On the Complexity of Vector Computations
in Binary Tree Machines

D. M. Tolle
W. E. Siddall

January 1981

TR80-013

Un the Complexity of Vector Computations in Bipary Tree

Machines

Do M. Tolle

#. E. Siddalls
University of North Carolina at Chapel Hill

Computational complexity, analysis of algorithms, parallel

processing

This paper estaplishes upper and loswer bounds for the
time required to periorm certain vecfor operations in a
binary tree macuaine of tohe kind introduced by Magd[1].
{Iolle[2] proposes another such machine.) This paper also
cnaracterizes tue space-time tradeoffs available in such

machines for certain vector operations.
Tne machines considered bere consist of a complete binary

tree of “cells," each of wihich consists of a processor and a

*# U. E. Siddall's contribution to this work was supported by
¥ational Science Foundation grant NC5-7802778.

PAGE 2
small amount of Remory. Let two n-vectors x =
X[V1]s ewes X{n)>» and y = <¥[1], «awes yYIin}> of atomic
symbols (Yatoms") be stored in the leaf cells of the tree,
in left-to-right order, with at most one atom per celi, and
with vector x lying entirely to the left of vector y. (T ae
atoms might be floating point numbers, for instance.) Here

is a smpall example:

X, % X3 % Yo Y

Let a permutation § be defined on the sSet 1, su., N.
Consider tke problem of moving the elements of the two
vectors alony the arcs ot the tree so that, for eaca i, x{i)
meets y[g{i)] in some cell of the tree. Tiais is a necessary
step in computing any element-by-element combisation of x
andry, Such as the inner product. Assupe that each arc of
the tree is a tio~way channel capable of @amoving one atos
{(and an associated subscript) between its two cells in each
direction in one unit of time. We call the probler of
bringing x{i] together with y[q(i))} for all i, 1 £ i < n,

the n~vector matching problem or the problem of bringing two

PAGE 3
n~vectors together. Ke are interested here in the asount of
time needed to solve this problem, for various permutations
g- We vill see that the time reguired depends upon the
initial distribution of vector elements in the leaf cells of
the tree. One important aspect of the distribution is the
apount of space usad by the two vectors: the Rumber of leaf
cells petween and including the leaf cells occupied by x 1]
and y{n]l. #e assume that there is some means by which each
cell can determine, at each time step, which of its arriving
atoms should next be sent on, and alony vwhich arcs they
suould be sent., Tiais assuymption is easily satisfied for tae
most commonly encountered permatations, such as the identity

and the reversal permutations.

Notation. The two vectors x and y have n elements each.

All the logarithms in tbis paper are pbase 2. Let £{n) and
J (&) be functions of some integer quantity n. Then #e say
that £(n) 4is O{y(n)) if there is some positive constant ¢
and some integer nd such that jf(n)]l = c¥)g(n){ for all n 2
n0. We say that £{n) is €{g{n))} Aif tuere are positive
constants ¢l and ¢2 such that cl*g(n) =< f{n) £ c2%*g{n) for
all sufficiently large values of n. Let h denote the height
of the Bmachine tree. Notice that it n is

O (nynper_of_leatr_cells), then h is 6{log(n)). FNe say that a
cell gees an element of a vector if the elemrent jnitially

lies in the subtree of shich that cell is the root.

PAGE 4
Proposition Q. Any n~vector matcuing can be done in

O(n+h) time.

proof: Let the elements of x move up to the root cell of
the tree and then be broadcast downward to all the leaf
cells of the tree. It takes b time steps for the first
element of x to reach the root, another n~1 steps for the
last elesent of x to reack the root, and another h steps for
taue last element of x to reach the leaf cells. ({Notice that
if b is C(n), sbicp is usually a reasonable assuymption, then
any n-vector matching can be done in O(n) time. Kehs[3, pp-
140-144] has shown that if additional arcs are inserted in
the tree, connecting eacu cell with its teo horizontal
neiynpors, then any n-vector matching can be done 1in sub-

libear tinme.)

