
TR 83-007

DOT: A DISTRIBUTED OPERATING SYSTEM MODEL
OF A TREE-STRUCTURED MULTIPROCESSOR

by

Scott Harrison Danforth

A dissertation submitted to the faculty of the University of
North Carolina at Chapel Hill in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
1983

Approved by :

Re'der
?

- 7

't ~ ~:t.~~-t~-
Reader ~

SCOTT HARRISON DANFORTH. DOT: A Distributed Operating System Model of a
Tree-structured Multiprocessor (Under the direction of GYULA A. MAGO.)

Abstract

This dissertation presents DOT, a process-oriented design and simulation

model for a highly parallel multiprocessor, and describes a complete associated

programming system. The design methodology includes the use of layered

design. abstract data types, and a process-oriented view of concurrency. Our

results demonstrate that these software engineering structuring principles can

be successfully applied to the design of highly parallel multiprocessors.

DOT is represented using an executable high-level language that provides

support for discrete-event simulation. This allows verification and accurate

simulation of the complete programming system, which is composed of three

logical levels.

The top, or user level of the programming system is that of FFP (Formal

Functional Programming) languages. The middle, or system support level is

that of LPL, a low-level concurrent programming language used to define and

implement FFP operators on the DOT architecture. The DOT design represents

the lowest level of the programming system, a highly parallel tree-structured

multiprocessor that directly supports the LPL and FFP languages.

During execution, user programs consisting of FFP language symbols are

entered into a linear array of processing cells (the leaves of the binary tree of

processors represented in the DOT design), and segments of this array that

contain innermost FFP applications execute LPL programs in order to perform

the required reductions. The LPL programs for a useful set of FFP primitives are

given.

In addition to DOT and the overall programming system, this dissertation

presents an analytic model which maybe used to derive upper and lower bounds

for program execution time. Predictions of the analytic model are compared

with simulation results, and various design alternatives and possible extensions

are examined.

ACKNOWLEDGEMENTS

I dedicate this dissertation to my mother, who always wanted a doctor in

the family, to my father, who stood by me when I needed it most, and to Kasey.

I want to give special thanks to my advisor, Dr. Gyula Mago, who, in addition

to guiding this work with a steady hand, will always guide my understanding of

what it is to be a teacher, in the best sense of the word.

For their substantial assistance in improving the quality of this dissertation,

I owe a special debt of thanks to the other members of my doctoral committee:

Dr. Fred Brooks, who made me aware of the wider concerns of Computer Science

education; Dr. Don Stanat, who taught my first Functional Programming course

with such enthusiasm; Dr. Rick Snodgrass, who so cogently forced me to rewrite,

rewrite, rewrite; and Dr. Barat Jayaraman, whose gentle but firm attitude made

late revisions so painless.

I also wish to express my indebtedness to George Entenmann and David

Middleton for their active, creative, and invaluable participation in our meetings

with Gyula Mago.

Lastly, to the computer itself, my appreciation for the UNIX® editing,

formating, graphics, and typesetting tools which supported the development and

printing of this dissertation with such ease. This project was supported by the

National Science Foundation under grant MCSB0-04206, and by a grant from

Harris Corporation.

CONTENTS

1. Introduction 1
Historical Overview 1
Reduction Machines 3

GMD Machine (Berkling) 5
AMPS (Keller) .. :... 6
MMl (Mago) ... 8
Ring-Coupled Reduction Machines (Treleaven, Mole) 11
Syntax Tree Machine (Tolle) ... 13
Cooperating Reduction Machines (Kluge) 15

Other Related Work 17
Time and Storage Analysis (Koster) 17
Message Routing (Kehs, Pargas, Presnell) 18
Virtual Memory (Frank, Siddall) 19

Dissertation Overview 19
Dissertation Organization 21
Selective Reading 22

2. Topmost Architecture Levels 24
Introduction 24

Architecture, Implementation, and Realization 25
Multi-level Systems 26
Architectural Concurrency 28
Implementing Architectural Concurrency 29

User Architecture -- The FFP Language 29
Backus' Language Hierarchy .. 31

Programming Languages 32
Complete Languages 32
Applicative Languages 33
Closed Applicative Languages .. 34
>..-Red Languages 35
FFP Languages 36

Observations and Examples 36
Implementation Architecture --The LPL Language :.................. 41

LPL Architecture 42
FFP-level Text Representation 43
LPL-level Representation of FFP RA Symbols 47
Message Subsystem 51
Heplicating LPL Contexts 51

LPL Syntax and Semantics 55

ii

iii

program/endprogram ... 57

destination/endsegment ... 58
Lcell Data Movement and Arithmetic 58
Logical Comparisons and Program Control 59

fork/forkc 60
nselect/cselect 68

send/receive/ endfilter 64

endsend/smanage ... 66
Synchronization of Program.Segments 66

Synchronization of Forks and Messages 67
Synchronization of Completion 6fl

Remarks and FFP Operator Definitions 69

FFP Functions 72
Identity 72

Atom.. 74

Equals .. 76
Double ... 78

Length ... 81
Tail... 82

Rotr ... 83

Distl 85
Matrix Transpose 88

N-ary Add 90

Sort ... 91

Matrix Multiply 92

FFP Functional Forms 95

Constant .. 97
Select 98
Composition 100

Construction 102
Conditional 104

Conditional -- phase 2 107

Apply-to-all 109
Element-by-element 111
Meta-composition ,... 113

3. Implementation-- The DOT Model 115
Introduction .. .'....... 115

What DOT is (and what it isn't) ... 115
Overall DOT Structure 117
A Language for Representing DOT 117
A Process-Oriented Design 120

Communication Between Processes in Ditl'erent Cells 121
Overall DOT Operation 124

The Basic Machine Cycle .. 124

iv

Partitioning Phase .. 126
Area Nodes•. 128
Directory Creation 129
Loading LPL Programs 130

Execution Phase 130
Lcell Message Support ... 131
Fork Support 132

Storage Management Phase 132
The Specification for Storage Management 134
Overfiow and Program Entry 134

Process Structuring of DOT Cells 135
Tcell Structure 135
Lcell Structure 141
10 Subsystem 148
VM Subsystem 148

Important Algorithms .. 150
Partitioning 151

Partitioning Upsweep-- Locating RAs 152
Merging Segment Descriptors 154
Switching to Area Channels 158

Partitioning Downsweep --Pruning 162
Message Support 168

Message Packets 169
Message Handling 170
Stopping Messages 171

Directory Creation 174
Computation of the Symbol Index 174

Upsweep 175
Downsweep 176

Computation of the Directory Tuple 177
Upsweep 180
Downsweep 187

Calculating the Specification for Storage Management 191
Upsweep :................................. 192
Downsweep 193

Summary •. 199
4. Simulating DOT 201

Introduction 201
The Place of Simulation Within the De sign Cycle 202
The Cost of Simulation 204
Introducing Global Time into DOT Operation 206

Discovery of a Critical Path 206
Event-Scheduled Modeling 20?
Process-Interaction Modeling 207

v

Process-Interaction with Implicit Events 208
Implementing Implicit Events 209
Simulation Output 211

Tracing Machine Operation 212
Lcell Array Snapshots 215

Simulation Results 217
5. Analytic Performance Model 220

The Execution Cycle 221
Notation 225

Area Heights 226
Phases of RA Progress 229

Storage Manageme·nt Phase -- RA Creation 229
Partitioning Phase -- RA Detection 229
Execution Phase -- RA Execution 229

Formulas for the Duration of RA Phases 230
RA Storage Management -- (SM) 231
RA Partitioning 232

Partitioning Old RA --(PO) 233
Partitioning New RA -- (PN) 233

RA Execution -- (EX) 234
Predicted Execution Time for Single RA 237

Analysis and Simulation of ID 239
Analysis and Simulation of N-ary Add 240
Analysis and Simulation of SORT 241
Analysis and Simulation of ROTR 242
Analysis and Simulation of EEl 243

Complete Programs 244
Restrictions 24 7
Summary 249

6. Design Alternatives and Extensions 252
Design Alternatives 253

FFP-level Text Representation 253
LPL Message Routing 254
Non-blocking Fork 255
Completion Synchronization 257
Duration of Execution Ph as~ 259
Shifting vs. Reloading LPL Code 264
Storage Management Transfer Function 264

Design Extensions 265
Job Control Language 266
Pushdown Storage for Lcells 268
Visual Tracing ,...... 2?2
LPL Storage Management Event Indicator 274
Storage Management with Variable Context Sizes 274

vi

Increasing Phase Independence 275
Multiple Input Ports 276

7. Conclusion .. 277
References 281

F1GURES

FIGURE 2.1 --Vertically Recursive Computer Architecture
FIGURE 2. 2 --DOT Implements LPL; DOT+ LPL Implement FFP
FIGURE 2.3-- DOT Compiler and Operating System Aspects
FIGURE 2.4 --Inner Product of < 1 2 3 > with < 4 5 6 >
FIGURE 2. 5 --A Hierarchy of Programming Languages
FIGURE 2.6 --Semantics of FFP Languages
FIGURE 2. 7 -- LPL Architectural View .. .
FIGURE 2.8 --Derivation Tree fore= (< CONST 5 > 8)
FIGURE 2. 9 --Parse Tree for e = { < CONST 5 > 8)
FIGURE 2.10 --A Linear Representation using ALNs
FIGURE 2.11 --Evaluation of (+ < (ID 1) 2 >)
FIGURE 2.12 -- DirectoryTuples for (IP << 1 2 3 >< 4 56>>)
FIGURE 2.13 --Illustration of Directory Tuple Definition
FIGURE 2.14 -- LPL Environment .. .
FIGURE 2.13 --Forking Must Wait for Storage Management
FIGURE 3.1 -- Overall DOT Structure .. .
FIGURE 3.2-- The DOT Machine
FIGURE 3.3 --The DOT Tree of Processing Cells
FIGURE 3.4 --A DOT Full Duplex Communication Channel
FIGURE 3.5-- Connecting and Disconnecting Cqueues :
FIGURE 3. 6 --The DOT Cqueue Head and Tail --public entries
FIGURE 3. 7 --A Partitioned DOT Machine .. .
FIGURE 3.8 --DOT Tcell Processes .. .
FIGURE 3.9 -- Tcell Output Process
FIGURE 3.10 --The Tcell Input Process
FIGURE 3.11 --Area Node Downwards Message Handler Process
FIGURE 3.12 -- Tcell Manager Process .. .
FIGURE 3.13 -- Tcell Node-Manager Process
FIGURE 3.14-- DOT Lcell Processes (and User Context)
FIGURE 3. 15 -- Lcell Input Process .. .
FIGURE 3.16 -- Lcell Message-up Process .. .
FIGURE 3.17 -- Lcell Message-Down Process
FIGURE 3.18 -- Lcell LPL Interpreter Process
FIGURE 3.19 --The Lcell Manager Process ·
FIGURE 3. 20 --The Main 10 Process
FIGURE 3.21 --The VM Overflow and Program Entry Process
FIGURE 3.22-- Finding a RA .. .
FIGURE 3. 23 -- Sweeping Lcell Contents Upwards Globally

26
27
27
30
31
37
43
44
45

45
46
48
50
52
54

117
118

119

122
123
124
128
135
136
13?
138
139
140
141
141
143
145
146
147
148
148
152
153

vii

viii

FIGURE 3.24 --The Segment Descriptor Format .. 155
FIGURE 3.25 --An Example of a Segment Descriptor 156
FIGURE 3.26 --The Four Segment Descriptor Formats 157
FIGURE 3.27 --Analysis of the Initial Partitioning by Tcell Managers 159
FIGURE 3.28 -- The Start of Partitioning in the Lcells 162
FIGURE 3.29-- An Example of Initial Partitioning 163
FIGURE 3.30 --After Pruning the Initial Partitioning Example 165
FIGURE 3.31 --The Area Node Algorithm to Start Pruning 167
FIGURE 3.32 --Termination of Pruning in the Lcells 168
FIGURE 3.33 --The Four Message Packet Types .. 169
FIGURE 3.34-- Upwards Messages in a Tcell Node 173
FIGURE 3.35 --Diagram for Symbol Index Calculation 175
FIGURE 3.36 --Algorithms for Symbol Index .. 177
FIGURE 3.37 --Diagram for Directory Tuple Calculation 178
FIGURE 3.38 --An Example RA Within an Active Area 179
FIGURE 3.39 --Example Parse Tree and Directory Tuples 180
FIGURE 3.40 --Before Merging Partial Parse Trees ·
FIGURE 3.41 --After Merging Partial Parse Trees

162
183

FIGURE 3.42 --Directory Upsweep Computation .. 185
FIGURE 3.43 --An Example Upsweep 186
FIGURE 3.44 -- Directory Downsweep Computation 188
FIGURE 3.45 --An Example Downsweep 189
FIGURE 3.46 --Algorithms for Directory Tuple .. 190
FIGURE 3.4 7 -- Calculating a Specification for Storage Management 191
FIGURE 3.48 --Transfer Value Solution for Storage Management 194
FIGURE 3.49 -- Calculation of the Transfer Function 196
FIGURE 3.50 --Starting the Downsweep of Preparation for SM 197
FIGURE 3.51 -- Lcell Preparation and Storage Management 198
FIGURE 3.52 -- Tcell Preparation for Storage Management 199
FIGURE 4.1 -- Objectives of Simulation 202
FIGURE 4.2 --Properties of Simulation .. 202
FIGURE 4.3 --Subsidiary Benefits of Simulation .. 202
FIGURE 4.4 --The DOT Event Scheduler 210
FIGURE 4.5-- Qtail.put Implements Implicit Events 211
FIGURE 4.6 --Filtered High-Level Trace Output .. 213
FIGURE 4. 7 --Unfiltered High-Level Trace Output 215
FIGURE 4.8 -- FFP Expression for Reduction .. 215
FIGURE 4.9 --Sort Time v.s. Number of Messages per Cycle 218
FIGURE 5.1 -- RA Progress Through a Single Machine Cycle 225
FIGURE 5.2 --Trees for Lower and Upper Area Height Extremes 227
FIGURE 5. 3 --Bounds on Area Height (using H=21) 227
FIGURE 5.4-- Uniform Loading in the Presence of Empty Lcells 228
~'JGURE 5.5-- RA Progress Through Successive Machine Cycles 231
FIGURE 5.6 --Duration of Storage Management for RA 232

FIGURE 5. 7 -- Duration for Partitioning Old E.A
FIGURE 5. 8 --Duration for Partitioning New RA
FIGURE 5.9 --Duration of Time to SM_Grant, ts
FIGURE 5.10 --Duration of the Execution Phase
FIGURE 5.11 --Analytic/Simulation Model Result Format
FIGURE 5.12 --Analysis and Simulation of lD
FIGURE 5.13 --Analysis and Simulation of N-ary Add
FIGURE 5.14 --Analysis and Simulation of SORT
FIGURE 5.15 --Analysis and Simulation of ROTR
FIGURE 5.16 --Analysis and Simulation of EEl
FIGURE 5.17 --A Program for Inner Product of <1 2 3> and <4 5 6>
FIGURE 5.18 --Execution Trace for Inner Product
FIGURE 5.19 --Analysis and Simulation of Inner Product
FIGURE 5.20 --Restrictions on Parallel RAs for Analyzability
FIGURE 6.1 --Possible Design Modifications
FIGURE 6. 2 -- Efficiency of Fair Operators
FIGURE 6.3 --Possible Variable Cycle Time Heuristics
FIGURE 6.4-- User Interface Facilities
FIGURE 6.5-- A User-defined Operators and its LPL Program .. :

FIGURE 6.6 -- COND Copies its Argument .. .
FIGURE 6. 7 -- COND with Push and Pop .. .
FIGURE 6.8 --Steps to Provide Visual Tracing

ix

233
23·4
235
237
238
240
241
242
243
244
24·5
245
247
248
253
261
262
266
268
269
271
272

DEFINITIONS

FP ... 1
FFP ... 1
control-flow,... 3
reduction 3
data-driven 4
demand-driven 4-

RAs .. 9

microprograms 10

DOT ... 20

LPL ... 21
architecture 25

implementation ... :.................................. 25
realization 25

representation 25

vertically recursive 26
architecturally concurrent 28

programming language 32

complete language 32

semantic function 33
applicative language ,... 33

representation function 34
closed applicative language 34

primitive functions 37

meta-composition 37
innermost reduction semantics 38

evaluation mechanism ;........... 38

controlling operator 39
!cells ... 42
aln .. 44
directory tuple 4-8
symbol_index 48
~... 48

LPL environment 51
user context 52
code segments 55
message waves 64
functional form 95
tcells 117

X

xi

ClassC ... 117
process-oriented design 120
partitioned 125
partitioning phase ... :............................. 125
execution phase .. : 125
storage management phase 125
specification for storage management... 126
preparation for storage management 126
active areas 126
initial partitioning 126
area channels 126
area nodes 126
cell manager channels 126
pruning downsweep 127
top of area 127
toa 127
io channels 130
end-of-wave 131
eow ... 131
sm_grant messages 133
stop message 133
segment descriptor 154
ground state 156
executing state 156
SPF ... 157
prefix packet 169
data packet 169
eow packet 170
stop packet 170
discrete event simulation 206
event-scheduled 207
process-interaction 207
PC Representation 254
fair operators 260

CHAPTER 1

Introduction

In this dissertation, we present a highly parallel multiprocessor

implementation for a general-purpose functional language suggested by Backus

[Bac7B]. We describe the implementation and its simulation, provide an analytic

model for program execution time, and finally consider design alternatives and

extensions.

The first three sections of this introductory chapter provide an overview of

related work from the perspectives of language and implementation design. The

last section of this chapter describes the objective and overall structure of the

dissertation.

1.1. Historical Overview

Historically, programming language design and implementation are often

intertwined, with the implementation of new language concepts closely following

their inception. We are therefore concer:ned with presenting two sides of the

same coin in this introduction, and the twin aspects of language development

and implementation relevant to this dissertation are discussed ace ordingly.

Backus' first publications concerning functional programming appeared in

the early 1970's [Bac72, Bac73]. Then, in the 1977 ACM Turing Award lecture, he

presented a new and powerful formalization for functional programming: the FP

(Functional Programming) and FFP (Formal Functional Programming)

languages . [Bac7B]. These are general-purpose high-level programming

languages, capable of expressing parallel computations in a natural fashion. In

1

2

addition, associated with the FP language class is an algebra of programs that

can be used to reason about and transform programs while preserving their

semantics. Such a facility can be extremely useful for the verification of

programs.

The FFP language class follows FP in spirit, but employs a more restricted

syntax -- making it suitable for direct machine execution. Unfortunately,

despite the potential of Backus' suggested approach, early implementations of

FFP on traditionally structured computer architectures ran slowly. Then, in

1979, using a language-based approach, Mago gave an initial description of a

tree-structured cellular network of processors oriented towards efficient

parallel execution of FFP language programs [Mag79]. Many problems were

raised and left unsolved in this initial description, but the feasibility of a design

was demonstrated.

The language-based approach to processor design is not new; over the last

decade a number of machines oriented toward direct support for high level

languages have been suggested. The approach has been used for implementing

sequential languages such as APL [Abr7D]. Symbol [Ric71], Basic [Bur7B], Lisp

[SteBl], Jovial [ChuBl], and Pascal [CarBl]. Nevertheless, although many

parallel computer architectures have been recently proposed [Dav75, Des7B,

Den79, ShaB2, StoB3] as a result of the increasing potential of VLSJ and other

realization technologies, few of these designs have been based on a general­

purpose high-level programming language. This is due to the low-level sequential

transformation of state and reliance on global memory embodied in most

languages, which make it difficult to express a direct mapping between a

language and its implementation on a parallel architecture.

3

In functional programming languages (which arose from the search for an

algebra of programs [Bac81, Bac82]), sequential transformation of state and

global memory are absent because of their unsatisfactory properties with

respect to program semantics. As a serendipitous result, such languages are

promising candidates for language-based parallel support.

An important aspect of Mago's language-based proposal is the use of fine

grain parallelism. This approach removes assumptions of global memory and

overall processor state from the language implementation as well, and

completely realizes the parallelism allowed by FFP programs. The highly-parallel

nature of the multiprocessor suggested by Mago is especially intriguing in view

of the recognized difficulty of designing a general purpose machine that can

fully exploit the potential of VLSI.

1.2. Reduction Machines

We now review various proposals for the support of functional languages.

Among machines for directly executing functional languages are those

suggested by Berkling [Ber75], Keller· et a!. [Kel79], Mago [Mag79], Treleaven

[TreBO], Tolle [TolBl], and Kluge [Klu82]. These machines may be characterized

as reduction machines --i.e., they support reduction-style program execution.

In contrast with control-flow programs, which are built out of and executed

as linear sequences of simple operations called instructions, reduction programs

are built from nested expressions. In reduction language programs, the nearest

thing to an instruction is the application of a function to an argument, but both

functions and arguments may be expressions containing further function

applications nested within themselves. A reduction language program is an

expression -- equivalent to the result of its execution in the same way as the

expression 3* {2+ 2) is equivalent to the expression 12.

4

Treleaven has identified two basic approaches toward executing reduction

programs: string reduction and graph reduction [TreB2]. The basis of string

reduction is that a program is manipulated in-place; each application of an

operator to an argument is textually replaced by an equivalent expression, and

expressions are not shared. Commonly used expressions must be duplicated

throughout the program where necessary. In graph reduction, implicitly shared

references to expressions are manipulated.

Thus, for ·example, evaluation of a+ a with string reduction would require the

definition of a to be loaded twice, replacing both of its references. Evaluation of

the same expression with graph reduction doesn't require such replacement;

instead, the expression referred to by a is itself evaluated (in a similar fashion)

without modification of the addition expression, and the result is made available

by reference to support the addition.

The distinction between data-driven and demand-driven computation for

this example concerns whether the expression represented by a is evaluated

before it is required by a+a (data-driven), or after it is required (demand­

driven).

As mentioned, the design to be presented in this dissertation is largely

derived from the work of Mago. A description of this early work is included here

for historical continuity, and to emphasize its place relative to the other

attempts that have been made. Not included in this review are architecture

implementations that are based on a physical tree structure but which are

designed to execute other than functional languages. These include the designs

suggested by Despain [Des7B], Davis [Dav78], Stolfo [StoB3], and Shaw [ShaB3].

For each proposed design, we will be concerned with the particular

functional language that the architecture supports, and the computational

5

model used (string vs. graph reduction, demand vs. data-driven, etc.). Program

decomposition for multiprocessor architectures will be examined. This includes

distribution of data processing tasks to their respective processors, as well as

re-integration of results. The number of processing units and their individual

capabilities are also important aspects of a design, as well as the power of

language primitives. Limits to parallelism and efficiency will be scrutinized. Note

that parallelism and efficiency are not the same thing, since the cost of creating

or maintaining parallelism can be greater than the gain in performance.

1.2.1. GMD Machine (Berk:ling)

Central to the concept of reduction-style execution is the replacement of

operator applications with their results. As described, the two basic

computational approaches are. actual textual substitution (i.e., string reduction)

and the use of pointers and a global memory (i.e., graph reduction). Berkling

was among the first to recognize the need for research into systems based on

textual substitution for directly supporting high level reduction languages. In

response to Backus' early work on reduction languages, Berkling designed a

computer system implementation [Ber75] based on the concept of string

reduction which supported direct execution of a· variant of Backus' A.-Red (for

Lambda-Reduction) languages [Bac73].

Berkling recognized the potential of the substitution approach, and

envisioned the feasibility of parallel processing "in memory" without the use of a

central processing unit. In his implementation, however, he chose a traditional

organization, and used a central active processing component to operate on

data stored in passive memory (three hardware stacks). His implementation

neither supports the parallelism inhere·nt in A.-Red languages, nor makes use of

lower level parallelism within the implementation in the interest of efficiency.

6

Nevertheless, the machine language for Berkling's computer is a high-level

functional language. This was an important contribution, and opened the way for

further work. •

1.2.2. AMPS (Keller)

AMPS stands for "Applicative Multiprocessing System," and this design

[Kel79] features a loosely-coupled tree structure to be composed of around 1000

nodes. The language supported is a compiled dialect of LISP called FGL

{Functional Graph Language). Streams, or infinite data structures, are

supported through the use of a demand-driven evaluation mechanism.

FGL represents a program as a function graph whose nodes are data

forming functions (possibly user-defined with an inner sub-graph structure) and

whose arcs represent access to data formed and made available by other nodes.

The basic data forming operations of Lisp are primitive, and cons is the lenient

cons suggested by Friedman and Wise [Fri76]. Independent sub-graphs called

productions are supplied for user-defined functions, and these may be recursive

in nature. When a function node requires the data produced by multiple

"subordinate" nodes, it may send parallel demands to each of these nodes. Thus

the FGL language can express parallelism, and the implementation supports it.

AMPS is thus an excellent example of the language-based approach to

multiprocessor design; creation of parallel tasks required to utilize the power of

the hardware is implicit in the language. Clever compile-time analysis of

program text is not required to detect opportunities for parallelism, nor is

• Turner's S-K reduction machine [Tur79], and the Cambridge SKIM reduction machine
[ClaBO] also use high-level functional languages as their machine languages. Although
their machine languages are interesting (expressions are built with combinators), these
designs are not discussed further because, like Berkling's design, they are single­
processor implementations that cannot directly support the parallelism inherent in their
machine languages.

7

static pre-allocation of tasks to processors necessary.

Each leaf node in the physical tree structure of AMPS contains a fairly

powerful processor (on the order of a micro-computer) and an associated local

memory unit with around 64K words. The interior tree nodes are used for

communication and distribution of processing tasks. There is a single unified

address space, and, due to the graph reduction mechanism, sharing of data

structures is prevalent. Local caching is used to help alleviate contention for the

primary copy of a data structure, while the applicative nature of the language

guarantees read-only access and the validity of cached data.

The execution of each graph or sub-graph is bound to a single processor, so

computation involves relatively large-grain processing tasks. Processing tasks

are created "top-down" in response to encountering a demand for the data

object produced by a function node. Task creation is therefore dynamic and

unpredictable. Run-time binding of tasks to leaf processors often results in the

need to "farm out" processing to some other leaf node, and although a unified

address space simplifies this procedure logically, the penalty of communication

over the shared tree-structure is incurred.

Circuit-switching of communication lines is infeasible due to the possibility

of tying up long paths through the tree structure, so the interior nodes support

a packet-switching communication protocol. The cost of this communication

cannot be known ahead of time, making it impossible to predict the execution

time of a program on the machine. AMPS therefore completely supports the

logical parallelism inherent in its machine language (by dynamically creating

processing tasks as they are required) but at unknown cost and with little

additional lower level implementation parallelism aside from that implied by the

language.

B

The issue of predictable performance is one that plagues multiprocessor

designs, and has its roots in the degree to which separate processes are allowed

to interfere with each other. This interference normally takes the form of

contention for a shared resource.

In the case of AMPS, processes must compete for their share of processor

time, cache storage, local memory, and communication bandwidth. The

difficulties of analytically modeling the results arise from a lack of control over

the process interference while at the same time ·allowing dynamic and

unpredictable creation of processes. To the degree that process interference

can be carefully limited, controlled or predicted, an analytic model should be

able to successfully predict performance.

1.2.3. MMl (Mago)

This section introduces the design proposed by Mago [Mag79], upon which

this dissertation is based. Although various changes in orientation from his

original concept have been made, high-level and common aspects will be

stressed here. As in the other reviews, overall structure and implications for

language support and process interference are of primary interest.

The essential problem with string reduction is how to support it efficiently.

Berkling saw this, and envisioned processing in memory· as a possible solution,

but has not suggested a suitable design. Mago has successfully done so.

The Mago Machine, or MMl, as we shall call it, is essentially a binary tree of

small-grain processors, including linear connections between adjacent leaf cells.

FFP text is stored, symbol by symbol, in the leaf cells or lcells. The interior tree

cells, called tcells, are used for a variety of functions, and during reduction of

innermost FFP applications they support communication routing between the

!cells. Thus the !cells act as a linear memory array, and the tcells are used when

9

global context must be accumulated and used. The design is expandable to any

size, and tree machines composed of a million cells (height around 20) are

envisioned.

A great deal of ingenuity is required to efficiently accumulate and use

(within the overall tree structure) global contexts discovered from individual

!cell contents. Initially, innermost applications (called RAs for

reducible applications) must be discovered. This is performed in a single

upsweep and downsweep of information through the overall tree structure. In

this process, the machine is partitioned so that individual dedicated binary

trees for communication routing are associated with each RA. These small trees

are embedded in the overall tree-structured network using a circuit switching

approach. Also during partitioning, the syntactic structure of each RA is

determined, and the containing !cells are given information of limited but useful

precision concerning their locations in the corresponding parse tree.

Following partitioning, each innermost application has its own dedicated

multiprocessor and communication network embedded in the overlying tree

structure for support of its reduction. This approach may be contrasted with

AMPS, in which single leaf cells are tasked with the reduction of complete graphs

and may interact with tasks and data in other leaf cells. In Mago's approach,

more than one processor is entrusted with a single reduction, and

communication is performed within dedicated (circuit switched) channels as

opposed to the shared packet-switched channels in AMPS. Each active partition

of MMl is therefore able to operate on its own reduction independently of others,

and lower level parallelism (beyond that implied by the FFP language) is

available to further increase the efficiency of reduction. Message routing is a

simple broadcast mechanism within dedicated channels.

10

After partitioning, the !cells must be told how to behave in order to perform

the reduction. This is indicated by the operator of the reduction. The range and

utility of FFP operators is great, and the potential number of useful operators

for a programming system is correspondingly large. In the interest of flexibility

in the operator set, and in recognition of the limited storage space that will be

available within !cells, operator definitions are not stored in the lcells, but are

brought in on demand at run-time. Mago called these definitions microprograms

and they consist of a short series of instructions to the !cells of an RA on how to

proceed in order to achieve the desired reduction.

The machine operates in a major cycle composed of partitioning, execution,

and storage management. Storage management is required to allow FFP text to

expand when the result of reducing an expression is larger than the original

expression, and is performed by shifting information within the !cell array.

During this process, space made available by RAs that reduce to smaller

expressions can be used to make room for expressions that are growing. The

shifting is performed by sending FFP text symbols along the lateral shift

register connections between the leaf cells. Microprograms are interrupted for

storage management asynchronously, without need for special preparation on

their part, and are then automatically continued after storage management and

re-partitioning.

As mentioned earlier, process interference appears to be a primary source

of difficulties when predicting program execution time. In Mago's design,

process interference is confined to the storage management phase of the

execution cycle. This interference may be characterized as contention for the

shared memory space in the !cell array. Surprisingly (in view of the other

designs reviewed here) the exact character of the interference is predictable

11

since it is determined by the string reductions implicit in the source FFP text.

Mago's design represents a revolutionary approach to direct support for

string reduction of reduction languages. His original paper describing this

approach [Mag79] provides a detailed discussion of how an implementation

might support each of the three phases of the machine cycle, and presents a

• ''strawman" microprogramming language.

1.2.4. Ring-coupled Reduction Machines (Treleaven, Mole)

Treleaven and Mole have proposed an implementation for a multiprocessor

reduction machine based on string reduction [TreBO] which also incorporates

parallel support for functional languages.

The FFP reduction languages of Backus exhibit linear ordering and are well

suited to string reduction. If we imagine an FFP program as a linear tape

containing the successive symbols of program text, innermost applications then

appear as individual, separate, and independent areas of the tape. The

semantics of FFP languages guarantee that we can reduce these in any order (or

even in parallel) without affecting the final answer.

Continuing the tape analogy, imagine a special "tape machine" able to move

the tape back and forth, collect a portion containing an innermost application,

and then splice an application result back in place of the original innermost

application text. Consider two such machines, or even more, spread apart but all

working on the same tape. To avoid boundary problems the tape could be

connected at its ends to form a large circle. This is the essence of Treleaven's

approach .

• Two designs of a more complete nature have been inspired by this early work: Tolle's
design, discussed in a following section; and my own.

12

Treleaven's tape is implemented by connecting individual reduction

machines similar to the above "tape machines" in a ring through the use of

hardware and secondary storage de que structures. The reduction machines use

the deque structures to shift FFP text through themselves, and replace

innermost applications with their results whenever possible. Because of the

necessity for storage and reduction of complete RAs, the reduction machines

are relatively large-grain processors. This simple and conceptually pleasing

design clearly shows the value of string reduction for multiprocessor systems.

Note, however, that the complete parallelism of FFP languages is not

supported. If there are n reduction machines, then only n innermost

applications can be performed concurrently. And this is the best case; when a

large number of consecutive applications are created, they could be caught

between and executed by only two reduction machines. Thus, there is limited

parallelism at the language level, and (as in AMPS) no additional lower-level

parallelism. Another problem is that RAs may be created that are too large to be

contained within an individual reduction machine.

How about process interference? At first glance, this seems confined to

"tug-of-war" on the "tape", which is easily handled with a priority mechanism or

a preferred direction. Once a reduction machine has an innermost application,

it will be executed without interference. There is no contention for shared

communication paths, no global memory, and no caches.

Unfortunately, as hinted above, performance cannot be predicted for this

design either, and for even more serious reasons than for AMPS. Here we don't

know how much shifting will be necessary for an innermost application to find a

reduction machine, and any number of innermost applications could be trapped

between two processors. This last can be viewed as process interference, and it

13

makes it impossible to predict the interval between the implicit creation of a

processing task and its actual execution. Nevertheless, Treleaven's approach is

very useful conceptually; it clearly shows both the important benefits and

problems associated with string reduction.

Mage's suggested design predates Treleaven's effort, and its fruition in the

implementation we will soon describe can be viewed as an attempt to

circumvent the above problems of string reduction, while maintaining all of the

benefits. The extent to which we have been successful will be examined later, but

our approach (as suggested by Mage) can be viewed in the following way with

respect to Treleaven's: instead of moving the text symbols on shift register

deque structures between intelligent reduction machines, make the individual

shift register components intelligent enough to perform their own reductions

and their own splicing. Instead of requiring movement of the "tape" though a

single device in order to sequentially accumulate the global context required to

identify innermost applications, use an overlying tree-structure to perform this

process in parallel. The ultimate result is that innermost applications never have

to wait for processing power, which solves the scheduling problem experienced

by Treleaven' s design.

1.2.5. Syntax Tree Machine (Tolle)

Tolle has proposed a design [Tol81] inspired by and in some ways similar to

the original proposal of Mago. Tolle also uses a binary tree of processing

elements to accomplish string reduction of FFP text stored within the leaves of

the tree. Where Mago proposes strict limitations on the capabilities of the

interior tree cells, however, Tolle investigates the potential of giving them a

greatly increased and programmable flexibility.

14

In response. to FFP text within the leaf cells, seven different logical types of

nodes are embedded in the physical cells of the overall machine tree structure.

Of these nodes, those that are associated with an innermost FFP application

further differentiate and split themselves into six different node types to form

an SN-CP network that is based on the syntactic structure of the underlying FFP

text. This network is quite similar in structure to the derivation tree for its

underlying FFP text expression, and is derived by effectively parsing the text to

discover the topmost structure levels. For this reason, the SN-CP network is also

referred to as a syntax tree.

Reduction of an innermost application is then guided and performed

entirely within its dedicated syntax tree in response to STL (Syntax Tree

Language}. STL works by driving the syntax network top-down, to dynamically

create processing tasks and data pipes within the SN-CP network. Processes and

pipes are freely created, and in multiplicity, resulting in the ability to move data

out of the leaf nodes holding the FFP text into the overlying syntax tree, and to

move this data in many directions and in support of many processing tasks

concurrently (all in the service of a single reduction).

This flexibility has both advantages and problems when compared with

Mago's approach. The expanded capabilities of the interior tree cells can

increase the efficiency of some reductions because tree cells may be used quite

effectively to hold and combine data. In Mago's design, during execution of a

reduction, the tree cells are primarily used to support communication between

the leaf cells where all non-message data is constrained to reside.

Unfortunately, the complexity of implementing the dynamically created

processes and pipes of Tolle's design is not immediately clear; he has left this

for further investigation. Contention for physic a! communication channels and

15

tree cell processing time is also an open issue.

There is a very loose coupling between any SN-CP network and the rest of

the tree. This is locally good for processing a given reduction, but when more

!cells are needed to hold additional FFP text in order to complete a reduction,

neighboring SN-CP networks must cooperate. Executive routines running in a

more global context of the machine (called the TA-Mediator network) monitor

execution and detect molten zones whose contents may be shifted to create

room when needed, but it is not possible to interrupt STL execution

asynchronously as in Mago's design. This is because there is no way (and no

place) to store the execution context of STL programs, and then restore and

reload them following storage management and creation of newly-formed and

different SN-CP networks.

