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SCOTT HARRISON DANFORTH. DOT: A Distributed Operating System Model of a
Tree-structured Multiprocessor {Under the direction of GYULA A. MAGQ. )}

Abstract

This dissertation presents DOT, a process-oriented design and simulation
model for a highly parallel multiprocessor, and describes a complete associated
programming system. The design methodology includes the use of layered
design, abstract data types, and a process-oriented view of concurrency. Our
results demonstrate that these software engineering structuring principles can

be successfully applied to the design of highly parallel multiprocessors.

DOT is represeﬁted using an executable high-level language that provides
support for discrete-event simulation. This allows verification and accurate
simulation of the complete programming system, which is composed of three

[ogical levels.

The top, or user level of the prdgramming system is that of FFP (Formal
Functional Programming) languages. The middle, or system support level is
that of LPL, a low-level concurrent programming language used to define and
implement FIFP opei‘ators on the DOT architecture. The DOT design represents
the lowest level of the programming system, a highly parallel tree-structured
multiprocessor that directly supports the LPL and FFP languages.

During execution, user programs consisting of I'I'P language symbols are
entéred into a linear arrajr of processing cells {the leaves of the binary tree of
processors represented in the DOT design), and segments of this array that
contain innermost FFP appliéatipns execute LPL programs in order to perform.
the required reductions. The LPL prograrihs for a useful set of FF'P primitives are
given.

In addition to DOT and the overall programming system, this dissertation
presents an ariaiytic model which may be used to derive upper and lower bounds
for program execution time. Predictions of the analytic model are compared
with simulation resulls, and various design alternatives and possible extensions

are examined.
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'CHAPTER 1

Introduction

In this dissertation, we preseﬁt a highly parallel multiprocessor
implementation for a general-purpose functional langnage suggested bjr Backus
‘[Bac78]. We describe the implementation and its simulation, providé an analytic
model for program execution time, and finally consider design alternatives and

extensions.

The first three sections of this introductory chapter provide an overview of
related work from the perspectives of language and implementation design. The
last section of this chapter describes the objective and gverall structure of the

dissertation.

1.1. Historical Overview

Historically, programming language design and implenientation,are often
intertwined, with the implementation of new language_c‘:oncebts closely foilowi_ng
their inception. We are therefore concerned with presenting twd sides .of the
samrie coin in this introduction, and the twin aspects of language development

and implementation relevant to this dissertation are discussed accordingly.

Backus’ first publicatioﬁs cancerning. funeticnal programming appeared in
the early 1970°s [Bac72, Bac73]. Then, in the 1977 ACM Turing Award lecture, he
presented a new and powerful formalization for functional programming: the /P
(Functional Programming) and FFP (Formal Functional Programming) _
languages . [Bac?S].' These are general-purpose high-level programming

languages, capable of expressing parallel computations in a natural fashion. In



additioﬁ, associated with the TP language class is an algebra of programs that

can be used to reason about and transform programs while preserving their

semanties. Such a facility can be exiremely useful for the verification of

programs.

The FFP language class follows TP in spirit, but employs a more restricted
syntéxﬂ—- making it suitable for direct machine execution. Unfortunately,
despite the potential of Backus' suggested approach, early implementations of
FFP on traditionally structur.ed'computer'architectures. ran slowly. Then, in
1979, using a léngua‘ge—based apprbaclﬁ, Mago gavé' an initial description of a
tree-structured cellular network of processors orienfed towards efficient
parallel execution of FFP language programs [Mag79]. Many problemé were
raised and left unsolved in this initial deseription, but the feasibility of a design

was demonstrated.

The language-based aﬁproach' to processor design is not new; over the last
decade a number of machines oriented toward direct support for high level
languages have been suggested. The approach has been used for implementing
sequential languages such as APL [Abr70], Symbol [Ric71], Basic [Bur78], Lisp
[SteB1], Jovial [ChuB1], and Pascal [Car81]. Nevertheless, although many
parallel computer architectures have been recently proposed [Dav7?5, Des78,
Den79, Sha82, Sto83] as a result of the increasing potential of VLSI and other
realization technelogies, few of these designs have been based on a general-
purpose high-level programming language. This is due to the low-level sequential

transformation of state and reliance on global memory embodied in most

languages, which make it difficult to express a direct mapf;ing between a

language and its implementation on a parallel architecture.



In .functional programming languages {which arose from the search for an
algebra of programs [Bac81, BacB2]), sequential transformation of state and
glt;bal memory are absent because of their unsa{ﬁisfactory properties with
respect to program semantics. As a serendipitoﬁs result, such languages are

promising candidates for language-based parallel support.

An important aspect of Mago’s language-based proposal is the use of ﬁne_
grain parallelism., This approach removes assumptions' of g.lobal memofy an.d
overall processor state from the language implementation as well, and
completely realizes the parallelism allowed by FFP programs. The highly-parallel
nature of the multiprocessor suggested by Mago is ,éspecially intrigﬁing _iri view
“of the recognized difficulty of designing a general purpose machine that can

fully exploit the potential of VLSL

1.2, Red_uction Machines

We now review various proposals. for the support of funclional languages.
Among machines for directly executing functional.. languages are thos.e '
suggested by Berkling [Ber.’?S], Keller ‘et al. [Kel72], Mago .[M.ag?Q], Treleaven
[TreB0], Tolle [Tol81], and Kluge [Klu82]. These machines may be characterized

as reduction machines - i.e., they supporl reduction-style program execution.

In contrast with confrol-flow programs, which are built out of and executed
as linear sequences of siinple operations cal_led instructions, reduction pr.ograrns
are built from nested éxpressions. In reduction languége. programs, the nearest
thing to an instruction is the application of a function to an argument, bul both
functiﬁns and argﬁmepts may be expressions .contédning further function
applications nested within themselves. A reduction language prografn is an
expression -- eciuivalent to the result of its execution in the same way as the

expression 3*(2+2) is equivalent to the expression 12



Treleaven has identified two.basic approaches toward executing reduction
programs: string reduction and graph reduction [Tre82)]. The basis. of striﬁg
reduction is that a prograrh is manipulated in-place; each application of an
operator to an argument is textually replaced by an eguivalent expression, and
expr'es'sioﬁs are not shared. Commonly used expressions must be duplicated
throughout the program where necessary. In graph reduction, implicitly shared

references to expressions are manipulated.

Thus, for-e'xample, evaluation of a+a with étring reduction would require the
definition of o to be loaded twice, replacing both of its references. Evaluation of
the same expf‘ession with graph reduction doesn't, fequire éuch réplacement;

| instead, the expression referred to by a is itself evaluated (in a similar fashion)
without mddiﬂcation of the addition expression, and the result is made available

by reference to support the addition.

The distinction betweeh data—dm’veﬁ and demand.-drw.én. coi:nputation .for
thié examplé concerns whether the expre.s.si'on represented by 2 is evaluated
before it is required by 'ﬁ¥d_(data-'ciriv;3ﬁ), or after it is required (demand;
driven). | | - | |

As rnentioned.. the design to be presented in Ithis dissertation is largeiy
derived from the work of Mago. A desﬁriﬁtion of this early work is included here
for .histo.rical continuity, and t.o emphasize its place relati_ve to the other
attempts ".th.ai hé&e been niaae. Not .in_cludec.l in this review are architecture
impleméntati.ons that ére based on Ia physical tree st'ruc.tuye buf which are
des‘igned to eiecute .other thé.n functiénal languages. These incluae the designs
suggested by Dés_pain [Des?B], Davis [Dav78], Stolfo [Sto83], and Shaw [ShaBS].

- For each proposed design, we will be concerﬁe_d'With tﬁe particular

functional language that the architecture supports, and the computiational



) modél used (string vs. graph feductio_n, demand vs. data—dri\}en. ete.). Program
decomposition for multiprocessor architectures will be examined. This includes
distribution of data processing tasks té their respective processors, as well as
re-integration of results. The number of processing units and their individual
capa’bﬂities are also important aspects of a design, as wellras. the power of
language primitives. Limits to parallelisimn and efficiency will be serutinized. Note
that parallelism and efficiency are not the same thing, since the cost of creating

or maintaining péiralielism can be greatef‘ than the gain in performance.

1.2.1. GMD Machine (Berkling)

Central to the concept of reduction-siyle execution is the replacement of
operator applications with their results. As described, the two bagic
) comput_ational approaches are aclual textual substitution {i.e., string reduction)
and thé use of pointers and a global memory (i.e., graph reduction). Befl_{ling
was amdng the first to recognize thg need for research into systems based on
-~ textual substitution for directly supporti_ng high level reduction languages. In
response to Backus' early work on reduction languages, Berkling designed a
computer system .implementation [Ber?5] based on the ‘co'ncept of string
reduction which supported direct execution of a variant of Backus' A-Red (for

Lambda-Reduction) languages [Bac73].

Berkling recognized the potential of the substitution approach, and
envisioned the feasibility of parallel processing "in ﬁ;emory” without the use of a
central processing unit. In his implementation, howairer, _hé chosé a traditional
_ drganiza’tioﬁ, and used a centrél active p’rocess;ing- component to operate on
data .st'o_red in passive memory {three hardware stacks). His implementalion
neithef supports the parallelism inherent in A-Red lénguages, .no'r ﬁakes use of

lower level parallelisrfn. within the implementation in the interest of efﬁciency.



Nevertheless, the machine 'lénguage ‘for Berkling's computer is a high-level

functional language. This was an important contribution, and opened the way for

further :w'ork. '

1.2.2. AMPS (Keller)

AMPS stands for "Applicative Multiprocessing System,"” .and this design
[Kel79] features a lﬁésely-coupled treé structure to bg.composed of aroﬁnd 1000
nodes. The language supported is a comp'_lled. dialect __of LISP calléd FGL
(Functi_o_nal_ Graph Language). Str_.eams, or | infinite data. étructures. ére
Sﬁpported through the use of a demand-driven evaluation mechanism.

FGL represents a prograin as a function graph whose nodes are data
fbrm’mg functions {possibly user-defined with an inner éub-graph_structure) and
whose aréé répr.esent'access to data formed and made available by other nodes.
.The basic data forming operations of Lisp are primitive, and cons is the lenient
cons suggested by Friedman and Wise [Fri78]. Independent sub-graphs called
productions are supplied for user-deflned furictions, and these may be recurs.ive
in nature. When a function node requires the data producea by multiple
"subordinate" nodes,.it may send parallel demands to.each of these nodes. Thus
the FGL language can express parallelism, anti the i-mplementation supports it,
AMPS is thus an excellent example of the language-based approach to
- multiprocessor design; creation of parallel tasks required to utilize the power of
the hardware is implicit in the language.. Clever compile-time analysis of

program text is not required to detect opportunities for :parallelisrr'l, nor is

* Turner’s S-K reduction machine [Tur?g], and the Cambridge SKIM reduction machine
[Cla80] also use high-level functional languages as their machine languages. Although
their machine languages are interesting {expressions are built with combinators), these
designs are not discussed further because, like Berkling’s design, they are single-
processer implementations that cannct directly support the parallelism inherent in their
machine languages. :



static pre-allocation of tasks to processors necessary.

Each leaf node in the physical tree structure of AMPS contains a fairly
powerful p-«roces‘sor {on the order of a micro-computer) and an associated local
memory unit with around 64K words. The interior tree nodes are used for
communication and distribution of processing tasks. There is a siﬁgle uniﬁed
address space, and, due to the graph reduction mechanism, sharing of data
structures is prevalent. Local caching is used to help alleviate contention for the
primary copy of a data structure, while the applicative nature of the language

guarantees read-only access and the validity of cached dala.

The execution of each graph or sub-graph is bound to a single processor, so
-computation involves relatively large-grain processing tasks. Processing tasks
are create.d "top-down'" in response to encountering a demand for the data
object produced by a function node. Task creation is therefore dynamic and
- unpredictable. Run-time binding of tasks to leaf processors often results in the'
need to "farm out'" processing to some .othe.r leaf node, and although. a unified
address space si_mpliﬁes this procedure logically, the penalty' of comnmunication

over the shared tree-structure is incurred,

Circuit-switching of communication lines is infeasible due to the possibility
of tying up long paths through the tree structure, so the interibr nodes support
a packet-switehing comrnunication pydtocol. The cost of this cémmunication
cannot be known ahead of time, making it impossible to predict the execution
time of a program on the machine. AMPS therefore completely supports the
logical parallelism inherent in its machine language (by dynamieally creating
Vprocessing tasks as they are requ_ired) but at unknown cost and with little
additioﬁal lower level implementation parallelism aside from that implied by the

language.



The issue of predictable performance is one that plagues mulliprocessor
designs, and has its roots in the degree to which separate processes are allowed
to interfere with each other. This interference neormally takes the form of

contention for a shared resource,

In the case of AMPS, processes must compete for their share of processor
time, .cache storage, local rﬁemory, and communication bandwidth. - The
difficulties of analytically modeling the results arise from a lack of control over
the  process interference while at the same time 'allowing dynamic and
| unpredictable creation of processes. To the degree that process interference
can be carefully limited, controlled or predicted, an analytic model should be
able to. succ_:essfuﬂy_ predict performance.

1.2.3. MM1 (Mago)

This sec_tion introduces the design préposéa by Mago [Mag?gj, upon which
this dissertation i-s based. Although various changes in orientation from his
original .concept have 5een made, high-level and common aspect.s will be
stress.ed hére. As i_n the other review.s,_overall structure a_.nd implications for

language support and process interference are of primary interest.

The essential problem with stri_ng reduction is how to support it efliciently.
Berkling saw this, and envisioned processing in memory as a possible solution,

but has not suggested a suitable design. Mago has successfully done so.

The Mago Machine, or MM1, as we shall call it, is essentially a binary tree of
small-grain processors, including linear connections between adjacent leaf cells.
FIP text is stored, symbol by symbol, in the leaf cells ox{lceil_s. The interior tree
cells, called teells, are used for a variety of functions, and during reduction of
innermost FFP applications they sﬁp_port communication routing between: the

leells. Thus the leells act as a linear memory array, and the tcells are used when



global context must be accumulateci and used. The design is expandable to any
size, and tree machines composed of a million cells (height around 20) are
envis.ioned. |

A great deal of ingenuity is required to efficient.ly accumulate and use
{within the ovéraﬂ tree struc'ture) global contexts discovered from individual
lc'ell ' contenl;s. Initially, innermost  applications | (called RAs for~
.'redﬁci,ble applications) must be discovered. This is perforrﬁed in a single
upsweep and downsweep of information-through the overall tree structure. In
this process, the machine is partifioned so that individual dedicated binary
trees for communication routing are associated with eaéh RA. These small trees
are embedded in the overall tree-structured network using a circuit switching
.appro_ach. Also during partitioning, the syntactic structure of each RA is
' determined, and the containing lcells are given information of limited but uséfui

precision concerning their locations in the corresponding parse tree.

Following partitioning, each innermost application has its own dedicated
multiprocessor and communication network embedded in the overlying tree
structure for Suppdrt of its reduction. This approach may be contrasted wi.th
AMPS, in which single leaf cells are tasked with the reduction of complete graphs,
and may interact with tasks and data in other leaf celis. In Mago’s approach,
more than one processor is entrusted with a single reduction, and
communication is performed within dedicated (circuit switched) channels as
opposed to the shared packet-switched channels in AMPS, Each active partition
of MM1 is therefore able {c operate on its own reduction independently of othe_zrs,
and lower level .para.llelism (béyond that implied by the FFP janguage) is
available to further increase the ef‘ficiéncy-of reducticn. Message rouling is a

simple broadcast mechanism within dedicated channels.
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- After partitioning, the leells must be told how to behave in order to perform
the reduction. This is indicated by the operator of the reduction. The range and
utility of FFP operators is great, and the poterntial number of useful operators

.for a programming system is correspondingly large. In the interest of flexibility
in the operator set, and in recognition of the limited storage space that will be
available within lcells, operator definitions are not stored in the lcells,-b.ut'ar.e
brought iﬁ on demand at run-time. Mago célle& these definitions microprograms
and they consist of a short series of instruétions to the lcells of én R-A. orn how to

proceed in order to ach-iev_e the desired reduction.

' 'The machine operates in a major cycle composed of partitioning, execution,
anci storage rnra'nag'ement. Storage management is required to allow FFP text to
expand-when the result of reducing an éxpression is larger than the original
expression, and is performed by~ shifting--iﬁformation within the lcell array.
During this process, space made available by RAs that reduce to smaller
expressions can be used to make room for expressions that are growing. The
shifting is performed by sending FFP text symbols along the lateral shift
register connections between the-leaf cells. Microprograms are interrup_ted for
storage management asynchronously, ,Without-n-_ee__d for special preparation on
their part, and are then autoratically continued after storage management and
re-partitioning.

N As mentioned earlier, process interference dppears to be a primary source
of difficulties when predicting program éxecutio_n time. In Mago's -design,
process interference is confined - to the storége management phase of. the
execution ecycle. This interferenc_e may be characterized as contention for the
shared -memory space in the lcell array. Surprisingly {(in view of the other

designs reviewed here) the exact character of the interference is predictable
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since it is determined by the string reductions implicit in the source FFP text.

Mago's design represents a revolutionary apprdach to direct support for
string reduction of reduction 1énguages; His ori.ginal paper descr.ibing. this
approach [Mag'?Q]' provides a detailed discussion of how an implementation
might support each of the three phases of the machine cycle, and presents a

. . . *
"strawman' microprogramming language.

1.2.4. Ring-Coupled Reduction Machines (Treleaven, Mole)

Treleaven and Mole have proposed an implementation for a multiprocessor
reduction machine based on string reduction [Tre80] which also incorporates

parallel support for functional languages.

- The FFP reduction languages of Backus exhibit linear ordering and are well_
suited to string reduction. If we imagine an FFP prdgram as a linear tapé
containiﬁg the successive symbols of program Itext,' innermost applications then
appear as individual, separate, and independent areas of the tape. The
s'em’anti;:s of FI'P Ianguageé _gua'ra-'ntee that we can reduce these in any order {or

even in parallel} without aflecting the final answer.

Continuing the tape analogy, imagine a special "tape machiﬁe" able to move
the tape back and forth, collect a portion containing an irinerrhost application,
and then splice an application resull back in place of the original innermost
application text. Consider two such machines, or even more, spread apart but all
working on the same tape. To avoid boundary problems the tape could be
connected at its ends to form a largé circie. Ti’lis is the essenée of Treleaven's

approach.

* Two designs of a more complete nature have been inspired by this early work: Tolle's
design, discussed in a following section; and my own.
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Treleaven's tape is implemented by connecting individual reduction
machines similar to the above "tape machines" in a ring through the use of
hafdwﬁre and secondary storage deque structures. The reduction machines use
.the deque structures to shift FFP .text through themselves, and replace
innermost applications with their results whenever possible. Because of the
necessity for storage and reduction of complete RAs, the reduction machines
are relatively large-grain processors. Thi_s simple and cpnceptually pleas.i.ng

design clearly shows the value of string reduetion for multiprocessor systems.

Note, however, that the complete parallelism of FFP languages is not
supported. If there are n reduction machines, then -. only n innermost
applications can be performed concurrently. And this is {he best case; when a
large number of consecutive applications are created, they could be caught
between and executed by only Lwo reduction machines. Thus, there is limited
parallelism at the language level, ‘ahd {as in AMPS3) no additional lower-level
parallelism. Another problem is that RAs may be created that are too 1arge to be

contained within an individual reduction machine.

How about process interférence? At first glance, this seems confined to
"tug-of-war' on the "tape", which is easily handled with a priorily mechanism or
a preferred direction. Once a reduction machine has an innermost application,
it will be executed without interference.  There is no contention for shared

communication paths, no global memory, and no caches.

Unfortunately, as hinted abo\lre, performance cannot be predicted for this
| design either, and for even more serious reasons than for AMPS. Here we don't
know how much shifting will be necessary for an innermost application to find a
reduction machine, and any number of innermost applicalions could be trapped

between two processors. This last ecan be viewed as process interference, and it
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makes it impossible to predict the interval between the implicit creation of a
processing task and its actual execution. Nevertheless, Treleaven’s approach is
very useful conce.ptually: it.clearly shows both the important benefits and

pr'oblems associated with string reduction.

Mago's suggested design predates Treleaven's effort, and its fruition in the
implementation we will soon describe can be viewed as an attempt to
circumvent the above problems of string reduction, while maintaining all of the
benefits. Thé extent to which we have been successful will Be examined later, but
our approach {as suggested by Mago) can be viewed in the following way with
respect to Treleaven's: instead of moving the text symbols on shift register
dedgue structures between intelligeﬁt reduction machines, make the individual -
shift register components intelligent encugh to perform their own reductions
and their own splici_ng'. Instead of requiring movement of the _"'tape” though a
sin-gle device in 6rder Lo sequeﬁtially ‘accurnulate the global context required to
identi.fy innermost applications, use an overlying tree-structure to perform this
process in parallel. The ultimate result is that innermost applications never have
to wait for processing power, which solves the scheduling problem experienhced

by Treleaven's design.

1.2.5. Syntax Tree Machine (Tolle)

Tolle has proposed a design. [Tol&l]. inspired by and in some ways similar to
the original proposal of Mago. Tolle also uses a binary tree of processing
elements to accomplish string reduction of FFP text stored within the leaves of
the tree. Where Mago proposes strict limitations on the capabilities of the
iﬁte.rior tree cells, however, Tolle investigates the potential of giving them a

greatly increased and programmable flexibility.
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In response to FFP text within the leaf cells, seven different logical types of
nodes are embedded in the physical cells of the overall machine tree structure.
Of these nodes, those that are associated with an innermost FFP application
further differentiate and split themselves into six different ﬁode types to form
an SN-CP network that is based on the syntactic structure of the underlying FFP
text. This nelwork is quite similar in structure-to the derivation tree for its
underlying FFP text expression, and is derived by eﬁ'ectivély parsing the text to
discover the topmost structure-levels. For f.hi.s reason, the SN-CP network is also
referred to as a syntax tree.

Reduction of an innermost application is then guided and ‘perfc}rmed
entirely within its dedicated 'syritax tree in response to STL (Syntax Tree
Langﬁage). STL works by driving the syntax network tep-down, to dynamically
create processing tasks and data pipes within the SN-CP network. Processes and
pipes are freely created, and in multiplicity, resulting in the ability to move data
out of the leaf nodes holding the FFP text into the overlying syntax tree, and to
‘move this data in many directions and in support of many processing ‘tasks

coneurrently {all in the service of a single reduction).

This flexibility has both édvantages and proiylems when compared with
Mezgo’s approach. The expanded capabilities pf the interior tree cells can
increase the efficiency of sbme reductions because tree cells may be used quite
'e.ffectively to hold and combine data. In Mago's design, during execution cf a
reduction, the tree cells are primarily used to suppori communication between
the leaf cells where all non-rmmessage data is constrained to reside.
Unfortunately, the complexity of implementing the dynamically created
processes and pipes of Tolle"é design is not immediately clear; he has left this

for furthef-investigati-on. Contention for physical communication channels and
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tree cell processing time is also an open issue.

There is a very loose coupling between any SN-CP network and the rest of
the tree. This is locally good for processing a given reduction, but when moré
Icells are needed to hold additional FFP text in order to complete a reduction,
neighboring SN-CP networks must cooperate. Fxecutive routines running in a
more global context of the machine (called the TA-#ediafor network) monitor
execution and detect mol.ten zones whose contents may be shifted to create
room when needed, but it is not possible to interrupt STL execulion
asynchronously ‘as in Mago’s design. This is because there is no way {and no

- place) to store the execution context of STL progra’m.s, and then restore and
reload them following storage management and creation of newly-formed and

different SN-CP networks.

FFP text movement is therefore accomplisheéd only in multiple disjoint
{molten) areas which .allow it. A need for inéreased -Space to complete a
reduction is automatically satisfied by the machine only if there is enough space
in the local molten zone. Reductions may therefore be delayed even though the
machine as a whole has ample space. This potential for process interference, in
a way similar to that encountered in Treleaven's design, makes it very difficult

to predict program execution time for this design.

1.2.8. Cooperating Reduction Machines (Kluge)

Kluge [Kiu82] has proposed a multiprocessor network to be composed of
Berkling.'s sequential reduction machihes. As in AMPS, a number of large-grain
processors (i.e. large enough to perform reductions on their own) are used as a
processing pool to execute tasks as £hey are dynamically created through
demands for data values. In AMPS, tasks are created by passing demands top-

down through a function graph; Kluge's system sees tasks in the unfolding
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creation of independent executable reductions in mueh the same manner.

Each executable reduction may be viewed as -the program and initial staﬁe
of a "virtual" reduction machine, which must then be mapped. onto a physical
proéessor for execution, ?rocessors are not time-sliced. Instead, they support
LIFO execution scheduling in an eflicient and pleasing manner. A property of
Berkling's reduction mechanism is that the contents of the three system stacks
completely specify the state of a reduction. When a new tésk is mapped to a
‘processor, the required. context . swilch is performed simply by pushing
separation symbols onto the three stacks, and then loading the new virtual
machine. This virtual m’é.chine will execute to completion {unless interrupted by

additional tasks), and then continue the execution of the interrupted context.

The task scheduling mechanism and a means of co'ntrolling the migration of
tasks between processors are important aspects of Kluge's design. Migration
aind the resulting creation of parallelism iz controlled through the use of local
ticketing operations that are independent of network topology. Because of the
local character of this load balancing, and other reétrictions placed on process
migration, it is. possible that overall multiprocessor utilization might be poor.
The price of increased flexibility in processor écheduling would be increased
potential for contention within shared communication rescurces. Because Kluge
1ea{res network topology‘ an upen question, little fnore can be sald concerning

this tradeofi.

The use of an arbitrary number of processors in this design helps support
the architectural concurrency exhibited by reduction languages, but with
parallelism limited by the number of available processors. This is analogous to
the situation for AMPS, but communication costs seem potentially worse here.

This is because complete vopies of executable reductions must be passed



17

between machines, and arbitrarily large results returned to their enclosing
reductions. AMPS experiences a corresponding problem related to graph
reduction and contention for shared data siructures belween processors.
However, the local cache mechanism used to alleviate this problem in AMPS has
1o counterpért in the string reduction design suggested by Kluge. As in the case
of AMPS, there is no ciear way of deriving good estimates of prog‘rarﬁ execution

time.

1.3. Other Related Work

We now briefly review work performed here at UNC that is closely related to

the MM1 proposal of Mago, ﬁpon which this dissertation is based.

1.3.1. Time and Storage Analysis (Koster)

Alexis Koster developed a methodblbgy for analyziﬁg time and space
re’iluirements of FFP programs on a machine organized around. the principles:
suggested by Mago for MMi. In Kosfe‘r’s dissertation [Kos77], generic
performance’ rcharacteristics loosely representative of MM1 are aé-sumed, and
the times required to execute primitive operations are 'expressed in terms of a
clock cycle Itime {essentially, the _tirn.er reduired to pass information from one
cell to a neighbor). Execution times and storage requirements for general
- expressions {in FFP languages, even programs are exﬁressions) are then derived

and applied to a variety of program segmen’és.

In order to simplify the analysis, Koster assumes that the storége
management phase of the machine cycle takes no time. As mentioned, this is
the phase of the machine cycle most sensitive to process interference, so
Koster’s results give .lower-bounds. With his approa.ch, useful and intérest‘mg

results are made available with a minimum of difficulty, and he was able to
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successfully analyze a variety of malrix multiplication programs {showing clear

tradeofls between time and space requirements), and a tree traversal program.

The work described by Koster in his dissertation has subsequently been
extended in a joint effort [Sta81, MagB2], to include upper bounds analysis as
well.” The analytic model of execution time to be presented in this dissertation

is based on this work. .

1.3.2. Message Routing {Kehs, Pargas, Presnell)

David Kehs has investigated the idea of using connections between
horizontally adjacent tecells in a tree of proéessors similar to MM1 to route data
between and among leaf cells of the tree [Keh78]. Theoretical results are

presented to indicate the potential for increased efficiency of data movement.

Roy Pérgas has investigated the use of a tree machine similar to MM1 for
the solution of partial differential equations {Par82]. He presents an interesting
and powérful high-level méchanism for communication routing within the tree
called GDCA (Generalized_])istributéd Communication Algorithm). GDCA requirés
programmable implemeniation support within the tree cells on a per—fnessage
basis, but P_argas does not suggest.-a means of implementing this facility; his
analysis of alg.orithms for the solution of partial differential equations-assumes
that the tcells have airéady been programmed lo behave as necessary in
support of a message routing. .While. this absence of concern for an
im?lementation for GDCA is unfortunate, his results s.how the power and va.l.ue of

g'ene’ralized routing within a trée structure,

* Also of interest in this regard is the analysis by Williams [Wil81] of algorithms for paral-
lel associative searching algorithms on tree machines.
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1.3.3. Virtual Memory (Frank, Siddall)

Geoffrey Frank's dissertation [Fra79] takes a formal mathematicai
approach in exploring the idea of a virtual memory for a machine organized
around the principles of MM1. Data is to be kepl in a second level store until
needed by an innermost application,- at. which time room ig made for it in the
jeaf array and it is brought iﬁ for reduction. Advantages of. such a scheme
include fewer symbols to be shifted about during storage management, and the
.ability to execute programs that are iargez“ than the capacily of the leaf cell
array. The two-level mem.o_-ry hierarchy is hidden from FFP user programs by a -

virtual memory interpreler,

Frank's dissertation considers  aspects relating to correctness and
implementation of the interpreter, and investigates the time and"space
efficiency of programs under such an execution regime. Improved execution

time and space regquirements are shown for some FFP programs.

William Siddall has continued investigations :aloné, this line [8id83] by
examining a variety of different virtual memory schemes for FFP interpreters.
He developed a simulator for storage 'manag'ement that allows the performancé
of thése schemes to be evaluated. Our present design incorporates one of his
suggested approaches, which allows FFP text movement into‘and out of the

machine through the leftmost lcell. This allows both program entry and overflow.

1.4. Dissertation Overview

The objective of the research described in this dissertation is the design of
a computing system for maximally pai'allel and eflicient execution of FFP
language programs. The system design we present is an outgrowth of the ‘tre'e-
structured architecture implementation suggesi;,ed by Mago [Mago7?9], and is

specific and concretely verifiable; it is, in faect, executable. It completely
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supports all parallelism architecturally implicit in FFP- languages, and its
efficiency is the result of a very high degree of lower-level implementation

parallelism.

The primary constituent of this design, a complete and detailed model for
implementation of the architecture, is called DOT (Distribuied Operating system
model of o Tree-structured multiprocessor). DOT is represented using active
and passive abstract data types {(tasks and classes) in the C programming
language. This allows simulation of the architectur_e implementalion during
execution of actual FFP programs, and is invaluable for the verification of what
is a highly complex and concurrent system. In addition to the DOT
implementation model, this dissertation presents an accurate analytic model of
program execution time based con the algerithms and communication protocols

used.

The name DOT was chosen to emphasize the fact that the implementation
model it represents may be viewed as a distributed operating system embedded
in hardware and ﬁrmv_\f_gr'e.* In this dissertation, the term '"DOT machine” will
often be used to denote a multiprocessor organized and operating as indicated

by the DOT design.

Although the overall computling system is designed to support FFP in a
"direct execution" sense, the individual processing units from which it is
cvonstructed (whose implementations are represented in DOT) do not execute
FFP. Instead, these individual processing units cooperate in order Lo collectively
parse TFP text, and then load and execute "microprograms” that implement £he

required FFP operators through cooperalive and highly parallel action,

. .

An operating system typically performs memory management, process control, input-
-output operations, and runtime support for interprocess communication. DOT performs
all of these functions.
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The intermediate level programs that determine this cooperative action are
therefore the other half of the story. They are expressed in LPL, a low-level
concurrent programming "'assembly” language with specialized message passing .
and process creation features. All computation on 1c;he architeqture is guide.c'l
and.determined by LP.L programs, which can implement powerful functions as

low-level highly parallel manipulations of FFP program text.

The DOT implementation defines the LPL ar_chitecture, whose purpose is 1_;0.
:ﬁ’c between the arbitrarily powerful and high-level FFP view, ‘and .a 1ow.er level
composed éf “simple and restricted operations made available directly by
hardware and firmware. LPL represénts a major component of the design. The
anaiyi:ic ‘model of prograrm .execution includes parameters based on LPL
definitions of the FFP opérators as well as paramete.rs determined by DOT. This
dissertation the.refore presents a complete programming system, including LPL

programs for a powerful set of FFP operators.

1.4.1. Dissertalion Organization

The programming system we present is composed of three logical levels.
rI;he top (user) level is that of FFP languages, and thé mid-dlé {system support)
level is that of LPL, the concurrent programming language used to define aﬁd
implement arbitrary FFP operators. These two levels are supported by DOT, and

are described in Chapter 2.

DOT is both a design and an implémentation model for the desired parailel
architecture. It is the lowest level of the programming system, as we examine it

here, and is described in Chapter 3.

In Chapter 4, we describe the simulation approach taken, and present
results of various simulation studies. Chapter 5 then presents an analytic model

of program execution time (for a restricted set of programs), and verifies its
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agréement with the results of simulation studies.

In Chapter 6, design alternatives referred to throughout the presentation of
the architecture and prog-ramming system are collected and reviewed. Chapter

7 concludes the dissertation with remarks concerning the the DOT model and

' implications for hardware.

' 1..4.2. Selective Reading

Because we are concerned with presentation of a highly complex and
parallel implementation model, certain sections of this dissertation may not be
appropriate for the casual reader. To allow selective reading, an overall guide to

levels of detail is provided here.

The first section of Chapter Z is importa-nt; it provides a basis for
terminology used throughout the dissertation, and includes a simple example of
FFP languages. The formal definition of FFP languages may be skipped over if
desired, though this leads naturally into the explanation of LPL that follows,
which is central to the dissertation. Defailé of actual LPL programs may then be

skipped, by proceeding directly to Chapter 3.

Chapter 3 is organized into four main sections. The first two provide an.
overview of DOT, and describe the basic machine eycle, These sections should
be read. The third section provides detailed descriptions for the processes and
objects of the DOT model, and is not essential for a high-level understanding of
the programming system. Finally, the last section provides a detailed analysis
of the most important algorithms used by the model processes, This is the most
formidable part of the dissertation. Though it may be _skipiped ’t.).y turning to
Chapler 4, this section contains the essence of many difficult problems that had
to be faced in order to efficiently utilize the treé—structured communication

topology. Formal verification of algorithms via mathematical induction is
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performed when possible.

Chapter 4 discusses how the DOT implementation is sirnulated, and is easy
reading. The analytic model of program execulion time is then presented in
Chapter 5. This chapter contains the implications for performance of the
algorithms that were analyzed in the last section of Chapter 3, and conéludes
with a discussion of the degree to which DOT decouples pai‘allel function
evaluations -- an important aspect of the design. The introduction and
conclusion of Chapter 5 are therefore recdmmended, while the detaﬂs of the

performance model may be skipped if desired.

-Both Chapter 6 and 7 should be read. Chapter 6 is fairly conversatioﬁal,
“and provides a feeling for the type of design decisions that were Inee'ded to
create DOT. The alternative approaches and extensions .are motivated by
hindsight, so these provide a helpful review. Chapter 7 reviews the disseftation

and discusses hardware considerations for further work.

If the chapters are read in their entirety, a ranking of their diﬁiculﬁy in
decreasing order would be as follows: 3, 2, 5, 4, 8, 1, 7. Selective reading in
ofder to avoid low-level detailé should only be required for Chapters £, 3, and 5.
These Chaptérs therefore contain appropriate point'ers to aid readers in avoiding

the more difficult sections, should this be desired.



CHAPTER 2

Topmost Architecture Levels

2.1. Intrbduction

All communication begins with agreement. In-order that ideas, a design, or -
structure be explicated, a common understanding of the task at hand and the
 terms used to describe it are necessary. Within the co:itext of this dissertation,
the terms architecture, implementat'_lon, and realization are of utmost
itﬁportance. and are best used 6n1y after -agréemenﬁ on their meaning has been
reached. This is especially true because these terms are used in everyday
conversation, with little concern for an exact denotation. The term computer
architecture, for instafice. clearly has something to do with logical structure,
ariri such a vague perception is.often good enocugh for informal communication.
But implicit faith in commmonly perceived meanings can be a stumbling block
" when exact ideas of fairly technical nature must be communicated. In
particular, the difference between architecture and implemeﬁtation can be
quite confusing in the absence of fnrior agreement, This. has been noted by other

authores including Delesalle:

"Classification is fundumental to human thinking. It is performed in

various fields,.. In computer science, several clossificafions hove been

suggested.., Authors have addressed, someifimes 1in puossing, the

classification of computer hordware. Their toxonomies, howewver, only

address o few incidental concepts, which are not formeally specified.

Also, the subject matter often mixes architecture with implementa-
 tion." [DelB3]*

* emphasis added

24
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2.1.1. Architecture, Implementation, and Realization

This dissertation bresents a programming system composed of numerous
levels, and in order to clearly p'resent a cohesive view of the overall design these
" levels must be correctly placed and described with respect to each other. For
this pui'pose,' the terms archifeclwre, implemeniation, and realizﬁtion are
invaluable.. These terms and their use are deScribed by Blaauw and Brf}oks

{Bla83], whose approach I shall use.

"The architecture of ¢ computer system we define as the functional ap-
pearance of the system to its imnmediate user, that is, its concepiual
structure and functional behovior os seen by enyone who progrums in
machine language, A computer's architectfure is by this definition dis-
tingwished from other domuains of computer design: the logical orgoniza-
tion of its dota flow and controls, called the implementation; and the
physical structure embodying the implemeniclion, called the realiza-

tion." [ Bla83]

Given the concepts :of virtual machines and micro-c.oc;le implementations,
identification of the single machine language of a computer system may be
problematic. Although guestions of architecture and implementation may be
relative, for a particular computer system the question of "what is ﬁhe
realization" has a direct and existentially unambiguous aﬁswer. One mefely
points to the actual hardware as it sits before one. In the absence of an actual
machine, the manufactufing specifications serve as a represenfafion of the
realization.

Moving up from the realizati_on level, we entér the domain of aréhitecture

and implemehtation. While the realization level has a comforting and concrete

nature to it, the higher levels do not. They are abstractions to be embodied in a

realization.
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2.1.2. Multi-level Systems

The relativity of architecture and implementation levéls is shown in the
systemm of Figure 2.1, in which one architecture is implemented in another.
-Blaauw and Brooks call such architectures vertically recursive [BlaB3)]. Rach
upper Ievél of this system may be cal.led an architecture because of its
correspondence Lo a virtual machine language. In additional, all levels but the

topmost are used to implement the next highest level.

| .FI GUEE 2.1 -—. Vertically Recursi;;e Compuler }-lv.'chitec ture
Application Language {Arch)
Compiled Language (Imp/Arch)
Assembly Language (IﬁpfArch)
Macﬁiue Langu%ge (Imp/Arch)
Micro-code Language (Imp/Arch)

R

Computer Hardware (Realization)

Reality_ 'is.r more complex th_an indicated by Figure 2.1. Omitted (or
disguised} is an important aspec___t. of architecture implementations: more than
one éystem component' and level may be used to implement additional
architecture levels. For instance, it is true that assembly language implements
a compiled language, but so do the language compiler {which is more usually
thought as the implementation of a compiled language), and the operating

system {which implements 10 and under whose control compiled programs run).
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Within DOT, such compiler and operating system aspects are explicitly merged
into a single implementation model for the LPL and FFP architectures, and the
resﬁlting sysi;.em si:ructure is depicted in Figure 2.2. DOT implements LPL, and
the combination of DOT and LPL implements FFP. Authors dealing . with
language-driven architectures sométimes speak of embedding the operating
system and compiler in hardware. The compiler and t;;t)erating system aspects

taken over by DOT are shown in Figure 2.3.

FIGURE 2.2 -- DOT Implements LPL; DOT+LPI, Implement FFF

FFP -- User Level

LPL --
Operator Support DOT --
LPL & FFP Support

FIGURE 2.3 — DOT Compﬂe'}' and Operaﬁ‘,ng .S‘ystem Aspects

(Compiler) o Locate/Parse Innermost Applications
(OS) o Multiprocessor Scheduling
o Virtual Memory
| o Input/Output Sarvices.

- o Storage Management
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2.1.3. Architectural Concurrency

Anqther important point concerning architecture -- one of great
importance here -- is that languages can be a,rchitec'tuml'ly concurrent, Tor
example, even an asserﬁbly language with a no-wait start-io instruction is
architecturally concurrent. Architectural concurrency may be seen in terms .of
the absence of a guarantee {on the part of the language semantics) of strict
sequentiality. In the caée 6f the above example, no guarantee. is made that an
instructioﬁ which textually follows a start-io will execute béfore or after io

activities complete.

On the other hand, architectural concurrency may involve more explicit
control of multiple processes, as in Coneurrent Pascal [Bri??] or Ada [Ieh?9]. In
the absence of a betler definilion, we will say that a language is
agrehitecturally concurrent if it admits to parallel inte rpfetation.* FFP and LPL

are both architecturally concurrent.

Architectural concurrency can be guite useful. It enables a straightforward
ex?ression of many algorithrﬁs that are most naturally represented in terms of
_mi;lltiple processes and éoncurrent behavior. In addition, an irﬁpleme_n_tation is'.
freed from the necessity of strictly sequential support, which may allow valuable
gains in run-time efficiency. Per Hrinch Hansen has convincingly demonstrated
the gains in system throughput that are possible when multiple concurfent
processes at the level of Pascal code are used to increase a syétem’s freedom of
action {even when the processes are implemented through time-slicing on a

single processor) [Bri77].

A processmg unit is a sequential mterpreter of its machine language. ParaIlel mterpre-
tation thus involves more than one processor.
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2.1.4. Implementing Architectural Concurrency

Given architectural concﬁrrency in a language, an implementer has a
variety of options. These include direct parallel support for 1a.nguége
concurrency in é.n implementing architecture, parallel impl_ementa’tion in socme
way that doés not exactly rnirror.t'he supported language (perhaps by using
lirnited Ianguag.e—levei parallelism as in Treleaven’s design in ‘Sectién' 1.2.4, or by
using additional lower-level implementation parallelism), aﬁd enforcing
sequentiality at the implementation level through - a process scheduling
mechanism such as time-slicing.

In DOT, all concurrent aspects of the FIP and LPL archﬂ;ecture levels have
been supported through the use of an even greater degree of parallelism {and at
a much finer grain) within their implementation. Moreover, the DOT
representation is designed to suggest realization as a highly parallel
multiprocessor, in a way that provides direct parallel suppdrt within the
realization for implernenté.tion parallelism. *

We now present FFP, the topmost architecture level of the programming
systermn presented in this dissertation, and L.PL, the architecture level that

implements F'FP opera’cofs.

2.2. User Architecture — The FFP Language

Informally, an FFP language program is a linear seciuence of symbols, of
which four types of symbol are specially distinguished for the purpose of

providing syntactic structure: cpening and closing application-forming symbols

* The DOT implementation madel cperates in three modes: it represents a parallel imple-
mentation for FFP and LPL; its representation is executable, so it supports simulation of
the implementation via writing LPL programs to implement FFP operators, and then ac-
tually running FFP programs on it; and lastly, DOT suggests a realization as a tree-
structured cellular network cf fine-grained processors suited to VLSI fabrication technol-

ogy.
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for opplications, and similarly balanced list-forming symbols. An application . is
composed of an operator and exactly one operand. Both op.erator and operand
may be lists and may contain further (i.e., nested) applications. A non-trivial
FFP program is an applicalion, and execution proceeds by succeésively reducing'
innermost applica;cions according to the semantics of their respective operators
until there are no furthef aipplications. The ultimate resuit is a constant (i.e.,
non-reducible) expression.

The éppliéaﬁon stl.:)ol.in our representation is a parenthesis "(", and the
list-forming symbol is an angle bracket "<". Within DOT, all program symbols
have an associated F'FP text nesting level, which removes fhe need for storage of
the balanecing symbols SR ana ">". Figure 2.4 gives an execution trace for an

FFP program that calculates the inner product of two vectors.

FIGURE 2.4 — Inner Produci of < 1 23> with< 456>

— The original FFP program is: .
(+(<a*>(1‘<<123><456>>)))

- T (muolrix transpose) is innermost, so it is 'reduced yielding:
(+(<a*><<14><25><36>>))

—~ <@ * > (gpply-to-all multiply) is 'mne?'most and yields:
(+<(*<14>)(*<25>)(*<386>)>)

— three multiplications are innermost; paraeliel reduc tion yields:
(+<4101B>)

~ + (n-ary add) is innermost, so it is reduced yielding:
32 '

— which is the answer {no further.applibations to be performed)

FFP reductions are completely local in nature and are tightly encapsulated
with respect to tile rest of the program. This fact aliows immediate, completely
parallel and non-interfering execution of all innermost applications (hereafter
referred to as reducible applications, or FAs), and it is this property of FFP
languag_eé that makes them so attractive for multiprocessor support. User

pruegrams are actually written in FP, a human-engiﬁeeréd version of FFP
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described by Backus that allows programs to be written in a more structured
and understandable fashion [Bac78]. A pre-proceésor based on macro expansion

is used to convert FP programs to the equivalent FFP representation. The FP

program corresponding to the inner product example in Figure 2.4 is:
IP==4+ @ n* @ T,

where @ is used to represent functional composition.

