TRB2-003

Evaluation of a Teaching Approach for
Introductory Computer Programsing

by
Philip Koltun

A dissertation
submitted to the faculty of
the University of North Carolina at Chapel Hill
in partial fulfillment of the
requirenments for the degree of
Doctor of Philosophy
in the
Department of Computer Science

Chapel Hill, 1982

BRSS!

Dr. Donald F. Stanat, adviser

Ao L o

e et e vt

Dr. David L. Parnas, reader

sza_/ﬂﬂ ﬁl/ﬂ{;’/ '

br. Blizabeth Kruesi, reader

{c) Copyright 1982
Philip Koltun

All Rights Reserved

ABSTRACY

PHILIP LGUIS KOLTUN. Evaluation of a Teaching Approach for
Introductory Computer Prograkning. {Under the directiosn of
DONALL F. STARAT.)

An objective evaluation is presented of the applicability of
Dijkstra®s ideas on program developament methodology to the
teaching of introductory programming students. The
sethodology emphasizes development of assertion-based
correctness argusments bhapd-ip-hand with the prograams
themselves and uses a special language to support that
approach, Heasures of progras correctness and programmiag
errors after the first two-thirds of the course iandicate
that with a batch isplementation of the language, the
zethodology rprovides a sigaificant advantage over a
conventiceal teaching approach which eaphasizes program
testing and tracing and uses Pascal omn a batch machine.
However, that advasntage wuas not wmaisntained when the
experimental sukbjects switched over to &ascal in the latter
third of the experiment. %

A second set of comparisons demomstrated a sxgnlflcant
and inpiessive advantage with respect tc progran
correctuess, programaing errors, and time expenditure for
studeats being taught with the comventional approach and
using Pascal on a microcomputer over students being taught
with the cosmventional approach and using Fascal on the batch
rachine. Partheraore, the microcoaputer effect was
noticeably bepeficial for students of marginal ability.

- i ~

ACKNOELEDGHENTS

The older one gets the nore debts he owes for bkis
intellectual and professional dewelopment, so these
"acknovledgments may stretch a little longer than usual. In
my case, I gratefully acknowledge my family for fostering in
me a love of learning and a respect for good teaching, and
for supportimg my efforts to make arn original contribution
to ksowledge in my chosen field. I respect and appreciate
the faculties of <Carnegie-Nellon Oniversity and the
University of MNortk Carolina, vhere I have studied, for
setting bigh examples in pursuing exceilence in research and
scholarly activities. i thank the faculty and
administration of Sangamom State University, where I
formexrly taught, particularly u#y dear friend and former
colleague, Don Klett, for giving me the opportunity to teach
and learn a great deal more coaputer science that 1 ever
thought poessibie.

I would like to thank the following nmesmbers of ay
comBitter: Don Stanat, whose stewardship of the DPL project
these last several years helped steer a sometimes wayward
ship inte port, and whose patient counsel helped me, often,
along the way; Dave Parmas, the origimator of the project of
which this dissertation is a part, for setting an exaaple in
askinpg hard guestions about challeaging, iaportant probleas;
Betsy Kruesi, whose expertise and encouragement came as a
godsend mcre than once to save this work f£from foundering;
Steve Pizer, whose geherous cooperation ip carrying out the
experiment desciibed herein played such an important role;
Tom Wallsten, whose advice oa the experimental design aad
analysis aspects of the work has proven imvaluable; and Fred
Brooks and Steve Heiss for their insightful comments on this
work. Carloe Ghezzi, whose teaching of the DPL course the
first time heliped me develop my own approach to the subject
matter, should also be acknowledged. In addition, I would
like to thank Paul Thoapson of the Institute for Research in
Social Science at ONC, Toa HcCabe of McCabe & Associates,
and Dave Feiss of the Naval Research Laboratory for freely
coasulting with me on various aspects of this experiment.

The many students in coMp 14, our introductory
programaing course, deserve special recognition - for their
willing participation in efforts to improve undergraduate
education. The teaching assistants who helped so much in
collecting. the data needed by this experiment have also
~earned my special thasnks. Among them were Danny Berrier,

- iii ~-

Colin Clesent, Mario D'Scuza, Ermnesto Murillo, Hanhmohan
Reddy, and Janpe Whang, the graduate teaching assistants, and
Ellen Blue, Tricia Carter, Karol Doster, 1inda Foglia, and
Dawn HcRissick, the undergraduate assistants. Hot to be
forgotten are the people who labored 1long and hard on the
DPL compiler, among them, most receatly, Akiko HWakabayasbhi,
Dawn Janney, Deborah Branton, and Harion Varner.

Finally, I acknowledge the many friemdly conversatioas
with ny officemates Dan Hoffman and Dave Motiat, who share
By joy im learaing and teaching about computer science.

This work was supported by Hational Science Foundation
grant SED77-18518. At a tiwe in our history whem everyomne
agrees op the critical need £for support of science
edacation, yet unprecedented cuts slash away at science
education budgets, it is most important of all to
acknouledge the Division of Science Education Development
and Research®s support in sponsoring this project. Deep
appreciation is also - accorded for Yatiomal Science
Foundation Iastructional Equipment grant 1-0-110-3276-XA584,
which paid for some of the microcomputers used by subijects
in this experinpent.

ABSTRACT

CONTENTS

18

..-naounqnbcnotnn's--asaaii
ACKQGHLEDGHENTS‘.,, e 5 8 o 2.+ 8 5 5 3 » 2 & » » s & « 1ii
Chapter page
IB IHiBODgCTIOH O - L] o L - - -, L] - L - L - - - -» ¥ 1
IXs LIGERATUBE SURVEY 5 5 2 » 5 # » » » 2 % s 2 o » » U

Erogras COLTECLNESS o o = v . o o = = © = = = « » &

Ideas about How to Teach Programming . - 9

Exgerlmental Evaluations of Teaching Approaches.1u

Prcgraamlng StudieS o o« » v 2 © ©« » o e v = = o

Statistical Summaries of Proyramming
PhenoBMeNa o« « o o » s = = » = s « = o 19
Programeing TechniguUes « « o 2 « = » e = » 21
Hode ©f Computer USAYe o o ¢ « o o = s « = o 23
Brogramping Language StudiesS « « « « » = o « 28
Human FACtOLS o = = = = = = 2 © = = o s = u 27
Heasures of Progras CoBpleXity « o« o » = o = o 30
Methodological Consideratioas in Perforsing
EXperigents o« « = o o » © o« 2 o = o s = « 33
III. THE EXPERIMENT 4 u o o = » » o o = « o o « = = = » 37

BaCkgIOHnd *« & » ® L I % B @ ® s & & -D. 37

Goals of the Proposed Besearch s ¢ 2 2 2 » s » 40

HYFoth€SeS s s s s 2 2 s 2 2 2.5 5 s « » »-» » 43

Experimental DESlgn s 8 2 3 » & s » 2 s » 2 » » 44U

Expe‘x:lmental Procedure ® 2 » % 8 & + = & » 8 = 546

Assignment of Sabjects . . » s 2 » 2 2 s = . U6
Course teaching assistants » a2 « » » 2 2 - » 48
CoBputer access = 5 » » 5 s 3 s » 2 » » » » 48
course Eaterials 2 & & & & B3 & B .o s 3 £ 8 = 49
LeCtUXes o s s a 3 » 2 » a 2 5 5 s = » + » a 290
Prograsuing assigpsents - s 2 s o o 5 s 2 o 91
Iv. DATA CCLLECTION AND REDUCTION » » s » s s » » » » 54

Data Collection PhilosSopBY o « o = « = = S4

Bun apalysis sheets « « - . « - « o o = 5%

Prcbliems in Data Recorded by the Teachxng

ASSIistantsS . ¢ « 2 @« © 2 » 86 © © » »w @2 =

58

Vs

Vi

Vil.

VIiil.

DPL Exam #1 5 & » 3 & & B 3 » B3 B b #
DPL Exan 42 » ®» ® & » 3 8 & D @ & » B
DEL Section'®s Final EXa® » s » » » s =
dpple/Batch Pascal Exam #1 2 = » = s »
Apple/Batch Pascal Exal #2 o » 2 » 2 »
Appie/Batch Pascal Fimal ExaR = » s »
Problen Assignment SuRRafies . = o s »
‘Notes on the McCabe cosplexity metric . .

Possible imaccuracies in data reported by

students ® & » 3 & 85 » 5 s ®» B & &

RESﬂLTS a » ;-;*..a s B % B A 2 B &+ B &8 b 8

Sugmary - - o« - - - - - k] - -» = = - - - -
Detalls = o« o o o © o = » o o o =
Statistical Analyses and Data
Transforaations .« o « = o « = =
Correctness Of PrograidlS « « « o o « »
Effort Expended by Students . ¢ - =
Errors Committed En Route to Solutions

L)

. & 2

Cogplexity of Program Decision Structure

Second~level Programming Course Follow-Up

Suybjects® Biographical Factors and
Perforaance . « « = = s s = <« =

Student Feelings About Fach Approach .

conclusicns @ B @ @ & B s ® & B @ B

BEFLECTIONS ON DPL AS A PROGEAMMING LANGUAGE
SUGGESTICNS FCR WOULD-BE EXPERIMENTERS . . »

BAPEENDICES « « = o o % o » o o = s« @ o a = ®

Hid-Senmester guestionnaire Results .

End~ogf~Sepester (QuestioRnaire . « » s o »
Iecture SchedulesS - » » ¢ © 5 s &« 2 5 5 »
DPL Lecture Schedule o 2 s 5 2 o, a

[T N

Ayple and Batch Pascal Lecture Schedules

Bup analysis sheet o 4 » 2 5 2 » 5 2 » =

An exasple of a program correctness argument

Exaers Given to DPL and Batch Pascal/Apple
Pascal Students » » » s 5 B 3 » &

DPL Compiler bug list o s 5 2 5 » » =

EIBLIGGHAEHI F & L) L g 5 > a2 & E - E rl o & F = 5 ® r

- yi -

¢ » B w s B B ¥ B @

& & e & & u

6 5 B & & & 4 B b &

59
63

6]
bl

64
67

-. 70

76
80
82

83
83
91

94
101
105

106
109
114
114
1135
116
118

120
120
123
126
133
140
145
152
155
157

159

Iable
1.
2.
3.
4.
.

6.

7
Be
9.
10=

1t

LIST OF TABLES

bBage
Subject Characteristics by Section - « « =« o o o « o 47
Number of Problems Solved Entirely Coriectly s = = =« B5
Size of Consistent and Inconsistent Finisher Subsets.65
Average # cf Correct Solutichs Througk Prohlem 6 . . &7
dverage # of Correct Solutions for Problems 8 and 9 68

Grade Change {(in Std. Deviatiomns) from ist Course to

fid « @« 2= ©« « 2 « © » © @« © © @ 5 3 = s © » ® = .
Subj?ct CharacteristicsS « « o © s 2 2 » o s = 2 « = 8%
Dropcut FAteS =+ o « o = = = =« 2 = = = = » = » » » = B6
Corialation of GPA with Percentage Correct Solutions.86
correlaticn of SAT Haih Scores with Time Measures . 89

Correlation 0of Time Before i1st Run and Unintended
Besults - - - L] * o - L) L 3 - - k-] - - - - o @ o L - 89

Figur

ke s v

Ts

2.

3.

4.
5
6.
7
8.
9.
10.

11.

2.
13.
4.
15.

36-

[}

LIST OF FIGURES

Shared attributes of experimestal and control
SECtioNS « = o a a « = « =

EVREage

correctness percentage:

fiﬂiSheIS - - - - - n - - -

Average

correctness percentage:

fFAiNisSheIS o« o s 2 &« a o » =

Averaqe

Average

Averaye

Averaye
Average

Average

-,

- = & = w » L3

consistent

- - = - - - -

inconsistent

nudber of runs: consistent finishers

nunter of ruans: inconsistent fipishers

nepber ot hours before the first run . -

puliber ¢f hours after the first run .

total number of hours sxpended . - - «

ratio of tinme beforé to time after first

Bunz with usmintended results:

Runs with unipntended results:
£inishers = o a2 o = = « = =

inconsistent

- - 5 o - - o

Average number of rums with logic errors . . .

Average
Average

Averaye

Correctness percentage differences:

"nunber of runs with language errors .

#Aclabe metric = o « «

coryectness percentage:

GEA - - - © - = - » - - - -

- viii -

- = - = - E I

below~-nedlan GPA

» - - - -» - -

a

Bage

- w

L] -

Tana

»

high GER / low

- -

#5

69

69
70
71
72
73
74

75

consistent finishers.77

77
79
79
81

37

87

Chapter I
~ INTRODUCT ION

If we are to have a science we must develop more

zeasurement of relevamt things. ... I would have

more than amere measurenent. I would include

evaluation, since measurement plus evaluation

comes near to judgment which is the ultimate goal.
-~R.d. Hamming, 1975t

This dissertation has to do, in general, with how to dsvelop
computer prograss and how to educate programmiang studeats. in
particular, it has to do with evaluating whether the metbodology
developed by cone of the most respected proponeats of structured
programming cahb be applied to teaching beginders. That
rethodclogy places its heaviest emphasis on developing proofs of
program cocrreciness hand-in~hand with the programs themselves, as
a means o¢f establishing from the outset the correctness of the
students® endeavors. The method £finds its primary intellectual
stimulus in the writings of E.W. Dijkstra, - particularly 4
Discipline of PBrogrameing,? which have influenced many
prograsmers, teachers of programning students, and authors of
prograeping texts. o ' .

shy is it important, at this date, to evaluate methods of
teaching fprogrammiang? After all, if asked, @most professors of
computer science ¥ould assert that prograpasing students are more
effectively taught no¥ than a decade ago, implyimg that good, or
at least better, methods have been £found in the interium.
Furthermoxre, many of the best nminds in the programming
methodoicgy field have moved beyond a discussion of the
circumscribed problems encountered inm introductory classes, to a
consideration of the large-scale undertakings demanded by todayt's
ambitious computer projects, dmpglying that programmlng—ln-the-
s@all has already been mastered.

Several answers oCcur. First, those professors may well be
correct 3in their assertioas, but it would be difficult to
substantiate on the basis of statistics. Good teaching, like

1 R.¥. Hamaing, %A Philosophy for Computer Science or Hy
Pre;udlces and Confessions,® S;GCSE Bulletin, Voluae 7,
Number 4, 1975, pp. 16-18.

2 BE.¥. Dijkstra, A Discipline of Prograsaing, {Engléyood-
Cliffs: Frentice-Hall, 1978). '

- 1 -

2

good science as damaing describes 1it, demands measurement and
evaluation. The statistics gathered imn the conduct of this
project provide a baseline for the state-of-the-teaching-art inm
1981, against which prograpaing teaching Bsay be compared in yet
another decade.

Seccnd, the gurus of programaming methodology may well have
mastered their craft, but hupdreds of thousands of professional
programeers still struggle with theirs, and the statistics
presented here will demonstrate that learaiang to program is still
a time-consuming, laborious task. It makes little sense to talk
about the engineering of coaplex systems without alsc eansuring
 that studepnts are learning, by the best means available, how to
reliatly construct the compoaeat parts.

The existiag body of computer science literature contains
the follewing kinds of writings relevant to the intellectual
content of this dissertations

1. Ideas about how to program, particularly those relating to
CoTEectness CONCerns;

2. Philoscophical discussions about ho¥ to teack introductory
pregramaing;

3. Bescrigtions of actual teaching experiments;
4. Studies of programming activities including
a) Data bases of programming project statistics;

b) Utility of particular techniques {flowcharts, mnemonic
variable names, etc.);

¢} Computing environzent (@achine access);
d) Languaye-rclated effects;
e} Hunmap factors;

5. Heasures of program guality;

6. Methodological problems involved in conducting programming
stuydies using human sabjects.

Background literature relevant to the dissertation will be
surveyed in the following chapter.

The objectives of the dissertation work include gaining
insight into how to program, how to teach programming, how to
evaluate the 1learning of prograaming, and how to <conduct
prograsming experiments involving human subjects. The primary
goal is that of objectively evaluating a programming methodology
which emphasizes correctness concerns during the development of
pregrass, and utilizes a special programming language to

3

reinforce that concern. A2 by-product of the study will be a
statistical data base that will be useful in assessing the effort
involved in learning to program.

The organization of +the dissertation provides separate
chapters to review the literature, present the experinmental
hypotheses and desigp, describe the data collection procedures,
analyze the results, and reflect on Dijkstra®s notation as an
actual programaing lamguage.

. Chapter iI

LITERATURE SURYEY

2.1 PBOGEAN COBRECTUESS

If cne asserted that prograsming is taught better pow
than it was ten years ago, an explapmation for the phenosmenon
might ke that the paramount importance of progran
correctness has f£inally been recognized. vhile it vas once
viewed as acceptable to write a program ard then begin its
verification and debugging, & realization grew through the
1960's and 1970%s of the unacceptability of this strategy of
prograa development. Testing, it was realized, could oanly
show the presence of errors, not their absence.

. Prom Dijkstra®s perspective3 the approach to progras
correctuess up to the mrid~-60's had treated a program as a
mechanise, not uslike a Turing Machine: One tried to prove

something about the class of happeniags which ensued when

one started it in a certain class of initial states. Taking
the prograe as a preexisting entity had proven relatively
fruitiess in that period. Dijkstra then advocated inverting
the process, treating the program as something to be
designed, and settling first on what must be provem and what
proof technigues could be used, before undertaking the
prograge develcpnent, _
if one traces the developaent of structured
prograrming, as WHelner has done,* one sees a steady strean
of attempts to characterize what it 1is that language
mechanisss accomplish, what 1t is that programs accomplish,
and how cne goes about gcomstrucking a correct solution to a
rroblen. : :

3 E.H., - Dijkstra, "Correctpess Concerns and, Among Other
Things, Why They Are Resented,® SIGPLAN Notices, Volune

.o it s 1 el

10, Numier 6, June, 1975, pp.5486-550.

4 L.H. Heiner, "The Roots of Structured Programming,® SIGCSE
Bulletip, Volume 10, Number 1, Pebruary, 1978, ppa
243~254, ' : _ : -

$ C, Bohm and G. Jacopini, ®Flow Diagrams, Turing Hachines,
and Languayges with Only TwWo Formation Rules,®
Compyapications of the ACH, Volume 3, Number 5, 1966, fp.

-4 -

5

Iz 1566, ©bBohm and Jacopinis asserted® that any progranm
can be exipressed using only sequence (ot concatenation),
“alternation {or selectiom), and iteration {or repetitioa) as
control mechapisas.

Alsc in 1966, HNaur published a paper? in which he
described a technique of characterizing conrditions that
existed at given poinis in the program text and using those
conditionps to establish the correctaess of the program.
That technique evolved into the development of invariant
relations. Floyd followed, in 1967, with a paper® which
used annotated flowcharts that were labeled at the onodes
¥ith asserticms about the values of program variables at
those points, tc argue the <correct termination of the
pPrograbe. Dijkstra, in 1968, contributed one paper?
describing the corstructive development of a solution to the
producer~-consumer synchromization problen, and anothert®
describing the {provably correct) design of an isplemented
operating systes. _

Dijkstra, himself, cites the importance of a 1969
article by C.2.R. Hoarel! in describing a set of axioms and
inference rules to be used in provimg prograr properties.
As well as developing the usefulness of invariant relations
Eor provipg assertions about repetitive comstructs, Heare's
. article also influenced thinking about program abstractions,
or isplementation-independent properties of programs.

That year also saw the circulation of Dijkstra®s "“jotes
cn Structured Programming,®:2 jn which he cemented the idea

366-371.,

"% Latér proved, for the class <f proper prograss, by Ha
Hills in Mathematical Foundatiors for Structured
Brogramsing, IBN Beport FSC 72-6013, 197:%.

? P. Maur, ®Froof of Algorithms by Gemeral Snapshots,™ BIT,
Yolume 6,4, 1566, pp. 310-316.

8 B.W., Floyd, "Assigning Heanings to Programs," Proceedings
9f Sysmpcsia in Applied Mathematics,¥ Volume 19, American
Mathematics Society, 1967, pp. 195-32.

9 E-B. Dijkstra, "A Coastructive Approach to the Problem of
Program Correctness,® BIT, Volume 8,3, 1968, pp. 174-186.

i¢ E.¥. Dijkstra, #The Struciture of the THE Nultiprogramming
Systee," Ccmpunications of the ACHM, Volume 11, HNumber 5,
1968, fp. 341-346.

L8 CLh.RB. Hoarxe, #An Aziomatic Basis for Conmputer
Prograsming," Compunications of the ACH, Volume 12,
Busber 10, 1969, pp. 576-583.

6

of using enugeration, mathematical induction, and
abstracticn as reasoning patterns with the process of
stepuise decomposition of prograsms. Dijkstra demoastrated
how, as contrcl structures, concatenation and selection may
be understood by enumerative reasoming, repetition ~may be
understood by inductive reasomning, and how abstraction wmay
be used to consider what a prograsm action does independently
of its igplenmentation (how it works). Thus, he shoved that
starting at the top level of refinement with a demonstrakbly
correct sclution statement, and breaking that statement into
subactions vhose 1individual efiects could be understood as
abstracticns and whose combined effect could be understood
by either enuseiative or inductive reasomring, an iterative
decomposition process enables the entire solution to be
specified. Cf equal importamce, the abstraction process
which serarates the effect of an action fronm its
implementation also separated for the first time the
mathematical concern for progran correctness from the
engineering concern for progranm efficiency. This attention
to a Yseparaticn of concerns," as Dijkstrat3? calls it, of
t¥o goals historically intermingled, marked a point of major
advance inp the state of the art of programminga.

In spite of the elegance of its presentation, it took
some time for Dijastra’s notes to maniiest their effect. 1In
1972, a survey of progra® correctaness still devoted itself
largely tc a posteriori proofs of prograa correctness and
oaly minimally to their useiuwiness ip the construction of
pPrograps. i¢ ' - o _

At akbocut this time, the work of Harlan Eills at IBH
received 1its duve attention. In several papersiS he
presented ideas complementary to those of Dijkstra, in
viewing the stepuise decomposition process as one of
specifying the program function 1in terss of lower-level
single-entry, single~exit subfunctions, using only

12 Later published in G.-J. Dahil, Eo¥a Dijkstra, and C.A.R.
Boate, Structured Programaing, {New Yorks Acadenmic
Press, 1972 _

13 pijkstra, “Correctaess Concerns®.

is B, Elstas, Kel. Levitt, R.J. Waldinger, and A. ¥Kaksman,

#hp - Assessmzent of Techkniques for Proving Progran

- Correctness,"™ Computing Surveys, Volume 4, Humber 2,
1972, rp- 97-27.

4% H.D. Rillis, #Tep Down Prograaming in Large Systems,®
Debuyging Fechnigues in Large Systesms, B. Rastin (ed.),
{Englewcod Cliffs: Preantice~Hall, 1971).

#ills, Mathepatical Foundatioas for Structured
Brograsping, 1972. -

.

compositien, selection, and repetition as control
structures. Mills also helped develop the idea of the Chief
Programper Tean for attacking iarge-scale softvare
projects. 18

The years that followed 1972 saw a conseolidation and
exploraticn of the earlier structured programmiang ideas, and
included the developament of a lamguage istended to eambody
those concepts.:? A highvater mark of sorts was reached ia
1975 with the Internatiocpal Conference On Reliakble
Seftware,®® in Los Angeles, where program corracthess.
coacerns domipated the discussions. The fullest flower of
expression for prograr correctness ideas casme in 1976, with
Dijkstra®s A fisciplige of Programging, and in 1979, with
the pnbllcat1cn of §;guc§gged Programasing, by Linger, #ills,
and Hitt.i9

By the late 1970%s, with great empha51s no¥ being
placed on developing formal and machine-aided proofs of
prograg correcitness, several avthors pleaded to keep proof
processes in thelr proper perspective. Deliillo, Lipton, and
‘Perlis arqgued2® that the aspiration of prograkmiag
pethodologists to develop formal mathematical machine~
digestible proofs for their programs was a false ome on
several grounds: Firstly, nathematicians themselves treat
the proof process as largely a social one, wherein they try
ta ccnvince their collieagues of the correctuness and utility
of the theorems they propose. Computer scientists would be
well-advised to regard program proofs in the same manner.2i

té F,T. Baker, RChief Progranmmer Tean HManagement of
Production Progranmming,® IBM Systeps Jourmai, Voliume 11,
Number 1, 1972, pp. 56-71.

87 CaBsBR- Hcare and N. ¥irth, ®an Azxiomatic Defimition of
the Frogramming Language Pascal,® Acta Iaformatica,

18 proceedings of the International Conference on Reliakble
software, Los Angeles, April 21-23, 1975. Also published
as SIGELAN Notices, Volume 10, Number 6, June, 1975:

i% R.C. Iinger, H.D. Hills, and B.I1. Witt, Structured
Progragming, {Reading, Mass,: Addison-iesley, 1979).

20 R.d. {eMillo, R.J. Lipton, amnd &.J. PFerlis, ®Social
Processes and Proofs of Theoremns and Prograps,”
Coppupications of the ACH, Volume 22, MNumber 5, 1979, Ip.
271-280.

2% The process of sharing one?s programs with onels
colleagues and tryisg to convince them of +the progranms?
correctness has cone to be cailed “structured
¥valkthroughs" and stems from a philosophy called "egoless

8

Secondly, any proof involves many axioms +that often go
unstated because they are well-known to ~ the proof's
audience. Any machine-verifiable proof would have to
inciude =0 many axioms that the proof would attain
unmanageakble length. - Thirdly, it sould be anlikely that
greater confidence would exist in the proof tham in. the
original program itself; to attain such confidence, one
would need to bave great faith, indeed, in the program-
verifying prograe that produced the proof. : C

Dijkstra argues for simplicity of program proots, and
suggests that the length of the correctness proof for a
program cculd e accepted as an objective measure of the
"elegance®™ of the program and the suitability of the
language constructs it uses.22 _

Mills best states the case for correctness argumests
when be notes the profound difference, in a precise mental
activity such as programming, between finding even a single
ercor and fiading no errors at all. The m@more errors that
are found in the testing and debugging process, the more
cause arises for doubting the thought process that developed
the progras. Thus, he states, the objective should be to
¥rite programs that are correct from the start. A procf
should be regarded not as an infaliible statement of .
correctness but as a subjective conviction that a’ given
bypothesis leads to a given result. To wit:

The ultimate faith you can have in a program is in
the thought process that created it. Hith every
.error you find in testing and use, that faith is

-undererined. Even if you have found the last error
left in your program, you <cannot prove it is the
last. 50 your real opportunity to know you have
gritten a correct prograz is to never fiad the
first error im it, no matter how much it is
inspected, tested, and used.23

prograsming® developed by Gerry Weimnberq, and a practice,
develcped at IBHM. See G. Weinberg, The PEsychology of
Eorputer Erogramping, {¥ew York: Yan Nostrand Reinhold,
Co., 197%) for the former, and M. Fagan, ¥Design and Code
Inspections to Reduce Errors in Program Development,™ IEH
Systegs Jourpal, Volume 15,3, 1976, pp. 182-21%1, for the

N et s

latter.
22 pijkstra, "Correctness Concerns®. -
23 H.D. BMilis, “How to Write Correct Programs and Know I1t,®

SIGELAY Ngtices, Volume 10, Nuaber 6, June, 1975, ©pp-
363~37¢C. '

9

Perhagys it is this new sense of confidence in the
thought [rocesses by which programs are created and
comBanicated that epables some people to maiptain that
computer programming is taught better today than it vwas a
decade ago. Research work continues in the progran
coLrectness area, particularly in the areas of software
specifications, development of large-scale software, and
design of languayes to sapport data amd comtrol abstractions
and the development of large programs.2®

2.2 IDERS ABOUT HOS IO IEACH PROGRAHMING

The seccnd body of literature +to be reviewed expresses
ideas abcut how to teach programaing. The 1literature,
particularly the SIGCSE Bulletin of the ACH's Special
Interest Group con Coamputer Science Education, is replete
with proposals on how to teach introductory programming.
Attenpting to review all that has ever been writtes on the

sabject will not be trieda However, the 1980 survey by
Ulloa?3 provides am excellent overview of much that deserves
reading. Cnly one text has been titled with words

suggesting guidaace to the reader on how to - teach
prograsping.26 That volume, however, reports the proceedings
of a conference dominated more by discussions of programming
‘language design tham by pedagogy or programming methodology.

a review of several signiticaat philosophical
discussicns of programmping insiruction will follow. Those
vritings which discuss experiments conducted to evaluate
specific dinstructional techniques will be reserved for a
later section.

24 Bo.Bs Andersom, Provimg Programs Correct, {New Yorks John
¥iley & Scns, 1979}, Chapter 5.

2% M. Ullca, "Teachimq and Learning Computer Programming: A
Survey of Student Probleas, Teaching H#Hethods, and
Autcopated Instructional Tools,¥ SIGCSE Bulletin, Volune
12, Nuzber 2, July, 1980, pp. #8-604 '

26 H.M. Turski (Ed.), Programming Teaching Technigues, {New
York: Asmerican Elsevier Publishing Co., 1973} .

27 C.B. Kreitgberg and L. Swanson, %®A Cognitive Eodel for
Structuring an Introductory Programming Curriculum.®
AFIPS Conference Proceedings, Volume #3: 1974 HNational

Computer Ccnference, {(Hontvale, NJ: AFIPS Press, 1974),
Pp- 307-311.

BR.E. Mayer, "The Psychology of How Novices Learn Computer

10

Several atteapis have been made27 to place computer
pxogramn;ng iastruction in the context of geperal learning
theory. Discussion has centered on the conditions that nust
exist fcr wmeaningful 1learming, dincludimg the need for
appropriate nrodels of computation, advance organizers (which
provide a brief introduction to new <concepts in teras of
previcusly learned ideas)., and aids to assist transfer of
learping.

Others have tried to summarize what current nationwide
practice in introductory programming iastruction is or
should be. For imnstance, Hanson and Maly2® advocate an
approach which emphasizes algorithms rather than prograamiag
language and teaches a problem~-solving methodology whose
final stage, only, involves translation of an algoritha 1nto
a #gell-structured progranm.

Some " have developed either augaented or restricted
dialects cf popular programming languages in an attempt o
facilitate developsent of well-structured programs.2? Others
have developed program design languages to enable the
pxpressicn of algorithas in structured English.39

Schpeider atteaptsi! to develop a consensus on vhat the
goals ¢of a programming course should be by enumerating ten
principles for the course. Those principles ianclude that

j. The starting point in programming is a clear, concise
prchblen statement.

Progrézming," Computing Suiveys, Volume 13, Nunmber 1,
198§, rp- 129-14%.

28 A, ‘Hanson aand K. Maly, %A First Course in Computer
Science: What It Should Be and Why," SIGCSE Bulletin,
Volume 7, Number 1, Pebruary, 1975, pp. 95-101.

29 H.R. Bezanson, ®Teaching Structured ProgrameEing in
FQRIRAN with IFTRAN," SIGCSE Bulletin, Volume 7, ©Nunber
1, Fekruary, %1975, pp. 196-199.

L.P. Feissner and B.L. Hinkins, "B4TRAN: A Structured
Mini-Language Approach to the Teaching of FORTRAN,¥
SIGLCSE Bulletin, Volume 7, Number 1, February, 1975, ppe
2400=20%5.

30 T,B., Nanney, WComputer Science: 4n Essegtial Course for
the Lilkeral Arts,® SIGCSE Bulletin, Volume 8, Namber 3,
Septesker, 1976, pp-102-105. _

38 GolMe Schneider, "The Introductory Programming Coukse in
Computer Science -- Ten Principles,® SIGCSE Bullgtln,
Volume %0, Nusber 1, February, 1978, ppa 107114,

11

2, The programaing course should emphasize the
developpeant of algorithas.

3. The duality of data structutres and algorithms in the
FECgramming process must be presented.

4. A programaing language rich in data amd control
structures should be presented.

5. . Lanquage presentation should councentrate on sSemantics
and program characteristics rather than syntax.

6. Prcgramming style wust ke esphasized from the
beginpning.

7. Detagqing should be presented as a tormal subject.
8. Sc should program testing and verification.
9, Documentation should aiso be formally presented.

0. Students shkould be introduced to real programasing
applications and reai prograrging environgents,
inciuding @®aintenance activitiss and progranmer
teaps.

4 1879 survey by Lesos32 reports the results of
inguizries to 3086 business administration and computer
science deparitments regarding their introductory programming
CoUrses. Lenos found that there were ten distinct ways in
which instructors tended to organize the introductory
course:

1. An emphasis on structured programmning;

2. &p emphasis os modalar programming (how to partition .
a4 prodgram into units or "podules®); '

3. 2 . grammatical approach (ip which the syntax of a
Prograsming language is presented, construct by
censtruct) or, altermatively, a "whole progranm®
apgroach (in which whole programs, albeit simple
¢res, are presenbted tor study, much as a foreign
lanpguage class based on coaversation in whole
septences Bight operate):

32 R. Lemos, “Teaching Programming Languages: A Survey of
Approaches,® SIGCSE Bulletin, Voiume 11, Number 1,
February, 1979, pp. 174-181.

12

4, A spiral approach ({which presents increasiagly
corplex sample programs that buiid omn each other);

5. A rroblea ahalysis approach ({which concentrates on
the developaent of laaguage—independent soiutions) ;

6. A computer rodeling approach {which emphasizes
cosBunicating to the student am appropriate model of
conputaticnal processes); ' :

7. Cosputer-assisted iastruction;

8. Instructional television;

9. Egcless programming {in which students read and share
the use of others® prograas);

0. Teas programming and debugging technigues.

As Lemos joints gut, hovever, while many of these approaches

seen intuitively appealing, Wthey lack any bhistory of
empirical evidence attesting to their pedagogical
effectiveness.™

By the late-1370%s only a few authors, still, had
turned their attemtion ¢to the inclusion im introductory
courses of @material on program correcipess through
mathematical argument (as opposed to program verification
through testing). Apmong textbook authors, Conway, Gries,
and 2Zismerman,33 and Perlis34 vere exceptions, though the
latter book was intemnded for an audience somewhat more
mature than introductory programaing students. Texts by
Wulf, Shaw, Hiltinger, apd Flon,3% and Gries3® Dboth
emphasize a correctness-based approach to programeing, but
are also aimed at an audience =zore sophisticated than
beginning prograEmers. ' -

The SIGCSE Bulletin does contair descriptions of
several prograsmming courses organized around correctness
concerns. Gf those, only Gerbart3? relates experiences in

#2 R. Comnway, D. Gries, and E.C., Zimmerman, A Primer on
Pascal, (Cambridge: Winthrop Publishers, 1976).

34 A.Jd. Perlis, Introduction to Computer Science, {New York:
Harper & Eow, 1975}

35 H.A. #ulf, H. Shaw, P. Hilfinger, and L. Flon,’
Fundamental Structures of Computer Science, {Reading,
Bass.: Addison-¥esley, 1981).

3% D. Gries, The Science of Prograpming, {New York:
Springer-Verlag, 1981).

13

using the approach with am introductory class, and notes of
prograg proving that

its pain yrole right now is to prevent errors
rather than to provide any iron~-clad guarantees
that programs are correct. The very act of making
assertions and attempiing a proof elicits numerous
assuggiions and forces a rigorous check of
programs vhich <car oftea reduce later debugging
time, catch subtle errors which would escape
detection durimng testing, and lead o aore pointed
and useful documentation.