FFP text movement is therefore accomplished only in multiple disjoint

{molten) areas which allow it. A need for increased space to complete a

reduction is automatically satisfied by the machine only if there is enough space

in the local molten zone. Reductions may therefore be delayed even though the

machine as a whole has ample space. This potential for process interference, in

a way similar. to that encountered in Treleaven's design, makes it very difficult

to predict program execution time for this design.

1.2.6. Cooperating Reduction Machines (Kluge)

Kluge [Klu82] has proposed a multiprocessor network to be composed of

Berkling's sequential reduction machines. As in AMPS, a number of large-grain

processors (i.e. large enough to perform reductions on their own) are used as a

processing pool to execute tasks as they are dynamically created through

demands for data values. In AMPS, tasks are created by passing demands top­

down through a function graph; Kluge's system sees tasks in the unfolding

16

creation of independent executable reductions in much the same manner.

Each executable reduction may be viewed as the program and initial state

of a "virtual" reduction machine, which must then be mapped onto a physical

processor for execution. Processors are not time-sliced. Instead, they support

LIFO execution scheduling in an efficient and pleasing manner. A property of

Berkling's reduction mechanism is that the contents of the three system stacks

completely specify the state of a reduction. When a new task is mapped to a

processor, the required context switch is performed simply by pushing

separation symbols onto the three stacks, and then loading the new virtual

machine. This virtual machine will execute to completion (unless interrupted by

additional tasks), and then continue the execution of the interrupted context.

The task scheduling mechanism and a means of controlling the migration of

tasks between processors are important aspects of Kluge's design. Migration

and the resulting creation of parallelism is controlled through the use of local

ticketing operations that are independent of network topology. Because of the

local character of this load balancing, and other restrictions placed on process

migration, it is possible that overall multiprocessor utilization might be poor.

The price of increased flexibility in processor scheduling would be increased

potential for contention within shared communication resources. Because Kluge

leaves network topology an open question, little more can be said concerning

this tradeoff.

The use of an arbitrary number of processors in this design helps support

the architectural concurrency exhibited by reduction languages, but with

parallelism limited by the number of available processors. This is analogous to

the situation for AMPS, but communication costs seem potentially worse here.

This is because complete copies of executable reductions must be passed

17

between machines, and arbitrarily large results returned to their enclosing

reductions. AMPS experiences a corresponding problem related to graph

reduction and contention for shared data structures between processors.

However, the local cache mechanism used to alleviate this problem in AMPS has

no counterpart in the string reduction design suggested by Kluge. As in the case

of AMPS, there is no clear way of deriving good estimates of program execution

time.

1.3. Other Related Work

We now briefiy review work performed here at UNC that is closely related to

the MMl proposal of Mago, upon which this dissertation is based.

1.3.1. Time and Storage Analysis (Koster)

Alexis Koster developed a methodology for analyzing time and space

requirements of FFP programs on a machine organized around the principles

suggested by Mago for MMl. In Koster's dissertation [Kos77], generic

performance characteristics loosely representative of MMl are assumed, and

the times required to execute primitive operations are expressed in terms of a

clock cycle time (essentially, the time required to pass information from one

cell to a neighbor). Execution times and storage requirements for general

expressions (in FFP languages, even programs are expressions) are then derived

and applied to a variety of program segments.

In order to simplify the analysis, Koster assumes that the storage

management phase of the machine cycle takes no time. As mentioned, this is

the phase of the machine cycle most sensitive to process interference, so

Koster's results give lower-bounds. With his approach, useful and interesting

results are made available with a minimum of difficulty, and he was able to

18

successfully analyze a variety of matrix multiplication programs {showing clear

tradeoffs between time and space requirements), and a tree traversalprogram.

The work described by Koster in his dissertation has subsequently been

extended in a joint effort [StaBl, Mag82), to include upper bounds analysis as

well. • The analytic model of execution time to be presented in this dissertation

is based on this work.

1.3.2. Message Routing (Kehs, Pargas, Presnell)

David Kehs has investigated the idea of using connections between

horizontally adjacent tcells in a tree of processors similar to MMl to route data

between and among leaf cells of the tree [Keh7B]. Theoretical results are

presented to indicate the potential for increased efficiency of data movement.

Roy Pargas has investigated the use of a tree machine similar to MMl for

the solution of partial differential equations [Par82]. He presents an interesting

and powerful high-level mechanism for communication routing within the tree

called GDCA {Generalized Distributed Communication Algorithm). GDCA requires

programmable implementation support within the tree cells on a per-message

basis, but Pargas does not suggest a means of implementing this facility; his

analysis of algorithms for the solution of partial differential equations assumes

that the tcells have already been programmed to behave as necessary in

support of a message routing. While this absence of concern for an

implementation for GDCA is unfortunate. his results show the power and value of

generalized routing within a tree structure .

• Also of interest in this regard is the analysis by Williams [Wil81] of algorithms for paral-
lel associative searching algorithms on tree machines.

19

1.3.3. Virtual Memory (Frank, Siddall)

Geoffrey Frank's dissertation [Fra79] takes a formal mathematical

approach in exploring the idea of a virtual memory for a machine organized

around the principles of MMl. Data is to be kept in a second level store until

needed by an innermost application, at which time room is made for it in the

leaf array and it is brought in for reduction. Advantages of such a scheme

include fewer symbols to be shifted about during storage management, and the

ability to execute programs that are larger than the capacity of the leaf cell

array. The two-level memory hierarchy is hidden from FFP user programs by a

virtual memory interpreter.

Frank's dissertation considers aspects relating to correctness and

implementation of the interpreter, and investigates the time and space

efficiency of programs under such an execution regime. Improved execution

time and space requirements are shown for some F-FP programs.

William Siddall has continued investigations ·along this line [SidB3] by

examining a variety of different virtual memory schemes for FFP interpreters.

He developed a simulator for storage management that allows the performance

of these schemes to be evaluated. Our present design incorporates one of his

suggested approaches, which allows FFP text movement into and out of the

machine through the leftmost !cell. This allows both program entry and overfiow.

1.4. Dissertation Overview

The objective of the research described in this dissertation is the design of

a computing system for maximally parallel and efficient execution of FFP

language programs. The system design we present is an outgrowth of the tree­

structured architecture implementation suggested by Mago [Mago79], and is

specific and concretely verifiable; it is, in fact, executable. It completely

20

supports all parallelism architecturally implicit in FFP languages, and its

efficiency is the result of a very high degree of lower-level implementation

parallelism.

The primary constituent of this design, a complete and detailed model for

implementation of the architecture, is called DOT (])istributed Operating system

model of rL Tree-structured multiprocessor). DOT is represented using active

and passive abstract data types (tasks and classes) in the C programming

language. This allows simulation of the architecture implementation during

execution of actual FFP programs, and is invaluable for the verification of what

is a highly complex and concurrent system. In addition to the DOT

implementation model, this dissertation presents an accurate analytic model of

program execution time based on the algorithms and communication protocols

used.

The name DOT was chosen to emphasize the fact that the implementation

model it represents may be viewed as a distributed operating system embedded

in hardware and firmware. • In this dissertation, the term "DOT machine" will

often be used to denote a multiprocessor organized and operating as indicated

by the DOT design.

Although the overall computing system is designed to support FFP in a

"direct execution" sense, the individual processing units from which it is

constructed (whose implementations are represented in DOT) do not execute

FFP. Instead, these individual processing units cooperate in order to collectively

parse FFP text, and then load and execute "microprograms" that implement the

required FFP operators through cooperative and highly parallel action,

An operating system typically performs memory management, process control, input­
output operations, and runtime support for interprocess communication. DOT performs
all of these functions.

21

The intermediate level programs that determine this cooperative action are

therefore the other half of the story. They are expressed in LPL, a low-level

concurrent programming "assembly" language with specialized message passing

and process creation features. All computation on the architecture is guided

and determined by LPL programs, which can implement powerful functions as

low-level highly parallel manipulations of FFP program text.

The DOT implementation defines the LPL architecture, whose purpose is to

fit between the arbitrarily powerful and high-level FFP view, and a lower level

composed of simple and restricted operations made available directly by

hardware and firmware. LPL represents a major component of the design. The

analytic model of program execution includes parameters based on LPL

definitions of the FFP operators as well as parameters determined by DOT. This

dissertation therefore presents a complete programming system, including LPL

programs for a powerful set of FFP operators.

1.4.1. Dissertation Organization

The programming system we present is composed of three logical levels.

The top (user) level is that of FFP languages, and the middle (system support)

level is that of LPL, the concurrent programming language used to define and

implement arbitrary FFP operators. These two levels are supported by DOT, and

are described in Chapter 2.

DOT is both a design and an implementation model for the desired parallel

architecture. It is the lowest level of the programming system, as we examine it

here, and is described in Chapter 3.

In Chapter 4, we describe the simulation approach taken, and present

results of various simulation studies. Chapter 5 then presents an analytic model

of program execution time (for a restricted set of programs), and verifies its

22

agreement with the results of simulation studies.

In Chapter 6, design alternatives referred to throughout the presentation of

the architecture and programming system are collected and reviewed. Chapter

7 concludes the dissertation with remarks concerning the the DOT model and

implications for hardware.

1.4.2. Selective Reading

Because we are concerned with presentation of a highly complex and

parallel implementation model, certain sections of this dissertation may not be

appropriate for the casual reader. To allow selective reading, an overall guide to

levels of detail is provided here.

The first section of Chapter 2 is important; it provides a basis for

terminology used throughout the dissertation, and includes a simple example of

FFP languages. The formal definition of FFP languages may be skipped over if

desired, though this leads naturally into the explanation of LPL that follows,

which is central to the dissertation. Details of actual LPL programs may then be

skipped, by proceeding directly to Chapter 3.

Chapter 3 is organized into four main sections. The first two provide an

overview of DOT, and describe the basic machine cycle. These sections should

be read. The third section provides detailed descriptions for the processes and

objects of the DOT model, and is not essential for a high-level understanding of

the programming system. Finally, the last section provides a detailed analysis

of the most important algorithms used by the model processes. This is the most

formidable part of the dissertation. Though it may be skipped by turning to

Chapter 4, this section contains the essence of many difficult problems that had

to be faced in order to efficiently utilize the tree-structured communication

topology. Formal verification of algorithms via mathematical induction is

23

performed when possible.

Chapter 4 discusses how the DOT implementation is simulated, and is easy

reading. The analytic model of program execution time is then presented in

Chapter 5. This chapter contains the implications for performance of the

algorithms that were analyzed in the last section of Chapter 3, and concludes

with a discussion of the degree to which DOT decouples parallel function

evaluations -- an important aspect of the design. The introduction and

conclusion of Chapter 5 are therefore recommended, while the details of the

performance model may be skipped if desired.

Both Chapter 6 and 7 should be read. Chapter 6 is fairly conversational,

and provides a feeling for the type of design decisions that were needed to

create DOT. The alternative approaches and extensions are motivated by

hindsight, so these provide a helpful review. Chapter 7 reviews the dissertation

and discusses hardware considerations for further work.

If the chapters are read in their entirety, a ranking of their difficulty in

decreasing order would be as follows: 3, 2, 5, 4, 6, 1, 7. Selective reading in

order to avoid low-level details should only be required for Chapters 2, 3, and 5.

These Chapters therefore contain appropriate pointers to aid readers in avoiding

the more difficult sections, should this be desired.

CHAPTER 2

Topmost Architecture Levels

2.1. Introduction

All communication begins with agreement. In order that ideas, a design, or

structure be explicated, a common understanding of the task at hand and the

terms used to describe it are necessary. Within the context of this dissertation,

the terms architecture, implementation, and realization are of utmost

importance, and are best used only after agreement on their meaning has been

reached. This is especially true because these terms are used in everyday

conversation, with little concern for an exact denotation. The term computer

architecture, for instance, clearly has something to do with logical structure,

and such a vague perception is often good enough for informal communication.

But implicit faith in commonly perceived meanings can be a stumbling block

when exact ideas of fairly technical nature must be communicated. In

particular, the difference between architecture and implementation can be

quite confusing in the absence of prior agreement. This has been noted by other

authors including Delesalle:

"Classification is fundamental to human thinking. It is performed in
various fields ... In computer science, severat classifications have been
suggested... Authors have addressed, sometimes in passing, the
classification of computer hardware. Their taxonomies, however, only
address a few incidental concepts, which are not formally specified.
Also, the subject matter often mixes architecture with implementa­
tion." [Del83]*

• emphasis added

24

25

2.1. L Architecture, Implementation, and Realization

This dissertation presents a programming system composed of numerous

levels, and in order to clearly present a cohesive view of the overall design these

levels must be correctly placed and described with respect to each other. For

this purpose, the terms architecture, implementation, and realization are

invaluable. These terms and their use are described by Blaauw and Brooks

[Bla83), whose approach I shall use.

"The architecture of a computer system we define as the functional ap­
pearance of the system to its immediate user, that is, its conceptual
structure and functional behavior as seen by anyone who programs in
machine language. A computer's architecture is by this definition dis­
tinguished from other domains of computer design: the logical organiza­
tion of its data fiow and controls, called the implementation; and the
physical structure embodying the implementation, called the realiza­
tion." [Bla83]

Given the concepts of virtual machines and micro-code implementations,

identification of the single machine language of a computer system may be

problematic. Although questions of architecture and implementation may be

relative, for a particular computer system the question of "what is the

realization" has a direct and existentially unambiguous answer. One merely

points to the actual hardware as it sits before one. In the absence of an actual

machine, the manufacturing specifications serve as a representation of the

realization.

Moving up from the realization level, we enter the domain of architecture

and implementation. While the realization level has a comforting and concrete

nature to it, the higher levels do not. They are abstractions to be embodied in a

realization.

26

2.1. 2. Multi-level Systems

The relativity of architecture and implementation levels is shown in the

system of Figure 2.1, in which one architecture is implemented in another.

Blaauw and Brooks call such architectures vertically recursive [BlaB3]. Each

upper level of this system may be called an architecture because of its

correspondence to a virtual machine language. In additional, all levels but the

topmost are used to implement the next highest level.

FIGURE 2.1 - Vertically Recursive Computer Architecture

Application Language (Arch)

t
Compiled Language (Imp/Arch)

t
Assembly Language (Imp/Arch)

t
Machine Language (Imp/ Arch)

t
Micro-code Language (Imp/Arch)

+
Computer Hardware (Realization)

Reality is
0

more complex than indicated by Figure 2.1. Omitted (or

disguised) is an important aspect of architecture implementations: more than

one system component and level may be used to implement additional

architecture levels. For instance, it is true that assembly language implements

a compiled language, but so do the language compiler (which is more usually

thought as the implementation of a compiled language), and the operating

system (which implements IO and under whose control compiled programs run).

27

Within DOT, such compiler and operating system aspects are explicitly merged

into a single implementation model for the LPL and FFP architectures, and the

resulting system structure is depicted in Figure 2.2. DOT implements LPL, and

the combination of DOT and LPL implements FFP. Authors dealing with

language-driven architectures sometimes speak of embedding the operating

system and compiler in hardware. The compiler and operating system aspects

taken over by DOT are shown in Figure 2.3.

FIGURE 2.2-- DOT Implements LPL; DOT+ LPL Implement FFP

FFP -- User Level

LPL --

Operator Support DOT--

LPL & FFP Support

FIGURE 2. 3- DOT Compiler and Operating System Aspects

(Compiler) o Locate/Parse Innermost Applications

(OS). o Multiprocessor Scheduling

o Virtual Memory

o Input/Output Services

o Storage Management

28

2.1. 3. Architectural Concurrency

Another important point concerning architecture one of great

importance here -- is that languages can be a.rchitecturally concurrent. For

example, even an assembly language with a no-wait start-io instruction is

architecturally concurrent. Architectural concurrency may be seen in terms of

the absence of a guarantee (on the part of the language semantics) of strict

sequentiality. In the case of the above example, no guarantee is made that an

instruction which textually follows a start-io will execute before or after io

activities complete.

On the other hand, architectural concurrency may involve more explicit

control of multiple processes, as in Concurrent Pascal [Bri77] or Ada [lch79]. In

the absence of a better definition, we will say that a language is

architecturally concurrent if it admits to parallel interpretation. • FFP and LPL

are both architecturally concurrent.

Architectural concurrency can be quite useful. It enables a straightforward

expression of many algorithms that are most naturally represented in terms of

multiple processes and concurrent behavior. In addition, an implementation is

freed from the necessity of strictly sequential support, which may allow valuable

gains in run-time efficiency. Per Brinch Hansen has convincingly demonstrated

the gains in system throughput that are possible when multiple concurrent

processes at the level of Pascal code are used to increase a system's freedom of

action (even when the processes are implemented through time-slicing on a

single processor) [Bri77].

. .
A processing unit is a sequential interpreter of its machine language. Parallel interpre­

tation thus involves more than one processor.

29

2.1.4. Implementing Architectural Concurrency

Given architectural concurrency in a language, an implementer has a

variety of options. These include direct parallel support for language

concurrency in an implementing architecture, parallel implementation in some

way that does not exactly mirror the supported language (perhaps by using

limited language-level parallelism as in Treleaven's design in Section 1.2.4, or by

using additional lower-level implementation parallelism), and enforcing

sequentiality at the implementation level through a process scheduling

mechanism such as time-slicing.

In DOT, all concurrent aspects of the FFP and LPL architecture levels have

been supported through the use of an even greater degree of parallelism (and at

a much finer grain) within their implementation. Moreover, the DOT

representation is designed to suggest realization as a highly parallel

multiprocessor, in a way that provides direct parallel support within the

• realization for implementation parallelism.

We now present FFP, the topmost architecture level of the programming

system presented in this dissertation, and LPL, the architecture level that

implements FFP operators.

2.2. User Architecture -The FFP Language

Informally, an FFP language program is a linear sequence of symbols, of

which four types of symbol are specially distinguished for the purpose of

providing syntactic structure: opening and closing application-forming symbols

• The DOT implementation model operates in three modes: it represents a parallel imple-
mentation for FFP and LPL; its representation is executable, so it supports simulation of
the implementation via writing LPL programs to implement FFP operators, and then ac­
tually running FFP programs on it; and lastly, DOT suggests a realization as a tree­
structured cellular network of fine-grained processors suited to VLSI fabrication technol­
ogy.

30

for applications, and similarly balanced list-forming symbols. An application is

composed of an operator and exactly one operand. Both operator and operand

may be lists and may contain further (i.e., nested) applications. A non-trivial

FFP program is an application, and execution proceeds by successively reducing

innermost applications according to the semantics of their respective operators

until there are no further applications. The ultimate result is a constant (i.e.,

non-reducible) expression.

The application symbol in our representation is a parenthesis "(". and the

list-forming symbol is an angle bracket "<". Within DOT, all program symbols

have an associated FFP text nesting level, which removes the need for storage of

the balancing symbols ")" and ">". Figure 2.4 gives an execution trace for an

FFP program that calculates the inner product of two vectors.

FIGURE 2.4- Inner Product of< 1 Z 3 >with < 4 56>

- The original FFPprogram is:
(+ (< 01. • > (7" < < 1 2 3 > < 4 5 6 > >) }}

- T (matrix transpose) is innermost, so it is reduced yielding:
(+(<a'"><<14><25><36>>))

- <a * > {apply-to-all multiply) is innermost, and yields:
(+<(*<14>)(*<25>)(*<36>)>)

- three multiplications are innermost; parallel reduction yields:
(+ < 4 10 18 >)

+ {n-ary add) is innermost, so it is reduced yielding:
32

- which is the answer (no further ,applications to be performed)

FFP reductions are completely local in nature and are tightly encapsulated

with respect to the rest of the. program. This fact allows immediate, completely

parallel and non-interfering execution of all innermost applications (hereafter

referred to as reducible applications, or RAs), and it is this property of FFP

languages that makes them so attractive for multiprocessor support. User

programs are actually written in FP, a human-engineered version of FFP

31

described by Backus that allows programs to be written in a more structured

and understandable fashion [Bac7B]. A pre-processor based on macro expansion

is used to convert FP programs to the equivalent FFP representation. The FP

program corresponding to the inner product example in Figure 2.4 is:

IP == + @ ex• @ T,

where @ is used to represent functional composition.

2.2.1. Backus' Language Hierarchy

FIGURE 2. 5- A Hierarchy of Programming Languages

Programming Languages

Complete Languages

Applicative Languages

Closed Applicative Languages

Red /\-Red FFP

32

Although FFP is the user-level architecture whose implementation is the

object of this dissertation, FFP is part of a larger hierarchy of languages

suggested by Backus [Bac73]. A brief review of this hierarchy, based on

terminology suggested by Backus [Bac73], is now given. This will enable us to

refer to some of the more formal aspects of FFP semantics in following

sections. •

2.2.1.1. Programming Languages

A programming language, L, comprises:

Ll) A set of expressions, E

LZ) A domain of discourse, D

L3) A semantic relation, a.::: Ex D

Thus, a programming language is a triple, L = (E,D.a), and when (e. d) E: a, we say

that dE:D is a consequent of the expression eE:E.

2.2.1.2. Complete Languages

In a complete language, the semantic relation is constrained to be a

function, called f.t· The domain of discourse, now called C, is constrained to lie

within the set of language expressions, and is the set of fixedpoints of f.t· •• If

Jt(e) = c, then we say that c is the meaning or value of e. Thus, for instance,

!J-(2+2) = 4. The function fJ- need not be defined for all expressions; Jt(l/0) might

be undefined, for example. Formally, then, a language L = (E,C,Jt) is complete iff

•

CLJ)C!:E

CLZ) fJ- is a partial function from E onto C

CL3) Cis the set of fixedpoints of fJ-

Readers uninterested in these details may skip to Section 2.2.2, which concludes the
discussion of FFP, and leads into Section 2.3, on the LPL !cell programming language . ..

A fixedpoint, x, of a function, f, satisfies the equation f(x)=x. Chapter 5 of Manna
[Man74] provides a good introduction to the fixpoint theory of programs.

33

Elements of C are called constrznts since JJ-(c} = c, and f.J- is called the

semrzntic function since it determines the meaning of expressions.

2.2.1.3. Applicative Languages

In an applicative language, a constructor syntax is employed to create

expressions, some of which are called applications, and the semantic function,

f.J-, is then tailored to handle such expressions. The use of a constructor syntax

partitions a set of expressions into atomic and non-atomic expressions {a

familiar constructor syntax is that used for lists}, and is a natural way to specify

a simple and regular syntax. Given a set· of atoms, A, the pair {A,K} is called a

constructor syntax forE iff

CS1)Ar:.E

CS2) Erzch kn E: K is a function: En -> E, n;,'O

CS3)ife It A, then there is a unique kn and e1 ... en such that kn[e 1 ... en] = e

Thus, if E has a constructor syntax, every valid expression e E: E is either atomic

{in which case, e E: A), or has a unique representation kn[e 1 ... en] built by a

constructor.

We can now define an applicative language as a complete language, L =

{E,C.JJ-} with an associated constructor syntax {A,K) such that

AL1)A r;;. C

AL2) There is a binary apE: Ksuch that JJ-(rzp[e 1,e2]) = JJ-(ap[JJ-(e 1), JJ-(ez)])

AL3) Ykn E: K-! apl, JJ-(kn[e 1 ... en]) = kn[t~-e j· .. JJ-en]

Clause ALl indicates that atoms are their own meanings. Clause AL3 indicates

that the meaning of an expression that is constructed by constructors other

than the ap constructor is simply the construction of the meanings of the

expression components. Expressions built using the ap constructor are called

applications, and clause AL2 indicates that the meaning of an application must

34

be found by first computing the meaning of its components. In addition, clause

AL2 shows that the ap constructor is special since it affects the the meaning of

the expression it constructs -- thus the outermost 11- on the right hand side of

AL2.

2.2.1.4. Closed Applicative Languages

The above definition of applicative languages doesn't restrict the way 11-· the

meaning function, acts on applications. In what Backus has called

closed applicative languages, 11- is restricted by requiring it to operate on

applications of the form ap[e 1,e2] as if e 1 is a function and e 2 is its argument.

To take this step, however, there must be a mapping from an expression (in this ·

case, the expression e 1) to the function which it represents. This can be

accomplished through the use of a representation function called p.

In 1973, Backus defined p as mapping constant expressions to functions

which map constants to expressions. This yields the class of closed applicative

languages. Using different constructor syntax and constraining p and /h in

different ways then yields the Red and i\-Red language classes [Bac73]. (Actually,

as Backus later realized [Bac7B], p and its range of functions can be extended so

they are defined for all expressions --not just constants.}

A closed applicative language is therefore an applicative language L =

(E,C,U} with constructor syntax (A,K). and an associated representation

function, p E: [C->[C->E]] such that

CALl) pis total over C

CAL2) VcE:C, p(c) = /E:[C->E] is total over C

CAL3) Vc l' c 2 E:C, 11-(ap[c 1,c 2] = Jh(f(c 2)), J=p(c 1)

Clause CAL3 specifies the computation of the meaning of ap[c 1,c2]: the function

p(c1} is applied to c 2. If the result is a constant, we are done. Otherwise, we

35

apply to this result the appropriate axiom among. AL2, AL3, and CAL3.

The definition of closed applicative languages tells us how to evaluate

applications whose components are constants. The differences between F~'P,

Red, and A-Red languages (all of which are closed applicative languages) arise

from differences in p, and the manner in which applications involving non-

constant expressions are evaluated. In both of these respects, FFP and Red

languages are quite similar. FFP languages amount to a later and conceptually

simplified version of Red languages. For this reason, a description of Red

languages will be omitted here.

A-Red languages, on the other hand, are quite different from FFP languages;

they resemble the A-calculus. A-Red languages differ from A-calculus in the

following aspects: no bound variables need be converted as by I- and ex-

conversion in the A-calculus, and innermost applications can be immediately

evaluated. These are both important factors which make A-Red languages easier

to implement than A-calculus based programming languages. •

2.2.1.5. A-Red Languages

In A-Red languages, the set of atomic constants, A c C, is the union of two

disjoint sets: variables, V, and objects, 0. Five different constructors are used:

pair, lambda, application, formal application (all of which are two-place

constructors); and bottom (a zero-place constructor). A typical set of textual

representations for these constructors is:

•

pair{e l'e z) = <e l'e i>
lambda{e 1,ez) = <Ae 1,e2>
application(e l'e z) = (e l:e z)
fo·rmal application{e l'e z) = (e l'e z)

The following section on X-Red languages, included for completeness, may be skipped by
the casual reader.

36

bottom()= l

The difference between application and formal application is that (e 1:e2} is a

valid expression iff e 1 and e 2 have no free variables, while (e 1.e2} is well-formed

only otherwise. Formal applications cannot be reduced until one or more A.-

substitutions transform them into applications eliminatingall free variables.

As closed applicative languages, A.-Red languages satisfy axioms ALl, AL2,

and CAL3. Their semantics are as follows.

J.L(a) = a, aE:A = 0 u V

J.L(<e 1,ez>) = <J.Le 1,JJ-ez>
J.L(<A.v,e>) = <A.(J.Lv),f..Le> = <A.v,f..Le>, v E: V

J.L(e l:e z) = J.L(f(f..Le z)). f = p(f..Le 1)

J.L(e l"e z) = (J.Le rf..Le z)

Recall that p maps elements of C into functions [C->E]. The set C, here, is

composed of all expressions containing no applications of the form (e(e2). As

above, let v E: V, and let c,c 1,c2 E: C. Then pis defined for A.-Red languages so that

p<c 1,c z> = f(f..L(p(c z}J), f = p(c 1)

p<A.v,c> = A.(v,c)

where for every variable vEV, and every constant cE:C, A.(v,c), an auxiliary

function, is a function from C into E defined in such a way as to express lambda-

abstraction in the presence of free and bound variables. The first of the above

rules for p thus expresses regular functional composition, and the second,

lambda-abstraction.

2.2.1.6. F'F'P Languages

ln FFP languages (and Red languages}, a very simple constructor syntax is

used, and there are no variables . .Members of the set of atomic constants, A c C,

are called objects. Bottom, L is a special object used to indicate "undefined".

37

There are only two constructors: sequence (an h-ary constructor for

constructing lists), and application (a binary constructor). Expressions are thus

either atoms, lists of the form <e 1, ... ,en>' ·or applications of the form {e1:e2). As

with the)-..-Red languages, the constants are those expressions containing no

applications. The representation function, p, maps atoms to functions [C->E],

i.e., p:A->[C->E], and the set of atoms for which p(a) is defined represents the

primitive functions of the language.

Note that the domain of the representation function does not include non-

atomic constant expressions. The semantic function, however, deals with such

cases by providing a way of reducing such expressions to the application of a

primitive function. This mechanism is called meta-composition. The semantic

function obeys the following rules.

FIGURE 2. 6- Semantics of FFP Languages

a) JL(a) = a, a E: A

b) JL(<e l'"''en>) = <JL(e l), ... ,JL(ed>
c) JL(e r·e 2) =
cl) e 1 = l .. l
c2) e 1E:A-> JL(!(JL(e2))), f = p(e 1)

c3) e 1E:Cand e 1 = <yl""'Yn>-> JL(y1:<e 1 ,e~)
c4} e 1ec _, JL{JL(e 1):e 2)

Clauses a and b are as expected in closed applicative languages. Clause c

represents a further restriction of CAL3. Clause cl says that the special object

bottom represents the function that always retu;n·s bottom (i.e'., undefined).

Clause c2 indicates that e 2 must be evaluated before p(e 1) is applied to it. Thus,

function arguments are always evaluated before function application -- this

shows the data-driven character of FFP. If p(e 1)=l{i.e., the atom e
1

does not

represent a primitive function of the language), then clause cl shows that

38

meaning of the application is .L independent of the function arguments. Clause

c3 represents the rule for meta-composition (to be elaborated on below), and

indicates how to reduce an application involving a function represented by a

non-atomic constant. Clause c4 says that if e 1 is not a constant expression,

innermost applications must be performed first in order to reduce e 1 to a

constant. Clause c2 and c4 together show that FFP languages have what is called

innermost reduction semantics.

Meta-composition is a clever formal device that not only handles evaluation

of applications involving non-atomic function expressions (thus allowing user­

defined functions to be represented as expressions involving the primitive

functions of the language), but ·also permits definition within the framework of

FFP languages of recursive and iterative functions as well as more general

functional forms (i.e., functions that are parametrized). Its use will be explained

further in the following section, as we clarify some of the issues raised by the

above definition of FFP language~.

2.2.2. Observations and E:Xamples·

In an FFP language, as exli'lained above, atoms represent the primitive

functional operations of the language. The semantics of FFP languages indicate

that when such an atom ·is encountered in the operator position of an

application, the application should be replaced by the result of evaluating the

represented function on its argument. To do this, we must either know what

function is represented (analytically). or have an algorithm for computing the

represented function. Mathematicians often take the first approach; a function

is defined analytically in terms of other known functions. Thus we might agree

on certain functions known to T, an evaluation mechanism corresponding to f.<,

39

and then define p and its range accordingly. • Backus uses this approach to give

an example of the use of meta-composition [Bac7B]. He defines the functional

form associated with constant functions, which is represented in FFP by the

sequence < CONSTn > when p{CONST) is defined appropriately. Backus

therefore gives

Def
p{CONST) = 2@ 1

where T {an evaluation mechanism corresponding to f.k) is assumed to

"understand" FP. He could have also given

Def
p{CONST) = the second element of the first element of the argument list

where T is assumed to understand English. In either case, evaluation of the

following expression {in which the constant function whose value is always 5 is

applied to its argument, B) would take place as follows:

(< CONST 5 > : B) -> (CONST: < < CONST 5 > 8 >) -> 5 .

The first step in the above evaluation is indicated hy the FFP meta-composition

rule, c3; the second, by rule c2 and the definition ·of p{CONST). Note that

following use of the rule for meta-composition; the first element of the function

expression, called the controlling operator of the functional form {CONST is the

controlling operator here), always has as its operand a pair whose first element

is the original function expression. This. is what allows recursive and iterative

operators to be defined so easily within the simple framework of FFF languages .

• The distinction between the evaluation mechanism -represented here by T, and the se-
mantic function represented by 11- is primarily one of implementation. The above
definition for FFP languages gives equivalences between the meanings of expressions; an
evaluation mechanism makes use ·of_ these equivalences to produce an actual result.
Backus has formalized this distinction using the concept of strict language realization
[Bac73].

40

An example of p without the use of meta-composition is the following:

Def
p(IP) = the inner product of the two argument vectors .

Evaluation of the following expression would then take place as follows:

(IP : < < 1 2 3 > < 4 56> >) -> 32.

The semantics of FFP languages lets us use p to define whatever primitive

functions are appropriate to our needs. The question to be asked, then, if we are

to produce a realistic implementation for FFP, is "how much should r know"? Or,

equivalently, "how do we define the functions of p"? Our answer is the

combination of LPL, through which the functions of p are defined

algorithmically, and DOT, which incorporates an evaluation mechanism r that

understands (among other things required by the semantics of FFP) how to

evaluate applications of primitive operators defined in LPL.

Backus presented FFP languages in his 1977 Turing Award Lecture, which

was primarily devoted to describing FP (Functional Programming) languages

and their associated algebra of programs [Bac78]. FP languages are an

important step in programming language evolution. They are higher-level and

less constricted in their syntax than FFP languages, and are designed for ease of

use by human programmers. They are capable of expressing parallelism in a

natural and functionally powerful fashion, and are amenable to manipulation,

transformation, and verification through use of their associated algebra.

In his original presentation, Backus motivated FFP by its similarity to the

FP languages, and noted the feasibility of simple and direct translation from FP

to FFP. As shown above, the FFP language class can be given a very succinct

definition; both the syntax and semantics of FFP languages are extremely

simple. This doesn't mean that FFP languages are in any way limited in their

41

expressive power, though. The representation function p allows use of

arbitrarily powerful primitive operators, and meta-composition provides an high

degree of extensibility.

FFP languages can be easily augmented with a definitional facility: if an

atom in the operator position of an applic~;~.tion represents a user-defined

function, then it is replaced by an expression representing its FFP definition.

yielding a new application whose meaning is the same as that of the original

application. •

Backus has pointed out. the importance of distinguishing . between the

framework and the changeable parts of a programming language. In

conventional programming languages, the framework tends to be elaborate and

complex, while the changeable parts lack expressive power. In an FFP language,

the framework is small and simple, yet able to accommodate a powerful and

wide variety of changeable parts.

2.3. Implementation Architecture -The LPL Language

LPL allows the definition of powerful FFP primitive operators. Inner product,

matrix transposition, and matrix and multiplication are feasible, as are all of the

primitives suggested by Backus in his Turing Award Lecture. The rest of this

. .
Backus used a mechamsm to support such user-defined operators that was based on a

special backing store to hold the definitions. This is actually unnecessary since p can be
extended to handle such definitions. The function represented by p(u), for a user-defined
operator, u, can simply be the· function that produces a new expression that is the
desired application. The difference between the two approaches is that in the first ap­
proach, no reduction is performed -- the operator is replaced by its definition (and the
argument is left alone) -- while in the second approach, the application is actually re­
duced, producing the same result: an application of the desired user-defined operator ex­
pression to the original argument. In DOT, we use the second approach because of its re­
gularity within the implementation. The difference between these two approaches is en­
tirely transparent to the user, therefore this decision does not effect the FFP architec­
ture.

42

chapter is devoted to presenting LPL and its architecture model. •

2.3.1. LPL Architecture

LPL defines an FFP primitive as a program specifying low-level and

architecturally concurrent manipulations on the representation of an FFP RA.

The LPL-level representation for an RA (not to be confused with the

representation function. p) is an important aspect of the LPL architecture, and

is designed to assist locality of execution within the implementation.

As shown in Figure 2. 7, the LPL architecture corresponds to a single RA

contained in a linear array of cells, each one of which is a small grain processor

used to hold a symbol of the application plus other local state information.

These cells, called lcells, operate independently and are able to communicate

• ••
through a globally shared message subsystem. The linear connections

between !cells are not available for communication in LPL, but allow creation of

new symbols in the !cell array through an operation called forking. Horizontal

communication is not allowed because, at the DOT implementation level, any

number of empty !cells may actually be distributed among those holding the

text of an RA visible to LPL.

' For the casual reader, Section 2.3.1 provides sufficient overview of the LPL architecture.
Section 2.3.2 gives LPL syntax and semantics, and Section 2.3.3 discusses low-level syn­
chronization issues of use to the LPL programmer. Both these sections Jnay be skipped if
desired. Finally, Section 2.4 presents actual LPL programs. Although of primary interest
to the LPL programmer, these programs are annotated to clarify important aspects of
LPL, and may be glanced aver to provide a feeling for the size of LPL programs required
to implement FFP operators.

