic about the
likelihood that other installations will write AN's to
transport the compiler. In characteristically cautious

terns, he says:

I could not categorically deny two
possible assertions about the Abstract
Machine:

1. It is too dificult to implement.

2. It does not exploit target-

machine power well. .
{George, 1979, p. 130]

For the iaplementer elsewhere the choice is probably bet-
ween ﬁsing our compiler and writing a new AN and utiting his
or her own compiler, using a high-level 1language and such
tools as parser generators, pre-uritteh syrbol table rou-
tines, or already-existing assemblers. The deciding factor

is likely to be the expected effort.

George, in his thesis [George, 1979, p. 132], estimates

that his version of the AM on the 1IBM 360 took him two man-~

51
aonths, not including the time it took to learn about the AN
or the IBM 360. His AX does not perform run-time type-check-
ing, a deviation from the definition, and he vas, of course,

very familiar with the AM.

In contrast, Gary Bishop of this department wrote a DPL
compiler as a course project, and estimates that he spent
one man-month on it [Bishop, 1980, personal comaunicationl].
His version has certain faults: there is no character data
type, and there are no error eessages for type and initiali-
zatioh constraints, and none for run-time errors. Twice the
effort, two man-months, would certainly improve the product.
They might not iaprove it enough to be used as a student

coapiler.

As the estimated time for transporting the coampiler is
the same as the time for writing one's own compilef, I do
not think it likely that the compiler will be transported
elsewhere. HWhen the time needed to understand the AN is
added to the time needed to write an AN, transporting would
seenm the more difficult task. Our goal of easy portability

is only partially achieved.

6.4 STUDERT ORIENTATION

¥hen one considers the compiler as a tool for naive sto-
dents, the DPL'compiler has certain obvious problems but

provides enough information to its user that both the kind

52
of error and its location can usually be found. These
faults are described in the rest of this section as is the
question of our compiler's diagnostic aids (again, the
reader is reminded that some of the faults have been cor-
rected in versions of the compiler later than the one this

thesis treats).

6.4.1 Yarjable Names jn Nessages

Many messages do not refer to a source variable, lfor
example *missing semicolon' or 'guard expression is not boo-
lean?'. Those that do are more informative if they can spe-
cify which variable is the guilty one; thas "?x" is gnini-
tialized and cannot be used in an expression' is a more
useful message for a student than 'uninitialized variable in
an expression?'. The DPL compiler messages generated by the
CG are not in terms of the source variable, but 1like the

second example, only name the problenm.

The error is, however, detected and pinpointed to a par-
ticular statement (but see the next subsectiorn} and, in most
cases, vill be enough to enable the student to correct his
ot her program. The major weakness is that in long expres-
sions or in multiple assignments, there may be several pos-
sible variables at fault. A suggested solution to this prob-

lem is given in the next chapter (7.2.5) .

53

6.8.2 Line and Statement Huebering
¥hen the PE reads a DPL program, it prints a copy. This
copy has line numbers. In the IL produced by the FE, there
are statement numbers, which are used by the CG to pinpoint
the statement in which an error has been detected. Unfortu-
nately, these two sets of numbers are not the same: a state-
ment may he(split isto several lines, or a line may contain

several statempents.

A solution to the confusion produced by a message refer~
ring to statement ten, whkich is printed on line eight, is

proposed in the next chapter (7.2.5) .

6.4.3 Undetected Errors

There are rules about the use of initialized and unini-
tialized variables that the compiler cannot enforce, as it
does not detect a mistake by the programmer. Possible ais-
takes are failing to initialize a variable in all branches
of an *if fi', failing to make all the intializations for a
variable of the same type, failing to match the types of
array-intialization elements with the declared tjpé of the
array, and mismatching the types of 1left and right-hand
sides in a multiple assignment. Further, the compiler does
not check the type of an array dindex in all array opera~
tions, and the incortect type (for example, a booleah index

value} will cause the program to fail.

54

If a student makes one of these errors it will beconme
visible only at run-time, and only if the erroneous code is
executed. The symptoas will be a message froam the i, con-
plaining about invalid register types, and the progras will
halt. There will be no output printed from the output
arrays. This will be very little help to the student pro-

graamer.

Suggested solutions to the problems of initialization are
in the following chapter (7.2.6) and, in more detail, in the

documentation describing the CG.

6.8.4 Lack of Diagpostic Aids

The PL/C compiler, used at UNC-CHE in the introductéry pro-
gramming course, does more than echo and number the source
program and list the ouiput: it produces a number of aids,
such as depth-of-nesting numbering beside each line, an
identifier cross-reference, and, in the event of an abnormal
end, a short trace, in terms of the PL/C statment nuﬁhers.

The DPL compiler produces none of these aids.

We deliberately did not include such aids in our initial
design. The goal of student-orientation mnight seem to
require ihat our.compiler help the student by producing such
aids. Though there is (and was) disagreement on this topic,
it is not the task of this thesis to 4o more than noté.£hat

we did what we had planned in the way of diagnostic aids.

55

6.5 HODULARITY AND INFORNATION HIDING
Our desire to make full use of the technigues of division
into modules and of inforamation-hiding was fulfilled, and
very fruitful: when the time came to put our separately-
vritten modules togethét, there were no problems at the

interfaces. This is a remarkable testimonial.

Further, when a totally new tear of prograamers was
adding major improvements, they were made with relative ease
and almost no change to the inter-module interfaces [Parnas,
personal communication, 1980]. This, too, is am indication

of the benefits of these techniques.

There are parts of the coapiler wvhere we could have used
the techriques more thoroughly but did not. Had we done so,
I am certain the compiler would have beer simpler to write

and debug.

Thus the PE has an interface in tvo parts to the CG, but
only needed one. The first and major portion is the IL,
available through a function call to NEXTOK in the FE. The
second is the comstant-holder part of the FE, +which returns
ihe length and elements of constants through two functions.
For a more unified interface, the constants could havé been
enbedded in the IL, and the responsibility for the charac-
ter-to~boolean or character-to-integer conversion could ﬁave

been given to the FE.

56

Within the CG, the only nédnle vhose interior 1I kboow,
there are tables that would have been hidden within a submo~-
dule if I had known earlier that I would need them. An exas-
ple is a table INDOOD, recording the depth of. *do od' hest-
ing for each block: this would have been part of the stack
module, but ny need for it did not become apparent until
after the stack module was finished and its interface broad-
cast to all the CG in the form of a common block with the
stack names. Rather than try to find all the referemces to
the common block, I added a nev table., This, and a other
- few instances in the CG, had no impact on the rest of the CG

or the other modules.

6.6 OVA) 4

One version of the teaplates has been proven correct: so
far as the compiler realizes the templates, it is correct.
The effort to prove the templates uncovered Rmany errors in
the templates (mostly in register usage) that would have
been very hard to detect otherwise. Thouqh proving the teap~

lates correct was not a goal, it has been very useful.

6.7 DELIVERY DATE
We did not meet our delivery date. The compiler took more

than twice as long as had been planned, twenty months rather

than nine. Here we did not meet our goal.

57

6.8 EPPICIENCY
Though efficiency was never a goal of the'projecf, it is
proper to ask whether or not the DPL compiler is so ineffi-
cient that it will not be used. This is also relevent to the
possibility of transporting the coapiler elsevhere: if it is
.inefficient, that is all the more reason to ¥rite one's own

compiler.

As an example, the same algorithz was rum on the PL/C and
the DPL compilers, with the following compilers.29 The sta-

tistics are given beneath the progras listings.2t

I did not try to favor one or the other lanquage, but
PL/C may have an advantage“in better input and output opera-
tions. The difference is still immense: almost two orders
of-nagnitude more time to execute, - more than two orders of
magnitude more compilation time, and almost three times the
aeﬁory use. Another measure is the cost, where the ratio
favors the PL/C job: eighteen cents to three dollars and
three cents, a factor of seventeen. While the DPL compiler
has other goals than efficiency, it is only fair to remember
that the PL/C cdmpiler is made larger by its extensive

error-correction capacity.

20 Note the use of the IO operations on the special arrays
tiinpat?! and ‘ioutput?,

21 pue to the accounting method used, the totals are not
always the sums of the component entries.

58

DPL BL/C
begin TRY: PROCEDURE OPTIONS (MAIN);
glovar iinput, ioutpat; DELCARE (I, X) FIXED BINARY;
privar i, x;
x vir int, iinput:lopop; GET LIST (X):
i vir int := 13 I=1;
do i <= 20 =-> DO WHILE (I <= 20);
i, x =i+ 1, x+ 1 =X+ 1;
I=1I+1;
od; END;
ioutput: hiext (x) PUT LIST (X):
end END TRY;
CPU time, seconds
coapile: 8.8 - 06
run: -8 .01
total: 9.6 . |
other time: 14.4 3.4
memory in K: 446 160
disk accesses: 762 ' ' 146

The efficiency of the AM is not the problem, though the
real machine code has about 4.2 IBM 360 instructions for
each AM instruction (George, p-112). . The generated éode is
not the problem, as it is not overly imefficient. The prob-
lem lies in the size of the compiler and the many passes

over the source prograk.

6.9 JUDGEHENT OF THE DPL COMPILER

The compiler is late, it fails to enforce rules that are
basic to the language, it is inefficient and its error mes-

sages can be less than useful. Clearly, there is a lot left

59
to do before the DPL compiler can be Jjudged a success.
Reither can it be disaissed as a failure: our compiler has
made good on some of its goals, and partially achieved the
others. It lies in the area of the 'low pass' or

*gentleman's C': too good to throw away, but disappointing.

Chapter ¥II
CONCLUSIONS, RECOMMENDATIONS

7.1 HHY THINGS HENT WRONG

There were two reasons for the low quality and 1late
delivery of our coepiler: an inexperienced team and poor
communications within the tean. Our optimism lead to an
early predicted delivery date, making the delivery seenm
later than it would have been if we had appreéiated the dif-
ficulties ahead. Each of these three aspects of what went

wrong will be discussed.

7.1.1 Beqinper's Luck and jts Lack

None of the graduate students in the project had written a
compiler before nor had any had formal imnstructiom in the
subject. Though eager to start, we were slowed by our need

to learn how to do what we were doing.

Thus the parse method initially chosen for the CG was
recursive descent, despite the difficulty in simulating
recursion in FORTRAN, as I did not know there were parse-ta-
ble generators available, or that other techniques of pars-
" ing would still allow me to generate the whole of a iemplate

in one (or two) subroutines. This decision stood until Dr.

61
Nehdi Jazayeri persuaded me to use another, more practical

method, when the project was over a year old.

We did not worry about the size of the compiler until the
end of the project: then we vwere amazed. A 1little fore-
thought would have allowved the compiler to operate as sev-
eral passes, rather than having the FE, CG, AMNA, aﬁd ARM all
present at the same time. More experienced people might have

foreseen this.

¥e also underestimated the amount of time it would take
us to learn how to use the ANMA and AM, to use the module
specification technigue of traces [Bartussek and Parnas,
1977], ard to learn to use FORTRAN. Our initial optimise
became pessimisk as the project continued long past our pro-
jected delivery date. Neither was Jjustified by the actual

state of the project.

7.1.2 Internmediate Language Improvements

More experienced people might also have noticed that we
were proposing.to parse the source language tvice, once in
the FE and once in the CG, but that the intermediate form
was not designed to make the CG's parser snall and simple.
If the IL had been only slightly modified, with each con~
struct unaabiguously'flaggeﬁ at its beginning, the C6's

parse tables would be much reduced.

