
Evaluation of a reaching Approach for
Introductory Computer Programming

by

Philip Koltun

A dissertation
submitted to the faculty of

TR82-003

the University of North Carolina at Chapel Hill
in partial fulfillment of the
requirements for the degree of

Doctor ot Philosophy
in the

Department of computer Science

Chapel Hill, 1982

-~~--Dr. Donald F. Stanat, adviser

_U:t.P~-----Dr. David L. Parnas, reader

-~Y-!t..~~{(:z~,<~ -
Dr. ~zabeth Kruesi, reader

(c) copJright 1982
Philip Koltun

All Rights Reserved

PHILif LOUIS KOLTUN.
Introductory computer
DONALD F. STUU.)

ABS!BACT

Evaluation of a Teaching Approach for
Programming. (Under the direction of

An objective evaluation is presented of the applicability of
Dijkstra•s ideas on program development methodology to the
teaching of introductory programming students. The
methodology emphasizes development of assertion-based
correctness arguments hand-in-hand with the programs
themselves and uses a special language to support that
approach. Measures of program correctness and programming
errors after t.he first two-thirds of the course indicate
that witb a batch implementation ot the language, the
methodology provides a significant advantage over a
conveotional teaching app.roach which emphasizes program
testing and tracing and uses Pascal on a batch machine.
However, that advantage vas not maintained when the
experimental subjects switched over to lleascal in the latter
third ot the experiment. ''

A second set of comparisons demonstrated a significant
and impressive advantage with respect tc program
correct;uess, programming errors, and time expenditure for
students being taught with the conventional approach and
using 2ascal on a microcomputer over students being. taught
with the convectional approach and using .t'ascal on the batch
machine. Furthermore, the microcomputer effect vas
noticeably beneficial for students of marginal ability.

- ii -

ACKJIO !ILEIIG.II Ell'f S

The o~der one gets the more debts be owes for his
intellectual and professional development, so these
acknowledgments may stretch a litt~e longer than usual. In
my case, l gratefully acknowledge my fami~y for fostering in
me a love of learning and a respect for good teaching, and
for supporting my efforts to make an original contribution
to knowledge in my chosen field. I respect and appreciate
the faculties of carnegie-Mellon university and the
University of North Caro~na, where I have studied, for
setting high exaap~es in pursuing excellence in research and
scholarly activities. I thank the faculty and
administration of Sangamon State University, where I
formerly taught, particularly my dear friend and former
col~eague, Don Klett, for giving me the opportunity to teach
and leprn a great deal more computer science that I ever
thought possible.

I would like to thank the following members of my
committee: Don Stanat, whose stewardship of the DPL project
these last several years .helped steer a sometimes wayward
ship into port, and whose patient counsel helped me, often,
along the vay; Dave Paruas, the originator of the project o.f
which this dissertation is a part, for setting an example in
asking hard questions about challenging, important problems;
Betsy Kruesi, whose expertise and encouragement came as a
godsend more than ouce to save this work from foundering;
steve eizer, whose generous cooperation in carrying out the
e.zperiment described herein played such an important role;
Tom Wallsten, whose advice on the experimental design and
analysis aspects of the work has proven invaluable; and Fred
Brooks and Steve Weiss for their insightful comments on this
vorlt. Carlo Ghezzi, whose teaching of the DPL course the
first time helped me develop my own approach to the subject
matter, should also be acknowledged. In addition, I would
like to thank Paul Thoapson of the Institute for Research in
social Science at UNC, Toa accabe of McCabe & Associates,
and Dave ieiss of the Naval Research Laboratory for freely
consulting with se on various aspects of this experiment.

The many students in COMP 14, our introductory
programming course, deserve special recognition for their
vil~ing participation in efforts to iapcove undergraduate
education. The teaching assistants who helped so much in
collecting the data needed by this experiment have also
earned my special thanks. Among them were Danny Berrier,

- iii -

Colin Cleaeut, aario D'Souza, Ernesto Murillo, Manmohan
Reddy, and Jane Whang, the graduate teaching assistants, and
Ellen Blue, Tricia Carter, Karol Doster, Linda Foglia, and
Dawn McKissick, the undergraduate assistants. Not to be
forgotten are the people who labored long and hard on the
DPL compiler, among thea, most recently, Akiko Wakabayashi,
Dawn Janney, Deborah Branton, and aarion Varner.

Finally, I acknowledge the many :friendly conversations
with my officemates Dan Hoffman and Dave llotfat, who share
my joy in learning and teaching about computer science.

this work vas supported by National Science Foundation
grant SEDI7-18518. At a time in our history when everyone
agrees on the critical need tor support of sc.ience
education, yet unprecedented cuts slash away at science
education budgets, it is most important of all to
acltnovledqe the Division of ScieDce .Education Development
and aesearch•s support in sponsoring this project. Deep
appreciation is also accorded for National Science
Foundation Instructional Equipment grant 1-0-11 0-3276-XA584,
which paid for some of the microcomputers used by subjects
in this experiment.

- iv -

CO !IT EilTS

ABS'IRACT - -.. • • • • • H

ACKNOliLEDG!IENTS • iii

I.

II.

III.

IVa

Ili1BOD!lC'UOii • • • • • • • • • • . . . • •• . . . 1

Ll,I!BAfUBE SURVEY • • •••••••• " • • • • • 4

Prcgram correctness • • • • • • • • • • • • • • 4
Ideas about Bow to Teach Programming • • • • • 9
l!:rttJerimental Evaluations of Teaching AtJtJroaches.14
Progra.ming Studies • • • • • • • • • • • • • 18

Statistical Summaries of Programming
Fhenoeena • • • • • • • • • • • •

Programming Techniques • • • • • • ••••
!lode of Computer Osage • • • • • • • •
Prograaming Language Studies • • • • • • •
Human Factors • • • • • • • • • • • •

• 19
• 21
• 23
• 24
• 27
• 30 llea.sures of Program Complexity •••••••

llethodological Considerations in Performing
Experiments • • • • • • • • • • • • • • • 33

THE EXPllllll'lEN'l • • • - . . . • • • • • 37

Background • • • • • • • • • • • • • • • • • ~ 31
Goals of the Proposed Research • • • • • • • • 40
HyEotheses •••••• ~ •••••• ~ • ~ •• 43
Ex~erimental Design •••••••••••••• 44
Experimental Procedure • • • • • • • • • • • • 46

Assignment of Subjects • • • • • • • • • • • 46
Course teaching assistants • • • • • • • • • 48
coa~utex access ~ •• ~ •• ~ • ~ •• 48
course materials • • • • .. • .. • • ,. • • • • 49
Lectures • .. • • • • • • • • • .. • • • • .. • 50
Programming assignments ~ •• , •••••• 51

DATA COLlllCTIOii AND REDUCTION

Data Collection Philosophy
Bun analysis sheets • • •
Problems in Data Becorded

Assistants • • • •

- v -

• • • • • 54

. . . • • • • • • 54 . . - • • 55
by the Teaching - . . 58

v.

Possible inaccuracies in data reported by
students • a a • ~ • ~ • • ~ • • • • •

RESULTS • IIJ .. •
• 59

• 63

summary • 6J
Details • • • • • • • • • • ., • • • • • • • 6Q

Statistical Analyses and Data
f'.cansfoc.ma-tions • • .. • • • • • .. •

Correctness of Programs • • • • • • • • •
Effort l!1.:pended bJ students • • • ••
Errors Committed En Bonte to Solutions ••
Compleltity of Program Decision Structure •
Second-Level Programming Course Follow-Up
Subjects• Biographical Factors and

• 64
• 67
• 70
• 76
• 80
• 82

Performance • • •• - • • • • • • • • 83
student Feelings About Each Approach • • • • 89
conclusions • • • • • • • • • •• - • • • • 91

VI. BEFLECTLOIIS 011 DPL AS A PBOGBAI!l!.IIIG LANGUAGE ••• 94

VII.

VIII.

SIJGG.ES7IONS FOR IIOULD-Bi EXPEll.Il!EliTERS • • a • a 101

APiiNDICES ••••••• - . • • . . . 105

l!id-semester QUestionnaire Besults • • • • • 106
End-of-Semester Questionnaire • • • • • • • • 109
Lecture Schedules ~ •• ~ ~ • .. 114

DPL Lecture Schedule • • • • • • • • • • • 114
Af-ple and Batch Pascal Lecture Schedules • 115

Bun analysis sheet • • • • • • • • • • • • • 116
An example of a program correctness argument 118
Exams Given to DPL and Batch Pascal/Apple

Pascal Students • • • ~ , • • • • • • • 120
DP.L Exam i1 _. _,. -• -• .. _. 120
DPL E~am #2 • • • • ... • ... • 123
Dl'L Section's Final Eltam • • • • • • • • • 126
Apple/Batch Pascal Exam #1 • • • • • • • • 133
Apple/Batch Pascal Exam 12 • ~ • • • • • • 140
Apple/Batch Pascal Final Exam • , • • • • 145

l?roblea Assignment Summaries • • • • • • • • 152
Notes on the McCabe complexity metric • • • • 155
DPt Compiler bug list •• , • • • • • • • • • 157

BIBL.ICGBU'HY • • .. ,. .. • .. • ... • • ... • :;/# • • .. 159

vi -

I.ISY 01' %ABLES

1. Subject Characteristics by Section . .. - • 47

Number of Problems Solved Entirely Correctly • . . • 65

J. Size of consistent and Inconsistent Finisher subsets.66

4. Average # of correct solutions Through Problem 6 •• 67

5. Average # of Correct Solutions for Problems 8 and 9 68

6. Grade Change (in Std. Deviations} from 1st course to
2~d e • • • • o • • • o • • • • • a • • • • • • • 82

' 7. subject characteristics • 84

8. Dropout Bates - - . . - . - • 86

9. Correlation of GPA with Percentage Correct Solutions.86

10. Correlaticn of SAT Bath Scores llith Time Measures • 89

11. correlation of Time Before 1st Run and unintended
Besults ••••••••••••••••••••• 89

- vii -

LIST OF l'IGUBES

1. Shared attributes of experimental and control
sections • • ., . .. • .. • • ,.. • • • • • 45

2. Average correctness percentage: consistent
finisbe-r.s • ... 69

3. Average cor:rectness percentage: inconsistent
Iinishers • • • • • • • • • • • • • 69

4. Average number of runs: consistent finishers • • • 70

5. Average number: of runs: inconsistent finishers . . 71

6. Ave:raye number at hours before the first run . . 72

7. Ave:rage number of hours after the first run • . 73

8. Average total numbeJ: of hours expended 74

9. Average ratio of time before to time after: first L"Un.75

10. Buns with unintended results: consistent finishers.77

11.

12.

13.

14.

15.

16.

inconsistent Buns with unintended results:
finishers •••••••••

Average number of J:UDS with logic errors . . .
Ave.r:age number of runs with language er:rors .
Aver:age i!cCabe metric . • • • •

Aver:a·~e correctness percentage: below-median

Cor~:ectness percentage differences: high GPA
GEA - • . . . - • . • • . • • - . - . • • .

- viii -

• 77

• • . 79

• . . 79

. . • 81

GPA . 87

I low . . . 87

Chapter I

IllrBODUCTIOlll

If we are to have a science we must develop more
measurement of relevant things. ••• I would have
more than mere measurement. I would include
evaluation, since measurement plus evaluation
comes near to judgment which is the ultimate goal.

--R.w. Hamming, 1975•

This dissertation has to do, in general, with how to develop
computer p:ograas and how to educate programaing students. ln
particular • it has to do with evaluating whether the. methodology
developed by one of the most respected proponents ot structured
programming can be applied to teaching beginners. That
methodology places its heaviest emphasis on developing proofs of
program correctness hand-in-hand with the programs themselves, as
a means of establishing from the outset the correctness of the
students• endeavors. The Aethod :finds its primary intellectual
stimulus in the writings of E.li. Dijkstra, particularly }.
piscipline ~! ~£amming,2 which have influenced many
programmers, teachers of programming students, ana authors of
programming texts.

Why is it important, at this date, to evaluate methods of
teaching frogramming? After all, if asked, most professors of
computer science would assert that programaing students are moce
effectively taught now than a decade ago, implying that good, or
at least better, methods have been found in the interim.
Furthermore, many of the best minds in the pcogramming
methodology field have moved beyond a discussion of the
circumsccibed problems encountered in introductory classes, to a
consideration of the large-scale undertakings demanded by today•s
ambitious computer projects, implying that programming-in-the­
small has already been mastered.

Several answers occur. First, those professors may well be
correct in thei~: assertions, but it would be difficult to
substantiate on the basis of statistics. Good teaching, like

a B.li. ttamaing,
Prejudices and
Numbel: 4, 1975,

"A Philosophy for compute~: Science or My
Confessions,• ~IGCS~ ~~~~g!in, Voluae 7,
pp. 16-18.

z B.lf. Dijkstra, .A jlJ.scipline !!! ,f£QgJ;i&Wru!• (Englewood
Cliffs: l'rentice-Hall, 1976j.

- 1 -

2

good science as Hamming describes it, demands measurement and
evaluation. The statistics gathered in the conduct of this
project provide a baseline for the state-of-the-teaching-art in
1981. against which program.ming teac.hing may be compared in yet
another dEcade.

Second. the gurus of programming methodology may well have
mastered their craft, but hundreds of thousands of professional
programmers still struggle with theirs, and the statistics
presented here will demonstrate that learning to program is still
a time-consuming, laborious task. It makes little S€nse to talk
about the engine€ring of coaplex systems without also ensuring
that studEnts are learning. by the best means available, bow to
reliably construct the component parts.

The existing body of computer science
the following kinds of writings relevant
content of this dissertation:

literature contains
to the intellectual

1. Ideas about how to program, particularly those relating to
correctness concerns;

2. l?hilosophica1 discussions about how to teach introductory
programming;

3. Descriptions of actual teaching experiments;

4. Studies of programming activities including

a) Data bases of programming project statistics;

b) Utility of particular techniques (f~owcharts, mne~onic
variable aames, etc.);

c) Computing environ~ent (machine access);

d) Language-related effects;

e) Human factors;

5. Measures of program guality;

6. Methodological problems involved in conducting programming
studies using human subjects.

Background lite.rature relevant to the dissertation will be
surveyed in the following chapter.

The objectives of the dissertation work include gaining
insight into how to program, how to teach programming, how to
evaluate the learning of programming, and how to conduct
programai!!g e:xpe.riments involving human subjects. The primary
goal is that of objectively evaluating a programming methodology
which emphasizes correctness concerns during the deve~opment of
programs, and utilizes a specia~ programming language to

3

reinforce that concern. A by-product of the study will be a
statistical data base that will be useful in assessing the effort
involved in learning to program.

The organization of the dissertation provides separate
chapters to review the literature, present the experimental
hypotheses and design, describe the data collection procedures,
analyze the results, and reflect on Dijkstra•s notation as an
actual programming language.

Chapter .II

L.I~BBA~OBE SUBYE!

If one asserted that programming is ta11ght better now
than it was ten years ago, an explanation tor the phenomenon
might be that the paramount importance of program
correctness has finally been recognized. while it was once
viewed as acceptable to write a program and then begin its
verification and deb11gging, a realization grew through the
1960's and 1970's of the unacceptability of this strategy of
program development. ~esting, it was realized, could only
show the (:resence of errors, not their absence.

From Dijkstra•s perspectivea the approach to program
correctness up to t.he aid-60 1 s had treated a prog.~:am as a
aechanism, not unlike a Turing !lachine: ODe tried to prove
something about the class of happenings which ensued when
one started it in a certain cl.ass of initial states. Ta.king
the program as a preexisting entity had proven relatively
fruitless in that period. Dijkstra thea advocated inverting
the process, treating the program as something to be
designed, and settling first on what must be proven and what
proof techniq11es could be used, before undertaking the
program development.

If one traces the development of structured
programming, as Weiner has done,• one sees a steady stream
of attemfts to characterize what it is that language
mechanisms accomplish, what it is that programs accomplish,
and how cne goes about ~oll§tJ;Uffi.llii a correct solution to a
problem.

a E. If. ll.i jkstra, "Correctness Concerns and, Among Othe.r
Things, Why They Are Resented," ~lGPb!! !Qtic~, Volume
10, Numter 6, June, 1975, pp.546-550.

• L.H. Weiner, "The
]~l!~tin, volume
.2 43-254.

Boots of Structured Programming," SIG~g
10, Number 1, February, 1978, pp •

s c. Bobs and G. Jacopini, "Flow Diagrams, Turing Machines,
and Languages with Only Two Formation Rules,"
£2!!Y~i£~QD§ Qf !he AC~, Volume 9, Number 5, 1966, fP•

- 4 -

5

ln 1966, Eohm and Jacopinis asserted6 that any program
can be expressed using on~y seguence (or concatenation),
alternation (or selection), and iteration (or repetition) as
control mechanisms.

Also in 1966, Naur published a paper7 in which he
described a technigue of characterizing conditions that
existed at given points in the program text and using those
conditions to establish the correctness of the program.
That technigue evolved into the development of invariant
relations. Floyd followed, in 1967, with a papere which
used annotated flowcharts that were labeled at the nodes
with assertions about the values of program variables at
those points, to argue the correct termination of the
program. Dijkstra, in 1968, contributed one paper•
describing the constructive development of a solution to the
producer-consumer synchronization problem, and another.to
describing the (provably correct) design of an implemented
operating system.

Dijkstra, himself, cites the importance of a 1969
article by C.A.B. Hoarell in describing a set of a.xioas and
inference rules to be used in proving program properties.
As 'Well as developing the usefulness of invariant relations
for proving assertions about repetitive constructs, Hoare•s
article also influenced thinking about program abstractions,
or i&plementation-independent properties ot programs.

That year a~so saw the circulation of DijJtstra•s "Notes
on s tructu:ed l?rogram111ing 1 " u in which he cemented the idea

366-371.

6 Later ~roved, for the class of proper prograas, by H.
Mills in Mathematical FoundatiQB§ for Structufed
l?fogrS!!ing, lBH Report PSC 72-6013, 1972.

7 P. Naur, "l?roof of Algorithms by General snapshots," .JUl.
Volume 6,4, 1966, pp. 310-316.

a B.W. Fiord, "Assigning Meanings to Programs," Prgceed~H9§
52! sympc§±.! !.!! !J211J,ieg tlat.hemati£§•" Volume 19, Amer1can
tlatbematics Society, 1967, pp. 19-32.

9 E.li. Dijkstra, "A Constructive Approach to the Problem of
Program Correctness," BIT, Volume 8,3, 1968, pp. 174-186.

ao E.li. Dijltstra, "The Structure of the THE l'iultiprogramming
System," ~~~~y~icg!ions of the!~~. Volume 11, Number 5,
1968, pp. 341-346.

tl C.JI.B. Hoare, "An Axiomatic
Programming 1 " Communications of
Number 10, 1969, pp. 576-583. --

Basis for Computer
!.!!.§ .M;~, Volume 12,

6

of using enu.aeration, mathematica~ induction, and
abstraction as reasoning patterns with the process of
stepwise decomposition of programs. Dijltstra deaonstrated
how, as control structures, concatenation and se~ection may
be understood by enumerative reasoning. repetition , may be
understood by inductive reasoning, and how abstraction may
be used to consider what a program action does independently
of its illp~ementation (how it works). Thus, he shoved that
starting at the top level of refinement with a demonstra,bly
correct solution statement, and breaking that statement into
subactions whose individual effects could be understood as
abstractions and whose combined effect could be understood
by either enume~ative or inductive reasoning, an iterative
decomposition process enables the entire solution to

1

be
specified. Of equal importance, the abstraction process
which separates the effect of an action from its
implementati9n also separated for the first time the
mathematical concern for program correctness from the
engineeriDg concern for program efficiency. This attention
to a "separation of concerns," as Dijllstrau calls it, of
two goals historical~y interming~ed, marked a point of major
advance in the state of the art of prograaming.

In SFite of the elegance of its presentation, it took
some time for Dijltstra • s notes to mani:test their ef.fect~ ln
1972, a survey of program correctness still devoted itself
largely to a posteriori proofs o:t program correctness and
only miniaally to their usetu~ness in the construction of
programs.••

At about this time, the work of Harlan l'li11s at lEI'!
received its due attention. In several papers•s he
presented ideas complementary to those of Dijkstra, in
viewing the stepwise decomposition process as one of
specifying the program function in terms of lower-level
single-entry, single-exit su.bfunctions, using only

tz Later fUblished in o.-J. Dahl, E.W. Dijkstra, and C.A.R.
Hoare, Ji!J;.JIS:!J!J;;ed l'{oqrammi.!!.2, (New York: Academic
Press, 197 2j

t3 Dijkstra, "Correctness Concerns".

14 B. Elsfas, K.N. Levitt, R.J. Waldinger, and A. Waltsman,
"An Assessment of Techniques for Proving 'Program
Correctness," !;;.Q.m.llJ!!irui Surn.Y§, Volume 4, Number 2,
1972, H'· 97-147.

u B. D. !!ills, "Top Down Programm.ing in Large Systems,"
Debuill.!!.!l :Iechniqug§ i!! Large ~.Y§telll§, B. Rustin {ed.),
(Englewood Cliffs: Prentice-Hall, 1971J.

composition,
structures.
Programmer
projects.••

selection, and repetition as
Mills also helped develop the idea of
team tor attacking large-scale

7

control
the Chief
software

The years that followed 1972 saw a consolidation and
exploration of the earlier structured programming ideas, and
included the development of a language intended to embody
those concepts.l7 A highvater mark of sorts vas reached in
1975 with the International conference on Reliable
Software, &e in Los Angeles, where program correctness
concerns dominated the discussions. The fullest flower of
expression for program correctness ideas came in 1976, with
Dijkstra•s ! jii§cipline .Q! Prggramminq, and in 1979, with
the publication of ~!ructqreg R~~~i~. by Linger, Hills,
and Witt. u

By the late 1970's, with great emphasis now being
placed on developing formal and machine-aided proofs of
program correctness, several authors pleaded to keep proof
processes in their proper perspective. Dellillo, Lipton, and
Perlis arguedZO that the aspiration of programming
methodologists to develop formal mathematical machine­
digestible proofs for their programs; was a false one on
several grounds: Firstly, mathematicians themselves treat
the proof process as .largely a social one, wherein they try
to convince their colleagues of the correctness and utility
of the theorems they propose. Computer scientists would be
well-advised to regard prog.ram proofs in the same mannec.21

16 .F.T. Baker, "Chief Programmer team Management of
Production Programming," 1~! Systems ~Q~~al, Volume 11,
Number 1, 1972, pp. 56-71.

t? c.A.R. Hoare and
the Programming
Volume 2,11, 1973,

N. Wirth, "An Axiomatic Definition of
Language Pascal," !a~ l!!!Q.!;J!!~!.i£~.
pp. 335-355.

u !'roceed4!!..911 .Q! !hSl Inte.LQ5ltion.!!l fQ!lferenc§ m1 R§l.illl!le
Sof.tva,~;e, Los Angeles, April 21-23, 1975. Also published
as SlGf~!! !otice§, Volume 10, Number 6, June, 1975.

n R. c. linger, H. D. Mills, and B. I. Witt, Strus;t.u~~
Pro~AJB~• (Reading, Mass.; Addison-wesley, 1979).

zo B. A. teMillo, R.J. .Lipton, and A.J. Per lis, "Social
!?rocesses and Proofs ot theorems and PI:ograms,"
COiliBUDi~ti.Qll§ of !1!§ ACM, Volume 22, Number 5, 1979, FP•
271-280.

21 The process of sharing one•s programs with one's
colleagues and trying to convince them of the programs•
correctness has come to he called "structured
walkthroughs" and stems from a philosophy called "egoless

8

Secondly, any proof involves many axioms that often go
unstated because they are well-known to the proof's
audience. Any machine-verifiable proof would have to
include so many axioms that the proof would attain
unmanageable length. Thirdly, it would be unlikely that
greater confidence would exist in the proof than in the
original frogram itself; to attain such confidence, one
would need to have great faith, indeed, in the program­
verifying program that produced the proof.

Dijkstra argues for simplicity of program proofs, and
suggests that the length of the correctness proof for a
program could be accepted as an objective measure of the
"elegance" of the program and the suitability of the
language constructs it uses.22

!!ills best states the case for correctness arguments
when he notes the profound difference, in a precisemental
activity such as programming, between finding even a si.ngle
error and finding no errors at all. The more errors that
are found in the testing and debugging process, the more
cause arises for doubting the thought process that developed
the program. Thus, he states, the objective should be to
write programs that are correct from the start. A proof
should be regarded not as an infallible statement of
correctness but as a subjective conviction that a· given
hypothesis leads to a given result. To wit:

The ultimate faith you can have in a program is in
the thought process that created it. liith every
error you find in testing and use, that faith is
undermined. Even .if you have found the last erro.r
left in your program, you cannot prove it is the
last. So your real opportunity to know you have
written a correct progra.m .is to never find the
first error in it, no matter how much it is
inspected, tested, and used.23

programming" developed by Gerry Weinberg, and a practice,
developed at lBM. See G. Weinberg, Th~ ~jchology ~!
f£J£Yi~~ i~9~~~iAg, (Mew York: Van Nostrand Beinhold,
Co., 1971) for the former, and B. Fagan, "Design and Code
Inspections to Reduce Errors in Program Development," 11!1!
Sys~~ ~~rnal, Volume 15,3, 1976, pp. 182-211, for the
latter.

22 Dijkst~:a, "Correctness concet:ns".

23 H.D. Mills, "How to Write Correct Programs and Know
~l:GPLAN Notice§, Volume 10, Number 6, June, 1975,
363-370.

.It,"
pp.

9

l'erha ps it is this new sense ot confidence in the
thought p:ocesses by which programs are created and
communicated that enables some people to maintain that
computer programming is taught better today than it vas a
decade ago. Besearch work continues in the program
correctness area, particularly in the areas o.t software
specifications, development of large-scale software, and
design of languages to support data and control abstractions
and the development of large programs.z•

The second .body of literature to be reviewed expresses
ideas about hov to teach progra111ming. The literature,
particularly the ~IGCSE ~yjle!i~ ot the ACM's Special
Interest G~:oup on coaputer Science Education, is ceplete
with proposals on how to teach introductocy programming.
Attempting to ceview all that has ever been written on the
subject vill not be tried. However, the 1980 survey by
Ulloazs provid~s an excellent overview of much that deserves
reading. Only one text has been titled with wocds
suggesting guidance to the reader on how to teach
programming.26 That volume, however, reports the proceedings
of a conference dolllinated more by discussions of programming
language design than by pedagogy or programming methodology.

A review of several significant philosophical
discussions ot programllling instruction will follow. Those
writings which discuss experiments conducted to evaluate
specific instructional techniques will be reserved tor a
later section.

z4 R~B- llndecson. f!.Q.YW f!;:ogrS!§ f.Q.U:ect, {New York: John
Wiley 8 sons, 1979), Chapter •

zs M. Ulloa, "Teaching and Learning Computer Programming: A
survey ot Student Problems, Teaching Methods, and
Automated Instructional Tools," §IG~ §Sll~!in, Volume
12, Number 2, July, 1980, PP• 48-64

26 w~n. Turski (Ed.J, fi.QS~~i~£ l&achi~£ ~BBigy~. (New
Iock: American Elsevier Publishing Co., 1973).

27 C.B. Kreitzberg and 1. swanson, "A cognitive Model for
Structuring an Introductory Programllling Curriculum,"
AF.IP~ ~.QJ!llill!!~ f~s.~edings, Volume ~.J: j974 Natio.nal
Compute~ f.Q~l~~. (Montvale, NJ: AFIJ?S Press, 1974),
pp. 301-311.

B. E. Mayer, "The Psychology of How Novices Learn computer

10

Several attempts ha!e been made27 to place computer
programmiDg instruction ~~~ the context of general learning
theory. Discussion has centered 011 the conditions that must
exist fer meaningful learning, including the need for
appropriate models of coaputation, advance organizers (which
provide a brief introduction to new concepts in terms of
previously learned ideas) • and aids to assist transfer of
learning.

Others have tried to summarize what current nationwide
practice in introductory programming instruction is or
should be. For instance, Hanson and lialyza advocate an
approach tihich emphasizes algorithms rather than programming
language and teaches a problem-solving methodology whose
final stage, onlj, involves translation of an algorith11 into
a well-structured program.

Some have developed either augmented or restricted
dialects cf popular programming languages in an attempt to
facilitate development of well-structured programs.29 Others
have developed program desig11 languages to enable the
expression of algorit.hms in structured English. 30

Schneider attemptsH to develop a consensus on v.hat the
goals of a programming course should he by enumerating ten
principles for the course. Those principles include that

1. The sta.rting point in programming is a clear, concise
problem statement.

l?rograu:miDg," ~u,t;i1!,9 ~y£!exs, Volume 13,
19tH, H· 1.21-1111.

Number 1,

2e A. Hanson and K.
Science: What It
Vo~ume 7, Number 1,

Italy, "A First Cout"se in computer
Should Be and lihy." .2!.\!~.i!ll Wle!ll!•
February, 1975, pp. 95-101.

29 ii. R. Bezanson, "Teaching Structured P.cogramming in
FOll'fRAN with IFTRAN," SlG~~ Bul~etiJ!, Volume 7, Numbet'
1, 1'eb~:uary, 1975, pp. 196-199.

L.P. Meissner and B.L.
Mini-Language Approach
SIGC.§.J; Byl.let~, Volume
200-205.

Hinltins,
to the

7, Number

"B4'IRAN: A
Teaching of
1, February,

Structured
FORTRAN,"

1975, pp.

30 'I.R. Nanney, "Computer Science: An
the Liberal Arts," §lGCSE BulletiD,
September, 1976, pp.102-105.

Essential Course for
Volume 8, Number 3,

31 G.ll. SChDeider,
Computer Science
Volume 10. Nuaber

"The Introductory l?rogramming Course in
Ten Pr.illciples •" .§!!!£.§.£; ~ylle:!;;ll!,

1, February, 1978, pp. 107-114.

2. The p~ogramming course
development of algorithms.

should emphasize

11

the

3. T.he duality of data structures and algorithms in the
frcg~amming process must be presented.

q_ A prog~amming language rich in data and cont~ol
structures should be p~esented.

5. Language presentation should concentrate on semantics
and program characteristics rathe~ than syntax.

6. frcgramming style
beginning.

must be emphasized from the

7. Detugging should be presented as a formal subject.

8. sc should program testing and verification.

9. Documentation should also be formally presented.

10. Students should be introduced to real programming
applications and real programming environments,
including maintenance activities and programmer
teams.

A 1979 survey by Lemos32 reports the results of
ingu1r1es to 306 business administration and computer
science departments regarding their introductory p~ogramming
courses. Lemos found that there were ten distinct ways in
which instructors tended to organize the introductory
course:

1. An emphasis on structured programming;

2. An emphasis on modular programming (how to pa~tition
a progralll into units or "modules");

3~ A .g.rammatical approach (in whicl:t the syntax of a
programming language is presented, construct by
ccnst~uct) or, alternatively, a "whole program"
aFfroach (in which whole programs, albeit simple
Clles, are presented tor study, much as a foreign
language class based on conversation in whole
semtences might operatej;

32 R. Leaos, "'reaching Programming
Approaches," SIGCSE Bul~etin,
February, 1979, pp. 17ij-181.

Languages:
Volume 11,

A Survey of
Number 1,

12

4. A spiral approach (which presents increasingly
co11.plex sample programs that bu~ld on each other) ;

5. A froblem analysis approach (vhich concentrates on
the development of language-independent solutions) ;

6. A computer
COliiiUnica ting
co1pu tational

11odeling approacb (which emphasizes
to the student an appropriate model of
processes) ;

1. coaputer-assisted instruction;

8. Instructional television;

9. Egcless programming (in which students read and share
the use of others• programs);

10. Teall frogramming and debugging techniques.

As Lemos fOints out. however, while many of these approaches
seem intuitive!}' appealing, "they lack any history of
empirical evidence attesting to their pedagogical
effectiveness."

By the late-1970's only a few authors, still, had
turned their attention to the inclusion in introductory
courses of material on program correctness through
mathematical argument (as opposed to program verification
through testing). Among textbook authors, Conway, Gries,
and .Zimmerman,.n and Perlis3• were exceptions, though the
latter book was intended for an audience somewhat more
mature than introductory programming students. Texts by
lilulf, Shaw, Hilfinger, and .Flon,:u and Gr.ies3" both
emphasize a correctness-based app~oach to programming, but
are also aimed at an audience more sophisticated than
beginning programmers. ·

The SlGCSE ~ll~tin does contain descriptions of
several frogramming courses organized around correctness
conce~:ns. Of those, only Gerhart37 relates expe.~iences in

:;13 li. Conway • D. Gries, and E. c. Zimmerman, A P&:imer .Ql!

li§C91, (Cambridge: Winthrop Publishers, 1976).

3 4 A~J. Rerlis, 1strod~tion !~ ~ompyter Scien£§, (New York:
Harper & Bow, 1975).

35 lil.A. iulf, B. Shaw,
.fupd.usntal ~llYtl.Yf.§.§
Bass.: Addison-Wesley,

P. Hilfinger, and
2! Compute!; ~gien~,
1981j.

a D •• Gries, The .§.fien~ of Proqra@minq,
Spr~nger-Verlag, 1981).

L. Flon,
(Beading,

(New York:

using the approach with an introductory class, and notes of
program proving that

its main role right now is to prevent errors
rather than to provide any iron-clad guarantees
that programs are correct. The very act of aaking
assertions and attemptillg a proof elicits numerous
assumptions and forces a rigo~:ous check of
programs which can often ~:educe later debugging
time, catch subtle e~:rors which would escape
detection during testing, and lead to more pointed
and useful documentation.

Gerhart iDst.ructs her classes to present a prose "argument"
that their programs are correct, an arguaent that should be
designed to convince the grader that the program satist.ies
the assignment. Because proofs themselves can contain
errors. she also advocates systematic testing of student
p.::ograms.

MaurEr relates his approach3& to teaching program
correctness in classes designed for students ranging from
second-year programming through graduate level. The
approach involves assertion verification, primarily as
related to run-time conditions that may arise. He gives no
indicaticn of using correctness concerns in program
development.

Lastly, Jones and ialsh39 describe plans for teaching a
course for advanced undergraduates and graduate stQdents
that emphasizes techniques for writi.ag correct programs.
Their approach focuses on verifying the consistency between
programs and their specifications, on utilizing input and
output assertions and invariant relations for characterizing
what prog~:ams accomplish, and on using top-down refinement
and abstract data structures for developing program
structure. 'Iheir approach to developing correct programs
comes closest to approximating the one used in the
introductory programming class described later in this
dissertation.

37 S.L. Gerhart, "Methods for Teaching Program
Verification," SJ:GCS_! JU!,lletin, Volume 7, Number 1,
February, 1975, pp. 172-178.

38 II.D. llaurer, "The Teaching o.f Program Correctness,"
~lG&~ BuJletin, Volume 9, Number 1, February, 1977, pp.
142-144.

3'> G • .-. Jones and A. ll. Walsh, "A Course in Program
Verification .foJ: Programmers," SIGCS1:! Bulleti!!. Volume
tO, Number 1, February, 1978, pp. 213-216.

14

Of final interest, several academics relate their
experiences in administering introductory p.rogramming
courses without lectures. Bovles•o describes a course at
the University of California at San Diego, organized a&:ound
computer-assisted instructiou on microcomputers. Softwa&:e
developed tor the course includes automated quiz programs
and a bookkeepiag aad class scheduling system. Student
programming problems emphasize graphics and string
manipulation. Daly, Embley, and Nagy•t state that "Although
it is easy to say wh~! stude.nts should learn in CS237 (or
any other introductory programlling course) , it is difficult
to say J!.Q.! they should learn it." The authors observe that
students seem to learn best from direct computer feedback on
programs submitted for execution, from carefully worked-out
examples, and from one-to-one assistance, and seem to learn
less in a traditional lecture setting than might be
expected.

Though pxogramming experiments often use students as
subjects tecanse of their easy availability, those studies
which primarily investigate mode of computer usage or
language feature utility will be dealt with later, even if
they use students as subjects. This section will be
reserved for discussing controlled evaluation of teaching
methods used in introductory programming courses. While
many acthors misuse the term "experiment," as in
"experimental course," to refer only to somet.hing that may
or lllay not work, a reasonable standard of experimental
control, in the usual scientific sense, will be a
characteristic of the studies reviewed here. That standard
alone, apart from the aeaningfulness of the results, removes
from consideration a large portion of studies in the
computer science education literature.

Among the studies of how to teach introductory
programming are those attempting to predict which s.tudents
will do well in the beginning programming course. Typical
of these efforts is Nevsted•z in which two regression

40 K. Bcwles, "A CS1 COUJ:Se
Microcomputers," ~£~ Bulleti~,
February, 1978, pp. 125-127 ..

Based on stand-Alone
Volume 10, Number 1,

•• c. Daly, t. Embley, and G.
Teaching Programming to
Lectures," ~l!i£SE l!ull!tlin,
February, 1979, pp. 247-251.