•• As elements of an architecture, lcells are logical abstractions. In fact, they correspond
to what are also called !cells in the DOT implementation, and it is projected that the DOT
}cells will be realized as small grain processors. The message subsystem, on the other
hand, is implemented within DOT using circuit switched communication channels bet-ween
entities called tcells (far tree cells). The LPL architecture we present does not require
knowledge of the tree structure that implements it. A different LPL architecture might
incorporate messages that specify routing through this tree structure, in which case
such knowledge would be necessary at the LPL level.

43

FIGURE 2. 7- LPL Architectural View

LPL REPRESENTATION OF REDUCIBLE APPLICATION

As can be seen, LPL corresponds to a powerful multiprocessor architecture.

Hence, we can expect fairly efficient definitions for a wide variety of FFP

primitive operators. Before the actual capabilities of LPL are discussed,

however, let us investigate and motivate this architecture by giving informal

definitions for some FFP primitives in English. To do this, a representation for

applications must be agreed upon. As a first step towards a representation for

the symbols of an RA seen by LPL, we will try to use information appropriate at

the FFP architectural level.

2.3.1.1. FFP-level Text Representation

So far, we have used the notation (e 1 : e2) to represent use of the

application constructor. We will now make two changes in this representation.

First, we make "(" and ")" special reserved symbols for denoting application.

With this change, the colon denoting application is redundant, so we can now

write (e 1 e 2) to represent an application. This corresponds nicely with

44

< e 1 ... en .>, which represents a list.

A second change in representation is also made in the interest of

ar·chitectural economy of representation. Corresponding to the constructor

syntax of FFP is a unique derivation tree for every valid FFP expression. Figure

2.8 shows an example. The derivation tree shown in Figure 2.8, in which

constructors are represented by labeled arcs between expressions, can also be

expressed as a parse tree in which constructors appear as non-leaf nodes.

Figure 2.9 shows the parse tree corresponding to Figure 2.8. The parse tree can

in turn be represented in an ordered linear notation appropriate to the !cell

array through the use of level numbers, called al'TIB (for absolute level number)

as shown in Figure 2.10.

FIGURE 2. 8-- Derivation Tree fore = (< CONST 5 > 8)

e

l application contructor

(8)

[list constructor

< CONST 5 >

45

FIGURE 2. 9-- PrLrse Tree fore = { < CONST 5 > 8)

(

/~
< 8

CONST 5

FIGURE 2.10-- A LinerLr RepresentrLtion using ALNs

~lls ~ [E Gj [E ITJ tE ~ Irells aln 0 1 2 . 2 1 aln

LPL REPRESENTATION OF REDUCIBLE APPLICATION

The representation of Figure 2.10 amounts to a record of a pre-order

traversal of the parse tree of Figure 2.9, and can be easily generated from the

FFP text in O(n) time and constant space by a pre-processor. This is the

representation we choose to use in the FFP architecture. Its advantages include

the use of fewer !cells than would be required by the more straightforward

approach of using balanced constructor symbols.

We now define a simple FFP operator, the identity function.

lJef
p {!D) ;;;

a) The application symbol is dele ted by its containing lceU.
b) The operator, JD, is deleted by its containing lcell.
c) Symbols of the argument are kept by their containing lcells, but

their aln values are decremented by 1.

46

The level numbers of the argument symbols are decremented so that

replacing the application with its result (which is the objective of executing an

LPL program) will not change the structure of the containing FFP expression.

Assuming for the moment a definition for p(+), evaluation of an expression

involving lD (which shows how level numbers are modified) is illustrated in

Figure 2.11.

FIGURE 2.11 -Evaluation of { + < { ID 1) 2 >)

reduction reduction

(3

In multiprocessor architectures non-local interactions should be kept to a

minimum in order to realize the potential of separate processors. The above

47

definition of p(ID) requires different behavior by the various !cells based on

whether they contain application, operator, or argument symbols. Thus, to avoid

non-local interactions, each !cell involved in the reduction of an application of

the ID operator should be able to locally discover what part of the RA it contains.

Unfortunately, the FFP representation used so far contains no clue as to this

information. How then, is an !cell to determine what part of the it contains?

Messages between the !cells might be used, but this would require non-local

interactions. If we want to efficientlyutilize the power of the LPL architecture,

the LPL-level representation for symbols of an FFP RA must be augmented with

additional information besides that available at the FFP level.

2.3.1.2. LPL-level Representation of FFP RA Symbols

In order to give each !cell information concerning its place in the RA;

information descriptive of the location of its contained symbol in the parse tree

of the RA is included in the LPL-level representation of the symbol. One

approach might be to store within each !cell the parse tree for the entire

application, and indicate which node of the parse tree represents the locally

held symbol. This would give each !cell complete information concerning its

place in the application, but such an approach is unfeasible because of storage

limitations. Applications can be arbitrarily large, and we assume the !cell will

have a fixed amount of storage.

Instead, in the belief that the topmost structure levels are the most

important, we represent the symbol location based on its pre-order position in a

"truncated" version. of the associated parse tree. • This limited precision

• While this does not provide an !cell with total information concerrting the place of its
symbol in the RA (e.g., the last symbol of an RA cannot be locally identified), it represents
a useful compromise. Questions of implementation are left for Chapter 3, but a primary
reason for choosing this representation is that it can be efficiently calculated using the
overlying tree structure.

48

representation of a symbol's position within the parse tree of its RA is called a

directory tuple. Figure 2.12 gives a parse tree for an RA and includes directory

tuples resulting from truncation at level 2. As shown by this diagram, a symbol

below the level of truncation has the same directory as its ancestor at the

truncation level.

FIGURE 8.18-- Directory Tuples for (IP << 1 8 3 >< 4 56>>)

IP
[1,0]

(level 0

/[0,0]~

< Ievell
/[2,0]~

< < level2
. [2 1] [2 2] . . directory _______ /- t _"\ _____ /- t _"\ _____ truncation

1 2 3 4 5 6
[2,1] [2,1] [2,1] [2,2] [2,2] [2,2]

In addition to the directory tuple (called d1 .. d4 in LPL)* the LPL-level

representation for each symbol of an RA includes a symbol index (called

symbol_j,ndex in LPL) to guarantee a unique representation for each symbol of

an RA.'• Also included is a relative nesting level (called rln in LPL) which is the

nesting level of a symbol relative to that of the application symbol for the RA.

The rln represents the depth of a symbol within the parse tree of its RA, and is

used to calculate the directory tuple. While the rln is only defined for a symbol

when it is contained within an RA, the aln is always defined, and represents the

depth of a symbol within the parse tree of the complete program. The . .
At present, truncation for the LPL directory is performed at level 4.
The first symbol of an RA (from left to nght) has symbol..:tndex = 0, the second symbol

of an RA has symboLindex = 1, etc.

49

application symbol for an RA always has rln = 0, and symbal_jndex = 0.

A definition for directory tuples with truncation at an arbitrary level n is

now given.

Def
Directary-'l'uple =

Far a symbol of an RA with directory tuple D = [d 1, .. .,d1, dn], dj is the

number of symbols with rln=j (including the symbol of interest) that are

encountered in a pre-order traversal from the node with directory tuple

D' = [dl""'dj-l'O,O, ... ,O]. The root of the tree has directory Dr= [0,. .. ,0].

Figure 2.13 illustrates this definition using truncation at level three. As shown

by Figure 2.13, the value of a general dj in a directory tuple indicates the left­

to-right count of level j symbols within the RA(up to the one of interest) that are

within the scope of the last symbol with rln=j-1. For purposes of illustration, the

arrows in the diagram point from a level j directory entry to the last symbol with

nesting level j-1. The directory tuple for "d" in this diagram is [1.2,0] -- d 1 is 1

because it counts the operator sequence symbol (the only level 1 symbol that

occurs before "d" and is within the scope of the application symbol at level 0);

d2 is 2 because it counts the level 2 symbols (including "d") within the scope of

the operator sequence symbol (which is the last symbol with nesting level 1, and

is pointed to by an arrow); and d3 is 0 because there are no level 3 symbols

within the scope of the last level 2 symbol ("d" itself) to be counted. As another

example, the directory tuple for "b" in this diagram is [1,1,2] -- d 1 is 1 because

it counts the operator sequence symbol (the only level 1 symbol that occurs

before "b" and is within the scope of the application symbol at level 0); d 2 is 1

because it counts the second sequence symbol of the RA (the only level 2 symbol

that occurs before "b" and is within the scope of the operator sequence symbol

at level 1); and d 3 is 2 because it counts "a" and the third sequence symbol of

the RA (the only level 3 symbols that occur before "b" and are within the scope

50

of the second sequence symbol of the RA at level 2).

FIGURE 2.13- Illustration of Directory Tuple Definition

____ _, ([0,0,0]

/\
[1,0,0] < e [2,0,0]

/ \ # nodes with level=2 since [1,0,0]

[1,1,0] < d [1, ,0]

/\
[1,1,1] a < [1,1,2] if nodes with level=3 since [1,1,0]

directory ______ ----- -7-- '\- __ _ _ ______ truncation

[1,1,2] b c [1,1, l

W nodes with level=1 since [0,0,0]

To summarize, the LPL architecture specifies a representation for symbols

of innermost applications that comprises the following:

• FFPsymbol
• FFP level - aln
• Application level - rln
• Application Directory Index -- symbol_jndex
• Application Directory Tuple-- dl,d2,d3, and d4.

51

Another definition for p(ID) can now be made that clearly involves only

actions local to each !cell:

JJef
* p(ID) "' if d1=2 then keep symbol and decrement aln.

2.3.1.3. Message Subsystem

The message model employed in the LPL architecture provides powerful

communication primitives that are efficiently and simply implemented, and are

easily realized, as projected, in a tree-structured cellular network. In the

interest of simplicity, the architecture uses a central message server and a

broadcast protocol. In the interest of power, the central message server has

added capabilities: it can sort or select messages according to keys, and it can

combine the data portion of messages according to associative arithmetic

operations such as addition and multiplication. These additional capabilities are

reasonable since they have efficient implementations in a tree-structure.

Further details concerning messages are given with the LPL statements that use

them.

2.3.1.4. Replicating LPL Contexts

Other information besides the above-described symbol representation is

available to LPL statements executing in an !celL The totality of this information

is referred to as the LPL environment (i.e., that data available to an LPL

program). The ClassC representation of the LPL environment is given in Figure

2.14 .

• In LPL, the FFP symbols to result from reduction must be explicitly placed or kept (as
in the example) within !cells. Thus, there is no need to delete symbols of an RA that will
not appear in the reduced result.

FIGURE 2.14- LPL Environment

;••• Symbol Representation ••• /
char symbol, /° FFP-Level symbol • /

aln, /* FFP-level aln • /
rln, / 0 relative level within RA • /

/*** liirectory •••;
symboUndex,
directory[DLEVELS],

;••• Next Symbol Representation •••1
nsymboW::nt, I* validity flag for next symbol • /
nsymbol, /* next FFP-level symbol • /
naln, /* next FFP-level aln •1

;••• Message Support •••1
margs[MARGSIZE], /*hold message args for transmission *I
mtmp[MTMPSIZE], I* holds received messages *I
temps[TMPSIZE]; I* temporary registers for general use *I

/ ... Fork Support ... /
fork...id, I* environment variable set by fork • /

/** * Condition Co de ** * /
cc; /* condition code set by cmp • /

52

The portions of the LPL environment that describe the RA symbol have been

explained. The contents and LPL names for the other portions are explained with

the statements that use them. The LPL environment is part of a larger context,

called the execution context, or user context of the LPL program. • The user

context includes (in addition to the LPL environment) LPL code in a compiled

form appropriate for execution, and other information such as program and

message counters.

We have presented some essential aspects of LPL execution in the !cells by

investigating p(ID). One more element of the LPL architecture remains to be

mentioned before giving actual LPL statements. To this end, we give a definition

for the FFP primitive, DBL.

. .
The term Huser!! is perhaps a poor choice, but refers to the LPL program's "use" of lcell

processing power. At the LPL architecture level, LPL programs are user programs.

53

/Jef
p(DBL) = the pair whose two elements equal the original argument

Thus, for example, the following reductions are indicated:

(DBL x) -> < x x >. and
(DBL < x 1 ... xn >) -> < < x 1 ... xn > < x 1 ... xn > > .

As can be seen, DBL is different in its operation from ID in that new FFP-

level symbols must be created, and the expression can grow in size. How does

the LPL architecture handle such activity? Copying is required, and the LPL

message subsystem can support this. Before this is done, however, LPL

environments must be created to act as recipients of these messages.

To accomplish this, we Jet an LPL environment replicate itself "sideways" in

a manner conceptually similar to a "fork" operation, in which a single process is

split into two or more parallel execution paths. Within DOT, a process performs

execution of LPL code in an !cell of the LPL architecture. Forking this process

places copies (called children) of the parent process's user context into

adjacent !cells, shifting the contexts associated with the other symbols of the RA

to make room. This is the reason for the horizontal connections between !cells of

the LPL architecture. With this ability, much more flexibility in the creation of

FFP-level symbols resulting from a reduction is possible. The replicated

contexts differ from each other in a single respect: the fork_jd environment

variable is set to 1 for the parent (which is placed leftmost) and increased by

one for each child, in left-to-right order. This allows forked processes to

condition their behavior in order to perform differently.

The idea used in the LPL program for DBL is to count the number of

symbols in the argument using messages. Since the message subsystem

supports broadcast routing, this number can be received by an !cell located

where the duplicate argument copy is desired. This !cell forks off enough LPL

54

user environments to receive the symbols of the argument, which are sent using

additional messages. Each newly-created receptive environment can select the

appropriate symbol from the many that are received by matching its fork_jd

with the order of arrival of the symbols, in order to reproduce the argument

symbols in the correct order.

Up to now, all aspects of the LPL architecture have been localized to a

single RA. The fork operation requires us to admit that there may be FFP-level

symbols within the machine other than those seen by a single reduction. To show

why this is so, Figure 2.13 depicts a situation involving the use of DEL, and leads

to the question of when the fork operation should be allowed to proceed.

FIGURE 2.13- Forking Must Wait for Storage Management

RA '--- - - - .,

L----------....l

DOT supports the fork operation during a period of time called storage

management, when all LPL programs are held in a quiescent state and execution

contexts can be shifted about on the horizontal connections between !cells. A

variety of mechanisms for the scheduling of this period are possible. Chapter 6,

55

on design alternatives, will review some of these. The approach we take allows

LPL programs themselves to exert a measure of control over this scheduling.

The initiation of the storage management phase is performed in a manner

similar to an interrupt on conventional machines. The executing context is saved

and the appropriate service routine is initiated. As is the case for conventional

assembly languages, we give the LPL architecture the ability to mask out

interrupts. LPL programs always begin an execution period with the storage

management interrupt masked out. Execution of a fork statement (or other

statements to be .described below} then removes the mask locally. When all

executing LPL contexts have "allowed" the storage management interrupt in this

way, storage management and fork operations may take place.

2.3.2. LPL Syntax and Semantics

We now present the syntax and semantics of LPL statements.* LPL is

essentially an assembly language appropriate for execution by the fine-grained

processors that are expected to realize the !cells. The language is designed to

provide simple yet powerful low-level control of the !cells of an RA.

An LPL program defines an FFP primitive by specifying appropriate actions

for each !cell of an application. LPL is therefore designed to manipulate local

!cell registers containing the LPL environment, and possibly invoke global

message operations with which LPL statements in other !cells of the same RA

may interact. Various groups of !cells within the RA are given the same

instructions (e.g., all elements of a sequence), so an LPL program consists of

code segments -- one for each such group. The advantage of this approach is

' Readers uninterested in details of LPL, found within the remainder ol Section 2.3, may
still wish to skim over Section 2.4, which provides examples of useful FFP primitives.
Their names, which appear as subsection titles, are generally descriptive of their func­
tions. The introduction to FFP functional forms, in Section 2.4.2, may also be of interest.
For the reader primarily interested in implementation details, .Chapter 3 may be begun.

56

that less conditional execution need be specified within LPL segments. This will

be made clear in the program examples that follow presentation of LPL.

The most interesting aspects of LPL are the message interactions between

the !cells of an RA (controlled with the send, receive, and endfilter statements}

and the way LPL contexts may spawn copies of themselves (controlled with the

fork and forkc statements) in order to create additional FFP text symbols

within the !cell array. With these capabilities, LPL programs can implement

powerful FFP operators, and parallelism within the tree structure can be used

very effectively.

There are no stack-based variables in LPL as m procedure-oriented

languages. Instead, the LPL environment variables within local !cell registers

are referred to. Some of these environment variables are set up by DOT before

LPL statements are allowed to execute. These are symbol, a.ln, rln, and the

directory, composed of symbal..index, and dl,d2,d3,d4 (the directory tuple}. In

addition to its use by LPL statements, the directory 4-tuple is also used by DOT

to choose which code segment of an LPL program should be executed within an

individual !cell. This will be explained in conjunction with the LPL destination

statement.

Upon completion, the reduction is "stepped forward" to its result. This is

done by DOT with the aid of the environment variables nsymbal_snt, nsymbol,

and na.ln. The "n" prefix stands for "next," and these variables are set up in

each !cell of an RA by the LPL program. If nsymbol_snt is zero when the RA is

stepped forward (this is the default), the containing !cell becomes empty (i.e.,

there is no FFP-level symbol in the !cell following completion of the reduction}.

If nsyrnbol_snt is 1 (or non-zero} nsymbol is moved to symbol, and naln is moved

to aln.

57

Thus, tbe LPL programmer is primarily concerned with creating code which

(for each !cell of the RA) will load nsymbol and naln with the symbol and aln

values which should next appear within the !cells of the RA in order to

implement the required reduction. All code segments of an LPL program must

complete (by executing an endsegment statement) in the same machine

• cycle.

We now give an informal presentation of the LPL statements, explaining

their use and purpose. Statements that are closely related are given together in

the same section.

2.3.2.1. program/endprogram A program statement is the first statement of

an LPL program. Its form is

programx

where xis the (integer op-code) identifier of the FFP operator the LPL program

implements. The LPL assembler creates a library object file for subsequent use

whose name is based on this identifier. · The end of an LPL program is signaled

with an end program statement. Its form is

endprogram

• The machine cycle will be discussed in the following chapter. It arises from the necessi-
ty for successive storage management operationS during the on-going operation of the
machine. Symbols of an RA must be replaced by their reduced result in a single atomic
operation between cycles, and DOT presently assumes that if an Icell has completed exe­
cution of its code segment, then all !cells of the RA have done so, and the reduction may
therefore by stepped forward within the !cell as indicated by the local values of
nsymboL.cnt, nsymbol, and naln. It is possible for DOT to guarantee that reductions are
correctly stepped forward in the absence of this restriction on LPL segment completion,
but at the cost of execution efficiency. The tradeoffs, involved are discussed in Chapter 6.

58

2 .. 3.2.2. destination/endsegment The same sequence of LPL statements is not

executed in each [cell of an RA. Instead, an LPL program consists of a collection

code segments, each of which begins with a destination statement that indicates

its the !cells in which it should be executed. The first segment of an LPL

program whose destination matches an !cell's directory 4-tuple is the segment

• that the !cell will execute, and all following segments are ignored. The form of

the destination statement is

destination dl d2 d3 d4

where each of dl through d4 is either an integer, or an integer followed by "*".

A match, as referred to above, occurs if each of the lcell 4-tuple directory

entries is either equal-to (no "*" used) or equal-to-or-greater-than ("*" used) the

respective destination value. The LPL program for lD given in Section 2.4.1.1

illustrates the importance of the textual ordering of destination statements.

The end of a program segment is signaled with an endsegment statement of

the form

endsegment

Execution of this statement allows storage management for its !cell.

2.3.2.3. Lcell Data Movement and Arithmetic Presently, FFP symbols and

other data are bytes. Real, complex, and even vector data of limited size would

also be supported in a more realistic implementation. Data movement within

the !cell is accomplished with the mov statement. It has the form

. .
LPL program code segments are loaded in order of their textual definition within the

LPL program. The word rrfirstn therefore corresponds to textual appearance within the
program, as well as temporal appearance of the object code as it is received by an Icell.

59

mov source desti:n.a.tian

where desti:n.ation is one of the named environment variables, and source can be

either an environment variable, or an immediate value. There are two types of

immediate values: numeric, in which a numeric string is prefaced with #: and

character, in which a single character is prefaced with ". The usual arithmetic

operations are also supported. These statements are named add, sub, mul, div,

and their forms are the same as for the mov statement. They behave as usual

for arithmetic statements in two-address assembly language architectures.

Another data movement statement is keep. It has the form

keep

It is not primitive since mov could be used to achieve the same results, but its

use saves space in the LPL object code. Its effect is to move symbol to

nsymbol, aln to naln, and 1 to nsymbol_pnt. The dual of keep is erase, whose

effect is to move 0 to nsymbol_pnt. This statement has the form:

erase

2.3.2.4. Logical Comparisons and Program Control One of the environment

variables is called cc, and its purpose is to act as a memory to hold the boolean

result of past comparisons. Conditional branches refer to it, and it may be

manipulated by name as a variable. The cmp statement implicitly manipulates

it. The form of this statement is

cmp value 1 val.ue2 test cc-Dp

60

where value
1

and value
2

are either immediate values or named variables, and

test is one of the logical comparison operations: "< 11
,

11 <=", "=", ">=", ">", and

"<>". The cc-ap arguinent is one of ".", "+", and /J*", which mean respectively

that cc should be loaded, logically "or"-ed, or logically "and"-ed with the result

of the comparison. The LPL program for EQUALS given in Section 2.4.1.3 uses

two successive cmp statements to check for equality of respective symbol and

aln values.

There are no structured program control statements such as "while" or "if­

then-else". Conditional branching is provided by the br statement. The form of

this statement is

br cc-test s-la.bel

where cc-test is one of n.", "+", and "~",which mean respectively that the branch

should be executed always, if cc is true, or if cc is false. S-label is the label of

the statement that should be next executed if the branch is taken. A label

statement is used in conjunction with br to indicate that an identifier should be

associated with the statement that follows the identifier. Its form is

labelid.

where id. (a positive integer) is the s-label to be used in a br statement.

2.3.2.5. fork/forkc Forking is the means by which additional !cells are

allocated to hold expanding FFP text. The word "fork" is used because each !cell

may be thought of as a single process that executes a sequential LPL program

segment. A fork spawns copies of its program segment and its execution context

to create new processes in the requested number of adjacent !cells. Execution

61

continues after allocation and loading of these !cells by DOT (during storage

management). A forkc spawns completed results in the form of FFP symbols and

alns in the requested number of adjacent !cells. Execution does not continue in

this case, since the RA is assumed to have completed. The form of the fork

statement is

fork forksize

where forksize is the {non negative) number of !cells desired. The fork_jd

environment variable is set by DOT during support for this operation. The

parent of the fork operation is always given fork_jd = 1, while the children are

given fark_jd = 2 through forksize in left-to-right ordering. This fact can be

used in subsequent LPL statements to condition execution.

Fork is often followed by nselect {explained below), which can use fark_jd as

a selector for the next FFP symbol to be placed in the !cell. Copying or moving

groups of FFP symbols into new locations is done by forking LPL environments

into the required number of !cells, and then using receive {explained below) to

selectively accept the desired symbols based on order of receipt and the local

fark_jd. The forked !cell with fork_jd = 1 accepts the first symbol to arrive, the

forked !cell with fork_jd = 2 accepts the second symbol to arrive, and so on.

Temporary registers, tl .. t9 are available for use as message counters and

other purposes.

The statement fork #1 can be considered a no-op that delays execution

until after the next storage management is performed. • Its use can help code

segments maintain synchronization over multiple machine cycles, so they all

complete during the same cycle. The statement fork #0 allows an !cell to "drop

• Recall #signals an immediate value as opposed to a variable name.

62

• out" of an RA during the middle of a multi-cycle reduction. This is a way of

freeing up !cells within a reduction as soon as possible, and can allow more

efficient storage management. The LPL program for DEL given in Section 2.4.1.4

uses fork #1 for synchronization, and also uses the temporary variable tl to fork

an LPL environment into a variable number of !cells with the statement fork tl.

Forkc is similar to fork. Its form is

forkc forksize

Forkc should be preceded by cselect (explained below) in order to fill a

temporary register array with the FFP symbols and aln values that will be

shifted out during the next storage management as a result of its execution.

Use of forkc can enable improvements in the execution efficiency of LPL

programs that are able to complete by forking off FFP-level symbols requiring

no further execution. The LPL program for EEl given in Section 2.4.1.8 uses

forkc in this way. Both fork and forkc allow storage management for the !cell in

which they are executed.

2.3.2.6. nselect/cselect The.nselect statement is used to select and load one

element of a literal string from an LPL program into nsymbol and naln while also

setting nsymbol_gnt = 1. A list of nsymbol/aln-offset pairs is given and the

effect of the statement is to load the appropriate pair based on a selector.

Nselect is thus analogous to a case statement in which the objective is always

• Fallowing a fork #0, LPL execution halts in the containing !cell (as usual far fork opera-
tions), and during the following storage management phase no descendants (not even a
parent process) for the executing LPL environment are created. Thus the executing LPL
environment literally disappears between cycles. Care must be taken that re­
partitioning will correctly detect and connect the RA in the absence of symbols that
disappear in this way (thus, an application symbol should never execute this statement).
The LPL directory is only created during the first partitioning of an RA, sa disappearing
symbols don't change the directory.

63

the loading of nsymbol and naln, Its form is

nselect selector nsym 1 oset 1 nsym 2 oset 2 ... nsym.,. oset.,. ,

Once a particular nsymbol/aln-offset pair has been chosen (based on the value

of the selector), nsymbol is loaded appropriately, and naln is loaded with the

present aln plus the chosen offset (which may be negative). Nselect is often

used with #1 as a selector, which allows a single symbol and aln-offset to be

selected, and nsymbol_pnt to be set, in a single statement.

Nselect can be useful after a fork operation. It allows setting up the next

FFP symbols to appear within a group of forked !cells by using fork_jd as a

selector. Cselect is designed for use before a fork operation when the LPL

program requires no further execution and can complete by performing an

appropriate storage management. Its form is as follows.

cselect nsym 1 oset 1 nsym 2 oset 2 , .. nsym.,. aset.,. .

The cselect statement is thus identical to the nselect statement, with the

exception that a selector is not used. Its function is to load a temporary register

array with the resulting values, so that the desired FFP symbols and alns will be

shifted out following forkc.* The LPL program for EEl given in Section 2.4.1.8

shows the use of·cselect .

• The size of the temporary register array within the lcell will be ultimately determined
by space considerations related to the lcell realizations. Forkc and cselect are· both im­
portant because of the efficiency they allow when compared to fork and nselect. so the
area set aside to support cselect should be as large as possible. Presently, this array can
hold 20 symbols,

64

2.3.2. 7. send/receive/endfilter

These statements are used for global communication within an RA.

Messages are sent and received during globally sequenced activities called

message waves, and all the !cells of an RA have the option of participating in any

of them. A limited amount of processing can take place within the message

subsystem of an RA during transmission of a message wave, and appropriate

instructions for this purpose are automatically sent up by the !cells to introduce

each new message wave. The information necessary for this is supplied in the

send statement.

The LPL messages within a message wave travel from the !cells into the LPL

message subsystem. Here, messages are sorted, combined or passed

selectively, and are then broadcast to all !cells in the RA. Those !cells doing

either a send or a receive for that particular message wave then "see" all

returning messages for the wave. Send and receive have a filter portion that

describes the actions to be taken for each incoming message, and a DOT !cell

message process invokes this filter for each message arrival after first moving

the message into a reception area within the LPL environment. The difference

between send and receive is that the former sends a message then filters

incoming messages, including its own, while the latter merely filters incoming

messages. Their forms are as follows:

send mwave order combine-op key 1 key2 m.size
filter-statements
endtil.ter

receive mwa.ve
filter-sta,tements
endfilter

65

Mwave is the (positive integer) index of the message wave desired, and order

indicates the order in which two messages of differing key values should be

• returned when broadcast to the !cells of the RA. The possible values for order

are "+", and"-", which indicate respectively larger first, and smaller first. When

two messages arriving at a tcell have . identical key values, the respective

messages are combined according to combine-op. The possible combine

operations are addition, multiplication, selection of the message with the largest

data value, or selection of the message with the smallest data value.

Additionally, a null combine operation is included to prevent combination even if

the key values for two messages are the same. These possibilities are

message arguments (in addition to the key values) that are to be sent.

Additional message arguments as required by a positive msize are taken from

!cell registers referred to in LPL as m_arg 1 m_arg5. When messages are

combined arithmetically, it is m__rLrg 1 that is actually combined. The !cell

registers referred to in LPL as r J;ey 1, r _keyZ, r _arg 1 ... r _arg5 are the ones into

which the arguments of a message are placed by DOT prior to executing a filter.

The LPL program for ATOM given in Section 2.4.1.2 uses messages to send all

argument symbols to the application symbol, where they are counted.

Restrictions must be placed on the statements within a filter: nested

message requests (i.e., send or receive statements) are not allowed, and forks

are not allowed. Branches may be executed, but only if the branch destination is

' Key 1 is given precedence over key2.

66

• within the same filter or another filter for the same message wave.

2.3.2.8. endsend/smanage Endsend tells the message subsystem that no more

sends will be performed (receives are still allowed) by the signaling !cell. lts use

will be discussed in the following section where synchronization between

program segments is treated. Jts form is:

endsend

Smanage indicates that the containing !cell is willing to be interrupted for the

purpose of storage management. lts form is:

smanage

Smanage is different from the other three statements that allow storage

management within the executing lee!! (the fork, forkc, and endsegment

statements) since execution continues following its use. All !cells of an RA must

allow storage management before an execution cycle can come to an end, thus

one of these four statements must be executed by each !cell of each RA during

every cycle. This is analogous to enabling interrupts on a conventional machine ..

Failure to execute such a statement in one RA !cell will ultimately deadlock the

entire machine.

2.3.3. Synchronization of Program Segments

The issue of synchronization for program segments arises in two ways. First,

there is the overall synchronization of completion required of all segments in an

LPL program. Second, there is the synchronization required for transfer of

• Branching into another filter can be done to reduce code size in a case where a code
segment performs either a send or a receive, both of which require the same message
filter. The LPL program for MM (matrix multiply) given in Section 2.4.1.12 does this.

67

information to forked !cells during a message wave (e.g., when copying FFP-level

symbols from one place to another). The LPL programmer must explicitly

provide completion synchronization, while synchronization of forks with

messages is essentially automatic.

In this section, we show how the fork, endsend and smanage statements

allow control of both types of synchronization. Synchronization of forks with

messages is discussed first, since information on message handling is useful for

the discussion of segment completion. The LPL program for DBL given in Section

2.4.1.4 provides examples of both types of synchronization.

2. 3. 3.1. Synchronization of Forks and Messages

Copying FFP text from one location to another requires .the coordinated use

of the fork. send, and receive statements in the following way. Destination !cells

are prepared by forking the required number of LPL processes, each of which

subsequently executes a receive statement on (say) wave n. The source !cells

are required to execute a send on message wave n.

But how can we guarantee that the sent information will not be delivered

before the fork completes? After all, a fork requires storage management, and

this is invisible to LPL program segments.

The answer is that the message subsystem requires, for each message wave,

at least implicit acknowledgement from each !cell process of its opportunity for

participation in the message wave. When a process executes a send or a recei.ve

for message wave n, it is interpreted by the message subsystem as

acknowledgement and rejection of participation in all lower-numbered message

waves. Only after all processes have either completed or requested message

service for the present (or possibly future) message wave will messages for the

present wave be delivered. If an !cell forks to receive messages sent on a

68

particular wave, then, only after the fork completes and receive statements are

executed by the destination !cells will the message wave containing the

information to be copied actually be delivered.

Thus, as long as the same message wave is used by receiving and sending

!cells, all necessary synchronization is automatically provided by the message

subsystem, even in the presence of forking. The use of endsend can now be

clarified. It turns off the automatic message synchronization for the executing

!cell by telling the message subsystem that the !cell will send no more messages.

This allows the !cell process to fork without holding up message waves. Although

its use does not preclude subsequent execution of a receive statement within

the !cell or its descendants, it does remove the above synchronization of sends

and receives in the presence of forks (but only for the executing !cell and its

descendants}.

2.3.3.2. Synchronization of Completion

All LPL program segments must complete by executing endsegment during

the same machine cycle. For single-cycle LPL programs, this is no problem. For

multiple-cycle 'programs, there are two ways of using LPL statements to

synchronize completion.

When the number of cycles is a small constant value (this is the usual

situation -- no LPL program given here requires more than 2 cycles} using

fork #1 to allow storage management and delay completion in segments that

would otherwise complete too early is often the simplest approach. This

approach must be used carefully if messages are also involved, however. If

messages are being sent during the same cycle in which a fork is executed, they

will not be delivered (for the reasons explained above} unless an endsend is

executed before the fork statement.

69

Another way to synchronize completion of programs that use messages

during their last cycle is to add a receive statement (for the last message wave)

to segments that would otherwise complete too early. In this case, messages will

be handled as otherwise desired (i.e., adding a final receive statement doesn't

effect message synchronization in the same way as fork does), but now the LPL

programmer must be concerned with the progress of the machine cycle, and

must allow storage management when appropriate. This may be done by using

the smanage statement.

As will be seen in the following LPL program examples, either of the two

alternatives described above is usually possible. The decision as to which

approach is best in a given situation is generally a question of style, although

questions of code size tip the balance in favor of using fork #1 when possible. •

2.4. Remarks and FFP Operator Definitions

We now present LPL definitions for a variety of FFP primitive operators. FFP

functions are given first, followed by FFP functional forms. For each operator,

we provide a description of behavior, and point out interesting aspects of the

LPL code. Where appropriate, the definition of the corresponding FP operator

suggested by Backus [Bac78] is also given. •• The programs have all been

tested, and run correctly on the simulation described in Chapter 4. They

provide the basis for many parameters employed in the analytic model of

Chapter 5 .

• A fork statement uses 2 bytes of object code. A receive statement (including the
endfilter statement, and an sma.nage statement) requires 4 bytes.

"'' Backus' definitions include concern for undefined results, and produce bottom when
appropriate. The LPL programs we give assume that the restrictions stated in their
header are satisfied. Operators could easily check their arguments for appropriate form,
but error handling in FFP languages is a current area of research by Don Stanat and oth­
ers here at UNC. We have therefore left open the question of implementation support for
error reporting.

Each LPL program is prefaced by a header of the following form:

FFP OPERATOR-- description of application result
Restrictions:

syrn:
aln:

dir:

nsyrn:
naln:

Summary of Analytic Model Parmneters:
program size: x

(op
0 1

0 1
0 0
0 0
0 0

arg
1

2
0
0
0

cycles required: x
cycle1: rressages: x (wave=x; msize=x)

forks: x (ccrnpleted/executing)

70

FFP OPERATOR is the name of the operator the following LPL program

implements. Program size is the total size (in bytes) of the object code which

must be loaded in through 10 subsystem when the compiled operator definition

is required. Also included are the number of machine cycles required, and a

breakdown of the communication and fork requirements for each cycle. The

communication breakdown includes the number of returning messages for each

message wave. Also included is the message size. • The fork breakdown includes

the number of new cells required, and whether the symbols forked are

completed or executing. The distinction is important to the analytic model

because of the difference in context sizes .

• The message size given in the header is the msize value coded in the corresponding
send statement. The number of returning messages and the corresponding message sizes
are used in the analytic model.

71

Also within the header is an example reduction, including the directory for

the example. The nsym and naln values show the result of the reduction.

Although a single example may not completely describe the desired behavior of

an operator, it is often convenient to refer to the example directory when

reading destination statements in the following LPL code. When the symbols of

an RA are shifted by forking to make room for information that is to be copied

or moved, blanks are used in the header description of the original RA to show

where this additional space is made available. The header of the LPL program for

DBL given in Section 2.4.1.4 provides the first example of this.

Recall that a destination statement describes, in terms of the four-level

!cell directory, the destination(s) that should ·execute the following segment -­

provided that no earlier segment is accepted. An asterisk "*" is used to encode a

wild card directory match for the level on which is appears; it matches all

directory entries (on it's level) that are equal to or greater than the given value.

Thus, for instance, destination 2 0* 0* 0* addresses all symbols of the argument,

and destination 0* 0* o• 0* addresses all symbols of the RA. Comments are

supplied with a destination statement to make it clear which symbols of the RA

are being addressed. These comments often use abbreviations to save space.

The application symbol for an RA is referred to as "app sym". the sequence

symbol that encloses the elements of an argument list is referred to as "arg

seq", and ·storage management is referred to as rrsm".