62

An exaaple may make this clear. It is only in the sixth
element of the IL statement that an array initjalization and
a multiple assignment whose first identifier is being ini-
tialized are distinct. To make both the problem and the
solution clearer, I give the IL. Here the items in MAJUS-
CULES are IL tokens, those in mimniscules are variables, and
non~terminals are in <hrackets}. The 1IL is shown only for

the beginning of the construct.

Intermediate Language

<array initialization> ::=
ASSIGN name MARKY INITZ¥ <type> ARRYSN . . .

<sultiple assignment> ::=
ASSIGN name MARK!1 INITZN <type> MAERK2 another-name . « .

Suggested Form

<array initialization> ::=
ARRAYINIT name <type> . .

<multiple assignment> z2:= ,
MULTSN name INITZN <type> « « «

7.1.3 You Heant THAT?

We experienced problems cémuanicating decisions and
definitions during the project. These problems were dﬁe to
the choice of Dijkstra's book as the language definitiomn, to
misunderstandings, and to lack of distribution of iaforma-
tion within the tean. If a language definition had been
written in advance, bf one person, much time would have been

saved that we spent looking in the book (for example, to

63

find whether or not there were character variables), or inmn

!

disputation. :
i

T7-1.3.1. Probleas with the Book

A Discipline of Programamjng had no index, aid not gather
all the definition of the notation in one place, and did not
include a formal gramaar. There was no definition of imput

or output. It was hard to use as a reference.

.7.1.3.2 Bisunderstandings

There were a. few =misunderstandings that di; not get
straightened out until after they had led to r;dundant or
awvkward code. Both the FE and the CG thought that checking
variable inheritance was part of their function: thus both
do it. Though the AM is designed to trap on detection of an
atteapt to divide by'zero, or to take a residue aodalo zero,
the CG generates tests before division or residue opera-

tions.

An example of avkwardness due to inadequate interface
 specification is the conflict of the CG's register alloca-
" tion method with the ARM's interface to the CG: to the CG,
registers are arbitrary and allocated by a submodule, to the
ARH, registers are named and their use is defined by the
prograemerl. Thus before each call to the ARH generateﬁ by
the CG all registers must be allocated, and all freed after
 the call, to preserve LIFO usage of registers. This means

extra loads and stores for parameters to the ARNM.

64

Ve had not realized that register allocation would be
part of an interface using registers, nor that an interface
involving shared storage 1locations might be less likely to

create problens.

7+1.3.3 Unbroadcast Kews

Certain decisions (for example, the form of the IO we
would add to DPL) diad not get successfully broadcast fronm
the decider to the rest of the team. Further, guestions
about overall design did not get quick answvers from the

leader.

7.1.4 Conceptual Integrity and Idle Hands

In wmy opinion, if one person had extracted a formal
definition of DPL from Dijkstra's book, designed an exten-
sion for 10, and sketched the secrets and tasks of the
modules within the compiler, the result would have been less
wasted time in the beginning, and a better understanding by
the rest of the team of both the task at haand and how long

it would take.

The Mythical Han Month [Brooks, 1975, p 47] discusses the
 tesptation to put idle hands to work, even when the current
task is best done by those already working. This may be the
reason that the compiler was designed by a coanittee }Dr._
Parnas, Dbr. Wagerer, Jiam George and me), rather than hyione

person alone.

65

7.2 go¥ YO PIX THINGS
The following few, short suggested solutions may not
cover all the faults of the DPL compiler. If inplemented,
however, they shouald improve it. The first Suggestion is
aimed at the past, rather than the future. The documenta~-
tion for the CG covers some of the fixes in more detail
{(vith code, in a few cases). Solutions are described under
the head of the goal they foster. Soere faults have already

 been solved in more recent wersions of the compiler.

7.2.1 Shortening the Time Needed

The two largest modules could have been split, reducing
the size of each sub-module. These modules could have been
written by different people, thus shortening the over-all
time. In both cases, the internal interface was specified by

the writer of the large module even though it was not split.

If the CG had been divided into two sub-aodules, one of
which parsed and provided utilities such as the sylbbl table
and the stack module, while the other generated code and
allocated registers, the CG might be easier to maintain, and

all the rules might have been enforced.

If the AMA and the AN had been written by two different
people, two AM's could have been written, and the portabil-
i

ity of the compiler tested to a greater extent.

66

T.2.2 Student-Orieptatjon
The line~nusber ¥yersus stateaent-nuzber problén:coﬁlﬁ be
best solved by each stateament, would be available to the
source~echoing submodule. COMMON, initially set to zero and
increnented at the beginning of each statement, would be
available to the source-echoing submodule. It would label
each echoed line with the number of the first statement on

it.

The PE should also be extended to include a routine that
would print the DPL name of a variable in the IL when called
by the CG. This name is already available in the FE's char-
acter holder submodule. The names of variables could then

be printed in error sessages.

7-2.3 Implesenting DPL

To check the type of expressions in a multiple ﬁssign-
ment, within aﬁ array iritialization, or in array opera-
tions, the routine CTYPOK, described in the CG's ﬂocunéhta-
tion should be added to the CG. It is called after an
expression has been generated, and compares the type of the
expession to the type expected. Both of these'are ir COMMON

" blocks already.

Checking that initializations proceed in parallel in the
branches of amn 'if fi' is harder. I can think of two possi-
ble avenues to a solution, one at compile~time and one at

run~time.

67
During cospilation, a list of the variables that must be
~ initjalized within a particular 'if £i* could be built for
each *if fi'. <The list would be built while tramslating the
first branch, and checked within the others. If a new varia-
ble was initialized, or if one of the listed variables was
not initialized, that would be an error. As the *'if fi's can
be nested, there would be a set of lists, and this night

require a lot of code and storage.

These lists would be checked on initializatior of a vari-

able, as an expansion of the routine CASSN6.

If the compiler left an AM version of the syabol table,
with type and initializatior information, a rua-time routine
called for each initialization before the assignment was
made could check that those assignments that were made were
correct. This approach, however, could mnot detect required

initializations that were not made.

A siapler solution is to «change the message printed by
the AM when the generated code trys to 1load or store an
object of a different fype than the referenced area of sto-
rage contains, This would uéually imply an initialization
~ error in the source. If the message vere "Probable error in
initialization of variable in *if £i' ¥, rather than ®Reg

type err"®, the other solutions would not be needed.

68

7.2.8% Bfficiency and Portability
I recomnmend removing the trap nechanisn from the defini—
tion of the AM.22 This would have two good effects: the AN
will be easier to isplement, it is simpler, and the real
machine code produced will be smaller and thus rum faster.
What error-checking is needed can provided by code generated

by the CG, or by the real machine.

7.2.5 Epilog
The fact that I now feel I «could do a much better job is

indjcative of the amount I learnt as a aeaber of the project
 team. I hope that our experience will help others to do bet-

ter without the slowness and pain of learning by experience.

22 Dr, Parnas disagrees with this recommendation.

Appendixz A

ATTRIBUTE GRAMBAER

This attribute grammar serves three functions; it pre-
sents a BNF grammar of the IL that was the source languagé
- produced by the FE for the CG; it lists the templates which
were used to translate constructs into AM code; and it for-
mally specifies the translation, and thus the the CG, with-
out over—-specification. Two things should be noted, however:
the specification is not complete, and the very important

guestion of register management is ignored.

The ARM and the code it generates are ignored, as is the

code generated to allow input and output.

Further, what is more important from a formal point pf
view, the translation of source symbols into AN memory loca-
tions is unspecified. From a practical point of view, how-
ever, it is unimportant, as any function that maps elerents
of the source into&a'part of AN menory without overlaps is
enough. This is only true if the source is correct, and all
variable references follow the scope rules. But templﬁtes
aésume correct input. For a - full specification we would

need a more powerful notation.

70
How information is save for later use is not included.
This makes some productions seem useless: they may have no

translations in code, but are none the less important.

Begister allocation is deterained by the isplementor, and
is not properly part of a template. The templates nmay
express requirements for the register allocation algoritha
to meet. I have tried to show these by the use of specific
register names: g.g.' B1 is register one, Ra or Rb an arbi-
trary register, Still, the téiplates say only 'with résult

in R1*, and do not say how this is to be done.

2.1 NOTATION USED

Bach rule in the IL gramaar is nunbére&, and the corres-
ponding translation equivalence is below it. Code that is
.emitted and IL terminals are in CAPITALS, IL noﬁ-ternihals
are in <bracketed miniscules>», indicies in unbracketed min-
iscules, while restrictions and explanitory aaterial are in

underlined English, to advoid a complicated new formaliss.
Braces [] are added for clarity. Thas a grammatical rule in

IL might be:

<non-terminal> :3:= one or gore [terminal(s)]

L1

.us one or more [<nonterminal(s)>] .

The sequence of generation in the translations is from
top to bottom. Initilizations of arrays are given in a

shortened form:

71

Avrrayname {*} <-- list of yvalues.

A~

This stands for the lony segquence of SETs and NULLs after
a DSA. Otherwise, the reservation of storage is explicit.
For explainations of the AMA code, see Appendix L. A&s it is
there, the type~specifying suffix ¥B*, *CHi, *F%, #pe? or ?L°¥
is replaced by 9_% to aveid useless repetition of the sane

tenplate.

*TEMPY is always an unused scalar location of the appro-

priate type.

1e

{prograa>

t{<{proyram>} =

<hlock> 2=

t {(<biock>)

{ldecl> ::= <decl> <ldecl>

£<1ldecl> ::= ENDLST

<decl> ::= GLOVAR | VIRVAR | PRIVAR
<lstmilns <stmtln> <lstmtin>

72

2:= <block>
JUMPL BEGIH, NR, D
MSG1 {*} <== tTABORT STHT EXECUTEnD®
ABORT: ¥RITYN PRINTER, HSGi, WK, H, 25, KR, B
HALTH
B5G2 {*) <-- TN GUARD OF IFFI TRUR®
IFBORT: YRITH PRINTER, #BS5G2, Nk, M, 22, NR, B
HALTH
BSG3 {%} <- YATTEMRT TD DIVIDE 2¥ ZERO?
ZERDIV: YRITN PRINTER, KSG3, ME, B, 26, BR, #
HALTHN
MSGY {#*) <(-- ATTEMPT TO TAKE Zpa{d HODULO®
ZERHOD:z WRITK PRINTER, HS5G4, ¥E, H, 27, ¥R, H
HALTHN
SHUFL: STGR £1, RETUEE, KR, I
10RDP RZ, SEABE, NR, D
LOARF R3, O, KR, H
LOADP RY1, R3, RZ, BX
5TCP i1, TENP, HE, D
LOADF ER3, 1 BR, D
LOOP: CJCF R3, SHUM, ¥R, I, SE, DOWE, ¥R, D
LOADP R1, R3, R2, BX
SUBF R3, 1, NR, H
S5TOPR 1, k3, RZ2, BX
ADDF B3, 2, ¥B, H
DONE: LCADP RY, TENME, HR, D
LOADF &3, S¥UH, R, I
© STOP Ri, ®3, RZ, BX
JUMPL RETUEN, ¥R, I
RETURN BS POX
SNAME Ds POl
SEUH ns PCT
TRUE DC £4%8
FALSE DC 153
LIREXUN DS FLip
BEGIN: t{<block>}
HALTN
<ldecl> <istmtln> <lfresables>
= v{<{lstmtlin>)

| GLOCOY

t{<iztmtln>)

Llstmila> z2=
t {<istatln>)