Gerhart instructs her classes to present a prose “argument®
that their programs are correct, ah arguaent that should be
designed to comvince the grader that the program satisfies

the assigynpent. Because proofs themselves can contain
errors, she also advocates systematic testing of student
PEOGTaBS.

Maurer relates his approach?® to teaching progran
correctiness in classes designed for students ranging from
second-year prograsaing through g¢raduate level, The
approach involves assertion verification, primarily as
related to run-time conditions that may arise. He gives Bo
indicatican of usiny CoOrreciness conceras in program
development. _ '

lastly, Jdones and Halsh39% describe plams for teaching a
course for advanced underyraduates and graduate students
that ewphasizes techniques for vwritiang correct programs.
Their appreach focuses on veriiying the consistency between
programs and their specifications, on wtilizing input and
cutput assertions and invariant relations for characteriziag
what programs accoaplish, and on using top~-down refinement
and abstract data structures for developing progran
structure. Their approach to developing correct prograns
comes clesest to approximatiang the ome used in the
introducticry programming class described later in this
dissertaticn.

37 S.1. Gerkart, HYHethods for Teachigg Progranm
Verificatiomn,” SIGCSE Bulietin, Yoiume 7, Mumber 1,
February, 1975, pp. 172-178. '

98 @.D. ~ Haurer, “The Teaching of Prograe C(orrectness,?
SIGCSE Bulletin, Volume 9, Numker 1, February, 1977, ppe.
182~ 144, - '

39 G, 3, Jones and A.H. Walsh, A Course im Program
Verification fox Programmers,™ SIGCSE Bulletin, Volume
10, Buszber 1, February, 1978, pp. 213~-216.

14

gf final interest, several academics relate their.
experiences in administerxing introeductory programming
courses without lectures. Bowles*? describes a course at
the University of California at San Diego, organized acound
computer-assisted instructioan on DBpicrocomputers. Software -
developed for the course includes automated guiz programs
and a bockkeeping and class scheduling systen. Student
prograraing probleas emphasize graphics and string
manipulation. Daly, Embley, and Nagy%! state that ™Although
it is easy to say mhat students should learn im <€5237 (or
any other introductory prograasing course), it is difficult
to say ho¥ they should learn it.® The authors observe that
students seen to learn best from direct computer feedback on
prograus subpitted for execution, from carefully worked-out
exanples, and from ome-to-one assistance, and seem to learn
less 1ipn a traditiosal lecture setting than might be
expected.

2.3 EEPERIBENIAL EVALUATIONS OF IEACHING APPROACHES

Though programming experiments often use students as
suabjects tecaunse of their easy availability, those studies
which primarily imvestigate mode of computer usage oOr
~language feature utility will be dealt with later, even if

-they use students as sebjects. This section will be
reserved for discussing comtrolled evaluation of teaching
sethods used in introductory prograseing courses. #hile

many authors pisuse the tern Moxperineat,"® as in
®gxperimental course,” to refer only to something that may
.or ®may mot work, a reasonabile standard of experimental
coptrol, im the usuwal scientific sense, will be a
chagracteristic of the studies reviewed here. That standard
alone, apart from the meaningfulness of the results, removes
froe consideration a large portion of studies in the
computer science education literature.

Amcng the studies of - how to teach introductory
ptogramming are those attempting to predict which students
will do well in the beginning programsing course. Typical
of these efforts is Newsted*2 jin which ¢two regression

40 K. Bewles, 2 CS1 Course Based on Stand-Alone
Hicroecomputers,® SIGCSE Bulietin, Volume 10, Number 1,
February, 1578, pp. 125-127.

4t ¢, Daly, L. Emrbley, and G. Nagy, "A Progress Report on
Teaching Programming to Business Students Without.
lectures," SJIGCSE Bulletin, Yolume 11, Number 1,
February, 1979, pp. 247-251.

15

equations were used with a number of variables +to predict.
final course grade and end~of-semester student self-
peccepticr of abilitye. College GPA, prior programuing
experience, and career orientation to the computer field
vere found to be positive predictors; (greater) time spent
on the course, and (high imcidence of) working in groups
proved t¢ be opegative predictors. From the negative
predictozrs Newsted concludes that *®though poorer students
may spend such time and ask many gquestions of their
instructors and fellow students, it won't improve their
grade. 1If they are goiang to iearn at all, they can do it oa
their own as well as in a 1large lecture course with
discussion sections.® He sees these predictors as support
for a prograsm of individualized instruction im programaing.

Fetersen and Howe%? likewise studied predictors of
academic success in introductory courses and concluded that
only college grade poinrt average and general intelligence
countributed significantly to their regressionm model. '

One might conclude from these studies that students who
do well |in yeneral will 1likely sacceed in computer
programming as well. Another possible concitsion might hold
that, inasmuch as only 60% of the variaace in course grade
#as eXplained in each study by the variables used in the
regressior equations, further attempts at prediction might
be warranted to locate Other predictor variables.
Heinberg's stress om work habits apd personality factors
iovolved in programming,®® in particular, suggests that more
than test score-type variables might be imvolved in learning
how to fregrasme. '

. -In that regard, <{heney*® explores the possibility that
cognitive style {the problem-solving methodology employed by
an individual in a decision situation) could predict a
person's gprogramaming ability. Chepey compares analytic
problem solvers (those who use a structured approach to
decision gaking, seek underiying causal relationships, and
try chooszing optimal alternatives) to heuristic problem
solvers {those who use intuition, commoan sSense, angd trial-
and-error methods with feedback for selecting alternatives}.

42 PR Newsted, ®Grade and Ability Fredictioms im an
Introductory Prograsming Course," SiGCSE Bulletin, Volume
7, Numker 2, June, 1875, pp. 87-91. '

43 C.G. Petersen and T.6. Howe, "Predicting Academic Saccess
in Introduction to Computers,® AEDS Journal, Fall, 1979,
PPQ 182"91&

¢4 deinberg, IThe Psychology of Computer Programming.
48 P, Cheney, "Cognitive Style and Student Programming

Ability:s An Investigatiom,®™ AEDS Jourmpal, Summer, 1980,
pp- 28%5-291.

16

He concludes that amalytic decision makers tend to perfora
better on prograaming exams than heuristic probklem solvers.
The validity ot his results may be compromised, however, by
the reader's cbservation that the instructional methods and
examinaticss used £for =aeasurement favored the analytic
types. 2n importamt pedagogical guestion, one which has
pbeen 1little explored to date, is whether individualized
instructicn can be developed to match dindividual learaning
styles.e% '

" Attention is now turned frosm attempts to predict
academic success toward attenmpts to assess the utility of
particulatr teaching approaches. In an early and tentative
study, Llucas and Kaplant? examine the effect of forcing
students to write structured {goto-less) prograns,
concluding that assignaents imvolving program maintenance
vere easier for their experimental group than for their
control (umstructured) group, and that studeunts using
structuared Frcgramming techniqgues displayed greater
“improvepent in attitude and performance, as time went on,
than did the control group. _

In a series of studies, Leaos*® has explored the value
of peer review and team debugging activities in an
introdactcry <COBOL programaing course. In his nmost
extensive study, the experimental group's lectures were
supplenmented by in-class reading and critiquing of program
listings for each of five homework problems, while a control
group received cnly additional lecture materiali. Randomly
selected three-persom teams were formed in the experipental

%6 See, for instance, DiMarco, Bird, apd Forton, M“Life
Styie, Learning Style, Learning Structure, Their
Congruences and Student Attitudes and Pexformance 1in a
Data ¥Frocessing <Course,¥ Joyrmal of Educational Data
Processing, Volume 16, Number 2, 1979, pp. 1-8.

7 H,C, Llucas and R.Ba. Kaplan, "A Structured ?rogramming'
Experimeat,” Computer Joyrnal, Volume 19,2, 1976, [pp.
$36-138.

48 R.S. lemos, "A Comparative Study of the Effectiveness of

' Tear Interaction in COBOL Programming Language Learning,®
{Ph.D Lissertatiom, UCLA, 1977), Dissertatiop Abstracis
Interpaticnal, Volume 38, 1977, pp. 2269B-2270B.

) _«¢ "An Implementation of Structured Walk-Throughs
in Teaching COBOL Programaming," Compumications of the
ACE, Voliume 22, ¥umber 6, 1979, pp. 335-340.

e ® ¢ M5tructured Walk-Throughs and Studemt Ratings
at Faculty Effectiveness Versus Expediency,% dournal of
Educational Data g;gcgss BY., Volume 16, RNumber 1, 1979,
ppa 3"'8-

17

group, apd for each assignment <¢lass nenbers were expected
to tura ir program flowcharts, listinpngs, twe critiques {done
by classgates) of their first 1istiag, a suamary of all
errors detected on other team mesberst' listings, an error
analysis for e€ach run attempt, and the final run results. A
comparisor o¢f scores on a compon final exam testing
knowledge <f 1lanquage rules, ability to read and debug a
program, and ability to write a program revealed that the
experigental gyroup performed significantly better in
actually writing COBOL progranms in an exam situation than
did the ccntrol group. Furthermore, the experimental group
gsed fewer russ ia completing their homework problems and
showed n¢ sigmificant difference in the anumber of homework
problems completed from the control group whose subjects
vorked independeatly. ' .

Curicusly, kowever, Lemos found that in evaluating the.
instructor®s effectiveness, the control group rated the
instructor significantly higher on five of 12 nmeasures
{fcempand of subject, clarity of expression, availability to
students, desire to teach, and enthusiass for subject
patter) than did the group which used the structured walk-
throughsa.

~ Im a related study.®*? Lemos® vork investigated

different ways of assessiag stundent proficiency in
progragming language Jlearaning, and indicated a direct
relationship between the ability to read programs and the
ability tc wsrite programs. He views tais result as very
important since evaluation of rgading ability takes
significantly less time than evaluation of writing ability.

Among investigations performed by other academics,
plans vere made to assess the relative merits of breadth and
depth in introductory computer courses.®9 Perhaps uniquely
among all the studies reported in the literature, Stoddard,
Sedlmeyexr, and Lee planned to evaluate the effects of two
parallel first-year courses of study with measurements taken
during a common second year of study in an undergraduate
data processimg curriculum. Exposure t¢ threse different
programeing languages {FORTRAN, BASIC, and RPG) was to be
compared with deeper exploration of algorithas development in
just one langquaye.

% B.S, Lepos, PHeasuring Programming Language Proficiemcy,"
AEDS Jourpal, Summer, 1980, pp. 261-273.

50 S.0. Steoddard, R.l. Sedimeyer, and RB.G. Lee, “Breadth or
Degth in Introdactory Computer - Courses: A Controlled
Experisent.® SIGCSE Bullietinm, Volume 11, Humber 1,
Pebruary, 1979, pp. 41-u4,

$t p. Hsia and F.E. Petry, ™A ¥ramework for Discipline in
Prograssing,® IEEE ITransactions on Software Engineering,

AT i e Tl (g ittt e e AL Lo

18

_ Finally, Hsia amd Petryst ﬁeport on an introductory
proqgramming course experimeat emphasizing a disciplined,
engineering~like approach to program developneat. For the
experimental group, the programming process was broken dosn

into stages of problem analysis, solution desiga, test
planning, peer review, codiag and compilation, testing, and

acceptance. = Iest cases were designed before the coding
process #as hegun. - The control group used a conventional
approach involving flowcharting, = <coding, testing and

debugging, and documentation. All students were regquired to
keep time amd run logs for each of three problems, and to
copy their final source programs ofito a system tape for
subsequent testing on the instructor's data. Tine logs
revealed cnly a modest increase in effort (16% or about two
hours =more per assignaent) for the experimeatal group.
Analysis cf errors from final runs on composite test data
shoved the disciplined group's programs to be significantly
more errcr-~free (81% to $67% one semester in which the
experiment was tried, 85% to 65% the next semester) than the
conventioral group?s. However, the methodology was not
foolproot: Cn one problem, only #3% of the disciplined
group {20% of the conventional group) achieved error-free
soiutiocuns. - o _

2.4 EROGBABNING STUDIES

The trcad gemeral category of programuing studies will
te broker dowp intc five subcategories: studies that
contribute a data base on sone aspect of prograaming
activity; studies of particular programming techniques or
tools such as flowcharting; studies evaluating different
modes of computer usage, such as timesharing and batch
processing; studies focusing on programsing languages,
either taken as a whole or taken feature by feature; and
studies focusing on husan factors 1im the prograaaing
PLocess.

Heinberg®? has been a source of imspiration for over a
decade to researchers in this area and provides a font of
ideas fcor forther investigation concerning psychological
dimensions of programming activity. Shneiderman33d provides
a cosprehensive sumsary of research imto human factors in
coaputer systems and lists npumerous suggestions for further

volume SE-6, Number 2, Sarch, 1980, pp. 226-232.
S2 Weinberg, The Psychology of Computer Programming.

53 B. Shrneiderman, Software Psycholoqy., (Cambridge, HMass.:
Einthrep Publishers, 1980).

19

research. & recent survey by Sheil%4 also supplies a useful
summary c¢f activity im this area. Brooks! ewmtertaiaing
books% includes statistics on RURELOUS large~scale

developrent efforts,

2.4,1 Statistical Sumsaries of Programsipg Phenomena
. Studies c¢f how reople use actual programming lamguages,
of what kinds of programming errors people make, and of how.
prograpRers enyage in testing and debugging activities stand
out in this area. A iapndmark study by Knuth5® drew samples
of prograus from academic and industrial programming
envircneerts aad compiled comprehensive statistics on
language structures used im actual FOBTRAN prograns. That
work insgpired several sigiiarx studies involving other
languages, among them that ot Elshoff,®? who examined
progran size, readability, and complexity in a commercial
envircoment. _

Youngs studied error~proneness in progranaing®s as the
subject of his dissertation and in subseguent wmork, and
published useful error data summMaries, including relative
error proeeness of individual ianquage features, for a saall
sanple of programs taken from a programming class.

Bagy and Fennebaker®? devised an autosmated systemr for
capturing student programs and comparing them for changes to
previous runs. Theixr study revealed that 80% of the follow-
up runs dinvoived changes to only a single statement.

54 As sSheil, HThe Psychological Study of Programming,®

Be
Copmputing Surveys, Volume 13, Number 1, 1981, FFPe
3 :

5% F.P., Brocks, Jr;, The gjggica; Han~Month, .{Reading,
Mass.: Addiscn-¥esley, 1975).

56 D.E., Knuth, ®An Empirical Study of FOKTEAR Progranms,™
Spftware-~Fractice & Experience, Volume 1, Humber 2,
1971, gp. 105-133.

57 J.i. Elshoff, "An Analysis of Some Compmercial PL/I
Progrags.,* L1EEE Iramsactions op Software Engineeging,

— s . S AL Al D A s ke o e

%8 E.A. Ycungs, "Human Errors in Frogramming," lIntermational

dournal of Nap-Machine Studies, Volume 6,4, 1974, pg.
361-37€.

59 G. Nagy and H.C. Pennebaker, “YARutomatic Apnalysis of
Student Progyramming Errors,"™ Ipternationai Jourmal of
Ban-Yachine studies, Volume 6, 1974, pp. 563-578,

20

Farthet, their data led them to believe that "each new
mistake is discovered only once a previous mistake has beean
corrected.

4 later study by Litecky and Davis®0 collected
statistics on error occurrence im student COBOL programs.
They found that 20% of the possible error types accounted
for 80% of the errors, but that only four of the sighteen
high-freguency errors were ¥error prone®, that is, traceable
to anomalies in the language's design, itself. 14} 4
additional significance, they found that over B0% of the
compiler's error diaynoses were inaccurate, an unfortunate
occurrence for a beginning programBing course.

Typically, studies such as the above have sought to
provide guidance to languaye designers, coapiler designers,
ands/or programming language imstructors as to how languages
" are actwally used Ly programEers.

As far as prograpm debugging goes, 1little concrete work
has been accowmplished. In addition to the previously cited
vork reporiing error counts, Gould and Drongowski®! reported
that assignment statement errors were the most difficult to
unravel in their study, and Gould®2 found that debugging was
more efficient on programs the subjects had debugged
previcusly (altbough with different bugs). Hyers®3 reported
that in a8 stady of professional progravcmers debugging a
small PL,s1 [piograan, the @most cost-efficient sirategy
consisted of two [prograsmers independeantly lecoking for
errors afd cosbining their results. Sheppard et alé?
reported that sinor wvariations in the structured control
mechanisss used in programs did not significantly affect the.
ease of debugging. Gannon and Horning%$ present statistics

$0 C. Litecky and G.Bs Davis, "A Study of Errors, Error
Proneness and Error Diagnosis in COBOL,® Communlcatzcas
Qf the ACH, Volume 19, Number 1, 1976, pp. 33-37.

61 J,p. Gould and P. Drongowski, An Exploratory‘stddy of.
Computer Program Debugging,® Human Eactors, Volumpe 16,3,
1974, [P £58-277. ' '

82 J.D. Gould, "Some Psychological Evidence on How People
Debug Computer Programs,” Internatiopnal Jdournai of MNan-

e ey bt i B et

HBachine Studies, Volume 7, Number 2, 1875, pp. 151~ 182.

&3 GaJd. Eyers, "aA Controlied Exgeriment in Progran Testing

ACHM, Vcluee 21, Number 9, 1978, pp. 760~768.

&4 S.B.'-Shepgard, B. Curtis, P. Hilliman; “and T. Loie,
“Modere <Ccding Practices and Programper Performance,".
Copputer, December, 1979, pp. 41-46. :

65 J.P. Gamnon and J.J. Horming, “language Desiga for

21

08 error persistence in the comtext of a discussion on
languaye feature selection for reliable software designh.
Hetzel®® has investigated different program verification
strategies in a tightly controlled experimental setup,
reporting that specification testimqg and selective program
testing were eguaily more effective than program reading as
a means of preygram verification. While the above generally
study erxrcrs and debugging at the small-program level, ¥eiss
has investigated error anailysis on large-scale projectis.s?
In generail, it might ke stated that the scarcity of
useful research into debugging as a psychological activity
mnight pe cited as one more reason to develop programming
methodelcgies in which errors are never permitted to occur.
' Love's dissertation®® relating human information
processing apilities +to program=zing performance coantains
many useful statistics on computer usage and program
attributes for an introductory prograsming course.

2.4.2 Programsing Technigues

Agong the prograamming techniques or practices that have
recelved the most attention is that of flowcharting. While
flowcharting of program designs was a popular ypractice in
the earlier days of programming and proved useful in non-
progragaing activities,®? research has either found
filowcharting to be of no significant advantage compared to
other techniqyes,?® or to be ipferior to a prograas design

Frogragsing Beliability,® 1EEE Transactions on Software
Engineering, Voluwe SE-1, Number 2, 1975, pp. 179-191.

%6 §,{. - Hetzel, “an Experimental Apalysis of Progranm
Verification Bethods,® (Ph.D Dissertation, University of
North Carolina, $37¢6) , "Dissertation Abstracts

P— = R S =P

67 [,H¥. HWeiss, “Evaluating Software Development by Error

. Analysis: The Data from the Architecture Research

Facility," The Jourmal of Systess and Software, Volume 1,
3979, rp. 57-H. ‘

%% L.T. Iove, ™Relating Individuwal Difterences in Computer
Prograxping Performance to Human Information Processing
Abilities,® {Ph.D Dissertation, University of Washington,
1977) , Dissertation Abstracts Internatiomal, Volume 38,
1977, F- 1443B

6% Ra Kammaan, . "The Lopprehensibidity of Printed
Iastructicos and Flowchart Alternative," Human Factors,
Volume 17,2, 1975, pp. 183-191. -

22

ianguage {PDL) for expressing program designs.7!
Sherpard, Kruesi, and Curtis?2? studied the effects of

symbology {imcludirg natural ilanguage, a coanstrained prograsa
design language, and flowuchart symrbols} and spatial
arraagements (sequestial, branching, and hierarchical) on
the conmprehension of software specifications and found that
forward- and backward~- tracing questions were ansvered more
quickly fror specitications presented ia PDL cr flowchart
symbols tkan in natural language. :

Indeptation of programs has generally been regarded as
advantagecus to comprehension. However, none of the
reported studies support that contention.?v3

Likeuise, mBmnemonic variable names have long been held
to be valuable in aiding program comprehension.
Experimental attempts to support that hypothesis have pet
with mixed results, however. Sheppard et al?4 fouand that
different @pnemonic levels of variakle names had no
significapt effect in a comprebension experiment. Newsted?s
reported that groups usiay nonmnemonic names outperformed
mResonic groups on program comprehension tasks. Shneiderwman
reports,7€ howaver, that spenonic names aided progran
comprehension, o

Finally, with respect to the expected benefits of
progras commenting, the experimental results are not as
convincing as one would hope. Shneiderpan?? found prograps
with global-level comments to be significantly easier to
sodify thkan gprograss lacking such comBents. However,

70 B, Shpeiderman, Bs Hayer, ©D. BHcKay, and P. BHeller,
“"Experimental Investigations of the Utility of Detailed
Flowcharts in Programming,” Compunications of the ACH,
Volume 20,6, 1977, pp. 373-381.

71 H.E. Famsey, 4.E. Atwood, and J.R. Van Doren, y:!
Comparative Study of Flowcharts and ProgtLam Design
Languages for the Detailed Procedural Specification of
Copputer Frograms {Denver: Science Applications, Inc..

ik ikt AL s .

1978) .

72 5.B. Sheppard, E. Kruesi, and B. Curtis, ®The Effects of
Symbolcgy and Spatial Arrangement on the Comprehension of
Softwvare Specifications,® Proceedings of the Sixth
iptermatignal Conference on Sofiware Engineering, {New
York: IEEE Press, 1981}, pp. 207-214.

73 Shneiderman, Software Psychology, pp.72-74.

7¢ 5,B. Sheppard, B. Curtis, P. #illiman, and T. Love,
“Moderrs <Coding Practices and Programmer Performance,"
Coamputer, Volusme 12, Number 12, 1979, pp. 41-4%.

7S P.Fa. Hewsted, - "FORTRAN Program Comprehensior as a

23

Sheppard, im comparing programs containing either glebal or
in-line comments with programs lacking such coaments, vas
unable to £find a significant difference in performance on
progran modification tasks.78 -

while primarily expiloring human factors in softwvare
development, Basili and Reiter?9 deveioped empirical
evidence to support the contention that programmer teanss
using a disciplined wmethodology for software developnment
have an advantage over either individuals or teams using amn
ad hoc methodology, in terms of average development costs,
average nukber of errors encountered during implementation,
and contrcl flow complexity of the program preduct.

283 Hede of Conmputer Usade

4 sigopificant line of experiments has explored the
effect that mode of computer access &as on prograsmmer
productivity or the ability of students to learn to progranm.
Sackman's book,8% Man-Computer Problem Solving, provides the
sost comprehensive discussion, incliuding experiments done at
the U.S. Air Force Acadery involving students. That work
was preceded by an earlier Sacksan study®! which has been
more often cited for its statistical evidence of bhuge
individual wvariability iz programmer perforaance. The
earlier ipvestigation dealt primarily with comnditions for

Fupcticn of Documentation,¥® School of Business
Administration, University of #isconsin, Milvaukes,
undated.

7e shueiderman, Software Psychology, pp. 70-72.

¥? B. Shneidersman, "Measuring Computer Program Quality and
Copprelension," Interpatiomal Jourpal of Mapn-Hachine
Studies, Voiume 9, 1977, pp. 465-478.

78 Sheppard, C(urtis, Hiliiman, and Love, *"Hoders Coding
Practices®

7% ¥, Basili and B.K. Reiter, JE., %"An Investigation of
Human Factcrs in Software Development,® Comg,ter, Volume
12,12, December, 1979, pp-. 21-38.

80 H. Sackmaan, Mapn-Computer Prebles Solving, {Princeton:
Anerbach Fublishers, 1970).

8% H. Sackmam, W.d. Erikson, and E.F. Grant, "Exploratory
Experigental Studies Comparing Online and Offliine
Prograseing Ferformance," <Communications of the ACH,
Volume 11, Number 1, 1968, pp. 3-11l.

24

successful program debugging, aand indicated an advantage to
online activity. Observations about individual variability
were added as an afterthought.

Comparisons of time-sharing and batch processing
. systems as to effectiveness for supporting imtroductory
prograEnicg coursework have proven incoaclusive. An early
study by Smithsa2 concluded that instant turnaround
{simulated time-sharing) was superior as nmeasured by elapsed
time from first rum to last and ratio of number of rumns to
nueber of trips to the computatiocom center {higher ratio
viewed as Letter). Skelton,®3 however, conciuded that no
statistically significant differepce on either the Problen
Sclving Ability or the FORTRAN Frogramming Ability tests was
founpd that was attributable to the pode of computer access.

2.8 4 Proqragpeing language Studies

Yet - ancther area of programieing studies involves
investigating the utility of individual language features
or of languages as whole entities for jproducing desirably~
structured [rcgrams. Furuta and Kenp®4 provide a good
general survey of the subject.

Very little has heen attempted in the way of evaluatlng
¢r compacing, on a rigoroas basis, wvhole languages for
teaching introductory prograaring. In fact, very few
atitempts bave been made to evaluate whole languages for any
purpose. Notabie among those efforts are the works of
Reisner and ¢f Ledgard, Whiteside, Seymour, and Singer.

Beisrper®S advocates making psychological testing part
of the design and development process for new languages.
She did just that, evaluating SEQUEL, a relational data base

82 L.F. SmEith, "A Comparison of Batch Processing and Ianstant
Turnarcund," Commupications of the A_g, Volume 10, H¥unmkber
8, 1%67, Frte 395 500.

83 J.E. 'Skelton, “lime-Sharing Versus Batch Processimg and
Teaching Eeginning Conputer Programming: An Experiment,¥
AELS Jcurnai, March, 1972, pp-S51-97, and June, 1972, ©pp.
103-104.

84 B, Furuta and P.M. Kemp, ™Experimental Evaluation of
Pregramming Language Features: Implications for
Introductory Programming Languages,® SIGCSE Bulletin,
Volume 11, Number 1%, 1979, pp. 18-21.

85 P. Reisper, “Use of Psychological Experimeatation as anh
Aid t¢ Levelopment of a Query Language,™ IEEE
Irapsacticns on Software Engimeering, Volume S5E-3, Number
3, 1977 o o 218-229.

25

language ynder development, in relationship to SQUARE, a
preexisting data base language. Usinyg both programmers and
non-prograsners, she investigated overall Jlearnability of
the new language, learmability of individual features of the
languages, and types and frequeRcies oL g¢Lrors nade.

ledgard et ai®® attempted to decide whether English
language commands or npotational commands were more useful
for comnmercial text editors. Evaluating the work of
inexperienced, familiar, and experisnced users on a
20-mpinute editing task after trairing on onme of two editors,
they concluded that the use of commands ~resembling English
phrases resulted in far btetter perforrance. Subjects "could
not conceive of editing power or function as something
different fror the appearamce of the actual commands. This
sutggests that language designers must be as much concerned
with surface syntax as with functional features if they mean
to design a product to optimize user performance.’

As far as empirical testing of individual language
features goes, Goulds? concluded, in the context of a study
on how people debug programs, that errors in assignment
statements were harder to detect tham acray or 1iteration
hbugs. '

Sime, Green, and Guest®8% examined conditional
statedents, particularly as to the utility of including
sequence information {specifying the order in which
statements are executed) and taxon information {describing
the conditions umder which a given actior is performed}.
They pote that production systems normally present sequence
informaticn, but leave taxor information up to the human
reader to discover; decisjon tabies normally present the
taxon infcrmation, but leave the sequence information up to
the humanp reader to discover. Redundant information in a
conditional "eise" Eranch, as Dijkskira advocates,®? adds
taxon infcrmation. Nesting of conditiomals (as opposed to
using gotc?®s) adds seyuence information. Sime, Greem, and

86 H.F. ledgard, J.A. ¥hiteside, W, Seymour, and A. Singer,
Wan Experimpent on Human Engineering of Interactive
Software," IEEE JTIransactions on Software Engineering,

Volume SE-~6, Humber 6, 1980, pp. 602-604.

87 Gould, "Scme Psychological Bvidence on How People Debug
Computer Exrogramsh,

88 M, E. Sime, T<R.G. Green, and D.J. Guest, "Scope Marking
in {oapuyter Conditionals -- & Psycaological Evaluation,®
~ipternaticnai Journal of RaprMachine Studies, Volume 9,
Bosber 1, 1977, pp. W7-118. .

89 E.We Lijkstra, HGuarded Coammands, Handeterminacy and
Formai Derivation of Programs,” (Compunications of the

ACH, Vclume 18, Number 8, 1975, pp. #53-457.

256

Guest found in their studies that nested redundant
conditionals vwere very effective language structures,
particularly in debugging, which requires taxon inforsmation
as well as sequence information. {Debugging typically
requires answers to the guestions "If certain conditions are
met, what acticns will be taken2® and *If a certaim actiom
evidently was taken, what conditions must have existed?®)
Gannon has doae the most extensive work in empirical”
evaluatioen of langpage features as guidance to laaguage
designers. In one comprehensive study,?® he evaluated type,
frequency, anpnd persistence of errors pade by students in
usimg two sigiiar lapguages which differed orly in several
carefully contrclied ways. Those ways included order of
operator rrecedence; expression orientation versus statement
orientaticn; £form of logical connectives; use of semicolon
as either separator or termipator; inciusicm or excliusion of
a case statement; form of repetition statement; bracketing
of corpound sStaitepents or expressions; scope rules; and
inclusicn or exclusion of pamed cosstants. Gannon®s
results indicate support for the use of the semicolon as a
statement terminator and for requiriag the explicit
inheritance of global variables when so desired, but no
support fcr a strict right-to~left evaluation cf {all-egqual-
precedence) operators as is found in AEL. : _
- In a later study,®! Gannon reports evidence for
conciuding +that static data typing reduces errors in an
least one environment, when compared with languages that
permit typing determinable only from statemert usage.
Finally, Weinmberg, in The Psychology of Computet
Progragpging, lists a number of desirable attributes of
programming languages and gives suggestions as to their’
empirical evaluation. Those attributes include uniformity
or consistency of structure; compactness, relative to the
psychological concept of ¥chunking®,92 with sore prodran
informaticn cr powerxr per chunk being desirable; locality,
vherein 211 fparts of a program relevant %o a particular
concern are found ia the same place; linearity of executakble
statements, arguing for minimization of explicit progranm
branching; and ROR-RLTOr ~PLONENESS, wherein inherent
psychological ambiguity of preogram structures is pinimized.

90 Ganpnon and Horning, #language Design for Programming
: Reliakility".

%1 J.[. Gagnacan, "An Experimental Evaluvation of Data Type
Comventions," Cospunications of the ACH, Yolume 28,
Number 8, 1977, pp. 584-595. '

®2 G.A. Miller, "The Magical Nuwber Seven, - Plus or Hinus

- Twoz Some Limits on Guxr Capacity for Processing
gﬁfggmaticn," Bsychological Review, Volume 63, 1956, pp=

27

2.4.5 Humap Factors

Most of the studies that one pight group under the
headingy c¢f Mhyman factors® have already been mnmentioned
elsewhere, notably programaing team organization, mode of
computer access, and study, a la Weinberg, of personality
factors as they are 4involved in the programming process.
Psychological complexity of the programping process will be
dealt with later, wumder the heading of aeasures of program
complexity. Ipdividual variability of prograsmeing subjects
will be mepticped later under methodological considerations
faor proyramming experiments.

This section will consider the cognitive dimensioans of
the progrageingy process. Hayer?? amd Miller94 provide
useful suvamaries of concerns in this area.

_ Several models have been proposed for exagining the
perforeance of human users of computer systems, among then
the work c¢f Card, Moran, and Newell®% and Eabiey and Nagy?9ds
ocn modeling text editor usage. Brooks®? bas exteasively
used rrotoccls (spoken revelations of thought patterns) of
programpers workiag on problems, in order to wmodel coding
behavior. He proposes that a programser is always in one of
three distinct states of behavior: npderstanding, method-
finding, or coding, with the method-fimding activity being
independent of a particular programming language. His model
proposes a preduction system with coding “rules® to explain
prograsser bebavior, and explains differences in programmer
performance in terws of differential possession of rules,?98

3 Mayer, “The Psychology of low Novices Learn Couaputer
Progransing¥.

94 L.A. Biller, Behavioral Studies of the Frogramming

Brocess, National Technical Information Service Report
$4D/3~-061-633, October, 1978.

95 5.K. Card, T.P. HMoran, and 3. Newell, %"The RKeystroke-
lLevel Fodel for User Performance Time with Interactive
Systess,® Copmupications of the ACH, Volume 23, Kumber 7,

- 1989, fr. 396~-310.

®¢ D.H. FEgbiey and G. Nagy, ™"Behavioral Aspects of Text
Editors," ACH Computipy Surveys, Volume 13, Number 1,
1‘981' gPa 33-70s

%7 B. Brocks, "loward a Theory of the Cognitive PBrocesses in
Computer Frogramming,® Interpatiopal Journal of Han-
Bachine Studies, Volume 9, 1977, pp. 737-751.

#8 S5ee also A. Newell and H.A. Simon, Humas Probilem Solving,
{Englewcod Clifis: Prentice-Hall, 1972), on protocols.

28

In a sisilar vein, Larkin, MHNcDermott, Simon, and
Simon®% have compared expert and novice perforpmance in
soiving [physics problems in a way that 'may also be
applicablse to studying prograsmer bebhavior. © While
consideratle knowledge obviously constitutes a prerequisite
to expert skill, ®recognition of a pattern often evokes froa
semory stcred information about actions and strategies that
may be appropriate in <contexts in which the pattern is
present" and that may be useful ipn guiding development of a-
problen's interpretation and solution. "Ihis capacity to
use pattern-indexed schemata is probkably a large part of
what we call physical intuition.® S

Shneiderman has performed as experiment?99 which
supports a view of information processing differences
betveen the povice and expert programaer. He examined the
abilities of subijects to memorize two sequences of FORTRAN
statements, cne a proper executable program, the other
consisting of valid stateneants in scrambied order. Bhile
all subjects did poorly in recalling the scrambled sequence,
the more experienced programmers perforped significantly
ketter <m the actuwal progran, suggesting a chunking
effecti9t in which more program content per chunrk may be
retained ip short-ter: memory by the expert prograamer than
by the novice. _

. Love has more .deeply explored the relationship of
informaticn processing abilities to individual differences
in . programsming performance for his doctoral dissertation
work. 02 His objective wvwas to determine whether introductoxry

99 J, lLarkin, J. HcDersoit, D.P. Simon, and H.d. Simon,
“Expert and Novice Periormance in Solving Physics
Probless,¥ Science, Volume 208, Number 20, Juns, 1980,
pp. 1335-2(8.

180 B, Shneiderman, "Exploratory Experiments in Prograﬁmer
Behavior,® International Jourpal of Computer and
ipformaticn Science, Volume 5, BNumber 2, 1976, [pa
123~-143. '

10t Each human 4is assumed to have a capacity to store a
similar nuaber of ®chumks® of informatios im short-tern
merory, though the size or content of chunks may differ
across individualsa . See H.As Simon, “How Big 1Is a
Chunk?" Science, Yolume 183, 1974, pp. 482-488,

See also A.I. de Groot, Ihought and Choice in Chess,
{New York: Basic Books, Inc., 1965), for an experiment
similar toc Shneiderman®*s that involved recall of actual
and scrasktled game board situaticns by master and novice

chess players.