2.2.1. Backus' Language Hierarchy

FIGURE 2.5 — A Hierarchy of Programming Languoeges

" Programming Languages

Complete Languages

Applicative Languages

Closed Applicative Languages

Red 1§ A-Red | FEP
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Although FFP is the user-level architecture whose impiementation is' the
object of this dissertation, FFP is part of a larger hierarchy of languages
suggested by Backus [Bac?3]. A brief review of this hierarchy, based on
terminology suggested by Backus [Ba.c’?B], is now given. This will enable us to
refer to some r. of the more formal aspects of FIFP semantics in following

. *
sections,

2.2.1.1. Programming Languages

A progromming language, L, compris'e R

L1) Asetof expréssians. E
L2} A domain of discourse, D
L3) A semantic relation, 0 C E X D

Thus, a programming language is a triple, L = (E,D,0), and when (e,d) € ¢, we say

that deD is a consequent of the expression ecE.

2.2.1.2. Complete Languages

In a compléte lenguage , the semantic felation is constrained to be a
function, caIied . The domain of discourse, now called C, is constrained to lie
within the set of language expressioﬁé, and is Ithe set of fixedpoints of ,‘u,.*=|t If
i{e) = ¢, then we say that c is the meaning or walue of e. Thus, for instance,
#{2+2) = 4. The function x4 need not be defined for all expressions; u(1,/0) might
be undefined, for example. Formally, then, a language L = (B,C,u) is completé iff

CLI)CC E

CL2) wis u purtial function from E anto C
CL3) Cis the set of fixedpaints of 1

' Readers uninterested in these details may skip to Sectien 2.2.2, which concludes the
discussion of FFP, and leads into Section 2.3, on the LPL leell programming language.

** A fixedpoint, x, of a function, f, satisfies the equation f{(x)=x. Chapter 5 of Manna
[Man?4] provides a good introduction to the fixpoint theory of programs.



93

Elements of C are called constenis since u{c) = c, and pu is called the

semantic funciion since it determines the meaning of expressions.

- 2.2.1.3. Applicative Languages

In an epplicative language. a constructor syntax is employéd to create
expressions, some of which are called applications, and the semantic function,
M. is then tailored to handle such expressions. The use of a constructor syntax
-partitioﬁs a set of expressions into atomic and non-atomic expressions (a
familiar constructor syntax is that used for lists}, and is a natural way to specify
a simple and regular syntax. Given a set of atoms, A, the pair (A.K) is called a
constructor syntax for & iff |

CS1)ACE

CS2) Fach k, € Kis a function: E" s E, n=0
CS3)if e £ A then there is o unigue k qnd €,...2, such that kn[el"'en] =e

Thus, if E has a constructor syntax, every valid expression e € B is either atomic
(in which case, e € A), or has a unigue .representation kﬁ[e-l,..en] built by a
constructor.

We can now define an applicative language as a complete language, L =

(E.C,1) with an associated constructor éyntax (AK) such that

AL1)AcC C
ALZ) There is a binary ap € K such that p(aple e o)) = ulaplule ) pleg)])
AL3) Wk, € Kjopl, ulk,le,. e ]) = kplpe ;. ue, ]

Clause ALl indicates that atoms are their own meanings. Clause AL3 indicates
that the meaning of an ekpression that is constructed by constructors other
than the ap constructor is _Simply the construction of the meanings of the
expression components. Expre.ssions built using the ap constructor are called

applicat'ions, and clause ALZ indicates that the meaning of an application must
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be found by first computing the meaning of its components. In addition, clause
ALZ shows that the ap constructor is special since it affects the the mieaning of
the expression it constructs -- thus the ocutermost i on the right hand side of

ALZ.

2.2.1.4. Closed Applicative Languages

The above definition of applicative languages doesn’t restrict the way u, the
meaning - function, acts on applications. In what Backus “has called
closed applicative ltmgu:zges ) ' # 1s restricted by requiring it to operate on
applications of the form ap[el,ee] as if eq is a function and ey is its argument.
To take this step, however, there must be a meapping from an expression (in this '
case, the expression el) to the function which it represents. This can be

aceomplished through the use of a Tep'resentdtion Junction calLed.p.

In 1873, Backus defined p as mapping constant éxpressio.ns to functions
which map constants to expressions. This yields the class 6f closed applicative
lénguages. Using different constructor syntax and constraining p and u 1n
different ways then yields the Red and A-Red language classes [Bac73]. (Actually,
as Backus later realized [Bac78], p and its range of functions can be extended so

they are defined for all expressions -- not just c.onstants.)

A closed opplicative language is therefore an applicative language L =
(E,C,U) with constructor syntax (AK), and an associated representation
function, p € [C-[C~E]] such that

CAL1} p is total over C

CALZ) Yol p(c) = fc[ C»E} is total over C
CALS3) VCJ,CQEC, M(ap[cj,cg] = Mﬁ{cg))- f=p(01)

Clause CAL3 specifies the computation of the meaning of apcy.¢5]: the function

p(cl) is applied to Co. If the result is a constant, we are done. Otherwise, we
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apply to this result the appropriate axiom among ALZ, AL3, and CAL3.

The definition of closed applicative languages tells us how to evaluate
applications whose components are constants. The differences between FPP
Red, and A-Red languages {all of which are closed applicative languages) arise
from differences in p, and the manner in which é.pplications involving non-
constant expr_essions are evaluated. In both of these respects, FFP and Red
languages are guite similar._ ¥FFP languages amount to a la.te_r and. co_r_lceptually
si.mpliﬁe.d version of Red languagés. For this reason, a description of Red

languages will be omitted here.

A-Red languages, on the other hand, are quite different from FFP languages;
they resemble the A-caleulus. A-Red languages differ from A-caleulus in the
following aspects: no bound variables need be con{rerted as by [- and «-
convle'rsion in the A-calculus, and innermost applications can be immediately
evaluated. These are both important factors which make A-Red languages ea.sier

to implement than A-calculus based programming 1anguages.*

2;2.1.5. A-Red Lanéuages
In A-Red languages, the set of atomic constants, A ¢ C, is the union of two

disjoint sets: wariables, V, and objects, 0. Five different constructors are used:
~ pair, lambda, opplication, formal application (all of which are two-place
constructors); and bottom (a zero-place constructor). A typical set of textual
representations for these constructors is:

pa’ér(ei,ee) =< e5>

lambdo(e ;,e5) = <?\ez.eg>'

application(e e ) = (ej.'eg)
Fformal applz'catian(e],eg) = (91'92)

* The following secticn on A-Red languages, included for completeness, may be skipped by
the casual reader. :
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bottom() = |

The difference between application and formal application is that (51:62) is a
valid expression iff ey and 8o have no free variables, while (el.eg) is well-formed
only otherwise. Formal applications cannot be reduced until one or more A-

substitutions transform them into applications eliminating all free variables.

As closed applicative languages, A-Red languages satisfy axioms AL1, ALZ,

and CAL3. Their semantics are as follows.

ufe)=a, acA=00v V¥V

w(<e je>) = <ue ,ue 5>
i<, e>) = <Aw)ue> = A ue> ve vV o

ple e ) = p(flues). £ = plue,)
.,u(az.eg) = (e, ey

Recall that p maps elements of C into functions [C-E] :The set C, here, is
composed of all expressions containing no applicationé of‘the form (el:ez). As
above, let v € V, and let C,Cq.Cp € C. Then p is deflned for A-Red languages so that
p<e 6> = flulp(cg))) F=plc,)
p<Av,c> = Afu,c)
‘where for every variable veV, and évery constant ceC, Alv,e), an auxiliary
function, is a function frbm C into k defined in such a way as Lo express lambda-
abstraction in the presence of free and bound irariéb‘les. The first of the above
rules for p thus expresses regﬁ'lar fuﬁctioﬁal composition, and the second,

lambda-abstraction.

2.2.1.86. FFP Languageé

In FFP languages {and Red languages), a very simple constructor syntax is
used, and there are no variables. Members of the set of atomic constants, A ¢ C,

are called objects. Bottom, |, is a special object used to indicate "undefined”.
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There are only two _constructors: sequence {an ri-ary constructor for
- constructing -Hsts). and epplication {a binary constructor'). Expressions are thus
either atoms, lists of the form <ej,....e >, or applications of the form (ei:ez). As
with the A-Red languages, the constants are those expressions containing no
applications. The representat;on function, p, mape atoms to functions [C»E],'
i.e., p!A-»[C-E], and the set of atoms ‘for which p(a) is defined represents the
primitive functions of the language. |

Note that the domein of the representation function does not include non-
atomic constant expressions. The semantic. func’tion,hoivevef, deals with such
cases by providing a way of reducing such expressions to the apialication of a
primitive function. This mechanism is called metm—coﬂpeéiﬁnn. The semantic

function obeys the following rules.

FIGURE 2.6 -~ Semantics of FFP Languages
o) ufo)=a,ac A
b) p_(<ei...,_.en>') = </.c(21),...,,u,(en)>
¢} ﬂ(ez.-eg) =
c1) oey=la L : ‘ '
c2) €A W (u(e ) 7= 06 )
c3) c }€Cwnde = <Y g Yp> M(y1:<91,22>)
c4) QI&Z’C—%,LL(';L(Q]) eg)

Clauses a and b are as expected in elosed applicati\fe }anguages{ Clause c
represents a further reetnctwn of CALB CIause cl says that the special obJect
bottom represents the function that always returns bottom {i.e., undeﬁned).
Clause c? indicates that ey must be evaluated before p(ei) is applied to it. Thus,
function arguments are always eveluated before function application -- ..this
shows the data-driven character of FFP, If p(el)=_l__(i.e., the etbm e, does not

represent a primitive. function of the language), then clause ¢l shows that
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meaning of the application is |, independeﬁt of the function -argurhents’. Clause
c3 represents the.rule for meta-composition (to be elaborated on below), ahd
indicates how to reduce an application ‘involving a functlion repfesented by a
‘non-atomic cpnsﬁant. ”Clause cd says that if él is not a constant ‘expres'sion,
innermost application:;s'.must be performed first in order to reduce ey to a
conétant. Clause c2 and c4 together show that FFP languages have what is called

innermost reduction semantios

Meta-composition is a clever formal device that no’; onlﬁ handles evaluation
of applications involving non—éitornic fu'nct:mn expres_sions (t.hus allowing user-
defined functions to be represeﬁted as expressioﬁs involving the primi_t-ive
functions of the language)}, but also perfnits definition within the framework of
FFP languages of rgcursive and iterative functions as well as more gen.eral

functional forms (i.e., functions that are parametrized). Its usel will be explained
further in the foliowing section,- as we clarify some of the issues raised by the

above definition of FFP 1aﬁguageé.

2.:'2. 2. Observations and Examples’

In an FFP .languagé, as explained 'ab.ov.e, atom.s‘repre.sent the primitive
functional operatiﬁns of the language, The sernantics of FFP languages indicale
that when suc.h an atom -‘is encountered in thé operator position of an
application, t'h.e éppliéation should be repl_aced by the result of evaluating the
represented functibrﬁ on its argument. To do this, we must either know what
function is represented (analytically), or have an algorithm for computing the
| represented funection. Méthematicians often take the ﬁfst approach; a function
is _defin'ed analjrticalljr iﬁ termé_ of- other known functions. Thus we might agree

on certain functions known to 7, an evaluafion mechanism corresponding to u,
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and then define p and its range accordingly.. Backus uses this approach to give
an example of the use of meta—compositidn [Bac78]. He defines t;he functional
form associated with constant functions, which is represented in FFP by the
sequencer < CONSTn > when p{CONST) is defined appropri'a't,l.ely. Backus

therefore gives

Def |
p(CONST)=2@ 1

where T (an evaluation mechanism corresponding to u) is assumed to

"understand" FP. He could have also given

Def . C
p{CONST)} = the second element of the first element of the argument list

whéfe T is assumed to understand English. In either case, evaluation of the
following expression {in which the constant function whose value is always 5 is
applied to its argument, 8) would také place asrfollows:
{ < C'ONST5> :8) > (CONST: << CONST5>8>) - ‘5'.

The first step in the above evaluation is indicatéd by the FFP meta—composition_
rule, ¢3; the second, by rule c2 and tgle definition -of p{CONST). ‘Note that
following use of the rule for meta-composition; the first elem‘en't of the function
expressioﬁ. called the conirolling operaior of .thé fﬁnctioﬁal form (CONST is the
controlling operat'or. here), always has‘as. its operand_a éair whose first element
is the original function expression. This.is what allows recursive and iterative

' operators to be defined so easily within the simple framework of FFP languages.

* The distinction between the evaluation mechanism represented here by T, and the se-.
mantic function represented by p is primarily one of implementation. The above
definition for FFP languages gives equivalences between the meanings of expressions; an
evaluation mechanism makes use of these equivalences to produce an actual result.
[Backus] has formalized this distinction using the conecept of strict language realization
Bac'73]. ' :
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An example of p without the use of meta-composition is the following:

Def |
p(IP) = the inner produect of the two argument vectors .

Evaluation of the following expression would then take place as follows:

(IP:<<123><456>>) » 32.

The semantics of FFP languages lets us use p to define whatever primitive
functions are appropriate to our needs. The question to be asked, then, if we are
to produce a realistic implerﬁentation for FFP, is "how much should T know"? Or,
equivalently, "how do we define the functions of p"? Our answer is the
combination of LPL, through which the functions of p .are defined -
algorithmically, and D.OT, Whiph incorporates an evaluation mechanism 7 that
understands (among other things required by the Ksem.antics of FFP) how to

evaluale applications of primitive operators defined in LPL.

Backus presented FFP languages in his 1977 Turing Award Lecture, which
was primarily devoted to describing FP (Functional Programming) languages
and their associated algebra of programs [Bac78]. FP languages are an
important step in programming language evolution. They are higher-level and
less constricted in their syntax than FFF languages, and are designed for ease of
use by human programmers. They are capable of expressing parallelism in a
natural and functionally powerful fashion, and are amenable t.o manipulation,

transformation, and verification through use of their associated algebra.

In his original presentation, Backus motivated FFP by its similarity to the
P languages, and noted the feasibility of éimple and direct translation from FP
to FI'P. As shown above, the FFP language class can be gi;aren a very succinet
definition; Eoth thé syntax and semantics of FFP languages are extremely

~simple. This doesn't mean that FFP janguages are in any way limited in their
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expressive power, though. The 'representation function p allows use of
arbitrarily powerful primitive operators, and meta-composition provides an high
degree of extensibility.

FFP languages can be easily augmented with a definitional facility: if an
atom in the operator position of an application represents a ﬁser-“deﬁned
function, then it is replaced by an expression represe.nting. its FF‘P: deﬁnitioﬁ,
yielding a new'.application w.hose meaning is the same as that of the original
application. *

Backus has pointéd ocut. the importance of distinguishing .Eetween tﬁe
framework and the changeable parts of a programming language. In
conventional p.rogramming languages, the framework tends to be elaborate and
' complex, while the changeable parts Iack expressive power. In an FFP lénguage,
the framework is small and simple, yet able to accom_modaté a powerful and

wide variety of changeable parts.

2.3. Implementation Architecture — The LPL Language

LPL allows the definition of powerful FFP primitive operators. Inner prodﬁct,
matrix transposition, and matrix and multiplication are feasible, as are all of the

primitives suggested by Backus in his Turing.A‘ward Lecture.” The rest of this

* Backus used a mechanism to support such user-defined operaters that was based on'a
special backing store to hold the definitions. This is actually unnecessary since g can be
extended to handle such definitions. The function represented by p{u), for a user-defined
operator, u, can simply be the function that produces a new expression that is the
desired application. The difference between the two approaches is that in the first ap-
proach, no reduction is performed -- the overator is replaced by its definition (and the
argument is left alone) -- while in the second appreach, the applicatien is actually re-
duced, producing the same result: an application of the desired user-defined operator ex-
pression to the original argument. In DOT, we use the second approach because of its re-
gularity within the implementation. The difference between these {wo appreaches is en-
tirely transparent to the user, therefore this decision does not effect the FFP architec-
ture,
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chapter is devoted to presenting LPL and its architecture model.”

2.3.1. LPL Architecture
LPL deﬁﬁés an FFP i)ﬁmitiv_é as a program specifying low-level aﬁd
architecturally éoncurrent ﬁlanipulétiohs on the representation of. an FTP RA.
- The LPL-level representation f.or .an RA- (nﬁt to be confused with t_..he
repres'entation function., pj is an important é..spect of the LPL architééture, and
is designed tb aséiét 1océlity of execution within: the implerﬁentatibn..
| As shown in Figure 2,7, the LPL architecturé_c@rresponds to é. single RA
contained in a linear array of cells, eacﬁ one. of Whi_ch_ is a small g.raiﬁ processor
useﬁ to hoid- a syﬁiﬁol of thﬁ application plus other-local stale information.
Thesé cells, called icgzls, operate independently and are able to communicate
through a globallﬁr shared message s;ubsystem,” The linear connections
between lcells are not available for communication in LPL, but allow creation of
new symbols in the leell array through an operation called forking. Horizontal
communication is not allowed becausé, at the DOT implementation level, any
number of emply leells may actually be distributed among those holding the

text of an RA visible to LPL.

* For the casual reader, Section 2.3.1 provides sufficient overview of the LPL architecture.
Section 2.3.2 gives LPL syntax and semantics, and Section 2.3.3 discusses low-level syn-
chronization issues of use to the LPL programmer. Both these secticns may be skipped if
desired. Finally, Section 2.4 presents actual LPL programs. Although of primary interest
to the LPL programmer, these programs are annotated to clarify important aspects of
LPL, and may be glanced over to provide a feeling for the size of LPL programs required
te implement FFP operators. . o . .

** As elements of an architecture, leells are logical abstractions. In fact, they correspond
te what are also called lcells in the DOT implementation, and it is projected that the DOT
leells will be realized as small grain processors. The message subsystem, on the other
hand, is implemented within DOT using circuit switched communication channels between
entities called tcells (for tree cells). The LPL architecture we present dces net require
knowledge of the tree structure that implements it. A different LPL architecture might
incorperate messages that specify routing through this iree structure, in which case
such knowledge would be necessary at the LPL level.
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FIGURE 2.7 — LPL Architectural View

Message .
Subsystemn

Lce : Tcells

LPL REPRESENTATION OF REDUCIBLE APPLICATION

As can be seen, LPL corresponds to a powerful multiprocessor architecture.
Hence, we can expect fairly efficient definitions for a wide variety of FFP
primitive operatdrs. Before the actual capabilities of LPL are discussed,
- however, let us investigate and motivate this architecture by giving informal
definitions for some FFP i)rimitives in English. To do this, a representation for
applications must be agreed upon. As a first step towards a representation for
the symbols of an RA seen by LP1L, we will try to use information appropriate at

the FFP architectural level.

2.3.1.1. FIrP-evel Text 'Representation

So far, we have used the notation ('e1 : ez) to represent use of the
applica’cion consfructor. We will no{v 'make two changes in t.his représentation.
First, we make "(" and ")" special reserved symbols for denoting application.
© With this change, the colon denoting application is redundant, so we can now

write (el 82) to represent an application. This corresponds nicely with
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< ey« e, > which represents a list.

A f's__econd change in representation is also made in the interest of
ar’t:lﬁitectural economy of representation. Corresponding to the constructor
syntax of FIP is a unigue dérivation tree for every valid FFP expression. Figure
2.8 shows‘ an exarﬁplé. The derivation tree shown in Figure 2._8.7 in which
cohstructors are represented by labeled arcs between expressions, can also be
expressed as a parse tree in which constructors appear as non-leaf nodes.
Figure 2.9 shows the parse tree corresponding to Figure 2.8. Thé parse tree can
in turn be represented in an ordered linear notation appropriate to the lcell
array through the use of level numbers, called ains (for absolute level number)

as shown in Figure 2.10.

FIGURE 2 8 -- Derivation Tree fore = (< CONST 5> 8)

application contructor
( € 8 )

list constructor

<< CONST 5 >
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FIGURE 2.8 - Parse Tree fore = (< CONST 5> 8)
( |
< / \8 |

CONST 5

FIGURE 2. 10— A lineor Representotion using ALNs

i < C 5 8 8
Leells R ( . m I cells

aln 0 1 2 ]2 1 aln
LPL REPRESENTATION OF REDUCIBLE APPLICATION

The represéntation oleigure 2.10 amounts to a record of a pre-order
traversal of the parse tree of Figure 2.9, and can be easily generated from the
FFP text ‘i_n O{n) time and constant space by a pre-processor. This is the
representation we choose to use in the FFP architecture. Its .adv.antages'include
the use of fewer lcells than would be required by the more straightforward

approach of using balanced constructor symbols.
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We now define a simple FFP operator, the identity function.

Def -
p(ID) = .
a) The application symbol is delefed by its containing lcell,
b) The operator, ID, is delelfed by ifs containing leell,
e) Symbols of the argument are kept by their conluining lcells, but
their aln values are decremented by 1. :
The level numbers of the argument syrmabols are decremented so that
replacing the application with its result (which is the objective of executing an
LPL program) will not change the strueture of the containing FEP expression.

Assuming for the moment a definition for p{+), evaluation of an expression

involving ID {(which shows how level numbers are modified) is illustrated in

Figure 2.11.
FIGURE £2.11 — Fueluationof (+ < (ID1)}2>)
reduction reduction
( ( 3
+ / \\. < . ./ \ <

In multiprocessor architectures non-local interactions should be kept to a

minimum in order to realize the potential of separate processors. The above
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definition of p(ID) requires different behavior By the various lcells based on
whether they contain application, oper'étor. _of argument symbols. Tﬁus, to avoid
non-local interactions, each lcell involved in the reduction of an application of
the ID operator should be able to locally discover what part of the RA it contains.
Unfortunately, the FFP representation used so far contains no clue as to this
| information. How then, is an leell to determine what part of the it contains?
Messages between the lecells might be used, but this would require non-local
interactions. If we want to efficiently utilize the power of i;,he LPL architecture,
the LPL-level representation for symbols of an FFP RA must be augmented with

additional information besides that available at the FFP level.

2.3.1.2. LPl-evel Representation of FFP RA Symbols

In order to give each lcell information concerning its place in the'RA;
information descriptive of the location of its contained syrhbol in the parse tree
of the RA is included in the LPl-level representation of the symbol. One
approach might be to store within each lcell the parse tr"eé for the entire
application, and indicate which node of the parse tree represénts, the locally
" held symbol. This would give each leell compléte information concerning its
~ place in the application, but such an approach is unfeasible because of storage
limitations. Applications can be arbitrarily large, and we assume the lcell will
have a fixed amount of storage.

Instead, in the belief that the topmost structure levels are the most

important, we represent the symbol location based on its pre—ofder position in a

"truncated" version.of the associated parse tree.” This limited precision

. * Wrile this does not provide an leell with ifetel information conecerning the place of its

symbel in the RA (e.g., the last symbol of an RA cannot be locally identified), it represents
a useful compromise. Questions of implementation are left for Chapter 3, but a primary
reason for choosing this representation iz that it can be efficiently calculated using the
overlying tree structure.
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representation of a symbol's position within the parse tree of its RA is called a
directory tuple. Figure 2.12 gives a parse tree for an RA and includes directory
tuples resulting from truncation at level 2. As shown by this diagram, a symbol

below the level of truncation has the same directory as its ancestor at the

truncation level,

FIGURE 8,18 - Di?'écfory Tuplas for (IP<< 1 23>< 456 6>>)

( leveld
/ [0.01 |
P ' < levell
< ' < level2

directory'._______.._[g'l}_ I ¢ NI truncation
- P D RN

21 23 2 22 22 [22]

In addition to the directory tuple {(called d1..d4 in LPL)" the LPL-level
representation for each symbol of an RA includes a symbol index (cailed
- symbol_inder in LPL) to guarantee a unique representation for each symbol of
an RA.*"  Also included is a relative nesting level (called 7in in LPL) which is the
nesting level of a symbol relative to that of the application symbol for the RA.
The rin represents' the de?th of a symbol within the parse iree of its RA, and is
used to calculate the direc.tory tuple. While the 7in is only defined for a symbol
when it is contained within an RA, the ain is always defined, and represents the

depth of a symbol within the parse tree of the complete program. The

' At present, truncation for the LPL directory is performed at level 4,

* The first symbol of an RA {(from left to right) has symbal_mden: = 0, the zecond symbol
of an RA has symbol.indez = 1, etc.
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application symbol for an RA always has rin = 0, and syméboal_indez = 0: -

A definition for directory tuples with truncation at an arbitrary level n is
. how given.

Def
Directory-Tuple =

For a symbol of an RAwith directory fuple D = [d],.,,,'dj,‘.,,ofn], dj is the
number of symbols with vin=j (including the symbol of interest) that are
encouniered in a pre-order traversal from the node with direcfory tuple
D= [dl,....dj_.].ﬂ.ﬁ,...,ﬂ]. The Tool of the tree hos directory D = [0.0]

Figure 2.13 illustrates this definition using truncation at level three. As shown
‘by Figure 2.13, the value of a general d.i in a directory tuple indicates the left-
to-right count of level j symbols within the RA"(up to the one of interest) that are
within the scope of the last éymbol with rin=j-1, For purpoeses of illustration, the
arrows in the diagram point from a level j directory entry to the last sympbol with
nesting level j-1. The directory tuple for "d” in this diagram is '[1,2,0] - d1 is 1
because it counts the operator sequénce symbol {the only level 1 symbol that
occurs before "d" and is within the scope of the application symbol at level 0);
do is_ 2 because it counts the level 2 symbols (including "d"") within the scope of
the vperator sequence symbol {(which is the last symbol with neéting level 1, and
1s pointed to by an arrow); and d3' is 0 because there are no lex}el 3 symbols
- within the scope of the last level 2 symbol {("d" itselfj to be counted. As another
example, the directbry tuple for '"b" in this diagram is [1,1,2] -~ di is 1 because
it counts the operator sequence symbol {the only level 1 symbol that occﬁrs
before "b" and is within the scope of the application Symbpl at level 0); dsis 1
because it counts the second sequence symbol of the RA {(the only .l.evel 2 symbol
that ccecurs before "b"” and is within the scoi)e of the operator sequence symbol
at 1eve1.1); and dB is 2 because it counts "a" and the third sequence symbol of

the RA (the only level 3 symbols that occur before "b" and are within the scope
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of the second sequence symbol of the RA at level 2),

FIGURE 2.183 — flustration of Directory Tuple Definition

( 10,0,0]

[1,001</ \
/\

[1,1,0] < d [1,2,0]

VAR

e [2,0,0]

\# nodes with level=2 since [1,0,0]

[1.1,1] a # nodes with level=3 since [1,1,0]

_______ truncation.

# nodes with level=1 since [0,0,0]

To summarize, the LPL architecture Speciﬂes a representation for symbols

of innermost applications that comprises the following:

s FIP symbol

s TP lgvel ~ gln

« Application level — vin

« Application Directory Mndex -- symbol_indexz

s Application Directory Tuple - d1,d2,d3, and d4.
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Another definition for p(ID)} can now be made that clearly involves onl'y“
aétions local to each lcell:

Def ~ .
p(ID} = if d7=2 then keep symbol and decrement ain.”

2.3.1.3. Message Subsysteni

The message model empioyed' in the LPL architecture provides powerful
communication primitives that are efficiently and simply implemented, and are
easily realized, asg projected, in a tree-structured cellular network. In the
interest of simplicity, the architecture uses a central méssage server and a
broadcast protoéol. In the interest of powér, the central message server has
added capabilities: il can sort or select messages according to keys, and it can
combiﬁe the data portion of messages according to associative arithmetic
aper"ations sucﬁ as addition and multiplication. These additional capabilities are
r;easonable since they have sfficient implementations in a tree-structure.

Further details concerning messages are given with the LPL statements that use

them.

2.3.1.4. Replicating LPL Contexts

Other information besides the above-described symbol representalion is
available to LPL statements executing in an leell. The totality of this information
is referred to as the LPLenwironmeni (i.e., that data available te an LPL
progrém). The ClassC representation éf the LPL environment is given in Figure

2.14.

% .

In LPL, the FFP symbols to result from reduction must be explicitly placed or kept {as
in the exXample) within lcells. Thus, there is no need to delete symbels of an RA that will
not appear in the reduced result.
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FI GURE 2. 14 - LPIL Fnuvironment

7*** Symbol Representation ***/

char symbol, : /* FEP-level symbol */
aln, A* FEPP-level aln */
rln, - 7* relotive level within KA */
/*** Directory ***/
syrmboldindex,
directory[DLEVELS],
/%% Next Symbol Represenialion **%/ :
nsymbol.ont, A% validity flag for next symba?, *
nsymbeol, : : /* next FFP-level symbol */
naln, © /* next FFP-level aln */

/*% Hessage Support *** ./
margs[MARGSIZE], /* hold message args fo'r tram.smwswn */
mtmp[MTMPSIZE], /* holds received messages */ :
temps[TMPSIZE] s tempora'ry registers for general use */

Sre® Fork Support ¥*%/

fork_id, /*,enmronment 'uammble set by fork */
/¥ ¥ (ondition Code *#*/ ' C

ce; /* condition code set by ecmp */ J

. The portions of the LPL environment that describe the RA symbol have been
explained. Th-e contents and LPL names for the other portions are explained with
the statements that use them. The LPL environment is part of a larger context,
called the execution context, or user context of the LPL program.* The user
context includes (in addition to tﬁe LPL environment) LPL code in a compiled
form appropriate for execution, and other informatibn such as program and

message counters.

We have presented some essential aspects of LPL execution in the leells by
investigating p(ID); One more element of the LPL architecture remains to be
mentioned before giving actual LPL statemehts. To this end, we give a definition

for the FFP primitive, DBL.

The term "user" is perhaps a poor choice, but refers tc the LPL program’s "use” of leell
processing power. At the LPL architecture level, LPL programs are user programs.
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Def : .
p(DBL) = the pair whose two elements equal the original argument

Thus, for example, the following reductions are indicated:

(DBLz ) -+ <zzx > and : :
(DBL<z, .. 2, >) » <<z, .2, ><x,... 2, >>.

As can be seen, DBL is different in its operation from 1D in that new FFP-
level symbols must be created, and t_he‘-expression can grow in size. How. does
the LPL architecture handle such activily? Copying is required, and the LPL
message subsystem can sup?ort this. Before this is .done, however, LPL

environments must be created to act as recipients of these messages.

To accomplish this, we jet an LPL eﬁvironment replicate itself "sideways” in
a manner conceptually similar to a "fork” opération, in which a single process is -
split into two or more parallel execution paths. Within DOT, a process performs
execution of LPL code in an Icell of the LPL architecture. Forking this process
piaces copies (called children) of the parem! process’s user contexl into
adjacent lcells, shifting the contexts associated with the other symbols of the RA
to make room. This is the reason for the horizontal coﬁnections between lcells of
the LPL architecture. With this ability; much more flexibility in the creation of
FFP-level symbols resulting from a reduction is possible. The replicated
contexts differ from each other in a single respect: the fork_id environment
variable is set to 1 for the parent {which is placed leftmqét) and increased by
one for eéch child, in left-to-right order. Thisz allows forked processes to

condition their behavior in order to perform differently.

The idea used in the LPL program for DBL is to count the number of
symbols in the argument using messages. Since the message subsystem
supports broadecast routing, this number can be received by an leceil Ingted

where the duplicate argurment copy is desired. This lcell forks off enough LPL
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user environments to receive the symbols of the argument, which are sent using
additional messages. FEach newly-created receplive environment can select the
appropriate symbol from the many that are received by matching its fork_id
with the order of arrival of the symbols, in order to reproduce the argumerit

symbols in the correct order.

Up to now, all aspects of the LPL architecture have been localized to a
single RA. The fork operation requires us to admit that there may be FFP—'Ie'vel
_symbois within the machine other than those seen by a single reduction. To show
why this is so, Figure 2.13 depicts a situation involving the use of DBL, and leads

to the question of when the fork operation should be allowed to proceed.

r FIGURE 2.13 — Forking Must Wait fsr'smmge HManagement
RA
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1o 1 1 ARRE 3 3 12
[ : [
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DOT supports the fork operation during a period of time called storage
management, when all LPL programs are held in a guiescent state and executibn
contexis can be shifted about on the horizontal Aconnections between leells. A

variety of mechanisms for the scheduling of this period are possible. Chapter 8,
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~on design alternatives, will review some of these, The approach we take allows

LPL programs themselves to exert a measure of control over this scheduling.

The initiation of the sterage management phase is pe'rformed ina rn_annei"
similaf to an interrupt on conventional machines. The executing context is saved
and the appropriate service routine is initiated. As is the case for conventional
assembly languages, we give the ‘LPL architecture the ability to mask out
interrupts. LPL programs always begin an execution period with the slorage
management interrupt masked out. Execution of a fork statement {or other .
statements to be .described below) then removes the mask locally. When ail_ g
executing LPL contexts have "allowed" the storage management interrupt in this

way, storage management and fork operations may take place.

- 2.3.2. LPL Syntax and Semantics

We now present the syntax and semantics of LPL staternents.” LPL is
éése_ntially an assembly language appropriate for execution by the fine-grained
processors that are expected to realize the leells. The language is designed to

provide simple yet powerful low-level control of the lcells of an RA.

An LPL program defines an FFP primitive by spécifying appropriate actions
for each Icell of an application. LPL is therefore designed to manipulate local
leell registers containing the LPL environment, and possibly invoke global
message operations.. with which LPL statements _in other lcells of the same RA
may. interaét. Various groups of leells within the RA are given the same
~ instructions (e..g., all elements of a sequ_ence),._ so an LPL program consists of

code segments -- o_né for each such group. The advantage of this approach is

¢ Readers uninterested in details of LPL, found within the remainder of Section 2.3, may
still wish to skim over Bection 2.4, which provides examples of useful FFP primitives.
Their names, which appesr as subsection Litles, are generally descriptive of their func-
tions, The introduction to FFP functional forms, in Section 2.4.2, may also be of interest.
For the reader primarily interested in implementation details, Chapter 3 may be begun.
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that less conditional execution need be specified within LPL segments, This will

be made clear in the program examples that follow presentation of LPL.

The moist interesting aspects of LPL are the message interactions between
the lcells of an RA {controlled with the send, receive, and endﬁlter statements)
and the way LPL contexts may spawn copies of themselves {controlled with the
fork and forke statements) in order to create additional FFP text symbols
within the lcell array. With these capabilities, LPL programs can implement
powerful FFP operators, and parallelism within the tree structure can be used
very.eﬁe(.:'tivé:ly. | | |

There are no stack-based variables in LPL as in procedure-oriented
languages. Instead, the LPL environment variablés within local leell registers
are referred to. Some of these environment Variébles are set up by DOT before
LPL statements are allowed to execute. These are symbol, ain, frln,.and.'the
directory, composed of symbol_index, and d1,d2,d3,d4 (the directory tuple). In
addition te its use by LPL statements, the directory 4-tuple is also used by Dot
to choose which code segment of an LPL program should be executed within an
individual leell. This will be explained in. conjunciion with the LPL destination

statement..

Upon compietion, the reduction is '"stepped forward" to its result. This is
done by DOT with fhe aid of. the environment variables nsymbol_cni, nsymbol,
énd noln. The "n" prefix stands for "next,” and these variables are set up in
each lcell of an RA by the LPL program. If nsymbol_ent is zero when the RA is
stepped forward (this is the defaull), the containing lecell becomes empty (i'e.,
there is no FI'P-level symbol in the lcell following completion of the reduction),
If nsymbol_cnt is 1 {or non-zero) nsymbol is moved to symbol, and naln is moved

to aln.
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Thus, the LPL programmer is primarily cbncerned with creating code whiﬁ:h_
(for each lcell of the RA) will load nsymbol and naln with the_. symbol and aln
values Wﬁich should next appear within the Icells of the RA in order to
implement the required reduction. All codé segments of an LPL program must
corﬁplete | {by executing an endsegment statement) in the same machine
cycle.*

We now give an informal presentation of the LPL statements, explaining
their use and purpose. Statements that are closely related are given together in

the same section.

2.3.2.1. program/endprogram A program statement is the first statement of

an LPL program. Its form is

- program x

where z is the (integer op-code) identifier of the FFP operator the LPL program
implements. The LPL assembler creates a library object file for subsequent use
whose name is based on this identifier. The end of an LPL program is signaied

with an endprogram statement. Iis form is

endprogram : 1

* The machine cycle will be discussed in the following chapter. It arises from the necessi-
ty for successive storage management cperations during the on-going cperation of the
machine. Symbels of an EA must be replaced by their reduced result in a single atomic
operation between cycles, and DOT presently assumes that if an leell has completed exe-
cution of its code segment, then all lcells of the RA have done so, and the reduction may
therefore by =stepped forward within the lcell as indicated by the lccal values of
nsymbol eni, nsymbol, and naln. It is possible for DOT to guaraniee that reductions are
correctly stepped forward in the absence of this restriction on LPI, segment coempletion,
but at the cost of execution efficiency. The tradeofls involved are discussed in Chapter 6.
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2.3.2.2. destination/ endsegment' The same sequence of LPL statements i€ not
_executed in eaéh lcell of an RA. Instead, an LPL program consists of a collection
code segments, each of which begins with a destination statement that indicates
its the 'lcells_ in which it should be executed. The first segment of an LPL
program whose destination matches an icell’s directory 4-tuple is the Segmént
that the leell will execute, and all following segments are ignored.* The form of

the destination statement is

destination d d2 d3 d4

where each of di through d4 is either an integer, or an integer followed by "*".
A mateh, as referred to above, occurs if each of the lcell 4-tuple directory
entries is either egqual-to (no "*" used) or equal-to—cr-greater—i;,han ("*" used) the
respective destination value. The LPL program for ID given in Section 2.4.1.1

illustrates the importance of the textual ordering of destination statements.

The end of a program segment is signaled with an endsegment statement of

the form

endsegment

Execution of this stalement allows storage managerment for its leell.

2.3.2.3. Leell Data Movement and Arithmetic Presently, FFP symbols and
other data are bytes. Real, complex, and even vector data of limited size would
also be supportéd in & more realistic implementation. Data movement within

the leell is accomplished with the mov statement. It has the form

' LPL program code segments are loaded in crder of their textual definition within the
LPL program. The word "first” therefore corresponds to textual appearance within the
program, as well as temporal appearance of the object code as it is received by an leell.
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mov source destinaltion

where destination is one of the named environment variables, and sowrce can be
either an environment variable, or an immediate value. There are tw.o types of
immediate values: numeric, in which a numeric string is prefaced with #; and
. character, in which a single character is prefaced with ”. The usual arithmetic
oper_ations are also_supported. These statements are named add, sub, mul, div,
and their forms are the same as for the mov statement. They behave as usual

for arithmetic statements in two-address assembly language architectures.

Another data movernent statement is keep. It has the form

keep

It'is not primitive since mov could be used to achieve the same resﬁlts. but its
use -saves space in the LPL object code. lts effect is to move symbol to
nsymbol, aln to naln, and 1 to nsymbol_cnt. The dual of keep is erase, whose

eflect is to move 0 to nsymbol_cnt. This statement has the form:.

erase -

2.3.2.4. Logical Comparisons and Program Control One of the environment
variables is called cq, and its pilrpose is to act as a memory to hold the boolean
‘result of past comparisons. Condiﬁonal branches refer to it, and it may be
manipulated by name as a variable. The emp statement imf)lic:itly manipulates

it. The form of this statement is

L cmp velue 7 volue 2 tesi co-op
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where ualue 1 and wvalue 2 are either immediate values or named variables, and
test is one of the logieal comparison operations: "<"”, "<=", "=", ">=", ">", and
"¢»", The ec-np argument is one of ".", "+", and "*', which mean respectively
that cc should be loaded, logically "or"-ed, or logically "and"-ed with the result
of the comparison. The LPL program for EQUALS given in Section 2.4.1.3 uses
two successive cmp statements to check for equality of respective symbbl and
aln values.

There are no structured program control statements such as "while” or "if-
then-else”. Conditional branch'ing is provided by the br statement. The form of_

this statement is

br co-test s-label

where ce-test is one of ".", "+", and "-", which mean respectively that the branch
should be executed always, if cc is true, or if ce is false. S-Imbel is the label of
the statement that should be next executed if the branch is taken. A label
statement is used in conjunction with br to indicate thal an identifier should be_

associated with the statement that follows the identifier. Its form is

label id

where id (a positive integer) is the s-label to be used in a br statement.

2.3.2.5. fork/forke Forking is the means by which addit.ional leells are
allocated to_h_c.ld'expa_riding FEP text. The word "fork” is used because each lcell
- may be thought of as a single process that executes a seguential LPL program
s'egfnent. A fork spawns copies of its program ssgmeﬂt and its execution context

to create new processes in the requested number of adjacent leells. Execution
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continues after allocation and loading of these lcells by DOT {(during storage
management). A forke spawns completed resullts in the form of FFP symbols and
alns in the requested number of adjacent leells. Execution does not continue in

this case, since the RA is assumed to have completed. The form of the fork

 statement is

fork forksize

where forksize is the (non negative) number of leells desired. The fork. id
environment variable is set by DOT during support for this operation. The
parent of the fork operaﬁon is always given fork_id =.i’ while the children are
given fd'rk _id = 2 through forksize in left-to-right ordering. This fact can be

used in subsequent LPL statements to condition execution.

Fork is often followed by nselect {explained below), which can use fork_id as
a selector for the next FFP synﬁbol to be placed in the leell. Copying or moving
groups of FFP symbols into new locations is done by forking LPL environments
into the reguired number of lcells, and then using receive (explained below) to
selectively accept the desired symbols basgd oﬁ order of receipt and the local
Jork_id. The for.ked leell with fork did = .1 accepts the ﬁr.st_symbo.l to arrive, the
forked lIcell with fork_id = 2 accepts the second symbol to arrive, and so 6n.
Temporary registérs. t1 .. tg are available .for.use as message counters and

other purposes.

The statement fork #1 can be considered a no-op that delays execution
until after the next storage mianagement is 'performed,' Its use can help code
segments maintain synchronization over multiple machine cycles, so they all

complete during the same cycle. The statement fork #0 allows an lcell to "drop

* Recall # signals an immediate value as opposed to a variable name.
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out" of an RA during the middle of a multi-cycle reduction.” This is a way of
freeing up leells within a reduction as soon as possible, and can allow more
efficient storage management. The LPL program for DBL given in Section 2.4.1.4
uses fork #1 for synchronization, and aiso uses the temporary variable £ to fork

an LPL environment into a variable number of lcells with the statement fork t1.

Forke is similar to fork. Its form is

forke forksize

Forkc should be preceded by cseléct (explained below) in order to fill a
temporary register array with the FFP symbolsland aln values that will be
shifted out during the next storage management as a result of ils execution. .
Use of forke can enable improvements in the execution efficiency of LPL
programs that are able to complete by forking off FFP-level symbols requiring
no further execution. The LPL program for EE1 given in Section 2.4.1.8 uses
forke in this way. Both fork and forke allow storage management for the leell in

which they are exscuted.

2.3.2.6. nselect/cselect’ The nselect statement is used to select and load one
element of a literal string from an LPL program into nsymbol and naln while also
setting nsymbol_cnt = 1. A list of nsymﬁal/aln—offset pairs is given and the
effect of the statement is to load the appropriate pair based on a selector.

Nselect is thus analogous te a case statement in which the objective is always

: Following a fork #0, LPL execulion halts in the containing lcell {as usual for fork opera-
tions), and during the following storage management phase no descendants (not even a
parent process) for the execuling LPL environment are created. Thus the executing LPL
environment literally disappears between cyeles. Carse must be taken that re-
partitioning will eorrectly detect and conneel the RA in the absence of symbols that
disappear in this way (thus, an application symbol should never execule this statement).
The LPL directory is only created during the first partitioning of an R4, so disappearing
symbols don't change the directory,
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the loading of nsymbol and naln. Its form is

nselect selector nsym 1 oset §nSYM 5 osel .. MEYTL, osef, .

Once a particular nsymbol /uln-ofiset pair has been chosen (based on the value
of the selector), nsymbol is loaded appfopriately, and noln is loaded with the
present eln plus the choseﬁ offset {which fnay be negative). Nseleet is often
used with #1 as a selector, which allows a single symbol and aln-offset to be

selected, and nsymbol_cnt to be sel, in a single statement.

Nsélect can be useful after a fork operation. It allows setting up the next
FFP symbols to appear within a group of forked lcells by using fork_id as a
selector. Cselect is designed for use before a fork operatioh ﬁrhen_ the LPL
prbgram requires no further execution and can complete by performing an

'Eippropriate sto'rage management. Its form iz as follows.

cselect nsYym ,; oset , nsym asetg ... nSYym,, osef . _i

The cselect statement is thus identical to the . nselect statement, with the
exception that a selector is not used. [ts function is to load a ternporary register
array.with the resulting values, so that the desired FFP symbols and alns will be
ghifted out following forke.” The LPL program for EEl given in Section 2.4.1.8

shows the use of ¢select.

* The size of the temporary register array within the lcell will be ultimately determined
by space considerations related to the lcell realizations. Faorke and eselect are both im-
portant bécause of the efficiency they allow when compared to fork and nselect, sc the
area set aside to support cselect should be as large as possible. Presently, this array can
hotd 20 symboaols.
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2.3.2.7. send/rececive/endfilter

These statements are used for. global communication within an RA.
Messages are sent and received during globally sequenced activities'célled
message waves, and all the leells of an RA have the option of participating in any
of them. A limited amount of processing can teke place within the message
subsystem of an RA during transmission of a message wave, and appropriate
instructions for this purpose are automatically sent up by the lcells to introduce
each new méssage wave. The information necessary for this is supplied in the

send statement.

