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ABSTRACT

The numerical solution of elliptic partial differential equations (pde’'s) can
often be reduced to the solution of other relatively simple problems, such as
solving tridiagonal systems of equations and low-order recurrence relations.
This thesis describes elegant and efficient tree machine algorithms for solving a
large class of these simpler problems, and then uses these algorithms to obtain
numerical solutions of elliptic partial pde’s using methods of finite differences.

The tree machine model on which this work is based contains data only in
the leaf cells of a complete binary tree of processors; one leaf cell typically
holds all information pertinent to one point of the rectangular mesh of points
vsed by the method of finite differences. An algorithm is described for
communication among leaf cells using shortest paths; other algorithms are
exhibited that find the first n terms of the solution to several classes of
recurrence expressions in O{log n) time.

The communication and recurrence expression tree algorithms are used to
describe algorithms to solve (nxn) tridiagonal linear systerns of equations. A
number of direct methods are shown to require O{log n) time, whereas other
direct methods require 0{{log n)®) time. Iterative methods are shown to require
O(log m) time per iteration. The asymptotic complexity of both direct and
iterative methods implemented on sequential, vector, array, and tree
processors are compared. i

The tridiagonal linear systemn solvers and the communication algorithms
are used to describe algorithms to solve (n®xn?) block-tridiagonal linear
systems iteralively. Both point iterative and block iterative methods are shown
to require O{n) time per iteration. Alternating direction implicit methods
require O{n logn) time per iteration. The asymptotic complexity of methods
implermenied on sequential, vector, array, and {ree processors are again
compared.
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CHAPTER 1. INTRODUCTION

The formulation of mathematical models in engineering and the physical
sciences often involves partial differential equations {pde’s). Rice ef al, [Rice78]

give as examples modeis to perform

numerical weather prediction ..., the simulation of nuclear reactors and fusion
reactors, the analysis of the structural properties of aircraft and bridges, the
simulation of blood flow in the human body, the computation of air flow about an
aircraft or aerospace vehicle, the propagation of noise through the atmosphere,
and the simulation of petroleum reservoirs.

The numerical solution of pértial differential equations often reduces to a prob-
lerny of solving very large linear systems of equations in which the coeflicient
matrix is sparse and of a special structure (e.g. tridiagonal, block-tridiagonal).
The sheer number of operalions required (some applications are estimated to
require at least 10'® operations, or about 107 hours on a CDC STAR-100) has

motivated the search for faster methods of computing.

During the last fifteen years, much attention has been on the design and
implementation of parallel algerithins to solve pde’s on array or vector proces-
sors such as the ILLIAC-1V, the CDC 8TAR-100, and the CRAY-1. One approach has
been to implement already existing algorithms originally inteﬂded for segquential
machines on a paralle! processor. This aimost always requires a modification of
the algorithm in order to introduce parallelism best suited to the machine’s par-
ticular capabilities. One often hears of "vectorizing” a sequential FORTRAN pro-
gram in order for it to run efliciently on a vector processor. Another approach

has been {o design new parallel algorithms specially suited for a particular
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machine. At times, the algorithms produced, alithough efficient on a parallel
processor, are ineflicient on a sequential processor!., The lesson one immedi-
ately learns when studying parallel algorithms is that the requirements for
efliciency are differen! from those for sequential computers. 0One rather
difiicult problem for the designer of parallel algcrithms is communication

among the processing slements of a parallel machine,

The paralle] processor we study in this dissertalion is a tree méchine, ie., a
network of processors (nodes, cells) interconnected to form a binary tree
[Mag67%a, TollBL, Brow?8} In the design proposed by Mag6, hereafier referred to
as X, the nodes {of which there are two types) are small. For example, they
mizhi contain a bit-serial ALU, bit-serial communication between nodes, a few
dozen registers, and a small memory to hold dynamically lcaded micropro-
grams. MM is a smell-grain system with possibly several hunrdred thousand
nodes. (Here, gronularity is defined as the size of the largest repeated element
[SuDD81].) This is in contrast to large-grain tree machines whose nodes are von
Neumann processcrs, pessibly numbering in the hundreds or thousands. (Sys-

tolic arrays [Kung79] are probably the best known examples of small grain sys-

tems.)

The problem we investigale in this dissertation is the implementation on a
tree machine of numerical methods fo solve second-order elliptic partial
differentiol equelions using finile differences. In particular, we seek to answer

. three guestions.

fPor ex emple, recursive doubling [Ston73a, Ston?5] is a parallel al go"l‘hrr tha® solves an (nxn)

tridiegone! linear sysiem of eq.u.. ions (2 bas’c subproblem of pde solvers) in Ofiog n) time on an ar-
rey processer. On e sequentie, proczssor, recursive dousing taxes O(nlog n) time, compared to Q{n)
tilme

regared by Gaussian elminailon



(1)

(2)

(3)

Can solutions to elliptic partial differential equations be implemented

efficiently on a tree machine?

How does the tree machine implementation compare with implementations

on oiher high performance machines, such as vector computers?

What conclusions regarding tree machine programming do these implemen-

tations provide?

No attempt is made to design new elliptic pde solvers. All methods mentioned in

this dissertalion have been designed and analyzed previously.

To answer the above questions, we present a description of a2 simple

abstract special-purpose tree machine and several classes of algorithms

designed to run on it.  The dissertation is organized as follows.

Chapter 2. Preliminaries

Overview of partial differential equations and the method of finite
differences.

A description of the tree machine and its compoenent cells.
The algorithmic language used to specify some of the algorithms.

Analysis of algorithms,

Chapter 3. Tree machine algorithms: algorithms that form the basic building
blocks of tridiagonal and block-tridiagonal linear system solvers

C{iog n) algorithms that solve low-order linear recurrences and recurrence
expressions, such as coniinued and partial fractions.

Tree communication algorithms, that is, techniques that allow efficient
communication among the leaf cells of the tree. Efficient cemmunication
among the processors is essential for an eflicient implementation of paral-
lel algorithms. We present algorithms that cyclically shift a vector of ele- .
ments stored in the leaf cells a distance k to the left or right in O(k} time if
k >logn, where n is the number of leaf cells in the tree, and 8(log n) other-

wise,

Chapter 4. Tridiagonal linear system solvers: tree machine implementations of
direct and iteralive parallel methods to solve tridiagonal linear systems
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Direct methods inciude Gaussian elimination, the Thomas algorithm, LU
decomposition, a method using second-order linear recurrences {similar to
Stonec's recursive doubling [KoSt73], [Ston73]), cyclic reduction and.the
Buneman variant of eyclic reduction. On a seguential computer, all of the
methods require O{n) time. On a tree machine, cyciic reduction and the
Buneman variant require O(log n )? time; Gaussian elimination, the Thomas
algorithm, LU decomposition, and the recursive doubling variant all require
O(log n) time.

Herative methods include the Jacobi method, Jacobi over-relaxation, the
Gauss-Seidel method, successive over-relaxation, red-black successive
over-relaxation, and the ilerative analog of LU decomposition (developed by
Traub [Trau73]). All require 0{n) time on a seguential computer and O(log
n) time on a tree machine per iteration.

Comparison of results obtained with those for paralle! and vector proces-
SOT'S

Chapler &, llerative block-tridiagonal lingar sysiem solvers

Tree machine implementations of point iterative, block iterative, and alter-
nating direction implicit {ADI) methods to solve an (n xn) block-tridiagonal
linear system. The point iterative methods studied are the Jacobi method,
Jacobi over-relaxation, Gauss-Seidel, successive over-relaxation (SOR), and
& veriant of SO0R, red-black successive over-relaxation. On a seguential
computer, these methods require 0{n®) time per iteration. Tree machine
algorithms reguire O(n) time per iteration. The block iterative methods
studied are block Jacobl, block Jacohbi over-relaxation, block Gauss-Seidel, -
and block S0R; all require O{n) time pzr iteration. ADI methods studied
require G{n log n ) time per iteration.

Detailed analysis of the time required by the Jacobi methed

Chapter 6. Conclusions



CHAPTER 2. PRELIMINARIES

A The Second-Order Partial Differential Equation

The general second-order partial differential equation {pde) in two dimen-

sions

8%z 22 %2 Bz Bz _
aazz_ +b6z6y-+cay2 +F_(az,ay,z,y)-—0 (2.1)

may be classified on the basis of the expression b® ~ 4gc as follows:

elliptic if b2 ~4ac <0
parabolic if % —4omec =0
hyperbolic if 8% —4ac > 0.

Members of each class can be transformed, possibly with a change of variables,

into a canonieal form:

2 2
elliptic 9 z 0 2 =G
0f on
s :
parabolic gg: =G (2.2)
2 2
hyperbolic 2 f St A G
8¢ on®



where G = G{(¢, n, 2z, 8z /8¢, #2/ 0n). This dissertation deals exclusively with
elliptic equations, of which the most commonly studied ones are Laplace’s equa-

tion (2.3} and Poisson's eguation (2.4).

2 z
Z; * gy";_ =0 (2.3)
2 2

0 Zz + 2 22 = constant . (2.4)
ox oy

In this dissertation, we will investigate how one may solve problems involving

these equations on a tree machine.

B. The Method of Finite Differences

Problems involving second-order elliptic pde's are eguilibrium problems.
Given a region X, bounded by a curve € on which the function z is defined {the
boundary conditions), and given that z satisfies Laplace’s or Poisson’s eguation
in /. the objective is to determine the value of z at any point in £ The method
of finite differences is a widely used numerical method for solving this problem.
The basic stralegy is to approximate the differential eguation by a difference

equation and to solve the difference equation.

Consider Laplace's equation (2.3). Let R be a rectangular regicn and Cits
perimeter. Laying a rectangular mesh with n rows, m columns, and equal spac-
ing k on the region (Figure 2.1), we want an approximation of the function z at
the interior mesh points. Once this is determined, approximations at other

points in the region may be oblained through interpolation.



One approximation is to replace the second derivatives in (2.3) with the

centered second differences, so that for z = g,

8%z

6—2',,.—“ (Z-y ~ 22 + 2,4,)/ h® (2.5)
and
8%z o 2
ayg ~ (Z‘L—m - 221. + z’i+m)/h' ' (26}

‘Laplace’s equation is therefore approximated by

8% +a—2z--0~(z vz, -4z + + Ziom )/ RE 2.7
pr® 6y2 SUSAZim T 2 Z F 2y itm ( . )

which gives
ORZig + 2y — 4% + 24y + By (2.8)

indicating that cne way to represent each point z; is by a linear equation. The
object is to solve the ith equation for z;. This method, sometimes called the
direct method, uses equation (2.8) and transforms the problem of approximlatirig
the z values at the {n—2){(m —2) interior points to one of solving (n-2)(m —-2)
linear eQuations in as many unknowns. The coeflicient matrix of this linear sys-
tern is block-tridiagonai in structure. The example of Figure 2.1 would have a

coeflicient matrix as shown in Figure 2.2.

Equation {2.B) may alsoc be expressed as

2 R (2o + Ziay + Zig F a4 (2.9)
sugeesting that, if we know (or can approximate} the values of an interior point's
four closest neighbors, we may iteratively improve the value at the point by

replacing it with the average of its four closest neighbors. This is called the



itergfive method. After assigning an initial value to each of the interior mesh
points, the method iteratively improves the approximation by replacing each
point with a weighted average of its four closest neighbors, as specified in egua-
tion (2.8). One pass through the mesh points constituies one iteration. We may
iterate as many times as desired, until some criterion for convergence has been
satisfied. This method has been shown to have 0{h%) convergence where h is the

distance between two neighboring mesh points [Ames77].

The iterative approach involves a simpie computation, in the simplest case
nothing more than the averaging of four values. Higher-order approximations of
Laplace’s equalion reguire using more points in ithe approximation but the basic
operation remains the taking of weighted averages. Moreover._ there is a great
amount of parallel activity possible: theoreticaily, we may compute the ith
approximation of all interior mesh points simultaneously. On a parallel proces-
sor, it may be possible to perform one iteration {modify all points) in as littie
time as it takes to modify one point. While this operation would appear to be
trivia) on the ILLIAC-IV whose processing elements are interconnected to form a

rectangular mesh, the solution on a tree machine is far from cbvious.

We will investigale lhe implementation of iterative methoeds of solving
block-tridiagonal linear systems on a tree machine. (A more detailed discussion
of the method of finite differences applied to elliptic pde’s is given by Forsythe

and Wasow [FoWa50] and Ames [Ames77].)



C. The Tree Machine (TM)
1. Previous Work

Magé [Mags679a), [Mags80] has proposed a cellular computer, here referred
to as MM, org'anized as a binary tree of processors, that allows simultaneous
evaluation of expressions stored in the leaf cells of the tree. It directly executes
functicnal programming languages, a class of languages developed by. Backus
[Back78B), in which the expression of parallelism is natural. Tolle [Toll81] has
proposed a similar tree-structured cellular computer with more powerful, but
more complex, cells. In both designs, processors contained in the tree cells are
capable of independent operatibn. thus providing the potential for parallel com-
putation. Williams [WillB1] studied parallel associative searching algorithms. and
presented several techniqﬁes to prediet and a_nalyze the amount of time and
storage required by the algorithms if run on }}. Koster [Kost77] and Magé;
Stana!, and Koster [MaSK81] developed a method for obtaining upper and lower
bounds of t’he execution time of programs run on MM, Their analysis carefully
accounts for communica-tion and storage management costs. Paraliel algo-
rithms for tree machines have alsc been developed by Browning [Brow79] for a
variety of applications, including sorting, matrix multiplication, and the color
cost problem, and by Bentley and Kung [BeKu72] for searching problems.
Leiserson [Leis72] studied systolic trees and how to maintain a priority queue on

one.

2. Overview of TH

In this seclion, we describe T/, a special-purpose tree network of proces-

sers similar to, but of a much simpler structure and less powerful than, the



general-purpose machines proposed by Magé and Tolle. THis a binary tree net-
work of processing elements in which the branches are two-way communication
links (Figure 2.3). Leaf and nonleaf processing elements are called L celis and T
cells respeclively. Atlached to the root cell, functioning as the root cell's

father, is a cell called Control {C cell).

When describing algorithms, ceils are sometimes referred to by their level
in the tree. The L cells are on level 0, the iowest level T cells are on level 1, the
roct T cell is on level log N, and the C cell is on level log N + 1, where ¥ is the
number of L cells in the tree. Two-way communication among the cells is con-
ducted through the tree branches; a T cell may communicate with its father and
two sons and an L cell may communicate with its father; a C cell communicates
with the root T cell and with external storage, as explained below. An L cell may
communicate with another L cell by sending information up the tree through the

sending L cell's ancestor T cells and then back down again to the receiving L

cell

In principle, &ll cells operate asynchronously. However, the algorithms
presented can be more easily understood if we view the operation as proceeding
in synchronous upward and downward sweeps. We note, however, that this syn-

chrony is not a necessary feature of TAH.

An example of a task requiring a downward sweep is that of broadecasting
information to ail L celis. The C cell sends information to its son the ir‘oot cell,
which sends the information to its two sons, which send the information to their
sons, and so on, until the information is simultaneously received by the L cells.

An example of a task requiring an upward sweep is that of adding the values

..10_



stored in the L cells with the C cell receiving the sum.

3. The Microprogramming Language

As Hoare observed [Hoar78], a programming language for a machine with
multiple, independent, asynchronous processing units must contain special
statements not ordinarily found in languages for sequential computers. This is,
in part, becausg the processing units must have a way of communicating and
"synchronizing with each other. The language he describes for multiple proces-
sors, CSP, includes statements such as parallel commands specifying possible
concurrent execution of. its compenents, and input and ouiput commands used
for communication between processors. Browning and Seitz {BrSe81] concur
with Eoare and have written a compiler for TMPL, a language similar to Hoare's
CSP, for the purpose of iﬁlplementing algorithms on a tree machine. Programs
preszented in this dissertation will be written in an algorithmic language whose -
special features are described briefly below. Communication between tree cells
will be handled by SEND and RECEIVE commands. The CASE command and the
concurrent execution of statements are also explained. Figure 2.4 shows a few

sample statements.

SLCND and RECEIVE reguire cooperation between two cells. In order for a
cell to execule a SEND statement, the receiving cell must execute a RECEIVE
statement (Figures 2.4a and 2.4b). It rna);' happen that a cell wishing to send
(receive) data must wait until its partner is ready. A CASE statement allows a
cell to waitl for more than one olher cell. Figure 2.4c shows a cell attemptihg to

receive data from ils left son {casz c.1), receive data from its right son if n is
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currently nonzero {case ¢.2), or send data to its father if n is nonnegative {case
c.3). Only one of the cases will be executed and the choice may depend upon the
 value of n. If for example, n is currently O, only cases c.1 and ¢.3 may be exe-
cuted. If both the cell's left son and father are ready to communicate, the cell
randormly choosles between them, executes Lthe statement, and either incre-
ments n (left son was chosen) or sets n lo 0 {father was chosen). If neither
father nor left son is ready to cornmunicate, the cell waits until one is ready. We
allow oniy one SEND or RECEIVE staternent for each condition of a case state-
ment. Fgure 2.4d shows concurrent execulion. Data must be sent to both sons
but the order of execution is not import‘lant; the first ready son is sent the data

first. Ead the statement been writien
L.SEND{X); R.SEND(Y};

the right son may be unnecessarily delayed from receiving its data if the left son

is not ready to execute an F.RECEIVE statement.

4. The Tree Cells

A cell {L, T, or C) consists of a small memory and a processor (Figure 2.5).
The memory holds the control program, a single cell microprogram, and a small
number of registers used to store dala. Al all times, a cell processor is under
the exclusive control of either the control program or the cell microprogram.

The control programs are shown in Figure 2.8.

The L cell control program (Figure 2.8a) instructs the processor to wait

until a microprogram set, consisting of a T cell and an L cell microprogram,

_12..



arrives. When one does, the control program instructs the processor to save the
L cell microprogram and then to execute the microprogram, i.e., control of the
processor is transferred to the microprogram. The microprogram specifies {1}
how much data to read, {2) in which variables to store the data, (3) how to pro-
cess the data, and (4) what to send back to the father. The microprogram
retains control of the processor unlil its execution is complete. At that time,
control of the processor returns to the control program. Note thal while the
control program is executing, the L cell expects, and should only receive, a
microprogram set. While the microprogram is executing, the L cell may only

receive data.

The T cell control program (Figure 2.6b) instructs the processor to wait
until a microprogram set arrives. When one does, the processor sends a copy to
each of i1is sons while saving the T cell micro;irogi"am. It then begins execuling
its microprogram. Llike the L cell, control of the T cell processor returns to the

control program only after the microprogram is executed.

The C cell control program instructs the C cell processor to fetch the next
sef of L, T, and C cell microprograms from external storage. The processor fhen
saves the C ceil microprogram and sends the L and T cell microprograms (.the '
microprogranﬁ set) to the root T cell. The C cell then executes its micropro-
gram. After execution, control returns to the control program which proceeds

to fetch the next set of microprograms from external storage.

A Ccell, a T cell, and an L cell microprogram, taken collectively, may be

viewed as a global operalion Lo be performed by all of the cells of the machine

cperating in harmony, vhereas a microprogram speciflies the local cperation
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performed by an individual cell. The C cell’s supplying all cells with their
microprograms is analogous to the insiruction-feteh cycle in conventional von
Neumann machines. The L cells, upon receiving their microprograms, initiate
the execution of the algorithm and cause an execulion chain reaction to ripple
through the tree. This continues. until all cells have completely executed their
microprograms. This is analogous to the execution cycle in von Neumann

machines. The last stalement typically executed by an L cell is an
F.SEND {"DONE");

statemenl. When a T cell has received a "DONE" signal from both ils sons, the
signal is propagated up the tree. The "DONE" signal reaching the C cell marks
the end of execution of the collection of (C, T, and L) microprograms. The .con-
trol program takes over the C cell processor {as has already occurred in the L
and T cells} and the execution of the next set of microprograms is ready to
begin. At this point, we say that the machine has gone through one ezecution

cycle.

5. Example and Analysis of an Algorithm

This seclion gives a simple example of L, T, and C cell microprograms and
presenls an execution lime analysis of the algorithm. The problem is the follow-
ing. Let each L cell contain an integer. The object is to store in each L cell the
number of L cells whose values exceed half the sum of the integers. A solution

to this problem, called COUNT, prcceeds as follows:

(1) L cells send their values {integers) to their fathers. T cells add values

received from their sons and send the sum to their fathers. The C cell
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receives the sum and sends it back down through tree to the L cells.

(2) Each L cell compares its value with the sum and sends up a "1" if its value
exceeds half the sum. Otherwise it sends up a "0". The T cells add the
values received frorn their sons and send the sum to their fathers, The C

‘cell returns the value it receives through the tree to the L cells.

The L, T, and C cell microprograms are shown in Figures 2.7a-c.

Each algorithm presented in this dissertation will be followed by a time
analysis. For simplicily, we assume that celis on each level of the tree (the L
cells are on level 0, their father T cells are on level 1, and so on) operate Syni-
chronously. The design of the algorithms make this a reasonable assumpfion.
We emphasize, however, that this is not an essential feature of either TH or MH.
The analysis will be expressed as the number of paralle! arithmetic operations
{additions and mul!tiplications) and the amount of communication time required.
If all of the L cells must execute a multiplicatioh. for example, we assume that
all of the L cells take the same amount of time to do it. Their collective action is
considered, therefore, as a single multiplication. Communication is measured in
steps where one stép is defined as the time required for one cell to send one unit
of information (one number, one character) to an adjacent cell. A cell may
simultaneously send and receive information from cells adjacent to it. AT cell
may therefore send as many as three numbers to its father and sons and receive
three numbers from its father and sons in one time unit or slep. The analysis of

the COUNT aigorithm is shown in Figure 2.8.
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6. Relationship belween TM and MM
Ti is a model of a iree machine. Its primary function is to serve as a vehi-

cle for describing tree machine algorithms. We may implement the algorithms
described in this dissertation by incorporating 7# into MV, a general-purpose
machine capable bf executing programs written in an FFP language. MM, during
a process called partitioning [Mag679a], identifies the innermost applicationé of
an FFP expression and, for each, constructs a binary sublree among the T cells.
During subsegquent machine cycles, these compenent trees machines simultane-
ously reduce the innermost applications. After reduction, the new innermost
applications are identified and the process is repeated. Each of these com-

ponent iree machines may be considered an instance of TH.

The embedding of 74 into MM would be fairly straightforward, There are
only a few details that need to be explicitly stated. First, all of the algerithms
described on THM require that the processors contained in the T cells be able to
execute slightly more complex programs than are describeﬁ by Magé. More-
over, T cells in T4 are supplied user-defined microprograms (in M, only the L
cells receive microprograms, T cell programs are b.uilt-in). In short, a T cell pro-
cessor should have the processing power of an L cell processor. Since all T
nodes execute the sarme microprogram, such capability would be easy to add to

the design described by Magé [Mag679a].

Secondly, the component tree machines formed in MM after peartitioning
are seldom complete binary trees. All of the algorithms described on T4, there-
fore, should execute correctly on incomplete, as well as complete, binary trees.

Care was taken to ensure that this, in fact, be the case.
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Finally, there is the question of interrupts. In M. the root T cell periodi-
cally issues an interrupt to perform storage management. This interrupt causes
all component tree machines still in the reduction process to temporarily halt
their operations. Storage managemeﬁt may move the contents of the L cells of
some compenent tree machines. If so, these component tree machines must be
rebuilt (i.e., the branches between the L cells and the T cells must be redefined)
and any information stored in the T cells of these machines before the interrupt
must be reconstructed. It is necessary, therefore, that T4 algorithms be abie to
perform this reconstruction easily. Again, care was taken to ensure this fact,
Alternatively, it would be possible to have MM mark certain component tree
machines as "uninterrupﬁble" (this would require a minor modification of the
machine described by Magé [Mags679z]). The machine wouid then delay storage
management until the specially marked tree machines had completely reduced

their applications.

Fowever, the problem of inlerrupts may be mootl if an elliptic pde is to be
solved. Such problems usually deal with a greal many data. It is likely that the
entire machine, 4%, would be dedicated to this purpose, If so, then the elliptic

pde spiver could be alicwed to execute uninterrupted.
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Figure 2.1 A rectangwlar mesh with n=7 rows and m=9 columns. The mesh
poinis are labeled Zg through Zgp in row major order. Each interior point 2; (that
iz, each point not or the parimeter €) has as its four ciosest reighbors the points
Zi-m: Fi-1 %i+1, 204 Zy 4. Note thal the corner points Zq, Zg, 254, and Zgs do not
have any interior pcints as neighbors and will not participate directly in any
computation. They are included to make the subscripting of peints regular.
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Figure 2.2 The coefliciert matrix of the system of linear equations resuiting from
the example of Figure 2.1 is {35%35) and block-tridiageral in structure. Each of
the diagonal blocks is tridiagenal; each of the off-diagcnal blocks is diagonal. The
rumber of bleck eguations is n—2=5 and the order of each block is m~2=7,
vhere n ard m are the number of rows and columns, respectively, of the original
rectangular mesh.
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Figure 2.3 Basic structure of the tree machine. The top node is called the C celi,
interior nodes are called T cells, and the leal nodes are called L cells.

(a) comment Send contents of X and Y to right son.
R.send{(X,Y);

{(b) comment Receive information from father and store in Y and Z.
F.receive(Y,Z};

{c) comment Case statement. Communicate with first available cell.
begin

{c:1) case L.receive(X): n:=n+1
{(c.2) case n#0 & R.receive(Y): n:=n-1
{c.3) case n=0 & F.send(Z): n:=0

end;

{d) comment Concurrent execution. Send contents of X and Y to sons.
L.send{X), R.send{Y});

Figure 2.4 Sample statemerts.
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FATHER FATHER STORAGE

PROCESSOR

LEFT SON RIGHT SON ROOT T CELL
(a) {k) {c)

Figure 2.5 A cell {L, T, or C) contains a processor and a memory, divided into
three compartments. (a} An L cell communicates only witk its father. (d) AT
cell eormnmunicates with its father and both sors. {c¢) A C cell communicates with
its son. the roct T cell, and with external storage from which it obtains the mi-
croprograms which it sends down to the T and L cells.

(a) L~CONTROL:
begin
F.receive {microprogram set).
Pick out and store L cell microprogram in memory.
Execute L cell microprogram.

end;

{b) T-CONTROL:
begin
F.receive {microprogram set}.
Send microprograrm to each son, while storing T cell
microprogram in memory.
Execute T cell microprogram.
end;

C—-CONTROCL:
_begin
Fetch L, T, and C cell microprograms from external storage.
Store C cell microprogram in memory.
Send (microprogram set).
Execute C cell microprogram.
end;

Figure 2.6 Cortrol programs for {a) L cells. {b) T cells, {c) C cell.

- 20 -



(a) L-COUNT:
begin
comment L cells send up VALUE and receive SUM of values
F.send (VALUE); F.receive (SUM);

comment Compare SUM with twice VALUE. Send result to father
if 2*VALUE > SUM
then F.send (1) else F.send (0);

comment NUM is the number of L cells whose values exceed
half their SUM
F.receive (NUM);

comment Signal end of algorithm.
F.send {"DONE")
end;

{b} T-COUNT:
begin
comment L cells sent up VALUESs, send sum to C cell
L.receive {(LVAL), R.rreceive (RVAL); F.send (LVAL + RVAL);

comment C cell sent sum of values down, propagate to L celis
F.receive (FVAL); L.send (FVAL), R.send (FVAL);

comment L cells sent up 1s and Os, send up sum to C cell
L.receive {LVAL), R.receive (RVAL); F.send {LVAL + RVAL);

comment C cell sent sum of 1s and Os, propagate to L cells
F.receive (FVAL); L.send (FVAL), R.send (FVAL);

comment Propagate "DONE" signal.
L.receive {LSIGNAL), R.receive (RSIGNAL);
if LSIGNAL=RSIGNAL="DONE"
then F.send ("DONE")
else .send ("ERROR")
end: .