72

2.4.1. FJi'P Functions

2.4.1.1. Identity

Using colon to denote application of an FP function to its argument, Backus

defines the result of applying the FP id operator to an argument, x, as shown.

The LPL definition of the corresponding FFP operator then follows.

JJef
id ."X c= X

ID -- result is the argunent
Restrictions: none

Smmary of Analytic Model
program size: 29
cycles required:

Parameters:

1
cyclel: 0 messages, 0 forks

syrn: (23 X

aln: 0 1 1

dir: 0 1 2
0 0 0
0 0 0
0 0 0

nsyrn: X

naln: 0

Method: All symbols of the argurent remain, but with adjusted nesting.
The application s)i11bol and the operator erase thEmSelves.

program 023
destination 2 0* 0* o•

nselect #1 syniliol
endsegrnent

destination o• 0* 0* 0*
ends egrnent

endprogram

/* The argument symbols
11- 1 . /* adjust their nesting,

/*Everybody else
/*goes away.

I

73

This simple LPL program illustrates the value of a clever textual ordering of

destination statements. Symbols of the argument receive their LPL program

first, after which the destination o• o• o• o• is used to address all of the

remaining symbols of the RA. In addition to placing themselves in the result of

the reduction, the argument symbols must adjust their level numbers, and

nselect allows this to be done with a single statement. Note that symbols other

than those of the argument simply execute an endsegment statement without

placing successors in nsymbol and naln. These symbols therefore do not appear

in the reduced result.

74

2.4.1.2. Atom

Backus defines the result of applying the FP atom operator to an argument,

x·, as shown. The LPL program for the corresponding FFP operator follows.

JJef
atom : x = x is an atom -> T; X¢ l-> F; l

ATOM -- true (=1) if the arg is an atcrn, else false (=0)
Restrictions: none

Smmary of Analytic Mode 1 Parameters:
program size: 68

I cycles required: 1
cycle1: rressages: 1 (wave=1; msize=O)

forks: none

sym: (18 X
.

aln: 0 1 1

dir: 0 1 2
0 0 0
0 0 0
0 0 0

nsym: 1
naln: 0

Method: The argument s~ols send thenselves. If the argurrent is
an atcm, then only one message is received. The
application s~ol checks this and places the result.
All other s~ols go away.

program 018
destination 0 0 0 0

rmv #0 tl
receive #1

add #1 tl
endfilter

cmp #1 t 1 = '
nselect #1 cc #0
endsegment

destination 1 0 0 0
endsegment

destination o• o• o• 0*
send #1 + . s~ol

/* The app symbol
/*counts messages

/* one argument symbol?
/*place the result

/* The operator
/*goes away
/*Symbols of the argument

#0 0 /*send themselves

endfilter
endsegment

endprogram
/ 0 then go away

75

In this LPL program, all argument symbols send themselves. The

application symbol receives these, and counts them. lf there is but a single

argument symbol then the result is true. The result is found in cc after

comparing the number of messages received with 1, and the application symbol

uses nselect to place the answer in the reduction result.

76

2.4.1.3. Equals

Backus defines the result of applying the FP equals operator to an

argument, x, as shown. The LPL program follows.

JJef
equals : x = (x=<y,z> & y=z)-> T; (x=<y,z> & y~z)-> F; l

EQUALS -- result is true iff the argument e l Ernent s are equal
Restrictions: the argument is a pair

Summary of Analytic Model Pararrreters:
n = # symbols in second argument elaTient

program size: 134
cycles required: 1
cycle1: rressages: 1 (wave=1; msize=O)

n {wave=2; msize=1)
1 (wave=3; msize=1)

forks: none

syrn: (19 < < a < a
aln: 0 1 1 2 3 2 3

dir: 0 1 2 2 2 2 2
0 0 0 1 1 2 2
0 0 0 0 1 0 1
0 0 0 0 0 0 0

I

nsyrn: 1
naln: 0

Method: The nunber of symbols of the first argument elcrnent are
deterrrilned. Synbols of this elaTient check themselves against
the corresponding values of the second arg elerrEnt, and also
check equal elerrEnt sizes. The results are cunbined using
logical multiplication.

program 019
destination 0 0 0 0

receive #3
nselect

endsegment
destination 0* 0 0 0

endsegment
destination 2 1 o• o•

rmv #1 m_arg 1

/* The app symbol receives the result

#1 r_argl #0 .

/* Operator and arg seq go away

/* First element
/* Counts itself

I
I

I

send #1 + + #0 #0 1
mov r_arg1 t1 /*tlissymbolcount
endfil ter

nnv #2 t2 /* msg counter {offset for cmp index)
receive #2 /* receive symbols of second elem

add #1 t2
crrp t2 symbol_index =
br - 1
crrp symbol r_key2 =
crrp aln r _arg 1 = •
mov cc t3
label 1
endfilter

/* cmp this symbol?

/*yes
/* aln must also match
/* save result for later

add #2 t1 /*counteract msg cnt offset
nnv t3 cc /*get back cmp result
cmp t 1 t2 = * /*symbol cnt must also match
nnv cc m_arg1
send #3 + * #0 #0 1 /* and all results for app sym

endfil ter
endsegment

destination o• 0* o• 0* /*The second arg element
nnv aln m_arg1 /*sends its symbols to the first
send #2 - . symbols_index symbol 1
endsegment

endprogram

77

The LPL program for EQUALS works in the following fashion. The symbols of

first argument element (hereafter referred to as A1) count themselves in the

first message wave by using an add combine-op. During the second message

wave, the second argument element (hereafter referred to as A2) sends its

symbols (ordered by symbol index) so the symbols of A1 can compare

themselves with the corresponding symbols of A2. After this, each symbol of A1

uses multiplication for the combine-op of a third message wave to send a

boolean value representing whether the symbol is matched by A2 (and A1 and A2

contain the same number of symbols). The application symbol receives this last

result, and uses nselect to place the correct reduced result.

78

2.4.1.4. Double

The result of applying the FP dbl operator to an argument, x, may be

defined as shown. The LPL program follows.

Def
dbl: x = x>'l-> <x x>; l

DBL -- result is a pair whose elerrrents equal the original argurrren
Restrictions: none

sym:
aln:

dir:

nsym:
naln:

Summary of Analytic Model Parmneters:
n = # syrrbols in the argument

program size: 121

(6
0 1

0 1
0 0
0 0
0 0

< < a b
0 1 2 2

cycles required: 2 I
cycle1: rressages: 1 (wave=1; msize=1)

forks: 1 sym forks n contexts (executing)
cycle2: messages: n (wave=2; msize=1)

forks: none

< a b
1 2 2

2 2 2
0 1 2
0 0 0
0 0 0

< a b
1 2 2

Method: Count argument, fork the operator, and receive the argurrent syrrbols.

program 006
destination 0 0 0 0

keep
rmv "< nsyrrbol
ends end
fork #1
endsegment

destination 1 0 0 0
keep

/* The app sym becomes a seg sym

/* allow wave 1 to complete
/*allow storage management, and
/*synchronize completion
/* The operator forks

receive #1 /* First, get forksize
mov r _argl t 1
endfil ter

fork tl /* Thenfork

rmv #1 tl /* tl counts symbols as they arrive
receive #2

cmp tl fork_id = . /*Is this symbol far me?
br - 1
mov r_key2
mov r_argl
label 1
add #1 t1
endfilter

endsegment
destination o• o• o• o•

keep
rmv #1 m_argl
send #1 + + #0 #0 1

endfilter

nsymbol /*if sa, then load it
naln

/* bump the counter

/* The argument
/*remains,
/* and counts itself

smmage /* allow operator ta fork
rmv aln m_arg1
send #2 - . symbol_index symbol 1 /*and send copy

endfilter
endsegment

endprogram

79

This is the first LPL program we show that requires forking. Since the

argument to be copied is not restricted in size, we use the general fork

statement, as opposed to forkc. The approach taken is to count the symbols of

the argument during the first message wave, and then fork the operator symbol

to receive symbols of the argument sent on a second message wave. The

application symbol is replaced with a sequence symbol of the same nesting level

in order to encapsulate the resulting duplicate elements.

Note the use of endsend and fork #1 by the application symbol, and of

smanage by the argument -- these statements allow storage management to

proceed so that the fork executed by the operator symbol can complete.

Without these statements, this program will deadlock, effectively halting the

entire machine by preventing storage management. The smanage statement in

the argument segment could he replaced with a fork //1 statement without

changing the behavior of the program. If the application symbol were to use

80

smanage to allow storage management, however, its execution would continue to

the next statement, and would then complete in the first machine cycle. This is

not allowed. Alllcells must complete their LPL programs in the same cycle. The

application symbol could prevent this from happening by performing a receive

on the second message wave (which occurs in the second cycle) after executing

the smanage, but the use of fork ffl is simpler and requires less code space.

81

2.4.1.5. Length

Backus defines the result of applying the FP length operator to an

argument, x, as shown. The LPL program follows.

Def
length: x = (x=<x 1, ... , xn>)->n; x='f'->0; l

LENGTH -- result is the nunber of elenents of the argument
Restrictions: argument is a sequence

sym:
aln:

dir:

sym:
aln

Summary of Analytic Model Paraneters:
program size: 42

(1 < 1
0 1 1 2

0 1 2 2
0 0 0 1

cycles required: 1
cycle1: rressages: 1 (wave=1; msize=O)

forks: 0

2 < 3 4
2 2 3 3

2 2 2 2
2 3 3 3

0 0 0 0 0 0 1 2
00000000

3
0

Method: Argument s~ols send d2 using select max as the cambine-op.
The winning rressage holds the length of the argument, and
this result is placed by the application s~ol.

program 001
destination 0 0 0 0

keep
/*Hold the result

receive #1
mov r_argl ns~ol
endfilter

endsegment
destination o• o• o• o• /*findmaxcolumnindex

rmv d2 m_arg1
send #1 + > 110 110 1 /*as the maximum dZvalue

endfil ter
endsegment

endprogram

82

2.4.1.6. Tail

Backus defines the result of applying the FP tau operator to an argument,

x, as shown; The LPL program follows.

!Jef
tau :x = (x=<x 1>)->rp; (x=<x 1, ... , xn> &n""2)-><x2 ... , xn>; l

TAIL-- result is the tail of the argurrrent list
Restrictions: the argument is a non-empty list

S)<Il:

aln:

dir:

S)<Il:

aln

Summary of Analytic Model Pararrreters:
total prog size: 39
cycles required: 1
cycle1: ITEssages: none

forks: none

(24 < a b c
0 1 1 2 2 2

0 1 2 2 2 2
0 0 0 1 2 3
0 0 0 0 0 0
0 0 0 0 0 0

< b c
0 1 1

Method: The tail and sequence syrrbol of the argument lift therrEelves
one level. All other syrrbols go away.

program 024
destination 2* o• o• o•

crnp #1 d2 =
br + 1

/* The argument list

nselect #1 symbol #-1 . /* remainifnatfirst element
!abel 1
endsegment

destination 0* 0* 0* 0*
endsegment

endprogrmn

/*Everybody else goes away.

B3

2.4.1. 7. Rotr

Backus defines the result of applying the FP rotr operator to an argument,

x, as shown. The LPL program follows.

Def
rotr: x =·x=rp->rp; x=<x >-><x 1>:

(x=<x 1, ... , xnJ.; & rk?.2)-><xn, x 1, ... , xn_1>; l

ROTR -- rrnve rightmost argurent e lerrent to leftrrnst position
Restrictions: argunent is a list

Summary of Analytic Model ParaTieters:
n= # list elerrents
m= size of rightmost elerrent (to be rrnved)

total prog size: 143
cycles required: 2
cycle1: rressages: n (wave=l; msize=1)

forks: one syrribol forks rn:l-1 (executing)
cycle2: rressages: m (wave=2; msize=1)

forks: none

S)rrl: (26 < a b c < d
aln: 0 1 1 2 2 2 2 3

di r: 0 1 2 2 2 2 2 2
0 0 0 1 2 3 4 4
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

ns)rrl: < < d a b c

I naln 0 1 2 1 1 1

Method: wave 1: find rightmost argurent elerrent, and its size. Then
the argurrrent sequence syrrbol forks to receive it. wave 2:
the rightrrnst argument elanent sends itself and erases itself.

program 026 /*rotate right
destination 2 1* o• 0*

nselect #1 syrribol #-1
rrnv #1 m_arg1
send #1 - + d2 #0 1

rrnv r _key1 t 1
endfilter

smmage
crrpd2t1=.

/* each arg list element
/*assume not rightmost for now
/* each element counts itself
/* and rightmost arrives last

/*am I on the right?

br + 1
receive #2

endfilter
br . 2
label 1 erase

IIDV naln m_arg1

/*if sa, need to erase and send
/*otherwise, sync and complete

/*came here iff rightmost

send f/2 - . symbol_index
endfil ter

nsymbol 1

label 2 endsegrnent
destination 2 0 0 0

nselect #1 syrrbol #-1
receive #1

mov r _arg1 t 1
endfil ter

add #1 t1
fork t1
crnp #1 fork_id =
br + 1
IIDV #2 t 1
receive #2

anp fork_id t1 =
br - 3

/* the arg seq sym
/*finds aut size of rightmost
/* list element

/*must include self as well
/* and then forks to receive it

/*on wave 2

mov r _key2 nsyrrbol
mov r_arg1 naln
label 3 add #1 t1
endfil ter

label 1 endsegrnent
destination o• 0* o• o•

ends end
fork #1
ends egrnent

endprogram

/* everybody else

/*sync and go away

84

To do ROTR, we first need to locate the rightmost argument element and

count it, so that it may be sent over to the left of the sequence, where the

argument sequence symbol will fork and receive it. Although the LPL symbol

representation does not indicate when a symbol is the rightmost element of a

list, the argument symbols make effective use of their first send statement to

both discover the rightmost element, and count it. Using d2 as a sort key,

message wave 1 returns messages sent by the rightmost element last, and this

information is the desired count since addition is used for a combine operation.

After this, execution is similar to that for DEL.

B5

2.4.1.8. Distl

Backus defines the result of applying the FP distl operator to an argument,

x, as shown. The LPL program follows.

Def
distl: x = x=<x 1,rp>->rp; x=<x, <y 1, ... , Yn>>-><<x,y 1> , <x,yn>>; l

DISTL -- distribute left elerrsnt to all right elaTients
Restrictions: argunent is a pair

sym:
aln:

dir:

nsym:
naln:

whose second elerrrent is a sequence

Summary of Analytic Model Pararrreters:
n = # elerrents of inner list
m = size of elErnBnt to be distributed

total prog size: 190

(25
0 1

0 1
0 0
0 0
0 0

<
1

2
0
0
0

cycles required: 2
cycle1: rrnssages: 1 (wave=1; msize=l)

forks rrn + 1 (executing)
cycle2: messages: m (wave=2; ms i ze=l)

forks: 0

a < b c
2 2 3 3

'

2 2 2 2
1 2 2 2
0 0 1 2
0 0 0 0

< < a b < a c
0 1 2 2 1 2 2

Method: The arg seq forks to "< <", the inner list seq goes away. The
lefhnost arg elerrrent counts itself, and all but lefbrost inner
elffnents fork and receive it.

program 025 /* distribute left
destination 2 0 0 0

ends end
fork 112
nselect fork_id
ends egrnent

/*the arg seq forks to "< <"
/* allow message wave 1 to complete
/* maintain sync, and allow sm
"< #-1 "< #0 .

destination 2 1 0* 0* /*leftmost arg counts and sends itself
keep /*keep to go with leftmost elem of inner list
rrnv #1 m_arg1

send #1 + + #0 #0 1
endfilter

/* count self

smmage /* allow sm
rrnv naln m_arg1
send #2 - . symbol_index nsymbol 1 /*send self

endfilter
ends egrnent

destination 2 2 2* 0
keep

/* all but leftmost elem of inner list

receive #1 /*get count for new elem
rnov r _arg1 t 1
endfilter

add #2 t1 /* must also include self and seq sym
fork t 1 /* create necessary space
crrp fork_id t 1 < . /*am I old or new symbol?
br + 1 /* if new, go get loaded
nselect
br . 2
label 1
br + 3

#1 symbol #-1 . /*otherwise keep old

crrp #1 fork_id < .

nselect #1 "< #-2
br . 4

/* am I right of seq?
/*if so, go get loaded
/*otherwise become seq

86

label 3 mov #2 t1
receive #2

/* msg counter (offset for cmp forkid)

crrp fork_id t1 = .
br - 5
rnov r _key2 nsymbol
rnov r _arg1 naln
label 5 add #1 t1
endfil ter

label 2 label 4 endsegrnent

/* should I receive this?

/*if so, load it

/* count m.«g

destination 2 2 0 0 /* the separator seq goes away
ends end
fork #1
endsegrnent

/* allow wave 1 to complete
/*maintain sync, allow sm

0* /* the rest of the arg symbols
/* allow wave 1 to complete

symbol #-1 .

destination 2 o• o•
ends end
nselect #1
fork #1
ends egrnen t

destination o• 0* o• o•
ends end
fork #1
ends egrnent

endprogram

/* maintain sync, allow sm

/* everybody else goes away
/* allow wave 1
/*maintain sync, allow sm

In this program, the first cycle is used to determine the size of the leftmost

argument element, and to fork the leftmost symbol of all but the first element of

the second element of the argument. Many of the segments use fork #1 to

87

maintain synchronization and complete in the second cycle. These segments

must also use endsend to allow the first message wave to complete. The first

segment could have used a cselect and forkc /12 in the second cycle.

88

2.4.1.9. Matrix Transpose

Backus defines the result of applying the FP r operator (i.e., transpose) to

an argument, x, as shown. The LPL program follows.

!Jef

r:x=x=<rp, ... ,ifJ>->rp;x=<x1, ... ,xn>-><y1 , ... ,ym>;l

wherexi=<xil' ... , xim>' andyj=<x1j' ... , xnj>'

with J,;;i5,n, and J,;;j,;;m,

TRANS -- Transpose 2-D Rectangular Matrix
Restrict ions: matrix elenents are atomic

sym:
aln:

dir:

nsym:
naln:

Summary of Analytic Model Pararrreters:
m = #rows
n = #colums
h = log(m(n+1)+3)

(11
0 1

0 1
0 0
0 0
0 0

program size: 195
cycles required: 2
cycle1: rressages: 1 (wave=l; msize=1)

forks: n(ml-1)
cycle2: messages: m(n-1) (wave=2; rnsize=1)

forks: 0

< < 1 2 3 < 5 6 7
1 2 3 3 3 2 3 3 3

2 2 2 2 2 2 2 2 2
0 1 1 1 1 2 2 2 2
0 0 1 2 3 0 1 2 3
0 0 0 0 0 0 0 0 0

< < 1 5 < 2 6 <.3 7
0 1 2 2 1 2 2 1 2 2

Method: each elenent of the first row forms a new row with the required
mmber of colums (by forking the required mrnber of symbols).

program 011
destination 0 0 0 0

ends end
fork #1
endsegment

/* the app symbol goes away
/'' allow wave 1 to complete
/* allow sm and synch

destination 1 0 0 0
fork #0
endsegrnent

destination 2 0 0 0
keep
add #-1 naln
ends end
fork #1
ends egrnent

/*the operator can free space at
/* the end of the first cycle

/* the matrix arg seq symbol

/* adjust nesting
/*let wave 1 go
/* allow sm and synch

destination 2 1* 0 0 /* the seq sym for each row
rrov #1 m_arg1 /*assistsinarowcount
send #1 + + #0 #0 1

endfilter
fork #0 /*and then vanishes
ends egrnent

destination 2 1 1* 0 /*eachelementaffirstraw
keep
rrov #1 t 1 /*forks a sequence symbol
receive #1 /*plus the received# cols

add r _jl.r g 1 t1
endfil ter

fork t 1 /*fork out required space
cmp #1 fork_id = . /*for complete row
br - 1 /* af the result.
nselect fork_id "< #-2 . /*the seq that starts
br , 5 /* a raw is now dane
label 1 add #-1 naln/* ather cells modify their nesting
cmp #2 fork_id = . /*first element of row is
br + 6 /* is the original symbol
rrov #1 t3 ·/*result row counter
rrov #3 t5 /*result column counter {offset)
receive #2

cmp d3 t3 = . /*is this raw for me?
br - 2
cmp fork_id t5 = /*is this column for me?
br - 3
ITDV r _arg1 nsymbol /*yes, so place it

89

label 2 label 3 add #1 t5 /*increment column
cmp t5 t 1 > . /* time ta start new raw?
br - 4
ITDV #3 t5
add #1 t3
I abe I 4 endfilter

label 5 label 6 endsegrnent
destination o• o• o• o• /* elements af all ather rows

rrov symbol m_arg1
sr:mnage
send #2 - , d3 d2 1

endfilter
ends egrnent

endprogram

/*allow sm
/*send themselves

2.4.1.10. N-ary Add

N-ARY ADD result is sun of the argunent elffil8nts
Restrictions: argunent is a sequence whose elements are atcmic

syrn:
aln:

dir:

Sunnary of Analytic Model Paremeters:
program size: 53

(
0

0
0
0
0

cycles required: 1
cyclel: messages: 1 (wave=1; msize=1)

forks: 0

4 < a b c
1 1 2 2 2

1 2 2 2 2
0 0 1 2 3
0 0 0 0 0
0 0 0 0 0

nsyrn:
naln:

a+b+c
0

Method: Each elsrrrent of the list sends itself, and is added on
the way up the tree. The sun is returned to the !cells,
and is placed by the application s~ol.

program 004
destination 0 0 0 0

keep
receive #1

I* app symbol holds result

=v r_arg1 ns~ol
endfilter

endsegment
destination 1* 0 0 0

ends egrnent
destination o• o• o• 0*

nnv s~ol m_arg1
send #1 + + #0 #0 1

endfil ter
endsegment

endprogram

I* Op and arg seq go away

I* The arg elements

I* Send themselves with add op

90

2.4.1.11. Sort

SORT -- elanents of argunent are sorted in ascending order
Restrictions: argunent is a sequence whose elements are at ernie

Summary of Analytic Model Parameters:
n = #elEITlfints to be sorted
program size: 59
cycles required: 1
cycle1: rnes sages: n (wave=1; rns i ze=O)

forks: 0

sym: (5 < 2 4 1 5 3
aln: 0 1 1 2 2 2 2 2

di r: 0 1 2 2 2 2 2 2
0 0 0 1 2 3 4 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.

nsym: < 1 2 3 4 5
naln: 0 1 1 1 1 1

Method: The argunent sequence s~ol is kept in place. The
application s~ol and the operator erase therrffielves.
The argurent elmrents send therrmelves, with ordering
so that the snallest values are passed through first.

program 005
destination 2 0 0 0 /*"<"stays in front

keep
ends egrnent

destination o• 0 0 0 /*Theappandopsyms
endsegrnent /*go away

destination 0* o• 0* o• /*Theargumentsortsitself
keep /*in place.
rmv #3 t1 /* msg counter {with offset for cmp index)
send #1 - s~ol #0 0 /*symbol is the key

crnp t 1 s~ol_index = /*so they are received
br - 1
nselect #1 r_keyl #-1 /*in order
label 1
add #1 t1
endfilter

ends egrnent
endprogram

91

92

2.4.1.12. Matrix Multiply

I MM -- In-place multiplication of matrices Ax B-> C.
Restrictions: argument is a pair of square matrices

Summary of Analytic Model Pararrreters:
n = # of rows and colunns of A,B, and C.

total prog size: 246
cycles required: 1
cycle1: messages: 1

2
{wave=1; ms ize=1)

n (wave=2; msize=2)

n2
...

(wave=j+1; msize=1)
forks: none

sym: (2B < < < 1 1<22<<1 2 < 1 2
aln: 0 1 1 2 3 4 4 3 4 4 2 3 4 4 3 4 4

dir: 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2

' 0 0 0 0 1 1 1 2 2 2 0 1 1 1 2 2 2
0 0 0 0 0 1 2 0 1 2 0 0 1 2 0 1 2

sym: < < 2 4 < 4 B
aln: 0 122122

Method: The application syrrbol and the operator go away. The result
is held in A, the first argument matrix. The second argument
matrix, B, goes away after assisting the multiplication. The
outer-product algorithn is used, which operates as follows:
C(i, j) = Ek(A(i, k) * B(k, j)) .

Matrix B finds max k in wave 1,
sends row k in wave 1 + k.

Matrix A gets max k in wave 1,

program 028

sends colurrn k in wave 1 + k.
During each wave, A(i,j) multiplies and accumulates
a result based on a msg fran A (key1=d3; key2=0) and
a msg fran B (key1=d4; key2=1).

destination 2 2 1* 1*
rmv d3 m_arg 1

/* -- elements of B --
/* mov row index to message
/*send with select max send #1 + > #0 #0 1

mov r _argl t9
endfilter

rmv #1 tB
rmv #2 t7

/* last msg is the row count

/* init current row
/* init current wave

I

label 1 arrp d3 tB =
br - 2
rmv symbol m_arg1
send t7 + . d4 #1 1

endfilter
br . 3
label 2 receive t7

endfilter
label 3 add #1 t7
add #1 tB
<rnp tB t9 <=
br + 1
endsegment

destination 2 1 1* 1*
receive #1

mov r_argl t9
endfil ter

IIDV #1 tB
IIDV #2 t7
IIDV #0 t6
label 1 rnov #0 t4

IIDV #0 t5
crnp d4 tB =
br - 2
rmv symbol m_arg1
send t7 + . d3 #0 1

label 9 <rnp #0
br + 4
arrp r _key1 d4 =
br - 5
rnov r_arg1 t5
br . 6

/ 0 am I right raw to send?
/*if nat, go receive
/* move symbol to message
/* include cal index and B flag

/* if not send, keep step

/*new wave
/*new row
/* mare sends?
/* yes if more raws
/* go away when finished
/* -elements of A->C­
/* get
/* maxk

/* init column counter
/* init wave counter
/* init accumulator
/* init t4 and t5 to
/* hold values to multiply
/*am fright column to send?
/*if not go receive
/* move symbol to message
/*include row index and A flag

r _key2 = . /* Which matrix?
/* A - go to handle
. /* B --check for keyJ=d4
/*no
/* hold B value

93

label 4 <rnp r_key1 d3 = ./*A--checkforkeyl=d3
br - 7 /*no
mov r _ar g 1 t4 /* hold A value
label 5 label 6 label 7 endfil t er

br . B
label 2 receive t7

br . 9
endfil ter

label B mul t4 t5
add t5 t6
add #1 t7
add #1 tB
<rnp tB t9 <= .
br + 1
nselect #1 t6 #-2
endsegment

destination 0* o• 0* 0*
<rnp #2 d1 =
<rnp #1 d2 = •
br - 1
nselect #1 symbol #-2 .

/* either send or receive
/* both are handled above

/*wave t?is now over
/* add B contribution to accum
/* count message wa.ve
/*and increment column
/* is there more work?
/*if so, get next wave
/*otherwise place accumulator

/* everybody else --includes
/* enclosing seq syms of A, B
/* do I enclose A?
/* if not, go away
/* otherwise modify nesting

label 1 endsegrrrent
endprogram

94

95

2.4.2. FFP Functional Forms

A functwnal form is a parametrized function. For example, <CONST n> is

the functional form used in FFP to represent the function whose application

always reduces to n, regardless of its argument. As the example definitions for

p(CONST) given in Section 2.2.2 showed, evaluation of the application of a

functional form within FFP uses meta-composition.

Backus's definition of FFP in this way was motivated by the desire for a

concise, uniform representation of self-referential functions. Within the

operational context of the DOT implementation, however, there is no need for

meta-composition {whose purpose is to provide an operator with access to itself

as well as the original argument). This is because LPL definitions for FPP

operators always have access to an entire RA, and this includes the operator

expression. Functional forms are therefore implemented directly within LPL

without the intermediate step (and extra reduction cycle) implied by meta­

composition. This is done for all the usual functional forms which occur in the

form"< ff ... >".

Within Backus' formal semantics for FFP an operator can meaningfully

occur in the form "<< ff ... > ... >" or with even deeper "leftmost" nesting. Such

operator expressions can be created within FFP, and a complete semantics must

provide a definition of their meaning. The result of application of such an

operator could be defined as bottom without sacrifice of computational power,

but the meta-composition rule instead handles such an application by

unraveling. the operator as usual. For this reason, the DOT implementation

knows about meta-composition, and, upon encountering an operator with at

least two leading sequence symbols, brings in an LPL program that implements

Backus' meta-composition rule. The LPL program for meta-composition is

96

therefore given in this section for completeness.

One of the main differences between FP and FFP is the treatment of

functional forms. In FFP, each functional form is uniformly represented as a

sequence with a controlling operator. In FP, on the other hand, functional forms

represent operations of an associated algebra of programs, and their

representation varies in the interest of clarity and notational convenience.

97

2.4.2.1. Constant

Using x to represent the FP function whose value is always the object, x,

Backus gives

Def
x :y = y:;'l->x;l

< CONST n > -- result is the object, n
Restrictions: none

sym:
aln:

dir:

nsym:
naln:

Summary of Analytic Model Pararrreters:
program size: 27
cycles required: 1
cycle1: rressages: 0

forks: 0

(< 21 n x
0 1 2 2 1

0 1 1 1 2
0 0 1 2 0
0 0 0 0 0
0 0 0 0 0

n
0

Method: Erase everything but the object parameter of CONST

program 021
destination 1 2 0 0

nselect #1 symbol #-2· .
endsegrnent

destination o• o• 0* o•
ends egrnent

endprogram

98

2.4.2.2. Select

Backus considers selectors to be special FP functions [Bac7B], but we

prefer to treat select as a functional form. Using s to represent the FP function

that selects the sth element of an argument sequence, we give

<SELECT n> --result is the nth elerrent of the argurent sequence
Restrictions: argunent is a sequence

sym:
aln:

dir:

nsym:
naln:

Summary of Analytic Model Parameters:
total prog size: 61

(< 27
0 1 2

0 1 1
0 0 1
0 0 0
0 0 0

cycles required: 1
cycle1: ITEssages: 1 (wave=l; size=O}

forks: none

2 < a < b c
2 1 2 2 3 2

1 2 2 2 2 2
2 0 1 2 2 3
0 0 0 0 1 0
0 0 0 0 0 0

< b
0 1

Method: The selector value is sent in a message, and each argurent
s~ol canpares its d2 directory value with the selector.
All s~ols that are not part of the argument, or whose
d2 value does not equal the selector value are erased. Those
s~ols that remain adjust their nesting by raising
thanselves two levels.

program 027 /*Select
destination 1 2 0 0

send #1 + . s~ol
endfil ter

endsegment
de~tination 2 o• 0* o•

receive #1

/* the selector value
#0 0 /* sends itself.

/ 0 The argument receives
/* the selector value

crnp r _keyl d2 =
endfil ter

br - 1
nselect #1 s~ol #-2
label 1 endsegrrrent

destination o• o• o• o•
ends egrrrent

endprogram

99

/*and keeps itself if selected

/*Everybody else goes away.

100

2.4.2.3. Composition

Within FP, functional composition is represented using @ as an infix

operator. Thus Backus gives

IJef
f©g :X "' I: (g :X),

We give an n-ary FFP functional form for composition, for which an appropriate

FP form might be defined as follows.

<COMP ft f 2 ... fn> -- result is the desired ccrnposition of f's
Restric ions: none

Summary of Analytic Model Paraneters:
n = # of fns to be ccrnposed

program size: 103
cycles required: 1
cycle1: rres sages: 1 (wave=1; ms i ze=1)

forks: 2n (ccrnpleted)

sym: (< 20 f < g h X

aln: 0 1 2 2 2 3 2 1

dir: 0 1 1 1 1 1 1 2
0 0 1 2 3 3 4 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

I
nsym: (f (< g (h X

naln: 0 1 1 2 3 2 3 3

Method: Cselect is used to let the first sy.rrbol of each function
create an application. The functions count themselves by
sending d2 up with select maxirrun as the ccrnbine-op. This
result counts the COMP controlling operator (which is not
wanted) so for what follows, cnt=result-1.

program 020

Each arg gets naln=aln+cnt-1
The app syrrbols get naln=aln·4+d2
The fen sy.rrbols get naln=aln-3+d2

destination 2* o• o• o• /* the arg text

keep
receive #1

add r_arg1 naln
endfilter

sub #2 naln
endsegment

destination 1 2* 0 0
rrnv d2 rn_arg1
send #1 + > #0 #0 1

endfil ter
IIDV d2 t1
sub #4 t1

IIDV t1 t2
add #1 t2 ·
cselect "(t1 symbol t2
forkc #2
endsegment

destination 1 2* o• 0*
IIDV d2 t1
sub #3 t1
nselect #1 s~ol t1 .
endsegment

destination o• o• 0* 0*
endsegment

endprogram

/* the argument remains

/* but with modified nesting

/*first part of eachfcn

/*determine# of functions

/* determine nesting for
/*the new application
/* and this symbol
. /* cselect
/* and forkc to result

/*rest of eachfcn
/*remains
/*but with modified nesting

/* (<camp
/* these go away

101

102

2.4.2.4. Construction

In FP, construction is an important way of using parallelism to create a list.

Each element of the list that is constructed by this functional form is created by

application of a separate function. Backus gives the following FP definition.

Def
[!1' ... ,fn]:x= <!1 :x,f:;]-"X, ... ,fn:x>

<CONS f 1 f 2 ... f > -- result is the list constructed by the f' s
Restrictions: noRe

sym:
aln:

dir:

Summary of Analytic Model Pararrreters:
n = # functions
m = argsize

(< 22 <
0 1 2 2

0 1 1 1
0 0 1 2
0 0 0 0
0 0 0 0

program size: 175
cycles required: 2
cycle1: messages: 1 (wave=1; msize=1)

forks: 3n + m(n-1) executing
cycle2·: messages: m (wave=2; msize=1)

forks: 0

f g X

3 2 1

1 1 2
2 3 0
1 0 0
0 0 0

nsym: < (< f X (g X

naln: 0 1 2 3 2 1 2 2

Method: cycle1: wave 1: find arg size
each fen but the first forks to "arg (f"
the first fen forks to "< (f"

cycle2: wave 2: the argurrrent sends itself

program 022 /* Construction
destination 2 o• 0* 0*

nselect #1 syrrbol #1
rrnv #1 m_argl
send #1 + + #0 #0 1

endfil ter
srmnage

I* The argument
/* remains with nesting increased,
/* counts itself
I* during message wave 1,

I* permits others to fork,

rmv naln m_arg1 /*then sends itself an wave 2
send #2 - . symbol_index symbol 1

endfil ter
endsegrnent

destination 1 2 0 0/* F'irst sym of first fen forks to"< (f'
ends end /*allow messages to proceed
fork #3 /*then fork
nselect fork_id "< #-2 "(#-1 symbol #0 .
endsegrnent

destination 1 3* 0 0/* F'irstsym of other fens fork to "arg (f'
keep
rmv #2 t 1 /* offset to include "(" and f
receive #1

add r _ar g 1 t 1 /* in forksize
endfilter

fork t1
mp fork_id t 1 <
br - 1
sub #1 t1

/*then fork.
/* if rightmost, then
/* go place original f symbol
/* otherwise

mp fork_id t1 < .
br + 2

/*if need to receive arg copy
/* go do that.

nselect #1 ''(#-1
br . 3

/* a therwise place "("

label 2 rmv #1 t1 /* init symbol counter
•receive #2

amp fork id t1 =
br - 5

/* is this symbol for me?

mov r _key2 nsymbo I
rnov r _arg1 naln
label 5 add #1 t1

/*if so, place it

/*increment counter
endfil ter

label 1 label 3
destination 1 2* o• o•

ends end
fork #1
keep
ends egrnent

destination o• o• 0* o•
ends end
fork #1
ends egrnent

endprogram

ends egrnent
/*fen bodies {all but leftmost symbol)
/* allow wave 1
/* allow sm and sync
/*remain

/* everybody else
/* allow wave 1
/* allow sm and sync
/*go away

103

104

2.4.1.5. Conditional

Conditional in FP is defined by Backus in the following way.

JJef
(p-"f;g): x = ((p:x)= T)->f:x; ((p:x)=F)-"g:x; l

Thus, the result of reducing an application of such a functional form depends on

whether the predicate, p, reduces to true or false when applied to the argument,

x. If the predicate reduces to true, then the result is an application of the

function f to the argument (i.e., f : x), otherwise, if the predicate reduces to

false, the result is application of the function g to the argument (i.e., g : x). If

the predicate reduces to an undefined result, the result is undefined.

Reducing an RA with string reduction destroys the original expression.