{ifreeablesd>

= p{<stmtin>) t{<lstmtlnd>)

ENDLST

2= i <lfreeable>

YIRCOK | PRICOY

k

il
5
1

73

9. <lfreeables>» z22= ENDLST

10 <statln> 3:= LINUM i <stat>
: {vhere 0 < i)

t(<statln>) = MMMF i, NR, M, LINENUM, NR, D
t (<stmtd)

11. <stat> z2:= PGM <block>
t{<statd>) = t(<block>)

12. <stat> 2:= DOOD one or more {(n) of
[<expression i> <lstatln 1>] ENDLST

t{<stat>) = JUMPL START, BR, D
for each of the n sets <expression i> <lstatln i>
[GUARDi: STOP R1, SAVE, NE, D

t{<expression i)
into register Ra
CJCB Ra, TRUE, NR, D, ¥E, SAVE, KR, I
t(<lstmtln i>} '
JUMPL SUCCESS, NE, D

1
GUARDS <-- GUARD1, GUARD2, ... GUARDR
GNUN . DC B
SAVE DS POI
SUCCESS:
START: MMKP GUARDS, KR, M, SKAME, NR, D

MMSF GNUM, MR, M, SNUM, KR, D
JLKL SHUFL, HR, D
LOADF &b, [B - 1], NR, M
LOOP: ~ JLKL R1, GUARDS, Ri, XI
SUBF Rb, 1, NR, X
CJCF Rb, O, NR, M, GE, LOOP, ¥R, D

Bhere *b' does not egual *1°

13. <stat> :2:= IFFI one or more (n) of
[<expression i> <lstatlm i>] ENDLST

t{<stmtd)} = ~ JUEPL < START, NR, D
for each of the n sets <expression i> <istmtln i>
{ GUARDi: sTOP R1, SAVE, NR, D

t{<expression i)
into register Ra
CJCB Ra, TRUE, ¥R, D, NE, SAVE, MR, I
t(<lstmtin i)
JUMPL SUCCESS, NER, D

]
GNUH DS n
SAVE DS POI S
GUARDS <-- GUARD1!, GUARD2, ... GUARDn
START: MMMP GUARDS, NR, M, SNAME, EBR, D

MMMFP GNUM, NER, M, SNUM, NR, D

T4

JLKL SHUFL, NR, D
LOADF BRb, [n - 1}, MR, N

LOOP: JLKL B1, GUARDS, Ri, XI
SUBF Rb, 1, HB, K
CJCF Rb, 0, R, M, GE, LOOP, MR, D
JUMPL IFBORT, NE, D

SUCCESS:

Hhere 'b' does mot equal '1!

Kl

14. <stmt> ::= SKIP)
t{<statd) = "

15. <stat> ::= ABORT '
t{<stat>) = JUMPL ABORT, ¥R, D

16. <stmt> z:= ASSIGN i ARRYOP HIREN

LOADF RZ2, ANNM, NR, N
call arcay mapager for HIREE

ARRYOP LOREXN
LOADF BRZ2, AMNM, KR, A
call array mpanager for LOREM

ASSIGN i ARRYOP HIBXT <expression>
t((expressxon))
¥ith the result in Ra
STO_ Ba, TEMP, NE, D
LOADF R2, i, NR, M

t{<statd) =

<stmt> 2:= ASSIGN i
t(<stmt>) =

17.

<stat> 1:=
t(<stot>) =

18.

19.

20.

21.

LOADP R3,
call

TEMP, NR, M
array mapnager for HIBXT

<stmt> 3:= ASSIGN i AREYOP LOEXT <expression>

t(<stmt>) = ¢t (<expressiond}
with
STOF Ra,
LOADF R2,

LOADP R3,
call

<stpt>
t(<stmt>) = t{<expressiond)

with

STOF Ra,

LOADF R2,

LOADP R3,
call

<stmt> z:=
t(<stat>} = t(<expression 1>)

- ¥ith
t {<expression 2>)

the result in Ra
TEMP, MR, D

i, ®R, A

TEMP, NE, A

acray panager for LOEXT

2:= ASSIGN i ARRYOP SHIFT <expression>

the result in Ra
TEMP, NR, D

i, ¥R, N

TEMP, NR, M

array manager gg ngg

ASSIGN i ARRYOP SWAP <expression 1> <expression 2>

the resuylt in Rl

75

=

¥ith the resu; in 2_
LOADF R2, i, NR,
call array lgnggg for S 52

22. <stat> :3= ASSIGN i ARRYCP ALT <expression 1>'<expression 2>
t{<statd>} = t(<expression 1>) _
_ ¥ith the result in R1
t (<expression 2>) _
with the result in R3
LOADF R2, i, NR, M
cali array mapnager for ALT

23. <stmt> z:= ASSIGN i MARK!1 <init> SINPSN <expression>
t{<strt>) = t(<expressiond)

¥ith the result in Ba
STO_ Ra, t(i), MR, n

24, <stat> ::= ASSIGE i MARKT <init> MARK2 j POP HIPOP
t(<stat>) = LOADF R2, j, NR, K
call array manager for HIPOP
STO_ B3, t(i), NB, D

25. <stmt> 2:= ASSIGN i MARK1 <init> MARK2 j POP LOPOP
t(<statd>) = . LOADF R2, j, ¥B, N

call array gggger for LOPOP
STO_ R3, t{i), NR,

26. <stmat> :z:= ASSIGHN i1 MAEK? <init> MARK2 NULTSH <init>
one or more jndices i2, i3, .
one or pore [<expression j>]

t{<stmt>) = for each <expression j>,
[t {<expression 3J>)
into B3 |
STO_ R3, TEMPj, NR, D]
for each i(j), £ro2 j=n to 1
[~ LOAD R3, TEMPj, NB, D
STO_ R3, t{(i{j)}+ RR, D]

26. <stat> 2:= MULTSN i MARKI <init> AREYSN
' one or more { Jj(k)] ENDLST
t(<stmt>) = "LOADF Ra, 0, KR, D
for each k
[MHM_ t{ j(k)). NR, M, ARRAY_, NR, Ra
ADDF Ra, 1, NR, N]
call array manager for jini-
tialization ‘

2B. <init> 2:= ACTIVE } INITZN <type>
t(<init>)

#

29. <expression> ::= <postfix> ENDLST
t {<expressiond} = t {{postfix>)

20.

3.

32.

33.
34.

35.
36.

37.

38.

39.

30-

76

{postfix> z:= SINPLYV i
t{<postfix>) = LOAD_ Ra, t({i), ¥B, D

<postfix> ::= PROPERTY i <array property>

<array property> ::= DOM | LOB | HIB | HIGH | LOW

t(<postfix)> = LOADF R2, i, ¥R, B ,
call Array Manager for array property
named. DON, LOB, and HIB all return
their value in R1, HIGE and LOW in R3.

t ({array property>) =

<postfix> 3:= CONSTHN <type> i

t ({postfix>) = _ ‘ _
call Front End to get yalue of
nstant pamred 'i' of the type
specified
LOAD_ Ra, constant, NR, N

<type> ::= INT | BOOL | CHAR

<postfix> :2:= SUBSCR i <expression>

t({<postfix>) = t(<expression>) jinto register 3
call Array Manager to get
texpression' th element of the
arcay paped 'it.
which puts the value into
register three

<postfix> ::= <postfix> NEG

t ({postfix>) = t(<postfix>) into register i

LNEGF BRi, HV, Ri, BM

3

<postfix> :: <postfix> NOT
t(<postfix>) = t(<postfix>) into Legister i
LNOTB Ri, NV, Ri, BM

<postfix> ::= <postfix> ABS
t{<postfix>} = t(<postfix>) into register i
CJCF BRi, 0, ¥R, D, GE, NOFLIP, NR, D
LNEGF Ei, NV, Ri, BA
NOFLIP:

<postfix> ::= <postfix 1> <postfix 2> PLUS
t{<postfix>)} = t{<postfix 1>) into register i
t{<postfix 2>) jnto register J (3 and i
distinct) .
ADDF Ri, NV, Rj, BN

<postfix> ::= <postfix 1> <postfix 2> MINUS
t{<postfix>) = t(<postfix 1>) into register i
t(<postfix 2>} into register 3 (J and i

distinct)
SUBF Ri, NV, Rj, BN

<postfix> ::= <{postfix 1> <postfix 2> TIMES

41.

42.

43.

44,

45.

bé6.

47.

77

t{<postfix>} = t{<postfix 1>) jinto register i
t(<postfix 2>) ipto register Jj (j and i
distinct)

MULFF Ri, NV, Rj, BM

<postfix> ::= <postfix 1> <postfix 2> DIVIDE
t {<postfix>) = t{<postfix 1>) jinto register j
t(<postfix 2>) jinto register j (J and i
distinct)
CJCF Bj, 6, WB, M, EQ, ZBRD1IV, HNR, D
DIVF Ri, NV, Rj, BN

<postfix> ::= <postfix 1> <postfix 2> MOGDULO
t(<postfix>) = t{<postfix 1>) jnto register i
t(<postfix 2>) into register j (3 ard i
distinct)
CJCF Rj, O, ¥B, M, EQ, ZERMOD, NR, D
MODF Ri, NV, Rj, BH

<postfix> ::= <postfix 1> <postfix 2> CAND
t(<postfix>) = t(<postfix 1>) jinto register ji
CJCB Ri, TRUE, NB, D, NE, FAIL, NE,
t(<postfix 2>) into register i (the
onre)

27

FAIL:

<postfix> ::= <postfix 1> <postfix 2> COR
t{<postfix>) = t{<{postfix 1>} jnto register i
CJCB Ri, TRUE, ¥R, D, BQ, PASS, ¥R, D
t{<postfix 2>} jnto register i (the same
one)
PASS:

<postfix> 2:= <postfixz 1> <postfix 2> LESS
t{<postfix>) = t({<postfix 1>) jnto regjister i
t {<postfix 2>) into register J (i ard j}
distinct) _
cJC_ Ri, NV, Rj, BN, LT, YES, NR, D
LOADB Rk, FALSE, NE, D _
JUNPL DONE, KR, D
YES: LOADB Rk, TRUE, NR, D
DONE:
<postfix> :z:= (postfix 1> <postfix 2> EQUAL
t(<postfix>) = t{<{postfix 1>) into register i
t (<postfix 2>) into register j (i apd i
distinct)
CJcC_ Ri, NV, Rj, BM, EQ, YES, NR, D
LOADB Rk, FALSE, BR, D
JUNPL DORKE, NE, D
YES: LOADB Rk, TRUE, NE, D
DONE: _ :

<postfix> 2:= (postfix 1> <postfix 2> MORE
t(<postfix>) = t(<postfix 1>) jnto register i

48.

49.