{c) C-COUNT:
begin _
comment Receive and return the sum of VALUESs
receive {(SUN); send (SUM),

comment Receive and return the NUM of selected L cells
receive (SUM); send {SUM)
comment Receive "DONE" signal.
F.receive (SIGNAL):
if SIGNAL#"DONE" then ERROR
end;

. Figure 2.7 L, T, and C cell microprograms for example algerithm.
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COUNT
Parallel Operations
Comm.

Step | Swps Time L cells | T cells C cell
. + X + b o + b4

1 1 2logn+2 | 0| O logn {00 |0

2 i 2logn+2 | 0 | 1 logn | 0] 0|0
Total | 2 4logm+4 (0| 1 { 2logn | O {0 |0

Figure 2.8 Analysis of the COUNT program of Figure 2.7. Step (1) requires each
cell to serd ore rumber to its father durinz the vpward sweep and each cell to
send ene number to its son{s) during the downward sweep. The tctal communi-
caticn time frem L cells to C cell and back is 2{iegn + 1} uniis or steps. During
tle upward sweep, each T cell must perform cne addition. As there are logn lev-
els of T cells, there are a total of logn parallel additions performed. Step (2) is
aralyzed similarly. Nete thal a sequerntial algorithm weuld have required 27 ad-
ditions, 1 division, and 2n array referernces {toc be compared witk the number of

commuricatior steps in the iree mackhine algorithm).
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CHAPTER 3. Basic Tree Algorithms

A Introduction

The solution of tridiagonal and block-tridiagona! linear systems can be
decomposed into problems of solving low-order recurrence expressions. Un a
tree machine, such tridiagonal and block-tridiagdnal system solvers require the
L cells to communicate in cerlain special patterns., The purpose of this chapter
is to present the tree machine solutions to these recurrence and communica-
tion problems. The resulting algorithms form the basic building blocks of the

algorithms presented in Chapters 4 and 5.

In Section B, we present a general method for obtaining the first » terms of
recurrence expressions on tree nﬁachines in O{log n) time. Séction C presents
ROTLA, an O(log n) communication algorithm developed by H.A. Presnell. ROTLA
efficiently executes the FI'P primitive ROTL [Back78] when applied to a vector of
atemic elements on a tree machine. Section D presents a general communica-
tion technique, GDCA, which allows the L cells to communicale efliciently in a
varied number of patterns. The communication time for GDCA de'pends on the
pattern; whenever possible, the time is less than linear in the number of L cells
p.articipating. Both ROTLA and GDCA have been presented in 2 previous paper

[PrPa81].
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B. Composition and Substitution
1. Overview

Composition and Substifufion is a meihod that enablzs one to solve a class
of problems in a single sweep up and down the tree. This class includes homo-
geneous and inhomogeneous linear recurrences with wvariable or constant

coeflicients, continued and partial fractions, and recurrences of the form

X =0p
[o -+ b‘X'_. 3.1
%, = ———1  y=12..,n-1. (3.1)
oy + X,

We describe three tree machine algorithms, LR1, FRACTION, and LR2, which solve
first-order linear recurrences, recurrences of the form (3.1), and second-order
linear recurrences, respectively, on a tree machine, each in O{log n) execution
time. (By solve, we mean compute the first n terms, given n.) We then show how

Composition and Substitution can be extended to solve higher-order recurrence

expressions.

Much study has gone into the parallel solution of linear recurrence expres-
sions. In a paper on the parallel solution of {ridiagonal linear systems, Stone
[Ston73a] introduced a method called recursive doubling, which allows the user

to solve linear recurrences of all orders in O{log n) time on a paralle! processor

of the JLLIAC-IV type. The method was generalized by Kogge and Stone [KoSt73]

and by Kogge [Kogg74] who described a broad class of functions which enjoy spe-
cial composition properties and for which the method is applicable. Kogge

[Kogg73] described how to pipeline the method to obtain the maximal computa-

tional rate.

Papers dealing with the relationship between computation time and number

of processors [ChKu75, Chen78, ChSa75, HyKu77, ChKS78 and GajsB81] have
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presenled bounds on the number of processors required to minimize the time to
solve first-order linear recurrences and bounds on the time required to solve the
problem given a fixed number of processors. Except for the algorithm described
by Gezjski {GajsB1], the algorithms were designed for an idealized p-processor
-méchine on whirh there is no contention for memory {to obtain either instrue-
tions or data), any number of processors and memories may be used at any
time, and communication among processors involves no delay. Hyafll and Kung
[EyKu77] established that, even with an idealized parallel processor, the best
speedup! one may obtain when solving first-order linear recurrences is
(2/3)p+1/3. In a related work [Kung78], Kung established that "many non-
linear recurrences can be sped up by at most a constant factor, no matter how

many processors are used.”

Two general approaches to the problem have emerged: one approach reord-
ers the arithmetic operations required to solve the linear recurrence and distri-
butes them among the available processors in order {o minimize computation
time [ChKu75, Chen76, ChSa7?5, ChKS78); the other uses function composition
systemalicelly to reduce the dependencies among the variables of the linear
recurrence [Ston73a, KoSt73, Kogg73, Kogg74, GajsBl]. The algorithms

described in the next section use the latter approach.

2. Parallel Sslution of Recurrence Expressions

This section describes how properties of recurrence expressions may be
exploited to solve such expressions in parallel on a tree machine. As an exam-

ple, we present the tree machine algorithm LR1 which determines the first n

'Specdur is defined es Sp = T4/ Ty where T; and 7Tp erc the emounis of time required to solve
& PYCD.IT O & segueniie! processor end 2 p-processor machine, respeciively.
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values of a first-order linear recurrence. Some of the material presented here
was previously studied by Kogge [Kogg74] who described algorithms to solve

recurrences on an SIMD-type parallel processor.

Consider the first-order linear recurrence

X = Oy

xl = a1+blx0 (3 2)

B} T Gpoytbn, 1Xn oo
The objective is to compute the values x;, 0<i<n~1. To provide a uniformity

which will simplify the iree machine algorithm, we modify (3.2) by defining

Xy =0p + ng_] (33)
where by=0 and x_, is a dummy variable. Each equation of {(3.2) is now a func-
tion of one variable. Next, we define X;; to be the coeflicients of the equation

expressing x; as a function of x; (i=j), i.e., if

X =a+bx (3.4)

Lthen
X;;={ab) (3.5)
We may now express {3.2) in the more general form

x; = f(Xii-1 Xioy)y  Osign-l (3.6)

where X, ;_;=(a;.b;). Equation (3.6) may be expanded as follows
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x = F Xiion X))
=S Xy (X:‘—u-z' X;.3))
FXeson fFXimriza f Kiozios %-3))) (3.7)

= f Kiiors [ Kicrioe F Kiczioze o0 F (Xpm1 x21)-20))

This corresponds to the nested equation

=0+ blag by (o o+ by - (ap+bexy) -0 ))) (3.8)
which suggests the order of operalions executed by a sequential algorithm.
However, we will exhibit a function g such that, for a given f and for all

i.7.k, =1k <j<<isn~1,

T %) = Ky FXa- )= @Ky Xjadox) = f Xewox). (3.9)
Using g, we then we show that a mere eflicient, parallel solution is possible. To

determine g for first-order iinear recurrences, consider two linear equations

% =0+bx; = f(Xis x;) (3.10)
=0+ bR = f (X %) '
Substituting the second equation into the first, we obtain
x = (X f Kjes %))
=a +b(a +b'x)
(3.11)

(a + ba’) + bb'x,
= flg Xy Xy e

Therefore, a function g that satisfies equation (3.9) for a first-order linear

recurrence fis

g(Xi_j. lek) = x,;,g - (CL + bo', bb'). (3.12)
We call g a composition funclion because it takes the coeflicients of two equa-
tions of a recurrence expression and performs the operations required to com-

pose them. We make a few observations regarding the functions fand g.

-27 -



Lemma 3.1
Given a recurrence expression % = f{(X;;.;. %), 0€isn-1, and a
function g that satisfies equation (3 8), each variable x; can be expressed
as a linear function of any x;, —1<j <isn-—1. le., given j<i, we can find

the coeflicients X; ; such that x; = 7 (X ;, x;)

Proof
For j<i, the (i—j)th line of equation {3.7) gives

¥ = f Keaon S Xicig-20 f Kicgiose oo S (Xjerge 250-0))

= f (9’ (Xij—]n g (xi"'l,i-zl
g{Xizig o g XKjuzgen Xjer,3)- 000 %5) (3.13)
= f (X5 %)

by repeated use of the property of g described by equation (3.8). &

Lemma 3.2
1f ¥, is expressed in terms of the dummy variable x_, (as is %, initially)

ithen x; is solved.

Proof
Equation (3.8) expresses x; as a linear function of x_,. Expanding (3.8)

and substituting b;=0, we obtain

i
x = (o + b0, +bb 0+ H ) + (Hb )%
' (3.14)

g
= (o + byay + 0 4 ag |b;)
i=1

l.e., %; is expressed in terms of the given coeflicients b; and parameter
ag The value of x, is delermined. =

Lemma 3.3
Let x; = F(X,:-1. X;-;), 0<i<n-1, be a recurrence expression and g a
function that satisfies :
F X £ %)) = Flg (K5 Kie ) %) (3.15)
vhere 0=k ¢j <i<n-1, then, for —-isi<k ¢j<cisn—1,
Tz 0 XKsn Xea))) = F g Ky, X ) X)) (3.18)

and we say that g is assogiative under f.
Proof
From Lemma 3.1 and equation {3.7) we can show that
x = [ £OG e T XKy x0)) (3.17)

Applying {3.15) twice, we obtain
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x5 =Xy g (xj.k! Xes) x))

. 3.18
= 709 (K50 9 Ky p Xe D) %) (3.18)
Applying (3.15) twice to (3.17) in a different order, we obtain
x = XX ) F X x))
f g i.j i & k.l (3.19)

= fglgXij X50) Xia)o %)

Hence, g is assceiativeunder f. &

Lemmma 3.3 provides the key Lo developing parallel solutions of recurrences.
it allows for the regrouf)ing of the operations required by equation (3.7). For

example, {o sclve the foliowing equation for x;

X = [ (Xag [ (KXppo £ X0 f (Koo x_)))) (3.20)

we may applj’ equation (3.9) and Lemma 3.3 to transform equation {3.20) into

xz = [{9{(9(Xaz Xo1), 9 (X100 Xp.-1)) Xy) (3.21)
suggesting a parallel solution: simultaneously evaluate Xz; = g X3z Xg,;) and
X1 =g{X,0 Xc.1) and then evaluate X3 _; = g{Xs1. Xi-,). The first component

of the pair X3 -, is the value of x3.

The Tree klachine Algorithm: LR1

On a seguential computer, the solution of (3.2) requires O(n) time. We now
describe the tree machine algorithm, LR1, which solves equation (3.2) ir a single
upward and downward sweep. LRIl .requires each tree cell to perform & constant
amount of computation. Because there are O(log n) levels of tree cells, the algo-
fithm executes in O(log n) time. Let n=2P for p a nonnegative integef. This
choice of n is purelyr for-ease of presentation, sihce LR1 works for any positive
value of n as shown iater. Let L; be the ith occupiéd L cell counting from the
right. (For this example, all L cells are occupied.) We store the coeflicients of

the ith equation, i.e., X;;_,, in Z;. Figure 3.1 shows the initial values stored in
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the L cells of the tree machine for n=B. Recall that X;_;, stored in the right-

most L cell, is the pair (z4,0).

The L cells start the upward (composition) sweep by sending their
coeflicients to their fathers. A T cell (Figure 3.2) receives X, ; =(g;.b;) and
X; . ={agp.bp) from its left and right sons, respectively. The T cell composes X, ;

with X; , and sends the result,

Xew = 9(Xij X;) = (a5 +bpap. by bR) _ (3.22)
to its father. The T cell is unaware of the identity of the voeflicients it receives
from its sons. Every T cell simply receives a pair of coefficients from each of its
sons, operates on them in the manner described, saves X, ; {the coefficients
received from its right son), and sends X;, (the coeflicients produced) to its

father.

The upward sweep ends when the C cell receives X, _, _; from the root T cell.
From Lemma 3.2, we know that the value of x,_, has been determined. During

the downward sweep, we can compute the remaining x;’s.

The downward {substitution) sweep begins when the C cell sends to the root
T cell the pair {z, 0). The first component is the value of x,_;; the second is the
value of the dummy variable x.;. In general, the T cell thal received X; ; and
X, during the upward sweep, receives £he pair {x;,x,} during the dbmuward
sweep (Figure 3.3). The firsl component is the solution of the leftmost L cell in
its left subtree. The second component is used to obtain %;, the solution of the

leftmost L cell in its right subtree. The T cell computes x; by substituting x, in

the equation represenied by X; .. L.e,,
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X = op + bpX,. (3.23)

It then sends (x;.X;) and (x;,X;) to its left and right sons respectively.

The downward sweep ends with I; receiving (x;,.x;_,). The L cell saves x;
and may or may not save %_; (in some applications, the L cell uses x;_, in a
later computation). The first n terms of the recurrence relation have now been

found. Figures 3.4 and 3.5 show the full upward and downward sweeps for n=8.

We prove the correctness of LRl for n=2P, p a positive integer, with the fol-
lowing lemmas. The lemmas actually prove a stronger statement: thal composi-
tion and substitution correctly solve a general recurrence expression
%, = (X;4-1 X ), 0=<i<2P -1 for which a composition functi_on g cen be found.

We assume that L; (0=1i<mn -1, counting from the righl) initially contains X; ;_,.

Lemma 3.4 _

Let %, = f{Xi:-1, %), 0=<i<PP -1, be a recurrence expression for which a
eomposition function g is known, Let T bhe a T cell. Let T, and T; be its
left and righti sons, L, and Z; the leftmost and rightmost L cells in its left
subtree, and Ly and L, itz leftmost and rightmost L celis in its right sub-
tree. Let L), La, Lz and L, initially contain X;;-y, Xj41;. X; -1, and
X414k, respectively. Then, during the upward sweep, T receives X; ; from
its left son and X, , from its right son and sends X; , to its father.

Proof
Proof by induction on the level number of the T cells. (T cells that are

fathers of L cells are on level 1, their fathersare onlevel 2, ..., the root T
cell is on level log N where N is the number of L cells in the tree.) s

Lemma 3.4 proves the correctneés of the upward (composition) sweep.
F'rem Lemmé 3.4, we conclude that the root T cell sends the coe_ﬁicient set
X, -, toils father, the C cell. The C cell is then able to determine the solution
of X, _;. Lemma.3.5 proves the correctness of the downward {substitution) sweep

and shows Lthat the L cells receive the correct values.

lemma 3.5
If & T cell received X, ; and X from ils sons during the upward sweep,
then, during the downward sweep, T will receive x; and x; from its father.
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It then uses x, to solve for x; and sends (x;, x;) to its left son and (x;, =, )
to its right son.

Proof
Proof by induction on the level number of the T celis. (Start with the

root T cell and proceed downward.) a

Lemma 3.8
LR1 is correct.

Proof
Follows directly from Lemmas 3.4 and 3.5. =

The analysis of LK1 is shown in Figure 3.8, During the upward sweep, each L
cell and each T cell sends two values le their fathers. Because there are log n
levels of T cells, the total communication time required during the upward
sweep is 2{log n + 1) units or steps, where one unit is the time required for a
cell to send one value to an adjacent cell. Similarly, during the downward sweep,
- the C cell and T cells send two values to each of their sons. The time reqguired
during the downwargd sweep is also 2{log n + 1) steps. Only the T cells perform
arithmetic operations. A T cell performs cone addition and two multiplications
{3.22) during the upward sweep and one addition and one multiplication {3.23)
during the 'downwarcﬁ sweep. Thus, LR1 requires a total of 2logn parallel addi-

tiens and 3iogn parallel multiplications for bolh sweeps.

We may wuse a similar zlgerithm to solve the first-order backward

recurrence relation

oy & Opay

o= O o+ b, _ox _

~n -2 n—2 n 2¥n -1 (324)
Xy = ac-i-box]

Calied BLR1, it has the same time complexily as LR1.

’?
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Extensions
We end this section by describing variations of the basic LR1 algorithm.

Similar variations of FRACTION and LR2 are also possible.

Empty L cells, 1f the desired number (n) of terms of the recurrence rela-
tion is not a power of 2, we must use a tree with 23.J L cells where p= log nl.
Some of the L cells will be emply and will not participate productively. When
distributing the initial coeflicient pairs among the L cells, X; ., is stored in the
rightmost occupied L cell, X, is stored in the next occupied L cell to the left,
and so on. Surprisingly, we do not need to modify the T cell algorithm described

above. We rnust describe, however, what the empty L cells are to do.

During tﬁe upward sweep, while occupied L cells send up their coefficient
pairs, empty L cells send up the pair (0, 1). This has the effect of defining the
“"ggquation” stored in an empty L cell as identical to the equation stored in the
first occupied L cell to its right. A T cell does not know whéther the data it
receives is from an empty or an occupied L cell. It si.mply performs the two
multiplications and cne addition described in Figure 3.2 during the upward
sweep. If the pair of values from one of its sons came froﬁl an empty L cell, a T
cell effectively sends the other son's values to its father. Similarly, during the
downward sweep, a T ceil blindly performs the multiplication and addition
described in Figure 3.3. I; still receives the values x; -and x;_;; empty L cells
ignore the valucs they receive. Figure 3.7 shows the execution of LR1 for 'n:-.'S on

a Lree with B L cells.

Solving several independent recurrences simultanesusly. The algorithm is,
in fact, more powerful than described in the previous paragraph. If there are

enough L cells to accommodalz tvwo or more lincar recurrences {(with one L cell
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containing at most one equation of one linear recurrence) we may solve all of

the linear recurrences simullaneously.

Lel two or more linear recurrences be stored in disjoint segments of the L
“array. Bach eguation of each recurrence has a pair of coeflicients. We distri-
" bute the coeflicient pairs as follows. Starting with the first equation of the first
recurrence, we distribute the coefficients pairs of the first recurrence one pair
to an L cell. After storing the coefficient pair of the last equation of the first
recurrence, we continue with the coeflicient pair of the first equation of the
second recurrence, and so on. We may consider the entire initial set of
coefficient pairs to be the terms of one large linear recurrence and apply LR1 to
all of the L cells. Because the first coefficient pair of each recurrence is of the
form {(a. 0), we are sure that the terms of one linear recurrence will not be
afiected by the terﬁ:s of another. We may therefore store as many linear
recurrences as the L cells can hold, apply LRI1, and in a single sweep, solve all

recurrences simultaneously.

3. Quotientis of Linear Recurrences .

Consider recurrence expressions of the form

o = Ly
o+ box 3.25
. S TR (3.25)
¢ + dix

where ¢; and d; are not both 0. As with first-order linear recurrences, we let

IIQ'F' be—l

3.
Co + dcx_l ( 26)

xoz

where bpg=dy=0, and 2¢= 1. Moreover, if



a+bx3-

o dx (3.27)
we say that X;; =(a,b,c.d). Therefore we may express (3.25) as
- a; + biX;_; .
%=Xy %) = ———= O<ign-1 (3.28)

e + A%y’

where X, ;1 = (&, b, oy, &)
To determine the corresponding compesition function g, we observe that if

o + bx;
% o v dy (3.:29)

and

a' + b'x;
X% e (3.30)

then

a' + b'x,
c'+ d'x;
X; = S T {3.31)
c'+ d'x

_ofc'+d'x)+b(a+bx)
Tec'+dx)+d(a+b'x,)

_fac’ + ba’) + (ad' + bb )%,
" A{ce’ +da) + (cd' + db')x,

The desired function is

g(X”, XJ:‘.‘.) = Xi.k = (aC' + bﬂ.', od" + bbb’ co' + da', cd' + db') (832)

Equation (3.28) describes a recurrence expression whose composition fune-

tion is defined in (3.32). Using Lemmas 3.4 and 3.5, we can develop a tree
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algorithm, which we call FRACTION, to solve {3.28) in one upward and downward
sweep through the tree. FRACTION determines the first n terms of (3.28). For
ease of presentation, assume that n =2P. [;, counting from the right, initially
contains the gquadruple X;,_; = {o;,b;.0;.9;); the rightmost L cell contains

XG.—I = (ﬂ-.c, 0, 1‘0) '
Composition starts with the L cells sending X; ;_,. A T cell receives

X ;= (g byocp. dp) {3.33)

from its left son, and

X;i = (ep. br. cp. dp) ' (3.34)
frem its right son. As described by equation {3.32), the T cell computes and

sends

Xr“k = (QLC}?+bLC!R, aLdR‘l’bLbR' CLCR+dLDR, chR+dLbR) (335)
to its father. The upward sweep ends wilth the C cell receiving the guadruple
(a,0,c,0) where a/c is the solulion of ¥, ., the lefimost L ¢cell in the tree. This

ends the composilion sweep.

The C cell divides a by ¢ and returns the pair (a/c,0)} to the root T celi
slarting the substitution sweep. As in LRI,Vthe second component is the value of
the durmmmy variable x_; and the first component is the value of x,_;. The T gell
that received X; ; and X; ; from ils left and right sons during the upward sweep
receives the pair {x;,x,) from its father. It determines x; by substituting x, into
the equation represented by X, ;. i.e.

Gr + bf?xk

e (3.36)

Xj=
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and sends (x;. %;) to its left son and (x;,x;) to its right son. I; receives the pair

(%;,X;.;). Using Lemmas 3.4 and 3.5, we prove the correctness of the tree algo-

- rithm FRACTION.

lemma 3.7
FRACTION is correct.

Proof
Foliows from Lemmas 3.4 and 3.5. =

The analysis of FRACTION is summarized in Figure 3.8. During the upward
sweep, L cells and T cells send a quadruple to their fathers, requiring a total of
4logn + 4 communication steps. Each T cell also performs 4 additions and B
multiplications. The C cell performs oﬁe division. During the downward s'w_eep,
the C cell and the T cells send a pair of values to each of their sons, requiriﬁg a
total of 2logmn + 2 communication steps. Each T cell performs 2 additions and 3

multiplications or divisions.

Extensions

The variations to LR1 presented in the previous section may also be applied
to FRACTION in a similar manner. To accommodate empty L cells, we program
empty L cells to send the guadrupie (0, 1, 1, 0} to their fathers during the
upward éweep. This has ’Lhe effect of defining the "equation” stored in an empty
L cell as identical to the first nonempty L cell to its right. Because of the associ-
ativily property enjoyed by the composi{ion functions, this has no effect on the
nonemply L cells. A T cell need not know whether the information il receives

came from an empty or a nonempty L cell.
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4. Second- and Higher-Order Linear Recurrences

Composition and Substitution may be extended to higher-order
recurrences. We present the tree algorithm LR2, the solution for the first n
terms of a second-order linear recurrence; the generalization to third and

higher-order recurrences is straightforward. Given

Xy = ag+ bRy +opxp
Xy = a;+ b;xp+ 0,X,
Xe = 0+ box; + CpXp (3.37)

X1 T Opoy * 0p 1 Ey 2+ 0p X3
where x.; and x_» are dummy variables and bg=cp=c,=0, we want to solve for X,

Osi=n —1. Equation {(3.37) is of the form

% = f(Xii-1i-2 K-y Xig) (3.38)
In order to find a composition function g which satisfies equation {3.7) we use a

change of variables. Define

[a, |

[ | (6, ¢, 1
Yi:l:—ll Ai=[0] B,;=[b11 ;?'J and X; ;- = (4, B;) (3.39)

for 0<i<n-1. Equation {3.37) may therefore be expressed as

Vi = A+ Biyio1 = f (Xiion Yet). (3.40)
which is a first-order linear recurrence in y. We can now use the method of Com-
position and Substitution, with scalar addition and muitiplication replaced by
vecior addition and matrix multiplication, provided we can find a suitable com-
ppSition function g. Given

. = A+ By; = f (X5 55)

3.41
Y, = A+ By = £ Xk ) (3.41)
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where X; ; = (A. B) and X; ., = (4, B'), we obtain

Yi=A+B(A+By.)=(A+ BA)+ BE'Yi = f Kis+ Vi) (3.42)

which gives

g{Xij» X)) =Xix = (A + BA', BB"). (3.43)

Initially, Z; (couﬁting from the right) coﬁtains the coeflicients of the ith
equation: {e;,b;,c;). The two rightmost occupied L cells contain {a;,b,,0) and
(2p 0,0). The L cells start the upward (composition) sweep: [; sends the
coeflicients X; sy = (4, B;). AT cell receives X;; =(4, B) from its left son and
X;x ={A". B') from its right son and applies the function g (equation (3.43)). It
sends the result X, , to its father (Figure 3.9a). The upward sweep ends when
the C cell receives X,y _y = {4,.;. Bn—y). From Lemma 3.2, we know that

B,_y=0 and y,_,=A,_;. The equation stored in the leftmost L cell has been

solved.

The downward (substitution) sweep determines the rest of the solutions and
sends themn down to the proper L cells (Figure 3.9b). The C cell starts by return-
iﬁg the pair of sotutions (y-1. ¥-1) to the root T cell. The second component is-
the vector {0, 0)7, the "solution” of the dummy variable y_,. A T cell that
received X,;; and X;, from its left and right sons during the upward sweep
receives the pair (y;, y.) from its father. The value y, is used to compute the -
solution jj using the coeflicients X, =(4". B') retained during the upward‘

sSweep:

yJ =A 4+ B'y.t . (344)

The T cell then sends the pair (y;, ¥;) to ils left son and (y;. y:) to its right son.
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L; receives the pair {(y,, y;_;). In eflect, I, receives the solutions ;. %,_;, and

e

X; _p. This ends the downward sweep.

A proof similar to that of Lemma 3.6 suffices to show the following.

Lemma 3.8
LER is correct. &

The analysis of LR2 is shown in Figure 3.10. During the upward sweep, each
T cell receives 6 values, the compcnenis of the pair {A. B), from each son, and
sends B values to its father. The number of communication steps is theréfore
Blog n + 6. During the downward sweep, each T cell receives 4 values, the com-
ponents of the solution pair (y;, ¥, ) from its father and sends 4 values to each of
its sons. The number of communication steps is 4logn + 4. Only the T cells
perform arithmetic operations. During the upward sweep, each T cell must
apply the function g (equation (3.43)). This requires 12 multiplications and 8
additions. As there are log n levels of T cells, a total of 12log n parallel multipli-
| cations and Blog n parallel additions are required. During the downward sweep,
each T cell must solve equation (3.44). This requires a total of 4log n multiplica-

tions and 4log n additions.

Extensions
If some of the L cells are empty, we program an ermnpty L cell to send up the

pair (4, B) where

[1p]

o]
Ai-=l0 and Bi=[01l. (3.45)

The effect is to define the "equation” stored in the empty L cell as identical to

the equation stored in the first nonempty L cell to its right. Because of the
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associativity property of g, this has no effect on the solution process.

Extending the method of Composition and Substitution to higher-order
linear reéurr‘ences is straightforward. To solve a fcth-order linear fecufrence.
we transform the original eguations into a linear recurrence “with .matrix
coefficients as we did in equation {3.39). We then use a tree algorithm anf.alogous.
to LR1. The resulting coefficients, however, will include (k x k) matrices and the
T cell operations will involve multiplying these matrices. Each T cell, therefore,
will need O{k?) storage and will perform O(k?3) arithmetic operations. In order to
solve the tridiagonal and B]ock—tridiagonal linear sysiems described in this
dissertation, we need to solve only first- and second-order linear recurrences, _
which, as has been shown above, can be done with cells with very modest storéée

capacity.