The LPL messages within a message Wéve travel from the leells into the LPL
message subsystern. Here, messages aré sorted, combined or passed
seiectively, and are then broadcast to all leells in the RA. Those lcells doing
either a send or a reeceive for that particular message wave then ''see” all
retufning messages for the wave. Send and receive have a filter portion that
describes the actions to be taken for each incoming message, and a DOT leell
méssage process invokes this filter for each message arrival after first moving
the message inﬁo a reception area within the I.PL. environment. The difference
between send and receive is that Lhe former sends a message then filters
inc.oming messages, including its own, while the latter merely fllters incoming

messages. Their forms are as follows:;

B
’ send mwave order combing-op eyl keyl maize
filter-statements
! endfilier ;
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receive mwave
filter-statements
endfilter

Mawave is the (positive integer) index of the mes=zage wave desire_ti, and nrd_er
indicates the order in which two messages of differing key values should be
returned when broadcast to the leells of the RA." The possible values for erder
are "+", and "-", which indicate respectively larger first, and smaller first. When
two messages arriving at a tcell have ‘identical key values, the respective
messages are combined according to combine-ap, “The pussible combine
operations are addition, multiplication, selection of the message with the largest
data value, or selection of the message with the smallest data valﬁe.
Additionally, a null combine operation is included to prevent cembination even i_f
the key values for two messages a_re the same. .These possibilities are
respectiveljr‘ indicated by "+", "#", ">, "<, and "' 'Msizé is the number of
message arguments (in addition to the key values) that are to be sent.
Additional message arguments as required by a positive msize are taken from
lcell registers referred to in LPL &s m_grgi m_prgd. When messages are
combined arithmetically, it is m_grg! that is actually combined. The lcell
registers referred to in LPL as r_key !, r_keyd v_orgl ... r_grgd are the ones into
which the arguments of a message are placed by DOT prior 1o executing a filter.
The LPL program for ATOM given in Section 2.4.1.2 uses messages to send ail

- argument symbols to the application symbol, where they are counted.

Restrictions must be placed on the statements within a filter: nested
message requests (i.e., send or receive statements) are not alléwed,-and forks

are not allowed. Branches may be executed, but only if the branch destination is

* Keyl is given precedence over key2.
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within the same filter or another filter for the same message wave.

2.3.2.8. endsend/smanage FEndsend tells the message subsystem that no more
sends will be performed (receives are still allowed) by the signaling leell. Its use
will be discussed in the following section where synchronization between

program segments is treated. Its form is:

endsend : ' —)

Smanage indicates that the containing lcell is willing to be interrupted for the

purpose of storage management. Its form is:

E smanage

Smanage is different from the other three statements that allow storage
management within the executing lcell (the fork, forke, and endseigment
statements) since execution continues following its use. All lcells of an RA must
allow storage managefnent before an execution c.ycle can come to an end, thus
one of £hesé four statements must be executéd by each Icell of each RA during
BVery éycie. This is analogous to enabling interrupls on a conventiional machine.
Failure to execute such a statement in one RA leell will ultimately deadlock the

entire machine,

2.3.3. Synchronizaltion of Program Segments

The issue of synchronization for program segments arises in two ways. First,
there is the overall synchronization of completion required of all segrients in an

LPL program. Second, there is the synchronization required for transfer of

‘ Branching into anothér filter can be done to reduce code size in a case where a code
segment performs either a send or a receive, both of which require the same message
filter. The LPL program for MM {matrix multiply) given in Section 2.4.1.12 does this.
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information to forked lcells during a message wave {e.g., when copying FFP-level
symbols from one place to another). The LPL programmer must explicitly
provide completion synchronization, while synchronization of forks with

messages is essentially automatic.

In this section, we show how the fork, endsend and smanagé' Statemehté
allow control of both types of synchronization. Synchronization of forks Wit-h
messages is discussed first, since information on message handling is useful for-
the discussion of segment completion. The LPL program for DBL gix}en in Section

2.4.1.4 provides examples of both types of synchroﬁization.

2.3.3.1. Synchronization of Forks and Messages

Copying FFP text from one location to another requires the coordinated use
of the fork, send, and receive slatements in the following w&y. Destin_ation lcells
are prepared by forking the required numhber of LPL processes, each of which
subsequently executes a receive statement on {say) wave n. The source lecells

are reguired to execute a send on message wave n.

But how can we guarantee that the sent information will not be delivered
before the fork completes? After all, a fork requires storage management, and

this is invisible to LPL program segmenté.

The answer is that the message subsystem requires, for each message wave,
at least implicit acknowledgement from each leell process of its opportunity for
participation in the message wave. When a process executes a send or a receivé
for message wave n, it is interpreted by the message subsystem as
acknowledgement and rejection of participation in all lower-numbered fnessage
waves, Only after all processes have either completed or 'requeste-d message
service for the present {or possibly future) message wave will messages for the

present wave be delivered. If an lcell forks to receive messages sent on a
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particular wave, then, only after the fork completes and receive staternents are
executed by the destination leells will the message wave containing the

information to be copied actually be delivered. -

Thus, as long as the same message wave is used by receiving and sending
lcells, all necessary synchronizahion is automatically provided by the message
subsystiem, even in the presence of.forking.' The use of endsend can now be
clarified. It turns off the automatic message synchronization for the executing
lcell by telling the message subsystem that the lcell will send no more messages.
This allows the lcell procéss to fork without holding up message waves, .Although
its use does not preclude subsequent execution of a receive statement Witﬁin
ﬁhe‘ leell or its descendants, it does remove the above synchronization of serds
and receives in the presence of forks {(but only for the executing lcell and its

descendants).

2.3.8.2. Synchronizalion of Completion

All LPL program segments must complete by executing endsegment during
the same machine cycle. For single-cycle LPL programs, this is no problem, For
multiple-cyele 'prdgrams. there are two ways of using LPL statements to

synchronize completion.

When .the number of cycles is a small constant value (this i_s the usual
situation ;- no LPL program given here_ requires more than 2 cycles) using
fork #1 to allow storage management and delay completion in segments that
would otherwise complete too early is often {he simplest approach. This
applroach must be uséd carefully if messages are also involved, however. If
messages are being sent during the same cycle in which a fork is executed, they
will not be delivered {for the reasons explained above) unless an endsend is

executed before the fork statement.
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Another way to synchronize completion of programs that use messages
during their last cycle is to add a receive statement (for the last frlessage wave).
to segments that woulci otherwise complete too early. In this case; messages will
be handled as otherwise desired (i.e., adding a final receive statement doesn’t
effect messagé synchronization in the same way as fork does), but now the LPL
programmer must be concerned with the pfogress of the machine cyclé. and
must allow storage management when appropriate. This may be done bj using

the smanage statement.

As will be seen in the following LPL program examples, either of the two
alternatives described above is usually possible. The decisibn_ as to which
approach is best in a given situation is generally a question of style, although

guestions of code size tip the balance in favor of using fork #1 when possibie.*

2.4. Remarks and FFP Operator Definitions

We ﬁow present LPL definitions for a variety of FFP primitive f}perators. FFP
funections are given first, followed by FFP functional fofms. For each operator,
we provide.a description of behavior, and point out interesting aspects of the
LPL code. Where appropriate, the definition of the corresponding FP ope.rator
.sugges’r',éd by Backué [Bac78] is also given.". The programs have all.been
tested, and run correctly on the simulation described in Chapter 4. They
provi.de the basis for many pafameters employed in the analylic model of

Chapter o.

' A fork statement uses 2 bytes of object code. A reeceive statement (including the
endfilier statement, and an smanage statement) requires 4 bytes,

** Backus' definitions include concern for undefined results, and produce betiom when
appropriate. The LPL preograms we give assume that the restrictions stated in their
header are satisfied. Operators could easily check their arguments for appropriate form,
but error handling in FFP langueges is a current area of research by Don Stanat and oth-
ers here at UNC. We have therefore left open the question of implementation support for
errar reporting.
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Bach LPLprogram is prefaced by a header of the following form:

FFP OPERATOR, -- description of applicatien result
Restrictions:

Summary of Analytic Model Parameters:
program slize: x :
cycles required: x
cyclel nessages: X {wave=x; msize=x)
forks: x (carpleted/executing)

S yIn: { op arg

aln: 01 1

dir: c1 2
o0 O
00 O
00 O

nsym:

naln:

FFP OPERATOR is the name of the operator the following LPL program
implemgnts. Program size is the total size (in bytes) of the object code which
must be loaded in through [0 subsystem when the compiled operator definition
is required. Also included are the number of machine cycies required, and a
breakdown of the communication and fork requirements for each cycle. The
comfnunication breakdown includes the number of rei;urning messages for each
message wave. Also included is the message size.” ' The fork breakdown includes
the number of new cells required, and whether the symbols. forked are
completed or executing. The distinction is important to the analytic model

because of the difference in context sizes.

L . . .

The message size given in the header is the muize value coded in the ccrrespondmg
send statement. The number of returning messages and the carrespondmg message sizes
are used in the analytic meodel. .
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Also within fhe header is an example reduction, including the directory for
the example. The nsym and .nal'n. values show the result of the re_duction.
Although a single example may not cbmpletely deseribe the desired behavior of
an operator, it i.'s often convenient to refer to the exémple direectory when
reading destination statements in the follbwing LPL code. When the symbols of
an RA are shifted by forking to make room for information that is to be copied
or moved, blanks are used in the header description of the original RA to show
where this additional space is made available. The header of the LPL program for

DBI given in Section 2.4.1.4 provides the first example of this.

Recall that a destination statement describes, in terms of the four-levél
lcell directory, the destination(s) that should execute the following segmeﬁt -
provided that no earlier segment is accepted. An asterisk "*' is used to encode a
wild card directory match for the level on which is appears; it matches all
directory entries {on it's level) that are equal to or greater than the given vaiue.
Thus, for iﬁstance, destination 2 0% 0% O*I addresséé all symbols of the argumeﬁt,
and destination 0* 0* 0* O0* addresses 'al_l symbols of the RA. Comments are
supplied with a destination statement to make it clear which symbeols of the RA
are being addressed. These éomments often use abbreviations to save space.
The application symbol for an RA is referred to as "app sym', the.sequence
symbol thal encleses the elements of an argument list is referred to as "arg

seq", and storage management is referred to as "sm".



72
2.4.1. TFP Functions

2.4.1.1. Identity
Using colon to denote applic ation of an FP function to its argument, Backus
defines the result of applying the FP id operator to an argument, z, as shown.

The LPL definition of the corresponding FFP operator then follows.

Def
e =

ID -- result is the argument
Restrictions: none

Sumary of Analytic Medel Parameters:
program size: 29
cycles required: 1
cyclel: 0 messages, 0 forks

S yIm: { 23 x
aln: 01 1
dir: 01 2
oo 0
00 0O
00 0
- nsym: X
naln: 8]

Method: All symbols of the argument remain, but with adjusted nesting.
The application syrbol and the operalor erase {hemselves.

programn 023 . ' :
destination 2 0% 0% 0% 7% The argument symbols
nselect #1 synbol #-1 . /* adjust their nesting,
endsegment
destination O0* 0% 0% 0% A Fuerybody else
endsegment A% goes eway,

endprogram
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This simple LPL program illusirates the value of a clever téxtual ordering of
destination statements. Symbols of the argument receive their LPL program
first, after which the destination 0* 0* 0* 0* is used to address all of the
remaining symbols of the RA. In addition to placing themselves in the result of
the reduction, the argument symbols must adjust their level numbers, and
nselect allows fhis to be done with a single statement. Note that symbols other
than those of the argument simply execute an eﬁdsegment statement without
placing successors in nsymbol and nain. These symbols therefore do not appe.ax'-

in the reduced result.
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2.4.1.2. Atom
Backus defines the result of applying the FP atom operator to an argumeﬁt,

z, as shown. The LPL program for the corresponding FFP operator follows.

Def
atom rz=x 15 enalom > Trxe| » Fy L

ATOM -~ true (=1) if the arg is an aton, else false (=0)
Restrictions: none ’

Sumary of Analytic Model Parameters:
' progranm size: 68
cycles reguired: 1
cyclel: nmessages: 1 (wave=1; msize=0)
forks: none

Sy ( 18 x
aln: 01 1
dir: 01 2
' 00 DO
coc 0O
00 O
NSy 1
naln: #]

Method: The argument sywbols send thamselves. If the argurent is
an atan, then only one message is received. The
application symbol checks this and places the result.
All other symbols go away.

program 018
destination 0 0 0 O /% The opp symbol
mov #0 t1 /% counis messages
receive #1
add #1 t1
endfil ter :
amp #1 t1 =, /% one argument symbol?
nselect #1 cc #0 . /% ploce the resull
endsegment
destination 1 0 0 O /* Tha operator
endsegment /% goes oy

"destination 0% Q% Q% 0O*

/% Symbols of the argument

send #1 + . symbel #0 0 /% send themselves
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endfil ter ‘
endsegment _ /% then go qwaoy
endprogram ‘ : :

In this LPL program, all érgumént symbols send theméelves. The
application symbol receives these, and counts them. If thefe is but a single
argumerit symbol then the result is true. The result is found in cc after
comparing the number. of messages received with 1, and thé ap'piica.ltion symbol

uses nselect to place the answer in the reduction result.
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2.4.1.3. Equals
Backus defines the result of applying the FP eguals operator to an

argument, z, as shown. The LPL program follows.

Def _
equals ' 2 = (x=<y,2> &y=z) » T; (x=<y 2> & y#z) > F; |

FQUALS -~ result is true iff the argument elements are equal
Restrictions: the argument is a pair

Summary of Analytic Model Parameters: -
n = § sywbels in second-argunent eleanent
programw size: 134
cycles required: 1
cyclel: messages: 1 {wave=1; msize=0}
n {wave=2; msize=1)
1 {wave=3; msize=1)
forks: none

Sy {(19<<ac<a

ain: 0 1123283

dir: 01 222¢22¢%
00 01122
00 00101
0.0 00O0O0O

NSWN: 1

naln: 0

Method: The nurber of symbols of the first argurent eleanent are
determined. Syrbols of this elexent check themselves against
the .corresponding values of the second arg elaement, and also

- check equal element sizes. The results are cazbined using
logical multiplication.

program G189 . :
destination 0 0 0 © A% The app symbal receives the resull
receive #3
nselect #1 r_argl #0 .
endsegment _
destination 0% 0 0 O /% Uperator end arg seq go away
endsegment

destination 2 1 0* G=® /% First element
nmov #1 margl 7% Counts itself
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send #1 + + #0 #0 1 o
mov r_argl t1 /*t1is symbol count

endfilter
mov #2 t2 /¥ msg counter (offset for cmp index)
receive #2 /% receive symbols of second elem
Cadd #1 te
arp t2 symbol_index = . /% g this symbol?
br - 1
arp synmbol r_key2 = . /¥ yes .
arp aln r_argl = * /% aln must also muafch
mov cc t3 /% save result for loter
label 1
endfilter
add #2 t1 /* counteruct msg ent offset
mov t3 ce | 7% get bock cmp resull

ap t1 t2 = %  * gymbol ent must alse match

mov cc margl
send #3 + * #0 #0 1 /* and all resulls for app sym

endfil ter
endsegment,
destination 0% g* 0* 0¥ /% The second aryg elemant
nov aln m argl /% sends ils symbols to the first
send #2 - . swmbols_index symbol 1
endsegrent

endprogram

The LPL program for EQUALS works in the following fashion. The symbols of
first argument element (hereafter referred to as Al) count themselves in the
first message wave by using an add dornbine-op. During the second message
wave, the second argument element (hereafter referred to as AR) sends its
symbols {ordered by symbol index) so the symbols of Al can .compare
thémselves with the corresponding symbols of‘AB. After this, each symbol of Al
uses multiplication for the combine-op of a third message wave to send a
boolean value representing whether the symbol is matched by A2 (and Al and A2

contain the same number of symbeols). The applitation symbol receives this last

result, and uses mselect to place the correct reduced result.
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2.4.1.4, Double
The result of applying the FP dbl operator to an érgument, x, may be

defined as shown. The LPL program follows.

Def
dbl :x =x#l > <z > |

DBL -- result is a pair whose elanents équal the original argument
Restrictions: none

Summary of Analytic Model Parameters:
n = # symbols in the argurent
program size: 121
cycles required: 2
cyclel: messages: 1 {wave=1; msize=1}
_ forks: 1 sym forks n contexts (executlng)
cycle2: messages: n {wave=2; nmsize=1)
forks: none

Sy { 6 <ab
aln: 01 122
dir: 01 2 22
00 0182
00 e 00
00 00O
nsym: <<ab<ab
naln: 0122122

Method: Count argurent, fork the operator, and receive the argurent symbols.

programn (086
destination 0 0 0 O 7% The app sym becomes a seg sym
keep . '
nov "< nsyrbol
endsend /* allow wave 1 to complete
fork #1 /% allow storege management, and
endsegment /% synchronize completion,
destination 1 0 0 0 /* The operator forks
keep
receive #1 7 First, get forksize
mov r_argl ti
endfil ter

fork ti1 /% Then fork
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mov #1 tl /% t1 counts symbols as they arrive
receive #2 : '
amp tl1 fork_id = . /* Iz this symboal for me?
br - 1

mov r_Key2 nsymbol /*if so, then load it
mov r_argl naln

label 1 '
add #1 t1 /* bump the counter
endfil ter
endsegment
destination 0* O* 0* O* /% The argument
keep , /% remains,
mov #1 m argl /% and counis itself
send #1 + + #0 #0 1 :
endfil ter
STBRNAge /% allow cperator to fork
mov aln m argl
send #2 - . symbol_index synbol 1 /* and send copy
endfil ter
endsegrent

endprogram

This is the first LPL program we show that requires forking. Since the
argument to be copied is not restricted in size, we use the general fork
| statement, as opposed to forkc. The approach téken'is to count the symbols of -
the argument during the first message wave, and then fork the operator symbol
. to receive symbols of the argument sent on a second message wave. The
application symbol is replaced with a sequence symbol of the same nesting level

in order to encapsulate thé resulting duplicale elements.

‘Note the use of endsend and fork #1 by the application symboL and of
smanage by the argument -- these statements allow storage management to
proceed so that the fork executed by the operator symbol can complete.
Without these Statements, this program will deadlock, effectively halling the
entire machine by preventing siorage management. The smanage statement in
the argument segment could be replaced v.-rith a fork #1 statement without

changing the behavior of the program. If the application symbol were to use
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smanage to allow storage management, however, its execution would continue to
the next statement, and would then complete in the first machine cycle. This is
not allowed. All lcells must complete their LPL programs in the same cycle. The
application symﬁol could prevent this from happening by performing a receivg
on the second message wave {which occurs in the second cycle) after executing

the smanage, but the use of fork #1 is simpier and requires less code space.
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2.4.1.5. Length
Backus defines the result of applying the FP length operator to an

argument, z, as shown. The LPL program follows.

Def | _
length :x = (x=<x1, o Xy ) =gl |

LENGTH -- result is the nurber of elements of the arguﬁent
Restrictions: argument is a sequence :

- Bumary of Analytic Model Parameters:
program size: 42 '
eycles required: 1
cyclel: messages: 1 (wave=1; msize=0)

forks: O

syn:- (1 <12<34

aln: 01122233

dir: 0122222 ¢2 .
00012333
oo0oo0o00D0 12
00000000

8 yrL 3

aln 1§

Method: Argurment symbols send d2 using select max as the cm*nbihe-op.
The winning message holds fhe length of the argurent, and
this result is placed by the applicaltion symbol,

program 001 .
destination 0 0 0 O /% Hold the resull
keep '
receive #1
mov r_argl nsymbol
endfil ter
endsegment '
destination 0% O* 0% 0% /% find maz colurnn index
mov d2 m argl
send #1 + > #0 #0 1 A% ag the marimum 42 value
endfilter
endsegment
endprogran




2.4.1.6. Tail
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Backus defines the result of applying the P {ail operator to an argument,

#, as shown. The LPL program follows.

tail ;1 z = (x=<z,> )¢, (=<x,, .., Ty> &"nag)—mz‘g > ]

TAIL -- result is the tail of Lhe argument list
Restrictions: the arpument is a non-eypty lisi

Summary of Analytic Model Parameters:
total prog size: 39
¢ycles required: 1
cyclel: messages: none
forks: none

sy (B4 <abe
aln: 1 1222
dir: 01 2222
00 0123
00 0000
00 0000
Sy < be
“aln 0 11

Method: The tail and sequence symbol of the argument lift tharselves

one level. All other synbols go away.

program 024
destination 2* 0O* O* D* /% The argument list

cop #1 d2 = .
br + 1

nselect #1 swrbol #-1 . /% remain if nol first element

label 1
endsegment

destination 0% 0% 0¥ 0% 7% Buerybody else goes oway.

endsegrent
endprogram
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2.4.1.7. Rotr
Backus deflnes the result of applying the I'P rofr operator to an argument,

x, as shown. The LPL program follows.

Def
rofr ;@ == ;p—n;a =<z >—:<x >; _
(z=<z, 1> &'nzé?)ﬂ<z T g Z, 4>l

ROTR -~ move right_most-argunent elerent to leflmmost position
Restrictions: argument is a list

Smmary of Analytic Model Parameters:
n=4# list elanents
m = size of rightrost element {to be moved)
total prog size: 143 :
cycles required: 2 :
cyclel: messages: n {wave=1; msize=1)
forks: one symbol forks mt+l {executing)
cyele?: messages: m {wave=2; msize=1)
forks: nene

sym: (26 < abec<d
aln: 01 1 22223
dir: g1 2 22222
00 0 12344
00 O 00CO0 1
00 O 00000
NSy <<dabec
naln 1211

Method: wave 1: find righimost argurent elewrent, and its size. Then
the argunent sequence symmbol forks Lo receive it. wave 2:
the rightmost argument eleamnent sends itself and erases itself,

program 026 /*roifale right

destination 2 1% 0% 0¥ . * each arg list element
nselect #1 symbol #-1 . /* assume not rightmost for now
mov #lmargl /% gach element counts ifself
send #1 - + d2 #0 1 7% and rightmost arrives lost
mov r_keyl t1
endfilter
smanage

arp dé t1 = . /% amy [ on the right?
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br + 1 /% if sn, need fo erase and send
receive #2 /* gtherwise, sync and complele
endfilter
br . 2 _
label 1 erase /% come here iff rightmost .
nmov nalnmargl
send #2 - . sywbol_index nsywbol 1
_ endfilter _
label B endsegment _
destination 2 0 0 0 © /* the arg seq sym
nselect #1 symbol #-1 . /* finds oui size of righimosi
receive #1 : /* list element B
mov r_argl tl
~endfilter
add #1 ti 7% must include self as well
fork t1 /* and then forks to recetve it
arp #1 fork_id = .
br + 1 :
nmov #2 tl
receive #2 /% on wove 2
amp fork_id t1 = .
br - 3

mov r_key< nsymbol
mov r_argl naln
label 3 add #1 tl

endfilter
label 1 endsegment
destination 0* 0* 0% 0% /* everybody else
endsend
fork #1 /% syne and go qway
endsegment '

endprogram

To do ROTR, we first need to locate the rightmost argurnent elermnent and
count it, so that it may be sent over Lo the left of the sequence, where the
argument seguence symbol will fork and receive it. Although the LPL symbol
'representation dees not indicate when a symbol is the rightmost element of a
list, the argument symbols Hiake effective use of their first send statement to
both discover the rightmost element, and count it. Using d& as a sort key,
message Wave-l returns messages sent by the rightmost element last, and this
information is the desired count since addition is u.sed for a combine operation.

After this, execution is similar to that for DBL.
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2.4.1.8. Distl
Backus deﬁnés the result of applying the FP distl operator to an argument,

x, as shown. The LPL program follows.

Def
distl : x = z2<E 5, P> 3¢, T=2KT, <Yy o Y P> <LKEY >, <x.yn>>;_[_

DISTL -- distribute left element to all right elerents
Restrictions: argument is a pair
whose second elerent is a seguence

Sumary of Analytic Model Parameters:

n = # elanents of inner list

m = size of elarent to be distributed
total prog size: 180
cyveles reguired: 2 .
cyclel: messages: 1 (wave=l; msize=1)

forks mn+ 1 {executing)

cycle2: messages: m {wave=2; nsizeé=1)

forks: O

sym: (25 < a<be
aln: 01 1 223
dir: 01 2 2222

00 O 1222

00 O o012

06 O DooCo
nsv <<a b<ac
naln: 012 e 122

Method: The arg‘seq forks to "< <", the inner list seq goes away. The
leftmost arg element counts itself, and all but leftnost inner
elements fork and receive it. . :

program 025 /* distribufe left

destination 2 0 0 C /* the arg seq forks o "< "
endsend <% allow message wave 1 io complele
fork #2 7F maintiain sync, and allow sm
nselect fork_id "< #-1 "< #0 . :
endsegment

destination 2 1 0% 0% /* lefimost arg counts ond sends ifzelf
keep /% keep to go with leftmost elem of inner list
mov #1 m argl .
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send #1 + + #0 #0 1 7% count self

endfilter
smanage | A allow sm
mov nalnmargl ' ' ' o
send #2 - . symbol_index nsymbol 1 /* send self

© éndfilter .
endsegment
destination 2 2 2* 0 7% all but lefimost elem of inner list

keep
receive #1 /% get count for new elem

mov r_argl tl

endfil ter
add #2 t1 /% must also include self and seq sym
fork t1 A% create necessary space
crp fork id t1 < . /% am fold or new symbol?
br + 1 ' C /% if new, go get loaded
nselect #1 synbol #-1 . /* alherwise keep old
br . 2 :
label 1 awp #1 fork_id < . /*um [right of seq?
br + 3 _ /*if so, go get loaded
nselect #1 "< #-2 . /% otheruise become seq
br . 4

label 3 mov #2 t1 /* msg counter (offset for cmp forkid)
receive #2
 gmp fork_id t1 = . 7% should I recetve this?
br - 5 . '
nov r_key2 nsymbol Z*if s, load it
mov r_argl naln .
label 5 add #1 t1 /* count msg
endfilter :
label 2 label 4 endsegrment
destination 2 2 0 O /* the separalor seq goes qway
endsend /% allow wowwe 1 o complele
fork #1 /% maintain syne, allow sm
endsegment '
destination &2 0* O* 0* /* the rest of the arg symbols
endsend - /% allow wowve 1 to complete
nselect #1 syubol #-1 . :
fork #1 . /% maintain syne, allow sm
endsegment ' ‘
destination 0O* 0% O* 0% /* everybody else goes sway
endsend /% allow wave 1 '
fork #1 A maintoin syne, allow sm
endsegment '
endprogram

In this program, the first cycle is used to determine the size of the lefimost
argument element, and to fork the leftmost symbol of all but the first element of

the second element of the argument. Many of the segments use ferk #1 to
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maintain synchronization and complete in the second eycle. These segments
must also use endsend to allow the first message wave to complete, The first

segment could have used a cselect and forke #2 in the second cycle.



2.4.1.9. Mairix Transpose
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Backus defines the result of applying the FP 7 operator (i.e., franspose) to

an argument, z, as shown. The LPL program follows.

Def _

T ESEESY, ., PERPEEE L, B DY ym>;j_
where :ci=<zﬁ. e xim>’ and yj=<21j, xnj>’

with I=sisn, and I<j=m,

TRANS ~- Transpose 2-D Rectangular Matrix
Restrictions: matrix elements are atanic

Sumnary of Analytic Model Parameters:

m = #rows
n = #colums
h = log{m{(n+1)+3)

program size: 1855

cycles required: 2

cyclel: messages: 1 (wave=1l; msize=i)
forks: n{nm+1)

cycle2: messages: m(n-1) (wave=2; msize=1)

forks: O
5 YIIL {11 < <1 2 3 <567
aln: o1 12 3 3 23
dir: 01 222 2 2 2222
00 011 1 1 2R222
00 0061 2 3 0123
00 00O 0 0 0DO0OGCO
NSy < <15<28<37
naln: 0 122122122

Method: each elament of the first row forms a new row with the required
nurber of colums (by forking the reguired nurber of symbols).

program

011

destination 0 C O O 7% the app symbol goes gway
endsend 7% allow wave 1 1o complele
fork #1 % gllow sm and synch

endsegrent



destination 1 0 0 O /* the operutor can free space af
fork #0 /* the end of the first cycle
endsegrent

destination 2 0 0 O /* the matriz arg seq symbol
keep
add #-1 naln /* adjust nesting
endsend % let wave 1 go
fork #1 % allow sm and synch
endsegment

destination 2 1* 0 O /% the seq sym for each row

mov #1 m argl /% asgists in a row count
send #1 + + #0 #0 1

endfilter
fork #0 /% and then venishes
endsegment

destination 2 1 1* 0.  /* ench element of firsi row

keep ' 7
mov #1 t1 - /% forks a sequence symbol
receive #1 /* plus the received # cols

add r_argl tl

endfilter
fork t1 /% fork out required space
arp #1 fork id = . /% for complele row
br - 1 /% of the result,
nselect fork id "< #-2 ./* the seq thal sturis
br . 5 /% @ row is now doneg
label 1 add #-1 naln/*® other cells modify their nesiing
arp #R fork_id = . /% first element of row is
br + 6 : /* is the original symboal

mov #1 t3 -/* resulf row counter
mov #3 t5 /* result column sounter (offset)
receive #2

amp d3 t3 = . /% s this row for me?

br - 2 —

arp fork id t5 = . /*is this column for me?
br - 3

mov r_argl nsymbol /* yes, so place if
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label 2 label 3 add #1 t5 *increment column

cp t5 L1 > . /* time to starf new row?
br - 4 ‘
mov #3 t5
add #1 t3
label 4 endfiltéer
label 5 ilabel 6 endsegment

destination 0% 0% 0* 0#* /% gelements of all other rows
mov symbol m argl
smanage . /% allow sm
send #2 - . d3 42 1 /% send themselves
" endfilter
endsegment

endprogram




2.4.1.10. N-ary Add

N-ARY ADD ° -- result is sum of the argument eleaments
Restrictions: argument is a sequence whose elements are atamic

Summary of Analyiic Model Parameters:
program size; 53
eycles reguired: 1
cyclel: messages: 1 {wave=1; msize=1)
forks: 0

Sy (4<abe
aln: 011222
dir: 01222 2R%
00023
O000OD0B0
- O0OO0ODOCOO
nsy: - atbte
naln: o

- Method: Bach element of the list sends itself, and is added on
the way up the tree., The sum is returned to the lcelis,
and is placed by the application symbel.

program 004 -
destination 0°0 0 O /% app symbol holds result
keep
receive #1
mov r_argl nswrbol
endfilter
endsegrent '
destination 1* 00 0 - - /% Up and ory seq go qaway
endsegment '
destination O* O* 0% 0% . /% The org elaments
mov  symbol moargl :
send #1 + + #0 #0 1 /% Send themselves with add op
endfilter ‘
endsegment

endprogran
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SORT -- elarents of argument are sorted in ascending order
Restrictions: argunent is a sequence whose elements are atomic

Sumary of Analytic Model Parameters:
n = #elanents to be sorted -
program size: 59
cycles required: 1
cyclel: messages: n (wave=1l; msize=0)

forks: O
s ym: (5<24153
aln: Di1122 2
dir: D12E222%R22
DO0O0123 45
O000O00C0CCOC
0000CO0O0O00O0
nsymn: <12345
naln: 11111

Method: The argument sequence symbol is kept in place. The

application symbol and the operator erase themselves,

The argurent elerent$ send themselves, with ordering
so that the smallest values are passed through first.

programn 005
destination 2 0 0 0O A< stoys in front
keep '
endsegment .
destination O* G O O /% The app ond op syms
endsegment, /% go oneoly
destination O* O* 0* 0O* /% The argument sorts itself
keep ' /% in ploce,
mov #3 t1  * msg counier (with offset for cmp index)
send #1 - . symbol #0 0 _ /% symbol is the key
orp tl syrbol_index = . /* so they are received
br - 1 =
nselect #1 r_keyl #-1 . /*in order
label 1
add #1 t1
endfilter
endsegment

endprogram
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2.4.1.12. Matrix Multiply

MM -~ In-place rmltiplication of matrices A x B - C.
Restrictions: argurment is a pair of sguare matrices

Summary of Analytic Model Parameters:
n = # of rows and colums of A,B, and C.
total prog size: 246
cycles required: 1
eyelel: messages: 1_(wave=1; msize=1)
n~ {wave=2; msize=2)

n? {(wave=j+1; msize=1)
forks: none ‘

Sy (B<c<cl1lcgacclacla

aln; 01 1234434423443 44

dir: 01 2r22g2eeearegeer
00 011111112222222
00 00111222201 11222
00 000120120012012

sy <<24<48

aln: 0122122

Method: The application symbol and the operator go away. The result
is held in A, the first argunent matrix. The second argurent
matrix, B, pgoes away after assisting the rmitiplication. The
outer-product algoritim is used, which operates as follows:
C(ivi) = 5 ( A(i.k) * B(k,j) ).

Matrix B finds max k in wave 1,
sends row k in wave 1 + k.

Matrix A gets max k in wave 1,
sends colum k in wave 1 + k.
During each wave, A{i,]j) multiplies and accumilates
a result based on a msg fran A (keyl=d3; key2=0) and
a msg fron B (keyl=d4; key2=1).

program 028
destination 2 2 1* 1% /% --glements of B -
mov d3 m argl /% mov row index fo message
send #1 + > #0 #0 1 /% send with select mazx
mov r_argi t9 /% tost msg is the row count
endfilter
mov #1 t8 A% inil current row

mov #2 L7 S*init current wove



label 1 gqmp 43 t8 = .

br - 2

mov symbol m argl

send t7 + . d4 #1 1
endfil ter

br . 3

label 2 receive t7
endfll ter

label 3 add #1 t7

add #1 t8

amp tB 19 <= |

br + 1

endsegment

destination 2 1 1% 1*

23

/* am ] right row to send?

A if not, go recetve

/% move symdbol lo message
/* include col index and B flog

./* if not send, keep slep

¥ new wave

¥ new row

/* more sends?

/* yes if more rows

/% go cway when finished
/% —glements of A->C—

receive #1 s get
- nmov r_argl 9 /Fmax k
endfil ter
moev #1 t8 A% init column counter
mov #2 t7 7% inil wave counfer
mov #0 L6 /* init accumulator
label 1 mov #0 {4 AAdndd L4 and 15 o
npv #0 t5 /* hold values to mulliply
amp d4 t8 = . 7% am [ right column to send?
br - 2 /% if not go receive
mov symbol m argl /* move symbaol lo message
send t7 + . d3 #0 1 7* include row index and A flog
label 9 arp #0 r_keyl = ./* Which mualriz?
br + 4 /% A —go to handle
armp r_keyl d4 = . /* B - check for keyi=d<¢
br - 5 /% no
mov r_argl t5 /* hold B volue
br . 8 ' :
label 4 arp r_keyl d3 = . /* A-check for keyi=d3
br - 7 Fno
mov r_argl t4 /% hold A value
label 5 label 6 label 7 endfilter
br . 8
label 2 receive t7 /% either send or receive
br . 9 /* both are hondled above
endfilter
label 8 rml t4 t5 7 woue £ 718 now over
add t5 t6 /* odd B contribulion o ccoum
add #1 t7 /% count message wave
add #1 t8 /% and increment column
ap t8 t9 <= . /% is there more work”?
br + 1 /% if so0, get next wave
nselect #1 t6 #-2 . /% otherwise place accumulator
endsegment :
destination O* 0% Q% 0% /% guerybody else - includes
amp #2 di = ., 7 enclosing seq syms of A, B
amp #1 d2 = * /% do Fenclose A?
br - 1 /% 4f not, go owoy

nselect #1 symbo-l #-2 .

/* otherwise modify nesting



label 1 endsegment
endprogram
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2.4.2. FFP Functional Forms

A fﬁnbtional form is a pafametrized function. For example, <CONST n> is
| the functional form used in FFP to represent the function whose application
always reduces to n, regardless of its argument. As the exa_mple deﬁnitio_né fb.r
p(CONST) given in Section 2.2.2 showed, evaluation of the application of a

functional form within FFF uses meta-composition.

Backus's deﬁnitipn of FFP in this way was motivatedlby the desire for a
concise, uniform representation of self-referential functions. Within the
operational context of the DOT implementation, however, there is no need for
meta-composition {whose purpose is to provide an operator with access to itrself_
| as well as the original argument). This is because LPL definitions for FPP:
operators glways have access lo an entire RA, and this 'includeé the operator
expression. Functional forms are therefore implemented directly within LPL
without the intermediate step {and extra reduction cycle) implied by meta-
composition. This is done for all the usual functional forms which occur in the

form "< ff ... >

Within Backus’ .f_or.'rnal semantics for IFP an operalor can mean'mgfuily
peeur in the form "<< I ... > ... >" or with even deeper "leftmost" nesting. Such
operalor expressions can be created within FFP, and a complete semantics must
provide a definition of their meaning. The result of application of such an
operator could be defined as bottom without sacrifice of computational power,
but the meta-composition rule instead handles such an application by
unraveling. the operator as usual. For this reason, the DOT implementation
knows aboul meta-compesition, and, upon encountering an operator with at
least two leading sequence symbols, brings in an LPL progra.m that implements

Backus' meta-composition rule. The LPL program for meta-composition is



986

therefore given in this section for completeness.

One of the main differences between FP and FFP is thé treatment of
functional forms. In FFP, each functional form is uniforml& represented as a
sequence with a qontrolling operator. In FP, on the other hand, functional forms
represént operalions of an associated algebra of program.s, and their

representalion varies in the interest of clarity and notaticnal convenience. .
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2.4.2.1. Constant
Using z to represent the FP function whose value is always the object, =,
Backus gives

Def
Ty =yElom |

< CONST n > -~ result is the object, n
Restrictions: none

Summary of Analytic Model Parameters:
program size: 27 :
cycles required: 1
eyclel: messages: 0O
forks: O

Sy { <21 nx
aln: 012 21
dir: 011 12
001 20
000 060
000 0O
NSym: n
naln: 0

Method: Frase e%}erything but the object parameter of CONST

programn 021
destinmation 12 0 0
nselect #1 syrbol #-2. .
endsegment
destination O* 0* 0% 0%
endsegmsnt
endprogr amn
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2.4.2.2. Belect
Backus considers selectors to be special FP functions [Bac78], but we.
prefer to treat selgct as a functional form. Using s to represent the FP function

thal selects the s'2 elernent of an argument sequence, we give

Def

srax= (=<E,, ., 5,> & Isssn)ox ;|

<SELECT n> -- result is the nth elarent of the argurent sequence
Restrictions: argurent is a sequence

Summary of Analytic Model Parameters:
total prog size: B1
cycles required: 1
cyclel: messages: 1 (wave=1; size=0)
forks: none

S YL (¢RB7T2<a<be
aln: 12 2122%23
dir: 011 122222
001 201223
000 0OO0OO0CO01O0
000 0OO0OO0COO0O
nsym: < b
nalin: 01

Method: The selector value is sent in a message, and each argurent
symbol corpares its dR directory value with the selector.
All symbels that are not part of the argument, or whose
d2 value does not egqual the selector value are erased. Those
syrbols that remain adjust their nesting by raising
thenselves two levels. o

progran 027 /* Select

destination -1 2 0 0O /* the selecior value
send #1 + . sybol #0 0 /* sends ifself.
endfilter ’ :
, endsegrent
destination 2 0% 0* 0% /% The argument recelues
receive #1 A the sgleclior value

ap r_keyl d& = ,
endfil ter



br - 1

nselect #1 symbol #-2 .

Iabel 1 endsegment
destination O0* O* 0% O*

endsegment .
endprogram

/* and keeps ilself if selecled

/* Everybody else goes a*wmy;

28]
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2.4.2.3. Composition
Within TP, functionél composition is represented using @ as an infix

operator. Thus Backus gives

Def
feg:z=f:(g:z)
We give an n-ary FFP functional form for composition, for which an appropriate

FP form might be defined as follows.

Of o f) i2= i (Fgi (o (Fpi )0 ))

<COMP f4 f5 f> -- result is the desired carposition of f's
Restric%ions: none

Summary of Analytic Model Paraneters:
n=4#of fns to be carposed
program size: 103
cycles reguired: 1
eyclel: rmessages: 1 (wave=1l; msize=1)
forks: 2n {completed)

sy { <20 f < gh x
aln: 012 2 3z 1
dir: o011 1 1 11 2
001 2 3 34 O
000 O 0 10 0
000 O 0 o0 0
nSym: {f{<g{(hx
naln: 01123233

Method: Cselect is used to let the first symbol of each function
create an application. The functions count themselves by
sending d2 up with select maximmm as the cavbine-op. This
result{ counts the COMP controlling operator {which is not
wanted) so for what follows, cnt=result-1.

Each arg gets naln=alntent-]
The app symbols get naln=aln-4+d2
The fcn syirbols get naln=aln-3+d2

progran 020
destination 2% 0% 0% (% /% the arg text



keep
receive #1
add r_argi naln
endfilter
sub #2 naln
endsegment
destination 1 2% 0 O
' mov d2 m _argl
send #1 + > #0 #0 1
endfilter
mov de tl
sub #4 t1
mov t1 t2
add #1 t2

cselect "{ t1 symbol t2 .

forke #2
- endsegment .

destination 1 2% 0% 0%

nov d2 tl

sub #3 t1

nselect #1 syrbol t1 .

endsegment
destination 0* 0* O* 0%

endsegmnent
endprogram

/* the argument remuains

#* but with modified nesling
/* first part of each fon

/* determine § of functions

/* determine nesting for
/* the new application
/* and this symbol

/* eselect

/% and forke {o result

/2 rest of each fon
/* remains
/% but with modified nesting

2 < comp _
/% these go oway
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2.4.2.4. Construction
In FP, construction is an important way of using parallelism to create a list.

Each element of the list that is constructed by this functional form is created by

application of a separate function. Backus gives the following FP definition.

Def :
[fi’ iz = <fypimformoufpox>

<CONS f fo ... £, > -- result is the list constructed by the f's
Restricltions: nohe

Summary of Analytic Model Parameters:
n = # functions
m = argsize
program size: 175
cycles required: 2
cyclel: messages: 1 {(wave=1; msize=1)
forks: 3n + m{n-1) executing
cycle?: messages: m {wave=2; msize=1)

forks: O
sym: ( <ee < f g X
aln: 012 2 32 1
dir: 011 1 11 2
co1 2 23 0
D00 O 10 0
0o 0O 00 0
NS ym: <{<fx{gx
naln: 01232122

Method: cyclel: wave 1: find arg size
each fen but the first forks to "arg { £"
the first fen forks to "< { [
cycled: wave 2: the argurent sends itself

program (022 /* Construciion , -
' destination 2 0* 0% (O /% The argument

nselect #l1 symbol #1 . /*remuoins with nesting increasad,

mov #1 m argl /% counts ifself

send #1 + + 0 #0 1 /* during message wove I,
endfilter

srenage /* permits others to fork,



mov naln m argl /*® then sends itself on wave &

send #2 - . symbol_index symbol 1
endfilter
‘endsegment, '
destination 1 2 0 O/* First sym of first fon forks to "< ("
endsend /* allow messoges to proceed
fork #3 : /* then fork
nselect fork_id "< #-2 ”( #-1 symbol #0 .
endsegment
“destination 1 3* 0 0/* First sym. of other fens fork to "arg ([
keep
mov #2 t1 A oﬁset to include " (" and f

receive #1
add r argl t1  *in forksize

endfilter _
fork tl1 /% then fork.
amp fork id t1 < . /% if rightmost, then
br - 1 /* go place original f symbol
sub #1 t1 /* otherwise
anp fork jd t1 < . /*if need lo receive arg copy
br + 2 /% go do that.
nselect #1 "( #-1 . /* otherwise place "'
br . 3
label 2 mov #1 t1 . 7 init symbol counter
rreceive #2 :
ap fork_id t1 = . /*ds this symbol for me?
br - 5

mov r_key2 nsymbol /#if so, place it
mov r_argl naln
label 5 add #1 t1 /*increment counter
endfilter
: label 1 label 3 endsegment
destination 1 2% 0* 0* /* fon bodies (all but leftmost symbol)

endsend - /* allow wave [
fork #1 /% alliow sm and sync
keep /% remain
endsegment _

destination 0* 0* O* 0* /* guverybody else
endsend /% allow waue |
fork #1 /% allow sm and syne
endsegment /% go away

endprogran
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2.4.1.5. Conditional

Conditional in FP is defined by Backus in the {ollowing way.

| (oor) 2 = ()= Tofiz: (fpz)=Fogiz: |
Thus, the result of reducing an application of such a functional form depen&s on
whether the predicate, p, reduces to true or false when applied to the argument,
x. If the predicate reduces to true, then the result is an application of the
function f to the argument (ie., f : x}, otherwise, if the predicate reduces to
* false, the result is application of the function g to the argument {ie., g : x). If

the predicate reduces to an undefined result, the regult is undefined.

Reducing an RA with string reduction destroys the original expression.
Conditional is thus implemented in two steps. In tﬁe first step, the argument is
copied, and the original expression is restfgctured so a newly created
application of the predicate is innermost to an application .of the second phase
conditional operator, CONDZ. Upoﬁ reduction of the predicate on its argument
copy, the second phase operator checks. the result éf the predicate evaluation

and then creates an application of the appropriate function, f or g.