Proposition 1l. FYor the identity permutation, the a-

vector matching problem reguires at least &(n) time.

Proof: Consider the lowest cell, A, that sees at least
half of each vector. Be show that at least half the pairs
(x{i1],y{i]) are "split® by A, in the sense that at least one
element or the pair must travel through {(or to} A in order
to meet its partner; To show that a pair is split by a
cell, it suffices to éhon that one elerment of the pair lies
in one subtree of the cell and the other element of tae pair

lies eitbher in the other subtree of the cell or outside tae

PAGE 5

tvo subtrees of tae cell. ¥We consider two cases:

Case 1. Assume that x{n] lies ir A's left subtree. Then
Ats left son 'aust see at least balf of x, and therefore
capnot see as muci as half of y (by the definition of A}.
Taus, the right haltf (at least) of y lies to the right of
A's left subtree. ¥We show that A splits each element of the
right balf of y fros its partner. The elements of y that
lie in Ats rigyat subtree are certainly split from their
partners by 4, Since no element of x lies in A's right
subtree. The part of y that lies to the right of A's rigiat
subtree must constityte no sore than half of y (élse 4 could
not see at least ualf of y). Thus, the partners of the
elements in that part of y all lie in A's left subtree;
tous, the elements of that part of y are are also split by A
from their partners. Hence A splits each element of tke

right half of y from ité partner.

Case 2. Assume that x[{n]} lies in A's right suptree.
Then y[1] 1ies in A's right subtree, and an argupent
symmetrical to the one above shows that at Jleast half the
elements of x lie to the left of A's right subtree arnd are

split by A from tagir partners in jy.

Thus, in either case, at least n/2 elesents must travel
to or thkrough A in order for tiae vectors to be brought

together. This takes at least a/2 time units, which is

PAGE 6

€(L).

Proposition 2. Someé n-vector matchings (including
reversal) can be done in €(sgrt{(m}) time, using

G(U**sgri{n)) spacea

Proof: AssuBe for simplicity that n = m(m+1) and that
B = 2%%k, for some integer X. Then m is @{sqgrt(n)). ¥e
arranye e€ach vector in s blocks. Let the blocks of x be
indexed from right to left and those of ¥y be indexed from
left to right. For each vwvector, 1let the i=-th block
{1 = 14 «aayh) contain 2i elements. Assume that the
permutation matches up {in some order) tune elements of the
i-th vlock of y with the i-th block of x. {Notice that the
reversal permutation satisfies tais assumption.) Let the
first block of x and tbe first block of y 1lie in adjacent

subtrees ¢f heigat 1:

Height (A)

xn-'-i xh y& Yl
{ J L :
Block { of x Block 1 of 7

PAGE 7
Tnen these two blocks can be brought together at node A[1],

in 3 units of time.

For each of the remaining m-1 pairs of blocks, assume

that the arrangemeat is this:

é""‘"‘CﬁH Ai

(i=2,...,m)

")

Heia]n'\'
(Ai-d)

Y o | e
e — N

it Hor.f/ P it block
of x First i-1 blacks ofy
o'F X and)/

It is clear that tae i-th block of y can be brought together
with the i~ta block of x at «cell A[i], usiny patks in the

tree not used by earlier blocks, in time:

Tipe {i-th block)

2i + height (a[i]) =1

2i + beight(a{1]) + 2(i=~1) -1

4i - 1

The maximum occurs for i = A, and thus the time taken for

the entire n-vector matching is:

PAGE 8

Time(m=th plock} = 4m = 1 < 4%sgrt(n) =1
which is 8 (syrtn))a.
The sSpace used by the vectors is

4n + 2*%(height (A[2~1]))
= 4m 4 2%%({beigat (A[1])+ 2(m=2))
= 4m 4 2%%{2m ~ 2)

< 4*sqrt(n) 4 (4**sqgrt{n})/4
which is @ (U¥*sgrtin})).