4902 Love, "Relating iIndividual Differences in Computer

29

prograzmmsing performance was related to the ability to
process information quickly and accurately, and his method
used four zeasures of information processing capability
{recall c¢f assiguned variable values, recall of serial
digits, perceptual speed in comparing strimgs of digits, and
subjective organization of words im a free-recall learning
task) and several pmeasures of prograsming performance
{including number of runs needed to complete the assigned
task and freguency of program changes across successive
LURS) - lcve cgbserved that students who performed well on
the variable value recall task, as well as those who
performed well c¢n the serial digit recall task, took feder
runs to complete their programming assignments. Students
who perforsed hetter on the free-recall task reported fever
icgical errors im their programs. However, students who did
well 4ip temembering variable values alsc took loanger to
locate errors in their programs, a counter-intuitive result.
As Love states, MAltogether we have evidence here for a
relationship between programmiag perforaance and huzan
informaticn processing ability, albeit complex!?

Lastly, in this area, some conments might be made under
the heading of decision-making under uncertainty.
ProgramuEitg tasks are commonly assigned with a complete set
of technical specifications, but with no statement whatever
of which performance goals {(number of ruas, elapsed time,
program size, program efficiency, etc.) to optimize. Under
such conditicas, each subject of an experiment may chooss to
optimize tis own individual goal. #einbergt®3® demonstrated
the power of +this phenomenon. Five groups of experienced
PLOgranRiBerls were given the sake progragming task, each group
being given a separate performance goal to optimize. Then
the grougps were rated on all the goals. Each group
outperforzed the others on its own individual goal,
exbibiting an ability to trade off one performance attribute
for another. hether this ability extends to introductory
programming students is open to speculation. However, this
phenomsenor may explain some of the variability in individual
programmer perfcrmance observed in some stadies, such as
that ©f Sackman, Erikson, and Grant,:9%* where no particular
pecformance goals ¥ere reported as being given the
programmes subjects.

Prograpping Performance to Human Information Processing
Abilities®, '

193 G, #®einberg, 4the Psychology of Iimproved Programming
Perfceipance,” Daiapaticn, November, 1972, pp. 82-85.

i04 Sackwan, Erikson, and Grant, "Exploratory Experimental
Studies Comparing Online and Gfflise Prograaning
Perfcoipance.

3¢

2.5 BE3SUBES CF PROGBAN CONPLEXITY

If cne talks about methodologies for prograreing or
‘methodolcgies tor teaching programaing, there must also he
some way ¢f evaluating the guality oif the resultant progiam
products. Cosputational complexity analyses have focused on
the executicnai efficiency of +the program algorithm.9%
Analyzing psychological complexity of the resultant progranm
provides another @means of assessnent. Attempts have been
"made to identify an intrinsic relationshiyp between progran
properties and programmer performance on a given prograaming
task, for instance, reading or debugging programs. Because
of the dompinant role that maintenance activities play im the
softvare life cycle, program complexity Beasures have sought
to characterize how difficult a progyram is for programpers
tc woxrk with, that 1is, docate and correct undetected
implementaticn errors and =modify prograr modules to
incorperate specification changes.

In the last decade, a ntnber of petrics have been
proposed and empirically evaluated. Among them are the
works of Halstead,t©6 McCabe,207 Chapin,198® and Chen.109
REeviews and comparisocns of the metrics are contaimed in
Fitzsipwons and Lovell?d and in Baker and Zweben,11l as welil
' as in other studies. Because of the focus of attention on
Halstead®s and McCabe's metrics, the discussion will be
limited here to their studies. -

10% 3See, for instance, A.V. Aho, J.E. Hopcroft, and J.LC.
Uilmar, 7Ihe Design and Apaiysis of Computer Algorithss,

(Reading, Mess: Addison-Wesley Publishing Co., 1974).

108 MN.H. Halstead, Eiements of Software Sciﬁndg, {¥New Yorks

- F— gt — e

107 T.Jd. HcCabe, ¥"A Complexity Heasure,¥ IEEE Transactions

=8 ~ ot

on Software Emgineering, Voluse SE-2, HNuasber 4%, 19756,

B .4

FPp. 368-320.

108 N. Chapin, "A Neasure of Software Coaplexity," AFLIPES
Copference Froceedings, Yolume 48: 13979 pNational

Cogputer Conference, {Hontvale, WJ: AFIPS Press, 1979},
?Pa' 995""0020 .

109 E T, Chen, Hprogran Cosplexity and Programmer
Productivity,® IEEE Transactions on ‘Softy¥are

Engineering, Volume SE-4, Number 3, 1978, pp. 187-194.

120 A, Fitzsimmcns and T. Love, “i Beview aanad Evaluation of
Software Science,"™ ACM Computing Surveys, Volume 10,
Number 1, 1978, pp. 3-18.

31

In 1972, Halstead began publishing articles about his
work, which characterized algorithms anrd the languages in
which they uwere expressed im an attempt +to establish a
scientific basis for the study of prograsms. He focused on
the pumber of distinct operators in an iaplementation and
the total usage of all operators in that implementation,
plus the number of distinct operands in an isplementation
and the tctal usage of all operands in that implementation.
Fros these units he developed am eguation for the expected
progras length which was shown to correlate very highly with
the observed length in a variety of settings. He also
developed characterizations for rotential volume {the
shortest possible expression of an aigoritha) and actual
volume {which expresses the conciseness of the algorithmic
representaticn in a particular language) , and for
programpiny effort.

Empirical studiesi'? have shown the predictive value of
Halstead's effort metric for the nuaber of bugs that will be

discovered in an implementation and for program
comprehensibility, as w@easured bty program recall and the
ability tc debuyg programs. {The lower tke effort metric,

the lower the nusber of bugs that will occur and the higher
the program comprehensibility.) This nmetric estimates the
sumber of mental discriminations aneeded in inplementing a
progras cnce the aigorithm is known, and has been shown
useful izm predicting a value for the actual observed time
needed tc irplement the prograi. Haistead?s metrics have
also proven useful for guantitatively analyzing technmical
prose as %ell as computer Prograps.

McCake independeantly developed a graph-theoretic
peasure of program complexity that depends only on the
decision structure of a program, not its physical size. In
essence, . his metric characterizes the Ystructuredness"™ of a
progras. It describes the number of basis paths which, when
taken i@ cosgbination, can generate all possible paths
through. the FEQQgLrat. The metric has applicability,
therefore, for characterizing the testability as wsell as the
psychological complexity of a program, asd could he used for
deciding when a prograam moduie has become too complex and
should bke divided ipto sub-modules. The appeal of the
metric, in practice, is that it can be computed very simply
as the nucber of conditions or predicates im a program plus
one.

2i% A.L. Baker apnd S. Zweben, "A Comparisomn of Measures of
Centrcl Flow Complexity,"” IEEF ZTransactions on Software
Engine€ering, Volume SE~6, Number 6, 1980, pp. 506-512.

112 S5ee Fitzsimmons and Love, ®A Review and Evaluation of
Software Science.?

32

McCate's ideas, like Halstead's, bhave their advocates
and some empirical support for their uwtility. Among the
supportecs are Myers,i'3 who suggests a modified interval
metric incorforating both the number of conditions and the
nueber of decisions; Elshoff and Harcotty,!1® who advocate
using only the number of decisions; and Walsh,t1% who
describes the usefulness, 1in a large-scale weapons systenm
development project, of using a McCabe Betric cutoff value
of ten, for determining module size in a complex prograp.
In HMyers* wcrds, “although it 1is an extremely simple
concept, V{G) appears to be a practical coaplexity measure
because it 1is easy to calculate, it counfirms subjective
opinions about complexity, and it is comrsistent with studies
showing a high <correlation between the number of decisions
in a zcdule and the module®s complexity and error
_Froneness." ' :

Curtis, Sheppard, and Millimanlié have investigated the
use of software complexity metrics for predicting programmer
performance, as peasured by the time to locate and correct -
bugs in three FORTRAN prograas. Horking with larger-sized
progra®s than were used in their previcus study,1i7?
Halstead®s effort smetric and H#HcCabel's cyclomatic complexity
metric were related to the difficulty programmers experience
in locating errors in code, with the stronger relatioaship
established for the Halstead umeiric. A curvilinear
relationship was found for Halstead®s effort metric and
programmer pericrmance, sugyesting that as Halstead's effort

11¥ Gad. Myers, "An Extension to the Cyclomaéic Measure of
" Program (omplexity, SIGPLAN MNotices, Volume 12, Number
10, 1977, pp- 61-64. : :

tis JoL. Elshoff and M. HMarcotty, #Gn the Use of the
' Cyclogratic Number to HMeasure Program fComplexity,"
SIGPLAN Noiices, Volume 13, Number 14, 1978, pp. 29-40.

118 7.J. Balsh, ™A Software Heliability Study Using a
Complexity Heasure,® AFIPS Conference Proceedings,
Joluge 48: 1973 Natiomal Computer Comference,
{Bontvale, NJ: AFIPS Press, 1979), pp. 761-769. ‘

i1 B, Curtis, S.B. Sheppard, and P. fHilliman, ?Third Tinme
Chara: - Stronger Prediction of Programmer Performance by
Software Complexity Metrics,® Proceediugs of the Fougth
4ptervational Conference on Software Eangineserirg, {New
York: IEEE, 1979). : _

117 pB. Ccurtis, S.B. Sheppard, P. Milliman, H.A. Borst, and
T. Leve, "Measuring the Psychological Cosmplexity of
Software Maintenance Tasks with the Halstead and HcCabe
Metrics,* IEEE Transactions on Software Engineering,

A=

Vecluee SE~5, Number 2, 1979, pp. 96-104.

33

metric grows larger Ma program becomes RBore psychologically
complex, but the imcrements in difficulty grow smaller and
smaller.m

It appears that research on complexity metrics will
continme intc the foreseeable future,t1® particularly
related tc keeping gprogrammers and mapagers aware of their
programming grcduct®s logical complexity and to helping them
estimate the time and effort needed for their coding,
testing, and maintenance work.

2.6 HETBODOLOGICAL CONSIDERATIONS I PERFORHING
EXZPERIBENIS .

while computer scientists have been actively performing
experipents c¢n human subjects for some fitteen years, only
recently has widespread attention been focused ot the
sufficiency of experipental desighs eaployed. 4 sense has
grown that computer science experiments should be evaluated
for methodology with the same rigor as that applied im the
behavioral and natural sciences.it?®
‘ Doth Brooks?®29 and Koher and Schoeidert?! have writtem
of the methodological considerations invelved in formulating
approgpriate software experiments, w#ith Hoher and Schneider
noting, #althougk the literature coatains eumerous
references to the use of experimental methods, there are few
references on investigations into the wmethodology itseli.®
Sheilt22 has also written of experimental concerns.

138 J.C. Zolncwski and D.B. Simmons, *Taking the Measure of
Progran Complexity,” Hational Computer Conference
Proceedings, 1981, {Arlimgtomn, Va.: AFIPS Press, 1981;,
Epe 329-336.

GoBs Schoeider, B.1l. Sedlmeyer, and J. Kearamey, "On the
Complexity of Measuring Software Complexity," Natiomal
Copputer Conference Proceedings, 1981, (Arlingtom, Va.:
AFLPS Fress, 1981), pp. 317-32Z. '

119 D.L. Farpas, letter titled "pubiety of Increased Funding
: for Experimsental Computer Science,® Compunications of
the ACE, Volume 24, Nuaber 3, 1981, pp. 162-163.

120 R, Brecks, “Studying Progranmmer Behavior Experimentally:
The Froblems of Proper Methodology," Comuunications of

i p—

iz T, Moher and G.H. Schﬁeider, tgethodology and
Experimental Besults in Software Engineering,¥

e . . R TS, A M . Bl o e el o . i i . ARD. W R TS T e At iy i s i i A

Nupber 1, 1982, pp. 65-87.

34

The issues that have been raised about experimental

methcdology include the folilowing:

1. Geperalizability of results -- ¥iil results obtained
with lPeginning programping students generalize to
prcfessional programmers, even when task performance
has been seen?23 to vary ¥ith programming experience,
or, as Weinberg puts it,12¢4 will the psychology of
prcgrasming become the ‘"psychology of programmer
trainees®? Will results obtained with small-sized
prcgrams generalize to large-scale systems, ever when
scaling up is not just a side issue in software
engineering, but the crux of the matter?

_ 2; Selection of subijects - Given the apparent

variabiiity in programser performance and the cost
inkerent in conducting research with -~ real
‘precyrammers, can susbject populations be selected that
are spali, yet representative, and large enough to
preduce the desired experimental effect? Hoher and
Schneideri?2s gargue that a few sisple biographical
variabies, both experieatial aad aptitudinal, if
taken into effect, can reduce the unexplained
variability in performance by about 50%. Removing
the efrects of dependable predictor variables can
sukstantially reduce estimates cof variance and
therefore result in a reduction in the number of
sutjects needed for am experiment.

3. Aprropriateness of measures - Hhat are the
underlying variables of interest in the experiwment
apd how do they relate to the aspects of performance
actually being measured in the experiment? Lemosi2se
found a direct relationship betveen program reading
ability amd program writing ability. Few others have

iz2

123

1428

12%

126

Sheil, ®The Psychological Study of Programming.,™

For exaaple, Shaneiderman, HExploratory Experiments in
Prograpeer Eehavior.¥

#einkergy, The Bsychology of Computer Prograsmaing.

T- Hcher and 6.M. Schneider, "Hethods for Isproving
Experimentation in Software . Engineering,™ Sixth
Ipterpational Conference om Software En01neer1_g, {New
Yoerk: 1EEE Press, 1981},.99. 224=- 233.

Leﬁos, "Heasurzng Programmlng Language Prot;cxency."

35

sought to establish so directly a 1isk between their
perforrabce measures and some aspect of prograaming
abili ty-:

4. Hagnitude of experimental effect - Can a
sufficiently strong experimental effect . ke induced,
given the €error variance typically present in
rrogramaing experiments? Can satisfactory materials,
addressing such matters as performance g¢oalst?2? gand
requirements, be prepared for the experimental
treatment?

5« Opcbtrusiveness of pmeasures -- Cap performance data
be cocliected unobtrusively, as with the program
"drain® of Nagy and Peunnebhaker,128 or, at the other
extrese, will the experimenter induce a so-called
"Hawthorne Effect,wi29 in vhich experimental
observation of subjects itself produced changes
{ieprovements) in subject performance?

among the recent write-ups of experiments which exhibit

a high 1level of awareness of experimental issues or tight
gxperimental ccntrol are those of Hetzel,130 Stoddard,

_ Sed

lmeyer, and Lee,13! and Sheppard, Kruesi, - and Curtis.132

A recent issue ¢t Software Epgineering Notes, which includes

eig
des
pro

bt proposals tor software experiments and a discussion of
ign issues to be considered 1in making proposals, also
vides usefui guidamce on the subject of methodological

i27v

i28

129

1346

31

132

See, for instance, Weinberg, "The Psychology of Improved
Prograsming Performance."

Nagy and Penn<baker, “jhutomatic Analysis of Student
Programming Errors."

Named after productivity experiments performed at the
fHawthcrne Works of the HWestern Electiric Company. See,
for instamce, K.R. London, The People Side of Systens,
{Londcen: McGraw-Hill, 1576), Chapter 3.

Hetiél, “An Experimental Apalysis of program
Verificatiocn Methods."

Stoddard, sSedlmeyer, and Lee, #preadth or Depth in

“ Introductcery Programming Courses: A Controlled

Experizent.”®

Sheppard, Kiuesi, and Curtis, "The Effects of Symbolegy
and Spatial Arrangement on the Comprehension of Software

Specifications.®

6

issues, 133

133 ¥propcsals for Tool and Methodology Evaluation
Experiments,® SIGSOFT First software Engineering .
Sywposium on Tool and Methodelogy Evaluation, Software
Engipneering BNotes, Volume 7, Number 1, 1982, pp. 6-75.

Chapter III

THE EXPERIKENT

3.1 BACEGERQUND

Pahlication; in 19?6, of E.¥. Dijkstra®s ﬁoaograph,- A
Disciplipe of Programpming, was met with widespread, though
not umiversal, acclaim. 134 In the words ¢f one reviewer,
himself a distinguisked prograsming methodologist,

The material represents a tight distiliation cof
ideas over a ‘lifetime of one of the deepest
thinkers in programming today... & Biscipline of
Exrcgramping is a landmark in progragming
sethcdology. The unity and power of the
thecretical ideas will be the basis for many
texttooks ip explanatiomn anmd elaboration over the
next decade, anpd for a whole geueration of more
effective [rogranmers. The work is a rich source
of insights, large and small.33%

However, studying that work has proved to be a challenging
task even for advanced computer science graduate students
and computing [frofessionals. Though its form is clearly
inappropriate for study by introductory students (and was
not imtended to be so used), its lessons =may aevertheless be
comgunicated to any audience.

The central theme of Dijkstra®s bhook is that the
arguments necessary to convince oneself of a program®s
correctness must be developed hand-in-hand with the progranm
itself, and even more stroagly, that the necessity to

13% For a critical opinmion of Dijkstra's vwork, see B.H,
Abrahaums?® review in Computing Revieus, Volume 319, Number
5, nay, 1978, ©pe 177-179. Abrahams states that
development of the programs presented in Dijkstra's book
depends mcre on fortwuitous insight than application of a
consistent methodology. Furthermore, he says, no time
Of sSface constraints are given for the problems
presested, nor are <criteria stated for the tradeoiffs
¢vidently applied in the program development process.

e e e s e

135 H.D. Mills, gComputing Reviews, volume 17, Number 11,
- Novepber, 1976, pp. 416-418. :

- 37 -

38

develop ¢ correctness argument should guide the program's
construction. An outcome of this idea is that one needs a
language in which to express the progras requirements or
specificationss, a language in which to express the progranm
itself, and a language with which to reason about what the
prograk accopplishes. Given widespread agreesent anong
scholars in every intellectual disciplipe that larguage
shapes our thoughts and actions, it should be clear that the
three langmages orf notatiocns needed £for programziag, as
mentioned above, must be chosen with special care.

Lijkstra describes «hat a [prograa aust accomplish in
terms of 1icgical assertions taking +the form of output
predicates or postconditions on the program?®s data. He
regards the prograa, then, as a predicate transformer,
which, wben started with some true initial predicate or
precondition on the - program®s data, terminates with the
postcondition being established as true, thus “transforming®
the state described by the precondition into the state
described by the postcondition. A ®yeakest" precomdition
may be fcorsulated which descrites the least restrictive
{most ipclusive) set of initial states or conditions for
which the rprogyram %works® (terminates establishing the
required rostcondition). Variables are regarded not so much
for their role as the object of computations as for their
usefulness in describing the state, OF progress, of
computaticns. In particalar, variables are needed for
formulating the precondition and postcondition assertioas.

The language used for expressing programs themselves,
by implicaticn, must be formulated especially caretully, to
admit of ¢nly those language structures which 1lend
themselves to a formal definition oif semantics and to tight
patterns ¢f lagicai reasobhifg. Effective reasoning must be
the drivimg ccuncern in shaping the language, not efficient
PrOYTaRBiTga The resultaat language, developed by Dijkstra
and described in A Discipiine of Programmiig, makes no
pretense at being a fully-implementable production language.
It is, ipstead, intended to be a mechanism for communicating
algorithes and enabliing author and reader to reason together
about rpreograms.

deong the language?s novel features are a guarded
commsand structure for both alternative and repstitive
contxol structures; non~determinacy in the order of
evaluating guaxds within a guarded comsand structure;
explicit =cope rules with whichk to implement the author®s
ideas atcut fgseparation of concerns®; a syntactically

distinguished dipitialization statement for all progran
- variables; the total absence of a “go to¥ feature; and an
array mechanise which isplements the author's view of the
array as a function {a mapping from a domain, comsisting of
subscripts, to a range, consisting of values)a. The
language, taken as a whole, presents a spare, coherent set
of structures anecessary to present significant programming
ezamples for discussion. In particular, Dijkstra's

39

presenatation of the language excludes input/output
mechanises, [procedures {(and recursion}, and data types or
structures beyocaod scalars and single-dimentsion arrays of
integers, characters, or booleans.

The patterns of reasoning advocated by Dijkstra, and
iliustrated in his exanmples, include . epumeration, - for
reasoning abcut alternative statements and statements in
sequence; induction, for reasoRing about repetitive
statements and developinrg loop invariants; and sathematical
abstracticn, 1for reasoning about prograss at various levels
of their stepwise refinenment.

It ®ay be impossible to gquantify the influence of
Dijkstra®s writings on programeing methodoleogists. However,
there can be no mistaking the impact of A Discipline of
Progragpirg ca the computer science community.

iIn 1977, a proposal was made to build a tranmnslator for
Dijkstra®s language and to evaluate the effectiveness of
Dijkstra®s approach 1in teaching introductory - programming
classes. = In commenting on available programming languages
for intrcductory instructioni36 and the potential benefit of
ispleseating Dijkstra's langunage, the proposal stated

The inadeguacy of present [programming methods and-
tools has nowhere been uwore clearly evidenced than
in glementary and intermediate prograsming
courses. The fundamental concepts of algocithm
ceostruction are obscured by the complex teatures

¢f realistic Frogrameging tools. Sigplified
versions of languages impose arbitrary
festrictions on the programier. These
restrictions also obscure the fundamental

structure ¢f algorithas. ¥uch of the time that
should be devoted to teaching the consiruction and
evaluation of algorithams 1is spent instead on
teaching how to get around a programsing language
apd systenp,13? _

As a remedy to that state of affairs, a tramslator would be
constructed for Dijkstrals programming. lamguage {(hereafter
to be referred to as DPL); suitable course materials would
be developed for compunicating ' Dijkstra's ideas on
programmirg to introductory~ievel students; and the
effectiveness of applyiag these ideas to introductory
instructicn would be evaluated in a controiled experiment.,

136 At the time of the grant application, PL/C was being
taught in introductory programming classes as the
University ¢f North Carolina.

137 p.L. Farnas, unpublished grant proposal, 1977.

40

The proposal was funded in Septenber, 1977.438 3
translater for Dijkstra's language vas developed by members
of the defrartsent,®39 and became operational for testing in
1979, - Trial rums om using the ©DPL approach in a classroon
situation were conducted on a semester-long bhasis during the
Spring, 1980 and Spring, 1981 seaesters, esach time with
about 25 volunteers selected from the roster of the larger
standard introductory programBing courses Plans were then
made to ccmtinue onward to a formal, controlled experimental
gvalyatior of the approach, to be conducted during the fall
of 1981, The description of that experiment follows.

3.2 GOALS OF YHE PHOPOSED BESEARCH

The goal of the dissertation research discussed here
#as the oljective evaluation of am educational approach to
teaching computer programming which emphasizes development
of asserticn-based arguments of progras correctness hand-in-
band with the develcpment of the grograms theaselves, and
utilizes a language which supports +that approach. That
evaluaticn was conducted by comparirg the effectiveness of
the new apprcach +to that of a conventiomal time-tested
approach which emphbasizes program testing and utilizes
Pascal, a widely-distributed, generai-purpose laaguage
commonly regarded gsince the wid-1970¢s as the Dpest
- pedagogical languagea.i390 ' :

138 National Science Foundation grant number SED77-18518,

139 John Eishog, “"The Portable LPL Compiler Project,®
Mastet?s thesis, Technical Report TR80-008, Department
of Ccepputer Science, Uaniveyrsity of North Carolina,
Chapel Hilli, 1980.

Karl Freund, *The Design and Abstract Specification of a
Translatcr Module,” HMaster®s thesis, Technical BReport
TRE79-C012, Department of Coumputer Science, University of
North Carclipa, Chapel Hill, 1979.

. James George, "Amn Abstract Hachine as an Aid to Cosmpiler
Portakility,"® Master's thesis, Technical Report
TR79-017, Department of Computer Science, University of
Horth Cargiima, Chapel Hiil, 1979.

Dan Lambeth, #se of Trace Specifications in the DPL
Compiler," Master®s thesis, Tecknical Report TR79-019,
Departsent of Computer Science, University of HNorth
Carclina, Chapel Hill, 1979.

140 K, Jeusen and N. ¥®irth, Pascal User Banual and Report,

41

The rrimary differences bhetwecen the DPL approach and
the conventicmnal approach, using Pascai, ¥ere seen as the

followuing:

1. Both apprcaches teach solution techniques and
algoriths development. However, the conventional
approach uses program testing and hand simulation of
pregras execution as the priasary reans of
verification, and relies on a labguage iEplesentation
whose compilation produces diagaostics for all syntax
errors contained in a program and whose execution:
prcduces partial output evenr for wmany incorrect
frcgrams. The DPL approach uses informal correctness
arguments as the primary means of verificatioan, d&nd
egtodies a philosophy that program compilation shounld
report only the first systax error encountered and
that execution should produce output - only for
correctly terainating programs.

Ze The conventional approach employs, for examples
and probiems, a geaeral-purpose programming language
which contains data structuring capabilities, control
flcw mechanisas, and input/soutput facilities
necessarily sophisticated enough to satisfy its
gereral-purpose user comaunity. DPL was designed for
teaching and expository purposes, contains only a
small set of lanqguage mechaanisms, and provides only
the rost primitive of input/output aad data
structuring facilities.

3a - The conventional approach relies on the implicit
sepantics of the selected language and the
understanding of its proper usage which the student
picks up from looking at textbook examples and fronm
exrerience. The DEBEL agproach provides explicit
serantics for the DPL language.

Thus, fplans were made during late spring and early
summer of 1981 to conduct a carefully controlled teaching
experiment during the following fall semester. At the sane
time, however, administrative decisions by the university
computaticn center concerning "machine support for
introductcry instruction afforded an opportunity to imclude
an additicpnal aspect in the planned experiment. Sufficient
funds - were allocatedi®*! to acquire a number of Applels?

{(New Ycrk: Springer-Verlag, 1975).

14t University funds were matched to support provided by the

42

gicrocokputers for the purpose of switching introductory
rrogramming instruction from the large centralized campus
and Iriangle Universities Computation Center {TUCC)
compuating facilities. Conversian of introductory
prograsming courses t0 microcomputers had 1long been
advocated 1ocally by some who felt that the gquicker
turnaround time and aore personal anature of computer
interacticn weould benefit beginming students. Convincing
arquments were pade that the switchover to aicrocomputer-
based instruction would be better accoaplished in stages
over several sesmesters, initially with a modest number of
students, and furthermore, that comparisons between students
using the micro-based UCSD Pascal systeaz and students using
a Pascal compiler on a large batch machine aight provide
interesting results.

Therefore, the regsultant experisent emerged as a dual
exXperiment, with the conventional approachs/batch Pascal
group serving as control for two experimental groups: the
DEL groug, using a contrasting progran development
methodolecgy and {batch-processed) prograsmiag language, and
the Apple group, using a coaventional program development
methedology and nearly identical language but a contrasting
mode ¢f machine access. Details of the experimental design,
computing emvircnments, and experimental procedures will be
provided in later sections.

Naticral Science Foundation instructional eguipsent
grant #1-0-130-3276-XAa584,

142 wapple® is a trademark of Apple Computer Co. For the
sake of brevity, all future refereances in this
dissertation to the studeats using the UC3D Pascal
systen running on the Apple wicrocomputers w#ill be to
the "Apple sectior®. Hhile similar educatiomnal outcomes

might be achievable with cther manufacturer?s
- microcomputers, no other vemdor's agpicrocomputers were
used in this experisent. Since the observed results

might not Le generalizable beyond the specific systen
utilized, namely an Apple IX computer rumnning UCSD
Pascal, it seeps appropriate to identify +that subject
grovg with the specific syster used. ¥o endorsesent of
the ccmpasny's computers is intended beyond that implied
by the statistics reported bereiam. HNo financial support
for this experiment was supplied by Apple Computer or by
the suppliers of the Pascal system software, por was any
direct cormunication conducted with the vendors. The
systess used yere obtained upder existing state
purchasing contracts.

43

3.3 HIPGTHESES

The following hypotheses were formulated with respect
to the group using the experimental. DPL approach and the
conventional bhatch Pascal group:

1. That ¢n programming assignments, students in the DPL
greup wculd submit fewer runs haviag unintended
results than would students in the conventional group
on the same problems; .

2. That the DPL group would reguire less debugging time
{tise expended after the first machine run until
coapleticn of the assignmEent) than would the
cceventiconal group; ' '

3. That when each student had compiete the assigament to
his satisfaction, a higher percentage of LPL
students?®? gprograms wouid actually run correctly,

. agcording to problem specifications, on independently
surplied test data, than would prograns from the
ccrventional group; . _

4. That the programs of the DPL group would be of
greater simplicity, according to the HcCake
cotrlexity metric, than would the programs of the
other group; ' :

5. That the DPL group could learn t¢ program in the
lazguage the other group studied, in a condensed time
period at the end of the semester, and that on the
last groblems assigned t¢ both groups, a higher
percentage of the DPL group's Fascal prograas would
be correct, according tc probles specifications, than
would the programs of the conventional yroup.

Similar hypotheses, with the exception of the f£fifth one,
yere forgsulated for the experimental Apple section in
reiatich tc the control group, the batch Pascal section. In
particular, it was hypothesized that the Apple section would
require less debugging time than +the conventional group and
that a higher percentage of its students would produce
correct programs. - : ' '

Students weie ipstructed that their primary objectives
in solvieg assigned probleas were to develop correct
soluticas that were well-documented and -as clear and
readable as possible. No objectives were specified in
regard to machine resource usage or time expenditure on the
students? part. '

44

3.4 EXPERIBENIAL DESIGE

The experimentai design was a tvwo-way, nixed,
between/swithin subjects design. The <class section {DPEL,
batch Pascal, Apple Pascal) wvas the between-subjects
variable and the programming probien assign@ent was the
within-sutijects variable. The individual student was the
basic unit o¢f analysis. Dependent variables were the
peasures such as program correctness percentage, number of
runs with uninteaded results, and time expended for each
student c# each problen.

Different students, therefore, were assigned to

different sections. The "repeated measures" aspect of the
desigm coses froa the fact that measures of performance were
obtained for each student within a given secticn on each
problen. Repecated wmeasures desigans are commonly used in
educational ezperlments where the effect of prior experzence
on future learning is of primary importance.i43

Students were randomly assigned to class sections after
the first course ameeting. (Since there was only one course
sgction of intrcoductory pregramning dia shich students could
register, all istroductory students weat into the sagme
“pool® for subsequent assignment; there was no chance of
subject self-selection into sections on the basis of class
schedules, which might be biased by acadenic major, age,
enployment, <€tc.) Approximately-equal thirds of subjects
¥ere assigpned to the DPL section, the batch Fascal section,
and the Arple Fascal section. The DPL section was taught by
this author, and the two Pascal sections vwere jointly
taught, in a comgon lecture section, by a member of the
computer science department faculty.14% Enpugh students were
assigned to each of the three sections, about 85 apiece,
that althcugh cone lecture hall had 85 students and the other
170, both cculd be regarded as large lecture sections,

163 Sge G. Keprel and #.He. Saufly, Jr., Introduction to
Degsigx apd Apalysis, A Student’s Handbook, {San

Francisco: H®.H. Freeman and Company, 19803, Chapter 8,
ter material on repeated measures desigos.

148 The Pascal sections were taught by Dr. Stephen M. Pizer,
Frofessor of Computer Science and Director cof
Underqgraduate Studies for the Department of Computer
S5cience. Fhilip Koltun, who taught the DPL sectiom, had

" a teaching background that included five years* £full-
- time faculty experience at the university level, the
last three as Assistant Professor of <Computer Science,
as well as several years' work as a teaching assistant.
Both Lr. Pizer and Mr. Koitun had taught programming
courses before. In particular, Dr. Pizer had taught
programming using Pascai before, and Hr. Koltun had
taught programming using both DPL and Fascal before.

45

Class size, then, ¥as not regarded as am additional
independent variable.

The design guestion of whether to have the same
instructor teach both lecture secticns or whether to have
different pecple do so was confronted at an early stage.
While the fimal decision might be criticized for introducing
the confounding factor of instructor®s influence,. the
alterpative might be egualiy suspect: A single instructor's
mrethedoiogical biases might influence his presentation and
the differemces im the two methodologies wmight prove
difficult to @maintain sharply in focus. Uitimately, the
decision was reached that each lecture should be delivered
by sosecne who firmly believed in the methodology being
used.. N¢ determination of the actual instructor’'s effect
vas quantifiable.14% The ideal experimental design, with a

statistically suitable nupber of instructors rasndomly

assigned to class sections, was clearly impractical. = The
only recourse, for the reader, is to keep the experimental
limitaticos in sind when considering ' potential
generaiizaticns of the research results.lte .

In summary, the commomiy-shared attributes of each of
the experiment’s sections are presented below:

LEL Batch Fascal Apple Pascal
i i i H
i i
: i i
Batch Processiag Language
Prchlien Assignments Instructor/Lectures
: Program development
methodology

Probler Assignments

Figure 1: Shared attributes of experimental and control
‘sections

185 Questions on a kid-semester guestionnaire shed sonme
light ¢a the effect of instructors and course’
assistants. See Appendixz 8. 1.

148 Many such compromises must be made when doing
experiments imvolving actual cilassroom situations.
Stronqg restrictions are imposed by bhaving student
subjects registered for course credit and by having.
iiwited financial and imstructional resources with which
to ¥Oork. Beflections on such experimental
consideraticns will be made im Chapter 7.

46

3.5 EZREBIBENIAL PRQCEDUBE
3.5.1 Assignment of Subjects

As ncted previously, only co¢ne section of introductory
programning was available for student registration. During
the first ' class meeting, a sign-uap sheet was circulated,
asking for student preferences as to which of six different
¥ednesday or Thursday afterncon or evening lab session times
they preferred. Horking froa an alphabetized version of
that sign-up sheet roster, students were randosmly assigned
tc each cf the Apple Pascal, batch Pascal, and DPL lecture
sections. After that initial assignment, students were
distributed iato lab sections within each smethodology
{lecture section) according to their time preferences and
the need to balance each teaching assistant®s student load.

Bicgraphicai 4uestionnaires were distributed at the
second class meeting, the first time the students met in
~separate lecture sections. A sumpary ot subiject
characteristics by sectior is presented in Table 1.

B MS-L S W DM b e e A e DIND Gews foio o Qoo e S M i G N0 Se Kied Gwe S fwe o g ke Oue Hock BHGY s S 0 MG Gew O WA e oS Bbn BGTS ke Sk o s G Filad e ke W

TAELE 1

Subject Characteristics by Section

{Second class meeting)

~ Apple Batch Pascal DPL
NUMBEB CF SUBJECTS 91 97 86
SEX
‘Bale 54% 57% 484
Female o 46% 43% - 52%
HAJOE
Computer Science 26% 203 19%
Hathegatics . 22% 12% 16%
Other 52% 684 65%
YEAR
Freshman 17% 10% 9%
Sophcmore 30% 33% 36%
Junicz 30% 234 26%
Senicr : 18% _ 26% 20%
Graduvate student £% 6% - 2%
Evening college 0% 2% 7%
GPA 2.96 2.95 2.94
SAT VEEEAL ' 542 534 533
"SAT NATH 604 577 586

* Good experience with

Calculus 1 79% 74% 79%
Calculus 2 : 40% 38% 45%
Logic 11% 15% 13%
Writing 90% 89% B8%

* "Gocd experience with" means that the subject
coepleted the course ir college or high school
with a grade of ¥CY or better.