50-

78

t {Kpostfix 2>) jnto register 4 (i amd j
distinct) _
CJcC_ Ri, NV, Rj, BM, 6T, YES, NR, D
LOADB Rk, FALSE, KR, D
JUMPL DONE, NR, D
YES: LOADB Rk, TRUE, NR, D
DONE:

<postfix> ::= <postfix 1> <postfix 2> NEQUAL
t(<postfix>) = t{(<postfix 1>) jnto pegister i
t{<postfix 2>) junto register 3§ (i and 3
distinct) _
CJaC_ ki, NV, Rj, BN, NE, YES, NE, D
LOADB Rk, FALSE, BR, D
JUMPL DONE, NR, D
YES: LOADB Rk, TRUE, NR, D
DOXE:

<postfix> ::= <postfix 1> <postfix 2> NLESS
t (<postfix>) = t(<postfix 1>) into regjister i
t (Kpostfix 2>) jnto register J (i and j
distinct)
cJC_ Ri, ¥V, Rj, BM, GE, YES, KR, D
LOADB Rk, PALSE, NR, D
JUMPL DCNE, NE, D
YES: LGADB Rk, TRUE, NR, D
DONE:

<postfix> ::= <postfix 1> <postfix 2> NMORE
t(<postfix>) = t{<postfix 1>) jnto register i
t (<postfix 2>) into register Jj (i and j
distinct)
'¢JC_ Ri, ¥V, Rj, BM, LE, YES, NR, D
LOADB Rk, FALSE, NR, D
JUMPL DORE, NE, D
YES: LOADB Rk, TRUE, MR, D
DONE:

51. <postfix> s:= <postfix 1> <postfix 2> PONWER

t (<postfix>) = t{<postfix 1>) into register i
t {(<postfix 2>) into register J (i and j
distinct)
STCF Ri, TEMP, NR, D
LOADF R®Ri, 0, NR, H
LooP: CJCF Rj, O, NR, M, LE, DONE, NR, D
MULIF FRi, TEMP, BR, D
SUBF Rj, 1, ¥R, K
JUMPL LCOP, NE, D
DONE:

Appendix B

INTERMEDIATE LANGUAGE NNEMONICS

In actual fact, the Intermediate Language was numeric:

the valges of the mnemonics used in the

are given in the table below.

attribute graeemar

ABORT
ABS
ACTIVE
ALT
AREAY
ARRYOP
ARRISN
ASSIGN
BOOL
CAND
CHAR
CONSTN
COR
DIVIDE
DON
DOOD
ENDLST
EQUAL
GLOCOX
GLOVAR
HIB

pn-&-.-b-mm_mum‘ﬁ.-hh&.-—hn“.—q

i2

HIEXT 57
HIGH 51
HIPCP 62
HIRENM 55
1¥FI 9
INITZN 20
INT 52
LESS -35
LINUN 99
10B 48
LOEXT 58
LOPOP 63
LOREM 56
LOW 50 -
MARK?1 14
MARK2 16
MINUS -29
MODULO =32
MORE -37
MULTSK 19
NEG -25

NEQUAL
NLESS
NMORE
NOT
PGH
PLUS
POP

"POWEER

PRICON
PRIVAR
PROPERTY
SCALAER
SHIFT
SIKPLYV
SIMPSH
SKIP
SUBSCR
SEAP
TINES
VIRCON
VIRVAR

-38
-39
=40
-36

~28

-1

6
3
44

59
a6
17

45
60
~30

e e e ———— — o — — — — o

80
There was also an end-of-file wmarker that the FE would
generate at the ernd of the IL. It was not part of the IL.

Its value was -100.

Note that operations were negative, and all others were
positive, with the exception of SCALAR and ARRAY, vhick were
dropped from the IL. They are included bere for historical

interest.

Appendix C

SENANTICS OF THE ANMA AND THE AN

The AM is a simple machine. It has a number of registers,
an area of =zemory that can be addressed, and is very like
any simple sachine. The innovative parts were not used by
the CG, though the ARM did, as noted below, ask the AN to
allocate and free lendry. The templates in the first appen-
dix are in a pseudo-assembly larguage, but there should be
no difficulty ir understanding that through the machine code
described here, as the use of instruction labels is obvious,
and the pseudo-operations DS, and - DC should also be clear.
I use these in preference to the AMA calls to avoid the
guestion of relative timing of the GETL and the SET_, baut
vill give a table of equivalences (ignoring timing, using

the generic~ type convention).

.

Pseudo~Assenbly AMA
name DS type GETL {(name, type, SCA, F) |
name DC value "GETL (name, type, SCA, F) }

SET_ {(name, type, value, F)

{values are written as *a'B--BIT, 'A'--CHR, n~--FXD)|
label: : GETT {(label, P)
TAGI {(label, F)

-h_-’_h_-—.T
W o g S

82

An AM program is a sequence of instructions and a set of
nased zmemory and jnstruction locations. These locations are
referenced in the instructions by three parameters (or por-
tions of the instruction, if you will). Their meaning is
defined in the first table. The meanings of the instruc-~

tions are defined in the next three tables.

C.1 ADDRESSING QPTIONS

For each addressing method used (ard others offered but
not ysed) I will describe the effective address using the
tcontents of! operation, written *C{)", and the indexing
operation, written *{]*. 'Name' refers to a locafion in.AH
memory, either an scalar, or an array, 4in which case an
index is needed to complete the reference (except for point-

ing to an array, when the use of an index is forbidden).

The address is described in three parameters: L, R, and
Fe L is a name or a register designation, R is a register

designation, and F is one of the following flags:

At one point we considered another flag setting, for the
case where both the name of an array and the index into it

vere known at compile-time. It would have been convenient

w
w

L) |
i i
| Flag Meaning Comaepts]
§ i
| B C(R) register holds a nase |
| P 1 a name , |
i M no address, operand is imsediate vith value L |
[I CilL) = C({ D) indirection i
i X L[C(R)] index in register)
i .]
| BN R register name]
i BX CIRY[C(L)] index and name in registers
{ BY C{R)[L] index is imsmediate |
i IB C(C(R)) _ =C{(B) ' i
[} Ix C(L[C(R)] =C{X) i
Il M L+C{R) A must be integer |
| , i
i BIX C{(C(R)[C(L))))}= C{ BX) |
: BIY C(C(R)I[L D) = C{ BY) i
i

for such references, as the code generator would not have to
generate code to load one of elerents into a register, nor
would a register have to be allocated to hold either the
index or the name of the array. This *Y¥* flag (definition
B{L]) was finially rejected on the grounds that im a real
machine one of two would have to be loaded into a register,
and that asking the porter to perform this action would be
making the task too dificult. It would only have been used

by the ARM.

C.2 THE INSTRUCTION SET

The instructions are executed sequentially, starting at
the first one. This order of execution is modified by some

operations as noted below, and by trapping. Each instruc-

84
tion has an associated address, by which the transfer of
execution can be described. The transfers associated with

the trapping mechanisn will be treated in the next section.

As in the teaplates, I will use an underscore (_} to
replace one of the type-specifying suffixes. Thus rather
than describe LOADB, LOADC, LOADF, and so on, I will des-
cribe LOAD_. Where there are constraints on the types that
may be suffixed to the gemeric command, the coamzmand will be
listed with the various type suffixes. Thus ‘*ADDF?' rather

than *ADD_*' is listed, as only FXD data may be added.

The three parameters that specify an effective address
will be replaced by *EA'. VWhere an effective operand is
expected (that is, vhere immediate mode is legal) I will use
'EO;. Except for immediate mode, it is always true that
C{ EA) = EO. The operation of copying from right to left is
written as '<-'. Thus the first line of the table below is
to be read *the contents of R become a copy of the effective
operand'. Note that LCFF and LFFC only allow conversioans

from the CHARs '0123456789' to the FXDs 1, 2, 3, 4, 5, 6, 7,

8, 9 and yice versa. ']' is 'not‘.

85

P-s-ﬁ-n—__ln——--h-_”m——-ﬁ-h-———-&p-—hh-—hn-h—-h-.-—-—-—-*—-—T

Operation

LOAD_
STO_
JUMPL
JLKL

cJc

HAN_
ANDB
ORB
XORB
LNOTB
SRB
SLB
BOTRB

ADDF
SUBF
MULIF
MULFF
DIVF
MODF
LNEGF
LCFF
LFFC

DRLL

DHLF

HALTN
NOPN

R,
R,
EA
R,

R,

EO
EA

EA

EC, F,

EO1, EA2

B,
R,
R,
E,
R,
B,
R,

R,
R,
B,
R,
B,
R,
E,
R,
R,

R,

R,

Eo
EO
EO
EO
EO
EDQ
EO

EO
EO
EC

EO

EC
EO
EG
EC

g0

EA

EA

EA

L
i
|
i
i
i
i
, i
execution continues at EA i
i
{
i
}
i
i
i
i
1

nothing happens

an

C{R) < BO

C(BA) <~ C(R)

execntion continues at EA

C{ R) <~ the address of the
next instraction

F is a comparison, one of:
<¢e =4 2, X¢e Fe P}

if {C{(R) F B0} is true,
execution continues at EA,
othervise as usual

C(BA2) <~ EO1

C{R) <~ C{ R) Jand} EO

C(RB) <-C{(R) lorj BO

C{R) <~ C(R) } RO

C(R) <~] E0 _ i

C{R) <~ shift C{ B) EO bits right
C(R) <~ shift C{ R) EO bits left

C{R) <~ rotate C{ R) EO {(mod 16)

bits right

C(R) <~ C(R) + EC

C(R) <-C(R) - EO

C(R) <~ C(B) * EO

upper half of product
C{(R) <~ C{R) * EO

lover half of product
C(R) <~ C{(R) / EOC

i e GBS o Bhe SIS S W ST S

C{R) <~ C(R) mod EO

C{(R) <~ - EO

C{R) <~ integer version of}|
the character EO {

C{ R) <~ character version |}
the integer EO

|

C(RBR) <~ C(R) - 1; then if
the nev content is not zero

continue execution at EA |

C{EA) <- C{EA) - 1; then|

if the nevw content is notj}

zero continue execution at

the location C(R)
execution stops

86

C.3 TRAPPING MECHANISK

The trapping mechaniss works in the following way: the
AM detects an error, of class *iv', it continues execution at
the location pointed to by the 'i'th element of a special
' array TRAPS, initialized by the colnaﬁds that can terminate
a trap: ARM (most are just TRETN). There are three ways to
leave a trap routine: note that JUMPL will not work when a
trap has occurred, and one of the instructions below must be

executed to retaurn to normal operation.

TCONX continue execution at the
instruction within which the
trap occured. 7

TRETN continue execution at the
instruction after the one
withir which the trap
occured.

TENDL EA continue execation at EA.

--‘_hh“-hh_-q
I g G S Qe W Sle e Sl e S G o

The CG did not use the AM trapping mechanisa. Explicit
tests for zero were perforzed before division and modulo,
rather than using thefau trap for zero-divisioﬁ and zero-mo-
dulo. All traps that occur are thus errors of the compi-

ler's, not the user's.

87

C.4 INSTRUCTIONS NOT USED BY THE CG
Other instructions that the C6 did pot use were designed
for the Array Manager (ARM). These are described here for
the sake of conpleteﬁess only. To aid understanding of
these instructions, the reader must know that untyped AM

storage is held as an array of eleaents called LCHs.

MSA_ E01, EO2, EO3, EO4, BOS
for i = 0 to EBOS do

end |
NLCMF EA C{ EA) <- the nuaber of LC& units]
ALLOM EO1, EO2, EO03, EA allocate E02 units of LCH|
: starting at index EO1 to |}
to be type EOC3. The new name
of this array is L; [}
C(EA) <~ 1L i
FREEM EC1, EO2, EO3, EA free the array named EA, of
type EO3. This corresponds
to the E0O2 units of LCK |
starting at EO1 that was |
previously allocated by an
ALLGCHN call

-—--—-mn—--n—---‘-—-.ﬁ..-q

5 ou e ane

C({ EO1){ EO2 + i] <~ C{ EO3)[EO4 + i}

Appendix D
DOCUMERTATION OF THE CG

In this appendix the Code Generator will be documented.
This is a description of the generator I wrote, not of the
abstract generatot that is partially specified in Apperndix
A. I plan to describe the CG in the following manner: first
the routines which do not generate code, starting with the
service routines, going on to the parsing routines, and the
non-code prbducing semantic routines, second those routines
that do generate code, starting with the ones that do not
call others, and thence to the more coaplicated expresssion

generators.