C. Atomic Rotate Left: ROTLA

Backus [Back7B] describes the functions rotate left (ROTL) and rotate right
{ROTR) which circularly rotate a vector of elements to the left and to the right,

respectively. ROTL is defined as follows:

ROTL: x = X = <xX¢> —» <X>;

X=<Kc-x.3|"'-zn-1>&'n22-” <xll '.'.IXT;—IIXO>A

We describe three possible Ways of implementing ROTL on a tree machine.
Let the vector elements be distributed among the L cells, with the I; (counting:
from the lefl) containing x;. The first implementation sends xg up to the C cell
and down to the right of the the L cell ihat c'ontains X, _;., @S shcﬁvn in Figure

3.11. Only one value must travel up to the C cell and back down agairi; thus, the
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time required is 2logn + 2 steps. This technique is simple but it requires an
empty L cell on the right of x,_,. The second implementation avoids this prob-
lem by sending all of the values up to the C cell and broadeasting them back
down. I; is programmed to receive the value .xi“(,mgdn) when it arrives. This
method always works, not only for ROTL, but for an arbitrary perrmutation. The

disadvaniage is that {2logn + 2) + (n—1), or O{n), steps are needed.

A third implementation is described by Presnell {PrPa81). This tree algo-
rithm, called ROTLA, enables [; to receive %.;¢moan) (avoiding the storage
management problem of the first implementation) but requires only 2logn + 2
steps. One drawback is that ROTLA works only if the elements are atoms (single
numbers or characters), or a small fixed-length vector of atoms, such as a pair
of atems representing a complex number whereas the function ROTL allows the
x;'s to be arbitrary sequences. The analogous algorithm ROTRA implements the

function rotate right (ROTR) with the same restrictions.

After some use, it became apparent that ROTLA could also be used to pro-
vide a rneans of communicatlion among the L cells. Because the L cell that ini-
tially contains %, receives X;,i(mee ) this algerithm may be used for vector
operations that need to combine x; and X;,, 504 »)0 AS @ communication teol,
ROTLA gains power if some of the L cells can be masked from the operation at
apprépriate times. This allows the user to specify different subsets of L cells
and to have members of a subset communicale exclusively among themselves.
This polential use of ROTLA is the primary reason for including it in this disserta-

tion.



ROTLA is an example of a permutation that can be implemented on a tree
machine in O(log n) time. This is not true of all permutations. For example, if
the tree is full (all of the L cells are occupied), the time required to reverse the
order of the elements of a sequence is linear. Reversal and other permutations

on a tree machine were studied by Tolle and Siddall [ToSi8 1].

We now describe ROTLA. We are given x=<Xp.X;, ' ' © ,X,_1> and wish to
obtain x=<X,, - * ' ,X,-;.Xp>. Some of the L cells may be empty. I; (counting

from the left) initially contains x;.

The L cells begin the upward sweep by sending up their x-values; empty L
cells send up the distinguished symbol ¢. Every T cell receives a value from

each of its sons and sends one of the values to its father as specified by the fol-

lowing code:

L.receive{LVAL), R.receive(RVAL);
if LVAL# ¢ then F.send{LVAL) else F.send{RVAL}

The secend line of code states that the T cell should send the value received
from the left son provided it is not the empty symbol ¢. Otherwise, it should
send the value received from the right son. The upward sweep ends when the C
cell receives a value from the root T cell; this value is %5 the leftmost vector ele-
ment. Figure 3.12 shows the upward sweep for ROTLA with n=5 oﬁ an eight-L-cell

tree machine.

The downward sweep begins when the C cell returns x; to the root T cell.
Each T cell receives one value from its father and sends one value to each of its
sont as specified by the following code. LVAL and RVAL, the values received from

the T cell’s lefl and right sons during the upward sweep, were stored in the T cell
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for use during the downward sweep.

F.receive(FVAL);

if LVAL#¢ & RVAL#¢
then begin L.send(RVAL), R.send(FVAL); end

else if LVAL=¢ & RVAL#¢
then begin L.send{¢). R.send{FVAL); end

else if LVAL#¢ & RVAL=¢
then begin L.send(FVAL), R.send(¢); end

else if LVAL=¢ & RVAL=¢
then begin L.send{$), R.send(¢); end

The T cell returns ¢ to the son that sent up ¢ during the upward sweep. If nei-
ther son sent up ¢, the T cell sends RVAL to the left son and FVAL (just received
from the father) to the right son. Figure 3.13 shows the downward sweep for
~ROTLA. The following theorem precisely describes what happens when ROTLA is
executed.

Theorem: {Presnell [PrPa81]) Let the initial configuration of a tree machine M
be such that the elements of an n-vector x=<xq.X;, * ' = X, 1> are stored in the L
cells with at most one element per cell. After execuling the ROTLA algorithm,
the L cell initially containing x; contains X4,y meg », for =0, 1, ..., n—-1. Further-

more. if 1#n—1, X;;1)mes n 15 TOUted to its destination along the shortest path
through the tree. % is routed up to the Ccell and down to its destination.

To analyze ROTLA, note that during the upward sweep, the L cells and the T
cells each send exaclly one value to their fathers. If we asslume that the L cells
simultaneously send up their values and that T cells on one row simultaneously
send up their values, the C cell receives a value from the root T cell cell after
logn + 1 steps. Similarly, during the downward sweep, the C cell and the T cells
send one value to each of their sons. If we assume that a T cell can send one
value to each of its sons simultaneously, then the L cells receive values after

logn + 1 steps. Ve se=e, therefore; that ROTLA requires a total of 2logn + 2, or

-44 -



O{log n), parallel communication steps. The analysis of ROTLA is summarized in

Figure 3.14.

If x; is not atomic, but rather a vector of length &, we can use the same
techniéue but simply consider the k eleménts to be a single data item if the k
elements can be stored in a single L cell. Because the T cells can pipeline their
operations, the total time required is 2logn + 2 + {k — 1), which is still O(log n)

if £k <logmn.
D. General Data Communication Algorithm: GDCA

1. Description

ROTLA circularly shifts the vélues of the occupied L cells a distance of 1 to
the left. T{hen_ constructing alg'orithms for a tree machine, the need for other
dala communication techniques quickly arises. For this purpose, we describe
GDCA. We define a communication patfern to be a pair <«, 8>, where o and §
are the mappings of data itermns ontc the L array before and after "communica-
tion,” where a mapping is a 1-1 function from a set of values {xg, x;, ..., Xn—y}
onto the set of L cells {Lq. Ly, .... Ln-}. Before communication, each occupied L
cell must contain a value, ils index, and the value of its index after communica-
tion. This means that only communication patterns in which £ is easily comput-
able in terms of a are of practical interest, using information such as the index
of the L cell, the number of values, row and cqlumn numbers associated with the
values (for data obtained from a matrix), etc. For example, we may want to shift
the L cell values a dislance k>1 (Figure 3.15a). (We could do this with k applica-

tions of ROTLA but GDCA is more efficient.) As another example, we may want [;
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and L;.; to exchange values (i=0,2,....n—2; n=even) (Figure 3.15b). As a third

example, we may want to "shuffle" the data in the L cells (Figure 3.15¢).

GDCA is not the only way to effect a cc;mmunication pattern. We could, for
example, send the L cell values up to the C cell and broadcast them back down.
Each L cell sends its value to its father; each T cell receives one or mﬁre values
from its sons and sends them :p Lo its father, All n values are received by the C
cell which broadcasts each value down as it is received. Each L celi receives all
n values bul is programmed to save only one of them. (A more detailed discus-
sion is given by Magé [Magé78al.) If we define a step as the time it takes for one
cell to send évalue to an adjacent cell, the C cell would receive the first of the n
values after h+1 steps, where h stands for the height of tﬁe tree (from root to
leaf). It immediately sends this value down and after another hA+1 steps, the L
cells receive the first value. {Note that while values are being broadcast.down,
the rest of the values continue to rise to the C cell.) After another n-1 steps,

therefore, the L cells receive the last of the values. The total time required is
T(n)=n+2h+1
steps, i.e., O(n) time.

Our aim here is to perform communication in less than O(n} time, whenever
possible. This canr be achizved only if fewer than the total number of the values
have to go through the C cell. Whenever this is. the case, the mechanism we dev-
ise (GDCA) routes each elemeﬁt along the shortest path from source to destina-
tion. Each L éell value travels up the tree only as far as it has to, i.e., until it

reaches the lowest common ancestor of the source and destination L cells.



The basic idea of this mechanism is that each T cell constructs a 4-register
directory (LLOW, LHIGH, RLOW, REIGH) containing the sequence numbers of the
leftmost occupied L cells in its left and right subtrees (LLOW and RLOW), and the
rightmost occupied L cells in its left and right subtrees (LHIGH and REIGH). If
all of the L cells of the left subtree are empty, then LLOW and LHIGH are ¢. The
same is true for the right subtree. In a sense, the machine determines o {what
is where in the machine before communication). £ is determin-ed as follows.
When an L cell wants to send information, it determines the sequence number of
the recipient L cell {DESTY) and sends the pair (DEST#, VALUE) to its father T
cell. AT cell compares DEST# with the information in its directory to determine
whether to send the pair {(DEST#, VALUE) further up the tree or doﬁ'n to one of
the sons. L cells communicate by sending the pair {DEST#, VALUE). The T cells
route the data left, right. or up as socn as the data is received. This a.lgorithm
sends aﬁ L value only as far up the tree as necessary, thus making most efficient
use of the tree branches. The maximum distance a value must travel from one L

celi Lo another is twice the height of the tree.

Constructing ihe directories is straightforwardrand.can be done in a single
upward and downward sweep. In the upward sweep, empty L cells send a '"'0" to
their fathers, occupied L cells send a "1". A T cell receives values from its left
- and right sons into LNUM and RNUM and sends LNUM+RNUM to its father. LNUM
and RNUM contain the number of occupied L cells in the T cell's left and right
subtrees. The C cell receives from its son a value n which equals the tota!

numnber of occupied L cells in the tree as shown in the example of Figure 3.18a.

The C cell starts the downward sweep by returning n and n~1 to its scn, the

root T cell. BEach T cell construcls its directory using the algorithm shown in
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Figure 3.17. At the end of the downward sweep, every L cell receives n and its
sequence number from its father; an empty L cell receives n and ¢, as shown in
the exarmnple of Figure 3.18b. The analysis of the initialization sweep for GDCA is

shown in Figure 3.18,

The L cells are responsible for computing DEST#. We assume a unique desti-
nation for each L cell value. For example, if we want to shift the L cell values a

distance k circularly to the left (Figure 3.15a), an L cell must have

m total number of occupied L cells
seq# sequence number
& shift distance.

With these, the L cell computes
~ DEST# := mod(segf~k,n).

To compute the DEST# needed for an exchange (Figure 3.15b), the L cells would
execute

if mod(seg#.2)=0 then DEST§:=seq#+1 else DESTH:=segf-1;
To implement a "shuffle” pattern (Figure 3.15¢), the L cells would execute

i segy<n/2 then DEST#:=2xseqf# else LEST{:=2xseqf-n+1;
Transposing a square matrix with n elements requires each L cell to send its
vajue to the {ollowing destination

row 1= Vn ;

7 := rnod{segd,row);

i:= {segf—~i)/row;

DEST§ := jxrow + 4,
In these and many other important cvases, the functions required to compute
DEST# are simple. They use segf#, n, and possibly other information characteriz-

ing the data {such as row or column length, if the data represents matrix ele-

ments).
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The time required to perform GDCA, however, would depend on what the
communication pattern is. Some patterns would still require O(n) time. For
example, reversal of the L cell elements (for an n L cell tree machine, sending
the contents L; to L, _;_,,i= 0, 1, ..., n—1) would require all of the L cell elements
“to go through the root T cell, i.e., O{n) execution time. The 'shuffle” pattern
(Figure 3.15c} and transposing a sguare matrix with n elements also require
O{n) time. Some patlerns, however, are sublinear, such as the k-shift and

exchange patierns shown in Figures 3.152 and 3.15b.

In this dissertation, we shall often make use of GDCA, especially to perform

k-shift. The next section presents estimates of Lthe execulion timme of GDCA when

perfecrming a k-shift.

‘2. Execution Time of K-shiit

First, we develop an upper bound of the time reguired by GICA io perform a
circular k-shift to the feft. The analysis of a k-shift to the right is similar. Let
N =27 be the number of L cells and n the number of occupied L celis {(i.e., the
number of L cells participaling in the shift). We analyze only values of k < In /2l
(A k-shift to the left, where k > /2l is equivalert to an {n—k }-shift to the right,
where n~k <n /2l By symmetlry, the analysis of an (n —k)-shift to the right is
identical to a k-shift to the left.) Define the level of a cell to be the length of the
shorlest path from the cell to any leaf. Thus, the L cells are on level O, their

father T cells are on level 1, ..., and the root T cell is on level p.

The T cell needs a policy to handle possible contention among its father and
sons. Conlenlion occurs when, for example, a T cell receives a DEST# from each

of its sons, and both DEST#'s must be sent to the father; the T cell must decide
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which to send first. A T cell policy explicitly states which of its father and sons

has highest, middie, and least priority. Consider the two policies, P1 and P2:

Pi: FATHER > LEFTSON > RIGHTSON
P2: FATEER > RIGHTSCON > LEFTSON .

P1 says thal, in the event of contention, the father has priority over the left son
which has priorily over the right son. PZ says thal the father has priority over
the right son which has priority over the left son. Assume that the T cells adopt

policy P1. The analysis using pelicy P2 is similar,

We observe what happens in individual subtrees as (DEST§, VALUE) pairs are
sent up the tree. Let 7 be an arbitrary T cell. Let »; and np be the number of
occupied L cells in its left and right subtrees, respectively. There are three

cases.

(1) k=mn; +np (Figure 3.19a). Because the shift distance is greater than the
number of cccupied L cells in bolh subtrees, all of the n; + np pairs must be
sent to the father of the T cell, i.e., shifted out of this subtree. Because Tis
using policy P1, pairs from the left son are sent before pairs from the right
son. There is contention in this T cell {pairs from the right son must wait),

but no unnecessary delay.

(2) k=mn; (Figure 3.19b). Because the shift distance is less than the number of
vecupied L celis in s leff subtree, only the pairs from the leftmost & oceu-
pied L cells of T's left subtree must be sent o the father. The destinations
of ail other occupied L cells {in T's subtrees) are in T's subtrees, and are
sent down by T as soon as they are received. There is no contention;

streams flow through the channels unencumbered. The root T cell is a spe-
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(3)

cial case: none of the values it receives is sent to its father (C cell). The
root T cell receives at most & (DEST#, VALUE) pairs from its left son, all of
which must be sent to its right son. It also receives at most k& (DEST#.
VALUE) pairs from its right son, all of which must be sent to its Iéft son. A
maximum of 2¢ numbers {i.e., k pairs) move from one to the other subtree
of the root. There is no contention as the two streams are moving in oppo-
site directions. The first DEST# reaches the root after p steps, and reaches
the destination L cell after p more steps. The rest of the stream reach the
destination L cells after another 2k — 1 steps. The total time for these pairs
to rise to the root and reach their destinations is therefore 2p + 2k - 1
steps.

n; <k <n;+np (Figure 3.19c). Here, all n; of the p-airs from 7T's left son
must be sent to 7's father. The first ¥ —n; pairs from T's right son must
also be sent to T's father. The trailing np + np —k pairs from T's right son
must be sent to T's left son; however, these prirs are unnecessarily
delayed. Because 7T is using policy P1, the trailing n; + np ~k pairs from Ts
right son are prevenled from moving toward their destinations because
they must wait for the k —n; pairs (which must be sent to T's father) to
clear. I T'is on level k, the total time required for all pairs in T's subtrees

to reach their destinations is at least

2h +2{n; +np)—1 < 2p +2{2k) —1. (3.46)
¥e observe that on any path from the root to a leaf, there is at mosi one

such 7. Thus, this delay is not compounded. {For a full tree, i.e., when all L

cells are occupied, all such T cells have the same level number.)
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We use the right hand side of {(3.46), added to the time required to build the
directories {2p +3, as shown in Figure 3.18), to bound the total time, T{k),

required for a GDCA k-shift, Le,,

T(k)=(2p +3)+2p +2{(Rk)—-1=4p + 4k + 2 : (3.47)
or O(k) time. Jf £=0 (L celi values are not communicated), the only cost would

be the time required to initialize the T cell directories:
T(Q)=T(n)={2p + 3) ' (3.48)

Note thal the problem described in case {3) would not have occurred had 7
used policy P2 instecd {Tigure 3.18d). This is because the pairs (sent by T's
right son) that need to be sent to T's left son are received by T first. Hence,

they are not delayed.

A program was written to simulate a tree machine executing the GDCA k-
shift pattern. The program was written in PL/C and run on an IBM 380/75. The
object was to count thé number of communication time units needed to execute

k-shift. The assumptions of the program were as follows.

{1) A cell could communicate with its father or sons in one time unit, where
communication means sending or reéceiving one numeric value. A T cell
could therefore send as many as three {possibly different) values and
receive three other _VéIues in one time unil, An L cell would need at least

two time units to send a (DEST#, VALUE) pair to its father.

{2) U & cell receives a value in one time unit, the cell has to wait at least until

the next time unit before sending that value.
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(3) All cells operated synchronously.

(4) The direction of the shift was to the left. A k-shift would cause L; to receive

the value of L(i1x)mod n» Where n is the number of occupied L cells.

The program had four parameters:

(1) the number of L cells in the tree machine,

(2) the number of cccupied L cells,

(3) the shift distance k, and

(4) the T cell policy {(both Pl and P2 were tested).

For a given simulation run, if the number of occupied L cells was less than the
total number of L cells, the empty cells were selected al random, using the ran-

dom rumber generator described by Coveyou and Macpherson [CoMaB7).

Figures 3.20-22 sumrmarize the resulls obtained for a 16-, 32-, and 64-L-cell
tree’ machine where n is the number of occupied L cells and k is the shift dis-
tarice. BEntries under P1 and P2 are the number of steps produced by the simu-

lation. T{k)is the bound defined by equation (3.47).

All results produced by the simulation were bounded by 7(k )}, using either T
cell policy P1 or P2, 1t is interesting to note, however, that for values of
k<in/2l ang using policy P1, the time requi.reﬁ for GDCA did not increase uni-
formly with k {as they did with policy P2). Increases were in large amounts, foi-
lowed by plateaus (see, for example, Figure 3.22, N =n =84, k = 17, ...,31). The
\}alues of £ which cause these sudden rises correspond with those identified as
potential problems in case (3). Note also that for k& > n /2] a similar problem

occurs when policy P2 is used. In summary, the resulls of the simulation (Fig-
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ures 3.20-22) show that best results are obtained if the T cells use policy P2

when k < fn /2l and policy P1 otherwise.



Initial: X.5 Ags Kssz Xea Xz Xoy Xy Xg-

Final: X, Xg Xy Xy X3 X X X
X Xs X X3 X x Xp Xy

Figure 3.1 Initial and final contents of n=8 L cells executing LR1. The ith L cell,
counting from the right, initielly contains the pair of values (X;i-1)={as.b;),
C{=ign-1. At the end of tke downward sweep, the ith L cell conteirs the solu-
tien components x; and x_;.

Figure 3.2 A compeoesition step in LR1. During the upward sweep, a T cell receives
a; and b; from its left son and ap and bg from its right son. The T cell steres the
values a; and b; end sends the values a,+b az and bpby to its father, as
described in equation (3.22).

(xy. %)

(x.x;) (25, %)

Figure 3.3 A substitution step in LR1. During the dewrward sweep, a T cell re-
ceives (x;.x.) from its father. It computes x;=ap + ;% ard sends (x,.x;) to its
lefi sorn and {%;.% ) tc its right scn. Note that ap and bg were stored during the
upward sweep.
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. .
Xos Xes Xs.q xgs Xz Xz1 Xi0 X5-1

Figure 3.4 Values commurnicated during the upward (composition) sweep of LR1
ar: a fully occupied 8 L cell tree machine. Composition of two linear equations ce-
curs at each of the T cells.

{ (x0x_y)

(xrxs)

(xs.%s) (22,31}

(%.%5)  (3.%,) (%) {%1,%)

Figure 3.5 Values commuricated during the downward {substitution} sweep of
LRl. Evaluation of a new xvalue occurs at eack of the T cells. Note that theith L
cell, counting from the right, receives the solutions x; and x-3. ‘

LR1
Comm. Parallel Operations
Sweep Steps L cells T cells C cell
| + X + x + X
up 2logn+2 .0 { O logn | 2logn | 0 1 O
down | 2logn+2 { 0| 0 { logn | logn | D {0
Total | 4logn+4 | O | O | 2logn | 3logn | 0 | O

Figure 3.6 Aralysis of LR1. During the upward sweep, each level of cells sends a
pair of values tc the next higher level. Because data from the L cells must pass
through logn+ 1 levels Lo reach the C cell, the upward sweep requires 2logn+2
commurication steps. Each T cell performs two multiplications and ore additicn.
Because Lhere are logn levels of T cells, the upward sweep executes Zlogn paral-
lel multiplications and logn parallel additions. No arithmelic operaticns are exe-
cuted by the C cell or the L cells. The downward sweep is aralyzed similarly.
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(@)

2% 0)

(®s %) (x0xg)  (x4%5) (xx2) (xex)) (xo,x-1)
X3 Xs.2 Xz X0 Xp,-1
Xy X3 Xz x X5
x3 p & x Xy X,
{b}

Figure 3.7 Upward and downward sweeps of LR1 for n=5 on an B L cell tree
mactire. {a) Empty L cells send up the pair {0,1) while cccupied L cells send up
the coeficient pair (g, b). Neither the T cells nor the C cell knows whether the
data it receives came from an empty or an occupied L cell. (b) At the end of the
downward sweep, an empty L cell ignores the values it receives,
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L FRACTION
Comm. Parallel Operations

L cells T cells C cell
+ x + x + x

SWeep | mime

up 4logn+4 | 0 O | 4logn Blogn | O | 1
down | 2logn+2 0 | 0 | 2logn 3logn [ 0 ! O
0| 0 1

Total | Blogn + 6

Blogn Illognl 0

Figure 3.8 Analysis of FRACTION. During the upward sweep, each cell must send 4
vaiues a, b, ¢, and d to iis father, requiricg a total of 4{logn + 1} communication.
steps. Each of the T cells must subsiilute the equation received from the left
son into the equation received from the right, reguiring B multiplications and 4
additions, as shown in equation {3.13). A total of Blogn parallel multiplications
ard 4logn parallel additions are executed. The C céll must execule a single divi-
sicn. During the downward sweep, every cell sends 2 values to each of its sens,
requiring a total of 2(logn + 1) communication steps. Each T cell must solve a
guolient of two linear egquations, requiring 3 multiplications or divisions and 2 agd-
ditions.

Xk (yi, )

X X;s {y:, ¥i) Yi. Ye)
(a) , {b)

Figure 3.2 Compositior and substitutior applied to LR2. (a) During the upward
{corpesition) sweep, a T cell receives X;,; = {4, B) from its left sen and
X;, = (4, B') from its right son. The T cell applies the furction g {equaticn
(3.281)) and sends the result X;; = (4 + BFF', BE’') to its father. (b} During the
dewnward (substitution) sweep, the T cell receives the pair of scluticns (¥, yi)
from its father. It uses y, to compute y; using equalion (3.34) serds the pair
{yi. ¥;) to its left son and the pair (y;. y&) to ils right son.
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LR2 .
Comm. Parailel Operations
Sweep Time L celis T cells C cell
+ b4 + x + x
up flogn+6 | 0 | O | Blogn | 12logn | 0 | O
down 4logn+4 | 0| O 4logn | 4logn | 0 | O
Total 10logn +10 | 0 | O § i12logn | 16logn | 0 | O

Figure 3.10 Aralysis of LR2. During the upward sweep, a T cell receives 6 values
from each son and sends 6 values o its father. The total communication time is
therefore 6(logn + 6) units. During the downward sweep, each T cell receives ¢
values from its father and sends 4 values to each son. Only the T cells perforim
arithmetic operations. Each T cell evaluates {3.18) and (3.20) during the upward
sweep, requiring 12 multiplications and 6 additions. It evaluates (3.21) and (3.22)

during the downward sweep, requiring 4 multiplications and 4 additicns.

®
(x)

X3

X2

Figure 3.11 One implementation of ROTL. xy is sert vp to the C cell and sert
down to an empty L cell to the right of x,-;.
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] I3
b 4] Xy ¢
¢ x &'Cb)/
Xy X X; . . X3 x4

Figure 3.12 ROTLA upward sweep. The L cells initiate the upward sweep by send-
ing the x values to their fathers. A T cell receives the values 27 and 25 from its
left arnd right somns, saves zg, and sends z; to its father. The upward sweep ends
when the C cell receives a value from the root T cell. ’

/ixo\
X3 Xy
3
X3

X3 $ X _
& f/\% o g
2\ Yo
X2

Figure 3.13 ROTLA dowrnward sweep. The downward sweep starts when the C cell

Xy X
retures tke value (o its son. Each T cell receives a value from the father, serds it
to the right ser, and serds the value saved from the upward sweep (zz) to the
left sor:. The downward sweep ends when the L cells receive the new values.
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ROTLA
_ Comm. Parallel Operetions
Sweep Steps Lcells | Teells | Ccell
' P + X 1+ X |+ X
up - legn +1/0]0/0[0|0]|D
down logm + 1 0 D 0 o olo
Total {2logn+2 | 0| 0 0|0 |00

Figure 3.14 Analysis of ROTLA. Each cell sends one value to its father during the
upward sweep. As there are log{n}+2 levels of cells in the tree, the upward sweep
reguires log{n)+1 parallel communication: steps. Similarly, the downward sweep
requires log(nj+1 parallel commumcatmn steps None of the cells execute any

arithmetic operations.

L cells: 0 12 54 65 68 7 8 9101112 13 14 15
send: x0 x1 x2 x3 x4 x5 xB6 x7 x8 x9P
receive; _
(a) x3 x4 x5 xB x7 xB x8 x0  x1 %2
(b) x1  x0 x3 x2 x5 x4 x7 x6 x9 xB
(e) x0 % x1xB x2 x7x3 x8 x4 x9

Figure 3.15 Exemples of data communicaticn ameng the L cells for n=10C, #L
ce_l]s—IG {a) L cell elements are shifted cireclarly to the left a distance £=3. {b)
L cell with sequence numbers € and 1,+1 exchenge values, i=even. (c) L cell ele-

ments are "shufled’.
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-4 Ep ' - Hy Xy

Figure 3.16a GDCA initialization upward sweep. Empty L cells send a "0",
nenempty L cells send a "1". A T cell stores the value received from its left son
(right sor) in LNUM (RNUM). The value equals the number of nonempty L cells in
the T cell’s left (right) subiree. The L cell receives n, the total number of

nenempty L cells in the tree.

val, Xg ’ . ) )
segf: O 2 3 4
T 5

Figure 3.16b GDCA initialization downward sweep. Eac_h T cell receives a value
from ils father and uses the value to determine (LLOW, LHIGH) and (RLOW,

RHIGH). Note that the firsi value an L cell receives is 7, the number of noneripty
L cells. The second value is either ¢ or its sequernce number.
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F.receive(n,FVAL); receive two values from father

if RNUM#0 . determine highest and lowest
then begin ' sequence numbers in right
RHIGH := FVAL; . subtree
RLOW := FVAL-RNUM+1
end

else RHIGH := RLOW := ¢;

if LNUM#0 determine highest and lowest
then begin sequence numbers in left
LHIGH := FVAL-RNUM; subtree
LLOW := LHIGE-LNUM+1
end

else LHIGH := LLOW := ¢;

L.send{n,LEIGH), .send data to left and right sons
R.send{n.REIGE); :

Figure 3.17 Algorithm constructing the T cell directories for GDCA.