4
~)

I-tﬂv-un--a—.u-mm'—m--m—-—.—-g..m-.u—au-—au..«.-.qu-u...._m...--pﬂng—-u—u—.,.....an—.mmmummmuma—mmhmmmumm_h_k"j

48

3.5.2 gCearse %eaching assistants

Two master®s students froam the Department <f Computer
Science were assigned as teaching assistants to sach of the
three maijcr experimental or control sections. Each %T.A. uwas
responsible for two laboratory sections, resudting in a
ratio of appreximately %6 students to each assistant at the
outset of the senester. Assignment of assistants to the
three majer sectioas was made by the department chairman;
each majcr section received one experienced and one first-
time teaching assistant.

Is addition to the teaching assistapts, whose time
commitments of twenty hours per week included four hours per
week of open consultations with students in the computation
ceater, there were also four umdergraduate assistants hired
to provide ap average of fifteen hours per week of open
consultation in the couputation center. In addition, seven
other computer science graduate students provided one hour
per week ¢f cpen consultation apiece.

353 CoEputer access

The primary facilities used by all iatroductory
prograaning students are located in the basement of Phillips
Hall on campus. Several remote job entry stations scattered
around the campus were also available to students. iIn the
Phillips Fall facility, keypunches used by virtually all
studeats in +the batch Pascal and DPL sections!+*? yere
located within 75 feet of the dispatch window to which card
decks were submitted and from which cuiput and <card decks
¥ere retrieved. Turparound time for such access usually
varied frcz ten to thirty sisnutes. '

Apcther fifty feet down the hallway was located the
room containing all nine Apples pius a table for the student
teachipg assistant holding open consultation hours. That
roow was staffed roughly from 10 a.m. to 11 p.m. weekdays
and someshat more-restricted hours weekends, so that help
yas iprediately available, on & first-come first-served
basis for any Apple or batch processing student who needed

147 Pphile terwinal-based editipg and remote batch submission
of intrcductory programming Jjobs was possible, no
meaticn oif such possibility was volunteered by the
instructeors nor was any instruction givem, upor request,
in the usage of such systen. It is estimated that, at
most, a bandful of students from the batch processing
secticps sight have submitted their jobs is this manner.

49

systen usage or progtramaming assistance. The Apple
cogputers, themselves, were accessitble on a 28-hour basis,
as was the batch processing systes. 4 mechanism existed to
persit Apple students to reserve up to four half-hour
sessions withirp amy consecutive three-day period, space
permitting. Students could work at an Apple at other,
unreserved tikes provided that no one else had reserved that
machine.t4® An interface to +the batch subsystem permitted
Apple students toc route files contaiming source listings and
executicn output to the main computation center printer for
hard cories of their programs; attempts at keeping an
ipexpensive printer runaiag in the Appla room proved largely
unsuccessful.

The Arple systen itself consisted of a 64K Apple II
running UCSD Fascail, with dual disk drives at each
staticn,'*? and a 40-colusn momochrome display. <Compilation
and subseguent program execution, including input data
entry, ‘took rounghly three to four minutes on average.-
Iastracticn ¢n how to use the Apples was coaducted by the.
graduate teaching assistants in the reguiarly scheduled lab
sessions for the Apple section.

3.5.4 Course paterials

The first day of class, students were given a general
informaticn handout describing <course objectives, content,
and requiiements, and a 1ietter informing them that they
would be participating in a formal evaiuation of several
diffectent methods ~ of teaching iatroductory computer
prograagming. The letter told them, iam general terss, that
an educaticnal experiment was being conducted, but shielded
them from details of the experimeatal hypotheses and
identities of the experimental and control groups. Students
ware told that their course grades would be unaffected by
any of the informatiom they would be asked to yprovide
concerning the €ffort they expended in solving problems and
the intexrpediate outcomes of their work. Furthermore, they
wvould be evaluated only in relation +to other students in.
their particular section, so0o that precccupation with the
section tc which they were assigned could be minimized.

A Yicgragphical guestionnaire eliciting relevant
background information was administered the second day of
class. Apncanymous mid~semnester and end-of-semester

148 Freguency and duration of Appie sessions are reported ina
Appendix 8.2.

149 The fcllcuiny semester a Corvus hard disk was installed
to store system files, +thus reducing the individual
requirerents to one drive per station.

50

gquestionnaires sere also given out. Comnsult the appendix
for forss and tabulated resuits. o

Studepts in all three sections were required to
purchase the Conway, Gries, and Ziamerman text,i%0 A Primer
on Pascal. additionally, the Apple section was required to
purchase a second textisi for UCSD Pascal information. The
DPL students were asked to buy the Conway, Gries, and
Zimmerman primer for use at the end of class, and were given
an extensive set of class lecture notes and a DPL manual for
use during the first portiom of the course.

30555 Lectures

aid sections received Jlecture presentations on
computing systems, algoritha development, and algorithn
expressiocn in a particular laaguage. Prograes presented in
the DPL section were developed in stepwise fashion -usiag
logical assertions to reason about what npeeded to be
accomplished. . Iaformal arguments were given to verify the
correctness ot the developing [program at each level of
refinement, and postconditions were used to determine what
the progras actuadly accoaplished. Programs presented in
the Pascal sections were developed in stepwise fashion using
parrative prose and hand sipulation ef execution to verify
the correctoess of the developing prograi. Examination of
simulated output was used to deteraime what the program

accomplished. :
Lecture cliasses met twice a week for about one hour
each. 3 suyrmary of the lectures presented is given in

Appendix €.3; the individual hourly ezaminations which were
intended to reinforce the approach to the lecture material
are givem in Apprendix 8.6.

The switchover from DPL to Pascai for +the DPL section
was accoxplished at the two-thirds point of the semester.
Similarities and differences between DPL and Pascal, -and
program®irg concepts embodied in the more general-purpose
langmage, vwere presented in lecture material to the DPL

secticn. Discassion . of detailed Pascal syntax and
iaput/output peculiarities was conducted in the laboratory
sessiocns. - Sample programs and algoritha development in

Pascal were presented, as before, using correctness
arguments,. '

150 R, Conway, D. Gries, and E.C. Zimmerman, A Primer on
Pascal, {Cambridge: ¥inthrop Publishers, 2nd Ed.,

1981) .

31 K. FEowules, Beginner?s Guide for the UCSD Pascal System,
{New York: Byte/HMcGraw Hill, 1979).

51

3.5.6 Prograsming assignaents

A cosmon Set of yprogramming assignmebnts vas negotiated
between the two instructors so that neither the DPL section
por the Pascal sections would have an advantage ascribable
to language structure or programming style. No atteapt was
made to take advantage of any of the special characteristics
of the Apple microcomputer, such as graphics processing or
sound gesieraticn. o

After am initial assignment of copying and .ruaning a
handout progra#, five programss were subsegueéntly assigned
with either a cne-week or two-week solution period, each
section writing the prograss in its designated langquage.
A1l of these five problems, eicept the iast, introduced sone
new language structure or additiomal level of control flow
complexity. = - ' : ;

After the last assignment of this phase of the course,
the DPL group accompliished the swvitchover to Pascal witk two
practice Fascal prograps during a = two-week period. ~One of
these prograss involved re-coding into Pascal a DPL program
presented in the lecture notes. The other involved novel
features cf Fascal arrays. At the same time, the Pascal
groups - ¥ere woerking om a single progragming assignsment
involving patters matching. -

.. Finally, twc wore programming assigaments vere
presented in idestical fora to all sections for solutiom in
Pascal during the last three weeks of the semester. A

supmary of the assignments is presented in Appendix 8.7.

Problem descriptions uere handed out im lab sessions.
Completed assigmments were due back in either a one week
plus one day time period, or two weeks plus one day, thus
permitting at least omne more lab meeting before the end of
the sclution period. 411 students were required to turn in
a run apalysis sheet!32 yith every assignment, on which they
were to keep track of

1.. ihe number of runs used;

2. the outccme of each run (includiag w%ether the result
was an intended or unintended one amd the nature of
errors, if any};

3- the objective of that rum, whether to test a complete
soluticn to the problem or a partial sclution, or to
discover how some language feature worked;

152 See Appendix 8.4 for a blank forn.

52

4, a prose description of the changes =made in the
grcgrak since the previous run; and

5, the nuaber of hours expended before and after the
first runm.

In additicn, to reipnforce the particular methodologies being
used, the DPL students were required to turma in the iaformal
correctaess argyuments they had developed along with their
programsts? and the Pascal students were required to turan in
the test data on which they expected their prograss to
produce ccrIrTect results.

khen the students were satisfied that their programs
vere corxect they were asked to submit to the teaching
assistants their programs, im the form of card decks for the
batch processing sections and diskettes (to be copied onto a
Baster diskette) containing obkject code for the Apple
section. Subsegquently, the submitted progiams were rus on
test data the imstructors jointly prepared to exercise as

many aspects of the student programs as possible. in no
case was the test data released before the assignment due
date. - The teaching assistants were given the resultant

source code and output listings for gradimg of stylistic
content and correctaness, and at that time were asked to
record the correctness percentage and NcCabe complexity
‘metricis®® regqguired for evaluation of the experimental
hypotheses. - Graded programs were returned toc the stuodents.
However, the students were mever +told anything about the
recorded McCabe metric values. Similar subjective grading
criteria were used across the three major sections, with
small variations in weightings according to the biases of
the two instructors..

An upfortunateiy high number of bugs was found im the
DPL compiler during the course of the probler solution
periodss dpong those buys were incorrect handliag of
program scope units, of nesting of guarded commands, and of
array domain operators, and production of misleading error
nessages. 5% Approximately half the students in the DPL

153 See Appendix 8.5 for an exasple of an instructor-
developed ceorrectpess argubent for a simple algoriths.

184 The HcCabe metric reflects the control £lcw complexity
or corplexity of decision structure in the program. The
metric may be quickly calculated as one more than the
nusber of conditions in the progras. See the earlier
secticn in the literature survey, on measures of progral
complexity, foxr more general information about the
McCabe metric, apd see Appendix 8.8 for instructions on
computing its value.

53

section had sose encounter with compiler bugs during the
sepester, while virtually none of the Pascal studeats did, a
scattering of complaints concerning ~ the Apple session-
scheduler being the only difficulty encountered in those
guarters. Thus, an unintended source of confounding was
introduced ipnto the experimental design: relative goodness
of the cospilers being used by the DPL and Pascal sections.

155 A comglete 1iist of detected compilier btugs is given in
Appendix 8.9, '

Chapter 1V

DATA COLLECTICN AND REDUCTION

4,1 DAI3 COLLECIION PHILOSOPHI

A decisicn, based on Loth philesophical and pragmatic
grounds, was @ade to ask students to report primary data
themselves, on their programming efforts, rather than
automatically capturing that data without their knovledge.
It vas the experimenter?s strong feeling that a student®s
privacy in copputer usage should pot be involuntarily.
- cemproeised, any more so thap should the student®s privacy

in selecting certain materials for study im a university
library be comprorised. In particular a student's privacy
should nct be violated Jjust because the nature of the
computer makes it possible to carry out surveillance without.
detection. Furthermore, it was felt that informing students
vhat was needed f£from thes and how it rTelated to the
experimental objective of improving programming education
would heipr enlist their cooperation in providing accurate
and candid ianformation. This was viewed as particularly
important for data and subjective opinions that could be
collected cnly by directly reguesting it of the subjects.156

o a rragmatic basis, because both batch and
picrocopputer systems were used, different data collection
- mechanises vould have been needed, which likely would not
have been equaliy unobtrusive. {All batch Jobs submitted
for execution could weasily have been #drained® o an
archival tape for later analysis; however, givea the
sicrocomruter configuration used, intermediate versions of
the Apple programs could not have Leen stored away without
gsignificant degradation of response time.) Therefore, the
decision was madé to ask students to record measures of
their programming effort om standard run analysis sheets.
Furthersore, it was felt to ke educationally advantageous
{though pot directly gquantifiable) <£for students to be aware
of their cwn programming bebkavior. -

156 The research proposal, including experimental desigp and
descrigpgtions of data to be collected, was submitted for
prior review and approved by the Graduate School's
office of research, which had access to the university's
otficial Human Subjects Committeec.

- 54 -

55

The decision to collect card decks for the final
grading rum and manually imsert data cards for the batch
groups was motivated by the difficuity of siwmultaneously
preventing premature unintended access to the < fipal
instructor-designed test data, permitting late students to
work ©R frograls past the deadline,!%7 and getting graded
programs back to students as proaptly as possible. An
‘undergraduate student was enployed twenty hours per wesek
solely to assist in collecting and running and returning the
card decks, diskettes and listings.,

4.2 BUH ARALYSIS SHEEIS

Erediminary versioms of the run analysis sheet were
tested ip earlier course offerings with both DEL and Pascal
students. 2 npnarrative descriptiom of changes made from run
te run sas used 1ipn an =early versiosm to determine the
categories of eXxecution outcomes for inclusiom on a later
versicn. That feature was retained on the back of the
present wersioni®® in order to verify and disanmbiguate the
responses on the fromt, and was indispensable for that
purpose ag well as for perpitting students to cospunicate
their frustrations or exultations. 2s it turped out, in
filling out the forms many students failed to distianguish
language frog 1ogic errors or aspects of the problem from
aspects ©f the solation, so the narrative comments were
guite helpful. The subijective impression of the
experimdenter was that those failings were less prevalent in
the DPL section than in the Pascal sections, a possible
gutcose ©f the experimental ewphasis on logical reasoning
about prograes. . '

Many difficulties arose, on the part of the
expeximenter ¢xamining the rfun sheets, in trying to classify
errors as either language or logic errors, or determining if
the intepticn of the rus had been nmet. The experimenter,
hiwmself, checked the coding of answers and keyed the data
from all the foras, 850 at the least, a high degree of
consistency exists in the interpretation of studeat
res5ponses. Specific guestions of interpretatiom are
dddressed below.

In regard to the reason for making a run, "testing a
partial sclution to a probles® was taken to be the umotive
only when it was evideat that a separate progra® had been
writtes tc¢ scive that subproblem or that scafftolding had
been written to simulate the remainder of the whole program

157 & peralty cf about 12% a day was assessed for late
programs, up to a maximum of three days late.

158 Sge Agpendix 8.4 for the rum analysis form.

586

in order +to test the subproblem solution in contexti. In
particular, whem obly one bug evidently renmained im the
vhole prograz, attesmpts aimed at ridding the program of that
sole bug wete still takem to be tests of the complete
solutiocn. o _

Interpreting whether the run did what the stadent
intended coculd be aided by exasining the indicated reason
for making the rum. A program was taken to do what was
intended if it produced the correct output for a given
input, -even though it might produce incorrect output for
some iaput on a later rum. So a run {ia Pascal) designed to
produce debugging or trace output was taken as having an
unintended result if the program printed incorrect output
for the given imput, even though the desired trace output
Bight indeed alsc bave been printed. In the same way, if a
program ren rroduced correct ocutput for n-1 of its inputs
but incorrect output for the nth input, the emtire run was
taken to fkave an unintended result. '

Tée following remarks apply to the categorization of
errors as being caused by either improper 1logic, iaproper
ianguage = usage, = or risunderstanding of . problem
specifications. Again, this categorization was often
subjective, but at least applied consisteatly. In general,
the inforaation provided on the run sheets only permitted an
error to be taken for what it seemed to be at rum i, not .
what it turned cut, inr retrospect, to be at run itj.

1= Ap Munipitialized variable" was a logic error, even
tkcugh the occurrence might be detected {(at least in
DB1) during sybntax checking.

2. A variable of +the +wrong type orf an array uith
iifroper dimensions was evidence of a logic error.
Using DIV {isnteger division} where / ({real division)
was needed, or vice versa, was treated as a logic
Y & o 3 8

3, Assigning a new value to a declared constant was
treated as a logic error.

4. Qutput appearance, if incorrect (rot merely
unattractive) in the student progragmer®s view, was
treated as a logic error, provided that it appeared
reascnable to expect the student had mastered the
mechanics of the basic output statements. If that
expectation was not reasonable, the deficiency was
treated as a languaye usage error. {Failure to
calculate the precise column in which a value would
be printed was more often due to negligence or
laziness than to igporance or misunderstanding.)

57

5« Similarliy, a lack oif agreement in number or type of
procedure parameters was treated as a logic error,
previded that it appeared reasonable to expect the
student understood the workings of the parameter
passing mpechanisw, and as a language error othervise.

6. Order oi precedence errors could be ianterpreted as
either logic or language erLrors, depending upon
whether the narrative comments indicated the student
gisunderstood the underlying concept {language errorj
or undecrstood the concept but misapplied the rules
for expression formatiom {logic error).

7. Correspcndence with begins and ends could also be
intergreted either way, depending often on the stage
of debugging at which the error occurred. Unpatched
begins and ends were usbally language usage errors
and showed up early in the debugging; mismatched
begins and ends were usually logic errors and showed
ur later 1in the debugging. However, substantial
revisicns in prograams, though introduced to remedy
iogic filaws, often introduced nev language usage
@ITCOLS.

8. Precgram changes for cosmetic purposes {for example,
statepent indentation) or documentary purposes (for
exaaple, header conments) usually maintained the
previcus run®s intended result, though the additional
rup uwas often viewed as unecessary to check that
assumption. However, when errors were introduced, as
a result, the errors were viewed as laaguage usage
2LLCIS.,

9. Undeclared identifiers were treated as language usage
errers.

10. Erzrers ipn jeb control langunage vwere treated as
ianpguage usage errors.

11. Compi}er bugs, which arose exciusively im DPL, were
classified separately uader a special code.

In general, even these coarse distinctions between
language usage and logic errors were otten difficult to
apply. frequently it was necessary to place oneself in the

58

student’s position as he ®right have formulated intermediate

levels of refinement and ask whether the observed error was
the result of bad design {logic error) or bad implementation .
(language usage errorj. As a result of classification
difficulties such as these, any hypotheses Lthat might be
postulated in regard to specific features of language design
and usage vwould surely be evaluated better in a specially

designed experiment than in the context of a larger

experiment such as this one. ,

The run sheet gquestion that asked how mach effort was
involved in isolating the cause of an error produced little
useful information. Typically another attempt at solution
was made within an bhour's time. It was difficult to
determine, in general, at which run an eariier problem was
finally resolved, and how much total effort went into that
correcticn. Once again, a specially designed experiment
would pe better, in order to examipe persistence and
resclution of specific error types. ' '

43 PROBLEAS 1N DATA BECORDED BY THE TEACHING ASSISTANTS

Several of the teaching assistants failed to record the
correctness percentage and/or McCabe metric data as they had
been instructed to do. That failure was not detected until
it was toc late to renedy. In retrospect, final progranm
eyecuticns on instructor-provided data should have been
stored in archival forsa. However, because of the volume of
programs involved (over 200 prograas per assigniment}, that
precaution was not taken as a matter of due course.

As a consequence, the correctaess percentages for soszme
" of the &pple and some of the DPL students had to be
estimated frcos the assigped program grade which also
included ({kpown) subjective <¢riteria ip addition to
correctness. EBecause of this estimation procedure, the most
reliable way to analyze the correctness data was to treat a
student?s progras as being sither entirely correct on the
test cases or not entirely correct. :

The difficulty concerning the McCabe metric involves
both possible sisinterpretation by the graders of the
instructicnsts?® for computing the metric, and assumptions of -
gquestionakle validity about the metric’s computation, ‘in the
instructicos themselves,%? A further reason for treating

5% See Appendix 8.8 for instructions on computing the
McCakte metric. S .

160 The ipstructions specified that the "Do-forever-with-
exit-test" loop favored im some situations by the
instructer of the Pascal groups should add two to
complexity, one for the “iWhile true do" part and one for

59

the reported McCabe @metric values with caution is that the
intuitive correlations between simwplicity of program
decision structure and program correctness that one would
expect tc see were not borne out in this experiasent.

Because the programs were not stored away, as noted
before, the metric cannot be recopputed at this point.
However, a comparison between the setric values for the two
Pascal grocups should still be valid, as should intra-group
examivaticas of the relationships between HNcCabe metxric
values and pmeasures of programsming effort, such as time
expended in debugginga

4.4 POSSIBLE INACCUBACIES IN DATA BEPORTED BY STUDENTS

- Since the studemnts were relied upon for data concerning
effort expended and outcomes of indiviqual runs, a guestion
arises ccncerning the acecuracy of this information.
Problems concerning cateqgorization of errors in runs with
clearly ubintended results have already been addressed. A
further askwardness exists: With the later Xnowledge that a
progralr was nct actually correct {as evidenced by the output
on the instructor®s input test data) when the student
thought it was «correct, how does one now view the earlier
report that a rua's cutcome matched the student's intention?
The assumpticn was made in ansvering this question that the
student was cagable of discerning whether the output was
correct for the specific inputs he supplied, and therefore,
that his report of whether ouitcome matched iatention should
be taken at face value.

In generadi, however, interpretation of &measures for
programmers and programs which were not entirely correct
proved much mere difficult than data for correct programs:
Was the giver program incorrect because it lacked some
critical code {(resulting in a lower McCabe metric) or

the exit test. In retrospect, the "While true do" part
should probably add unothing to cosplexity since, in
terms of the metric’s program flow graph interpretation,
only ¢ne path may be taken after evaluating the ®while®
cenditiona

By simgilar reasoming about pgrograam flow graphs, LPL
alterpative statement constructions with tvo guards in
which one gward is the negation of +the other guard,
should probably npot, in retrospect, have Loth guards
contributing tc¢ complexity, since the same number of
contrc¢l paths exit that comstruction as imn the Pascal
wif copdition then statenent else statement”
constryction, which contributes omnly one to complexity.
{In LEL both guards must explicitly be stated.)

60

because it was tco complicated {resulting in a higher McCabe
metric)? pid the programper fail to iavest the requisite
time or did he expend an infliated amount of time on ill-
considered modifications?

A second atrea ©of concern about the accuracy of reported
data focuses on whether the microcomputer section's students
recalled details of their computer usage as faithfully as
did the Latch fprocessing sections?! studeats. A piausible
assunptico might be made that the Appie students® runs came
in rapid successiom, blurring the distinctiom between runs,
while the batch students! runs vwere discrete events
reinforced by ao output listing after every run. Hovwever,
counterarqueents might be made on several grounds. o

First, although the end~of-semester guestioanairelsel
revealed that the Apple studests were somevhat more likely
to wait uptil the end of the problem period to record their
data and had somewhat less faith in their own reporting of
run data tham did the batch students, they had £faith in
their own reforting of time data {owing, probakly, to the
discrete scheduiing of Apple sessions) eguivalent to that of
the batch students. Furthermore, the responses on that sanme
questionnaire indicate a consistent pattern of computer
usage acrcss aii three sections. Students tended to make
twe trips a week to the computation center, spending either
one to three hours there or wore tham three hours there, at
a time. While there, students tended to make either three
to five run attempts or sSix to ten run attempts. Thus, one
could hardly support a view that the 3pple students were
firing off run attempts as fast as the machine would allow,
thereby dipming their recall of individual run attempts.

A second counterarqguaest to the concern that accuracy
of recall by the Apple people was measurably different than
accuracy c¢f «rtecail by the batch peocpie &ight be based on
results o¢f relevant psychological studies, though the
particular recall phencmenon of concern hete does Bot seen
to have been the subject of any studies. In experiments om
the effects cf repetition and exposure duration on memory,
Fintzmanl€2 yaried visual presentation of a series of words
according te both frequency and duratioma, and reported that
Judgment ¢f. apparent frequency was highiy correlated with
actual fxequency but relatively unaffected by duratica.
{(Judgment of apparent duration was cocrrelated with bhoth
~frequency and duration.) ~This result w®might support a view

that both microcomputer amd batch processing students could
be expected t¢ report freguency of runs with equivalent

161 Sge Appendix 6.2, gquestions 6-Y9, for details on the
discussion'belou.

162 Bouglas L. Hintzman, "Eiffects of Eepetltlon and ExposuEre
Duraticn on Memory,"™ Jourmal of Experimental Psxchologj,

Voiume 83, No. 3, 1970, pp. #35-4u4,

61

accuracy regardliess of the turnaround time involved in a
particuiar run. _

4 seccnd study, by Madigan,i¢3 jipvestigated word recall
involving distributed repetition versus passed repetitiosn of
yordse. Although the study showed that recall is better if
the repetiticn of an ipput is spaced turther from the first
presentaticon rather than closer to it, the differences in
probabiiity cf recali even here, with a simple recall task
and repetiticn lags peasured in secconds not minutes, was at
most fifteen to twenty percent. Thus, though
generalizaticus from the cited psychoioyical studies might
be difficylt to make, a - case might be made that even if
differencs in recall of run freguencies and time
expenditures existed between the wicrocomputer and batch
processing sections, those differeaces would probably not be
huge. :
The final source of possible inaccuracy in data the
students reported was the problematic perforaance of the DPL
compiler.16% sixty-four percent of the DPL students reported
some enccunter with a compiler bug.!%3 It is difficult to
estipate how puch of the total time <cxpended on problenm
soluticn was devoted to trying to wmodify prograas
incorrectly translated by the compiler, the most sericus of
these situations being, of «course, syntactically and
semantically correct programs that were treated as incorrect
by the corpiler. Misleading compiler diagnostics can be a
probler im any language.iss But being unable to trust a
specific error ressage when ome is nevertheless certain that
an error exists, seesns gualitatively different tham being
unable tc¢ trust that a compiler has correctly translated
one's prograr. HMore to the point, lack of confidence in the

163 5.A. Madigaa, “Intraserial Repetition and Coding
Processes in Free Recall," Journal of Yerbal Learping
and Verbal Eehavior, Volume B, pp. 828-835, 1969,

164 See Appendix 8.9 for listing of known compiler bugs.

165 5ee epnd-of-semester guestionnaire, guestion 11, in
Appendix B. 2. Ihe respodnses to the same guestion for
the Pascal sections were also reported there, verbatinm.
However the reported encounter with a compiler bug by
48% of the Appie and 36% of the Batch Pascal studeants is
viewed as unreliable, and attributable to edther
misleading error wmessages or problems in the Apple
interface te the filer/editor or tatch printer/scheduler
Subsysten,

166 S5ee, for instance, C. Litecky apd G.B8. Davis, "A Study
of Ezrors, Erxor Proneness and Error Diagnosis in
CCBOL ," +who reported +that 80% of a COBOL compiler’'s
error diagncses were misleading.

62

faithfulness cf prograe transliaticn undermines a beginner's
trust that a methodology (the DPL nmethodoiogy} employing
formal reascping to progress from specifications to
ipplementation can result ipn successful prograkps. Thus the
DPL secticn should be viewed as operating under something of
a handicap due to compiler problems.

Chapter. Vv

RESULTS

Before bLeginning this discussion, it would be
worthshile tc reemphasize the basic natere of this study as
a dual twc~grcup experiment, with the Latch Pascal section
serving as a control grouwp in each experiment. The
comparisors hetween the DPL section and the batch Pascal
section isovolved similar batch processing computer access
podes and identical problem assignments, bat different
progitas development methodologies, different ©prograamiag
languages, and ditferent instructors. . The comparisons
between the Aprple Pascal section and the batchk Pascal
section ipvolved identical progran developmnent
methodologies, problem assigpments, and instructor, very
similar frogramaing language dialects, and different
computer access modes. .

a1 SUKBARY

The body of statistical rum data and subjective stndent
impressiops supports the coanclusions that :

i« The ©DFPFL students 31gn1f1cant1y untperformed their
~ batch Fascal counterparts through the end of the DrL
paxt cf their course, with respect to aeasures of
prograsz correctness and programming errors, but that
the eftect did not carry over to their Pascal
prcegrazeing experiences at the end of the semester.

2. The Apple Pascal stodents sigrificantly and
irpressively cutpertormed their - batch Pascal
ccunterparts throughout the semester with respect to
measures of program correctness, programging errors,
tiere expenditure, aad consistency of performance, and
derived a higher degree of satisfaction froa their
dearning experiences. Furthermore, the 3dpple mode of
access had a moticeably beneficial effect on students
of marginal ability.

- £3 -

o4

5.2 DEIRILS
5¢2.1 Statistical Apalyses and Data Iransforasations

Data analyses bhave intentioually been kept simple,
rarely g¢cing beyond descriptive statistics, for sevsral
reasons, cne statistical, one practical, and one relating to
experimental desigbh. The practical reason is that the large
nukber of subjects utilized in this study gave us =overy
chance for producing statistically significant results, no
matter how seall the differences ip group means. However,
statistical siganificance wilil not be enough to impress
coeputer scientists, - uniess the observed differences are
also methodologically = and gducationally important.
Therefore, a yguiding principle in presenting the analyses
has been to lay out the group differences for the reader,
advise when those differences were statistically
significant, amd caution when seemingly large differences
were ncnetheless lacking in statistical significance. The
reader cac then decide for himself what pagnitude of group
differences ®ill impress binm.

The .experimental design rtreasoan for lipiting the
sophistocaticn of statistical technigues was alluded +to in
the earlier [fresentation of the design used here: Some
people will <cbject that the confounding introduced by
. instructer differences overrides all other coacerns and that
a true experiment of this nature should bkave a number of
instructcrs randomly assigned to the different approaches.
For those doubtérs, no amount of statistical wizardry will
salvage a flawed design. : '

The statistical reason for lipitiang analyses to those
presented is that ian some instances, statistical assuaptioss
about hemogeneity of variamces necessary for more
sophisticated amalyses of variance have heen violated by the
data, often along tvo dimensions {across problep assigniEents
vithin a given methodeclogical section, and across sectioans
at a giver proitlem assignment). s a gonseguence, the more
sophisticated analyses would not, in some cases, be well-
founded.

For the most part, in the presentatioms that follow,
only twe panijpulations have been performed on the data.
First, in order to reduce the wnumber of data points that
must be pade sense of for each student, the seven ComRoOn
assignments frow problem two through problem mine {with the
exclusion of the dissimilar problem seveans) have been
clustered into three subgroups of problems. Ia addition to
permitting some smoothiang out of the inheremt variations in
perforsance by averaging measures within each subgroup, the
cilustering makes sense pedagogically. Subgroup I {problems
two threough four) consists of introductory probless,
subgroup 1I {problems five and six) consists of intermediate
level problees and rums through to the end of +the DPL part
of the course, and subgroup III (problems eight and nine)

65

are advanced problems for which all students wrote programs
in Pascal. . ' .
Second, the students who finished the course have been
partitioned into a subset called “consistent finishers™ and
a subset called "inconsistent finishers®. The consistent
finishers were the ones who got at least ones problem
entirely correct within each of the aforeameationed problem

subgroups. The inconsistent finishers failed +to get at
least cne problem entirely correct in at least one of the
aforementioned protlenm sSubgIoups. The inconsistent

finishers were regarded as dqualitatively and quantitatively
different in rerformance froa the comrsistent finishers. '
Qualitatively, the consistent finishers might be viewed
as those rpeople who received consistent reinforcement for
applying the techniques of their particular methodology-
{The reinforcement, hers, wvas the gratification that comes
with successful assignment coapletion.) The inconsistent
finishers failed in some way to integrate alli the lessons of
their wmetbodolcgy at some point in the semester, with
possibly adverse consequences for latsr learaning. o
. Quantitatively, the number of problenms solved entirely
correctly by each subset differed amarkedly. Iin summary
form, tke nupber of rroblems (out of the origimal ungrouped
seven) solved by each subset is given below in Takle 2.

TABLE 2

Number c¢f Problems Solved Entirely correétly

Consistent Inconsistent
Finishers Finishers
Applﬁ ’ 5' 89 3;85
Batch Eascal 5>54 3.34
" DPL ' 5. 45 3. 38
dinimus significant

group difference 0,26 0,37

o e Mk WA Sals Cabm s W dleses M et dplem s e e s i]

The "npinieum sigmnificant group difference® referred to in
Table 2 is a magynitude of three times the standard error of
the mean for the entire collection of pecplie in that sabset.
If the grcup means differ by at least this much, the means
should be regarded as sigmniticantly different.!®? The namber

66

and percentage of students im each subset is also given
below, in table 3.

TABLE 3

Size of Consistent and Inconsistent Finisher Subsets

Cconsistent lnconsistent

Finishers FPinishers
Nurker Percent Number Percent
Apgle 47 71% 19 29%
Batch fascal 50 02% 3 36§
DPL . . 40 59% : 28 $1%

0 W dows e e Gbein s Bemn BN s e S Jane s drn e O
Y e e e Gk s M D Gy Wm Faem G B e e W o

The final genceral observation tc be pade bhefore
preseantation of results is that no extreme values were
excluded from any of the subject-supplied data.
Occasionally students reported 50 hours or 40 rums expended
onh a single cne-sweek-long assignment. There was no a priori
reason tc exclude such measures, since characterization of
difficult or even futile student efforts vas of interest in
this experiment, as well as average efforts. Furthermorsg,
some of the students who reported such extreme allocation of
resources evidently struggled through to successtul
corpletice of their assignuoents. They, too, should be
allowed tc make a contribution to the group averages.

167 The standard error of the mean in effect measures the
within treatment variability. Therefore, if the group
means vary by more tham three times the standard errcr,
the difference may be viewed as due to the treatment,
ncot rapdom variation. If the sampling distribution that
the standard error represents were normally distributed,
then a significance level of .05 in the usual two-tailed
test would be eguivalent to 1.96 times the staandard
error; a signiticamce level of .01 would be equivalent
te 2.%6 times the standard error. S0 three times the
standard error provides a conservative confidence level,

67

5.2.2 Correctness of Prograss

As ncted previously in table 3, a higher percentage of
Apple students achieved consistently correct progra®s Over
the course of the semester than did the batch Pascal
students {71% tc 61%) . Meanwhile, the percentage of LPL
students achieving consistent results was nearly identical
tc that of the batch Pascal section (59% to 61K). As table
2 showsed, the average number of problems solved entirely
correctly cover the whole semester vwas sigpificantly higher,
for the Arple section, for Loth coansistent and inconsistent
subsets of students, than the average for the batch Pascal
section. No signiticant differences existed, for either
subset of finishers, between the batch Pascal and LCPL
sections, as smeasured over the entire senester. o

But shen the periormance is examined through the end of
problen six {the end of the DPL languaye part of the course
for the experimental DPL sectiomn), a significant advantage
for the TFL students over their batch Pascal counterparts
can now# be seen {Table #): ' : :

TABELE 4

Aﬁe:age # of Correct Soluticns Through Problem &

Entire Class Number oif Students

ipple L.12 ' b6
Batch tascad 3240 81
DPL 3.78 68

Misimus significaant
group difference 0,23

bt it e S G Gmk e Giew e e D Kie et dows e Mt 50

_ﬂﬂuhmm—wmm—hummhumﬂ

An even greater advantage over the batch Pascal studeants can
be found, hoeever, for the Apple students.

The changeover from DPL to Pascal was not achieved as
successfully as had keen hoped possible, An examination of
perrorsance <¢n problems eight and nine alone shows {(Table 5)
that the DPL students solved significamtly fewer problems
eptirely cortectly than did the batch Pascal students.168

&
o

TABLE S

Average 4% of Correct Solutions for Problems 8 and 9

Entire Class , Number of Students

apple 1.15 ; 66

Batch fascal 1.28 81

DPL 0.78 : 68

Minimus sigpnificant
greup difference 0.15

it G rn de G e s Mot W e G Caime SR den e i
MO s i e gy make e AR W R e Wb A das e i G

The follcuing graphs display the fraction of estirely
correct scluticns within each group of prchlems, first for
consistent finishers ({(Figure 2), then for incoasistent
- finishers {(Fiqure 3). 4t each probles gyroup point on the
horizoatal axis, vertical bars project the minisum
difference that must exist between any two of the dJdata
points for that difference to be considered sigunificant.