This documentation assumes a familiarity with FORTEAN,
and common data structures such as stacks, and tables. I
will not specify ownership of a common block by a caller
wvhich owns the block only to assure that the values in the
cormon block do not change. As the Astract Machine language
elements were given hidden values, which were held by varia-
bles in common blocks accessable to the CG, I will use only
the variable names, not the values. All variables are INTEG-
ERs or LOGICALs, and explictly declared in the code. These

declarations will also not be specified.

89
As a guide to myself and other maintainers of the code
generator, I put a 'G' on the pames of routines that gener-

ated code, and a 'C!' onr the other's naszes.

After the thumbnail description of each module I show how
to call it, and the meaning of the parameters. Parameters
that are changed or set by a routine are prefirxed with an

asterix (*).

Por each routine, all errors detected are listed, with
their associated numbers (for reporting to CERRPT), and the

sub-aodules it calls.

The AMA routines are called indirectly, so that code gen-
eration may be traced by setting a flag: thus GETT is
replaced in the CG by GHETT, which calls GETT, and may primt
the values of the parameters. The buffer routines have an

H added to the corresponding AMA nanme,

D.1 BOR BREPORTING AND DETECTION

——— i Ly e T

When a routine detectes an error, it branches to its end,
by-passing all non-error code, to a label number of nine

thousand or more. The error flag passed in is set to a

S0
unique number specifying the error, and CERRPT (C-ERror-Re-
PorT) is called, with the flag as its sole parameter. This
roatine prints a message giving the current line number, the
current toker (for debugging purposes — but possibly a later
version of the Front End could retrieve the source token
that gave rise to the IL token) and a message describirng the
error. 1Iaplementation errors, such as stack overflow, are
printed with leading egual signs, others with leading stars.

CERRPT calls no routines.

CERBPT (error-mumber)

Errors detected: unknown error code (no number)

Calls: mnothing

D.2 AHA BUFFER ROUTINES

The CG and the ARM use these routines, rather than call-
ing the AMA directly. Each routine checks the £flag in the
common block /CGMORE/. If it is true, the AMA is called. If
not, it is not (a newer version also hkas a flag that con-
trols §rinting the parameters to the A#A, in the same man-
ner). These routines are exactly like the ANA's, except for
the names, and thus will not have their parameters listed.
They are: GHETL, GHETT, THAGI, SHETB, SHETC, SHETF, SHETP,

DHSA, KODES, KODE9, and KODE16.

They detect no errors.

91

D.3 ZTHE STACKS

.The stack routines provide LIFO stacks for the rest of
the compiler. There are five stacks named via comaon block
variables in /CSTACK/, and five functions: initialization,
poﬁ, push, top and empty, provided by CSTKIN (C~STacK-INi-
tialize), CPOP, CPUSH, CICP and CENPTY. The stacks are held
in a common named /CLIFO/, along with their depth in MXDEEP,
and an array of pointers to the top elesent of each stack.
Overfiow, underflov and invalid stack name are dectected, as
is callirg CTOP of an empty stack. The carrent depth is
thirty, but as MXDEEP is used everywhere, only the declara-
tions in CSTKIN and the initialization of MXDEEP need be
changed to change the depths. All stacks have the same
depth, but this probably does not refiect their real depth
in use. None of these routines‘call any other module,

except CERRPT.

CSTKIN (*error flag)

Errors detected: none

CPOP (name of stack, *error flag)
Errors detected: invalid stack naxe 81
stack underflow 82

Calls: nothing

92
CPUSH (name of stack, item to pusk, t*error flag)
Errors detected: invalid stack nasme 79
stack overflow 80

Calls: nothing

CTOP (naae of stack, item at top, *error flag)
Errors detected: invalid stack name 83
stack empty a4

Calls: notking

CEMPTY {(name of stack, *true if eapty, *error flag)
Errors detected: invalid stack name 86

Calls: nothing

D.4 THE PARSER

The parser is a LL({1) table-driven parser, using the
stack named GEAM (GRANmar stack). The parser gets new tokens
from the IL by calling NXXTOK (a buffer routine for the FE's
NEXTCK which man print nev tokens as a debugging aid) and
then calls GSEMAN to perfore semantic actions. Errors
detected in the IL are reported to CGEPH, whereupon parsing
is stopped. CGEPH is a FE routine, and is not described

here.

93

Given a token and a non~tersinal on the top of the stack,
the token's type is tramslated into an index, and it and the
non-terminal are used to look up an action in the parse
table. GSENAN is called for actions that are not errors, and
is passed the number of the prodaction in the 1IL gramzmar,
the current non-tererinal on the stack, the translated index
for the token's type, and the token. An error flag is also
passed. If the action specified reguires the application of
a production (the replacement of the current non-terminal by
a string of termirnals and non-terminals) then CREPLC is

called and passed the production number and an error flag.

A peculiarity of the parse is the necessity to accept
arbitrary numbers as variable names. There is a token type
tarbitrary number', but the incoaing token that is accepted
as such is not arbitrary, as far as the parse is concerned,
but a specific nunber. Thus arbitrary nusbers must be
translated into this special number. It must be known when
an abitrary number is expected, so that the action table row
for the token ‘arbitrary number® may be referenced. To do
this, a list of the non-terminals that can be on the top of
the stack when the token expected is an arbitrary number is
in a conron block /CGARBN/ (CG-ARBitrary-Number). Another
cozmon block, /CPHTAB/ (C-PHront end-Table) holds an array
" that allows translation of the tokens that are not

" tarbitrary number' into token types and hence indices into

94
the parse action table. The parse action table is in the

" common block /GPARTB/ {G-PARse-TaBle).

CREPLC (C-REPLaCement of stack elexents) uses a produc-
tion table in the common block /GPROTB/ (G-PROduction-TaBle)
and the stack commands to replace the top non-terminal by
the set of elements in the table specified by the production
nuaber. Two other items in the comrmon block guard against
reguests to replace elements according to a non-existent

production.

GPARSE (*error flag)
Errors detected: FE error error flag ¢ 1
{sent to FE only)

Calls: stacks, NXXTOK, CREPLC, GSEMAN, CGEPH

CREPLC (production number, *error flag)
Brrors detected: invalid production number 1

Calls: stacks

D.5 THE SIMBOL TABLE

———

The syrbol table module provides six functions: initial-
ization, entry of a symbol with attributes, inspection of a

symbol*s attribuates, damping of the table, block entry,

95
block exit, and inheritance of a syabol froz the next outer-
most block with a nev scope. The last three assume a block-
structured language, and may need to be changed if DPL is

changed, but the module design should make this easy.

The table is in the comeon block /CGSTAB/, along vwith
various pointers into the table, and a stack to help handle
inkeritance. The itezs in this coreon block are described

below.

As the symbols are guaranteed to be positive integers in
sequence from some initial positive integer, it is easy to
map them into indices (1, 2, 3, eee= N} in the table.
TSTART, dinitially set to -100, is the offset to be sub-
tracted from the symbols to give the index. The table is of
limited size--currently only two hundred syrbols can be
accomodated. The upper limit for a symbol is given in THNMAX,
which is equal to TSTART 4+ 200. The last new symbol will
have the largest index, and the next will go in the table
element with an index one larger,. This next index is held in

TTOPa

Each symbol has seven attributes, the last of vhich is a
pointer into the stack of scopes. TOP points to the next
free elenent on the stack, LAST to a position on the stack

corresponding to the last entry into a block. The stack,

96
called STACK, can hold one hundred eantries. Each entry has
three parts: a pointer {(index) into the table, a scope, and
a pointer (index) to an entry further down in the stack.
The null pointer 'is represented by zero. Thus a syabol has a
table entry that points to a scope entry in the stack, and a
chain leads downwvards fror each scope entry to entries for
the scope of that syambol in an enclosing block. The boundar-
ies between blocks are entries in the stack, too, 1linked to
other block boundaries downwards, but only the last field is

used: the first two are zeros.

TABLE STACK
C====TSTART
i i i i
i i i i
i===> | attributes >i=—==m=eeee-, | | C==me=e TOP
} of symbol | Comuy 1 | scope |
| i j==-4~===<K of DD>=w===-,
TTOP-=> | [i-> |} syabol | i
i i j=mm———— i i
| | | block | <-=-=4~=-LAST
i | { boundaryi i
S [| o4,
H] <--THAX | i
| i old | <=~}

'i*' is the index {symbol - TSTART) of the most recently
entered symbol.

At the bottom of the stack is a block boundary that is

linked to itself. This is put in during initialization.

97

The common block /CGCSYS/ holds constants seaning
'aninitialized variable?, ‘initialized variable?,
‘accessable in this block*, and ‘'imaccessable in this
block®: VIR, NOKVIR, YES, ¥0. Actual values are 10, 11, 12,

and_?B.

Hone of these routines call any others (except for

CEERPT)

CSINIT (C~Symbol table-INITialize) initializes the table
and the stack, and gives values to the elements of /CGCSYINH/.
CSNTR (C-Symbol table-eNTeR) enters attributes for a symbol,
setting TSTART and THAX if the symbol is the first one, and
creates an entry for the syebol on the stack if this is thke
first time attributes have been entered for it. CSESPC
{(C-Symbol table-iNSPeCt) retrieves attributes, getting the
scope from the topmost stack entry for this syabol. CSI¥ and
CS0UT (C-Symbol table~-INK, C-Syabol table~0OUT}) are called on
block entry and exit, respectively. CSIN adds a block boun-
dary marker to the stack, wupdates LAST, and makes all sym-
bols in the next outérmost block inaccessable. CSOUT makes
all symbols in this block inaccessable, removes the entries
for them from the stack, setting their pointers ig the table
to the next entrf in the chain downwards, removes the block
boundary, and then makes all entries in this block, . which

vas the next outermost block, accessable. CSNHRT {(C-Symbol

98
table-iNHeRiT) adds a new entry to the stack for a given
symbol if it is in the next outermost block. CSEHRT does pot
check whether the scopes or types allow inheritance. CSDUNP
(C-Symbol table~DUNP) prints the attributes and current

scope for all symbols that have been entered in the table.

CSINIT (*error flag)

Errors dected: none

CSNTR (symbol, abstract machipe name, initial scope,
initialization status, type, array or scalar status,
accessability, *error flag) -

Errors detected: invalid symbol - 29

CSKSPC {symbol, *abstract machine naae,
*current scope, *initializtion status, #type,
*array or scalar status, *error flag)
Errors detected: invalid symbol 30

no entry for symbol 31

CSIN (*error flag)

Errors detected: stack overflow. 32

CS0UT (*error flag)

Errors detected: none

99

CSNHBT (symbol, nev scope, *error flagqg)

Errors detected: invalid sysbol 33
uninheritable syabol 34
stack overflow 35

CSDUMP (*error flag)

Errors detected: none

D.6 NENORY MANAGEMENT

In the initial design, there was no re-use of memory.
#hen a new symbol was encountered, a unique location in AN-
menory was assigned to it, wusing the AMA call GETL (*memory
name, AM type, AM sort, ¥error flag). For arrays, as the
‘array manager used the symbol as a name, this memory loca-
tion was thrown avay and not used. in any case, once a block
had been left, there wvas no recovery of the AN-menory

assigned to the variables in that block.