Constructing GDCA Directories
Comm. Parallel Operations
Sweep Steps L cells T cells Cceell |
X + x|+ x
up log{n)+1 | 0 | O log{n} | 01 0] O
down Iog(_n)+2 0] 0 :i5log{n) | 0] 0|0
Total | 2log(n)+3 {0 | 0 | Blog(n) | 0| 010

Figure 3.18 Analysis of GDCA gdirectory construction. Durirg the upward sweep,
each L and T cell serds one value to its father, thus requiring a total of Iog(n)
commurnication time urnits. During the downward sweep, the C and T cells serd
twe values to each son. Because the T cells may pipelire cormnmunication (a T cell
may send down the first value received before waiting for the second to arrive),
the dewnward sweep reguires a total of leg(n)=2 time urits (leg(n)+1 plus cne
time urit to send the seccrd value to the L cells). Witkout pipelining, the time
required would be 2lecg{n)-2. Orly the T cells perferm arithmetic operatiens.
Each T cell performs one addition during the upward sweep and a maximum of
two additiorns and three multiplications during the downward sweep, '
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1 2 3 4

Figure 3.19a GDCA k-shift, case (1): ny=ng =2, k=4, where n; and n; are the
number of oceuvpied L cells in T's left and right subtrees, respectively, and & is
the shift distance. Because the shift distance is greater thar or equal ic the sum
of iy +nge, values 1, 2, 3, and 4 are all sent to the father of 7. Because T has
adopted policy P1, there is contentior (values 3 arnd 4 must wait for 1 and 2 to be
sent) but no unnecessary delay.

2

1 3 4

& __ . _w JJ

Figure 3.18h GDCA A-shilt, case (B): ngy=np=2,7%: =2, using T cell policy P1. Tke
arrcws indicate the destiraticns of valves 3 and 4. Because the shift distarce is
equal tc ng, the values 1 ard 2 are sent by 7T te its fatker while 3 and 4 are sent
tc ils left sen. Because T has adopied pelicy P1, there is no contention ard neo

delay.




Figure 3.19¢ GDCTA k-shift, case (3): ny=nz =2, k=3, using T cell policy P1. The
arrow indicates the destination of value 4. Because n; <k <n; + np, the values 1,
2, and 3 are sent by T to its father. Value 4 should be sert to T's left son but
must wait for value 3 to be senl up. Value 3, in ture, must wait for values 1 and 2
to be sent up. Value 4 is, therefore, uncecessarily deiayed.

Figure 3.1¢d SDCA k-shift, case (3} ny=ng =2,k =3, using T cell policy P2. The
arrow indicates the destinatior of value 4. Unlike in Figure 3.19¢, value 4 is re-
ceived by T ahead of value 2. Thus, £ mzy be 2l down to 7s left son in the next
time step wkile value 2 is sent to the father. Ir the same step, values 1 and 3 are
received by 7. Ir the rext two time steps, values 3 and 1 (in tkat order) are sent
by T toits faiher. Value 4 was not delayed. '
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_66_

Simulation Resulis (16 L cells)
nlk|P1lP2{T)iin! k |P1|P2|Tk
4] 1|20 | 20{ 22 || 4] 3 18] 18] 24

222|221 26 4111 1) 1
51 1|20 21 221 51 420! 2! 22
2|22 (22| 28 5111 |11] 11
322 20| 30
B, 1120 20| 22 || 8! 5|24 2] 30
2|22 iz2| 25 6|22 )22 26
3124|241 30 7 l20l20! 22
4124 | 261 34 8l il n
6 1120 20 22| 9| 6124 |23 30
222|221 26 7122 22| 26
3126 24| 30 B |20 20 22
426! 2| 34 | 111 11! 11
s!oslzel a5 |||
11 1,20 ,20] 22 (11| 7|2 |28 34
2| 22 ! 22 ¢ 26 1 B 2424 30
326 24| 30 o |22 22| 26
430)26| 34 10|20 |20 22
5|28 (28| 38 111111 on
6! 26 1281 42
12, 1120120 22 l12] 728 |2 | 38
2|22 (22| 28 B l25 |30 34
3(2 |24 30 o |24 28] 20
s 2826 | 34 10,22 !22] 26
5 (%0 28 | 3B 11 | 206 | 20| 22
6| 30! 30 42 12 111 | 11! 11
141 1.,20120) 22 114 8 ;30|32 42
2 ] 22 | 22 | 28 o 28| 32| 38
sl24 |24 30 1026 28 34
4|26 |26 34| 1 j2adas ] R0
5302838 | iziz2 22 20
J 613 {30! 42§ flalzo-’eoizz
} 7 : 32 32 1 46 -4 11 ! 311 ¢+ 111
16‘,1'20‘20 22 116, 9 (3232 | 46
222 22| 26 1 ! 10 30! 32| 22
- 5124 24| 30 | 11 | 28 132! 38
4)20 |28 | 54|l |12 25 2] 3 )
5|32 28 aa' (13} 24 25| 30 |
| 6}3253{) a2 14,225 22| 26 |
1 7%32,32 48 || 15120,20-22J
Brag las ! s0 s 11l 13
Figure 3.20



Simulation Results (32 L cells)
nlk|Pilpe|rw ]| n| ke lprrel o
4 | 1 24|22, 26 4 3124 24 28

2 26| 24| 30 4 {13 1131 13
1831 1,24 24| 286 B 5128 (.26 34
226! 26! 30 6 ' 26|26 30
3|28 |28 ! 34 724 (25! 28
4 13028 | 38 Blzlisl 13
12| 126/ 28| 26 j12] 73|30 42
2|2 {2 | 30 B |[30]30 ] 38
33028 34 9 )28 | 28| 34
4i32:3 {38 10|28 }26; 30
513432 42 117124 i 24| 26
6 131134 46 121131 1371 13
16| 1 24|21 26 16| 9|35 3si 50
226026 | 30 }| . |10]34 |30 46
'3 [28)28: 34 11 | 32 | 32 | 42
436 |30 38 12130 |34 38
53832 42 13! 28130 34
. 5 ! 38134 46 | |14 )26 {26 30
7 13436 50 |15|2 |24} 26
B 34|36 | b4 118 |13 113 ¢ 13
23] 1| 24|28 | 26 |32 1342 |44 ]| 82
2|26 {26 | 30 14 | 40 | 48 | B8
3|28 )28 34 15| 38 44 | 54
41303 | 38 )  |16]136.|40]| 50
5|32 |32 42 17§ 34 | 42 | 48
i | 6 ;40 L 34 | 48 18 32| 32| 42
7140 | 36 | 50 19 130 | 30| 38
8144 |36 | 54 ||  |20)28|28| 34
g |46 ; 40 | 58 121128 |26 30
10|38 | 40| B2 || 22 | 24 | 24| 26
11144 | 42 | 66 2311313 13
- 12142 ! 44 | 20 | o
32! 11242 | 26 |32]17 i'sz [ 52 | B2
22 026! 30 |18 50 | 52 7B
328 ;28 34 || 19_] 48 | 52 | 74
473030 38 20 46 | 52 | 70
534 |32 42 21| 44 | 52 | 86
B 34! 34| 48 22 142 | 52 | 62
736 | 36| 50 23| 40 |'52 | 5B
8,38 38 | 54 24138 | 38 ; 54
i 55240 58 25 [ 36 | 38 | 50
| 110052 42| 82 !"26!34'34_45
1152 ;44 | 86 % 127 32134, 42
12052746 v0 © 26 30 30 98
2 L2 43 74 || . |29 ;26|28 34
| 14 452 50 | 78 30,26 | 26 | 30
= 15,52 | 52 | B2 3124 | 2 | 26
| tyglsatail gg 13 lgzigsion |

Figure 3.21
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Simulation Results (64 L cells)

nlk |PLi{P2Z TR |n | % |P1]|P2]| Ttk)
16| 1 {28 !28; 30 [[16] 6,38 42| 54
2130730 34 1038 |44 | 50
33132 38 11136 | 36 | 46
4|36 34 42 12134 ] 36 | 42
5 | 38|36 46 13 | 32 | 32 | 38
6 |42 | 38| 50 14} 30 | 30| 34
7|44 | 40 | 54 15| 28 | 28 | 30
8138140 58 16 | 15 | 15 | 15
32| 1 (28,281 30 321748 |58 | 86
218 |30] 34 i8 { 54 | 60 | 82
3 (3232 38 19 {52 | 56 | 7B
4|3 |34 42 20 50 | 58 | 74
53 |38 48 2148 [ 56 | 70
6|42 138 50 22 | 46 | 52 | 68
7 | 50 { 40| 54 23 | 44 | 54 | 82
B |52 42 58 24 | 42 | 54 | 58
g 152447 B2 25| 40 | 40 | 54
10} 52 | 46 | 66 26 | 368 | 40 | 50
11 | 48 | 4B | 70 27 | 36 | 36 | 46
12 | 84 | 50 | 74 28 | 34 | 34 | 42
13160 | 50| 78 20 | 32 | 32| 38
14 | 58 | 52 | 82 30 (30|30 34
15| 58 | 56 | 86 31 )28 | 28 | 30
16 | 56 | 56 | 80 321 15 115 ¢ 15
48| 1|28 | 28| 30 l48l25| 72|74 | 118
2 (3030 34 2668 | 72 | 114
313232, 38 27 | 68 | 72 | 110
4 1341347 42 28 66 | 72 | 106
5136 36 48 20 | 64 | 72 | 102
6 |44 |38 50 306274 | 88
7 |46 | 40 | 54 3160 74| 04
B | 46 | 42 | 58 32058 74| 90
9148 | 44 | 62 33 | 56 | 74 | 86
10 | 64 | 48 | 66 34 | 54 | 64| B2
11|72 | 48| 70 35152 | 68| 7B
12| 70 | 50 | 74 36 | 50| 50 | 74
1317 |50 78 3748 64| 70
14 | 72 ! 52 | 82 38 | 46 | 50 | 66
15 | 80 | 56 | BB 39 | 44 | 88 | 62
16 | 76 | 56 | 90 40 | 42 | 50 | 58
171 76 | 60 | 94 41140 48 | 54
18| 74 |62 | o8 42 | 38 | 46 | 50
19 | 82 | 84 | 102 43 {36 | 36 | 46
20 | 78 | 66 | 106 44 | 32 | 34 42
21 ! 75 | 6811101 . 14532382 38
22 1 74 | 70 | 115 46 130 1 30 ; 34
23! 76 | 72| 118 47 | 28 | 28 | 30
231 72 | 72 ' 122 48 1 15 15 ' 15

Figure 3.22 (continued nexl page)
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Simulation Resulis

64 L cells)

n| kIP1|P2ITR) | n |k !P1|P2|Th
B4| 1,28 |28 | 30 |64 (33,88 (88150
2| 30|30 34 34 | 86 | BB | 146
33232 38 35 | 84 | BB | 142
403413 42 36 ) 82 | BB | 138
5138 3 | 46 37 | B0 | BB | 134
6|38(38| 50 38 | 78 | 88 | 130
7140 ] 40| 54 39 | 76 | B8 | 126
Bls5s!a2| 58 40 | 74 | 88 | 122
9 | 54144 B2 4172 |88 118
10|53 | 48| 68 42170 | BB | 114
11| 54 | 48 | 70 43 . 68! BB | 110
1254 | 50 | 74 44 | 66 | BB | 106
13|54 | 52| 78 45 | 84 | B8 | 202
14 | 54 | 54 | B2 46 | 62 | B8 | 98
15| 56 | 58 | BB 47 | 80 ! B8 | 84
16! 58| 58| 80 48 58 | B8 | 8D
17188 BO | 94 401 56 | 56 | 86
1B | B8 ! 62 | 88 50 ] 54 | 54 | 82
1988 | 64| 102 51|52 | 54! 78
'20 | BB | 66 | 106 52| 50 | 54 | 74
21| 88 | 68 | 110 53 | 48 | 54 | 70
22|88 70 | 114 54 148 | 54 | 65 |
2388 | 72 | 118 | 85 | 44 | 54 52’
24 | 88 | 74 | 122 56 | 42 | 42 | 58
25 | 88 | 76 | 126 57 | 40 | 40 | 54 |
26 | 88 | 78 | 130 58 | 38 | 38 | 50
27188 "' 80| 131 59 | 35! 358 | 46 ,
‘28 85 B2 | 138 | 80 | 34 | 34 | 42 |
200 88 | B4 ; 142 61|32 |32 38 |
30 | 86 | BS | 146 | €2 | 30 | 30 | 34 !
31| 86 | 88 | 150 63 : 28 28 | 30,
32 90 ' 90 ' 154 B4 ¢ 151 15 ' 15
Figure 3.22
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CHAPTER 4. TRIDIAGONAL LINEAR SYSTEM SOLVERS

A Overview

O.n a seguential computer, an {(n xn) tridiagonal linear system of eguations
can be solved in O(n) time. The traditional aigorithms for solving such a system
are LU decomnpositiicn apd Gaussian elimination, or the .more eflicient Thomas
algorithm [Ames?7, Youn71]. During the last two de_cad.es. parallel algorithms to
solve tridiagonal systems have been developed for computers such as the
ILLIAC-1V, CDC STAR-100, and TI-ASC. In 1865, R. Hockney [Hock85] introduced
cyciic' reduction, a rﬁethod for solving the bIock-tr'idiagona] linear Systerﬁ result-
ing from the five-point approximation of Poisson’s equation on a square region
{Chapter 2). Buneman proposed a slightly different version of cyclic reduction
[BuneB®, BuGN70]} that was proven to be stable although reguiring more arith-
metic cperations. Both are direct methods and can be implemented on a paral-
lel processor in O(log n) sieps, providing a greart imprgvement over previous
methods, both direct and iterative [Dorr70]. M.oreove-r,' both methods can be

applied to tridiagonal linear systems as well [Hock70].

Stone [Sten73a] intreduced a technigue calied recursive doubling which can
solve linear recurrences on a parallel processor of tfﬁé ILLIAC—IV type in O{log n)
.steps. Since the LU decompesition of a triﬁiagonal sys{em can be transformed
into a pr‘ob]em.of solving linear recurrences, recursive doubling provided a third

parallel tridiagonal systern solver. Stone compared these three methods
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[Ston75] and concluded that, for an ILLIAC-IV type parallel processor, eyclic
reduction is preferable for the constant diagonal case whereas recursive dou-
bling'is more efficient when the diagonal has arb'itl."ary values. His analysis did
not include overhead cost such. as data rearrangement. Lambiotte and :Voigt
[LaVo75] included overhead cost and machine timing formulas in their analyses
of three direct methods (LU decomposition, recursive doubling, and cyclic
reductioh) and three iterative methods implemented on a vector procéssor, the
CDC STAR-100.. Among their conclusions: direct methods are superior to .itera-
tive methods, and for large s_ystenis cyclic reduction is the fastest. They also
‘concluded that when implemented on a vectof processor, recursive doubling
required O(n log.‘n_)' time, compared to the O(n) time required by traditional
algorithms on a seqﬁential‘ computer. This is because recursive doubling
reguires a total of O(n. logn) operations and a x.'e'ctor processor gives o.n.ly .a_ con-
stant speedup over sequential computers. Furthermore, Diamond [Diafn?_ﬁ] has

found recursive doubling to be unstable for certain systems of equations.

Other methods subsequently developed include 2 _method by Sameh and
Kuck [SaKu78] based on Givens' reduction of a matrix to-triangular form, and a
method By Swarztrauber [Swar79] based on Cramer’s rule. Both methods run in
O(log m) time on an m-processor machine. As noted by Ortega and Voigt in an
excellent survey [OrVo77]; these me'thods may ha;ve merit if the stability of

cyclic reduclion is in doubt.

Traditional iterative methods for solving t’ridiagbha} systems include the
Jacobi method, Jacobi over-relaxation (JOR), the Gauss-Seidel method, and suc- -
cessive over-relaxation (SOR). Lambiotle and Voigt [LaVo75] found that whereas

the Jacobi method and JOR could be efficienlly implemented on a vector
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_ processor._neihher the Gauss-Seidel meihod.nor S0R c_ould becaﬁse of the
seguential nature of the recurrence expressibns produced However, a variation
of SOR called red-black SOR [Youn71], uhach treats the vector of elements as
two 1ndependent halves, could be eﬁlcwntly 1mplemented Traub [Trau73] mtro-
duced a rnethod that transforms the recurrence equatlons of LU decomposztxon
into iterations and showed _tl_lat the rate of convergenge is independent of the
size of the matrix. Lambiotte and Voigt [LaVo75) implemented Traub’s algo-
rithm on the STAR?IDD and an accelerated vefsiop of trhe algorithm is described

by Heller, Stevenson and Traub [EeST78).

This chapter addresses the problem of implementing tridiagonal linear sys-
tem solvers on tree machines. As some of the algorithms presented éari be
décomposed into prob’lems of solving first- and seébnd-order recurrence expres-
sions, we will make fretjuent use of the tree algorithms LR1, LR2 and FRACTiON,
as well as fhe tree communication algorithms ROTLA and ROTRA, all described in |

Chapter 3.

Our aim is to solve the (nxn) tri‘diago_nal.lineér éystern

['bc Cg -0 . {'.xc.,]', l-(.rc

ay &, ¢, : 'iz. N ¢ : _
ay by €3 1% 1= g | : _ {4.1)
7 Cr-2 - '

o 2, bﬁf_.;# Xn-1] l'n.—-l.‘r

Section B presents three classes of direci"-soiuti'on methods. The first
transforms the coeflficient matrix into an upper 'bi'diagona.l matrix and solves the
new system rus'mg back substitution. This class .inc‘ludes Gaussian elimination
and the Thomas algorithm, algorithms that appear to be inherently sequential

'an:d, thus, have been thought to be unsuitabl-e for other paraliel processors
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[Stoﬁ75. LaVo75, HeST76, JeHo79, OrVo77). Both methods run in O(n) time on a
sequential computer and (as we show later) in O(log n) time on & tree machine.
The second class of solutions.us'es LU decomposition, i.e., the coeflicient matrix
is decbmposed'into LU where L is lower bidiagonal and U is upper bidiagonal.
The system is then solved using forward substitution and back substitution. Two
examples are given, both of which take O{n) time on a sequential computer and
O{log ) time on a tree ﬁlachine. The.third' cléss ﬁf'algorithms is based on cyclic
reduction, iﬁ one step transforming a tridiagonal systern into one approj(imat.ely'
half ils size. Iterating O(log n) times, we are left i’i;t,h one equalion in one u_nk-‘
nown. We solve this equation and, in 0(log n) more i?érat_ions. solve for the rest
of the variables. This class inciludes cyelie reductioh and Buneman's algorithm
and requires 0{n) time on a sequential. cémputer’ and O((log.n)z) tifne on a tree

machine.

In section C, we investigate iterative solution methods, including the Jacobi
method, JOR, the Gauss-Seidel method, SOR, red-black SOR, and an iterative
analog to LU’ decomposition developed by ;I'ra‘_ub.‘[Trau'FBI]. One iteraﬁoh of each.
.éf these methods:.requires.()(n) time on a sequential computer and O(log n) time

_ on a tree machine.

In section D, we summarize our results and make comparisons with results
obtained by Stone [Ston73] on a parallel processor and by Lambiotte and Voigt

[LaVo75] on a vector computer.

-73-



B. Direct Methods

1. ﬁadjtionally Sequential Algorithms

In this section, we describe two a’lgoﬁthms._ Gaussian elimination and the
Thorﬁas algorithm, originally designed for sequer_:tial pﬁ‘ocessing. These algo-
rithms have been considered unsuitable for efficient i,mpi:ementation on parallel
pr.oceséors such as vector computers [La\-’é?&] and array processors' of the
ILLIAC-IV type [Ston75). We will see that-they can be imple_mented eﬁicienti’y on

a tree machine.

Gaussian elimination and the Thomas algorithm transform (4.1) into an
upper bidiagonal system and then determihe the x-vector using back substitu-
ticn. Both methods use first-order recurrence expressiohs to obtain the bidiag-

onal system and to perform back substitulion.

Thomes Algorithm
The Thomas Algorithm transforms (4.1)inte

1 o lx !l [y
es X | | Y
1 e, X iy
_ =] . (4.2)
1e,2 | |Xz|  |Fn-2

where
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Ep = Cg/bg

ey = Ci/(bi_aiei—l)

c; +0e;y

b;—ae;
and
Yo = ro/ bo
v, = r-a2,¥:-3
' b, —aei

Back substitution provides the desired vector x:

Xp-1 = ¥Yna
X SYiTeiXiy

(4.3)
i=1,2,...,n-1
i=1,2,..n~-1 (4.4)
(4.5)

i=n -2, n—3,...0

To implement this algorithm on the tree machine, we store all information

pertinent to the ith equation in the ith L cell (Ll) Each L cell, therefore, con-

tains

a.b.c.r
e.y
x

seqd
t;

where, by definition, ag=c, _

(1) Compute e; according to (4. 3) using FRL\CT]O'\’

coeflicients of one equation

storage for intermediate values
solution of one equaticn

L cell's sequence number,’ O<seq# =n -1
temporary ' . .

1=0. The trée algorithm proceeds as follows.

Li sends up the quadruple

(u Oiby~a,) and receives {e;.e;_ 1)

(2)

Compute yi' according to {4.4) using LRl.-,.'-\'éte that Iall of the components of

the denominator of (4.4) are known. The denonﬁinaﬁor méy, therefcre. be

evaluated by the L cells beforehand: I,

computes {;:=b;-na,e,_;. This

reduces {4.4) to a first-order linear recurrence in y, which is solved using

LR1 with L; sendirg up the pair {(r;/ ¢,

-g,/¢; ), and receiving y;., and y;.
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(3) Compute x; according to (4.5) using BLR1. ; sends up the pair (y;,~e,) and
receives x;., and X;. -
The analysis of the Thomas algorithm is summarized in Figure 4.1. This algo-

rithm requires O(log n) time to execute.

" Goussian Elimination

In Gaussian elimination, {4.1) is transformed inte

[ e T 1o ]
do Cg 0 XG YG
d; ¢, 31 Y _
.o =4 (4.8)
dn-2 Cn-z2 Ap-g ¥n-z2
O dr—iJ Xn-— Yo
where
dc = bc
d; = bi—gc;3/ 4oy ' : (4'7)'
TB:Cy * bid L2 1 .
= - =1,&,..., Tt —
0+1d,, *
Yo=T _ o R .
. . : o (4.8)
y: = ri—{a;/ di))¥i 1=12,...n-1 o
Back substitution provides the desired vector ‘x:‘
Xy = yr.—l/ dn-l - L . ‘ : (4 9)

% = {Yi—CiXie)/ d; i=n-2, n-3,.,0
The tree algorithm is as follows.
(1) Use ROTRA to send ¢,_, (contained in L;_,) to L.
(2) Use I'RACTION to determins d, according to (4.7). L; sends up the quadruple

(—o,2,.,.5;,0,1) and receives {d;,d;_,)."
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(3) Use LR1 to determine y, according to (4.8). L, sends up the pair

(r;,~0;/d;.,) and receives y;..; and y;.

(4) Use BLR1 to determine x; according to (4.9).

(y,/d;,,—c,/d;) and receives x; and x,,,.

L, sends up the pair

The analysis of Gaussian elimination is summarized in Figure 4.2. This algorithm

requires Mlog n) time to execute.

2. LU Decompesition

The LU decomposition of the matrix 4 if one exists, transforms 4 into a pro-

duct of lower and upper bidiagonal matrices. Thus

i, 1
A=z LU = iz
0
where
ug = bg
L =/,
u; = by - Liogy

We revwrile (4.11) as

ug = bg

_‘ﬂ.lci_| + biu'i—]
ut O T+ 1ui_]
L, =a/u,

f

o |
.o 1
=12,
i=1,2,...,

-7F -

Ug Cgp
Uy Cy

Up-3 Cr-p
Un -1

(4.10)

(4.11)

{4.12)

- {4.13)



which expresses u; as a quotient of two linear functions of u;_,, and {; as a func-
tion of u;. We solve LUx=/Ly=r using forward substitution to obtain the inter-

mediate vector y,°

Ty

¥o

Y. =& — l‘iYi-—-l i=1,2,....n-1 (414)
and back substitution to obtain the desired vector x@
X1 = ¥n-1/ Un—y (4-15)

% = (Y£ - Cixzn)/ui i=n-2,n-3,..0

In the tree implementatlion of this algorithm, each L cell holds the following

variables:
e.b,c,t coeflicients of one equation
Lu,y storage for intermediate values
x solution of one equation
seg# L cell’s sequence number, Ossegf <n —1

where, by definition, ag=c,_;=0. The algorithm proceeds as follows.

(1) Use ROTEA to send ¢;., {contained in L; ) to L;.

{2) Compute u; according to {4.12). Use FRACTION with I; sending up the qua-
druple {-e;2;_;, b;, 0, 1) and receiving u;., and ;.

(3) L; computes ; according to {4.13) using u;., obtained in step (2).

(4) Compule y; according to {4.14). Use LR1 with /; sending up the pair {r,,~L;)
and recelving y;_;, and y,.

{5) Compute X; according to {(4.15). Use BLR1 with I, sending up the pair
(y./u;,—c;/ ) end receiving x;_, and x;.

The analysis of LU.de'composiLion is summarized in Figure 4.3. This algorithm

requires O{log ) Lime Lo exccute.
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A Y ethod Using Second-Order Linear Recurrences

A basic principle of the theory of continued fractions [Wall48] provides

another way to obtain u; {4.12). First solve the second order linear recurrence

gy = 1 '
90 = b o (4.18)
% T BigiamGicinFiee 1=iom -l

and then evaluate

U = G/ Gig i=0,1,..,n—1. : (4.17)
We can prove (4.17) by induction. |
(Basis) _
For izo; Up =. bo=bg/ 1 =qge/g-1.
(Induction}
Assuming that (4.17) is true for i =0, we want to show that it is also true for
.(1',-5-1), Le. sy = 904,79 Bul |
Uiy = by -G/ eguation (4.11)
= by - @€/ ('gi/ Gi—1) - by the induction hypothesis
= (biiig — @10 G-/ % - |

= g/ T : equation (4.16) =

As with LU decomposition, we may Lthen deiermihe_ the y; using forward sub-

stitution
= T
7o g . (4.18)
Yo = — Ly i=1,2,...n—1

and the x; using back substitution
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Ep- = yﬂ.vl/uﬂ-—s (4 19)
x, ={(yi-cX.,)V/y i=n-2,n-3..0 4

The tree implementation of this algorithm uses LRZ as follows.

(1) Use ROTRA to send ¢;_, {contained in [;_, L cell) to ;.

() Use LRZ2 to compute g; according to (4.16). I; sends up the B-tuple
(0, b;, ~a;c4_y, ¢ @, ¢) and receives g; and g;_,. |

{3) I; computes u; according to (4.17) and.l,- {4.13).

(4) Use LR1 to determine y; according to (4.1B). L; sends up the pair (r;, ~L)
and receives y;; and y;.

(3) Use BLR1 to determine x; according to (4.19). I; sends up the pair
{y./u;, —c;/ u;) and receives x;., and X;.

The analysis of this variant of LU decomposition is summarized in Figure 4.4a.