In brief summary, the problems in group one introduced
the basic language structures, including alternative and
repetitive stateasents. Probless in group two dealt mainly
¥ith algcrithms requiring arrays, and probleezs in groap
three dealt with medium—length prograes requiring subprogran
modunles ands/or mualti-dimension data structures. Consult
Appendiy £.7 for more details on ipndividwal assignments.

168 Note, however, that the relatively 1low anumber of
entirely correct sclutions by the DPL section does not
imply that they failed to learn Pascal adeguately.
HEntire correctness® is a very strict criterion; if an
output label was aisplaced on even one of the four
graphs required as output on rroblem sight, for example,
the whole grogram was counted as not entirely correct.

qEIINT *

90
80
70
60 -
50 4 :
%0 i -
30

20

10

D

——
PROBLEM GROUP
LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=DPL

VERTICRL F QR% F&Hgﬁﬁﬁl Ha &Oﬁpﬂmﬂﬂﬂ ERROR

[

Fighre 2: Average percentage entirely correct solutions for
- all programs by consistent finishers

Lt

80
70
60
50
80
30
20
io

0

pares
Ly
20~

: PROBLEM GROUP .
LEGEND: METHOD X=APPLE Y=8RATCH PASCAL 2+-0PL.

VERTICAL R EALH RROBLEM oRobR ™ P Erron

Figure 3: Average percentage entlrely correct solutlcns for
all rrograms by inconsistent finishers

70

5.2.3 Bffort Expended by Students

Statistics presented in this subsection represent the
pachine and bLusan time resources expended in solving
assigyuned coaputer probless. The eificiency of thosse
expenditures, in teres of the errors comaitted en route to a
solution, will be presented in a later subsectioa. The
graphs displayed at this point ansver guestions about the
relative cost of each approach, and might be of interest to
programsing methodologists, computation center directors,
and prospective students of programming coacerned about the
time reguired by introductory courses.

The statistics on average nusber of runs utlllzed
include runs to test partial solutiosns, runs to discover how
ianguage features work, and ruas at the end of the solution
process to test presuamably . correct cosplete prograss.
Therefore, these statistics reflect etficiency of prograsm
testing strategies as much as assimilation of program logic

and laamguage <rules. Coasult statistics on rums with
unintended results, presented in a later section, for a
clearer reading of student understandirg {or

misunderstanding) of programming mechanisms.

i

103 .

h-un-..qx

T= T SR R A

A L ¥ r ¥ T - —

2
PROBLEM GROUP

o ™
(5T

| LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z=DPL

VERTICAL F%?%ﬂ%?%%%gﬂﬂs Gﬁﬁ NDARD ERROR

Figure 4: Average number of runs for all programs by
consistent fipishers

71

< N - O @

[71 3 B

— . 5
PROBLEM GROUP

pma

LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=0PL

VERTICAL F%%Q?: H%ﬂ’%ﬁ%g&n:i G§ g {DARD ERROR

Fiqgure 5: Average number of rums for all prograas by
: inconsistent finishers

The graphs show that number of runs utilized generally
increases uith problem difficulty?®?® and with the number of
language esechanisas regquired in the prografe Each
assigoment except the sixth one (which is represented ia
problem groug twe, im the graphs) introduced a new language
feature. Figures 4 and 5 suggest that siganificant
uncertainty about how particuiar language structures worked
evidently continued well beyond the assignment that
introduced each such structure.

Note that the number of rums utilized by apple studeuts
geperally improved {lessened in number), relative Lo batch
Pascal students, as the semester went Ohe.

The graph of hours expended preparatory to the first
rua (Figure €) shows that very 1little difference exists
between the three groups of consistent finishers.*79 The

169 Cconsult question 15, end~ot-semester questiompaire, in
Appendix 8.2, for student estimations of problien
difficulty, which is geheral agreed with the
instructors’ estimation of problem difficuity. '

170 No statlstlcally significant differences existed at all,
for the inconsistent subset. Where graphs are omitted,
no sigaificant or interesting group differences existed,

72

12

10 '
8

& g
4 M
2 |

o _ , ']

s
o
0

PROBLEM GROUP

- LEGEND: METHOD X=APPLE Y=BATCH PASCAL 7=DPL

VR LCA RAH PROBLEN gkoup e o

figute 63 Average number of hours before the first rum for
all programs by consistent finishers

uniformity of the preparation time «reported suggests a
combimaticn of possible influences: Difficulties inherent
in uwnderstamding a jprobiem and discovering a solution
strateqgy dominate difficulties in expressing that solution
in an algcrithmic langunage, regardless of methodelogical
differences; apd student schedules permit just so puch time
te be allocated to solution design, regardless ' of
instructors? preachings about trading off desigas time for
debugging time,171

The rost important showing of the "“time before¥ gragh,
Figure &, is 'that 1it disproves the reservatioan asany
educators share in regard tc switching instruction to an
interactive systenm: Students will pot rushk to the machine,
countinrg ¢cn inventing programs on-line, without spending
adeguate time im designing solutions. Undoubtedly, the
Apple schedulipg mechanissm, which limited students to

unless'uhere ncted otherwise in the text.

171 Correlaticns between background variables such as grade
peint average and SAT scores and performance mgasures
such as time before the first run suggest that the
brightest students are also guickest. See the later
secticn con characteristics of the student subjects.

73

reserving at most four half-hour sessions in any consecutive
three-day .pericd, contributed favorably to the observed

behavior.

HQURS |

10

8 54
& -2
4 T —y
2 |
B T v v y v ¥ T — T

1 2 - 3

PROBLEM GROUP

LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=0PL

VERTICAL F%%‘%ﬂlﬁl;i%?ﬂ}? aﬁoﬁ DARD ERROR

?igure'7; Average pumber of hours after the izxst run for
all prograams by inconsistent finishers.

Nupber of hours spént after the first run measures the

debugging time icr the probier. DFL advantages over batch
Pascal with respect to this wmeasure, sit omn the borderline
of significance at every problem group. {See Figure 7.)

However, the Apple group's advantage over batch Pascal not
oply increases to an impressive level put reflects a nice
decrease ipn debugging time as the semester progresses.

The advantage of the Apple grouap cam not merely be
sritter cff as faster turmarcound tims. Debugging requires
thought as well as machine access., The degree of similarity
between the batch Pascal and Apple sections in - number of
trips to the comgutation center, time spent once there, and
run requests submitted per session, as reported on the end-
of-sewester gquestionnaire, suggests that the Apple people
continued their computational sessions because they had the
dual sense that they could wrap up the program right then
and that their npext effort at solution would be rewarded
vith immediate turnarocund. Thus the =nature of Apple usage
produced a concentrated, 1ntense effort, and it was that

74

coacentration, itself, which resulted in shortening the
debuygging period. Ne time was lost in TtTecovering context
every time the studemt came back to the program display
after a larse, as likely occurred in the batch processing
secticns, 172

In susmary, the total nurker of hours expended om each
problem reflects uno significant difference between the batch
processing sectionas, but an advantage to the Apple section
that increases as the semsester goes on ({when, presumably,
the Apple student learmss more about bhow to use and take
advantage of the machine)}., See Figure 8,

. Camant o v v) y - ¥ 2 i

1 2

wl-

PROBLEM GROUP

LEGEND: METHOD X=APPLE Y=8ATCH PASCAL Z=0PL

VERTICAL %@%ﬁ%ﬁ%ﬁ%@& HS Gﬁuﬁpﬁﬂﬂﬁﬂﬂ ERROR

Figure 8: Average total number vf hours expended for ail
Frograws by comnsistent finishers

khile +the total number of hours used by the batch
processing sections may not have differed, the allocation of
that time did. At each problem group reference point, the

872 This cbservation would help distinguish the nature of
microccmpuier usage from that of time-shared interactive
1Sage. The time~sharing system user is subiject to the
vagaries of system crashes, resource competition, and
respgense time fiuctgations, aili of which the
microconputer user is shielded fron.

75

e

2.5
. __...-—--""".""--.,._.
- 2.0 T . T ———
1-5. > J}\—::
1.0 I
0.5 |
0.0 . — _'_ —— :
1 2 3

PROBLEM GROUP

LEGEND: METHOD ~ X=fAPPLE Y-BATCH PASCAL . Z=DPL

VERTICAL 4003 AEBRIBLENS dhoffOne0 ERROR

Pigure 9: Average ratio of time before to time after first
run for all programs by consistent finishers

DPL secticn had a higher proportion of time before the first
run to time after the first rum, than did the batch Pascal
‘section. Subjéctive impressions during the semester suggest
that DPL students with incorrect sclutions spent too little
time after the £first run exarining their results and
thinking atout their programs, or trying alterpative test
data. , : _ .

Fipally, it does not appear that any differences in
coumparisons of observed performance can ke traced to the DPL
policies ¢f repcrting only one syntax error and printing no
partial cutput - prior to aboriive program tersination. To
the surprise o¢f many, perhaps, the policies did not seenm to

place the DP1 students at a disadvantage. {I1f there vere
‘such a disadvapntage, one would expect a loager debugging
period fecr the DPL pecple.) Neither dida the policies seen

to give the DFL section an edge. A possible conclusion is
that the students in the other sections were not making use
of all the error messages treported andsor swere not producing
trace output to bhelp explicate program bugs. Students may
try to track down only one errcr at a time. See, for
exaBple, Nagy and Pennebaker, "Autowmatic Apalysis of Student
Prograsming Errcors,Y whose data led them to believe that
"aach new ristake is discovered only once a previous pistake
has been corrected." Ssignificant advantage might be
yielded, therefore, 'in intensively instructiang students in
debugging technigues. : C

76

5.2.4 Exrogs Compjitted En Boute to Solytions

The pumber of runs with unintended results reflects the
"student's understanding of how to develop correct prograss
and his assimilation of the detaiis of programping language
syntax and semantics. A run might have ap unintended result
due to a logic error {an error in the prograa's algorithm),
a language usage error {an error in translating an algorithm
into a language), a compiler bug {a syster error is progras
tramslaticn), or a misunderstanding of problen
specificatiocns. To some extent, the number of runs with
uaintended results reflects how seli the formal lamguage
descripticns and dinformal program exasples can compunicate
the languaqge®s workings. To some extent, alsc, this measure
refilects how well the particular programming wmethodology
permits the student to uncover errors im his work aloag the
way and t¢ [rogiess to an eventual solution. However, a
word of cautiocn is needed: Hubmber of runs with unintended
results used en route to the solution did not correlate
significastly with eventual correctness of the fimished
product. Seg errors conmitted reflect efficiency of the
soluticn process wmore than the gquality of the final product.

This peasure is unbiased by the goal of a particular runm
attempt, be it testing a complete solution, testing a
partial sclution, or discovering how a language feature

works. Cnly runs with upintended results are counted.
Lonsult secticn 3.2 tor details of ran resalt
classificaticha

4s Figures 10 and 11 show, belo¥, consistent LFL
students wmade significastly fewer rums with unintended
results than did cousistert batch Pascal students, but only
through the end of problem gyroup two.173 That advantage did
not continue cnce the DPL students switched to Pascal, and
in fact beth consistent and inconsistent DPL students nmade
moere errcrs iam Pascal than they had in DPi. Possible
coaclusicrs frog this pattern might imclude that DPL was
less error-prone than Pascal or that the semantics of Pascal
adeitted cf formal description less well than did those of
DPL (language design issues) that Pascal was sufficiently
different <frcm CPL that the transference of programming
language fprinciples could not be easily effected (an issue
0of educaticnal psychology): or that the details of Pascal
were ineffectively presented (an issue of experimental
presentation) . : _

Aprle students enjoyed a clear advantage with respect
to their tatck Fascal counterparts for this measure through
at least the second problem group. The coansistent Apple
students continpued their advantage through to the end of the

i73 This'digfetence is even Bpore imgpressive because the DPL
statistic feor problem grcup two includes about 0.5 runs
with upintended results caused by compiler bugs.

77

10 .
8
.
3
p)
u | T L wr 12 o ¥ - L L2 T .l g
1 2 3
PROBLEM GROUP

LEGEND: METHOD X~APPLE Y-BATCH PASCAL Z=DPL

VRTI A58 ST HRERLE o e

Figure 10: Average nuamber of runs with unintended results
tor all programs by consistent finishers

2
PROBLEM GROUP

P
m-l

LEGEND: METHOD X=APPLE Y=BATCH PASCAL fwﬂPL

VERTICAL F%%R%ﬂ%;r%ﬁ%g{ 39%0% ANDARD ERROR

Figure 11: Average number of runs with upintended resuylts
' fer all prograss by inconsistent finishers

78

semester, while students im the inconsistent Arple subsst
had substantially more difficulties in the third problen
group than they bad had previously. Simce the thicrd problem
group required the longest -~ prograas, ¥with some
modularizaticn necessary, it 1is possible that working
without [frogram listings most of the timeiT¢ presented
okstacles to some in the Apple group.

Note that students in the iaconsistent subset generally
had more rumns with unintended results than students in the
consistent subset 4did. Houever, the imconsistent Apple
students evidently bad wmore difficulties with the last
problem group, as copsmented on above, while the incomsistent
batch processing students {both DPL and Pascal) evidently
had more difficulities with the problems of group two, which
required array @papipulatioRn. By dimplication, the batch
Pascal =<csisdents in the inconsistent subset were iz that
subset because they had Rmajor difficulty with the second
problem grougp; the Apple students in the ipconsistent subset
dere in that subset because they had major difficulty with
the third groblem group. '

With respect to particuiar types of errors that caused
runs to have unintended results, the consistent DEL students
for the @most part outperformed <consistent batck Pascal
students with respect to both logic and language ercors
through the end of the second problem group. Consalt
Figures 12 and 13 below. However, those sigpificant
differences did not carry over to the third problem group.
There were no sigpificant differences between the
inconsistent DPL and batch Pascal sections at any point on
either language apd logic errors, in part because of the
inkerently higher variaance of statistics for these
inconsistent subkijects.

The Bpple section came out best of all with respect to
these cosiarisons. 2 very sizable advantage over the batch
Pascal section was observed in regard to logic errors {owing
perhaps tc the greater conceatration in effort exteaded by
the Apple pecrle, as suggested earlier), and a significant,
if relatively spall, advantage over the batch Pascal section
in regard to language erfors at an intermediate point in the

174 Ho statistics were acquired during the semester on how
cftern Agpple students obtained distings of their
prograps. However, the following semester, in which all
intrcductery studesnts used the Apple systems, 57% of the
students reported obtaining 1listing only every few
sessicns, 7% only once per assigament, 27% after every
sessicn, and only 9% once or more durimg an Apple
sSessicn. Foriy percent of the same students reported
that the lack of a printout after every progran
execution caused them some difficuity. Failure to
obtain a listing more often was attributable primarily
t0 the sicy turmarocuad time om printing.

79

 PROBLEM GROUP

LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=OPL

TR R TR PRBLEN cRolp 0 ERROR

Figure 12: A&verage number of rums with logic errors for ail
programs by consistent finishers

BUNS |

.

§

S

2

1

0 P - O ——— .
) 3 3

PROBLEM GROUP

LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=0PL

VERTION. RS AT BRI Ao e

Figure 13: Average number of runs with langquage errors for
all programs by consistent finishers

80

sepesters

: A Bcst interesting set ot responses arose from the end-
of-sepester gquestion asking how pany times a cliaic
attendant or teaching assistant had been unable to help with
a problem in the studeant's program. Despite the fact that
none ©0f the c¢linic attendants had ever written a DPL progran
and that only two of the six graduate teaching assistants
{the LDPL assistants) had done so, the DPL students were
unable tc obtain help with their programs fewer times than
students in either of the other sections.®7?35 The conclusion
may bLe reached that DPL's language Rechbanisms have some
intuitively understandable structure andsor that fewer
severely contorted programs were produced using the LPL
language and pmethodology than under the alternative
approache. Either fewer problems were being brought to the
attendants by the DPL students or else thoSe problems which
were inenplicable to the sovice student could be easily
unraveled by the moderately experienced teaching assistant.

5.2.5 Copplezity of Prograp Decision Structure

A5 ncted earlier in section 3.3 there is some reason to
be skeptical abcut the validity cof the McCabe metric values
reported ky the DPL teaching assistants. #hile comparisons
between the DPL section and the Pascal sections aight not be
valid, comparisons betvween the twe Fascal sections and
comparisons within each of the Pascal sections should stiil
he useful. As can be seen from Figure 14, very little
variation exists in the complexity of program decision
structure between the Apple and Lkatch Pascal sections.
{Rote how small the standard erroxi bars are.)

Little variatiom is not unexpected, however: The
problenrs are too sipple and constrained to adeit of widely
differenst solutions, particularly wsith sisplistic data
structures strongly isplied by the problems; and hints from
the varicus program consultants also play a homogenizing
tole.

Furtherscre, little variaticon exists between the HcCabe
netrics for progranms of the consistent subsst and the HcCabe
metrics fcr frograms of the inconsistent subset. From that
observation it may be concluded that errors in progralms ¥ere
caused less by owmission of critical [program parts or
inclusion of hopelessly complicated =xtraneous code tham by
incorrect vaiues for variables or comparators. An exauple
of the latter might be executing a loop once moTe Or once

175 Consult the end-of-semester yuestionnaire, question 11,
Appendix 8.2, for details.

81

PROBLEM GROUP

LEGEND: METHOD X=APPLE Y=BATCH PASCAL Z=DPL

VERTICAL F%gﬂ%ﬂ%ﬁﬁm&a Gﬁ O%FﬂNDﬁRD ERROR

Figure 14: Average NMcCabe metric for all programs by
consistent finishers

less often than was intended. _ _

Apother guestion that occurs is whether programs
structure deteriorates noticeably as debugyging coatinues,
particularly fer the Apple section. Gne wmight speculate
that localized program fixes would corrapt program structure
for the c¢n-lipe group, which generally worked without
listings ¢f the latest program versich. However, only weak
positive correlations {explaining only 22% of the variation)
were observed between debugging time and HcCabke aetric for
the consistent subset of the Apple section.i17¢ Even weaker
correlaticns sere observed for the consistent subsets of the
other secticns, These results follow, almost directly, froam
the observation that wvery little variation existed of asny
kind in the McCabe metric tor students in each section. So
there was 1little variation that could be explained by or
correlate with some other factor. Deterioration of progran
structure with debugging time is not ruled out at ail, for
gore complex problems.

176 Hiqgher McCate metric means more complex program decision
structure,

82

5.2.6 Secemd-level Programming Course Follow-Up

Becavse the experiment was conducted during the fall,
1981 semester, it was possibile to inioramally track the
progress ¢f ouz subjects into the second~level programaing
course offered in the spring, 1982 semester.1?7? There was
only one secticn offered in that course, and the instructor
had no knowledge of the section of introductory prograBming
to which ecach student had belonged. So the observations had
no built-ip biases. Though the second-level course included
some #aterial on assertioms, which nmight have favored the
former DEL students, it also imcluded some material on
progran testing which would have favored the former Pascal
groups. PFore importantly, virtually all the programs in the
course had to he written im Pascal, $o some estimate could
be acquired of whether the former DPL students had gotten up
to speed in that language.

Betueen <zk and 29% of the former students in each
section fprogressed immediately to the second programaing
course {19 Apple students, 19 batch Pascal, 15 DPL). Fall
1981 introductory prograaming students comprised 61% of
those who finished the second-level course in the spring of
1982,

i |
i i
] TABLE 6 4
l i
! Grade Change {in 5td. Deviations) from 1Ist Course to i
l ' 2nd §
| |
i i
} Hean i
| ' i
| Apple ‘ -0. 18 i
§ .Batch fascal ~0.34 |
{ DPL -0.25 i
{ Mipimur significant }
| group difference 0.12 }
! :

177 g gttgxpt was made, hovever, to c¢oliect the sanme
statistics that had been collected from the introductory
PLOQragRing Ccourse.

83
Table & shows the grade change, i{rom tirst prograamsmsing
course to second, as measured in standard deviation units.
Since the two first-course imstructors and the one second-
course imstructor each applied different grading criteria,
the use of stapdard deviation units here takes into account
a student*s performance relative to his peers. In general,
since the first-level course weeds out people who have
little aptitude for programaing, one would expect that the
grade performance (in terms of distance above the mean) of a
student «ho continues on to the &second course would
decrease. That is, an outstanding performer in a large
collectickr of uatested beginners will be somewhat less
outstandicg in a more select second course with classmates
of proven rotestial. If a section's average grade change,
in standard deviations, from first <course to second was an
increase, that would present a strony indication of that
methodoicgy's goodness relative to the other instructional
methodolcgies. 4s Table & showus, the Apple sectionts
average grade change was the least negative, a statistically
significant amount better tham the batch Pascal section?s.
.¥inal course grade, to be sure, measures other things
besides simple prograsming ability. Gverall, however, the
analysis c¢f grade change fits the general pattern of results
presented earlier: a mild advantage for the UPL section in
relaticn to the batch Pascal section, and a much stronger
advantage for the Apple section in relation to the batch
Pascal secticin. In addition, the grade change data
{incorporating second-course grades) suggest that the
disappcinting performance of the DPL students in Pascal
programmicg at the end of the introductory course was due to
inadequat¢ time to learn the new material and not inability
to do s0. ‘

S5.2.7 Sgbjects® Biographical Factors and Performance
Subject characteristics, as represented on the secoand
day of class, have already been supmarized. 178 The
characteristics of the subject populatiom at the second day
are Dow compared with the «characteristics of course
finishers and dropouts. _ -
The characteristics of finishers aand dropouts were very
similar across the three subject secticns.i?79 The nost

178 S¢e secticn 2.5.1.

179 The differentially higher rate of good experiemce with
: lcgic asmony the dropouts bhad only one plausikle
explagaticn: Some students had elected to take a non-
technical lcgic course from the philosophy department as
an alternative way of fulifilling their mathematics

(= +]
&=

Ny i ————— S S el

TABLE 7

Subject Characteristics

NUMEEE COF SUBJECTS
SEX

Male
Fepale

MAJOR

Computer Science
Mathematics
Other

YEAR
Freshman
Sorhcmore
Junicr
Senicr
Graduate student
Evening ccllege
GPA
SAT VEBEBAL

SAT MA1H

* Good experience wWith

Calculus 1
Calcuiuvs 2

Logic

Writing

Day 2

274

53%
U7%

21%
16%
63%

12%
33%
26%
213

3%
2. 95
536

589

17%
41%

13%

89%

Finishers

215

52%
Lok

23%
16%
6 1%

834
4B%

14%

904

Dropouts

59

S4%
L6%

1%
18%
71%

15%
16%
3%
24%

S5%
15%

20%
87%

* WGcod experience with" means that the subject
comgleted the course im college or high school
with a grade of "C" or Letter.

e e e S e s S e e A S G e S S e Sm S e - S S S e A e S — — — — — e — — — i ——

85

noticeable ditference between finishers and dropouts was
that dropcuts had considerably 1lower SAT wmath scores and
substantially less in the way of positive experience with
calculus. Although nothing in the introductory programming
course relied directly on caiculus, it is evident that lack
of mathematical sophistication and inexperience with symbol
manipulation placed programaming students at a disadvantage.
Looked at another way, the same skills and interests that
promote gcod performance in calculus classes would also seen
to benefit students of programming.

The lower dropout rate for sophomores and computer

science majors is probably coimcidental: Computer science
majors freguently take the first programming course as
first-semester sophomores, and evidently were more likely to
stick cut the course than non-majors. However, computer
science &ajors performed no Lketter in the course than
students with other majors. One may comnclude that students
select computer science as a major more on the basis of
career Cfrortunities amnd interest in the subject than
demonstrated aptitude for the discipline.
Figures co¢n dropout rates are fpresented in Table 8. No
special importance is placed om the dropout figures. Apple
students tended to drop out sconer, perhaps in response to
the early demands of learming to use the microcomputer and
its associated software and peripherals. DPL students
tended tc¢ drop 1later, perhaps in response to added
intellectual deuwands of the approach as problems became more
difficult, perbaps in frustration with compiler problems.
The above figures report omnly official dropouts, however,
and undouktedly are sensitive to counseling of students by
the instructcrs. De facto dropouts (who usually received
"incompletes" or "“absents®™ for final course grades) were
included in neither the dropout rates reported above, nor
the membership ot the course finishers' subset used tor the
other analyses.

In 1egard to correlations of biographical variables
with <observed performance measures, only a handful of
correlaticns were of real interest in explaining the
experimental results. The figures in Tables 9, 10, and 11
relate cnly tc correlations oa the comsistent subset, those
finishers who achieved consistent success throughout the
semester applying the methodologies of their section. The
perforpance measures wutilized im the correlations were
average measures for each student on the entire seamester?s
problens.

Grade fpoint average was highly correlated (Table 9)
with fpercentage of correct solutions for both batch
processing sections, wvhich is what one would expect.

reguirement. Thus, those students probably had less
mathewatical aptitude than would appear to be likely at
first glance.

o
&

TABLE 8

Dropout Rates

Attended first day of class but dropped
by end of second week of classes:

Aprde 18
Batch Pascal 15
PRI 18

Drorped between end of second week of classes
and end of sixth week of classes:

Arrle 15
Batch Pascal 11
DPL 5

Lropped between €pd of sixth week of classes
apd end of the semester:

I-uua—m-aummm—n_—-Mu—mu—-a—-m—hMMa—mmu—u—m“-—T
h-_m.h—-—.mm—a—mn—.mé—-ﬁ—mmmﬂn—mm—u—u—“u-——-—n—so—-un

Arrle 8
Batch Pascal 1
‘DPL 11
TABLE 9

Correlaticn of GFA with Percentage Correct Solutioas

Batch
Apple Pascal n2L
Correlaticn coefficient 0. 12 0.51 0.85
Kuxber of subjects { 45} { #9) { 39}
Significance level P=0. 205 P<0.001 P=0.002

p_.mm—u—mm—n—mn—-—mm-«j

o Bhrwe fi M g Av e Gome AOie BNl G Cead e Aon G

However, n¢ correlation existed whatever for the Apgpile
secticon, a counterintuyitive result.1e9

87
Y CENT '
80

80
70
80
50
40
80
20 . -
10 3 | I

PROBLEM GROUP
LEGEND: METHOD X=-APPLE Y=8ATCH PASCAL Z2=DPL

VERTICAL fo%‘?:n%ﬁﬁ%ﬁ% '3 eﬁ WD ERROR

Figure 15: Average percentage -entir'ély correct solutions
for all finishers in each sectiom with below-median GPA

"

30
20
10
0 T T
1 2 3

- PROBLEM GROUP

LEGEND: METHOD K=-APPLE Y=BRTCH PASCAL Z=DPL

Figure 16: Difference in average percentage correctness
between high and low GFA finishers

88

- Figures 15 amd 16 aiso reveal something of the
relationship between grade point average and percentage of
correct solutions. Figure 15 denmoastrates that among those
course finishers whose collieyiate grade point average ranked
in the bottom half of their sectiosn, the Apple peorple
impressively outperformed the ©Dbatch people for most of the
course. Kot opnly was the performance of the lower GPA Apple
people better than that of lower GFA students in other
SeCtiOnSa 3s Figure 16 shows, their performance was also
consistently close to the performance o¢f higher GPA Aprple
students, c¢oming up short by less than 8% at each problen
group. Substantial differences exist ia the performance of
higher and lcwer GPA students in both batch sections, but
not the Aprple section.

fhat +thess analyses suggsest igs that the Aprple
picroconguter helps macrginal students improve their
prograreing performance. A& low grade point average nmay
indicate that someone is an undisciplined student, not
necessarily that he is unintelligent. The aApple Pascal
system evidently concentrates thought and holds attestion to
the extent that the undisciplined student can work better
than he would ordinarily be able to do.

& second set of correlations of interest werg those
relating SAT scores {as measures of aptitude) to performance
Beasures. There, the only result of interest, for the
consistent sukset, was that the Lkrighter DPL students were
quicker, too. See Table 10 beiow. SAT math scores uere
highly negatively correlated with both time before the first
run and time aifter the first run.

Fimally, 1s regard to the relationship between tinme
spent developing the program and subszguent cutcomes of run
attempts, an interesting correlation exists oaly for the
Apple group. See Table 11,

This result mildly suggests that inadequate preparation time
for Apple students led to a higher ntmber of runs with
upintended results.

As noted previously, the performance o¢f conputer
science gajcrs was not significantly diiferent than the
performance c¢f poan-maijors im any of the sectioas. In fact,
the relative advantage enjoyed by the Aiprle students and by
“the DEL students, as reported earlier, showed ap
consistently vtregardless of vwhich subject subsst (whether
high cr low grade poeint average, high or low math aptitude;
or whatever) was selected for individual analysis.

i80 The "significamce level" referred to in the table refers
to the probability that the observed correlation was due
to chance rather than experimental treatment. A
significance 1level of .01 would be a conservative
significance level for correlaticns.

[+ o]
[Us]

TABLE 10

Correlaticn of SAT Math Scores vwith Time Measures

DPL Students®' DPL Students?®

e e e G Sa e e e i O i e B G 9
D Qe Dhoie Wbkl Ghliie WSS b S Seeed il AN e ditid G e S

Time Before Time AEter
First Run First ERun
Correlaticn coefficient ~0.4539 ' ~0. 4854
Nueber of students { 34) { 28)
Significance level =0,.004 p=0.004
TABLE i1

Correlaticn of Time Before 1st Rur and Unintended
_ Besults '

Apple Students

Correlaticn coefficient ~0.2851
Nurbher ¢f students { 46}
Significance level P=0.027

o FRs DA fomee Olew e Wi £i2e dwws Gl Meoe gt G e
Mo ek W ke e T e e et A B G e o

5:2.8 Studeni Feelings Abost Each Approach

Some pecple have advacated a switchover from batch
processing tc¢ pmicrocomputer access on the basis that
students would simply find it more fun to use the micros.
That expectation was not borme out by the end-of-semester
guestionnaire. About egqual numbers of students in the two
Pascal sections found the course to be "enjoyable" or %“great
fun®, sozrewhat wmore than in the DPL section.!8! Markedly

pore students in the Apple section felt satisfied with what

1812 Nearly identical numbers of students iz all three
secticns found the «course to be "satisfactory”,
“enjoyable®, or Ygreat ftun%. See end-~of-ssmester
questionnaire, guestion five, in Appendix 8.2.

90

they had learmed, though all students expressed substantial
satistaction with their experiences.

Chief amcmyg the complaints heard from the DPL students
were that learning an additional lamguage wvwas a heavy
burden, rarticularly when its introduction was schedualed
late in the semester, and that DFL was too restrictive and
artificial, when coumpared to Pascal, particulazly as regards
output capabilities. In fact, the DPL students preferred to
program in Pascal by a substaatial margin, 64% to 35%, an
impressicn prohbably influenced by reliability of the
Katerlico compiier and anticipation of future wusefulness as
puck as Ly particular Pascal features. '

The following were typical comments offered anonyamously
by DPL students at the end of the semester:

“altkough I fousd this course very challenging, I
feel I learned a lot, not only about programming,
kut about thinking im a legical ard orderly
fashion.®

"gersonmally, 1 found the DPL language to be an
exercise in futility, but I see that to those who
have difficulty grasping the concept of computer
prograsmsing, DPL is simple and straightforward
enough to ke a good teaching language (except, of
course, for the totally horrendous 8neBoOnics).™

"DPL 1s a primitive language to bagim with and it
makes me extremely mad that we had to learn it.®

8 «.e I ftound BPL to be rather cusbersome when we
could have been programmping with Pascal.®

"in general, this was a very good course. 1
learred a 1ot and I learned to think about the
icorrectness of programs?®,®

"lhe L[PL ajproach was very helpfui. I*m nct sure
i would have undersiood the thecry of programming
as well if the approach of Conway, Gries, and
Zizerman®'s Priper on Pascal was used.¥ .

? e As for the DPL experiment, I generally
liked the language because of the corrcectaess
emphasis. Too bpad about the bugSs.. ¥

91

" ,.. 1've been so frustrated at times that I've
been ready to pull my hair out. But I pust say,
overall, I have learned more and fouynd this course
gcre rewarding than any other I®ve taken."

5.2.9 Ccbeclusions
The DPL approach, which combines methodology and
~language, seems to have wuch t0 recompend itself in
practice, as well as in theory. However, it becaume clear
that goodness of language implementationm cam be as isportant
as the larquage itself. - Im this regard, the Apple Pascal
system wculd appear tc win hands down. -
" Expetimental results generally supported the hypothesis
that the DPL approach would offer significant improvements
over the coaventional approach. That the results were not
even wmore positive might Le explained in several wvays.
¥irst, it appears that learniny to effectively argue program
correciness requires skills at least as complex as learning
to progcanm, itself. It is easier to verify that one's
prograr preduces correct output values than te verify that
ope has a flawless correctaness arqument. :
Secczd, the DPL approach reguires greater teaching
effort: Students generaily cote into introductory
programpirg with 1litile background in formal logic and
critical thinking; they must be taught about the language in
which to express assertions about programs, in addition to
being taught the programming language proper. Furthermore,
correctness arguments must be reviewed by graders and
commented upcn in addition to the student prograss. ihere
teachipg - assistants' time for grading and coasulting is
necessarily limited, the ratio of help delivered to help
needed will gprobakly be less for a DPL-like approach than
for a conventional approach. '
Third, what 1little experimental evidence existsis®?
woulid sees tC suggest that it 1is esasier to learn a more
restrictive language after a more flexible one, than the
other way around {the way in which this study was
cohducted) . In other words, there might be more advantage
to oxposure to Pascal first, then DPL, rather than the other
way around. Furthermore, one weuld assume that some

182 See, for example, Go Ea Newton and J.D. Starkey,
: #feaching Both PL/1 and FORTIRAN to Beyinners," SIGCSE
Buiietin, Volume B, ©Number 3, Segptember, 1976, pp.

A i o el ol e

3106-107.

Also see B.¥. . Chauaon, “An Experiment with an
Intreductory Lourse in Computer Science,® SIGCSE
Bulletin, Vclusme 9, Number 3, August, 1977, pp. 39-42.

92

generalized ianguage interference effects undoubtedly
occurred shen the PPL students were studyiag Pascal. {For
example, L[PL and Pascal use different syntactic¢ =means to
delimit compound statement groupings, a source of sonme
confusion.) Little is known, on a gquamtifiable basis, about
how long to expect a student to take in learning a second
language and the conditions under vhich that learning may be
speeded uf.

Subjectively, the assertion-based correctness argument
approach to prograx development offers substantial benefits
in compariscs to the comventicnal approach, regardless of
which prograssming labguage is used to implement the desigrned
Prograi. If a progranm correctness argument seems weak or
invalid, the student will realize that the program®s logic,
itself, ray be flawed. Forcing the student to make that
argument will expose what he does not know or is ansurs
about at sconh enough to do him some ¢good. It is recoumended
that the aforepenticoned approach to program developaent be
conbined with attemtior to program testing after the program
has bheen coded. Coasideration of the test data on which the
program meeds to rum should properly occur when formulating
postcondition and weakest preconditicn assertions about the
program during its developnment. Verification that the
progras actually doces run on that input data should take
place after the program has Lbeen coded. : .