At the end of each block the FE provides a 1list of dead
variables, variables which never agqain will be referenced.
For each of these symbols, CFREE (C-FREE) is calleé. If the‘
synbol was an array, the ARM routine for recovering memory
is called by CPREE. There exists, however, code in CFREE
{(as comments) that calls a a routine for recovering scalar
~ storage. The change in CFREE is minor: if an scalar, CFREES

(C~FREE-Scalar) is called. To use these recovered locations,

100
ail requests for memory nanmes for scalar symbols 1is made
throogh CNAMES (C-NAME-Scalar). CNAMES abd CFREES exist,
but are not part of the released compiler. These two rou-
tines maintain four stacks, one for each AN type, putting a
returned AM menory naame on the appropiate stack, and return-
ing a bpame vhen requested off the top of the appropiate

stack. If the stack is empty, GETL is called.
The stack and its pointers are maintained in the common
block /CGRKAME/ K{4), STAC (30, 4). The K(i) are initialized

to 1 in CINIT, described later.

CFREE (syabol name, *error flag)

Errors detected: syebol not in table 12
unable to save scalar 13
unable to save array 14

Calls: ARM, CERRPT

CFREES {AM nane for symbol, AM type, *error flag)
Errors detected: invalid type {no code yet)

Calls: CERRPT

CNAMES (*AM name, AN type, *error flag)
Errors detected: invalid type {no code yet)

Calls: AMA, CERRPT

101

When these are compiled and linked in, they can be given

error codes in sequence with those of the coampiler.

D.7 CHECKING OF ASSIGNMENT TARGETS

A set of little routines check the entries for symbols
that are assigned to in assignment statements. They inspect
the Syibol table entry for that symbol, save the AN meaory
name, and the type.land check that the initialjzation status
is correct: though here much more checking could be done, as
some of the language definitions were too hard to iyplenent
in this first version (a further discussion of this point is

found in chapter six).

The diagram below shows the calling sequence of these
little routines for the various kinds of assigament state-
Rents. It should help the understanding of the prose that

follows.

When the first symbol is found ir an assignment statement
CASSN1 is called: it saves the symbol in a common block for
the other routines in this nﬁdule to use. JCGMULT/ NUM,
INDX, TAB (30, 2) hold, respectively, the number of syrmbols
encountered so far in the parse of a statement, the nunmber
of expressions encountered, and a table of two elements for
each syrbol: its name and type. CASSN1 sets the first two

to orne and zero, and records the symbol as the Il nane.

102

Boutipes Called for Statement Types

CASSN1
i
if initialized if virgin
CASSKS CASS5Ké
i CASSX?
| |
i |
[i if array imitialization
if siaple if multiple, CASSN9
<code for expr> { for all the rest CARRY1
GSINPS { of the targets : |
{ i { for each
{ __CASSN4__ { expression:
{f i i { }
{initialized wvirgin (<code for expr>
§ CASSNS CASSNG6 [CHMULTY
{ | CASSN7]
{ | Y | i
i GASKRY
{ for each
{ expression:
{ i
{ <code for expr>
{ CHULTY
{ i
GMULTS

If the assignment is not an ipitialization, then CASSNS
will be called next. It checks the syrbol table entry for
the symbol in TAB (NUM, 1) and puts its AM memory nanme and
AM type in to TAB (NUM, 1 and 2), overvriting the IL napme.23
If this is an impitialization, the sjmhol table is checked by
CASSN6, but uantil the type is known no morercan be dome.
Later, vwhen the IL type for the syrbol is known, CASSK7 is

called, and it requests an AN memory name for the symbol,

e s, o T T e il v s

23 A possible improvement to this would be to make TAB three
wide, rather than two. Both the IL and the AN name of a
symbol would be available, and the use of TAB would be

clearer.

103

records the mname and AM type in TAB as CASSN5 does, and

enters them in the symbol table.

Only later in an initialization would the compiler be
able to tell whether or not it is an array that is being
ipitialized. If it is, CASSN9 is called. It changes the sym-
bol table entry to indicate that this symbol is an array,
and throws away the new AM nase.2% As an array initializa-
tion continues, the initial index is met. It will be fol-
lowed by a list of initial values. TAB (NUM + 1 through 30,
2) 1is set to reflect the expected types of expression to
come: the initial index should be an integer, the rest of

the same type as the array is being initialized to.

In a nultiple assingment statesent more target syabols
follow. For each one, CASSN4 is called. It puts the syabol
into the next location in TAB, and increments NUON. Thus the'
nusber of targets is counted. CASSN4 is thus like CASSN1,
and it is also followed by either CASSNS5, or by CASSE6 and
CASSN7. ©Note that the coapiler cannot handle the interleav--
ing of array initializations with other assignments in a
multiple assignment statement, though aixtures of initiali-
Zations and non-initializations in a single statement are no

trouble.

S g e T . . AP oy S S i S A A i S T —_—

24 See ‘'Memory Management'. Under certain circuastances,
this AM location can be re-used.

104
The rest of this module generates some code. #ith it

begins the documentation of the code-generation routines.,

The right-hand side of an assignment or array-initializa-
tion statement is a 1list of one or more expressions. If
there is only one, it is a *simple' assignment, and once the
single expression has been parsed and code has been gener-
ated for it, CSINPS (C~SINPle-aSsignment) |is célled. The
compiler has described the location of the result of the
expression ir the common block /CTARGT/ (see the expression
module for details). CSIMPS uses TAB (1, 2) ard /CTARGT/
TYPE to check that the type of the target is the same as
that of the result, and calls GASSN (G-ASS5igN) to generate
the code to make the assignment. If the result, as described
in /CTARGT/, is not in a register, CSINPS calls CHMULTY
(C-BULTiple assignment) to generate code to load the resunit

into register three, first.

In maultiple assignments or array initializations, after
the code for an evaluation of an expression has been gener-
ated, CMULTY is called. It generates code to load the result
into register three, and increments INDX in /CGMULT/ to
count the number of expressions. This does not overwrite the
previous contents of register three, as CMULT4 requests that
register from the register allocater, which is described

later. At the end of the list of expressions, another rou-

105
tine is called. If this is an array assigneent, GASNERY
(G~-ASsigN-aRraY), is called, if a multiple assignment,
GMULTS (G-MULTiple-aSsign). GMULTS checks that the number
of expressions and the number of targets is the same, and
ther calls GASSN and the register allocater to make the
assignments, using the AN memory namres for the targets saved

in /CGMULT/ TAB.

FEEXEEEEE CEEK Fizx-up for type~checking ***skskksixkéss

It is in this module that type-checking of multiple-as-
signment {and array initialization) results should take
place, but does not. To add it, after the production

<ENDEXPE> ::=
in GSENAN, a routine CTYPOK (*error flag) should be called.
It would be:
CTYPOK (F)
COMMON /CTARGT/ NAME, FLAG, TYPE
COMMON /CGNULT/ NUM, INDX, TAB

INTEGER NAME, FLAG, TYPE, NUM, INDX, TAB (30, 2), P

C
iIF {TYPE .NE. TAB {INDX, 2)) GO TC 9000
F=20
RETURN
C
9000 F = new error number

CALL CERRPT (F)

106

RETURN

END
This would be called after CMULT4 had incremented INDX.

FEREEEREE SRR 0648 End Of fix-up SEFEEERERERTREERERKES

To return to the module as it exists, GASNRY puts the
results in an AN array, puts the type, lower bound, and
upper bound in another AM array, and calls the array man-

ager. The two AM arrays are paraseters for the array san-

ager.

CASS5K1 {IL nanme, *error flagqg)
Errors detected: none

Calls: nothking

CASSK5 (*error flag)
Errors reported: unknown IL nane - 67
inaccessable variable 68
unitialized variable 69
assignment to an array 70
assignment to constant 71

Calls: symbol table, CERRPT

CASSK6 {*error flag)

Errors reported: unknown 1L maze

inaccessable variable

assignnent to constant
iritialization within
dood construct

Calls: symbol table, CERRPT

CASSE7 (type, *error flag)
Errors reported: invalid type specified
unknowsn variable

Calls: symbol table, CFREES

CASSN9 (*error flag)
Errors reported: unknown variable

Calls: sysbol table, CFREES

CARRY1 {(*error flag)
Errors detected: none

Calls: nothing
CASSN4 (IL name, *error flag)
Errors detected: norne

Calls: nothing

GHULTS (*error flag)

107

72

73
T4

85

76

76

Errors reported: differing numbers of assignment

108

targets and results 17
Calls: register allocator, GASSN

CMULT4 (*error flag)
Errors reported: none

Calls: nothing

CSINPS (*error flag)
Errors reported: target ard expression
not same type 78

Calls: register allocator, GASSN

DP.8 ASSIGNNENT CODE GENERATION

The generation of the code to perform the assignaent is
done by two little routines. This is really a sub-module of
the previous cne, which checks the assignment statement and
generates code to put the result into the proper regis-

Ler{S)

GASSN is very simple: it is a case on the type of the

result, generating a store command.

GASNRY generates code to put the results of the expres-

sions in an array initialization into parameters for the

109
array manager subroutine that makes the assignment. The
array values are put in an AM array of the right type, the
initial index and calculated high index and type are put in
another, and two registers are loaded with pointers to these
arrays.

GASSN (name of variable, type of variable, register
result is in, *error flag)
Errors detected: invalid type 2

Calls: AMA, CERRPT

GASNRY (*error flag)
Errors detected: invalid type 1

Calls: RMA, ARM, CEREPT

D.9 BREGISTER ALLOCATION

I made a simplifying assumption about register usage: it
would be LIPO, that is, no register could be freed until all
registers allocated after it had been freed., This had to be
true of both compile-time and run-time register usage. Thus
tegisters tend to be allocated onr entry into a construct,
and freed on exit, and the name of the registef that can be
use is saved by the iffi and dood generation routines on

their stack, DOIF.

110

The register manager routine is CREGMN (C-EEGister-Mal-
ager, the C- because, though it generates code, it is a coms~
pile-time service) and has five functions. Which function is
desired is indicated by a parameter, wvhose value is hidden
in the common block /CGREG/- The functions are named INIT,
NAMED, ANY, REL and DIFF. The FORTEAN variables with those
names hold the appropriate value. INIT initializes the
register manager, REL frees a register, KAMED allocates a
pamed register, ANY allocates a register and returas its
name, and DIFF allocates a register different from the one
nased, and returns its name. Registers are always allocated

as a certain type, and must be freeed as that type.

The common block /CGRHN/ holds the data structures that
the manager wuses., STATEG (i) bholds the depth of use of
register 'it*. Each tize it is allocated, the depth is incre-
mented, each time it is freed, it is decremented. The depth
cannot be negative. TYPERG holds several stacks, one for
each register. TYPERG (i, Jj) holds the type of the *J'th
deep allocation of register 'i'. Thus TYPERG (STATRG (i), 1i)
holds the current type of register 'i'. The old contents of
a register that is going to be allocated are stacked. In the
0ld version of CREGMN, these stacks are in the AN, and code
is generated to pushk and pop. In the newer version, the old
contents are stored in an AN scalar, whose name 1is then

stacked. These stacks are simulated in FORTEAN, not AN. As

111
all register usage is assumed to be LIPO (last-in-first-out)

both at run~time and during compilation, either will work.

Because the different functions have different paranmeter

semantics, the calling format is listed five times.