This algorithm requires O{log n) time to execute,

Recursive Doubling

Stone [Slon73a] describes recursive doubling, a parallel algorithm for solv-
ing the second-order linear recurrence {(4.18) in O{log n) steps on a hypothetical
7ni-processor machine similar in structure to an ILLIAC-IV. He observed that

equalion (4.18) can be transformed into the matrix recurrence relation

RE el e A
If we let
[1] 7] b, ~o,c,
Q-l-':lOJ,Qi:[q:_lJ.and P1-=[1‘ U"‘J, i=0 (4.21)
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then

i i
& =PGQ.,=1]P;@a1=]1]F. i=0 (4.22)
k=0 k=0
t‘ . .
To obtain HP:' Stone suggests the algorithm depicted in Figure 4.4b, where
k=0

Py = _TJIPk. 'Each row is considered to be a vector of elements. In the ith step,
k=1 ' :

the current vector is muiltiplied by itself, element by element, with the entries_
shifted by 2° elements. In the final step, the cufrent vector i1s multiplied by
itse!f with the multiplier delayed by n/2 elements. We' see that in fiog'n.'] steps;
, éll of the required products are obtained. |

Uhfortunately. recursive doubling as desefibéd b_}" Sfone cannot be irnple_- '
mented in a straightforward way on a tree rﬁachine. .For if we distribute the
matrices Py, O<i<n -1, among the L cells, the ﬁ.nal .step of recursive doubling
requires tha£ the L cells in the left half of the tree send their values to L cells in
the right half of the tree. As the root is the only p.ommunicati'on link b'etw.een
these groups of celis, O(n) amount of infor‘mation rﬁust pass through the root.
This for of the algorithm is therefore O(n). - |

Ve can modify Sione's algorithm, Vhowe*;er.',f lto'l'achi_e.eve O(log m) exepﬁti:bn
time. Note that (420) is a first-order linear feéurrence.whose variables are 2-
veclors and whose coeflicients are (2x2) matrices. Bec_ause-matrix mulliplica-
tion is associalive, we fnay use a slightly _modiﬁed version of LR1. The
modiﬁcation is a minor one: matrix_multi.pli-cation replaces scalar multiplica—

tion. The tree algorithm proceeds as follows.

{1} Idenlical with step (1) of LU decomposition and LU decomposition variant.
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(2) Use a modified version of LR1 to compute §; (422) L; sends up the 4-tuple

(b, ~a;04-;, 1,0) and receives @ =(g;.9;-;) and §-;=(g;—1.9i-2)- A T cell
~ executes LR1 replacing scalar multiplication with matrix mulliplication.

Note that there is no matrix addition involved.

(3)-(5)
Identical with steps {3)-{5) of LU decomposition and LU decomposition vari-
ant.

The analysis of this variant of recursive doubling is summarized in Figure 4.4c.

This algorithm requires O(log »} time to execute.
3. Kethods Using Cyclic Reduclion

Cyclic Reduction

Cyclic reduction is a method of solving {4.1) in O(log n) steps ([Hock85],
[Ston75]). T"he methed has two parts, elimirﬁé-’gip_ﬂ_lana.back substitution. The.
basic step in the elimination phase reduces tbe_ﬁrum-‘t;e_r of variables in ’ﬁh’e Sys- .
tem by half, transforming the tridiagonal .s)iistem into. another tridiagonal sys-
temn half the size. For convenience, we .é‘oﬁsider the caée of n=2F -1, whefe pis

& positive integer. Let

@ X+ biX FOX ., =y - ' (4.23)
be an odd-indexed (i=odd) equation. In the first eliminalion step, the even-
indexéd variables are eliminated from the odd'—indéxerd equations, transforming

(4.23) into

0%+t b v Oy T O (4.24).
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where

o' = by 00y

b'= bi+la'ici"l + b‘-,ctaﬁ; - bi—lbi'l'ibi (4 25)

€' = b 4CiCyy _
P = b0y + b gCiFiey — bigbinly

The odd-indexed equations now form a new tridiagonal system, half the size of
the original. This process is repeated on the new system until we are left with

onie equation in one unknown,

by, =T. | (4.28)
After solving (4.26); back substitution bégins.. Ba.ck_sﬁbstitution traces back the
steps car:;ied out by elimination; variables are solved in the re\.rerse order of
their elimination. In the last iteration, for example, equ._atir'ons of the foi'm (4.23)

are solved for x;

_ % = (i ~0, X1 —CiXp41)/ by (4.27)
using the (now known) values for x,_; and X;,,. Note that boundary variables are
expressed as a function of only one variable. Figufe 4.5 shows the movement of

data when executing eyelic reduction for n=7, -
g cy

To map this algorithm onto a tree machine, each L cell must contain the
following registers:

a,b.c,r the coeflicients of one equation,

z the solution of one egualion, initially O,
seqf L cell sequence number, O<segf<n ~1,
M mask, expleained later,

ﬁfhefe, by definition, ag=z,_,=C.



As Figure 4.5 shows, in each step, some L cells must send data, other L cells
must receive and process 1t while still others do not participate at all. The main
preblem is coordinating all this activity. ”We acnzzo.mplish this with the use of a
mask (M), Atomnic Rotate Left (ROTLA), and the analogogé Atomnic Rotate Right
(ROTRA). The L cell's mask, computed from its seq.uenrce number, tells the L cell
whether or not it is to send information to other L cells .a'nd whether or not it is
to make use of information received from other L cells. '_The follcwing-algbrith.m
initializes Al | |

M=1 _
~while {mod(seq#, 2¥)=2¥~1) do ¥ := M +1;

where mod{i, j) is the remainder obtained afler di\_riding i by j. Figure 4.8 shows

the sequence numbers and mask for n=15 L cells.

Figure 4.7 shows eight snapshots of the daté. cofnmunicaticn that occurs
during cyclic reduétion among n=7 L cellsr. 'i;he ci-rcles.réprgsgnt L cells; solid
circles are L cells that process data recei*&é.d. The Arrows indicate comm'unica-
t‘ioﬁ. The analysis of cyclic reduction, summafizéd in Figure 4.8 shows that the

implementation of cyclic reduction on a treé,machine:réquires'O((.log n)?} time.

. Buneman Algorithm

Buzbee, Golub, and Nielson [BuGN70] and S’_Lohe [S.to.n-?fc')] describe the Buﬁ_e- |
‘man algorithm which is similar to cyéiic‘”reductidn b_utl with Ithe desirable pro-
perly of bein;r; slable in siluations wh'érercy'c‘iic reduction is not. Buneman's
algorithm éiffers from cycIié reductio‘n in the na} ris computed in {4.25) during
elimination, aﬁd the way x is computed in (1126) and (4.27) during back substitu-

tion. During elimination, we replace the computation for r' {4.25) with the com-



putation of two new variables d' and e’

d'=d;, + (e; — aydyy — cyd41)/ by

' , 4,28
e'= by 0,y + biycieyy —d (biﬂa'ici—l + bt-1ﬂ-t+1f-‘i) ( )

After elimination, we solve one equation in one unknown but, in place of (4.26),

we use

bix, =r; = bid; +ey (4.29)

or

X =d; +e;/ by (4.30)
for 1=2P"1—1. During back substitution, in place of (4.27), we solve equations of

the form’

WXyt B CyX T H S bydy 4oy ' - {4.31)

for %, i.e.,

x = d + (el ~ oXy — %)/ by - (4.32)
where x;_, and x,,, are now known quantl;tie's. -‘The analysis-of the Buneman algo-
rithm is summarized in Figure 4.9. This algorithm requires O((log n}?) time to

execute.
C. Iterative Methods

1. Jacobi and Jacobi Dver-relaxation

The classical Jacobi algorithm transforms each equation of (4.1) into

bi¥; & —0iXi-; — CiXip1 + e o (4.33)

(i=0,...,m~1) from which we obtain the iterative equation .
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254D = (—ay/ bR + (—c0s B)REY + (r/ b2) (4.34)
{(i=0,...,n-1; k=0, M) Initially, x{” is assigned some value, possibly the
result obtained from a direct tridiagonal Vlinear- sy.s_tern_ s.olx'rer. Note that the
é_quations for %, and x,_; will involve two (not three) var-ia:bles‘ For the tree algo-
rithm, as before, w.e assume that all infofmation pertinent to the ith equation is

stored in ;. For the Jacobi method, this includes the variables

[+ P P T o coeflicients of equation i

x*), ), x*) ‘current approximation of x;. X;,_;, %4,
x{E+1 new approximation of x;

t; _ temporary.

By definition, ag=c,.;=0. Moreover, we assume that the quantities (—a;/5,),
(—c;/ b)), and {r,/ ;) are evaluated only once at t_be start of the operation. The
kth iteration of the Jacobi method requ'ires twq sxx;eeps up and down the tree, as

shown below.
(1) Use ROTRA to send x{¥} (contained in Li—l) to I which computes

t; = (r/b,) + (~a,/ b,)x%}. (4.35)
(2) Use ROTLA to send 2%} (contained in L;,,)-to Z, which computes the new

approximation for x;

xFU =t 4 (—oy/ b)xfEL o (438)

Note that, in step 1, Ly receives %k and_Lﬁ_,"récei\;'e_gs x*); these values should
| be ignored by the receiving L cell. This is handied by the tree machine by ini-
tial'izing oy and ¢,y Lo 0. lteration may continue a fixed number of times or

until a criterion for convergence has been fulfilled. The stopping criterion might
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be

max | x{¥*V — x{F)] <.  (4.37)
for some tolerance g. After each iteration, a test may be performed in one

sweep as described in step (3).

(3) L; determines the value of {x{**!) — x{*¥)| and sends the result up.the tree,
A T eell sends to its father the larger of the t“'o_'vélues it receives from its
sons. The O cell compares the value it receives from its son to a pre-
assigned value for £ and, depending upon the result, sends a "CONTINUE" or

a "HALT" signal to the L cells.

The analysis of one iteration of the Jacobi method, not including setup opera-
tions, is shown in Figure 4.10. This algorithm requires O(log n) time per itera-

tion.

The Jacobi over-relaxation (JOR) method is a generalization of the Jacobi

method. JOR replaces equation {4.34) with

x*+ ) = (1-0)x) + o[ (~ay/ b;)x{] + (—Ci/bijxi(f-} + (r;/ b;)] (4.38)
where w is called the relaxation factor, used to "overcorrect” or "unde_rcérrect"
iterates produced by the Jacobi method. Note that if §=1. the equations (4.34)
and (4.38) are identical. Given that the quantities (1~w), (-wa;/ b;), (—wei/ by),
énd (wr,/ b,) are computed before iterating, the tree algorithm for one iteration

of the JOR meihod proceeds as follows.

(1) Use ROTRA to send =} to L; which computes
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£, = (1-0)x®) + (~oa; /b)) x5! + (~wr,/ by). {4.39)

(2) Use ROTLA to send x{%] to L; which computes the new approximation for X

x* ) = 4, + (—we/ b))zl '  (4.40)
The analysis of the JOR method is shown in Figure 4.11. This algorithm requires

0{log n) time per ileration.

‘2. Gauss—Seidel and Successive Over-relaxation

On a sequential computer, the Gauss-Seidel method is similar to the Jacobi
~ method except that a new value for x; is used as soon as it is available. In place

of {(4.34) we use

X{ 10 = (=0 bR + (=00 )X + (re/ b) (4.41)
which requires the value of x*{ in order to evaluate x**!). The L cells prepare
for iteration by computing and saving (-a;/8;). (—¢;/b;), and {(r;/b;). One

iteration of the tree machine algorithm is shown beloxf._
(1) Use ROTRA to send x;,, to 1-4 which cornp‘.uwtr.esr-l
t = (_“..Ci/.bi)xi{f} + (lrif_/l_b?‘.-.)' | -. o (4-42)
"fhis'reduce‘s (4.41) to the first-order linear recurrence '
TR G

(2) Use LR1 to solve {4.43). L; sends up the pair (ti, -2,/ b,) and receives x&*1)

) f
and x:* 1.

The aha!ysis of the Gauss-Seidel method is summarized in Figure 4.12. This algo-

rithm requires O{Iog n) time per iteration.
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The successive over-relaxation method (SOR) is a genéralization of the
Gauss-Seide] method. Like the JOR method, it uses a relaxation parameter w to
correct the current approximation by a smaller (if w<1) or a larger (if w>1)

amount than would the Gauss-Seide! method. The SOR method uses the following

eguation.

25D = (1-0)x®) + o[{—a,/ bi)xfEdD + (moi/b)x] + (/b)) (4.44)
Initially, I; computes and saves the guantities {1~w), (~wa;/ b;), (~we;/ b;), and

(wr;/ b,). One iteration would proceed as follows.

(1) Use ROTLA to send x{%] to Z; which evaluates part of the right hand side of

(4.44)

t; = (1-)x{® + w[(—ci/ b)=H] + {r;/ b)) (4.45)

reducing (4.44) to a first-order linear recurrence

K = 4, 4 (—ons boREDD (2.46)

(2) Use LR1 to solve this recurrence. I, sends up the pair (4, ~wg;/b;) and

receives x/¥*1) and x/* {1, discarding the iatt'e_r (_it.is not needed).

The analysis of SOR is shown in Figure 4.13. This algorithm requires O{log n)

time per iteration.

3. Red-black: Successive Over-relaxation

Lambiotte and Voigt [LaVo73] point out that it is impossible to implement
the SOR method expressed in its usual form (4.44) efiiciently on veclor comput-

ers. This is because, on a vector computer, all components needed to execute a
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vector instruction must be known before the instruction is executed. Equation
(4.44), however, requires that the ith component of the (k+ 1)th approximation,
x{¥*1), be obtained from the {i—1)th component of the (k +1)th approximation,
which is not known at the start of the vector operation. They suggest that it is
possibie to reorder the equations, called a red-black ordering [Youn71], so that

a modified version of SOR can be'implemented on a vector computer.

The modification amounts to separating the odd-indexed eguations from the
even-indexed equations. The (k+1)th. approximation of the even-indexed vari-
ables is obtained using the kth epproximation of the odd-indexed variables.
Then the (k+ 1)th approximation of the odd-indexed variables is obtained using

the (now known) {k +1)th approximation of the even-indexed variables. lLe.,

xFH) = (1-0)xf + (a7 bi)x¥) + (—ci/b)x¥) + (r/8,)] (4.47)

for i=0, 2, 4, ..., followed by

x 1) = (1-0)xf®) + w[(-a/ bi)xED + (—oo/ b)xE) + (r/ b)) (4.48)

for i=1, 3, 5, ..., with the eguations for x; and %, .; invelving one less term.

The tree algorithm for red-black SOR is straightforward with the help of the
L cell's sequence number (seg{) as shown. below. It is similar to the JOR tree
algorithm applied to half of the set of equations each time. As before, we set
ng=¢,_1=0 and the L cells compute and save the values (1-w), {(~wa,/b,),

(—wei/ b;), and {wr;/ b;) before the start of the iteration.

(1) Use ROTLA to send x*] to L;. All L cells receive a value but only L cells with

even sequence numbers compute
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(2)

(3)

(4)

i = (1—W)X,,(k) + U[(""‘Ci/ b,)xff} + {r.;/ b;)] (449)

Use ROTRA to send x&] to ;. Again, all L cells receive a value but cnly L

cells with even sequence numbers replace their current z-approximation
with

x50 = ¢, & (~way/ by )%k (4.50)

Use ROTLA to allow L., to send its currenf z-approximation to I;. Note
that the odd-numbered L cells will be sending x*) while the even-numbered

L cells will be sending xi**!). Only the odd-numbered L cells will compute

ty = (1—w)x* + o[ (—c;/ b )xi1Y + (1,7 b)) (4.51)

Use ROTRA to allow Z;_; to send its current z-approximation to L;. Only the

odd-numbered L cells replace their current r-approximation with

x40 = ¢, + (—way/ by )xlEt) (4.52)

The analysis of red-black SOR is shown in Figure 4.14. This algorithm requires

O{log n) time per iteration.

4. Parallel Gauss: An Iterative Analog of LU Dzcomposition

Traub [Trau73] observed that the equations describing methods such as

Gaussian elii’nination, the Thomas algorithm, and LU decomposition. are riot

well-suited for execution on vector computers. He developed a method, called

parallel Gauss, which he compared to the Jacobi, JOR, Gauss-Seidel, and SOR

methods on a model problem run on a PDP-10 in APL.
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Traub's method transforms the three equations'for ‘LU decomposition into

iterative equations. Thus, equations (4.11-14} are replaced by (4.53-56).

w(® = by _ . _
uf*l = b : - (4.53)

T N T Y ATALS

for i=1, ..., {n=1) and k=0, ..., #~1. Let m=u)

i = /Ty N -_ o (454)
¥l =

y&* = rg _

yi(k"'l) - ri —_— llyl(f} . ) L . {4.55)

fori=1, ... (n—1) and =0, ..., N-1. Let y=y).

O = g7

LR IR T MY T | o ~ (4.58)

z* = (g ~ ezl )/ @,

for i=(n—2), ..., 0 and k=0, ..., P-1. Letx=z(®),

For each of the iterative .equations (_4.53, 4.55 and .4.56), Traub noted that.
_aftér the jth iteration, u, 3%}, and xi{j),-.afé',;'ﬁrre'é{ for i<j+1. This. means '
that each iteration requires at most (n—l) it,eraﬁioh‘s;’ This presents a éavings
for vector cémputers-since these compon.en_ts né.é_d'ﬁo't:br:-;- recomputed. i.é. the

lenglh of the vector processed decreases by one in each iteration.
The tree algorithm for Traub’s method is shown bejow.

(1) Compute %,. I, initializes u,=b,. In the kth iteration, use ROTRA to send

ui(ff to I; which computes (4.53). Jterate M times, i.e., until convergence



occurs.
(2) Compute t;. L; evaluates {4.54).
(35 Compute ¥;,. L; initializes y;=r;. In the kth iteration, use ROTRA to send
y;*¥] to I, which computes (4.55). Iterate N times.
(4) Compute %;. L; initializes x;=%;/ . In the kth iteration, use ROTLA to send

z%) to I, which computes (4.58). Iterate Ptimes.

The analysis of one iteration of Traub’'s method is shown in Figure 4.15. This

algorithm requires O(log n) time per iteration.

D. Summary and Conclusions

1. Gepneral Remarlks

Lach tridiagonal linear system solver described in the previous sections is
composed in a simpIr_a manner of algorithms des.tir_ibed in Chapter 3, namely LR1,
BLR1, LR2, FRACTION, ROTLA, and ROTRA. Theréfor'e. the variations appncabie to.
LR1, etc., are also applicable to the tridiagona_lz_sy;steﬁ algorithms, The_se varia—.
tions are described below, |

Empty L cells. It may happen that s-ome of the .L cell's. are emptiy or do not
participate in the tridiagonal system algo.rith.m. -’What the.nonpar'ticipatirig L
cells do depends on the component algorithms of the tridiégorial system solver.

As an example, consider the Thomas.algc;rit.hm {84.B.1). Its component
algorithms  are FRACTION, LR1, and BLR1. During the execution of FRACTION,
.empty L cells should send up the quadruple {0, 1, 1, 0) and receive two (meaﬁ-

ingless) values, as described in Chapter 3. Similarly, for LR1 and BLR1, empty L
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cells should send up the pair (0, 1) and receive two values. In short, it is not
necessary to make any modification to the component algorithms in order to
use them in the implementation of the Thomas algorithm or of any of the other

tridiagonal system solvers.

Solving several indepeﬁdent tridiagonal lineor systéms simuliaoneously
using o direct method i is_possible to solve more than one tridiagonal linear
system simullaneocusly, provided that there are enough L cells to accommodate
all of the systems, with one eqﬁation occupying one L cell, and all systermns are
solved by the same method. An immediate concern are the boundaries between
diffierenl systems. We find, however, that if the coeflicients of the boundary
equaltions are properly initialized, the algorithms execute correctly.

As an example, consider the method of LU decomposition (£4.B.2, equations
(4.10-15)) simultanecusly applied to two tridiagonal linear systems. Recall that

each L cell contains the following variables:

a.b,c,r ceeflicients of one equation
Lauy storage for intermediate values
x solution of one equation

where, by definition, ag=c,_1=0. For the convenience of the reader, we repeat

equations (4.10), (4.12), and (4.13) here.

Iy o |lue oo 0
L, 1 U, £,
A=LU = I 1 Coe . o (4.10)
Upn-2 Cp-2 -
Y n -1 1_ 0 Un -1

where
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—Q;Ci; + byu;_, {4.12)

. = .=1,2...., -
b O+ lui_l t n-1
and
Loz oo/, i=1.2.om=1 . (4.13)

which expresses u; as a quotient of two linear functions of u;_;, and {; as a fune-
tion of w;. The component algorithms of LL decomposi_tioh are ROTRA, FRAC-
TION, LR1, and BLR1. Figure 4.18 shows the L cells whic.h cont.ain the two linear
sysfems[ Let L; represent the L cell with sequénéé ﬁurﬁber i. The first system :
is stored in cell_s; Lg through L, .;; the Second.is stored in L, through L, ., ;.

Thé first step .uses ROTRA to send c;_, (stored inrth'e'. (i—l)th L cell) to the
ith L cell. This causes Ly and I, to receive £,4m 3 _andﬁc,‘t_l respectively. Note,
however, that ay and g, will be multiplied with En+m -1 and £,_; in the next step,
and that all four terms-are U

The second step uses FRACTION to e‘valuéte-_gquatibn {4.12). Each L cell
must send up the qﬁédruple (-m,04-y by, 0..1). Lo anld L, have the addéd condi-
tion that thé ﬁ.rls;t component. ie. —g;cyy, mu’st“b’e 0. .Wg see_tha_t this ponditiqn
is satisfied as @¢, Cpem-1s @n. 8N4 Cp_y -ére ali.'_O.- FRACTIO_N, therefore, executres
correctly.

The third step 15 for each L cell to compute I .,u.sihg equation (4.13). The
cells Ly and L, must have Iy and [, equal-to'- 0. This is, in fact, the 'rc_a'se 'bec"ause :
agand g, are both O.

This continues thro-ugh the rest bf the algorithm. The algorithm does not
f:éed_ to make a special case of the boundary L ce.lls becaﬁée the probe_r initiali-
zalion to 0 of some of tﬁeir coeﬁiciénts aszures the correct evaluation of other

‘values.
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Solving several independent tridiegonal linear sysiems simultgneously
using an iferalive method. It is also possible to solve several systems simultane-

cusly with an iterative method. As with a direct method, the potential problem

of error occurring in the boundary L cells is avoided by proper initialization of

the boundary coefficients. The number of iterations needed to solve all of the
systems is the maximum number needed to solve any one of the systems, i.e,, it
will take as long to solve gll of the systems as the least convergent of the sys-

terns.

Solving the same system for different consiont values. The LU decomposi-
tiocn, LU decbrﬁposition variant, and recursive doubling methods allow the user
to solve the same tridiagenal system for different values without having to
decdmposé the coeflicient matrix each time. The implementation is straightfor-
ward., |

The coeflicient matrix is decomposed once at the start of the operaticon.
One set of constants is stored in the L cells and the algorithrns LR1 and BLR1 are
execuled. The solution_values are flushed out, a new set of constants is read in,
and the tree is ready to execute LR! and BLRI once again. This continues as

many times as there are sets of constants.

2. Comparison of the Tree Algorithms

Figure 4.17 shows a summary of the complexity of the direct tridiagonall

system solvers. All methods except cyclic reduction and the. Buneman algo- .

rithm regquire O(log n) time. Although eyclic reduction and the Buneman algo-
“rithm execute O(log n) arithmetic operations, communication requires 0{(log

" n)?) time. The increased communicalion time could be acceptable if it were



offsel by a significant reduction in the number of arithmetic operations. As this
is not the case, neither cyclic reduction nor the Buneman algorithm can com-

pete with the other, more traditional, algorithms.

Of the remaining, the LU decomposition variant is the least desirable. It
requires at least 80% more parallel additibn’s, 25% more parallel multiplications,
and 10% more communication time than the Thomas algorithm, Gaussian elimi-
nation, LU decomposition, or recursive doubling variant. This is becauée of its
use of LR2 which, as has been poinlted out in Chapter 3, is considerably more

" expensive than LR1 and somewhat more expensive Lhan FRACTION.

Thé thfee tra.ditionai tridiagonal linear system solvers and recursive dou-’
bling emefg'e as the best, with the Thomas algorithm holding. a slight communi-
cation time edge over Gaussian elimination and LU decomposition. LU decompo-
sitipn. of course, is to be preferred if one must solve many different linear sys-

tems using the same coefficient matrix.

Comparing the iterative methods'(Figure 4.18) is more diflicult as the rate
of convergence of the methods must also be cons_ider_e.d. Considering only arith--
metic oi)efations and communication time per iteration, the Gauss-Eeidel and
S0R methods compare peorly with the Jacobi and jOR methods. However, the
Gauss-Seidel method has a rate of convergence approximately twice' that of the
Jacobi méthod [Ames'??],_ pro_vjtdéd both converge. For the particula.r case of

"s_ol_vir_l..g.Lap.lace‘s equation on a square region, if A is the space between érid
_p_oints;(.see Figure 2.1), Ames shows that computation time is reduced by the

factor 2h~! if one uses SOR rather than the Gauss-Seidel method. However, one

- must coﬁsi-de_r the overhcad of obiaining the optimum relaxation factor w before

deéiding:"c’o_useﬂS‘OR over Gauss-Scidel. “The parallel Gauss method described by

Traub has the least amount of computation psr iteration. However, one must
[ 12 P 2 . .
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realize that this method actually solves each of three équations iteratively and

in sequence. The tolal computation time may be more than the other iterative

methods. The decision of which iterative method to choose, ther'e-for'e_, must

depend on the characteristics of the paftic’ular linear systern one is _soiving and

on an analytic estimate of the number of iterations each method would require

for convergence.

3. Comparison with Sequential, Veclor and Ar_ray Alfg;rit..hms

Lambiotte and Voigt [LaVo75] studied. the implementation of direct and
“tlerative tridjagohal linear system solvers on a .'Vs.n_:‘tbr- processor, the CDC STAR-
100. Stone [Ston73] analyzed direct ltr.idiagonal_ii_riéé}rf Systém algorithms for a
hypothetical parallel processor similar in struc_’tufé to an ILLIAC-IV. .'Their
resulis are compéred with the complerxrit_y of the same algorithms, implefnented
on seguential processors and oo ‘{ree machines, __in‘f_Figures 4.19 and 4.20. An
entry in brackets meaﬁs that the method was not 'iﬁplémented in the papers
mentioned but the complexity of the ‘a_lr'gorith'r:hhmé)‘r' be inferred from the

methcds that were. A _bl'ank éntry means that inference is difficult to make:

Lambiotte and Voigt point out that LU deco'rh'posﬁirti-drﬁ‘cannot be efliciently

implemented on a vector computer, primarily be'c_a_use of the sequential nature
> of the equations to be solved. They do imp'le'm'ent and. analyz= it, however, in

" order to compare il with other, more efliciently implernentable, methods.

Because the Thomas _algofiih_r’n and Gaussian e_!.imi_-n_ati"qn use equations similar in
structure to those of LU dec’ompoé’ition, we may infer from their study that both
the Thornas_ al]gbrithm aﬁa Gaussian elimination .a!so r.equrire ._O(n) time on a vec-
tor cbmpﬁter. Sirnilarly; because the Punemé.n.al.gorithm i_s sirﬁilar‘ to eyelic

reduction, we expecl that the Buneman a!gofith'm also requires O{n) time. With
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this in mind, we see from Figure 4.19 that tree machines consistently do better

{asymptotically) than either sequential or vector processors.