Advantages and disadvastages of DPL as an actual
programming language are discussed in the next chapter.

Micrccosputer-based instruction would appear to offer
such a large advantagye over batch processing, that all other
pedagogical techniques being held equal, a significant
improvemect in imstructios can be attained by paking that
change alcue. Furthermore, it should be recalled that the
semester in which <this experiment was conducted was the
first im shich the microcomputers were used. Refinement of
strategies dinvolving their usage might vyield even larger
improvenents. _

Such wmicreccomputer systems Trepresent a financially
feasible alternative to a large-scale batch processing
facility to support introductory instruction.iB3 A

183 The cest of the Apple microcomputer configuration used
in the =experiment was approximately $2433 per station,
broker down as followus:

Apple 114+ {32K memory) $1058
Fascal language card : 184
12" monochrome monitor 237
Serial interface card (for

interface to university prianter) 128
First disk drive, with

cocntrociler, cable, and DOS 3.3 877

Seccnd disk drive, with cable 389

93

scheduling @mechaniss, just restrictive enough to force
students to adeguately prepare for their sessions, is
strongly recomaended. So is the placement, in close
proxinity to student workstations, of a durable line printer
capable <¢f producimg hard copy 1istings at a @moment's
notice.

kculd a LPLi iasplementation designed for a amicrocomputer
- system offer the best situation of all? That seens
valikely, in 1ight of comments made in the next chapter,
without substantial redesign ot the inputsoutput mechanisms
to permit lakelling of output, nodification of the array
mechanise, and addition of other languaye features such as
procedures and type defimition capabilities. Since one of
the goals of an programming course often 1is to familiarize
students with ianguage and prograr structures that occur ia
many general purpose languages, it might still be necessary
to augment DEL study w#ith instruction in a more general
language such as Pascal. However, the students 1inm this
study bhave clearly communicated to us that learnimg multiple
languages in a compressed time frame has its own urdesirakble
CONSEgUENCeSa

Each statiocn supported at least 10 students.

Chapter V1

BEFLECTIONS OF DPL AS 2 PROGHBABNING LAHNGUZGE

It is fair to say that the merits of a prograamming
ianguage may c¢nly be appreciated when it has been ased
extensively fcr program development. . After sore intensive
experience in developing programs and teaching programaing
on the only known tramslator for the languagye presented in A
Discipline c¢f Programming, it would seem appropriate to
offer some commenpts ob its utility as a program development
pediums The readexr is assumed, in what followus, to be
familiar with Dijkstra's language.’®8% pijkstra?s language.

i b arvel v i BED A dmls ke .t i e vl

Many, but not all, of the presumed design gecals appear
to have been met by the language?s siructure. For example,
the guarded cozmand set structure that unifies alternative
and repetitive statement types forces the prograamer to
state explicitly the conditions under which each guarded
command group should be executed. This requirement can
gasily be viewed as desirable for advanced prograsmers as
yell as beginners.t8s

The non~-determinacy of guarded command selection frees
the programmer from artificial constraints in two ways: no
longer must an ipput condition he assigaed to one guard when
it more reasconably belongs in the overiap of two guards. To
wit, the absclute value calculation

IF X>=0 => ABSOLUTE:z=
] %<=0 ~> ABSOLUTE:=-X
FI

i8¢ The iccally ipplemented version of Dijkstra's labguage
is described in P Koltun, “pPL User®s Hanual,"™

Technical &Heport TR82-004, Department of CLomputer
Science, University of North <Carolina, Chapel Hill,
1982,

185 5ee, for example, M.E, Sime, T.R.G6. Green, and D.d.
Guest, “Scope Marking in Computer Conditionals -- A
Psychclogical Evaluvation,® which reports that attaching
taxon information to conditiocpally-executable commands
improves the rrogrammer?®s facility in using sach
conmands.,

-9“..

95

expresses the syametry of the gquarded executiom nicely,
Without artificial assignment of the X=0 possibility to only
cne of the guards, as in the usual

IF X>={ THEN ABSCLUTE:=X
FLSE ABSCLUTE:=-X%

Secondly, non-~determinacy frees the prograpmer from
explicitly specifying an order in which guards are to be
evaluated, where no logical reason for ordering exists. In

truth, though, the number of situations in which this
flexibility proves advantageous is vanishingly small, at
least it short exanples presented for introductory
inpstructicn.

Fermitiing multiple guards within a repetitive
staterent is a nice ianpovation faciiitating concise,
consistent gpresebtation of algorithas. Merging of two
already-scrted lists, for exampie, can ke expressed very
neatly with such a mechaniss.

Scope rules and the variable imitialization statenent

Dijkstra®s scope rules reiaforce his ideas about
separation ot CONCEerns, or information hiding, in
programmisnge. The nmechanisss for explicit inheritance of
program variakbiles proved relatively simple for students to
pick up. A lecture on variable scope was delivered at the
fourth session to introductory students and ®as understood
easily. _ _

The syntactically-distinguished initializatiocn
statezent for sieple variables perumits emphasis, in
reasoniang about program correcthess, on starting variables
off, at lgasi, with the correct values. Just as reqgeiring
explicit variable type declaratioms bas come to be viewed as
desirabie by most programming lamguage desighers, so should

requiring {Ly syntactic mechanisms) special emphasis on
variable initialization. _

Kore irgortantly, variable initialization calls
attention to lissuss of scope in an interesting vwaye. it

became clear, in writing & DEL [program, that supplying a
#dupry® ipitial value for a variable Just to get the
ipitializaticn reyuirement out of the way was a signal that
the variatle's scope was being misconceived. For exaaple,
if an integer variable X repeatedly was to be assigned a
value fros the input, then manipulated and ifimally assigned
tc an integer array A, a student's first program version
might be

936

- .

DC 1n5ut temalns => X ,1INPUT: LG?OP'
manipulations on X;
A:HIBXT{X)

0D

which would produce the error message that X had not been
initialized. {The scope statements for X, A, and IINPUT and
the iritjalization zfor array A bhave beemn intentionally
omitted.) S¢ the student might imsert the initialization as
follows: _

D¢ input gemains -> X VIR INT XIIBPUTLLGPOPR;
manipaulatiocns on X;
AsHIEBXT (X)

op

Now ap error messayge would be generated to the effect that a
variable canrnot be repeatedly initialized. {& variable can
only Le a VIRgin variable oncel) Next, thinking that the
place to initialize X is before entry to the loop, the
student starts to think of what value to give it imitially.
No value makes more sense than any other, so a dummy value 0
might ke used:

X VIR INT:z=0;
DC ipnruat temains -> X, IINPUT: LOPG?'
manipulations on XL;
. AzHIEXIT(X)

cb

But the assignment ¢f a meaningless imitial value is a sure
tip-oft that the scope 0f X has been misconceived: Since X
~is used orply within the DO-OD repetition, its scope should

be that guarded command. The proper implementation is given
helow, with scope specifications explicitly included.

DG IIREUT.DGH>0 =-> BEGIN
GLCVAR A,ITNPUT; PRIVAR X;
X VIR INT,iINPUT:LCOPOP;
manipulations on i3
A:HIEXT {X)
ERD
QD

where the sccpe of A (as well as IINPUT) is explicitly
inherited from the enclosing comtext, but X is private to
the BEGIN-ENL program unit, which makes sense because X is
used only to store a value between the time it is removed
from the integer imput and the time it is inserted into
array A. Sc¢ each repetition of the loop requires a new

S7

instantiation of private variable X, with its consequent
initializaticn. '
Abstract treatment of inputsoutput L

Another very nice feature of the locally-designed
isplementaticn of Dijkstra’s language 1is the treatment of
input and cutput data collections as arrays, coansistent with
the treatsent of all other arrays in the language.1®% Thus,
students did not have to learn specialized formats for input
and output statements that had no other applicatiomn in the
language. In fact, the students made very few errors of any
kind in imputyoutput usage in DPL.

More isportantly, the implemwentation illustrated to
students the concept of abstractios, in a very strong way:
The ©LDFL form of iaputsoutput epmphasized abstraction away
from the processing peculiarities imposed by physical anit
record devices. The imposition, tor example, that input
values wmay cnly be read once and Bay cnly be read from
wleft® to Mright"™ is a device-dependent restriction that,
unfortunately, f£finds its way intoc too many lauguages. The
" DPL array access mechanism, which treats agrrays as double-
ended gqueues for purposes of insertions and deletions,
pernitted students to foramulate algorithms im a @more
abstract way thae would normaily be possible. Furtherpore,
the mechavise avoids peculiarities suck as '

read {X);
vhile nct end-of-file do
begin
29+ PLOCESSING swe j
read {X)
end

wherein ycu have to read ahead just in order to discover you
didn®t really want to read that last time, at ail. The LPL
pechanisz permits you to Ypeer in® and see how many input
values atre left by examiming the current extent of the input
domain: 287

DC TXEUT.DOB>0 ~-> read {X};
eve ELOCEBSSING 2as
cL

i86 The decisicn to have separate collectioms for both input
and output integers, characters, and booleans, ¥as
upfortunate in the sense that it precluded labelled
output, However, the separation did enphasize data
typing issues.

187 Pascal lets you look ahead, but only to examine the next
: ingut character

98

Additionally, any actions that would be triggered upon
recogniticn of the nth case freoea the end of input are now
easy to se€guence.

The view ¢f arrays as functions
Dijkstra®s view of arrays as functions, that is, as
total maprings from a domain of subscripts to a range of
values, was intgoduced im A Discipline of Programmiang, and
recapitulated in The Science o9f Programming, by Gries. 1858
While that view presents a conceptually clear picture of
arrays tc the programaer and facilitates reasoning about
subscripts in relatiom to the array domain, that view is
also underexploited in the language Dijkstra formulated and
in the expesition of both books. An excuse cah be made for
Dijkstra®s treatment in terms of his limited intent, Aif not
for Gries' text. Arrays {(single-dimension arrays, at that)
unfortunately are discussed with only integer domains,
therebty severely 1limiting the generality and usefulness of
the view of arrays as functions. Persitting subscript
values to be characters, or for that matter, elerents of any
ordered set, makes much more sense. :

The =oluticn to many problems can be neatly expressed
if one vieys arrays as descriptioas of such a mapping.. For
example, -cozputing a freguemcy table <for the occurrence of
alphabetic <characters in soame text can be viewed as
specifying a mapping from letters of the alphabet to
integers. Similarly, consider a program which is to read
pairs of {possibly unordered) coordinate values and produce
a scatterylot o¢f the points they represent. The progran
might be develoged by first assigaing eclements of a two-
dimemnsional array a print-character or a blaak, and thean
grinting the contents of the array on the lipes and colunus
of the output paper. In other words, the array describes a
mapping fxom the cartesian product of the set of rows and
the set of columas o©f the array {(corresponding to the
possible lines and columns cf the output paper} to the set
{print-character, blank}: _ :

G: {EBows} X {[Columns} =-=> {print-character,'biank}

G{row i, columas j} := { primt-character, if the pair (i,j}
occurred in
the input

blank, obherwvise 3
50 the progras pust first achieve the above assignments to

array elements, thes simply print out the array's comtents,
one row LEC output line.,

188 D, Gries, Ihe Science of Programsing.

— —— v ——

39

Cne can easily imagine the concept of an initialization
mapping fcr arcays, and perhaps of an inverse mappingi®? as
well., Beth would facilitate abstractions about prograwms
that ganipulate arrayss =

Askwardness ¢f array ipitialization

. In pcint of fact, the array dinitializatiom mechanish
represents the major failing im the design of Dijkstrats
notation, as borne out from experieace in imstructing
beginners. Since no point in am array®s domain should lack
an associated value, in Dijkstrats view, the array eleaents
are collected in the forms of a dounbig-ended queue for which
consecutive domaim points all have values. The
initializaticn statement Jincorporates specification of the
ipnitial mappinyg, by Eequiring the low bound of the domain
and perzitting range values to be specified amd thus
associated with domain values seguencing upward from the low
bound. ' ' '

However, many algorithams admit of no predeternined

initial mapping with constants; the array's initial values
pay ccme frorm the {(unseen) input, for example. However, a
literal dcemain low bound is required by the ianitializatios,
even if all further panipuiations im the algorithm utilize
only the array domain operators, farray.iob® and
"array.hik¥. Therefore, the programmer is led to specifying
a meaningless dummy lov bound, just to satisfy the syntactic
requirements, which, as was seen before, would be a sure
sign of misconceiving the algorithm if it weren't, in this
case, 4a sign of a misconceived language structurs. S0 the
programser specities

A VIE INT ARRAY:={0;

just tc get the compiler off his back, which isn*t so bad
for the experience programmer who understands the necessity.
But the ncvice, the programming innoceat, has jost been led
astray intc thinking he can now just as sasily refer to 0 as
the lowest subscript as to A.L0E, or to A{0) as the lowest
elempent ipstead of A.10¥, and probiems eventually ensue, 190

189 Thipk, for instance, o©f a data bas€ Ranagement system.
The creation of the data base would regqguire a function
that associates keys with attcibutes:

f: {keys} =-> f{attributes}
The retrieval mechanism

g: fattributes} -> {keys}

which seeks keys with certaim attributes, might be
regatded as the imverse mapping of f£.

100

In particular, Dijkstra's arrays may grow or shrink at
either endas Though O may have been the array's lowest
subscript initially, that may =noc longer be true at sone
later poipt in the algorithn. Thus, the student's first
encounter with concretion has been imposed by the lamguage,’
when it was abstracticn that was to be encouraged. A useful
alternative +to the single-statement array initialization
might be a nmulti-statesent dinitialization wmapping, = as
suggested before, with a syntactically-distinguished fora.

190 very few situations will arise where it is preferable to
utilize abspolute rather than relative subscript values,
whep the constraint is imposed that no points in the
array domain shall lack an associated range value. An
absolute subscript might prove usetul as a "key" to
refer to an element in a sparse matrix, but not here; in
effect, only the non-singular elements of a sparse
matrix would even be inserted in Dijkstrats arraye.

Chapter Vil

SUGGESTIONS FCR ¥OQULD—-BE EXIPEBRIBERTERS

A review of computer science literature on
metheodological considerations in performing experiments has
already teen presented in sgction Z.6. The conmments

inciuded here are directed at computer scientists plamning
to engage in experimenis involving human subjects. Ahile
the suggestions sight amuse the experienced social science
investigator, it 1is hoped that the commenis will prove
useful tc¢ a novice computer science investigator.

The compguter scientist's first inclination, after
reading a study such as this onsgy might be to start
collecting statistics of his own, and see what ianteresting
relationshkips emerge among the data. In this field,
however, as in others, a power-generality tradeoff exists:
the more specific a hypothesis can be tforsulated, the more
powerful an experiment can be designed to test that
hypothesis and the more relevant a set of experimental
variables can be measured. Wpishing expeditions,® in which
only generally applicable measures of programmer behavior or
learning are collected, probably will not yield sufficiently
relevant data tc support useful conclusions.

Therefore, the first step £for a would-be experimenter
would be to think about thke phenomenor in which he is
interested. For iastance, the subject of interest might be
how one acguires an appropriate model of computation or how
one acqguires a knowiedge of language rules suificient to
permit discriminationrs and generalizations about syntactic
fores. '

The seccnd step should be to pin down, as specifically
as - possiltle, hypotheses related +to the phencmenon of
" interesta For exaspie, a general statement that reading
prograws should be of benefit to a f[programaing student
trying to learn a language might be narrowed down to the
hypothesis that time spemt in reading programs written, say,
in Pascal would enable a student to connmit fewer syntax
errors on a related Pascal programsing task than a student
who spernt an eguivalent aacunt of time writing related
Pascal prcgramsa.

The third step vwould be to thipk about relevant
experisental variables, how they relate to the underiying
phenomencon, whether they are directly measurable and if not,
how they car Lbe approximated. For instance, what is the
subject®s reading comprehension for prose and hov does it

- 101 -

102

relate to his reading copprehension for symbolic language?
Car a subject®s reading comprehension for syambolic language
be dimproved with practicez? what 1s the subiject?s
inforsaticn §[processing ability to discriminate between
similar visual situatioas or generalize abstract rules from
~similar visual exaBmples? After that, the experimeater can
think about how to measure his experimental variakles, vhat
the experimental treatment would consist of and vhat control
group, if any, wmight be used, and what criteria would be
ased for evaluating group differences.

Clearly, a treatise on experimental design is beyond
the scope of this dissertation or the competencies 0of its
author. But starting one®s thinkimg in the right place, as
above, should bhelp guide the computer sciemce experimenter
along the right track. In particular, becoming familiar
gith previocus work in the area of software psychology can
alert the experimenter to the idea that a variety of
experipental designs may be reguired to study different

types of phencmeéna. For instance, the work described in
this dissertation falls under the category of ‘'guasi-
experimentaticn.®"i 9t Studies involving computer-user

interfaces wight wntilize classical experimental designs,
becaunse - they involve observations on oanly - a single
programmer and allow for the degree of control required for
- a true exgerisent. Exploratiom of group processes might use
the technigues and desigms of social psychology. The point
is that different probleas —require different desigas.
Shneiderean, in his text Software FPsychology, has some
useful ccements on experimental design coasiderations for
computer scientists.192 Expert advice should be sought at an
carly stage of project planning.

Ascnqg the yuestions that will <face the experimenter is
the intended scope of an experiment. Looking at the
experinment described im this dissertation, one might be led
to believe that experimentation over a semester's time with
a class c¢f 200 subjects 1is a greferred situation. Hany,
many proklems relating to difficulty in exerting adeguate
experimental control exist with such a set-up, however.

The nature of the task involved and the desired
generalizability of results should guide decisions regarding
scope of experimentation. The subject of this dissertation
dealt with 1learming a compiex methodology and language of
proyragming, a task that could not have been accomplished
with novices im a short time-period under any circumstances.
Furthernmore, the goal of the work was wevaluating the

192 Dp.T. Camfpbell and J.C. Stanley, Experilental and Quasi-
Experivental Designs for Ressarch, (Skokie, Ill.: Rand
YcHally, 1966). '

19z Shpeiderman, §oft¥at§ Psychology.

103

methodeleogyts applicability to actually teaching sesmester-
long intrcductory cemputing courses at the college level.
For these two reasons, the: scope of this experiment seemed
reasonable. In other situations, a limited experiment with
the opporitunity for tighter experimental contrel would be
preferable. For instance, even in the sample situation
described earlier, if one were interested in whether to make
prograk reading an integral part of a course of introdactory
instructien, the advantages to be gained from reading
prograss would probably be better explored im experiments of
‘limited scope. The time regquired for imducing sigaificant
subject differeuaces might be measured in hours or days
rather thap months. -

- Allcwance shouid always Le made for conducting
preliminary versions of the experiment, 1in order to develop
materials comprising the experimental treatwent, to beccae
familiar with the nature and magnitude of subject
differences that might be induced, and to perfect data
collecticp forms and procedures. The experience 1ia this
study was that even with a third generation rum anhalysis
sheet beirng used, Bparrative compents from the sekbjects were
still needed to disambiguate coded subject respoases.

Wwherever possible, automatable measures ought to be
usedti®3 t¢ capture relevant statistics on-~line or to process
stored tramnsacticn records off-line. If at all feasible,
machine~-readatle forms should be used to capture data that
subjects sust write down by hand. Interactive prograus,
with subjects entering needed usage data at a terminal,
might be uvtilized to wmipimize later data entry. _

Plans should be made to archive all relevant source
code fror programming work to provide a backup in case of
necessity- 5ad experience can teach that subjects or
experiment adsinistrators may not provide data in the form
needed. Having an archive to return to for that data can
ninisize the darage. Plans should also be made to review
the quality of data periodically, as it is being collected,
so that ccrrective action may de taken as soom as it appears
DEeCesSsSary. _

Fains shculd be taken so that all individvals involved
in administering the experiment understand the relevance and
“importance of data they are asked to provide. The tack
taken in this experiment to shield course assistants fros
the experipental hypotheses in order not to bias the results
turned out to be a case of erring ob the wronyg side:
Several assistaats failed to collect needed statistics
because they thonght it wasn®t that important.

193 See V.HB, Easili amd R.§. Eeiter, Jdr., PEvaluating
Autosatable Measures of Softuware Development," Horkshop
on Quantitative Software Models, IEEE, October, 1979.

104

wherever possible, think in advance about how critical
statistics wmight be double checked for validity by
independent means. For exanmple, computation center
accounting figures might be used +to0 estimate rum usage in
addition to reports the students provide themselves.

"Finally, the role of the experimenter, himself, should
be addressed. Wherever possible, the person is charge of
the experiment, the principal iavestigatox, should act only
as a supervisor, to ensure that experimental procedures are
being folloved, complete and wvalid data are being collected,
and problems are being dealt with promptly. Avoid
involvemept in the experimeant as a direct participant, as
for instance, in teaching one of +the sections ip the
experiment af this dissertation study. Primary
respoasikilities to students or to other chores may keep the
experimenter frosm performing the supervisory tasks needed to
ensure cosplete, consistent statistics or from £illiang in
when ciises arise. The serious ilipess of one of the
teaching assistants in the experiment described earlier, for
exanple, necessitated pinch-hitting by the priacipal
ipvestigator at a critical point in the sewpester, vwhen tisge
compitments were already stretched thin.

Chapter VIII

APPENDICES

- 105 -

106

8.1 L§:§§§§§m QUESTIOHNALIRE BESULIS

1, As a whole, i ap understanding the material in COMP 14:

Well Adeguately Poorly
Apple 34X 64% 2%
Batch Pascal 25% 72% 3%
DPL 45% L8% 7%
2. I fipnd COHBF 14:
_ Not very
Exciting Interesting 1Interesting Boring
Appie 2H4% T4% 2% 0%
Batch fascal 15% 79% 6% 0K
DPL , 19% T6% 4% 0%

3. I understand the liectures, on the.ihole,

Welil Adequately Poorly
Apple 15% 52% 33%
Batch Fascal 15% 70% 15%
DPL 37% 60% 3%

da 1 find the lectures

Very Sorewhat Hot very Useless
Helpful Helpful Heipful
Apple B% 534 34% %
Batch Fascal 7% 644 24% 4%

DPL 24% 61% 13% 2%

107

5. 1 finﬁ the rroblez session

Very Somewhat Not very

Heipful Helpful Helpful _Useless
Apple S4% 39% 5% 2%
Batch PBascal 33% 45% 20% 2%
DPL : _ 24% 47% 26% 3%

6, 1 find my problem session instructor?s one-on-one

tetoring
Yéry_ Somewhat Not very I don’t
Hedpful Helpful Helpful ask for it
Apple 47% 26% 3% 24%
Batch Fascal 30% 32% 13% 26%
DPL 43% 22% 4% 20%

7. I find the climic instructors {(other than my
probles session instructor):

very Somewhat Not very I don't ask
flelpful Helpful Helpfal for help
Apple 53% 37% 7% 3%
Batch Fascal 29% 35% 16% 20%

DEL 14 33% 23% 29%

8, I find the reading assignments:

very Hostly Seldonm Unclear

Clear Clear Clear
Apple L% 79% 17% 0%
Batch Pascal 11% 708 19% 04

DEL ' 134 704 14% 3%

108

9. I tipd the reading assiguments:

Very Sowewhat Not very I dont*t do
Helpful Helpful Helpfal the reading
apple 21% 66% 10% 3%
Batch Eascal 27% 58% 9% 6%
DPL uz% 51% % 0%

10. I findé the computer time available to me:

Adeguate Somewhat _ Very
Inadeguate Inadequate
Apple 47% 29% 24%
Batch Pascal 88% 9% 3%
DPL 808 T4% 6%

11. 1 £ind the tiaa this course consumes to be:
Unreasonable Very high Hormal HNot smuch
Apple 19% - b7% 4% 0%

Batch Pascal 6% 79% 13% 2%
DPL ' 13% 61% 25% 0%

| 109
8.2 END-QF-SEMESTER QUESTIONNAIRE

{ddministered day of finai exam)

1» Do ycu intend to continue with other computer science
courses in the future?

Yes No Undecided
Apple 55% 28% 16%
Batch Fascal 51% 27% 22k
bPL 48% 26% 26%

2, Would you recommend emroliing in CGHP 14 to a friend?
Possikle answers:

Yes {reqardless of teaching approack used)
N¢ {regardless of teaching approach used)
Urndecided

Depends on teaching approach to be used

Yes No Undecided Depends
Apple 34% 7% 12% 46%
Batch Fascal 47% T% 12% 33%
DPL B1% 7% 13% 39%

3. Wouid jou recoapend enrolling in COMP 14 to a friend,
knowirg that the teaching approach to be used was the
the cne under which you studied this semester?

Ies No Undecided

Apple 72% 18% 10%
Eatch Fascal 57% 27% 16%

DPL 36% 49% 14%

110

4. 1In geperal, are you satisfied with what you learned
from CGME 147

les Ko Undecided
Apple 82% 10% 7%
Batch fascal T0% 15% 15%
DPL 67% 16% 17%

5» 'Independent of lorg-term bemefits ot the course, how
enjoyable did you £f£ind COMP 1142

Great Enjoyable Satis- Somewhbat Ho fun

fun factory Unpleasant at all
Apple 10% 33% 27% 194% 10%
Batch Pascal 4% _ 403 25% 21% t1%
DEL 1% 26% 38% 20% 9%

6. With resgect to the run analysis sheet you ¥ere asked to
turn in fcr each problem:

Did ycu keep track of the requested data as you went
along or did you wait uptil the end to fiil in the

infcreaticn?
Kept track Haited until end
Apple 25% 66%
Batch Pascal 36% S58%
DPL 35% 65%

‘How accurate is the iaformation you provided?

Humber of runs: Kithin ! rum 2 rons 3 rums 5 runs 10 runs

Apple) 19% 25% 2% 21% 7%
Batchk Pascal 34% “36% 16% 11% 3%
DPE 5% 28% 19% 3% 4%

Numhex-cf'hcurs: Hithin 1 hr. 2 hisS. 3 his. 5 hrs. 10 hrS.

Apple 53% 23% 15% 7% 2%
Batch Pascal 50% 26% 9% 5% 10%
DPL ' Lok 33% 6% 0% 3%

111

7. How sany tiwes did you go to the computatlon center (or
rexote entry station) for a typlcal ass;gnment?

cnce/week twicesweek oncesday several/ﬁay

Apple 1Z 66% 7% 12%
Batch Pascal 6% 48% 28% 11%
DPL _ 4% 46% 178 19%

8» When you wert to the computation center, how long d;d
you typlcally stay there?

1-10 10-29 - 30-5%9 i-3 >3

Bik. Bins mine hrs. &rs.
Apple 0% 0% 1% 66% 33%
Batch #ascal 1% 5% 14% 38% 42%
DPL 0% % 4% 41% 8%

S. How many fua requests did you submit during a typical
visit to the computation center?

, 3 2 3-5 6-10 >10
Appile 4% 19% 39% 21% 15%
Batch Pascal 1% 10% 51% 28% 104
DEL 3% 7% 52% 32% 6%

i0. Averaged cver the last half of the semester, and taking
into account that some weeks assignments were due aand
other weeks assignments were not due, how much '
cut-cf-class time did you spend on CGHF 14 per week?
{Estirate to the nearest hour.)

Apple . 11.0 hours
Batch £ascal 13.0 hours *x*
beL _ 12.2 hours

*% Includes one figure of 120 hours. The average would
be 11.7 hours, excluding that figure.

112

11, To the best of your recollection, on how many occasions
did a program you submitted produoce what the teachiag
assistants or instiructor classified as a ®bug® in the
compiler rather than in your program?

Never Once Twice >Twice

Apple 52% 22% 12% 13%
Batch Pascal 64% 14% 178 5%
DPL C o 36% 35% 17% 12%

12> On how mamny occasions was a clinic attendant or teaching
‘assistant unable to help you with a probiem in your

prograg?
Never Once Tuice >Ivice
Apple 18% 15% 12% 55%
Batch Fascal _21% 20% 25% 35%
DPL 26% 25% 13% 36%

13, Toward the end of the semester, did you find the
computer time available to you

Adequate Somewhat Very
Inadeguate Ipadegquate
Apple 484 42% 10%
Batch Fascal 443% 46% 0%
DPL 49% 42% - 9%

14, Did ycu find the Ccnway, Gries, and Zimmerman Pascal

text to be
Very Hostly Seldon Unclear
Clear Clear Clear
Apple 7% 6.3% 24% 5%
Batch Pascal 19% ©3% 21% 6%

DPL 6% Stk 22% 19%

113

15. Estigate the difficulty of each prokblesm from 1 {easy)

to 10 (difficult).

Problesn Kotes

2 - Ccpversion to yds, ft, in. DEL group wrote prograns

3 - Armstrcny nusbers 2-6 in DPL,

4 - Fitcnacci numbers 8-9 in Pascal.

5 « Insertionm sort inmer loop

6 - Cdometer

8 - Functicmn graphiag

9 - Mean/pedian

Problenm
] 3 4 5 6 B 9 avge.

Apple 2.26 3.21 #,.13 5.671 6.37 6.79 5.67 4.86
BaP. 253 3.28 8.48 6.17 6.91 6.86 5.53 5.21
DPL 2 40 4.91 5.80 6.89 7,70 7.68 5.52

3. 28

For the LEL grcup omnly

16. In which lamguage do you prefer to program?

EFY, Pascal

35% 65%

17. In which language do you feel it is sasier to write

Ccerrect programs?

DEL Pascal

52% S8%

114

8.3 LECIURE SCHEDULES
8.3.1 DEL Lecture Schedule

Lecture Igpic

tusase-EXO0grans and pregram correctness
2ss2:s-Finite state machines: A model c¢f computatlon
‘3.aese-Freconditions, postcomditions, and boolean algekra
,5,»s-Variables, initialization and assignment of value,
and the potion of scope '
PasanassCCder of statement execution and guarded conmands
J2ss2s-Frograms using alterpative statements
Bossea«PLCgrams using repetitive statements
Jss2ss-Bepetitive processing of input data
$0:s22--Algorithn development by stepwise retinement
11.0022.4CC2y variables
1242s02-USinyg arrays: A searching example
13,%14...F1inding 1000 prime numbers
15,16...L00Fs, invariant relaticns, mathematical lnductlon
17,18.+sBinacy search
19,20...DPL/Pascal differences and similarities
21,22,;.Easca1 data types and data structures
- 23sss22-Two~dimensional arrays; program modularization
24,2%...Procedures, functions, parameter passing, and
recursicn _
26::0.s2sConsiderations beyond program correctness:
tige~-space tradeoffs and optimization hints
2?,,aa.gﬁecagltulat;on* prograss, variables, and algorithms

115
8.3.2 Arple apd Batch Pascal Lecture Schedules
Lecture Iogic

lesees.dCL, programs, amd data; reading printouts; and
error diagnosis

2:2ss0s Prcgram structure aad declarations; the program
development sequence

3ss-.--Constants, assignments, integer expressioas,
read, write, apnd tracing _

BeassswSelection, conditions, booleans, and boolean
€¥Xrressions

Saeses-Lhoosing test data; multiple data set input

Bas0002T85t data selection examples; stepwise refinement
example using sorting

7ewe-e-Stepwise refinement, quadratic eguation examnple;
locps and their isplementation

Bsoassaasloops and loop schemata; readlpn input

9:.200.Nested loogps; output format; real and char
data tyges

i0s22-e-Character type, subrange type, and one-dzmenszcnal
arrays

tlacwawsdTays, end-of- llst conditions, and iteration

12eceawsAlrays, character strlags, arrays of arrays;
fcr loogps

i3.s0s-2sArrays of arrays; sequential search

14uwssa-insertion sort

15sss2s-.Inserction sort with characters; two~&1men51onal
arrays

16.swessSubfprograms; fuactions

17ew~ce-Brocedures and parameter passing

18sssss-ACrays and subprograss; ﬁadularlzatlon

194cswseFrograr modularization

2058292+ 80dularization and subprogras testipg vith drivers

116

COMP 14 KUN ANALYSIS FORK

Hame Totsl mmber of runs nesded to coaplete To the nearest half-hour, record the tims expendad
the aseigrment {Put = mark through the
next run number each tims you submit prior to 1st run: houra
Lab inatructor a runis
Data 12 ¥ 5 6 g 10 11 12 aftar 1lst run: hours
g ;2 g g ég 2; ﬁ gg 2h (Count time epant thinking and working on problem, but

Apet gument

not time sppant walting in computetion center.)

Inptructions: Your objective in submitting & run is essumed to be cne and only one of the following:

&) running & ocomplete sclution to & programeing problea through to an antirely gatisfactory conclusion;
b} running o psrtial solution to a prograsming problem through tc sn gatirely gatisfactory conclusion; or

¢) diacovering bhow a particulsr lenguags mechaniss worke by writing o sap.lrnto. toat program.

For each run you sske, apsvar the first questlon below about whethar your objective im submitting the progruk was completely satiafied, then check
off the appropriate categorise on the next three quertionz, &3 they apply, end briefly describs the changes embodied 1n each progrem run after the first,

on the revorse side.

Bun #

Hd the program do wbat you inteoded 1t ta?
You]

Wo

Tour resscn for making this run wes

tasting & ocoaplete sclution to a problem

teating & partisl sclution to a problem

digeovering how a language festurs works

If the run waa not complately satisfactory,
characterise its faflinga or shorteoaings:

Brror in program logio

Rrror in progremming language usage

Misunderstanding of probles specifisations

If the run vas not canpletsly satisfastory,
how much effart wes required to isclate the
ceuses of the problen?

one hour or lesa

one hour to omo day

more than ane day

ceuse Dever found

FILL QUT REVERSE SIDE, TO0!

117

DESCRIPTION OF CHANGES
For each program run you submitted, briefly describe the changes made from the previous
run, and why the changes were made. Indicate the run number at the left side of the
line. Obtain additional sheets if necessary.

Run #

118

8.5 AN EXANPLE OF A PROGRAM CORBECINESS ABGUHEKNT

Consider this problea: You are a cashier. drite
ipstructicns to make <chaage, using the fewest coins
possible, £for a purchase between 1 cent and 100 cents paid
for with a $§%V bill. The final situation you want to achieve
is that tte change you pay out is egual to the difference of
100 cents and the purchase price. The initial situation is
that the gpurchase price is between 1 cent and 100 cents, and
tkat no change has beep paid out yet.

Three Malgcrithaes,Y or specific plass for solution of a
problem, - are popular for making change: Seome people add
pennies tc the purchase price until the sum is a multiple of
5, then add larger coins until the sum is a @pultiple of a
larger cc¢ip deacsination, and so on, until the sum is 100
cents; others calculate the change to be given out, then
subtract ccin values from the change as coins are given out,
until the chaange still to bLe yiven 1is reduced to 0; and
still others calculate directly the number of each
dencminaticn cocin to be returned by dividing the change to
be returned by <5 cents to tind the ausber of guarters,
subtracting cut the value of the returmed quarters, and
doing the sare for dimes, nickels, and peanies.