Nagy, "A
Business

Vo~ume

Progress Report on
Students Without.

11, Number 1,

15

equations were used with a number of variables to predict
final course grade and end-of-semesteJ: student self­
perception of ability. college GPA, prior programming
eJCperience, and career orientation to the computer .field
were found to be positive predictors; (greater) time spent
on the course, and (high incidence of) working in groups
proved tc be negative predictors. From the negative
predicto:J:s Newsted concludes that "though poorer students
may spend much time and ask many questions of their
instructors and fellow students, it won't improve their
grade. It they are going to learn at all, they can do it on
their own as well as in a large lecture course with
discussion sections." He sees these l'redictors as support
for a program of individualized instruction in programming.

l?etersen and Howe•" likewise studied predictors of
academic success in introductory courses and concluded that
only college grade point average and general intelligence
contributed significantly to their regression model.

One might conclude from these studies that students who
do well in yeneral w.ill likely succeed in computer
programming as well. Another possible conclusion might hold
that, inasmuch as only 60~ of the variance in course grade
was explained in each study by the variables used in the
regression eguations, further attempts at prediction might
be warranted to locate other f!redictor variables.
lleinberg•s stress on work habits and personality factors
inYo.lved in programming,•• in particular, suggests that more
than test score-type variables might be involved in learning
how to program •

.In that regard, Cheneru explores the possibility that
cognitive style (the problem-solving methodology employed by
an individual in a decision situation) could predict a
person's programming ability. Cheney compares analytic
problem solvers (those who use a structured approach to
decision aaking, seek underlying causal relationships, and
try choosing optimal alternatives) to heuristic problem
solvers (those who use intuition, common sense, and trial­
and-error methods with feedback for selecting alternatives).

42 P.R. Newsted, "Grade
Introductory Programming
7, Numher 2, June, 1975,

and Ability l'redictions in an
course," SAGCS~ ~ul~ti~, Volume
PP• 87-91.

43 e.G. Petersen and 7.G. Howe, "Predicting Academic success
in Introduction to Computers," AEDS 42~~1. ?all, 1979,
pp. 182-191.

45 J?. Cheney,
Ability: An
pp. 285-291.

"Cognitive Style and Student Programming
Investigation," !!DS ~ournal, Summer, 1980,

16

He concludes. that analytic decision makers tend to perform
better on programming exams than heuristic problem solvers.
The validity ot his results may be compromised, however, by
the reader•s observation that the instructional methods and
examinations used for measurement favored the analytic
types. An iaportant pedagogical question, one which has
been little explored to date, is whether individualized
instruction can be developed to match individual learning
styles.•6

Attention is now turned from attempts to predict
academic success toward attempts to assess the utility of
particular teaching approaches. In an early and tentative
study, lucas and Kaplan•' examine the effect of forcing
students to write structured (goto-less) programs,
concluding that assignaents involving program maintenance
were easier for their experimental group than for their
control !Unstructured) group, and that students using
structured programming techniques displayed greater
improvement in attitude and performance, as time went on,
than did the control group.

In a series of studies, Lemos•• has explored the value
of peer review and team debugging activities in an
introductory COBOL programming course. In his most
extensive study, the experimental group's lectures were
supplemented by in-class reading and critiquing of program
listings for each of five homework problems, while a control
group received only additional lecture material. Randomly
selected three-person teams were formed in the experimental

46 See, for instance, Dillarco, Bird, and Norton,
Style, Learning style, Learning Structure,
Congruences and Student Attitudes and Performance
Data Processing Course," Jou.cna! 2! .§g.Y£s.!;ional
g~~~~ing, Volume 16, Number 2, 1979, pp. 1-8.

"Life
Their

in a
Data

47 H.C~ lucas and RaBa
Experiment," ~QIIl.!U~.~U;
136-138.

Kaplan,
Jo.J!rnal,

"A Structured Programming
Volume 19,2, 1976, pp.

•a B.S. Lemos, "A Comparative Study of the Effectiveness of
Team Interaction in CO!lO.L Programming Language Learning,"
(Ph.D tissertation, UCLA, 1977) • Dissertation Abstracts
Inte{RJ!!ic~al, Volume 38, 1977, pp.-l269B:2270B.---------

.,..--.,----•• "An Implementation of Structured Walk-Throughs
in Teaching COBOL Programming," C<lJ!ll!!!!!j,£J!tiQ!ll! 2! !;he
!Cll, Volume 22, Number 6, 1979, pp. 335-340. ____ .,
of Faculty
Ed .!!f.! tiona],
pp. 1-ll.

"Structured Walk-Throughs and Student Ratings
Effectiveness Versus Expediency," .!l!!YI!!!!l of
.)lata RLocessirui, Volume 16, Number 1, 1979,

17

group, and for each assignment c~ass members were expected
to turn in program f~owcharts, listings, two critiques (done
by classmates) of their first ~isting, a summary of all
errors detected on other team members• listings, an error
analysis tor each run attempt, and the final ru.n results. A
comparisot of scores on a common final exam testing
know~edge of language rules, ability to read and debug a
prograa, and ability to write a program revealed that the
experimental group performed significantly better in
actually wri.ting COBOL programs in an exam situation than
did the control group. Furthermore, the experimental group
used fewer runs in comp~eting their homework problems and
showed no significant difference in the number of homework
problems completed from the control group whose subjects
worked independently.

Curiously, however, LeJDos found t.hat in evaluating the
instructor's effectiveness, the control group rated the
instructor significantly higher on five of 12 measures
(command ot subject, c~arity of expression, availability to
students, desire to teach, and enthusiasm for subject
matter) than did the group which used the structured walk­
throughs.

In a related study,49 Lemos• work investigated
different ways of assessing student proficiency in
programming language learning, and indicated a direct
re~ationship l:letween the ability to read programs and the
ability tc write frograms. He views this result as very
important since evaluation of reading ability takes
significantly less time than eva~uation of writing ability.

Among investigations performed by other academics,
flans wez:e made to assess the relative merits of breadth and
depth in intx:oductory computer courses. so Perhaps uniquely
among all the studies reported in the ~iterature, Stoddaz:d,
Sedlmeyer, and Lee planned to evaluate the effects of two
pax:allel .first-year courses of study with measurements taken
during a common second year of study in an undergraduate
data processing curriculum. Exposure to three different
programming languages (FORTRAN, BASIC, and RPG) was to be
compared liith deeper explo.ration of algorithm development in
just one language.

•9 B.S. LEmos, "Measuring Programming Language Proficiency,"
AEDS ~~al, Suamer, 1980, PI?• 261-273.

so s. D. Stoddard, R •. L. Sedlmeyer, and R. G. Lee,
Depth in Introductory Computer courses: A
Experiment." ~!GC~! Bulletin, Volume 11,
February, 1979, pp. 41-44.

"Breadth or
Controlled
Number 1,

st P. Hsia and F.E. Petry, "A Framework tor Discipline in
Prograning," !EE! !!~s£!i.QB.§ .2!! .§.Q.!!~.!!!g l!!!!lineerin_g,

18

Finally, Hsia and Petryst report on an introductory
programming course experiment emphasizing a disciplined,
engineering-like approach to program development. For the
experimental group, the programming process vas broken down
into stages of problem analysis, solution design, test
planning, peer review, coding and compilation, testing, and
acceptance. test cases were designed before the coding
process vas begun. The control group used a conventional
approach involving flowcharting, · coding, testing and
debugging, and documentation. All students were required to
keep time and run logs for each of three problems, and to
copy their final source progra111s ofito a system tape for
subsequent testing on the instructor's data. Time logs
revealed cnly a modest increase in effort (16% or about two
hours more per assignment) for the experimental group.
Analysis cf errors from final runs on composite test data
shoved the disciplined group's programs to be significantly
more errcr-iree {81l to 67% one semester in which the
experiment vas tried, 85l to 65ll the next semester) than the
conventioral group's. However, the lllethodology was not
foolproof: On one problem, only 43% of the disciplined
group (20J of the conventional group) achieved error-free
solutions.

The troad general category of programming studies will
l:le broker; dowJJ into five subcategories: studies that
contribute a data base on some aspect of programming
activity; studies of particular programming techniques or
tools such as flowcharting; studies evaluating different
modes ot comfuter usage, such as timesharing and batch
processing; studies focusing on programming languages,
either taken as a whole or taken feature by feature; and
studies focusing on human factors in the programming
process.

Weinbergsz has been a source of inspiration for over a
decade to researchers in this area and provides a font of
ideas foi fnrther investigation concerning psychological
dimensions of programming activity. Shneidermansa provides
a comprehensive summary of research into human factors in
computer systems and lists nu111erous suggestions for further

Volume SE-6, Number 2, March, 1980, pp. 226-232.

52 Weinberg, 1~~ R21£~0logz ~! £Q~£Y!~ R~2Sram!~BS·

sa B. Shneiderman, ~ftware ~£hg~, (Cambridge, Mass.:
Winthrop Publishers, 1980).

19

research. A recent survey by Sheils•
summary cf activity in this area~
book55 includes statistics on
development efforts.

also supplies a useful
Brooks 1 entertaining

numerous large-scale

studies ot how people use actual j!rogramming languages1

of what kinds of programming errors people make, and of how
progx:ammers engage in testing and debugging activities stand
out in this area. A landmark study by Knuth56 drew samples
of programs from academic and industrial programming
environmetts and compiled comprehensive statistics on
la11guage ;;tructures used in actual FOllTllAN programs. lhat
work insfired several similaJ: studies involving other
languages, among them that ot Elshoff,57 who examined
program size. readability, and complexity in a commercial
environment.

Youngs studied error-proneness in programmings" as the
subject of his dissertation and in subsequent work, and
published useful error data summaries, including relative
error proneness of individual language features, for a small
sample of programs taken from a programming class.

Nagy and Fennebakers9 devised an automated system tor
capturing student programs and compariug them tor changes to
previous runs. Their study revealed that 801 of the follow­
up runs involved changes to only a single statement.

54 E. A. .Sheil, "The
f.Q!J!EUtjg,g .:i!!neys,
101-120.

Psychological Study
Volume 13, Number

ot Programming,"
1, 1981, FP•

ss F.~. Erooks, Jr .• , The .!!lil!icaJ, l,!an-N.Q!!.t.ll. (Reading,
Mass.: Addison-Wesley, 1975J.

s& D.E. Bnuth, nAn Empirical Study of fORTRAN Programs,n
Sof!Ji!.s!!.§::.::i:.Is£1ic& § !".E.§ti.§.!l£€ 1 Volume 1, Number 2,
1971, Hl· 105-133.

57 J.l.. Elshoff, "Au Analysis of some Commercial l?L/I
Progrcus," I EEl; 1nnsac.!;.i.Q!!.2 .Qll .§.Qft.l!!s£.§]!!:tineerig_g,
Volume SE-2, Number 2, 1976, pp. 113-120.

58 E. A. Youngs, "Human Errors in Programming," 1.!lterns!J.onal
JOUJ:Jll!] Q,! l!.i!lt:l!s£hi!Jg Stuf!ie§, Volume 6,4, 1974, pp.
361-37ti.

59 G. Nagy and N.c.
Student Froyramming
lls.!!=!lacl!in§ _;i.!;ydig§,

Pennebaker, "Automatic Analysis of
Errors," International Journal .Qi,

Volume 6, 19?4;-pp:-563-578.

Further, their data led the&
mistake is discovered only once
corrected."

20

to be~ieve that "each new
a previous mistake has been

A later study by Litecky and Davis60 collected
statistics on error occurrence ~n student COBOL programs.
They found that 20$ of the possible error types accounted
for 80l of the errors, but that only four of the eighteen
high-frequency errors were "error prone", that is, traceable
to anomalies in the language's design, itself. Of
additional significance, they found that over 80l of the
compiler • s error diagnoses were inaccurate, an un.fortunate
occurrence for a beginning programming course.

Typically, studies such as the above have sought to
provide guidance to language designers, compiler designers,
and/or programming language instructors as to how languages
are actually used by programmers.

As far as program debugging goes, little concrete work
has been accomplished. In addition to the previously cited
work z:eporting error counts, Gould and Drongowski61 reported
that assignment statement errors were the most difficult to
unravel in theiz: study, and Gould62 found that debugging was
more efficient on programs the subjects had debugged
previousl] (although with different bugsJ. Hyers6a reported
that in a study of professional programmers debugging a
small PL/1 program, the most cost-efficient strategy
consisted of two programmers independent~y looking for
e~:rors and combining their results. Sheppard et al64
reported that minor variations in the structuz:ed control
mechanisms used in p.rograms did not significantly aftect the
ease of debugging. Gannon and lforning6s present statistics

60 c. l.iteckj and G. B. Davis, "A Study of Errors, Error
Proneness and Error Diagnosis in COBOL," fgmm~ics!io~
2! !~ ~CB, Volume 19, Number 1, 1976, pp. 33-37.

61 J.D. Gould and P. Drongowski, "An Exploratory Study of
Computer E'rognm Debugging," !!.!!H.!! Facj;.Q£!, Volume 16,3,
1974, fP• 258-277.

62 J.D. Gould, "Some Psychological Evidence on a ow .People
Debug Computer Programs," 1!!ternati2J:I,g.! !l,QJ!J;:!!al .Q! 1!91!::
l!i!£li.!l! .i!!.!!di§§, Volume 7, Number 2, 1975, pp. 151-182.

•a G.J. l!yers, "A controlled Experiment in .Program Testing
and Code iialkthroughs;Inspections, 11 f;.Ql!!!.!!!ti£s!ions .Q! !l!g
~CM, Voluse 21, Number 9, 1978, pp. 760-768.

64 S.ll. Sheppard, E. curtis, P. Milliman,
"Modern Coding Practices and Programmer
Computer, December, 1979, pp. 41-49.

and X. Love,
Performance,"

65 J.l). Gannon and J.J. Berning, "Language Design fo~:

21

on erro.r persistence in the context of a discussion on
langua~e feature selection for reliable software design.
Hetzel66 has investigated different program verification
strategieE in a tightly controlled experimental setup,
reporting that specification testing and selective program
testing were egually more effective than program reading as
a means of program verification. While the above generally
study errors and debugging at the small-program level, Weiss
has investigated error analysis on large-scale projects.67

In general, it might be stated that the scarcity of
useful research into debugging as a psychological activity
might be cited as one more reason to develop programming
methodologies in which errors are never permitted to occur.

Love's dissertation6a relating human information
processing abilities to programming performance contains
many useful statistics on computer usage and program
attributes for an introductory p.rogramming course.

Among the fLOgramming technigues or practices that have
received the most attention is that of flowcharting. While
flowcbarting of program designs was a popular practice .in
the earlier days of programming and proved useful in non­
programmillg activities, 69 research has eithe.r found
flowcharting to be of no significant advantage compared to
other techlligues,7o or to be interior to a program design

l?rogra11ming lieliability," lll.l:i Xran:H!.s<tiQ!l§ on Software
~!l9~~ri~, Volume SE-1, Number 2, 1975, pp. 179-191:---

66 w.c. Hetzel, "An Experimental Analysis of Program
Verification aethods,• (Ph.D Dissertation, University of
North Carolina, 1976), Dissert~.t.!Q.!! Abst~::a.s;:t.§
!nt~£!g!ional, Volume 37, 1977, p, 4054B.

67 D.!!. !Ieiss, "Evaluating Software Development
Analysis: ~he Data from the Architecture
Facility," 1J!.!l ~.\lJ;~! .Q.f azst£.!§ and aof!..!!£l!:.!l,
1979, ff• 57-70.

by Error
Research

Volume 1,

6& L.X. love, "Relating :Individual Differences in computer
Programming Performance to Human Information Processing
Abilities," (Ph.D Dissertation, University of Washington,
1977), Di§.§£.J;;!.ati.Q.!! Abst];J!£1§ Inte£lli!.!i2l!.al, Volume 38,
1977, f• 1443B

69 R. Kammann, "Xhe comprehensibi.lity
Instructicns and Flowchart Alternative,"
Volume 17,2, 1975, pp. 183-191.

of Printed
ll.Y.!l!i!!! Fas;tor.§,

22

language jl'Dl) for e.xjlressing program designs. 71
Sherrard, Kruesi, and curtis72 studied the effects of

symbology (including natura~ language, a constrained program
design language, and flowchart symbols) and spatial
arrangements (seguential, branching, and hierarchical) on
the comprehension of software specifications and found that
forward- and backward- tracing guestions were answered more
guickly from specifications presented in PDL or flowcha.rt
symbols than in natural language.

Indentation ot programs has gene.rallJ been regarded as
advantagecus to comprehension. However, none of the
reported studies support that contention.73

Like~ise, mnemonic variable names have long been held
to be valuable in aiding program comprehension.
Experime.ntal attempts to support that hypothesis have met
with mixed results, however. Sheppard et alH found that
different mnemonic levels of variable names had no
significant effect in a comprehension experiment. Newsted75
reported that groups using nonmnemonic names outperformed
mnemonic groups on program comprehension tasks. Shneiderman
reports,76 however, that mnemonic names aided program
compreheDsion.

Finally, with respect to the expected benefits of
program commenting, the experimental results are not as
convincing as one would hope. Shneiderman77 found programs
with global-level comments to be significantly easier to
modify than programs lacking such comments. However,

ro B. Shneiderwan, B. Mayer, D. BcKay, and P. Heller,
"Experimental Investigations of the Utility of Detailed
Flowcharts in Programming," Communifatl2!!2 Qf ~he Af~,
Volume 20,6, 1977, pp. 373-381.

7t H.B. Eamsey, M.E. Atwood, and J.R. Van Doren, J
f.QJ!!.f.9.H!iV.!l Study Qf i:lQ.!!fha£1.§ SJl£! !:.££9.!~ ~Jill!
LB!!Sl.YJ!.9§.§ J.QJ;. th§ .!l~taileg _fJ;..QS<eduraJ, ~E.!lfificati.Q!! .21
f.Q~~te! i!Q~g~2 (Denver: Science Applications, Inc.
1978).

72 S.B. Sheppard, E. Kruesi, and E. curtis, "The Effects o.f
Symbolcgy and Spatial Arrangement on the comprehension of
Software Specifications," g!Q£!l§din,9.§ of :!;he §ixth
11!te!.!J.i!ti.Q.!!st! f9.!!f.!illll~ Q!! Software l;J1gin~ri!!!l, (New
York: lEEE Press, 1981J, pp. 207-214.

74 S.B. Sheppard, B. Curtis, P.
"l'lodern Coding Practices and
Computer, Volume 12, Number 12,

Milliman, and T. Love,
Programmer Performance,"
1979, pp. 41-49.

75 P. E. News ted, "FORTBAN Program comprehension as a

23

Sheppard, in comparing programs containing either global or
in-line comments with programs lacking such comments, was
unable to find a significant difference in performance on
program modi± ication tasks. 711

While primarilJ exploring human factors in software
development, Basili and Reiter79 developed empirical
evidence to support the contention that programmer teams
using a disciplined methodology fo.r software development
have an advantage over either individuals or teams using an
ad hoc methodology, in terms of average development costs,
average number of errors encountered during implementation,
and control flew complexitJ of the program product.

A significant line of e~periments has explored the
effect that mode of computer access has on p~:og.rammer
productivity oc the ability of students to learn to program.
Sackman's book,ao llan::~Qmput.§};: f.f:obleJ!! ~J,Vi.!!.!I• p.rovides the
most comprehensive discussion, including experiments done at
the u.s. Air £orce Academy involving students. That work
was preceded by an earlier Sackman studyu which has been
more often cited for its statistical evidence of huge
individual variability in programmer performance. The
earliet: investigation dealt primarily with conditions for

Function of
Administration,
undated.

Documentation,"
University of

School of
Wisconsin,

76 Shneiderman, ~ft~A~ Psy£hol~1· pp. 70-72.

77 B. Shneiderman, "Measut:ing Computer Program
Comprehension," Intet:na tiona,! JouL"nal itf
~!]£~, Volume 9, 1977, pp. 465-478.

Business
Milwaukee,

Quality and
,!!an-llachine

78 Sheppat:d, curtis, llilliman, and Love, "llodern Coding
Practices"

7 9 v. Basili and B.W. Reiter, Jr., "An Investigation of
Human Factors in Software Development," fQ.!!!.EJ!te,£ 1 Volume
12,12, December, 1979, pp. 21-38.

ao H. Sackman, ~an=~QJ!!put~ Problem SoJ:~i.!!g,
Auerbach Publishers, 1970}.

(Princeton:

at H. Sackman, w.J. Et:iltson, and E.F. Gt:ant, "E~ploratory
Experiaental Studies Comparing Online and Offline
Prograaming Performance," Communications of thg A<;Jl,
Volume 11, Number 1, 1968, pp:-3-11:------

24

successful program debugging, and indicated an advantage to
online activity. Observations about individual variability
were added as an afterthought.

Comfarisons of time-sharing and batch processing
systems as to effectiveness for supporting introductory
programmiDg coursework have IJroven inconclusive. An early
study by Smith82 concluded that instant turnaround
(simulated time-sharing) was superior as measured by elapsed
time from tiJ:st J:un to last and ratio of number of runs to
number of trips to the computation center (higher ratio
viewed as better). Skelton,aa however, concluded that no
statistically significant difference on either the l?roblem
Solving Ability or the FORTRAN Programming AbilitJ tests was
found that was attributable to the mode of computer access.

Yet ancther area of programming studies involves
investigating the utility of individual language features
or of language:; as whole entities for .Producing desirably­
structured programs. Furuta and Kempa• provide a good
general survey of the subject.

Very little has been attempted in the way of evaluating
cr comparing, on a rigorous basis, whole languages for
teac.hing intJ:oductory programming. In fact, very few
attempts have been 111ade to evaluate whole languages for any
purpose. Notable among those efforts are the works of
Reisner and of Ledgard, Whiteside, Seymour, and Singer.

lleisDeras advocates mating psychological testing part
of th€ design and development process tor new languages.
She did just that, evaluating SEQUEL, a relational data base

az L.E. Sreith, "A comparison of Batch Processing and Instant
Turnaround," f2!.!!f!!J.catifl1J§ of th_g Afli, Volume 10, Number
8, 1967, pp. 495-500.

n J.E. Skelton, "Time-Sharing Versus Batch Processing and
Teaching Eeginning Computer Programaing: An Experiment,"
A.H~ .ili1.lli1!.9.!, March, 1972, pp.91-97, and June, 1972, pp.
103-109.

84 R. Furuta and P.M. Kemp, "Experimental Evaluation of
Programming Language Features: Implications for
Introductory l'rogramming Languages," i!!!!f£i£; Bulletin,
Volume 11, Number 1, 1979, pp. 18-21.

as P. Reisner, "Use of PsJchological Experimentation as an
Aid to Development of a Query Language," !££]
Transactions on Software !1JgJ.1Jeeri~, Volume SE-3, Number
3:1977:-rr: 218-229.

25

language under development, in relationship to SQUARE, a
preexisting data base language. Using both programmers and
non-programmers, she investigated overall learnability of
the new language, learnability at individual features ox the
languages, and types and frequencies of e.1:rors made.

Ledgard et al86 attempted to decide whether English
language commands or notational commands were more useful
fo1: commercial text editorsA Evaluating the work of
inexperienced, familiar, and experienced users on a
20-minute editing task after training on one of two editors,
they concluded that the use of coamands resembling English
phrases resulted in far better performance. Subjects "could
not conceive of editing power or function as something
different from the appearance at the actual commands. This
suggests that language designers wust be as much concerned
with surface syntax as with functional features if they mean
to design a product to optimize user perforaance."

As far as empirical testing ot indiv.idual language
features goes, Gould87 concluded, in the context of a study
011 how feople debug programs, that errors in assignment
statements were harder to detect than array or iteration
bugs.

Sime, Green, and Guestea examined conditional
statements, particularly as to the utility of including
sequence information (specifying the order in which
statements are eJtecuted) and taxon information (describing
the conditions under which a given action is performed).
They note that froductlon systems normally present sequence
informaticn, but leave taxon information up to the human
reader to discover; decision tables normally present the
taxon information, but leave the sequence information up to
the human reader to discover. Redundant information ln a
conditional "el..se" branch, as Dijkstra advocates,s9 adds
taxon information. Nesting of conditionals (as opposed to
using gotc•s) adds .seyuence information. Slme, Green, and

8 6 H.E. Ledyard, J.A. Whiteside, W, Seymour, and A. Singer,
"All Experiment on Human Engineering of Interactive
Software," 1]~~ lf~ctig~§ ~ Soft~g£§ ~~gl~j,~,
Volume SE-6, Number 6, 1980, pp. 602-604.

87 Gould, "Some Psychological Evidence on How People Debug
computer Programs".

ea M.E. 5ime, T.R.G. Green, and D.J. Guest, "Scope Barking
in Computer Conditionals -- A Psychological Evaluation,"
I.!!J:.f1.£lli!ll.!llls1 !l£!!.J;.!ls1 .21. lli!J.l-llach!.!!.§ g.!H!i~§. volume 9,
Numhe11: 1, 1917, pp. 107-118.

&9 E.W. tijkstra, "Guarded commands, Nolldeterminacy and
Formal Derivation of Programs," ~Q~mu~!£g!j,Qn§ 2! !he
_!CM, Volume 18, Number 8, 1915, pp. 453-457.

26

Guest found in their studies that nested redundant
conditionals were very effective language structures,
particularly in debugging, which requires taxon information
as well as seguence information. (Debugging typically.
requires answers to the questions "If certain conditions are
met, what actions will be taken?" and "If a certain action
evidently was taken, what conditions must have existed?")

Gannon bas done the most extensive wort in empirical
evaluation of language features as guidance to language
designers. In one comprehensive study,9<J he evaluated type,
frequency, and persistence of errors made by students in
using two simi~ar languages which differed only in several
carefully controlled ways. Those ways included order of
ope1:ator precedence; expression orientation versus statement
orientation; term of logical connectives; use of semicolon
as either separator or terminator: inclusion or exclusion of
a case statement; form of repetition statement; bracketing
of compound statements or expressions; scope rules; and
inclusioD or exclusion of named constants. Gannon's
results indicate support for the use of the semicolon as a
statement terminator and for requiring the explicit
inheritance of global variables when so desired, but no
SUIJport fer a strict right-to-left evaluation of (all-egual­
pcecedence) operators as is found in APL.

In a later study,9l Gannon reports evidence for
concluding that static data typing t:educes errors in an
least one environment, when compared tilth languages that
permit tn:.ing determinable only from statement usage.

Finally • Weinberg, in 11!!1 .R.!i't£.!!£!J&.SU: .2! Compute!:
l?rog!.J!.!!lmiJ!.!:l• lists a number of desirable attributes of
programmiilg languages and gives suggestions as to tbeit:
empit:ical evaluation. Those attributes include uniformity
or consistency of structut:e; compactness, relative to the
psychological concept of "chunking", u with more program
informaticn or power per chunk being desirable; locality,
wherein all parts of a program relevant to a particulat:
concern are found .in the same place; linearity of executable
statements, arguing for minimization of explicit program
branching; and non-erl:or-proneness, wherein inherent
psychological ambiguity of program structures is minimized.

90 GanDon and Horning,
llelia.tility".

"Language Design tor Programming

91 J.D. Gannon, "An Experimental Evaluation of Data Type
Conventions," CommunicatiQ!l§ of .!.l:!.!il AC_!1, Volume 20,
Number 8, 1977, pp. 584-595.

n G. A. !!.iller,
Two: Soll!e
IDformaticn,"
81-97.

"The Magical Number seven, Plus or Minus
Limits on Our Capacity for Processing
Psx.s;.l!oloqical Bevi:§:!, Volume 63, 1956, pp.

21

Most of the studies that one might group under the
heading cf "human factors" have already been mentioned
elsewhe~:e, notably frogram.ming team organization, mode of
computer access, and study, a la Weinberg, of personality
factors as they are involved in the p~:ogJ:amming process.
Psychological comp~exity of the programming process wi~l be
dealt with later, under the heading of aeasures of program
complexity. IDdividual variability of programming subjects
will he mentioned later under methodological considerations
for programming experiments.

This section will consider the cognitive dimensions of'
the programming process. Mayer9~ and Miller9• provide
useful su.mmaries of concerns in this area.

several models have been proposed for examining the
performance of human users of computer systems, among them
the work cf Card, Mo~:an, and Newell95 and Embley and Nagy96
on modeliDg text editor usage. BrooJcs97 bas extensively
used protocols (spoken revelations of thought patterns) o.f
programme.~:s working on problems, in o.rder to model coding
behavior. HE proposes that a programmer is always in one of
three distinct states of behavior: understanding, method­
finding, or coding, with the method-finding activity being
independent of a particula.r programming language. His model
profOSes a production system with coding "rules" to explain
programmer behavior, and e:xp~ains di.fferences in programmer
performance in terms of differential possession of rules.9a

93 Mayer, ~The Psychology of How Novices Lea~n Computer
P:rogra rrming".

94 L.A. Miller, ~agviorsJ ~!udi~ gi !he jrog~~~ing
~.ru:;~. National Technical Information service Report
#AD/A-061-633, October, 1978.

95 S.l. Card, T.f. Moran, and A. Newell, "The Keystroke­
Level Model tor User Performance Time with Interactive
systems," Communica!ions of !~~ ~. Volume 23, Number 7,
1980, FF• 396-410.

96 D.l!l. Emble}' and G. Nagy, "Behavioral Aspects of Text
Editors." .!CH f.Q!lJH!!in<l ~me ys, Volume 13, Number: 1,
1981, fP• 33-70.

97 R. Brocks, "Toward a Theory of the Cognitive Processes in
Computer Er:ogramming," int~£!S!ignal ~ou£gal of ~~B=
Machin~ ~judies, Volume 9, 1977, pp. 737-751.

u See also A. Newell and ll. A. Simon, ll.JH!!.S!.!! ,eroblem Solvl.J!_g,
(Engleliood Cliffs: Prentice-Hall, 1972j, on protocols~

28

In a similar vein, Larkin., McDermott, Simon, and
SimonH have compared expert and novice performance in
so~ving physics problems in a wax that may also be
applicable to studying programmer behavior. While
consideratle knowledge obviously constitutes a prerequisite
to expert skill, "recognition of a pattern often evokes from
memory stcred information about actions and strategies that
may be appropriate in contexts in which the pattern is
present" and that may be useful in guiding development of a
problem's interpretation and solution. "This capacity to
use pattern-indexed schemata is probably a large part of
what we call physical intuition."

Shneiderman has performed au experimenttoo which
supports a view of information processing differences
between the novice and expert programmer. He examined the
abilities of subjects to memorize two seguences of FORTRAN
statements, one a proper executable program, the other
consisting of valid statements in scrambled order. While
all subjects did poorly in recalling the scrambled sequence,
the more exJ;erienced programmers performed significantly
better co the actual program, suggesting a chunking
effectlOI in which more program content per chunk may be
retained in short-term memory by the expert programmer than
by the novice.

Love has more deeply explored the relationship of
in.formation processing abilities to individual differences
in . programming pe.rformance for his doctoral dissertation
wort.toz His objective was to determine whether int.roduct:ory

99 J. Larkin, J. McDermott, D.P. Simon,
"Expert and Novice Performance in
Proble11s, 11 Scienc!§, Volume 208, Number
pp. 1335-208.

and H.A. Simon,
Solving Physics

20, June, 1980,

aoo B. Shneiderman, 11 Ex_ploratorx EJCperiments in Programmer
Behavior," Int~~stion~1 dournal ~i ~omputgi ~nd
1Jl!..2!.!ati.Q.B Scie.B£~, Volume 5, Number 2, 1976, pp.
123-143.

101 Each human is assumed to have a capacity to store a
similar nuaber of "chunks" of information in short-term
memory, though the size or content of chunks may differ
across individuals. See H.A. Simon, "How Big Is a
Chunk1° ~£!~£~• Volume 183, 1974, pp. 482-488.

See also A.L. de Groot, !hough! ~ng ~hoi£~ in Ch~§§,
(New lork: Basic Books, Inc., 1965}, for an experiment
similar to Shneiderman•s that involved recall of actual
and scrambled game board situations by master and novice
chess players.

ao2 Love, "Relating Individual Differences in Computer

29

programming performance was related to the ability to
process information quickly and accurately, and his method
used four measures of information processing capability
(recall cf assigned variable values, recall of serial
digits, perceftual speed in comparing strings of digits, and
subjective organization of words in a free-recall learning
task) and several measures of programming performance
{including number of runs needed to complete the assigned
task and freguency of program changes across successive
runs). rove observed that students who performed well on
the variable value recall task, as well as those who
performed well on the serial digit recall task, took fewer
runs to complete their programming assignments. Students
who perfo:~: med better on the free-recall task reported fewe.r
logical e~:rors in their programs. However, students who did
well in remembering variable values also took longer to
locate errors in their p~:ograms, a counter-intuitive result.
As Love states, "Altogether we have evidence here for a
relationship between programming performance and human
information frocessing ability, albeit complex:!"

Lastly, in this area, some comments might be made under
the heading of decision-making under uncertainty.
Programming tasks are commonly assigned with a complete set
of technical specifications, but with no statement whatever
of which performance goals (number of runs, elapsed time,
program size, program e.tticiency, etc.) to optimize. Under
such conditions, each subject of an experiment may choose to
optimize his own indi vidua~ goal. lieinbergl O:J demonstrated
tbe power of this phenomenon. Five groups of experienced
programmers were given the same programming task, each group
being given a separate performance goal to optimize. Then
the groups were rated on all the goals. Each group
outperforued the others on its own individual goal,
exhibiting an ability to trade ott one performance attribute
for another. ahether this ability extends to introductory
programming students is open to speculation. However, this
phenomenon may explain some of the variability in individual
pr:ogrammer performance observed in some studies, such as
that of Sackman, Er:ikson, and Grant,to• where no particular
per:formance goals were reported as being given the
programme£ subjects.

Programming Performance to Human Information Processing
Abilities".

ao3 G. Weinberg, "The Psychology of
Pertcamance," Datamatiog, November,

Improved Programming
1972, pp. 82-85.

to• Sackman, Erikson, and Grant,
Studies comparing Online
Perfo~:mance."

"Exploratory Experimental
and Offline Programming

30

If one talks about methodolo~ies tor programming or
methodologies for teaching programm~ng, there must also be
some way of evaluating the guality OL the resultant program
products. Computational. compl.exity analyses have focused on
the executional efficiency o:f the p.Logram algo.Lithm. 105
Analyzing psychological complexity of the resultant prog.Lam
provides another means of assessment. Attempts have been
made to identify an intrinsic relationship between program
properties and programmer performance on a given p.Logramming
task, tor instance, reading or debugging programs. Because
of the dominant role that maintenance activities play in the
software life cycle, prog.Lam complexity measures have sought
to cha.Lacte.Lize how difficult a program is for programmers
to work liith, that is, locate and co.rrect undetected
implementation errors and modify program modules to
incoq:o.La te specification changes.

In the last decade, a number of metrics have been
proiJosed and empi.Lically evaluated. Among them are the
works of Halstead,t06 McCabe,t07 Chapin,toe and chen.to9
Reviews and comparisons of the metrics are contained in
Fitzsimmons and Lovetto and in Baker and zweben,ttt as well
as in other studies. Because of the focus of attention on
Halstead's and McCabe's metrics, the discussion will be
limited here to their studies.

tos see, fo.L instance, A.V. Abo, J.E. Hopcroft, and J.D.
Ullman, 1.!!51 !1~1Sil! and Analysis £! Com£!!te.J; !lgoill.!!.l!!.§,
(Reading, Mass: Addison-Wesley Publishing Co., 1974}.

ao6 M. E. Halstead,].J,.§~nts .2! ~Qftll.!!£§ .iif:J&!:!~• (New York::

lO 7

Elsevier North-Holland, 1977J.

T.J. McCabe, flA Complexity Beasure,H
£! Sof~.I;~ Ji~!BSl.§I!.Bg, Volume SE-2,
FP• 3C8-320.

toa N. Chapin, "A Measure of Software Complexity," !X!PS
~~D!et~.§ Pro£&&4ings, 1o1~ ~§: 1279 !atiopal
Compute£ f.QDfSl~~£~, (Montvale, NJ: AFIPS Press, -1979j,
pp. 995-1002.

!09 E.T. Chen, "Prog.Lam
P.Loductivity," IE~.!!
En~ine&ri~3• Volume SE-4,

complexity and
.!f~C ti2,P.§ 2P
Number 3, 1978, pp.

Programmer
.§oftw~

187-194.

tto A. Fitzsimmons and T. Love, "A Review and Evaluation of
Software Science," ACM ~Qmpu.!illl! .a.YfVeJ:§, Volume 10,
Number 1, 1978, pp. 3-18.