We take the liberty of representing the FFP functional form with the

'predicate on the right. This make it easier to apply the predicaté,
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<COND f g p> -~ result is CONDZ with inner application of p
Restriclions: none

Sumery of Analytic Model Parameters:
n = argsize : -
m = predicate size
program size: 221
cycles required: 2
cyclel: messages: m (wave=1; msize=0)
1 {wave=2; msize=1)
forks: 1 symbol forks nt+l {executing)
cycle?: messages: n (wave=3; msize=1)
forks: 1 symbeol forks 3 {campleted)

Sy (<9 fgp X
aln: 012 222 1
diry 011 111 2
001 234 0
000 00O 0
000G 00O o
- sym: (<10fg<(pxx
aln 012 212332

Method: COND works in two phases with an intermediate operator, CONDZ.
In the first phase ( < COND2 f g > < {p x) x > )} is produced.
COND2 then applies f or g depending on the value of (p x).
To do phase 1, we first count the argurent size, then fork and
create the inner application of the predicate during cycle 2.

programn 009
' destination 2% 0¥ 0% 0* /* argument symbolis

keep 7 remuoin for laler use
mov #lm argl
send #2 + + #0 #0 1 /% count the urgument symbols
sranage : /% allow sm for forking
add #1 naln /% increase nesting by ?
mov nalnm argl /* all arg symbols
send #3 - . syrbel_index symbol 1 /* send fhemsslives
endsegment

destination 0% 0 O 0O /* the opp ond and org seq symbols
keep A ravngin
endsend /% allow message waves | and 2
fork #1 A% allow sm
endsegment.

destination 1 1 ¢ 0 /* the aperator symbol (COND)
keep

endsend 7% allow message woves [ and 2
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fork #1 /% allow sm
mov #10 nsymbol /* change operafor fo CONDZ2
: endsegment
destination 1 4 0* 0% /% the symbols of the predicate

send #1 - . syrbol_index #0 0 /* find rightmost symbal
mov r_keyl t1 /* lust r_key ! through is from
endfilter 7* rightmost predicate symbol

receive #2 /* find out number of leells for rightmost
mov r_argl t2  /*predicale symbol fo fork
endfilter /% to hold the acrgument

arp swnbel_index t1 = . *am [ righimost?

br - 4 /2 if not, go around argument copying

keep /* signals that these symbols are set up

add #1 t2 /* must hold self as well us argument

fork t2 /* fork to receive argument

cp #1 fork_id = . /% true for parent

br - 1 /% if nol parent, go receive nsymbols

add #1 naln /* parent merely modifies nesting

br . 3 /% and goes around argument copying

label 1 /* come here fo gel nsymbols from wave 3

mov #2 tl - /* symbol counter (offset for cmp forkid)

receive #3
amp t1 fork _id = . /% is Lhis nsymbol for me?
br - 2 /% if not, loop

mov r_key2 nsymbol /* ofherwise load it
mov r_argl naln
add #1 naln
label 2 add #1 t1 /% increment symbol counter
endfilter
br . 5
label 4 fork #1 /*if not righimost, then allow sm. for fork
label 3 label 5 /% need to handle left pari of predicate

anp #0 d3 = . /% am [ leftmost predicaie symbol?

cxp #1 fork_id = * /% with fork_ud=17?

br - 6 7% 4f not, go adjust nesting and complete
cselect "< #-1 "( #0 symbol #1 . /* otherwise, create
forke #3 /% innermost predicate opplication

label 8 arp #1 nsymbel_cnt = . /%45 neymbol sef up?
br + 7 Z* if so, go complete

nselect #1 synbol #1 . /* otherwise, adjust nesting for
label 7 endsegrent /* innermost symbols of predicale

desiination 1 2% 0% 0* /% all symbols of the funclions f and g

keep /* remain

endsend /* allow waves | and 2

fork #1 7% allow sm for forks

endsegment /% complate

endprogram
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"<COND2 f g » -- result is application of f or g to second element
of the argurent, depending on the first element
Restrictions: argument is a pair

whose first elerent is true or false

Sumary of Analytic Model Parameters:
program size: 121
cycles required: 1
cyclel: messages: 1 {wave=1; msize=0)
forks: O

s v
aln:

(o o ¥
A
N =
<
PASIC.
ARt =]
Rt A
0 o
AV

dir:

o B o e I
O bk e
o=
O QLW
oOonN
QO+~
SoNm

aln

sy

Qo SO0 0o
Lo )

—
Ll

Method:

Check t, and apply f or g as appropriate.

program 010

destination 06 0 0 O /% app sym stoys
keep
endsegment
destination 2 2* 0* 0%  /* grg stoys
keep
add #-1 naln
endsegment ,
destination 2 1 0 O /% £ sends itself ond is erased
erase
send #1 + . sywbol #0 0O
endsegment ‘ '
destination 1 2 0* 0% /% f keeps ifself if { is {rue
receive #1
arp #1 r_keyl = ..
br + 1 =
erase
br . 2
label 1
keep
add #-1 naln
label 2
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endfilter
endsegment
destination 1 3 0% 0%  /* g keeps ilself if tis folse
receive #1
: mp #l r_keyl = .
br - 1 :
erase
br . 2
label 1
keep
add #-1 naln
label 2
endfilter
endsegment
destination 0% 0* 0% 0%
erase
endsegment
. endprogran
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' 2.4.1.7. Apply-to-all

In FP, apply-to-oll provides a powerful means of creating parallelism.

Backus defines it as follows.

Def

of iz =x=@->p,

RELZ 0, T > <fam fn.'z>,'J_

<AA f> -- result is a sequence of applications of the

Restrictions: argurent is a sequence

function, f, to the argument elaments

Sumary of Analytic Model Parameters:
n=4¢#of list elements o
m = size of operator
program size: 174
cycles required: 2 :
cyelel: messages: 1 (wave=l; msize=1)
forks: (n-1) symbols fork (m+1) contexts
cycle2: messages: m (wave=2; msize=1)
forks: none

sy { <29 0p<ab c

aln: 1 22 122 2 -

dir: 01 11 222 2
600 12 012 3
00 GO0 00O 0
00 00 00O 0

s i < { op af{opb {opec

aln 01 2 212 212 2

Method:

In the first ecycle, the operator counts itself, and the first
symbol of each argument elerent {except the first element, which
can use the original operator) uses this count to fork off

enough syrbols to hold the operator. To camplete in the second
cyele, the application symbol becanes a sequence symbol, the
first seq. symbol becores an app. symbol. The AA swmbol erases
itself. as does the arg seq. The operator to be applied stays
where it 1s, and also sends itself to the argurent list. The
mavbers of the argument list receive the operator, and load

its symbols in order of receplion to create the new applications.

program 028

destination 0 0 D O /* the application symbal
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endsend /% does not send

fork #1 /% maintain sync
nselect #1 "< #0 . /* become o seq symbol
endsegrent
destination 1.0 0 O /% the op seq
endsend /* does not send
fork #1 A* mointain sync
nsclect #1 "{ #0 . /* became lefimost opp symbol
endsegment
destination 1 1 0 0 ~/* the oo opoode can go aqway
endsend /% immediately
fork #0O /% by vanishing betlween cycles
endsegment
destination-1 2 O* 0%  /* the operalor {o be upplied
keep /* keeps itself ;

nov #lm argl  /* and counts itself for the arg elems
send #1 + + §0 #0 1
endfilter
nmov aln m argl :
srEnage /% allow aryg elems Lo fork
send #2 - . syrbol_index symbol 1
endfilter
endsegment
destination 2 0 0 O /% The arg seq can vanish
endsend :
fork #0
endsegment
destination 2 2% 0 O /% first symbol of each arg elem
keep /% (except the first arg elem)
receive #1 /¥ gel op size
nmov r_argl tl
endfil ter
add #2 t1
fork t1 /* fork o include app sym., op, ond self
mov #2 t1 '
receive #2 /% receive operator
mp t1 fork id = .
br - 1
mov r_key2 nsyimbol
mov r_argl naln
label 1 add #1 t1
endfilter
crp #1 fork id = .
br - 2 -
nselect #1 "{ #-1
label 2 endsegment
destination 0¥ D* 0% O*
keep /% all other symbols keep themselues
endsend /* don i need to send
fork #1 /% ynainloin sync
. endsegment :
endprogram.
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2.4,1.8. Llement-by-element

In FP, elemeni-by-element creates parallelism in a way similar to apply-to-
all, but automatically brings together corresponding elements of two lists to
create arguments for a binary operator. It may be defined as follows.

Def

Bf iz = m='<<y1, LA A TIRITE N>
LY 2 >0 fr<y 2> >0 L

<FE1 > -- result is a sequence of applications of f to

: paired elements fran the two argument seguences

Restrictions: argumnt is a pair of sequences of egual length
whose elenents are atamic

Summary of Analytic Model Parameters:
n = nurber of applications to be created
h = log{2n+d) + 1
program size: 126
cycles required: 1
cyclel: messages: m+l {wave=1; msize=1)
forks: n forking 5 (cumpleted)

s ym: (<74<<1 2 3<458
aln: 122123 3 32333
dir: 0111222 2 2R222¢R
0012011 1 12222
D000O0D0 1 2 30123
0O0000CO0DO 0 00000
Sy < (4<14{4<25{(4<38
aln 0 122331223312233

Method: The operator to be applied is sent to the first arg list,
and the second arg list sends itself to the first arg list

mamnbers. -
program 007 :
destination 1 2 0 © /* The alomic binary function
send #1 - . #0 symbol 0 /* sends itself with keyl=0
endfilter 7% to the first list of the arg -
endsegment _
destination 2 2 1* 0 /% The second list of the aryg

mov symbol m argl /* olso sends iiself
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send #1 - . #1 d3 1 /% Lo the first list with keyl=1
endfilter

endsegrent .

destination 2 1 1* O /% The first list of the arg

receive #1 #* gels fen ond list elems
amp #1 r_keyl = . /*is this o list elem?
br + 1 Z* if s0, go check _
mov r_key2 i1 /* otherwise hold the fen for later
br . 2 '
tabel 1 amp r_key2 d3 = . * s this elem my pair?
br - 3 7% if not goto loop

mov r_argl t2 A* otherwise hold symbol for later
label 2 label 3 endfilter
cselect "{ #-2 t1 #-1 "< #-1 sywbol #0 t2 #0 .
forke #5 - /* fork to creale application
endsegment
destination 0 0 G O 7* The app symbol becomes seq
nselect #1 "< #0 .
endsegment
destination 0% 0% 0% 0% /* Fuerybody else goes qawny,
endsegment .
endprogram
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2.4.1.9. Metacomposition

This

is the functional form corfesponding to FFFP meta-composition. There

is no corresponding FP definition. The following LPL prograin correctly

implements metacomposition for all FFP functional forms, but is only used when

. the controlling operator is a sequence.

<.

Restrictions: mnone (but only used when f is a sequence)

. > ~-- result is a new application as defined by the
FFP rule for meta-camposition

Summary of Analytic Model Parameters:
n = size of operator
program size: 120
cycles required: 2
cyclel: messages: 1 (wave=1; msize=1)
forks: n (executing)
cyclel: messages: n (wave=R; msize=1)

forks: O
sym: { <<<abecdx
aln: 0 12344321
dir: 0 11111112
0 011111220
0 coci111200
0 00012000
nsym: (<<abec<<<<abecdx
naln: 01 2332123455432
Method: In the first cycle, the nurber of symbols of the controlling

program

operator are counted. The application sybol forks off
enough leells {0 hold itself, the controlling operator, and
a sequence symbol (in left-right order). This sequence symbol
is used to enclose the application operator {(i.e., the
functional form) and the application arguvent as required by
the rule for meta-camposition. In the second cyele, the
controlling operator sends itself to the forked application
symbols, where it is received and placed. Original operator
and argument symbols increase their nesting level by 1.

060

destination 0 0 0 0 ' /* the application symbol
keep 7* remains
receive #1 /% get size of controlling



mov r_argl tl
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/% operator of the functional

endfiiter /% form

add #2 t1 /% must include self and seq sym,

fork t1 /% make room for { op <

arp fork_id t1 = . /* should [ be the seq sym?

br - 1 /*if nof, go receive 0p

nselect #1 "< A /" else ploce seg sym

label 1

receive #2 /% recetve conirolling operator
amp fork_id r_keyl = . /* this symbol for me?
br - 2 /% go around unless need {his symbol
mov r_key2 nsymbol /* toad symbaol
nov r_argl naln A und gin
label 2
endfilter

endsegment

destination 1 1 0% O* /* the contralling operator

keep

rmov #lm argl

send #1 + + #0 #0 1
endfil ter

sTAnage

mov aln m argl

sub #1 m argl

/™ remains
/* counts itself

/% allow app sym Lo fork
/% the conlrolling operator
/* ig lifted ome level

send #2 + . swmbol_index swbol 1 /* for sending

endfil ter _
add #1 naln /* and 18 nested on additional
endsegment /% level locelly
destination O* 0* 0* 0* /% rest of operotor, and argument
keep /% remain
endsend /% lef message wave 1 go
fork #1 /*® allow sm for forking
add #1 naln /% incrgnse nesting lzvel
endsegment

endprogram




CHAPTER 3

Implementation — The DOT Model

3.1. Introduction

3.1.1. What DOT is (and what it isn't)

In the preceding chapter, the FFP and LPL languages were defined and LPL
was used in the capacity of p, the FFP representation function, to define a
fériety of F¥'P primitive opera{:ors. As indicatr_ad at that tiﬁe, the purpose of DOT
is to:

(1) locate innermost opplicetions of FFP operators and reduce them us-
' ing the appropriate LPL operator definition, and '

(2) provide a madel informally suggestive 6f an actual realizaiion for
DOT as a tree-struciured nelwork of cellular processors,

DOT is not an architecturs; therle is no machine languége associated with
detailed control of its operation. DOT is an implementation in exactly the sense
Blaauw and Brooks [Bla83] suggest -- it is a descriptién of the logical
organizalion of data flow and control utilized to support the‘LPL and FFP
architecturés. The reason why bOT is able to-additionally suggest a realization is
that DOT objectifies the means of data flow Iand control through the use of

abstract data types that correspond to realizable entities.

Objects of the DOT implementation model include lcell and teell classeé.
’These contain processes and represent the cells of an anticipated
multii)rocessor realization, Io and virtual memory ciasses represent the
"outside” world, and communication channel classes represent the means of

communication between cells. Thus, DOT uses communication channels to

115
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specify the tree-structured linkage of its cellular objects, and in addition to its
overall cooperative function as an implementation, this interconnection of
objects naturally suggests high-level aspects pertaining; to realization. Although
descriptive of a realization in this way, DOT is not a realization; it does not

spec.ify detailed hardware design.

DOT was originally conceived as an attempt to represent a design concept
whose scope includes a spectrum of concerns from architecture to realization
[Mag79]. Indeed, dividing this spectrum up into separate pieces (archit_ectﬁre'—
implementation-realization) is an abstraction only vindicated historically by the
successes and flexibility in computer system design that it has enabled. In this
case, however, an original and refolutionary design concept was made possible
by an all-embracing concern for the complete spectrum -- from a highly-parallel
realization able to make eflective use of the replication-based technology of
VL8], to a general-purpose architecturally-concurrent programming language
whose implementation would make effective use of the realization. It therefore
seemed desirable to encompasé .as much of this overall concept as possible in

" one unified framework.

DOT is inoderately sucecessful in encompaséing a complete design concept.
LPIL, although only in its compiled form, is irnplied by the LPL interpreter
process. _FFP is implied by DOT’s embodiment of an evaluation function for u,
and, as already indicated, DOT .sug_geéts high-level aspects of a paraliel
realization. F'or these reasons, we feel justified in using the term "DOT" to refer
to the complete programming system, and in speaking of a "DOT machine”. But
regardless of this larger and implicit function, DOT is formaliy only an

implementation model.
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As mentioned earlier, the DOT representation is executable. This fact will
not eoncern us in this chapter; aspects relating to execution are left for Chapter

4 pn simulation.

3.1.2. Overall DOT Structure

Figure 3.1 shows the overall structure of the DOT model. Links between cells
represent point-to-point communication buses. The io and vm nodes represent
the "world" external to the main tree of processors. Within the main tree
structure, leaf nodes represent the Icell processors that appear in the LPL
archite_ctﬁre, and the internal nodes represent processing ceils called tcéils {for
tree cellé) that are used to .implement the LPL message subsystem, and perform

functions related to w.

FIGURF 3.1 — Overall DOT Structure

3.1.3. A Language for Representing DOT

Corresponding to Figure 3.1 is a textual description of DOT in the language
we have chosen as a representatioh 1angué.ge. This language is C augmented with
abstract data ﬁypes [Str83], or ClassC as we will refer to it. Figure 3.2 shows an
abbreviated top-level ClassC trepresentation for the DOT machine, In this and
following flgures that display DOT code, a rudimentary familiarity with the C

programming language [Ker78] and the concept of classes or abstract data
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types [Fra?7, Han?7, Str82] is assumed.

As seen fr.or'n Figure 3.2, a ClassC class definition can be viewed as a list of
objects, a way of putting these components together into a new object, and
{optionally) a specification of operations that are appropriate to the new object.
The new entry point for a class describes _how a ne.w object of the type heing
defined is created, and other public entry points.(not used in the DOT_machine
class) describe the allowable operations on the new object.v At lower levels 6f
. detail than. depictsd so far, .the processes that actuallj move data around in the
machine become visible. The tree of processing cells referred to in Figure 3.2 is

represented in ClassC as shown in Figure 3.3.

FIGURE 3.2 - The DOT Machine

class DOT_machine

t
/* declare the vbjects that make up a DOT machine */

class ic *o,;

class vm ¥ym;

class tree *tree;

class e-bus *o.ym_comm;
class tbus  tioiree_comm;
class " Lbus *ym_iree_comm;

/% say how o new DOT_machine is butlt */
DOT.machine. new(iree_height)
int tree-height; /% the height of the processor free */
t
/% build the communication buses */
io_tree_comm = new class t_bus(};
vm tree comm = new class Lbus{);
io.ym.comm = new class e.bus();

A% build and connect the machine */
io = new class io{ioiree_comm, io_vm_comm);
vin = new class vm{vm_tree.comm, iovm.comm);
tree = new class tree
{tree_height, io_tree_comm, vim.iree_comm);’
} 7% end new DOT_machine */
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FIGURFE 3.3 — The DOT Tree of Processing Cells

class tree

{

/* declare the objecfs that make up o tree */

class tcell *root;
class tree *l_subtree, *r_subtree;
class lcell *L 1cell, *r lcell:

class t_bus - Mo left, *toright;
class Lbus *conn | with r;

7* say how a tree is budll *7/
tree.new(level,to_parent,on_left,on _right)

int level; _ _ /* level of this iree root */
class tbus *to_parent; : /* connection to parent */
class l_bus *on_left, *on_right; /% connections fo [/r lcell ¥/

§ /* boundaries at tree base */

/* build communication links */
to.left = new class t_bus(});
to_right = new class t_bus();
conn.lwith.r = pew class Lbhus();

/* build tree root, and s children */ .
reot = new class teell(to_parent, toleft, to_right);
if (level==1) _ :
i /* use lcells for children */
Lleell = riew class leell .
{to_left, onuleft, conn.lwith.r);
r.leell = new class leell .
{to_right, conn lwith.r, on.right);

else
§ /* use trees for children */
l_subtree = newclass tree
(level-1, toleft, onleft, conn.lwith.r);
r.subiree = new class tree
(level-1, to.right, conn L with.r, on_right);
{

1 /% end new ftree ¥/

So far, we have shown how the DOT design is decomposed into the following

major components:
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(1) Processing Cells
w10
eum
o loell
s foell

(2) Communication Buses.
e extfernal bus (e_bus used for comm between io and vm,)

e tree bus (t_bus — any comm involving tcell)
e lcell bus (i_bus -- any comm at lcell level only)

(3) Bxplicit Connections between {1} and (2)
» represenied as paramefers of processing cell classes

In the remainder of this chapter, we will show how the above components

function together as an implementation of the LPL and FFP architectures.

3.1.4. A Process-Oriented Design

Recall that an implementation should specify the econtrol and flow of data.
To this end, DOT uses multiple processes wilhin sach processing cell Lo control
the flow of data on communication buses. By using multiple processes within
each cell, DOT avoids overly constraining a VLSI realization, and succeeds in
stating, in a concise and intellectually manageable manner, just what control
and data flow is necessary in an eflicient implementation. Representing an
efficient implementation involves a great deal of complexity. In efficient support
of both FFP and LPL, DOT must do a great many things (many of which are only

peripherally related) at the same time.

To describe the behavior of the implementation, DOT takes a process-
oriented design approach. By th.is, we mean that gnderlying all data movement
and manipulation are individual, relatively simple processes, each one of which
is designed to perform a spéciﬁcand easily grasped sequenﬁal task exhibiting
conceptual integrity within its limited scope of concern. The processes of Lhe
DOT meodel exist statically; they are not created dynamically except as the
machine is brought into existence initially, and they exhibit cyclic behavior.

Processes within DOT never wait on non-deterministic events, and a wait for
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communication is never interrupted.' There is no global clock in DOT, and

processing cells operate asynchronously with respect to each other.

Approach.i.ng the design in this way, using relatively simple sequen{_:ial
processes that operat.e fairly.independenﬂy, is appropriate in a VLSI context.
Also realistic are the use of static proéess.es and the separatio.n of control
activities located in different cells from each other {so they must communicate
via messages), Within each cell of the DOT model, the multiple processes
resident therein are.ailowed to communicate in whatever way seems mbst

natural -- using shared memory or condition monitors, as appropriate.

3.1.5. Communicalion Between Processes in Different Cells

Generally, multiple processes within a given procéssing cell of DOT will be
communicating with their counterparts in other cells at the same time. To
enable this, the DOT communication buses are composed of logical channels that
are ful.l—du'ple'x in nature -- that is, the end of each channel has separate send
and receive ports, both of which may be i_n use {by separate processes)
concur_rently.“ An actual realization might iﬁsh to multiplex these channels,
but DOT simply assumes the existence of the required logical channels. 'Certain.' '
channels -- those associated with support for the message subsystem of the LPL
architecture -- are circuit-switehed in the course of the machine's operation to
provide dedicated support for FFP RAS._ ‘As shown in Figure 3.4, DOT channels are
built from two single-direction message pipes called cgueues. Each cqueue has

a gtail {for sending) and a ghead (for receiving) as shown in the diagram. When a

process wants to send a message through a cqueue, it deposits the data (a single.

] . . ‘

If one process waits for the arrival of a message from ancther process, a message is
guaranteed to arrive; processes are never interrupted from attempting to efiect a mes-
sage transfer.

** Sending and receiving ports are not restricted by the model te be located in separate
cells; this is simply the more general case.
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byte) into the associaled gtail. When a process want to receive a message from a

cqueue, it picks up the data from the associated ghead.

FIGURE 3.4 — A DOT Full Duplex Communication Channel
Full Duplex Channel
qtail U . ghead
! cquene !
i ) s
| I
i {
1 !
: cquene :
[ }
| |
ghead L o e e 3 qtail

A cqueue has a variety of interesting properties. Most importantly, a cqueue
implerments é. "safe" message transmiss.ion mechanism. Both sender and
receiver are synchronized by a message transfer; a sender is delayed until a
receiver requests data, and vice-versa. This corresponds to the synchronization
that is necessary betwéen hardware processes thal operate from different
clocks. DOT thus encapsulates concern for the synchronization that must be

present in the realization at this level.

Cqueues may be connected and disconnected in a manner that corresponds
to circuit-switching. Figure 3.5 depicts such a procedure. A successioﬁ of
cqﬁeues may be connected to form a "long distance” connection through the
tree, and then be disconnected in any order. This allows DOT to perform circuit-

switehing of communication channels.
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qtail cqueue

/ .
connect operation

ghead-

FIGURE 3.5 — Connecting and Disconnecting Cqueues

. qtail

ghead
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The ClassC entry templates for the cqueue ghead and qtail objects (which

sumrnarize the operations of which a cqueue is capable) are shown in Figure 3.6.

The connectw operation connects two cqueues as discussed above, and delays

the connecting process until an eot_alert (for end-of-transmission) is performed

by a sending process on the cqueue gtail.
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FIGURE 3.6 — The DOT Cqueue Heod and Toil — public entries

class ghead

{

public: :

7* allowed operaiions on the ghead of o cgqueue */
char get{*char); '
void connect{class qtail *);

void connectw(class qtail *);

void disconnect{class gtail *);

| §
class qtail

¢

publie:

7 atlowed operations on the giail of o equeue */
void put{char); '

void eonnect{class ghead *);

void connectw(class ghead *);

void disconnect(class ghead *);

void eot.alert();

3.2. Overall DOT Cperation

Having introduced the top-level constituents of DOT, inecluding the
mechanism used for communication be.tween cells, we can now establish the
relationship of processes within DOT to the activities that must be performed in
support of FFP and LPL. As a first step, we present an overview of the combined
effects of the cooperative behavior of these processes. This will introduce
i_mportant terminology, informally mention the different process types and
describe their essential functions. Once this has been done, the internal process
structuriné of the leell and tcell classes will be given, and important algorithms

used by the processes will be discussed.

3.2.1. The Basic Machine Cycle

A DOT machine cyele starts with looking at the lcell array to see what is in

it. During this phase of the machine’'s operation, RAs are discovered, and the
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~machine is pertitioned to correctly allocate circuit-switched communication
channels and tcell processing power to the discovered RAs. This
partitioning phase involves all operations necessary to prepare for LPL
execution within RAs. The first time a particular RA is encountered (RAs may
exist over a pericd of many fnachine eyeles), DOT prc.)ces.ses within the tcélls and
leells build the LPL environment directories, and LPL code segments are loaded
using the io subsystem. Partitioniné completes separately for each RA, so the
" duration of this phase is shorter for RAs that are restarted {their containing
lcells already have environment directories and code segments). Immediately
following completion' of the partitioning phase within each RA, execution of LPL

code segments begins.

At this point, the notion of a single machine is misleading; each RA has its
own dedicated multiproéessor hardware and is corﬁpletely independent of the
others. Nevertheless, after the RAs arg started (o.r restarted), the overall
machine may be thought of as being in an erecufion phose. The LPL programs
run, with the aid of DQOT-provided services, until they become blocked awaiting
additional leells to hold ekpanding FFP text, or are preempted b.y DOT fer the

purpose of storage management.

The storage manogement phase includes stepping forward RAs whose code
segments have completed, determining the new storage requirements of the I'FP
programs within the lcell array (due to LPL fork statements that have been
executed), and shifting LPL program segments and their contexts within the
leell array to make room for newly required symbels. The shifting process is

performed using the lateral lcell connections and may result in:
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» overflow of contexts into the virtual memory subsystem if enough leells
"~ are not available;

» reentry of previously overflowed leell contexts back into the lcell array if
there is room;

« or entry of new FFP programs if there is room after previous overflow has
been taken care of.

The prescription for exactly how the lecell contents are to be shifted about is
,célled the specification for storage management. Calculation of this information

is valled preporoiion for sforage management

The basic machine cycle is thus partitioning, execution, and storage

management. Fach phase will now be described in more detail.

3.2.2. Pértitioning Phase

Partitioning creates aclive aregs, each of which is composed of the
communicaﬁiﬁn channels and the lcell and tcell hardware required to support
computation in an individual RA. Anlactive area is essentially a small dedicated
multi?rocessor, which is structured as a binary tree and dynamically embedded

within the overall tree-structured multiprocessor.

Part_itioning begins in the lcells, with information being sent upwards into.
the tcells. Fach tcell receives (from its two children) and sends {to its parent) a
code containing the information necessary for an inilial partifioning of the
tcells. The initial partitioning {a pipelined upsweep of information starting at the
lcells, and terminating in the io subsystem) allocates and connects dedicated
area communication channels (calléd area chonnels ) and dedicated tcell
processing pewer {called area nodes) to each underlying group of leells that may
contain a different RA. While area chénnel connections are modified {to Simulate.
circuit-switching) with each partitioning, the infofmation required for the initial

partitioning travels upwards on ceil monager channels whose connections are
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never modified.

The initial partitioning is terminated within the io subsystem, which may be
thought of as the parent of the root of the tree.” RAs are ﬁhally located and
théir corresponding active areas created with the aid of concurrent downsweeps
of information within each of the candidate areas created by the initial
partitioning. This downsweep is called the pruning doumsweep of partitioning.
During this downsweep, information sent downwards on area channels conneected
in the partitioning upsweep is used to disconnect any channels that lead to 1§ells
not contained in an RA. In each aétive area that remains, the lowest tcell area
nbdé above all lcells of the RA (the least common ancestor) is located and
configured as the top of area (or foa) where rising LPL messages turn around for.

. broadcast back down to the leells.

Figure 3.7 .shows the area channels and nodes for a partitioned DOT
machine. The circles in this figure represent tcells, and interior triangles
‘represent the a?’ea nodes. Solid lines between area nodes represent connected
~fuli-duplex area channels, and the dotted liﬁe‘s represent unused area channels.
There are two active areas in the figure, each supporiing an RA whose operé'tcf
is multiplication. The two top of area nodes are shown by circling the
appropriate triangular node representations. Note that emptly lc_ells,

interspersed among the FFP text, are not included in the active areas.

* In addition to its ic-related activities, the ic subsystem offloads special termination pra-
cessing from the tree root.
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FIGURE 3.7 - A Partitioned DOT Machine

Partitioningfor-(+<(.*<13>}(*<24>-)>)

[
o

3.2.2.1. Area Nodes

As suggested by I'igure 3.7, a teell need only provide processing power for
one active area. BEven though area channels for more than one active area may
pass through a given teell, it is always possible to route (via circuit-switching) all
butl one set of area channels .directly thrbugh the.tcell. Only channels that 1ean
to two children in thé same RA are connected to aﬁ area no.de, whose purpose is

to support all subsequent area-related processing within the tcell.
This support begins with a pruning downsweep to help complete the
partitioning phase. Pruning is performed entirely within down-going area

channels, and encompasses the following activities:
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» discovery of whether underlying FFP text is truly part of an RA (ie., -
whether the connected area channels and nodes are to be active during
the coming execution phase) -- if not, area channels connected on the
upsweep are disconnected;

» disconnecting channels that are within an active area but are not re-
quired for area processing because they lead to empty leells;

= discovery of the FFP operator if the area is active;

s creation of the top of area node where LPL messages turn around.

In an active ares, partitioning is then foilowed_ by support for the LPL
message subsystem send and receive statements until the execution phase
comes to an end. This is followed by correctly shutting down area operation
prior to the storage managefnent phase of the machine cycle. This shutdown
must disconnect area channels {that were created"during partitioning), but only
after stopping messages in such a way as to guarantee that all icells in the area
will have seen exactly the same messages during the execution rphase. This must
be done in order to guarantee a consistent restart following. storage

: mané.g ement and re-partitioning.

3.2.2.2. Directory Creation

During the pruning downsweep, =ach top of area node returns to its
descendent lceils notification of their active status and the LPL program to be
~used if one is necessary. Given this information, an lcell will decide to create a
directory if it is contained in a new RA. This requires an upsweep and'a.
doWnsweep of information vﬁthin area channels, and 4the result is to lcad.
symbol_index, and the 4-tuple directory, di1..,d<, in the RA lcells with the
correct values. If the RA is not new, the old directory is still valid and execution

may begin immediately without this step.
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3.2.2.3. Loading LPL Programs

The LPL programs are delivered from the io subsystem on io channels that
follow the hardware tree structure. Within a tcell, each parent ic channel splits
into two child ioc channels and data movement is as follows: input to the lcell
array éomes from "above" and is broadcast to all leells by successivelj; splitling
data so Wﬁat comes in from a pareni inpul channel is sent down both .child input
channels; output comes from “below"”, and is sequenced by handling the child
output channels in cyelic Ieft-to-right order. There are twé very simple
processes in the tcell that perform these functions. At preéent, the input
channels are used to deliver LPL programs from the library, and output

channels are used to return execution results and trace inforrmation to the

out_side world.

3.2.8. Execution Phase

The lcell LPL interpreter is a process that receives starting addresses from
a queue..lt begins execution at a fequested address, performs loecal data
movement and manipulation as indicated by the loaded LPL object code, and
continues until encountering one of the following DOT service requests that

require special handling: send, receive, endfilter, fork, and endsegment.

These special services are initiated by setling up an LPL context area
associated with the particular service required. These areas are checked by the
DOT processes whose job it is to provide the services. Having set up the service
request area, the interpreter then cyeles back for another start address. The
reascn for this approach will be seen in the following discussion of message

support.
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3.2.3.1. Lcell Message Support

When a message resulting from a send or receive for the present rn.essage
Wa‘.re arrives, it should be filtered. A DOT lcell message input process first puts
the newly received message into a receive area (accessible to filter statements
using environment variables such as 7_grg!), and .then uses informatioﬁ
deposited earlier (by the interpreter) in the LPL progra;ﬁ context to insert the
be_ginning address of the message filter statementé into the interpreter start
address gueue. The interpreter executes the messége filter for the message
instance, and then encounters the endfilter statement, which then halts the
inte.rpreter as described above in Section 3.2.3. This is done for each message
that arrives on the present message wave. When the wave has completed, the
lcell message input process places the continue address (i.e., the address of the
first statement following the endfilter statement) intc the interpreter start

address queue, and LPL execution then continues.

Message ﬁra.ves ~are sequenced activities whose completion requires
agreemeﬁt among all of the lcells of an RA. The ba.sis of this agreement is an
end-of-wuve or eow that is sent for each message wave by all lcells of an RA.
merged into a single messagé by the time it reaches the top of area, and then
returned to the lcells.in the RA. Leells keep a counter that contains the present

message wave number.

When the message wave counter is incremented, the LPL program context
is checked for a send or receive request for the -new wave number, If there is
such a request, an eow is sent {(after message transmission if the request was
send). If the request is for a a higher numbered wave, gow is also srent. This

.indicates that no sending is desired for the current message wave bj the LPL

segment executing locally. If, however, the last message request handled by the
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lcell is for a lower numbered message wave (and the segment has not_
completed), a fork has been executed. In tl;is case, eow is not sent. Instead, the
lcell waits for storage manégement to complete the fork operation. The result is
that the new message wave cannot pass through the top of area node until after

storage management {and completion of the fork operation).

Fellowing storage mana\_gement and re-pariitioning, an interrupted message
wave is continued by re-sending any messages that were sent up but not
received during the preceding execution phase. Everything is restarted
correctly so that the message wave interrupted by storage management can
complete and the next one can begin {(all transparent to the LPL program). As
explained in Section 2.3.3.1, this allows implicit synchronization of a fork

operation with a corresponding send designed to copy information.

3.2.3.2. Fork Support

A fork statement halts éxecution within the requesting leell until the
operation can complete during storage managemeﬁt (when LPL program
contexts are shifted in the lcell array). Exeeution then resumes in child LPL
contexts (i.e. those created by a fork operation) as well as the parent. LPL
program contexts begin each éxecution phase acting as if they had requested a
forksize of one. | The fork statement merely modifies the forkn LPL context
register (not directly available by name to an LPL program) in which the
forksize is stored -- so that multiple copies of an LPL program context are

shifted during the next storage management.'

3.2.4. Storsge Management Phass

This phase is necessary to accommodate growth and compaction of the FFP

text while retaining the necessary ordering of FFP symbols. It is unfortunate
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that eiecﬁtion of LPL ;Sfograms should in general require intefruption in order
to implement this phase of the machine cycle. One alternative is to let all LPL
programs complete (or becﬁme blocked as in a fofk bperation).b'efore storage
management is performed, but this could put RAs with quickly executing LPL
programs at a disadvantage, and would likely fesult in in-fer‘iof utilization of the

available processing power in a large machine.

| Attempts have beenrmade to do storage management in locally restricted
segménts of the 1éeli array (as computatibn proceeds elsewhere) by Tolle
[TolBl], but thé corﬁpiexity of the overall solution is_considerable, and the
res'ulting performance is. not always supe;ior'to the preeﬁptive appx;oach that

wWe use.

" In the present design, lcells send pefmission to start storage managen’ic—:_nt
upwards on the cell manager channels to _the io ‘subsystem. Lcells that are not_
active do Jc..his following partitioning. Active lcells wait for the LPL program to
complete, fork, or exeéute an smanage staterﬁent before sending permission.
The resulting sm_gront messages are merged on their way up the tree, and,
upon reaching the_ io_subsystem. they result in a siop messoge which then

travels down the tree and shuts down message activif,y.'

‘This approach places control of the processing cycle explicitly within LPL,
and allows a system manager to tailor FFP operators for large operands if this is ‘
desired. Another possibility would be to allow the io subsystem to use heuristics

based on leell contents (discovered during partitioning) to determine an

* Due to the variety of messages that are sent between multiprocessor cells, it is useful
to give them names correspending to their purpose. In the case of the stop message, spe-
cial emphasis may be appropriate since a “'stop packet" will be referred to later in the
context of LPL messages. The stop message, as explained above, originates in the io sub-
- system and travels down to the lcells an cell manager channels. The stop packet, to be
discussed in Section 1.4.2.1, travels on area channels.
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appropriate cycle time.

3.2.4.1. The Specification for Storage Management

Onece the LPL programs are shut down, a specification for storage.
management must be computed. This is done by sending and merging forksize
information ui.) the cell manager channels until it arrives at the io subsystem,
where, as in partitioning, the upsweep is terminated. There, a specification for
storé.ge managgment is computed, and sent back down the tree in such a way as
to distfibute the necessary information to each leell. A variation on the scheme
suggested by Mago [Mag79] is used, so that total compaction will be performed

only when necessary.

3.2.4.2. Overflow and Program Entry

The virtual memory concept used in the modéi is based on the work of
Siddall {Sid83] and Frank [Fra79], who have examined various ways to
accommodate overﬂo{v from the lcrell array. The approach used in DOT is to allow
moverneni‘f.of lecell contents into and out of the left lcell tree boundary. To the
left of this boundary is é deque structure (interfaced with a file system), which
receives from its right any lcell contents that overflow from the tree, and from
its left new programs for execution in the tree. The state of the overflow and’
program entry subsystem (e.g., whether there is presently overflow in virtual
memory, if so how much, how large the next FFP program to be entered is, ete.)
is used by the lo subsystem in ils _determination of the actual storage

management specification.

* The simplest of such heuristics, a fixed cycle time, was originally used. For initial per-
formance studies, however, il was desired that the machine execute FFP text as rapidly
as possible, so the LPL architecture was modified to allow LPL programs to help schedule
storage management.
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3.3. Process Structuring of DOT Cells

We have described the overall operation of the DOT implementation’.as the
combined result of processes within the cells of DOT. These cells and their
resident processes will now be examined. Séctions 8.3.1 - 3.3:4 detail the teeli,

lcell, io subsystem, and vm subsystem classes, r‘espectively.*

3.3.1. Tcell Structure
Tcells of the DOT model contain five different processes, as shown in Figure

3.8,

FIGURE 3.8 - DOT Teell Processes

The rationale behind this choice of processes is provided by the process-
oriented design methodology. Each teell process performs duties that are best
viewed separately from the others, and for which there is a simple sequential

{cyelic) description.

* For readers uninterested in the top-level structure of the contained processes, Figures
3.8 and 3.14 show the basic compesition of the teells and leells. After glancing at these
figures, the reader may skip to Section 3.4, which presents the detailed algorithms used
by these processes, or turn to Chapter 4, on simulation.
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The tcell_input and tcell putput processes bring inpﬁt {presently in the
form of compiled .LPL programs) down to the lcells, and send output (trace
information and compléted programs) back up through the tree-structure to
the outside world. Both of these processes run forever, awaiting the arrival of
data.and then re-sending it.with a broadcast protocol {in the case of input), or a

sequencing protocol {in the case of output).

OQutput originates within the lcells. With the completion of the execution
phase, before the specification for storage management is computed, RAs that
have completed are stepped forward. At tﬁis time, each lcell does optional
output followed by an eot_alert {to signal end-of-transmission} on its output
channel.”  This output is relayed up and out of the tree by ‘the teell_output
processes, which loop forever {alternately accepting output from left and right

ch.ildren). Figure 3.9 shows the ClassC representation of the tcell outpui

FIGURE 3.9 - Tcell OQutput Pracess

s* .
Teell output is done by alternately switching
cuiput to parent from left and right child channels

#/ .
teelloutput.new(top,p.L.r)
shart top; 2t true if af top of machine */
class gtail *p; /* connection to parent */
class ghead *1,*r; 7% connections to children */
{

cycle f

I->conneectw(p); I->disconrect{p); /* relay left */
r->cennectw(p); r->discoennect(p); /* relay right */

if {{top) p->ect_alert(); /* signal parent cell */

else p~>put{f); 7% or signal io subsystem */

¥ At present, output includes a snapshot of important lcell registers in all non-empty
leells.
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process.

Input originates from the io sub-sysﬁem in response to requests for LPL
programs during partitioning. A tcell_input process supports delivery of all
arriving information by relaying it to both child subtrees. The combined effect is
to broadeast all LPL pr.ograms to all leells. The tcell input process is shown in

Figure 3.10.

The message-down p'roceSs component of an area node {called node_dmh
within DOT -- for downwards message handler) operates in a sirnilar faéhion to
the teell_input process, and is used to support the LPL messdge broad_ﬁ_ast
protocol. However, since only active areas support messages, and since area
channel connections are changed with partitioning, the message-down process
must be started and stopped. The node manager pfocess {(to be described below)
uses a cendition monitor to signal it; message-down process that area channels
are connected and messages should be relayed downwards. Arrival of a special'

stop packel for broadcast to the leells tells the message-down process to stop

handling messages for the current cycle. The down-message process is shown in

FIGURE 3.10 -~ The Tcell Input FProcess

Vi : ‘

Input of leell programs o the tree is done via broadoast to
both children, '

t/ .

teelldnput.new(p,l,r)

class ghead *p;

class gtail *1,*r;

¢

. eycle {

p->get{&e);
I->put{e); r->put(e);
i
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Figure 3.11,

FIGURE 3.11 ~ Area Node Downwards Messoage Handler Process

/* 7 .
Downwards Message Handler for area node within @ tecell. Acent of
STOPCNT indicates that no more messages should be broodoast.

*/

node_dmh new(messages_started,phead,ltail,rtail) .

class condition *messages_started; 7% condition signialed by node mgr */
class ghead *phead; - /* conmection o parent */ _

class qtail *1tail, *rtail; /* connections fto children */

{

char c, cnt;

cycle f :
/¥ wadt for messages o be staried on the dareg chonnels */

messages_started->await{TRUE);

*reloy messages downward uniéil the stop packet arrives */
while ((cnt=phead->msg()} != STOPCNT) {
ltail->put{ent); rtail->put{ent);
while {(ent--} {
¢ = phead->msg(}); .
ltail->put{c); rtail->put{e);

i

7% output stopent, reset condition, and cycle back ¢/
ltail->put{STOPCNT); rtail->put{STOPCNT);
messages_started->assert{FALSE);

!

The remaining two processes are the work-horses of a tcell. These are the
tcell manager and the node manager processes. The tcell manager is
responsible for correctly overseeing and implementing the overall machine
cycle {partitioning, execution, and storage management). The node managef is
responsible for all processing that takes place on area channels. The top-level of
the tcell'manager is shown in Figure 3.12, and the top-leﬁel for the node

manager is given in Figure 3.13.
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FIGURE 3.12 -~ Teell Manager Process

7%

The tcell manager does initial pariitioning, and other activiites not
directly associagied with area execution, such as releying LPL program
requests upward to the io subsyster. The parameters of & tcell manager
include whether it ts ot the top of the tree, and the communication
channels (gheads and gtuils) which enter and leave its tcell.

*/ .

teellmgr.new(at.top._of iree, .
em-dn.head, al_dn_head, aZ_dn.head,
cm.np_tail, al-np. tail, a2ap.tail,
lem.ap_head, lal.up head, lag_up.head,
lem_dn_tail, lal_dn_tail, la2_dn_tail,
rem.up_head, ralup_head, ra2 up_head, .
rem—dn tail, ral-dn.tail, ra2_dr_tail,
npheads, nptails)

A inditalize class objects */

lspf=rspi=0; ' _
node.pgm. ready = new class condition(FALSE);
node_task ready = new class condition{FALSE);
tcell_som = new class condition(FALSE);

S YWAIN EXECUTION LOOP ***/

cycle _
nede—eom = FALSE;
tcelleom->assert(FALSE);
node_pgm ready->assert(FALSE);
if (Ispf || r=pf) disconnect_partitioning{);
initialpartitioning up{);
relay.area_pgms_requests_up{);
await_stopsignal_dn(};
compute_sm._specification.up.dn{);

]
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FIGURE 3.13 - Teell Node-Manager Process

/#

This class handles all area-related processing in o tceil when two
children of the tcell are involved in the sume wreq. The parameters

of & node manager include whether the tcell is af the fop of the iree,
access to memory shared with the tcell manager, end the ares channels
(gheads and gtails } to which it has been temporarily connected by the
tcell manager. The node manager uses gn upwards-message-handler
class; (node_umh) to handie the details of message processing.

The downwards message handler process for the node is also creaied here.