Stone asserts, for reasons similar to Lambiotte and Voigt's, that conven-
tional tridiagonal linear system solvers cannot do better than O(n) time on an
array processor. Consequently, he does not present an implementation of either
the Thomas algorithm, Gaussian elimination, or LU decomposition in his paper.
If his prernise is correct, we see from Figure 4.15 that, except for cyclic feduc-.
tion or the Buneman algorithm, tree machines match or better the complexity .
of algorithms run on array processors. Recall that for cyclic reduction and the
Buneman algorithfn, tree machines required C(log n) arithmetic cperations and-
0({log m)®) communication time. Stone's analysis considéred only -arithmetic
operations and did not t.ake into account costs of. data routing, arrangement,

and rearrangement, which may make his estimates unrealistically low.

Lambintte and Voigt also analyzed three iterative rﬁéthods, the Jacobi
method, red-black successive over-relaxation, and Traub's parallel Gauss algo-
rithm. They conclude tha! methods such as the Gauss-Seidel method and-suc-
cessive over-relaxation are not eflicient on a vector computer because of the
sequential nature of the equat;ions involved. Figure 4.20 compares the ofders of
complexity of six different ileralive melhods when implemented on sequential,
vector, and tree processors and it shows that .tree machines ﬁroduce con-

sistently better results.



Thomas Algorithm
Parallel Operations
St Swos Comm. _ :
°p wP Time L cells T cells C cell
+ % + x + X
1. FRAC 1 Blogn+6 | O 0 Blogm | 1llogn | D | 1
2. LR1 1 4logn+4 | 1| 4 2logn | 3logn | 0| 0O
3. BLR1 1 4logm+4 | 0 1 2logn 3logn | 0| D |
Total 3 l4logn+ 14 | 0 | 5 | 10logn | 17logn | 0 | 1|

Figure 4.1 Analysis ¢f the Thomas Algorithm. The Thomas algorithm requires
three sweeps through the tree. In the first sweep, we use FRAL and solve for the
intermediate value ;. The second sweep uses LR1 to evaluate ¥;. The final
sweep evaluates the desired values X;.

Gaussian BElimination
Parallel Operations
Step Swps Co’mm.

Time L cells T cells C cell
+ x + X +  x
1, ROTRA | 1 2logn+2 | 0| O 0 | oplolo
2. FRAC 1 Blogn+6 | 0 | 2 Blogn ¢ 1llogm : O ; 1
3. LR1 1 4logn+4 [ 0 2 | 2logn | 3logn |0 |0
4. BLR1 1 4logmn+4 | 0 | 3 2logn | 3legn | 0 { O
| Potal 4 | 16logn+16 | 0| 7 | 10logn | 17logn | O | 1]

Figure 4.2 Analysis of Gaussiar elimination. Gaussian elimiraticn requires one
sweep through the tree mere than ithe Themas algorithm becavse of the need of
L; fer o; prior to the computation of d;. Tke rumber of paraliel cperatiors for

botlk metheds, however, is the same.
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_ LU Decomposilion
Parallel Operations
Step Swps Comm. o '

Time L cells _ T celis Ccell

+ X% + X + X

1. ROTRA 1 Blogn+2 | 0| O -0 {00
2. FRAC 1 Blogn+6 | 0 | 2 Blogn | lilogn | O | 1
3. 0 00 1 o 0; 0|0
4. LR1 1 4logn+4 | 0 1 2logn 3logn } 0 ) O
5. BLR1 1 "4logm+4 { 0| 3 2iogn 3logn | 0 | O
Total 4 1Blogn+ 186 | O | 7 | 1Glogn ¢ 17logn j 01

Figure 4.3 Analysis of LU decomposition. We need four sweeps through the tree
machine. The first sweep sends ¢;_, to ;. The second sweep uses FRAC to obtain
the u;. Note that after the second sweep, L; has received botk %; and u;-y. It
can immediately compute §;=a;/ ;). The third sweep {step 4) computes the
intermediate values ¥;. The final sweep gives the desired values X;.

LU Decomposition Variant
Paralle! Operations
Step Swps Co_rnrn.

_ Time L cells T cells C cell
_ + X + X + X
1. ROTRA | 1 2logn+2 |0 | 0 0 I olo|o
2.LR2 1 10logn+ 10 | 0 | 2 | 12logn | 16logn | O | O
3. 0 0oj0]| 2 0 | 0{0|0
4. LR1 1 4logn+4 | 0 | 1 Rlogn'| 3logn | 0 | O
5. BLR1 1 4logn+4 | 0 | 3 Zlogn ! 3logn | O | O
Total 4 | 20logn+20 |0} 8 | 16logn | 22logn | 0 | O

Figure 4.4a Analysis of LU decompeosition variant. After the two first sweeps
" {Steps 1-2), 9; has been determined. Step 3 cemputes w; and I;. Steps 4 and 5
are similar to Steps 4 ard 5 of LU decompositiern.
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Powo Py Pee Pygs Py Pss Peg Pm
X Pow Py Pz Pss Py Pss P
; Poo Poy Pz Pas Py Py Psg Pey
X Poo Poyr Pz Paz Pay Py
== Poo Poy Poe Pos P Pes FPsse Pa
x Poo FPoy Poz Fos
== Ppy Pgy Poz Pos FPos FPos Fos Por

Figure 4.4b Recursive doubling for n=8, where F; = IJIPk. In logn = 3 steps,
k=i

the desired products Py, 0=1<7 are obtained.

Recursive Doubling Variant
Parallel Operations

Comm.
Step SWPS | pime L cells T cells C cell
. + x + X + b
1. ROTRA 1 Rlogn+2 | 0] O 0 00| 0
2. LR1M 1 Blogn+8 | 0 | 2 Blogn | 12lcgn | 0 | D
3. 0 0|0 | 2 .0 0/ 0|0
4. LR1 1 4logn+4 | 0| 1 2logn 3logn { 0 | D
5. BLR1 1 4logn+4 0] 3 2logn 3logn [ 0] 0
Total | 4 1Blogn+ 18 | 0 | B | 10logn ; 18logn | O | D

Figure 4.4c Aralysis of recursive doubling veriant. LR1M is a modified version of
LR! in which the coefficierl of the recurrerce is a (2x2) matrix, the variables
are 2-vectors, and the recurrence equatien has no constant term. Censequently,
the T cells must perform ene matrix multiplication during the upward sweep and
one matrix-vector multiplication during the downward sweep.
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Figure 4.5 Data communicatior in cyclic reduction. Elimination takes place in
(a) and {b) while back substituticn takes place in (d) ard {(e). The numbers
represent equations. An arrow means that the coefficients of one equation are
required by {(and sent te) another. A prime {’) means that an equation has besn
eliminated. A star {*) means that the equation has been sclved. In (a), equation ©
(i=1,3.5) receives the coefficients of equations {i—1) and {(i+1); equaticn % is
modified, eliminating the even-indexed variables. In. (b) the step is repeated with
only eguations 1, 3, and 5 participating. In (¢}, eguation 3 has become an equa-
tion in one variable (i.e., X3). We solve for X3. In (d), the value of X3 is sent tc
{the rmodified) equations 1 and § which are now able to solve for X; and X5 respec-
tively. In (e), the rest of the variables are evaluated.

%Sequence#: c 1 2 3 ;
| Mask: 1 2 1 3 1 2 1 4 1t 2 1 3 1 2 1]

Figure 4.6 L cell sequence numbers and mask.
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(a) ROTRA O e RO g R0 gD
(b) ROTLA S g pe gt ——gF 0
(c) ROTRA o &0 e 0 0 0
(d) ROTLA o J« T ~e 0 0 ©
(¢) ROTRA O 7 oSO o e o
() ROTLA | O @T 0~ 0 —8 O
(2) ROTRA B RO O g O g
(h) ROTLA G g~ 0¥ g~ 0 g

Seq# 0 i 2 3 4 5 3]

Mask 1 2 1 3 1 2 1

Figure 4.7 Commuricaticn among the L cells during cyclic reduction for n=7. In
tkhe first elimination step, the even-indexed L cells must send their coefflicients to

the cdd-indexed L cells. To do this, we use ROTRA (a) and ROTLA (b). In both-
figures, L cells with /=1 are programmed tc send and receive information, but

orly L cells with #/>1 (solid circles) are programmed to process the irfermation.

ir general, during the ith eliminatior step, (¢=1,2,....log{n~+1)~1), L cells with i=1
gsend ard receive information while only L cells with M>1 process it. {¢} ard (d)

show the movement of data during tke second elimiration step. In the il back

substitution step, (=log{n+1)—1,...,1), L cells with A=1 sernd and receive informa-

tien while only those with M=1 process it. () through {k) shew the movement of

data during back substitution.
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Cyclic Reduction

Parallel Operations

Oper- Swos Comm,
ation P Time L cells Tcells | Ccell
+ X + x|+ %
Elimin 2(h—1} | 2(h—1){(2h+5) | 4(h-1) 18{h-1) c|o0o|0O|O
Solve 0 0 -0 1 0, 0 0|0
Backsub | 2(h-1) | 2(h—1){2h+5) | 2(h-1) 3h-1) {0 0|0]|D
Total 4(h-1} | 4(n-1)(2h+5) | 6(h-1) | 18(R-1)+1 | O | O | O | O

Figure 4.8 Analysis of eyclic reduction, h=leg{n+1). Both elimination and back
substitution require (h—1) iterations and each iteration involves one ROTRA and
one ROTLA; hence, each requires 2(h—1) up and down sweeps through the tree. In
ong execution of ROTRA {er ROTLA), all cells send 4 atoms to their fathers during
the upward sweep and 4 atoms to their sons during the downward sweep. Pipelin-
ing allows a T cell Lo send data from its son {father) to its father {socn) as soon as
the data is received. With pipelining. one execution of ROTRA requires 2h+5 com-
munication steps. As elimination and back substitution each take 2(h—1) sweeps,
a total of 4{h~1)(2h+5) communication steps are required. Only the L cells exe-
cute any arithmetic instructions. During elimination, selected L cells solve for
a', b, ¢, r, as found in equatior {4.22), after every 2 sweeps. After elimination,
one L cell executes cne division {(4.23). During back substitution, selected L cells
evaluate {4.24). The entire operation requires 0(h%)=0{(log n)?) time.

Buneman Algorithm

_ Parallel Operations

Oper- Sw Comm.
ation _ ps Time L cells T cells | C cell
+ X + x |+ x
Elimin 2(h-1) | 2(h—1)(2h+5) B{h—1) 20(h~1) {0 | D {O]|O
Solve 0 0 1 1 0] 0040
Backsub | 2(h~1) | 2(h~1)(2h+5) 3(h-1) 3(h—-1) 0ol 0 |0}0O
Total | 4(h-1) | 4(h—1)(2h+5) | 11(h—1)+1 | 23(A-1)+1 |0 | O |0 | O

Figure 4.9 Analysis of the Bunemar algorithm, h=log{n+1). The stability provid-
ed by this algorithm (compared to cyelic reduction) comes at the cost of added
parallel additions and multiplications.
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Jacobi (per iteration)
Parallel Operations

Step Swps Comm.
Time Lcells | Teells | Ccell
+ X |+ x|+ x

1. ROTRA 1 clogn+2 [ 1| 1 D O, 0:0
22ROTLA | 1 !=2logn+2| 1| 1!0] 0/ 0{0
3.CTEST | 1 |2legn+2]1] 0] 0! 0/0]o0
| Total 3 [Blgn+6!3|2]0] 0]lo]o

Figure 4.10 Analysis of the Jacobi methed. It is assumed that the quantities
=g,/ b;, —t;/ b;, and r;/ b; have been computed and saved once, pricr to the
first iteration. Three sweeps are needed. I; receives data from L;_; evaluates
(4.32) in the first, receives data from L;;, evaeluates (4.33) in the second, and
conducts a convergence test (4.34) in the third.

Jacobi Over—relaxation {per iteration)

Paregliel Operations
St Sw Comm.

ep SWPS Time Lcells | Tcells | Ceell

+ X [+ x |+ X

1. ROTRA 1 Qlogn+2 | 2! 2 | O 0
2. ROTLA 1 Rlogn+2 | 1 {1 | 0] 0 00
3. CTEST 1 [ 2legn+2|1{0 |0 0,00
Total 3 Blogn+6 {4 | 3 0! 0|0 |0

Figure 4.11 Analysis of the JOR methed. The proper selectior of the relaxation
parameler & prevides faster convergence for Lthe JOR methed {compared to the
Jacobi methed). The cost is ore added mulliplicaticn ard additior per iteralion.
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Gauss-Seide! (per iteration)
Parallel Operations
Step Swps Comm. - :
Time L cells T celis - C cell
+ x + X + X
1. ROTLA 1 2logn+2 (1 | t 0 clolo
2. LR1 1 4logn+4 | 0 | O | 2logn | 3logn | & | O
3. CTEST 1 Slogn+2 | 1| O 0 o010
Total 2 |Blogn+8| 2! 1 | 2logn | 3logn | 0|0
Figure 4.12 Analysis of Gauss-Seidel.
SOR (per iteration)
Parallel Operations
Ste Swps Comm.
P WP Time L cells T cells C cell
+ % + X + X
1. ROTLA 1 2logn+2 | 2 0 0|0 |0
L2, LR1 1 4logn+4 ;] 0| O | Rlogn | 3legn | O | O
3. CTEST 1 2logn+2 | 1| 0 C 0] 01|0.
Total 2 | Blogn+8 ) 3| 2 | 2logn | 3logn | 0 | O

Figure 4.13 Analysis of SOR.
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Red-Black SOR (per iteration)

Parallel Operations

Ste Swps Comm,
P P Time Lecells | Tcells | Ccell
+ x|+ x|+ x
1. ROTRA 1 2logn+2{2|2!0| 0j0{0
2. ROTLA 1 Plogn+2 |1 | 1 0 Ci01{0
3. ROTRA 1 2logn+2 | 2 2 0 gl 00
4. ROTLA 1 2logn+ 21 1 0 cCl0!0D
5. CTEST 1 Slogn+2 {11 0D | 0 0,00
Total 5 | 10logn+10 |7 /6 |0 0{0]oO
Figure 4.14 Analysis of red-black SDR.
Paralliel Gauss (per ileration)
Faraliel Operations
Step Swps Comm.

Time Leells | Tcells | Ceell

+ x + X 4+ . X

1. ROTRA 1 Ziogn+2 | 1 1 0 0100

CTEST 1 Elogn+2 |1 0 0 0|00

2. 0] 60 1 0 0100

3. ROTRA 1 2logn+ 2 1 0 0, 010D

CTEST 1 {2logn+2 |1 o! 0|00

4. ROTLA 1 Rlogm + 2 1 0 0| 0,0

CTEST 1 2logn+ 2 0 0|00

Figure 4.15 Analysis of Parallel Gauss.
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L cells o . o o . o

seq# 0 n-1 n n+m-1
Figure 4.16 Solving two tridiagonal linear systems simultanecusly. The first sys-
tem occupies the L cells with sequence numbers 0 through n—1. The second sys-
tern cccupies the L cells with sequence numbers n through n+m~1.

Summary: Direct Methods

Parallel Operations

Comm. : -
Method | Swps Time L cells T cells C cell
-+ X + X + X
TA 3 l4logn + 14 0 5 Wlogn | 17logn | O | 1
GE 4 18logn + 16 0 7 1Clogn | 17lcgm | O ¢ 1
10 3 16logn + 16 0 7 10legn | 17logn | O | 1
Ly 4 20logn + 20 o B 18legn | 22logn | 0 | O
RD. 4 1Blogn + 18 4] 8 10legn | 1Blogn | O | O
CR | 4(h-1) | 4(h—-1)(3h+5) | 6(h~-1) 19(h—1)+1 0 c 0|0
BA | 4(h~1) | 4(h=~1)(2h+5) | 11{a—1)+1 | 23(h=1)~1 0 0 oo

Figure 4.17 Summary of analyses of direet methods. TA=Thomas algorithm,
GE=Gaussian elimiration, LU=LU decompesiticn, LV=LU decomposition variant,
RD=recursive doubling variani, CR= cyclic reduclion, BA=Buneman algeritkm,
h=log (n+1).

Summeary: lterative Methods
Parallel Operations
: Comm.
Method | Swps Time L cells T cells Ccell
+ X + X + X
J 3 6logn + 8 3] 2 0 0 [sI
JOR 3 6logn + 6 4 1 3 C 0 0|0
GS 2 8logn + 8 21 |2logni3legni 0|0
SOR 2 Blogn + 8 3|2 |2logn|3legn 0|0
RBS 5 1Clegn+ 10 7 | B e 0 ¢, C
PG 2 4legm + 4 1 1 e 0 !0

Figure 4.18 Summary of analyses of iterative methrods. I=lacchi, JOR=Jacobi
over-relaxation, GS= Gauss-Seidel, SOR=successive over-relaxaticn, RBS=red-
black successive over-relaxaticn, PG=Paralle] Gauss.
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_Direct Methods J

wey — Algorithrs Complexity . _ 0
Mgthod | Sequential-| Vector ! Array T;reAef R

TA | o | [m]] logn

GE | = B ) T log n

Lu. | n om0 logn

BA'EE S [n] logn

RD nlogn |‘nlogn | logn | logn

CR ‘n n log n | (log n)?

‘BA n [n] logn | (log n)?

Figure 4.19 Comparison of the orders of asymptotic complexity of direct tridiag-
oral linear system solvers for sequential, vector, array, and tree processors.
TA=Thomas algorithm, GE=Gaussian elimination, LU=LU decomposition, LV=LU
decomposition . variant, =recursive.. doubling, - CR=cyclic reduction,
BA=Bunemar. algorithm. The resulis for vector processors were described by
Lambiotte and Voigt [LaVo75). Entries in brackets indicate that the methods
were not implemented by Lambiotte and Voigt but the complexity of the algo-
rithms can be inferred from the results obtained from methods that were. The
results for array processors were described by Stone [Ston75]). Blank entries
mean that implementations of these methods have not been described in the
literature. : : s : N

Iterative Methods

A Algorithm Complexity (per iteration)

Methkod -

' Sequential Vector Tree

J n n logn

JOR n [n] logn

GS n [n] log n

' 'SOR n [n] " logn

RBS n n " logn

PG n n |- logn

Figure 4.20 Comparison of the orders of asymptotic complexity of iterative tridi-
agenal linear system sclvers for sequertial, vector, and tree processors.
J=iacobi, JOR=Jacobi over-relaxation, GS=5auss-Seidel, SOR=successive over-
relaxation, RBS=red-black successive over-relaxation, PG=Parallel Gauss. The
results for vector processors were described by Lambiotte ard Voigt [LaVo75].
Entr)ies in brackets indicate irferred orders of complexity (see captior of Figure
4.19).
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CHAPTER 5. BLOCK-TRIDIAGONAL LINEAR SYSTEM SOLVERS

A. Overview

The primary objective of this dissertation is the parallel solution on a tree

machine of Laplace's equation

8%z 9%z o -
_— ¢ =0 .
oz® ’aya . : s (5.1) ,
or Poisson’s equation
6% | &% .
pyeals 5;?: T, raconstant (5.2)

on a rectangular region. The values of the function z are known on the boundary

“of the region and the object is to obtain an approximation of z at any point in

the interior. The method of finite differences lays a rectangular mesh with n
rows and m columns on the region. Equation (5.1) or (5.2) is then replaced by
(n—-2)x(m —2) second-order difference equations, one for each interior mesh
point.. The solution of the system of difference equations provides an approxima-
tion of z at each of the mesh points. The system of equations is block-
tridiagonal and may be sclved by iterative or direct numerical methods. Figure
5.1 shows a mesh with n=7 and m =9. The mesh points, both boundary and inte-

rior, are numbered from from O through (nm-1) in row ma;or order. The

‘ c"or?ééﬁéhaiﬁg' block-tridiagonal system of equations is shown in Figufe‘kS.E. ‘

AP S
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The iterative methods for solving block-tridiagonal linear systems con-
sidered in this chapter are point iterative methods, block iterative methods, and
alternating direction implicit methods. Point iterative methods modify the

value of one interior mesh point at a time. These methods are called ezplicit

methods because the new value at a mesh point is explicitly expressed as a fune- |

‘lcion of already computed approximations of neighboring points. Ekamples are
the Jacobi, Jacobi over-relaxation (JOR), Gauss-Seidel, and successive over-
relaxation methods (SOR) methods [Youﬁ?l. Ames77]. Another class of iterative
methods are block iterative methods {(also called methods by lines). At each
step. the values of one or more rows of points are modified, typically involving
the solution of a tridiégonal systemn of equations. Such methods are called
implicit meihods because the approximate value of a mesh point is expressed as
a component of the solution of a linear system. These methods have been exten-
sively studied [Ames77, DoRa58, FoWaB0, Hell?7, Hell78, PeRa55, Vargs2,
Youn71]. Examples are Jacobi by lines, Jacobi over-relaxation by lines, Gauss-
Seidel by lines, and SOR by lines. A third class of methods are alternating direc-
ticn implicit (ADI) methods [PeRa55, DoRab8], which first improve the values of
peints a row at a time and then a column at a time. As with block iterative
methods, the solution of a row or column of points reguires the solution of a tri-
diagonal linear system. This chapter presents tree implementations of these

three classes of algorithms.

Direct methods for the solution of sparse block-iridicgonal systems have
also been widely studied. The initial paper by Eockney [Hock65] described a
method based on Fourier transform and cyclic reduclion and required O{n?®)
arithmetic operations compared with O(n?) operations required by traditional

band matrix methods. A stable version of cyclic reduction was described and
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implemented in FORTRAN by Buneman [Bune89]. A further improvement was
made using the Fast Fourier Transform [BuGN70}. Subsequent work includes
studies of non-rectangular regions [BDGG71, Dil'e78, Swar74, SwSw73, Swee73].
Heller [Hell78, Hell77] describes still another variation of cyclic reduction and a
general analysis of direct block-elirnination methods. Generalized cyclic reduc-
tion techniques are described by Sweet [Swee74] and H.ageman and Varga
[EaVab4]. Other direct methods include an LU decomposition of block-
tridiagonal systems described by Varah [Vara?2] and a decomposition based on
the computation of the eigenvalues of the coefficient matrix described by Buz-
bee [Buzb75]. Survey papers have been written by Dorr [Dorr70] and Heller

[Eell78).

I attempied to develop a tree machine algorithm to implement the Bune-
mazan version of cyclic reduction as described by Buzbee, Golub, and Nielson
[BuGN70]. Unfortunately, the best algorithm I found was much more complex
than the algorithms required to solve the block-tridiagonal system using tradi-
tional iterative methods. As a result, I have not incjuded cyclic reduction in this

dissertation.

B. Point Herative Methods

Approximating an elliptic partial differential equation {pde) on a rectangu-
lar region using finite differences involves (1) laying a rectangula.r.mesh of
points over the region (Figure 51} (2) assigning a vé.lue. known a priori, to each
boundary point, {3) rep]aciﬁg the eiliplic pde with a system of linear difference |
equations, and (4) solving the resulting linear system. The boundarf’ values

(conditions) remain fixed throughout the process and determine the solution for
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the set of interior pointé. The simplest linear approximation involves an interior
point and its four closest neighbors. This produces a linear system of equations
whose coeflicient matrix has a special bIock-tridiégonal structure, as shown in
Figure 5.2. In this seclion, we discuss point iterative methods for solving such a

block-tridiagonal system.

1. Jacecbi

lterative methods for solving linear systems generally transform the system

eqguation

AZ=R {(5.3)
into one more suitable for iteration. If the diagonal elements of A do not vanish,

the Jacobi method transforms (5.3} into

i+ = g7y C (5.4)
where
B=I-D14
C= DR

D = diagonal {4)
j =iteration number.

When applied to a block-tridiagonal systemm where the underlying pde is

Lapiace’'s equation (5.1), then the ith equation of {5.4) is

20 = (2l0), + 20 + 2l + 2/ 4. (5.5)
Equation {5.5) shows how the ith interior mesh point must be medified in the
(F +Dth iteration. Similarly, if the underlying pde is Poisson’s eguation (5.2},

then the ilh equalion is
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2l = (28], + 20} + 2{{} + 2fil, + rR%)/4 | (5.6)

where h is the uniform distance between two adjacent mesh points.

After an initial value is assigned to each z-variable, eguation (5.5) or (5.8) is
used to obtain new iterates. Equations (5.5) and (5.6) are true even for interior
points adjacent to the boundary; such points would have boundary points as one
or more of their neighbors. The (j+1)th approximation of an interior point is
determined entirely by the jth approximatibn of its four neighbors. This charac-
teristic of the Jacobi m'eth_od allows paralleli'sm'tb'be introduced: it is theoreti-

.cally possible to modify all intericr poinis simultanéously. -

To implement this method on a tree rhachine, we distribute the mesh points
(both bound‘ary and interior} among the L cells. one to: an L cell and in row-

major order. Each L cell holds the following registers

Z the current value of one boundary or interior point

(boundary points never change their values),
mask "0" if boundary poeint, "1" if interior point,
£ temporary, serves as an accumulator.

Boundary points are distinguished from interiof pointé by a mask in the L cell.
Moreover, if an interior point is contained in L;, its-.north and south neighbors lie
in L;-ym and L;,, and its west and east neighbors lie m L cells L;-, and L4, (Fig-
ure 5.3). This means that two of the point’s neighbors are in L cells immediately
to its left and to its right. The other two neighbors are in L cglis a distance m to
its left and to its right, where m is the number of points in one row of the mesh.
In one iteration, each L cell must receive the values of these four other L cells,
or equivalently, [, must send its value to each_ of its four neighbors_. Cne itera-

tion of the Jacobi melhod proceeds as follows.

-115-



(i) Use ROTLA to send the value of L(i41)mod mn L0 L;. Each mesh point receives

the value of its east neighbor. Each L cell executes ¢ :=value received. -

(2) Use ROTRA to send the value of L(;_1)ymsa mn t0 L;. Each mesh point receives

the value of its west neighbor. Fach L cell executes £ := ¢ + value received.

(3) Use GDCA(-m-shift) to send the value of Lyimymod mn t© L;, .., all L cell
values move a distance m to the left. Each mesh point receives the value of

its south neighbor. Each L cell executes £ :={ + value received.

(4) Use GDCA{m-shift) to send the value of L m)med mn t0 L;, i€, &ll L cell
values move a distance m to the right. Each mesh point receives the value

of its north neighbor. Each L cell executes ¢ :=¢ + value received.

{5) An L cell containing an interior mesh point computes a new z-value: z=1/4
(equation (5.5)), or z= (¢ +7h%)/ 4 (equation (5.6)). An L ceil containing a
boundary point does nothing with the information it receives.

To analyze the Jacobi method, we let N =27, where p=llogmnl. N is the

number of L celis in the smallest tree machine that can hold mn points. ROTLA

and ROTRA each require 2log N + 2 communication steps (Chapter 3) for a tree
with N L cells. Moreover, to perform an m-shift, GDCA initially requires

2log N + 3 communication steps to construct the T cell directories, followed by

2m + 2logN -1 (5.7)
communication steps to perform the shift. Because GDCA is used many times,
the T cells construct the directories only once at the start of the operation and

retain them during the entire process.

Figure 5.4 shows the analysis of one iteration of the Jacobi method applied

to Laplace'é equation. Steps (1) and (2) use ROTLA and ROTRA respectively; step
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(2) includes one addition executed by each L cell involved. In both step (3) and
step (4) the L cells execute GDCA to perform an m—shlft and perform one addi-
tion. In step (5), the L cells execute the final dmsmn {by 4) and store the new
value in their z-registers. The "sweeps” through the tree during steps (3) and
(4) are more complex, and take more time, than the simple sweeps in steps (1)
and (2). So, in a sense, using the east and west n.eighbors is cheap, and using
the north and souih neighbors is expensive. The lotal number of cormmunication
stees required per iteration is 8m + 12logN + B, or O{m), where m is the

number of eolumns of the mesh.