31

In 1S72* Halstead began publishing articles about his
work, which characterized algorithms and the languages in
which they were e%pressed in an attempt to establish a
scientific basis for the study of programs. He focused on
the numbet of distinct operators in an implementation and
the total usage of all operators in that implementation,
plus the number of distinct operands in an implementation
and the tctal usage of all operands in that impleme.ntation.
From these units he developed an eguation for the expected
prog.ram length wnich was shown to corr:elate very highly with
the observed length in a variety of settings. He also
developed characterizations for potential volume (the
shortest fOSsible expression of an algorithm) and actual
volume (which expresses the conciseness of the algorithmic
representation in a particular language) • and for
programming effort.

Empirical studieslt2 have shown the predictive value of
Halstead's effort metric foe the numbee of bugs that will be
discovered in an implementation and .for program
comprehensibility, as measured by program recall and the
ability tc debug peogeams. (The lower the effoet metric,
the lowee the number of bugs that will occur and the higbee
the program compeehensibility.) This metric estimates the
number of mental discriminations needed in implementing a
program once the algorithm is known, and has been shown
useful in predicting a value toe the actual observed time
needed to iEplement the peogeam. Halstead•s metrics have
also proven use.tul for quantitatively analyzing technical
prose as well as computer programs.

I'JcCal:!e independently developed a geaph-theoretic
measure Gf frogram complexity that depends only on the
decision steucture o.f a program, not its physical size. In
essence, his metric characterizes the "structueedness" of a
peogram. It describes the number of basis paths which, when
taken in combination, can generate all possible paths
through the peogram. The metric has applicability,
theeefore., fo~: characterizing the testability as well as the
psychological complexity of a program, and could he used for
deciding when a program module has become too complex and
should be divided into sub-modules. The appeal of the
metric, in practice, is that it can be computed very simply
as the nu11ber of conditions or predicates in a progeam plus
one.

111 A.L. Eaker and s. Zweben, "A Compaeison of Measures of
Ccntrcl Flow Complexity," IE,S;.Jl Transactions on Software
En3ine§~i~. Volume SE-6, Number 6, 1980, pp.-so6:s12:--

ttz See Fitzsimmons and Love. "A Review and Evaluation of
Software Science."

32

!lcCal:e•s ideas, like llalstead•s, have their advocates
and some empirical support for their utility. Among the
supporters a.re l!yers, au who suggests a modified interval
metric incoq;oratiDg both the .number of conditions and the
number of decisions; Elshoft and llarcotty,au who advocate
using only the nuaber of decisions; and llalsh, a as who
describes the usefulness, in a large-scale weapons system
development project, of using a McCabe metric cutoff value
of ten, for determining module size in a complex program.
In Myers• words, "Although it is an extremely simple
concept, V(G) appears to be a practical complexity measure
because it is easy to calculate, it confirms subjective
opinions about complexity, and it is consistent with studies
showing a high correlation between the number of decisions
in a module and the module's complexity and error
proneness."

Curtis, Sheppard, and .Mi11imanu6 hav€ inv£stigated the
use of so.ftware complexity metrics for predicting prog.rammer
performance, as measured by the time to locate and correct
bugs in three FCR1'RAN pcograms. Working wi~h largec-s.ized
programs than were used in theic prev~ous study,a~7
Halstead•s effort metric and llcCabe•s cyciomatic comple.xity
metric were related to the difficulty programmers expecience
in locating errocs in code, with the stronger relationship
established for the Halstead metric. A curvilinear
relationship was Lound for Halstead's effort metric and
programmer pertcrmance, suggesting that as Halstead's effort

t u G • .J. llyers, "An Extension to the cyclomatic Measure of
Program Complexity, SIGP&AM]21!£~§, Volume 12, Numbec
10, 1977, Ff• 61·64.

a&• J.L. Elsbof.f and 1!.
CycioKatic Number to
SIG£1!]]otic~, Volume

llarcotty,
!Ieasure

13, Number

"On the Use of the
Progcam Complexity,"
12, 1978, PP• 29-40~

11s T.J. Walsh, "A softwace ~e1iabi1ity study Using a
Complexity lleasuce," jfli?S fonfe~~ce groceedin~,
Vol.J!.H 48: 197.2 Ma.!;J&!!al fQ!!.EY!!il!:. ~~renee,
(Montvale, NJ: APIPS Press, 1979j, pp. 761-769.

tl6 B. CuJ:tis, S.B. Sheppard, and i?. liilliman, "Third Time
Charm: Strange~: Prediction of Programmer Performance by
Software complexity l!etrics," Proce~.Q.!.!L92 Q.! lli fQ.Y.rth
J:nte:uati.Q]Jal f.Q]J:ference Q1l Software £;rut!!!.§.!iring, (New
York: IEEE, 1979).

117 B. curtis, s.a. Sheppard, P. Milliman, M.A. Borst, and
T. Lcve, "Measuring the Psychological Complexity of
Software Maintenance Tasks with the Halstead a.nd l!lcCabe
lletcics," Jli.!!ll I.t:£lnsactiQ]l§ Q1l ~!1.!.2£~ Enqineerin.9,
Voluee SE-5, Numbec 2, 1979, pp. 96-104.

33

metric grows larger 11a program becomes more psycho~ogically
comp~ex, but the iucrements in difficulty grow smaller and
smaller."

It appears that research on complexity metrics will
continue into the foreseeable future ,u e particularly
related to keeping program111ers and managers aware of their
programmillg p:oduc t' s ~ogical complexity and to helping them
estimate the time and effort needed for their coding,
testing, and maintenance work.

While computer scientists have been actively performing
experiments en human subjects for some fitteen yea.rs, only
recent~y has widespread attention been focused on the
sufficiency of e.xperimenta~ designs emp~oyed. A sense has
grown that computer science experiments sbould .be evaluated
for methodology ui th the same rigor as that applied in the
behavioral and natura~ sciences.tt9

Both Brooks120 and Bober and Schneidet:l2t have written
of the methodological considet:ations involved in formulating
appropt:iate software experiments, with .!Iober and Schneider
noting, "Although the literature contains numerous
references to the .!!§.!§ of experimental methods, there are few
reference.s on investigations into the methodology itself."
Sheil12Z has also written of experimental concerns.