Propgsjtion 3. Every n-vector Ratching takes at least

syrt(un) time.

Proof: Let LCA[i] (lLowest Common Ancestor of i) denote
the (unique) cell of nminimum height that sees both x[i} and
its partner y[g{i) j- Then x[i] is in the left subtree and
¥Yi441i)] is in the rigat subtree of LCA[i]. Notice that a
given cell in the machine may serve as LCA{i]) for more than
ohe value of i. Let d denote the number of distinct cells
that serve as LCA{i] for one or more values of i. Hc¢ two of
these d cells can be at the saae height, because two
distinct cells at the same heigat have disjoint subtrees and
therefore cannot both see¢ elenents of both x and y. For any

cell ¢ in the machine, let #LCA(c) denote the number of

PAGE 9
values of i for waich ¢ serves as LCAji]. Then 4 2
n/sax{#LCA{c)), where the max is taken over all the cells of
the machinea Since either x[i] or y{q{i)] (or both) must
travel through (or to) L1CA[i], it is clear that tae time
required for the matching is at least max (#LCA{C)) It is
also apparent that the time reguired is at least

max{beigat(Lca{il}), taken over i = 1, eeesbia

Now, assume that a giver n-vector matching can be done in
time t({n). Then max(#LCA{c)} < t{n), so d 2 n/t{(n}. Since
all d of the ceils serving as LCA[{i]'s Bust be at different
heights, the highest oI the® must bave height at least
nst{n), so the time required by the matching is at least
n/t{L}= That is, t(n) 2 n/t{n). Thus ti{n)*t{n) 2 n, so
t(n) 2 syrt(n). (Notice that the space required is at least

(lr4)*2** {n/t (n)}.)

Proposition 4. 1f the vectors are constrained to lie
within c#*n**p space, for any coamstants ¢ > 0 and p 2 1, taen

ever'y h-vector matching takes at least 8{n/log(n)) time.

EBroof: As was noted in the proof of Proposition 3, the
space needed to perform an n-vector matching in time t(n) is
at least (1/4)#%2%*(n/t(n))e. If the space is npo more thas
c¥n**p, then 4*chns*p > 2&%(n/t(n)). Taking logarithaes of
both sides, we see that 24log{(c) t+p*log(n) 2 n/t(n), so that

t{n) 2 n/{24log(c)+p*log{n)), which is 6{n/log(n})-

~ PAGE 10
Proposition 5. If the vectors are allowed to use n#*#p
space, for any constant p > 1, then there are some
distributions of tae vesctor elements for wshichk some n-vector
matchings (including reversal) can be done in €({n/log({n))

time.

Sketch of proof: Given p > 1, choose k = 2/({p~1« As in
the proof of Proposition 2, break the x and y vectors into
ctlocks of elements, but let each block be of size

approximately s = kn/logy(n)a. Then each vector has roughly
n/{knsloggfn)) = log(n)/k blocks. Arrange the blocks as in

the proof ot Proposition Ze letting m denote the number of

tlocks, we see that the time regqguired is:
s + heigat(A[me]}) - 1, which is roughly
knslog(u) 4 2{log{n)/k - 1) 4+ log(kn/log(n))

= knslogfn) 4+ (142/k}log(n) 4 log{k) = 2 - log(log(n)).

waich is & (kns/log(m}) = €{2n/((p=-1)iog{n))) = &{n/log{n))e.

¥

The amount of space used is bounded apove by
2%*height{A[®m)}, whick, for sufficiently large n, is no more

than 2*%((142/k}loy(n)), which is n*¥p.

(A rigorous proof, using the ceiling function, is

straightforward but tedious)

PAGE 11
Proposgition 6. If the vectors are constrained to lie
Mithin c*n space, for some constant ¢ 2 2, then every p-

vecter matching reyuires at least €(n) time.