CREGMN (INIT, don't care, don't care, don't care, #%error

flag)

CREGHNN (!ABED,'name of register, type it will be, =*error

flag)

CREGHN (ANY, +#name of register allocated, type it will

be, *error flag)
CREGMN (REL, name of register, type it was, *error flag)

CREGMN (DIFF, #*input as name of register to be different

from and output as name allocated, type of register, *error

flag)
Errors detected: invalid operation 24
invalid type 25
non-LIPO use 26
stack overflow (our error) 27
invalid name of register 28

Calls: AMA, (if new version) CFREES, CNAMES

112

D.10 RUE-TINE SUPPORT

The Array Kanager routines are not covered here, but the
CG did generate the shuffling routine (to shuffle the poin~-
ters to guards in an iffi or dood) in GSHUFL, and the four
traps: zero divide, zero modulo, no guard of an iffi true,
and abort statement execution in GTERAP (now part of the ARA,
with other trap routines, along with GABORT). GABORT gener-

ated the abort message trap code.

The Shuffle routine does a circular shift, the others

each print a short message and hait.

The Fortran routine GSHUFL sets up three variables in a
coanon block: /CSRUFL/ SHUFL, SNAME, and SNUM. SHUFL holds
the AMA name of the shuffle routine, SNAME and SNUM are ANA
scalar pointers to parameters for the routine. They are used

by the dood and iffi~generation routines.

GTEAP has séveral coemon blocks that hold the ANA names
of the various +trap routines, They should be obvious:

/CGABRT/ ABORT, /CBIN/ ZERDIV, ZERMOD, and /CIF/ IFBORT.

GSHUFL (*error flag)
Errors detected: none

Calls: AMA

113
GTRAP (*error flag)
Errors detected: none

Calls: AMA

GABORT (*error flag)
Errors detected: none

Calls: AMA

D.11 ARRAY-POP QPERATION

One of the new operations that DPL introduced was the
array-pop, where a given array has its highest or lowest (by
index) element removed, and a specified variable is set to
the value of that element. GSEMAN calls GPOP to generate the
code to perforn.the operation. GPOP will check that the
array to be popped is indeed an array, and that it is ini-
tialized, and will allocate three registers and generate a
call to the array manager. The elerent to be popped will be
retursed at run~time in register three (R3), and the assign-

ment is made by a call to GASSN.

GPOP (hipop or lopop, *error flag)

Errors detected: variable not an array : 62
array not initialized 63
command neither "hipop* nor "lopop” 64

Calls: ARM, ANMA, register allocater

114

b.12 QIEER ABRAY OPERATICHNS

DPL has many other array operations. they fall ianto two
classes: those that alter ar array, using the result of some
expression, and those that return a value froa an array des-
cription. The routine GARYOP does the first kind, the rou-
tine GARY the second. Those that return values can be ele-

ments of an expression; the others cannot.

GAEYOP uses the name of the array (in /CGMULT/ TAB (RUN,
1)), checking that it is an aray, initialized, and accessa-
ble. It then perforas a case statement (simulated in FOR-
TRAN) based on the operation to generate code, allocate
registers, call the appropriate ARM compile—~time routine and
free the registers again. For some array operations, there
aust be one or more parameters. If there is one, it is be
found in the location described in /CTARGT/ (described in
the expression section of this documentation: a name, a
type, and é flag, which is .TRUE. if the name is a name of a
register, .FALSE. if it is a ienory location), or if there
are two results, the first is in register three {(B3), and
the second is described in /CTARGT/. In somé cases, the
paraneters to the ruyn-time ARM must be stored in a tenpo-
rary, and a pointer loaded.

SREEEXEEKXEREES TYPE-CHECKING NEEDED *&%ksk¥xkkaikis bRekdkxk

115

Where there are two or more cperands, only the last is
described in /CTARGT/ for type-checking. To check the oth-
ers, a routine must be called for the appropriate production
in GSEMAN: CTYPOK is the obvious choice. Thus /CGMULT/ must
be set up reflect the expected types: usually a FXD index
and then either another index or an element of the array's

pase type.
JCTARGT/ should aliso be checked within GARYOP,

The table would be set up on seeing the operation, and
checked by CTYPOK on completion of the expressions.

ShukkkkkkgsEs®x END OF KEEDED CHECKS #hkFkddihsdh sk

GARY is also basically a case statment after a check of
the symbol table entry for the array. The calling saquence
is simpler in GARY, as the parameters to the ARM are amore
similiar for these operations than for the first class. is
GARY generates the code for part of an expression, it has
parameters that describe part of an expression: an opera-

tion, and one or two operands.

GARYOP {operation to perform, *¥error £lagq)
Errors detected: reference to non-array or anitialiied array
invalid array operation
inval;d type of array

Calls: ARM, AMA, register allocater, CERRPT, symbol tablie

59
60
61

116
GARY {operation fo perform, first operand name, f£lag {.TRUE.
if first operand is in a register), type of first operand,
second operand name, flag {(.TRUE. if in a register),
second operand type, *error flag)

Errors detecteds array name result of caculation {inm register)Bé

array name not in symbol table 87
nale not array name 88
invalid operation 69

Calls: ARNM, AMA, symbol table, register allocater, CERRPT

p. 13 THEE DRIVER, INITIALIZATION AED IO

oS e A A

The driver owns all the common blocks of the €6, and all
the common blocks of the other modules as well. It may vary
from installation to installation. It will always 4o the
faollowing: call the AH to get a description ¢f the AH's
limitations, and put that information into common blocks:
call initialization routines for all modules, including the
CG; call the CG to generate code; and call the AH to finish
genevation and start excution or to save the AM progranm gen-

erated.

The CG's initialization vroutine is CINIT. It <calls the
initialization routines of the register allocater, the sym-

hol table, and the stacks. I+ sets several constants,

117
including the names of the I/C vectors, creates the paramet-
ers for calling the ARNM, and calls the routine that gener-
ates the run-tiame support routines (6SHUPL, and so on).

Pinially, it lables the beginning of the progras.

Input and output (through-put) is done with six pre-de?
fined arrays, two of each type. One set is input, and may be
low-popped, the other is output, and may be high-extended.
Other array operations on these arrays are legal. At the end
of the program they are printed out by code generated by the

routine CUTVEC (C-oUTput-Vector).

main routine
Errors detected: none

calls: AM, ARNM, PE, CG (CINIT and GPARSE)

CINIT (*error flag)
Errors detected: none
Calls: register allocater, stacks, symbol table, ANA,
GSHUFL, GTRAP {though a new versior has merged

the old GTRAP with the ARM's traps)

CUTVEC (*error flag)
Errors detected: none

Calls: ANA, ARM, register allocater

118

D.14 SENANTIC ACTION SELECTION

GSEMAN {G-SEMANtic-action) selects a semantic action when
called by GPARSE. There are two kinds of production: those
in which there is 1o replacement of the item on the top of
the stack, and those in which the itea is replaced by a
string of non-terzinals and terazinals. In the second case,
we bave a production number to use in a case statement, but
in the first we have to use the item on the top of the
stack, as the production number is zero. The translation of
the item on the top of the stack into a pseudo-production

nurber is done via a coaputed go-to.

For most of the productioms, nothing is done. For a few,
like the one that gives the line number, code is generated,
while for the rest, either some jinformation is saved, or a
subroutine is called, or both. Information is saved in the

following comaon blocks:

/CGINDO/ THIS, OK, INDOOD (10): this records whether or
not initialization is legal at this point in the parse. 1If
we are in a do-od, it is not 1legal, unless we are also
inside a block which itself is inside the do-od. At any
time, we are in block number THIS, and INDOOD (THIS) equals
OK if initilization is possible, that is, if we have nbt yet
entered a do-od group, or have left the outermost do-od

group in this block. INDOOD (THIS) is incremented for each

119
entry into a do-od, decremented for each exit. THIS is
incremented for each entry into a block, decremented for
eachk exit. If necessary, the size of INDOOD can be

increased.

/CGSEM/ SCOPE, SNAME, STYPE: these record information to
be used in the next few productions: SCOPE saves the scope
for a list of declarations, STYPE and SNABE save the type

and IL name of variable and constant references.

/CGTOK/ CTOK, LINE hold the current token and the current

line number at compile-tinme.

/CGLINE/ LINENO is the AMA location in which the line

nunber is stored at rup~tinme.

GSEMAN (production number, non-terminal on top of GEAM
stack,
class of token, token, *error flag)
Errors detected: invalid production
of an non-terminal 65
of a terminal 66
Calls: AMA, CUTVEC, symbol table, 6DO, 6OD, GIF, GFI,
GABORT, CFREE, GCEND, GGUARD, CGDNSP, GARROW, CGEBDGC,
CASSN1, GARYOP, GARYEX, CMULT4, CASSH9, CASSN4, CSIMPS,
GMULTS, CASSN6, CASSN5, CASSN7, CUNOP, CBINCOP, CPAVAR,

CONST, GEXPk, GSEXPR, CARRY1, GASKRY, GPOP, CERRPT

120

D.15 IFF] AND DOOD COBSTRUCTS

There are four roatines that generate these constructs,
and five more that gemerate the code for the guarded command
set that is the heart of each comstruct. ., These routines
communicate through the two stacks DOIF and GUARDS in the
stack module. The first half of IFFI or DOOD gets labels and
a save location for a pointer, allocates RE1 and a arbitrary
register, and codes a jusp to the beginning of the control
section (bypassing the code that will be generated from the

guarded coamand set) and stack the following:

DOIF GUARDS

topi

ot
Q
=]

name of save location

label SBCCESS

label START

. e S G S g W
e e g S S e e

name of array FRONT

|
|
i
i
I
|
i
i
|
|
e

rame of abitrary register

Ve Sl e B b e S e g e S

The second half of the IFFI or DOOD construct generates
code to do the looping and branching that does the action of

the construct. The arbitrary register is released, as is BR1.

The calling sequence for the guarded command set routines

is GGUARD to start a particular guard, GARRON to test the

121
guard, GENDGC at the end of a set of commands, and GGCEND at
the end of the set of guards,before the iffi or dood comn~-

trol.

The stack GUARDS holds the number of guards encountered
so far on the top, with the 1labels to the code that will
evaluate the guards beneath it. GGUARD gets a new label,
defines it, and stacks it, incrementing the count. CGDESP
{written by Dan Lanbeth) tests the result of the guarding
expression to be it is of +type *BIT', and in register one,
GARRCW generates code to test the result, GENDGC to return
to either the controlling loop (if a dood) or the next
statement (if an iffi). GGCEND defines the array FRONT, in
the stack DOIF, setting its elenents to be pointers to the

guard- evaluation routines.

GUARD stack: Before and.after GGUARD
top| i topl

nuzber of guards nakber 4 1

label of guard n label of guard n+1

label of guard n-1 label of guard n

- - - - - -

label of gqguard 1 label of guard 1

e S e S, S g, g PR e g g Sem

I i
i i
l]
i i
| |
i i
i i
i i
i i
i I
) I

s e g B e G Bme B S S See

GDO and GOD do not directly affect the common block
/CGINDO/ as might be expected. GSENAN does the bookkeeping

when it calls one or the other.

122
The routine CGINTO is called by CGDNSP. It generates
code to put a result into a particular register, When that
register is already allocated. If the result is already im a
register, it assumes that only that register smust be freed
to make the target register accessable. I actmality, it is
alvays called to put the result of a guard expression evalu-
ation into R1 (register one).

skkakhkkk**sx INITIALIZATION CHECK NRBEDED ®&*xssk¥skskbkks

I can't figure out how to check initializations within an
*jffi' tc make sure they're duplicated in each branch. The
code for the assignaents does check to insure the types are

the sane.