I HI J.C. Zolncwski aDd D. B •. Simmons, "Taking the !Ieasure of
Progn m complexity •" ~!!.U.Qnal f2!!£.!!1!ii Confei!l~
~~~ing§, 12~1. (Arlington, va.: AFIPS Pt:ess, 1981), 
pp. 329-336. 

G. 11. Schneider, ll. t. Sedlmeyer, and J. Kearney, "On the 
Complexity of Measuring Software Complexity." National 
CO~£Y!§~ ~onfe~~£!l Proc.!§ediB~§, 1981, (Arlington, Va.: 
llF.IPS Eress, 1981J, pp. 311-322. 

tt9 D.L. Earnas, letter titled 
for Experiw.ental Computer 
!B§ jf~, Volume 24, Number 

"Dubiety of Increased Funding 
Science," f2~.!!91£sti.2B§ .2! 

3, 1981, pp. 162-163. 

120 

121 

B. Btoolts, "Studying Programmer Behavior Experimentally: 
The Problems of Proper Methodology," f&!!.!!J!Bicatio!!§ .Q! 
!.b.!§ J~.!l. Volume 23, Number 11, 1980, pp. 207-213. 

T. !Iober and G.ll. Schneider, "Methodology and 
Experimental Besults in software Engineering," 
International Journa.l of llan-llachine ~j;udie§, Vo~ume 16, 
Numbex~-1982-,-pp:-6s-87:----------



34 

The issues that have been raised about experimental 
methodology include the following: 

1. Genecalizability of results -- Will .results obtained 
with beginning programming students generalize to 
pccfessional progcammers, even when task performance 
has been seentz;~ to vary with programming experience, 
or, as Weinberg puts it, 124 will the psychology o.f 
programming become the "psychology of programmer 
trainees"? Will results obtained with small-sized 
prcgrallls generalize to large-scale systems, even when 
scaling up is not just a side issue in software 
engineering, but the crux of the matter? 

2. Selection of subjects Given the apparent 
vaJ:iability in programmer performance and the cost 
inherent in conducting reseacch with real 
programmers, can subject populations be selected tbat 
are small, yet representative, and large enough to 
produce the desired experimental effect? lloher and 
Schneidertzs argue that a few simple biographical 
variables, both experiential and aptitudinal, if 
taken into effect, can reduce the unexplained 
variability in performance by about SOJ. Bemoving 
the effects of dependable predictor variables can 
substantially reduce estimates of variance and 
tbe£etore result in a reduction in the number of 
sutjects needed for an experiment. 

3. A.pfropriateness ot measures What are the 
unde£1ying variables of interest in the experiment 
and how do they relate to the aspects of perfo£mance 
actually being measured in the experiment? Lemost26 
found a direct relationship between program reading 
ability and program writing ability. Few others have 

uz Sheil, "The Psychological study of Programming." 

12~ For example, Shneiderman, 
Programmer Eehavior." 

"Exploratory Experiments in 

az• Weinberg, Ih~ Psychgloq~ 9! ~ompu!~ Rf2g£A!~ing. 

125 T. Moher and G.M. Schneider, "Methods for Improving 
Experimentation in Software Engineering," Sixth 
1ntern,g!io!!.SJ Co.!!!~£ence .Q.!! So.!J:nil lllliliDflflring, (New 
York: IEEE Press, 1981), pp. 224-233. 

126 Lemos, "l!easuring Programming Language Proficiency." 



35 

sought to establish so directly a link between their 
perforaance measures and some aspect of programming 
ability. 

4. tlagni tude of experimental effect Can a 
sufficiently strong experimental effect · be induced, 
given the error variance typically present in 
prGgra.mming experiments? Can satisfactory aaterials, 
addressing such matters as performance goalst27 and 
requirements, be prepared for the experimental 
treatment? 

5. unobtrusiveness of measures -- can performance data 
be collected unobtrusively, as with the program 
"drain" of Nagy and Pennebaker,tza or, at the other 
extreme, will the experiment~r induce a so-called 
"Hawthorne Effect, 11 129 in which experimental 
observation of subjects itself produced changes 
(improvements) in subject petformance? 

uong the recent write-ups of exferiments which exhibit 
a high level of awareness of experimental issues or tight 
experimental central are those of Hetzel,t3o Stoddard, 
Sedlmeyer, and Lee,'"' and Sheppard, Kcuesi, and Curtis.uz 
A recent issue c.t ~Q;l;!~ll Enqin~ring Notes, which includes 
eight proposals for software experiments and a discussion of 
design issues to be considered in making proposals, also 
provides useful guidance on the subject of methodological 

127 See, fer instance, Weinberg, "The Psychology of Improved 
Programming Performance." 

tza Nagy and Pennebaker, 
Prcgramminy Ercors." 

"Automatic Analysis of Student 

12 9 Named after productivity experiments performed at the 
Hawthcrne works of the western Electric Company. See, 
fer instance, K.B. London, Ihe PeQ£1§ ~id~ Q! Syst~!@. 
(Landen: McGraw-~ill, 1976j, Chapter 3. 

130 Hetzel, "An Experimental 
Verification Methods." 

Analysis of Program 

t3t Stoddard, Sedlmeyer, and Lee. "Breadth or Depth in 
Introductory Programming Courses: A Controlled 
Experiment.n 

uz Sheppard, Kruesi, and Curtis, "The Effects of symbology 
and Spatial Arrangement on the Comprehension of Software 
Specifications." 



36 

issues.1A3 

A33 »profcsals for Tool and Methodology Evaluation 
Experiments," S~GSOFT First Software Engineering 
symfo~ium on Tool and Methodology Evaluation, software 
~~ineeriR~ Note§, Volume 7, Number 1, 1982, pp. 6-75. 



Chapter Ill 

TBE BXl'EBIJIE»T 

Publication, in 1976, of E.W. 
DisciFlipe ~1 i££gram~inq, vas met 
not universal, acclaim.u• In the 
himself a distinguished prograJDming 

Dijkstra•s monograph, ,A 
with widespread, though 

words of one reviewer, 
methodologist, 

The uterial represents a tight distillation of 
ideas over a lifetime of one of the deepest 
thinkers in programming today... A ~~s~!EJ~ ~! 
Pr29!AI!lBS is a landmark in programming 
methodology. The unity and power of the 
theoretical ideas will be the basis for many 
textbooks in explanation and elaboration over the 
next decade, and for a whole generation of more 
effective frogrammers. The work is a rich source 
of insights, large and small.tas 

However, studying that work has proved to be a challenging 
task even for advanced computer science graduate students 
and computing fro:fessionals. Though its form is clearly 
inappropriate for study by introductory students (and was 
not intended to be so used), its lessons may nevertheless be 
communicated to an_y audience. 

The central theme of Dijkstra•s book is that the 
arguments necessary to convince oneself of a program's 
correctness must be developed hand-in-hand with the program 
itself, and even more strongly, that the necessity to 

t3• Fo£ a critical op~n~on of Dijkstra•s vork, see F.W. 
Abrahams • review in Coml!Utlli .rut!!&~• Volume 19, Number 
5, Bay, 1978, pp. 177-179. Abrahams states that 
development of the programs presented in Dijkstra•s book 
depends mere on l:ortnitous insight than application ot a 
consistent methodology. .Furthermot:e, he says, no time 
or sface constraints are given for the problems 
presellted, nor are c~:iteria stated tor the tradeoffs 
evidently applied in the program development process. 

us B.D. Bills, ~.!J1Uti.!!.9. .!l!l.!l.fl~, Volume 17, Number 11, 
Noveml:;er, 1976, pp. 416-418. 

- 37 -



38 

develop a correctness argument should guide the program's 
construction. An outcome of this idea is that one needs a 
language in ~>~hich to express the program reguirements or 
specifications, a language in which to e.xpress the program 
itself, and a language with which to reason about what the 
program accomplishes. Given widespread agreement among 
scholars in every intellectual discipline that language 
shapes our thoughts and actions, it should be clear that the 
three languages or notations needed for programming, as 
mentio.ued above, must be chosen ~>~ith special care. 

Dijkstra describes what a program must accomplish in 
terms o.f logical assertions taking the form of output 
predicates or postconditions on the proyram•s data. lie 
regards the program, then, as a predicate transformer, 
which, when started ~>~ith some tz:ue initial predicate or 
precondition on the progz:am•s data, terminates with the 
postcondition being established as true, thus utransforming" 
the state described by the precondition into the state 
described by the postcondition. A "weakest" precondition 
may be formulated which describes the least restrictive 
(most inclusive) set of initial states or conditions for 
which the program "works" (terminates establishing the 
require<l postcondition). Variables are regarded not so much 
for their role as the object of computations as tor their 
usefulness in describing the state, or progress, of 
computations. In particular, variables are needed for 
formulating the precondition and postcondition assertions. 

The language used for expressing programs themselves, 
by implication, must be t'ormulated especially carefully, to 
admit of only those language structures which lend 
themselves to a formal definition ot semantics and to tight 
pattez:ns of logical reasoning. Effective reasoning must be 
the driving concern in shaping the language, not efficient 
programmi~g. The resultant language, developed by Dijkstra 
and described in l! jlj,scieJ,in.§ of .ll2.!l!:~!!l.9• makes no 
pretense at being a fully-implementable production language. 
It is. instead, intended to be a mechanism for communicating 
algorithms and enabling author and reader to reason together 
about p:og.rams. 

Among the language's novel features are a guarded 
command structure for both alternative and repetitive 
contxol structures; non-determinacy in the order of 
evaluating gua:tds within a guarded command structure; 
explicit scope rules with which to implement the author's 
ideas ate ut "separation ot concerns": a syntactically 
distinguished initialization statement for all program 
variables; the total absence of a "go to" feature; and an 
array mechanism which implements the author's view of the 
array as a function (a mapping from a domain, consisting of 
subscripts, to a range, consisting of values). The 
language, taken as a whole, presents a spare, coherent set 
of struct\lres necessary to present signi:ticant programmin~ 
examples for di•cussion. In particular, Dijkstra•s 



39 

presentation of the language excludes input/output 
mechanis11s, procedures (and recursion) • and data types or 
structures beyond scalars and single-dime.ntsion arrays of 
integers, characters, or booleans. 

The patterns of reasoning advocated 
illustrated in his examples, include 
reasoning about alternative statements 
sequence; i.!ll!.J!£!:!Q.!!, i:or reason.ing 
statements and developing loop invariants; 
~bs!u.£tlc,!!, i:or reasoning about programs 
of their stepwise refinement. 

by Dijtstra, and 
eny~£gtio!!• for 
and statements in 
about repetitive 

and ~athematicsl 
at various levels 

It ny be impossible to quantify the influence of 
Dijkstra•s writings on programming methodologists. However, 
there can be no mistaking the impact of ! Discipline of 
Prog[aliiiiLlJl.9 en the computer science community. 

ln 1977, a proposal was made to build a translator for 
Dijkstra•s language and to evaluate the effectiveness of 
Dijkstra•s app.:oach in teaching introductory programming 
classes. In commenting on available programming languages 
for intrcductory instructionu• and the potential benefit of 
implementing Dijkstra•s language, the proposal stated 

The inadeguacy of present programming methods and 
tools has nowhere been moce clearly evidenced than 
in elementacy and intermediate programming 
courses. The fundamental conceJ:>tS ot algocithm 
construction are obscuced by the complex features 
of realistic pcogramming tools. Simplified 
versions of languages impose ac.bitrary 
restrictions on the programmer. These 
restrictions also obscuce the fundamental 
structure ct algorithms. .Much of the time that 
should be devoted to teaching the construction and 
evaluation of algorithms is SiJent instead on 
teaching hew to get around a progcamming language 
and system.u7 

As a remedy to that state of affaics, a translator would be 
constructed for Dijkstra•s programming language (hereafter 
to be referred to as DPL); suitable course materials would 
be developed for communicating Dijkstra•s ideas on 
programmitg to introductory-level students; and the 
effectiveness of applying these ideas to introductory 
instruction would be evaluated in a controlled experiment. 

136 

137 

At the time of the grant applica~ion, PL/C vas being 
taught in introductory programm~ng classes as the 
University of North Carolina. 

D.L. farnas, unpublished grant proposal, 1977. 



40 

The proposal vas funded in September* 1977.13& A 
translator for Dijkstra•s language vas developed by members 
of the derartment, U9 and became operational for testing in 
1979. tr ia1 runs oa using the D'l'L approach in a classroom 
situation were conducted on a semester-loag basis during the 
Spring, 1980 and Spring, 1981 semesters, each time with 
about 25 volunteers selected from the roster of the larger 
standa.rd introductocy programming course. Plans were then 
made to ccntinue onward to a focmal, controlled experimental 
evaluatioll of the apfroach, to be conducted during the fall 
of 1981. The descciption of that experiment follows. 

The goal of the dissertation research discussed hece 
was the ol:jective evaluation of an educational approach to 
teaching compute!: programming which emphasizes development 
of assertion-lased arguments of program correctness hand-in­
hand with the development of the programs themselves, and 
utilizes a language which supports that approach. That 
evaluation was conducted by comparing the effectiveness of 
the new approach to that of a conventional time-tested 
appcoach which emphasizes pcogram testing and utilizes 
Pascal, a widely-distributed, general-pucpose language 
commonly cegarded since the mid-1970's as the best 
pedagogical language.••o 

taa National Science Foundation grant number SED77-18518. 

139 John Eishof, "The Portable DPL Compiler 
Master's thesis, Technical Repoct TB80-008, 
of computer Science, University of North 
Chapel Hill, 1980. 

Project," 
Department 
Carolina, 

Karl Freund, "The Design and Abstract Specification o.f a 
Translate~: Module," Master•s thesis, Technical Report 
TB79-012, Department of compute!: Science, University of 
Nortn Carolina, Chapel Hill, 1979. 

James Geo.cge, "An Abstract Hachine as an Aid to compiler 
l'ortatili ty," l!astec• s thesis, Tec.hnical Repoct 
TR79-017, Depactment of computer Science, University of 
Noeth Cacolina, Chapel Hill, 1979. 

Dan Lambeth, "Ose of Tcace specifications in the DPL 
Compiler," l!aster•s thesis, Technical Report TR79-019, 
Department o:t Computer Science, University o:t North 
Carolina, Chapel Hill, 1979. 



The frimary 
the conventicnal 
following: 

41 

diffe.cences .between the DPL approach and 
approach, using Pascal, wece seen as the 

1. Eoth approaches teach solution techniques and 
algocithm development. However, the conventional 
apfroach uses prograa testing and hand simulation of 
pccgcam execution as the primary means of 
verification, and relies on a language implementation 
whose compilation produces diagnostics for all syntax 
errors contained in a program and whose execution 
produces partial output even tor many incorrect 
programs. The DPL approach uses informal correctness 
arguments as the primary means of verification, and 
embodies a philosophy that program compilation should 
report only the first syntax error encountered and 
that execution should produce output only for 
correctly terminating pcograms. 

2. The conventional approach employs, tor examples 
and problems, a general-pucpose programming language 
which contains data structuring capabilities, control 
flew mechanisms, and input/output facilities 
necessarily sophisticated enough to satisfy its 
gelleral-purpose user community. DPl. was designed for 
teaching and expository purposes, contains only a 
small set ot language mechanisms, and provides only 
the most primitive of input/output and data 
structuring facilities. 

3. The conventional approach relies on the implicit 
se~antics of the selected language and the 
understanding of its proper usage which the student 
picks up from lookiDg at te.xtbook examples and from 
experience. The DPL approach provides explicit 
se11antics for the DPL language. 

rhus, plans were made during late spring and early 
summer of 1981 to conduct a carefully controlled teaching 
ezpe:riment during the followiDg fall semeste.r. At the same 
time. however, administrative decisions by the university 
computaticn center concerning machine support for 
introductcry instruct.ion afforded an opportunity to include 
an additional aspect in the planned experiment. Sufficient 
funds were allocatedH1 to acguire a number of Apple••z 

(New Ycrk: Springer-Vee lag, 1975). 

a•t University funds were matched to support provided by the 



42 

microcomputers for the purpose of switching introductory 
programming instruction from the large centralized campus 
and Triangle Universities Computation Center (TUCC) 
computing facilities. Conversion of introductory 
programming courses to microcomputers had long been 
advocated locally by some who felt that the quicker 
turnaround time and more personal nature of computer 
interacticn would benefit beginning students. Convincing 
arguments were made that the swi tchover to microcomputer­
based instruction would be better accomplished in stages 
over several semesters, initially with a modest number of 
students, and furthermore, that comparisons between students 
using the micro-based UCSD Pascal system and students using 
a Pascal compiler on a large batch mac.hine might p.rovide 
interesting results. 

Therefo~:e, the resuJ.tant experiment emerged as a dual 
experiment, with the conventional. a~proach/batch Pascal 
group serving as control for two experimental groups: the 
DPL group, using a contrasting program development 
methodolcgy and (batch-processed) programming language, and 
the Apple group, using a conventional program deveJ.opment 
methodology and nearly identical language but a contrasting 
mode of machine access. Details of the experimental. design, 
computing environments, and experimental procedures will be 
provided in later sections. 

-------------

Natio£al Science Foundation 
grant #1-0-110-3276-XA584. 

instructional equipment 

a•z "Apple" is a trademark of Apple Computer Co. For the 
sake of brevity, all £uture re£erences in this 
dissertation to the students using the UCSD Pascal 
systeu running on the Apple microcomputers will be to 
the "Apple section". While similar educational outcomes 
might be achievable with other manufacturer's 
microcomputers, no other vendor's microcomputers were 
used in this experiment. Since the observed results 
might not be generalizable beyond the specific system 
utilized, namely an Apple II computer running UCSD 
.Pascal, it seems appropriate to identify that subject 
group with the specific system used. No endorseaent of 
the ccmpany•s computers is intended beyond that implied 
by the statistics reported herein. No financial support 
.tor this experiment was supplied by Apple computer or by 
the suppliers of the Pascal system software, nor was any 
direct communication conducted with the vendors. The 
systeas used were obtained under existing state 
purchasing contracts. 



43 

The following hypotheses were formulated with respect 
to the group using the eiperimental, DPL approach and, the 
conventional batch l?ascal group: 

1. That on programming assignments, students in the DI?L 
group would submit £ewer runs having unintended 
results than would students in the conventional group 
on the same problems; 

2. That the DI?L group would reguire 
(time expended after the first 
coapleticn of the assignment) 
cctventiona1 group; 

less debugging time 
machine run until 
than would the 

3. That when each student had complete the assignment to 
his satisfaction, a higher percentage of DFL 
students• programs would actually run correctly, 
according to problem specifications, on independently 
SUFplied test data, than would programs from the 
cotventional group; 

4. That the programs of the DI?L group would 
greate.r simplicity, according to the 
co~rplexity metric, than would the programs 
other group; 

be of 
llcCabe 
of the 

5. That the DI?L group could learn to program in the 
language the other group studied, in a condensed time 
period at the end of the semester, and that on the 
last problems assigned to both groups, a higher 
percentage of the DPL group's Pascal prograas would 
be correct, according to problem specifications, than 
would the programs of the convent.ional group. 

similar hypotheses, with the exception of the fifth one, 
were foraulated for the experimental Apple section in 
relation to the control group, the hatch Pascal section. In 
particular, it was hypothesi2ed that the Apple section would 
require less debugging time than the conventional group and 
that a higher pe.rcentage of its students would produce 
correct programs. 

students were instructed that their primary objectives 
in solving assigned problems were to develop correct 
solutions that were well-documented and as clear and 
readable as possible. No objectives were specified in 
regard to machine resource usage or time expenditure on the 
students• part. 



44 

The experimental design was a two-way, mixed, 
between/within subjects design. The class section (Dl'L, 
batch Pascal, Apple Pascal) was tl•e between-subjects 
variable and the programming problem assignment was the 
within-sul:jects variable. The individual student was the 
basic unit of analysis. Dependent variables were the 
measures such as program correctness percentage, number o.f 
runs with unintended results, and time expended for each 
student ~n each problem. 

Different students, therefore, were assigned to 
different sections. 'Ihe "repeated measures" aspect of the 
design co11es from the fact that measures of performance were 
obtained tor each student within a given section on each 
problem. Bepeated measures designs are commonly used in 
educational experiments where the effect of prior expe.1:ience 
on futuce learning is of primary importance. H3 

Students were randomly assigned to class sections after 
the first course meeting. (Since there was only one course 
section of introductory programming in which students could 
register, all introductory students went into the same 
"pool" fot subseguent assignment; there was no chance of 
subject self-selection into sections on the basis of class 
schedules, which might be biased by academic major, age, 
employment, etc.) Approximately-egual thirds of subjects 
were assigned to the DPL section, the batch Pascal section, 
and the Afple l'ascal section. The DI.'L section was taught by 
this author, and the two Pascal sections were jointly 
taught, in a common lecture section, by a member of the 
computer science department faculty.1•• Enough students were 
assigned to each ot the three sections, about 85 apiece, 
that although one lecture hall had 85 students and the othe.r 
170, both cculd be regarded as large lecture sections. 

1$3 See G. Kepfel and i.H. Saufly, Jr., ~!IQduction !Q 
Q~i5£ ~Bg !~ll§i§• ! §tudefi!~§ HsB4book, (San 
Francisco: W.H. Freeman and Company, 1980), Chapter 8, 
for matetial on repeated measures designs. 

t•• The Pascal sections were taught by Dr. Stephen M. Pizer, 
Professor of computer Science and Director of 
Undergraduate Studies for the Department of computer 
Science. Philip Koltun, who taught the DPL section, bad 
a te~ching background that included five years• full­
time faculty experience at the university level, the 
last three as Assistant Professor of Computer Science, 
as well as several years• work as a teaching assistant. 
Both r:r. Pizer and !lr. Koltun bad taught prograami.ng 
courses before. In particular, Dr. Pizer had taught 
programming using Pascal before, and Mr. Koltun had 
taught piogtamming using both .DPL and Pascal before. 



45 

Class size, then, was not regarded as an additional 
independent variable. 

1he design question o~ whether to have the same 
instructor teach both lecture sections or whether to have 
different peofle do so was confronted at an early stage. 
While the final decision might be criticized for introducing 
the coDfounding factor of instructor's influence, the 
alternative might be equally suspect: A single instructor's 
methodological .tia.ses might influence his presentation and 
the differences in the two methodologies might prove 
difficult to maintain sharply in focus. Ultimately, the 
decision was z:eached that each lecture should be delivered 
by .someone who firmly believed in the methodology being 
used. No detez:mination oi: the actual instructor's effect 
was guantifiable.••s The ideal e~perimental design, with a 
statistically suitable number of instructors randomly 
assigned to class sections, was clearly impractical. The 
only recourse, tor the reader, is to keep the experimental 
limitations in mind when considering potential 
generalizations of the research results.t•• 

In summary, the commonly-shared attributes of each of 
the experiaent•s sections are presented below: 

LH 
I 

l 
j 

Batch l'ascal 

' . 
j 

I 

Apple Pascal 
I 

Batch Piocessing 
Problem Assignments 

Language 
Instructor/Lectures 
Program development 

methodology 
Problem Assignments: 

Figure 1: Shared attributes of experimental and cbntrol 
sections 

145 Questions on a 
light oo the 
assistants. See 

m.id-.semester 
effect of 

Appendix 8.1 • 

guestionnaire shed some 
instructors and course 

.... llany .such compromises must be made when doing 
experiments involving actual classroom situations. 
Strong restrictions are imposed by having student 
subjects ~:egi.stered .for course credit and by having 
limited financial and instructional resources with which 
to work. Jieflections on such experimental 
con.siderat~ons will be made in Chapter 7. 



46 

As ncted previously, only one section of introductory 
programming was available for student registration. During 
the first class meeting, a sign-up sheet was circulated, 
asking :tor student preferences as to which of si.x different 
Wednesday or Thursday afternoon or evening lab session times 
they preferred. Working trom an alphabetized version of 
that sign-up sheet roster, students were randomly assigned 
to each of the Apple Pascal, batch Pascal* and DPL lecture 
sections. After that initial assignment, students were 
distributed into lab sections within each methodology 
{lecture section) according to their time preferences and 
the need to balance each teaching assi~tant•s student load. 

Jliographical questionnaires were distributed at the 
seco.od class meeting, t.he first time the students met in 
separate lecture sections. A summary of subject 
characteristics by section is presented in Table 1. 



47 

..---- '1 

I l 
I TABLE 1 I 
I I 
1 Subject Characteristics by Section I 
I l 
I I 
1 (Second class meeting) I 
I I 
1 Apple Jlatc.!! Pas£al 11!'1 I 
l I 
j N!lliBEB CF SUBJECTS 91 97 86 I 
I I 
I SEX ! 
I I 
I llale 54S 57% 48J I 
1 Female 46% 43:4 52% I 
I I 
I ISAJOB I 
I I 
1 Computer Science 26$ 20~ 19% I 
1 Mathematics 22% 12:4 16J I 
l ether 52% 6814 65% l 
l I 
I YEAB I 
I I 
1 Freshman 17% 10% 9% I 
1 Sophomore 30% 33% 36" I 
1 Junicr 30:4 23" 26% I 
1 SenicJ: 18% 261 20% I 
1 Graduate student 6" 6% 2S I 
l Evening college 0% 2% 7J 1 
I I 
I GPA 2.96 2.95 2.94 I 
I I 
l SAT VEJ.iEAL 542 534 533 i 
l l 
I SAT U'lH 604 577 586 I 
I l 
1 * Good experience with I 
I I 
1 Calculus 1 79% 74% 79% 1 
1 Calculus 2 40% 38% 45% 1 
I I 
I Logic 11% 15% 13% I 
I I 
I Writing 90S 89% 88% I 
I I 
I I 
1 * "Good experience with" means that the subject l 
1 completed the course in college or high school 1 
1 with a grade of "C" or better. 1 
I I ..___ 



48 

3.5.2 

Two master•s students from the Department cf computer 
Science 11e1:e assigned as teaching assistants to each of the 
three ll'ajcr experimental or control sections. Each 1.A. was 
responsible for two laboratory sections, resulting in a 
ratio of approximateLy 46 students to each assistant at the 
outset of the semester. Assignment of assistants to the 
three major sections was lllade by the department chairlllan; 
each majcr section received one experienced and one first­
time teaching assistant. 

In addition to the teaching assistants, whose time 
commitments of twentJ hours per week included four hours per 
week of open consultations with students in the computation 
center, there were also four undergraduate assistants hired 
to provide an average of fifteen hours per week of open 
consultation in the computation center. In addition, seven 
other comfuter science graduate students provided one hour 
per week of open consultation apiece. 

3.,5.3 

The primary facilities used by all introductory 
programlllillg students are located in the basement of Phillips 
Hall on campus. Several remote job entry stations scattered 
around the campus were also available to students. In the 
Phillips Eall facility, keypunches used by virtually all 
students in the batch Pascal and DPL sectionsH7 were 
located within 75 feet of the dispatch window to which card 
decks wer~: submitted and from which output and card decks 
were retrieved. Turnaround time for such access usually 
varied from ten to thirty minutes. 

Another fifty feet down the hallway was located the 
room containing all nine Apples plus a tal.ile for the student 
teaching assistant holding open consultation hours. That 
room was staffed roughly from 10 a.m. to 11 p.m. weekdays 
and somewhat more-restricted hours weekends, so that help 
was immediately available, on a first-come first-served 
basis for any Apple or batch processing student who needed 

u 7 While terminal-based editing and remote hatch submission 
of iJJtcoductory programming jobs was possible, no 
mention CL such possibility was volunteered by the 
inst.[uctors nor was any instruction given, upon request, 
in the usage of such system. It is estimated that, at 
most, a handful of students from the batch p.cocessing 
secticns might have submitted their jobs in this manner. 



49 

system usage or programming assistance. The Apple 
computers, tbemse~ves, were accessible on a 24-hour basis, 
as was the batch processing system. A mechanism existed to 
permit Afple students to reserve up to four half-hour 
sessions within a.oy consecutive three-day period, space 
permitting. Students cou~d work at an Apple at other, 
unrese.rved times provided that no one else had reserved that 
machine. tu An interface to the batch subsystem permitted 
Apple students to route files containing source listings and 
execution output to the main comj:utation center printer .for 
hard copies of their programs; attempts at keeping an 
inexpensive printer running in the Apple room proved largely 
unsuccessful. 

The AJ;ple system itself consisted of a 64K Apple II 
running UCSD l?ascal, vi th dual disk drives at each 
station,t49 and a 40-column monochrome dis~lay. Compilation 
and subsequent program execution, including input data 
entry, took roug.hly three to four minutes on average. 
Instruction on how to use the Apples was conducted by the 
graduate teaching assistants in the regularly scheduled lab 
sessions for the Apple section. 

3.5.4 

The .first day o.t class, students we.re given a general 
information handout describing course objectives, content, 
and reguirements, and a ~etter informing them that they 
would be participating in a formal evaluation of several 
different methods of teaching introductory computer 
programming. ihe letter told them, in general terms, that 
an educational experiment was being conducted, but shielded 
them froa details of the experimental hypotheses and 
identities of the experimental and control groups. Students 
were told that their course grades would be unaffected by 
any of the intorma tion they would be asked to provide 
concerning the effort they expended in solving problems and 
the inter11ediate outcomes ot their work. Furthermore, they 
would be evaluated only in relation to other students in 
theix particular section, so that preoccupation with the 
section to which they vere assigned could be minimized. 

A ];iograFhica1 guestionnaire eliciting relevant 
background information was administered the second day of 
class. Anonymous mid-semester and end-of-semester 

ue Freguency and duration ox Apple sessions are reported in 
Appendix 8.2. 

1•9 The fcllowiny semester a corvus hard disk vas installed 
to store system files, thus reducing the individual 
reguirements to one drive per station. 



50 

questionnaires ~ere also given out. Consult the appendix 
for forms and tabulated results. 

Students in all three sections were required to 
purchase the Conway, Gries, and Zimmeraan text,uo.! il;i!!~ 
QD Pa§cal. Additionally, the Apple section was required to 
purchase a second textl51 for UCSD Pascal information. 'Ihe 
Dl'L students ~ere asked to buy the Conway, Gries, and 
Zimmerman primer tor use at the end of class, and were given 
an e.l[tensi ve set o.f class lecture notes and a DPL manual for 
use during the first portion of the course. 

3.5. 5 

All sections received lecture presentations on 
computing systelllS, algorithm development, and algorithm 
expression in a particular language. Programs presented in 
the Dl'L section were developed in stepwise fashion using 
logical assertions to reason about what needed to be 
accomplished. . Informal argument:; were given to verify the 
correctness ox the developing program at each level of 
refinement, and postconditions were used to determine what 
the program actually accomplished. Programs presented in 
the Pascal sections wece developed in stepwise fashion using 
narcative prose and hand simulation of execution to vecify 
the correctness of the developing program. Examination of 
simulated output was used to determine what the program 
accomplished. 

Lecture classes met twice a week for a.bout one hour 
each. A summary of the lectures presented is given in 
Appendix 8.3; the individual hourly e.l[aminations which were 
intended to reinforce the approach to the lecture mater.ial 
are given in Appendi~ 8.6. 

The switchover from DPL to Pascal tor the DPL section 
was accom.t:lished at the two-thirds point of the semester. 
Similarities and differences between DPL and Pascal, .and 
programllling ccucepts embodied in the mo.re general-purpose 
language, were presented in lecture material to the DPL 
section. Discussion of detailed Pascal syntax and 
input;out.t:ut .t:eculiarities was conducted in the laboratory 
sessions. Samfle programs and algorithm development in 
Pascal were pt:esented, as before, using correctness 
arguments. 

&$0 R. Conway, D. Gries, 
Pa§cal, (Cambridge: 
198 1j • 

and E.c. 
Winthrop 

Zimmerman, A Primer .Q!l 
Publishers, 2nd Ed., 

1s1 K. Bowles, ~~~~ger~§ ~~~g~ IQ£ !he gcsn ~A2fgl ~§1§~· 
(New York: Byte/McGraw Hill, 1979}. 



51 

3.5.6 

A coamon set of programming assignments was negotiated 
between the two instructors so that neither the DPL section 
nor the Rascal sections ~uld have an advantage ascribable 
to language structure or programming style. No attempt was 
made to take advantage of any of the special characteristics 
of the Afple aicrocomputer, such as graphics processing or 
sound generation. 

After all initial assignment of copying and .running a 
handout program, five programs were subsequently assigned 
with either a one-week or t-wo-week solution period, each 
section writing the programs in its designated language. 
All of these five problems, e<tcept the last, introduced some 
new language structure or additional level of control flow 
complexity. 

After the last assignment of this phase of the course, 
the DEL group accomplished the switchover to Pascal with t-wo 
practice Eascal programs during a two-week period. One of 
these programs involved re-coding i.nto Pascal a DI?L program 
presented in the lecture notes. The other involved novel 
features of Pascal arrays. At the same time, the Pascal 
groups were working on a single programming assignment 
involving pattern matching. 

finally, two more programming assignments were 
presented in identical form to all, sections for solution in 
Pascal during the last three -weeks of the semester. A 
summary of the assignlllents is presented in Appendix 8. 7. 

Problem descriptions were handed out in lab sessions. 
Completed assignments were due back in either a one week 
plus one day time period, or two weeks plus one day, thus 
permitting at least one more lab meeting before the end of 
the solution period. All students were required to turn in 
a run analysis sheettsz with every assignment, on which they 
were to keep track of 

1. thE number of runs 11sed; 

2. the outcome of each run (including whether the result 
was an intended or unintended one and the nature of 
errors, if any); 

3. the objective of that run, whether to test a complete 
solution to the problem or a partial solution, or to 
discover how some language feature worked; 

As2 See Afpendix 8~4 for a blank form. 



52 

4. a prose description of the changes made in the 
krcgram since tbe previous run; and 

5. the nuabe.r of hours expended before and after the 
first run. 

In additicn, to reinforce the particular methodologies being 
used, the DPL students were required to turn in the informal 
correctness arguments they had developed a1ong with their 
programsts3 and the Pascal students were required to turn in 
the test data on which they expected their programs to 
produce ccrrect results. 

When the students were satisfied that their programs 
were correct they were asked to submit to the teaching 
assistants their p.rograms, in the form of card decks for the 
batch processing sections and dis.kettes (to be copied onto a 
master diskette) containing object code for the Apple 
section. Subsequently, the submitted programs were run on 
test data the instructors jointly prepared to exercise as 
many aspects of the student programs as 1JOssiblE. In no 
casE was the test data released before the assignment due 
date. 1he teaching assistants were given the resultant 
source code and output listings for grading of stylistic 
content and correctness, and at that time were asked to 
record the correctness percentage and McCabe complexity 
metricts• required for evaluation of the experimental 
hypotheses. Graded programs were returned to the students. 
However, the students were »ever told anythi»g about the 
recorded !lcCabe metric values. Siailar .subjective grading 
criteria liere used across the three major sections, with 
sma~l variations in weightings according to the biases of 
the two instructors •. 

An unfortunately high number of bugs was found in the 
D!'L compiler during the course of the problem solution 
periods~ Among those bugs were incorrect handling of 
program scope units, of nesting of guarded commands, and of 
array domain ope£ators, and production of misleading error 
messages.ass Approximately half the students in the DPL 

1'53 See Appendix a. 5 for an example of an instructor­
developed co£rectness argument for a simple algorithm. 

as• The McCabe metric reflects the control flow complexity 
or colfplexity of decision structu~:e in the p~:ogram. The 
metric may be guickly calculated as one more than the 
nuaber of conditions in the prog.J:am. See the earlier 
section in the literature su~:vey, on measures of program 
complexity, for more general information about the 
l!cCabe met~:ic, aDd see Appendix 8.8 t:oc instructions on 
computing its value. 



53 

section had soae encounter with compiler bugs during the 
semester, while virtually none of the Fascal students did, a 
scattering of complaints concerning the Apple session­
scheduler being the only difficulty encountered in those 
quarters. 7hus, an unintended source ot confounding was 
introduced into the experimental design: relative goodness 
of the coapilers being used by the DPL and Pascal sections. 

us A coaflete list of detected compiler: bugs is given in 
Appendix S. 9. 



Chapter l:V 

DATA COLLECTl:OH AHD BEDOCTl:OH 

A decisicn, based on both philosophical and praglllatic 
grounds, was made to ask students to re_t;ort primary data 
themselves, on their progralllming efforts, rather tban 
automatically capturing that data without their knowledge. 
l:t vas the expErimenter's strong feeling that a student's 
privacy in compute.£ usage should not be involuntarily 
compromised, any more so than should the student's privacy 
in selecting certain mate.rials for study in a university 
library be compromised. l:n particular a student•s privacy 
should net be violated just because the nature of the 
computer aakes it possible to car.ry out surveillance without 
detection. Furthermore, it was felt that informing students 
what was needed from them and how it related to the 
experimental objective of improving programming education 
would help enlist their cooperation in providing accurate 
and candid information. This was viewed as particularly 
important for data and subjective opinions that could be 
collected only by directly .requesting it of the subjects.n6 

On a pragmatic basis, because both batch and 
microcomputer systems weJ:e used, different data collection 
mechanisms would have been needed, which likely would not 
have been equally unobtrusive. (All batch jobs sub111itted 
for execution could easily have been "drained" to an 
aJ:chival tape foJ: lateJ: analysis; however, given the 
microcomruter conf'iguration used, intermediate veJ:sions at 
the Apple progJ:ams could not have been stoJ:ed away vit.bout 
significant degradation of response time.) TherefoJ:e, the 
decision was made to ask students to recoJ:d measures of 
their programming effort on standaJ:d run analysis sheets. 
Furthermore, it was felt to be educationally advantageous 
(though not directly guantifiable) for students to be aware 
of their cwn progra111ming behavior. 

ts6 The research proposal, including experimental design and 
descriptions of data to be collected, was submitted for 
prior review and appJ:oved by the Graduate School's 
office of research, which had access to the university's 
official Human Subjects Committee. 

- 54 -



55 

7be decision to collect card decks for the final 
grading run and manually insert data cards for the batch 
groups was activated by the difficulty of simultaneously 