*/

node.mgr.new(top_of tree, cel mgr,
np-up_head, np_dn_tail,
np-_dn_head, np np_tail,
Inp.up_head, Inp_dn_tail,
rop.up-head, rnp_dn_tail)

/% init the upward message handler class */

upm = new class node.umh{cell.mgr np.tail,lnp_head, rnp_head)

7* stariup the downward message handier task */

messages = new class condition{FALSE);

down.messages = new class node_dmh
(messages,np_head,Inp_tail,rnp Lail);

S MAIN EXECUTION LOQOP *%*/

cycle |
7% wait for area asstgnment */
{cellmgr->node.task_ready)->await (TRUE);
{cellmgr->node_task ready)->assert(FALSE); /* reset */
top.of_area = finished = FALSE; /* inifial guess */

finish.partitioning();

if (Mfinished && (state==GROUND)) build.directory();

if (Mfinished} {
messages->assert(TRUE); /* dmh has work */
upm->up_messages{top_of.area);
messages->await{FALSE); /* dmh ft.sﬁ'mshed *
§ A

else (cellmgr->teelleom)->await (TRUE);

disconnect. partitioning();

{ /*end of cycle */
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3.3.2. Leell Structure

The DOT lcell éontains six processes. These ineclude two io proéesses -- one
for LPL code input, and one for program output -- that are connected via io
channels to the tecell io processes. There are two processes associated with
handling messages, and an lcell manager process. The last prorcess is the LPL
interpreter which executes compiled LPL code. Figure 3.14 shows the overall
lcell structure, including the {passive) LPL user éontext afea:.in Which the LPL

code and environment is located.

FIGURE 3.14 — DOT Leell Processes (and User Context)

The leell_input proces.s is connected to the end of an io channel through
which all LPL programs reqitired by any RA in the machi.ne arrive, and it filters
this flow of information to select and load only the LPL code segment that is
locally required (if any). Everything else is thrown away. As soon as the correct
code ségment is loaded, the input process start.s the LPL interpreter by sending

it a beginning code address. Figure 3.15 shows the lcell input process.

Once the LPL program begins execution, it may request message services.

The leell message-up process {calléd Icell msend within DOT) sends an LPL
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FIGURFE 3.15 - Leell Input Process

/%

The loell input process accepts and loads LPL programs. When o segment
is loaded, the interpreter is stgrted wp. The input process must wail
until the LPIL directory has been creaied (during pariitioning) in order .
to filier input and select the correct code segment. -

%/

leell.inp.new{input_-head, area tail, user, input_possible, interpreter)
class ghead *input.head; class gtail *area_tail; class leell.usr *user;
class condition *input_pogsible; class stail *interpreter;
]
char pgm, garbage, found, loaded;
short i,ent:
cycle |
input_possible->await(TRUE); /* wait for directory ready */
/* filter leell programs */
loaded = user->state!=GROUND; /*i.e., executing, or completed */
while {pgm = in_head->msg(}) |
if(user->lcell pgm==pgm && user- >act1ve)
fopund = TRUE;
else found = FALSE;
for (i=0; i<DLEVELS; i++)
found &= match(user->directory[i},in_head->msg());
ent = in_head->msg();
cnt = 256%cnt + in_head->msg{);
if (found && !loaded) §
if (ent>CODESIZE) fprintf{stderr,
"leellinp(%d):1! segment too large”, this);
else |
-~ for{(i=Q; i<cnt; i++) user->code[i] = in_head->mzg();
loaded = TRUE; user->state = EXECUTING;
uger->nsymbel_ont=0;

- user->mwave=user->mfili=user->msend=0;
user->mcomplete=user->endsend =FALSE;
interpreter->put{0); * start program */
input_possible->assert{FALSE); /* reset and signal msgs*/
!

J

else while (cnt--) in_head->get(&garbage);
i
input_pessible->assert(FALSE);
if ("loaded && user->active && (user->state==GROUND))
fprintf{stderr, "leell inp(%d)i!! no cell_pgm %d4d™);
| /*end cycle */

}

message up into the tree when notified to do so by the message-down process.

It
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either sends an eow {end-of-wave) for the current message wave, or sends &

message followed by eow, depending on the contents of the lcell user context.

The message-up process is shown in Figure 3.16.

FIGURE 3.16 - Icell Message-up Process

/*

This process takes care of the detoils involved in actually sending
messoges, and ts the one who waits when messoge byles are handed off
to the parent tcell. The upward-going message chonnel used by this
process is of class plail. A plail is itke o gtail, butl uses o

locking mechanism to prevent interference during transmission of

o seguence of message bytes. The lock is sel by o plail. put_first, and
released by piail.put last. This lock is necessary becouse the lcell
manager signals eom {end of messages) asynchronousiy by sending o stop
puacket up through arec chonnels at the end of an execufion phase.

*/

leell_-msend. new({user, msg_tail, msg.ready)
class leell_usr *user:

class ptail *msg_tail;

class condition *msg ready;

f

short i;

cyele §
msg-ready->await{(TRUE);
msg.ready->assert(FALSE); /* reset */
if {{user->mwave == user->msend) &&
{luser->mecomplete) &&
(luser->endsend) &&
{user->forkid) &&
{user->state==EXECUTING)) {
msg_tail->put_first(2);
msg_tail->put{user->mspec[MORD]);
msg_tail->put_last{user->mspec[MCOP]);
msg-tail->put_first{user->mspec[MARGC]+2);
msg_tail->put{user->mspec[MKEY1]);
msgtail->put{user->mspec[MKEY2]);
for (i=0; i<user->mspec[MARGC]; i++)
meg-iail->put{user->margs[il);
{

mag.tail->put_last{);
| 7*cycle */
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The message-down process {called lcell_msg within DOT) is the main
message handler in the rlcell. It must delay an LPL program that requests
message handling until the service is commplete, interact with the interpreter to
start up a messagé filter when appropriate, and then continue execution
following éompletion of the message operation. It is this process that sees the
eow that signals the end of one message wave and the beginning of the next, and
it must tell the message-up ?roceés when to send messages. Figure 3.17 shows

this process.

The lcell interpreter is organized as usual --.with an interpretive ldop. It
receives start addresses ffo‘m a queue, and execules local operations until it
encounters a request for a special service (such as sendj. which is supported by
other DQOT processes. All special service requests are distinguished by not
loading the ﬁode pointer with the next instruction to execute. In these cases, the
next instruction to execute will be indicated by an arrival on the start address
queué. The subroutine execufe_seg is used to execute a code segment until a
special service request is encountered. Figure 3.18 shows the top level of the
leell intérpreter process‘. Details concerning support for ihe special services

are hidden at this level (they involve setting register values in the user-context).

In a way similar to the teell manager, the lcell manager supports the basic
machine cycle and coordinates the behavior of the other precesses in the leell.
After storage management, an execuling LPL context may have to be restarted,
and the lcell manager takes care of this. The top level for .the leell manager is

shown in Figure 3.18.



145

FIGURE 3.17 — Leell Yessage-Down Process

leellmsg.new{msg_ready,directoryready, msg. head,user,
interp.start,interp-idlie,shutdown)
class condition *msg_ready,*direclory_ready,*interp_idle, *shutdown;
class ghead *msg-head; class leell nusr *user; class stail 'mterp_start
{ char finished,garbage,cent,*msg; short i;
cycle § /**% HAIN EXECUTION LOOF *++ /
do | 7* first, wait for a valid active directory */
directory-ready->await{TRUE);
if (luser->active) directory_ready->await(FALSE);
{ while(luser->active};
directory—ready->await(FALSE); /* signals LPL sey loaded */
while {((cnt=msg_head->msg()} != STOPCNT) | /* service msys */
if (cnt) { /* get msg, check origin, filter if necessary */
msg = user->mtmp; while (cnt--) *msg++ = msg_-head->msg();
if {((user->mtmp[RKEY 1] == user->mspec[MKEY1]) &&
(vser->mimp[RKEY2] == user->mspec[MKEYR]) &é&

(user->mwave == user->msend)&&{user->state==EXECUTING))

user->mecomplete = TRUE;
If {(user->mwave > user->mfilt}&&(user->state==EXECUTING))
interp_idle->await(TRUE);

if ((user->mwave == user->mfilt)&&(user- >state==EXECUTING))§

interp-idle->assert(FALSE);
interp._start->put{user->filt_addr);
interp_idle->await{TRUE}; |
} /* end hondling msg */
else /* end-of-wave, so start nezt wove */§
user->mwave++; interp_idle->await{(TRUE);
if (luser->fork_id {| (user->state!=EXECUTING))
msg-ready->aszert{TRUE); /* need fo send eow "/
else | /* handle executing user */
if ({user->mfilt) && {(user->mwave > user->mifilt)) §
7% continue user following msg services */
interp_idle->assert(FALSE);
interp.start->put{user->cont.addr);
interp_idle->await(TRUE); |
if (user->endsend || (user->mwave<=user->mfiilt))
msg-ready->assert(TRUE);
| /* end handling ezecuting user */
1 /* end handling start of new wave */
| 7* end while message activity */
7 ent == STOPCNT, so time fo do shuidouwn */
user->shutdown{(); shutdown- >assert(TRUE)
} 7* end main cycle =/
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FIGURE 3. 18 - Leell LPL Interpreter Process

icell int.new(start,user,idle, smgrant)
class shead *start;

class leellbsr *user;

class condition *idle, *smgrant;

{

char *code = user->code;

cycle | /*** MAIN EXECUTION LOOP #%%/
idle->assert(TRUE);
addr = start->msg{);
if (user->active && (user->state==EXECUTING)} {
addr = execute.seg{addr,user);
switch (*{code+addr)) {| /* handle special regquest */
case SEND:
user->filt_addr = user->setup_send{addr);
break; '
case RECV: _
" user->filt_addr = user+->setup.recv(addr);
break;
case FORK:
user->ceont.addr = user->setup.fork{addr);
sm_grant->assert(TRUE);
break;
case FORKC: _
user->cont_addr = yser->setup_forke(addr);
sm.grant->assert(TRUE);
user->endsend = TRUE;
break;
case ENDFILT:
break;
case ENDPROG: '
sm_grant->asseri(TRUE);
uger->state = COMPLETED;
uzer->endsend = TRUE;
break;
default:
printf("'leell int(%d):%24 is no request”,
this, *(code+addr});
! /% end switch */
| 7# end cycle */
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FIGURFE 3,19 - The Lcell Manager Process

/i

This class is the leell manager. [t performs partitioning, directory
creation, restarting exzecution afier storage mana.gement preparation for
storage mangagement, and storage management,

v/

Icell.new(io-_dn_head,cm._dn.._head,area__dn_head,
io.up.tail,em_np_tail,area.np.-tail,
Ib_rs. head,lb_1s_tail,rb_ls_head,rb_rs.iail)

7 it leell objects */
user = new class lcellusr();
interp_idle = new class condition(FALSE); /* (S‘mce last use) */
input.possible = new class condition(FALSE);
sm_grant = new class condition{FALSE);
shutdown = new class condition{FALSE);
interp.start=new class shead(); /* start address gqueue */
input = new class leellinp{io_head, area.tail, user, .
_ input_possible, interp_start->tail(}});
interpreter = new class lcellint{interp.start, user, interp_idle,
. sm_grant);

msg.tail = new class ptail{area_tail);
msg_ready = new class condition(FALSE);
msg.service = new class leell.msend(user,msg tail,msg _ready);
messages = new class leellmsg(msg ready,input_possible,

area_head,user,interp_start->tail(),interp.idle,shutdown};

7 HAIN EXECUTION LOOFP *~

eyele |
do_partitioning():
if (user->active&&(user->app_state==GROUND))

build_directory();

input_possible->assert{TRUE);
sm-_grant-»rassert{FALSE);
shutdown->assert{FALSE);
msg_tail->clear_priority();
if (user->active) restart.execution();
terminate_cyele();
preparefor.stoerage.management();
do_storage_management();
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3.3.3. 10 Subsystem

The io subsystem, located "above" the processing tree composed of tecells
.and lcells, comprises three processes. Among these is a main process that
terminates the initial partitioning, interfaces with requests for LPL programs,
and computes the specification for storage management. Additionally, there is. a
tree-input process that sends LPL programs down into the tree to the icells, and
a tree-output process that accepts output. from the tree. The main io process is

shown in Figure 3.20.

FIGURE 3 20 - The Maoin 10 Process

Vh : .

This is the main io processes. fis duties are io terminaie inifial
partittoning, filter and hand off LEL program regquests fo the tree-input
process, and compute the global sm-specification.

*/

io.new(ioup_head,cm.up.head,al.up.head,al_up-head,
io_dn_tail,cm_dn_tail,a 1 dn. tail,a2_dn tail,
ov.np-head,ov.dn.tail)

7% init class objecis */

in_reqg_head = new class ghead();

in.req-tail = in_req.head->tail(});

output= new class io_output{ic_up_head);

input = new class io_input{in._req head,jio_dn_tail);

cycle §
terminate_partitioning_upsweep();
accept_operator_requests();
prepare.for.storage_management();

!

: 3.3.4. VH Subsystem

The virtual memory subsystem {also called the program overflow and entry
subsystemn) is implemented with a singie process, as shown in Figure 3.21.

The vm subsystem serves two purposes. It accommodates overflow out of the
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FIGURE 3.21 — The Vi Cuerfiow and Program Fniry Process

overflow.new{lb._head,lb_tail,ic.head,io_taii)
class ghead ¥b_head, *io_head; class gtail *Ib_tail, *o tail;
§ /2 Hain Frecution Loop **¥/
cyclel /* Tell 10 subsystem what the situation is */
io_tail->put{ovr.eells); iotail->put{pgm_cells);
/* Get amount to shift from 10 */
beond = io_head->msg();
if {(bcond<0) /* then handle overflow */ {
lseek{ovr.fd,ovr_next,0);
while (bcond<g) {

Ib.head->get{&s); write{ovr.fd,&s,1);
-1b_head->get{&tmp); write{ovr_fd,&tmp,1);
Ib.head->get{&tmp}; write(ovr_id,&tmp,1);
1b..head->get{&tmp); erte(ovr_.fd &tmp,1);

ovr_next += (i=4);
if ((s==EXECUTING) || (s==COMPLETED))
for (; i<SM_USERSIZE; i++) §
Ib.head->get(&tmp);
write{ovr_{d,&tmp,1);
ovr_next+-; |
write{ovr-id &1, 1); /* num chars written */
‘ovr.next++; beond-++; ovr_cells++; § } :
else if (beond>0) /* then handle symbol entry into iray */ |
/* first re-enier from overflow */
while (beond && ovr_cells) |
Iseek({ovrfd,-—-ovr—next,0);
read{ovr_fd,&i,1); /* get last context size */
ovr.next -=i; /* start of last contezi */
Iseek(ovr_fd,ovr.next,0};
for (Li=0; ti<i; ti++) §
read(ovr_id,&tmp,1);
lb_tail->put(tmp); |
bcond--; ovr.cells-- |
7* then new program */
while (beend &é& pgmcells) §
pgm_cell_enter(pgm.id,lbtail);
pgm_cells--; beond--; §
if {{pgm—ells==0) && (pgms.left)) |
Iseek(pgm fd,next ptr,0);
pgms.deft = read{pgm_id,&pgm,1);
if (pgma.left) |
read{pgm-_fd,&pgm.cells,1);
next_ptr=lseek{pgm_fd,2*pgm_cells-2,1)+2; |
| .
{ 7* end overflow */
1 7% end cycle */
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tree. at its left boundary when there are more requested lecells than are
available, and when there are more available cells than requested, previous
overflow and then new programs are shifted to the right back into the tree. At
present, for the purpose of simulation support, the vim subsystem is initially
loaded with the FFP programs that are to be entered intc the tree. The vin
subsystemn interacts with the io subsystem in order to determine Whether
overflow or program entry should be performed, and operates in the following
way. It tells the io subsystem how many cells are in overflow, and how many are
in the next program. The io subsyst_em then re.plies with the storage
ménagement boundary conditioﬁ {i.e., how many; cells to shiff, and in which
direction). Once the cells have been successfully shifted, the vm subsystem

process cyeles back to begin the above procedure once again.

3.4. Important Algorithms

In the last section, the overall process structuring .of the DOT model was
described. Partitioning, directory creation, message handling, and preparation
for storage management deserve a more detailed treatment than given above
t;ecause of their central importance to the working of the implementation, and
also because their implementation is important to the analytic model given in
Chapter 5. Sections 3.4.1 - 3.4..4_detail the algorithms used within the lecells and.

tcells to perform these functions.”

Of these operations, partitioning is the most complex, followed by messagé
handling. The algorithm used for creation of the LPL directory correspends in a
direct manner to its definition given in Chapter 2, and the algorithm used for

calculating the specification for storage management is also straightforward. In

* Readers uninterested in the fine structure of these algorithms may turn to Chapter 4,
on simulation.
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all of these operations, the main issue is efficient use of the tree-structure to

perform global operations.

3.4.1. Partitioning

~Partitioning is centered around the detection _of RAs. It'is the RAs, or leells
contai_ning innermost apﬂplicatio.ns, that are allowed to execute LPL within the
active areas created during partitioning. Once RAs are found, their containing
lcells must be told that they are active and fhat they should participate in the
execution phase of the machine cycle. All other lcells must be told that they are
not active. Thus, the p.artitioning prbcess involves an upsweep of information
through the tree to locate RAs, and a downsweep of information to notify leells of
their status. As this is done, area channels within the tree-structuré are circuit-
switched between area nodes {implemented by the node manager and message-
down processes) to form individual tree—strucﬁured multiprocessors for suppért

of subseguent execution within the detected RAs,

How are innermost ap.p_lications found? One way of finding RAs, shown in
Figure 3.22, mi'ght be to examine symbeols in the leell array from left to fight,
and éséume that & new RA has been found every time a left application symbol is
encountered. Oﬁ reaching the next application symbol to its right, we discover
whether or not our assumption was correct; if the next application symbol is a

balancing symbol, then we have found an RA, otherwise not.
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4

FIGURE 3.22 - Finding a RA
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Since our FI'P-level representation doeg not store balancing symbols (in. the

interest of conserving lcells), we must go on to the next symbol past where a

balancing application symbol would be to decide whether we have discovered an

RA, and the decision is then based on the aln. value stored there as part of the

FFP-level representation. The procedure in this case is the following:

After encounlering an application symbol, { 4 we sequentiolly examine

symbols to ifs right unitil we find.
(1} another application symbol (8 af o deeper level
(i.e., zz.l'nj < a,lng), or
{2) a symbol al the same or higher level
(ov run out of symbols).

¢ In the first case, the application beginning with (, is not an RA

o fn the second case, if is.

3.4.1.1. Partiticning Upsweep — Locating RAs

In the above discussion, we implicitly assumed a single agency, or process,

capable of examining the FPP-level text representation from left to right, one

cell at a time. This is equivalent to letting the lcells send this information into a
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"global examiner” by sweeping the symbol and aln information up from left to

right, as shown in Figure 3.23,

FIGURE 3.23 - Sweeping Leell Contents Upwards Globally

oS 2

(4%

V]

) L=
| SRR N —

b

Of course, we need to accomplish the same thing usir_}g’ a .binary tree-
structure iﬁ place of the n-ary tree-structure of Figure 3.23. The n-ary tree
method is easy to understand because one process with unlimited 'access ‘to
infomiation is used within the single parent node. When using a binary tree
structure, on the other hand, we inust contend with a number of teell processes,
e.ach of which hag access only to the limited arhount of information availabls

from its two children.

Within the binary tree structure of DOT, in order to detéct innermost
applications and connect area channels to support them. information is sweapt
up into the tree and each tecell accepts information from its two children
descriptive of their respective underlying FTP text segments. Not all the
information in a segment of leells is needed by all of its teell aticestors, however.

This limits the amount of information that must be sent from any one level to
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t_he next.

3.4.1.1.1, Merging Segment Descriptors

During the initial partitioning upsweep, beginning with the lcells, each level
qf the tree-structure organizes information required by the next higher level
into a segment descripfor and passes it upwards. When a tcell receives a
gegment déscriptor from each of its children, this information is.selectively
merged inte a new segment descriptor which is relayed upwards. When this
information indicates an application (possibly an RA) entirely contained within
the underlying lcell segment, the receiving teell takes appropriate actioﬁ
locally, and elides information required solely by the discovered application
{should it be innermost} from the segment descriptor which is sent upwards.
Thus, area creation and denial is done as early as possible, and information not

required at higher levels drops out of the upsweep.

One way to describe the partitioning upsweep is as follows: the segment
descriptor for each application symbol in the lecell array moves upwards in the
tree structure, accumulating its left and right symbol contexts (whose
descriptors are sent up to support this procéss, and are merged with application
symbol descriptors whenever possible) until it meets the segment descriptors
bélonging to the application symbols on its left and right. On the way up, until an
application descriptor meets its right neighbor, area channels necessarjf to
support the application (if it should turn out to be innermost) are connected.
When the application descriptor finally sees its rightmost application neighbor,
it has the information necessary to determine whether it is indeed part of an RA.
If this is not the case, the channels just connected will be disconnected on the
pruning downsweep. Although an application symbol meeting its right neighbor

application symbol in this way has all the information it needs to make this
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decision, an appropriately modified descriptor must still be sent up further to
_eﬁable an application symbol to its left to make a similar decision. Wﬁen
application symbols to the right and left of the given application have both
encountered their "middle"” applicétion descriptor, this middle deseriptor is no

longer needed and drops out.

The segment descriptor has the basic format shown in Figure 3.24, and is
composed of four logical fields. Within a segment descriptor {corresponding -tor a
given segment of the leell array) the leftmost symbol fleld, S represents non-

~application symbols located to the left of the leftrmost application symbol within
the segment. The leftmost application symbol is represented by the (l
application field. The rightmost field, S, represents. the non—applic.ﬁtibﬁ
symbols to the right of the rightmost application symbol within the seg'm:e.nt,
ﬁrhic%h in turn is$ represented by the (r application field. As shown in Figure 3.24,
the symbol and application fields of a segment descriptor are composed of

different subﬁelds;‘_

FIGURE 3.24 — The Segment Descriptor Format

S = symbol_ent : min : lUn : symbols

= aln : stete

S; and 5, don’t actually contain all symbols of their appropriate
subsegment. Only the two leftmost symbols of the represented subsegment are
required in an S field {to guarantee finding the FFP operator for an RA), so

symbol_cnt always has the value 0,1, or 2.° The min value in an S field is the

* If an FFP operator is primitive, the first symbol to the right of the application symbol
for its RA will be the LPL program op-code. If this symbel is a sequence symbol, however,
the operator is a functional form. In this case, the second symbol to the right of the ap-
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minimum aln within the entire subsegment described by S. The Un is the aln of
the leftmost symbol of 5's subsegment, and symbols are the leftmost symbols of
the subsegment (if they- exist). The 'rﬁ.ln and ln are used by the area nod.es
during the pruning downsweep portion of partitioning. If there are no symbols in
a subsegment {empty lcells must participate in partitioning too), only a
syﬁbol_gnt of zero is sent, and the other $ flelds are not used. An application
field always represents a single application symbol -- aln is its aln value, and
state describes whether the application is in the ground state {the RA is new, so
it will require an LPL program) or the executing stafe {the application is an RA
that was erxecuting last cycle and was interrupted for storage manag ement.r go it
will not require an LPL program). Figure 3.25 shows an example (arssuming

ground state for applications) of a segment descriptor.

FIGURE 3.25 - An Example of o Segment Descriptor

| | T
T e

I
: I

[P - ) S
Sl ~ ent=1; min=1; IIn=1; symbols==< (r ~ aln=2; state=0;
(1 - alp=2; staie=0; Sr ~ cnt=0;

The example in Figure 3.25 shows that all the information required by

neighboring application symbols on either side of the example segment is

plication symbol contains either the op-code for the controlling operator of the function-
al form, or another sequence symbol. If it is a sequence symbol, the LPL program for
meta-composition is requested. Otherwise the LPL program for the controlling eperator
is used. '
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represented in its segment. descriptor, while information concerning _.the'
‘symbols between {l and ('r .is'not included (it has dropped out earlier in the
upsweep). The information in Sl and Sr is needed because of the absence‘of_
balancing application symbols, and bécause this information will contain _thé-
operator for an RA when it is detected. The téell W'h;mh détects an RA, there.f_ore, ,
can both request the appropriate LPL program to be brought in, and notify

descendant lcells which LPL program to accept and use.

Description of a given segment of the lcell array may not warrant use of.all
of the fields of a segment.dés'criptor.‘This is certainly the case at the first (lcell)
level, where a segment descriptor will deseribe only a single symbol {(application,
or otherwise). For this .reason, four different formats are used to express
increésingly complex .segmen.t types. A segment descriptor is therefore
preceded by a format code, or SPF {for segment pattern format) to -indicaté
what format follows.” The four segment déscriptor formats and théir

corresponding SPF codes are shown in Figure 3.26.

FIGURE 3.28 -- The Four Segment Descriplor Pormuals

FORMAT : SPF
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* This was suggested by Peter Chen during early work on partitioning. The value of this
approach is that the SPF code, alone, contains useful information that aliows the parti-
tioning upsweep to be pipelined.
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3.4.1.1.2. Switching to Area Channels .

While the segment descriptor represents the information that is used by the
processes of a teell in support of partitioning, this information is not sent up on
a single pommunication channel, nor is it handled by a single process within

each teell

One of the most difficult issues confronting the design of the partitioning
algorithm was performing a smooth changebver from cell manager channels,
which must start partitioning, to the area channels, which support area—rélated
processing. The . process-oriented design approach we took suggested that it
would be a mistake to allow the tcell managers to complete partitioning. This is
because more than one potential area may pass through a tcell. Requiring the
tecell manager to completely handle all details of partitioning (including the
pruning of area channels that should be disconnected) would involve non-
deterministic actions on its part to support concurrent progress of partitioning

on area channels of Iogically unrelated areas.

For this reason, support for partitioning is divided among the tcell manager
processes and the nede manager processes in a way that guarantees well
balanced, efficient, and. complelely séquential processing by all involved
processes. The SPF and the information associated with (l and (,r is sent
upwards and received by teell manager processes from both left and right teell
‘manager children. The information associated with Sy and S is sent upwards
and received by the area node manager processes from left and right node

manager children, respectively.

When a teell manager receives SPFs from both of its children, it has enough
information, even before receiving the (l and {'r which may follow, to send the

reqgquired SPF to its parent, and perform an initial partitioning of the tcell by
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circuit-switching aréa channels. In general, some area channels will be switched
to provide a direct routing through the tecell, and some will be connected to the
‘input and output éhannel_s of the local area—héndling nbde. This is the initial
partitioning referred to earlier in the over%ﬂl discussion of the DOT machine
cycle. When the tcell managef receives left and right values of (l and ('r as
" indicated by the left a-.nd right SPF's, it then has enough information to create
and send merged (z’, and (7_ vaiues>to its parent {as required by the SPF it just
sent -up), and to signal its ﬁode manager process (if an area-node was just

connected to area channels) to begin one of five possible tasks.

Once a ﬁode ‘manager process is given the go-ahead by its cell manager, it
processes the Sl and Sr from its left and right childfen, .respectively. Depe’nding
on the taék given to it by the teell manager it will either start a prunihg
downsweep, because it now has access through the area channels to all
necessary leells below i{:,..or_ send up an-.appropriately merged S value to its
parent {which will be received either as Sy or S'r' depe.nding on which side of its
parent the area-node is located) and then await the pruning downsweep thal will

be started by an overlying node manager.

Figure 3.27 shows how the initial partitioning is done within an arbitrary
teell, and details the upwérds moving flow of information on area and cell
rrianager channels as well as the circuit-switched connections that are made by
the cell' manager. This figure completely specifies the a.lgorithm used for
merging segrﬁent desériptors. There are 4 SP.FS, so there are 18 diﬂerent
poséibilities for left and right SPT arrivals from child tcell managers. The area
node within a tcell is depicted as a small circle. The teell manager is not shown.
Node managers with a double circle are those that are tas.lced to start pruning.

‘Whether they will be active or not depends on the actual segment descriptor
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FIGURE 3.87 - Anolysis of the Initial Partitioning by Tcell Managers
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field values that are received.

Subscripts for S; and (E' etc., are dropped since the SPF makes these
redundant. In Figure 3.27, child area channels are shown entering from the left

and right sides of the teells {(which are represented by triangles), and channels
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to support communication with a parent leave from the top of the tcells. Cell

manager channels are dotted, and the area channels are solid.

- As indicated in Chapter 2, two distinct area channels are provided to handle
a situation where two areas pass through the same tcell. These area channels -
for convenience call them area, and area, - must be correétly distinguished
from each other during partitioning. For teells in Figure 3.27, the top channel
entering from a left child is always the areay channel and the bottom left
channel is areas- The top channel enterihg from a right child is always areas and
the bottom left channel is area,. 'Th.e. left channel leaving for a parent is always
areal-,-and the right top char_mel is area, This arrangement aIlo%s teells to be
connected toget.her so that an areay channel leaviﬁg a child teell will alv-vays be

connected with an area, channel entering its parent.

The DOT specification for beginning the partitioning upsweep within an lecell

is shown in Figure 3.28.
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FIGURFE 3.28 — The Start of Portitioning in the Leells

/* : '
Thas is the icell partitioning algorithm. Leells start pamt‘éﬁgmlng _
by sending up the appropriate segment descriptor information on
the cell manager and area channels.

*/

void leell.partition{)

¢ : ‘
/* indtiate portitioning upsweep */
if (user->state==EMPTY) |

em_tail->put(1}; stspf= 1%/
cm_tail->eot_alert(}; /% no pgm regquesits ¥/
area.tail->put(0); /* symbol-ent = 0*/
}

else if ({user->symbeol == APPSYMBOL) && -
(user->fork_id == 1)) { /* handle app. symbol */
em-tail->put(2); srspf= 2%/
em.tail-Fput{user->aln); 7 opplication ain */
cm.tail->put{user->state); /% application state */
cm.lail->eot_alert(); 7* no pgm requests */

areatail->put{0); /*symbolent= 0*/
i .

else § /* handie regqular or forked application symhél */

cm_tail->put(1}); srspf= 1%/
em_tail->eot. alert(); /% no pgm reguests ¥/
area_tail->pui(1); /% symbol-cnt = 1 */

area tail->put{aln); /* min = ain *~
area_tail->put{aln); /*lin-qaln */
areatail->put{user->symbol);

§
’* terminate pruning downsweep */

... shown in Figure 3.32

3.4.1.2. Partitioning Downsweepd — Pruning

The initial parﬁitioning upsweep must be complementéd with a pruning
downsweep to complete the construction of active areas, and disconnect
unnecessary channels. To motivate this, let's use the information provided in
Figure 3.27 to do the initial partitioning upsweep for the small segment of FFP

text shown in Figure 3.29.
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FIGURFE 3.29 - An Ezample of Initial Partilioning

Inftial Partitioningfor (+ <(*<13>){*<24>)5>)
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Besides connecting area channels for applications that will not be active,
" the initié.l partitioning may extend area connections for what will become an RA
~ past the RA's rightmost leell, thus incorrectly including symbols that are not -
part of the RA.” This is because FFP text symbols and aln 'Values that occur
between application symbois are not available to the teell managers during the
initial partitioning upsweep. This information is given to the node managers,

“however, and is used during the pruning downsweep to correctly prune off

*In the example, this is’ dene for the rightmost symbeol of the leell array, "2" at levei 2,
which is part of the outermost application -- not the rightmost RA as the initial partition-
ing guesses.
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rightmost portions of active areas created during the initial partitioning.

Fach potential area created during the initial partitioning upsweep
{composed of a separate set of connected area channels and area nodes) has a
topmost or root nede whi(-:h initiates the pruning ‘downsweep en command from
its teell manager. The pruning downsweep disconnects all nodes and area
channels that do. not lead to an leell containing a symbol within an RA, and in
additipﬁ, locates and creates the top-of-area node where LPL messages turn
around within each active area overlying an RA. The informatioﬁ flow in the
pruning downsweep is contained entirely within area channels connected during
the upsweep, and is manipulated entirely by the node ménager processes. Tcell
managers are finished with all area-related duties és soon as they complete the
initial partitioning within théir tecell, and then become involved in relayiﬁg
requests for LPL programs (these are signaled by the root node managers for

active areas before they start pruning) up to the ic subsystem.

The pruning information sent down within each set of connected area -
channels indicates whether or not these channels are required for supporting an
RA. This decision is initially made by the node manager that starts pruning, and
is subsequently used by iower level node managers to disconnect area channels
and node managers that are not needed for the upcoming execution phase.
Often during pruning of an active area, only the left or right child of a node is
discovered to be part of the associated RA. In such a case, the node manager
signals and then disconnects the unnecessary child, and circuit-switches the

remaining child to the overlying parent node.”

The top of area node is usually lower than where pruning starts. It is always

located in the least common tcell ancestor of the leells which comprise an RA,

' A node is required only if two children are present.
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and always has two children. When the root of a newly discovered active areca
begins pruning, therefore, it checks to see if it has two active children, and if
not, it disconnects_itéelf after signaling bpth children appropriately. The first
active node on the way down with two children becomes the top of area, and
circuit-switches its up—going putput channel tb the 'inpu%’.. of the down-message

process in the area node to implement message turn-around.

Th.e result of pruning the example of Figﬁre 3.29 is shown in Figure 3.30.
Note how.the top of area for the rightmost of the two active areas has moved
down from where pruning starts in the io subsystem, and how the other area for
Which pruniﬁg starts in the io subsystern has been completely disconﬁect.ed.

Also, ernpty and non-active lcells have been correctly pruned from both RAs and

FIGURE 3.30 -- After Pruning the Inilial Partitioning Frample

Final Partitioning for  (+ < (*<13>)(*<24>)5>)
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area channels re-routed appropriately. The final position of the two top of area

nodes is shown by circling their nodes.

In an active area channel, the pruning’ information contains the FFP
operator, the aln of its application symbol, and whether the RA is new. When
received in the lcells of an RA, this information indicates which LPL program the
lceli-input_, process should look for if the RA is a new one, and if so, each lcell can
use thé application syrabol aln lo compute the local rin value and start an
‘upsweep to compute the LPL environment directory. Figure 3.31 shows the
specification for the start of pruning in an area node. Figure 3.32 shows the

termination of pruning as it occurs in the leells.
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FIGURFE 3.31 — The Area Node Algorithm to Start Pruning

/*

This is the aigorithm for starting pruning. Aciive is only the
tcell.mor's guess, and will be wrongly false when on intermediate
symbol between two app symbols causes an KA Such a stiugtion is
checked for and taken care of here. Lont and rent are the left and
right symbol-cnils received in the partitioning upsweep.

*/

node_mgr.start_pruning(active,rehild)
short active,rchild; /* both boolean */

if {active || ((lent||lrent}&&{mln<=aln))} /* we ‘re reclly active */ |

if ((lent && (Imln<=aln)} }} trent || (rcnt && (rlln<=aln}))) |
7% eut off in left child */
top.of_area = FALSE;
Inptail- >put(pck(PARTLY_ACTIVE_TOA aln));
if (rehild) rop.tail->put{pek{(NOT ACTIVE,aln));
lop_tail->put(pgm};
Inp_tail->put{state); |

elze /* cul off in right subtree */ |
top.of.area = TRUE;
Inp_tail->put{pck(ALL_ACTIVE, aln))
rop_lail->put{pck{PARTLY._ACTIVE,aln));
Inp.tail-»put{pgm); rnp-tail->put{pgm);
Inp.tail->put(state); ronp_tail->put(state); J

if (top_of.area) wrap-head->connect{wrap_tail);

finished = Itop_of_area; |

else /*we re not-aclive */ |

pgm = 0;

top_of_area = FALSE;

finished = TRUE;

Inp_tail->put{pck(NOT ACTIVE,Q));

if {rehild) rop_tail->put{pck(NOT_ACTIVE,Q)): }

i 7* end of pruning initiaiion */
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FIGURFE 3.32 — Termination of Pruning in the lcells

/* :
This is the leell partilioning algorithm. Leells start pariitioning
by sending wp the appropricie segment descriptor information on
the cell manager and arew channels.

*/

veid leell.partition()
§

/% initiale partitioning upsweep */
. shown above in Figure 3.28

/* terminate pruning downsweep */
unpck{area_head->msg(),&pflag,&aln);
switch (pflag) §
case NOT_ACTIVE:

user-ractive = FALSE;

break;
case PARTLY_ACTIVE:
case ALL_ACTIVE:

user->active = TRUE;

- user->rin = user->»aln - aln; _
user->lcell.pgm = area.head->msg(};
user->app.-state = area.head->msg(});

{ 7*end swilch */
{ 7* end partitioning */

3.4.2. ¥Wessage Support

Next to partitioning, the most complex operations in DOT involve message
bhandling. Many details associated with messages have already been covered in
‘the discussion of the lcell message-input and message-output processes. What
remains is to éhow hov} méssages are handled within the overlying tree structure
of an active area. The details of this operation are contained in the upwards-
message class {called node_umh within DOT) used by the node-manager process.
The up_messages entry of this class handles all message activity (in particular
the sorting and merging of messages required by the LPL send statement) for an

area node during a single execulion phase.
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All information that flows on area channels dufing the execution phase is
broken up into individual packets. Each packet is introduced by a byte count,
and packet data then follows immediately. Although a realistic implementation -
would deal with checksums and error recovery, this has not been done here. A

reliable transmission mechanism is assumed.

3.4.2.1. Message Packets

As shown in Figure 3.33, there are four basic packet types. Three are used
for LPL messages, and the fourth is used te sighal the end of the execution

phase and message activity.

. FIGURE 3.33 ~ The Four Message Packef Types

It

Prefiz Pocket ;& order : combine-op :
Data Packet = cbyte-ent - dota :
Fow Packet 10

Stop Packet N

il

LPL messages sent up fré:fn the lcells are composed of three packets. The
first. packet, a message introduction or prefixz packet, _speciﬁe’s the type of
handlir/lg that is desired. This informalion is provided in the LPL. send
statefnent, and is composed of the sort-order and combine~opefation
inforrﬁation. The message prefix packet always has a byte count of two, and is
merged in a single pipelined upsweep through the area. It is not returned io Lhe
lcells. Iollowing the message prefix out of an leell is the main message or

dola packel.

Each data packet has a byte count of at least two, since the keyl and keyl
values in a send statement are always sent. Additionally, each requested

message argument accounts for an additional byte. Thus the byte count for the
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fnessage packet will be 2 + msize as specified in the send statement.. Message

bytes follow immediately to complete the packet.

Finally, each message -oﬁt of an lcell is terminated with an end-of-wave, or
en'wrpczcket. This packet contains no information‘, and has a zero byte count.
When received by a node manager, it indicates thal ne-further message packets
for the current wave will be received on that channel. When an eow has b.een
received by a ncde manager from both of its children, an eow is sent up to iis
i)a-rent. When the top of area node relays the eow, it is broadcast to all
'underlying leells, the current message wave comes to an end, and the next one
is started. An lcell thal does not wish to send a message for a particular

message wave sends just the eow packet for thatl wave.

The fourth packet type is a stop packef. Since processes in the DOT model
are never interrupted, there must be some way to free up a node manager that
is waiting for the next packet arrival from a child area channel after execution
phase message processing in the leells has come fo an end. Thé stop packet is

-thus sent up on area channels by the lcell manager when the execution phase
ends, and this guarantees correet flushing of area channels befdre they are
disconnected. A stop packét has a byte count of one, and is special in that there

iz no following data.

3.4.2.2. Message Handling

The top-level for area node message handling is given in Figure 3.34. The
approach ié erganized to allow pipelfned operatiﬁn. Initially, the prefix must be
merged and sent up. This is handled in the starf-new-weve entry, which reads
and passes up the sort and combine selectors ceded in the send statement.
Besides passing it up, start-new-wave also loads this information into a data

structure called mspec. Once this is done, message packets from the children



171

of the node can be handled.

The general approach (assuming that eow has not been received from either
child) is to read child messége counts and pass a message count ﬁp to the node
parent. Then keyl \_fal'ues from both children are read. The apﬁropriate ke.yl is
then sent up (based on the sort order) and the other saved in a buffer. Then "
kéyE is handlt'ad,' and the correct {selected) key? is sent up, and the other saved
in the appropriate buffer, This buffer holds key1 and key?2 values for the "losing”
message (i.e., the message that is not selected for immediate relay upwards).
The rest of the message pécket for the winning message is relayed up. Looping
béck to handle the next message, the key values for the message that lost out
last time are already available, so thé byte count for the next prefix following
the successful message is read. Proéeésing continues as before. but only one

channel needs to be read to get key values this time.

If the key values for two messages entering a node are the same, the
messages should be combinéd. The correct keys will already have been éent up,
and the primary difference between sorting as explained above and combining is
ﬁhat a combined message is then created from the two entering messages, and
the entering messages are thrown away. Following this, there will be no buﬁered
key values (since thé message packets from botﬁ children were used up), so

processing continues as initially explained.

3.4.2.3. Stopping Messages

Besides pipelining messages as described above, the primary complication
involved in message ﬁrocessing is knowing when to stop. There are two
possibilities, TFirst, the node manager has access to a memory location shared
with the tcell manager which is set when the stop message comes down through

cell manager channels Lo signal the end of the execution phase. This location is
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checked by the node manager before it attempts to read a new message packet,
and, if the stop message has come through the tcell, the node manager
immediately relays a stop packet to its parent, stops processing messages, and

starts flushing them. Nothing furtherr is sent to the parent.

It is also posgible that the stop message may go through a tecell just after
the node manager checks for it, sec the ﬁode manager misses it and goes on to
await the next message packet arrival. This is the reason for using a special stop
| packet. Even if node managers miss the stop message on its way down, they
must see thé :'stop packet as it rises frc;m. the lcells. In any case, messages are
flushed until a rising stop packet is seen from both children. Nothing evé;r
follows the stop packet up area channels,

When the stop packet is rel.ayed throﬁgh the toa, and is detected back at

the lecells, the leells know that all LPL messages for the current execution phase

have been received and that they can shut down and save their LPL programs.
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FIGURE 3.34 -~ Upwards Messages in a Tcell Node

node_tmh.up.messages() /* hand up meésages for one machine cycle */

{ mspec.valid = FALSE; 7* don't know how to handle message wave yet */

while (leell_mgr->node_som) | /* stop message husn’'t come down yet */
if (!mspec.valid) start_new_wave(); /* get handling instructions */
if ((Ibuf.msize!=STOPCNT) && (rbuf.msize!=STOPCNT)) |
/* hendle next message or eow for present wave */
if (buf.full & Ibuf. msize>EQW) 1buf msize=lhead- >msg()
if ('rbuf.full && rbuf. msize>E0W) rbuf msize=rhead->msg();
if ({Ilbuf. msize!=STOPCNT) && (rbuf msize!=STOPCNT) &&
(Ibuf. msize>E0W || rbuf. msize>E0W)) §
/* handle message. start with message size */
msize = {(Ibuf.msize>rbuf. msnze)’?lbuf msize:rbuf.msize;
hardup(msize); :
mselect=2; /* assume equal keys ':,mtmuy */
/* acecept keyl velues and see if ordered yet */
if (NMbuf.full && Ibul.msize>EOW) Ibuf key l=lhead->msg();
if {irbuf.full && rbuf. msize>E0W) rbul keyl=rhead->msg(};
mselect=select{lbuf keyl,rbuf keyl);
switch. {mselect) { _
case 0: handup(lbuf key1); break;
case 1: case 2; handup(rbuf.key1); }
7* acecept keyl values and see if ordered of not already */
if (lbuf.full && lbuf.msize>EOW) Ibuf key2=lhead->msg{);
if {Irbuf.full && rbuf.msize>E0W) rbuf key2=rhead->msg();
1buf.full = rbuf.full = TRUL;
if {mselect==2) mselect=select(lbuf. key2,rbuf key2);
switch {(mselect) {
case 0: handup(lbuf. keyB) break;
case 1: case 2: handup{rbuf key2); |
/* relay or merge to produce result message */
switeh (mselect) |
case 0: up.remaining(lhead,lbuf. msize-2); break;
case 1: up_remaining(rhead,rbuf msize-2); break;
case 2: combine(); }
! /* end honding wp one maessage */
else { /% etther end of wave from both children, or eom */
mspec.valid = FALSE;
if (Ibuf. msizet=STOPCNT && rbuf.msize!=STOPCNT)
handup(BEOW); ~* it was an end of wave */
} 7% end handling eow or eom */
| /* end handling message or eowi/eom */
} /*end execution phase */
handup(STOPCNTY;
flush.messages(lhead, &lbuf) flush_messages{rhead, &rbuf)

!
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3.4.3. Directory Creation

As described in Chaptér 2, the LPL directory is composed of a symbol index
and a directory tuple. We now present the algorithms used within the lcells and
the tcell area nodes to compute and initiaiizg theée values for the LPL code
segments that exec;ute within KEAs. The correctness of the algorithms for
directory creation. 15 gstablished wusing the prin.ciple of mathematical

. . *
induction.

3.4.3.1. Computation of the Symbo! Index

Computation of the LPL environment variable symbol __g'.nde.:z is performed
using an ups{veep to accumulate information into the area nedes, and a
downsweep to distribute the correct information to the lcells. Figure 3.35
summearizes the information flow. N.ote that a merge operation {addition) is
performed by area nodes during both the upsweep and downsweep. During the
upswéep, a result based on two incoming values is sent to the parent; during t.he
downsweep, a result based on the incoming value and a value remembered from

the upsweep is sent to the right child.