‘2. Extensions

The technique used in the tree algorithm for the Jacobi method applies to
other problems as well. We introduce the "computation moelecule” notation used
by Bickley [Bick48]. In this notation, the approximation at the point z=z; of

Laplace's-equation is

1
2 2
02 + 22 .11 -4 1|/h%+ 0(rY). (5.8)
8z dy* 1 .

Other differential equation approximations are

—g—z—-: (Zisy — 2;-1)/ 2k + O(R?) : (=10 1)/ 2k + O(h?) (5.9)
-1

.gé.z (Zirm = Ziem )/ 2k + O(RZ): | O] /2R + O(RY). (5.10)
1

Similarly,
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Bzz ’ ‘ 2 2
= (2Zi-1 — 22 + 2;,,)/ h® + O(h?)

8z*® o (5.11)
1 (1 -21) 7R+ O(R?)
and '
. -10 1
8%z | 2" 2
Y {10 -1 -' '
More complicated molecules inelude
1
4 4 2—-8 2 ) .
82,02 118 20-8 1] /h* + O(h®) (5.13)
6z* Oy 2-8 2 \ :
1
ot o4 '
S [ zdzrdy:j4 16 4/ h%/ 9 + O(rS) (5.14)
1 41 :

The right-hand side of (5.14) is Simpson’s Rule applied to double integration.

Designing the tree algorithm for any oné of these problems is straightfor-
war_d,' onrc'e'the mesh poin_ts have been "c‘listri:butedzarﬁ-png the L rells. Each of
the rﬁolecules describes precisely which neighborérea‘ch mesh point musf. com-~
municate with and what weight to assign to a v’_aﬁll..le received. rfhe proper combi-
' nation of ROTLA, ROTRA, and GDCA (k-shift) provides the necessary communica-
tion. Consider, for example, equation (5.13) with the weights in the fnolé'cule‘

labeled as follows

I

m
Sy O
Isaonm -

Let 2z, through z, represent the mesh points corresponding to weights o
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through m. The communication requirements between the center point z; and

each of its neighbors are as follows:

G

G G
R R 24
G G
G

where K represenis a ROTRA or ROTLA and G represents a GDCA. Each applica-

R

(D= 1]

tion of ROTLA and ROTRA requires 2log N + 2 communication steps and each
application of GDCA (k-shift) {or GDCA {-k-shift)), 1sk < Imn /7 21, requires at

most 4k + 4logN'+ 2 communication steps. Thus, we need at most

Value Operation Steps

Obtained

Zh. 2; 2 x ROTLA 4log N + 4

Ze, Zf 2x ROTRA 4log N + 4

Ty, % 2xGDCA{m +1) 8(m+1) + Blog N + 4

Zc, Zi 2x GDCA(m) 6(m) + BloghN + 4

Z;, Zg 2xGDCA(m -1) 8(m —1) + Blog N + 4

Za. Zm 2xGDCA{2m) B{(2m) + BlogN + 4
Tolal " 40m + 40log N + 24

communication steps, where m is the number of elements of one row in the
mesh (the distance between 2z, and z,, for example), n is the number of ele-

ments in one column, and N =27, p = log mnl.

r.I'his straightfor“’ard algorithm can be improved. For. example, .four GDCA's
are required to send z,, Zz,. Z,, and 2z individually to z;. Instead, we can use
GDCA {m) to send z,. ROTRA to send z,, and ROTLA to send zg to the L cell con-
taining 2, have this L cell take the weighted average of all four points (z,, Zy,
2., and 24, whose weights are a, b, ¢, and d, respectively), and use GDCA (m) to
send the result to the L cell coﬁtaining 29. Similarly, we can use.ROTRA. ROTLA,

and two applicalions of GDCA (m) to send the weighted average of points z;, ;.
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;. and Z, lo the L cell containing z;. We would need a total of only 4 GDCA’s and

B8 ROTRA's or ROTLA's:

G
R G R
RE z, R R
R G R
G
and tota! communication time would be
Value Operation Steps
Cbtained
Z,. Zp 2x ROTRA 4log N + 4
Zp, 2 2x ROTLA 4log N + 4
Zo. Zy. Zo. Zg3 ROTRA, ROTLA 4log N + 4
{combined) 2x GDCA{m.) 8m)+ BlogN +4
Z;, Zx, Z, % ROTRA, ROTLA 4log N + 4
(combined) 2x GDCA(m ) 8(m) + BlogN + 4
Total 18m + 32log N + 24

or a reduction by approximately 80%. Further improvements are possible (note
that every L cell receives the values of its east and west neighbors three times)
but these improvements would reduce only the log N term of the equation. No

further reduction on the high-order (m) term appears possible.

3. Jacobi Over-relaxation

The Jacobi over-relaxation, or JOR, method is similar to the Jacobi method

except that we use a parameter » to "correct” the new iterate. For example, for

Laplace’s equation, we use

27D = oz, + 20 + 2} + 2l )4 + (1-0)2() (5.15)

instead of (5.5) to improve each interior point. The method of choosing the
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relaxation parameter w is described by Young [Youn71). Note that w is a con-
stant determined before the first iteration. The first four steps of the tree algo-
rithm for JOR are identical to Lthose of the Jacobi tree algorithm. Step (5) of JOR
proéeeds as follows.

(5) An L cell containing an interior mesh point replaces the old z value with a

new one using eguation (5.15).

We assume each L cell computes the constant quantities &/ 4 and 1-w once at
ﬁhe start of the process and then retzains them. The T cell directéries used in

GDCA are also determined only once and retained throughout.

The analysis of one iteration of JOR is shown in Figure 5.5. Step 5 of JOR
requires an additional two multiplications and one addition of the term

(1-w)2f). One iteration of this method requires O(m) time.

4. Gauss-Seide]l and Successive Overrelaxation

The Gauss-Seidel and successive over-relaxation (SOR) methods are similar
to the Jacobi and JOR methods, respectively, except that the new value z{/*V is
used as soon as it is available. Thus equations (5.5) and (5.15) are replaced by

270 = (250 + 20 + 283} + 2li)/ 4 (5.16)
and
20 = o(2FD + 2010 ¢ ) 4 28) )74 + (1-w)2 {7 (5.17)

respectively.

Mesh points are modified in row-major order with new values used as soon

as available. One pass through the entire mesh constitutes one iteration.

-121-



Figure 5.6 gives arsnapshot of the mesh midway through an iteration (circles
r‘epresent points that have already been modified). The new value of gz, is
currently being obtained. The Gauss-Seidel methed is known to have twice the
convergence rate of the Jacobi method [Ames77], and, on sequential computer,
it is preferable. Il is unfortunate, however, that the Gauss-Seidel method lacks
the feature that made the Jacobi method attractive for parallel computation,
i.e., the possibility of replacing all interior point values simultaneously. Gauss-

Seidel seems to be inherently sequential.

After a closer examination, however, we discover that it is possible to intro-
duce some parallelism into the Gauss-Seidel method. Referring once again to
Figure 5.8 and the sequential Gauss-Seidel algorithm, we first observe that after
z,; has been modified, it 1s possible to modify both z;, and z;g. If.we consistently
apply the rule that, after modifying z;, we modify points z;,, and z,,,., we see
that instead of improving a single point at a time, we can improve an entire diag-
onal of points simulianeously (Figure 5.7). We have the image of a wave front,
moving from the norihwest corner toward the southeast corner, and improving a
diagonal values at each time step. One iteration is the time required for the

wave to move over the entire mesh.

We also observe that after a diagonal row of pointé has been meodified, it is
again ready for improvement in the second time step following. }n Figure 5.7,
step 3, for example, as we obtain zéé)' zéé). and z{’g), i.e., the first approximations
of Z;p. Zpp. &and Z;,, we may also obtain 2{8. In general, after z!! is obtained, it is
possible to improve this value at every olher time step. Figure 5.7, step 11,
shows the entire mesh with different points at different stages of improvement. |

A circle indicates that a mesh point is currently being modified. The point z,; is
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undergoing its sixth modification while 255, in the lower right hand corner, is
going through its first. From now on, at each step, half of the mesh points are
modified. One iteration, i.e., the time required to modify the entire set of

points, takes two steps. The tree algorithm proceeds as follows.

(0) Startup. At each step, we obtain the first modification of a diagonal of
points; starting from the northwest corner (zm)rand proceeding toward the
southeast corner (z;;). After a diagonal of points is modified the first time,
it may be modified again at every other step.

After the southeast corner has been modified the first tifne, ex.rery step modifies

approximately half the number of mesh points_. This inﬁolves the foliowing

operations. |

{1) Use ROTLA to send the value of Ltiﬂ)mg mn to L. Bach mesh point receives
the value of its cast neighbor. Zach L cell executes £ :=wvaolue received.

(2) Use ROTRA to send the value of Ly_1)mod mn 10 L;. Each mesh point receives

the value of its west neighbor. Each L cell executes £ :=f + value received.

(8) Use GDCA{-m-shift) to send the value of Lysm)modmn to L. Each mesh
peint to be modified receives the value of its south neighbor. Each L cell

executes f :=f + value received.

(4) Use GDCA(m -shift} to send the value of L;_n)mes mn t0 L;. Each mesh point
to be modified receives the value of its north neighbor. Each L cell exe-

cules t:=¢ + value received.

(5) An L cell containing an interior mesh point computes a new z-value: 2=£/4
{equation (5.16)). L cells containing boundary points and L cells containing
interior points which are not to be modified in this hali-iteration do nothing

-

with the informealion they receives.
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After step 5, approximately half of the points have been modified. Steps 8-10
apply the same algorithm on the rest of the points. The analysis of one iteration
of this algorithm, after the startup step, is shown in Figure 5.8B. In each half-
iteration, the time required to perform a GDCA is approximately half that usu-
ally required for an m-shift. This is because only half of the points send values
each time, hence only hall of the amount of data must pass through the tree

branches. One iteration of this method requires O(m} time.

The same technique can be used with the SOR method as easily as with the

Gauss-Seidel method. We replace step (5) of the Gauss-Seidel algorithm with

{(5) An L cell containing an' interior mesh point computes a new z-value:
z=wt/4 + (1-w)zM) (equation (5.17)). L cells containing boundary points
and L cells containing interior points that are not to be modified in this

half-iteration do nothing with the information they receive,

Step {10) of Gauss-Seidel is similariy modified to obtain step {10) of SOR. The
analysis of one iteration of point iterative SOR, after st.artup. is shown in Figure
5.8, One iteration of this methoed requires Q{m) time. It is interesting to note
that in each haif-iteration, the points that are modified and the points that are
not form a checkerboard pattern on the mesh. This pattern, sometimes called a

red-black ordering of the rmesh points, is well known and is described in the next

zection.

5. Red-black Ordering of Mesh Points

Young [Youn71] has found that, in some cases, it is possible to change the
order in which mesh peints are improved without reducing the convergence rate

of the iterative meihod used. One may, for example, arrange the points inte two
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groups ("red” and "black”) such that if a point is red {black), all of its neighbors
are black (red). Figure 5.10 shows how the points are organized, with triangles
and eircles representing red and black. points respectively. Instead of trying to
modify the values of all of the points simultaneously, we modify each group of
‘interior points alternately, using either the Gauss-Seide! (5.16) or SOR (5.17)
equations. This, in effect, breaks one iteration of the Gauss-Seidel or SOR
methods into two half-iterations, each of which improves the values of approxi-
mately half the set of points. The higher convergence rate of red-black Gauss-
Seidel or red-black SOR [Youn71] over the Jacobi method makes red-blaék ord-
ering attractive. Lambiotte and Voigt [LaVo753] have reported that the appiica-'
tion of red-blaﬁk SOR to solve tridiagonal linear systems produces the same con-

vergence rate as regular SOR.

Consider equation (5.17) used in straightforward SOR. When applied to a

red-black ordering of points, equation (5.17) is broken up into two equatibns

2t = (24, + 28+ 28, + 2lL ) 4 + (1-w)2iD) (5.18)

used for all "red” points g;, and

PAARUERN CARAMNPICARY + 20 + 2V 4+ (1-w)20) (5.19)
used for all "black” poinils z;. Nole that the variables z;_p,, 2,_;. 2;+,, and z;,,, in
equation (5.18) are black points, whereas the same variables in equation (5.19)
are all red points. In each half-iteration, all of fhe data reguired to compute nev\;
values are known and the only problem is communication. The commun.ication
requirements, in fact, are exactly those required by the. Jacobi method, éxcept
that only balf of the points are sent through the tree each time. Each L cell has

a mask to distinguish red points from black points.
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The analysis of one iteration of this method is identical to that of poeint
iterative SOR (Figure 5.9). The total time to perform the GDCAs is approxi-
mately the same as required in one iteration of the Jacobi méthod. Each itera-
tion of red-black SOR, however, requires twice the number of ROTLA’s and

ROTRA’s.

C. Block iterative Methods

Section B presented methods that,_when ir’hpleménted ona sequential‘com-—
puter, modify a single point at a tirne. This is possible because the value at any
point is expressed by an explicit equation iﬁvclving the point’s neighbors.. Point
iterative methods can be extended naturally to block iferative methods (also
called line methods, group methods, or implicit methods) which medify a block,
line, or group of points at & time. This usuaiiy means thalt we must solve a sys-
tem of equations for each block. Ames [Ames77] reports that the redefinition of
an explicit method into an implicit method often improves corﬁvergence at the

expense of more computation per iterative step.

In this section, we take each of the point iterative melhods described in
~ Section B and present its block iterative counterpart. We define a block to be a
row of points. The problem we examine is the solution of Lapiace's equation on a

rectangular region using the five-point computation molecule.

1. Line Jacobi

This method represents each of the peints in a row by the following equation
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zZ{V — 42040+ 2N = - 28}, ~ 2], (5.20)
where z; represents an interior mesh point. The eguation involves the {j+1)th
approximaticn of the points z;, z;_,, and 2z;,; and the jth approximation of z;_,,
and z,,, (the two latter values are assumed to be known). Each equation
involves at most three consecutively indexed unknowns (pbints adjacent to the
left or right boundaries involve only two unknowns). The eguations correspond-
ing to a row of points form a tridiagonal linear system. If each row is
represented this way, we obtain n independent. tridiagonal systems. Moreover,
because the mesh points are initially distribgted among the L cells in row major
o}*der. a row of points occupies consecutive L ceIls,. except possibly for inter-
spersed érnpty L cells. Different tridiagonal systemé. therefore, occupy non-
overlapping sequences of L cells and the solutions of all of these systems may be
obtained simultaneously using one of the direct tridiagonal system solvers
described in Chapler 3. The algorithm is, in fact, siinpler as the tree machine
need not distinguish between diﬁerept tridiagonal systems. The n tridiagonal
systems do not overlap z_md thus may be considered one large system. The
coeflicicnts of the first and last mesh points of é. row prevent one system from
interfering with another. The ability to make this simplifying assumption on a

tree machine is discussed in Section 4.D.

As with the point iterative Jacobi method, we assume the foliowing.. Boun—.
dary poinls are distinguished from interior points by a mask in the L cell. If an
inlerior point is contained in IL;, then ité north and south neighbors lie in ZL; ,,
and Liym arﬁd its west and east neighbors lie in I;_, and I;;,. Moreover, each L
cell contains the registers a, b, and ¢ in which we store the coeflicients of one
tridiagonal_ equation. Let I, contain 2;. The following algorithm determines the

values of @, b, ané ¢ for different mesh points.
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if z; is a boundary point
thena=b=c=0

else if z;_, is a boundary point Z;'s west neighbor is a
then a=0, b=~4, c=1 boundary point

else if z;,, is a boundary point z,'s east neighbor is a
theno=1, b==4, c=0 boundary peint

else g=1, b=—4, c=1 neither of z;’s east or

west neighbors is a
boundary point

The tree algorithm proceeds as follows:
(1) Use GDCA(m-shift) to send the value of Ly-mmog mn 10 L;-
(2} Use GDCA(-m-shift) to send the value of Limmod mn O Li-

The sum of the values obtained in steps {1} and (2) determine the constant term

of each linear eguation. FLach L cell now has all of the information it needs to

construct the linear equation (5.20) representing one interior mesh point. We

are ready to solve the n tridiagonal linear systems.

(3} Let all L cells participate in a single applicaticn of one of the direct
methods for solving a tridiagonal linear system {Chapter 4). The = tridiago-

nal sysiems are considered one.

An iteration ends with step (3). The analysis of the line Jacobi method is shown

in Figure 5.11. One iteration of this method requires O(m) time.

2. Line Jacobi Overrelaxation

Line JOR is similar to line Jacobi except that we introduce a relaxation

parameter w and use
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2t = U+ & (1-0)2) (5.21)
where z/7*! is the value of z; obtained by applying equation {5.20). After step
(3) of the line Jacobi method, therefore, the line JOR tree algorithm uses equa-
tion (5.21) to compute z,Y*Y, The analysis of iiné JOR is shown in Figure 5.12.

One iteration of this method requires O(m) time.

3. Line Gauss-Seidel

Just as point iterative Gauss-Seidel is more difficult to implement on a
paraliel processor Lhan point iterative Jacobi, so also line Gauss-Seidel is more
difficult to implement than line Jaccbi. On a sequential machine, line Gauss-
Seidel modifies a row of poinis at a time by soIvihg a tridiagonal linear system of
eguations. Unlike line Jacobi, the new row values are immediately used to solve

the next row’s values. An iteration is complete when all rows have been

meodified.

To obtain a new approximation of a row, each row interior point gz, is

represented by the equation

421 = 2110 + 21V + 2J30 + 21}, (5.22)
The known values z7+! and zfo})m combine to forrmn the constant term of each
equation. The unknowns are zJ*1, z{*!) and z{-{”). Eguations representin
q 7 it 1}1 P g

poinis adjacent to the left and right boundaries involve only two variables.

Figure 5.13 gives snapshols of a possible paraliel implemenlation of line
Gauss-Seidel.

1) The firsi step modifies the first row of points. This involves the parallel solu-
p

tion of a single tridiagonal linear system. We may use one of the direct
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methods for solving tridiagonal systems described in Chapter 4.

(2) The second step modifies the second row of points. Again, this involves the

solution of a single tridiagonal linear system.

(3) The ith step, 1=3, 4, ..., n where n is the number of rows of interior mesh
points, modifies the ith row of points. In addition, we may also modify the
jth row of points where j=1-2,1-4, ..., 20or 1. This means that after the
ith row of points is modified the first time, it may be modified again at
every other time step. As i increases, therefore, so does the amount of

parallel activity.
After the lasl row of the mesh is modified the first time, then at every step,
approximately half of the rows are modified, Le., we alternately modify odd-
indexed and even-indexed rows. Note that the parailel implementation of point
iterative Gauss-Seide! or red-black SOR produced a checkerboard pattern on the
mesh whereas with line Gauss-Seidel, a striped patiern is produced. The ith
iteration { >n =the number of mesh rows) of the tree implernentation of line
Gauss-Seidel proceeds as foliows.
HModify odd-indexed rows.
(1) Use GDCA(m-shift) to send the value of Li-mimogmn t0 L;. Only points on
even-indexed rows send a value,
(2) Use GDCA({-m -shift) to send the value of Lysim)meamn t0 Z;. Only points on
even-indexed rows send a value,
The sum of the velues oblaincd in steps (1) and {2) determine the constant term
of each linear equation.
{3) All L cells whese mesh points line on odd-indexed rows participate in the

solution of a single t{ridiagonal system. As with line Jacobi, the coeflicients
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of the end interior points of a row prevent the different tridiagonal systems

from interfering with each other.
Modify even-indezxed rows.

{4) Use GDCA(m-shift) to send the value of L(i_m),;tadmn to L;. Only points on
odd-indexed rows send a value.

{(5) Use GDCA(—m -shift) to send the value of Liim)modmn t0 L. Only points on
odd-indexed rows send a value-. - -

The sum of the values oblained in steps (4) aﬁa (5) dete?rﬁine the constant term

of each linear équation. | | |

{6} Al L ceils whose mesh points iine‘on even-indéxed fows participate in the

solution of a single tridiagonal system.

The analysis of line Gauss-Seidel is shown in Figure 5.14. One iteration of this

method requires O{m) time.

4. Line Successive Over-relaxation

The itechnique used in line GausS-Seidel'may be used to solve the block-

tridiagonal system using line SOR. Instead of equation (522) we use

200 = 0z + (1-w)2Y) (5.23)
wﬁere z7*1 is the value of z; obtained b appl'y_i-n-g equation {5.22) and w is thé
relaxation factor. The algorithm for Iim; SOR.i;s' similar to that for line Gauss-
- Seidel except that equation (5.23) is evaluated after éteps 3 and 8. The analysisr
line SOR is shown in Figure 5.15. Steps 3a and Ba {during which equation (5.23)
is evaiuatéd) each require two multiplications and one addition. One iterat';on of

Lhis method requires O(m) time.
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D. Alterpaling Direction Implicit Melhod

A method by Peaceman and Rachford [PeRa55] and a related method by
Douglas and Rachford {DoRa56] improve on block iterative methods by modify-
ing rows of points in one half-iteration and cclumns of points in the next half-
iteration. Ames [Ames77] reporis that this often'p.roduces Eetter convergence
than straightforward block iterative methods which rno'dify- peints a row at a
time. ke states, however, that a "rational explanation of the eflectiveness of
AD] methods is still lacking.” A survey. report on ADI methods was presehted by
Birkhofl, Varga and Young [BiVY82)]. The following description is based on the

study by Ames [Ames77].

Basically, ADI methods perform a single row iteration on the mesh fellowed
by a single column iteration. To perform a row iteration, we represént each row

interior mesh point by

20V D=z D4 p (204 D4 g3 D22l Dap (2], 42}, ~220)]  (5.24)
where p; is celled the ileration parameter which may vary with 7. This defines a
tridiagenal linear systerﬁ whose solution prbduces a.-row of new valués. After
each -row-h'as been modified in this manner, a.célumn iteration is perforn’ied.

The inlerior points of a column are each represented by the egquation
Zsj+]}=zi(j+1/2)+pj[Zs_i}l/2)+zi({t1/2)‘_225.f'+ 1/2)]+pj_[z.i{J_';rnl)+zszgl_gzr.{:'+1)](5_25)
This also defines a iridiagonal system whose solution produces a column of new

values. A modificalion of each row followed by a modification of each column

constitutes one complete iteration.

As before, the mesh points are distributed among the L cells in row major

order. Consider a mesh with n rows, numbered 0 through n-1, and m columns,
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numbered 0 through m-=1. The points belqnging row, 1 occupy L cells with
indices im, im+1,im +2, ..., tm +{m ~1). On the other hand, points belonging to
column 1 occﬁpy L cells with indices i,i+m i +2m,.....i +.(n—1)m. Because of the
decision to distribute the points in row major _order,- rows of points are contained
in non-overlapping sequences of L cells. Columns of points, however, are con-
tained in overlapping L cell sequences. This all.ows the tree machine to perform

row iterations much faster than column iterations.

To implem_ent a row iterafion, we first dbserve that the tridiagonal linear
systems produced by equation {5.24) are uncoupled, i.e., the solution of the
jti/2 approximation. of row. i depends only on the jth approximation of the
rows i—1 and i+1. (Contrast this to line Gauas-Seidel and line SOR in which the
(j+1)th epproximation of row i depends on the (j+1)th approximation of row
i~1 as well as the j’th approximation of row i+ 1.) This means that we can solve
all row tridiagonal systems simultaneously. Moreover, because the tridiagonal
syslems are uncoupled, we may consider all of the tridiagonal systems as form-
ing a single tridiagonal system (discussed in detail in “’_Serction 4.D). A single
application of c;ne of the tr;idiagdnal system solvers desc.r'ibed in Chapter 4 on
: the-entire tree solves all of the tridiagonal sys'tern.s involved simultaneously. The -

iree aigorithin for a single row iteration proceeds as follows.
(1) Use GDCA(-m) to send the value of Li;im)mod mn L0 Ly L; Teceives the va_iue

() Use GDCA(m) to send the value of L;_pmymea mn 10 L;. L; receives the value:

(3) Each L cell computes the constant factor of eguation (5.25):
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200+, 2{}, + 2}, ~22{)]
and sets up the coeflicients of the linear equation cor;responding to point z;.
(4) Apply one of the direct tridiagonal llinear system solvers described in
Chapter 4. At the end of step 4, the L; contains z}jﬂ/z) defined by equation
(5.24). | |
Column iferations are slower than row itérations. ‘The reason is that
columns of points, and hence the corresponding tridiagonal systeﬁs, lie in over-
lapping sequences of L cells. Although we dén obtain new iterates for a single
column of points as easily as we can for a single row of points (by masking all
other columns out), we cannot solve tridiagoﬁal sjysterns corresponding to two or
more columnns simultancously, becausé their -cbnﬂputations would interferé with
each other. We can, however, separate thése”computétions in time, and solve
the tridiagonal systems of the columns -one' after. another. The tridiagonal sys-
tem of oné column may be solved in parallel in O{log n) time. As there are m ~2 .
columns of interior points, 2 column itera:t:ion requires O(m logn) time. The
‘tree algorithm for a compiete column 'iiérafion prdc.eed‘s as follows. |
{56) Use ROTLA to send the value of L(i,,,),;wd mn 1O Ll-..r-_L,-_ receives the value
2{i? I
{(8) .U.se ROTRA to send the value of L{;_;,m;, mn LO LL L; receives the value

(§41/8
zi1ve)

{7) EBach L cell computes the constant factor of equation (5.25):
zé‘:j-l-!/2)+pj[z‘;(i?1/2)+zi(1§-1/-2)_22£(j+1/2)]

At this point, the L cells are ready to solve the (column)} tridiagonal systemns
defined by equalion (525) We must, however, solve one tridiagonal system &t a

time. l.e., step Bis a loop over the columns of the mesh.
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{B8) For each column, use one of the direct methods described'in in Chapter 4
to solve a column tridiagonal linear system. At the end of step 8, L; holds
Z{i*V defined by equation {5.25).

The analysis of the tree implementation of the ADI method is shown in Fig-
ure 5.16. Row ilerations and column iterations ar-e carried out in steps i-4 and
steps 5-8, respectively. A row ileration requires O(m) time because the solution
of all of the tridiagonal systems {step 4} can be done simultaneously. A column
iteration, however, requires O{mlogn) time because each of the m tridiagonal
systems must be solved in turn. One complete iteration of the ADI method,

therefore, requires O{mlogn) time.

E. Remarks

Figure 5.17 shows the convergence rates of several point iterative and block .
iterative methods, as described by Ames [Ames77]. Table entries give the value
F: the number of iterations required. for convergence is inversely proportional to

£

Figure 5.1B gives a summary of the anai}’ses' of the peint itef'ative, biock
iterat'i\lre. and AD] methods discussed. On a slequent-i'al_ computer, a block itera-
tive method converges faster than the correspgndir;g_poi'nt iteratiﬁe method
(e;g. block Jacobi converges faster than point Jai_cobi') but involves more corr_]i:)u_-_—
tation. On & tree machine, block iterative me't.hods also involve more computa-
tion, but the total computation time is sti}l significantily Ieés than the bommuni-
cation time. Tor a large mesﬁ {m and n large), the significance of the increased
computatéo'n time diminishes, i.e., block iterative methods may not reguire

significantly more time than point iterative methods. In summary, we can say .
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that on a tree machine, a block iterative method looks more attractive com-
pared to the corresponding point iterative method than on a sequential com-

puter.