preventing premature unintended access to the final 
instructor-designed test data, permitting late students to 
work en frograms past the dead1ine,ls7 and getting graded 
programs back to students as promptly as possible. An 
undergradcate student was employed twenty hours per week 
solely to assist in collecting and running and returning the 
card decks, diskettes and listings. 

Preliminary versions of the run analysis sheet were 
tested in earlier course offerings with both DPL and Pascal 
students. A narrative description of changes made from run 
to run ,;as used in an early version to determine the 
categories of execution outcomes for inclusion on a later 
version. !hat feature was retained on the back of the 
present versiontsa in order to verify and disambiguate the 
responses on the front, and was indispensable for that 
purpose as well as for permitting students to communicate 
their frustrations or exultations. As it turned out. in 
filling out the forms many students Lailed to distinguish 
language froA logic errors or aspects of the problem from 
aspects o.f the solution, so the narrative comments were 
quite helpful. The subjective impression of the 
experimenter was that those tailings were less prevalent in 
the D~L section than in the Pascal sections, a possible 
outcome of the experimental emphasis on logical reasoning 
about programs. 

Many difficulties arose, on the part of the 
experimenter examining the run sheets. in trying to classify 
errors as either language or logic errors4 or determining if 
the intention of the run had been met. The experiAenter, 
himself • checked the coding of answers and keyed the data 
from all the forms, S() at the least, a high degree of 
consistency exists in the interpretation of student 
responses. Specific questions of inte.rpretatlon are 
addressed below • 

.In regard to the reason for making a run, "testing a 
partial solution to a problem" was taken to be the motive 
only when it was evident that a separate program had been 
written tc solve that sub~roblem or that scaffolding had 
been written to simulate the remainder of the whole program 

ts7 A penalty cf about 12% a day was assessed for late 
programs, up to a maximum of three days late. 

ua See Afpendix 8. 4 for the run analysis form. 



55 

in order to test the subpcoblem solution in context. In 
particular, when only one bug evidently remained in the 
whole progJ:am, atteapts aimed at ridding the p1:ograa of that 
sole bug were still taken to be tests of the complete 
solution. 

Inte.rpreting whether the run did what the student 
inteuded could he aided by examining the indicated reason 
for making the run. A program was taken to do what was 
intended if it produced the correct output for a given 
input, even though it might produce incoccect output for 
some input on a later run. So a run (in Pascal} designed to 
produce debugging or trace output was taken as having an 
unintended result if the p~;-ogram printed incorrect output 
for the given input, even though the desi£ed trace output 
might indeed also have been printed. In the same way, if a 
program run Froduced correct output for n-1 of its inputs 
but incorrect output for the nth input, the entice run was 
taken to have an unintended result. 

The following remarks apply to the categorization of 
errors as being caused by either imprope£ logic, improper 
language usage, or misunderstanding of problem 
specifications. Again, this categorization was often 
subjective, but at least applied consistEntly. In general, 
the information provided on the run sheets only permitted an 
error to te taken tor what it seemed to be at run i, not 
what it turned out, in retrospect, to he at run itj. 

1. An "uninitialized variable" was 
though the occurrEnce might be 
DPI) during syntax checking. 

a logic ercor, even 
detected (at least in 

2. A variable of the wrong type or an array with 
i~Ef.roper dimensions was evidence of a logic e~;-ror. 
Using DIV (integer division) where / {real division) 
was needed, or vice versa, was treated as a logic 
error. 

3. Assigning a new value to a declared constant was 
treated as a logic error. 

4. Output appearance, it incorrect (not merely 
unattractivE) in the student programmer•s view, was 
treated as a logic error, provided that it appeared 
reasonable to expect the student had mastered the 
mechanics of the basic output statements. If that 
exfectation was not reasonable, the deficiency was 
treated as a language usage error. (Failure to 
calculate the precise column in which a value would 
be printed was more often due to negligence or 
laziness than to ignorance or misunderstanding.) 



57 

5. Siailarly, a lack ot agreement iD number or type of 
procedure paraaeters was tceated as a logic ercor, 
provided that it appeared reasonable to expect the 
student understood the workings of the parameter 
passing mechanism, and as a J.anguage error otherwise. 

6. Order ot precedence errors could be interpceted as 
either logic or language errors, depending upon 
whether the narrative comments indicated the student 
aisundei:stood the underlying concept (language e.rcoc) 
or undecstood the concept but misapplied the rules 
for expression formation (logic ei:roc). 

7. cor.tespondence with begins and ends could also be 
interfreted either way. depending often on the stage 
of debugging at which the error occurred. Unmatched 
begins and ends were usually language usage errocs 
and .showed up early in the debugging; mismatched 
begins and ends were usually logic errors and showed 
Uf later in the debugging. However, substantial 
cevisions in programs, though introduced to remedy 
logic flaws, often intcoduced new language usage 
ercors. 

8o Prcgram changes for cosmetic purposes (for example, 
statement indentationj or documentary purposes (for 
example, header comments) usually maintained the 
previous run's intended result, though the additional 
run was often viewed as necessacy to check that 
assumption. However, when errocs were intcoduced, as 
a result, the errors were viewed as language usage 
ercors. 

9. Undeclared identifiers were treateil as language usage 
errors. 

10. Errors in job control language wece treated as 
language usage errocs. 

11. compiler bugs, which arose ELXc.lusively in DPL, were 
classified separately under a special code. 

.In 
language 
apply. 

general, even these coarse distinctions between 
usage and logic ercors were often difficult to 

rreguently it was necessacy to place oneself in the 



58 

student's position as he might have formulated intermediate 
levels of refinement and ask whether the observed error was 
the result of bad design (logic error) or bad implementation 
(language usage error}. As a result of classification 
difficulties such as these, any hypotheses that might be 
postulated in regard to specific features of language design 
and usage would surely be evaluated better in a specially 
designed experiment than in the context of a larger 
experiment such as this one. 

The run sheet guestion that asked how much effort was 
involved in .isolating the cause of an error produced ·little 
useful information. Typically another attempt at solution 
was made within an hour's time. It was difficult to 
determine, in general, at which run an earlier problem was 
finally resolved, and how much total effort went into that 
correctioD. Once again, a specially designed experiment 
would be better, in order to examine persistence and 
resolution of specific error types. 

Several ol: the teaching assistants failed to record the 
correctness per:centage and;or l!cCalle metric data as they had 
been instructed to do. That failure was not detected until 
it was toe late to remedy. In retrospect, final program 
executions en instructor-provided data should have been 
stored in archival fora~ However, because of the volume of 
prog£ams involved (over 200 programs per assignment), that 
precaution was not taken as a matter of due course. 

As a conseguence, the correctness percentages for some 
of the Apple and soae of the DP.L students had to be 
estimated from the assigned program grade which also 
included (known) subjective criteria ~n addition to 
correctness. llecause of this estimation procedure, the most 
reliable way to analyze the correctness data was to treat a 
student's program as being either entirely correct on the 
test cases or not entirely correct. 

The difficulty concerning the McCabe metric involves 
both possible misinterpr:etation by the graders of the 
instructionst59 for computing the metric 1 and assumptions of 
quest.ioual:le validity about the metric's computation, in the 
instructions themselves.••o A further reason for treating 

159 See llppEndLx 8.8 for instructions on computing the 
!lccate metric. 

t&o The iDstructions specified that the "Do-forever-with­
exi t-t.:st" loop fa vor:ed in some situations by the 
instructor of the Pascal groups should add two to 
complexity, one for the "While true do" part and one fo.r 



59 

the reported McCabe metric values with caution is that the 
intuitive correlations betw~en simplicity of program 
decision structure and program coc.t·ectness that one would 
expect to see were not borne out in this experiment. 

·Because the programs were not stored away, as noted 
before, the metric cannot be recomputed at this point. 
However, a comparison between the metric values for the two 
Pascal groups should still be valid, as should intra-group 
examinations of the relationships between l!cCabe metric 
values and measures of programming effort, such as time 
expended in debugging. 

Since the students were relied upon for data concerning 
effort exJended and outcomes of individual runs, a question 
acises concerning the accuracy of this information. 
Problems concEA:niug categori<~:atiou ot errors in runs with 
clearly unintended results have already been addressed. A 
further awkwardness exists: With the later knowledge that a 
program ~as not actually correct (as evidenced by the output 
on the instructor's input test data) when the student 
thought it was correct, how does one now view the earlier 
report that a run's outcome matched the student's intention? 
The assumption was made in answering this question that the 
student was capable ot disce.rning whether the output was 
correct for the specific inputs he supplied, and therefore, 
that his report of whether outcome matched intention should 
be taken at face value. 

ln general., however, interpretation of measures for 
progJ:ammez:s and programs which were not entirely correct 
proved much more difficult than data for correct programs: 
Was the given program incorrect because it lacked some 
critical code (resulting in a lower McCabe metric) or 

the eAit test. In retrospect, the "While true do" part 
should probably add nothing to complexity since, in 
terms of the metric's progra11 flow graph interpretation, 
only cne path may be taken after evaluating the •while" 
condition. 

By similar reasoning about program flow graphs, DPL 
alternative statement constructions with two guards in 
which one guard is the negation of the other guard, 
should probably not, in retrospect, have both guards 
contributing to complexity, since the same number of 
control paths exit that construction as in the Pascal 
"if condition then statement else statement" 
constt:uction, which contributes only one to complexity. 
(In DIL both guards must explicitly be stated.) 



because it was too complicated (resulting in a 
metric)? Did the programm~r fail to invest 
time or did he expend an inflated amount of 
considered modifications? 

60 

higher llcCa.be 
the requisite 
time on ill-

A second area of concern about the accuracy of reported 
data focuses on whether the microcomputer section's students 
recalled details of their coaputer usage as faithfully as 
did the tatch processing sections• students. A plausible 
assumptio11 might be made that the Apple students• runs came 
in rapid .succession, blurring the distinction between runs, 
while the batch students• runs were discrete events 
reinforced by an output listing after every run. However, 
counterarguments might be made on several grounds. 

First, although the end-of-semester guestionnaire~6t 
revealed that the Apple students were somewhat more likely 
to wait until the end of the problem period to record their 
data and had somewhat less faith in their own reporting of 
run data than did the batch students, they had faith in 
their own repocting of time data (owing, probably, to the 
discrete .scheduling of Apple sessions) equivalent to that of 
the batch students. Furthermore, the responses on that same 
questionnaire indicate a consistent pattern of computer 
usage across all three sections. Students tended to make 
two trips a week to the computation center, spending either 
one to tht:ee hours the.re or more than three hours there, at 
a time. While there, students tended to make either three 
to five run attempts or six to ten run attempts. Thus, one 
could hardly support a view that the Apple students were 
firing ott ruD attempts as fast as the machine would allow, 
thereby dimmillg their recall of individual run attempts. 

A second counterargument to the concern that accuracy 
of recall by the Apple people was measurably different than 
accuracy cf recall by the hatch people might be based on 
results of relevant psychological studies, though the 
particular recall phenomenon of concern here does not seem 
to have been the ,.ubject of any studies. In exJ;eriments on 
the effects c;t repetition and e:xj!osure duration on memory, 
Hintzmant62 varied visual presentation of a series of words 
according to both .frequency and duration, and reported that 
judgment cf apparent .frequency was highly correlated with 
actual frequency. but relatively unaffected by duration. 
(Judgment of apparent duration was cocrelated with both 
frequency and duration.) This result might support a view 
that both microcomputer and batch processing students could 
he expected to report frequency of runs with equivalent 

l6t See Appendix S.l., questions 6-9., 
discussion below. 

tor details on the 

Douglas L. Hintzman, 0 Etfects of aepetition and Exposure 
Duration on Memory," JOUj;j!al .2.! Ex per i.!!!~.Btal fsycholog_!, 
Volume 83, No. 3, 1970, pp. 435-444. 



61 

accuracy regardless of the turnaround time involved in a 
particular run. 

A second study, by Madigan,•63 investigated word recall 
involving distributed repetition versus massed repetition of 
words. Although the study showed that recall is better if 
the repetition ct an input is spaced further from the first 
presentation rather than closer to it, the differences in 
probability of recall even here, with a simple recall task 
and repetition lags measured in seconds not minutes, was at 
most fifteen to twenty percent. Thus, though 
generali:zations from the cited psychological studies might 
be difficult to make, a case might be made that even if 
difference in recall of run freguencies and time 
expenditures existed between the microcomputer and batch 
processing sections, those differences would probably not be 
huge. 

The final source of possible inaccuracy in data the 
students reported was the problematic performance of the DPL 
compiler.t6• Sixty-four percent of the DPL students reported 
some encounter with a compiler bug. us It is difficult to 
estimate· bow much of the total time expended on problem 
so~ution was devoted to trying to modi.fy prog~:ams 
incorrectly translated by the compiler, the most serious of 
these situations being, of cou~:se, syntactically and 
semantically co~:rect programs that were t~:eated as incorrect 
by the coapiler. Misleading compile~: diagnostics can be a 
p1:oblem in any language.t&& But being unable to trust a 
specific e1:ror message when one is neve~:theless certain that 
an error exists, seems qualitatively different than being 
unable tc trust that a compiler has correctly translated 
one's prog~:am. More to the point, lack ot confidence in the 

163 s. A. Madigan, "Intraserial Repetition and Coding 
P.~:ocesses in F1:ee Recall," Jou~J, of J{_gf.£.iil 1~~c!!.i!l.9 
ang j§rbal ]~~Bf• Volume 8, pp. 828-835, 1969. 

t65 

166 

See AJ;pendLx 8.9 .to~: listing of known compiler bugs. 

See end-of-semester g:uestionnaire, question 11, in 
Appendix E.2. The responses to the same question for 
the !'ascal sections were also repo.1:ted the~:e, verbatim. 
Howeve1: tha repo~:ted encounter with a compiler bug by 
qs% of the App~e and 361 of the Batcn Pascal students is 
viewed as un~:eliable, and attributable to eithe1: 
misleading error messages or pl:oblems in the Apple 
inte~:face to the file~:jeditor or batch printe~:;scheduler 
subsystem. 

See, for instance, c. .Litecky and G.a~ Davis, "A Study 
of E:tLOI:S, Error Proneness and Error Diagnosis in 
COBOl," who 1:eported that 80% of a COBOL compile~:•s 
e1:ror diagnoses were misleading. 



62 

faithfulness of program translation undermines a beginner's 
trust that a methodology (the DPL methodology) employing 
formal reasoning to progress from specifications to 
implementation can result in successful programs. Thus the 
DPL secticn should be viewed as operating under something of 
a handicaf due to compiler problems. 



Cllapter Y 

RESULTS 

Before beginning this discussion, it would be 
worthwhile to reemphasize the basic natu.ce o.t this study as 
a dual twc-grcuf experiment, with the batch Pascal section 
serving as a control group in each experiment. The 
compariso11s between the Dl'L section and the batch J?ascal 
sectioll illvolved siailar batch processing computer access 
modes and identical problem assignments, but dif.ferent 
program development methodologies, different programming 
languages, and dif.ferent instructors. The compar~sons 
between the Apple Pascal section and the batch Pascal 
section involved identical program development 
methodologies, fro.blem assignments, and instructo.c, very 
similar pt:ogramllling language dialects, and different 
computer access modes. 

The body of statistical run data and subjective student 
impressions supports the conclusions that 

1. The lll'L students significantly outperformed their 
batch .Eascal cou.uterparts th.rough t..he end of the DfL 
part of theit: course, with t:espect to measures of 
program cot:t:ectness and programming errot:s, but that 
the effect did not carry over to their Pascal 
programming experiences at the end of the semestet:. 

2. The Apfle Pascal students significantly and 
iwrressively outperformed their batch Pascal 
counterparts throughout the semester with respect to 
measures of program correctness, programming errors, 
time expenditure, and consistency of performance, and 
derived a higher degree of sa tis fact ion f.~: om their 
learning experiences. Furthermore, the Apple mode of 
access had a noticeably beneficial effect on students 
of marginal ability .• 

- 63 -



64 

5.2 .llB'!JU~ 

5.2.1 Statis!i£~1 !JA!I&e§ ~ .llat~ i[§B§!e~!A!ioas 

Data analyses have intentionally been keft simple, 
rarely gcing beyond descriptive statistics, tor several 
reasons, cne statistical, one practical, and one relating to 
experimental design. The practical reason is that the large 
number of subjects utilized in this study gave us every 
chance for producing statistically significant results, no 
matteJ: how small the ditfe~:ences in group means. HoweveJ:, 
statistical significance will not be enough to impress 
computer scientists, unless the observed differences are 
also methodologically and educationally im~£!~~!· 
Therefore, a guiding principle in presenting the analyses 
has been to lay out the grOUJ? differences for the reader, 
advise when those differences were statistically 
significant, and caution when seemingly large dif.ferences 
were nonetheless lacking in statistical significance. The 
reader caD then decide for himself what magnitude of group 
differences will impress him. 

The e.xper:imental design reason for limiting the 
sophistocation of statistical techniques was alluded to in 
the earliet presentation of the design used here: Some 
people will object that the confounding int~:oduced by 
instructot differences overtides all other concerns and that 
a true eltperiment of this natu~:e should have a number of 
instructots randomly assigned to the different approaches. 
For those doubters, no amount: of statistical wizardry will 
salvage a flawed design. 

The statistical reason for limiting analyses to those 
presented is that in some instances, statistical assumptions 
about homoqeneity of vaJ:iances necessary for more 
sophisticated analyses of variance have been violated by the 
data, often along two dimensions (across problem assignments 
within a given methodological section, and across sections 
at a given problem assignment:). As a conseguence, the more 
sophisticated analyses would not:, in some cases, be well­
founded. 

For the most part, in the presentations that follow, 
only twc manifulations have been pe1:tormed on the data. 
First, in ord€t to ~:educe the number of data points that 
must: he made sense of for each student, the seven common 
assignments ir:om problem two through problem nine (with the 
exclusion of the dissimilar problem sevens} have b€en 
clustered into thJ:ee subgroups of problems. In addition to 
permitting some smoothing out of the inherent variations in 
performance by averaging measures within each subgroup, the 
clustering makes sense pedagogically. subqroup I {problems 
two th r:o ugh tour} cons.ist:s of introductory problems, 
subgroup II (pJ:oblems five and six) consists of intermediate 
level problellis and runs through to the end of the DI?L part 
of the course, and subgroup III (problems eight and nine) 



b5 

are advanced problems for which all students wrote programs 
in Pascal. 

Second, the students who .tinished the course have been 
partitioned into a subset called "consistent finishers" and 
a subset called "inconsistent fiDishers". The consistent 
finishers were the ones who got at least one problem 
entirely correct within each of the aforementioned problem 
subgroups. The inconsistent finishers failed to get at 
least one problem entirely correct in at least one of the 
aforementioned problem subgroup~. The inconsistent 
finishers were regarded as qualitatively and quantitatively 
different in performance from the consistent finishers. 

Qualitatively, the consistent finishers might be viewed 
as those people who received consistent reinforcement for 
applying the techniques of their particular methodology. 
(The reinforcement, here, was the gratification tbat comes 
w.ith successful assignment completion.) The inconsistent 
finishers failed in some way to integrate all the lessons of 
their methodology at some point in the semester, with 
possibly adverse consequences for later learning. 

Quantitatively, the number of p:toblems solved entirely 
correctlj by each subset dif.fered markedly. In summary 
form, the numiler of F:toblems (out of the original ungrouped 
seven) solved by each subset is given below in Table 2. 

, 
I I 
I TABLE 2 I 
J l 
l Number of Problems Solved Entirely Cor~:ectly I 
I J 
I I 
I CODSisten t Inconsistent l 
I Finisbe1:s Finishers I 
l I 
I Apple 5. 89 3.85 I 
I Batch Pascal 5 .. 54 3.34 I 
l DPL 5 ... 45 3.38 I 
l l 
l Minimum significant I 
I group diffe~:ence 0.26 0.37 1 
I I 

The "minimum significant group difference" referred to in 
Table 2 is a magnitude of three times the standard er~:or of 
the mean for the entire collection of people in that subset. 
If the group means differ by at least this much, the means 
should be ~:egarded as significantly different.t67 The number 



66 

and percentage ot students in each subset is also given 
below, in table 3. 

.. 
I I 
l TAELll 3 J 
I I 
l Size cf Consistent and Inconsistent Finisher Subsets I 
J I 
J I 
I Consistent Inconsistent I 
I Finishers Finishers I 
I j 

I Numter Percent Numbe.r Percent I 
I I 
I Apple 47 71% 19 29% I 
I Batch fasca1 50 62% 31 JSJ; I 
I Dl?L 40 59% 28 41J I 
I I 

The final general observation to be made before 
presentation of results is that no extreme values were 
excluded from any of the subject-supplied data. 
Occasionally students reported 50 hours or 40 runs expended 
011 a single one-week-long assignment. There was no a priori 
reason to exclude such measures, since characterization of 
difficult or even futile student efforts was of interest in 
this experiment, as well as average extorts. Furthermore, 
some of the students who reported such extreme allocation of 
resources evidently struggled through to successful 
completion of their assignments. They, too. should be 
allowed tc make a contribution to the group averages. 

167 The standard error of the mean in effect measures the 
within treatment variability. Therefore, if the group 
means varJ by wore than three times the standard error, 
the d.ifference may be viewed as due to the treatment, 
not random variation. If the sampling distribution that 
the standard error represents were normally distributed, 
then a significance level of .05 in the usual two-tailed 
test would be equivalent to 1.96 times the standard 
error; a significance level of .01 would be equivalent 
to 2.~6 timEs the standard error. so three times the 
standard error provides a conservative confidence level. 



67 

5 .. <!.2 

As ncted previously in table 3, a higher percentage of 
Apple students achieved consistentlj correct programs over 
the course of the semester than did the batch Pascal 
students j 1 U to 61%J • Meanwhile, the percentage of DPL 
students achieving consistent results was nearly identical 
to that at the batch Pascal section (59i to 61%). As table 
2 showed, the average number of problems solved entirely 
correctly aver the whole semester was significantly higher, 
for the Apple section, i:or both consistent and inconsistent 
subsets of students, than the average for the batch Pascal 
section. No significant differences existed, for either 
subset of finishers, between the batch Pascal and DPL 
sections, as aeasured aver the entire semester. 

But lihen tbe performance is examined thl:'ough the end of 
problem six jthe end of the DPL language part of the course 
for the elperimental Di'L section), a significant advantage 
for the tl'L students ovel:' their batch Pascal counterparts 
can now be seen (!able 4): 

r--------------~---------------------------------------------, 
I 
I 
j 

I 
I 
I 
I 
I 
l 
I 
I 
I 
l 
I 
I 

TABLE 4 

Average t of correct Solutions Through Problem 6 

Apple 
Batch £ascal 
DPL 

Entire Class 

4.12 
3.40 
3.78 

Mioimua significant 
group difference · 0.23 

Number oi students 

66 
81 
68 

I 
I 
l 
I 
I 
I 
I 
l 
I 
l 
I 
I 
l 
I 
I 

---------------------------~ 

An even g.t:eater adva.ntage over the batch Pascal students can 
be found, ho111ever, for the App.le students. 

The changeover from DPL to Pascal was not achieved as 
successfully as had teen hoped possible. An examination of 
pertormance en problems eight and nine alone shows (Table 5) 
that the DP1 students solved significantly fewer problems 
entirely correctly than did the batch Pascal students.t6a 



68 

,.-- ~ 

I I 
l TABLE 5 I 
I I 
1 Average g of Correct Solutions for Problems 8 and 9 J 
I l 
I I 
1 Entire Class Number of Students 1 
I I 
I Apple 1.15 66 I 
1 Batch £ascal 1.28 81 l 
I DPL 0.78 68 I 
I I 
I llinimu11 significant I 
1 group difference 0. 15 1 
I I 

------------------------------------------------~ 

The following yraphs display the :fraction of ent~rely 
correct scluticns within each group of problems, first for 
consistent finishers (Figure 2), then for inconsistent 
finishers (Figure 3). At each ~:rohlem group point on the 
horizontal axis, vertical bars project the m~n~mum 
difference that must exist between any two of the data 
points for that difference to be considered significant. 

In brie.f summary, the ~:roblems in group one introduced 
the basic language structures, including alternative and 
repetitiie statements. Problems in group two dealt mainly 
with algcrithms requiring arrays, and ~:roblems in group 
three d€alt liith medium-length programs .reguiring subprogram 
modules and/or .multi-dimension data structures. Consult 
Appendix €.7 for more details on individual assignments. 

168 Note, however, that the relatively low number of 
entirely correct solutions by the DPL section does not 
imply that they failed to learn Pascal adequately. 
"Entire ccr:~:ectness" is a very strict criterion; if an 
output label was misp~aced on even one of the .four 
graphs r:eguired as output on rroblem eight, for example, 
the whole frogram was counted as not entirely correct. 



90 
80 
70 
60 
50 
AID 
30 
20 
10 
0 

- c:::::_ ---- -"""'2 

tt: ...... ~~-----------------------~ ------- -----....... __ __ 
............ --.. -----...... 

1 2 3 
PROBLEM GROUP 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z-DPL 

VERTICAL F~~RiA~W~~~Url Jrofif/iNOARD ERROR 

69 

Figure 2: Average percentage entirely correct solutions for 
all frograms by consistent finishers 

~fiUCENT 

90 
80 
70 
60 
50 
'10 
so 
20 
10 
0 

1 

LEGEND: HEntOD 

2 
PROBLEM GROUP 

X-APPLE Y-BATCH PASCAL 

3 

Z-cJPL 

Figure 3: Average percentage entirely correct solutions for 
all frograms by inconsistent finishers 



70 

Statist.ics presented in this subsection represent the 
machine and human time resources expended in solving 
assigned coaputer problems. The etticiency of those 
expenditures, in terms of the errors committed en route to a 
solution, will be presented in a later subsection. The 
g.cap.hs displayed at this point answer guestions about the 
relative cost of each approach, and might be of interest to 
prog.cammimg methodologists, computation center directors, 
and p.rOSfECtive students of programming concerned about the 
time reguired hy introductory cou.rses. 

The statistics on average number of runs utili2;ed 
include .runs to test partial solutions, runs to discover how 
language features work, and runs at the end of the solution 
process to test presumably . correct complete programs. 
·rherefore, these statistics reflect etticiency of program 
testing strategies as much as assimilation of program logic 
and language rules. Consult statistics on runs with 
unintended results, presented in a later section, for a 
clearer reading of student understanding (or 
misunderstanding} of programming mechanisms. 

10 

8 

6 

.. 
2 

0 
1 2 

PROBLEM GROUP 
3 

LEGEND: 11ET1iOD X-APPLE Y-BRTCH PASCRL Z-llPL 

VERTICRL flJriR~fr~~'[h.,3 riotrNDARD ERROR 

Figu.re 4: Average number of runs for all programs by 
consistent finishers 



10 

B 

6 

'+ 

2 

0 

----z ---­.... --
-- .--11 ..,,. _.. ...... _... ..... 

_....-,.,.. .... --..... 
...-"" ...... --------------,.....-___ ...... ---

1 3 
PROBLEM GROUP 

LEGEND: ME11i00 X-APPLE Y-BATCH PASCAL Z-DPL 

VERTICAL~~iA~~~t~IM3~0~DARD ERROR 

Figure 5: Average number of runs for all programs by 
inconsistent finishers 

71 

The graphs show that number of runs utilized generally 
increases with problem difficultyl69 and with the number of 
language mechanisms required in the program. Each 
assign.ment except the sixth one (which is represented in 
problem grouf two, in the graphs) introduced a new language 
feature. Pigures q and 5 suggest that significant 
uncertainty about how particular language structures worked 
evidently continued well beyond the assignment that 
introduced each such structure. 

Note that the number of .runs utilized by Apple students 
generally improved (lessened in number}, relative to batch 
Pascal students, as the semester went on. 

The graph of hours expended preparatory to the first 
run {Eigure 6J shows that very little difference exists 
between the three groups o.f consistent finishers. 170 The 

16<> consult guestion 15, end-of-semester questionnaire, in 
Appendix 8.2, for student estimations of problem 
difficulty, which in general agreed with the 
instructors• estimation of problem difficulty. 

t7o No statistically significant dif.ferences existed at all, 
.for the inconsistent subset. ilhere graphs are omitted, 
no significant or interesting group differences existed, 



~URS 

12 
10 
8 
& 

If 
2 "'"' I 

0 
1 

. 
=----------------- ~ ., . = m - -.::.=::.-:::.--·-------·--···--··-·-·-·········-ic 
I I 

2 
PROBLEM GROUP 

3 

72 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z><{)PL 

VERTICAL (bfifl~fr~~fiUM3 ciotlJlNDARO ERROR 

Figure 6: Average number of hours before the first run for 
all programs by consistent finishers 

uniformity of the preparation time reported suggests a 
combination of possible influences: Difficulties inherent 
in under.standing a prob.l.em and discovering a solution 
strategy dominate difficulties in expressing that solution 
in an algorithmic language, regardless of methodological 
differences; and student schedules permit just so much time 
to be allocated to solution design, regardless of 
instructors• Freachings about trading off design time for 
debugging time.t7t 

'!he aost imfortant showing of the "time before" graph, 
Figure 6, is that it disproves the reservatioD many 
educators share in regard to switching instruction to an 
interactive system: students will not rush to the machine, 
counting en inventing programs on-line, without spending 
adequate time in designing solutions. Undoubtedly, the 
Apple ~beduling mechanism, which limited students to 
----------

unless where noted otherwise in the text. 

ttl correlations between background variables such as grade 
pciut average and SAT scores and performance measures 
such as time before the first run suggest that the 
brightest students a.re also guickest. See the later 
secticn en characteristics of the student subjects. 



reserving 
three-day 
behavior. 

~URS 

12 
10 
8 
0 
.. 
2 
0 

1 

73 

at most four half-hour sessions in any consecutive 
period, contributed favorably to the observed 

2 
PROBLEM GROUP 

3 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z-DPL 

VERTICAL f~'lf<t~w~~fMt_b,3 abfJ~DARD ERROR 

Figure 7: Average number of hours after the first run for 
all programs by inconsistent finishers 

Number of hours spent after the l:ir.st run measures the 
debugging ti111e .tor the problem. DFL advantages over batch 
Pascal with respect to this measure, sit on the borderline 
of significance at every problem group. (See Figure 7.J 
However, the Apple group's advantage over batch Pascal not 
only increases to an impressive level .but .t:eflects a nice 
decrease in debugging time as the semester !!rogresses. 

The advantage of the Apple group can not merely be 
written eft as taster turnaround time. Debugging requires 
thought as well as machine access. The degree of similarity 
between the hatch Pascal and Apple sections in number of 
trips to the com.t'utation cente~::, tillle spent once there, and 
run reguests submitted per session, as reported on the end­
of-semester questionnaire, suggests that the Apple people 
continued their computational sessions because they had the 
dual sense that they could wrap up the program right then 
and that their next effort at solution would he rewarded 
with immeciate turnaround. Thus the nature of Apple usage 
produced a concentrated, intense effort, and it was that 



concentration, itself, which resulted in shortening the 
debugging period. No time was lost in recovering context 
every time the student came back to the program display 
after a lafse, as likely occurred in the batch processing 
sections.t72 

In summary, the total number of hours expended on each 
problem reflects no significant difference between the batch 
processing sections, but an advantage to the Apple section 
that increases as the semester goes on (when, presumably, 
the Apple student learns more about how to use and take 
advantage of the machine). See Figure 8. 

WURS 

12 
10 
B 

6 
4 
2 
0 

1 2 
PROBLEM GROUP 

3 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z-oPL 

VERTICAL~~iA~~~~~~kM3~0~NDARD ERROR 

Figure 8: Average total number of hours expended for all 
programs by consistent finishers 

WhilE the total number of hours used by the batch 
processing sections may not have differed, the allocation of 
that time did. At each problem group reference point, the 

t72 This cbservation would help distinguish the nature of 
microcomputer usage from that of time-shared interactive 
usage. Ihe time-sharing system user is subject to the 
vagaries of system crashes, resource competition, and 
response time fluctuations, all of which the 
microcomputer user is shielded from. 



2.5 

2.0 

1.5 

1.0 

0.5 

_____ .....__ ....... 
~~-~-&==-- ~- ....... _ ------ ----..... __ --

¥ --:::; 
y 

0.0._~------~--~--~----~-----------r-1 2 
PROBLEM GROUP 

LEGEND: fo£THOD X-APPLE Y-BATCH PASCAL Z-DPL 

VERTICAL tfJ'friA'1:fr~~j{tt13 ol\o~RD ERROR 

75 

Pigure 9: Average ratio of time before to time after first 
run tor all programs by consistent finishers 

D~L section had a higher proportion of time before the first 
run to ti•e after the first run, than did the batch Pascal 
section. Subjective Impressions during the semester suggest 
that Dl'L students with incorrect solutions spent too little 
time after the first run exam1n~ng their results and 
thinking al:out their programs, or trying alternative test 
data. 

Finally, it does not appear that any differences in 
comparisons of observed performance can be traced to the DPL 
policies o.f reporting only one syntax erroc and p.rinting no 
partial output prior to abortive program termination. To 
the surp.rise of many, perhaps, the policies did not seem to 
place the DPL students at a disadvantage. (If there were 
such a disadva.ntage, one would expect a longer debugging 
period for the Dl'L people.) Neither did the policies seem 
to give the DI?L section an edge. A possible conclus.ion is 
that the students In the other sections were not making use 
of all the ecror messages reported and/or were not producing 
trace output to help explicate program bugs. students may 
try to ttack down only one error at a time. See, .for 
example, liagy and .Pennebaker, "Automatic Analysis of Student 
Programming Errors," whose data led them to believe that 
"each new mistake is discovered only once a pceviou.s mistake 
has been corrected." Signi:ficant advantage might be 
yielded, there.tore, in intens.ively instructing students in 
debugging technigues. 



76 

The number of runs vith unintended results reflects the 
student • s understanding o.f how to develop correct programs 
and his assimilation of the details ot programming language 
syntaK and semantics. A run might have an unintended result 
due to a logic error (an error in the program's algorithm), 
a language usage error (an error in translating an algorithm 
into a language), a compiler bug (a system error in program 
translaticn), or a misunderstanding of problem 
specifications. To some extent, the number of runs vith 
unintended results reflects bow well the formal language 
descri~ticns and informal program examples can communicate 
the language•s workings. To some extent, also, this measure 
reflects how well the particular programming methodology 
permits the student to uncover errors in his work along the 
way and tc progress to an eventual solution. However, a 
word of caution is needed: Number of runs with unintended 
results used en route to the solution did not correlate 
significantly with eventua~ correctness of the finished 
product. So errors committed reflect efficiency of the 
solution frocess more than the quality of the final product. 

This aeasure is unbiased by the goal of a particular r:un 
attempt, be it testing a complete solution, testing a 
partial solution, or discovering how a language feature 
works. Only runs with unintended results ar:e counted. 
Consult secticn 3.2 for details of run result 
classification. 

As Figures 10 and 11 show, below, consistent tPL 
students made significantly feuer runs with unintended 
results than did consistent batch Pascal students, but only 
through the end of problem group two.l73 That advantage did 
not continue once the DPL students switched to Pascal, and 
in fact beth consistent and inconsistent DPL students made 
more errcrs in Pascal than they had in DPL. Possible 
conclusiors from this pattern might include that DPL was 
less error-prone than Pascal or that the semantics of Pascal 
admitted cf formal description less well than did those of 
DPL (language design issues); that Pascal was sufficiently 
dif.terent from DPL that the transference of programming 
language principles could not be easily effected (an issue 
of educaticnal psychology) ; or that the details of Pascal 
were ineffectively presented (an issue of experimental 
presentation). 

Apple students enjoyed a clear advantage with respect 
to their l::atch l?ascal counterparts fo;c this measure through 
at least the second problem group. The consistent Apple 
students continued their advantage thcough to the end ot the 

' 7 3 This difference is even more impressive because the DPL 
statistic fer problem group two includes about 0. 5 runs 
with unintended results caused by compiler bugs. 



10 

8 

6 

.. 
2 

0 

-------_.,... ___ -_-_-. __ 
_.. -;::..---~t-

_
-..-·- ... - ......................... ~ 

~..-..--- -'"' 

~-
1 

1 2 
PROBLEM GROUP 

3 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL 2-DPL 

VERTICAL~~iA~~~~i~lM3~0~~RNOARD ERROR 

77 

Figure 10: Average number of runs with unintended results 
for all programs by consistent finishers 

10 

8 

6 

.. 
2 

D 

----z ---------------..... - ----·11 ---_ ........... -· _ .... -
....-* ...... --__ .. _....:._ ....... 

.,.. .. -.. ---__.. ...... 

1 2 
PROBLEM GROUP 

3 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL ZooOPL 

VERTICAL ~~RiA~ff~~~D~lM3 ~ot~ANDARD ERROR 

Figure 11: Average number of .runs w.ith unintendEd results 
fer all programs by inconsistent finishers 



78 

semester, while students in the inconsistent Apple subset 
had substantially more difficulties in the third problem 
group than they had had previously~ Since the third problem 
group reguired the longest programs, with some 
modulari2ation necessary, it is possible that working 
without program listings most of the time~74 presented 
obstacles to some in the Apple group. 