Conditional is thus implemented in two steps. In the first step, the argument is

copied, and the original expression is restructured so a newly created

application of the predicate is innermost to an application of the second phase

conditional operator, COND2. Upon reduction of the predicate on its argument

copy, the second phase operator checks the result of the predicate evaluation

and then creates an application of the appropriate function, f or g.

We take the liberty of representing the FFP functional form with the

predicate on the right. This make it easier to apply the predicate.

105

<COND f g p> -- result is COND2 with inner application of p
Restrictions: none

Sunnary of Analytic Model Parameters:
n= args i ze
m= predicate size

program size: 221
cycles required: 2
cycle1: rressages: m (wave=1; msize=O)

1 (wave=2; msize=1)
forks: 1 symbol forks n+1 (executing)

cycle2: ITES sages: n (wave=3; ms i ze=1)
forks: 1 symbol forks 3 (canpleted)

sym: (< 9 f g p X
aln: 0 1 2 2 2 2 1

dir: 0 1 1 1 1 1 2
0 0 1 2 3 4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

sym: (< 10 f g < (p X X

aln 0 1 2 2 2 1 2 3 3 2

Method: COND works in two phases with an intermediate operator, COND2.
In the first phase (< COND2 f g > < (p x) x >) is produced.
COND2 then applies for g depending on the value of (p x).
To do phase 1, we first count the argument size, then fork and
create the inner application of the predicate during cycle 2.

program 009
destination 2* 0* o• 0* /*argumentsymbols

keep /* remain for tater use
rrnv #1 m_arg1
send #2 + + #0 #0 1 /* count the argument symbols
smmage /* allow sm for forking
add #1 naln /*increase nesting by 1
rrnv naln m_arg1 /*aU arg symbols
send #3 - . symbol_index symbol 1 /*send themselves
endsegment

destination o• 0 0 0
keep
ends end
fork #1
endsegment

destination 1 1 0 0
keep
ends end

/*the app and and arg seq symbols
/*remain
/* allow message waves 1 and 2
/*allow sm

/*the operator symbol (COND)

/* allow message waves 1 and 2

106

fork #1 /* allow sm
rmv #10 nsymbol /*change operator to COND2
ends egrnent

destination 14 o• o• /*thesymbolsofthepredicate
send #1 - . symbol_index #0 0 /*find rightmost symbol

rrnv r _key1 t 1 /* last r _key 1 through is from
endfil ter /*rightmost predicate symbol

receive #2 /*find out number of lcells for rightmost
rrnv r _arg1 t2 /*predicate symbol to fork
endfil ter /* to hold the argument

cmp symbol_index t1 = /*am/rightmost?
br - 4 /*if not, go around argument copying
keep /* signals that these symbols are set up
add #1 t2 /*must hold self as well as argument
fork t2 /*fork to receive argument
cmp #1 fork_id = /*true for parent
br - 1 /*if not parent, go receive nsymbols
add #1 naln /*parent merely modifies nesting
br . 3 /*and goes around argument copying
1 abe 1 1 /* come here to get nsymbols from wave 3

rmv #2 t 1 /* symbol counter {offset for cmp forkid)
receive #3

br . 5

cmp t 1 fork_id = .
br - 2
rrnv r _key2 nsymbo l
rrnv r _arg1 naln
add #1 naln
label 2 add #1 t1
endfilter

/* is this nsymbol for me?
/*if not, loop
/* otherwise load it

/*increment symbol counter

label 4 fork #1 /*ifnotrightmost, thenallowsmforfork
1 abe 1 3 1 abe 1 5 /*need to handle left part of predicate
cmp #0 d3 = . /*am I leftmost predicate symbol?
cmp #1 fork_id = • /*withfork_jd=l?
br - 6 /*if not, go adjust nesting and complete
cselect "< #-1 "(#0 symbol #1 . /*otherwise, create
forkc #3 /*innermost predicate application
!abe 1 6 cmp #1 nsymbol_cnt = . /*is nsymbol set up?
br + 7 /*if so, go complete
nselect #1 symbol #1 . /*otherwise, adjust nesting for
label 7 endsegrnent /*innermost symbols of predicate

destination 1 2* 0* 0* /* all symbols of the functions f and g
keep /* remain
ends end /* allow waves 1 and 2
fork #1 /*allow smfor forks
ends egrnent /* complete

endprogram

107

2.4.1.6. Conditional-phase 2

<C0ND2 f g > -- result is application of f or g to second elsrrrent
of the argurent, depending on the first

Restrictions: argunent is a pair
whose first e lermnt IS true or false

Smrnary of Analytic Model Parameters:
program size: 121
cycles required: 1
cycle1: rres sages: 1 (wave=1; ms ize=O)

forks: 0

sym: (< 10 f g < t X

aln: 0 1 2 2 2 1 2 2

dir: 0 1 1 1 1 2 2 2
0 0 1 2 3 0 1 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

sym: (f X

aln 0 1 1

Method: Check t, and apply f or g as appropriate.

program 010
destination 0 0 0 0 /* app sym stays

keep
endsegment

destination 2 2* o• o• /* arg stays
keep
add #-1 naln
endsegment

destination 210 0 /*tsendsitselfandiserased
erase
send #1 + s~ol #0 0
endsegment

destination 1 2 0* o• /* fkeepsitselfiftis true
receive #1

cmp #1 r _key1 = .
br + 1
erase
br . 2
label 1
keep
add #-1 naln
label 2

elemmt

endfilter
ends ewnent

destination 1 3 o• 0* / 0 g keepsitselfiftisfalse
receive #1

crnp #1 r_key1 = .
br - 1
erase
br . 2
label 1
keep
add #-1 naln
label 2
endfil ter

ends ewnent
destination 0* 0* o• 0*

erase
ends ewnent

endprogram

lOB

109

2.4.1. 7. Apply-to-all

In FP, apply-to-all provides a powerful means of creating parallelism.

Backus defines it as follows.

/Jef
cxf: x = x=rp ->rp;

x=<x 1 , ... , xn> -> <! r"x, ... , fn:x>; l

<.AA f> -- result is a sequence of applications of the

I
function, f. to the argunent el a:nents

Restrictions: arg=nt is a sequence

Summary of Analytic Model Parameters:
n= #of list ela:nents
m= size of operator

program size: 174
cycles required: 2
cycle1: rressages: 1 (wave=1; msize=1)

forks: (n-1) symbols fork (mH) contexts
cycle2: rnes sages: m (wave=2; ms i ze=1)

forks: none

sym: (< 29 op <a b c

i aln: 0 1 2 2 1 2 2 2

dir: 0 1 1 1 2 2 2 2
0 0 1 2 0 1 2 3

I
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

'
sym: < (op a (op b (op c
aln 0 1 2 2 1 2 2 1 2 2

Method: In the first cycle, the operator counts itself, and the first
symbol of each argUil8nt ela:nent (except the first ela:nent, which
can use the original operator) uses this count to fork off
enough symbols to hold the operator. To canplete in the second
cycle, the application symbol becanes a sequence symbol, the
first seq. symbol becarrEs an app. symbol. The AA symbol erases
itself, as does the arg seq. The operator to be applied stays
where it is, and also sends itself to the arg=nt list. The
~ers of the argunent list receive the operator, and load
its symbols in order of reception to create the new applications.

program 029
destination 0 0 0 0 /* the application symbol

ends end /*does not send
fork #1 /*maintain sync:
nselect #1 "< #0. /*become aseqsymbol
endsegrent

destination 1 0 0 0 /*the op seq
ends end /*does not send
fork #1 /*maintain sync
nselect #1 "(#0 . /*become leftmost appsymbol
endsegrent

destination 1 1 0 0
ends end
fork #0
endsegrent

/* the aa ope: ode can go away
/* immediately
/* by vanishing between cycles

destination 1 2 o• o• /* the operator to be applied
keep /*keeps itself
rmv #1 m_arg1 /*and counts itself far the arg elems
send #1 + + #0 #0 1

endfilter
rmv aln m_arg1
smmage /* allow arg elems to fork
send #2 - . s~ol_index s~ol 1

endfil ter
endsegrent

destination 2 0 0 0
ends end
fork #0
endsegrent

/* The arg seq can vanish

destination 2 2* 0 0 /*first symbol of each arg elem
keep /* (except the first arg elem)
receive #1 /*get op size

mov r_arg1 t1
endfilter

add #2 t1
fork t1 /*fork to include app sym, op, and self

rmv #2 t1
receive #2 /*receive operator

cmp t1 fork_id = .
br - 1
mov r_key2 ns~ol
mov r_arg1 naln
label 1 add #1 t1
endfilter

arrp #1 fork_id = .
br - 2
nselect #1 "(#-1 .
label 2 endsegrent

destination 0* 0* o• 0*
keep . /* all ather symbols keep themselves
ends end /* dan 't need ta send
fork #1 /*maintain sync
endsegrent

endprogram

110

111

2.4.1.6. Element-by-element

In FP, element-by-element creates parallelism in a way similar to apply-to-

all, but automatically brings together corresponding elements of two lists to

create arguments for a binary operator. It may be defined as follows.

Def

(31: x = x=<<y 1' ... , Yn>• <z 1' ... , zn>> ...

< f:<y 1'z p , f:<yn,zn> >; l

<EEl f> -- result is a sequence of applications of f to
paired elements fran the two argunmt sequences

Restrict ions: argu:rent is a pair of sequences of equal length
whose elements are atarrric

Summary of Analytic Model Paraneters:
n = nurber of applications to be created
h= log(2n+5) + 1

program size: 126
cycles required: 1
cyclel: rressages: n+l (wave=1; msize=1)

forks: n forking 5 (canpleted)
.·

sym: (< 7 4 < < 1 2 3 < 4 5 6
aln: 0 1 2 2 1 2 3 3 3 2 3 3 3

dir: 0 1 1 1 2 2 2 2 2 2 2 2 2
0 0 1 2 0 1 1 1 1 2 2 2 2
0 0 0 0 0 0 1 2 3 0 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0

sym: < (4 < 1 4 (4 < 2 5 (4 < 3 6
aln 0 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3

Method: The operator to be applied is sent to the first arg list,
and the second arg list sends itself to the first arg list
rnanbers.

program 007
destination 1 2 0 0

send #1 #0 syrrbol 0
endfil ter

endsegment
destination 2 2 1* 0

rmv symbol m_argl

/* The atomic binary function
/*sends itself with key 1= 0
/* to the first list of the arg

/* The second list of the arg
/* also sends itself

send #1 - . #1 d3 1
endfil ter

endsegment
destination 2 1 1* 0

receive #1
crnp #1 r_key1 =
br + 1

/* to the first list with key 1 = 1

/* The first list of the rzrg
/*gets fen rznd list elems
. /*is this rz list elem?

/* if sa, go check

112

mov r _key2 t 1
br . 2

/* otherwise hold the fen for lrzter

label 1 crnp r _key2 d3 = . /* is this elem my przir?
br- 3 /*ifnotgotaloop
rnov r _arg1 t2 /* otherwise hold symbol for lrzter
label 2 label 3 endfilter

cselect "(#-2 t1 #-1 "< #-1 symbol #0 t2 #0 .
forkc #5 /*fork to create rzpplicrztian
endsegment

destination 0 0 0 0
nselect #1 "< #0
endsegment

destination 0* 0* o• 0*
endsegment

endprograrn

/* The a.pp symbol becomes seq

/*Everybody else goes rzway.

113

2.4.1. 9. Meta-composition

This is the functional form corresponding to FFP meta-composition. There

is no corresponding FP definition. The following LPL program correctly

implements metacomposition for all FFP functional forms, but is only used when

the controlling operator is a sequence.

< f ... > -- result is a new application as defined by the
FFP rule for rneta-ccrnposition

I Restrictions: none (but only used when f is a sequence)

Smrnary of Analytic Model Parameters:
n = size of operator

program size: 120
cycles required: 2
eye le1: rressages: 1 (wave=1; rnsize=1)

forks: n (executing)
cycle2: rressages: n (wave=2; rnsize=1)

forks: 0

syrn: (< < < a b c d X

aln: 0 1 2 3 4 4 3 2 1

dir: 0 1 1 1 1 1 1 1 2

I
0 0 1 1 1 1 1 2 0
0 0 0 1 1 1 2 0 0
0 0 0 0 1 2 0 0 0

nsyrn: (<<abc < < < < a b c d X

naln: 0 1 2 3 3 2 1 2 3 4 5 5 4 3 2

Method: In the first cycle, the number of s~ols of the controlling
operator are counted. The application s~ol forks off
enough !cells to hold itself, the controlling operator, and
a sequence s~ol (in left-right order). This sequence s~ol
is used to enclose the application operator (i.e., the
functional form) and the application argunent as required by
the rule for rreta-ccmposi tion. In the second cycle, the
controlling operator sends itself to the forked application
s~ols, where it is received and placed. Original operator
and argunent s~ols increase their nesting level by 1.

program 060
destination 0 0 0 0

keep
r-eceive #1

/* the application symbol
/*remains
/* get size of controlling

I

rmv r_arg1 t1
endfilter

add #2 t1
fork t1
cmp fork_id t 1 =
br - 1
nselect #1 "< #1
!abe 1 1

/* operrLtor of the functional
/*form

114

/*must include self and seq sym
/*make room for (op <
/*should I be the seq sym?
/*if not, go receive op
/* else place seq sym

receive #2 /*receive controlling operator
crnp fork_id r_key1 =. /*thissymbolforme?
br - 2 /*go around unless need this symbol
rmv r _key2 nsyrnbo 1 /*load symbol
rmv r _arg1 naln /*and aln
label 2
endfilter

endsegment
destination 1 1 o• o•

keep
rmv #1 m_arg 1

/* the controlling operator
/*remains
/* counts itself

send #1 + + #0 #0 1
endfilter

smmage /* allow app sym to fork
rmv aln m_arg1 /*the controlling operator
sub #1 m_arg 1 /*is lifted one level
send #2 + . syrnbol_index symbol 1 /*for sending

endfilter
add #1 naln
endsegment

destination o• 0* 0* o•
keep
ends end
fork #1
add #1 naln
endsegment

endprogram

/* and is nested an additional
/* level locally

/* rest of operator, and argument
/*remain
/* let message wave 1 go
/* allow sm for forking
/* increase nesting level

CHAPTER 3

Implementation -The DOT Model

3.1. Introduction

3.1.1. What DOT is (and whatit isn't)

In the preceding chapter, the FFP and LPL languages were defined and LPL

was used in the capacity of p, the FFP representation function, to define a

variety of FFP primitive operators. As indicated at that time, the purpose of DOT

is to:

(1) locate innermost applications of FFP operators and reduce them us­
ing the appropriate LPL operator definition, and

(2) provide a model informally suggestive of an actual realization far
DOT as a tree-structured network of cellular processors.

DOT is not an architecture; there is no machine language associated with

detailed control of its operation. DOT is an implementation in exactly the sense

Blaauw and Brooks [Bla83] suggest -- it is a description of the logical

organization of data fiow and control utilized to support the LPL and FFP

architectures. The reason why DOT is able to· additionally suggest a realization is

that DOT objectifies the means of data fiow and control through the use of

abstract data types that correspond to realizable entities.

Objects of the DOT implementation model include !cell and tcell classes.

These contain processes and represent the cells of an anticipated

multiprocessor realization. lo and virtual memory classes represent the

"outside" world, and communication channel classes represent the means of

communication between cells. Thus, DOT uses communication channels to

115

116

specify the tree-structured linkage of its cellular objects, and in addition to its

overall cooperative function as an implementation, this interconnection of

objects naturally suggests high-level aspects pertaining to realization. Although

descriptive of a realization in this way, DOT is not a realization; it does not

specify detailed hardware design.

DOT was originally conceived as an attempt to represent a design concept

whose scope includes a spectrum of concerns from architecture to realization

. [Mag79]. Indeed, dividing this spectrum up into separate pieces (architecture­

implementation-realization) is an abstraction only vindicated historically by the

successes and flexibility in computer system design that it has enabled. In this

case, however, an original and revolutionary design concept was made possible

by an all-embracing concern for the complete spectrum-- from a highly-parallel

realization able to make effective use of the replication-based technology of

VLSI. to a general-purpose architecturally-concurrent programming language

whose implementation would make effective use of the realization. It therefore

seemed desirable to encompass as much of this overall concept as possible in

one unified framework.

DOT is moderately successful in encompassing a complete design concept.

LPL, although only in its compiled form, is implied by the LPL interpreter

process. FFP is implied by DOT's embodiment of an evaluation function for lh·

and, as already indicated, DOT suggests high-level aspects of a parallel

realization. For these reasons, we feel justified in using the term "DOT" to refer

to the complete programming system, and in speaking of a "DOT machine". But

regardless of this larger and implicit function, DOT is formally only an

implementation model.

117

As mentioned earlier, the DOT representation is executable. This fact will

not concern us in this chapter; aspects relating to execution are left for Chapter

4 on simulation.

3.1. 2. Overall DOT Structure

Figure 3.1 shows the overall structure of the DOT model. Links between cells

represent point-to-point communication buses. The io and vm nodes represent

the "world" external to the main tree of processors. Within the main tree

structure, leaf nodes represent the !cell processors that appear in the LPL

architecture, and the internal nodes represent processing cells called tcells (for

tree cells} that are used to implement the LPL message subsystem, and perform

functions related to f!·

FIGURE 3.1 - Overall DOT Structure

3.1. 3. A Language for Representing DOT

Corresponding to Figure 3.1 is a textual description of DOT in the language

we have chosen as a representation language. This language is C augmented with

abstract data types [StrB3], or ClassC. as we will refer to it. Figure 3.2 shows an

abbreviated top-level ClassC representation for the DOT machine. In this and

following figures that display DOT code, a rudimentary familiarity with the C

programming language [Ker7B] and the concept of classes or abstract data

118

types [Fra77, Han77, Str82] is assumed.

As seen from Figure 3.2, a ClassC class definition can be viewed as a list of

objects, a way of putting these components together into a new object, and

(optionally) a specification of operations that are appropriate to the new object.

The new entry point for a class describes how a new object of the type being

defined is created, and other public entry points (not used in the DOT_machine

class) describe the allowable operations on the new object. At lower levels of

detail than depicted so far, the processes that actually move data around in the

machine become visible. The tree of processing cells referred to in Figure 3.2 is

represented in ClassC as shown in Figure 3.3.

FIGURE 3.2- The DOT Machine

class DOT-machine

!
1• declare the objects that make up a DOT machine •1
class io *io;
class vm *vm;
class tree *tree;
class e_bus *i<LVIILComm;
class t...bus *io....tree..£omm;
class !...bus *viiL..iree_comm;

/*say how a new DOT ..:machine is built • /
DOLmachine. new(tree...b.eight)
int tree-height; 1• the height of the processor tree • /
!

;• build the communication buses • /
io__iree....comm = new class t...bus{);
vm__iree....comm = new class !...bus();
io...Ym....comm = new class e...bus();

1• build and connect the machine • /
io = new class io(io_iree_comm, io_ym_comm);
vm = new class vm{vm_tree_comrri, io_ym_cornm);
tree = new class tree

(tree...b.eight, io__iree_comm, vm__iree_comm);
l 1• end new DOLmachine • /

class tree

FIGURE 3. 3- The DOT 'J'ree of Processing Cells

/*declare the objects that make up a tree • /
class tcell •root;
class tree *L..subtree, *r_subtree;
class !cell •Ucell, •r...lcell;
class Lbus •to_!eft, •to-right;
class Lbus •coniLLwith.r;

/* say how a tree is built • /
tree.new(level,t~arent,on...left,on._right)

int level; /* level of this tree root • /
class Lbus •t~arent; /* connection to parent • /
class Lbus *on...left, *on._right; /*connections to l/r !cell • /
f /* boundaries at tree base • /

/* build communication links • /
to...left = new class Lbus();
to_right = new class Lbus();
conn...L.with-1' =new class Lbus();

/* build tree root, and its children • /
root = new class tcell(to_parent, to_!eft, to-right);
if (level==l)
! /* use !cells for children • /

Ucell = new class !cell

else

(to...left, on...left, conn...L.with-1');
r _!cell = new class !cell

(to_right, conn...L.with-1', on_right);

/* use trees for children • /
L.subtree = new class tree

(Ievel-l, to...left, on...left, conn...L.with-1');
r....subtree =new class tree

(Ievel-l, to_right, conn...L.with-1', on_right);

· ! /* end new tree • /

119

So far, we have shown how the DOT design is decomposed into the following

major components:

(1) Processing Cells
• io
•vm
• lcell
• tcell

(2) Communication Buses
• external bus (e_pus used far camm between ia and vm)
• tree bus (t_pus -any comm involving tcell)
•lcell bus {l_j)us --any camm at lcelllevel only)

(3) Explicit Connections between (1) and (2)
• represented as parameters of p;:acessing cell classes

120

In the remainder of this chapter, we will show how the above components

function together as an implementation of the LPL and FFP architectures.

3.1.4. A Process-oriented Design

Recall that an implementation should specify the control and flow of data.

To this end, DOT uses multiple processes within each processing cell to control

the flow of data on communication buses. By using multiple processes within

each cell, DOT avoids overly constraining a VLSI realization, and succeeds in

stating, in a concise and intellectually manageable manner, just what control

and data flow is necessary in an efficient implementation. Representing an

efficient implementation involves a great deal of complexity. In efficient support

of both FFP and LPL, DOT must do a great many things (many of which are only

peripherally related) at the same time.

To describe the behavior of the implementation, DOT takes a process-

oriented design approach. By this, we mean that underlying all data movement

and manipulation are individual, relatively simple processes, each one of which

is designed to perform a specific and easily grasped sequential task exhibiting

conceptual integrity within its limited scope of concern. The processes of the

DOT model exist statically; they are not created dynamically except as the

machine is brought into existence initially, and they exhibit cyclic behavior.

Processes within DOT never wait on non-deterministic events, and a wait for

121

• communication is never interrupted. There is no global clock in DOT, and

processing cells operate asynchronously with respect to each other.

Approaching the design in this way, using relatively simple sequential

processes that operate fairly .independently, is appropriate in a VLSI context.

Also realistic are the use of static processes and the separation of control

activities located in different cells from each other (so they must communicate

via messages). Within each cell of the DOT model, the multiple processes

resident therein are allowed to communicate in whatever way seems most

natural-- using shared memory or condition monitors, as appropriate.

3.1. 5. Communication Between Processes in Different Cells

Generally, multiple processes within a given processing cell of DOT will be

communicating with their counterparts in other cells at the same time. To

enable this, the DOT communication buses are composed of logical channels that

are full-duplex in nature -- that is, the end of each channel has separate send

and receive ports, both of which may be in use (by separate processes)

•• concurrently. An actual realization might wish to multiplex these channels,

but DOT simply assumes the existence of the required logical channels. Certain

channels -- those associated with support for the message subsystem of the LPL

architecture -- are circuit-switched in the course of the machine's operation to

provide dedicated support for FFP RAs. As shown in Figure 3.4, DOT channels are

built from two single-direction message pipes called cqueues. Each cqueue has

a qtail (for sending) and a ghead (for receiving) as shown in the diagram. When a

process wants to send a message through a cqueue, it deposits the data (a single

• If one process waits for the arrival of a message from another process, a message is
guaranteed to arrive; processes are never interrupted from attempting to effect a mes­
sage transfer. .. .

Sending and receiving ports are not restricted by the model to be located in separate
cells; this is simply the more general case.

122

byte) into the associated qtail. When a process want to receive a message from a

cqueue, it picks up the data from the associated qhead.

FIGURE 3.4 ~A DOT Full Duplex Communication Channel

Full Duplex Channel
qtail r-------------------, qhead

cqueue

cqueue

qhead L-------------------J qtail

A cqueue has a variety of interesting properties. Most importantly, a cqueue

implements a "safe" message transmission mechanism. Both sender and

receiver are synchronized by a message transfer; a sender is delayed until a

receiver requests data, and vice-versa. This corresponds to the synchronization

that is necessary between hardware processes that operate from different

clocks. DOT thus encapsulates concern for the synchronization that must be

present in the realization at this level.

Cqueues may be connected and disconnected in a manner that corresponds

to circuit-switching. Figure 3.5 depicts such a procedure. A succession of

cqueues may be connected to form a "long distance" connection through the

tree, and then be disconnected in any order. This allows DOT to perform circuit­

switching of communication channels.

123

FIGURE 3. 5- Connecting and Disconnecting Cqueues

qtail qhead qtail qhead

'"j o--=--.o o--=--.o
connect operation V

j i

tail '
q cq~ue

connected : .

sconnect operation A
j qtail qhead · qtail qhead

~~ restored V ~ V -~

The ClassC entry templates for the cqueue qhead and qtail objects (which

summarize the operations of which a cqueue is capable) are shown in Figure 3.6.

The connectw operation connects two cqueues as discussed above, and delays

the connecting process until an eot_alert (for end-of-transmission) is performed

by a sending process on the cqueue qtail.

124

FIGURE 3. 6- The DOT Cqueue Head and Tail -public entries

class qhead
!

public:
1• allowed operations on the qhead of a cqueue •1
char get(•char);
void connect(class qtail *);
void connectw(class qtail •);
void disconnect(class qtail •);

!;
class qtail
!

public:
;• allowed operations on the qtail of a cqueue •;
void put(char);
void connect(class qhead •);
void connectw(class qhead •);
void disconnect(class qhead •);
void eoLalert();

3.2. Overall DOT Operation

Having introduced the top-level constituents of DOT, including the

mechanism used for communication between cells, we can now establish the

relationship of processes within DOT to the activities that must be performed in

support of FFP and LPL. As a first step, we present an overview of the combined

effects of the cooperative behavior of these processes. This will introduce

important terminology, informally mention the different process types and

describe their essential functions. Once this has been done, the internal process

structuring of the !cell and tcell classes will be given, and important algorithms

used by the processes will be discussed.

3.2.1. The Basic Machine Cycle

A DOT machine cycle starts with looking at the !cell array to see what is in

it. During this phase of the machine's operation, RAs are discovered, and the

125

machine is partitioned to correctly allocate circuit-switched communication

channels and tcell processing power to the discovered RAs. This

partitioning phase involves all operations necessary to prepare for LPL

execution within RAs. The first time a particular RA is encountered (RAs may

exist over a period of many machine cycles), DOT processes within the tcells and

!cells build the LPL environment directories, and LPL code segments are loaded

using the io subsystem. Partitioning completes separately for each RA, so the

duration of this phase is shorter for RAs that are restarted (their containing

!cells already have environment directories and code segments). Immediately

following completion of the partitioning phase within each RA, execution of LPL

code segments begins.

At this point, the notion of a single machine is misleading; each RA has its

own dedicated multiprocessor hardware and is completely independent of the

others. Nevertheless, after the RAs ar(" started (or restarted), the overall

machine may be thought of as being in an executionphase. The LPL programs

run, with the aid of DOT-provided services, until they become blocked awaiting

additional !cells to hold expanding FFP text, or are preempted by DOT for the

purpose of storage management.

The storage management phase includes stepping forward RAs whose code

segments have completed, determining the new storage requirements of the F~"P

programs within the !cell array (due to LPL fork statements that have been

executed), and shifting LPL program segments and their contexts within the

!cell array to make room for newly required symbols. The shifting process is

performed using the lateral !cell connections and may result in:

• overflow of contexts into the virtual memory subsystem if enough !cells
are not available;

• reentry of previously overflowed !cell contexts back into the !cell array if
there is room;

• or entry of new FFP programs if there is room after previous overflow has
been taken care of.

125

The prescription for exactly how the !cell contents are to be shifted about is

called the specification for storage management. Calculation of this information

is called preparation for storage management

The basic machine cycle is thus partitioning, execution, and storage

management. Each phase will now be described in more detail.

3.2.2. Partitioning Phase

Partitioning creates active areas , each of which is composed of the

communication channels and the !cell and tcell hardware required to support

computation in an individual RA. An active area is essentially a small dedicated

multiprocessor, which is structured as a binary tree and dynamically embedded

within the overall tree-structured multiprocessor.

Partitioning begins in the !cells, with information being sent upwards into

the tcells. Each tcell receives (from its two children) and sends (to its parent) a

code containing the information necessary for an initial partitioning of the

tcells. The initial partitioning (a pipelined upsweep of information starting at the

!cells, and terminating in the io subsystem) allocates and connects dedicated

area communication channels (called area channels) and dedicated tcell

processing power (called area nodes) to each underlying group of !cells that may

contain a different RA. While area channel connections are modified (to simulate

circuit-switching) with each partitioning, the information required for the initial

partitioning travels upwards on cell manager channels whose connections are

127

never modified.

The initial partitioning is terminated within the io subsystem, which may be

• thought of as the parent of the root of the tree. RAs are finally located and

their corresponding active areas created with the aid of concurrent downsweeps

of information within each of the candidate areas created by the initial

partitioning. This downsweep is called the pruning dawnsweep of partitioning.

During this downsweep, information sent downwards on area channels connected

in the partitioning upsweep is used to disconnect any channels that lead to !cells

not contained in an RA. In each active area that remains, the lowest tcell area

node above all !cells of the RA (the least common ancestor) is located and

configured as the tap of area (or to a) where rising LPL messages turn around for

broadcast back down to the !cells.

Figure 3. 7 shows the area channels and nodes for a partitioned DOT

machine. The circles in this figure represent tcells, and interior triangles

represent the area nodes. Solid lines between area nodes represent connected

full-duplex area channels, and the dotted lines represent unused area channels.

There are two active areas in the figure, each supporting an RA whose operator

is multiplication. The two top of area nodes are shown by circling the

appropriate triangular node representations. Note that empty !cells,

interspersed among the FFP text, are not included in the active areas .

• In addition to its io-related activities, the io subsystem offloads special termination pro-
cessing from the tree root.

128

FIGURE 3. 7- A Partitioned DOT Machine

Partitioning for (+ < (• < 1 3 >) (• < 2 4 >) >)

'•
~ : ' '•

~&m irn Bllfo lft::
3. 2. 2.1. Area Nodes

As suggested by Figure 3. 7, a tcell need only provide processing power for

one active area. Even though area channels for more than one active area may

pass through a given tcell, it is always possible to route (via circuit-switching) all

but one set of area channels directly through the tcell. Only channels that lead

to two children in the same RA are connected to an area node, whose purpose is

to support all subsequent area-related processing within the tcell.

This support begins with a pruning downsweep to help complete the

partitioning phase. Pruning is performed entirely within down-going area

channels, and encompasses the following activities:

• discovery of whether underlying FFP text is truly part of an RA (i.e.,
whether the connected area channels and nodes are to be active during
the coming execution phase) -- if not, area channels connected on the
upsweep are disconnected;

• disconnecting channels that are within an active area but are not re­
quired for area processing because they lead to empty !cells;

• discovery of the FFP operator if the area is active;

• creation of the top of area node where LPL messages turn around.

129

In an active area, partitioning is then followed by support for the LPL

message subsystem send and receive statements until the execution phase

comes to an end. This is followed by correctly shutting down area operation

prior to the storage management phase of the machine cycle. This shutdown

must disconnect area channels (that were created during partitioning), but only

after stopping messages in such a way as to guarantee that all !cells in the area

will have seen exactly the same messages during the execution phase. This must

be done in order to guarantee a consistent restart following storage

management and re-partitioning.

3.2.2.2. Directory Creation

During the pruning downsweep, each top of area node returns to its

descendent !cells notification of their active status and the LPL program to be

used if one is necessary. Given this information, an !cell will decide to create a

directory if it is contained in a new RA. This requires an upsweep and a

downsweep of information within area channels, and the result is to load

symbol_jndex, and the 4-tuple directory, dl ... d4, in the RA !cells with the

correct values. If the RA is not new, the old directory is still valid and execution

may begin immediately without this step.

130

3.2.2.3. Loading LPL Programs

The LPL programs are delivered from the io subsystem on io channels that

follow the hardware tree structure. Within a tcell, each parent io channel splits

into two child io channels and data movement is as follows: input to the !cell

array comes from "above" and is broadcast to alllcells by successively splitting

data so what comes in from a parent input channel is sent down both child input

channels; output comes from "below", and is sequenced by handling the child

output channels in cyclic left-to-right order. There are two very simple

processes in the tcell that perform these functions. At present, the input

channels are used to deliver LPL programs from the library, and output

channels are used to return execution results and trace information to the

outside world.

3.2.3. Execution Phase

The !cell LPL interpreter is a process that receives starting addresses from

a queue. It begins execution at a requested address, performs local data

movement and manipulation as indicated by the loaded LPL object code, and

continues until encountering one of the following DOT service requests that

require special handling: send, receive, endfilter, fork, and endsegment.

These special services are initiated by setting up an LPL context area

associated with the particular service required. These areas are checked by the

DOT processes whose job it is to provide the services. Having set up the service

request area, the interpreter then cycles back for another start address. The

reason for this approach will be seen in the following discussion of message

support.

131

3.2.3.1. Lcell Message Support

When a message resulting from a send or receive for the present message

wave arrives, it should be filtered. A DOT !cell message input process first puts

the newly received message into a receive area (accessible to filter statements

using environment variables such as r _arg 1}, and then uses information

deposited earlier (by the interpreter) in the LPL program context to insert the

beginning address of the message filter statements into the interpreter start

address queue. The interpreter executes the message filter for the message

instance, and then encounters the endtilter statement, which then halts the

interpreter as described above in Section 3.2.3. This is done for each message

that arrives on the present message wave. When the wave has completed, the

!cell message input process places the continue address (i.e., the address of the

first statement following the end.filter statement) into the interpreter start

address queue, and LPL execution then continues.

Message waves are sequenced activities whose completion requires

agreement among all of the !cells of an RA. The basis of this agreement is an

end-of-wave or eaw that is sent for each message wave by all !cells of an RA,

merged into a single message by the time it reaches the top of area, and then

returned to the !cells in the RA. Lcells keep a counter that contains the present

message wave number.

When the message wave counter is incremented, the LPL program context

is checked for a send or receive request for the new wave number.]f there is

such a request, an eaw is sent (after message transmission if the request was

send). lf the request is for a a higher numbered wave, eaw is also sent. This

indicates that no sending is desired for the current message wave by the LPL

segment executing locally. lf, however, the last message request handled by the

132

!cell is for a lower numbered message wave (and the segment has not

completed), a fork has been executed. In this case, eaw is not sent. Instead, \.he

!cell waits for storage management to complete the fork operation. The result is

that the new message wave cannot pass through the top of area node until after

storage management (and completion of the fork operation).

Following storage management andre-partitioning, an interrupted message

wave is continued by :e-sending any messages that were sent up but not

received during the preceding execution phase. Everything is restarted

correctly so that the message wave interrupted by storage management can

complete and the next one can begin (all transparent to the LPL program). As

explained in Section 2.3.3.1, this allows implicit synchronization of a fork

operation with a corresponding send designed to copy information.

3.2.3.2. Fork Support

A fork statement halts execution within the requesting !cell until the

operation can complete during storage management (when LPL program

contexts are shifted in the !cell array). Execution then resumes in child LPL

contexts (i.e. those created by a fork operation) as well as the parent. LPL

program contexts begin each execution phase acting as if they had requested a

forksize of one. The fork statement merely modifies the farkn LPL context

register (not directly available by name to an LPL program) in which the

forksize is stored -- so that multiple copies of an LPL program context are

shifted during the next storage management.

3.2.4. Storage Management Phase

This phase is necessary to accommodate growth and compaction of the FFP

text while retaining the necessary ordering of FFP symbols. It is unfortunate

133

that execution of LPL programs should in general require interruption in order

to implement this phase of the machine cycle. One alternative is to let all LPL

programs complete (or bee orne blocked as in a fork operation} before storage

management is performed, but this could put RAs with quickly executing LPL

programs at a disadvantage, and would likely result in inferior utilization of the

available processing power in a large machine.

Attempts have been made to do storage management in locally restricted

segments of the !cell array (as computation proceeds elsewhere} by Tolle

[To!Bl], but the complexity of the overall solution is considerable, and the

resulting performance is not always superior to the preemptive approach that

we use.

In the present design, !cells send permission to start storage management

upwards on the cell manager channels to the io subsystem. Lcells that are not

active do this following partitioning. Active !cells wait for the LPL program to

complete, fork, or execute an smanage statement before sending permission.

The resulting sm_gra.nt messa.ges are merged on their way up the tree, and,

upon reaching the io subsystem, they result in a stop messa.ge which then

travels down the tree and shuts down message activity. •

This approach places control of the processing cycle explicitly within LPL,

and allows a system manager to tailor FFP operators for large operands if this is

desired. Another possibility would be to allow the io subsystem to use heuristics

based on !cell contents (discovered during partitioning) to determine an

• Due to the variety of messages that are sent between multiprocessor cells, it is useful
to give them names corresponding to their purpose. In the case of the stop message, spe­
cial emphasis may be appropriate since a !!stop packee• will be referred to later in the
context of LPL messages. The stop message, as explained above, originates in the io sub­
system and travels down to the !cells on cell manager channels. The stop packet, to be
discussed in Section 1.4.2.1, travels on area channels.