F. Detailed Time Analyzis of the Jacobi Method

This section presents a detailed analysis of the Jacobi method for solving
Lap.lace’s equetion (5.6) irnplemented on a tree rﬁachi—ne. and. compares the per-
formance of the tree machine with t_.hat of a s_equential computer. We assume
that the tree machine has the following character_istics;

(1)4 The (DEST;,U, VALUE) pairs sent through the t:eé_during an abplicatioﬁ of the
GDCA algorithm are B4 bits long, a 20-bit DEST# and 84-bit floating-point
VALUE, | -

(2) Communication is two-way, and the &hannels connecting a cell to its father
or sons are k bits wid‘e, where 84 /k is an.integer. -

(3) The tree has 2% L cells, thus allowing the use of a mesh with 2?0 mesh
poihts._ For the sake of simplicity, we aésﬁme ' sq..uar'e'mesh with 210 rows

and 2% columns.

(On a sequential computer, each it-erat-'ion of the Jacobi method requires the

- following operations to be performed for each_intefior mesh point.
(1)-(3) Add the values of the a point’s four other neighbors.

(4) Divide the sum by 4. produced by a shift opera{ion._

For the sake of s'irnplicity, we assume that each floating-point operation requires

the same amount of time. The number of interior mesh points' is
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(21°-2)(2!1°—2). One iteration of the Jacobi method, therefore, requires

4 (219 -2)? & 4 million (5.28)

Aoating-point operations per iteration.

The tree machine requires five operéﬁions-: (1) ROTLA, (2) ROTRA, (3)-(4) two
applications of GDCA, and (5) one shift operation '_to perform the division by 4.
We assume ﬁhat the T cell directories requlred. by GDCA are already in place. If
the time required for one cell to send one E_it,té an adjacent cell is 7, then the
time required by ROTLA, ROTRA, and GDCA (Chapter S)Vé\re

ROTLA : [(RlogN +2)+(B4-k)/k]T

ROTRA:  [(2logN +2) + (64-k)/k]T
2x GDCA: [2(4log N + (2(20 + 64) m —k)/ k)T - (5.27)

Total.: [(BlogN + 4) + (2/k)(168m —2k + 64)]7
where log N =20, m =2'°% ROTLA and ROTRA require the time for one 64-bit
ficating-point number to go through the C cell and back down to an L cell
Because the channels are k bits wide, the entire number reaches the destination
L cell (64~k}/k tirﬁe units after the first k bits arrive. Each application of GDCA
retjuires {at most) the time for m (DEST§#, VALUE) pairs to go through the root T |
cell and back down to the destination L cells. A (DEST#, VALUE) pé.ir is 84 bits
long. Since a sequential computer requires approximately 4 millicn operatioﬁs,

the performance of the tree machine in millions of fleating-point operations per

second (MFLOFS) is approximately

{number of arithmetic operations)/ (time on a tree machine) =

(4 x 108) % 1.16X 1075 (k / 7) J FLOPS
[(BlogN +4) + (2/k){165m -2k + 84)]v =~ i '

Figure 5.18 shows the performance of a tree machine executing one iteration of
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the Jacobi algorithm for k = 1,2, 4 and = 40, 60, 80, 100 nanoseconds.

The performance of a tree machine is even better if we use red-black SOR
(5.18-19) to solve the problem. Since comrvnﬁxl'xi‘catilélﬁ r"e"quirements;ﬁ 'A ifée
mach'me remain approximately the same but the number of operations on a
sequential computer ingreases from approximately 4 million to approximately 6

million performance increases by approximately 507%.
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Figure 5.1 The rectargular mesh used by the method of finite differences with

=7 rows and m=9 columns. The points are numbered from x through zs in row
major order. If an interior point is numbered %, then its north, west, east, and
south neighbors are numbered (i-m), (i-1), (i+1), ard (i+m) respectively. The
block-tridiagonal linear system formead from this mesh will have (n -2)(m -2)=35
equations, one equation correspondirg each interior point.
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Figure 5.2 The coefficient matrix of the (35x35) blcck-tridiagonal linear system
produced by the rectargular mesh in Figure §.1. The solution of each interior
mesh point is represented by one row of the matrix, that is, as a linear equation
involvirg the point's four closest neigkbors. Note the first five arnd last five equa-
tions of the system. These equatiors represent interior points adjacent to the
boundary of the region; consequently, they involve fewer than five variables.



L ceils: O O . O . 0 O @] w0 O
segjf: DO 1 i-m =1 4 i+l i+tm mn

Figure 5.3 Initial layout of the mesh points among the L cells. In the Jacabi
method, the 7th L cell must communicale with its north, west, east, and south
neighbers, which are in the (i—-m)th, (i—1)th, {(t+1}th, and (i+m}h L cells,
respectively. Cemmunicaticn with its east and west neighbors can be accom-
‘plished with ROTLA and ROTRA. Communication with its north and south neigh-
bors requires GDCA performing an m-shift to the left and also to the right.

_{7 Point Jacobi
,  Parallel Operations
: Comm. . :
Step Swps Time Lcells | Tecells | Ccell
o + X i+ x|+ x
1. RCTLA 1 2logN+2 |0 (00| D[ 01{0D
2. ROTRA 1 BlogN+2 {11 0|0 DiD|OD
3. GDCA 1 4dm + 4legN+2 11 0 0 01010
(~m-shift) : 1 ,
4. GDCA | 1 4m + 4logN+2 1 1 8] 0 0[0;0
(m-shift) _ S
5. 0 0|01
| Total | 4 |Bm+12logN+8|3| 1|0

Figure 5.4 Aralysis of one iteration of the Jacobi methed solving Laplace’s equa- |
ticr on a reclangilar mesh with n rows and m columns. N=2F, p = fl)og m.'n.], that
is, N is the cumber of L cells ¢f the smallest tree machine that can hold mn
peints. This analysis does not include the time required to construct the T cell
direclories. The total commurication time is o(m).
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Point Jacobi Overrelaxation :
Parallel Operations
Step Swps Co‘mm.
Time Leells | Teells | Ccell
+ x |+ x|+ x
1. ROTLA 1 BlogN+2 | 0] O 0 cC,0 0
2. ROTRA 1 RlogN+2 ;1 {0 |0 O|OD]|O
3. GDCA 1 4m +4logN+2 | 1] 0 0] 0|00
{=m-shift) _ ,
| 4. GDCA 1 4m +4logN+2 [ 1] 0 | 0| 00 0
{m-shift) '
2. 0 011 2 0
Total | 4 |em+12logN+8| 4

Figure £.5 Analysis of one iteralion of the JOR method solving Laplace's equation
on & rectangular mesh with n rows and m columns. This figure differs from Fig-
~ure &.4 ornly in step 8. JOR requires one more addmcn and multiplication per
iteraticn thar the Jacobl method.

A Z; Z2 Z; Zs Zs Zg b Zg
Zo @] ) ) O 0 O 27
%18 o] O O O Zgg
Zov O -0 O Z; ® o s Z3s
zqs o ] - .0. L] [ ] ] 244
Zi5 e ° » o - o s 253
Zos Zss  Zsg By Zog | Z59 '.Zso. % Zgz

Figure 5.6 Srapshol midway through one iteration of the sequential Gauss-Seidel
slgerilhm. Intericr mesh points are modified in rew-major order with the new
value of a peint immediaiely used to obtain the new value of the next point. A
circle irdicales that a poirt has been modifed; the next point to be modified is
Zz;. Medifying all of the interior peints constitutes one ileration.
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Figure 5.7 Snapskots during the startup pericd of the paraliel Gauss-Seidel alge-
ritkm. Diagonals of points are modified each time. In step 1, Z;¢ is medified the
first time. In step 2, both 2,9 and 2y; are modified the first time. In step 3, Zzq,
Zzc and 2z are rmodified the first time and Z)q is modified the second time. In
gereral, after a poirl has beer modified crce, it may again be modified alter ever .
other step. Bilep 11 shows approximately half of the points ir different stages of
rhodification: Zsp Lthe first time; 25y, 2,4 and Zg; the secerd time, ..., Z;p the sixth
time. Approximately half of the poirnts are modified in each step following step

11 ar.d parallelism is at its peak.
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Point Ilerative Gauss-Seidel
' Paraliel Operations
Step - ‘Bwps Cqmrn. -
Time Lcelis | Tcells | Ccell
+ x4+ x|+ x
1. ROTLA 1 2logN+2 0| o | 0o] o|lOD}o0
2. ROTRA 1 2ilogN+2 1|0 | 0| 06|00
3. GDCA | 2m+4logN+2 |1 | 0.l 0f 0| O] O
(~m-shift) ' _
4. GDCA 1 2m+4logN+21l 1l 00| 0[O0 {0
{m-shift). - '
5. 0 ' 6i0|l1/01 0j010
6. ROTLA 1 RlogN+2 |0 | 0 | O] O|O:D
7.ROTRA | 1 | 2log N+ 2 0 0 0ilo!lo
| 8. GDCA 1. em+4logN+2 11 0.{06| 0/ 0]0O
(-m-shift) | |
9. GDCA 1 - 2m+4logN+2 1110 |0 00} 0
J {m-shifl) ' o '
| 10. 1o o0l o0l1 _
Total . B | Bm+24logN+16|6 |2 |0, 0|00

Figure 5.8 Aralysis ¢f one iteration of point iterative Gauss-Seidel. After the

startup peried (begirning with step 11 of Figure 5.7, for example), eack iteration -

is achieved ir two sieps, shewn above as substeps i-5 follewed by subsleps 6-10.
Ir. substeps 1-5, hall of the peints receive the values of their neighbors and are
medified. Substeps 3 and 4 shew that the cermmuricaticn time required for GDCA
is appreximately half thet usually required for ar m ~shift. This is because only
~ half of the L cells serd values and the amcunt of infermation coursing through

the tree branches is half its usual load, : .
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Point Iteralive Successive Over-relaxalion or
Red-Elack Successive Uer-relaxation
o Parallel Operations
Step Swps Co.mrn.
Time : Leells | Tcells | Ccell
+ x|+ x|+ x
1. ROTLA 1 2logN+2 0 0 0 0|00
2. ROTRA 1 2logh+2 | 1 D 0 Ol 0|0
3. GDCA 1 Zm+4logN+2 |1 |00 0oj0]|o0
{—m-shift) .
| 4. GDCA 1 | 2m+4logN+27 1|0 | 0i 0[0]0
(m-~shift) : b '
5. ' 0 _ oli1i2 o]l ololo
8. ROTLA 1 2logN+2 1 0 0 | O 0,00
7. ROTRA 1 2logN+2 1|0 0| 0l0o |0
8. GDCA 1 2m+4logN+2 1] 0 0| 0|0 ]|D
{—m-shift) o I '
5. GDCA 1 | 2m+4logN+2 1|0 |0| 0l0jo0O
(m-shift) | BN o
L10. ! _ D1 2 D |00
| Total | 8 |8m+24logN+16 |8 4 |0

Fizure 5.2 Analysis of one iteraticn of point iterative successive over-relaxation
after tke startup period, or one iteration cf red-black successive over-relaxation.
Ore iteration cersists of two sub-iterations: one which modifies the "triargles”
(steps 1-5) the other which medifies the “circles” (steps 6-10). Red-black SOR re-
guires twice as mary applicaticns of GDCA per iteraticn as the Jacobi methed but
each application takes approximately half the time. Red-black SOR, however, re-
quires twice as marny ROTLA's and ROTRA's as the Jaccbi method. A mosk regis-
ter ir. each L cell distinguistes triangles from circles.” Although the complexity of
tke algorithm is identical, there is a diference between the two algorithms.
Poirt iterative SOR requires a startup period whereas red-black SOR does not..
Censequently, durirg one iteration of the former, mesh points have diferent
ileraticr. numbers (sce Figure 5.7) whereas during ore iteraticn of the latter,
peints modified all have the same iteration number. :
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Figure 5.10 To implement red-black successive over-relaxation, meshk poirts are
arranged in a checkerbeard (red-black, triargle-circle) pattern. Points of the
same type (all triarngles or all circles) are modified simultanecusly. One itera-
tion, therefore, consists of two sub-iteraticns: one which'modifies the "triangies”,
the cther whick modifieg the "circles”.

- 148 -



Line Jacobi
Parallel Operations
Co .
Step Swps TiEr: L cells T cells C cell
+ x + b 4 + X
1. GDCA 1 4m + 4logN+ 2| 0| O 0 0|00
{—m-shift)

2. GDCA 1 am +4logN+ 21 1] 0 0 o{0]|o0

(m-shift} ' _
3. TA 14log N+ 14 | O 10log N | 17log N | 0 | 1
| Total 5 | 8m+22logN+18 | 1 10log N | 17logN | 0 | 1

Tigure 5.11 Analysis of one iteratior of the lire Jacobi method. In sieps 1 and 2,
the values of a points north and south neighbors are received by each interior
Step 2 includes one addition required to determine the constant
term of each point's linear equation. In step 3, a single application of the Thomas
Algorithm (TA) sclves the tridiagornal linear systems simultaneously. The solution
cof the linear systems provides the new values cf the mesh points.

mesh point.

Line Jacobi Over-relaxation

-
Parallel Operations
Step Sﬁ'ps Covmm.
Time L cells T cells C cell
+ X + X + X
1. GDCA 1 4m + 4logN+2 01 0 0 o!ojo
(—m-shift) .
2. GDCA 1 dm + 4logN+ 2 |1 0 0 0l 010
 (m-shift) _ ' . . .
(3. TA 3 14logN+14 ;| 0} 5 | 10logN | 17logN | O | 1
4. ! O oti1} 2 0 00
Total | 5 8m + 22log N + 1B ! 3 |8 1Clog N ! 17log N

Figure 5.12 Analysis of cre iteration of the line Jacobi over-relaxation method.
This methed is similar Lo the lire jacobi methed {Figure 5.11) but requires an ex-

tra step, step 4, whick cemputes each point's new velue using equaticn (5.13).
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Figure 5.13 Block iterative wave snapshots. - Srnapshots during Lhe startup period -
of the line Gauss-Seidel algorithm. Rows of intericr points are modified each
time. The first and sécond rows are modified the first iime in steps 1 and 2,
respectively. In step 3, the third row is modified the first time and the first row
is modified the second time. In general, after a row has been modified cnce, it
may again be medified after ever olher step. Step 5 shows approximately half of
the rows ir differerl stages ol medificatior: the fifth row is modified the first-
time, the third row the second time, ard the first row the third time.
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Line Gauss-Seidel

Paralle]l Operations

Comm.
Step Swps Time L cells’ T cells C cell
Ol + x + X + X

1. GDCA 1 2m + 4logN+ 2{ 0| O 0 oio|o
(—m-shift) : . :
2. GDCA 1 2m+ 4logN+ 2| 1] 0 0 ojo]o
{m-shift) :
3. TA 3 14logN+ 14 | O 5 10log N | 1TlogN j O | 1
4. GDCA "~ 1 2m + 4leghN+ 2 1.0 0 0 0:0 0D
(-m-shift} _ O -
5. GDCA 1 gm+ 4loghN+ 2 | 1 8] 0 0,0 |0
(m-shift}
6. TA 3 ‘14log N + 14 5 | 10log N | 171og N
Total JI 10 Bm + 44loz N+ 36 | 2 | 10| 20logN ! 34logN | O J 2

Figure 5.14 Analysis of cne ileration of the line Gauss-Seidel tree algerithm afier
the stariuvp peried. Half of the rows are modified in steps 1-3, the other half in
steps 4-6. In steps | and 2, the values of a points north and socth neigkbors are
received by each of the interior mesh peint to be medified. This requires apprex-
imately half tte communicaticrn time usually required by a GDCA m-—shiit be-
ceuse only kalf of the L cells send values thus reducing the amcunt of informa-
tion fiowing through the tree. Step 2 ircludes one addition required to deter-
mire the constant term cf each point’s linear equation. In step 3, a single appli-
cation of the Themas Algerithm (TA) solves the tridiagoenal linear systers simul-
tareously. The solulion of the linear systems provides the new values cof the
mesh points. Steps £-8 are analyzed similarly.
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Line Successive Over-Relaxation

Parallel Operations

Step Swps Comm. _
Time L cells _ T cells C cell
+ X -+ x + X
1. GDCA 1 2m + 4logN+ 2 [0 O 0 0/0!0
(~m-shift)
2. GDCA 1 2+ 4logN+ 2|11 0 0 0/ 0{0O
(rn-shift) :
3. TA 3 14log N+ 14 | 0 | 5 | 10logN | 17logN | O | 1
3a. 0 0 1] 2 0 ololo
| 4. GDCA 1 2+ 4logN+ 2] 0 | © 0 olo!o0
(—m-shift) ] ' .
5. GDCA i em+4logN+ 2 1| 0 -0 of{o|o
(m-shift) ' . :
6. TA 3 14log N+ 14.] 0| 5 | 10logN | 17logN | 0 | 1
Ba. 0 01 |2 | 0 00
Total 10 | 8m +44logN+36 | 4 | 14 | 20log N | 34log N

Figure 5.15 Analvsis of one iteration of the line suéceésivé cver-relaxation tree al-
gerithm. Line SOR is similar to line Gauss-Seidel except for the addition of steps
3a and 6a whick evaluate equation {5.23).

-151 -




Alernating Direction Implicit
Parallel Operations
Step Swps Cgmm. .
, Time L ecells _ T cells Ccell
+ X + X + x
1. GDCA 1 am +4logN+2 | 1 0 o 06! o
(—rn-shift) _ ' |
2. GDCA 1 4m + 4logN +2 | 1 0 _ 0 0jo| 0
{m-shi’) e ‘
3. 0 0.3 2 o 0:0
4. TA 3 l4iogN+14 | O 5 i0iog N 17logN | O 1
5. ROTLA 1 ZiogN+2 | O 0 olo| o
&. ROTRA 2logh+2 | & 0 00 ¢
7. 0 03 0 0j0; 0
8.TA 3m { m{1dlogN+24) | O 5m 10miog N 1TmlioghN | 0 m
{m times)
Towa! 3rm+7 (14il0gN+22)m 0 | 5m+10 | 10(m+1)logN | 17(m+1}logN | O | m+1
i 1 +25log N+ 22 '

Figure 5.16 Analysis of one iteration of the ADI method. One iteration is com-
posed of a row iteraticn (steps 1-4) arnd a columr iteration (steps 5-8). In steps 1
arrd 2, each point receives the valve of its north ard south neighbors. Step 3
determines the corstant term of each peint’s lirear equation. In step 4, the The-
mas elgerithm (TA) is applied ic solve the tridiegeral licear systems formed by
the rews. To perferm a column ileraticr, each peint receives the values of its

east and west reizhbors in steps 8 arnd 6 and determines the constart term of

geck peint's linear equation. In step 8, the tridiagonal system formed by a
celumn is solved one af g time. As there are m columns, step B requires m times
the computatior required for one application of TA. QOne iteration of the ADI
metl'od therefore, requires O{mlog N) time.

Rates of Convergence
Molecule Method Point lterative | Block lterative
5-point Jacobi h%/2 h®
Gauss-Seide] " h? 2h?
SOR 2h 2VZh
| 9-point Jacobi h?
Gauss-Seidel 2ht
SOR 2VZ2h
5-point SOR 4h
| (two line)

Figure 5.17 Rates of convergence R of some of the iterative methods discussed
[Ames77], where h is the interval width (distance betweer a mesh peint and ary
of its four neighbors). The number of iteraticns required for convergence is in-
versely prepertional to R.
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Summary: Iterative Eethods
Parallel Operations
Comm.
Method | 8
eLhe wPs Time L cells T cells C cell
+ x + X + X
PJ 4 Bm + 12logN+ 8 | 3 1 0 0 0| o
PJOR 4 Bm + 12logN+ B | 4 2 0 0 0 t
PGS B Bm 4+ 24logN + 18 | 6 2 o 0 0 ]
PSOR 8 8m +24log N+ 16 ;| 8 4 0 0 0 o
RBEOR B Bm +24log N+ 16 | B 4 o] o 0 0
LI 5 | 8m+2200gN+18 |1 5 1GlogN | 17iogWN ol 1
LJOR 5 Bm +220gN+18 | 2 7 10log N - 17logN ol 1
LGS 10 Bm +44loa N +36 | 2 10 20logN 34log N 0 2
LSOR 10 Bm +44log N +36 | 4 14 ~ RDlogN " 34logN 0 2
LADI | 3m+7 | (14logN+22)m | O | 5m+10 | 10(m+1)log N | 17(m+1)logN | O | m+1
| } | +260pN+e2 ' o :
Figure 5.1B Summary of analyses of iterative methods. s=Point Jaccbi,

PJOR=Pcint Jaccbi cver-relaxatior, PGS=Point Gauss-Seidel, PSOR=Pcint Sucees-
sive Qver-relaxation, RBEOR=Red-Black Successive Over-relaxation, Li=Line Jaco-
bi, LiOR=Lire Jacchi over-relaxation, LGS=Lline Gauss-Seidel, LEDR=Lirne Succes-
sive Over-relaxatior, ADl=Alternating Direction Implicit, m=number of colurrns,
n=rumber of rcws, N=number of L cells in the tree machine.

Pericrmance of the Tree Machine |
k 1 R 4 '
T o
100 ns 116 | 2321 464
80ns | . 145 290 | 580
60 ns 193 387 774
40mns | 290 | 580 } - 1,180

Fisure 5.1¢ Perfermance of a tree machine executing one iteration of the Jacobi
algcritkm, in millions of flealing-poinl operations per second (MFLOPS), for
differert values of £ {1, 2, 4) ard 7. k is the widlh of a charrel conrecting two
tree celis {ore way) and 7 is the amourt of time required to send one bit of infer-
mation from one cell Lo another, meastred in nanoseconds (ns).
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CHAPTER 6. CONCLUSION

We summarize this dissertation by answering the three questions asked in

Chapter 1 and by making several general remarks regarding where one might go

from here.

Can solutions to elliptic partial diﬁerentiﬁl equalions be implemented
efficiently on a lree mochine? Chapter 5 gave several iterative tree machine
algorithms to solve two.dimensional elliptic pde problems. All bul one require
O(n) time to perform one iteration, the ADI -method‘requires O{nlog n) time.
These compare favorably with the 0(n#?) time requir-ed on a sequential computer.
The lower complexity of the tree machine .algor_ithms is achie'\—'ed.by efficiently
soiving some of the subpréblems, such as low-order linear recurrences and
(n xn) tridiagonal linear systéms. Lineé.r recurrences (Chapter 3) and tridiago-
nal systems (Chapter 4) can both be solved in O(log n) time. In solving the ellip-
tic pde, communication tends to be the costliest part of processing. For exarn-
ple, in an (n X7 ) mesh represented in row major order, the total time required

for each mesh point to communicate with its north and south neighbors is O{n).

How does the tree machine implementation compure with implementations
on other high performuance machines, e.g., vecisr and array processors? Vectior
processors can provide only a constant speedup over sequential computers.
Eence, all of _the iterative methods presented in Chapter 5 require 0{n?)} time on

a vector processor. On the other hand, an array processor, such as the ILLIAC-
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IV, can implement any of the point iterative methods in constant, i.e., 0{1) time,
provided there are enough processing elements Lo store all of the mésh point
values simultaneously.' This, of course, is because the interconnection among
the processing elements matches the cornmunication requirements of the mesh
exactly. Consequently, a mesh point (stored in a processing element) can com-
municate with any of its four nearest neighbbﬁ in constant time. To implement
a block iterative algorithm or the ADI method, however, requires the solution of
tridiagonal systemé. Stone [Ston75] asserts th_aﬁ an {nxn) t'ridiagonal system
can be solved in O(log n) time on an array pr'oc_essor.-A precise description of
communicét‘mn among the processors, however; was not included in Stone's
analysis. It appears that communication m-ay re.quire O(n) time for the methods
he discusses. If this is the case, then block iterative and ADI methods require

" Q(n) time on an array processor.

Tree algorithms solving recurrence expressions {Chapter 3) and tridiagonal
linear systems {Chapter 4) compare well with the éame algorithms implemented
on vector and array processors. The order of complexity of tree maéhine algo-
_ rithms to solve recurrence eipressions, O(log m), matches that of array proces-
sors. In all tridiégohal linear systemn methods studie‘d, the tree algorithms are
consistently betler asymptotically thaﬁ the same algorithms implemented on a
vector processor. In fact, Lambiotte and Voi.gt- [LaVo75] show that some. :
methods (direct methods such as Gaussian elimination ang LU decompositioh.
and iteralive methods.such as the Gauss-Seidel and successive over-relaxation)
connot be implemented efficiently on a vector processor. Moreover, except for
two direct tridizagonal systemn solvers {cyclic reduction and the Buneman algo-
rithm}, the trece alzorithms match the order of complexity of the best parallel

algorithm known for a given problem. This is particularly encouraging because,
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in many instances, what is considered the "best” algorithm is designed for an
idealized parallel processor assuming, for example, that any two processors can
communicate in constant (or even no) time. (Moreover, it should be nientioned
that array processors are SIMD machines whéreas a free machine can be-an
MIMD computer [Mag679a]. It is beyond the scope of this dissertation to argue

the potential advantages of tree machines over array processors. )

Fhat conclusions regarding lree machine programming do {these implemen-
totions provide? Communication among processing elements has emerged as a
primary concern in paraliel processing. This is emphasized by Gentlernan
[Gent78] who studied the role of data cbmrﬁunication in parallel matrix compu-
tations when executed on parallel p_rocesso'rs. ‘He showed how communication
amoeng processors, rather thah_ arithmetic operations, can play the dominant
role in Lhe overall performance of an algorithm. He cautions against algorithm
analyses that consider only parallel arithmelic operations as they may be very
misleading. (The assumptions in his analysis were such that the conclusions

apply to paraliel computation in general, and not just matrix operations.)

The tree algorithms ROT].A and GDCA (-Chapter 3) have shown that communi-
cation among the L cells of a tree machine need ﬁot_be festrictéd to sending all
L cell values up through the root T cell and back déwn again, ie., O(N) time
where A is the number of L cells, ROTLA and G.D.CA can often provide communi-
_calion in less than linear time. This refutes the often repeated argument that
tree machine algorithms always involve a bot.t'lerneck at the root. By ﬁasking
subsets of the L cells, ROTLA and GDCA allow a variety of L cell communicati.on

patterns.
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Suggestions for Further Work

All methods discussed in this dissertation hax_'e been previously developed
and analyzed. No attempt was made to develop new numerical algorithms
specifically suited for a tree machine. A natural extension of this dissertation
would be to develop such methods. Because points are stored among the L cells
in row major order, a mesh point is imniediately beside its east and west neigh-
bors but a distance m away from iits north and south neighbors. Conseguently,
the total time for all points to communicate with their north and south neigh-
bors is far greater than the total time for all pVDil’rltS te communicate with their
east and west neig.hbors. One interesting résearch topic is the investigation of
numerical algorithms that aliow a mes.h.p'oint'to communicate with its north and
south neighbors less frequentiy than ﬁ’ith its east and west neighbors. Is it pes-
sible to collect the values 6f a point’s north_. and south neighbors less frequently
than the values of its east and west. neighbors, and still maintain comparabie
convergence rates? A related guestion: i it possible {o develop methods that
make good use of asymmetrical molecules? For.‘e_xample, a mesh point may use
the values east of its east neighbor apd we.s.t of its west neighbor, as well as its
four original neighbors. The values of the £u’6 new n‘e__ighbbrs can be collected
inexpensively, using ROTRA and ROTLA. The large diﬂ'erénce between the time

required by GDCA and by RCTLA motivates further-_work on these topics.

Another interesting topic is the implerﬁéntatibn on a tree. machine of a
direct metho.d of solving block-tridiagonal linear systems. Hockney [Hockéﬁ,
Hock70] developed a'. direcl method called cyclic reduction, improved by Bune-
man [BuneB?] and Buzbee, Golub and Nielson [BuGN70]. On a sequential com-

puter, the solution of an {n?xn?) block-tridiazonal linear system requires 0{n?)
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