Note that students in the inconsistent subset generally 
had more runs with unintended results than students in the 
consistent subset did. However, the inconsistent Apple 
students evidently had more difficulties with the last 
problem group, as comaented on above, while the inconsistent 
batch processing students (both DEL and Pascal) evidently 
had more difficulties ·with the problems of group two, which 
requit:ed array manipulation. Ey implication, the batch 
Pascal students in the inconsistent subset were in that 
subset because they had major difficulty with the second 
problem group; the Apple students in the inconsistent subset 
were in tbat subset because they had major: difficulty with 
the third problem group. 

With respect to particular types of errors that caused 
runs to have unintended results, the consistent DfL students 
for the most pa~:t outperformed consistent batch Pascal 
students with respect to both .logic and language errors 
through the end of the second problem group. Consult 
Figures 12 and 13 below. However, those significant 
differences did not carry over to the third problem group. 
There were no significant differences between the 
inconsistent D.l?l and batch l'ascal sections at any point on 
either language and logic errors, in part because of the 
inherently h.igher variance of statistics for these 
inconsistent subjects. 

The Apple section came out best of all with r:espect to 
these comfarisons. A very sizable advantage over the batch 
Pascal section was observed in regard to logic errors (owing 
perhaps tc the greater concentration in effort extended by 
the Apple people, as suggested earlier), and a significant, 
if rela ti ve.ly small, advantage over the batch Pascal section 
in regard to language errors at an intermediate point in the 

174 No statistics were acquired during the semester on how 
often Apple students obtained .listings of their 
programs. However, the following semester, in which all 
introductory students used the Apple systems, 57% of the 
students u;ported obtaining listing only every few 
sessicns, 7.% only once per assignment, 27% after every 
session, and only 9% once or more during an Apple 
sessicn. l'o.rty percent of the same students reported 
that the lack of a printout after every program 
execution caused them some difficulty. Failure to 
obtain a listing more often was attributable primarily 
to the slew turnaround time on printing. 



~i 
5 

.. 
3 

2 

1 

0 

----
__ a --

__.............::.::-
~- --·-----~- ----1( 

.----;~--_..--_......., 
~--
1 

l 2 3 
PROBLEI1 GROUP 

LEGEND: MElliOD X-f!PPLE. Y-BATCH PASCAL Z-DPL 

VERTICAL flcfiR~W'~~Itt_'bl ~~D ERROR 

79 

Figure 12: Average number of runs witb logic errors for all 
programs by consistent finishers 

~UNS 

5 

'I 

3 

2 

1 

0 
1 2 

PROBLEM GROUP 
3 

LEGEND: METHOD X-APPLE Y-BRTCH PASCAL Z-DPL 

VERTICAL FWrfA~W'~~~Wt1M3 Jwt~ANDRRD ERROR 

Figure 13: Average number of runs with language errors for 
all programs by consistent finishers 



80 

semester. 

A mcst interesting set ot responses arose from the end­
of-semester guestion asking how many times a clinic 
attendant or teaching assistant had been unable to help with 
a problem in the stude.nt•s program. Despite the fact that 
none ot the clinic attendants had eve.r written a DPL program 
and that only two of the six graduate teaching assistants 
(the DPL assistants) had done so, the DPL students were 
unable to obtain help with their programs fewer times than 
students in either of the other sections.t7s The conclusion 
may be reached that DPL's language mechanisms have some 
int ui ti vely understandable structure and; or that fewer 
severely contorted programs were produced using the Dl.'L 
language and methodology than under the alternative 
approach. Either fewer problems were being brought to the 
attendants by the DPL students or else those problems which 
were inexplicable to the novice student could be easily 
unraveled by the moderately experienced teaching assistant. 

5.2. 5 

As ncted earlier in section 3.3 there is some reason to 
be skeptical about the validity ot the l'lcCabe metric values 
reported by the DPL teaching assistants. While comparisons 
between the Dl.'l. section and the Pascal sections might not be 
valid, comfarisons between the two Pascal sections and 
comparisons within each of the Pascal sections should still 
be useful. As can be seen from Figure 14, very little 
variation exists in the complexity of program decision 
structure between the Apple and hatch Pascal sections. 
(Note how small the standard error bars are.) 

Little variation is not unexpected, however: The 
problems are too simple and constrained to admit of widely 
different solutions, particularly with simplistic data 
structures strongly implied by the problems; and hints from 
the variGus program consultants also play a homogenizing 
role. 

Furthe.rmcre, little variation exists between the llcCabe 
metrics fer programs of the consistent subset and the McCabe 
metrics fer p:ograms of the inconsistent subset. From that 
observation it may be concluded that errors in programs were 
caused less by omission of critical program parts or 
inclusion of hopelessly complicated extraneous code than by 
inco.rrect values for variables cr comparators. An e.xample 
of the latter might be executing a loop once more or once 

t7s Consult the end-of-semester guestionnaire, guestion 11, 
Appendix 6.2, for details. 



~TRIC 

12 
10 

8 
& 
't 
2 
0 

1 

----~ _..-z--
__.o!!~ ----_,_......,.... ---

2 
PROBLEM GROUP 

........ 

--
.:.----

-- _...c --

3 

LEGEND: METHOD X-APPLE Y-BATCH PASCAL Z-DPL 

VERTICALFfriR~~~IM3 JtrDRRD ERROR 

Figure 14: Average McCabe metric for all programs by 
consistent finishers 

less often than was intended. 

81 

Another guestion that occurs is whether program 
structure deteriorates noticeably as debugging continues, 
particularly fer the Apple section. one might speculate 
that localized fLOg.cam fixes would corrupt pcogram structure 
for the en-line group, which generally worked without 
listings cf the latest program version. However, only weak 
positive correlations (explaining only 22% of the variation) 
were observed between debugging time anii McCabe metric tor 
the consi.stent subset of the Apple section,t76 Even weaker 
corr:elaticns were observed to.r the consistent subsets of the 
other sections. These results follow, almost directly, froa 
the observation that very little variation e.xisted of any 
kind in the McCabe metric for students in each section. So 
there was little variation that could be expla.ined by or 
correlate with some other factor. Deterio~ation of program 
structure with debugging tiae is not ruled out at all, for 
more ccmflex problems. 

176 Higher !lcCahe metric means more comple.x program decision 
structure. 



82 

5.2.6 

Because the experiment vas conducted during the fall, 
1981 · semester, it was possible to informally track the 
progress cf ouJ: subjects into the second-level programming 
course o.ffered in the spring, 1982 semester.t77 There was 
only one section of~ered in that course, and the instructor 
had no .knowledge of the section of introductory programming 
to which each student had belonged. So the observations had 
no built-in biases. Though the second-level course included 
some material on assertions, which might have favored the 
former D£L students, it also included some material on 
program testing which would have favored the former Pascal 
groups. ~ore importantly, virtually all the programs in the 
course bad to be written in Pascal, so some estimate could 
be acquired ot whether the former DPL students had got ten up 
to speed in that language. 

Between ~~~ and 29% of the former students in each 
section progressed immediately to the second programming 
course (19 Apple students, 19 batch Pascal, 15 DPL). Fall 
1981 inttoductory programming students comprised 61~ of 
those who finished the second-level course in the spring of 
1982. 

I 
I 
I 
I 
I 
I 
l 
I 
I 
l 
l 
l 
l 
I 
I 

------------------------------------·--------------, 
TABLE 6 

Grade Change (in Std. Deviations) from 1st Course to 
2nd 

Apple 
Batch fascal 
D1?L 
Minimu~ significant 
group difference 

Mean 

-o. 18 
-0.34 
-0.25 

0.12 

I 
I 
i 
l 
I 
l 
j 

I 
I 
I 
l 
I 
I 
I 
I __ .J 

t77 No attempt was made, however, to collect the same 
statistics that had been collected from the introductory 
programming course. 



83 

Xable 6 shows the grade change, trom first programming 
course to second, as weasured in standard deviation units. 
Since the two first-course instructors and the one second­
course instructor each applied different grading criteria, 
the use of standard deviation units here takes into account 
a student's performance relative to his peErs. In general, 
since thE first-level course weeds out pEoplE who have 
littlE aptitudE for programming, one would expect that the 
grade pedormance (in terms of distance above the mean) of a 
student who continues on to the second course would 
decreasew ihat is, an outstanding performer in a large 
collecticn of untested beginners will be somewhat less 
outstanding in a more select second course with classmates 
of proven fOtentia1. If a section's avErage grade change, 
in standard deviations, from first course to second was an 
increase, that would present a strong indication of that 
methodolcgy• s goodness .relative to the other instructional 
methodologies. As Xable 6 shows, the Apple section•s 
average grade change was the least negative, a statistically 
significant amount better than the batch Pascal section•s. 

Final course grade, to be sure, measures other things 
besides simple ~rogramming ability. Overall, however, the 
analysis cf grade change fits the general pattern of results 
presented earlier: a mild advantage tor the DPL section in 
relation to the batch Pascal section, and a much stronger 
advantage for the Apple section in relation to the batch 
Pascal section. In addition, the grade change data 
(incorporating second-course grades) suggest that the 
disappointing performance of the DPL students in Pascal 
programming at the end of the introductory course was due to 
inadeguate time to learn the new material and not inability 
to do so. 

5.2. 7 

Subject characteristics, as represented on the second 
day o:t class, have already been summarized. t 78 'I he 
characteristics of the subject population at the second day 
are now compared with the characteristics of course 
finishers and dropouts. 

The characteristics of finishers and dropouts were ve.ry 
similar across the three subject sections.t79 The most 

t7a see section 2.5.1. 

1 79 Xhe differentially higher rate of good experience with 
logic among the dropouts bad on.ly one plausible 
explallation: Some students had elected to take a non­
technical lcgic course from the philosophy department as 
an alternative way of fulfilling their mathematics 



• 
I 
J 
j 

I 
I 
I 
t 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 

' I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
l 
I 
I 
I 
J 
I 
J 
I 
I 
I 
I 
I 
J 
J 
I 
I 
I 
I 
I 
I 

TABLB 7 

Subject Characteristics 

NU~EIB or SUEJECTS 

S EX 

Male 
Pe;;al e 

MAJOB 

Co.afute r Science 
Matheaatics 
Othe.r 

YEAB 

ft:e.sbaan 
SOfh CaOrt 
Juni c r 
Seni c r 
Graduate s tud e nt 
Evening colle ge 

GP A 

S A'l VEii S Al 

S A'I MA1fl 

• Good e xf erience with 

Ca l c ul us 1 
Calculu s 2 

Logi c 

Wr i t i ng 

Day 2 

274 

53% 
47l 

2 1J 
16% 
63:l 

12% 
3 3 , 
261 
21i 

Si 
3:1 

2. 95 

536 

5 89 

77 1. 
41~ 

13 ~ 

ti9S 

Finishers 

215 

23i 
16~ 
61% 

11" 
31% 
25i 
2 1~ 

4 j 
2) 

2 .. 9 6 

5 4 2 

600 

83i 
48% 

121. 

90j 

Dropouts 

59 

54' 
46J 

11~ 
18~ 
71J 

15i 
16J 
J 3J 
2 41 

7J 
6J 

2 .. 8 3 

5 12 

5 42 

55J 
15~ 

20 % 

87J 

• "Good e xferience with" me ans that t he s ubj ec t 
com~l e te d the course in c ollege or hi gh school 
vith a grade of "C" ox better. 

84 

I 
I 
a 
I 
I 
J 
J 
1 
I 
I 
J 
I 
I 
I 
I 

' • I 
J 
j 

I 
I 
1 

• t 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
J 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
J 
J .__ _ ______________ _______________ ___j 



85 

no~iceable difference between finishers and dropouts was 
that dcopcuts had coDsiderably lover SA! math scores and 
substa~tially less in the way of positive experience with 
calculus. Although nothiag in the introductory programaing 
course relied directly on calculus, it is evident that lack 
of matbeaatical sophistication and inexperience with symbol 
maDipulation ~laced programming students at a disadvantage. 
tooked at another way, the saae skills and interests that 
promote gcod perforaance in calculus classes would also seem 
to benefit students of prograaming. 

Th e lower dropou~ rate for sophomores and computer 
science majors is probably coincidental: Computer science 
majo r s frequently take the first programming course as 
first-seeester sophoaores, a nd evidently vere more likely to 
stick out the course than non-majors. However, computEr 
science &ajors pertormed no better in the course than 
students ~ith other aajors. One may conclude that students 
select coaputer science as a major aore on the basis of 
car~er OfFOrtunities and i nterest in the subject than 
demonstrated aptitude for the discipline. 
Figures en droFout rates are presented in Table 8. No 
special iaportance is placed on the dropout figures. Apple 
stude nts tended to drof out sooner, ~erhaps in response to 
the early demands of learning to use the microcomputer and 
its associated software and peripherals. DPL students 
tended tc drop later, perhaps in response to added 
i ntellectual dewands of the approach as problems becaae more 
difficult, perhaps in frustration with compiler problems. 
The above figures report only official dropouts, however, 
and undouttedly are s ensitive to counseling of students by 
the instructors. De facto dropouts (who usually received 
"incoapletes" or "a bsents" toe final course grades) were 
inc luded in neither the dropout rates reported above, nor 
the mem bership of the course finishers• s ubset used for the 
other a nalyses. 

In r egard to correlations of biographical variables 
vith obse rved perfor•ance measures, only a handful of 
correla t icns were of real · interest ~n explaining the 
experimental r e sults. The figures in Tables 9, 10, and 11 
relat e only to corr€ lati ons on the consistent subse t, those 
finishers who achieved consistent success throughout the 
semester applying the methodologies of their section. The 
perfc~aa~ce measure s utilized in the correlations were 
average measures Lor each student on the entire seaester•s 
problems. 

Grade feint average was highly correlated (Table 9) 
with percentage of correct solutions for both batch 
processing sections, which is what one would expect. 

reguireaent. Thus, those students probably had less 
aathesatical aptitude than would a p pear to be li~ely at 
first glance. 



86 

r------------------------------------------------------------·~ 
j 

I 
I 
I 
l 
I 
l 
I 
l 
I 
I 
l 
I 
J 
l 
I 
l 
I 
I 
I 
l 
I 
I 
l 
l 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 

TAE.LE 8 

Dropout Rates 

Atteuded first day of class but dropped 
by end of second week of classes: 

Apple 18 
Batch Pascal 15 
DI?I 18 

Dropped between end of second week of classes 
and end of sixth week of classes: 

Apfle 15 
Batch Pascal 11 
Dl?l 5 

Dropped betweeD end of sixth week ol: classes 
and end of the semester: 

Apfle 8 
Batch Pascal 1 
DPl 11 

I 
I 
l 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
l 
j 

I 
I 
J 
l 
I 
I 
I 
I 
I 
I 
I 

--------------------------------·--------------------~ 

.. 
I 

TABLE 9 I 
! 

correlation of GPA with Percentage correct solutions I 
I 
I 

Batch l 
Apple .Pascal DPL I 

I 
Correlation coefficient o. J 2 0.51 0.45 l 
Number of subjects ( 45j I 49) ( 39) l 
Significance level P=O. 205 P<0.001 P=0.002 I 

I 
L-------·-----------------------------------------------------J 

However, nc correlation existed whatever for the Apple 
section, a counterintuitive result.aeo 



80 
70 
&0 
50 
IJD 
so 
20 
10 
0 

11-----:a-. - ........... ___ -..... _ .. -...... -..,.. --- .._..,._ -- ---.. -- .. ._ ... --a.._ ------- ----- ---

1 2 
PROBLEM GROUP 

LEGEND: METHOD X-APPLE Y-IIATCH PRSCAL Z-DPL 

VERTICAL ~ofiAWMUI13 oft~D ERROR 

Figure 15: Average percentage entirely correct solutions 
for all finishers in each section with below-median GPA 

~rcENr · 

SD 

20 

10 ------:a--

0 
1 

LEGEND: METHOD 

-:&-------~--- -----~ 

2 
PROBLEI1 GROUP 

X-APPLE Y-llfiTCH PASCAL 

3 

Z-DPL 

Figure 16: Difference in average percentage correctness 
between high and low GPA finishers 

87 



88 

Figu£es 15 and 16 also reveal something of the 
relationship between grade point average and percentage of 
correct solutions. Figure 15 demonstrates that among those 
course tinishecs whose colleyiate grade point average ranked 
in the ilcttom ha11: of their section, the Apple people 
impressively outperfocmed the batch people tor most of the 
course. Not only was the performance of the lower GPA Apple 
people better than that of lower GPA students in other 
sections. As Figure 16 shows, theic performance was also 
consistently close to the performance of higher GPA Apple 
students, coming up short by less than 8i at each problem 
group. Substantial differences exist in the performance of 
higher and lower GJ'A students in both hatch section~. but 
not the Apple section. 

What these analyses suggest is that the Apple 
microcom:plter helps marginal students improve their 
programming performance. A low grade point average may 
indicate that someone is an undisciplined student, not 
necessarily that he is unintelligent. The Apple Pascal 
system evidently concentrates thought and holds attention to 
the extent that the undisciplined student can work better 
than he would oxdinarily be able to do. 

A second set of corxelations of interest were those 
relating SAT scores {as measures of aptitude) to performance 
measures. There, the only result of interest, for the 
consistent subset, was that the bz:ighter DPL students were 
quicker, too. See Table 10 below. SAT math scores were 
highly negatively corxelated with both time before the first 
run and time aiter the first run. 

Finally, in regard to the relationship between time 
spent developing the program and subseguent outcomes of run 
attempts, an interesting correlation exists only for the 
Apple group. See Table 11. 
This result mildly suggests that inadequate preparation time 
for Apple students led to a higher number of z:uns with 
unintended results. 

As noted previously, the performance of computec 
science ~ajcrs was not significantly different than the 
performance cf non-majors in any of the sections. In fact, 
the relative advantage enjoyed by the Apfle students and by 
the DFL students, as ceported earlier, showed up 
consistently regardless of which subject subset (whether 
high or low grade point average, high or low math aptitude, 
or whatever) was selected for individual analysis. 

aao The "signi1icance levalu referred to in the table refers 
to the probability that the observed correlation was due 
to chance rather than experimental tceatment. A 
significance level of .01 would be a conservative 
significance level for correlations. 



89 

I I 
1 TABLE 10 I 
I I 
1 Correlation of SAT Math Scores vith Time Measures I 
I I 
l I 
I DPL Students• DPL Students• I 
j Time Before Time After I 
1 First Bun First Run 1 
I I 
1 Correlation coefficient -0.4539 -0.4854 I 
j Number of students ( 34) ( 28) I 
1 Significance level P=0.004 P=0.004 I 
I I 
L------------------------------------------------------------~ 

r-----------------------------------------------------------·-, 
l 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 

TABLE 11 

Correlation of Time Before 1st Run and Unintended 
Results 

Correlation coefficient 
Num.ller of students 
Significance level 

Apple Students 

-0.2851 
( 46) 
P=0.027 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 

1.------ ·--------..1 

5.2. 8 

Some peolJle have advocated a switc.bover from batch 
processing to microcomputer access on the basis that 
students would simply find it more fun to use the micros. 
That expectation was not borne out by the end-of-semester 
questionnaire. About equal numbers of students in the two 
Pascal sections found the course to be "enjoyable" or "great 
fun", somewhat more than in the DPL section.tet Markedly 
more students in the Apple section felt satisfied with what 

tat Nearly identical numbers of students in all three 
sections found the course to be "satisfactory", 
"enjoyable", or "great tun". See end-of-semester 
questionnaire, question five, in Appendix 8.2. 



90 

they had learned, though all students expressed substantial 
satistaction with their experiences. 

Chief among the complaints heard from the DPL students 
were that learning an additional language was a heavy 
burden, Iarticu1ar1y when its introduction was scheduled 
late in the semester, and that DPL was too restrictive and 
artificial, when compared to Pascal. particularly as regards 
output caj:abilities. In fact, the DPL students preferred to 
program in Pascal by a substantial margin, 64% to 35%, an 
impression probably influenced by reliability of the 
liaterlco comt=i.ler and anticipation of future usefulness as 
much as ty particular Pascal features. 

The following were typical comments offered anonymously 
by DPL students at the end of the semestet:: 

"Although l found this cou.rse very challenging, I 
teel 1 learned a lot, not only about programming, 
tut about thinking in a logical and orderly 
fashion." 

"Personally, I found the DPL language to be an 
exercise in futility, but I see that to those who 
have difficulty grasping the concept of computer 
programming, DPL is simple and straightforward 
enough to be a good teaching language (except, of 
course, for the total~y horrendous mnemonics)." 

"DPL is a fl::imitive language to begin with and it 
makes me extremely mad that we had to learn it." 

" ••• 1 tound Dl?L to be rather cumllet:some when we 
could have been pxogz:amming with Pascal." 

"In general, this was a very good course. I 
learned a lot and I learned to think about the 
•correctness of programs•." 

"The DPL afproach was ve~:y helpful.. I'm not sure 
1 would have understood the theory of programming 
as well it the approach of Conway, Gries, and 
Zimme~:man•s _fri.J!!jl£: Q!! Pascal was used." 

" As 
liked the 
emphasis. 

for the Dl?L expet:iment, 
language because of the 

Too bad about the bugs ••• " 

l generally 
correctness 



5.2. 9 

" ••• ~·ve been so frustrated at times that r•ve 
been ready to pull my hair out. But ~ must say, 
overall, I have learned more and found this course 
more rewarding than any other r•ve taken." 

91 

The DPL approach, which combines methodology and 
language, seems to have much to recommend itself in 
practice, as wel.l as in theory. However, it became clear 
that goodness ot language implementation can be as iaportant 
as the language itself. In this regard, the Apple Pascal 
system would appear to win hands down. 

E.xpecimental results generally supported the hypothesis 
that the DPl approach would offer significant improvements 
over the conventiona.l approach. That the results were not 
even more positive might be explained in several ways. 
First, it appears that learning to effectively argue program 
correctness requires skills at least as complex as learning 
to p:rogcaa, itself. It is easier to verify that one•s 
program froduces correct output values than to verify that 
one has a flawless correctness argument. 

Second, the DPl approach requires greater teaching 
effort: students generally come into introductory 
programming with little background in formal logic and 
critical thinking; they must be taught about the language in 
which to Express assertions about programs, in addition to 
being taught the programming language proper. Furthermore, 
correctness arguments must be reviewed by graders and 
commented upon in addition to the student programs. ihere 
teaching assistants• time for grading and consulting is 
necessarily limited, the ratio of help delivered to help 
needed will probably be less for a Dl?L-like approach than 
for a conventional approach. 

Third, what little experimental evidence exists1e2 
would seem to suggest that it is easier to learn a more 
restrictive language after a more flexible one, than the 
other way around {the way in which this study was 
conducted). In other words, there might be more advantage 
to exfosut:e to Pasca.l first, then DPI., rather than the other 
way around. Furthermore, one would assume that some 

1e2 See, for e:xample, 
"leaching Both PI./1 
]~lletj~, Volume 8, 
106-107. 

G.E. Newton and J.D. Starkey, 
and FORTBAN to Beginners," SIGC~] 

Number 3, September, 1976, pp. 

Also see B. 11. Chauon, 
~ntroductory Course in 
]ulle!iB• Volume 9, Number 

"An Experiment 
Computer science,u 

3, August, 1977, pp. 

with an 
SJ:GCSE 

39-4~ 



92 

generalized language interference effects undoubtedly 
occurred vhen the Dl'I. students were studying Pascal. (.For 
example, DP1 and ·Pascal use different syntactic means to 
delimit compound statement groupings, a source of some 
confusion.) L.ittle is known, on a quantifiable basis, about 
how long to expect a student to take in learning a second 
language and the conditions under which that learning may be 
speeded u~;. 

subjectively, the assertion-based correctness argument 
approach to program development offers substantial benefits 
in comfaxison to the conventional approach, regardless of 
which progxamming .language is used to implement the designed 
program. If a program co.crectness argument seems weak or 
invalid, the student will realize that the program's logic, 
itself, uy be flawed. Forcing the student to make that 
argument ~ill expose what he does not know or is unsure 
about at soon enough to do him some good. It is recommended 
that t.he aforementioned approach to program development be 
combined with attention to program testin9 after the program 
has been coded. considera.tion of the test data on which the 
program need.s to run should properly occur when formulating 
postcondition and weakest precondition assertions about the 
program during its development. Verification that the 
program actually does run on that input data should take 
place after the progx:am has been coded. 

Advantages and disadvantages of DPI. as an actual 
programming language are discussed in the next chapter. 

Micrccomputer-hased instruction would appeax: to offer 
such a large advantage over batch p.rocessing, that all other 
pedagogical techniques being held equal, a significant 
improvement in instruction can be attained by making that 
change alene. Furthe.rmore, it should be recalled that the 
semestec in which this experiment was conducted was the 
first in vhich the microcomputers were used. Refinement of 
strategies involving their usage might yield even larger 
improvements. 

Such microcomputer 
feasible alternative to 
facility to support 

systems represent a financially 
a large-scale batch processing 

introductory instruction.tsa A 

l&3 The ccst of the Apple wicrocomputer 
in the experiment was approximately 
broken down as follows: 

configuration used 
$2433 per station, 

Apple IIt (32K memory} 
fascal language card 
12" monochrome monitor 
Serial interface card {for 
inte~:face to university printer) 

First disk drive, with 
ccntrcller, cable, and DOS 3.3 

Seccnd disk drive, with cable 

$1058 
144 
237 

128 

477 
389 



93 

scheduling m~chanism, just restrictiv~ enough to force 
students to adequately prepare for their sessions, is 
strongly recommended. So is the placement, in close 
proxi.111ity to student workstations, of a durable line printer 
capable cf froducing hard copy listings at a moment's 
notice. 

iould a DPl iaplementation designed for a microcomputer 
system offer the best situation of all? ~hat seems 
unlikely, in light o.f comments made in the next chapter, 
without substantial redesign of the input/output mechanisms 
to permit lat:elli.ng of output, modification of the array 
mechanism, and addition of other language features such as 
procedures and type definition capabilities. Since one of 
the goals of an programming course often is to familiarize 
students with language and program structures that occur in 
many general purpose languages, it might still be necessary 
to augment DPL study with instruction in a more general 
language such as Pascal. However, the students in this 
study have clearly communicated to us that learning multiple 
languages in a compressed time frame has its own undesirable 
consequences-

-----------

Each station supported at least 10 students. 



Chapter VI 

iElLECTIOHS OH DPL AS A PBOGBAB!IHG LANGUAGE 

It is fair to say that the merits of a programming 
language may only be appreciated when it has been used 
extensively tor program development. After some intensive 
exper1ence in developing progra111s and teaching programming 
on the only kDown translator for the language presented in ! 
Di.§cipline .£! f.!.Q.!Uill!!!li!!9:r it would seem appropriate to 
offer some comments on its utility as a program development 
medium. The reader .is assumed, in what tallows, to be 
familiar with Dijkstra 1 s language.ta4 Dijkstra•s language. 

Guude.Q £Sl!!!l~!l4 ~! §tr.Y£1!!£§ 
Many, but not all, of the presumed design goals appear 

to have been met by the language's structure. Eor example. 
the guarded command set structure that unifies alternative 
and repetitive statement types forces the programmer to 
state explicitly the conditions under which each guarded 
command group should be executed. This requirement can 
easily be viewed as desirable for advanced programmers as 
well as beginners.ta5 

The non-determinacy of guarded com111and selection frees 
the programme£ troll! artificial constcaints in two ways: no 
longer must an input condition be assigned to one guacd when 
it more reaso.nably belongs in the overlap of two guacds. To 
wit, the absolute value calculation 

184 

lF X>=O -> ABSOLUTE:=X 
I X<=O -> ABSOLUTE:=-X 

1.'1 

The locally iEplemented version 
is described in P. Koltun, 
Technical Beport TR82-004, 
Science, University of !ilorth 
1982. 

o.t Dijkstra•s language 
"DPL User• s Manual," 

Department of Computec 
Carolina, Chapel Hill, 

tes See, tor example, M.E •. Sime, T.B.G. Green, and D.J. 
Guest, "Scope Marking in Computer Conditionals -- A 
Psychological Evaluation," which reports that attaching 
taxon intocmation to conditionally-executable commands 
improves the programmec•s facility in using such 
commallds. 

- 94 -



95 

expresses the symaetry of the guarded execution nicely, 
without artificial assignment of the X-=0 possibility to only 
cne of the guards. as in the usual 

I! X>=O THEN ABSOLUTE:-=X 
!lSI ABSDLUTE:=-1 

Secondl }', non-determinacy frees the programmer from 
explicitly specifying an order in which guards are to be 
evaluated, where no logical reason for ordering exists. In 
truth, thouy.h, the number of situations in whic.h this 
flexibility proves advantageous is vanishingly small, at 
least in short examples presented for introductory 
instructicn. 

Eermitting multiple guards within a repetitive 
statement is a nice innovation facilitating concise, 
consistent p.~:esentation of algo~:ithms. Merging of two 
already-sc~:ted lists, fo1: example, can te expressed very 
neatly with such a mechanism • 

.§£2£.§ J;Ul!§ .21!1'!. !:!!.fl .l!.S£iabl3l in,H,!ali~at.i.Q.!l §!.s.!&!!l§nt 
Dijkstra•s scope ~:ules reinforce his ideas abcut 

separation ct concerns, or information hiding, in 
programmillg. The mechanisms .for explicit inheritance of 
program variables proved ~:elatively simple for students to 
pick up. A lecture on va~:iable scope was delivered at the 
fou~:th session to intcoducto.ry students and was undei:stood 
easily. 

The syntactically-distinguished initialization 
statement fo~ simple variables permits emphasis, in 
~:easoning about fi:Ogi:am co~:rectness, on starting variables 
off, at least, with the correct values. .Just as regui~:ing 
explicit variable type declarations has come to be viewed as 
desirable by most programming language designers. so should 
regui~:ing (by syntactic mechanisms) special emphasis on 
variable initialization. 

More importantly, variable initialization calls 
attention to issues of scope in an interesting way. It 
became clea~:. in writing a DPL frogram, that supplying a 
"dummy" initial value for a variable just to get the 
initialization tegui~:ement out of the way was a signal that 
the variatle • s scope vas being misconceived. For example, 
if an intege~: variable X repeatedly was to be assigned a 
value f~:on the input, then manipulated and tinally assigned 
to an integer array A, a student• s ti~:st p~:ogram version 
might be 



• 
• 
• 
DO input remains -> X,IINPUT:LOPOP; 

manipulations on X; 
A:HHXT(X) 

OD 

96 

which would produce the error message that X had not been 
initialized. (The scope statements for X, A, and IINPUT and 
the initialization for arra}' A have been intentionally 
omitted.) So the student might insert the initialization as 
follows: 

DO input remains -> X VIR INT,IIBPUT:LGPOP; 
manipulations on X; 
A:Hl.UT(X) 

OD 

Now an error message would be generated to the effect that a 
variable cannot .be repeatedly initialized. (A variable can 
onl}' be a VIRgin variable oncel) Next, thinking that the 
place to initialize X is before entry to the loop, the 
student starts to think of what value to give it initially. 
No value Rakes more sense than any other, so a dummy value 0 
might be used: 

X Vlll INT:=O; 
DC infUt remains -> X,IINPUT:LOPOP; 

manipulations on X; 
A:HHJ:T(X) 

OD 

But the assignment of a meaningless initial value is a sure 
tip-off that the scope of X has been misconceived: Since X 
is used only within the DO-CD repetition, its scope should 
be that guarded command. The proper implementation is given 
below, with scoEe specifications explicitly included. 

DO lllifUT.llOli>O -> BEGIN 

OD 

GLOVAR A,IlNPUT; PIIVAR X; 
X VIR INT,IINPUT:LOPOP; 
manipulations on X; 
A: HIIlXT {XJ 

END 

where the scope ot A (as well as Il~PUT) is explicitly 
inherited from the enclosing context, but X is private to 
the BEGIN-liNL: program unit, which makes sense because X is 
used only tc store a value between the time it is removed 
from the integer input and the time it is inserted into 
array A. So each repetition o£ the loop requires a new 



97 

instantiation of private variable X, with its consequent 
initialization. 

ARst£~£1 j~~1~§~1 gt in£YSLQY1EY1 
Another very nice feature of the locally-designed 

implementation of Dijkstra•s language is the treatment of 
input and output data collections as arrays, consistent with 
the treataent of all other arrays in the language.ts6 Thus, 
students did not have to learn specialized formats fo.r input 
and output statements that had no other application in the 
language. In fact, the students made very few errors o:f any 
kind in input;output usage in DPL. 

!lore illlpOJ:tantly, the implementation illust.rated to 
students the conceft of abstraction, in a very strong way: 
The DfL form of input/output emphasized abstraction away 
from the processing peculiarities imposed by physical unit 
record devices. The imposition, for example, that input 
values may cnly be read once and may only be read from 
"left" to "right" is a device-dependent restriction that, 
unfortunately, finds its way into too many languages. 'I he 
DPL array access mechanism, which treats arrays as double­
ended gueues for purposes of insertions and deletions, 
permitted students to formulate algorithms in a more 
abstract way than would normally he possible. Furthermore, 
the mechanism avoids peculiarities such as 

read IX) ; 
while not end-of-file do 

begin 
~·· processing ••• , 
read {X) 

end 

wherein ycu have to read ahead just in order to discover you 
didn't really want to read that last time, at all. The tPL 
mechanism permits you to "peer in" and see how many input 
values ar€ left by examining the current extent of the input 
domain: u1 

186 

DC lNtUT.DOa>O -> read ... 
OD 

tX} ; 
processing ... 

The decision to have separate collections for both input 
and output integers, characters, and booleans, was 
unfortunate in the sense that it precluded labelled 
output. However, the separation did emphasize data 
typing issues. 

187 Pascal lets you look ahead, but only to examine the next 
inj;ut character 



Additionally, any actions that 
recognition of the nth case from 
easy to sequence. 

96 

would be triggered upon 
the end of input are now 

];he .!l.5l.l! .£! UH1§ ~ !.!Hilli2!!.§ 
Dijkstra•s view of arrays as functions, that is,. as 

total maprings from a domain of subscripts to a range of 
values, ~as introduced in ! Di§£ipli~e of Progr~~iBS• and 
recapitulated in The ~£ien£§ g! Program!i~. by Gries.tae 
While that view presents a conceptually clear picture of 
arrays tc the programmer and facilitates reasoning about 
subscripts in relation to the array domain, that view is 
also undere.1q:loited in the language Dijkstra formulated and 
in the exfosition of both books. An excuse can be made for 
Dij.ltstra•s treatment in terms of hi§ limited intent, if not 
for Gries• text. Arrays (sinqle-dimens.ion arrays, at that) 
unfortunately are discussed with only integer domains, 
therel:y severely limiting the generality and usefulness of 
the view of arrays as functions. Permitting subscript 
values to be characters, or for that matter, elements of any 
ordered set, makes much more sense. 

The soluticn to many problems can be neatly e.xpressed 
if one views arrays as descriptions of such a mapping. For 
example, comfuting a frequency table for the occurrence of 
alphabetic char:acters in some text can be viewed as 
specifying a mapping from letters of the alphabet to 
integers. Similarly, consider a program which is to read 
pairs of (possibly unordered) coordinate values and produce 
a scatteq:lot of the points they represent. The progr:am 
might be develofed by first assigning elements of a two­
dimensional array a print-character or a blank, and then 
printing the contents of the array on the lines and columns 
of the output paper. In other: words, the array describes a 
mapping from the cartesian product of the set of rows and 
the set of columns of the array {corresponding to the 
possible lines and columns of the output paper) to the set 
{print-character, blank}: 

G: {Bows) X {Columns} --> {print-character, blank} 

G (row i, column j) := { print-character, if the pair ~i,_j} 
occurred 1n 
the input 

blank, otherwise } 

So the program must first achieve the above assignments to 
array elements, then simply print out the array's contents, 
one row per cutFut line. 

-------



99 

one can easily imagine the concept of an initialization 
mapping fer arrays, and perhaps of an inver.se mappingu9 as 
well. Beth would facilitate abstractions about programs 
that manipulate arrays. 

A!ltwar.Q~.§.§ .21 s.n.ll i:!!.itiali.l!;ation 
In pcint ot fact, the array initialization mechanism 

represents the major failing in the design of Dijkstra•s 
notation, as borne out £rom experience in instructing 
beginners. Since no point in an array's domain should lack 
an associated value, in Dijkstra•s view, the array elements 
are collected in t.he form of a double-ended queue for which 
consecutive domain points all have values. The 
initialization statement incorporates specification of the 
initial mapping, by f.§SUifin_g the low bound of the dowain 
and ~rmi!!i:!!S range values to be specified and thus 
associated with domain values sequencing upward from the low 
bound. 

However, many algorithms admit o.t no predetermi.ned 
initial maFping with constants; the array's initial values 
may come from the (unseen) input, for example. However, a 
literal domain low bound is required by the initialization, 
even .it all further manipulations in the algorithm utilize 
only the array domain operators, "array.lob" and 
"array.bit 11 • There.tore, the programmer is led to specifying 
a meaningless dummy low bound, just to satisfy the syntactic 
requirements, which, as was seen before, would be a sure 
sign of misconceiving the algorithm it it weren•t, in this 
case, a sign ot a misconceived language structure. So the 
programmer SFecities 

A VII IN! ARRAI:=(O) 

just to get the compiler off his back, which isn•t so bad 
for the e.:xperience programmer who understands the necessity. 
But the novice, the programming innocent, bas just been led 
astray into thinking he can now just as easily refer to 0 as 
the lowest subscript as to A.LOB, or to A(O) as the lowest 
element instead of A.LOW, and problems eventually ensue.ago 

189 ThinA, for instance, ot a data base 
The creation ot the data base wou.l<l 
that associates keys w.itb attributes: 

f: !keys} -> {attributes} 

The retrieval mechanism 

g: {attributes} -> {keys} 

management system. 
require a function 

which seeks keys with certain attributes, might be 
regarded as the inverse mapping of t. 



100 

In particula.r, Dijkstra •s arrays may grow or shrink at 
either end. Though 0 may have been the array•s lowest 
subscript initially, that may no longer be true at some 
later point in the algorithm. Thus, the student's first 
encounter with concretion has been imposed by the language, 
when it was abstraction that was to be encouraged. A useful 
alternative to the single-statement array initialization 
might be a multi-statement initialization mapping, as 
suggested before, with a syntactically-distinguished form. 

190 Very few situations will arise where it is preferable to 
utilize absolute rather than relative subscript values, 
wheD the constraint is imposed that no poi11ts in the 
array domain shall lack an associated range value. An 
absolute subscript might prove useful as a "key" to 
refer to an element in a sparse matrix, but not here; in 
effect, only the non-singular elements of a sparse 
matrix would even be inserted in D.ijkstra•s array. 



Chapter YIJ: 

SUGGESTIONS FOB WOULD-BE EIPERIBENTEBS 

A review of computer science literature on 