134

appropriate cycle time. •

3.2.4.1. The Specification for Storage Management

Once the LPL programs are shut down, a specification for storage

management must be computed. This is done by sending and merging forksize

information up the cell manager channels until it arrives at the io subsystem,

where, as in partitioning, the upsweep is terminated. There, a specification for

storage management is computed, and sent back down the tree in such a way as

to distribute the necessary information to each lcell. A variation on the scheme

suggested by Mago [Mag79] is used, so that total compaction will be performed

only when necessary.

3.2.4.2. Overflow and Program Entry

The virtual memory concept used in the model is based on the work of

Siddall [Sid83] and Frank [Fra79], who have examined various ways to

accommodate overflow from the !cell array. The approach used in DOT is to allow

movement of !cell contents into and out of the left !cell tree boundary. To the

left of this boundary is a deque structure (interfaced with a file system), which

receives from its right any !cell contents that overflow from the tree, and from

its left new programs for execution in the tree. The state of the overflow and

program entry subsystem (e.g., whether there is presently overflow in virtual

memory, if so how much, how large the next FFP program to be entered is, etc.)

is used by the io subsystem in its determination of the actual storage

management specification .

• The simplest of such heuristics, a fixed cycle time, was originally used. For initial per·
formance studies, however, it was desired that the machine execute FFP text as rapidly
as possible, so the LPL architecture was modified to allow LPL programs to help schedule
storage management.

135

3.3. Process Structuring of DOT Cells

We have described the overall operation of the DOT implementation as the

combined result of processes within the cells of DOT. These cells and their

resident processes will now be examined. Sections 3.3.1 - 3.3.4 detail the tcell,

!cell, io subsystem, and vm subsystem classes, respectively. •

3.3.1. Tcell Structure

Tcells of the DOT model contain five different processes, as shown in Figure

3.8.

FIGURE 8. 8- DOT Tcell Processes

The rationale behind this choice of processes is provided by the process-

oriented design methodology. Each tcell process performs duties that are best

viewed separately from the others, and for which there is a simple sequential

(cyclic) description.

to For readers uninterested in the top-level structure of the contained processes, Figures
3.8 and 3.14 show the basic composition of the tcells and !cells. After glancing at these
figures, the reader may skip to Section 3.4, which presents the detailed algorithms used
by these processes, or turn to Chapter 4, on simulation.

136

The tcell.Jnput and tcell_9utput processes bring input (presently in the

form of compiled LPL programs) down to the !cells, and send output (trace

information and completed programs) back up through the tree-structure to

the outside world. Both of these processes run forever, awaiting the arrival of

data and then re-sending it with a broadcast protocol (in the case of input), or a

sequencing protocol (in the case of output).

Output originates within the !cells. With the completion of the execution

phase, before the specification for storage management is computed, RAs that

have completed are stepped forward. At this time, each !cell does optional

output followed by an eot_alert (to signal end-of-transmission) on its output

channel. • This output is relayed up and out of the tree by the tcell_9utput

processes, which loop forever (alternately accepting output from left and right

children). Figure 3.9 shows the ClassC representation of the tceli_9utput

~ FIGURE 3. 9- Tcell Output Process

I ~·
Tcell output is done by alternately switching
output to parent from left and right child channels
•I

tcell...output.new(top,p .l.r)
short top; I' true if at top of machine •1
class qtail •p; 1• connection to parent •1
class qhead •!, •r; I* connections to children •1
f

cycle
1->connectw(p); 1->disconnect(p); I* relay left *I
r->connectw(p); r->disconnect(p); 1• relay right *I
if (!top) p->eoLalert(); I* signal parent cell •1
else p->put(O); I* or signal ic subsystem *I
I

~--_j
• At present, output includes a snapshot of important !cell registers in all non-empty
!cells.

137

process.

Input originates from the io subsystem in response to requests for LPL

programs during partitioning. A tcell_jnput process supports delivery of all

arriving information by relaying it to both child subtrees. The combined effect is

to broadcast all LPL programs to all lcells. The tcell input process is shown in

Figure 3.10.

The message-down process component of an area node (called node_dmh

within DOT -- for downwards message handler) operates in a similar fashion to

the tcell_jnput process, and is used to support the LPL message broadcast

protocol. However, since only active areas support messages, and since area

channel connections are changed with partitioning, the message-down process

must be started and stopped. The node manager process (to be described below)

uses a condition monitor to signal its message-down process that area channels

are connected and messages should be relayed downwards. Arrival of a special

stop packet for broadcast to the !cells tells the message-down process to stop

handling messages for the current cycle; The down-message process is shown in

FIGURE 3. 10- The Tcell Input Process

/•
Input of !cell programs to the tree is done via broadcast to
both children.
•/

tcelL.input.new(p,l,r)
class qhead *p;
class qtail *I, •r;

!
cycle !

p->get(&c);
1->put(c); r->put(c);
l

Figure 3.11.

FIGURE 3.11 --Area Node Downwards Message Handler Process

I*
Downwards Message Handler for area node within a tcell. A cnt of
STOPCNTindicates that no more messages should be broadcast.
*I

node...rlmh.new(messages...started,phead,ltail,rtail)
class condition •messages...started; I* condition signaled by node mgr *I
class qhead •phead; 1• connection to parent •1
class qtail *!tail, •rtail; I* connections to children *I

!
char c, cnt;

cycle
I* wait for messages to be started on the area channels *I
messages...started->await(TRUE);

1• relay messages downward until the stop packet arrives *I
while ((cnt=phead->msg()) != STOPCNT) !

ltail->put(cnt); rtail->put(cnt);
while (cnt--) !

c = phead->msg();
ltail->put(c); rtail->put(c);
!

I* output stopcnt, reset condition, and cycle back *I
!tail->put(STOPCNT); rtail->put(STOPCNT);
messages...started->assert(FALSE);
!

138

The remaining two processes are the work-horses of a tcell. These are the

tcell manager and the node manager processes. The tcell manager is

responsible for correct.ly overseeing and implementing the overall machine

cycle (partitioning, execution, and storage management). The node manager is

responsible for all processing that takes place on area channels. The top-level of

the tcell manager is shown in Figure 3.12, and the top-level for the node

manager is given in Figure 3.13.

FIGURE 3. 12-- Tcell Manager Process

/*
The tcell manager does initial partitioning, and other activities not
directly associated with area execution, such as relaying LPL program
requests upward to the ic subsystem. The parameters of a tcell manager
include whether it is at the top of the tree, and the communication
channels (qheads and qtails} which enter and leave its tcell.
•I

tcelL.mgr.new(aLtop_of..iree,
crn_dn_head, al_dn_head, a2_dn_head,
crn-Up....tail, al-llp..iail, a2-Up....tail,
lclll-llp_head, la 1-Up_head, la2-Up_head,
lcrn_dn....tail, laLdn....tail, la2-rln....tail,
rclll-llp_head, ral_up_head, ra2-llp_head,
rcrn_dn....tail, ra Lrln....tail, ra2-rln....tail,
npheads, nptails)

/*initialize class objects • /
lspf=rspf=O;
node...pgrn...ready = new class condition(FALSE);
node....taslLready =new class condition(FALSE);
tcelL.eorn = new class condition(FALSE);

1••• MAIN EXECUTION LOOP ••• /
cycle !

node...eorn =FALSE;
tcelL.eorn->assert{FALSE);
node...flgrn...ready·>assert(FALSE);
if (Ispf II rspf) disconneci...f>artitioning();
ini tiaLpartiti oning-Up ();
relay...aree...pgrns...requestS-Up();
awaiLstop...signaL.dn();
compute...srn...specificatioll-ll p_rln();
!

139

FIGURE 3.13- Tcell Node-Manager Process

/*
This class hamdles aU area-related processing in a tcelt when two
children of the tcelt are involved in the same area. The parameters
of a node manager include whether the tceU is at the top of the tree,
access to memory shared with the tcell manager, and the area channels
(qheads and qtails) to which it has been temporarily connected by the
tceU manager. The node manager uses an upwards-message-handler
class, (node~mh) to handle the details of message processing.
The downwards message handler process for the node is also created here.
*/

node..rngr.new(top_oLiree, ceLmgr,
np..np...head, np...diLiail,
np...dn..head, np..np..lail,
lnp..np...head, lnp...diLiail,
rnp..np...head, rnp...diLiail)

/* init the upward message handler class • /
upm =new class node..nmh(ce!Lmgr,np..lail,lnp...head,rnp...head);
/* startup the downward message handler task • /
messages = new class condition(FALSE);
dowiL..IIlessages = new class node.....dmh

(messages, np...head, In p..lail,rnp..lail);

/*'* MAIN EXECUTION LOOP ••• /
cycle 1

/* wait for area assignment * /
(ce!Lmgr->node..lasl<Jeady)->await (TRUE);
(ce!Lmgr->node..lask..ready)->assert(FALSE); / 0 reset*/
top--'lf-"l.rea = finished = FALSE; /* initial guess • /

finish...+>artitioning();
if (!finished && (state==GROUND)) build..directory();
if (!finished) 1

messages->assert(TRUE); /* dmh has work*/
upm->up...messages(top...of-"l.rea);
messages->await(FALSE); /* dmh is finished • /
l

else (ce!Lmgr->tceluom)->await(TRUE);
disconnecLpartitioning();
l /*end of cycle • /

140

141

3.3.2. Lcell Structure

The DOT !cell contains six processes. These include two io processes -- one

for LPL code input, and one for program output -- that are connected via io

channels to the tcell io processes. There are two processes associated with

handling messages, and an !cell manager process. The last process is the LPL

interpreter which executes compiled LPL code. Figure 3.14 shows the overall

!cell structure, including the (passive) LPL user context area in which the LPL

code and environment is located.

FIGURE 3.14- DOT LceU Processes {and User Context)

I
·I
I
I

The lcell_jnput process is connected to the end of an io channel through

which all LPL programs required by any RA in the machine arrive, and it filters

this fiow of information to select and load only the LPL code segment that is

locally required (if any). Everything else is thrown away. As soon as the correct

code segment is loaded, the input process starts the LPL interpreter by sending

it a beginning code address. Figure 3.15 shows the !cell input process.

Once the LPL program begins execution, it may request message services.

The !cell message-up process (called lcell_msend within DOT) sends an LPL

FIGURE 3.15-- Lcell Input Process

;•
The !cell input process accepts and loads LPLprograms. When a segment
is loaded, the interpreter is started up. The input process must wait
until the LPL directory has been created {during partitioning) in order
to filter input and select the correct code segment.
•I

lce!Linp.new(inpuUead, area..iail, user, inpuL.possible, interpreter)
class qhead *inpuLllead; class qtail •area..,iail; class lcelLllsr •user;
class condition *inpuLpossible; class stail *interpreter;
1
char pgm, garbage, found, loaded;
short i,cnt;

cycle 1
inpuLpossible->await(TRUE); 1• wait for directory ready • /
1• filter lceU programs • I
loaded= user->state!=GROUND; 1• i.e., executing, or completed •1
while (pgm = i!Ulead->msg()) 1

if(user->lce!Lpgm==pgm && user·>active)
found.= TRUE;

else found= FALSE;
for (i=O; i<DLEVELS; i++)

found&= match(user->directory[i],i!Ulead->msg());
cnt = i!Ulead->msg();
cnt = 256•cnt + i!Ulead->msg();
if (found && !loaded) 1

if (cnt>CODESIZE) fprintf(stderr,
"lce1Unp(%d):!!! segment too large", this);

else 1
for(i=O; i<cnt; i++) user->code[i] = i!Ulead->msg();
loaded= TRUE; user->state =EXECUTING;
user->nsymboLcnt=O;
user->mwave:::::user->mfilt=user->msend=O;
user->mcomplete=user->endsend=FALSE;
interpreter->put(O); /*start program • /
inpuLpossible->assert(FALSE); 1• reset and signal msgs• /
!

else while (cnt--) i!Ulead->get(&garbage);
!

inpuLpossible->assert(FALSE);
if (!loaded && user->active && (user·>state==GROUND))

fprintf(stderr, "lce1Unp(%d)!!! no celLpgm %d");
! I* end cycle *I

142

message up into the tree when notified to do so by the message-down process. It

143

either sends an eow (end-of-wave) for the current message wave, or sends a

message followed by eow, depending on the contents of the !cell user context.

The message-up process is shown in Figure 3.16.

FIGURE 3.16-- Lcell Message-1Lp Process

/*
This process takes care of the details involved m actually sending
messages, and is the one who waits when message bytes are handed off
to the parent tee!!. The upward-going message channel used by this
process is of class ptai!. A ptail is Wee a qtai!, but uses a
locking mechanism to prevent interference during transmission of
a sequence of message bytes. The lock is set by a ptail.put...;first, and
released by ptail.put.Jast. This lock is necessary because the !cell
manager signals eom (end of messages) asynchronously by sending a stop
packet up through area channels at the end of an execution phase.
*/

I ce!Ur!s end. new(user ,msg..iail,msg_rea dy)
class lcelLusr •user;
class ptail •msg...tail;
class condition *msg_ready;
!
short i;

cycle !
msg_ready->await(TRUE);
msg_ready->assert(FALSE); /*reset • /
if ((user->mwave == user->msend) &&

(!user->mcomplete) &&
(!user->endsend) &&
(user->fork_id) &&
(user->state==EXECUT!NG)) !

msg...iail->put..Jlrst(2);
msg...iail->put(user->mspec[MORD]);
msg...iail->puUast(user->mspec[MCOP]);
rnsg...iail- >put..Jlrst(user->mspec [MARGC] +2);
msg...iail->put(user->mspec[MKEYl]);
rnsg...iail->put(user->mspec[MKEY2]);
for (i=O; i<user->mspec[MARGC]; i++)

msg...iail->put(user->margs[i]);
l

msg...iail->pu t.Jast(O);
l /*cycle •;

144

The message-down process (called lcell_msg within DOT} is the main

message handler in the !cell. It must delay an LPL program that requests

message handling until the service is complete, interact with the interpreter to

start up a message filter when appropriate, and then continue execution

following completion of the message operation. It is this process that sees the

eow that signals the end of one message wave and the beginning of the next, and

it must tell the message-up process when to send messages. Figure 3.17 shows

this process.

The !cell interpreter is organized as usual -- with an interpretive loop. It

receives start addresses from a queue, and executes local operations until it

encounters a request for a special service (such as send) which is supported by

other DOT processes. All special service requests are distinguished by not

loading the code pointer with the next instruction to execute. In these cases, the

next instruction to execute will be indicated by an arrival on the start address

queue. The subroutine execute_5eg is used to execute a code segment until a

special service request is encountered. Figure 3.18 shows the top level of the

!cell interpreter process. Details concerning support for the special services

are hidden at this level (they involve setting register values in the user-context}.

In a way similar to the tcell manager, the !cell manager supports the basic

machine cycle and coordinates the behavior of the other processes in the !cell.

After storage management, an executing LPL context may have to be restarted,

and the !cell manager takes· care of this. The top level for the !cell manager is

shown in Figure 3.19.

!

I

FIGURE 3.17- Lcell Message-Down Process

Jce!Lmsg.new(msg_ready,directory_ready,msg-head,user,
interp_start,interp_id!e,shutdown)

class condition *msg_ready, *directory _ready, *interp_idle, *shutdown;
class qhead •msg-head; class !ce!Lusr •user; class stail *interp...start;
! char finished,garbage,cnt, •msg; short i;

cycle ! /* .. MAIN EXECUTION LOOP ••• /
do ! /*first, wait for a valid active di:rectory • /

directory_ready->await(TRUE);
if (!user->active) directory_ready->await(FALSE);
l while(!user->active);

directory_ready->await(FALSE); /*signals LPL seg loaded • /
while ((cnt=msg-head->msg()) != STOPCNT) ! /*service msgs */

if (cnt)! /*get msg, check origin, filter if necessary *I
msg = user->mtmp; while (cnt--) *msg++ = msg-head->msg();
if ((user->mtmp[RKEYl] == user->mspec[MKEYl]) &&

(user->mtmp[RKEY2] == user->mspec[MKEY2]) &&
(user->mwave == user->msend)&&(user->state==EXECUTING))

user->mcomplete =TRUE;
if ((user->mwave > user->mfilt)&&(user->state==EXECUTING))

interp_idle->await (TRUE);
if ((user->mwave == user->mfilt)&&(user->state==EXECUT!NG))!

int erp_idl e->assert (FALSE);
interp...start->put(user->filL.addr);
interp_idle->await(TRUE); l
1• end handling msg • /

else /* end-of'1!Jave, so start next wave • / !
user->mwave++; interp_idle->await(TRUE);
if (!user->fork..id II (user->state!=EXECUT!NG))

msg_ready->assert(TRUE); /*need to send eow • /
else ! /* handle executing user • /

if ((user->mfllt) && (user->mwave > user->mfilt)) !
/* continue user followmg msg services • /
int erp_idle->assert (FALSE);
interp...start->put(user->c ont...ad dr);
interp_idle->await(TRUE); l

if (user->endsend II (user->mwave<=user->mfilt))
msg_ready->assert(TRUE);

l /*end handling executing user •;
1• end handling start of new wave • /

1• end while message activity • /

145

1• cnt == STOPCNT, so time to do shutdown •1
user->shutdown(); shutdown->assert(TRUE);

L_ _____ l_i_• __ •n __ d_m __ a-in __ c_y_c-le __ •_; __ .J

FIGURE 3.18- Lcell LPL Interpreter Process

lce!Unt.new(start,user,idle,smgrant)
class shead •start;
class lcelLnsr •user;
class condition *idle, *smgrant;
!
char •code = user->code;

cycle ! /••• MAIN EXECUTION LOOP ••• /
idle->assert(TRUE);
addr = start->msg();
if (user->active && (user->state==EXECUTING))!

addr = execute_seg(addr,user);
switch (•(code+addr)) ! /• handle special request • /
case SEND:

user->fi!Laddr = user->setup..send(addr);
break;

case RECV:
user->fi!Laddr = user->setup_recv(addr);
break;

case FORK:
user->conLaddr = user->setupJork(addr);
sm_grant->assert(TRUE);
break;

case FORKC:
user->conLaddr = user->setupJorkc(addr);
sm_grant->assert(TRUE);
user->endsend =TRUE;
break;

case ENDFILT:
break;

case ENDPROG:
sm_grant->assert(TRUE);
user->state = COMPLETED;
user->endsend =TRUE;
break;

default:
printf("lce!Unt(%d):%d is no request",

this, •(code +addr));
! /*end switch • /

! /• end cycle • /

146

FIGURE 3.19-- The Lcell Manager Process

/•
This class is the lcell manager. It performs partitioning, directory
creation, restarting execution after storage management, preparation for
storage management, and storage management.
•/

lcell.new(io...rl~ead,cm...rl~ead,area...rl~ead,
io_up_tail,cm-llp-lail,area_up_iail,
lb..rs..head,lb...lsJail,rb...ls...head,rb..rs...iail)

/* init lcell objects • /
user = new class lcelU:tsr();
interp...idle =new class condition(FALSE); /*(since last use) 0 /

inpuLpossible =new class condition(FALSE);
sm_grant = new class condition(FALSE);
shutdown= new class condition(FALSE);
interp...start=new class shead(); /• start address queue • /
input =new class lcelUnp(io...head, areaJail, user, .

inpuLpossible, interp...start->tail());
interpreter = new class lcelUnt(interp...start, user, interp_idle,

sm_grant);
msg...iail = new class ptail(area...iail);
msg..ready = new class condition(FALSE);
msg...service = new class lcelLmsend(user,msg_tail,msg..ready);
messages =new class lcelLmsg(msg..ready,inpuLpossible,

area...head,user,interp...start->tail(),interp_idle,shutdown);

/ 0 MAIN EXECUTION LOOP • /
cycle !

do...partitioning();
if (user->active&&(user->app...state==GROUND))

build...rlirectory();
inpuLpossible->assert(TRUE);
sm_grant->assert(FALSE);
shutdown->assert(FALSE);
msgJail->clear ...priority();
if (user->active) restart...execution();
terminate~ycle();

prepareJor...storage_management();
do...storage__management();

147

148

3.3.3. 10 Subsystem

The io subsystem, located "above" the processing tree composed of tcells

and !cells, comprises three processes. Among these is a main process that

terminates the initial partitioning, interfaces with requests for LPL programs,

and computes the specification for storage management. Additionally, there is a

tree-input process that sends LPL programs down into the tree to the !cells, and

a tree-output process that accepts output from the tree. The main io process is

shown in Figure 3.20.

FIGURE 3. 20 -- The Main !0 Process

I•
This is the main io processes. Its duties are to terminate initial
partitioning, filter and hand off LPL program requests to the tree-input
process. and compute the global sm-spec'ification.
•I

io.new(io...llp..head,cm....up..head,a Lup..head,a2...llp..head,
io-<luail,cm-<luail,a 1-<lrU:ail,a2...rlrU:ail,
ov...llp..head,ov-<luail)

1• init class objects *I
iiLieq..head = new class qhead();
iiLieq_iail = iiLieq..head->tail();
output= new class io..Dutput(io...llp..head);
input = new class io..input(in_req..head,io-<luail);

cycle

3.3.4. VM Subsystem

terminate..partitioning...11psweep();
accepLoperator_requests();
prepareJor_storage_management();
l .

The virtual memory subsystem (also called the program overflow and entry

subsystem) is implemented with a single process, as shown in Figure 3. 21.

The vm subsystem serves two purposes. lt accommodates overflow out of the

FIGURE 3.21- The VM Overflow and Program Entry Process

overfiow.new(lb..head,!Uail,io..head,io...iail)
class qhead *lb..head, *io..head; class qtai'l •Ib...iail, *io...iail;
! / .. * Main Execution Loop •• • /

cycle! /* Tell IO subsystem what the situation is • /
i<L.tail->put(ovr _cells); i<L.tail->p ut(pg~ells);
/* Get amount to shift from IO • /
bcond = io..head->msg();
if (bcond<O) /*then handle overflow*/!

lseek(ovrJd,ovr...next,O);
while (bcond<O) !

lb..head->get(&s); write(ovrJd,&s,l);
lb....head->get(&tmp); write(ovrJd,&tmp,l);
lb....head->get(&tmp); write(ovr Jd,&tmp,l);
lb....head->get(&tmp); write(ovrJd,&tmp,l);
ovr...next += (i=4);
if ((s==EXECUTING) II (s==COMPLETED))

for (; i<SM.JJSERSIZE; i++) !
lb..head->get(&tmp);
write(ovrJd,&tmp,l);
ovr...next++; l

write(ovrJd,&i,l); /* num chars written •;
ovr...next++; bcond++; ovr_cells++; !!

else if (bcond>O) /* then handle symbol entry into lray • /!
/*first re-enter from overflow • I
while (bcond && avr_cells) I

!seek(ovr Jd, --ovr ...next, 0);
read(ovrJd,&i,l); I* get last context size *I
ovr ...next -= i; I* start of last context * /
!seek(ovr Jd, ovr ...next, 0);
for (ti=O; ti<i; ti++) !

read(ovrJd,&tmp,l);
lb_!ail->put(tmp); l

bcond--; ovr_cells--; l
I* then new program • I
while (bcond && pg~ells) !

pgiD-"eiU.nter(pgmJd,lb_!ail);
pgm_cells--; bcond--; l

if ((pgm_cells==O) && (pgms...Jeft)) !
Iseek(pgmJd,nexLptr,O);
pgms_!eft = read(pgmJd,&pgm,l);
if (pgms...left) !

read(pgmJd,&pgm_ce!Is,l);
nexLptr=Iseek(pgmJd,2*pgiD-"ells-2,!)+2; l

l I* end overflow • I
l I* end cycle*/

149

150

tree at its left boundary when there are more requested !cells than are

available, and when there are more available cells than requested, previous

overfiow and then new programs are shifted to the right back into the tree. At

present, for the purpose of simulation support, the vm subsystem is initially

loaded with the FFP programs that are to be entered into the tree. The vm

subsystem interacts with the io subsystem in order to determine whether

overfiow or program entry should be performed, and operates in the following

way. It tells the io subsystem how many cells are in overfiow, and how many are

in the next program. The io subsystem then replies with the storage

management boundary condition (i.e., how many cells to shift, and in which

direction). Once the cells have been successfully shifted, the vm subsystem

process cycles back to begin the above procedure once again.

3.4. Important Algorithms

In the last section, the overall process structuring of the DOT model was

described. Partitioning, directory creation, message handling, and preparation

for storage management deserve a more detailed treatment than given above

because of their central importance to the working of the implementation, and

also because their implementation is important to the analytic model given in

Chapter 5. Sections 3.4.1- 3.4.4 detail the algorithms used within the !cells and

tcells to perform these functions. •

Of these operations, partitioning is the most complex, followed by message

handling. The algorithm used for creation of the LPL directory corresponds in a

direct manner to its definition given in Chapter 2, and the algorithm used for

calculating the specification for storage management is also straightforward. In

• Readers uninterested in the fine structure of these algorithms may turn to Chapter 4,
on simulation.

151

all of these operations, the main issue is efficient use of the tree-structure to

perform global operations.

3.4.1. Partitioning

Partitioning is centered around the detection of RAs. It is the RAs, or !cells

containing innermost applications, that are allowed to execute LPL within the

active areas created during partitioning. Once RAs are found, their containing

!cells must be told that they are active and that they should participate in the

execution phase of the machine cycle. All other !cells must be told that they are

not active. Thus, the partitioning process involves an upsweep of information

through the tree to locate RAs, and a down sweep of information to notify !cells of

their status. As this is done, area channels within the tree-structure are circuit­

switched between area nodes (implemented by the node manager and message­

down processes) to form individual tree-structured multiprocessors for support

of subsequent execution within the detected RAs.

How are innermost applications found? One way of finding RAs, shown in

Figure 3.22, might be to examine symbols in the !cell array from left to right,

and assume that a new RA has been found every time a left application symbol is

encountered. On reaching the next application symbol to its right, we discover

whether or not our assumption was correct; if the next application symbol is a

balancing symbol, then we have found an RA, otherwise not.

152

FIGURE 3. 22- Finding a. RA

(+ < 2 (+ < 3 4 >) 5 ...

" assume a1 starts RA

.. discover wrong guess .at az

e assume h1 starts RA

e discover right guess at h2

Since our FFP-level representation does not store balancing symbols (in the

interest of conserving !cells), we must go on to the next symbol past where a

balancing application symbol would be to decide whether we have discovered an

RA, and the decision is then based on the aln value stored there as part of the

FFP-level representation. The procedure in this case is the following:

After encountering an application symbol, (1, we seguentia.lly examine

symbols to its right until we find:

{1} another application symbol (2 at a deeper level

(i.e., a.ln 1 < aln2}, or

{2} a symbol a.t the same or higher level

(or run out of symbols}.

• In the first case, the application beginning with {1 is not an RA.

• In the second case, it is.

3.4.1.1. Partitioning Upsweep - Locating RAs

In the above discussion, we implicitly assumed a single agency, or process,

capable of examining the FFP-level text representation from left to right, one

cell at a time. This is equivalent to letting the !cells send this information into a

153

"global examiner" by sweeping the symbol and aln information up from left to

right, as shown in Figure 3.23.

FIGURE 3.23-- Sweeping Lcell Contents Upwards Globally

' : RA I

k-------------------~

Of course, we need to accomplish the same thing using a binary tree-

structure in place of the n-ary tree-structure o' Figure 3.23. The n-ary tree

method is easy to understand because one process with unlimited access to

information is used within the single parent node. When using a binary tree

structure, on the other hand, we must contend with a number of tcell processes,

each of which has access only to the limited amount of information available

from its two children.

Within the binary tree structure of DOT, in order to detect innermost

applications and connect area channels to support them, information is swept

up into the tree and each tcell accepts information from its two children

descriptive of their respective underlying FFP text segments. Not all the

information in a segment of !cells is needed by all of its tcell ancestors, however.

This limits the amount· of information that must be sent from any one level to

154

the next.

3.4.1.1.1. Merging Segment Descriptors

During the initial partitioning upsweep, beginning with the !cells, each level

of the tree-structure organizes information required by the next higher level

into a segment descriptor and passes it upwards. When a tcell receives a

segment descriptor from each of its children, this information is selectively

merged into a new segment descriptor which is relayed upwards. When this

information indicates an application (possibly an RA) entirely contained within

the underlying !cell segment, the receiving tcell takes appropriate action

locally, and elides information required solely by the discovered application

(should it be innermost) from the segment descriptor which is sent upwards.

Thus, area ere ation and denial is done as early as possible, and information not

required at higher levels drops out of the upsweep.

One way to describe the partitioning upsweep is as follows: the segment

descriptor for each application symbol in the !cell array moves upwards in the

tree structure, accumulating its left and right symbol contexts (whose

descriptors are sent up to support this process, and are merged with application

symbol descriptors whenever possible) until it meets the segment descriptors

belonging to the application symbols on its left and right. On the way up, until an

application descriptor meets its right neighbor, area channels necessary to

support the application (if it should turn out to be innermost) are connected.

When the application descriptor finally sees its rightmost application neighbor,

it has the information necessary to determine whether it is indeed part of an RA.

If this is not the case, the channels just connected will be disconnected on the

pruning downsweep. Although an application symbol meeting its right neighbor

application symbol in this way has all the information it needs to make this

155

decision, an appropriately modified descriptor must still be sent up further to

enable an application symbol to its left to make a similar decision. When

application symbols to the right and left of the given application have both

encountered their "middle" application descriptor, this middle descriptor is no

longer needed and drops out.

The segment descriptor has the basic format shown in Figure 3.24, and is

composed of four logical fields. Within a segment descriptor (corresponding to a

given segment of the !cell array) the leftmost symbol field, Sz, represents non­

application symbols located to the left of the leftmost application symbol within

the segment. The leftmost application symbol is represented by the {z

application field. The rightmost field, Sr , represents the non-application

symbols to the right of the rightmost application symbol within the segment,

which in turn is represented by the (r application field. As shown in Figure 3.24,

the symbol and application fields of a segment descriptor are composed of

different subfields.

FIGURE 3.24- The Segment Descriptor Format

s symbol.snt : mln lln symbols

(aln : state

Sz and Sr don't actually contain all symbols of their appropriate

subsegment. Only the two leftmost symbols of the represented subsegment are

required in an S field (to guarantee finding the FFP operator for an RA)., so

• symb ol.snt always has the value 0, 1. or 2. The mln value in an S field is the

• If an FFP operator is primitive, the first symbol to the right of the application symbol
for its RA will be the LPL program op-code. If this symbol is a sequence symbol, however,
the operator is a functional form. In this case, the second symbol to the right of the ap-

156

minimum aln within the entire subsegment described by S. The lln is the aln of

the leftmost symbol of S's subsegment, and symbols are the leftmost symbols of

the subsegment (if they exist). The mln and lln are used by the area nodes

during the pruning downsweep portion of partitioning. If there are no symbols in

a subsegment (empty !cells must participate in partitioning too), only a

symbol_gnt of zero is sent, and the other S fields are not used. An application

field always represents a single application symbol -- aln is its aln value, and

state describes whether the application is in the ground state (the RA is new, so

it will require an LPL program) or the executing state (the application is an RA

that was executing last cycle and was interrupted for storage management, so it

will not require an LPL program). Figure 3.25 shows an example (assuming

ground state for applications) of a segment descriptor.

FIGURE 3. 25-- An Example of a Segment Descriptor

e-- - - - .,

~---- ...1

~ ~ cnt=l; mln=l; lln=l; symbols=<
(1 ~ aln=2; state=O;

r - - - -+

L--- _ _,..

Cr ~ aln=2; state=O;
S ~ cnt=O·
r '

The example in Figure 3.25 shows that all the information required by

neighboring application symbols on either side of the example segment is

plication symbol contains either the op-code for the controlling operator of the function­
al form, or another sequence symbol. If it is a sequence symbol, the LPL program for
meta-composition is requested. Otherwise the LPL program for the controlling operator
is used.

157

represented in its segment descriptor, while information concerning the

. symbols between (l and {r is not included (it has dropped out earlier in the

upsweep). The information in Sl and Sr is needed because of the absence of

balancing application symbols, and because this information will contain the

operator for an RA when it is detected. The tcell which detects an RA, therefore,

can both request the appropriate LPL program to be brought in, and notify

descendant !cells which LPL program to accept and use.

Description of a given segment of the !cell array may not warrant use of all

of the fields of a segment descriptor. This is certainly the case at the first {!cell)

level, where a segment descriptor will describe only a single symbol {application,

or otherwise). For this reason, four different formats are used to express

increasingly complex segment types. A segment descriptor is therefore

preceded by a format code, or SPF (for segment pattern format) to indicate

what format follows. • The four segment descriptor formats and their

corresponding SPF codes are shown in Figure 3.26.

FIGURE 3.26-- The Four Segment Descriptor Formats

FORMAT ...si'E_

sr 1

<r 8r 2

c, <r sr 3

~ (I (r 8r 4

' This was suggested by Peter Chen during early work on partitioning. The value of this
approach is that the SPF code, alone, contains useful information that allows the parti­
tioning upsweep to be pipelined.

158

3.4.1.1.2. Switching to Area Channels

While the segment descriptor represents the information that is used by the

processes of a tcell in support of partitioning, this information is not sent up on

a single communication channel, nor is it handled by a single process within

each tcell.

One of the most difficult issues confronting the design of the partitioning

algorithm was performing a smooth changeover from cell manager channels,

which must start partitioning, to the area channels, which support area-related

processing. The process-oriented design approach we took suggested that it

would be a mistake to allow the tcell managers to complete partitioning. This is

because more than one potential area may pass through a tcell. Requiring the

tcell manager to completely handle all details of partitioning (including the

pruning of area channels that should be disconnected) would involve non­

deterministic actions on its part to support concurrent progress of partitioning

on area channels of logically unrelated areas.

For this reason, support for partitioning is divided among the tcell manager

processes and the node manager processes in a way that guarantees well

balanced, efficient, and completely sequential processing by all involved

processes. The SPF and the information associated with (z and (r is sent

upwards and received by tcell manager processes from both left and right tcell

manager children. The information associated with Sl and Sr is sent upwards

and received by the area node manager processes from left and right node

manager children, respectively.

When a tcell manager receives SPFs from both of its children, it has enough

information, even before receiving the (z and (r which may follow, to send the

required SPF to its parent, and perform an initial partitioning of the tcell by

159

circuit-switching area channels. In general, some area channels will be switched

to provide a direct routing through the tcell, and some will be connected to the

input and output channels of the local area-handling node. This is the initial

partitioning referred to earlier in the overall discussion of the DOT machine

cycle. When the tcell manager receives left and right values of {l and (r as

indicated by the left and right SPFs, it then has enough information to create

and send merged (l and (r values to its parent (as required by the SPF it just

sent up), and to signal its node manager process (if an area-node was just

connected to area channels) to begin one of five possible tasks.

Once a node manager process is given the go-ahead by its cell manager, it

processes the Sl and Sr from its left andright children, respectively. Depending

on the task given to it by the tcell manager it will either start a pruning

downsweep, because it now has access through the area channels to all

necessary !cells below it, or send up an appropriately merged S value to its

parent (which will he received either as Sl or Sr, depending on which side of its

parent the area-node is located) and then await the pruning downsweep that will

be started by an overlying node manager.

Figure 3.27 shows how the initial partitioning is done within an arbitrary

tcell, and details the upwards moving fiow of information on area and cell

manager channels as well as the circuit-switched connections that are made by

the cell manager. This figure completely specifies the algorithm used for

1nerging segment descriptors. There are 4 SPFs, so there are 16 different

possibilities for left and right SPF arrivals from child tcell managers. The area

node within a tcell is depicted as a small circle. The tcell manager is not shown.

Node managers with a double circle are those that are tasked to start pruning.

Whether they will be active or not depends on the actual segment descriptor

FIGURE 3. 27- Analysis of the Initial Partitioning by Tcell Managers

·----1
'

s,s

~----.4((

·-----4((
' ' ' '

·----.4((
' ' ' '

·----2(
' ' ' '

·----3((
' ' ' '

·----3((
' ' ' '

·----3((
' '

(S, S((S

field values that are received.

·----3((
' ' ' '

·----3((
' ' ' '

·----3((
'

·----3((
' ' ' '

·----.4((
' ' ' '

·-----4((
' ' ' '

·----.4((
' ' ' '

160

Subscripts for s1 and (1, etc., are dropped since the SPF makes these

redundant. In Figure 3.27, child area channels are shown entering from the left

and right sides of the tcells (which are represented by triangles), and channels

161

to support communication with a parent leave from the top of the tcells. Cell

manager channels are dotted, and the area channels are solid.