¥ Mathematical induction iz based on the idea of inheritance - the idea that if P(1) iz true,
then so is P(4+1). This is called an inductive hypothesis, and establishment of P(i) for a
particular i is called an inductive base. An inductive proof must show that the inductive
hypothesis is true far all 1 of interest and give an inductive base in order to establish P()
for all € that are successors to the base.
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FIGURE 3.35 - Diagram for Symbol Index Colculation

cnti = !cnti+ rcnti

Upsweep Downswesp

- len _rent; loft_x; = Ix,  right_Ix;'= Ix;+lent,

3.4.3.1.1. Upsweep

For the upsweep, let Pu(j) mean that the number sent up from each area
node at level j correctly represents the count of all the leaf cells in its subtree.

Call this number cntj. Now, if Pu(j) is true, and each node at level i=j+1 receives

the resulting cntj values passed up by its left and right children as lcnti and

rcnt,i respectively, and then sends up

c'n.t,i = lcntﬁ.’ + Tcnti

then clearly Pu(i_=j+ 1) holds as well. This establishes an inductive hypothesis for
the upsweep. An inductive base is provided by the lcells of an area, which send
up 1. Because Pu(O) is therefore true {(the correct symbol count within an active
Icell is always 1), Pu(toa-l) also holds by induction. At the toa, then, following
such an upsweep, we know that the symbol index of the leftrnost symbol of the

left area subtree is 0, and the symbol index of the leftmost symbol of the right
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area subtree is lcntfoa {because this is the count of the number of symbols in

the left area subtree). These values provide an inductive base for the

downsweep.

3.4.3.1.2. Downsweep

For the downsweép, assurne the lent values have been saved by the nodes
during the preceding upsweep, and let P4(k) mean that the numbers sent down
.i.:o the lleft and right éhildren of level k nodes correctly represent, respectively,
the true symbol index of the leftmost symbol in the left child’s area subiree, and
the (rue symbol index of the leftrmost symbol in the right child’'s area subtree.
Call these numbers left__jmk and T'a',ght_lmk respectively. If Pd(k) is true, and each
node at level i=k-1 receives the resulting value passed down by its parent as lmi,

and then sends to its left and right children the values

left MRS lz'i, and
right_lz, = (lx, + lent,)

then Pd(i) also holds.” This establishes an inductive hypothesis for the
downsweep. An inductive base is provided by the toa which sends down left__@xtoa
=0 and fr’ight_jmtoa = lent, . Because Pd(toa) is therefore true {as noted at the
end of the upsweep discussion), Pd(O) also holds by induction. Since at leﬁel 0
{the lcell level) the leftmost symbbl is the only symbol, the value received there
as i.xo is the desired symbol index. Figure 3.36 gives the portions of the leell and
area node directory creation algorithms responsible for creating the symbol
index. As can be seen, there is a close correspondence with the above inductive

reasoning.

¢ Clearly, if iz, is the beginning symbol index of the left subtree, the beginning symbol in-
~ dex for the right subtree is sz. plus the count of symbols in the left subtree.
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FIGURE 3.36 — Algorithms for Symbol Index

lcell.build_directory() /* symbol index poriion */

{

/* upsweep - establish inductive bose */
area_tail->put{l1); /*send up symbol count for th::.s level */

¥ downsweep — terminaie us'mg inductive hypothesis */

. user->symbol index=area_head->msg(}; /* receive symbol.indez */
g .
node.mgr.build directory() /* symbol indez portion */

{
/% ypsweep -- preserve tnductive hypothesis +/
lent = Inp_head->msg(); rent = rop_head->msg();
if (Ttop_of_area) np_tail->put{lent+rent); /* send up fotal cound =/

/* douwmnsweep to place symbol index and addresses inido legves */

if {top.of.area) }
/* start downsweep - establish inductive buse */

Inp_tail->put{Q); 7* lefi-lx for toa */
rnp-tail->put{lent);{ /* right-lz for toa */

else | 7% continue downsweep — preserve inductive hypothesis ¥/
Ix = np_head->msg(); s*getls */
Inp_tail->put{lx); 7* send left-lz */

rnp_tail->put{lx+icnt);l /* send right-lz */

3.4.3.2. Computation of the Directory Tuple

Computaﬁon of the directory tuple also inveolves an upsweep to accumulate
information into {he area nodes, and a downsweep to distribule the desired -
information to the lcells. While the symbol indéx computation uses a simple
merge function {addition) and Pu and Pd predicates based on the values of
single numbers passed belween the leells and nodes, the directory tuple
computation invelves a more complex merge function and Pu and Pd predicates
based on tuple values. Figure 3.37 summarizes the information flow. A merge
operation {{], to be described bélow) is performed by area nodes during both the
upsweep and downsweep. During the upsweep, a result based on two inébming

values is sent to the parent; during the downsweep, a result based on the
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incoming value and a value remembered from the upsweep is sent to the right

child.

FIGURE 3.37 - Diagram for Directory Tuple Calculation

ursi = lclrsi 0 rdrsi ' tdrli

Downsweep

Upsweaep

ldrs rdrs;  left_tdrl, = tdrl,  right_tdrl, = tdrl, O Idrs,

The definition of the LPL environment directory tuple, D:[dl dn], was
given in Chapler 2. As explained in Section 2.3.1.2 with the help of Figures. 2.12
and 2.13, the directory tuple for an FFP text symbol is directly related to thé
parse tree of its RA, and the value of a general dj represents the left-to-right
count of RA symbols at level j {(up to the symbol whese directory is of interest)
that are within the scope of the last constructor (seguence or application
symbol) with nesting level j~1.* To provide a frame of reference- for the
following discussion, Figure 3.38 contains an example RA located within an active
partition of a DOT machine. .This figure represents a typical active area; area
channels have been pruned during partitioning, and as a result the area is not

height balanced.

* The level of a gymbel in the parse tree for its RA is ’_Lhé rin value that is locally comput-
ed by lcells upon learning the ain of the RA application symbol.
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FIGURE 3.38 ~ An Example RA Within an Acitve Areo

Figure 3.39 shows the parse tree corréspondiﬁg to the RA of Figure 3.38,
and gives directory tuples with truncation at level. 3. The dife ctory tuple for '"b"
_is [2,1,2] ~ d; is 2 because there are two level 1 symbols (the operator and the
argument sequence symbol) within the scope of the last level 0 symbol {the .
application symbol) before "b"; dy is 1 because there is 1 level 2 symbol {the
second sequence symbol) within the scope of the last level 1 symbol (the
argument sequencé symbol) before. "B dé‘ is 2 because there are 2 level 3

symbols {"a" and "b") within the scope of the last level 2 symbol before "b".
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FIGURE 3.39 — Example Parse Tree and Directory Tuples

o, (, level O (rin=0)
/1 ,3:,0\/ >I2,§,0] level 1°(rin=1)
1 ,)1(,0} [ .‘2’,0] 2,?0\ {2,5:,0} leve! 2 (rin=2}
2,11 12"13,2] [215’,1] level 3 (rin=3)

-We now consider the tuple valuss that are passed in the upsweep and
downsweep to compute the directories for the symbols of an RA. We make no
assumptions here concerning the 1ev.'el.of truncation. DOT presently provides LPL
programs with a four-level directory, but the following algorithms work with
truncation at any level. All examples will perform truncation at level 3, as in

Figure 3.38.

3.4.3.2.1. Upsweep

For the upsweep, let Pu(j) mean that the tuple value sent up by each node
at level j correctly represents the directory of the rightmost symbel within its
subtree {i.e., correct relative to only those symbols in the subtree). Call this

tuple d'rsj (for relative directory of the rightmost symbol).

In order to establish an inductive hypecthesis for the upsweep, we must
determine an operation {J such that if each node at level i=j+1 receives the dis
'tuple values passed up by its left and right children as ld'rsi and Tdvs,

respectively, and sends up
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d’rsi = lo!'rs,i 0 'rdrs_i

then Pu{i=j+1) also holds. The appropriate operation for the symbol_index
calculation was addition; here we must refer to the definition of the directory
tuple for guidance. The trick is to realize that we are merging truncated

representations of partial parse trees.-

A directory tuple contains certain information about the parse tree from
which it is derived. It doesn't contain ail information about the parse tree
‘because the dj values of a'dir’ectqry tuple only rep.resen’.c the count of symbois
within limited scopes, as indicated by the definition of the directory tuple. Rach
drs tuple sent on the upsweep therefore represeﬁts a class of parse trees which |
conform to the structure implied by that tuple. The merge operation which {}
must reflect is the joining of two such_parse tree classes into a new one, and thé
.representation of the result with a new directory tuple {i.e., drs %ralue). Figure
3.40 shows the two drs tuples that are recei{red by the top area node of Figure
3.38, and portrays the partial parse trees that are implied b.y. these tuples. The |
ldrs tuple is the relative directory of "b", é.nd the rdrs tuple is the relativé

directory of "¢".”

* These values are easily caleulated using the definition of the directory tuple (within the
confines of the respective subtrees}. What we must discover is how to define { so that
these values are actually sent during the upsweep.
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FIGURE 8.40 - Before Mergiﬂg Partial Parse Trees
in o ‘ (
1 < | <
3 a b c
ldrs=[2,1,2] rdrs=[0,1,1]

Note that the parse tree class implied by idrs in Figure 3.40 does not
include nodes for all the operator symbols of the actual RA. This is a result of
the limited precision of ldfs, the relative directory of "b". Truncation eflects are

absent because no 'symbol of the RA is nested deeper than three levels.

During the upsv;reep, partial parse trgeé- repreéented by idrs and rdrs are
merged in the obvious way -- by connecfing tht.am‘ aécording to their implied
levels. The dotted line in Figure 3.40 illustrates this, and Figure 3.41 shows the
resull of merging the partial parse trees of Figure 3.40. The rightmost symbeol in
the result is ", and from the definiticn of the directory tuple we know that ite
relative directory is {2,2,1]. For completeness, the partial parse tree implied by

a directory tuple of [2,2,1] is shown on the right in Figure 3.41.
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FIGURE 3.41 — After Merging Particl Parse Trees

merged partial parse trees résulting drs tuple | partial parse tree
(zelative directory for ¢} represented by drs tuple

( -
< / \ drs=[2,2,1] < / \<'

AL N\
AN,

We now give a procedure to calculate the result of the merge operation (0 on

two directory tuples Dl and Dr'

7o get result tuple values, from lefi to right add Dl and D, directory
values (dlj + d ) to produce cowespand'mg result values, w?th the fol-
lowing emce'ptwn after the first non-zero d velue has been encountered,
Jollowing d, values are the correct correspand@ﬂg resull values.

This procedure producés the correct result of [2,2,1] for the example in
Figures 3.40. That it will always produce the correct result may be seen from the
following reésoning. The objective of Q is to produce the directory tuple of the
rightmest symbol of two merged partial parse trees, and an rdrs value is aiready
the correct directory for this symbol within the context of its containing
subtree. The dj values following the first non-zero rdrs directory entry therefore
require no modification when the left context implied by Idrs is also considered.
This is because the definition of the directory tuple requires that d. values

i

represent a count of level j symbols only within the scope of the last symbol at
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level j-1. Leading zero directory values preceding the first non-zero rdrs
directory entry indicate that the c.orresponding parti_al parse iree has no
symbols at these levels. In this case, therefore, left context symbol counts
represented by the Idrs directt_)ry tuple should be included in the resulting drs
tuple because the symbols repr'esented- by the rdrs tuple must-ﬁe within the
scope of sequence symbols located in the left context.” The result
_ corresponding to the first. non-zero rdrs value requires addition since, as shown
in Figure 3.40, this symbol should be counted along with others at the same level
_that are within the scope of the last symbol with less nesting {which symbol, if it

exists, is in the left context implied by Idrs).

" Thus, on the upsweep, in order to always send up the relative directory of

the rightmost underlying symbol, a general node i should send

a'.'rsi = I.af'.\"s,i 9] 'rdfrsi

with Q computed as described in the above procedure. Figure 3.42 shows how
the ldrs and rdrs relative directories for two subtrees are used by their parent
to determine a drs relative directory. This figure also portrays the scope of the

relative directories involved.

_' In the procedure for calculating {1, eddition of leading zero rdrs directeory values to the
corresponding ldrs values to produce a resull is equivalent to simply using the idrs
values. :
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FIGURE 8,42 — Directory Upsweep Compulntion

ldrs | : rdrs

A

e
| N

drs = Idrs ) rdrs

With the merge opera’cion taken care of, and thus our inductive hypothesis,

all that is left for the upsweep is a basis step. The definition for the directory

tuple indicates that-the correct directory tuple, d'rsa, for an lcell symbol is

7o dn}.'whe're

dj=0f07'j 7 rin
deI Jorji=rin
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Figure 3.43 shows the example of Figure 3.38, and includes the drs tuples

“that are calculated within each area node during the upsweep.

FIGURE 3. 43 ~ An Example Upsweep

- 12,2,1]

[1,2,0]

[1,0,0 [0,2,0] - [1,1.0} 10,0,2] [0}1,1]

o [000] [£00] [01.0] [0,L0] [1L00] [0.1.0] [0,01] [0.0,1] [0.10] [0,0.1]
I= . v] [< < a b < c

0 1 2 2 1 2 3 3 2 3

With leells and area nodes behaving as described above, P,(0) is true (the

é

rln tuple sent up by an leell is the correct relative directory of a contained

symbol), therefore, by induction, P (toa-1) holds as well. At the toa, then,
following such an upsweep, we know the correct directory for the rightmost
symbol of the left area subtree (it is ldrstoa sines there are no RA symbols to
the left of the left area subtree to change this value}. Since this directory tuple
is correct with respect to the entire RA we call it the true directory for the
symbol of interest. Also, since there are no symbols to the left of the left area
subtreé, we know the true directory for the rightrmost of these symbols {(there

are none, so it is [0 ... 0], vacuously).
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3.4.3.2.2. Downsweep

For the dowﬁsweep, assume the ldrs values have been saved by the nodes
during the preceding upsweep, and let P4(k) mean that the tuples sent to left |
and right children of levél k nodes correctly represent the true directory of the
rightmost symhbol to the 1_eft of their subtree. Call these tuplés ieft__tdrii and
'right_;drli {where tdrl stands for "true directory of the rightmost symbol t.o the
left"). If Pd(k) is true, and each node at level i=k-1 receives the resulting tuple
passed down by its parent';a.s tdﬂi, and then sends to its left and right children

the values

left_tdrl, = tdrl,
right_tdri, = tdrl, 0 ldfrsi

_then Pd(i=k~1) also holds.” This establishes an inductive hypothesis for the

downsweep. Figure 3.44 shows how the idrl tuple passed down by' a parent and
the saved Idrs tuple are used to determine the values to be passed to subtrees.

Also included in this figure are the scopes of the relative directories involved.

* The reasoning is similar to that used for the upsweep. The received #drl tuple indicates
the directary of the rightmost symbol to the left of the subiree of the receiving node, and
the righi_tdrl (tc be sent to the node’s right child) must indicate the directory of the
rightmost symbol of the left child subtree. Therefore the partial parse trees repressnted
by tdrl and the saved Idrs tuple are merged to produce this result.
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FIGURE 3.44 -- Directory Downsweep Computation

torl ,
tdrl € Idrs ,

An inductive base is provided by the toa, which sends down left_tdrltoa =
[0... 0} and é'ight_tdrltom = Idrs,, . Since .Pd(toa) is true {as noted at the end of
the upsweep discussion), P4(0} also holds by induction. Since at level 0 {the leell
level) the value that would be sent down as right fdrl 0 is the true directory of |
the symbol stored therein, this tuple is the desired LLPL environment directory
tuplé.* Of course this directlory tuple is not passed down further, but is kept as

the lecal LPL environment directory tuple,

°_'The leells use & 4., for the ldrs value to merge with the received tdrl value. This is
correct, because at the lcell level there is but one symbol te consider.
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FIGURE 3.45 — An Ezumple Downsweep |

10,0,0]

[1,2,0 L0 212

() @

0,00 [L00] [L00] (L0 [1L20] [200] L0] 211 210 22,0

( < X Tyl |< < a b < ¢
0 1 2 2 1 2 3| |3 2 3
[0,00] [1,00] [1,1,0] [1,2,0] (2,00 [2,1,0] [21,1] [212] [2.2,0] [2,2.1]

Figure 3.45 continues the example of Figl’lre 3.43 by showing the left._jdrl
and right_tdrl tuples that are sent during the downsweep. Tuples in this figure
ére displayed above the area nodes to which they are sent. Tuples beneath the
leell array are the correctly comﬁuted directory values  for the LPL
environments. While examining this ﬂgure, recall that the tuple value received
by a node represents the context to the left of its complete subtree, and the idrs
fuple that is held within the node (shown using a compressed format with no
brackets or commas) represents the left child context. The Idrs values used by
thé lcells to finally determine the directories are not shown, but are implied by

the rin values lecally stored.

Figure 3.46 gives the portions of the lcell and area node directory creation

algorithms responsible for creating the directory tuple. As can be seen, there is
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FIGURE 3.46 — Algorithms for Direclory Tuple

lcell.build-directory() /* the directory tuple portion */
t

char *dir = user->directory; shoert i;

/% wpsweep - establish inductive base */
for(i=0; i<DLEVELS; i++) /* send up correct drs tuple */
area tail->put({*(dir+i) = (user->rin==i+1)?1:0));

/* downsweep — use inductive hypothesis to terminate */
for (i=0; i<DLEVELS; i++) /* recetve tdrl and merge */
if (i<user->rln) ¥(dir+i) += area_head->msg();
else area_head->get{&garbage);

o
node_}ﬂgr.build..directory() /* the directory tuple portion *~/

¢
char tdrl, rdrs, 1drs[DLEVELS], zeros, i;

7* upsweep - get ldrs and rdrs tuples and merge */
zeros = TRUE; /* ¢ll rdrs d have been zero so for */
for (i=0; i<DLEVELS; i++) { }
ldrs[i} = lnp.head->msg(); rdrs = rnp.head->msg();
if {top_of_area) np_tail->put
{{zeros)?rdrs+ldrs[i]:rdrs);
zeros &= (rdrs == Q};

!

7 downsweep — get tdrl and send left- and right-tdrl */
if (top_of_area) for (i=0; i<DLEVELS; i++} |
% must start downsweep ¥/
Inp_tail->put{0); /% left-tdrl for toa */
rnp-tail->put{ldrs[il); /* righi-tdri for toa */
i _ ‘

7 st condinue downsweep */

zeros = TRUE; /* all ldrs d have been zero so far #/

for (i=0; i<DLEVELS; i++) |
idrl = np_head->msg();
lnp_tail->put{tdrl); /* lefi-tdri
rnp_tail->put{ At righi-tdrl */

: - {zeros)?ldrs[i]+tdrlidrs[i]);
zeros &= {ldre[il==0); }

else |
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3.4.4. Calculating the Specification for Storage Management

The algorithms uséd for caleulating the specification for " storage
management involve support by lcell managers and icell managers, as oppos_ed.
to the use of node managers fqr directory creation. The method used involves an
upsweep and downsweep of information through the eni_:ire tree, and can. be

analyzed in the same way as directory creation. Figure 3.47 summarizes the

information flow.

FIGURE 3.47 - Caleulating a Specification for Storoge Managemend

Downsweep

fer; | tery left_be.

Both upsweep and downsweep use information tuples composed of two
values. On the way ﬁp, the information sent is thé capacity of a subtree (i.e., how
rﬁany Icells. are in the subtree), and the storage requests of a subtree (i.e., how
'many Icells are required by the local FFP text and executing LPL contexts for
the next execution cycle). In the downsweep, shift values are sent to describe
_the number of lcell user contexts that should be shifted into a subtree through
its left leell boundary, and the number to be shifted ocut through its right lcell

boundary. These shift values are signed; positive values indicate right shifting,
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and negative values indicate left shifting. When the shift values reach the lcell

level, they form the specification for storage management for each lcell.

3.4.4.1. Upsweep

For the upsweep let Pu(j) mean that each node at level j of the tree of
processors sends up to its parent the correct capacity of its subtree, and the
corre.ct request total from its underlying lcells, Call th.ese values capj._ and *reqj.
and their combination into a tuple c'rj. Now, if Pu(j) is true, and every node at
level i=j+1 receives the resulting values passed by its left and right children as

-lcrq.l and rer, respe ctively, and then sends up

cap, = loup, + reap,
req, = lreq, + rreg,

- then clearly Pu(i:ﬁ 1) holds as well. This establishes an inductive hypothesis for
the upsweep. An inductive base is provided by the lcells of the machine, which

send up values as foiiows:

cap, = 1
req, =
{leell empty) =0
{otherwise) - usercontext, forkn*

Since Pu(o) is therefore true, Pu(io-l) is also true by induction. At the io node,
then, fellowing such an ups;»veep, we know the capacity of the entire tree, and

the total number of leells requested for the next cycle,

* As stated earlier, execution of an LPL fork statement modifies the forkn context vari-
able which starts every active execution phase with a value of one. Non-active leells al-
ways send one.
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3.4.4.2. Downsweep

For the downsweep, assume thaﬁ the lor and rer tuples have been saved by
the tcells during the preceding upsweep, and let Pd(i) mean that the numbers
sent down to left and right children of level 1 nodes represent boundary
. conditions that allow feasible solulions to the storage .management problem
within their respective subtrees. Call these boundary conditions left_bci and
?"‘ighf...bc.i respectively, where a boundary condition is a tuple composed of. a
left __eﬁtry and a ﬁght'_deparfure value. |

By feasible solution, we mean that there exis’ts a solution to the.stora.ge
management. problem Io.cally within a c¢hild subtree that is consistent with the
left and right boundary conditions which the subtree tcell root receives from a.
parent at level i+1 a_é bc,!.', Figure 3.48 shows that a solution to the storage _
management problem For a subtree rooﬁed’ at level i is represented by a singie
-tfansfer value, t'z',' that describes the direction and amouni of context flow that

should take place on the [cell shift register that jeoins the two child subtrees

~rooted at level i-1,
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FIGURE 3.48 - Transfer Value Solution for Sterage Management
bci

entries | departures

entries

departures
/pamues exh)_
left~bci _ nght.bci

As shown in Figure 3.48, once t-l_, a solution for storage management, is
computed by the tcell at level i, it can send off left_bc and righi_bec tuples to its

left and right children as follows:

left be, =
lefi_eniries = bo,left_entries
right_depariures = I,
right_{ bo, =
lefl_entries =t
righl_deporiures = be 1.’,f.r"igrht__dlep ariures

Calculation of t; is analogous to the downward merge functions of directory

creation. Let us therefore define the transfer function {call it T) as a function
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that takes three tuples (11:':::i and rre; from the upsweep, and bci from the
downsweep) and produces a t; that specifles the transfer of contexts between
the two subtrees of a teell. This funetion is not unique; a variety of approaches

toward allocation of lcells to user contexts is possible.

Our approach is that suggested originally by Mago [Mag78] -- contexts are
moved between left and right surbtrees of a teell only if absolutely necessary,
and then the minimum possible number of contexts are shifted. This heuristic
reducer information shifting betw_een subtrees. It therefore avoids total
com-pactidn of contexts within adjacent lcells, which is important to an eﬁicienf
storage management phase. As will be discussed in Chapter 6, the method is not
'op_.tirneil in mini'mizing the maximum distance for symbols to be shifted, but it is
efficiently implemented with a ‘minimumraf information ﬂo.w within the tfee. In
any case, it is not clear that a locally optimal storage management during one
phase will necessarily produce'the best long-term performance bvér a number

of cycles. More study of this tradeoff is required.

Figure 3.49 presents the procedure presently used to calculate the transfer

funetion.
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FIGURE 3.49 — Calculation of the Transfer Function

I'(ire,rre,be)

if Irc.capacity >= (Irc.requests + be.leftentries)

/* no need to shifi right between subirees */
"if rre.capacity >= {rrec.requests - be.rightdepartures) .

/* no need to shift between subtrees */
['=0;

else /* need to shift left between subirees */
I' = rrc.capacity -
(rre.requests - be.rightdepartures)

else /% need to shift right beiween subtress */
I'= (Ire.requests + be.leftentries) - Ire.capacity

With the merge operation taken care of (i.e., calculation of the
t-l = P(lrci,rrci,bci.)), and with the resulting leftmbci and right_bci thus
determined as shown in Figure 3.49, the inductive hypothesis for the downswéep

is established, and all that is left is est'abiishment of an inductive base.

The left__bcio tuple goes to the vim subsystem, and lc'i‘ght___bc.10 tuple goes to
the processor tr'ee. Calculation of the transfer function at this level is done with

be.left_entries and be.right_departures both implicitly zero.

~ A heuristic used to determine a L; value (required to starl the downsweep)
need only generate feasible boundary conditions for the vin subsystem and the
processing tree, and ocur approach is as follows. Overflow from the proéessing
tree must be accommodated by the vim Subsysterﬁ., so if there is overflow, by s
set to the amount of overflow required (actually its negative, to indica{:e left

shifting into the vrn subsystem}. If overflow is not reguired, as much previous

* This is another way of saying that the vm subsystem is self-contained so no symbols
enter it from the left, and there is no shifting out of the right boundary of the processor
tree.
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overflow as possibie is returned to the ?rocessdr tree by shifting right from the
vin subsystem. If there is enough further room in the preocessor tree to hold the
next program, it is also shifted in. To perform this calculation, the io subsystem
needs the er,, tuple received from the root of the processmg tree, and the
number of overflowed contexts and size of the next program held by the vm
subsystem.=t Figure 3.50 shows the resulting preparation for storage

management downsweep as seen within the io subsystem

FIGURE 3 .60 — Starlinyg the Dounsweep of Preparation for SH

io.prep_for_sm()
t ' ' :
/* pick vp copacity and requests from Magoe tree */
capacity = em_head->msg();

regquests = cm-head->msg();

available = capacity - requests;

/* pick up overflow aend next program stze from Vi */
overflow = vin_head->msg(};
‘nextsize = vm-head->msg();

7% caleulate o feasible transfer soluiton */
if (available <= 0) /* forced overflow */
transfer = available; )
else /*we have room for right shifting */
if (overflow+nextsize <= available)
transfer = overflow+rexisize;
glse
if (overflow <= available)
transfer = overfiow;
else transfer = available;

/7 tell the tree and VI gbout it */

em-tail->put(transfer); 7% left entries into processor free */
cm.tail->put(0); #% mo vight departures from tree ¥/
vm-tail-»put{transfer); /* right depgrtures from vm */

* This approach avoids total compaction of FFP symbols within the leell array, and is sa-
tisfactory for simulation of single programs. An effective heuristic for handlmg multiple
user programs would be more flexible in the entry cf new programs.
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The start of the downsweep of preparation for storage management -
described above,. and shown in Figure 3.50 -- is clearly a feasible solution,: so
Pd(io) is true. Thus, by the inductive ﬁypothesis established above, Pd(l) holds
as well. Thus the values received at level 0 (by the lcells) are the desired local
speciﬁcation‘s.for storage management; lcells shift bco.left_entries in through
their left boundaries, and bco.right_departures vut . through their .I‘ight .
boundaries. Figure 3.50 showed the io subsystem algorithm. The lcell algorithm.
for preparation for storage management (followed by the top-level of the
ensuing storage managernent phase) is given in Figure 3.51. The tcell algorithm

used in preparation for storage management is given in Figure 3.52.

1
FIGURE 351 - Leell Preparation and Storage Monagement

lcell.sm_prep()

¢
7* upsweep */
/* first the available leells —-d.e., capacity */
em-tail->put(1);
/* then the number requested */
em_iail->put({user->state==EMPTY)?0:user->fork.n);

/* downsweep */
left_entries = em_head->msg();
: right_departures = cm_head->msg();
; .
lcell storage.management{)

¢
while (lefi_entries<Q) | emit(0); left_entries++; |

while (right_departures>0) { emit(1); right_departures--; }
loaddocal(});
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FIGURE 3.62 — Teell Preparation for Sto'rcige Manogement

teell_mgr.prepare_sm_up._dn{)

E .
/¥ upswesp */
lemn_head->get{&lcap); rem_head->get(&r_cap);
em.tail->put(lcap + r—cap);
lem_head->get{&1l req); rem_head->get(&r_req);
em_tail->put(lreq + r_req);

/* downsweep */
em_head->get{&l_entries): em_head->get(&r_departures);
lem_tail->put(l_entries); /* left eniries for left child */

if (Laveilable>=({Lrequested+l_entries)) /* no right shift */
if (r_available>=(r.requested-r_departurses})
§ 7% no left shift either ¥/
rem-tail->put(Q); /* right dep left child */
lern_tail->put{0); /*left ent right child */
i
else | /* no right shift, but must shift left */
rem-tail->put
{r.available-{r_requested-r_departures));
lem-tail->put S
(r.available-{r.requested-r.departures));
]

else | /* must shaft right */
rem_tail->put{lrequested + lLentries - Lavailable);
lem_tail->put(lrequested + Lentries - Lavailable);

]

/* right departures for right child */
rem-tail->put(r-departures);

3.5, Summary

. This completes the discussion of the DOT implementation. Thé overall
strategy and operation of the different phases of the machine cycle was
introduced, .and the process structuring of the multiprocessor cells was
detailed. In addition, the most important algorithims used by these processes to

coopefatively implement the phases of the machine cycle were described.
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Of these algorithms, partitioning is the most.complex in terms of its ClassC
representatior_x. and numerous examples were givén to illustrate our seolution to
this difficult design problem. LPL message handling was detailed, and the
different types of message packets were presented. Finaﬂy, the algorithms for
direc’.cory creation and préparation for storage management were examined, and
shown to be fairly simple. These algorithms require only small amounts of ClassC
code for their representations, and correspbnd direcily to the inductive

reasoning used to establish their correciness.



CHAPTER 4

Sirnulating DOT

4.1. Introduction

Chapter 3 pres_t’anted ‘an implementation model made up of relatively
ihdependent. asynchronous cellular processors connected via point-to-point bus
links to form a binary tree. The primary role of the DOT representation is to
prdvide a formal and unambiguocus description of this model. An important and
beneficial result of such a representqtion is the aid it provides in reasoning
about design decisions and the operational 'characteristic-s they imply.
Expressing ideas in a precise and unambiguous form often highlights errors and
points out areas for which concern has been lax or.omitted. This has certainly
been confirmed by our experience with DOT. Repre_sénting DOT thus provid.ed a

Irase for the early stages of an iterative design process.

Since the language used to represent DOT is executable, the above benefits
are extended to provide even further assistance to the design proceés - during
later phases of the design cycle -~ through simulation of t'he‘impleme'ntation,
and, in fact, emulation of the complete programming system v&hich it
supports.‘ Architecture emulation, in turn, allows further iterations of the
overall design cycle. The LPL architecture is the result of such design

iteratiomns.

¥ This requires the construction of two anecillary programs: assm, an assembler for ILPL
source programs; and mkusr, a program to collect FFP user programs inte a form ap-
propriate for loading inte the vin subsystem.

201
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4.2. The Place of Simulation Within the Design Cycle
Shannon gives the following definition for simulation [Sha?5]:

"Simulation is the process of designing o model of ¢ system and conducting
experiments with this model for the purpose of either undersiaonding the
behavior of the system, or evaiualing various stroafegies for the operalion
of the system."

Thus, in addition to representing a design, the use of a simulation language can

assist understanding and supply a means for evaluation.

Shuté déscribes the role of simulation in the deéign and study of
‘multiprocessor systems [Shu83)]. He identifies major objectives of simulaticn,
angd lists the important properties of simulation that can be used in meeting
these objectives. Figﬁres 4.1 and 4.2 summarize these important aspseects of
simulation. Subsidiary benefits of simulation given by Shute are listed in Figure
4.3. |

In an initial design, attention to specificity and clarity of expression is

paramount. I a simulation model is expressed at the chosen level of detail

FIGURE 4.1 - Objectives of Simulation

s Specifying the Operation of the System

« Understanding the Operation of the System
« Vaulidating the Design

« Colculating Performance

« Oplimizing Performance

FIGURE 4.2 -- Properties of Simulaotion

» Unembiguous Description of the Design

o Discipline of Designing in o Rigorous Fashion

v Ability to Test the Design

» Abitity to Fmulafe the Mochine

« Predictable, Repeatable Noture of Digital Processing
» Kose of Duplicating and Modifying Computer Dote




203

FIGURE 4.3 — Subsidiary Benefits of Simulation

s Documentation

» Fncouragement to bry out Alternalive Ideas

« A Cushion against Production Errors _

» Provision of a Soffware Substitute for Hurdware

during this stage, the désign can undergo several modifications simply because
syntaetic errors are reliaialy captured through the use of a language compiler.
Once the .simula.tion is runhing, insight into.the actual working of thé design-
Vbecomes available, and semantic checks may bé used to discover operatienél

errors or further confirm the validity of the design.

Given semantically correét operation, the simulation can be used in concert
- with formal or informal analytic performance models to further iterate on the
design process. This phase may involve modifying of the design to a.chieve
ﬁerformance in accordance with exﬁectations {e.g., errors in pipelining may be
discovered in the design), or it may involve modifying the .analytic model to
more realistically express the restrictions imposed by the design and reflected.
‘in its simulation {e.g., perhaps a pipe cannot alwayé be kept full). Finally, ;ct
cormnplete and operational system can be emglated, allowing programming aﬁd
user evalualion, leading to architectural modificalions and reentry into the

| “overall design eycle.

The progress of a design performed in this way moves iteratively from the

initial design concept through the following slages:

1) unambiguous design representation,
2) valid design, o
3) efficient design, and finally

- 4} overall architectural modification.
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4.3. The Cost of Simulation

From the above, it is clear that simulation has a great deal to offer over the
hardware oriented approacﬁ of "let's build it and see”. As processors beqcme
more and more compiex, and the imporiance of niultiprocessor designs is
enhanced by VLSI and .wafe.r—scalé intégration, it will rapidly become
| economically unfeasible to approach the design process without the éid of
simulation., Simulation Iaids the design process, making it an accountable and
verifiable procedure. What are the disadvantages of simulation? These may be

characterized in terms of cosft,

' First, there is the initial cost of the simulation package that is used.
Simulation - may be ﬁerformed at a wvariety of levels: from top-level
implementatibn simulation, as we have done here, to register-transfer—ie\}e.l
(low-level implementation) simulation, to circuit-level (realization) simulation.
While we use a general purpose language for our simulation, and thus amortize
the cost of the compiler product over many users, the spécialized conecerns of
-.registér-transfer—level and circuit-level simulations"are of use te a more
restricted set of users. Nevertheless, the alternative cost of - hardware
fabrication may make these specialized packages attractive in price. In
raddition, the existence of satiéfactory simulation languages for each of these
levels seems to preclude the necessily for prototyping until a late stage of

system development. *

Additionally, there is the cost of writing and debugging the simulation, the

cost of using the package to generate. results, and the cost of analyzing resuits.

* Shute mentions the lack of a means of easily moving from cne level of simulation to

-another. This would be desirable from the standpeint of stepwise refinement of design,
bul would require either a simulation langnage of extremely wide scope, or automated
translation mechanisms. At present, the only feasible apprcach weuld seem tc be offline
develcpment of analytic models for lower level systems to be used within the simulation
model of the next higher level
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Aithourgh it is reassuring to observe the design of a system actually working,
simulaticn can be very costly in terms of execution time -- especially fof
extensive lower-level simulations in which large amounts of detail must be
explicitly handled. Even for iop-leﬁel implementation simulations such as we
use, massively parallel multiprocessor architectures can be very .costly to
simulate because of the large number of individual components that are present
in the model.” |

Validity of design may be established fairly inexpren'sively, even granting é
large nurﬁber of offline design iterétions to elimiﬁate semantic errors. This is
because sﬁch errors are quicklj discovered anﬁ at relatively low cost.
Optimization of performance, on the othér hand, may require more detailed and
extensive simulation runs, employing a wide variety of data and runtime

configurations.

Shute pointé,out another disadvantage of simulation: the suspicion of users
in general, and compt’;ter sciéntists in particular, concerning the correctness of
cutput from a computer'. Doubts as to ﬁhe correctness of simulation resulls
must be answered with a scrupulous concern for the scope of the simulation
(thus clearly delimiting the area of applicability of the simulation), and when
possible, with an analytic model based on the overall design concept. that
corroborates the results of the simulation. In our case, use of an analytic medel
was feasible, and cormparison of initial simulation results Wit‘fh predictions of the
analytic model pointed out errors in the design that were performance oriented

rather than semantic in nature.

¥ Lower-level implementation or circuit-level simulations for large multiprocessors can be
prohibitively exzpensive. Leung, et. al. [Leu?8] have noted this preblem in cornjunciion
with packet-switched ecommunication architectures to support datafiow languages, and
suggest the use of multiple microprocessor modules to emulate the behavior of groups of
system units.
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The scope of the DOT simulation is the topic of the remaining portion of this
chapter. The analytic model that supports and is in turn supported by the

simulation will be described in Chapter 5.

4.4, Introducing Global Time into DOT Operation

Within DOT. there is no a-priori concept of a global time because of the
asynchronous ‘natufe _ofr the processing cells. How, then, is. the .ongoing
operation of the model during its execution communicated to the designer in
useful terms? Building in a kno{vledge of global time musti be approached with
care, siﬁce this is not part of the implementation and DOT is, first and foremost,
an implementation model. It is therefore necessary to create a "meta-level”. for

the DOT simulation in which the concept of global time is recognized.

4.4.1. Discovery of a Critical Path

One apﬁroach might be to seek the critical path within each machine cycle.
Each eycle may be considered to begin and end with the calculation of the
specification for storage management within the io subsystem. For each such
cycle there is a critical path associated with the return of information required
for the next storage management calculation. The time associated with the

critical path is the cyecle time for that particular cycle.

Unfortunately, because of the asynchronous and data-driven character of
the machine, this critical path will move with data from process to process, and
migrate up and down between cells of Lthe machine. Tracing machine execution
in this way to obtain the required information, perhaps through the use of

. timestamps associated with déta, would be a difficult task.

To achieve the desired simulation accuracy, we use a technigue based on’

discrefe avent simulation. Current approaches to discrete event simulation miay.



207

be divided into two classes: eveni-scheduled and process-inferaction modeling
[Law82]. The approach we use involves a.combination of these two common

simulation techniques.

4.4.2. Event-Scheduled Modeling

In the event-scheduled .app'r.oach, a system is modeled by identifying its
characteristic events, and routines are %ritten that iniplem_ent the appropriate
state changes éssociate.d with each event [MarB0]. A simulation then évolVes
over time .by executing eventis in increasing order of their time of occcurrence.
Thus the passage of global time "drives" events, which in turn "drive” thé model.
Within | our model, the highly parallel and asynchronous nature of the
components prevents an a-priori knowledge of state change‘s as a function of

events ordered in tirrte, so this approach is not directly applicable. -

~ 4.4.3. Process-Interaction Modeling

in thé proc_ess—interaction approach a system is modeled by explicitly
representing the entities that drive state cﬁanges (ie., 'prqce'sses), ‘and
‘providing a mechanism for these entities to communicate the progress of global
time (and the enabling of other processes) to a scheduler [Laﬁaz, Fra77]. In
this case, model processes drive events and_explicitiy define the passage of
global time. This requires a mapping beiween individual process activities and
the progress of global time.' Our desire to separate £he processes of the
implementation model from concern for global time prevénts direct use of this
approach as Well.. Since processes of the DOT model are not aware of time, there
is no direct way for processes of the DOT model to schedule other .processes with

respect to a global time.
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4.4.4. Process-Interaction with Implicit Events

With appropriate assumptions, an appr;)ach based on a mixture of process-
interaction and event-scheduled simulation is possible. This approach has been
recently used to support simulation of a packe£ sv}itching network by Aggarwal
fAggB2]. In bur case, the process-oriented view corresponds well to the way in
which the executable_ model is represer}ted, and event-scheduled sirnulation

provides an attractive alternative to discovery of critical paths.

We therefore incorporate implicit event-scheduling on top of the data-
driven process scheduling already present. First, a set of events that may be
sequentiélly ordered in glob‘alrtime must be identified. Within our meodel, the
natural events to focus upon are those'involving communication of information
between cells of the architecture. This is because, as a first approximation, the
primary overhead associatetl with processing on -this machine is the time

required for communication between cells.

We deﬁne. an event as the parallel transfer of information out of all cells
that wish to send at that (global) time. The interval between such events is
- taken to correspond to the time it takes a cell to perform reqﬁired internal
processing after receiving a message, and then send_a byte (the basic unit of
information exchange in the model) through an intercell communication
channel (i.e., a cqueue object).”

The system times available with this approach represent a count of the

number of parallel communication transfer events that have cccurred since

machine initialization. An estimate for the time between events might be 7 =

¥ This simplifying assumption is justifled during mest of the machine’s operation. Az
shown in Chapter 3, the basic operations of DOT are pipelined. The possible exception lies
within the leells, which may perform expensive operations within messags filters, thus
slowing the rate of message movement through an active area. Without a more detailed
model of the lcell realization, therefore, the assumption of uniform internal processing
time between messages is reasonable.
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100 nanoseconds.” Times reported in simﬁlations should be coﬁsidered to be
relative to such a rnultiplicative.factor. _The resulting level of simulation exactly
matches that used by the analytic model, which is also based on counting
parallel message transfers. qurespondence between the level of the analytic

model} and the simulaticn model is important when verifying the efficiency of the

design.

4.5. Implementing Implicit Events

Having defined our events, it remains to guarantee that each process that
should participate in an event will do sé. This is done by quifying the cqueue
class (the only means of communication between cells) to provide scheduiing for-
these events. All processes that wish to send information (during the next
event) accumulate on a queue. Only Whre-n the model becomes guiescent do'e_s
the event finally occur, incrementing the global simulation time and allowing

accumulated processes Lo then send their information effectively in parallel.

Implementing the desired simulation facility is straightforward in ClassC.
ClassC employs a top-level process scherduling rﬁechanism similar to that used
by SIMULA [Fra?7], and i)rovides a delay primitive that allows other processes to
catch up to a process thé.t delays itself. When all processes have caught up to
the delayed process, it is once again eligible for schéduling. The basic jdiﬁerencej
between process interaction scheduling, as explained above, and our method is
that no DOT process ever does an explicit delay within the scope of its
representation. With this approach; the DOT process representations are cleanly

geparated from aspects relating to their accurate simulation in time. Figure 4.4

' Of course, this time is dependent on, among other factors, channel widths and the tech-
nology used to realize processing cells and intercell data channels. Aspecls pertaining to
realization are not within the scope of this dissertation, but this estimate seems reason-
able given present VLSI technology. '
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shows the event scheduler that was added to support simulation, and Figure 4.5
shows the DOT cqueue gtailput entry after its modiflcation to provide implicit

events for communication.

FIGURE 4.4 -- The DOT Fuent Scheduler

/*
This task inferfaces with the classc delay mechanism in order fo
implement the clock lick evenis that the gtoil puf mechanism uses.
(I eddition, a message is printed every thousand ticks to aid in
recognition of deadlock situations.)

Y

evenis.new(event)
class abject *event,
¢
cyele §
delay(1);
if ((clockZ1000) == 0) printf('events: clock=2d" clock);
eveni->alert ();

5
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FIGURE 4.5 - Qtail. put Implements [mplicit Fuents

/¥ |

The entry used by a process thaot sends dato belween cells.

*/ )

gtail.put (m)

char m;

2 | o
event->remember(thistosk); - /* pay the price in time */
thistask->sleep(); '
event->forget (thistask); _
putfree(m); ) /* then lransfer message */

j

void gqtail. putfree(m)

char m;

§ .
mMESSEQGe->Mess = m, : /% put message info object */ |
(message->sig )->remember(thistask); /* remember this task */
z_tail->put((class object * )message); /* initiate lransfer */
thistask->sleep(); /* sleep until receipt */
(message->sig )->forget (thistask); '

}

4.6. Simulation Output

;lfhe complete DOT model representation includes 25 classes. These inéludé
the process classes {or tasks) discussed in Chapter 3, and the.above .event
handler. When the_ model is executed, a tree height parameter is given, and the 7
requifed number of these clasSeS are instantiatéd and conneéted to form a
machine of the desired size. As the processing cells of the resulting DOT
machine ecome alive, operation begins with partitioning of the machine in
response to the (initially empty) Icells. The following preparaticn for storage
management then detects the availabie lcell array capacity and the wvm
subsystem shifts in FFP program text as aépropriate during the ensuing storage
management phase. Execution then continues with partitioning and successive.

machine cycles. DOT models for machines containing hundreds of lcells may be
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created and observed within computationally reasonable time 'periods'.

4.6.1. Tracing Machine Operation

The ClassC runtime support package maintains a globally available variable
called clock that contains the currgnt simulation {ime, and each process within
| the DOT meodel has a unique PI‘OICBSS id maintained by the ClassC task scheduler
{known locally bjr each process as thistesk). As the DOT design progressed, trace
statements for the | proéesses were written to allow them to record their
progress and signal the simulation times of important events. These statements
serve the dual function of supporting debugging of the DOT machine's execution,
and because of this fact they are pervasive throughout the entire ClassC model

representation.

As a result of this approach towa-rds fracing operation of the machine, it is
pussible to literally pick. apart the detailed operation of the machine from
whatever vantage point is desired. A wide range of precision is available,
Conditional assembly of trace statements allows selection of the desired
information from the huge mass of detajl potentially available during. fhe

execution of a large model instantiation.

This highlights an important aspect of simulaticn: arbitrary precision
(within the limit of the time grain used) may be employed io zero in on design
errors once a problem.is' detected. Digital simulation is entirely repeatable, so
repeated runs at ever finer levels of detail are possible with reproducible
results. This flexibility would not be available in a hardware prototype, and this
peints out the importance of carrying an initial simulation approeach a.s far és

possible.

We now give examples of the information available from process tracing.