methodological considerations in performing experiments has 
already teen presented in section 2.6. The comments 
included here are directed at computer scientists planning 
to engage in experiments involving human subjects. llhile 
the suggestions might amuse the expe.rienced social science 
investigator, it is hoped that the comments will prove 
useful tc a novice computer science investigator. 

The computer scientist • s first inclination, after 
reading a study such as this one, might be to start 
collecting statistics of his own, and see what interesting 
relationships emerge among the data. In this field, 
however, as in others, a power-generality tradeoff exists: 
the more specific a hypothesis can he formulated, the more 
power.ful an experiment can he designed to test that 
hypothesis and the more relevant a set of experimental 
variables can be measured. "Fishing expeditions," in which 
only generally applicable measures of programmer behavior or 
learning are collected, probably will not yield sufficiently 
relevant data to support useful conclusions. 

The£efore, the first step for a would-be experimenter 
would be to think about the phenomenon in which he is 
interested. Fe£ instance, the subject of interest might be 
how one acquires an appropriate model of computation or how 
one acquires a knowledge of language £ules sufficient to 
permit discriminations and generalizations about syntactic 
forms. 

The second step should be to pin down, as specifically 
as possitle, hypotheses related to the phenomenon of 
interest. For example, a general statement that reading 
programs should be of benefit to a programming student 
trying to learn a language might he narrowed down to the 
hypothesis that time spent in reading programs written, say, 
in Pascal would enable a student to commit fewer syntax 
errors on a related Pascal programming task than a student 
who spent an equivalent amount of time writing related 
Pascal prcgrams. 

The thi£d step would be to think about relevant 
experimental variables, how they relate to the underlying 
phenomenon, whether they are directly measurable and if not, 
how they can be approximated. For instance, what is the 
subject•s reading comprehension for prose and how does it 

- 101 -



102 

relate to his reading comprel1ension fo£ symbolic language? 
Can a subject's reading comprehension for symbolic language 
be improved with practice? What is the subject•s 
informaticn p1:ocessing ability to discriminate between 
similar visual situations or generalize abstract rules from 
similai: visual examples? After that, the e.xpe.cimenter can 
think about bow to measure his experimental variables, what 
the expei:imental treatment would consist of and what control 
group, it any. might be used, and what criteria would be 
used for evaluating group differences. 

Clearly, a treatise on experimental design is beyond 
the scope of this dissertation or the competencies o.f its 
author. But starting one's thinking in the right place, as 
above, should help guide tlle compute£ science experimenter 
along the right track. In particular, becoming familiar 
with previous work in the area of softwace psychology can 
alert the experimenter to the .idea that a variety of 
experimental designs may be required to study different 
types of phenomena. Poe instance, the work described in 
this dissertation falls under the category of "quasi­
experimentation. "• 91 Studies involving computer-user 
interfaces might utilize classical experimental designs, 
because they involve observations on only a single 
programmer and allow for the degree of control required for 
a true exferiment. Exploration of group processes might use 
the techniques and designs of social psychology. The point 
is that different problems require different designs. 
Shneiderman, in his text ~oftJ!~U~ !'.2.1£B21&\I1• has some 
useful comments on experimental design considei:ations for 
computer scientists.l92 Expert advice should be sought at an 
early stage of project planning. 

Amcng the <jUest.ions that will face the experimenter is 
the intended scope of an e.xperiment. Looking at the 
experiment described in this dissertation, one might bee led 
to believe that experimentation over a semester's time with 
a class cf 200 subjects is a preferred situation. Many, 
many prol:lems relating to di.fficulty in exerting adequate 
experimental central exist with such a set-up, however. 

The nature of the task. involved and the desired 
generalizability of results should guide decisions regarding 
scope of experimentation. The subject of this dissertation 
dealt with learning a complex methodology and language of 
programming, a task that could not have been accomplished 
with novices in a short time-period under any circumstances. 
Furthermore, the goal of the wo~:lt was evaluating the 

191 D.T. Camfbell and J.c. stanley, ~~~~~~l ~~ ~si­
.!l..!E.§!i.!!!Sl.!l.UJ Q~i!11!§ !m; ~~§.§M.£.!.!. (Skokie. Ill.: Rand 
McNally, 1966). 



103 

methodology's applicability to actually teaching semester­
long introductory computing courses at the college level. 
For these two reasons, the· scope of this experiment seemed 
reasonable. In other situations, a limited experiment with 
the opportunity tor tighter experimental control would be 
preferable. lor instance, even in the sample situation 
described earlier, if one were interested in whether to make 
program reading an integral part of a course of introductory 
instruction, the advantages to be gained from reading 
programs would probably be better explored in experiments of 
limited scope. The time reguired for inducing significant 
subject differences might be measured in hours or days 
rather than months. 

Allowance should always be made for conducting 
preliminary versions of the experiment, in order to develop 
materials comprising the experimental treatlilent, to become 
familiar with the nature and magnitude of subject 
differences that might be induced, and to perfect data 
collection forms and procedures. The e.xperience in this 
study was that even with a third generation run analysis 
sheet being used, narrative comments from the subjects were 
still needed to disaabiguate coded subject responses. 

WherE vex possible, automatable measures ought to be 
usedt9~ tc capture relevant statistics on-line or to process 
stored transaction xecords off-line. If at all feasible, 
machine-readable forms shou~d be used to capture data that 
subjects must write down by hand. Interactive programs, 
with subjects entering needed usage data at a terminal, 
might he utilized to minimize latEr data entry .• 

~lans should be made to archive all relevant source 
code from programming work to provide a backup in case of 
necessity. Sad experience can teach that subjects or 
experiment administrators may not provide data in the form 
needed. Having an archive to return to for that data can 
minimize the damage. Plans should also be made to review 
the quality of data periodically, as it is being collected, 
so that ccrrective action may .be taken as soon as it appears 
necessary. 

rains should be taken so that all individuals involved 
in administering the experiment understand the.relevance and 
importance of data they are asked to provide. The tack 
taken in this experiment to shield course assistants from 
the experimental hypotheses in order not to .bias the results 
turned out to be a case of erring on the wrong side: 
Several assistants failed to collect needed statistics 
because they thought it wasn't that important. 

t93 See V.R. Easili and R.il. Reiter, Jr., "Evaluating 
Automatahle Measures of Software Development," .l!_Qrks!).Q.11 
Q1! .ll.!H!Rtita!J!§ i!.Q~1ware Mog§lS, IEEE, OctobEr, 1979. 



104 

think in advance about how critical 
double checked for validity by 
For example, computation cente~ 

might be used to estimate run usage in 
the students provide themselves. 

wherever possible, 
statistics might be 
independent means. 
accounting figu~es 
addition to re1: crts 

Finally, the role of the experimenter, himself, should 
be addressed. WhErever possible, the person in charge of 
the experiment, the Frincipal investigator, should act only 
as a supervisor, to ensure that eJtperimental procedures are 
being followed, complete and valid data are being collected, 
and problems are being dealt with promptly. Avoid 
involvement in the experiment as a direct participant, as 
for instance, in teaching one of the sections in the 
experiment of this dissertation study. Primary 
responsibilities to students or to other chores may keep the 
experimenter from performiny the supervisory tasks needed to 
ensure coaplete, consistent statistics or from filling in 
when crises ar:ise. The se.r:ious illness of one of the 
teaching assistants in the experiment described earlier, for: 
example, necessitated pinch-hitting by the principal 
investigator at a critical point in the semester:, when time 
commltments were already stretched thin. 



Chapter YI:II 

Al'PliiiD.ICl!S 

- 105 -



106 

1. As a ~hole, ~ am understanding the material in COMP 14: 

2. 

Apple 
Batch Pascal 
DPL 

I find COIIP 

Apple 
Batch Pascal 
DPL 

14: 

well 

34% 
25~ 
45% 

Exciting 

24% 
15% 
19!11 

Adequately 

64% 
72!11 
48% 

Interesting 

74!11 
79!11 
76% 

Poorly 

2% 
3% 
7% 

Not very 
Intecesting 

2% 
6% 
4% 

3. I understand the lectures, on the whole, 

4. 

Apple 
Batch Pascal 
DPI. 

1 find the 

Apple 
Batch rascal 
DJ?L 

Well 

15% 
15% 
31$ 

lectuces 

Very 
Helpful 

8!11 
7'ft 

24% 

Adeguately 

52% 
70% 
60% 

Solllewhat 
Helpful 

53% 
64% 
61% 

Not vecy 
Helpful 

31.111 
24!1 
13\\ 

Poorly 

33% 
15% 

3% 

Useless 

5.S 
II% 
2% 

Boring 

071 
0% 
0% 



107 

5. l find the p:oblem session 

Very Somewhat Not very 
Helpful Helpful Helpful Useless 

Apple 54S 39% 5% 2S 
Batch Pascal 33Ji 45!!! 201{ 21! 
DPL 24% li1% 261 Jl 

6. l find my problem session instructor's one-on-one 
tutoring 

Very Somewhat Not very I don't 
Helpful Helpful Helpful ask for it 

Apple 47% 26% 3% 24% 
Batch Pascal 30% 32% 13% 26% 
DPL 43% 22!1! 14!1! 20% 

1. .I find the clinic instructors (o·ther than my 
problem session instructor): 

Very somewhat Not very .I don't ask 
Helpful Helpful Helpful for help 

Apple SJS 37.i 1% 3% 
Batch Pascal 29% 35% 16% 20% 
DPL 14l 331 23!ll 29% 

a. I find the reading assignments: 

Very l'lostly Seldom Unclear 
Clear Clear Clear 

Apple 4:/i 19% 1H 0% 
Batch Pascal 11% 70% 19% 0% 
DPL 131{ 70!1! 14!% 3% 



108 

9. I tind the reading assignments: 

Very Sowewhat Not very I don't do 
Helpful Help.ful Helpful the reading 

Apple 21li 66% 10% 3% 
Batch Fascal 27li 58% 9% 6lll 
DPL 112% 51% 71 0% 

10. I find the computer time available to me: 

Adequate Somewhat Very 
Inadequate Inadequate 

Apple 47% 29% 211% 
Batch Pascal 88% 9% 3li 
DPL 80% 14% 6% 

11. I find the time this course consumes to be: 

Unreasonable Very high Normal Not much 

Apple 19% 67$! 14% 0% 
Batch l'ascal 6% 79% 13% 2% 
Di'L 13% 61% 251' 0% 



(Administered day of final e.xam) 

1» Do ycu .intend to continue with other computer science 
courses in the future? 

Apple 
Batch Fascal 
DPL 

Yes 

55% 
51% 
48i 

No 

28i 
27% 
26% 

Undecided 

16:1 
22Ji 
26~ 

2. would you recommend enrolling in COMP 14 to a friend? 

Possitle answers: 

Yes (regardless of teaching approach used) 
Nc (regardless of teaching approach used) 
UDdecided 
Depends on teaching approach to be used 

Yes No Undecided Depends 

Apple 34% 7% 12ll 46% 
Batch Pascal 47:1. 7% 12% 33% 
DPL 41% 7% 13% 39% 

3. would you recommend enrolling in COMP 14 to a friend, 
knowir.g that the teaching approach to be used was the 

the cne under which you studied this semester? 

Apple 
Batch Fascal 
DPL 

Yes 

72')1, 
57% 
36% 

No 

18% 
27% 
49% 

Undecided 

10% 
16% 
147! 

109 



4. In general, are you satisfied with w.bat you learned 
f~:om CCIII' 141 

Apple 
Batch l'ascal 
DPL 

Yes 

82% 
70:11 
67!11 

No 

1010 
15% 
16% 

Undecided 

7% 
15:11 
17% 

5. Indefendent of long-term benefits ot the cou~:se, how 
enjoyable did you find COMP 14? 

110 

Great Enjoyable Satis- somewhat No tun 
fun factory Unpleasant at all 

Apple 
Batch Pascal 
DI'L 

10% 
4% 
7% 

331> 
40,. 
26l'i 

27:& 
25$ 
38% 

19% 
21% 
20% 

10% 
11% 

9:11 

6. With respect to the run analysis sheet you were asked to 
turn in for each problem: 

Did you keep track of the reguested data as you went 
along or did you wait until the end to fill in the 
information? 

Apple 
Batch Pascal 
DPL 

Kept track 

2511 
36% 
35% 

liaited until end 

66% 
58% 
65% 

How accurate is the information you provided? 

Number cf runs: iii thin 1 run 2 runs 3 runs 5 runs 

Apple 19% 25% 27% 21% 
Batch Pascal 34% 36% 16% 11% 
DPL 45% 28% 19% 3% 

Number of hours: Within 1 .nr. 2 hcs. 3 hcs. 5 hrs. 

Apple 53$ 23% 15" 7'X 
Batch Pascal 50~ 26% 9% 5% 
DPL 4ll)il; 33% 16% 0% 

10 runs 

11. 
3:1' 
4% 

10 hcs. 

2% 
10% 

3% 



111 

1. How many times did you go to the computation center (or 
remote entr} station} for a typical assignment? 

Apple 
Batch Fascal 
DJ?L 

once/week twice/lleek once/day several/day 

66:ti 
48% 
46% 

7% 
28% 
17% 

12% 
11:£ 
19% 

a. When JOU wellt to the computation center. how long did 
you t:ppica11y stay there? 

1-10 10-29 30-59 1-3 >3 
min. min. min. hrs. hrs. 

Apple 0% OS 1% 66% 33% 
Batch Pascal 1% 5% 14% 38% 42% 
DPL 0% 7% 4% 41li 48% 

9. .!low many LUn requests did you submit during a typical 
visit to the computation center? 

1 2 3-5 6-10 >10 
Apple "" 19% 39% 21% 15% 
Batch Pascal 1% 10% 51% 28% 10!1\ 
DPL 3% n 52% 32% 6% 

10. Averaged cve1: the last half at the semesteJ:, and taking 
into account that some weeks assignments were due and 
other weeks assignments were not due, how much 
out-of-class time did you spend on CCl'iJ? 14 per week? 
{l!Stil!ate to the nearest hour.) 

Apple 
Batch i'ascal 
DPL 

11.0 hours 
13.0 hours ** 
12.2 hours 

** Includes one zigure of 120 hours. The average would 
be 11.7 hours, excluding that figure. 



112 

11. 'to the best of your x:eco.l.lection, on how many occasions 
did a program you submitted produce what the teaching 
assi.stants or instructox: classified as a "bug" in the 
compiler rather than in your px:ogram? 

Apple 
Batch Pascal 
DPL 

Never 

52% 
64% 
36% 

Once Twice 

12% 
17.i 
Hi 

>Twice 

131! 
5% 

12% 

12. On how many occasions was a clinic attendant or teaching 
assistant unable to help you with a ex:oblem in your 
program? 

Never once Twice >Twice 

Apple 18)1 15% 12" 55% 
Batch Pascal 21% 20% 25% 35% 
DPL 26% 25% 13% 36% 

13. Toward the end of the semester, did you find the 
computer time available to you 

Adequate somewhat Very 
Inadequate lnadequat.e 

Apple 48% 42% 101! 
Batch Pascal 44:1 46~ 10% 
Dl'I. 49% 42:ti 9% 

14. Did ycu find the conway, Gries, and Zimmerman Pascal 
te:xt to be 

Very Mostly Seldom Unclear 
Clear Clear Clear 

Apple 7'f, 63.% 24% 6% 
Batcb Pascal 19% oJ% 21% 6% 
DPL 6% 54\11 22% 19% 



113 

15. Estimate the difficulty of each problem from 1 {easy) 
to 10 (difficult). 

Problem 

2 - conversion to yds, ft, in. 
3 - Armstrong numbers 
4 - Fitonacci numbers 
5 - Insertion sort inner loop 
6 - Odometer 
B - Function graphing 
9 - MeaD/median 

Pcoblem 

~ 3 4 5 6 

Apple 2 • .<6 3. 21 4. 13 s. 61 6.37 
B.P. 2. 53 3. 28 4.118 6.17 6. 91 
DPL 2.40 3.28 4. 91 5. 80 6. 89 

For the BfL groUJ? only 

Notes 

DPL group wrote programs 
2-6 in DPL, 
B-9 in Pascal. 

B 9 avg. 

6.79 5.67 4.86 
6. 86 5.53 5.21 
7. 70 7. 68 5.52 

16. In which language do you prefer to program? 

DFL Pascal 

35% 65:1\ 

17. In which language do you feel it is easier to write 
correct programs? 

DFL Pascal 

1<2% 58$ 



114 

1 •••••• Programs and program correctness 
2 •••••• 1inite state machines: A model of computation 
J •••••• l'reconditions. postconditions, and boolean algebra 
4,S •••• variables, initialization and assignment of value, 

and the notion of scope 
6 •••••• crder of statement execution and guarded commands 
7 •••••• l'rograms using alter.native statements 
8 .• , •••• Prog.rams using repetitive statements 
9~ ••••• Befetitive processing of input data 

10 •••••• A1gorithm development by stepwise refinement 
11 •••••• Array variables 
12~-····Using arrays: A searching example 
13,14 ••• Finding 1000 prime numbers 
15,16 ••• Loops, invariant relations, mathematical induction 
17,18 ••• Binary search 
19, :.<0 ••• DPL;l?ascal differences and similarities 
21,22 ••• Pasca1 data types and data structures 
23 •••••• 1wo-dimensional arrays; program modularization 
24,2S ••• Irocedures, functions, parameter passing, and 

.recursion 
26. u ••• considerations beyond program correctness: 

time-space tradeoffs and optimization hints 
27 •••••• Becapitulation: prog.rams, variables, and algoritbms 



Lecture 1.Q.I2i£ 

1 •••••• JCL, programs, and data; reading printouts; and 
error diagnosis 

2-~···•Prcgram structure and declarations; the program 
development sequence 

3 •••••• Constants, assignments, .integer expressions, 
read, write, and tracing 

4 ...... selection, conditions, booleans, and boolean 
e:x,I:ress.ions 

5 •••••• choosing test data; multiple data set input 

115 

6 •• u •• 'I est data selection examples; stepu ise refinement 
example using sorting 

7 ...... stepw.ise refinement, quadratic equation example; 
loops and their implementation 

a •••••• Loops and loop schemata; readln input 
9.u ••• Nested loofs; output format; real and char 

data types 
10 •••••• Cha:racteJ: type, subrange type, and one-dimensional 

arJ:ays 
11 •••••• ll:tJ:ays, end-of-list conditions, and iteration 
12 •••••• Arrays, character strings, arrays of arrays; 

foJ: loops 
13 •••••• Arrays of arrays; sequential search 
14 •••••• Insertion sort 
15u •••• Insert.ion sort with characters; two-dimensional 

arrays 
16 •••••• Subprograms; functions 
17 •••••• l!rocedures and pa.rameteJ: passing 
18 •·• •••• Arrays and subprograms; modularizat.ion 
19 •••••• Program modularizat.ion 
20.H•ul!odu1arization and subprogram testing with drivers 



10 ... -

tl 
~I 
"'' 
"'' :ril 
~ ... , 
:II 
OOQI 

:i:l 

"' • (j) 

COMP 14 RUI U!LISIS l'ORM .... ________ _ 'rota.l nuaber of runa needed to coaplet. 
the a11ll1gn.tmt (Pat • .-rk tbroueh tb4l 
next nm DUMber eaoh tise JOU &ubl.i t 

To the nearest hal.t-hour, record the title e:J:pended 

a run)~ 
prior to let run: -------- houra 

Lab inst.ruct.or -------
a.tter lat rw:a: hour a 

D&t.o ---------

&adsnaent --------

123~56789101112 
13 llj. 15 16 17 18 19 20 2l 22 23 2Ja. 
25 26 Z1 28 29 30 31 32 33 34 35 

(Count t1ae epent tbink1n& and vorki.Dr: on probl0111 but 
not tiJM spent Vllitins in oo.putati.OXI. cent..r.) 

Inet.ructioyl tour obJeotin in •ul:JIIif;tin& a nm b auuraed to be one aDd OD4 one of the foll<JVinc: 

a} :t"U..l.tdD& a ooaplete aoluti.on to a prosr.uaina: problea t.hrouch to an entirely aatiatacton ooncluaion; 

b) runnJ..nc • partial aolution to a prouusi.Da: probles tbrouch to IUl entirely aatiof'actory conclu.aion; 01' 

c) discovertna bov a particular ~· MChan!•• vorka by vriti.n£ a separat4. te.t prograa. 

Far oacb rw:a fOil Bll.ke, anavar the fir11t question below about whether 70ur obJaatin in subaitting the progrq vas ooapletelJ' aatiafied1 then cheek 
ott tbe appropriate cat.e~r1M on the next tbree qu .. t:tOJU; 1 u thcr,r appl;r, e.nd briel'lJ' describe the oM.nges eabodied 1n e&ah program run a.tter the fi.rot, 
on the rovor•o aid11. 

Did the progrs.a do vbat you. 

JILL OUT REVERSE SIDE, TOOl 



117 

DESCRIPTION OF CHANGES 

For each program run you submitted, briefly describe the changes made from the previous 
run, and why the changes were made. Indicate the run number at the left side of the 
line. Obtain addi tioml sheet& if ne oessaey. 

R..n # 



118 

consider this problem: You are a cashier. lir.ite 
instructions to make change, using the fewest coins 
possible, for a purchase between 1 cent and 100 cents paid 
for with a $1 bill. The final situation you want to achieve 
is that tbe change you pay out is egual to the difference of 
100 cents and the pu.rchase price. The initial situation is 
that the fUrohase price is between 1 cent and 100 cents, and 
that no change has been paid out yet~ 

Three "algorithms," or ,;pecific pla.ns tor solution of a 
problem, are popular for making change: Some people add 
pennies to the purchase price until the sum is a multiple of 
5, then add larger coins until the sum is a multiple of a 
larger ccin deuoaination, and so on, uutil the sum is 100 
cents; others calculate the change to be given out, then 
subtract coin values from the change as coins are given out, 
until the change still to be given is reduced to 0; and 
still others calculate directly the num.ber of each 
denomination cain to be returned by dividing the change to 
be returned by 25 cents to tind the number of guarters, 
subtracting cut the value of the ~eturned quarters* and 
doing the same for dimes, nickels, and pennies. 

We now give a program and correctness argument for the 
second method: 

Change reduction algorithm: 

Three pieces of information will be maintained, 
PURCHASE.IBICE, CHANGE.NEBDED, and CHINGE.GIVEN, where 
FURCHASE.IBICE is the value supplied to the program, and the 
other t•c variables receive their initial values in the 
first twc program statements: 

CHANGE. NEEDED is 100 - PURCHASE. PRICE 
CHANGE.GIVEN is 0 

while CB ANGE. Nl\EDED is >= 25, x:epeat the following: 
dispense a quarter 
reduce the value of CHANGE.NEEDED by 25 
increase the value of CHANGE.GIVEN bJ 25 
end of repeated instructions. 

while CBANGE.NEEDED is >= 10, repeat the following: 
dispense a dime 
reduce the value of ~HANGE.NEEDED by 10 
increase the value of CHANGE.GIVEN by 10 
end of rereated instructions. 

if CBANGI.NEEDED is >= 5 do the following: 
dispense a nickel 
reduce the value of CHANGE.NEEDED by 5 



incr:ease the value o.t CHANGE.GIVEN by 5 

it CHANGE.NEJ::DED is >: 1, do the following: 
disrense C.llANG E. NEEDED number of pennies 
reduce the value of CHANGE.NEEDED to 0 
increase the value of CHANGE.GIVEN 

bJ CHANGE.NEEDED 

119 

Note that when CHANGE.NEEDED has been reduced to less than 
10, at most one nickel can be properly dispensed, so no 
repetitive statement is needed at this stage, contrary to 
the earlie.r steps. Also note that when CHANGE.liEEDED has 
been reduced to less than 5, exactly CliANGE.NEEDED number of 
pe.nnies can be dispensed directlJ, since pennies are the 
smallest de.nolllination coin and constitute the remaining 
change to be given. The plan described above vas chosen to 
simplify the correctness argument. 

correctness argument: we must argue first that each loop, 
or repetitive statement, terminates, that is, that the 
condition in each "while phrase" must eventually become 
false. Each loop must terminate because CHANGE. NEJWED is 
positive to begin with (PURCHASE.PRICE betveen 1 and 100, 
inclusive, was specified), can only diminish in value, and 
in fact does diminish in value each time through a loop. So 
for each loop, if CBANGE.NEEDED is not initially less than 
the stated coin value in the given loop, eventually it must 
sink belcw the stated coin value. Since each loop 
terminates, in turn, the program terminates when the last 
loop is ever. 

Now we must argue that the change dispensed was just 
what was called tor. Were it not for the need to prove 
this, we Bight not have used the variable CHANGE.GIVEN. But 
observe that the sum of CHANGE.NEEDBD and CBAHGE.G~VEN 
remains constant [except between the pair of statements 
changing their values) ; when CHANGE. GIVEN decreases in 
value, CBANGE.GIVEN increases bJ a like amount. 
CHANG.E.NEEDED .started out as 100-l?URCHASE.I?RICE, exactly 
what we needed to give back; CHANGE.GIVEN started out as 0. 
Since the sum ot the two var·iables remained constant, when 
CHANGE.NE.ED!D falls to 0 (our stopping condition), 
CHANGE.G.IVEN has risen to 100-I?URCHASE.i?iUCE, exactlJ the 
change we had to yive back. So CHANGE.GIVEN, which records 
the value of coins dispensed, is exactly what it should be 
at tero:illation. How do we know we haven't given back more 
change than we should? If CHANGE.GIVEN were greater than 
correct, then CHANGE.NEEDED would have to be negative, since 
their sum is constant. But this is impossi.ble, since each 
decrement leaves CHANGE.NEEDED nonnegative and the program 
terminates as soon as CHANGE.NEEDED falls to o. The program 
transforms the initial state, when CHANGE.Gl.VEN vas 0 and 
CHANGE.NIEDED was 100-PURC.IlASE.PBICE to a final state in 
which CHANGE.Gl.IEN was 100-PUBCHASE.PBICE and CHAHGB.NEEDED 
was o. 



120 

8.~ jJAS~ §l!jJ! YO Ri1 AID BAI~D !!SCA~LJffLJ fASClt 
.§J!!U!l~ 

8.6.1 ~11 j~aa !1 

(in seventh week of class~ 

1. Indicate what is actually or potentially wrong with the 
syntax or logic of each of the following prograa segaents 
and give your reason for thinking so. lou may assume that 
portions of the program not shown would be correctly 
written. 

a) The following program segment 
and print the Fibonacci numbers 
value which is known to be greater 

FIBS~ VIE INT:=O; 
SECOND VIi INT:=1; 
IOUIFUT:HIEXT(FIRST); 
IOUTEUT:HIIXT(SECOND); 
FIBNUS VIi INT:=FIRSTtSECOND; 
LIMIT liB INT,IINPOT:LOPOP; 

.is intended to 
less than some 
than 1. 

DO FlBNUS<LIMIT -> IOUTPOT:HIEXT(FIBNUM); 
FlBST,SECOND:=SECOND,NEXT; 
FIBNUI'I:=FlRST+SECOliD 

OD 

calculate 
limiting 

b) Ibe following program segment is intended to print all 
Fibonacci numbers less than some value M. That is, if 1'1<=0, 
no output is to occur; if 1'1=1, tbe value 0 is to be printed; 
.if M>1, then values 0,1,1, ••• are to be printed. 

I1' 1!<=0 -> SKIP 
I M>O -> lOliTl?UT:HIEXT(O} 
l M>l -> IOUTEDT:HIEXT(O); 

IOUTl?UT:BIEXT(l); 

FI 

repetitive statement to generate 
other sequence members 



121 

c) The input will be a seguence of integer values between 1 
and 6. '!he following program segment is intended to count 
the number of 1's and 2 1 s in the input. 

SINGLES VlB INT:=O; 
DOUBLES VIR INT:•O; 
DC liNPUT.DOH>O -> NEXT,IlNPUT:LO~OP; 

CD 

"ASSUME 1 NEXT 1 IS A NON-VIRGIN 
INTEGEB VARIABLE" 

IF l<EX'l= 1 -> SINGLES:=SINGLESt 1 
I NUT=2 -> DOUBLllS:=DOUELESt1 

l'I 

2. Given as precondition that the input value to be read 
may be any integer, characterize what the following program 
segment does by formulating an appropriate postcondition 
assertion. 

N VIB lN'I,IlNPUT:LOPOP; 
DC 101000 -> N:=Nj10 

J jN>O) AND (N<100) -> N:=N*10 
CD 

3. Given as precondition that the input is any non-zero 
integer, write program segments to read a value for a virgin 
integer variable X, and to establish the truth of the 
following fOstcondition, where SIGN is also a virgin integer 
variable. 

(X is fOSitive and SIGN=1) or (X is negative and SIGN=-1) 

4. The weakest precondition of a program and a postcondition 
is the most inclusive description of the initial state for 
which the given program terminates establishing the truth of 
the given postccndition. state the weakest precondition for 
each of the following program segments and postconditions. 

a) frogras: X:=2*X 
postccndi tion: 0<1<20 

b) prog~:aa: X:=XtY 
postcondition: X>O 



122 

5. Observe that the MOD o~erator can he used to examine 
whether one integer is a multiple of another. That is, for 
integer variables A and B, it (A 1!00 E) =0 then A is a 
multiple cf E. Ose this understanding of the MOD operator, 
as well as your other programming knowledge, to fill in the 
statement or statements needed in each ot the blanks in the 
following program segment, which is intended to print all 
the positive multiples of 2 less than 1000 and all the 
positive nltiples of 3 less than 1000. 

"I IS THE NEXT INTEGER TO BE EXAMINED AS A POSSIBLE 
ID11IPLE OF 2 DB 3." 

I VIli IN1:=1; 
DC !<1000 -> 

CD 

II' (I !!CD 2J =0 OR (I fiDD 3) =0 
l ~((I !!OD 2)=0 OR (I lCD 3)=0) 

PI 

-> 
-> ---------

Indicate what you must argue as correct about this program, 
then briefly do so. 

6. l'lany feOJ;le have made syntactic mistakes in the usage of 
semi-colons. To help you appreciate that a semi-colon may 
only J.a:ecedE the beginning of a statement, answer the 
following question: 

iith ~hat DFL symbols or parts of the DPL language may a 
statement begin? Be specific. (A «part" of the DPL 
language is something which is written in mixed upper and 
lower case letters in a syntax diagram, and which is further 
defined it its own syntax diagram.) 



123 

8.6.2 

(in eleventh week of classj 

1. GRAD!S is a 1-dimensional integer array of all 10 exam 
scores'fcr each of the 20 people in a class. Assume that 
all the exam scores have already been read into the array, 
in the order: all the scores for student 1, followed by all 
the scores for student 2, etc. 

Write in DPL a program segment to compute and print each 
student's average exam score. {You may assume that the 
scores have been properly read into GRADES, but should 
explicitly provide the output statements for the needed 
printing of values. You should assume that a lowest 
subscript value has been specified in the initialization 
statement Lor GRADES, but should make no assumption about 
what that specific lowest subscript value was.) 

2. !he following program segment is intended to search 
array A for value X and if the value is found, output the 
subscript cf A at wllich the value was located. (You should 
assume that values have already been read into A.} 

1 VI5 IN1:=A.LOB; 
DC A (1)-.=X -> I :=It 1 
CD; 
11 I<=A.HIE -> IOUTPUT:HIEXT(I) 

I I> A.HIB -> SKIP 
H 

What is wrong with the program? 

Indicate a modification to the program so that it vill be 
correct. (Indicate the change (s) above or re-write the 
program below, as you choose.) 



124 

3. ihe following program 
elements of array A, by 
values then moving invards 

portion reverses the order of the 
swapping the outermost remaining 
and repeating. 

"I REPRESENTS BOW MANY TISES SO FAR A PAIR OF VALUES 
FR08 ARBAY A HAS BEEN SWAPPED." 

I Vlll INT:=O; 
DO I<(A.DOM/2) -> A:SWAP(A.LOBti,A.EIB-1} 

I:=It 1 

* OD 

Formulate an invariant relation that describes, at point *• 
the portion of the array that remains to be reversed. (The 
invariant relation should be specified in terms of I and 
such arra~ domain expressions as are needed.) 

4. Sometimes a person reading a program can immediately 
detect soaething amiss with the program comments. Seldom do 
you need to understand the entire program to reach that 
conclusion. Otten the comment says something that makes no 
sense in terms of English grammar and makes no sense in 
terms of the programming language •.s proper usage. Soaetimes 
the problem lies elsewhere. 

Refer to the declarations and/or pro9ram statements and 
indicate what is improper with the following comments. (Be 
as specific as you can.) 

a) READING VIE INT ARRAY:=(1); 
• 
• 
• 

READI~G:SWAP(RIGHT,LEFT) 

b) PRIVAR LEFT; 
• 
• 
• 

LEFT VlB INT:=POINTt1; 
• 
• 

"EX~HANGES VALUES OF 
RIGHT AND LEFT" 

"LE£T IS THE INDEX 
POSITION 'POINT+ 1• 11 

DO LEF!<BIGHI -> a:SWAP(LEPT,BIGHT); 
LEFT :=LEFTt 1; 
RIGHT:=IilGHT-1 

OD 



c) PBIVAB RIGHT 11 AIIl INDEX VARIABLE REPRESE.N'IING 
AT ON~ TIME THE SMALLEST LARGER 
NUHBER AND LATER llll THE PROGRAM, 
THE HIBCUND." 

125 

(Note: see homework p.roblem #6, described in Appendix 8. 7, 
before reading the following exam question.) 

5. The following is a correct, commented solution to the 
odometer (:roblem you worked on. Given as input a sequence 
of ten unigue digits (but not 9 8 7 6 54 3 2 1 0), you were 
to comp.ute the next higher sequence. There are some .simp.le 
modifications that can be made to the program so that it 
will compute the next lower sequence, instead. (The input 
would be any sequence of ten unigue digits except 0 1 2 3 4 
5 6 7 8 9.) Indicate those modifications in both the 
programs and comments directly on the program below. 

"FIND GEEATEST INTEGER I SUCH THAT C(I)<C(lil):" 
I VIB INT::C.H~E-1; 
DO C(I}>C(It1) -:> I:=I-1 
OD; 

"FIND GREATEST INTEGER J SUCH THAT C(J):>C(I):" 
J VIR INT:=C.HIB; 
DO C(J)<C(I) -> .J:=.J-1 
OD; 

"SWAP VALUES IN fOSITIONS I AND J:" 
C:SiiAl' (I,J); 

"REVERSE !HE CHDER OF THE VALUES IN POSIIIONS It1 
THROUGH C.HIB. L AND R ARE THE LEFTMOST AND 
RIGHiMOS! POSITIONS AT WHICH VALUES ARE TO BE 
SW AP.HD. 11 

L VIR HI :=I-f 1; 
R VIR INT:=C.HIE; 
DO L<R -> C:SWAP(L,R}; 

L:"'Lt1; 
B:=B-1 

OD 



126 

'covers only Pascal material} 

1. Pascal permits the definition of additional data types 
or subranges, beyond the standard set of integers, reals, 
characters, and booleans. This facility enhances a 
disciplined approach to programming in at least two vays: 

1. It allows the programmer to delineate for the 
p:rcgram • s readers the precise set or range of values 
a Yariable may take on, thus communicating more about 
the intended use of that variable than would normally 
be possible. 

It allows 
prcgrammet 
variable, 
a.s~istancs ... 

the computer to 
when an unintended 
thus rendering 

check and .notify the 
value is assigned to a 
considerable debugging 

For each of the following brief problem descriptions, 
indicate the complete variable and/or type declarations you 
would need for the most important data structures or 
variables. 

a) A prcgram to manipulate variables for hours, minutes, 
and seconds. 

b) A frcgram to tabulate fruit sales, in pounds, for the 
following fruit: apples, oranges, peaches, lemons, limes, 
strawberries. tangerines, raspberries, pears, and plums. 

c) A program to tabulate the cumulative score for a 
complete game of bowling. 

d) A prcgram to manipulate information about whether each 
of the 20C parking Sfaces in a garage is occupied or not. 

2. Suppcse you are told to write a program segment to 
determine the range of values in a list of integers to be 
read in. ('Ihe "range", here, is the ditterence b<:tween the 
largest and smallest values read.) 'Ihe following three 
program segments are proposed as solutions. Under certain 
circumstances (for certain sets of input values) the program 
segments will produce correct answers. 

Identify under which circumstances each program will work. 
(Think of the circumstances under which each one might not 
work, then write down the circumstances under which it would 
work.) 



a) l'IIN:-=HlOOOO; 
MAX;=-100000; 
WHILE NOT EOP DO 

BEGla 
lUAD(X); 
IF X<l'IIN THEN l'IIN:=X 

l!LSB ll' X>HAX THEN MAX;:X 
END; 

BANGE:= I!IAX-l'liN 

b) BEAD (X); 
!liN :=X; 
I!IA.X: =X; 
WHILE NOT EOF DO 

El!GIN 
BEAD(Xj; 
IF X<lUN THEN .I!IIN:=X 

ELSE IF X>IIAX THEN MAX::X 
l!ND; 

RANGE:=HAX-lHN 

c) REU ~X); 
MIN:=X; 
!UX:=X; 
wHilE ~GT EOF DO 

BEGIN 
Bl!At(Xj; 
IF X<MIN THEN HIN:•X; 
IF X>MAX THEN MAX:=X; 
Rl!liGE:= !lAX- MIN 

END 

127 



128 

3. Military fecple since the days of Julius caesar have used 
codes and ciphers to scramble messages and p~otect their plans 
against discovery even if the messengers were captured and forced 
to disclose their messages. A simple-minded cipher would be to 
change each consonant of the English alphabet into the letter 
that follows it, and each vowel into the letter that precedes it. 
(Consider the alphabet as circularly linked: A follows Z and 
Z precedes A.) Thus the message 

ATTACK AT DAWN 

would be enciphered as 

ZU!JZDL Z!l EZXO. 

If the receiver also knows the enciphering scheme, deciphering 
the message is no problem. The enciphering, then, is really a 
mapping which takes a letter from the domain and maps it into 
some other letter in the range. (Both the domain and range, here, 
are the alphabet.) 

Write a Rascal program to read a message consisting of characters 
from the input cards and print the coded message enciphered according 
to the above scheme. Include all declacations, comments, and input/ 
output' statements. 



129 

5. The following are two program segments to sort a set of N 
integer values already read into array A. liith 11=6 and the contents 

A[l] = 1 
A( 2 J = 6 
A[ 3 J = 2 
A[ 4 J = 8 
A( 5) = 31 
A( 6] = 7 

state, for each program segment below, the number of times a 
comparison is made between two array values tor each time 
through the outermost loop (that is, for each new value of 
I), then add the numbers togetber to get a total count. 

a) (* SELECTION SOR1 *) 
I:=1; (* I is the position of the next 

element of A which is to receive 
its proper sorted value *) 

WHILE I<N DO 
BEGIN 

P:=I; 4* J? will be the position of the 
smallest value found so far *J 

J:=Jt1; (* J is the position of the next 
array value to be compared to 
the largest found so far *l 

WHILE ,J<=N DO 
EEGUI 

IE A(J)<A[PJ THEN P:=J 
ELSE; 

J:=Jt1 
END; 

4* swap the values in positions I and P of A *) 
T:=A[I ]; 
ll{ I ]:=A[J? J; 
A[l']:=T; 
I: =It 1 

END 



b} (* lNSEBUON SOilT *) 
1:=2; (* I is one more than the number of 

WHILE I<=N DO 
B.EGIN 

J:=I-1; 

values inserted so tar. *) 

(* J is position of next value 
potentially less than the value 
to be inset:ted at this stage *) 

FCUND:=E'Al.SE; (* FOUND is truth of "Have 
fou!ld inset:tion point already" *l 

liHJ:U (J>= 1) AND (NOT FOUND) DO 
BEGIN 

lF A[J]<AlJtl] THEN 
ELSE 

END; 
I:=It1 

Eli I: 

FOUND:=TRDE 
BEGIN 

T:=At.J ]; 
A[J ):=A[Jtl ]; 
A[Jt1 ]:=T; 
J:=J-1 

END 

130 

6. For the following Pascal pt:ogram ft:agment, assume that 
the weakest precondition fo1: the p~:ogram is that X and Y are 
sorted iD inct:easing order (i.e., no repetitions and 
I( 1 )<X(2J< ••• <X(ll] and likewise I[ 1 ]<Y[2J< ••• <Y[ NJ. 
However, there might be some I and J for which X[I]=Y[J].) 

The program ft:agment is to compute an art:ay, U, which 
contains in ascending ot:der (without repetitions) all 
elements that are in either X or Y 01: both. 



YAR X,Y: ARRAY( 1 •• 100] OF INrEGER; 
U: ARRAY£1 •• 200) OF INTEGER; 

131 

11, (* Actual t of values to be read into X *j 
N, (* Actual t of values to be read into Y *) 
1, (* Subscrift of next element of X that 

might be i.nserted into U *) 
J, (* subscript of next element ot Y that 

might be inserted into u *) 
K: (* subscript of next element of U to 

receive a value *l 
INTEGER; 

BEGIN 
READ (N, N); 
statements to read values correctly into X and Y; 
I:= 1; 
J:=1; 
K:= 1; 
WHILE (I<=ll) AND (J<=N} DO 

BEGIN 
IF X[I)<I[J] THEN BEGIN 

u[ K J:=xrr J; 
K:=Kt1; I:=.It1 

END 
ELSE IF Y[J]<X[I) THEN BEGIN 

U[ K ]:=Y( J J; 
K:=Kt1; J:=Jtl 

END 
ELSE II X(I]=Y[J] THEN BEGIN 

* END; 
II 1)!1 TEEN WHILE J<=N DO 

BEGIN 

END 
ELSE (* J>N *) 

WHILE I<=ll DO 
BEGIN 

END 

------· 
END 

END. 

a) Demonstrate youJ: ability to read the above program 
fragment and construct the needed algorithm by filling in 
the blank~ with the needed statement or statements. 



b) If ll 
repeated 
repeated 
repeated, 

is the 
plus 
plus 

sum 
the 
the 

of the number of times the first loop 
number of times the second loop 
number of times the third loop 

132 

is 
is 
is 

liihat is the maximull! value of R? 

liihat is the minimum value of B? 

c} For fOint 
describes the 
and Y. 

•, formulate an invariant relation 
contents of U in terms of the contents 

which 
of X 

d) Offec 
program. 

an acgument of the correctness of the coapleted 
State what must be argued, then do so. 



133 

8.6.4 

(in seventh week of class} 

I. Multiple choice. 
tor each question. 
carefully. 

Circle one answer1 the best answer, 
Read the questions and the answers 

1. A statement group 
BEGIN 

2 or more statements 
UD 

a) Is used for clarity to indicate groups of related 
statements 

b) Is used to allow many statements to be used where 
one statement would otherwise be expected 

c) Must apFEar in an ELSE clause 
d) Is used only to specify the executable part of a 

program 
e) None of the above 

2. The statement READLN(X) 

3. 

a) Causes the output device to skip a line after the 
value of j is read 

b) Causes the value of X to be read and then to be 
written on a new line 

c) Causes the value of X to .be read from a new line 
d) Causes the value of X to be read from the last 

itea on the present line 
e) None of th.e above 

A program with the following structure 

IF condition THEN GOTO 10; 
1 or moLe statements; 
20: statement; 
1 or more statements; 
IF condition THEN GOTO 10; 
GCTO 20; 
10: statement;; 
1 or acre statements 

is undesirable because 
a) It cannot operate correctly 
b) It is hard to understand 
c) lt has no ELSE clauses 
d) lt uses numeric labels 
e) None of the above 



ll. In an insertion sort o£ a list of elements, as 
given in lecture, the £i.t:st inse.t:tion is of 

a) 'Ihe first element into its ultimate position 
in the sorted list 

b) 'Ihe last element into its ultimate position 
in the sorted list 

c) 'Ihe second element into its correct position 
relative to the first element 

d) The smallest element into the first position 
in tbe list 

e) None of the above 

5. consider the following program fragment 
IF 11<5 

'IHE!i action1 
l!LSE II' X<10 

'!HEN action2 
l!LS.E Il' X<15 

'IHEN action3 
ELSE action4 

.llhich statement below is NOT true? 
a) If l holds the value 7, both action2 and 

action3 will be taken 
b) If 1 holds the value 10, actionJ will be taken 
c) If X holds the value 16, actionll will be taken 
d) If l holds the value -200, action 1 will be taken 
e) If X holds the value 15, action4 will be taken 

6. A progra~ to read a series of 50 pairs of numbers 
and to pri.nt the sum of the s111aller numbers of 
each rair vould involve 

a) A loop within a loop 
b) A loop within a select 
c) A select within a loop 
d) A select within a select 
e) None of the above 

7. llhich of the following tasks is principally the 
responsibility of an operating system? 

a) Translate from Pascal to machine language 
b) Produce a listing of the program 
c) Supervise the e~ecution of a program 
d) Control the format of the program•s output 
e) Bemove the frogram•s guts 

134 



8. ~be p~og~am fragment 

IF A=B 
TEEN 
ElSE A::Et 1 

a) Is illegal because a statement or statement 
grouf must tallow the keyword THEN 

b) Is illegal because A=B should be A:=B 
c) Is illegal because A:=Btl should be A=Bt1 
d) Is undesirable because it is unclear and 

should be replaced by 
If NOT (A-B=O) 

THEN A:=Et1 
e} Is undesirable because it is unclear and 

should be ~eplaced by 
H A<>E 

THEN A:=Bt1 

9. If a Pascal frog~am includes the declarations 

COtiST 
XXX = 9; 

VAll 
l: INTEGER; 

a) XXX does not reguire space in the computer's 
memoty during program execution 

b) XXX:=I is a legal statement 
c) The value of XXX should never be changed 

between runs of the program 