As indicated in Chapter 2, two distinct area channels are provided to handle

a situation where two areas pass through the same tcell. These area channels -­

for convenience call them area1 and area2 -- must be correctly distinguished

from each other during partitioning. For tcells in Figure 3.27, the top channel

entering from a left child is always the area1 channel and the bottom left

channel is area2. The top channel entering from a right child is always area2 and

the bottom left channel is area1. The left channel leaving for a parent is always

area1, and the right top channel is area2. This arrangement allows tcells to be

connected together so that an area1 channel leaving a child tcell will always be

connected with an area1 channel entering its parent.

The DOT specification for beginning the partitioning upsweep within an !cell

is shown in Figure 3.28.

FIGURE 3.28- The Start of Partitioning in the Lcells

I*
This is the lcell partiticning algorithm. Lcells start partiticning
by sending up the appropriate segment descriptor informaticn on
the cell manager and area channels.
*I

void lcell.partition()
!

I* initiate partitioning upsweep *I
if (user->state==EMPTY) !

ciiLiail->put(1);
ciiLiail->eoLalert();
areELiail->put(0);
l

1• spf = 1 *I
1• no pgm requests *I
1• symbol-ant = 0 *I

else if ((user->symbol == APPSYMBOL) &&
(user->fork.id == 1)) ! 1• handle app. symbol •1
ciiLiail->put(2); 1• spf = 2 *I
ciiLiail->put(user->aln); I* application aln *I
cm.J:ail->put(user->state); 1• application state *I
cm.J:ail->eoLalert(); I* no pgm requests *I
areELiail->put(O); I* symbol-ant= 0 *I
l

else ! 1• handle regular or forked application symbol *I
ciiLiail->put(1); l*spf= 1*1
ciiLiail->eoLalert(); 1• no pgm requests *I
areELiail->put(1); I* symbol-ant= 1 •1
areELiail->put(aln); 1• mln = aln • /
areELiail->put(aln); I* lln- aln *I
areELiail->put(user->symbol);
l

/*terminate pruning downsweep *I

... shown in Figure 3.32

3.4.1.2. Partitioning Downsweep- Pruning

162

The initial partitioning upsweep must be complemented with a pruning

downsweep to complete the construction of active areas, and disconnect

unnecessary channels. To motivate this, let's use the information provided in

Figure 3.27 to do the initial partitioning upsweep for the small segment of FFP

text shown in Figure 3.29.

FIGURE 3. 29-- An Example of Initial Partitioning

Initial Partitioning for (+ < (• < 1 3 >) (• < 2 4 > J 5 > J

--~pruning starts for two areas
(left inactive, right active)

163

Besides connecting area channels for applications that will not be active,

the initial partitioning may extend area connections for what will become an RA

past the RA's rightmost !cell, thus incorrectly including symbols that are not

part of the RA. • This is because FFP text symbols and aln values that occur

between application symbols are not available to the tcell managers during the

initial partitioning upsweep. This information is given to the node managers,

however, and is used during the pruning downsweep to correctly prune off

• In the example, this is done for the rightmost symbol of the !cell array, "5" at level 2,
which is part of the outermost application-- not the rightmost RA as the initial partition­
ing guesses.

164

rightmost portions of active areas created during the initial partitioning.

Each potential area created during the initial partitioning upsweep

(composed of a separate set of connected area channels and area nodes) has a

topmost or root node which initiates the pruning downsweep on command from

its tcell manager. The pruning downsweep disconnects all nodes and area

channels that do not lead to an !cell containing a symbol within an RA, and in

addition, locates and creates the top-of-area node where LPL messages turn

around within each active area overlying an RA. The information fiow in the

pruning downsweep is contained entirely within area channels connected during

the upsweep, and is manipulated entirely by the node manager processes. Tcell

managers are finished with all area-related duties as soon as they complete the

initial partitioning within their tcell, and then become involved in relaying

requests for LPL programs (these are signaled by the root node managers for

active areas before they start pruning) up to the io subsystem.

The pruning information sent down within each set of connected area

channels indicates whether or not these channels are required for supporting an

RA. This decision is initially made by the node manager that starts pruning, and

is subsequently used by lower level node managers to disconnect area channels

and node managers that are not needed for the upcoming execution phase.

Often during pruning of an active area, only the left or right child of a node is

discovered to be part of the associated RA. In such a case, the node manager

signals and then disconnects the unnecessary child, and circuit-switches the

remaining child to the overlying parent node. •

The top of area node is usually lower than where pruning starts. It is always

located in the least common tcell ancestor of the !cells which comprise an RA,

• A node is required only if two children are present.

165

and always has two children. When the root of a newly discovered active area

begins pruning, therefore, it checks to see if it has two active children, and if

not, it disconnects itself after signaling both children appropriately. The first

active node on the way down with two children becomes the top of area, and

circuit-switches its up-going output channel to the input of the down-message

process in the area node to implement message turn-around.

The result of pruning the example of Figure 3.29 is shown in Figure 3.30.

Note how the top of area for the rightmost of the two active areas has moved

down from where pruning starts in the io subsystem, and how the other area for

which pruning starts in the io subsystem has been completely disconnected.

Also, empty and non-active !cells have been correctly pruned from both RAs and

FIGURE 3. 30-- After Pruning the Initial Partitioning Example

Final Partitioning for (+ < (• < 1 3 >) (• < 2 4 >) 5 >)

'

' ' '

' ' ' '
' ' ' '

166

area channels re-routed appropriately. The final position of the two top of area

nodes is shown by circling their nodes.

In an active area channel, the pruning information contains the FFP

operator, the aln of its application symbol, and whether the RA is new. When

received in the !cells of an RA, this information indicates which LPL program the

!cell-input process should look for if the RA is a new one, and if so, each !cell can

use the application symbol aln to compute the local rln value and start an

upsweep to compute the LPL environment directory. Figure 3.31 shows the

specification for the start of pruning in an area node. Figure 3.32 shows the

termination of pruning as it occurs in the !cells.

FIGURE 3. 31 - The Area Nade Algorithm ta Start Pruning

/*

This is the algorithm for starting pruning. Active is only the
tcell..mgr's guess, and will be wrongly false when an intermediate
symbol between twa app symbols causes an RA. Such a situation is
checked for and taken care of here. Lent and rent are the left and
right symbol-ants received in the partitioning upsweep.
*/

node..mgr.starLpruning(active,rchild)
short active,rchild; /* both boolean • /
f

if (active II ((lcnt/lrcnt)&&(mln<=aln))) /*we're really active • / f
if ((lent && (lmln<=aln)) II !rent II (rent && (rlln<=aln))) f

/* cut off in left child • /
top_nf...area = FALSE;
lnp...iail·>put(pck(PARTLY..ACTIVEJOA,aln));
if (rchild) rnp...iail·>put(pck(NOT..ACTIVE,aln));
lnp...iail· >put(pgm);
lnp...iail·>put(state); l

else /*cut off in right subtree • / f
top_nf...area = TRUE;
lnp...iail·>put(pck(ALL..ACTIVE,aln));
rnp...iail·>put(pck(PARTLY..ACTIVE,aln));
lnp...iail·>put(pgm); rnp...iail·>put(pgm);
lnp...iail·>put(state); rnp...iail·>put(state); l

if (top_nf...area) wrap...head·>connect(wrap...iail);
finished= !top...nL.area; l

else 1• we're not active • / f
pgm = 0;
top...nLarea =FALSE;
finished =TRUE;
lnp...iail·>put(pck(NOT...ACTIVE,O));
if (rchild) rnp...iail·>put(pck(NOT...ACTIVE,O)); l

! 1• end of pruning initiation • /

167

FIGURE 3.32-- Termination of Pruning in the Lcells

I*
This is the !cell partitioning algorithm. Lcells start partitioning
by sending up the appropriate segment descriptor information on
the cell manager and area channels.
*I

void !cell. partition()
!

1• initiate partitioning upsweep *I

... shown above in Figure 3.28

1• terminate pruning downsweep *I
unpck(area..head->msg(),&pflag,&aln);
switch (pflag) !
case NOT...ACTfVE:

user->active = FALSE;
break;

case PARTLY...ACTrvE:
case ALL...ACTrvE:

user->active =TRUE;
user->rln = user->aln- aln;
user->lcel4Jgm = area..head->msg();
user->app_state = area..head->msg();

I* end switch *I
l 1• end partitioning •1

3.4.2. Message Support

158

Next to partitioning, the most complex operations in DOT involve message

handling. Many details associated with messages have already been covered in

the discussion of the !cell message-input and message-output processes. What

remains is to show how messages are handled within the overlying tree structure

of an active area. The details of this operation are contained in the upwards-

message class (called node_umh within DOT) used by the node·manager process.

The up_messages entry of this class handles all message activity (in particular

the sorting and merging of messages required by the LPL send statement) for an

area node during a single execution phase.

169

All information that flows on area channels during the execution phase is

broken up into individual packets. Each packet is introduced by a byte count,

and packet data then follows immediately. Although a realistic implementation

would deal with checksums and error recovery, this has not been done here. A

reliable transmission me chan ism is assumed.

3.4.2.1. Message Packets

As shown in Figure 3.33, there are four basic packet types. Three are used

for LPL messages, and the fourth is used to signal the end of the execution

phase and message activity.

FIGURE 3. 33- The Four Message Packet Types

Prefix Packet

Data Packet

Eow Packet

Stop Packet

: Z: order : combine-op :

: byte-cnt : data :

: 0:

: 1 :

LPL messages sent up from the !cells are composed of three packets. The

tlrst packet, a message introduction or prefix packet, specifies the type of

handling that is desired. This information is provided in the LPL send
I

statement, and is composed of the sort-order and combine-operation

information. The message prefix packet always has a byte count of two, and is

merged in a single pipelined upsweep through the area. It is not returned to the

!cells. Following the message prefix out of an !cell is the main message or

data packet

Each data packet has a byte count of at least two, since the keyl and key2

values in a send statement are always sent. Additionally, each requested

message argument accounts for an additional byte. Thus the byte count for the

170

message packet will be 2 + msize as specified in the send statement. Message

bytes follow immediately to complete the packet.

Finally, each message out of an !cell is terminated with an end-of-wave, or

eow packet. This packet contains no information, and has a zero byte count.

When received by a node manager, it indicates that no further message packets

for the current wave will be received on that channel. When an eow has been

received by a node manager from both of its children, an eow is sent up to its

parent. When the top of area node relays the eow, it is broadcast to all

underlying !cells, the current message wave comes to an end, and the next one

is started. An !cell that does not wish to send a message for a particular

message wave sends just the eow packet for that wave.

The fourth packet type is a stop packet. Since processes in the DOT model

are never interrupted, there must be some way to free up a node manager that

is waiting for the next packet arrival from a child area channel after execution

phase message processing in the !cells has come to an end. The stop packet is

thus sent up on area channels by the !cell manager when the execution phase

ends, and this guarantees correct fiushing of area channels before they are

disconnected. A stop packet has a byte count of one, and is special in that there

is no following data.

3.4.2.2. Message Handling

The top-level for area node message handling is given in Figure 3. 34. The

approach is organized to allow pipelined operation. Initially, the prefix must be

merged and sent up. This is handled in the start-new-wave entry, which reads

and passes up the sort and combine selectors coded in the send statement.

Besides passing it up, start-new-wave also loads this information into a data

structure called mspec. Once this is done, message packets from the children

171

of the node can be handled.

The general approach (assuming that eow has not been received from either

child) is to read child message counts and pass a message count up to the node

parent. Then key1 values from both children are read. The appropriate key1 is

then sent up (based on the sort order) and the other saved in a buffer. Then

key2 is handled, and the correct (selected) key2 is sent up, and the other saved

in the appropriate buffer. This buffer holds key1 and key2 values for the "losing"

message (i.e., the message that is not selected for immediate relay upwards).

The rest of the message packet for the winning message is relayed up. Looping

back to handle the next message, the key values for the message that lost out

last time are already available, so the byte count for the next prefix following

the successful message is read. Processing continues as before, but only one

channel needs to be read to get key values this time.

If the key values for two messages entering a node are the same, the

messages should be combined. The correct keys will already have been sent up,

and the primary difference between sorting as explained above and combining is

that a combined message is then created from the two entering messages, and

the entering messages are thrown away. Following this, there will be no buffered

key values (since the message packets from both children were used up), so

processing continues as initially explained.

3.4.2.3. Stopping Messages

Besides pipelining messages as described above, the primary complication

involved in message processing is knowing when to stop. There are two

possibilities. First, the node manager has access to a memory location shared

with the tcell manager which is set when the stop message comes down through

cell manager channels to signal the end of the execution phase. This location is

172

checked by the node manager before it attempts to read a new message packet,

and, if the stop message has come through the tcell, the node manager

immediately relays a stop packet to its parent, stops processing m:ssages, and

starts flushing them. Nothing further is sent to the parent.

It is also possible that the stop message may go through a tcell just after

the node manager checks for it, so the node manager misses it and goes on to

await the next message packet arrival. This is the reason for using a special stop

packet. Even if node managers miss the stop message on its way down, they

must see the stop packet as it rises from the !cells. In any case, messages are

flushed until a rising stop packet is seen from both children. Nothing ever

follows the stop packet up area channels.

When the stop packet is relayed through the toa, and is detected back at

the !cells, the !cells know that all LPL messages for the current execution phase

have been received and that they can shut down and save their LPL programs.

FIGURE 3. 34 -- Upwards Messages in a Tcell Node

node_nmh.up...messages() I* hand up messages far one machine cycle • I
1 mspec.valid = FALSE; I* don't know how to handle message wave yet • I

while (!celUI!gr->nod~om) 1 1• stop message ha.sn 't come down yet • I
if (!mspec.valid) starLnew.JVave(); I* get hand/.ing instructions • I
if ((lbuf.msize!=STOPCNT) && (rbuf.msize!=STOPCNT)) 1

1• handle next message or eow for present wave • I
if (!lbuf.full && lbuf.msize>EOW) lbuf.msize=lhead->msg();
if (!rbuf.full && rbuf.msize>EOW) rbuf.msize=rhead->msg();
if ((lbuf.msize!=STOPCNT) && (rbuf.msize!=STOPCNT) &&

(lbuf.msize>EOW 1\ rbuf.msize>EOW)) !
I* handle message. start with message size • I
msize = (lbuf.msize>rbuf.msize)?lbuf.msize:rbuf.msize;
handup(msize);
mselect=2; 1• assume equal keys initially • I
1• accept keyl values and see if ordered yet • I
if (!lbuf.full && lbuf.msize>EOW) lbuf.key1=lhead->msg();
if (!rbuf.full && rbuf.msize>EOW) rbuf.key1=rhead->msg();
mselect=select(l buf. key 1, rbuf. key 1);
switch (mselect) !

case 0: handup(lbuf.key1); break;
case 1: case 2: handup(rbuf.key1); l

I* accept key2 values and see if ordered if not already • /
if (!lbuf.full && lbuf.msize>EOW) lbuf.key2=lhead->msg();
if (!rbuf.full && rbuf.msize>EOW) rbuf.key2=rhead->msg();
lbuf.full = rbuf.full = TRUE;
if (mselect==2) mselect=select(lbuf.key2,rbuf.key2);
switch (mselect) 1

case 0: handup(lbuf.key2); break;
case 1: case 2: handup(rbuf.key2); l

I* relay or merge to produce result message • I
switch (mselect) !

case 0: up...remaining(lhead,lbuf.msize-2); break;
case 1: up...remaining(rhead,rbuf.msize-2); break;
case 2: combine(); l
I* end handing up one message • I

else ! I* either end of wave from both children, or eom • I
mspec. valid = FALSE;
if (lbuf.msize!=STOPCNT && rbuf.msize!=STOPCNT)

handup(EOW); l*itwasanendojwave *I
l I* end handling eow or eom • I

l 1• end handling message or eowleom •1
l I* end execution phase • I

handup(STOPCNT);
fl.ush...messages(lhead,&lbuf); fl.ush...messages(rhead,&rbuf);

173

174

3.4.3. Directory Creation

As described in Chapter 2, the LPL directory is composed of a symbol index

and a directory tuple. We now present the algorithms used within the !cells and

the tcell area nodes to compute and initialize these values for the LPL code

segments that execute within RAs. The correctness of the algorithms for

directory creation is established using the principle of mathematical

induction. •

3.4.3.1. Computation of the Symbol Index

Computation of the LPL environment variable symbol_jndex is performed

using an upsweep to accumulate information into the area nodes, and a

downsweep to distribute the correct information to the !cells. Figure 3. 35

summarizes the information flow. Note that a merge operation (addition) is

performed by area nodes during both the upsweep and downsweep. During the

upsweep, a result based on two incoming values is sent to the parent; during the

downsweep, a result based on the incoming value and a value remembered from

the upsweep is sent to the right child .

• Mathematical induction is based on the idea of inheritance -- the idea that if P(i) is true,
then so is P(i+l). This is called an inductive hypothesis, and establishment of P(i) for a
particular i is called an inductive base. An inductive proof must show that the inductive
hypothesis is true for all i of interest and give an inductive base in order to establish P(i)
for all i that are successors to the base.

175

FIGURE 3. 35- Diagram far Symbol Index Calculation

Upsweep Downsweep

3.4.3.1.1. Upsweep

For the upsweep, let P u(i) mean that the number sent up from each area

node at level j correctly represents the count of all the leaf cells in its subtree.

Call this number cntj" Now, if P u(j) is true, and each node at level i=j+ 1 receives

the resulting cntj values passed up by its left and right children as lcnti and

rcnti respectively, and then sends up

then clearly P u (i=j+ 1) holds as well. This establishes an inductive hypothesis for

the upsweep. An inductive base is provided by the !cells of an area, which send

up 1. Because P JD) is therefore true (the correct symbol count within an active

!cell is always 1), P u(toa-1) also holds by induction. At the toa, then, following

such an upsweep, we know that the symbol index of the leftmost symbol of the

left area subtree is 0, and the symbol index of the leftmost symbol of the right

176

area subtree is lcnttoa {because this is the count of the number of symbols in

the left area subtree). These values provide an inductive base for the

downsweep.

3.4.3.1.2. Downsweep

For the downsweep, assume the lent values have been saved by the nodes

during the preceding upsweep, and let P d(k) mean that the numbers sent down

to the left and right children of level k nodes correctly represent, respectively,

the true symbol index of the leftmost symbol in the left child's area subtree, and

the true symbol index of the leftmost symbol in the right child's area subtree.

Call these numbers left_jxk and right_jxk respectively. If P d {k) is true, and each

node at level i=k-1 receives the resulting value passed down by its parent as lx.,
~

and then sends to its left and right children the values

left_jxi = lxi, and

right lx. = 1Lx. + lent.) - t {l 'l, 'l.

then P d(i) also holds.* This establishes an inductive hypothesis for the

downsweep. An inductive base is provided by the toa which sends down left_jxtoa

= 0 and right_jxtoa = lcnttoa· Because P d(toa) is therefore true {as noted at the

end of the upsweep discussion), P d(O) also holds by induction. Since at level 0

(the lcelllevel) the leftmost symbol is the only symbol, the value received there

as lx0 is the desired symbol index. Figure 3.36 gives the portions of the !cell and

area node directory creation algorithms responsible for creating the symbol

index. As can be seen, there is a close correspondence with the above inductive

reasoning .

• Clearly, if !xi. is the beginning symbol index of the left subtree, the beginning symbol in-
dex for the rignt subtree is !xi plus the count of symbols in the left subtree.

FIGURE 3. 36- Algorithms for Symbol Index

!cell. build_directory() 1• symbol index portion • I
!

1• upsweep -- establish inductive base • I
areaJail->put(l); I* send up symbol count for this level • I

1• downsweep -terminate using inductive hypothesis • I
user->symbol..index=areaJlead->msg(); 1• receive symboLindex • I

node....mgr. build-<iirectory() I* symbol index portion • I
!

1• upsweep --preserve inductive hypothesis • I
lent = lnp_head->msg(); rent= rnp_head->msg();
if (!top__of__area) np_iail->put(lcnt+rcnt); I* send up total count • I

I* downsweep to place symbol...index and addresses into leaves • I
if (top__of...area) !

1• start downsweep -- establish inductive base •/
lnp_tail->put(O); I* left-lx for toa • I
rnp_tail->put(lcnt);! I* right-lx for to a • I

else ! 1• continue downsweep -preserve inductive hypothesis • I
lx = np...head->msg(); I* get lx • I
lnp_iail->put(lx); I* send left-lx • I
rnp_iail->put(lx+lcnt);! 1• sendright-lx *I

3.4.3.2. Computation of the Directory Tuple

177

Computation of the directory tuple also involves an upsweep to accumulate

information into the area nodes. and a downsweep to distribute the desired

information to the !cells. While the symbol index computation uses a simple

merge function (addition) and P u and P d predicates based on the values of

single numbers passed between the lcells and nodes, the directory tuple

computation involves a more complex merge function and P u and P d predicates

based on tuple values. Figure 3.37 summarizes the information flow. A merge

operation (0, to be described below) is performed by area nodes during both the

upsweep and downsweep. During the upsweep, a result based on two incoming

values is sent to the parent; during the downsweep, a result based on the

178

incoming value and a value remembered from the upsweep is sent to the right

child.

FIGURE 3. 37- Diagram for Directory Tuple Calculation

Upsweep Downsweep

lefUdrl1 = tdrl1 right_tdrl1 = tdrl1 0 ldrs1

The definition of the LPL environment directory tuple, D=[d1 ... dn], was

given in Chapter 2. As explained in Section 2.3.1.2 with the help of Figures 2.12

and 2.13, the directory tuple for an FFP text symbol is directly related to the

parse tree of its RA, and the value of a general dj represents the left-to-right

count of RA symbols at level j (up to the symbol whose directory is of interest)

that are within the scope of the last constructor (sequence or application

symbol) with nesting level j-1. • To provide a frame of reference for the

following discussion, Figure 3.38 contains an example RA located within an active

partition of a DOT machine. This figure represents a typical active area; area

channels have been pruned during partitioning, and as a result the area is not

height balanced .

• The level of a symbol in the parse tree for its RA is the rln value that is locally comput-
ed by]cells upon learning the aln of the RA application symbol.

179

FIGURE 3. 38- An Example RA Within an Active Area

Figure 3.39 shows the parse tree corresponding to the RA of Figure 3.38,

and gives directory tuples with truncation at level 3. The directory tuple for "b"

. is [2,1,2] -- d1 is 2 because there are two level 1 symbols (the operator and the

argument sequence symbol) within the scope of the last level 0 symbol (tha

application symbol) before "b"; d 2 is 1 because there is 1 level 2 symbol (the

second sequence symbol) within the scope of the last level 1 symbol (the

argument sequence symbol) before "b"; d3 is 2 because there are 2 level 3

symbols ("a" and "b") within the scope of the last level 2 symbol before "b".

X
[1, 1 ,0]

FIGURE 3. 39 -- Example Parse Tree and])irec tory 'I'uples

y
[1 ,2,0]

(
[0,0,0]

level 0 (rln=O)

< level 1 (rln= 1)
[2,0,0]

/ ~
<

)2,1,0\

a b

< level 2 (rln=2)
[2,2,0]

I
[2,1,1] [2,1,2]

c level 3 (rln=3)
[2,2, 1]

180

We now consider the tuple values that are passed in the upsweep and

downsweep to compute the directories for the symbols of an RA. We make no

assumptions here concerning the level of truncation. DOTpresently provides LPL

programs with a four-level directory, but the following algorithms work with

truncation at any level. All examples will perform truncation at level 3, as in

Figure 3.39.

3.4.3.2.1. Upsweep

For the upsweep, let P u(j) mean that the tuple value sent up by each node

at level j correctly represents the directory of the rightmost symbol within its

subtree (i.e., correct relative to only those symbols in the subtree). Call this

tuple drsj (for relative directory of the rightmost symbol).

In order to establish an inductive hypothesis for the upsweep, we must

determine an operation 0 such that if each node at level i=j+ 1 receives the drs

tuple values passed up by its left an.d right children as ldrsi and rdrsi

respectively, and sends up

lBl

then P u(i=j+l) also holds. The appropriate operation for the symbol.Jndex

calculation was addition; here we must refer to the definition of the directory

tuple for guidance. The trick is to realize that we are merging truncated

representations of partial parse trees.

A directory tuple contains certain information about the parse tree from

which it is derived. It doesn't contain all information about the parse tree

because the dj values of a directory tuple only represent the count of symbols

within limited scopes, as indicated by the definition of the directory tuple. Each

drs tuple sent on the upsweep therefore represents a class of parse trees which

conform to the structure implied by that tuple. The merge operation which 0

must refiect is the joining of two such parse tree classes into a new one, and the

representation of the result with a new directory tuple (i.e., drs value). Figure

3.40 shows the two drs tuples that are received by the top area node of Figure

3.3B, and portrays the partial parse trees that are implied by these tuples. The

ldrs tuple is the relative directory of "b", and the rdrs tuple is the relative

directory of "c". •

' These values are easily calculated using the definition of the directory tuple (within the
confines of the respective subtrees). What we must discover is how to define [l so that
these values are actually sent during the upsweep.

182

FIGURE 3.40- Before Merging Partial Parse Trees

rlnO (

/~
1 < < - - --2 < - <

3 a b c

!drs= [2,1,2] rdrs=[0,1,1]

Note that the parse tree class implied by ldrs in Figure 3.40 does not

include nodes for all the operator symbols of the actual RA. This is a result of

the limited precision of ldrs, the relative directory of "b". Truncation effects are

absent because no symbol of the RA is nested deeper than three levels.

During the upsweep, partial parse trees represented by tdrs and rdrs are

merged in the obvious way -- by connecting them according to their implied

levels. The dotted line in Figure 3.40 illustrates this, and Figure 3.41 shows the

result of merging the partial parse trees of Figure 3.40. The rightmost symbol in

the result is "c", and from the definition of the directory tuple we know that its

relative directory is [2,2,1]. For completeness, the partial parse tree implied by

a directory tuple of [2,2,1] is shown on the right in Figure 3.41.

FIGURE 3.41- After Merging Partial Parse Trees

merged partial parse trees resulting drs tuple
(relative directory for c)

drs=[2,2,1)

partial parse tree
represented by drs tuple

183

We now give a procedure to calculate the result of the merge operation 0 on

two directory tuples D1 and Dr.

To get result tuple values, from left to right add D1 and Dr directory

val.ues {dlj + drj) to produce corresponding result values, w1.th the fol­

lowing exception: after the first non-zero dr value has been encountered,

following d values are the correct corresponding result values.
r

This procedure produces the correct result of [2,2, 1] for the example in

Figures 3.40. That it will always produce the correct result may be seen from the

following reasoning. The objective of 0 is to produce the directory tuple of the

rightmost symbol of two merged partial parse trees, and an rdrs value is already

the correct directory for this symbol within the context of its containing

subtree. The dj values following the first non-zero rdrs directory entry therefore

require no modification when the left context implied by ldrs is also considered.

This is because the definition of the directory tuple requires that dj values

represent a count of level j symbols only within the scope of the last symbol at

184

level j-1. Leading zero directory values preceding the first non-zero rdrs

directory entry indicate that the corresponding partial parse tree has no

symbols at these levels. In this case, therefore, left context symbol counts

represented by the ldrs directory tuple should be included in the resulting drs

tuple because the symbols represented by the rdrs tuple must be within the

scope of sequence symbols located in the left context. • The result

corresponding to the first non-zero rdrs value requires addition since, as shown

in Figure 3.40, this symbol should be counted along with others at the same level

that are within the scope of the last symbol with less nesting (which symbol, if it

exists, is in the left context implied by ldrs).

Thus, on the upsweep, in order to always send up the relative directory of

the rightmost underlying symbol, a general node i should send

with 0 computed as described in the above procedure. Figure 3.42 shows how

the ldrs and rdrs relative directories for two subtrees are used by their parent

to determine a drs relative directory. This figure also portrays the scope of the

relative directories involved .

• In the procedure for calculating 0, addition of leading zero rdrs directory values to the
corresponding ldrs values to produce a result is equivalent to simply using the ldrs
values.

185

FIGURE 3.42- Directory Upsweep Computation

!drs rdrs

drs=ldrsOrdrs
E

With the merge operation taken care of, and thus our inductive hypothesis,

all that is left for the upsweep is a basis step. The definition for the directory

tuple indicates that·the correct directory tuple, drs 0, for an !cell symbol is

drs 0 = 6 l ~ D=[d1 ... d], where rn n

dj= 0 for j ;t rln

d.=J for j = rln
J

186

Figure 3.43 shows the example of Figure 3.38, and includes the drs tuples

that are calculated within each area node during the upsweep.

FIGURE 3. 43- An Example Upsweep

[2,2,1]

''·'·'' A
[0,0,0] [1,0,0] [0,1,0] [0,1,0] [1,0,0] [0,1,0] [0,0,1] [0,0,1] [0,1,0] [0,0,1]

rnmrnwmrnrnrnmrn
With !cells and area nodes behaving as described above, P u(O) is true (the

6rln tuple sent up by an !cell is the correct relative directory of a contained

symbol), therefore, by induction, P u(toa-1) holds as well. At the toa, then,

following such an upsweep, we know the correct directory for the rightmost

symbol of the left area subtree (it is ldrstoa since there are no RA symbols to

the left of the left area subtree to change this value). Since this directory tuple

is correct with respect to the entire RA we call it the true directory for the

symbol of interest. Also, since there are no symbols to the left of the left area

subtree, we know the true directory for the rightmost of these symbols (there

are none, so it is [0 ... 0], vacuously).

187

3.4.3.2.2. Downsweep

For the downsweep, assume the ldrs values have been saved by the nodes

during the preceding upsweep, and let P d(k) mean that the tuples sent to left

and right children of level k nodes correctly represent the true directory of the

rightmost symbol to the left of their subtree. Call these tuples left_jdrli and

right_.tdrli (where tdrl stands for "true directory of the rightmost symbol to the

left"). If P d(k) is true, and each node at level i=k-1 receives the resulting tuple

passed down by its parent as tdrli, and then sends to its left and right children

the values

left_ldrli = tdrli

right_.tdrli = tdrli 0 ldrsi

then P d(i=k-1) also holds. • This establishes an inductive hypothesis for the

downsweep. Figure 3.44 shows how the tdrl tuple passed down by a parent and

the saved ldrs tuple are used to determine the values to be passed to subtrees.

Also included in this figure are the scopes of the relative directories involved .

• The reasoning is similar to that used for the upsweep. The received tdrl tuple indicates
the directory of the rightmost symbol to the left of the subtree of the receiving node, and
the right.Jdrl (to be sent to the node's right child) must indicate the directory of the
rightmost symbol of the left child subtree. Therefore the partial parse trees represented
by tdrl and the saved ldrs tuple are merged to produce this result.

188

FIGURE 3.44-- Directory Downsweep Computation

~drl!11drs

tdrl !drs

:-
--=:.::....---1' -· ----"'---1

o~ tdrl n !drs

An inductive base is provided by the toa, which sends down left_jdrltoa =

[0 ... 0] and right_jdrltoa = ldrstoa· Since P d(toa) is true (as noted at the end of

the upsweep discussion), P d(O) also holds by induction. Since at level 0 (the !cell

level) the value that would be sent down as right_jdrl0 is the true directory of

the symbol stored therein, this tuple is the desired LPL environment directory

• tuple. Of course this directory tuple is not passed down further, but is kept as

the local LPL environment directory tuple .

• The !cells use orin for the ldrs value to merge with the received tdrl value. This is
correct, because at the lcelllevel there is but one symbol to consider.

[e,
;\

(0,0,0] [1,0,0]

FIGURE 3.45-- An Example Downsweep

,~]

;\
(1,0,0] (1,1,0]

[~,

;\
(1,2,0] (2,0,0]

,~]

;\
(2,1,0] (2,1,1]

189

[~]

;\
(2,1,0] (2,2,0]

rn rn rn w rn rn rn rn rn ·rn
(0,0,0] (1,0,0] [1,1,0] [1,2,0] [2,0,0] [2,1,0] [2,1,1] [2,1,2] [2,2,0] [2,2,1]

Figure 3.45 continues the example of Figure 3.43 by showing the left_ldrl

and right_ldrl tuples that are sent during the downsweep. Tuples in this figure

are displayed above the area nodes to which they are sent. Tuples beneath the

!cell array are the correctly computed directory values for the LPL

environments. While examining this figure, recall that the tuple value received

by a node represents the context to the left of its complete subtree, and the ldrs

tuple that is held within the node (shown using a compressed format with no

brackets or commas) represents the left child context. The ldrs values used by

the !cells to finally determine the directories are not shown, but are implied by

the rln values locally stored.

Figure 3.46 gives the portions of the !cell and area node directory creation

algorithms responsible for creating the directory tuple. As can be seen, there is

a close correspondence with the above inductive reasoning.

FIGURE 3.46- Algorithms for Directory Tuple

lcell.buil<Ldirectory() /*the directory tuple portion*/
!
char *dir = user->directory; short i;

/* upsweep --establish inductive base • /
for(i=O; i<DLEVELS; i++) /*send up correct drs tuple • /

area.iail->put((•(dir+i) = (user·>rln==i+l)?l:O));

/* downsweep - use inductive hypothesis to terminate • /
for (i=O; i<DLEVELS; i++) /*receive tdrl and merge • /

if (i<user->rln) •(dir+i) += area..head·>msg();
else area..head->get(&garbage);

node...mgr. buii<Ldirectory() /* the directory tuple portion • /
!
char tdrl, rdrs, ldrs[DLEVELS], zeros, i;

/' upsweep --get !drs and rdrs tuples and merge • /
zeros = TRUE; /* all rdrs d have been zero so jar • /
for (i=O; i<DLEVELS; i++)!

ldrs[i] = lnp..head->msg(); rdrs = rnp..head->msg();
if (!top_of_area) np...iail->put

((zeros)?rdrs+ldrs[i] :rdrs);
zeros &= (rdrs == 0);
!

/* downsweep -get tdrl and send left· and ri{lht-tdrl • /
if (top_of_area) for (i=O; i<DLEVELS; i++)!

else !

/* must start downsweep • /
lnp...iail->put(O); /* left·tdrl for toa • /
rnp...iail->put(ldrs[i]); /* ri{lht-tdrl for to a • /
!

/• must continue downsweep • /
zeros = TRUE; /* allldrs d have been zero so far • /
for (i=O; i<DLEVELS; i++)!

tdrl = np..head->msg();
lnp...iail->put(tdrl); /* lejt·tdrl • /
rnp...iail->put(/* right-tdrl • /

(zeros)?!drs[i] +tdrl: !drs [i]);
zeros&= (ldrs[i]==O); !
!

190

191

3.4.4. Calculating the Specification for Storage Management

The algorithms used for calculating the specification for storage

management involve support by !cell managers and tcell managers, as opposed

to the use of node managers for directory creation. The method used involves an

upsweep and downsweep of information through the entire tree, and can be

analyzed in the same way as directory creation. Figure 3.4 7 summarizes the

information fiow.

FIGURE 3.47-- Calculating a Specification for Storage Management

cr.
I

be.
I

Upsweep Downsweep

!cr.
I

rcr.
I

left_bci rig t_bci

Both upsweep and downsweep use information tuples composed of two

values. On the way up, the information sent is the capacity of a subtree (i.e., how

many !cells are in the subtree), and the storage requests of a subtree (i.e., how

many !cells are required by the local FFP text and executing LPL contexts for

the next execution cycle). In the downsweep, shift values are sent to describe

the number of !cell user contexts that sho\lld be shifted into a subtree through

its left !cell boundary, and the number to be shifted out through its right !cell

boundary. These shift values are signed; positive values indicate right shifting,

192

and negative values indicate left shifting. When the shift values reach the lcell

level, they form the specification for storage management for each lcell.

3.4.4.1. Upsweep

For the upsweep let P u(j) mean that each node at level j of the tree of

processors sends up to its parent the correct capacity of its subtree, and the

correct request total from its underlying !cells. Call these values capj and reqj,

and their combination into a tuple crj' Now, if P u(j) is true, and every node at

level i=j+ 1 receives the resulting values passed by its left and right children as

lcri and rcri respectively, and then sends up

cr.=
~

capi = lcapi + rcapi

reqi = lreqi + rreqi

then clearly P u(i=j+1) holds as well. This establishes an inductive hypothesis for

the upsweep. An inductive base is provided by the !cells of the machine, which

send up values as follows:

cap0 = 1

req 0 =
{lcell empty)

(otherwise)

->0

--> usercontext.Jorkn•

Since P u(O) is therefore true, P u{io-1) is also true by induction. At the io node,

then, following such an upsweep, we know the capacity of the entire tree, and

the total number of !cells requested for the next cycle.