The trace for these examples is at a fairly high level, and brings together
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information concerning the overall machine cycle and its three phases. Two
listings are given. Both depict process activity during execution of the example
FFP program given in Figure 4.8. The first trace listing ié ﬁltered,.and provides
brevil:y by omitting all but the first of a succession of messages that refér to the
same thing. .As seen from the second listing, .wh‘ich. only displéys a portion of
cyele 1, such filtering ‘is guite effective while retaining useful information. For
each trace message, the involved process identifies itself by giving its class type
(e.g., leell) and a unigue process id {the value of thistask maintained by the
CLassC process scheduler), and then provides informative data, such as'.the_
beginning and ending times of an activity (displayed in B_rackéts: [begin-end]},

or the present simulation time. .

FIGURE 4.6 — Filtered High-Level Troce Oulpul

machine.new: starting up with cleck=0

lcell(372168): partitioning[C-10] duration 10

io.prep_sm: sm.grant, sending stop message for cycle 0, clock=16
lcell{427704).sm:(4:4) [37-52] duration 15

io—input: got pgm request = 8, clock=105

lcell{466988): partitioning[37-107] duration 70

Icellinp{169080); starting interpreter. clock=139

leell msg(R54084): user’'s message has returned. clock=242
io.prep.sm: sm-grant, sending stop message for cycle 1, clock=248
leeil(126992) . sm:(40:0) [276-278] duration 0

iosinput: got pgrm request = 12, clock=302

1leell(471952); partitioning[278-303] duration 27

leellinp(374972): starting interpreter. clock=335
leellmsg{359284): user's message has returned. clock=381
io.prep_sm: sragrant, sending stop message for cycle 2, clock=389
icell(126992).sm:(40:0) [413-413] duration 0

io-nput: got pgm reqguest = 4, clock=427

leell(486988): partitioning[413-4297 duration 18

leell inp(129796): starting interpreter. clock=461

leall msg(398568): user's message has returned. clock=507
ic.prep_sm: sm_grant, sending stop message for cycle 3, clock=515
-- Machine Empty -- halting execution
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FIGURE 4.7 — Unfiitered High-Level Trace Output

leell{427704).sm:(4:4) [37-52] duration 15
leell(377132).sm:(2:4) [ 37-55] duration 18
leell(372168).sm:(80:3) {37-58] duration 21
lcell(337848).sm:{3:4) [37-61] duration 24
leell{332884).sm:{1:4) [37-64] duration 27
leell{266060).sm:(60:3) [37-67] duration 30
leell{(261096).sm:{60:2) {37-70] duration 33
leell(226776).sm:{12:3) [37-73] duration 3§
leell(221812).5m:(8:3) [37-76] duration 39
lcell(171240).sm:(60:2) [37-79] duration 42
leell(166276).sm:(40:1) [37-82] duration 45
lcell{(131956).sm:(4:1) [37-85] duration 48
leell{126992).sm:(40:0) [37-88] duration 51
leell{126992): partitioning[88-98] duration 10
leell{131956): partitioning[85-98] duration 13
io_input: got pgm request = 8, clock=105
leell{466988): partitioning[37-107] duration 70
leell{471952): partiticning[37-107] duration 70
leell{432668): partitioning[37-107] duration 70
leell{186278): partitioning|82-108] duration 26
leell{171240): partitioning[79-108] duration 29
leell(372168): partitioning[58-108] duration 51
lcell{261096): partitioning{70-108]} duration 39
leell{332884): partitioning[64-108] duration 45
leell(221812); partitioning]76-109] duration 33
leell(427704): partitioning[52-108] duration 57
1cell(377132): partitioning[556-108] duration 54
1cell(268060): partitioning[87-109] duration 42
leel}(337848): partitioning[61-109] duration 48
1cell(226776): partitioning[73-108] duraticn 36
leell(427704).build_directory: [109-123] duration 14
leeli(166276).build_directory: [108-124] duration 18
leell(371240). build_directery: {108-124] duration 18
leell{372168) . build.directory: [109-125] duraticn 18
lcell{281096).build_gdirectory: [109-125] duration 18
leell{332884). build_directory: [ 108-125] duration 18
leell{221812).build_directory: [108-125] duration 18
1eell{377132).build. directory: [108-128] duration 16
leell(266060) . build_directory: [109-1258] duratiorn: 18
1eell(337848) .build_directory: [108-125] duration 18
leell(226776).build_directory: [109-125] duration 16
leell_inp(189080): starting interpreter. clock=139
leellinp{174044): starting interpreter. clock=154
leellinp(R24616): stariing interpreter. clock=183
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4 6.2. Leell Array Spapshots

In addition to the above trace facility, which provides global infori‘natidn
ordered in time, the cutput channels and processes of the DOT model are used
to présent snapsﬁets of the FFP- and LPl-level symbol representations lcjacated'
within the lcells. As described in Chapter 3, output from the lcell array is i}iped ‘

out of the tree and into the io subsystem in left-to-right textual order. This
“information is therefore ordered in space as well as iﬁ time. There is one
snapshot per cycle, and it records the situation within each (non-empty) leell at.
the end of the execution pha;se _-; after detection of _c.ompleted RAs has been

performed, so results of completed applications are available.

The ic subsystem output processrpresentljy sends these resulté Ito a
terminal or a file for later examination. Empty lcells do not appear, and cells
with symbols in them are listed in left-to-right order. Column headings provided
with the ouiput designate tﬁe user program id, lcell symbol, lcell state
(0=ground, l=execuling, 2=completed), fork_id, aln, rin, symbol_index, and the
directory 4-tuple. Columns to the right of the arrow indicate the result of

stepping a completed reduction forward.

FIGURE 4.8 — FFP Expression for Reduction

{ + (< apply-to-all *> < < 13>-<'34>>))

An example of the leell array snapshots is now giveﬁ. To éid und'ersténdin.'g,
comments have been placed to. the right of the snapshot output. Thé model for
this example was created with a height of four, so there were 16 leells available
for holding the program. Prior to execution of the model to generate the
following snapshots, the FFP-level text representation for the expression shown

in Figure 4.8 was loaded into the vin subsystem using the mkusr program. As
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indicated by the trace output of Figure 4.8, which corresponds to the following

execution snapshots, the total time required. to execute this FFP expression

{including load time) is ~500T, or, if 7=100 nanoseconds, ~50 usecs.

PGM SYMB S FID ALN RIN NBX-DIR --> NSYM NAIN -- End of Cycle 1
ool {( O 001 000 00O OO0 0000 app sym not innermost

001 #004 O 001 001 000 QOO 0000 "4 is n-ary add op-code

001 ( 1 001 001 000 00O DOOO app sym innermost so RA
001 < 1 001 002 001 001 1000 and state = execuling

001 #008 1 001 003 002 002 1100 8 is apply-to-all op-code
001 #012 1 001 003 002 003 1200 12 is mmltiply op-code

001 <« 1 001 002 001 004 2000 '

001 <« 1 001 003 002 005 2100

001 #001 1 001 004 003 006 2110

001 #003 1 001 004 003 007 2120 _

001 <« 1001 003 002 008 2200 This sym forks to receive
01 #002 1 001 004 003 009 2210 copy of operator (mult)
001 #0041 001 004 003 010 2220 as required by apply-to-all
PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 2
001 ( © 001 OO0 000 00O 0000

001 #004 O 001 001 000 ODC OOOOD : ‘ _
001 ( 2 001 0D1 000 0OD OOOO < 001 reduction cumplete
001 < 2 001 002 00t 0G1 100G ( 002 so stepped forward,
001 #008 2 001 003 002 002 1100 '

001 #012 2 001 003 002 003 1200 #012 003 resull 1s sequence
001 < 2 001 002 001 D04 2000 of rmitiplications
001 < 2 001 003 002 005 2100 < 003,

001 #001 2 001 004 003 006 2110 #001 004

G601 #003 2 001 004 003 007 2120 #003 004

001 <« 2 001 003 DOZ 008 2200 { 00R the fork_id tells
001 <« 2 002 003 002 008 2200 #012 003 how to place

001 < 2 003 003 002 008 2200 < 003  these swmbols.

001 #002 2 001 004 003 00% 2210 #002 004

001 #0604 2 001 004 003 010 2220 #004 004
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PGM SYMB S FID AIN RIN NDX-DIR --> NSYM NALN -- End of Cycle 3
001 ( 0 001 00D 000 GOO 0000 '

001 #004 0 001 001 000 GO0 CO0D

081 < 0 001 001 00CC 000 0000

001 ( 2 001 002 000 00O 0000 #003 002

001 #012 2 001 003 001 001 1000 both mmltiplications

001 < 2 001 003 001 002 2000 camplete in one cyele,
001 #001 2 001 004 002 003 2100 and are stepped forward.
001 #003 2 001 004 002 004 2200

001 { 2 001 002 D00 000 0000 #008 002

001 #012 2 001 003 001 001 1000

001 <« 2 001 003 001 002 2000

001 #002 2 001 D04 002 003 2100

001 #004 2 001 004 002 004 2200

PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NAIN -- End of Cycle 4
ool {2 001 000 0OC 000 0000 #011 ©OO Add now imnermost
001 #004 2 001 001 0Ol 001 1000 : and campletes in
001 < 2 001 001 001 002 2000 one cyele. 11 is
001 #003 2 001 002 002 003 2100 the answer.

001 #008 2 001 002 002 004 2200

4.7. Simulation Results

The most useful result

of the simulation is the way it has aided.our‘

understanding of the operation of theé implementation model. Nevertheless,

other useful results have been obtained. Raw performance figures such as those

provided by process traces are invaluable for the synergistic development of an

“analytic model. Our simulation results for a variety of LPL programs will be

displayed in tabular form in the following chapter -- in conjunction with the

-predictions of the analytic model. This will allow easy comparison of simulation

results with analytic model predietions.

Additionally, an initial simulation study designed to assist development of

LPL programs tailored for large operands has been performed. Recall that LPL

programs exercise a degree of control over when storage management takes
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place. Therefore, an LPL program may be written so that its execution on large
operands does not seriously affect the progress eof olher reductions in the
machine. To do this, an LPL program can keep a count of messages, and execute
an smanage instruction after every m messages. The question, of course, is how
to choose m. Ideally this value should be large enough-to allow a reasonable
amount of work tc be domne, and. small enough that other LPL programs
performing reductions are not unduly delayed. Figure 4.9 shows the simulatién
results obtained from studying the behavior of the FFP SORT operator {whose

LPL definition was given in Section 2.4.1.11) for different values of m,

This study was performed cn a DOT machine of 84 lcells, and presents the

results obtained for sorting 60 numbers. As can be seen, the minimum time of

FIGURE 4.9~ Suort Time v.s. Number of Messuges per Cycle

3
6 micycle time=1041 -
10 m/cyele time=774
EXECUTION
TIME
15 m/cycle
20 m/cycle
60 micydle time=425

MESSAGES PER CYCLE
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425, achieved by sen.ding the 60 messages during one cycle, is quite close to the
time of 497, achieved when two cycles are used (30 messages per cycle). The:
optimum execution time is approached asymptotically, so backing off and being

"fair” to other programs in the machine is not as costly as might be expected.



CHAPTER 5

Analytic Performance Medel

This chapter represents a surnmation of the DOT design and its behavior.
Qur concern here will be to reason about the vperation of the DOT machine, and

ultimately to predict execution times for FFP language programs,

In the previcous chapter, we lisled virtues of simulation In multipreocessor
design, and discussed the approach taken for simulation of DOT. Among benefits
identified was the unambiguous description forced upon the designer by the use

of a compilable language - enabling criticism and preventing obfuscation.

.An analytic model {when one is available) performs a sirﬁilar function with
respect to performance. It brings into clear Ifocus the ultimate result of design
decisions by represénting their intention with respect to system behavior. It is
only after a simulation {or protoiype) is runmning that the salisfactory
implementation of these intentions may actually be verified, however. In our
experience, a highly dynamic interplay between modifications to the design, and

modifications to the analytic model then results.

The analytic model we présent began as a set of assumplions concerning
the desired operalional charébteristics of a projected implementation (as
suggested origiﬁally by Mago.[Mag79]), and ultimately matured to reflect the
actual operation of the DOT implementation. Chapters 3 and 4 presentsd this

implementation. We now analyze ils performance.

We begin by examining the execution cycle in more detail. Upper and lower
bounds for the three phases of the machine cycle are presented and related to

execution times for RAs. The method developed .by Koster [Kos?7], Stanat and

220



221

Williams [Sta81], and Mago et. al. [Mag83], .rnay then be used to derive data-
dependent upper and lower bounds for many FFP language programs. Examples

" are given, and corfrespondence with the results of simulation is verified.

5.1. The Execution Cycle

When meesuring the duration of some activity that takes place over time,
events define the points at which a measurement may be made. In the case of
eyclic behavior, a natural event should be the beginning .of the cye_le. What
_deﬁmte and unambiguous events exist durmg DOT: operatmn’? There are really
only two that may be recognized Wlthm a machme-mde context: recelpt by the
io subsystem of the sm_grant message, and rece1pt by the io subsystem of the
preparation for storage management upsweep. Neither of these is particularly
valuable from the standpoint of measuring execution tlmes LF‘L programs
_execute w1th1n icells, so we prefer to base our analytic model on events that
occur in leells. Luckily, with appropriate assumptions, another event more
useful for this purpose may be identified. -This is the begmnmg of storage

management in the leells.

Although it is convenient to think of the (i.e., single) eﬁecution_ eyele for DOT
as something descriptive of its overall behavior in time, Chapter 3 showed that
the DOT machine is really a highly dynamic and reconfigurable collection of
fine- -grain cellular processers individual processors do synchronize, or come
together 1oca11y, to exchange infoermation in support of storage management
partitioning, and execntmn, bnt it is p0551b1e for different cells of DOT to be
performing in all three of these diﬁ'erent phases simultaneonsly. mach cell of

the DOT implementation goes through the sxecution cyecle we have described,

* Section 5:1 provides information 'apprnpriate for a casual reader, while Sections 5.2 - 5.6
contain the details of the analytic model. Although these sections may be skipped if
desired, the summary in Section 5.7 should be read.
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but only according to its local needs.

From observing the behavior of the simulation model, we note that storage
management begins at the same time in all the lcells. This is because the
specification for storage management is computed in a parallel downsweep
.through the tree starting at the ioc subsystem, where the top-level transfer
function is computed and sent down. The data path length is the same from the
io subsystemn to each leell, and exactly the same operations are performed by

each teell along the way.

The above cbservation is relative to our assumption within the simulation
that the the data paths are identical in their transmission characteristics. In a
hardware realization, this would not be true, of course. Thus, we confine our
reasoning to the perfdrrﬁance of the simulation, and assume that differences
betwé'en the simulation énd an actual realization are negligible. With this done,
we may also speak of the beginning of storage management within the lcells as a

definite event.

Although storage management begins at the same tirne in the lcells, it does
not finish at the same time. Storage management is pipelined, with programs
and previous overflow being entered from the left. Programs tovfard the right of
the leell array may not require movement at all {uniess they are forking), and
thus may complete storage management in no time. In general, whenever
information is shifted in the lecell array,: text located at the end of shift
movement will complete first, with its neighbor finishing next, and so on, down &
chain of consecutively  shifted symbols, ending at the source of the shift
movement.. Thus, even symbols of the same RA may not complete storage

management at the same time.
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Immediately following completion of storage management within an
individual lcell, the lcell’ initiates partitioning. Clearly, the completion of
partitioning can occur at widely varying times for different RAs. In addition,
partitioning completes at different times within the lcells of a given RA ~—-nbt_
bec_auée partitioning begins at different times over the lcells of the machine
(after all, a pruning downsweep within a given active area begins in a single tcell
_fnuch as the preparation for .storage management downsweep), but. because
area trees are not height balanced with respect to communication delays. As
shown in Chapter 3, circuit switched area channel connectwns may bypass tcell

-area novdes.

Execution thus begins at different times Within different active leells: The
io subsystem detects the sm_grant message at some later time, while active
leells continue executi.on of their individual LPL program segments, and the stop
message is sent down to the leells. This reaéhes ali lcells at the same.time. but
clearing out an area (to guarantee that all area messages have been received)
may require time dependent on its height.‘ Finally, the upsweep of the
preparation for stqrage management reaches the io subsystem, and the value of
the topfleve.l sforage management transfer function is comp.uted and sent down

into the tree.

As far as the overall DOT machine is concerned, it would make sense to
measure times relative to the arrival of the upsweep‘ of preparation for storage
management {or equivalently, calculation of the topmost storage management

~ transfer function) within the io subsystem. Our prirmary concern here is with

’ Nermally, a top of area ncde manager is able to detect that the stop message has
passed through its teell and avoid this dependency. If, however, the stop message comes
through while the nede manager is waiting for an LPL message, a stop packet may have ic
rise from the lcell level in response to the stop message in order tc notify the top of area
- manager to clear out the channels.
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RAs, however, for which a logical starting point of execution is the beginning of
the partitioning phase in which they are detected and allowed to come into
existence, Unfortunately, the start of partitioning is not a machine-wide {or even
RA—Wide) event, and our ultimate alm of predicting execution times for complete
prograras is b_est served by choosing a beginning for the machine cycle that is

common for ali RAs of the machiné.

From the above discussion; it‘ is clear that our first concern in developing
an analytic model is to define exactly what we should measure. With the
ultimate aim of predicting the behavior of completerFFP ?rogréms, our analysis
is initially oriented arcund predicting execution times for an individual,
distinguished RA, in the possible presence of others within the lcell array. Since,
from the above summary of DOT operation, we know that storage management
begins at the same time for all Icells within an RA, .and for all RAs within the
machine, this time will be treated as the true beginning (and end) of.the

machine cyele.

.. This will allow us to use the results of analyzing individual RAs to predict
execution times for complete programs containing multiple RAs during each
machine cyeie. While dictated by the practical concerns of the analytic model,
this approach is nonetheless reasonable; prior to detection of RAs during the
phase we have called partitioning, their FFP-level text representations must first

be created, and this is done during storage management.

Figure 5.1 shows a diagram of the machine cycle, and depicts the progreés
of individual RAs thro.ugh the three phases. Note that the only machine-wide
event recognized is the beginning of the cycle, with progress through the p.hases
being a phenomenon local to in;iividual RAs. RAB, for example, requires no

storage management, so begins partitioning immediately.
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FIGURE 5.1 — RA Progress Through ¢ Single Machine Cycle
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-H.2. Notation -

We derive upper and lower bounds for the duration of the machine cycle
phases in an RA. These are &enoted by UB{phase), and LB{phase). The
particular RA of interest fo the analysis is designated as the RA, and the term
"the leells" refers to the leells of this distinguished RAI. The variable n is used to
repfesent thé count of the lcells, and h is used to represent the haight of the RA.
" The height of the 1afgést new. RA within the machine {used in analysis of
partitibning phase for a new RA) is represented .by &', The number of lcells
within the largest new RA is represented by n' The variable N represents the
total number of lcells within the machine, and H is used to 'repr.esent the total-
height of the machine (counting the io subsystem). Angle brackets, when used
to enclcs:e the .name: of an FFP oper'ator, denote the size {in bytes) of the

corresponding LPL program.
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During storage management, user contexts are shifted on the lateral lcell
channels. We therefore take the term wser contert to be synonymous with
information that is shifted during storage management, and U denotes the size
of this information -- irrespective of whether the context is executing {in which
case [/ is large, since an LPL code segment and the LPL environment are
included), or the context is not executing {in which case [/ is small, since only

the F'FP-level representation is required).

The size of an executing user context is primarily dependent on the size of
the LPL program ségment. For all examples shown in this dissertation, a code
darea of 150 bytes suffices. This, plus LPL environment régisters (presently
requiring 54 bytes of storage), results in a user context size of {f = 204 bytes

within active areas. A non-active user context requires V= 4 byles.

As for the simulation, we assume a uniform T throughout the machine, and
predictions of the analytic model are implicitly in these units. In addition, we
assume that ne new programs enter the machine during the period of time

covered by the analysis.

5.2.1. Areca Heighils

The height parameters H and h given above are reléted to the size of the
underlying lcell segment. For the vverall tree, H = logB(N)+1, where "1" counts
the io subsystem. For an active area, we define h as the maximum number of
nodes a message may pass through on its way to the top of area.”  This
definition results from the use of circuit-switched area channels, and assumes
that processing and communication delays inherent in sending and receiving

processing cells are the predominant source of transmission delays. As shown in

* Note that we only count area nodes (i.e., places where area channels come tcgéthef and
precessing is required) -- not teells through which an area channel is circuit-switched.
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Figure '5.2._ h can vary from Ilogz(n)] to n-1, .ldepending on the distribution of RA
contexts among the available lcells.” Since log(n) is the height of.a balanced

binary tree with n leaves, log{n) is clearly a lower bound for h. This value will be
used in lower bound formulas. Since h<H, a léast upper bound. for h is

min{n,H)-1. This value will be used in upper bound formulas.

FIGURFE 8.2 - Trees for Lower ond Upper Area Height Fxivemes
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FIGURFE 5.3 ~ Bounds on Arso Height (using H=21)

m@__-_@slnq(n) UB=min{n, H)-1
2 I 1
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16 < 18
32 5 20
64 & 20
128 7 20
- -— 20

" In the interest of notational brevity within formulas, log{n} will subsequently be under-
stood to denote the integer ceiling of the base 2 logarithm of n. Using this approach,
log(3)=2.
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As shown in Figure 5.3 (which assumes a machine with a million lcells), the
difference between the lower and upper bounds on area height is only important
as n grows large, and even for a rmachine of this éize, H is small enough that
lower and upper bounds don’t diverge greatly. In addition, as shown by the
exaﬁlple in Figure 5.4, unifo;‘m grouping of BA symbols within area subirees
results in log{n} being a good approximation for h, and the presence of
interspersed empty lcells makes no difference to this result. This is because
circuit-switched area channels completely avoid portions of the tree containing '

contiguous groups of empty leells.”

FIGURE 6.4 — Uniform Loading in the Presgnce of Empty Loells

*An interesting point is that, if desired, we could guarentee uniform loading by modifying
the calculation of the storage management transfer function. This will be discussed in
Chapter 8.
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5.2.2. Phases of RAProgress

The phases through which an RA progresses form the basis for prediction of
its execution time. Each phase is now defined in a way appropriate to a clean
division of concerns in the analytic model. While this represents a review of DOT
operation as described in Chapter 3, it is important to clarify the exact nature

of each phase within the context of the analytic model.”

5.2.2.1. Storage Management Phase — RA Creation

The storage management phase within an lcell involves the actual
movement of user contexts within the lcell array, and nothing else. (The time |
required for calculation of the specification for storage mandgement is included
in the execution phase.) Storage management starts in an lcell.upo.n' receipt of a
specification for sﬁorage management, and ends upon completion of the shifting

necessary to satisfy the specification.

5.2.2.2. Partitioning Phase — RA Detection

The partitioning phase.for an RA includes creation of its embedded tree of
processing cells, and all other activities required prior to actually beginning
execution within its leells. Thus, there are two types of partitioning phase: one
type associated with new RAs (for which the preparatory activities include
directory creation, and loading LPL code segments), and the other associated

with old RAs (which already have their directories-and LPL code segments).

5.2.2.3. Execution Phase — RA Execution
This phase starts in an leell with the beginning of actual LPL program

execution. Although execution starts at different limes within different leells of

- Chapter 3 gave an informal description of the overall machine cycle. Here we are con-
cerned with an exact analysis of events within the active lecells of an RA. :
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an RA (because'partition'ing .completes.at different times), the lcell that begins
execution. last is. oﬁ a critical path fof progress of this execution: If LPL
messages are sent, this Icell delays turnaround of the first message wave. . Thus,"
for all practical purposes, we ﬁay consider the execution phase to .begin when
all the lcells of the RA have been prepared for execution. In order for the
execution phase to end, all lcells must send an sm_grant message to the io
sub_systerﬁ. Following this, a stop message arrives at the lcells, area channels
are cleared oui, and the specification for storage management is computed.
The execution phase for an RA ends when the ‘specification for storage

management reaches the leells in which it is contained.

5.3. Formulas foi-'the Duf'at'i'on of 'RA Phases'

We now examine the duration of each phase of RA progress during
successive machine cycles. Figure 5.1 showed an example of this progres.s for a
single cycie. The general n.lulti-csrcle'”situatio_n is depicted in Figure 5.5. As
shown, the duration of each cycle may be considered separately from the last,
with new RAs coming into existence, and old RAs being reborn (if necessary) for

gach new cycle.
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FIGURE 5.6 - RA Progress Through Successive Machine Cycles
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5.3.1. RA Storage Management — (SM)

Dur‘ing storage management, iceils shift user | cqntexts in a pipelined
fashion. For purposes of simplicity, we assume that all lcells of J.che RA complete
storage managemeﬁt at the same time. Although this is not strictly so, it makes:
no difference to the ultimate results sinc.e the .lcell téking the longest time is on
a critical path for subsequent execution Within the RA. The last lcell to complete
storage management within the RA allows subsequent execulion, and the s_tdrage

management time corresponding to this is used by the analytic medel.

Every LPL context in an RA begins its execution phase with a forkn value of
one, and only LPL forking operations can change this value.” The LPL Jorknm
context values found within the lcells that create an RA during storage

management ~therefore determine a minimum duration for the storage

* As described in Section 3.2.3.2, the forksize argument of a fork statement is loaded into
this register when the statement is executed.
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management phase of the RA. When storage management takes place, the forin
variable is used to indicate the number of LPL conlexts to be spawned from the

containing lcell

A lower bound for the duration of storage management for the RA is
maXRA(Ui*forkni-l), where the maximum is to be taken over all the leells that
create the RA, and Ui is the size of the user context to be located within the ith
lcell of the RA.® This is equivalent to assuming that there are encugh empty
lcells neighboring any given forking context to support its storage requirements.
An upper bound for the duration  of storage management is arrived at by
examining the situation for multiple RAs, and assuming total compaction within
the lcell array with the RA at one end. The context in the leell at the end of the

RA must then be shifted through T rlcni—l) leells, where the sum

machine-lc ells(f0

is to be taken over all lcells of the machine. The resultin.g lower and upper

bounds for the duration of storage management for the RA is given in Figure 5.6.

FIGURFE 5.6 — Duralion of Stoﬁi_ge Mcmmgemehffor FA ’
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5.3.2. RA Partitioning

There Are two cases to consider for partitio'ning'. In the first case, the RA
has already been exécuting (during the preceding cycle), so its lcells are ready
to continue executinn as soon as an active area is cons’_cructed for them within
the. teells. In the second case, the RA is new;v and requires a directory and LPL

code as well as crealion of an active area.

* Recall that for our purposes, this duration is measured in units of 7.
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5.3.2.1. Partitioning 0ld RA - (PO)

Here just creation of the act.ive area is required. This process is pipelined -
from the leells ﬁo the height required to determine whether the application is
innermost, and four \_ralues' m'us't be unioaded at the top and bottom of the pipe.
This gives a lower bound of 2h+8 (assuming that pruning begiﬁs. at the top of
area). During the initial partitioning upsweep, certaiﬁ partitioning .
conﬁéUrations result in deléys of more than 1 in nodes of the pipeline. This
delay can be up to 3, giving an upper bound of 4H+8 (assuming pruning begins in
the io SubSYStem).. Using the bounds on h {the area height) given in Section

5.2.1, Figure 5.7 gives lower and upper bounds for partitioning an old RA.

FIGURE 6.7 — Duration for Partitioning Old KA
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5.3.2.2. Pari:itioning New RA — {PN)

Here, we must consider building the dir.ectbry’ and loading LPL programs as
well as the initial creation of an active area. Tlﬁe directory is buiil using area
channels, and is pipelined with four values unloaded at the top and bottom of the
pipe. This process therefore always takes 2h + 8. When operator definitions are
sent to the lcells, they originate in the io subsystem and are broadcast

downward to the lcells whgre they wait until the directories. for all new RAs are

ready.”” For a lower bound, we assume the LPL program for the RA is first in

* The additional delay is related to the crdering of information that is sent up during par-
~titiening. Treating this aspect of partitioning requires a more detailed analysis than is
appropriate here. : :

** Old RAs require no code segments, so arriving code segments only wait on the time re-
quired to compute the directory of the largest new RA. The reason for waiting on the
largest new RA to complete building its direciory is that the LPL code segments are
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the stream of operator definitions which must be delivered to the lcells. The
.lower bound for input time is then the length of the operator definition, denoled
by <op>. For an upper bound, assume the operafor the definition is sent last.
<op>, with the sum taken dver all new _RA.S.*

Then, the input time is ZneW-RAS

In order to produce useful lower and upper bounds for PN, It’, the height of
the largest new RA can be treated as follows: for a lower bound, assurﬁe h'=h
(i.e., n’=n), and for an upper bound, use h’=H-1, Although these estimates yield

' bounds which are less tight than possible (assuming-complete knowledge of the
lcell array) they depend only on the RA of interest and are therefore easier to
use. With this approach, and use of the above result for PO, we get lower and

upper bounds as summarized in Figure 5.8.

FIGURE 5.8 -- buration for Partitioning New KA
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5.3.3. RA Execution — (EX)

The execution phase for the RA includes the time until sm_grant is sent up,

the time until the stop message is received (which may include further LPL

broadcast only once, and the leells of all new RAs must be able to filter code when this is
done.

¢ Actually, when multiple RA= require the same operator deﬁnitidn, the required LPL pro-
gram is only sent in once, so duplicates need not be counted. .
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execution), and the time required to compute the specification for storage

management.

Let ts denote the durai;ion of the execution phase until thé Vsm_grant is sent.-'
ﬁ'p by the lcells of the RA._ The bnly contributors Lo tS are LPL message
operations. For each message wave, a prefix packet containing approﬁriate
handling instructions must be sent to the area nodes. The pr.eﬁx packet
contains three bytes, so sending this information out of an leell accounts for an
initial delay of three. The prefix packet is pipelined and followed imr'riediately.
with the key and message data, which are also pipelined. It therefore takes time
h+3 for the first message to reach the top of area, and time h to return to the
l.t:ells (since the prefix paéket is not returned). For each message that returns
to the Icells during a particular message wave, there is an uriload time of
(3+msize).” This gives

t, = Emwaves(zh + 3+ ((mreturn__cnt-l)*(msizei+3))),

where for message wave i, mreturn_dnti is the number of messages that return
to the lcells on that wave, and msize, is the value coded in the corresponding

LPL send statement. Using the bounds on area height presented in Section 5.2.1

gives

| |

FIGURE 5.9 — Duration of Time to SM_Grant, t_

i

‘ LB(t )= Emwaves(g*log(n) + 3+ ((mreturn_ont J*(msize+ 3)))
UB(t,) =E,  aves (EMin(n. H) + 2 + ((mreturn_cnt )*(msize,+3)))

In addition to ts’ there is the stopping interval from t',S until preparation for

storage management begins. During this interval, the sm_grant goes up the

* The 8, here, represents the byte-cou,nt and the two key values that are sent with every
message.
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tree, a_nd a stop message comes down. Assuming that the RA is executing in the
absence of other RAs (i.e., all othef leells have allowed storage management)',
this takes time 2H. In addition, upon arrival of ﬁhe stop message at the lgelis, a
stop packet (as described in Section 3.4. 21) is sent up and then down the area
channels to guarantee they are -cléared out. Thus. if the top of area node
doesn't see the stop message on its way down the _céli manager channels (this
can happen in the absence of LPL message activity), it can take an gxtra 2h+3 :
time units to guag'antee. the end of message éctivity (the stop packet may have

to follow a prefix packet up into the first row of tcells).

Therefore, prepai‘ation for storage management_begins within a__minimum
of 2H and a maximum of 2H + 2h + 3 time upits_ after te P_reparation for storage
management is pipelined on the way up, and involves a delay of 2 per tcell on _the
way down.” Including the time for unloading the pipe then gives a time of 3H +
2 for preparation for storage management.

Of course, in the presence of multiple RAs, the max t_ over all RAs must be
used. The resulting bounds for the execution phase are summarized in Figure

.5.10, using the established bounds for h and ts.

* The reasen for this delay may be understoed from the discussion on preparation for
storage management in Section 3442, Only after both be.left_entries and
be.right._departvres are received from a.parent can a teell send left_entries and
right_departures boundary condition values to its right child. '
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FIGURE 5.10 ~ Duration of the Frecution Pha.ée
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stop packet . : 2H+1

prep sm JH+2 SH+2

total LB(EX) UB(EX)
UB(EX) = maxRAgUB(ts)-k 7H + 3

5.4. Predicted Execution Time for Single RA

In oﬁr analysis for indi\%idual RAs, we do not count the storage management
phase required to produce an RA in its initial form since this is not information
that is available at this level of detail; the RA may have been shifted in as part. of
a new program, or il may have been t¢reated from the zxecution of previous
applications. Later, when we treat cofnplete FFP‘programs, this information will
be available, and will be utilized. Also, we do not consider the cost of a final
storage management in thé case where an RA cofn_pletes through the use of the
forke statement. This cost is alse taken into account when we analyze complete
FFP programs, but only when it affects the storage management time for -é

subsequently formed RA.

We now show how the formulas of Section 5.3 are used to predict the

execution times for a variety of RAs. For each example, we first present the
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analytic model results for the gerieral RA, and then provide a tabular
comparison giving a particular simulation and the corresponding analytic model
predictions. The basic format for the comparative presentation is shown in

Figure 5.11.

The heading indic-at_es the FI'P operator whose behavior is being examined,
lists the particular RA whose reduction is to be simulated, and gives appropriate
parameters for the anélytic model. The LPL program headers given in Chapter 2 |
provide the parameters used for different FFP operators.

Cycle 0 within the table represénts past histo.rjr, and is used to normalize
the simuiation times with analytic model times. Since we don’'t censider the
time required .to ini’tiallj éreate l.:he. RA at this level of the aﬁaiytiC'.m.odel, the
time actually used in loading the. simulation is uéet_i as an oﬁset to the analytic
model. This allows us to i;s'e the actual simulatic_in times (Withqut modification)

for comparison with the predictions of the analyﬁ.ic model. The predicted and

FIGURE 5.11 - Anuolytic /Simuletion Hodel Result Format

FFP OPKRATOR
. RAto be Simulated
Important Paramelers

ANALYTIC MODEL STHULATION

lower bound | upper bound | observed | FFP texi (eoc)
==) ==) ==) text 0: <>
o] : (op
o | <args j
- (SM) (SM) (SH text 1: <op>=

tlew) e o) | (o T

(EX) (EX) : (EX) < grgs

(++) {(++) {++) :

) ) ==)
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observed times for the three phases are displayed to .the rigfmt of their -
parenthesized respective phasé. The total time for an iﬁdividual c.ycle ig éhown
to the right of "{++)", and cumulative times are given to the right of "(==)". The
rightmost column is used to describe the progress of the FFP-level reductions.
The text given in the rightmost column is meant £o be roughly indica-tive {given
the limited space available) of the FFP symbols present at the end of the cycle.
For cycle 0, the FFP segment to be leaded and used for the example is indicated
in this space. When a forke is executed, ’;,he result achieved upon completioﬁ of
storage managentent is shown, The size of th.e LPL program to be loaded during
partitioning, represented as usual by enclosing the operator name in angle

- brackets, is also given.

54 1. Analysis a;nd Simulation of ID

The simp.les.t LPL proégrams are those that reguire no | forking and no
messages. Operators such as CONST, SELECT, HEAD, APNDL, and ID fall into thié :
category._ Here, all the information necessary for completing the _desifed
reduction is already present within the LPL environment for each icell of the RA.

These LPL programs therefore complete in one c.ycle and require no messages. |

We now analyze the LPL prografn for ID given in Chapter 2. The initial
storage managerﬁent takes zero time (as explained previously), Partitioning the
new RA then requires time based on the LPL program size {<ID>=28), the height
of the active ér‘ea, and the height of the tree, as shown in Figure 5.8. Since
there are no messages, t_ in Figure 5.10 is zero. The predic‘_cions of the analytic

model, and simulation results are given in Figure 5.12.



240

FIGURFE 5.12 - Analysis and Simulation of 1D

(SMJ) =

(LB)= 0
(UB) =0

(LB) = 4*lag(n) + 29+ 16
(UB) = 6H + 29+ 14

(LB) = 6H + 2
(UB) = 7H + 3
(ID<abede>) » <abcde>
' H=4, n=8
ANALYTIC MODEL SIMULATION_
tower bound | upper bound_| observed | FFPiext (eoc)
(==) 61 ==) 61 ==) @1 | text 0: <>
. (id
<ewbode
(SM)yo (SM) 0 (SM) 0 text 1: <id>=29
(PN) 57 (PN) 67 (PN)59 | <abcde
(EX) 22 (EX) 31 (EX) 26
(++) 79 (++) 98 (++) 83 -
==) 140 ==) 158 ==) 148

stored as the desired result.

5.4.2. Analysis and Simulation of N-ary Add

calculated for t, parenthesised for clarity.

The LPL program for n-ary addition completes in one cycle, and provides an
example of message use. As shown in Chapter 2, n-ary add operates by sending
argument values up inte the message subsystem, where they are combined
using addition. The single result returns to the lcells, Wheré it is accepted and -

It may be analyzed as follows, with values
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FIGURE 8. 13 - Analysis and Simulation of N-ary Add

(SH ) = ,
(LB) = 0
(UB)=0
(PN,) =
(LB) = 4*log(n) + 55+ 16
{UB)= 6H + 53 + 14
{EX_Z) =

(LB) = (2*log(n)+3+4} + 8H + 2
(UB) = (2*min(n,H)+3+4) + 7H+ 3

(+<12345>) > 15
H=4 n=8

] ANALYTIC HODEL " SIHULATION. | |
e e et ]

lower bound | upper bound | observed | FFPizxl (eoc
==) 81 - ==) 61 ==) 61 text O: <>
g : (.{. ‘
R - : . <le345 |
(SM) 0 (SH) 0 (SM) 0 text 1:<+>=53
1| (PN) 81 (PN) 91 (PN) 82 5
(EX) 35 (EX) 46 (FX) 35
(++) 116 (++) 136 (++) 117

==) 177 ==) 197 ==) 178

5.4.3. Analysis and Simwlation of SORT

Sort is an example of an LPL program that sends many messages, but still
requires no forking. It completes in one cycle, and if there are n numbers to be

s_orted, requires @(n) time. It is analyzed as follows.
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FIGURE 5.14 - Anulysis and Simulation of SORT

(SH,) =
(LB) = 0
(UB) =0
(PN,) =
(LB) = 4*log(n) + 59+ 16
(UB) = 6H + 59 + 14
(EX,) =

(LB) = (2*log(n)+3+3Mm-3)) + 8H + 2
(UB) = (2*min(n,H)+2+3(n-3)) + 7H+ 3

(S<23514>) > <12345>
H=4 n=8

ANALYTIC MODEL SIMULATION
lower bound | upper bound’| observed | FFPtext {eoc)

==) 61 | text 0:<>

, <23514

L (SH) O text 1: <S>
(PN}B8 | <12345

(EX) 50 _

(++)138 |

==) 199 |

5.4.4. Analysis and Simulation of ﬁO’E‘R

The more general situation for FFP operétors is to require forking in
‘econjunction with messages. Such dperatoré require multiple cycles to complete
: _since an intermediate storage manageme.nt is required. An example of such an
operator is ROTR. The .right;nost argument element is sent over to occupy the
leftmost position after room has been made for it by forking. As indicated by
the header for its LPL definition in Chapter 2, ROTR completes in two cycles.
With i denoting the number of clements of its argument list, and m denoting the

size of the rotated element, its behavior may be summarized as follows:
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FIGURE 5. 15 — Analysis and Simulation of ROTR

(LB)= 0
(UB) =0
(PNI) =
(LB) = 4*log(n) + 143 + 18
(UB) = 6H + 143 + 14
(EXJ) = -
' (LB) = (2*log(n)+3+4l) + 5H + 2
(UB) = (2*min(n, H)+2+4l) + ?H + 3
(Sﬂg) =
(LB) = 204*2
(UB) = 204%2
(P02 = o
(LB) = 2*log(n) + 8
(UB) = 4H + 8 :
(LB) = (2*log(n)+3+4m) + 5H + 2
(UB) = (E*min(n H)+2+4m) + ?H+ 3
(rr<a<b>c<d>>) » <<d>a<b>c>
H=5 n=8 Il=4, m=2
- ANALYTIC MODEL | SIMULATION
lower bound | upper bound | observed | FFP text (eoc)
==) 80 (==) 80 ==) 80 text 0: <>
-0 ' {re
I Socbe<d |
(SHM) 0 (SHM) 0 (SK) 0 text 1: <op>
1| (PN)175 (PN) 187 (PN).179 | (rr
(EX) 54 (EX) 66 (EX) 62 <a<be<gd
(++) 225 (++) 249 (++) 241 :
==) 305 ==) 329 ==) 321
(SHM) 408 (SH) 408 (SM) 408 | text 2: <>
21 (PO) 18 (PO) 28 (PC) 20 <<da<be
(EX) 46 (EX) 58 (EX) 52
(++) 470 (++) 494 {(++) 480 |
==) 775 ==) 823 - ==) 801

5.4.5. Analysis and Simulation of ER1

Forke is ideal for supporting operators that require no further execution

after an appropriate storage management. Its use in the EE1 functional avoids
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the cost of an extra machine cycle. Another interesting use of forke is found in
the COMP functiocnal. We analyze EE1l here., The summary of analytic model
parameters found in its header gives the following result, where m is the number

of applications to be created.

FIGURE 5 16 - Analysis and Simulation of EF1

.(SMI) =
(LB) = 0
(UB)=0
(PN ) = |
(LB) = 4log(n) + 126 + 16
(UB)=6H+ 126 + 14

-~ (LB) = (8Blog(n)+3+4(m+1)) -I- 5H + 2 i
(UB) = (2*min(n, H)+2+4(m+1)) + 7H+ 3

(CEE! +><<1 235<4 5 6>>) » < (+<1 ) (+<28>) (+<36>) >
H=6n=13, m=3 .

ANALYTIC MODEL SIMULATION _
lower bound | wpper bound | observed | FFP lext (eoc)
(==) 88 ==) 88 (==) 88 | text 0: <>

0 ' (<eel +
. ' . : <<183<L 458
(SH) 0 (SH) 0 (SH) 0 lext 1: <gel>= 128
1| (PN) 158 (PN) 170 (PN) 158 | <(+<14
(EX) 54 (EX) 66 (EX) 60 (+<286
(++) 212 (++) 236 (++) 218 | (+<386
==) 300 (==) 5324 ==) 307

5.5. Complete Programs

The above sections have shown how the execution times for individual RAs

may be predicted. With appropriate restrictions, this appreoach may be
extended to the analysis of programs for which multiple RAs execute

concurrently. A simmple example of this is given by a program to calculate the
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inner product of two vectors. Such an FFP program, one that uses the EE1

functional form, is given in Figure 5.17.

| FIGURE 5.17 — A Pragram for Inner Product of <1 23> and <4 5 6>

(+(<FEE1*><<18235<456>>))

Figure 5.18 shows a graphic representation for execution of this program, in
Which_ the creation and progress of individual RAs are depicted. To predict the
execution time for this program, the same method used for individual RAs i_s
emplbyed. The prbgress of each RA through the thrge execution phases is.
tracked, with the primary difference beiﬁg that creation time for RAs may now
‘.be taken into account.” Also, since multiple RAs are involved, ﬁpper and lower .
bounds for storage managernent will in general differ, and the maximum tg value

among the RAs must be used to determine the duration of the execution phasé.

Assuming that H=5, the analysis is as follows. For cycle one, there is one RA

for EE1. We know from Figure 5.16 that, this first cycle will take between

LB(cycle 1)=212, and UB{cycle 1)=236 time units.

For the second cycle, we must analyze the multiplication operation.
Multiplication can be considered an n-ary operation in the same way as addition,
and the resulting LPL program mirrors that for addition. Thus the results of
Figure 5.13 may be used. But first, we must analyze the time required to create
the RAs. At the beginning of cycle 2, as shown in the header for EEL in Se_ction
2.4.1.8, there will be 3 contexts, each forking off 5 completed contexts. Thus, as -

required by Figure 5.6, LB{SM;)=4*4=16, and UB(SMy)=4%(3*4)=48. Using H=5

¥ The only uncertainty now is the time required to initially load the complete program. It
seems reasaonable to ignore this time in our analysis of execution time, so the first RAs to
‘be detected in a program are assigned zero storage management time.
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* FIGURE 5.18 - Ezecution. Trace for Inner Product
——————————— * —— — —— — — — — —— — -_—
cycle 1
v
eel
v
————— < & &8 — — — — -
cycle 2
V V4 V4
® * *
Vv /- v
————— * o & - - - — -
cycle 3
/
+
v
—————————— * — — p— — —— e —— — . —

and n=5 in the formulas_ for n-ary add found ir;__Figure 5.13 gives results of
LB(PN2+EX2)=81+4O=121, and UB(PN2+EX2)=97+54=151, therefore

LB(cycle &)= 187 and UB(cycle2)=199.
Since the RAs during cycle & are all performing the same .parallel .compu.tations,
their tS values are all the same. If this were not the case, the mai:’ifnum by
among the RAs would be_used.

In eycle 3, there is no étorage management cost to be p.aid for'crea.t.ion of

the addition RA since the'multiplicationé of the previoué cyele require no

forking. Thus we have a final n-ary addition with n=8. This gives

LB(eycle3)=121 end UB{cycle 3)=151.
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The combined estimates yield LB{program)=470, and UB(program)=586."