Proof: Let B[1] denote the lowest cell that sees both
x{nj and y(1); x{n] nust be in its left subtree, y[1] ir its
£lgat. Consider tae seqyuence EK[1], B(2], <., ©f L£ight
ancestor cells of B[1]: those ancestors of R[1] that have
B{1]) in their left subtree. Suppose that R[k] is the lowest

right apcestor cell of BR[{1] that sees all of y. {k may be

1.)

Every element of y lies in the rigat subtree of exactly
one E{ijle. Since no element of x lies in the right subtree
of any R{i], any element of y that lies ir the right subtree
of B{1] is split by B{1i) from its parthner in X Let C
denote ceiling {lo4y(C))a If k £ 24C, then some B[i] must é
split at least n/{24C) elements of y fron their partners in |

x-

If Xk > 24C, <consider the penultimate 14C of the B{i]:

Bl k=C=1]), R[K=C]); eess R[k=1]). Each of these sees at least
tvice as many of the cells between y[1] and y[n] (inclusive)
as its predecessor does. Thus, ' B[k=1] sees at least
s*¥2x% ({C4+1) of these cells, vhere s is the number of then

seen by B[k~C-2]. Since y uses no more than c*a cells, ve

bave:

PAGE 12

2%Cc*5 £ s¥*2*%% {C41) £ c¥pn,

and thus s £ n/2. This implies that taoe nuaber of elesents
of y seen by the f£irst k-C-2 cells of tae right—ancestor
seqguence is mno more than n/2, apd thus that the nunmber of
elements of y seen by tne last C42 cells in their right
Sybtrees is at least n/Z2. Thus, some R[i] splits at least
n/(2*{C42)) pairs of elements. Hence, the time reguired to

do the matching is at least €(n).

Summary

For the class of binary tree machines considered here,
two disjoint n=-vectors, stored with at most ohe vector
element per cell in the leaf cells of the tree, can be
brougat together (matched) element by element, according to
any permutation, in O(n4h) time, vhere b is the height of
the tree. If tae space occupied by the two vectors
{including any interspersed empty leaf cells) is only
linear, then at least linear time is required to bring thenm
together, regardless of the permutation. If the vectors
occupy polynomial space, then at least €({n/log{n)} time is
required. Some matchings (such as reversal) can be done iwn
@{n/log{p}) time if the vectors are allowed to occupy n¢*p
space, for any p > 1. Some matchings (such as peversal) camn
be done in @(syrt{n)) time if the vectors are allowed to

occupy @{u**sgrt(n)) space. However, no matching can be

PAGE 13
done in less than sqrt(n) time, and some matcaings (such as
identity) always regqguire at least linear'tile, regardless of

the amount of space ‘used by the vectors.

Acknoviedgenents

Thanks to Holiins wWilliams, who conjectured something
akin to Proposition 1. Thanks also to Dom Stanat, for
asking whether all n-vector matchings require €{n) time in
these macaines, and for aelpful suggestions concerning the
paper. Special thanks to Gyula Magé4, for inventing tae
machine that makes these questions interestinge. Further
thanks to all the above and to Anne Presnell, Roy Pargas,
Lee Nackman, and Vicki Baker for taeir comments on this

paper.

References

1. Bagdé, Gyula A. "A netwvork of microprocessors to execute

reduction languages." Two parts. Internatjonal Journal
of Computer and Informatjon Sciences 8, 5 {(October 1979)
and 8, 6 {December 1979).

PAGE 14
2. Tolle, D= M. “Coordination of computatiom in a binpary
tree of processors: a Rachine design.® PhaD.
dissertation, Department of Computer Science, Umiversity

of North Carolina at Chapel Hiil. 1In preparation.

3. Keas, David k. "A routing netsork for a machine to
execute reduction 1languages.!" Ph.D. dissertation,
Lepartment of Computer Science, University of North

Carolina at Chapel Hill, 1978.