The best I can suggest is building a 1list, for each
viffi', of the variables that have to be initialized. and
checking each branch to make sure they do. It would be
tough. The lists would be built and checked ir CASSHN6.

*xxkkEEREEFRRRRR END OF NEEDED CHECK #+£¥¥¢3xskkdbksdkkkEs

GDO (¥error flag)
Errors detected: none

Calls: AMA, stack

GOD ({*error f£lag)

Errors detected: none

Calls: AMA, stack

GIF (*error flag)
Errors detected: none

Calls: AMA, stack

GFI (*error flaqg)
Errors detected: nornre

Calls: ANA, stack

-GGUARD (*error flag)
Exrrors detected: none

€Calls: ANA, stack

CGDHSP (*error flag)
Errors detected: non-boolean gquard result

Calls: CGINTO

GARROW (*error flag)
Brrors detected: none

Calls: AMA, stacks
GENDGC {*error flag)
Errors detected: none

Calls: ANA, stack

GGCEND (*error flag)

87

123

124

Bertors detected: none

Calls: AMBA, stack

CGINTO (target register, *error flag)
Errors detected: none

Calls: ANMA, register allocater

D. 16 EZYPRESSIONS

In the IL, expressions are in post-fix polish notation.

Thus a simplified version of the CG's algorithm is:

The discussion belog wiil give the name of the routine
that does each part, and discuss the complications that
arise in iaplementing the algoritha above. For example, the
AMA provided unary operations only combined with loads:
LNEGF and LNOTB. Thus the UNOP portiom was modified as fol-

lous:

GSEMAN stacks all operatérs. When a variable referance
has been parsed, GSEMAN calls GSEXPR to check it, and GSEXPR
calls GEXPR. #¥ben a comstant has been parsed (and the value
retrieved from the FE by a call to CONST), GSEMAN calls
GEXPR directly. GEXPR is the routine that perforass most of

the case statement in the algorithm above. It calls GUNOP

125

if {token is operand}
then case {stack-top}
UNOP --> (if {token is not registerj}
then {allocate register R
gen "load R, token®
tokern is now R}
gen "stack-top token, token®
pop stack}
BIROP ~> push token
else <-=> {[node := stack-top
pop stack
// stack-top must be a BINOP //
if {node is register}
then f{gen "stack-top node, token”
token is now node}
else if {token is register and stack-top
is a commutative operation}
then gen "stack-top token, node®
else {if token is Aot registerj}
then {allocate R
gen "load R,token”
gen "stack-top R, node™
token is R}
else {gen "store token, teap”
gen ®*load token, node"

gen "stack~top token, temp®

pop stack}
esac
else push token

UNOP =-=-=> (if {token is not register}
then {allocate register R
gen "unop R, token™
token is R}
else gen ™unop token, token“

pop stack}

and GBINOP to generate code for the ordinary operations, and
CXTRCT to generate code that will cali the ARM to gét an
array element. The CG, you see, considers subscripting to
be a binary operation. CPAVAR (written by Dan lLambeth)

checks the array name, stacking it as an operand. It is

called froz GSEMAN.

126

The stack EYPR is used by this module, with the folloving
encoding: eachk element has two stack elements describing it.
An operator has a zero (0) stacked on top, an operand has
its type stacked on top of it. If the type is positive, the
operand is in a register, if it is negative, the operand is
in am AN memory location. Tkis is differeat from the normal
system in the CG, wvhere the type is alwvays positive, and a
flag describes whether or not the operand is in a register.

GSEMAN does not knov the encoding above.

CUNOP and CBINOP are called by GSENAN to stack operands.
Note the distinction: CUNOP, CBINOP stack operators, GUNCP,

GBINOP generate code for the operations.

GEXPR calls various sub-routines to generate code, but
there is one tricky thing that should be noted: *tcand' and
'cor' are not handled as ordinary binary operations, but
decomposed into tvo unary operations. This had to be done,
as the second operand nmay not be evaluated if the first
gives the result of the *cand* or *'cor'. Thus, when one or
the other is seen by GEXPR, it calls a routine to generate
sore code for the first half, stacks a fictitious unary
operator that will tell it to generate the second half omn a
later call. This accounts for the GCAND1 and GCAND2, GCOR1

and GCOR2, and the extra operators in the IL conmmon block.

127

The ‘fcor® and fcand' routines connunicate through the
stack called ¥YCANDS'. In it they s=stack a label in the code
that is the end of the evaluation of the operation, and the

name of the register that the resualt should be in.

When GEXPR returns, it has set some of its panametgrs to
describe the result. If the stack is empty, this is the
final result, 4if not, it is &an intermediate resalt. Ele-
ments of the common block /CTARGT/ are set by GSEHANW to des-
cribe this result: its nams, its type, and whether or not

the name is a register nama.

GBIRGP is fairly complicated: it sust ensure that regis-
ters are handled in LIPD faskion. It attempts to minimize
;egister usage by not loading operands unless they must be
loaded. This may reguire swapping the first and second ope-
rands. The result is always put into the %oldest" register.

If two registers were used, the "younger®™ will be freed.

thEkphFEEkE FARNING 1 Sdkdd&es skl

GBIEQP is the routine mest likely to have been modified
by other programmers since I left the project. Hhat is writ-

ten. here mpay not be trus anysore.

*kELREFE BEND OF WARNINGH #wdkdads gk

128

CONST calls the FE to get a value for a constant. If the
constant is boolean, it can only be firue’' or *false?, so
only the length (4 or 5) needs to be known. HBote that CONST
returns an AM name holding the constant, rather than the

sonstant itself.

CONST calls CONVET, which 1s the only machine-dependant

routine i

Iz

acters. Care shopld be taken when $ransportiing the €6 that

CONVRT will still work.

CUNOP ({operator, *error flag)
Brrors detected: none

Calls: stack

CBINGOP {operator, #error flagyg)
Errors detecteds; none

Calls: stack

GSEXPR {IL name of variable, *error flag)
Errors detected: variable uninitialized
variable inaccessable

Calls: CERHPT, symbel table, GEXIPR

CONST {II. name of constant, type expected, *valiue, ¥error

Errors detected: invalid lengtih of constant
invalid character in an integer

invalid type of constant

the £G. Lt translates IL characters into AN charp-

17
18

£lag)
19
20
29

129
character constant tooc long 22
invalid character (s} in boclean 22

Calls: FE, AMA, CERRPT, CONVRT, CNAHES {menory allocation)

FEF Rk hdd ok gk ok fe bk ok Rk okl R ok B ek B o g el ek kel ol e ok
CONVET (*AM character, Il character wvalue)
Errors detected: none

Calls: none

ETC S YA T)

%
%
-
£
k4
i
wfkkskdksx THIS ROUTINE IS MACHINE~DEPENDANT l®sssdwixss

GEXPR {token name, token type, flag if ir register,
*result name, result type, flag if result in register,
serror flaqg)
Errors detected: binary cperation expected, not found 42
Calls: stack, GCANDY, GCAND2, GCOR1, GCORZ, GUNOP, GARY,

GBINOP, CYXTRCT, CERRPT

GCAND? {(token name, type, flag if in register, *error flaqg)
Errors detected: imvalid type of operand 43

Calls: stack, AMA, register allocater

GCAMDZ2 {token name, type, flag if in register, #*result nanre,
result type, flag if result in register, *error flag)
Errors detected: invalid type 51

Calls: stack, AMA, register allocater

GCORY (token name, type, flag if in register, #*error flag)

130
Errocs detscted: invalid type of operand 47

Calls: stack, AMA, register allocater

GCOR2 {token name, type, flag if in register, *result nane,
rasult type, £flag if result in regiszster, #*error flag)

Errors detected: invalid type of operand 55

GUNOP (operation, token name, type, flag if in register,
result name, result type, £lag if result in register,
*srror f£laqg)
Errors detected: invalid cperation 10
invalid type of operand 17

Calls: AMA, register allocater, {ERRPT

GBINCOP {operation, token name, type, flag if in register,
resuit name, resuit type, flag if result in register,

*error fiayg;

Errors detected: invalid operation 4
exponentiation of non-inteqers 6
compatrison of unalike types 7
arithmatic on non-integers 8
unknown cperation 9

Calls: AMA, register allocater, CERRPT, memory allocter

GARY is described in the module ®Other Array Operations®

CXTRCT {array name, array type, flag if name in registern,

131
index name, index type, flag if index in register,
result name, result type, flag if result in register,

*error flag)

Errors detected: array name in register 36
index not an integer 37
array name not in syasbol table 38
array not accessable 39
array not initialized 40
nake not name of an array §1

Calls: syabol table, register allocater, AMA, ARM, CERERPT

D.17 FORTRAR CODIKG PRACTICES IN THE C¢

The CG's routines are coded in a way that I think will

help others maintain them. The practices are as follow:

1. When an error is detected, a GOTO is made to a label
nunber of 9000 or greater, Thus the in-line code is

always concerned only the normal case,

2. An error causes a return code to be set to a unique
-nusber. The routine then retaras. Thus there is no

return to the in-line code.

3. Parameters are either input and unnmodified or ocutput

and set by the called routine.

132

4. The following are the constructs used:

Construct FORTRAN
if B then S1 else 52 IF {(.NOT. B }) GOTO L1
51
GOTQ L2
L1 52
L2
while B do S L1 IF (.NOT. B) GOTO L2
S
GOT0 L1
L2
case i of GOTO (L1, 12, L3), I
1z st L1 51
2: 82 GOTO LN
esac L2 52
: Ly

5. COMMON storge is assumed static. HNamed cormons are
used to hold special parameters im variables with

mnemonic names.

BIBLIOGRAPHY

Abo, Alfred V. and Uliman, Jeffry D. PpPrinciples of Coppiler
Design Reading, Massachusetts: Addison-Wesley, 1977

Bartussek, Wolfraa and Parpas, David L. "Using Traces to
Write Abstract Specifications for Softvare Modules®, JNC
Report No. TR 77-012: University of North Carolina at
Chapel Hill, Deceaber 1977

Bellovin, Stephen. Yerifjably Correct Code Geperatjon usjing

Predjcate Transformers Chapel Hill, North Carolina:
University of North Carolina at Chapel Hill, in

preparation

Brooks, Frederick P. Jr. The Mythical Man-8onth Menlo Park,
California: Addison-Hesley, 1975

Calingaert, Peter. Assemblers, Compjlers ard Prograsms
Iranslation Potomac, Maryland: Coaputer Science Press,
1979 :

Dijkstra, Edsger W.) Piscipline of Prograsping Englewood
Cliffs, N.J.: Prentice-Hall, 1976

Freund, Karl M. The design and Abstract Specification of a
Translator Module Chapel Hill, ¥.C.: University of XNorth
Carolina at Chapel Hill,1979

George, James D. Jr. An Abstract Machine as an Aid to
Compiler Portability Chapel Hill, N.C.: University of
North Carclina at Chapel Hill, 1979

Parnas, David L. "On the Criteria to be used on Decomposing
Systems into Modules®: Coam. ACN pp330-336, Deceamber
1972 _

Parnas, David L. A Prograr Holder Module Pittsburgh,
Pa.:Carnegie~Mellon University Departaent of Coaputer

Science, June 1973

Parnas, David L. "On the Need for Fewer Restrictions in
Changing Compile~Time Environments® {co-author with W.D.

Elliot and J.E. Shore), Proc. of the International -
Computing Symposium 1975, North Holland Publishing Co.

Strong, J. €t al. *The Problem of Programming

Communications with Changing Nachines”:
pp12-18, volume 1, number 8 14958

Coam. ACH

134