He now give a program and correctness argument for the
second method: '

Change reduction algorithi:

Three pieces cf information wili be maintained,
PURCHASE.EERICE, CHANGE.NFEDED, and CHANGE.GIVEN, where
PURCHASESFRICE is the value supplied to the program, and the
other tsc variables receive their dumitial values ia the
first twc grogram statements:

CHANGE.NEEDED is 100 - PURCHASE.PRICE
CHANGE.GIVEN is 0

while CHANGE.KNEEDED is >= 15, repeat the following:
dispense 3 guarter
reduce the value of CHANGE.NEEDED by 25
inciease the value of CHANGE.GIVEN by 25
end of repeated instructions.

while CHANGE.NEEDED is >= 10, repeat the following:
dispense a dime
reduce the value of CHANGE.MNEEDED by 10
increase the value of CHANGEL.GIVEN by 10
end of rejeated instructions.

if CHAKGE.NEEDFD is >= 5 do the following:
dispense a nickel
reduce the value of CHANGE.NEEDED by 5

119

increase the value of CHANGE.GIVEN by 5

'if CHANGE.NEEDED is >= 1, do the following:
distense CHANGE.NEEDED number of pennies
reduce the value of CHANGE.NEEDED to O
increase the value of CHANGE.GIVEN

ty CHANGE.NEEDED &

Bote that when CHANGE.NEEDED has been reduced to less than
$0, at &@ost cne nickel can be properly dispensed, SO no
repetitive statement is needed at this stage, contrary to
the earlier steps. Alsoc note that when CHANGE.NEEDED has
been reduced to less than 5, exactly CHANGE.NEEDED punber of
penhies can be dispensed directly, since pennies are the
smallest dencmination coin and constitute the remaining
¢hange to be given. The plan described above was chosen to
simplify the correciness argument. :

Correctness arguzent: We must argque first that esach loop,
or repetitive statement, terminates, that is, that the
condition 1ip each Pwhile phrase® pust eventually becone
false. Fach .locp must tersginate because CHANGE.NEEDED is
positive to Legin with {PURCHASE.EFRICE between 1 and 100,
inclusive, was specified), can only diminish in value, and
in fact dces diminish in valve each time through a loop. So
for each loop, if CHANGE.NEEDED is not initially less than
the stated ccin value in the given loop, eveatualiy it must
sink belcw the stated coin value. Since each loop
terminates, 1in turn, the program tersisates when the last
loop is cver.

Now ®we pust argue that the change dispensed was just
what was called tor. Were it not for the need to prove
this, we #xight not have used the variable CHAHNGE.GIVEN. But
chserve that the sum of CHANGE.NEEDED and CHANGE.GIVEN
remains c¢onstant (except between the pair of statements
changing their values); when CHANGE.GIVEN decreases in
value, CHANGE.GIVER inczreases by a like akount.
CHANGE.NEEDEL started out as 100-PURCHASE.PRICE, exactly
what we needed to give back; CHANGE.GIVEN started out as 0.
since the sum of the two variabies remained constant, wvhén
CHANGE.NEFDED ~ falls to 0 {cur stopping condition},
CHANGE.GIVEN has risen to 100-PURCHASE.PRICE, exactly the
" change we had to yive back. So CHANGE.GIVEN, which records
the value of cocins dispensed, 1is exactly what it should be
at termipatiocn. How do we kmow we haven?'t given back more
change tham we should? If CHANGE.GIVEN were gyreater than
correct, then CHANGE.NEEDED would bave to bhe negative, since
their sup is cobstant. But this is impossibie, since each
decreseat. leaves CHANGE.NEEDED nonnegative and the progran
tersinates as scon as CHANGE.NEEDED falls to 0. The program
transforms the initial state, when CHANGE.GIVEN was 0 and
CHANGEL NEEDED was 100-PURCHASE.PRICE to a final state in
which CHANGE.GIVEN was 100-PURCHASE.PRICE and CHANGE.NEEDED
¥as 0. '

120

8.6 EIBES GIVEN I0 DPL AND BATCH PASCAL/APEBLE BASCAL

{in seventh week oi'ciassg

1= Indicate what is actually or potentially wrong with the
- syntax oxr lcgic of each of the follcwing prograa segments
and give your reascn for thinking so. You may assame that
portions of the program not shown would be correctly
written.

aj} The following program segment is inteaded to calculate
and print the Fibomacci numbers less thap some limitiag
value which is knowa to be greater than 7.

FIRST VIR INT:=0;

SECOND VIR INT:=1;

IGUTEUT:HIELT (FIRST) ;

IOUTEUT:HIEXT (SECOND) ;

FIBNUY VIE INT:=FIBST}SECOND;

LIMIT VIR INT,IINPUT:LCECP;

DU FIBNUMCLIMIT -> IOUTPUT:HIEXT (FIBNUM) ;
FIBEST,SECOND:=SECCND,NEXT;
FIBNUM:=FIRST4SECUGND

GD

b) The follcowing program segaent 1s intended to print all
Fibonacci nusbers less than some value M. That is, if H<=0,
no output is to occur; if ¥=1, the value 0 is to be printed;
if M>13, then values 0,1,%, ... are to be printed.

IF B<={ -> SKiP
1 >0 ~> IQUTRUT:BIEXLT{O)
i M>1 => IOUTEUTsHIEXET{0};
IOUTPUT:HIEXT (1}
repetitive statement to generate
other sequence aepbers
FI

3121

¢) The input will be a sequence of integer values between 1
and 6. The following program segment is intended to count
the number of 1%'s and 2's in the input.

SINGLES VIR INT:=0;
DCUBLES VIR INT:=0; :
DO IINPUT.DOK2D =-> NEXT,IINPUT:LOEOP;
HASSUME YNEXTY IS A NON-VIRGIN
INTEGER VARIABLE™ .
IF NEXT=1 ~> SINGLES:=SINGLES}1
| NEXT=2 ~> DQUBLES:=DOUBLES+1
¥l
Gh
2. Giver as precondition that the input value to be read
may be amy integer, characterize what the foilowing progran
segment does by formulating amn appropriate postcondition
assertion.

N VIF INT,IIBPUTILOPOPR;

DG N>1000 -> N:=N/10
i {§>0) AND (N<100) -> H:=N*10
oo

3. Givemn as precondition that the input is amny non-zero
integer, write program segaents to read a vaiue for a virgin
integer variable X, and to establish the truth of the
following postcondition, where SIGN is also a virgin integer
variable. ‘ '

{X is positive and SIGN=1) or (X is negative and SIGN=~-1)

4. The weakest precondition of a prograk and a postcoandition
is the most inclusive description of the ipitial state for
which the given program terminates establishing the truth of
the given postccendition., State the weakest precondition for
each of the feollowing program segments and postconditioans.

a) fprogras: z=2%%
postcondition: 0<X<K20

b) pregram: - Xi=X4Y
postcorditicn: x>0

122

5. Observe that the KOD operator can be used to exasine
whether onke integer is a multiple of another. That is, for
integer variables & and B, if (A4 MCGD B)=0 then A is a
maitiple cf E. Use this understanding of the ¥OD operator,
as well as your other programming Knowiedge, to fill in the
statezent or statements meeded in each o©f the blanks in the
feliowing program segment, which is intended to print all
the [ositive mudtiples of 2 1less thaps 1000 and all the
positive multiplies of 3 less than 1000.

"I IS THE NEXT INTEGER TCU BE EXANINELD AS A POSSI1BLE
BOLTIPLE CF 2 CGE 3.%
I VIE IN1z=1;
L0 1<1900 ->
IF (I BCOD 2)=0 OR {I MOL 3}=0 -
i -§{{I HCD Z)=0 OR {1 HOD 3)=0} =->
FI
CD

Indicate what you must argue as correct about this progran,
then briefly dc so.

6. Hany jeople have made syntactic mistakes in the usage of
semi=colons. T4 help you appreciate that a semi-colorn may
only rpreceds the beginning of a statement, ansver the
following question: :

Hith what DPL symbols or parts of +the DPL language Ray a
statement begin? Ee specific. (4 #part™ of the DPL
lanyuage is something which is written in mixed upper and
lower case letters in a syntax diagrawm, and which is further
defined ic its own syntax diagram.)

123

8.8.2 DEL Ezaz $2

{in eleventh week of class)

1. GHADES is a 1-digensional integer array of all 10 exan
scores ‘for each of the 20 people in a class. Assume that
all tbe exam scores have already been read into the array,
in the crder: all the scores for studeat 1, followed by all
the scores for student 2, etc. ' '

Write in DPL a program seghent to compute and print each
Student®s average eXal SCOILe. {You pay assupme that the
scores have besn properly read into GRADES, but should
explicitly provide the output statements for the needed
printing ¢f values. You should assume that a lowest
subscript value has been specified in the initialization
statesent tor GEADES, but should make no assumption about
-what that specific lowest subscript value was.)

2a The following program segment is intended to search
array A for value X and if the value is found, output the
subscript cf A at which the value was located. {You should
assuse that values have already been read into a.) -

I VIE INT:=A.L0B;

LC A{1)~=X => I:=I41

Ch;

IF I<=A.HIB ~-> IQUTPUT:HIEXT (L)
| I> A.HIE => SKIP

FI

What is wroﬁg ¥ith the program?
Indicate a wcdification to the prdgram 50 that it will be

correct. {Indicate the change (s} above or re-write the
prograk below, as you choose.)

124

3a The following program portion reverses the order of the
elements c¢f array A, by swapping the outermost remaining
values then poving inwards and repeating.

I REPRESENTS HOW MANY TIHES SO FAR A PAIR OF VALUES
FROE ARKEAY A HAS BEEN SWAPPED.M
I VIEB INT:=0;
DG I<{A-DOM/2) =-> A:SHAP{A.LCB4I,A.HIB-I)
I:=141
%*
Qo

Forpulate an invariant relation that describes, at point *,
the pertiocn cf the array that remains to be reversed. {The
invariant relation should be specified in terms of I and
such array domain expressions as are needed.,)

4, Scowmetimes a person reading a proyras can immediately
~ detect scsething amiss with the program comments. Seldom do
you @seed to understand the entire program to reach that
conclusicro,. QCiten the comment says scmething that makes no
sense in terms of Emglish grammar and makes no sSepse in
teras of the programming lanyuage?!s proper usage. Sometimes
the problep lies elscwhere.

Refer to the declarations ands/or proyram statements and
indicate whkat is improper with the following conmpents. {Be

as specific as you can.)

a) BEADING VIF INT ARRAY:z=(1);

READING:SHAP {(RIGHT,LEFT) "EXLCHANGES VALUES OF
RIGHT AND LEFTI®

- b} PRIVAR LEFT; WLEFY IS5 THE INDEX
o _ EOSITION *POINT4Ien

LEF{ VIE IBI:=pQINT}Y;

-

DO LEFI<KBIGHY —> M:SWAP{LEFT,RIGHT);
LEFT:=LEFT+1;
BIGHT:=KIGHT-1

GD

125

¢} PRIVAE RIGHT “AN INDEX VARIAELE REPRESENIING
AT ONE TIME THE SHMALLEST LARGER
NUHBER AND LATER IN THE PROGEHAHN,

THE HIBGUND.®

{Note: Sece homework problem #6, described in Appendlx 8.7,
befoze readlng the following exam question.)

5. The foliowing is a «correct, <omeented solution to the
odometer proklen you worked on. Given as input a Seqguence
of ten unique digits ({(but not 9 8 7 6 5 4 3 2 1 {), you were
to compute the next higher sequence. There are some siorle
‘modifications that cap be made to the program so -that it
will compute the next lower sequence, instead. {The input
would be any sequence of ten unique digits except 0 1 2 3 4
E &7 8 9.) - Indicate those modifications in both the

md

prograks and coaments directiy on the progyram below.

WFIND GEEATEST INTEGER I SUCH THAT C(I)<C{i+1):"
I VIR INT:=C.HiE=1;

DO C{1)>C(I+1) -> I:=I-1

oD;

WFIND GHREATEST INTEGER J SUCH THAT C{J)>C{I):"
J VIR INT:=C.HIE;

Do C{ay <cyT) => Jz=d=1

oD;

“SEAP VALUES IN FOSITICGNS I ANE gz
C:SHAR{L,Jd};

W"REVERSE THE CHDER OF THE VALUES 1IN POSITLIONS I41
THRQBGE C,HIBo L AND R ARE THE LEFTMCST AND
RIGHIHGST POSITIONS AT WHICH VALUES ARE TC BE
SHAPPED. ™

L VIR iK%:=7141;

E VIE INT:=C.HIE;

DO L<R -> C:S5WAP{L,R):;

Lz=141;

. B:=E-1

ob

126
gction®s Pipal Exam

{Covers only Pascal material}

1. fascal pernits the definition of additional data types
or subranges, beyond the standard set of integers, reals,
characters, and booleans. This facility enbhances a
disciplined approach (¢ programming in at least two vays:

1. It allows the prograEmer to delineate for the
prcgran?s readers the precise set or range of values
a variable may take on, thus communicating more about
the intended use of that variable than would normally
be possible.

2. It allows +the <computer to check and mnotify the
prcgraumer when an unintended value is assigoned to a
variable, thus rendering considerablie debugging
assistance.

For each of +the following brief problem descriptiosns,
indicate the copplete variable and/or type declarations you
would need for the most ipportant data structures or

variables.

a) A prcgram to manipulate variables for hours, wminutes,
and seccnds.

B) A prcgram to tabulate fruit sales, in pounds, for the
foilowing fruit: apples, oranges, peaches, lemons, 1limes,
strawberries, tangerines, raspberries, pears, and plums.

c} A fprogram £o tabulate the cumulative score for a
compiete game of bowling.

d) & picgrar to panipulate information akout whether each
of the 200 parkimg spaces in a garage is occupied or not.

2. Suppcse you are told to write a prograln segment to
detersine the 1range of values ipn a list of integers to bhe

read in. {The *range®, here, is the difiference betveen the
largest and spallest values read.) The following three
program segments are proposed as solutions. Under certain

circumstances (for certain sets of input values) the program
segments will produce correct ansSwers.

Identify under which circumstances each program will vwork.
. {Think of the circumstances under which each omne might pot

work, then write down the circumstances under which it would
WOrk.)

aj

b}

c}

127

MIN:=1G00GCO;
HAX:=—100000;
WHILE BCGT ECF DO
BEGAA
BERD{X}:
IF X<MIN THEN BHIN:=X
FLSE IF X>MAX THEN daX:=i
END;
RANGE:=MAX~-NIN

REAL{X}:
MIN:=X;
MAx:=X;
WHILE ECE EQT DO
BEGIX
BREAD{X} ;
IF X<{HIN THEN HIN:=i
ELSE iF X>HMAX TEEN BAX:=X
END; . }
RANGE:=MAX-HIN

REATD (1}
¥INz=1:
¥Af:=X:
WHILE BCT ECF DG
BEGIE
REAL{X): '
- I¥ A<MIN THEN HIN:=X;
IF X>HAX THEN MAX:=X;
RAKGE:z=MAX~-MIN
ERD

128

3. #Hilitary pecple since the days of Julius Caesar have used
codes and ciphers to scramble messages and protect their rplaass
against discovery even if the messengers were captured and forced
to disclose their messages. A sinpple-ginded cipher would be to
change each consonant of the English alphabet into the letter
that follcws it, and each vowel into the letter that precedes it.
{Consider the aljphabet as circularly limked: A follcws Z and

Z precedes A.) Thus the nessage

ATTACK AT DAWRN
would be enciphered as
ZU0Zb1L ZU EzXG.

If the receiver also knows the enciphering scheme, deciphering

the message is no probiem. The enciphering, then, is really a
mapping which takes a letter from the domain and maps it iato

some other letter in the range. {Both the domain and range, here,
ate the alphabset.)

Write a Pascal program to read a wessage comnsisting of characters
from the iaput cards and print the coded message enciphered according
to the akcove scheme. Include all declarations, comnments, and input/

output statements.

129

Se The fellcwing are two prograk segments to sort a set of W
integer values already read into array A. With ¥=6 and the coatents

A{ 1]
A{2]
A3}
AL 4]
A{35]
A[S]

[T I T T 1}

wd Lt $0 N O o

state, for each program seguaent below, the number of times a
comparison is made bet¥een two array values for each tinme
through the cutermost loop (that is, for each new value of
I}, them add the nuabers together to get a total count.

a) {¥ SELECIIUN SORT %)

I:=1 {* I 1s the position of the next
element of A which is to receive
its proper sorted value #)

WHILE I<KE DG
BEGIF _

B:=X; {* P will be the position of the

spallest value found so far %)

J:=J41; (* J is the position of the next

array value to be compared to
the largest found s¢ far #*)

WHILE J<=§ D@

BEGIN
1 A[JJKA[{P] THEN P:=dJ
"ELSE;

k)
2

L 1]

J:=J41
- END;
{* Sway the values in positions 1 and P of & ¥)
T:=A{1]; :
alI13:=4{P];
B{B]:=T;
I:=T41
END

130

b} {* IFSERTICN SQRT %)
I:3=2; {(¥* I is one more than the number of

values inserted so rar. ¥)
WHILE I<=% DO '
BEGIRN
Js=1i-1; {¥* J is position of next value
potentially less than the value
to be ipmserted at this stage ¥)
FCUND:=FARLSE; {* FCUND is truth of "Have
found inserticn point already® ¥)
KHILE {(J>=1) AND (NGT FOUND)} DO

BEGIN
IF A[JJ<A[J+4+V] THEN FGUND:=TROF
ELSE BEGIN
T:=A3J 1;
A[J J:=A{J3+1];
AR{J41]2=T;
J:=Jd=1
END
ENG;
I:=141
ERE

bs For the folleowing Pascal prograr fragmeht, assume that
the veakest precondition for the program is that X and Y are -
sorted ir increasing order {i.g., no repetitions and
I VIKE[2)<uaa<Xi] and likevise Y TIKY21Keaa<I{N]e
However, there wight be some I and J for which X{1I}=¥{J].)

The progran fragment is tc compute an array, U, which
contains in ascending order (without <rfepetitions) all
elements that are im either X or Y or poth.

131

VAR X,Y: AREAY[1..100] OF INIEGER;
: ARBAY{ 1..200) OF INTEGER;

H, {(* Actual # of values to be read into X #%)
N, (¥ Actual # of values to be read into Y ¥)
i, {(* Subscript of next element of X that
_ might be inserted into U ¥}
Jd, {*¥ Subscript of next element of ¥ that
might be inserted into U *)
Kz {* Subscript of next element of U to
receive a value %)
IKTEGER;

BEGIN :
READ (N, N);
statements to read values correctly into X and ¥;
I:=1;
Jz=1;
K:=1; ‘ _
RHILE {I<=H) AND (J<=H} DG
BEGISH _
IF ¥[I)<Y{J] THEN BEGIN
U{K]:=X[1];
K:=K+41; I:=14t
END
ELSE IF Y[JS]J<X{1] THEN BEGIN _
U[KJz=Y¥{J];
K:=E+1; Jz=d+1
END
ELSE IF X[IJ=¥{J) THEN BEGIN

END
%
END:
IF i># THEN HHiLE J<=% IO
BEGIE

END
ELSE {* J>N %)
WHILE I<=M DG
BEGIN

END
E¥D.

a) Demponstrate your ability to read the above progranm
fragment and ccmstruct the needed algorithm by £illimg in
the blanks with the needed statement or statements.

132

b) If£f B is the sum of the number of times the first loop is
repeated plus the pumber of times the second 1loop is
repeated pilus the npamber of times the third loop is
repeated, :

What is the maximum value of R?
What is the minipum value of RB?
c) For point *, forsulate an invariant relatiom which

describes the contents of U in terms of the contents of X
and Y=

d) Offer an argument of the correctness of the cospleted
program. State what must be argued, then 4o so.

133

8.6.4 ArplesBatch Pascal Exas #1

{in seventh aeek of class)

I. Multiple choice. Circle one amswer, the best answer,

tor each question. Bead the guestions and the answers
carefully. '
1. & statement group
BEGIN
 Z or more statements
 ERD

a) Is used for clarity to indicate groups of related
statements

b} Is used to allow many statements to be used where
one statepment would otherwise be expected

¢) Must appear in an ELSE clause

d) Is used cunly to specify the executable part of a
ptogran

e) Noge of the above

2. The statement KEADLN(X)

a) Causes the cutput device to skip a line after the
valuye of ¥ is read

b) Causes the value of X to be read and then to be
#ritteh cn a new line

¢} Causes the value of X to be read from a nev line

d} Causes the value of X to be read from the last
ites on the present line

e) Hone of the above

3. A preogram uwith the follcocwing structure

1F ccndition THEX GCTO 103
1 or sore stateasents;

20: statement;

i or more statements;

IF candition THEN GOTIC 10;
GCIQg 20;

10: statement;.

1 or more statements

is uandesiralkle because

a) It cannct operate correctly
b} It is hard to understand

c) It has no ELSE clauses

d) It uses numeric labels

e} None of the above

L

S5e

6.

?D

a)
b)
)
a)

e)

In an insertion sort of a list of elements, as
given in lecture, the first insertion is of

The first silement into its ultlmate position
in the scoried list

The last element into its ultimate position
in the sorted 1ist

The second element into its correct pesition
relative toc the first element

The spallest element into the first posxtlon
in the list

None of the above

Consider the following program fragment
IF 3<5
THE¥ actioni
ELSE IF 1<10
THEN action?Z
ELSE IF i<15
THEN action3
ELSE actiond

#hich statement belou‘is HOT true?

aj

b}
c)
d)
2}

a)
b}
<}
d)
e}

a)
b)
)
d)
)

If £ holds the value 7, both action2 and
acticn3d will be taken '

If ¥ holds the vailue 10, action3 will be taken
It % holds the wvalue 16, actiond will be taken
If X bolds the value -200, acticnl will be taken
If % holds the value 15, actioniy will be taken

A program ¢ read a series of 50 pairs of numbers
and tc print the sum of the ssaller bpumbers of

eaci pair swould involve

3 locp within a loop

A lcop withim a select

A select within a loop

4 select within a select
Ncne of the above

‘Which of the following tasks is principally the

r6590551b111ty of an operating systen?

Iranslate from Pascal to machine language
Produce a listing of the prograsm

Supervise the execution of a progran
Control the format of the program®s outpuat
Remove the proyram?s guts

134

8. The program fragment

aj
b}

c)
d}

e}

IF A=B
TEHEN
EISE a:=B41

Is illegali because a statement or statepent
grour must follow the keyword THEN
Is illegal because A=B should be A:=B
Is jllegal because A:=B41 should be A=B41
1s updesirable because it is unpclear and
should be replaced by :
IF NCT (A-B=0)
THEN A:=B41
Is undesirable because it is unclear aad
should be replaced by
IF A<>B .
THEN A:=B41

9, 1f a Pascal rrogram incindes the declarations

aj

b)
c)

a)
e}

COKST
IX% = 9;

VAR
I: INTEGER;

¥XX does not require space in the cosmputer's
semory during program execution

iX%:=1 is a legal statement

The valiue of XXX should never be changed
between runs of the program

The value ¢f XXX may now and then be changed
betueen runs of the progranm

Ncne cf the above

135

10, Giver three integers, comsider the problem of
finding the one whose value lies between the value

a)

b)

ci

dj

e)

af the other two.

¥hich of the following would be

the best set of test data for this problem?

8,
8,

is
4y
6,
1,
8y

8,

1,
i,
6,

.6‘
7
1,
4,
1,

&,

id

5
7

1

10, 7, 4
8, 8, 6

10, 10,

a,

2

1

¢
8,
8,
8,

i,

&

6
6

O wa O8O

[<p R 3 2T - e + I =)

136

II. Insert the seamicolons that are appropriate'

in tke following Pascal program.
PROGERAR TEST(IHPUT,GUTPUT}
LABEL 10

VAR
i: INTEGER

BEGIN
EEAD {X)
{¥ LCGCP %) _ .
WHILE TRUE LO BEGIN
IP X<4 THEN GOTO 10
IF X106
THEN X:=XI-3
ELSE BEGIH
X2=%~2
HEITELHN (X)
END
Z:=X41
. EXD; 10:
{* END #)
WEITE ('GOCD BYE?)
ENDa . -

137

III. 1Trace the one of the following Pascal programs
under the title corresponding to your section.

Assume that the input streas consists of
-1
4

PROGRAM TEST (INFUT,QUTPUT);

LABEL 14;
VAR
X: ABTEGER;

BEGIiRN
WHILE NOT ECF{INFUT) DG EEGIN

READLN (%) ;

" WHILE TIEBUE DO BEGIN
- IF X<=0 THEH GOTI0 10;
Ea=¥-2:
IE {X*X - X)<>0 :
THEN WRITELR{19 MCD{X#*X-X})
ELSE WEITELX{0)
E¥D; 10:

END
END.

138

139

Apple Secticn

Assame that the file INPUT.TEXT contains
-1 - :
i

PROGEA# TEST (INPUT, OUTPUT);

LABEL 10;

VAR
TATIN: TEXT;
X: INIEGER;

BEGIK
RESET{IXTIN, *UNCSYSV:IBPUT.TEXT®};
WHILE MCT ECr{IXTIN) DG EEGIN
RERELE{TXTIN,X);

HHILE TBUE DO BEGIN
If¥ I<=0 THEN GOTO 10:
Ra=X-2;
IF {X*X-X) <>0
THER WRITELN{19 HCD X*X-X})
THEN HRITELH{19 MOD{X*X-X})}
ELSE WRITIELN({D)
END; 10:

END
END.,

140

8.6.5 ArplesBatch Pascal Exas #2
{in eleventh seek of classes)

1. Assume that the constant MAXSIZE has the value 3 and A

is declared as ARRAY{ 1..MAXSIZE] OF INTEGER. Assuae for
each of the <fodlowing program fragments that before
executing that fragmeat the input 1is as follows, where new
lines on the fage correspond to new lines of the 1input
streanms - ' _ _

1. =z 3
4 £ €
7 £ g
10 11 12
i3 14 15
16 17 18

For each fragment give the contents of the array 3 after the
fragment is executed.

a) POE I:=1 TO MAXSIZE DO
READLN{A[1})

b) POR I:=1 10 MAXSIZE DO BEGIN
READ(A[ID;:
 READLN
END

¢) FOR I:=1 910 MAXSIZE DO BEGIN
REAG(A[I]);
" READLN{A{1))
END |

141

2, Let A be declared
. AKEAY[1..3) OF ARRAY¥[4..6] GF REAL

Assume¢ that the following program fragment has just
been executed.

VALUE:=10;
FCF I:=1 T0 3 DO
FOB J2=4 TO 6 DO BEGIN .,
A[I)JJ:=YALUE;
VALUE:=VALUE4!
END |

a) Give the contents of A[2,6].

b) Give the conmtents of A{3).

3. Trace the following Pascal proyram which tramsliterates
German sentences, assuming that the input stream holds the
three characters JA. . The program is meant to rum om a
noninteractive comsputer.

PROGRAY TEANSLITI{I&PUT,QUIPUYT);
LABEL 30,203

CONST
NUMLEITEERS=3;
HMAXLENGTH=20;

VAR '
GEELETZER, {¥ LETTERS 10 TRANSLITEEATE *)
ENGLETTER: {* CORRESPONDING ENGLISE LETIEERS %)
ARBAY[1.. NUHLETTERS] OF CHAK;
SENT: ARBAY[1. .MAXLENGTH] OF CHAR: {* SENTERCE TO
_ THRANSLITEERATE *)
CHARNUM, (* CHARACTER NUMBER IN SENTENCE *)
- LEYTEENUM, (* INDEX IN TEANSLITERATION TABLE *)
SEBTLENGTH: {*% SENTERCE LENGTH %)
O» GEAXINT;

142

BEGIN

{*

SET CCHEESPONDiING LETTERS *)

GEBLETTER[1]e=%39;
ENGLETTER{ 1}:=%%";
GEBLETITER{2]s=7V¥?;

ENGLETTER[2):="F*;

GERIETIER[3]:=%W";

{*

ENGLETTER{ 3j:="¥¥;

REAL AND ECHO SENTERCE %)

HRITE{ GERMAN SENTENCE: ?);
CHABNUM:=1;

(¥ LOOE %) _
WEILE TRUE DU BEGIN
READ {SENT{ CHARNUN]} ;
WRITE (SENT{ CHARNUN]}
IF SENT{CHARBUMI}=?,*
THEN GOTC 10;
CHAENUN:=CHARNDH4
END: 10:
(* END %}
SEXTLENGIE2=CHAENOHN-1;

{* TEANSLITERATE AND PRINT SENTERCE *)

RRITELN;
BRITE {*ENGLLISH TERANSLITEEATION: %)
FCE CHAENUM:=1 TO SENTLENGTH DC BEGIN
{* TEANSLITERATE AND PHINT THIS CHARACTER #)
LETTERBUN:=1;
{¥ LOCP %)
BHILE TRUE DC BEGIN
IF LETTERNUM > HUNBLETTERS
IHEN GOTQ 20; :
If SENT{CHARKUM J=GERLETTER[LETTERNUN]
THEN BEGIN '
SENT{ CHARNUHN J:=ENGLETTER{ LETTERNUY };
LETTIEENDH:=NUBLETTEES41
END -
ELSE LETTERNUM:=LETIERNUM$1
END; 2G:
{¥ ENLD *),
HRITE {SENT[CEARNUNM]}
END;
WRITE {%®- ")

EXD.

5, Circle the best answer for each of the follow;ng

multiple choice questions.

a) Assusme that A and B are real variables and the

assigoments

are eiecited.

1
2}

3)

4)

3)

) Let A be declared ARRAY[1..20] COF REAL.
fragment tc change to zerc all negative elepments of 2

B

A and EF amust be specitied in the E format
The computer does multiplication of reals in

Beal numbers are not fepresented exactly ian

:=0ab
:=0. 206

- different ways at different times
Beal cconstants are not allowed in Pascal

the ccmputer

None of the above

should have as its main control structure

¢} Assusme that all NC automobile license plates have
A list of suchk licemse plate

=0 < T < T 1

?CE iteration
HRILE loop

FCE iteration nested 1n51de a FOBR iteration

WHILE iocp nested inside a ®HILE loop
FCE iteration nested inside a WHILE loop

exactly six characters.

*aupberst

1
<)

3)
4

3)

a
a

a

1-dipensional
i1-disensional
{-dixensional
Zz=digeusional
2=-dipensional
{-dipensional
Z2-digensional
2~disensional

array
array
array
array
array
array
acrray
array

of
aof
of
of
of
ot
of
of

would be best stored as

characters
Characters plus
integer lengths
characters
characters plus
integer leugths

characters plus

integer lengths

The condition {A*A=0.14B) is thea
computed to have the value FALSE despiie the fact
that C.6 times 0.6 is egqual to 0.1 { 0.26 because

A program

a

143

d)

e}

1)
2)

3)

3}

144

1f the declaratica

a: !BB&Y{-S..S} CF -10..10
gccurs in the VAR field of a grogram and the progras
includes a pair of statements '

REAL {1} ;

A{1I]:=1
that are executed whem the next item in the inpat
streak has the value 8, _

A syntax error will be detected by the compiler

An exror will be detected during program execution
The frogram will calculate an incorrect answer

The rrograsmer will trip whea plcklng up his disting
No errors will result

It your prograw for a COMP 14 prograsmming assignment
includes a GOTC statement exiting from a FOR
iteration, will lose credit because of the chance

that

The compiler will find a syntax error

The run-tige system will detect an error during
executicn

The rrograg will compute an incorrect answer

The program will be hard to debug because of a
structure with two exits

‘None of the akove

145

8.6.6 ApplesBatch Pascal Final Exzas
1. For sach of the data types:

a) AREAY[1..10] OF ARBAY[-2..3] OF REAL
b} ARRAY[2..6] OF CHAR _

c} BOOLEAN

d) ‘A‘oa*B'

e} INTEGER

we wish to kncw which of the following'properties
apply tc variables of that type.

1) The variable can bhave only

tuc legal values. abcde
2} The variable can serve as

the index cof an array. abcdae
3) The variable hoids at one

tige a collection of values. abcde

Indicate your amswers by circling the corresponding
letter for each of the types to which the properties

apply..

2e

Assume that a maip program declares INTEGEE variables
with the names A and B and that during executiom it

arrives at a statement
F{a,E)

 when its variable A bhas the value 5 and its variable

B has the value 1. BAssume that the procedure P is
defined by

FRCCEDUEE P(VAR B: INTEGER; C: INTEGER) ;
VAR _
A: INTEGER;

BEGIN
Ca=2%(;
:=C-1;
Br=54C+A
E¥D;

Give the values of

a} the variables and parameters of P -just before the
gxecutable part of P is executed

b} the variables and parameters of P just before the
procedure P returns o the main progran

¢) the variables A and B in the main program Jjust
after centrel is returned from the procsdure P.

Use "4 if a value is unXnowin.

146

147

3. Assume that you must write a program to generate a
concordance for a text string provided as input - it
lists all of the words in the text in alphabetical
order and for each word it priamts the number of times
that the word appeared im the input text. The
algorithm that you produce assigans values to three
arrays: WCRDLIST, such that HORDLISI{POS] holds the
PGSth word in-alphabetical order; CCUNT, such that
CCUNT{ £05] holds the nuaber of occurrences of the
word stored in WORDLIST{ POS]; and LENGTH, such that
LENGTH[FOS] holds the nusmber of characters in the
word ic WCBDLIST[POS). Here is the algoritiam you
preduces: '

BUMWOELS:=0

Loop

Exit if there is no more input;

Head the aext word ianto WGED and set {1)
WCBDLENGTH to its length;

Set BOS to the position of the first word {2)
in WOEDLIST that is greater than or :
egual t¢ {in alphabetical order} WOCRD;

IF KOBDLIST{ #0S] is egual to WORD {3)
THEN COUNT{PCS J:=COUBT{BOS 11
-ELSE BEGIN .
: Bove all of the words in WORDLIST {4)

from positions PCOS through
NUMWORDS down one position;
Move all of the lengths in LENGTH {5)
from positions PGS through
NUMEGEDS down one position; :
Move all of the pumbers in COUNT {5)
from positions POS through
EUMHOBDS down one position;
NUMWORDS:=NUMEORDS + 1;
Set WCEDLIST[POS] to WORD; {6)
LENGTH{ PCS J:=HNORLLENGTH;
CCUNT[POS J3=
END
End; :
Priant the list cf words in BORDLIST and the {7)

subber of occurrences of each {from COUNT)

Assupwe that no word will appear that is greater than
MAIZLENGTH characters long, and no more than MAXWORDS
words %ill be encountered, where MAXLENGTH and
MAXWOHRDS are declared as coastants.

a) Give type defipitions necessary to allow each of the
varialbles WORD, WCEDLIST, COUNT, and LENGTH im this
main progral to be declared to have a single~word
type.

148

b) Using the types defimed in part a, yive the declaratioas
" required for WORD, ¥ORDLIST, COUNT, and LENGTH in the

main progral.

c} The nupbexrs ¥-7 inm the fight wmargin mark lines that
specify the actions of seven subprograms that are

required:

1. READNWCKD

2. BCSFIND

3. WOEDEQUAL
4. SEIFTHORDS
5. SHIFTNOMS
6, WORDASSIGN
7. CONCPRINT

The nurber 5 appears in the margin twice to indicate
two separate invecations of a single subprogram. For
each subprogram give a full FUNCTION statement or
PROCELCURE statement needed to head the definition of
the subprogram. You need not write any part of the
subpregranm except for the FURCTION or FROCEDURE
statenent.

4, Assume that a program imcludes a procedure heglanlug
u;th the statement

EROCEDURE ({A: BREAL; VAR B: REBL);

Assume that the program declares the real variables
C, D, and E. Which of the followiny t¥Wo invocations

would te legal?