Figure 5.19 sumrnarizes these results, and presents the results of simulation.

FIGURE 5. 19 — Analysis and Simulation of Inner Product
(+(<eel*><<123><456>>)) » » » 32
H=5
ANALYTIC MODEL SIMULATION i
lower bound | upper bound | observed | FFP text (eoc)
==) 96 ==) 96 (==) 96 | text 0: <>
0 . . : (<eel*
| <<I25<a56
(SH) 0 (SH) 0 (SH) 0 text 1: <eel>= 126
(PN) 158 (PN) 170 (PN) 162 | < {*< 14
(EX) 54 (EX) 66 - (EX) 60 (*<25
(++) 212 (++) 236 (++) 282 {(*< 36
==) 308 ==) 331 ==) 318
(SH) 16 (S5M) 48 (SM) 32 | text 2 <*>=53
(PN) 81 (PN) 97 (PN) 80 | (+
(EX) 40 (EX) 54 (EX)42 | <41018
(++) 137 (++) 189 . (++) 184
==) 445 == ) 531 =) 482
(SH) 0 (SM) 0 (SM) 0 .| text 3: <+>=53
(PN) 81 (PN) 87 (PN) 86 | 32
(EX) 40 (FX) 54 (EX) 44
(++) 121 (++) 151 (++) 130
(==) 566 ==) 682 ==) 618

5.6. Restrictions

The above analysis of the inner product program was e.asy for a number of
reasons. The multiple RAs for cyele two all had the same t, value. In general, of
course, this will not be the case. Also, the program contained no conditional

execution paths, and was neither recursive nor iterative.

Koster [Kos79] ha$ dealt with conditienal executicny and has shown how te

" use recurrence relations to analyze programs that perform recursion or

* Note that these bounds do not include the initial load time of 88, which is used to nor-
malize analytic model predictions for comparison with su'nulatmn results. Including this
value yields {otal estimates as shown in Figure 5.19.
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iteration. In addition, Mago, et. al. [MagB3] have identified a set of restrictions
for parallel RAs that serve to guarantee a determination for max;, j(ts) for -

each cycle,

The basic difficully in defermining max (ts) is that parallel execution

leells _
paths may individually require numerous sequential reductions, and to predict
maxlcens(ts) for L;ach cycle',. we must know what RAs are executing. Thus we
need be able to construct a graph of the execution paths, similar to that shown
in Figure 5.18, which al least parametrically inecludes this information. If
parallel execution paths are allowed different data-depéndent behavior {perhaps
one path invelves sorting, and another parallel path requires a conditional

matrix transposition} then such a graph cannot be constructed. A useful set of

restrictions, suggested by Mago, et. al. [Mag83]; are given in Figure 5.20.

FIGURE 5. 20 — Restrictions on Forullel KAs for Analyzobility

1) The number of parallel execution pmths Jor o program - 18 known,
af least paramelrically

2) One of the following holds for paruliel execution paths:
eno KA requires messages;
« the KAs along each path are identicol, or
o in each path, only the last KA is allowed to send
messages whose number is known only af run-time,

By constraining the dissimilarity of parallel execution paths, these
restrictions define a class of I'FP programs for which lower and upper bounds on
execullon time are easy to derive. The situalion is similar to that for von
Neumann programs; they are generally not ana_lyzed unless they are suitably

structured and the data characteristics are sufficiently predictable.



248

0.7. Summary

This concludes our discussion of the analytic model. In our initial approach
to designing DOT, many aspects have been simplified in the interest of furthering
insight into (and identification of) the important problems facing an éﬁicient
implementation. The analytic model presented is a great help in this respect,
) since it is based on the design representation and gives useful prediclions for
pe'rformance. The resulting insights aid investigation of ways to improve the -

design, as the following chapter on design alternatives will show.

In the discussion of other reduction machines given in Chapter 1, we
pointed out the importance of limiting process interference -- both for reasons
of performance, and predictability. We can now characterize the degree to

which we have been successful in this,

In the context of DOT, the_a progress -of an iﬁdividua:l RA through the ph.ases' .
'o.f the machine cycle may be viewed as é process, and it is therefore
interference between parallel RAs that must bé exanii.ned. As shown by the
analytic model we have presented, execution of parallel RAs general_ly proceeds
with verjf little interprocess interference. As much as possible, we have tried to
decouple the processing cells of DOT so that the progress of any RA through the
three phases of the machine cycle is relalively independent of other RAs. This is
the primary reason why a useful analytic model of program exec_utic_m on DOT

can be developed.

There are two ways that. RAs may still interfere with each other. Dliring
every machine cycle, each RA determines a 10c.al ts and a corresponding .lowe'r_
bound for maxlcells(ts)‘ The greatest such lower bound, however, determines
the actual duration of the execution phase for all RAs. The penally for this

interference is that RAs that complete without messages may have to wait on
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RAs that do require messages. As shown in the above examples, however,
messages are handled efficiently by DOT. In addition, Chapter 4 on simulation
suggested that the penalty for being "fair" (i.e., sending only a limited number '

- - »
of messages per cycle) is not serious.

The other possibility for process interference is during storage
management. As shown by the analytic model, the situation here is more
serious in terms of its possible impact on performance. During storage -
management, KAs and. entering new programs must compete for space within
the lcell array. Space requirements for all RAs may be satisfied, but at the cost
of shifting some RAs a great distance through the lcell array. Storage
management is performed in such a way as to limit this kind of interference,
and simulation results confirm that this is generally successful. Nevertheless,
the cost of shifting complete LPL program contexts within the lcell array is the
main performance bottleneck of BOT. This cost is expected; it is the price to be
paid for the benefits of string reduction enjoved throughout the rest of the
machine cycle. Because of this cost, however, the greatest iniprovements in
performance will most likely result from reducing the amount of information

shifted during storage management.

Possible approaches include modifications to LPL that enable an increase in
the efficiency of storage management, and modifications to DOT thai allow
further de-coupling of the machine cycle phaseé within separate RAs. As an
example of the first ca’teg'ory, the forke statement drastically reduces the size
of contexts that are forked (in addition to saving an execution cycle) from 204

bytes to 4 bytes. Approaches in both categories are considered in the following

* Also, our approach for determining the duration of the execution phase can be easily
changed to remove this 1nterdependency between RAs. The next chapter will discuss vari-
ous alternatives.
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chapter on design alternatives.



CHAPTER 6

Design Alternatives and Extensions

Numerous alternatives are possible Wii’.hin the design space of _the
programmirig systerﬁ we have described. By discussing these alternatives now,
we clarify many of the dimensions of the design space, identify tradeofls, and
examine the flexibility and potential of the design we have consiructed. Many of
the tradeoffs do not lend themselves to a formal analysis, so an important use of
- the simulation will be to portray the behavior of the programming system under

the influence of alternative approaches.

Clearly, depending on how pervasive a particular design decision is,
modification of DOT to reflect an alt.ernative approach will requiré changes of
varying 'scope within the simulation. For each alternative identified, we will
therefore be concerned with this practical issue as well as the possible benefits

to be realized by making changes to the design.

In addition teo design alternatives, this chapter also discusses desigﬁ
extensions. Both involve changes or modifications to the present design, but
extensions do not involve iradeofls in the same sense as the alternatives;
extensions may be viewed as holding clear-cut benefits for the programming
system. They represent our suggestions for work that definitely should be done

in order to further improve the desirability of the programming system.

An overview of the design alternatives and extensions that we will discuss is
shown in Figure 8.1. Each possible change is given under the topmost system

level afiected, with the understanding that lower levels may alsoc be affected.

252
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FIGURE 6.1 - Possible Design Modificutions

1) ALTERNATIVES
A FFFP Level
« Text Representcztmn
B, LPL Level
s Message Fouting
e Non-blocking Fork
« Synchronizatlion of Segment Completwn
C. DOT Level
» Duration of Fzeculion FPhase
« Shifting vs. Relooding LFL Code
e Stordge Hanagemeni Transfer Funclion -

2) EXTENSIONS

A. FFP Level
e JCL for User Progrums
« Temporary Storage (FUSH, POP Operators)
s Misual Trocing

B. LPL Level :

.« Fuent Indicafor for Storoge Management
C. DOT Level

» Variable Context Sizes
» Increased Fhase Independence for RAs
e Multiple LFPL Program Input Poris

6.1. Design Alternatives

First, we discuss possible alternatives to the current design.

6.1.1. FFP-level Text Representation

In Chapter 2, we presented an FFP—level representé.tio'n for user programs
based on the use of nesting level numbers. This representation was suggested b'y_
Magd in his original description of the tree machine [Mag?9]. From this, we.
derived an LPL representation that includes information required for efficient

use of the LPL multiprocessor architecture.

Since the DOT implementation is driven by these two architecture levels,
the initial choice of the FFP-level text representation is clearly of central
importance to the whole programming system. Modification of the design to

support a different FFP-level representation within the machine would reqguire
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pervasive changes. The detailed nature of the DOT simulation (which mirrors
and represents the design) therefore pfecludes a straightforward investigation

of possible alternatives at this level,

This category of alternative is mentioned here to underscore its prir'nafy
importance to the overall multiprocessor design, rather than to recommend its
investigat_ion through use of the current simulalion. By performing  another
desigﬁ in parallel with the one we have described, David Middleton, here at UNC,
is investigating other FFP-level representations, including  the

PC Representation (for Potentinlly Compact) originally used by Tolle [Tol81].

6.1.2. LPL Message Routmg

The LPL architecture doés not include the_tree. structure that is used to.
implement it. The primary reasﬁ.n f;:;r this is our deé_ire fof simplicity. As we have
made clear, DOT is quite complex in its operations, and Simplicity is thus a
distinct virtue wherever possible. But, when simpii.city is bought at the ultimate
cost of efficient performance, alternatives should be at least identified for '

. investigation by future workers.

As we have shown, simple combining an& sorfing opefations are ﬁandled
efficiently in the curx'ent DoT implefnentation-- Withou£ the need for explicit
incorperation of messége rout'.mg.into the LPL architecture. However, some
operations might benefit by allowing expliéit LPL control over the routing of
messages among the tcells of an active area. For instance, Fargas [Par.BZ] has
shown how generalized routing may be .used for efiicient sclution of partial
diﬂ‘ferential equations. In addltmn Presnell and Pargas [Pre81] have examined

the use of shortes| path routings in tree machines.

Presnell has suggested a simple generalization of the LPL message scheme

that allows shortest path routing. In this approach, the message prefix could
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differ between the messages.of a given message wave, allowing area nodes to
routerme.ssages in different ways depending on prefix instructions and message
data. Messages would be routed down to a left or right. child, or up to a parént '
as done presently. Downward-moving messages would be handled via broadéast '

as in the eurrent implementation.

The main performance penalty to be paid for this approach is the use _bf
multiple prefix packets where, before, a single pipelined prefix sufficed. Also,
since each message must be handled separately, messages can no longer be
pipelined. In cases where an @(n) dependence on the size of an RA may be
avoided, however, this would be a small price to pay. The inereased overhead for
fnﬁess_agéprocessing could be made up for by reduced traffic through the top of
area -~ enabling moré b.alanced communication loads and increased utilization of

-the area nodes.

While the ramifications oflthé above message protocol require further
- investigation, implementation within the current design context appears
feasible. This would allow simulation to .aid analysis of the tradeofis involved:
Synchronization will be required within area nodes {o handle non-deterministic
arrival of messages from above while locally routing messages down to a child. In

- its present form, DOT requires no such synchronization within the {cells.

6.1.3. Non-blocking Fork

Since storage. management potentially represents the most 'expe'nsive':
p_hase of machine execution, it.is important to consider design alternativ.es that
reduce the need for shifting within the lcell array. One such possibility iﬁvolves
virtualizing the lcells of the LPL architecture, so that a single DOT lcell may

support a contiguous segment of forked LPL-level {virtual) lcells.
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To see why this could be valuable, consider the following. At present, FFP
reductions can.require an expression to grow temporarily within the lcell array
even though the final reduced result is no larger than the original application.
Operators that merely restructure a list {e.g., ROTR) provide examples of this
phenomenon; forking is used to create room to receive symbols whose position
is to be changed, and whose original containing lcells are released. when the
red-ﬁction completes. In such cases, there is no net increase in expression size,
and virtual lcells could be used to temporarily contain (within a single DOT leell)
mui_tiple forked LPL contexts during the procesé_ of a reduction, so that no

intermediate shifting would be required.

This weuld minimize the degree to which separate HAs interfere with each
‘other during their execution, and allow most FFP primitives to be implemented
_in a single cycle machine since the LPL fork operations could proceed without
storage management within the lcel] array. Shifting would be required only upon
completion of a reduction -- to create the one-to-one correspondence between

. FFP-level symbols and DOT lcells required for new partitionings.

i

The basic concept is thus similar. to mullipregramming on ftraditional
architectures, with the exception that only a single LPL code segment would be
required. The tradeoff to be examined is the necessary increase in the size and
complexity of DOT lcells -- needed to allow an lcell to contain, schedule, and
execute multiple user contexts -- versus increased independence between RAs

and increased execution efficiency for many FFP operators.

Implementing non-blocking LPL fork operations appears feasible within the
DOT model. Message reception would be straightforward; copies of the message
would be placed in each LPL context, and the appropriate filter would be

executed onee for each context. Allowing send statements would be more
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difficult, since combining or sorting mességes would have to be done by the
containing DOT lcell. The restriction that no send statements be executed
following a forking operation seems reasonable, however, and takes care of this
problem. Support for fork operations that create more LPL contexts than can
be held by a single {(limited size) DOT lcell must also be addressed. In su.ch-
cases, storage management will be requiréd, but the impleméntation should be
able to handle this in a manner that is transparent to the LPL programmer (just

as virtual memory or multiprogramming is transparent to a programmer).

6.1.4. Completion Synchronization

B.ecause of our process-criented desi_gn methodolog;}. and the desire_ for
simple, asynchronous anjd free-running processes wherever possible, eacb
.Segment of an LPL program was originally allowed to simply perform its own.
local _-dutie.s and then completé {by executing an endsegment statement).
..;Although messages and forking might require multiple cycles for some of the
segments of an LPL program, other segments requiring fewer cycles were.
allowed to complete W_ithoutr coﬁcern for the longer-running segments. This was
a convenience provided by DOT for the LPL programmer since, in reality,. the
lcélls.of an RA must all be stepped forward.together at the end of the same cycle

to prevent partitioning anomalies.

To insure that RA lcells were not, stépped forward téo soon, DOT leells within
an RA originally sent a stale puacketl up into the area channels upon.receiving the
stop meséége from the io subsystem. This packet served the same function as.
the LPL stop packet now does, by clearing out area channels, but also included
the execution state {completed or not) of the. sending lcell. The state
information ﬁr‘as combined by area nodes using logical muitiplication con the Way;

up, and upon return to the lcells indicated whether all lcells of the RA had
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completed and the RA should be stepped forward., .-

The original method had the advantage of insulating the LPL programmer'
from details required for: synchronizing completion of an RA, but was less
efficient than necessary. If LPL segmenl_:s are requii‘ed to synchronize their own
completion (which they can easily do by keeping track of messages, or forks
when necessary) then the state message is not required, and preparation for

storage management can begin earlier, thus shortening the execution cycle.

The approach we therefore took, as deséribed in Chapters 2 and 3, was to
require LPL programs to perform thelir ofvﬁ completion syrnichronization. With
this done, a top of area node can detect the stop message on its way down the
~ tree, and immediately insert a corresponding stop packet inte its down-going
area channels (.following the LPL message curfently in transit, if any) without
waiting for the stop message to reach the lceils an.d the state packet. to then be
sent up and return to the top of area. Doing this therefore avoids an additional

2h delay reqﬁir‘ed by the state packet approach:

- Qur experiences with the improved shutdown mechanism -whén
implemented in the simulation were surprising. In some cases, the "improved”
design actually ran slightly slower. The reason for this was the additional LPL
code required to synchronize completion. When h was small, the increased code
loading time during partitioning {due to increased cbde size) was not offset by
the 2h saving duriﬁg shutdown. With larger areas, the desired effect is achieved
and synchronized completion results in the best performance. Nevertheless the
tradeoff remains interesting. LPL programs are considerably harder to write
with a synchronization consf,raint between segments. Many of the LPL progfams _
rewritﬁen for the new design initially deadlocked, and new LPL programs take

longer to develop.
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In the current design, we nevertheless decided to use the approach that is
potentially more efficient at the cost of ease in writing LPL programs. This
approach can be supported by arguing that LPL programs are essentially
microprograms, and therefore will be written infréquently. On the other hand, it
is reasonable to noté that even on a large machine {say H=21) h will never be
‘prohibitively Iafge, so the extra aelay required to send a state packet may ﬁot

be Lerribly important when compared to realistic sto.rage management times.

Looking at the benefits to be derived through the use of a state ﬁacket {in
spite éf the_exeéution overhead), the resulting decrease in LPL code size is not a
major factor; the increase in understandability is. Both factors are most
‘noticeable when the LPl, program in guestion requires muitiple cycle.s and

numerous code segments.

6.1.5. Duration of Execulion Phase

Since the stop message which originates in the io subsystem initiates the
" required céurse of events for terminating the execution phase, regulating the
dux_'atibn of the execution phase reduces to deciding how soon (following delivery
of required LPL code segments) the stop message should be sent. It is useful to
note thatl this decision can be made without concern for correct operation of the
machine. This fact is a natural result of a process criented design methodology.
Time is never a factor in the correcthéss of the design -- only the partial
.or.c‘lerings of events made explicit in the process descriptions. Because of this,
we are free to use whatever means we wish to' determine an appropriate

duration for the execution 'phase.

A variety of alternatives for reguldting.the 'duratiorll of the execulion phase
are possible. These include fixed durations, and heuristically varied d’urations.

The appreoach we have taken for DOT allows RAs to control the cycle time, thus
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providing a degree  of sensitivity to dynamically changing execution
requirements, while .still allowing an analytic model _tq predict execution times.
This method can result in the shortest possible cycle times and the best possible
execution efficiency when all RAs receive few (or no) messages before
completing or forking.', | |

If ®(n) messages must be received by the lcells of an RA in order to

complete a reduction, however, allowing the RA to complete in a single execution -

phase could seriously reduce the efficiency. of other reductions within _the
machine. It seems best to interrupt such an RA temporarily, so that other
reductions that have completed can be stepped forward, and then continue the
RA during the following machine cycle. In the present design, LPL programs
that allow this, by executing smanage at appmpriate. intervals, .are_called'
Jair operators.

As shown by sim’uiation, the cost 6f being fair may not be serious. This is
due to two factors: the lower bound on storage management for an RA
interrupted for th_i_s reason is generally zero (rﬁessages are being received, an&
local forks have not been executed), and the subsequent cost for repartitioning

the old RA is low {code and directories are already loaded).

As an alternative to the current approach requiring fair operators, we might
consider using a fixed duration for the execution phase. This would alsc prevent
a single RA from monopoiizing the machine cycle. The analytic model of RA

execution time can be used for guidance in choosing an appropriate duration.

With the help of the formulas derived in Chapter 5, we can investigate the

normalized efficiency, ¢ {defined as the time required to reduce an RA

® As shown by the analytic model, mﬂy the number of received messages is important to
execution time; any number may be sent, but if combined and pipelined the delay is the
sarie as the transit time for a sirigle message.
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completely within one cycle divided by the cost of reducing the RA over a periéci -
of k additional ecycles), for a large ®{n) communication-bound reduction. The
" primary assumptions required are that the lower bound on storage management
time for the RA is zero (i.e., no forks.are performed), and that otﬁer RAs cipn't '
interfere with the communication-bound RA, so that the actual storage
‘management time is zero as well, As mentibned above, these assumptions

appear reasonable in view of early simulation results.

Figure 6.2 summarizes the analysis when n messages of msize=1 are

received by an RA of size n.

FIGURE 8.2 - Efficiency of Foir Operators

£ = best-time / actual-fime

message-cost w4,
purtitioning-cost = 4H,

total-cost ' < 4k H + 4n, thus

£> 4n / (4n + 4kH)
=1/(1+kHMm)

If the constunt cycle time is equivalent fo m messages feyele,
k=mn/m, sn

¢>1/(1+Hs/m).

Alternatively, to achieve a givern gfficiency, £, lel

m = ¢H / (1) |

From the results of Figure 6.2, to achieve 50% efficiency in communication-
bound RAs, the machine cycle should be set so at least H messages may be sent
each cyele. Tor a machine of height H=20, to achieve 50% efficiency the

duration of the executicn phase should be at least {(2H + 4H + 3) = 1237, If r'is
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-100 nsec, then, the duration of the execution phase should be ~ 13usec.”

Note that this value is fairly small in comparison with the times required to
shift contexts within the leell array. Presently, the time reguired to receivé 20
LPL messages is less than the cost to shift an executing user context a distance
of one lcell. In view of this result, decreased efficiency for RAs that don’t require
the whole execution phase for ’completion méy not be an impoertant factor. This
is because the newly-formed expressions ereated by rapidly reduced RAs (during
the ongoing execution of a large communica’cion-boﬁnd RA) will often reqﬁire
storage management Shifting due to forks that have been executed, and then

_storage managerﬁaent costs should predominate.

Although simulation will be required to judge whether the assumptions of
this reascning are born out by experience, the above discussion shows one
direction that a search for a constant execution phase could take. With such an
approach, execution times for complete programs could still be predicted in a
manner similar to that described in Chapter 5.

With a heuristic cycle time, it is no longer possible (in general) to prediect
execution times. Nevertheless, a heuristic approach might still ke indicaled if
the observed results were good. Figure 8.3 lists some of the approaches that

could be considered.

FIGURE 6.3 -- Possible Variable Cycle Time Hewristics

1) less than 100% sm_grants required from leells (e.g. 80%)
2) set cycle times based on RA operators
3) set cycle times based on storage management shift requirements

¢ Alternatively, to achieve 90% efficiency al least 9H messages should be received each
cycle. With H=20, this would result in an execution phase duration of (2H + 36H + 3) =
7631, or & 77 usee,
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In the first approach, a mechanism similar té the present use of sm _grant
rﬁessages would be appropriate. Instead of waiting for all lcells to .allow storage
management, however, a particular threshold would be used (e.g., the s’éop
message might be sent down after B0% of the lcells allow storage man_agernent).
The threshold could be chosen dynamically each cycle, based on icell contents,

“or fixed arbitrarily.

In the second approach, the particular LPL programs active within the lceli
array (and possibly their corresponding RA sizes) would be used to determine an
~appropriate duration of the execution phase. Such information could easily bé
made available to the io subsystem .durin.g partitioning. Determining a _
satisfactory approach toward such an heuristic, by weighting various LPL

program characteristics and RA sizes, would be very interesting.

In the third approach, information concerning the extent and distribﬁti’on
of storage management shift requirements would be used. When large amouﬁts :
of shifting are required to create an RA, a longer execution phase would allow -
the s_hi_fting activity to complei‘.e and some. useful work to be performed before

termination of the execution phase.

Of course, the essence of an heuristic is that it attempts to balancé
complex and conflicting forces throﬁgh simplé means. The fact that the above
examples ‘are so different merely indicates the variely of factors that influence
execution efficiency within the current design, In addition, the results of Figure
8.2 indicate that duration of the execution phase, althdﬁgh important, is not the
predominant factor influencing execut.ion eﬁicienéy -- rather, the durétion o.f
the étorage mahagtément phase appears to be the most crucial. This is a useful
result, since it indicates that a simple fixed duration for the execution phé.s.e

‘may turn out to be generally satisfactory.
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8.1.8. Shifting vs. Reloading LPL Code

At present, the LPL code segment is part of the user context that is shifted
during storage management. This means that once a code seg.ment is loaded,
succéssive partitionings complete much more rapidly, and this allows gbod
efficiericy for fair operators. However, loading LPL cﬁde segments during each
partitioning would reduce the time presently required for storage management
by a factor of three.” This is clearly an important tradeoff, and it irwolveé the
nurmber of FI'P operators that are active during each cycle, and the number éf

" machine cycles required for their reductions.

It is likely that a small number of commonly used LPL programs could be
stored in ROM within the lcells. This would shift the balance toward loading'.
necessary LPL programs du’riﬁg each partitioning, as opposed.to shifting fhem
with active environments during storage management. 1f neon-blocking fo_rk
operatioﬁs are feasible, most feductions would complete in one cycle anyway,. S0

the frequency of reloading LPL code would be reduced even further.

Investigation of this tradeoff will require only moderate changes to the

current design.

8.1.7. Storage Managemenl Transfer Function

Calculation of the storage management transfer function is relatively
unconstrained as long as it resulls in a feasible solution as described in Chapter
3. In additioﬁ, storage management is the most importani .phase to handle
efliciently because of its great potential effect on execution efficiency. A variety
of alternatives should therefore be ide.ntiﬁed and inﬁesﬁigated, An importdnt

consideration for any method is that it should pipeline effectively.

* Recall that the LPL context size is 204 bytes, of which 150 bytes are used to hold the
LPL code segment.
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Although we use the method originally suggested by Mago that minimizes
movement -between subirees rooted at higher levels of the machine [Mag79],
.Stanat' and Mago have shown how to optimize the overall context movement by
minirrﬁzing the maximum dflstance. traveled by any context during storage
management [Sta8lal.

‘Other possibilities include purposely distributing available empty lcells
among user contexts. This could serve to insulate separate RAs from e'ach
| others’ storage requirements, resulting in e}-zecﬁtion times generally close to the
t‘heorétical lower bounds predicted by the analytic model. If eflective, éﬁch an
approach would shift symbolsrfarther than necessary in order {o pfoduce
interspersed empty lcells and reduce the nged for shifting later. To lower the
- cost of shifting symbols further than necessary, this activity might be restricted.

Lo non-active contexis only.

In the absence of ;advance knowledge concer’ning futuré storage demands of
' executing FFP programs, however, the metho& we presently use is probably
close to optimal; it pipelines efficiently, and limits shifting during storage
management effectively. In order to provide better overail performance during
the execulion of complete programs, guidance concerning beneficial placement
of interspersed empty lcells from the FFP programmer might be useful.
Automated analysis of FFP program text might also provide information useful

to effective management of the lcell array during execution.

6.2. Desipn Extensions

We now give recommendations for design extensions.
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6.2.1., Job Control Language

At present, the mkusr program accepts user-supplied FFP programs and
creates a batch of user programs or-ganized as required for loading and
execution on the DOT machine. The FFP programs are presently written using
the aln FFP-level represénﬁation, and the primary job of the mkusr program is
to create a file in which user program symbols and alns oceur in pairs in reverse
. (right-to-left) order as réquired for loading. This file is accessed during a
-simulation run by the vm subsystem, which enters the batched programs' into
- the lcell array when indicated by the top-level siorage management transfer

function.

While this approach is guite satisfactory in its support for testing the DOT
design and simulating the execution of FFP programs for evaluation of tradeofls,

a more realistic user interface will ultimately be required.

An interface between the outside world and the POT machine that allows
entry of jobs concurrently with machine operation is necessary. This should be
fairly easy Lo develop within the present simulation. More important than this,
however, is development of a smarter mkusr program. Facilities that rnkusr

could ultimately include are given in Figure 8.4.

FIGURFE 6.4 — User Interface Facilities

« T'ronslate user FFP to the machine’s FFP-level representation
o Tronslate operafor names fo the appropriate machine op-codes
s Trunslate FP fo FFP

» Support user-defined operafors

s Support run-time dafo entry

The first three items simply require the develecpment of a more
sophisticated transiation mechanism than now employed. The last two, however,

will in addition require development of a Job Control Language to allow the user
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to define and use logical identifiers for reference to desired user-defined
operators and read-only data sets. Correspohding to this JCL must be a runtime
system' to allocate unique identifiers for binding to logical identifiers during

program exectition.

When a prograrﬁ is run, its user-defined operators and read—ohly data sets
-will be associated with appropriate unique identifiers and placed (at least
logically) within the VLPL program library. When the program has completed, the
associated user-defined operator definitions will be removed, and their op-code
identifiers freed to allow allocation to the user-defined operators of new.
| programs. This facility will allow genefal programs to be written in a stru.ctur.e__d

fashion {data and program may be kept separate,- and user-defined operatot‘o

are similar to procedures).

JCL support for usef-deﬁned operatofs and read-only data. sets will generéte _
- LPL programs (with temporary op-codes assigned as described above) that
create .the desired FFP text within the leell array when encountered as the
vperator of an innermost-reduction. Automatic generation of this restrieted
type of LPL .prograrn should be straightforward. Figure 6.5.shows a user-defined
eperator and gives the corresponding LPL program, The operator calculates the
Euclidean distance from the origin to a point. Although,FFP funotion names are
used in the LPL program fof clarity, the appropriate op-codes would actuélly bre
used. The LPL pr-.ogram source given in Fi.gure 6..5 is only an intermediaﬁe step
on the way to the oorrosponding object code. In practice, the required object

code would be gencrated directly from the user-level FFP operator deﬁn.ition.
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FI GURE 8.6 ~ A User-defined Operatlors and its LPL Program

Defuserop
DIST =
<COMP + <CONS
<COMP * <CONS <SELECT 1> <SELECT 1>>
<COMP * <CONS <SELECT £> <SELECT 2>>
>
>

program DIST /* called in when innermost (DIST arg) is encountered
destination 1 O 0 0 /* replace DIST with its definition
cselect "< : 0 "COMP ;: 1 "+ : 1 "< : 2 "CONS : 3
"< 1 3 "COMP : 4 "* : 4 "< : 5 "CONS : 8
"< ¢ 6 "SELECT : 7 #1 : 7 "< : 6 "SELECT : 7 #1 : 7
"< 13 "COMP : 4 "* 14 "¢ ' H "CONS': B ;
"¢ : 6 "SELECT : 7 #2 : 7 "< : 8 "SELECT : 7 #2 : 7

forke #27
endsegment
destination 0% 0* 0% O* /* all other syrbols unchanged
keep ' '
endsegment
endprogram

8.2.2. Pushdown Storage for Leells

From the nature of the DOT desizgn, it is clear that argurnent copying should

" be avoided by LPL programs whenever possible because of the corresponding |
necessity for forking and increased storage management {ime. Some LPL
programs cannot avoid this. DBL and ROTR, for instance, must copy all or parts
of their argument to produce the desired result, COND, the first phase of the
FFP conditional operator, alsp needs to copy its argument, but not because of
the result it produces. Rather, a temporary copy of the argument for COND is
required so that the predicate can be evaluated -- off to the side, as it were -- in
order io apply the correct function. To illustrate this, Figure 8.6 gives an
example reduction for an FFP text segment that uses COND to return 1 if the

ai‘gument length is less than 10, and 2 otherwise.
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FIGURE 6.6 - COND Copies ifs Argument

(<COND <CONST 1> <CONST 2> <COMP <ILT 10> LENGTH>> arg)
the argument is copied, and an inner evaluation of the predicale
is begun ‘
(<COND2 <CONST 1> <CONST 2>> <(<COMP <GT 10> LENGTH> arg) arg>)
' . within in predicate eveluation, composifion resulls in _
(KCONDZ2 <CONST 1> <CONST &>> <{(<GT 10> (LENGTH ary)) arg>)
which ultimaiely reduces fo, say,
(<CONDZ <CONST 1> <CONST &>> <T arg>) _ _
cond?Z sees that the first funclion shouwld be applied to oryg, so
it creafes the appropriate reduction
(<CONST 1> arg)
which reduces to
1

the that in the first step, the size of the RA may double. This Overhedd of
argurneﬁt copying required for support of COND is unfortunate sinc.'e conditional
‘execution is generally necessary in realistic programs. Mago has suggested a
method to avoid argument copying in such caées [Mag82]. The mechdnism is
interesting éinée its implementation requires changes to both DOT and the LPL

architecture.

The basic idea is thaf lcells are given a pushdown register capable of saving . -
the FFP-level representation for a téxt symbol. A push operation copies a symbol
into this register, which is not affected by following reductions. A subsequent pop
then brings the symbol back into the Icell array to again participate in
reductions. For COND, then, we push the argumnent dowﬁ, and evaluate the
predicale, destroying the original argument. We then pop the earlier-pushed

copy of the argument back up for use by the appropriate funciion.

The push operation may be implemented within FFP or LPL. Since efficiency
is of concern, LPL is the best place for it. An extra cycle would be required if -
pushing were done at the FFP level. In addition, including a push operation in

FFP would require modification of the FTP architecture -- something of concern
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in a language-based design."

The pop operation, on the ‘other hand, cannot be easily implemented within
LPL. This is because only RAs execute LPL, and thé.pushed symbols are not
allowed to affect partitioning and the creation of RAg, Thus, there is no easy way
to guarantee that Icells holding pushed symbols will be part of an RA whose lcells
Iﬁight execute a pop instruction. .Unfortunately, placing the pop operation in
FI'P is also unfeasible -~ for the same reasons as given above for ihe push

operation.

A comp.romise approach ig to place pop in an intermediate position between
the LPL and FFP levels. Pop can then be consider.ed a "pseudo-operator”
possibly found at the FFP;level during partitioning, but always pruned out of the
area belore reduction begins, and only placed in the lceii array by LPL code as. a
special non-FFP reserved symbol. Figure 8.7 shows the above example as it
might appear during successive execulion cycles with use of the LPL push
statement and the pop pseudo-operator. The pushed symbols of the argument

are represented in curly brackets. Pop is represented by *.

W
Currently, the FFP architecture is based on linear {one dimensional) expressions. The
push operation requires that a second dimension be visualized.
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FIGURE 6.7 — COND with Push and Pop

(<COND <CONS’T 1> <CONST 2> <COMP <LT 10> LENGTH>> arg)
The COND LPL progrum pushes the argument, and creates an
innermost FA for evaluation of the predicale
(<CONDE <CONST 1> <CONST £>> <(<COMP <LT 10> LENGTH> urg {arg})>)
The predicate is ullimafely reduced, yielding
(KCOND2 <CONST 1> <CONST 2>> <T {argl>) '
CONDZ checks the result and then creoies
~(* <CONST 1> fargi )
During partitioning, the pop pseudo-op is detected. Only in
this cuse are pushed symbols included in the KA, and they appear
in their popped up form. The pseudo-op is pruned from the _
aclive grea during the downsweep, so that the HA seen by CONST is
(<CONST 1> arg)
which redices as desired,
1

As can be seen, the above approach requires. no argument copying, no extfa
cycies, and no changes to user-level FFP, If is important that the pop péeudo-op _
be pruned from the area so the RA will appear as expected by the functipﬁ'
selected by the predicate. In the form described, push o‘per.ations may not be .
nested. With further extension of the pusﬁ-dpwn stbrage in the Iceif, nesting to a

fixed depth would be possible.

Although a variety of modifications of DOT are required to support push and
pop, these changes are not complex. Storage management should never shift
contexts "over” pushed symﬁols. With this restriction, pushed symbols will
always' be available for inclusion in an RA created by a subseguent pop
' operatibn. As indicated above, partitioning must be changed so pushed bhut
emply cells are treated as empty unless a pop pseudc-op is drei:ected.‘ in tlﬁlis.
case, the pushed symbols are popped and included as usual FFP-level symbols in
that RA, while the pop pseudo-opefator is pruned and the .containing lecell made

empty.
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6.2.3. Visual Tracing

At present, all simulation output is oriented towards a termiﬁal or line
printer. Since detailed information concerhing computational activities and
data transfers is available from simulation tracing, however, the possibility_of

visually oriented sirmnulation output is raised.

In addition to making visible the flow of information aﬁd the progress of FFP
reductions within the DOT machine, such a trace package could also provide
statistical assigtance, and allow run-time factors éuch as channel utilization to
be graphically displayed. Simulation results of interest in evaluating design

alternatives could be accumulated and presented at the user's request,

Figrure 6.8 shows the steps necessary to provide such a facility.

FIGURFE 6.8 — Sleps to Provide Visual Tracing

» develop e grophical machine model
» modify the simulation to produce appropricie dalao
« connect simulalion output to the wisual model

« provide user interaction

An appropriate visual model might employ graphical representations
similar to those used within_this digsertation to depiet a simulated machine, bﬁt
flexible windowing operations would be required. The largest machine depicted
within this dissertation contained only 16 lcells, while the machines required for
realistic simulations will be much larger. Because of this, the ability Lo handle
different levels of abstraction in the visual model, by using different
representations of the cells and communication lines, would be desirable. At a
top level, visual access to windowed segments of the icell array would allow

storage management and the ongoing progress of FFP text reductions to be
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examined. At a lower level, a more detailed visual model might include the teceils
as well, highlighting active areas, and pbrtraying the filow of information between

cells during execulion.

At present, simulation outpﬁt is keyed to process ids that are maintained
by the ClassC scheduling mechanism. Thé’correspondence between process ids
and cell locations must be ﬁlade more expl.icit if trace informatidn is to i}_e
displayed graphically. The most direct appr0a¢h would be for the geometric
location of each cell to be encoded into a Varié.ble _globaliy available to members .
~of each cell during initialization, and for Vevery trace messége to include this _
information. Making such a modification to the current simulation will be easy,
since this facility was envisioned during the initial design and the appropriate

hooks are in place.

Although it would be ﬁossible fo pipe simulation output directly to a visual
trace package, it seems b.e.ttei" to batch tﬁe simulation és done presently, and
use the simulation outpuf later -- filtering it as appropriate for the desired visual
trace. OUne reason for this is that simulation time. can progress quite slowly.
Program e:xecution ean require‘ hours of wall tiﬁe when large machines are
.simulated. By decoupling simulation from visual tracing, reasonable viewing

times are made possible.

Perfprming visual iracing separately from simulation also expands the
possibilities for user interaction. The progress of simulation time might be a
variable to be selected by the user during tracing. Interactive windowing of the
visual model would also be very useful. The ability to cha.nge levels of

abstraction interactively is another possibility.

In  summary, visual tracing represents a wuseful and relatively

straightforward improvement to the current simulation environment, and it is
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highly recommended.

6.2.4. LPL Storage Management Event Indicator

A useful (and easily accomplished) extension for LPL would be to provide a
read-and-reset register that indicales whether or not storage management has
oc.curred since the last time the register was examined. Thié facility would be

| oriented towards support for fair FFP operators, and would allow an exact count

of the number of messages processed since the last storage management.

At present, fair operators incorrectly assume that no messages are
received following an smanage. This assumption is made because storage
management is completely invisible to LPL code, thus a count of messages
received in the interim bétwéen the smanage and the end of the execution
phase is not possible. A read-and-reset boolean register to reflect the
occurrence of storage managemen.t wonld é.llow the correct message count to be

maintained.

8.2.5. Storage Management with Variable Context Sizes

At present, two different sizes of user contexts are shifted during storage
management: active {204 bytes) and non-active {4 bytes). Besides the 54 bytes
of LPL environment included in an active context, a fixed size code area of 160
bytes is shifted. Since codé segments are often quite small (many contain only a
one byte long endsegment op-code), a more flexible appreach is indicated.
Stoi‘age management should only shift the éctual amount of code that is
resident - not the complete.code area. This could result in greatly improved

performance.
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6.2.6. Increasing Phase Independence

The efficiency of the DOT implementation arises from decoupling as much
as possible the i)hases of the maching cycle in separate RAs. Unfortunately,
coupling still occurs during storage management, when large user contexts are
.shifted in pipelined fashion in the. leell array. We might ask if we can further

.decouple the activities of different RAs during storage management as well.

Luckily, we can.

The key is to recognize that pariitioning requires only the symbot., aln,
stofe, and forkid context inforrnation. This could be- shifted first, during an
initial storage management phase, allowing partitioning to begin as soon as
possible and proceed while the shifting of all other context information
(required for execution only) takes pléce. The .storage management phase unld :
therefore take place in two pipelined shift cperations. First, the information_
reciuired for partitioning would be shifted, énd then, after this was finished, all
remaining information would be moved. For RAs that are .already active,
partitioning would be effectively freé. For RAs that are new, the upper bound for
storage management would involve the non-active context size only. Both these

results would be very important for execution efficiency.

Implementation should be straightforward. A new process will be required
to complete storage mané_gement by shifting the balance of executing contexts
within the leell array while the lcell manager proceeds with partitioning. In
addition, execution must wail until the new process signals that the complete
context required for execution has arrivéd. This extension can be made in

conjunctibn With.modiﬁcations to support shifting variable context sizes.
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6.2.7. Multiple Input Ports

Although we have used a single port located above the tree root for LPL '
program input, there is no reason why multiple ports distributed throughout the

tree might not be used in a similar fashion.

As is done now, top of area node managers that wish to request an LPL
program would have their requests sent up by tcell managers, which merge
these requests with those from underneath. Such requests could be served by
the first tcell they reach that includes an io port. Regquests for LPL progréms
would only reach the top of the tree if no io port exists between the top of th.e
tree and the node in which pruning for a newly-discovered RA starts. An io port
would act as a filter for input broadcast from above; only LPL programs not

broadcast from the local port need be passed down.

Questions concerning the optimal placement of io ports should be
investigated. They should be located high enough to catch a reésonable number
of requests (hence, locating them at height 3 is probably not a good idea), and to
provide balanced operation. Simulation seems a good way to initially investigate
this problem, and the current design would require few changes to implement

the approach suggested above.

It would be also possible to provide more generalized routing through the
tree, so an io port could serve areas whose top of area is located higher than the
port. This would require developmental work to determine an appropriate

routing protocol.



CHAPTER 7

Conclusion

Our main goal in this dissertation has been the presentation of the LPL
_arch'ltecture and the DOT implementation model. These are the essential
components of an efficient and highly: parallel programming system. n:iesigned to
execute FFP languages. A corﬁplete programming system Was‘ preéented,

' including a variety of LPL definitiong for useful FFP operators.

To express the DOT design, we used a concurrent programming language
wiﬁh support for process-oriented simulatioﬁ. The result is a nr_lodel:.of the top-
level irﬁplementation characteristics of a multiprocessor capable of efficiently
supporting LPL and FFP. Aspects related fo the simulation approach for
mulﬁiprocessof design. in genéral,_ anzi for DOT.in particular, were discussed and

initial results of simulation were given.

An analytic model for the progress of reductions on the programming
system was derived. This model is base‘d‘ on the actual data manipulation and
message transfer protocols embodied in the DOT design, and it accurately

predicts upper and lower bounds for RAs.

Alternative approéches to the design were discussed, and in some cases
these were analyzed with the help of the analytic model. In general, comparison
of alternatives will require use of different simulation models, aﬂd we have
indicaled fruitful directions of approach within the context of the current DOT
model. Important extensions and directions for future development work have

also been indicated.
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A natural question to ask at this point is whether the DOT design
representation of the desired multiprocessor implementation can be directly
mapped into VLSL. For example, could the DOT implementation of the lcell and
teell classes be given to a silicon compiler? Unfortunately, the answer is no. Tor
such an approach to be effective, a lower level of implementation should
probably be used, such as the circuit level or the register transfer level.
Attempting to map DOT processes directly into dedicated hardware is likely to

be wasteful of cireuit logic.

- To produce efficient realizations for the lcells and tcells,_ the beha\}ior of
their processes in time must be carefully examined. The first thing to bé noticed
fis .that DOT processes spend most of their time waiting for the arrival of
information that is required for a subsequent operation. The tcell manager, for
instance, is essentially idle throughout the entire execution phase of t.h'e '
machine eycle, waiting for the stop message which originates in the io
subsystermn. Because of this, dedicating an entire block of VL3I circuitry to the
teell manager, including logic for all required arithmetic manipulation, would be
wasteful. Logic required for arithmetic operations should probably be shared
between the node manager and the tcell manager. The same considerations will
apply to the lcell as well; the LPL interpreter process should share an arithmetic

unit with the leell manager.

In addition to examining the characteristics of the cell processes with the’
aim of efficient processor utilization, usage of logical ¢communication channels
over time should be investigated carefully in order to achieve efficient
utilization of physical intercell communication lines. An intercell
communication .line might be time-division multiplexed to provide shared use of

a single line by multiple logical channels, but, if so, it is likely that the
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. appropriate balance of communication scheduling will differ dynamically, as
cells move through the execution cycle. For instance, the communication
bandwidth available on the cell manager channels during the execution phase

could be minimal.

In our design approach, we were moi:ivated by the desire to borrow
techniques useful in the design of parallel software, and apply them within the
larger context of multiprocessor design. The results have been sﬁccessful. BoT
is the first complete implementation model based on Mago's design goals.
_ Although the overall system is quite complex in its operation, the use of small,
simple, sequential processes for its description produced an _intellectﬁally

fnanag eable design.

To make the transition from thé BOT implementation model to actﬁal
.'realization, however, requires that processes and logical channels whieh were
carefully separated in our high-level design, for the purpose .of 'clarity, be
efliciently integrated into their respective cellular components. Qur design doees
not provide guidance for this; the tasks to be performed within the tcells and
lcells have been identified, Eut the allocation of tasks to spe.ciﬁc' hardware and

firmware remaing an open issue.

These low-level considerations were ouiside the scope of this dissertation,
but they ultimately need to be addressed in order to produce a hardware
realization. As indicated in Chapter 8, many design alternatives still need to be
investigated, and many improvements to the present design are possible.
Although a final decision on realization must wait for furt;her resolution of these
higher-level alternatives, genefal investigation of important issues related to
realization, such as those. mentioned above, is indicated. In addition to

pro.viding advance insight into problems to be expected in a realization, such
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research may indicate a more fruitful high-level design methedology than the
one we have used, when the desire for straightforward realization is taken into

account.
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