d) 'Ihe value of XXX may now and then be changed 

between runs of the program 
e) None of the above 

135 



136 

10. Given th:cee integers, cons.ider the problem of 
finding the one whose value lies between the value 
of the other two. Which of the following would be 
the best set of test data for this problem? 

a) 1, 6, 8 
6, 1, 8 
a, 1, 6 
a. 6, 1 

b) 1, 6, 8 
4, 7, 10 
6, 1, 8 
7, 4, 10 
a, 1, 6 
10, 4, 7 
a, 6, 1 
10., 7, 4 
8, 8, 6 
10. 10, 7 

C} 8, 1, 6 
8, 8, 6 

d) 1, 6, 8 
6, 1, 8 
8, 1, 6 
8, 6, 1 
8, 8, 6 

e} 8, 8, 6 
6, 8, 8 
8, 6, 8 
6. 6, 8 
6, 8, 6 
8, 6, 6 



II. Insert the semicolons that are appropriate 
in the following Pascal program. 

PROGBAM T!SI(INPUi,OUTPUT) 

LABEL 10 

11 All 
1: INUGER 

BEGJN 
UAD Ill 
( * LGG.P *) 

WHILE TRUE DO BEGIN 
12 X<4 T£EN GOTO 10 
U X<10 

TllE!I X:=X-3 
ELSE BEGIN 

X:=Xt 1 
END; 10: 

(* END *j 

X:=X-2 
li.BITELN (X) 

END 

WRITE ('GOOD BYE') 
END. 

137 



Illo Trace the one of the following l?ascal progcaas 
uadec the title corresponding to youc section. 

Assume that the input stceam consists of 
-1 
4 

PBOGBAI'l 'IfS'l' llNFIJT~OUTPU'l'); 

LA.BEL 10; 
VAll 

X: lliT l!GllB; 

BEGIN 
WHILE NOT EOP(lNEUT} DO EEGIN 

Rl!AD.LN (Xj ; 

WHilE TBUE DO BEGIN 
IE X<=O THEN GO'l'O 10; 

X:=X-2; 
U {X*X - I) <>O 

THEN WRI'l'ELS(19 MOD(X*X-X)) 
lU. .S E li.liiT EL.II ( 0) 

END; 10: 

END 
END. 

138 



Assume that the tile INPUT.TEXT contains 
-1 
4 

PROGRAM iEST(lBPUT,OUTPUTJ; 

LABEL 10; 
YAR 

TXTIN: TEXT; 
X: Ill'IEGER; 

BEGIN 
BESE'I j'IX'IU, 'UNCSYS1:INPUT.'IEXT 1 };; 

WHILE NCI EC.f (TX'IIN) DO BEGIN 
REAtLN{'IITIN,XJ; 

WHILE TRUE DO BEGIN 
H X<=O THEN GOTO 10; 
X:=X-2; 
U (X*X-X) <>O 

THEN WRIIELN(19 MOD X*X-1)) 
THEN WRITELN(19 MOD(I*X-1)) 
ELSE WBUE.LN (0) 

END; 10: 

END 
END. 

139 



140 

8.6.5 

(in eleventh week of classes) 

1. Assuae that the constant .MAXSIZE has the value 3 and A 
is declared as ARRAY{ 1 •• l'IAXSIZl! J OF INTEGER. Assume for 
each of the following program fragments that before 
executing that iragment the input is as follows, where new 
lines on the page correspond to new lines of the input 
stream: 

1 ~ 3 
4 c 6 
1 e 9 

10 11 1.2 
13 14 15 
16 17 18 

For eac.h .fragment give the contents of the ar.ray A a.tter the 
fragment is executed. 

a) FOR 1:=1 TO .MAXSIZE DO 
BUDLN lA( I)) 

bj FOB 1:=1 TO .MAXSIZE DO BEGIN 
RUD(A[I]}; 
BUDLN 

EN.D 

C) FOR 1:=1 TO MAXSIZE DO BEGIN 
READ (A[l JJ; 
BEADL!I iA[I JJ 

END 



2. Let A be declared 
ARRAY[ 1 •• 3] OF ARRAY[4 •• 6J OF REAL 

Assume that the following prograa fragaent has just 
been executed. 

VALU1!:=10; 
FOE I:=1 TO 3 DO 

l'Oll J:=4 TO 6 DO BEGIN , 
A[l )[ J ]:=YALllE; 
VAl.llE:=VALUEf1 

END 

a) Give the contents of A{2,6). 

b) Give the co.ntents of A[ 3 ). 

141 

3. Trace the following Pascal program which transliterates 
German sentences, assuming that the input stream holds the 
three characters JA. The progra• is meant to run on a 
ooninteractive computer. 

PROGRAM TliANSL.I'l: (.INI'U'I,OUTI'UT) ; 
LABEL 10,20; 

CONST 
N lll'ILE'ITEiiS=3; 
l!IAXLUI GT!l=20; 

VAll 
GERLE'I'IEli, (* LETTERS TO TRANSLITERATE *} 
ENG LETTER: ( * CORRESPONDING ENGLISH LETTERS *J 

ARBAY(1 •• NUKLE'ITERS] OF CHAR; 
SENT: AREAY[l •• KAXLENGTH) OF CHAR; i* SENTENCE TO 

'IRANSL.ITl!!iATE *} 
CllARIIUM, (* CHAUCTER NUMBER IN SENTENCE *) 
LE'IUJJIIIUM, (* INDEX IN 'IBANSLI'IERUIO!l TABLE *) 
SENTLUGTH: {* SENTENCE LENG'IH *) 

O •• l!AXINT; 



BEGIN 
(* SE~ CORRESPONDING LETTERS *J 

GERIETI!R(1):=•J•; 
ENGLETTER(l]:='Y'; 
GEBU'l'IE.Ii( 2 ):"' 1 V1 ; 

!NGI!TTER(2]:= 1 F0 ; 

GERIET~ER[J]:=•w•; 
E NGIETTEll( 3] :=' V •; 

(* RUt AND ECHO SENTENCE *J 
WRI'IE ("Gilll!A.N SENTENCE: '); 
CHAR NOM:= 1; 
(* lOOP *J 

WHILE TRUE DO BEGIN 
READ(SENT(CHARNUM]); 
WRI'IE(SENT(CHARNUl!]}; 
IF .SENT[ CHARNUI! )=' • • 

THEN GOTO 10; 
CHARNUl!:=CHARNUMtl 

END; 10: 
(*HlD*,l; 
S!N!LENGTI:=CHARNUM-1; 

(* TliANSIITERA'IE AND PRINT SENTENCE *) 
liRITELN; 
will 'IE ('ENGLISH TRANSLI'J:EBATION: 1 ); 

FOE CHARNUM:=1 TO SENTLENGTE DO BEGIN 
(* TRANSLITERATE AND PRINT THIS CHARACTER *J 

LETTEBNUH := 1; 
(* LOC.I? *.1 

wHilE TllUl! DO BEGIN 
IF LETTERNUM > NUMLETTERS 

~HEN GOTO 20; 
II SBNT(CHARNUM]=GERLETTER[LETTERNUM) 

THEN BEGIN . 

142 

SENT[ CHAR NUl!]:= INGLETT ER[ LETTEBNUM ) ; 
LITTEll NIH! :=NlJl!LETTEBSt 1 

END. 

END; 

END· 
ELSE LETTERNUM:=LETTERBUl!t1 

END; 20: 
(* END *); 
WlliTEjSENI[CHARNUM]) 

Wlll'IEI'-') 



s~ Circle the best answer tor each of the following 
multiple choice questions. 

a) Assume that A and B are real variables and the 
assignments 

A:=0.6 
B :=0. 26 

ax:e executed~ The condition (A*A=0.1tB) is then 
computed to have the value FALSE despite the fact 
that C.6 times 0.6 is equal to 0.1 t 0.26 because 

1) A and E must be specified in the E format 
2) The computer does multiplication of reals in 

different ways at different times 
3) Beal constants are not allowed in Pascal 
4) Ileal numbers are not represented exactly in 

the computer 
5) None of the above 

b) Let A be declared ARRAY[ 1 •• 20) OF REAL. A program 
fragment to change to zero all negative elements of A 
should have as its main control structure 

1) a FCB iteration 
2) a liH.ILI! loop 
3) a FCll iteration nested inside a .FOB iteration 
4) a iiLillLE loop nested inside a liHlLE loop 
5) a FCli iteration nested inside a WHILE loop 

c) Assume that all NC automobile license plates have 
exactly six characters. A list of such license plate 
•numbers• would be best stored as 

1) a 1-dimensional array of characters 
2) a 1-dimensional array of characters plus a 

1-dimensional array of integer lengths 
J) a 2-dimensional array of characters 
4) a 2-,di mensional array of characters plus a 

1-dimensional array of integer lengths 
5) a 2-dimensional array of characters plus a 

2-dimensional array of integer lengths 

143 



d) If the declaration 
A: UBAY{-5 •• 5) OF -10 ... 10; 

occurs in the VAB field of a program and the program 
includes a fair of statements 

BUt (I); 
A{I ]:=I 

that are executed when the next item in the input 
strea& has the value 8, 

1) A syntax error will be detected by the compiler 
2} An error will be detected during program execution 
JJ The program will calculate an incorrect answer 
4J The frogrammer will· trip when picking up his listing 
5) No errors will result 

e) If your program fo.t a COIIP 14 programming assignment 
includes a GOT!l statement exiting from a FOR 
iteration, will lose credit because of the chance 
that 

1) The compiler will find a syntax error 
2) The run-time system will detect an error during 

execution 
3) The ftogram will compute an incorrect answer 
4) The frogram will be hard to debug because of a 

stLucture with two exits 
5} None of the above 

144 



1. For each of the data types: 

a) ARBU(1 •• 10J OF All.RAY[-2 •• 3) 01' .REAL. 
b) ABBAI(2 •• 6] OF CHAR 
c) BOOLEAN 
d) 1 A •. • • B 1 

e) INTEGEll 

we wish to know which of the following properties 
apply tc variables of that type. 

1) The variable can have only 
twc legal values. a b c d e 

2) The variable can serve as 
the index of an array. a b c d e 

3j The variable holds at one 
time a collection of values. a b c d e 

Indicate your answers by circling the corresponding 
letter for each of the types to which the properties 
apply. 

145 



2. Assume that a main prog.ram declaces J:NTEGEll variables 
with the names A and B and that during execution it 
accives at a statement 

I?(A,B) 
when its variable A bas the value 5 and its variable 
B bas the value 1. Assume that the pcocedure I? is 
detined by 

I?BOCEDOBE P(VAB B: INTEGEli; C: INTEGEll}; 
VAll 

A: INTEGER; 

EEGlll 
C:=2*C; 
A:=C-1; 
B:=l;ltCtA 

UID; 

Give the values of 

a) the variables and parameters of P just before the 
executable part of P is executed 

b) the variables and parameters of I? just before the 
procedure P returns to the main program 

c) the variables A and B in the main program just 
after control is returned from the procedure P. 

Use "Jfi if a value is unknown. 

146 



3. Assume that you must write a prog.ram to generate a 
concordance for a text string provided as input - it 
lists all of the words in the text in alphabetical 
order and tor each word it prints the number of times 
that the word appeared in the input text. The 
algorithm that you produce assigns values to three 
arrays: WCRDLIST, such that WORDLIST[POS] holds the 
POSth word 1n a~phabetical order; COUNT, such that 
COUNT{EOS] holds the number of occurrences of the 
word stored in iiOBDLJ:ST{ .!?OS]; and LENGTH, such that 
LENGTil{fOS) holds the number of characters in the 
vo~:d ill liCBDL1ST(.I?OS ). Here is the algorithm you 
produce: 

NUI!WOBCS::Q 
Loop 

Exit if there is no more input; 
Bead the next wo~:d into WOBD and set {1) 

iCBDUNGTH to its length; 
Set !'OS to the position of the first word (2) 

in WOllDllST that is greater than or 
equal to (in alphabetical order) WORD; 

lF liOBDLIST{ EOS] is egual to WORD (3) 

End; 

THEN CCONT[ECS]:=COUBT(POS}t1 
HSE BEGIN 

Move all of the words in iiOllDLIST {4) 
from positions POS through 
NUI!iiOBDS down one position; 

Move all of the lengths in LENGTH (5) 
from positions POS through 
NUMWOBDS down one position; 

!!eve all of the numbers in COUNT {5} 
from positions POS through 
NUMWOBDS down one position; 

NUMWOBDS:=NUMWOBDS t 1; 
Set WOBDLIST[POS) to WORD; (6) 
LENGTH[POS):=WOBELENGTH; 
COU N'I[ l?OS] := 1 

END 

Print the list of words in WCBDLIST and the (7) 
number of occurrences of each (from COUNT) 

Assume that no word vil~ appeal: that is g~:eater than 
MAlLENGTH characters long, and no more than MAXWORDS 
words tiill be encountered, where MAXLENGTH and 
MAXIIOBDS are dec~ared as constants. 

a) Give type definitions necessary to a~low each of the 
variat:les WOBD, liOBDLIST • COUNT, and LENGTH in this 
main p::ogram to be decla~:ed to have a single-word 
type. 

147 



148 

b) Using the types defined in part a, 9ive the declarations 
required for WORD, WOHDL~ST, COUNT, .and LENGTH in the 
main frog ram. 

cj The numbers 1-7 in the right margin mark lines that 
specify the actions of seven subprograms that are 
required: 

1. REAilliO!iD 
2. l'CS.l'IND 
3. liOiiDEQOAL 
4. SBHT!iO!lDS 
s. Sllll'TNOl!S 
6. liORDASS~GN 

7. COJ!iCPUNT 

The uu1ber 5 appears in the margin twice to indicate 
two separate invocations of a single subprogram. For 
each subprogram give a full FUNCTION state.ment or 
PROCEDURE statement needed to head the definition of 
the subprogram. You need not write any part of the 
subprogram except for the FUNCTION or PROCEDURE 
statenent. 

4. Assume that a program includes a procedure beginning 
with the statement 

FROC!DUilfi Q (A: REAL; V AR E: ll:EliL) ; 

Assume that the program declares the real variables 
c, D, and l!. Which of the following two invocations 
would te legal? 

1} Q 4C,DH} 
2) Q !DtJl,Cj 

a) Neither 
b~ Number 1 only 
c} Number 2 only 
d) Both 



149 

s. You are to write a Pasca~ program that is given as input 
a string of alphabetic characters terminated by a blank 
and prints the "next string", where "next string" is 
defined by thinking of the characters 1 A1 through •z• 
like digits and thinking of the string like a n1uaher 
made up of digits. Thus the next string after "A" is 
"B", the next string after "Z" is "AA", the next string 
after "AB" is "AC", the next string after "AZZ" is "BAA", 
the nelCt string after "ZZ" is 11 AAA", and the next string 
after the blank string is "A". 

You may assume that the input string will be at least 
one character shorter than the memory you have set aside 
to hold the string. You will probably need to use the 
predefined function succ; assume that succ applied to a.ny 
letter but • 2 • gives the next letter in the alphabet. 
Your frogram may omit a header comment, but it should 
include all other commenting and formatting that is 
normally reyuired. 



6. Assume that the array LIST is declared ABRAY[1 •• 8) OF 
INTEG!li and that LIST has the following contents: 

LIST[ 1) 2 
LIST( 2] 5 
LIST( 3] 6 
LIST(4J 8 
LIST( 5J 9 
LIST{ 6 J 12 
UST{ 7] 111 
LIST( 8 J ? 

Assume that KEY and ELT are both declared INTEGER and 
that we have our choice of the following two 
algorithms to set ELT to the indell of the element of 
LIST that holds the value in KEY, or to set ELT to 
zero if there is no such element. 

Algcdt.hm 1: LIST[ 8 ):=KEY; 
ELT:=1; 
Loop 

Exit if LIST[ELT}=KEY; 
ELT:=ELTt1 

End; 
IF ELT=8 

THEN ELT:=O 

Algorithm 2: BEGLlST:=1; 
ENDLIST:=7; 
Loop 

Exit if ENDLIST-BEGLIST<=O; 
(* £IND THE ~IDfOINT OF THE CANDIDATE 

PABT OF THE LIST *) 
ELT:=(BEGLISTtENDLIST) DIY 2; 

(* HALVE THE CANDIDATE PART 

End; 

OF THE LIST *) 
Select 

End 

IF KEY<LIST( ELT] 
THEN ENDLIST :=ELT-1 

ELSE IF KEJ>LIST[ELTJ 
THEN EEGLIST:=ELTt1 

ELSE EEG.IN 
BEGLIST:=ELT; 
llNDLIST:=EI.T 

END 

IF KEY=I.IST(EEGLIST) 
THEN ELJ::BEGLIST 
ELSE ELT:=O 

150 



151 

Each of these algorithms has a loop that includes an exit 
test. successively for the values 

a) 14 
b) 17 
C) 5 

answer the following questions: 

With that value in KEY, how many times will the exit test 
of algorithm 1 be executed? With that value in KEY how 
many times will the exit test of algorithm 2 be executed? 

d) (llxtra credit} 
It liE! holds a value in some element of LIST, for 
each algorithm give the maximum number of times its 
loof'S exit test can be executed~ 



152 

1. COfY and run (different frogram for each section) 

2. Length in yards, feet, and inches. 

Write a program which reads an integer value representing 
a length, in inches, and converts that value into the 
equivalent yards, teet, and inches. Print out the 
original input value, followed by the computed yards, 
teet, and inches, in that order. Assume that the input 
value uill be between 0 and 32767, inclusive. 

3. Armstrong numbers 

An n-digit number is an Armstro~g number if the sum of 
the n th ~ower of the digits ~s equal to the original 
number. .For example, 371 is a 3-digit Armstrong number 
because the sum of the J rd power, or cube, of each of 
its digits eguals 371. Write a program to read a 3-digit 
infut integer value, print out that same value, and print 
"True" if the value is an Armstrong number or "False" if 
the value is not an Armstrong number. The input integer 
value will be between 100 and 999, inclusive. 

4. Pibonacci numbers 

The seguence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ••• , in 
which each number is the sum of the preceding two, is 
called a Fibonacci number sequence, after the great pre­
Renaissance mathematician who discovered it. Write a 
program which reads an integer input value, prints that 
same value, then calculates and prints all Fibonacci 
numbers less than that integer input value. The input 
value may be any integer. 

5. Insertion sort inner loop 

W.rite a progLam to read an integer n followed by a list 
of n integeL·s and then tc reorder this list, in place, by 
leaving the relative order of all but the last item 
unchanged but inserting the last item somewhere within, 
before, or after the other items according to the 
following insertion rule. The last item is to be 
inserted immediately after the bottommost of the other 
items which is less than or equal to the item to be 
inserted. If the item to be inserted is less than all of 
the other items, the insertion should be before all of 
these items. Thus, for example, if the first input value 



153 

is 6 and the remaining inputs are 1, 9 1 2, 5, 7, 3, the 3 
will be inserted after the 2 producing 1, 9, 2, 3, 5, 7. 
Note that it the list ot all but the element to be 
inse.rte d is initially in ascending order, the insert ion 
will cause the whole list to end up in ascending order. 

Print the resultaut list. Assume that the program should 
work with values ot n up to 10. 

6. Odometer fro.blem (Dijkst.ra•s Next Permutation Problem) 

Given as iuo:ut an ordered sequence of ten single-digit 
positive integers representing a mileage reading, where 
each one of the ten integers is a dit.ferent number 
between 0 and 9 inclusive, calculate and print the next 
higher mileage where, once again, each of the ten digits 
is a different number between 0 and 9. For example, for 
input 6 2 9 5 8 3 7 4 1 0, the ne.xt higher sequence 
would be 6 2 9 5 8 4 0 1 3 7. 7he restrictions on the 
input sequence are that the ten values will each be a 
different number between 0 and 9, and that the sequence 
will net be 9 8 7 6 5 4 3 2 1 0, for which there is not a 
next higher mileage obeying the given rule. 

7. Pattern match (Apple and batch Pascal sections only) 

irite a program that will 
a} read a sentence 
b) read a word or phrase 
c) print whether the word or phrase i.s contained in the 

.sentence (including precisely the same blanks). 

7a. Bowling prcgram re-write (DPL section onlyj 

Be-code intc Pascal the complete DPL progxam in the 
lecture notes to score a game of bowling. (Given an 
input sequence representing a legal gaae-full of bowling 
pin ccunts, calculate the frame-by-frame cumulative 
score.) 

7b. Letter ccncordance (DPL section onlY) 

Write a Pascal program to tabulate the number of 
occurrences of each letter ot the alphabet in a given 
input text. 



154 

a. Function graphing (all sections in Pascal) 

Write a program to graph a mathematical function, F(X}, 
on a printed page. The function should be specified as a 
function subprogram, and the program should be structured 
so that a different function subprogram could be supplied 
withour change to the remainder of the program. Input 
values specify the minimum and maximum values of the 
function domain, and the maximum value in the range for 
the given domain. output should consist of a graph, with 
labeled axes, of the curve over the domain. 

9. Statistical subroutines 

Write a program to read an integer n followed by a 
sequence o.f n real values, then one more integer value 
designating whether to calculate the mean or the median 
of the real inputs. The subprogram to calculate the 
median should sort the input values, using the insertion 
sort algorithm introduced in assignment #5. 



155 

The i'!cCabe metric is a measure of cyclomatic complexity 
of programs. It relates intuitive complexity and graph 
theoretic complexity. Complexity, as measured by the 
program metric. depends only on the decision structure of 
the program. 

comple~ity is the number of conditions in the program, plus 
one. 

1. A program with no branching at all has complexity 1. 

2. A program which ca~ls a subprogram has complexity 
egual to the number ot conditions in the program plus 
the number of conditions in the subprogram, plus one. 

3. A coapound predicate C1 AND c2 contributes 2 to 
co11plexity (it has two conditions) because it could 
be regarded as 

IF C1 THEN ll' C2 THEN ---- without using AND. 

14. A case statement with N possible values of the case 
expressicn contributes N to the complexity. Hence, 

CASE EBBNBB OF 1: ---------
2: -------
3,4,5: -­
.E!ID 

would contribute 5 to the complexity. 

5. Fer a conditional, 
IF condition THEN 
IF condition THEN 

ELSE -------

6. For a repetition, 
WHILE condition DO --------­
FOB I:=expl TO exp2 DO -----

contributes 1. 

contributes 1. · 

contributes 1. 
contributes 1. 



156 

7. For a DPL guarded command, each guard contributes to 
co&flexity. Thus, 

IF condi tion1 
I -.condi tion1 

H 

-> 
-> 

would contribute 2 to complexity. 



157 

1. Serious and unpredictable inability to handle nesting 
of program units. Adding an outermost prograa unit 
to facilitate running a program on multiple sets of 
test data introduced ·spurious syntax errors on 
occasion. 

2. Befetitive statement (DO-OD) may not be the first 
statement (after scope declarations) ot a program 
unit. 

3. Serious 
register 
co.11pound 

and unpredictable compiler errors due 
allocation problems, particularly 

guards ot DO-OD and lF-FI constructions. 

to 
in 

4. Array operator ALT (in either syntactic form) does 
net vork at all. 

5. Sccpe rules do not work correctly for array variables 
arrays are not deactivated at the end of their 

private scope. (Simple variables are deactivated 
correctly.) 

6. 

7. 

{legallJ} altering (from run to runJ 
identifiers in the identifier-list 
declarat.ion can cause a spurious 
identified. 

the order of 
of a scope 

error to be 

The syntactic recognition of array domain operators 
is incorrectly iaplemented. To wit, the guard 
X=(A.HIB-1) is flagged as an error, while 
X= 1 {A. HIE) -1) is treated properly. 

8. Actual syntax errors are flagged i.n misleading ways. 
Ex., n I<J<K -> is flagged as an "internal stack 
overflow" compiler error; IOUTPU'I:BIEXT(arrayname) 
(attempting to print an array all in one step) is 
flagged as an unrecognizable error. 

9. The compiler, in several instances, outputs 

10. 

voluminous compiler trace diagnostics (acts as though 
it has found an error}, but continues to correctly 
translate the program, then correctly executes it. 

Severe, 
that can 
that can 
of input 
space in 

but lnconsistent, limits on amount of input 
be supplied to a program, as well as output 
be generated by it. For example, 32 pieces 
data gives compiler error "There is no more 
the register allocator." 



11. A half-dozen 
L·ecognizable by 
in the language 
aa~ not be used 

158 

characters L,&,#, etc.) are 
the coapile.r, but have no legal usage 
other than aFpearing in comments They 
as part of variable names. 

12. Unfredictable and unreasonable limits on depth of 
nesting of DO-OD's and IF-FI 1 s seems to exist• Error 
message indicates a compiler error, "Inte.rnal stack 
overflowed." 



BIBUOGBAPBY 

Aho, A.V., Hofcroft, J.E., and Ullman, J.D., Ih~ ~~~SB s~~ 
!naljsi§ £! f£mpu~~ !lqorith!§, Beading, ftass: Addison­
Wesley Publishing Co., 1974. 

Anderson, B.E., PrQ!i~ Prog£ams Co~rect, Bew York: John 
Wiley £ Scns, 1979. 

Baker, P.'I., "ChieJ: Programmer team l!anagement of Production 
l'rograuing," !Bll ~Iill!!§. !!2.\!I.!!li• Volume 11, Bumber 1, 
1972, fli• 56-71. 

Baiter, A.l., and Zweben, s., "A Comparison of Measures of 
Control Flew complexity," !!EE 'Ira.!!l!S.!<ll£!!2 Q.!! so.ttwar~ 
]BEine!Ii~~. Volume SE-6, Bumber 6, 1980, pp. 506-512. 

Basili, v., and Beiter, R.i., Jr., "An Investigation of 
Human Factors in Software Development," fQ!li!U~, Volume 
12,12, December, 1979, pp. 21-38. 

_____ .,"Evaluating Automatable lleasures of Software 
Develofment," ~Qf~ShQE Q.!! Quaa!itativs ~!~SI~ llodels, 
IEEE, October, 1979. 

Bezanson, W.B., "Teaching Structured Programming in FORTRAN 
with 1FTBA1i," ~.IGCS] Bul.J,~ili· Volume 7, lilumber 1, 
February, 1975, pp. 196-199. 

Bishop, J., "'Ihe Portable DP.L Compiler Project," !'laster's 
thesis, Technical !leport TB80-008, llepartment of Computer 
Science, University of North Carolina, Chapel Hill, 1980. 

Bohm, c. and ~acopini, G. "Flow Diagrams, Turing Machines, 
and Languages with Only Two Formation !lules," 
CO!.J!!J!!!l£s!.ifl~.§ of !!!.§ ACI'l, Volume 9, Number 5, 1966, pp. 
366-371~ 

Bowles, K., •A CS1 Course Based on Stand-Alone 
llicroccmpute~:s," ~1.§£SE J:!_yll~, Volume 10, Number 1, 
February, 1978, pp. 125-127. 

----·, Be£l.inngf!.§ .§uide !£!: !.l!.sl UCSQ l:s§£!!! .§ystem, New 
York: Eyte/l'lcGraw Hill, 1979. 

Brooks, F.F., .Jr., I.!!.!i !11thi£!!! l!!!.!Cl!QI!th, Beading, Mass.: 
Addisoc-iesley, 1975. 

- 159 -



160 

Brooks, B., "'Ioward a Theory of the cognitive Processes in 
computer Progralilmi.ng," l:nte£JHlJ:io.!!a.l JJ£1.!!!:!!!!1 g! ~~.!!.:: 
Machi.!!& St]gj~§. Volume 9, 1971, pp. 737-751. 

---:::'\"'"--·, "Studying Programmer Behavior Expsrimen~ally: . 
The Problems of PreFer Bethodology," ~g~n~£~!~2B§ of 
th_g AC!!, Volume 23, Number !i, 1980, pp. 207-213. 

Campbel,l, D.'I. and Stanley, J.c., .JlxP&ill!~.!!!~! ~!l.Q Quasi.= 
.Jl~~_gri~~.!!!~l ~~sig.!!§ IQ~ ~~~rch, Skokie, Ill.: Rand 
!icNall_y, 1966. 

card, S.K., !loran, T. P., and Newell, A., "'Ihe Keystroke­
Level !!odel for User Performance Time with Interactive 
Systems," f.Q!!J!!Jil!J&~!i.Ql!§ .Qf ths ACM 1 Volume 2J, Number 7, 
1980, ff· 396-!i 10. 

Chanon, ll.N., "An Experiment with an Introductory course in 
computn: Science," _2!GCS£! IDA11~!ll• Volume 9, Number 3, 
August, 1977, pp. 39-!12. 

Chapin, N., "ll !Ieasure of Sottware Complexity," AFI.f!;! 
CODl.ll.!!!ll£§ !'£2£~di!!S!§a 1.21.!!1!1.§ .!!!!: 1212 !~!i.Qnal 
~.Qll!£Y!!! f£!!1~.§.!!£§ 1 Montvale, NJ: AEIPS Press, 1979. 

Chen, E. T., "Program ComFlexity and Programmer 
Productivity," IEJ:I.E l'!.S§!~tiQ!l§ on .:22!!.!'!~£.§ ]lngingeri!!.!.l• 
Volume SE-4, Number 3, 1978, pp. 187-194. 

Cheney, P., "Cognitive style and StUdent Programming 
Ability: An Investigation," .b!DS JOJ.g.!H!.!, Summer, 1980, 
pp • .28~-291. 

Conway, R., Gries, D., and ZiKmerman, E.C., ! if!mer Ql! 
f~~al, Cambridge: Winthrop Publishers, 1976. 

Curtis, ll., Sheppard, S.B., and Milliman, 1?., "Third T.ime 
Charlll: Stronger Prediction of Programmer Performance by 
Software Complexity l'letrics," Proceedi!!.!.l§ of !he fourt.l! 
!Ete£!)Etic.!l~J fi!.!!!.§!~ Q!l a.Q!twai§ En.!.liB~Ii.!!g, New 
York: IEEE, 1979. 

Curtis, 13., Sheppard, S.B., llilliman, P., Borst, !'I.A., and 
Love, 1., "Measuring the Psyc.hological Complexity of 
So.ftware Maintenance Tasks with the Halstead and !lcCabe 
!letJ:ics ," lUi: Tr.!tl!~Ctii!l!§ Q!l Sof!.J!ll:§ l<!!!Li!l~~~ing, 
Volume SE-5, Number 2, 1979, pp. 96-104. 

Dahl, o.-J., Dijkstra, E. li., and Hoare, c. A.R., structJ.gg.Q 
iJ;;Qg£!J!J!i.!l.!.l• New York: Academic Press, 1972. 



161 

Daly, c., EmbleJ, D., and Nagy, G., "A Progress Beport on 
Teaching l'rogramming to Business Students Without 
Lectures," j'iiGCSE Jmlletin, Volume 11, Number 1, 
February, 1979, pp. 247-251. 

de Groot, A.D., Xhou~h! and ~DQl£~ i! Ch~. New York: 
Basic fooks, Inc., 1965. 

' 

DeMille, B.A., Lipton, B.J., and Perlis, A.J., "Social 
Processes and Proofs of Theorems and Programs," 
COJ!!!UDi£~!!.2~§ of £he ACM, volume 22, Number 5, 1979, pp. 
271-28C. 

Dijkstra, E.w., •A Constructive Approach to the Problem of 
Progra11 Correctness," J!II, Volume 8,3, 1968, pp~ 174-186. 

_ • , "'Ihe structure ot the TliE ftnltiprogramming 
System." £.QmmuniCJ!llQ.!l§ of !ll~ A£.!h Volume 11, !lumber 5, 
1968, fP• 341-346. 

-------·• "Correctness Concerns aDd, Among Other Things, 
Why They Are llesented," SI§ll!l!! Notices, Volume 10, 
Number 6, June, 1975, pp.546-550. 

------·• "Guarded commands, 1/ondeterminacy and Formal 
Derivation of Programs," .&.QJ!!BIUnications Q! !1!~ A£11 1 

Volume 18, Number 8, 1975, pp. 453-457. 

-----·, ! Di§£i.E.!l!!!l of Prog~;smmi~, Englewood Cliffs: 
Prentice-Hall, 1976. 

DiMarco, Eird, and Norton, "Life Style, Learning Style, 
Learning structure, Their congruences and Student 
A.ttitudes and Performance in a Data Processing Course," 
~QY~ ot Ed~atj,_g~al ~s!s E!gggssi~. Volume 16, !lumber 
2~ 1979, fP• 1-8. 

Elshoff, J • .L., "An Analysis o.f some Coamercial PL/I 
Prograas," IE.Ji£1 !!:!H!2S!Cti.Q.!!§ .Q.!l ~oftW!J;,!il .J:!ruil.!!~ri!UI, 
Volume SE-2, Number 2, 1976, pp. 113-120. 

---::-· __ ., and 1!. Marcotty, "On the Use ot the Cyclomatic 
!lumber to Measure Program ComplexitJ," ~IGP1AN !otic~, 
Volume 13, Number 12, 1978, pp. 29-40. 

Elspas, E., Levitt, K.N., Waldinger, ll.J., and iaksman, A., 
"All A.Esessment o:t Technigues for Proving Program 
Correctness,fl £Ql!!~~!i!UI ~Y~Y§, Volume 4, Number 2, 
1972, tf• 97-147. 

Embley, D.W., and Nagy, G., "Behavioral As,l;ects o:t Text 
Editors," ,A.l;ll £.QJ!.!1.Y!i!UI SUI.!§.Y§, Volume 13, Number 1, 
1981, H• 33-70. 



162 

Fagan, !!. • "Design and Code Inspections to Reduce Brrors in 
Prograa Development," IBM ~X§!~ ~OU£D!l• Volume 15,3, 
1976, H• 182-211. 

Fitzsimmons, A., and I.ove, T., "A lleview and Bvaluation of 
Software Science," !~~ ~2BEY!i~ SurV§l§1 Volume 10, 
Number 1, 1978, pp. 3-18. 

Floyd, B. ii., "Assigning Meanings to Programs," i£Oce~dinSl§ 
~! Symfosia in !2Eli~g Ma!~~!2!iC§," Volume 19, American 
Mathematics Society, 1967, pp. 19-32. 

Freund, ~ •• "The Design and Abstract. Specification of a 
Translator Module." !laster's thesis, Technical Report 
TR79-012, lle,t;artment of computer Science, University of 
North Carolina, Chapel Hill, 1979. 

Furuta, R., and Kemp, P.M., "Experimental Evaluation of 
Progcamming Language Features: Implications for 
Introductory J?cogcalllming Languages," ~!§CS£!.1l.Y.!leti!!1 
Volume 11, !lumber 1, 1979, pp~ 18-21. 

Gannon, ~.D. 6 and Horning, J.J., "Language Design for 
Prograning !Jel.iability," .IEEE Transas;;.l;i&!!§ .Ql! ~ftwail 
£1!Bine~ring, Volume SE-1, Number 2, 1975, pp. 179-191. 

Gannon, J.D., "An Exferimental Evaluation of Data Type 
Conventions," f.Ql!!l!!YB!cat,i.Q!!§ .Q_! !l!.!l Mll• Volume 20, 
Number 8, 1977, pp. 584-595. 

George, J., ftAn Abstract Machine as an Aid to Compiler 
Portability," Master's thesis, technical Report TR79-017, 
Department ot Computer Science, University of North 
Carolina, Chapel Hill, 1979. 

Gerhart, S .L., "Methods for Teaching Program Verification,·" 
~Ig~~l! Eul].§!in, Volume 7, Number 1, Februacy, 1975, pp. 
172-178. 

Gould, J.D., and Drongowski, P., "An Exploratory Study of 
Compute!: Program llebugging," .l!.!!J!.l!l! Pacj;~rs, Volume 16,3, 
1974, pp. 258-277. 

Gould, J.t., "Some Esychological Evidence on How People 
Debug Com~:uter l'cograms," 11!!~!nati~!!21 JOJU:.!!s.! of .§21!:: 
!!s£1!1.!!£ §lJ!die§, Volume 7, Number 2, 1975, pp. 151-182 .• 

Gries, D., Ihe ~~!~.!!£~ ~! ~~.Qg!§~l!!lQ9, New York: Springer­
Verlag, 1981. 

Halstead, M.H., j],~nts of §.QftMs~g ~cie.!!s;;~, New York: 
Elsevier North-Holland, 1977. 



163 

Hamming, R.W., "A Philosophy fer Computer Science or My 
Prejudices and Confessions," .§IGC.§J; .Jlulle!i!!• Volume 7, 
Numbet ll, 1975, pp. 16-18. 

Hanson, A., and Maly, K., "A First Course in computer 
Scisnce: What It Should Be and Why," S~GCSE Bulletin, 
Volume 7, Number 1, February, 1975, pp. 95-101. 

Hetzel, w.c., 11 An Experimental Analysis of Program 
Verification Methods," (Ph.D Dissertation, University of 
North Carolina, 1976), Dissertatio!! Abstra£12 
Inte£R~tic~~1. Volume 37, 1977, p. 4054B. 

Hintzman, D.L., "Effects ox Repetition and Exposure Duration 
on Memory," Joy~J of ]~eri~entsl f2~£hoJgg~, Volume 
83., Number 3, 1970, pp. 435-4411. 

Hoare, C.A.R., "An Axiomatic Basis for computer 
Prograuing," !;.Qlllm.!!!!~io.ns .Qi. !.l!!l !f.!!, Volume 1.2, 
Numbe~ 10, 1969, pp. 576-583. 

Hoare, C.A.R., and Wirth, N., "An Axiomatic Definition of 
the Programming La.nguage Pascal," !£:!:9. lnf.Q£!!!stic§., 
Volume 2,4, 1973, pp. 335-355. 

Hsia, F., and Petry, li.E., "A Frameworx for Discipline in 
Programming," IEEE 1£.9ll2i!Cti~§ ~ .§.Qfiwarg Engineeri!!£1 1 

volume SE-6, Nuaber 2, March, 1980, pp. 226-232. 

Jensen, K., and lllirth, N., R~! j!ser li.!I.!!Ual ,gnd jJU!.Q£1, 
New Ycrk: springer-Verlag, 1975. 

Jones, G.A., and Walsh, A.M., "A Course in Program 
Verification for Programmers.," ~1.!!£.?.ll .!lUll!l!.J:~, Volume 
10, Nual:ier 1, February, 1978, pp. 213-.216. 

Kammann, E., "The comprehensibility of Printed Instructions 
and Flowchart Alternative," .!Jymaj! ,!acto£§, Volume 11,2, 
1975, fF· 183-191. 

Keppel, G., and Sattlly, ll.l:l., Jr., Introgy.s;tiQ.!! !.2 Design 
and Anaj,~Si§, ~ .?!.1!.d!l!!t1 s Ha,!!,!!boo,!, San Francisco: li.H. 
Freeman and Co., 1980. 

Knuth, D.li., "An Empirical study of FOI:lTRAN PL:ograms," 
Soi.J;~~f§==ffaC1i£§ ~ ]xperie!!£!l, Volume 1, Number 2, 
1971, H• 105-133. 

Koltun, P., "DPL User's Manual," Technical Report Tll82-004, 
Departaent of Computer Science, University of North 
CaL:olina, Chapel Hill, 1982. 



164 

-------·• "Introduction to Programming Using DJ?L," 
Technical lieport TR82-005, Department of Computer 
Science, University of North Carolina, Chapel Hill, 1982. 

Kreitzberg, C.E., and swanson, L., "A Cognitive Model for 
Structuring an Introductory Programming Curriculum," 
AFHl! f.2l!fE.fS!!£!l R!2£!!!ildi.!.!.9:§• Vol.YU ~J: lll!! !~H.Qnal 
fomul~! f..9Jt!!l.f!l.!.!f~h Mont vale, NJ: AFI.I:'S Press, 1974, 
pp. 301-311. 

Lambeth, E., "Use of Trace Specifications in the DPL 
Com~iler," l!aster•s thesis, Technical Report 'IB79-019, 
Department ot Computer Science, University of North 
carolina, Chapel Hill, 1979. 

Larkin,J-, McDermott, J., Simon, D.P., and Simon, H.A., 
"Expert and Novice Performance in Solving Physics 
Problems," ~ci~~£!!• Volume 208, Number 20, June, 1980, 
pp. 13 3 5- :w 8. 

Ledgard, B.F., ~hiteside, J.A., Seymour, w., and Singer, A., 
"An E:aq;erimeDt on Human Engineering of lnteract.ive 
Software," .!10liE Tra!!§actif!.!.!§ f!!l Soft.!!,gf.§ I<llili.!!~!!\g, 
Volume SB-6, Number 6, 1980, pp. 602-604. 

Lemos, R.S., "A Comparative study of the Effectiveness of 
Team Interaction in COBOL Programming Language Learning," 
{Ph.D Eissertation, UCLA, 1977), !l.!§§§f!.!!!io!! .Abstracts 

.!l!te.H!i!J:i.QJtal, Volume 38, 1977, pp. 2269B-2270Jl. 

____ ., "Teaching Programming Languages: A survey of 
Approaches," ~.IGCS] §ulletin, Volume 11, Number 1, 
February, 1':179, pp. 174-181. 

-------·, "An Iaplementation of Structured Walk-Throughs in 
Teaching COBOL Programming," f~!i£s.tioa§ of the AC~, 
Volume 22, Number 6, 1979, pp. JJS-340. 

------·• "Structured Walk-Throughs and student Batings o£ 
Faculty Effectiveness Versus Elipediency," i!Q.!!!.!!al .2! 
Educs.ti~J ~.!!1~ Prg£essing, Volume 16, Number 1, 1979, 
PP• 1-8. 

________ ., "Measuring Programming Language Proficiency," 
!~]~ i!S~.fll.i!l. Summer, 1980, pp. 261-273. 

Linger, R.C., Mills, M.D., and Witt, B.I., ~j;ru&tured 
~Q9£s~ming, Reading, Mass.: Addison-Wesley, 1979. 

Litecky, c., and Davis, G.B., "A study of Errors, Error 
Proneness and Erz:or Diagnosis in COBOL," s;Q~!igatio.!!§ 
2! j;he ~. Volume 19, Number 1, 1976, pp. 33-37. 



165 

London, K.B., 1~~ 2eQE!~ Sig~ Qf ~l§!em§, London: KcGraw­
llill, 1976. 

Love, l.T., 11 Belating Individual Differences in computer 
Prograsming 2erformance to Human Information Processing 
Abilities," (Ph.D Dissertation, University of liashingtcn, 
1977), jliS§.§lrtati!!!! Abstr,g£.1§ ;!;nt~tiQJ!al, Volume 38, 
1977, f• 1443B 

Lucas, L.C., and Kaplan, B. B., "A Structured Programmiug 
Exper.iment," .foml!yte,J; Jour!}al, Voluae 19, Number 2, 1976, 
pp. 13£-138. 

!!adigan, S.A., "Intraserial Repetition and Coding Processes 
in ¥ree Recall," ~QY£nal of Verbal ~~_grni!!g .2!!9 Verbal 
Be!avif!• Volume 8, pp. 828-835, 1969. 

!!aurer, li.D., "'lhe Teaching of Program correctness," SIGC~]l 
l!Jelletin, Volume 9, Number 1, February, 1977, pp. 
142-lllll. 

Mayer, R.l!., "The Psychology of How Novices Learn Computer 
Programming," ~Q!!EUting surveys, Volume 13, Number 1, 
1981, H· 1.21-141. 

llcCabe, T.J., "A complexity lieasure," JEE.!l I£s!!sactions .2.!! 
Softll!.!i !J!.g!!!!il!l!:!!!g, Volume SE-2, liumber 4, 1976, pp. 
308-320. 

lleissner, I. f., and Hinkins, R.I., "B4XRAN: A Structured 
Mini-Language Approach to the Teaching of FORTRAN," 
~lifg ID!l.t~!i!!, volume 7, Numller 1, .February, 1975, PP• 
200-20!:. 

Miller, G.A., "'Ihe Magical Number Seven, .Plus or !linus Two: 
Some limits on Our Capacity for Processing Inforaation, 11 

E21£B~AQS!f.2l jevi§!, Volume 63, 1956, PP• 81-97. 

Miller, L.A., .!Haha.IJ.Q!:s! ~udi~ .21 11!!! J1!:2.9£sJ!lmi.J!.q eroce§§, 
National lechnical Information Service lieport 
#ADIA-061-633, OCtober, 1978. 

!!ills, H.£., "Top Down Programming in Large Systems," 
~~R~~i~ 1~Ch!!ig~ in La~ ~ystems, B. Bustin {Ed.), 
Englewcod Cliffs: .Prentice-Hall, 1971. 

==~·· "llow to Write Correct Programs and Know It," 
SIQ£1!~ ~.Q!l£lil2• Volume 10, Number 6, June, 1975, pp. 
363-370. 



., .£2.!-E.J!.!ing !l~!iews, Volume 17, Number 11, 
November, 1976, pp. 416-418. 

T. Moher and G.M. schneider, "Methods tor Improving 
Experimentation in Software Engineering," Sixt.!! 
.!!l!.U.!Jatic~g]. ~Q.Q!~f!il.!l£g .Q!! ~.QftWl!£§ .Jl,!!.gi!!eeriruJ, New 
York: JEIE Press, 1981, pp. 224-233. 

166 

-----·• "Methodology and Experimental llesults in Software 
Eng.i neuing," !.!l!~J:~gti.Q!!al ~.Qyrnal 2! ll.9!!::!1s£hin.§ 
Stu.Qies, Volume 16, liullber 1, 1982, pp. 65-87. 

Myers, G.J., "A controlled Experiment in Program Testing and 
Code lialkthroughs;Inspections," f.QM.\U!i£s!ion§ of the 
jCM, Volume 21, Number 9, 1978, pp. 760-768. 

Nagy, G., and Pennebaker, l'I.C., "Automatic Analysis of 
Student l'.rogramming Er.rors," !.!l!il!:.!l!.!!;iong! J!gn.rnal of 
Man-Machin~ ~!!.Qi~. Volume 6, 1974, pp. 563-578. 

Nanney, 'I.ll., "Computer Science: An Essential Course for 
the Lite.ral Arts," ~IGCSE ~Y!!etin, Volume 8, Nnmbe.r 3, 
September, 1976, pp.102-105. 

Naur, P., "Proof of Algorithms by General snapshots," B.Ij, 
Volume 6.4, 1966, Ff• 310-316. 

Newell, A., and Simon, H.A., Humg.!J Efoble~ ~21YiB9• 
Englewood Cliffs: Prentice-Hall, 1972. 

Newsted, I.R., "Grade and Ability Predictions in an 
Introducto~:y l'rogz:amming Course," l!ll:!f~~ ~!!!.!§tin, Volume 
7, Numter 2, June, 1975, pp. 87-91. 

------·, "FCRTRAN PI:ogram comprehension as a Function of 
Documentation," School of Business Administration, 
University of Wisconsin, Milwaukee, undated. 

Newtoo, G.E., and Starkey, .J.D., "Teaching Both Pl./1 and 
FORTRliE tc Beginners," .§IGCSE Bulle.!;in, Volume 8, Number 
3, September, 1976, pp. 106-107. 

Parnas, D.L., "Dubiety of Increased Punding for Experimental 
Computer Science," fQ~!YBication§ of !.!!~ !f~, Volume 24, 
Number 3, 19t!1, pp. 162-163. 

Perlis, A.J., l.ll.!!:odygtiQ.Q !Q .c;;.Qmput.§f Sci~.!!£.§, New York: 
Harper & Rcw, 1975. 

Petersen., c. G., and Howe, T. G., upredicting Academic success 
in Introduction to computers," !ED~ !!.Q!!J:.!!9l, Fall, 1979, 
pp. 18.<-191. 



Proceedings of the International conference on Reliable 
software, SlGPLAll Notices, Volume 10, Number 6, June, 
1975. 

Ramsey, H.R., Atwood, !I.E., and Van Doren, J.R., J 
Comea{a!i!~ ~£Ygx ~! f&ow£A!I!§ ~ ~roq~! ~sign 
Lan9~§§ 19! 1~ ~§~!~g Procedural ~~cifi£S!i2B 9! 
fQ!~uter ]{ogr~~ Denver: science AppLications, Inc., 
1978. 

167 

Beisner, f., "Use of .Psychological Experimentation as an Aid 
to Development of a Query Language," IEEE !!~~!~~§ Q! 
~9!1~~§ ME3i~in~, Volume SE-3, Number 3, 1977, pp~ 
218-229. 

Sackman, E., Erikson, W.J., and Grant, E.F., "Exploratory 
Bxperieental Studies Comparing Online and Offline 
Prograaming Performance," £Q.!.!_ynicatiQ!!§ 21 !.!!§ !Cll, 
Volume 11, Number 1, 1968, pp. 3-11. 

Sackman, H., ~g~~§f £{oble! Solving, Princeton: 
Auerbach Publishers, 1970. 

Schneider, G.!l., "The Introductory Ptogramming Course in 
ComputEr Science -- Ten Principles," SlGC~! §uJ.letin, 
Volume 10, Number 1, February, 1978, PP• 107-114. 

Schneider, G.M., sedlaeyer, B.L., and Kearney, J., "On the 
complexity of Measuring Software Complexity," National 
f~R]J~f f£!!1~re.Y£§ Proc§~diA9§, J]§j, Arlington, Va.: 
AFlFS Eress, 1981, PP• 311-322. 

Sheil, B.A., "The Psychological Study of Programming," 
Co!U!utiA9 ~.!!.I.!§.I§, Volume 13, Number 1, 1981, pp. 
101-120. 

Sheppard, s.E., curtis, B., Milliman, P., and Love, T., 
"Modern Coding Practices and Programmer Performance," 
£~!~!£• Volume 12, Number 12, 1979, pp. 41-49. 

Sheppard, s.E., Kruesi, E., and curtis, B., "The Effects of 
Sy.mbolcgy and Spatial Arrangement o.n t.he comprehension of 
Software Specifications," f~Q£~§dinqs Q1 ~h§ ~!xt& 
~tef.!lllJ;lc.!!!!l f.Q.!!!!lf§'l!£~ .Q.!! ;!Q!,Uare ll!!~ineefllSl• (.New 
York: lE.EE !'ress, 1981j, pp. 207-214. 

Shneiderman, E., "Exfloratory Experiments in Programmer 
Behavicr," Int~{E!!!gnal ~Q.!!f!!gJ 2! ~9~EY!~I ~~ 
l.!!!Q.IA~ticl! ~ie!!£~, Volume 5, Number 2, 1976, pp. 
123-143. 

----·• "lleasuring Computer Program Quality and 
Comprehension," International Journal of Man-llachine 
studie§, Volume 9:-1977, pp. 465-478. -- -----



168 

Shneiderman. E., Mayer, B., McKay, D., and Heller, P., 
"Experimental Investigations of the Utility of Detailed 
Flowcharts in Programming," f.Q.!!J!!Unicl!.ti.Q!!§ .Q,! the AC.!!, 
Volume 20,6, 1977, pp. 373-381. 

Shneideuan, E., ~.Q!tllj,!:g f:!U£hO.J,.Q£.Y, Cambridge; Winthrop 
Publishers, 1980. 

SIGSOFT First Software Engineering Symposium on Tool and 
Methodology Evaluation, "Proposals for Tool and 
Methodology Evaluation Experiments," Softw9!:§ ~!~!neeri~ 
Note§, Volume 7, Number 1, 1982, pp. 6-75. 

Sime, !.E., Green, T.B.G., and Guest, D.J., "Scope Harking 
in Computer Conditionals -- A Psychological Evaluation," 
I~te~!ic~al ~.Q~~~! ox ~~-Machine Studies, Volume 9, 
NumbeJ: 1, 1977, pp. 107-118. 

Simon, !I.A., "How Big Is a Chunk?" ~g~, Volume 183, 
1974, fP• 482-488. 

Skelton, J.E., "Time-Sharing Versus Batch Processing and 
Teaching Eeyinning Computer Programming: An Experiment," 
AEDS .l!£!!f.!!.i!..J:, March, 1972, pp •. 91-97, and June, 1972, pp. 
103-109. 

Smith, L.E., "A Comparison of Batch Processing and Instant 
Turnarcund,n Commun!s~ti.Q!!§ of £h§ !~. Volume 10, Number 
8, 1967, ff• 495-500. 

Stoddard, S.D., Sedlmeyer, ll.L., and Lee, E.G., "Breadth or 
Depth in Introductory Computer Courses: A controlled 
Experiment." ~IGCS.!j Bulletin6 Voluae 11, Number 1, 
February, 1979, pp. 41-44. 

Turski, W.M., (ed.), frogram~ing ~~£hing I~s!nigyg§, New 
York: American Elsevier Publishing Co., 1973. 

Ulloa, M., "teaching and Learning Computer Programming: A 
Survey ot Student Problems, Teaching Methods, and 
Automated Instructional Tools," SIGC~1l ~ulJ,~ti~, Volume 
12, Nuaber 2, July, 1980, pp. 48-64 

Walsh, T.J., "A Software Reliability Study Using a 
complexity Measure," AFii~ £2~!~~!&§ ff.Qseegings, X.Qlu~ 
3~: J~12 ~atJQ~~l f.Qmpu£~{ Conte~£~, Montvale, NJ: 
AFIES Iress, 1979, pp. 761-769. 

Weinberg, G., lhe Ps~s;holog~ ~! fQmputer ff23£~!!J~, New 
York: Van Nostrand Reinhold, Co., 1971. 

_______ ., "the Psychology of Improved Programming 
l'erforaance," l!at.i!.mation, November, 1972, pp. 82-85. 



169 

Weiner, l.H., "lhe Roots ot structured Programming," 3I§CSj 
]]Jj~~. volume 10, Number 1, February, 1978, pp. 
243-2511. 

Weiss, D.~., "Evaluating Sottware Development by Error 
AnalyEis: The Data from the Architecture Research 
i'acility," Il!!l .Journal of sxs:!:§H ,i!lld 3ill!.i!f!l• Volume 1, 
1979, fF• 57-70. 

liulf, fol.A., Shaw, 11., Hilfinger, P., and Flon, L., 
.£.!!.!!il~!l!i!l St~;.Y,gtU!;j!§ ot £2J!Ru ter Scie.!!£!l, Reading, 
Mass.: Addison-Wesley, 1981. 

YouDgs, l!.A., "Hwaan Errors in PrograliUDing," !~:!:!l!;natiol!al 
Journal ~i ~ao-Ma£l!iB!l Stydie§, Volume 6,4, 1974, pp. 
361-37E. 

Zolnowski, J.c., and Simmons, D~B., "Taking the Measure of 
Prograa Complexity,n ~io~l ~omEU!!l!: Con!g!;~g 
Pro£~~i!l~§, 19~, Arlington, Va.: AFIPS Press, 1981, 
pp. 329-336. 