1} Q{C,B4E}
2} CHBHE,C)

a) MNeitker

b) Nuaber 1 only
c} HRumber 2 only
d) Both

Se

149

You are tc write a Pascal program that is given as input
a string of alphabetic characters tersimpated by a blank:
and prints the "next string®, where "next string" is
defiped by thinking of the characters 'A% through 'Z°

iike digits apd thinking of the strimg iike a number

zade up of digits. Thus the pext string after ®A% is
#B#, the next string after "Z¥ is "AAY, the next string
after MABY jis YACY, the pext string after “AZIM is "BAAY,
the next string after "22Z% is ¥AAA", and the next string
after the blank string is ¥®aw,

You may assume that the input string will be at least

one character shorter than the memory you have set aside
toc hold the string. You will prokably need to use the
predefined tuncticn SUCC; assume that SUCC appiied to aay
ietter but *Z° gives the next letter im the alphabet.
four program may omit a header comment, but it should
include ail other commenting and formatting that is
normally reyuired.

6. Assume that the array LIST is declared ARRAY[1..8] OF
that LIST has the following contents:

INTEGEE and

LIST[1]
LI1sT{2)]
LIST{ 3]
LIST{ 4]
LIST{ 5]
LIST{ 6]
LIST{ 7]
LIS 8]

PR]
LISIF — 3 Sk Yo 2 o o B - N % N T

150

Assumé that KEY ard ELT are both declared INTEGER and
that we have our choice of the following two . :
algorithms to set ELT to the index of the element of
LIST ttat hoilds the value in XKEI, or to set ELT to
zere if there is po such element.

Algorithe 1:

Algorithm 2:

LIST[B}:=KEY;
ELT:=1;
Loop
Exit if LIST{ ELY J=KEY;
ELT:=ELT+41
End;
iIF ELT=8
THEN ELTz2=0

BEGLIST:=1;

ENDLIST:=7;

Loop
Exit if ENDLIST~BEGLISTI<=0;
{¥ FIND THE MIDBOINT OF THE CANDIDATE
PART OF TEE 1LIST #)
ELT:= {BEGLiSTH+ENDLIST) DIV 2;
{* HALVE THE CANDIDATE PART
OF TRE LIST #)
Select
IF KEY<LIST{ELT)
THEN ENDLIST:=ELT-1
ELSE IF KEY>LISI[ELT]
THEN BEGLIST:=ELT+1
ELSE BEGIN
BEGLIST:=ELT;
ERDLISYT :=ELT
END
End
End;

i1F KEY=LISTI{BEGLIST)

THEN ELT:=BEGLIST
ELSE ELT:=0

151

Each of these alyorithms has a loop that includes an exit
test. Successively for the values

a) 4
by 17
c) 5

ansuer the following questions:

With that value in KEY, how many times will the exit test
of alqgoriths 1 be executed? With that value in KEY how
many times will the exit test of algérithn.z be executed?

d) {Extra credit)
. If BEY holds a value in some elemant of LIST, for

gach algorithe give the maximum nusber of times its
i00p®s exit test can be executed.

8.7

1.

2.

3.

4.

5-

152

EBQELEN ASSIGNHENT SUBHARIES

Cocpy and run (differeat procgras for each section)
Length in yards, feet, and inches.

Write a prcogras which reads an integer value representing
a length, im inches, and converts that vaiue into the
equivalent yards, f£feset, and inchese. Print out the
original input value, followed by the conputed yards,
teet, and inches, im that order. Assume that the input
value %ill be between 0 and 32767, inclusive.

Argstrong numbers

An n-digit npumber is an Armstromg aumber if the sum of
the n th power of the digits is equal to the origigal
nurker. For exampie, 371 is a 3-digit Armstrong number
because the sum of the 3 rd poser, or cube, of each of
its digits equals 371. Hrite a program to read a 3-digit
iaprat integer vaiue, priat out that same value, and priat
#True® if the value is an Armsitrong number or "False® if
the value is not apn Armstgong number. The input integer
value will be between 100 amd S99, inclusive.

Fibkonacci numbers

The sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, <2 , in
which each number is the sum of the preceding two, is
called a Fibosmacci number sequence, after the great pre-
Renaissance mathematiclan who discovered it. Hrite a
prograe which reads an ipteger input value, prints that
sape value, then calculates aand prints all Fibonacci
nunbers less than that imteger input value. Tae input
value Bsay bte any integer.

Josextion scrt inmer loop

Write a progiam to read as integer n followed by a list
of n integers aad then tc¢ reorder this list, in place, by
leaving the relative order of all but the last iten
unchanged but inserting the last item somewhere within,
before, ocr atfter the other items according to the
following insertion rule. The last item is to be
inserted ipmediately after the bottommost of the other
items: which is less thas or sgqual to the item to be
inserted. 1If the jitem to be imserted is less than all of
the othker items, the insertion should be before all of
these items. Thus, for example, if the first input value

153

is & ard the remaining inputs are 1, 9, 2, 5, 7, 3, the 3
will be inserted after the 2 producing 1, 9, 2, 3, 5, 7.
Note that if the 1list of all but the element to be
inserted is initially in asceading order, the insertion
will cause the whole list to end up in asceanding order.

Priot the resultant list. Assume that the program should
work with valyes of n up to 0. : - o

6. GCdometer ptdblem (Bijkstra's Next Permutation Problemn)

Given as input as ordered seguence of ten single-digit
positive integers representing a mileage reading, where
each one of the ten 4integers is a different number .
between 0 and 9 inclusive, caiculate and print the next
higher mileage where, once again, each of the ten digits
is a different number between U and 9. For example, for
input €& 2 958 374 10, the mext higher sequence
would te 6 2. 958 4 01 3 7. The restrictions on the
input sequence are that the ten values will each be a
different pumber between O and 9, and that the sequence
will nct ke $ 8 7 6 5 4 3 2 1 0, for which there is not a
next higher mileage obeying the given rule.

7. Pattern satch (Apple and batch Pascal sections 6nlyj

#rite a program that will
a) read a sentence
bk} read a word or phrase
¢) print whether the sword or phrase is contained in the
sentence {including precisely the same hlanks).

7a. Bowling program re-write {DPL section only)

Be-code intc Pascal the coaplete DPL program in the
lecture notes to score a game of bowling. {Given an
input sequence representing a legal game-full of bowling
pis cocunts, calculate +the frame-by-frame cumulative
SCOLE.)

7b. Letter ccncordance (DPL section oaly)
¥rite a FEFascal program to tabulate the number of

occurrences ¢f each letter of the alphabet in a givenm
input text.

8.

154
Function graphing {all sections in Pascal)

Write a program to graph a mathematical function, F({(X),
on a printed page. The function should be specified as a
functicn subprogras, and the prograa should be structured
so that a different function subprogram could be supplied
without change to the remainder of the prograa. Input
values specify the miniwum and maximum values of the
functicn domain, and the maximum value in the range for
the given domaimn. OCutput should consist of a graph, with
labeled axes, of the curve over the domain.

Statistical suabroutines

Write a prograsm to read an integer n followed by a
sequence of n real values, then one @more integer value
designating whether to «calculate the mean or the median
of the real inputis. The subprogram to calculate the
wedian should sort the input values, using the insertion
sort algorithw introduced in assigament #5.

155

8.8 BOIES ON IHE HCCABE COBPLEXITY BEIRIC

The ¥cCalke metric is a peasure of cyclomatic complexity
of progrags. It frelates intuitive conplexity and graph
theoretic complexity. Complexity, as measured by the
progra® metric, deperds only on the decision structure of
the progranm.

(==

oy to compute it:

——

|

Complexity is the number of conditions in the program, plus
one.

Notess

o s man

. A program with no bramching at all has complexity 1.

2- A program which calis a subprogram has complexity
equal to the number of conditions im the program plus
- the number of conditions in the subprogram, plus one.

3. A& conrgound predicate <C1 AND (2 contributes 2 to
coEplexity (it bhas two conditioms) because it could
be regarded as

IF C37 THEN IF C2 THER _____ without using AND.

4, A case Statesent with N possible values of the case

~expressicn comtributes N to the complexity. Hence,

CASE ERENBE OF 1:

S ——
23
-

R

3,4,5:
END

b e s e g

would contribute 5 to the complexity.

5. Fer a copditiomal, _ .
i¥ condition THEN ____ contributes 1.
IF condition THEN __ _ e

ELSE __ contributes 1.’

PR

6. Focr a regpetition,
EHILE condition DO . c¢ontrtibutes 1.

e e s ekt M

FCR 1:=expi TI0 exp2 DO centributes 1.

e et s b

7a

156

For a DPL guarded coamand, each guard contributes to

cosplexity. Thus,

iF¥ conditionl ~-> ____
{ =ccnditiond -> ____
Fl :
weuld contribute 2 to complexity.

157

8.9 DEL COBPILER BUG LIST

1a

3.

5.

6.

8.

10.

Serious and unpredictable inability to handle nesting
of prograE units. Adding an outermost program uait
to facilitate running a program on multiple sets of
test data imtroduced spurious sSyatax errors on
occasiona '

Bepstitive statemesnt '{BO-QB} may not be the first
statement {after scope declarations) of a progran
uﬂjt» .

Serious and unpredictabie compiler errors due to
register allocation problems, particularly im
cospound guards of DO-0OD and IF-FI constructions.

Array operator ALT {in either syntactic form} doss
not werk at all,

Sccpe rules do not work cocrectly for array variables
- arrays are not deactivated at the end of their
private scope. (Sisple variables are deactivated
correctly.) :

{legally) altering {from run to run} the order of
identifiers in the identifier-list of a scope
declaration can cause a sSpurious error to be
identified.

The syntactic recogaiticn of array domain operators
is incorrectly isplemented. To wit, the guard
¥={A.HiIB-1) is flagged . as an error, while
{={{A,HiE)=-1} is treated properly.

Actual syntax errors are flagged im misleading ways.
Exe, IF I<KJLK =-> is flagged as an *internal stack
overflow® coampiler error; ICUTPUT:HIEXIT(arraynane)
{(attespting tc pript an array all in ome step) is
ftlagged as an unrecognizable error. :

The conrpiler, in several instances, ouatputs
voluninous compiler trace diagnostics {acts as though
it has fcoundé an erroxr), but coatinues to correctly.
translate the program, then correctly executes it. :

Severe, but incomsistent, 1limits on amount of input
that can be supplied to a program, as well as output
that can be generated by it. For example, 32 pieces
of input data gives compiler error "There is no more
space in the register allocator.®

11,

12.

158

3 half-dozen characters {_s5,%, etc.) are
recognizable by the compiler, kut have no legal usage.
in the languaye other than appearing in comments They
gay not be used as part of variable nanmesa.

Unrredictable and unreasonable 1limits on depth of
nesting of DO-CD's and IF-FI's seems to exist. Error
gessage indicates a compiler error, "Internal stack
overflowed.?

BIBLIOGRAPHY

Aho, A.Y., Hogcroft, JuE., and Gllman, J.D., The Lesign apd
Analysis c¢f Computer Algorithms, BReading, Mass; Addison-
Hesley Publishing Co., 1974.

Anderson, B.B., Proving Programs Correct, ¥ew York: John
Wiley & Scns, 1979. S

Baker, F.l., "Chief Progranmer Team.ﬂana‘ement'of Progduction
Progranaeing," IBM Systeas Journal, Yoluzme 11, Number 1,
1972, fpp. 56~ -71.

Baker, A.l., and Zweben, 5., "A Compatison of Measures of
Control Flew Complexity,™ IEEE Iransactions on Software
Engineeriang, Volume SE~6, Numker 6, 1980, pp. 506~512,

Basili; V., and Beiter, R.¥., Jr., “An Iavestigation of
Human Factors in Software Development,® Computer, Volunme
12,12, Lecember, 1979, pp. 21-38.

- s “"Evaluating Automatahle Neasures of Software

[P T RR—————

iIEXE, Cctoker, 19?9-

Bezanson, E.B., Y"Teaching Structured Frogramming in FORTRAN
with IFTRAN,™ SIGCSE Bulletin, Volume 7, Humber %,
February, 1975, pps 196-199.

Bishop, J., "IThe Portable DPL Compiler Project,® Master's
thesis, Technical Report TR80-008, bLepartment of Computer
Science, University of North Carolima, Chapel Hill, 19840.

Bohm, C. and Jacopini, G. “Flow Diagrams, Turing Machines,
and Languages with Only Two Formatioa Rules,"
Copmunicaticns of the ACK, Volume 9, Number 5, 1966, pp.
366-371-

Bowles, K., "2 CS1 Course Based on Stand~Alcne
- Microccwputers,”" SIGCSE Bulletin, Volume 10, Number 1,
February, 1978, pp- 125-127.

~y BEginpner®s gui
York: EytesldcGraw Hlll

lﬁ“

¢ for the UCSD Pascal System, New
19 :

\!ll"l

9.

Brooks, F.FP., Jr., The Hythical Momth, Reading, Hass.:

Addison~wesley, 1975.

#tﬁ

--—-

160

Brooks, K., "Ioward a Theory of the Cognitive Processes in
Copputer Programming,% Ipternationai Jowrmal of Han-
Machine Studies, Volume 9, 1977, pp. 737-751.

—-¢ "Studying Programmer HBehavior Experimentally:
The Prcblems of Proper Hethodology," Cosmunications of
the ACE, Volume 23, Number &, %980, pp. 207-213.

Campbell, T.T. and Stanley, J.C., Experimental a
Experizental Desiqps for Research, Skokie, Ii
Bchally, 1966. .

nd Quasi-
i1.: Rand

Card, S.X., Horan, T.P., and Newell, AR., “"ihe Keystroke-
Level Bodel for User Performanmce Time with Interactiive
Systeas," Compunications of the ACY, Volume 23, Sumber 7,
1980, rp. 396~410.

Chanon, E.N., "An Experiment with am Introductory Course in

August, 1977, pp. 39-42.

Chapin, N., "3 Measure of Sottware Complexity,” AFIPS
Conference Proceedings, Yolume 48: 31979 Hationpal
conputer Coenference, Montvale, NJ: AFIPS Press, 1979.

(145

— - . S A~ i st i 3.

Chen, E.T., "Erogram Complexity aad Programmer
Productivity,® LEEE Transactions on Software Emgipeering,
Volupe SE-4, Number 3, 1978, pp. 187-144.

Cheney, ¥., "Cogpitive Style and Student Programming
Apbility: An Investigation,® AEDS Jourpal, Summer, 1980,
pp. 28%-291.

ConvWay, B., Gries, L., and Zismerman, E.C., A Brimper on
Pascal, Cambridge: W®inthrop Publishers, 1976.

Cortis, B., Sheppard, S.B., and ¥Millimaa, F., ¥Third Time
Charm: Strcunger Predictiom of Frogrammer Performance by
Softuare Copplexity Metrics,¥ Proceedings of the Fourth
interpaticnal Copference on Sofitware Epgineering, New
York: IEEE, 1979. :

Curtis, B., Sheppard, S-B.y HBilliman, P., BEorst, H.A., aad
Love, 1., "Measuring the Psychological Complexity of
Software Maintenance Tasks with the Halstead and HceCabe
Hetrics,® IEEE Irapsactions opn Software Engipesring,
Volume SE~5, Number 2, %1979, pp. 96-104.

Dahl, C.=Jd., Dijkstra, E.¥., and Hoare, C.A.R., Structured
Progragping, New York: Academic Press, 1972.

161
paly, C., Embley, D., and Nagy, 6., "A Progress Report on
Teaching ProyraBming to Busimess Students Without
Lectures," SIGCSE Bulletin, Volume 11, Number 1,
February, 1979, pp. 247-251. ' B

de Groot, A.C., Thought and Qh oice in _gess, New York:
Basic Fooks, Inc., 1965.

DeMille, E.A., Lipton, R.J., and Perlis, A.J., %"Social
Processes and Proofs of Theoreass and Programs,"

e A i s LB, At i o Y o A . e it P

271-28G.

Bijkétra,-ﬁ.ﬂ., “a Constructive Approach to the Problem of
Progran Correctness,Y BIT, Volume 8,3, 1968, pp. 174-186,

.s #The Stracture of the FHE Multiprogramming
System," Comsunications of the Agﬂ, Voluse 11, Number 5,
1968, rp. 3#1~3ﬁ6-

——en s "Correctness Concerns and, Among Gther Things,
Why They Are Besented,"™ SIGPLAN Not;ces, Volume 10,
Number 6, June, 1975, 99.536*550. : _ '

_____m__.; "Suarqed Conmands, Nondetermlnacy and Formal
Derivation oi Programs,” Commuaications of the ACH,

oy A g&ﬁﬁéﬂ
11, 1

line of Progragaming, Englewood Cliffs:
Frentice-Ha _ ‘

976. o

Didarco, Eird, and Norton, ®lLife Style, learsning Style,
iearaning Structure, Their Congruences and Student
Attitudes and Performance iam a Data Processing Course, "
Jggrnal of Educational Data Processz_g, Volume 16, Hnmber
2, 1878, frp. 1-8..

Elshoff JuL., "An Analysis of Some Coamerc1al PL/T
Prcgraas,“ LIFEE Transactioms on Software Engiheering,
Yolume SE- 2, Humber 2, 1976, pp. 113-120. ;

-+ and NH. Harcotty, "On the Use ot the Cyclomatxc

VGlume 13, Humber 12 1978, pp. 29-40.

Plspas, B., Levitt, K.N., Halﬁlnger, B.J., and Waksman, .,
"An Assessment of Technigues for Proving Program
Correctness,” Computing Surveys, Volume 4, Number 2,
41972, L[pe 97-147.

Embley, D.%., ‘and Nagy, G., “Behavioral Aspects of Text
Editors,® ACM Computing Surveys, Volume 13, Number 1,
1981, fpe. 33-70.

162

Pagan, B., "Design and Code Inspections to Reduce Errors in
Progras Development,® IBM Systems Jogurpal, Volume 15,3,
1976, rp. 182=-211.

Pitzsiunponus, 2., and Love, T., "A Beviewv and Evaluation of
Sceftware Science,® ACH Copputing Surveys, Volume 10,
Number 1, 1978, pp. 3-18.

Floyd, BeW., "Assigning Meanings to Programs,® Proceedings
of Symposia in Applied Mathematics," Volume 19, American
Mathematics Scociety, 1967, pp. 19~32.

Freund, K., "Ihe Design and Abstract Specification of a
Translator Mcodule,® Master?!s thesis, Technical Report
TR73~-012, Ebepartment of Computer Scieance, University of
Borth Carclina, Chapel Hiil, 1979.

Furuta, K., and Kemp, P.M., ®Experimental Evaiuation of
Prograseing Language Features: JImplications for
Introductoery frogramming Languages,® SIGCSE Bulletin,
Volure 1%, Number 1, 1979, pp. 18-21,

Gannon, J.D., and Horaning, J.d., “"Language Design for
Progragming hkeliability,® I1EEE Ipangacliions on Softwarse
Engineering, Volume SE-1, Number 2, 1975, pp. 179-191.

Gannon, J.D., "AD Experimental Evaluation of Data Type
Conventions,® Compynications of the ACH, Volume 20,
Nuwber 8, 1977, pp. 5B4-535.

George, J., "An Abstract Machine as an Aid to Compiler
Portability,™ Master?s thesis, Technical Report TR79~017,
Departrent of Computer Science, University of North
Caxolina, Chapel Hill, 13979.

Gerhart, S.L., "Methods for Teachiag Program Verification,®
SIGCSE Bulletin, Volume 7, Number 1, February, 1975, pr-
172-178. :

"Gould, JsD0., and Drongowski, P., “An Fxploratory Study of
Computer Progyram Debugging," Bupan FPactors, Volume 16,3,
1974, fpp. 258-277a

.Gould, J.L., "Some Fsychological Evidence on How People
Debug Computer Programs,” Internmational Jourpal of Han-
Bachipe Studies, Volume 7, Nunber 2, 1975, pp. 151-182.

R e v s i o S

I

Gries, D., %Ihe Science of Programming, New York: Springer-
1 -

Veriag, 581

[a.4]

Halstead, M.H., Elements of Software Science, New York:
_Elsevier North-Holland, 1977.

163

Hamming, F.W., YA Philosophy for Computer Science or Ny

Number 4, 1975, pp. 16~-18.

Hanson, A., and Maly, K., "A First Course in Computer
Science: What It Should Be and Why," SJGCSE Builetinp,
Volume 7, Number 1, February, 1975, pp. 95-101.

Hetzel, W.C., ™An Experimental Analysis of Progran '
verification dNethods," (Fh.D Dissertation, University of
North Carclina, 1976), Dissertation Abstracts ' '
interpaticnal, volume 37, 1977, p. 4058B.

Hintzwan, D.l., "Effects of Repetition and Exposure Duration
on Mewcry,¥ Journal of Experimental Psychology, Volume
83, Nusmber 3, 1970, pp- 435-444.

Hoare, C.A.Ba, "an Axiomatic Basis for Computer
Prograkeing,” Compumications of the ACH, Volume 12,
Number 10, 1969, pp. 576-583.

Hoare, CsleR., and Wirth, N., "An Axiomatic Definition of
the Pregrarpming Language Pascal," Acta Informatica,
Volume 2,4, 1973, pp. 335-355. '

Hsia, F., aﬁd Betry, F.E., "A Framework for Disciplime in
Programeing," IEEE Transactions op Software Engimeering,
Vyolume SE-6, Number 2, Harch, 1980, pp. 226-232. .

Jenses, K., and Wirth, N., Pascai gser'gggual and Report,
New "Ycrk: Springer-Verlag, 1975. '

Janes,'G.aq, and Walsh, A.K., A Course in Ffogran _
Verificaticn for Progranmers,® SIGCSE Bulletin, Volume
0, ¥uwnker 1, February, 1978, pp. 2t3-216.

Kammann, F., 9The Comprehensibility of Printed Instructicns
and Flcuwchaft Alternative,® Human Factors, Volume 17,2,
1975, fp. 183-191.

"Keppel, 6., and Saufly, E.ﬁ.} Jr., Introduction gglﬂesigg

a0d Apaiysis, A Studept’s Handbook, Sar Francisco: ¥.H.
Freeman and Co., 1980,

Knuth, D.E., "ADn £mpirical Study of FORTRAN Programs,™
Software~--Fractice § Experience, Volume 1, Eumber 2,
1971, rp. #5-133.

Koltun, P., "LFL Usex’s ﬂanual;“'Techﬁical Report TR82-004,
Departpent of Computer Science, University of North
Carolina, Chapel Hill, 1982.

64

Science, University of North Cerolima, Chapel Hill, 1982.

Kreitzberg, C.B., and Swamson, L., "A Cognitive Hodel for
Structuring an Introductory Programming Curriculua,™
AFIPS Conference Proceedings, Yolume 43: 13974 Mational
Computer Lonference, Montvale, NJ: AFiIPS Press, 1974,

U g b g el

Pp- 307-311.

Lawmbeth, L., "Use of Trace Specifications in the DPL
Compiler," Master®s thesis, Technical Report TR79-019,
Department of Computer Science, University of North
Carclipa, Chapel Bill, 13979.

Larkin,d., McDermoktt, J., Simon, D.P., and Sinok, H.A.,
#Expert and Novice Performamce in Solving Physics
Probless,® Sciemce, Yolume 208, Number 20, June, 1980,
pp-. 1335-208. :

Ledgatd, H.F., Hhiteside, J.RA., Seymour, #., and Singer, 3.,
“"An Experimert on Human Engineering of Interactive
Software," IEER Iransactions on Software Engimneering,
Voluee SE~-6, Humber 6, 1980, pp. 602-604.

lemos, R.S., YA Comparative Study of the Effectiveness of _
Teaw. Ipteraction in COBOL Prograsming Language Learming,"
{Ph.D Lissertatioa, UCLA, 9977), Dissertation Abstracis
Intermaticnal, Volume 38, 1977, pp. 2269B~2270L.

- _+¢ "Teaching Programming lanrguages: A Survey of.
Arproaches,® SIGCSE Bulletin, Volume %1, Number 1,
February, 1979, pp. 174-181.

e

_______ s "An Igplenentation of Structured %alk-Throughs in
Teaching COBOL Programming,” Lompunjications of the ACH,
Volume 22, Number &, 1979, pp. 335-340.

o e

Educaticnal Data Processing, Volume 16, Number 1, 1978,
PpPs 1-8.

_ _=¢ "Measuring Prograaming Language Proficiency,®
AEDS Jcurnal, Summer, 980, pp. 261-273.

Linger, R.C., Mills, H.D., and Witt, B.1., Structured
Progragpming, keading, Mass.: Addison-Hesley, 1979,

Litecky, C., and Davis, G.B., "& Study of Errors, Ecror

ot A AR i L i b e

©of the ACH, Volume 19, Number 1, 1976, pp. 33-37.

165

london, K.B., Ihe People Side of Systegs, London: HcGraw=
Hill, 1976.

love, 1.T., YEelating Indzvxdual Differences in Computer-
Prograssing Performance to Human Information Processing
Abilities," {(Fh.D Dlssertatlon, University of ¥ashingtcn,
1977) , Dissertation Abstracts Internatlonal Volume 38,
1977, . 1#&38 _

Lucas, L.C., and Kaplan, B.B., "A Structured Erogramaihig
Experigent,? Copmputer Journal, VYolume 19, NHumber 2, 1976,

pp. 13€~138.

.Hadigan, SaAd., "Intraserial Repetition and Coding Processes
in Free Recall,® dJdournal of Verbal Learning and Verhal
Behbavicr, Volume 8, pp. 828-835, 1969.

Haurer, %.D., "ihe Teaching of Program Correctness," SIGCSE
Bylletin, Volume 9, Number 1, February, 1877, pp.
C14G-144,

Mayer, R.E., "Ihe Psychclngy of How Novices Learn'Computer
Prograesing,™ Computing Surveys, Volume 13, Number 1,
198%, rp. 121-141%,

HecCabe, T.de, ™A Complexity ﬁeasuré," I1EEE Ttagggctions on
Softwars Engineering, Volume SE-2, Number 4, 1976, pp.
308~ 320 :

Meissaer, L.F., and Hlnklns, Rol,, "B4TRAN: & Structured
Mipi-Language Approach to the Teaching of FORTHAN,Y
SIGCSE Bulletin, Volume 7, Number 1, February, 1975, pra
200-20%.

Miller, Ge3u, "The Magical Number Seven, Plus or Minus Two:
Soame limits om Our Capacity for Processing Inforaation,®
Psychelogical BReview, Volume &3, 1956, pp. 81-87.

miller, L.h., Behavioral Studies of the Predramming Brocess,
Hational Techpical Information Service EReport
¢A0/A-061-633, Gctober, 1978.

#Mills, H.L., "Top Down Programming in Large Systems,"
Debuagging Techniques in Large Systems, B. Rustin (Ed.),
Enqlewcced Ciiffs: Prentice-ﬁall, 1971.

A e Al bt i s i . A R A S . A e e . S

Etograﬁml_g, iBH Beport FSC ?2-5 13 1972.

- g "How to ¥rite Correct Programs and Know It *
SIGPLAk Notices, Volume 10, Number 6, June, 1975, pp.

363-370.

166

_es CoBp
9

e came e st Ld
Rovenber, 1 16—-4 18.

uting Reviews, Volume 17, HNumber 13,

76, 4

T. Moher and G.K. Schneider, ¥Methods for Improving
Experisentation in Software Engineering,™ Sixth
Internaticnal Copference on Software Epgimeering, HNew
York: I1E¥F Press, 1981, pp. 2Z4-233.

% "Hethodclngy apd Experimental Results in Software
Engingering," International Journal of Hap-Hachine
Studies, Velume 16, Number 1, 1982, pp. 65-87.

Myers, Gade, "A& Controlled Experiment in Program Testing and
Code %alktbroughss/Inspectioms," Compunications of the
ACH, Vcluzme 21, Number 9, 1978, pp. 760-768.

Nagy, 6., and Pennebaker, H.C., "Automatic Analiysis of
Student Prcgramming Errors,"™ Internatiomal Journal of
Ban~Nachine Studies, Yolume &, 1974, pp. 563-578.

Nanney, T-B., "Computer Science: &b Essential Course for
the Literal Arts,"™ SIGCSE Bulletin, Voluse 8, Number 3,
September, 1976, pp.102-105.

Naur, P.,. "“Procf of algorithms by General Snapshots,® §;§;
Yolume 6,4, 1966, pp. 310-316.

Newell, A., and Simon, H.3., Human Probiem Solving,

Englewccd Cliffs: Prentice-Hall, 1972.

Newsted, F.R., "Grade and Ability Predictions in an
Introductory PFrogramming Course,¥ SIGCSE Bulletin, Volume
7, Bumter Z, June, 1975, pp. 87-91.

e _=g VYFCETRAN Program Comprehension as a Function of
Docunentation,” School of Busimess Administration,
University of ¥Wisconsin, Hilwaukee, undated.

Newtor, G-F., and Starkey, J.D., “Teaching Both BL/1 and
" FOBRTRAK to Beginners,® SIGCSE Bulletin, Volusme 8, Number
3, Septenmber, 1976, pp. 106~-107.

Parnas, D.l., "Dubiety of 1Increased Funding for Experimental

i s o e i s o . L e s e A W i S i

Nuaber 3, 1941, pp. 162-163.

Perlis, R.J., Introduction to Computer Scignce, New York:
Harper & KRow, 1875,

Petersen, C.G., and Howe, T.G., "Fredicting Academic Success
in Introduction to Computers,® AEDS Journal, Fall, 1979,
gpu 182-191-

167

Proceedings of the Internaticnal Conference on Reliable
Softwate, SIGELAN Notzcga, Volume 10, Rumber &6, June,
1975,

Rapsey, H.He, Atwood, M.E., and Van Doren, JeR., A
- Comparative Study of Flowcharts and Program Design =
languages for the Detailed Procedural Specification of
Computer PFrograms Denver: Science Applications, Inca.,
1978. . :

Reisner, F., "Use of Psychological Experimentation as an Aid
to Development of a Query language,® IEEE Transactiops on
Software Engineering, Volume SE-3, Huaber 3, 1977, pp-
218-229. '

Sackman, E., Erikson, W.J., and Graant, E.F., "Exploratory
Zxperisental Studies Comparing Online and Gffline :
Prograszming Eerformance," Commubications of the ACH,
Voiume 11, Number 1, 1968, PP~ 311, '

Sackman, H., Man-Computer Problep Solv ng, Princeton:
Auerbach Fublishers, 1970,

Schneider, G.H., "The Intrdducfory Prograéning Course in
Conputer Scieance =~ Ten Principles," SIGCSE Bulletin,
Volume 10, Number 1, Febfuary, 1978, pp. 107-114,

Schneider, G.M., Sedimeyer, K.L., and Kearney, J., "0n the
Conplexity of Measuring Software Complexity,™ Natiomal
Cosputer Conterence Proceedipngs, 1981, Ariington, Va.:
AF1PBS Fress, 1981, pp. 317-322.

Sheil, B.3., "The Psychological Study of Programmiag,™
Corputipg Surveys, Volume 13, Number 1, 9981, pp.
J03-120.

Sheppard,'saﬁ;, Curtis, B., Milliman, P., and Love, Ta.,
"Hodern Coding Practices and Prograsmer Performance,™
Compuier, Volume 1312, Number 12, 1979, pp. 41-4S,

Sheppard, S.B., Kruesi, E., and Curtis, E., “"The Effects of
Syzbolcgy and Spatial Arrangement or the Comprehensjion of
- Software Specifications," Proceedings of the Sixth

Inpternaticnal Conference on Software Eaglaeerzng, {New
York: IEEE Fress, 1981), Bp- 207~ 21&.

Shneiderman, Ea, "Exploratory Experlments in Programmer
Behavicr,™ Ipternational Jourmal of Computer and
ipforsaticr Science, Volume 5, Number 22 3976, PP
123-143.

em—v s MMeasuring Computer Prograk Quality and
Cosprebensicon,” International Jourpal of Ban-nachlne
Studies, Vciume 9, 1977, pPe 465-478.

168

Shneiderwaa, B., Mayer, R., McKay, D., and Heller, P..,
“Experimental Investigations of the Utility of Detailed
Flowcharts imp Programming,” Conmmunications of the ACH,
Volume 20,6, 1977, pp. 373-381.

_shneiderman, E., Softuare gsgchologj, Cambridge: Winthrop
Publishers, 1980.

SIGSOFT First Software Englianeering Symposium on Tool and
Methcdelogy Evaluation, "Proposals for Tool and
Methodclogy Evaluation Experinments,® Software Engineering
Botes, Volume 7, Number 1, 1982, pp. 6-75.

Sipe, H.E., Green, T.B.G., and Guest, D.Ja, ¥Scope Marking
ip Computer Conditjonals -- A Psychological Evaluation,®
Internaticpal Jougrnal of HMan-Machine Studies, Volume 9,
Humber 1, 1977, pp. 107-118.

Simon, Hod., *How Big Is a Chunk?® Science, Yolume 183,
1974, fp. U48Z2-488.

Skeltoa, J.F., "iime-Sharing Versus Batch Processing and
Teaching Eeginniag Computer Precgramaming: An Experiment,®
AEES Jcurmal, March, 1972, pp-.91~97, and June, 1972, pp-

Spith, L.B., "A Comparison of Batch Piocessing and Instant
Turnarcund,® Comaunications of the ACH, VYolume 10, Number
8, 1967, prp. 495-500. _

Stoddard, S.C., Sedlmeyer, R.lL., and Lee, R.G., YEreadth ox
Depth in Ivntroductory Coumputer Lourses: A Controlled
Experisent.” SIGCSE Bulletin, Voluame 11, Nuamber 1,
Fekruary, 1979, pp. 41-4iy,

Turski, W.H¥., {ed.}, Programming Teaching Techniques, dew
York: American Elsevier Publishing Co., 1973.

Uiloca, M., "Iecaching and Learning Computer Programmings A
Survey of Student Problems, Teaching Hethods, and
Autcnmated Instructional Tools," SIGCSE Bulletip, Volume
12, Number 2, July, 1980, pp. 48-6%

Walsh, ZT.Jd., "A Software Reliability Study Using a
Complexity Measure," AFIPS Conference Proceedings, Volupe

48: %39 Ratiomal Computer Conference, Montvale, NJ:
AFIES Eress, 1979, Ep~ 761769,

Weinberyg, G., IThe Psychology of Computer Erogramming, New
York: Van Nostrand Reinhold, CO., 1971.

e s "The Psychology of Improved Programming
Perforsance,"™ Datamation, Novewber, 1972, pp. 82-85.

169

Weiner, L.H., "Ihe Roots of Structured Programaing," SIGCSE
Bulletin, Volume 10, Number 1, February, 1978, Pp-
243~254. _

Weiss, D.M., "Evaluating Software Development by Error
Analysis: The Data from the Architecture Eesearch

Eac111ty," The Journal of Systems aad SOftuare, Yolupe %,

Hulx, $.A., Shaw, H., Hilfinger, P., and Flon, L.,
Fundasental Structures of Computer Scxence, Readlng,
Mass.:s Addlson~ﬁesley, T1981.

Eoungs, E.hA., Y“Human Errors 1n Programmlng," gg;g;ngtiogal

e i =8 e e o

361-37€.

Zolnowski, J.C., abd Simmoans, D.B., "Taking the Measure of
Progras Compiexity,” Natiomal Computer Conlference
Proceedings, 1981, Arlington, Va.: AFIPS Press, 198t%,
Pp- 329-336.