• As stated earlier, execution of an LPL fork statement modifies the forkn context vari­
able which starts every active execution phase with a value of one. Non-active lcells al­
ways send one.

193

3.4.4.2. Downsweep

For the downsweep, assume that the lcr and rcr tuples have been saved by

the tcells during the preceding upsweep, and let P d(i) mean that the numbers

sent down to left and right children of level i nodes represent boundary

conditions that allow feasible solutions to the storage management problem

within their respective subtrees. Call these boundary conditions left..J>ci and

right..l>c,i respectively, where a boundary condition is a tuple composed of a

left_gntry and a right_departure value.

By feasible solution, we mean that there exists a solution to the. storage

management problem locally within a child subtree that is consistent with the

left and right boundary conditions which the subtree tcell root receives from a

parent at level i+ 1 as be.. Figure 3.48 shows that a solution to the storage
. ~

management problem for a subtree rooted at level i is represented by a single

transfer value, ti, that describes the direction and amount of context flow that

should take place on the lc ell shift register that joins the two child subtrees

rooted at level i-1.

FIGURE 3.48- Transfer Value Solution for Storage Management

be.
1

l
en · es depa tures

194

As shown in Figure 3.48, once t., a solution for storage management, is
'·

computed by the tcell at level i, it can send off lejtyc and rightyc tuples to its

left and right children as follows:

left_l>ci =
left_gntries

right_departures

right be.= - ~

lejt_gntries

right_departu.res

= bci.lejt_gntries

= ti

= ti

= bci.right_depa.rtures

Calculation of ti is analogous to the downward merge functions of directory

creation. Let us therefore define the transfer function (call it r) as a function

195

that takes three tuples (!rei and rrci from the upsweep, and bci from the

downsweep) and produces a \ that specifies the transfer of contexts between

the two subtrees of a tcell. This function is not unique; a variety of approaches

toward allocation of !cells to user contexts is possible.

Our approach is that suggested originally by Mago [Mag79] -- contexts are

moved between left and right subtrees of a tcell only if absolutely necessary,

and then the minimum possible number of contexts are shifted. This heuristic

reduces information shifting between subtrees. It therefore avoids total

compaction of contexts within adjacent !cells, which is important to an efficient

storage management phase. As will be discussed in Chapter 6, the method is not

optimal in minimizing the maximum distance for symbols to be shifted, but it is

efficiently implemented with a minimum of information fiow within the tree. In

any case, it is not clear that a locally optimal storage management during one

phase will necessarily produce the best long-term performance over a number

of cycles. More study of this tradeoff is required.

Figure 3.49 presents the procedure presently used to calculate the transfer

function.

FIGURE 3.49- Calculation of the Transfer Function

f(lrc,rrc,bc)
!

if lrc.capacity >= (lrc.requests + bc.leftentries)

/*no need to shift right between subtrees • /
if rrc.capacity >= (rrc.requests- bc.rightdepartures)

/* no need to shift between subtrees • /
f=O;

else /*need to shift left between subtrees • /
r = rrc.capacity-

(rrc.requests- bc.rightdepartures)

else /* need to shift right between subtrees • /
r = (lrc.requests + bc.leftentries) - lrc.capacity

196

With the merge operation taken care of (i.e., calculation of the

ti = f(lrci,rrci,bc)), and with the resulting left_bci and right_bci thus

determined as shown in Figure 3.49, the inductive hypothesis for the downsweep

is established, and all that is left is establishment of an inductive base.

The left_j:JCio tuple goes to the vm subsystem, and right.J>cio tuple goes to

the processor tree. Calculation of the transfer function at this level is done with

bc.left_smtries and bc.right_departures both implicitly zero. •

A heuristic used to determine a tio value (required to start the downsweep)

need only generate feasible boundary conditions for the vm subsystem and the

processing tree, and our approach is as follows. Overflow from the processing

tree must be accommodated by the vm subsystem, so if there is overflow, tio is

set to the amount of overflow required (actually its negative, to indicate left

shifting into the vm subsystem). If overflow is not required, as much previous

• This is another way of saying that the vm subsystem is self-contained so no symbols
enter it from the left, and there is no shifting out of the right boundary of the processor
tree.

197

overflow as possible is returned to the processor tree by shifting right from the

vm subsystem. If there is enough further room in the processor tree to hold the

next program, it is also shifted in. To perform this calculation, the io subsystem

needs the crio tuple received from the root of the processing tree, and the

number of overflowed contexts and .size of the· next program held by the vm

• subsystem. Figure 3.50 shows the resulting preparation for storage

management downsweep as seen within the io subsystem

•

FIGURE 3. 50- Starting the Downsweep of Preparation for SM

io.prepJor...sm()

l
/*pick up capacity and requests from Mago tree • /
capacity= cm...head->msg();
requests = cm...head->msg();
available = capacity -requests;

/*pick up overflow and next program size from VM • /
overflow= vm...head->msg();
nextsize = vm...head->msg();

/*calculate a feasible transfer solution • /
if (available <= 0) /*forced overflow • /

transfer = available;
else /* we have room for right shifting • /

if (overfiow+nextsize <=available)
transfer = overfiow+nextsize;

else
if (overfiovi <=available)

transfer = overflow;
else transfer = available;

/* tel! the tree and VM about it • /
ciiL.iail->put(transfer); /*left entries into processor tree • /
cm...tail->put(O); /*no right departures from tree • /
viiL.iail->put(transfer); /*right departures from vm */

This approach avoids total compaction of FFP symbols within the lcell array, and is sa-
tisfactory for simulation of single programs. An effective heuristic for handling multiple
user programs would be more flexible in the entry of new programs.

198

The start of the downsweep of preparation for storage management --

described above, and shown in Figure 3.50 -- is clearly a feasible solution, so

P d{io) is true. Thus, by the inductive hypothesis established above, P d(l) holds

as well. Thus the values received at level 0 {by the !cells) are the desired local

specifications. for storage management; !cells shift bc0.left_entries in through

their left boundaries, and bc0.right_departures out through their right

boundaries. Figure 3.50 showed the io subsystem algorithm. The !cell algorithm

for preparation for storage management (followed by the top-level of the

ensuing storage management phase) is given in Figure 3.51. The tcell algorithm

used in preparation for storage management is given in Figure 3.52.

FIGURE 3. 51 -- Lcell Preparation and Storage Management

lceli.siiLPrep()
!

1• upsweep •1
I* first the available lcells --i.e., capacity *I
cm..!ail->put(l);
I* then the number requested *I
cm..!ail->put((user->state==EMPTY)?O:user->fork...n);

1• downsweep •1
lefLentries = c!1L.head->msg();
righLdepartures = cm_head->msg();

Jcell.storage...management()
!

while (lefuntries<O) ! emit(O); lefuntries++; l
while (righLdepartures>O) ! emit(l); righL.departures--; l
load..local();

FIGURE 3. 52- Tcell Preparation for Storage Management

tcelL..mgr. prepare...s!IIJlp...rln()
I

I* upsweep • /
lciiLhead->get(&L.cap); rciiLhead->get(&r_cap);
ciiL.iail->put(L.cap + r_cap);
lciiLhead->get(&L..req); rcm...head->get(&r _req);
ciiL.iail->put(L..req + r....req);

/* downsweep • /
ciiLhead ->get(&L.e ntries); ciiLhead->get(&r ...rlepart ures);
lciiL.iail->put(L.entries); /*left entries for left child • /

if (L..available>=(L..requested+L.entries)) /*no right shift • /
if (r _available>=(r _requested-r ...rlepart ures))

I /* no left shift either • /
rcm...iail->put(O); /*right dep left child • /
lcm...iail->put(O); /*left ent right child • /
l

else I /* no right shift, but must shift left • /
rcm...iail->put

(r__available-(r _requested-r ...rlepartures));
lciiL.iail->put

(r__available-(r Jequested-r ...rlepartures));

l
else I /*must shift right • /

rciiL.iail->put(Lrequested +!...entries- !...available);
lciiL.iail->put(L..requested +!...entries -!...available);

I

1• right departures for right child •1
rciiL..tail->put(r ...rl epart ures);

3.5. Summary

199

This completes the discussion of the DOT implementation. The overall

strategy and operation of the different phases of the machine cycle was

introduced, and the process structuring of the multiprocessor cells was

detailed. In addition, the most important algorithms used by these processes to

cooperatively implement the phases of the machine cycle were described.

200

Of these algorithms, partitioning is the most complex in terms of its ClassC

representation, and numerous examples were given to illustrate our solution to

this dift'icult design problem. LPL message handling was detailed, and the

different types of message packets were presented. Finally, the algorithms for

directory creation and preparation for storage management were examined, and

shown to be fairly simple. These algorithms require only small amounts of ClassC

code for their representations, and correspond directly to the inductive

reasoning used to establish their correctness.

CHAPTER 4

Simulating DOT

4.1. Introduction

Chapter 3 presented an implementation model made up of relatively

independent, asynchronous cellular processors connected via point-to-point bus

links to form a binary tree. The primary role of the DOT representation is to

provide a formal and unambiguous description of this model. An important and

beneficial result of such a representation is the aid it provides in reasoning

about design decisions and the operational characteristics they imply.

Expressing ideas in a precise and unambiguous form often highlights errors and

points out areas for which concern has been lax or omitted. This has certainly

been confirmed by our experience with DOT. Representing DOT thus provided a

base for the early stages of an iterative design process.

Since the language used to represent DOT is executable, the above benefits

are extended to provide even further assistance to the design process -- during

later phases of the design cycle ·- through simulation of the implementation,

and, in fact, emulation of the complete programming system which it

• supports. Architecture emulation, in turn, allows further iterations of the

overall design cycle. The LPL architecture is the result of such design

iterations .

• This requires the construction of two ancillary programs: assm, an assembler for LPL
source programs; and mlcusr, a program to collect FFP user programs into a form ap­
propriate for loading into the vm subsystem.

201

202

4.2. The Place of Simulation Within the Design Cycle

Shannon gives the following definition for simulation [Sha75]:

"Simulation is the process of designing a model of a system and conducting
experiments with this model for the purpose of either understanding the
behavior of the system, or evaluating various strategies fo•r the operation
of the system."

Thus, in addition to representing a design, the use of a simulation language can

assist understanding and supply a means for evaluation.

Shute describes the role of simulation in the design and study of

multiprocessor systems [Shu83]. He identifies major objectives of simulation,

and lists the important properties of simulation that can be used in meeting

these objectives. Figures 4.1 and 4.2 summarize these important aspects of

simulation. Subsidiary benefits of simulation given by Shute are listed in Figure

4.3.

In an initial design, attention to specificity and clarity of expression is

paramount. If a simulation model is expressed at the chosen level of detail

FIGURE 4. 1 -- Objectives of Simulation

• Specifying the Operation of the System
• Understanding the Operation of the System
• Validating the Design
• Calculating Performance
• Optimizing Performance

FIGURE 4.2-- Properties of Simulation

• Unambiguous Description of the Design
• Discipline of Designing in a Rigorous Fashion
• Ability to Test the Design
• Ability to Emulate the Machine
• Predictable, Repeatable Nature of Digital Processing
• Ease of Duplicating and Modifying Computer Data

203

FIGURE 4. 3- Subsidiary Benefits of Simulation

• Documentuiion
• Encouragement to try out Alternative Ideas
• A Cushion against Production Errors
• Provision of a Software Substitute for Hardware

during this stage, the design can undergo several modifications simply because

syntactic errors are reliably captured through the use of a language compiler.

Once the simulation is running, insight into the actual working of the design

becomes available, and semantic checks may be used to discover operational

errors or further confirm the validity of the design.

Given semantically correct operation, the simulation can be used in concert

with formal or informal analytic performance mode.ls to further iterate on the

design process. This phase. may involve modifying of the design to achieve

performance in accordance with expectations (e.g., errors in pipelining may be

discovered in the design), or it may involve modifying the analytic model to

more realistically express the restrictions imposed by the design and reflected

in its simulation (e.g., perhaps a pipe cannot always be kept full). Finally, a

complete and operational system can be emulated, allowing programming and

user evaluation, leading to architectural modifications and reentry into the

overall design cycle.

The progress of a design performed in this way moves iteratively from the

initial design concept through the following stages:

1) unambiguous design representation,

2) valid design,

3) etl'icient design, and finally

4) overall architectural modification.

204

4.3. The Cost of Simulation

From the above, it is clear that simulation has a great deal to offer over the

hardware oriented approach of "let's build it and see". As processors become

more and more complex, and the importance of multiprocessor designs is

enhanced by VLSI and wafer-scale integration, it will rapidly become

economically unfeasible to approach the design process without the aid of

simulation. Simulation aids the design process, making it an accountable and

verifiable procedure. What are the disadvantages of simulation? These may be

characterized in terms of cost.

First, there is the initial cost of the simulation package that is used.

Simulation may be performed at a variety of levels: from top-level

implementation simulation, as we ·have done here, to register-transfer-level

(low-level implementation) simulation, to circuit-level (realization) simulation.

While we use a general purpose language for our simulation, and thus amortize

the cost of the compiler product over many users, the specialized concerns of

register-transfer-level and circuit-level simulations · are of use to a more

restricted set of users. Nevertheless, the alternative cost of hardware

fabrication may make these specialized packages attractive m price. In

addition, the existence of satisfactory simulation languages for each of these

levels seems to preclude the necessity for prototyping until a late stage of

• system development.

Additionally, there is the cost of writing and debugging the simulation, the

cost of using the package to generate results, and the cost of analyzing results.

. .
Shute mentions the lack of a means of easily moving from one level of simulation to

another. This would be desirable from the standpoint of stepwise refine1nent of design,
but would require either a simulation language of extremely wide scope, or automated
translation mechanisms. At present, the only feasible approach would seem to be offline
development of analytic models for lower-level systems to be used within the simulation
model of the next higher leveL

205

Although it is reassuring to observe the design of a system actually working,

simulation can be very costly in terms of execution time -- especially for

extensive lower-level simulations in which large amounts of detail must be

explicitly handled. Even for top-level implementation simulations such as we

use, massively parallel multiprocessor architectures can be very costly to

simulate because of the large number of individual components that are present

in the model. •

Validity of design may be established fairly inexpensively, even granting a

large number of offline design iterations to eliminate semantic errors. This is

because such errors are quickly discovered and at relatively low cost.

Optimization of performance, on the other hand, may require more detailed and

extensive simulation runs, employing a wide variety of data and runtime

configurations.

Shute points out another disadvantage of simulation: the suspicion of users

in general, and computer scientists in particular, concerning the correctness of ·

output from a computer. Doubts as to the correctness of simulation results

must be answered with a scrupulous concern for the scope of the simulation

{thus clearly delimiting the area of applicability of the simulation), and when

possible, with an analytic model based on the overall design concept that

corroborates the results of the simulation. In our case, use of an analytic model

was feasible, and comparison of initial simulation results with predictions of the

analytic model pointed out errors in the design that were performance oriented

rather than semantic in nature .

• Lower-level implementation or circuit-level simulations for large multiprocessors can be
prohibitively expensive. Leung, et. a!. [Leu76] have noted this problem in conjunction
with packet-switched communication architectures to support dataflow languages, and
suggest the use of multiple microprocessor modules to emulate the behavior of groups of
system units.

206

The scope of the DOT simulation is the topic of the remaining portion of this

chapter. The analytic model that supports and is in turn supported by the

simulation will be described in Chapter 5.

4.4. Introducing Global Time into DOT Operation

Within DOT. there is no a-priori concept of a global time because of the

asynchronous nature of the processing cells. How, then, is the ongoing

operation of the model during its execution communicated to the designer in

useful terms? Building in a knowledge of global time must be approached with

care, since this is not part of the implementation and DOT is, first and foremost,

an implementation model. It is therefore necessary to create a "meta-level" for

the DOT simulation in which the concept of global time is recognized.

4.4.1. Discovery of a Critical Path

One approach might be to seek the critical path within each machine cycle.

Each cycle may be considered to begin and end with the calculation of the

specification for storage management within the io subsystem. For each such

cycle there is a critical path associated with the return of information required

for the next storage management calculation. The time associated with the

critical path is the cycle time for that particular cycle.

Unfortunately, because of the asynchronous and data-driven character of

the machine, this critical path will move with data from process to process, and

migrate up and down between cells of the machine. Tracing machine execution

in this way to obtain the required information, perhaps through the use of

timestamps associated with data, would be a difficult task.

To achieve the desired simulation accuracy, we use a technique based on

discrete event simulation. Current approaches to discrete event simulation may

207

be divided into two classes: event-scheduled and process-interaction modeling

[Law82]. The approach we use involves a combination of these two common

simulation techniques.

4.4.2. Event-Scheduled Modeling

In the event-scheduled approach, a system is modeled by identifying its

characteristic events, and routines are written that implement the appropriate

state changes associated with each event [MarSO]. A simulation then evolves

over time by executing events in increasing order of their time of occurrence.

Thus the passage of global time "drives" events, which in turn "drive" the model.

Within our model, the highly parallel and asynchronous nature of the

components prevents an a-priori knowledge of state changes as a function of

events ordered in time, so this approach is not directly applicable.

4.4.3. Process-Interaction Modeling

In the process-interaction approach a system is modeled by explicitly

representing the entities that drive state changes (i.e., processes), and

providing a mechanism for these entities to communicate the progress of global

time (and the enabling of other processes) to a scheduler [Law82, Fra 77]. In

this case, model processes drive events and explicitly define the passage of

global time. This requires a mapping between individual process activities and

the progress of global time. Our desire to separate the processes of the

implementation model from concern for global time prevents direct use of this

approach as well. Since processes of the DOT model are not aware of time, there

is no direct way for processes of the DOT model to schedule other processes with

respect to a global time.

208

4.4.4. Process-Interaction with Implicit Events

With appropriate assumptions, an approach based on a mixture of process-

interaction and event-scheduled simulation is possible. This approach has been

recently used to support simulation of a packet switching network by Aggarwal

[Agg82]. In our case, the process-oriented view corresponds well to the way in

which the executable model is represented, and event-scheduled simulation

provides an attractive alternative to discovery of critical paths.

We therefore incorporate implicit event-scheduling on top of the data-

driven process scheduling already present. First, a set of events that may be

sequentially ordered in global time must be identified. Within our model, the

natural events to focus upon are those involving communication of information

between cells of the architecture. This is because, as a first approximation, the

primary overhead associated with processing on this machine is the time

required for communication between cells.

We define an event as the parallel transfer of information out of all cells

that wish to send at that (global) time. The interval between such events is

taken to correspond to the time it takes a cell to perform required internal

processing after receiving a message, and then send a byte (the basic unit of

information exchange in the model) through an intercell communication

channel (i.e., a cqueue object). •

The system times available with this approach represent a count of the

number of parallel communication transfer events that have occurred since

machine initialization. An estimate for the time between events might be -r =

• This simplifying assumption is justified during most of the machine's operation. As
shown in Chapter 3, the basic operations of DOT are pipelined. The possible exception lies
within the lcells, which may perform expensive operations within message filters, thus
slowing the rate of message movement through an active area. Without a more detailed
model of the lcell realization, therefore, the assumption of uniform internal processing
time between messages is reasonable.

209

100 nanoseconds: Times reported in simulations should be consider.ed to be

relative to such a multiplicative factor. The resulting level of simulation exactly

matches that used by the analytic model, which is also based on counting

parallel message transfers. Correspondence between the level of the analytic

model and the simulation model is important when verifying the efficiency of the

design.

4.5. Implementing Implicit Events

Having defined our events, it remains to guarantee that each process that

should participate in an event will do so. This is done by modifying the cqueue

class (the .only means of communication between cells) to provide scheduling for

these events. All processes that wish to send information (during the next

event) accumulate on a queue. Only when the model becomes quiescent does

the event finally occur, incrementing the global simulation time and allowing

accumulated processes to then send their information effectively in parallel.

Implementing the desired simulation facility is straightforward in ClassC.

ClassC employs a top-level process scheduling mechanism similar to that used

by SIMULA [Fra77], and provides a delay primitive that allows other processes to

catch up to a process that delays itself. When all processes have caught up to

the delayed process, it is once again eligible for scheduling. The basic difference

between process interaction scheduling, as explained above, and our method is

that no DOT process ever does an explicit delay within the scope of its

representation. With this approach, the DOT process representations are cleanly

separated from aspects relating to their accurate simulation in time. Figure 4.4

• Of course, this time is dependent on, among other factors, channel widths and the tech~
nology used to realize processing cells and intercell data channels. Aspects pertaining to
realization are not within the scope of this dissertation, but this estimate seems reason­
able given present VLS! technology.

210

shows the event scheduler that was added to support simulation, and Figure 4.5

shows the DOT cqueue qtail.put entry after its modification to provide implicit

events for communication.

FIGURE 4.4-- The DOT Event Scheduler

/*
This task interfaces with the classc delay mechanism in order to
implement the clock tick events that the qtail.put mechanism uses.
{In addition, a message is printed every thousand ticks to aid in
recognition of deadlock situations.)
*/

events.new(event)
class object •event;
~

cycle f
delay(l);
if ((clock%1000) == 0) printfr'events: clock=%d",clock);
event->alert {);
l

FIGURE 4. 5- Qtail.put!mplements Implicit Events

/*
The entry used by a process that sends data between cells.
*/

qtail.put(m)
charm;

!
event->remember{thistask);
thistask->sleep();

/*pay the price in time • /

211

event-> forget {thistask);
putfree{m); /* then transfer message • /

void qtail.putjree (m)
charm;
!

message->mess = m; /*put message into object • /
(message->sig)->remember{thistask);/* remember this task*/
x_j;ail->put{(class object •)message); /*initiate transfer • /
thistask->sleep(); /*sleep until receipt • /
(message->sig)->forget (thistask);

4.6. Simulation Output

The complete DOT model representation includes 25 classes. These include

the process classes (or tasks} discussed in Chapter 3, and the above event

handler. When the model is executed, a tree height parameter is given, and the

required number of these classes are instantiated and connected to form a

machine of the desired size. As the processing cells of the resulting DOT

machine come alive, operation begins with partitioning of the machine in

response to the (initially empty} !cells. The following preparation for storage

management then detects the available !cell array capacity and the vm

subsystem shifts in FFP program text as appropriate during the ensuing storage

management phase. Execution then continues with partitioning and successive

machine cycles. DOT models for machines containing hundreds of lc ells may be

212

created and observed within computationally reasonable time periods.

4.6.1. Tracing Machine Operation

The ClassC runtime support package maintains a globally available variable

called clock that contains the current simulation time, and each process within

the DOT model has a unique process id maintained by the ClassC task scheduler

(known locally by each process as thistask). As the DOT design progressed, trace

statements for the processes were written to allow them to record their

progress and signal the simulation times of important events .. These statements

serve the dual function of supporting debugging of the DOT machine's execution,

and because of this fact they are pervasive throughout the entire ClassC model

representation.

As a result of this approach towards tracing operation of the machine, it is

possible to literally pick apart the detailed operation of the machine from

whatever vantage point is desired. A wide range of precision is available.

Conditional assembly of trace statements allows selection of the desired

information from the huge mass of detail potentially available during the

execution of a large model instantiation.

This highlights an important aspect of simulation: arbitrary precision

(within the limit of the time grain used) may be employed to zero in on design

errors once a problem is detected. Digital simulation is entirely repeatable, so

repeated runs at ever finer levels of detail are possible with reproducible

results. This flexibility would not be available in a hardware prototype, and this

points out the importance of carrying an initial simulation approach as far as

possible.

We now give examples of the information available from process tracing.

The trace for these examples is at a fairly high level, and brings together

213

information concerning the overall machine cycle and its three phases. Two

listings are given. Both depict process activity during execution of the example

FFP program given in Figure 4.8. The first trace listing is filtered, and provides

brevity by omitting all but the first of a succession of messages that refer to the

same thing. As seen from the second listing, which only displays a portion of

cycle 1. such filtering is quite effective while retaining useful information. For

each trace message, the involved process identifies itself by giving its class type

(e.g .• !cell) and a unique process id (the value of thistask maintained by the

C!assC process scheduler), and then provides informative data, such as the

beginning and ending times of an activity (displayed in brackets: [begin-end]),

or the present simulation time.

FIGURE 4. 6- F'iltered High-Level Trace Output

machine.new: starting up with clock=O
lcell(372168): partitioning[0-10] duration 10
io.prep__sm: sm_grant, sending stop message for cycle 0, clock=16
lcell(427704).sm:(4:4) [37-52] duration 15
io...input: got pgm request= 8, clock=105
lcell(466988): partitioning[37-107] duration 70
lcelUnp(169080): starting interpreter. clock=139
lcelL.msg(254084): user's message has returned. clock=242
io.prep__sm: sm_grant, sending stop message for cycle 1, clock=248
lcell(126992).sm:(40:0) [276-276] duration 0
io...input: got pgm request = 12, clock=302
lcell(471952): partitioning[276-303] duration 27
lcelUnp(374972): starting interpreter. clock=335
lce!L.msg(359284): user's message has returned. clock=381
io.prep__sm: sm_grant, sending stop message for cycle 2, clock=389
lcell(126992).sm:(40:0) [413-413] duration 0
io...input: got pgm request = 4, clock=427
!cell(466988): partitioning[413-429] duration 16
lce!Unp(129796): starting interpreter. clock=461
lce!L.msg(398568): user's message has returned. clock=507
io.prep__sm: sm_grant, sending stop message for cycle 3, clock=515
-- Machine Empty -- halting execution

l

FIGURE 4. 7- Unfiltered High-Level Trace Output

lcell(427704).sm:(4:4) [37-52] duration 15
lcell(377132).sm:(2:4) [37-55] duration 18
lcell(372168).sm:(60:3) [37-58] duration 21
lcell(337848).sm:(3:4) [37-61] duration 24
lcell(332884).sm:(1:4) [37-64] duration 27
lcell(266060).sm:(60:3) [37-67] duration 30
lcell(261096).sm:(60:2) [37-70] duration 33
lcell(226776).sm:(12:3) [37-73] duration 36
lcell(221812).sm:(8:3) [37-76] duration 39
lcell(171240).sm:(60:2) [37-79] duration 42
lcell(166276).sm:(40:1) [37-82] duration 45
lcell(131956).sm:(4: 1) [37-85] duration 48
lcell(126992).sm:(40:0) [37-88] duration 51
lcell(126992): partitioning[88-98] duration 10
lcell(131956): partitioning[85-98] duration 13
io..Jnput: got pgm request= 8, clock=105
lcell(466988): partitioning[37-107] duration 70
lcell(471952): partitioning[37-107] duration 70
!cell(432668): partitioning[37-107] duration 70
lcell(166276): partitioning[82-108] duration 26
lcell(171240): partitioning[79c108] duration 29
lcell(372168): partitioning[58-1 09] duration 51
lcell(261096): partitioning[?0-1 09] duration 39
lcell(332884): partitioning[64-109] duration 45
lcell(221812): partitioning[76-109] duration 33
lcell(427704): partitioning[52-109] duration 57
lcell(377132): partitioning[55-109] duration 54
lcell(266060): partitioning[67-109] duration 42
lcell(337848): partitioning[61-1 09] duration 48
lcell(226776): partitioning[73-109] duration 36
lcell(427704).buil~irectory: [109-123] duration 14
lcell(166276).buil~irectory: [108-124] duration 16
lcell(171240),buil~irectory: [108-124] duration 16
lcell(372168).buil~irectory: [109-125] duration 16
lcell(261096).build..ilirectory: [109-125] duration 16
lcell(332884). buil~irectory: [109-125] duration 16
lcell(221812).build..ilirectory: [109-125] duration 16
lcell(377132), build..ilirectory: [1 09-125] duration 16
lcell(266060).buil~irectory: [109-125] duration 16
lcell(337848).buil~irectory: [109-125] duration 16
lcell(226776).buil~irectory: [109-125] duration 16
lcelLinp(169080): starting interpreter. clock=139
lcelLinp(174044): starting interpreter. clock=154
lcelLinp(224616): starting interpreter. clock=163

214

215

4.6.2. Lcell Array Snapshots

In addition to the above trace facility, which provides global information

ordered in time, the output channels and processes of the DOT model are used

to present snapshots of the FFP- and LPL·level symbol representations located

within the !cells. As described in Chapter 3, output from the lcell array is piped ·

out of the tree and into the io subsystem in left-to-right textual order. This

information is therefore ordered in space as well as in time. There is one

snapshot per cycle, and it records the situation within each (non-empty) !cell at

the end of the execution phase ·· after detection of completed RAs has been

performed, so results of completed applications are available.

The io subsystem output process presently sends these results to a

terminal or a file for later examination. Empty !cells do not appear, and cells

with symbols in them are listed in left-to-right order. Column headings provided

with the output designate the user program id, lcell symbol, lcell state

(O=ground, l=executing, 2=completed), fork.Jd, aln, rln, symbol.Jndex, and the

directory 4-tuple. Columns to the right of the arrow indicate the result of

stepping a completed reduction forward.

FIGURE 4. 8- FFP Expression for Reduction

(+ (< apply-to-all * > < < 1 3 > < 2 4 > > } }

An example of the !cell array snapshots is now given. To aid understanding,

comments have been placed to the right of the snapshot output. The model for

this example was created with a height of four, so there were 16 !cells available

for holding the program. Prior to execution of the model to generate the

following snapshots, the FFP-level text representation for the expression shown

in Figure 4.8 was loaded into the vm subsystem using the mkusr program. As

216

indicated by the trace output of Figure 4.6, which corresponds to the following

execution snapshots, the total time required to execute this FFP expression

{including load time) is ~500T, or, if T=100 nanoseconds, ~50 f.LSecs.

PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 1
001 { 0 001 000 000 000 0000 app s~not innermcst
001 #004 0 001 001 000 000 0000 4 is n-ary add op-code
001 (1 001 001 000 000 0000 app s~ innermost so RA
001 < 1 001 002 001 001 1000 and state = executing
001 #008 1 001 003 002 002 1100 8 is apply-to-all op-code
001 #012 1 001 003 002 003 1200 12 is nultiply op-code
001 < 1 001 002 001 004 2000
001 < 1 001 003 002 005 2100
001 #001 1 001 004 003 006 2110
001 #003 1 001 004 003 007 2120
001 < 1 001 003 002 008 2200
001 #002 1 001 004 003 009 2210
001 #004 1 001 004 003 010 2220

This s~ forks to receive
copy of operator {rnult)
as required by apply-to-a!

PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 2
001 (0 001 000 000 000 0000
001 #004 0 001 001 000 000 0000
001 (2 001 001 000 000 0000 < 001 reduction complete
001 < 2 001 002 001 001 1000 { 002 so stepped forward.
001 #008 2 001 003 002 002 1100
001 #012 2 001 003 002 003 1200 #012 003 result is sequence
001 < 2 001 002 001 004 2000 of nultiplications
001 < 2 001 003 002 005 2100 < 003
001 #001 2 001 004 003 006 2110 #001 004
001 #003 2 001 004 003 007 2120 #003 004
001 < 2 001 003 002 008 2200 { 002 the fork_id tells
001 < 2 002 003 002 008 2200 #012 003 how to place
001 < 2 003 003 002 008 2209 < 003 these symbols.
001 #002 2 001 004 003 009 2210 #002 004
001 #004 2 001 004 003 010 2220 #004 004

217

PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN
001 (0 001 000 000 000 0000

-- End of Cycle 3

001 #004 0 001 001 000 000 0000
001 < 0 001 001 000 000 0000
001 (2 001 002 000 000 0000
001 #012 2 001 003 001 001 1000
001 < 2 001 003 001 002 2000
001 #001 2 001 004 002 003 2100
001 #003 2 001 004 002 004 2200
001 (2 001 002 000 000 0000
001 #012 2 001 003 001 001 1000
001 < 2 001 003 001 002 2000
001 #002 2 001 004 002 003 2100
001 #004 2 001 004 002 004 2200

#003 002

#OOB

both multiplications
carrplete in one cycle,
and are stepped forward.

002

PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 4
Add now innerrrrost
and ccrnpletes in
one cycle. 11 is
the answer.

001 (2 001 000 000 000 0000
001 #004 2 001 001 001 001 1000
001 < 2 001 001 001 002 2000
001 #003 2 001 002 002 003 2100
001 #OOB 2 001 002 002 004 2200

4. 7. Simulation Results

#011 000

The most useful result of the simulation is the way it has aided our

understanding of the operation of the implementation model. Nevertheless,

other useful results have been obtained. Raw performance figures such as those

provided by process traces are invaluable for the synergistic development of an

analytic model. Our simulation results for a variety of LPL programs will be

displayed in tabular form in the following chapter -- in conjunction with the

·predictions of the analytic model. This will allow easy comparison of simulation

results with analytic model pre dictions.

Additionally, an initial simulation study designed to assist development of

LPL programs tailored for large operands has been performed. Recall that LPL

programs exercise a degree of control over when storage management takes

218

place. Therefore, an LPL program may be written so that its execution on large

operands does not seriously affect the progress of other reductions in the

machine. To do this, an LPL program can keep a count of messages, and execute

an smanage instruction after every m messages. The question, of course, is how

to choose in. Ideally this value should be large enough to allow a reasonable

amount of work to be done, and small enough that other LPL programs

performing reductions are not unduly delayed. Figure 4.9 shows the simulation

results obtained from studying the behavior of the FFP SORT operator {whose

LPL definition was given in Section 2.4.1.11) for different values of m.

This study was performed on a DOT machine of 64 !cells, and presents the

results obtained for sorting 60 numbers. As can be seen, the minimum time of

FIGURE 4. 9- Sort Time v. s. Number of Messages per Cycle

EXECUTION
TIME

6 m/cycle
time=1041

10m/cycle

15m/cycle
time=634

time=565
20m/cycle

30m/cycle

MESSAGES PER CYCLE

time=425

219

425, achieved by sending the 60 messages during one cycle, is quite close to the

time of 497, achieved when two cycles are used (30 messages per cycle). The

optimum execution time is approached asymptotically, so backing off and being

"fair" to other programs in the machine is not as costly as might be expected.

CHAPTER 5

Analytic Performance Model

This chapter represents a summation of the DOT design and its behavior.

Our concern here will be to reason about the operation of the DOT machine, and

ultimately to predict execution times for FFP language programs.

ln the previous chapter, we listed virtues of simulation in multiprocessor

design, and discussed the approach taken for simulation of DOT. Among benefits

identified was the unambiguous description forced upon the designer by the use

of a compilable language -- enabling criticism and preventing obfuscation.

An analytic model (when one is available) performs a similar function with

respect to performance. It brings into clear focus the ultimate result of design

decisions by representing their intention with respect to system behavior. It is

only after a simulation (or prototype) is running that the satisfactory

implementation of these intentions may actually be verified, however. In our

experience, a highly dynamic interplay between modifications to the design, and

modifications to the analytic model then results.

The analytic model we present began as a set of assumptions concerning

the desired operational characteristics of a projected implementation (as

suggested originally by Mago· [Mag79]), and ultimately matured to refiect the

actual operation of the DOT implementation. Chapters 3 and 4 presented this

implementation. We now analyze its performance.

We begin by examining the execution cycle in more detail. Upper and lower

bounds for the three phases of the machine cycle are presented and related to

execution times for RAs. The method developed by Koster [Kos77], Stanat and

220

221

Williams [StaBl), and Mago et. al. [Mag83), may then be used to derive data-

dependent upper and lower bounds for many FFP language programs. Examples

are given, and correspondence with the results of simulation is verified. •

5.1. The Execution Cycle

When measuring the duration of some activity that takes place over time,

events define the points at which a measurement may be made. In the case of

cyclic behavior, a natural event should be the beginning of the cycle. What

definite and unambiguous events exist during DOT operation? There are really

only two that may be recognized within a machine-wide context: receipt by the

io subsystem of the sm_grant message, and receipt by the io subsystem of the

preparation for storage management upsweep. Neither of these is particularly

valuable from the standpoint of measuring execution times. LPL programs

execute within !cells, so we prefer to base our analytic. model on events that

occur in !cells. Luckily, with appropriate assumptions, another event more

useful for this purpose may be identified. This is the beginning of storage

management in the !cells.

Although it is convenient to think of the (i.e., single) execution cycle for DOT

as something descriptive of its overall behavior in time, Chapter 3 showed that

the DOT machine is really a highly dynamic and reconfigurable collection of

fine-grain cellular processors. Individual processors do synchronize, or come

together locally, to exchange information in support of storage management,

partitioning, and execution, but it is possible for different cells of DOT to be

performing in all three of these different phases simultaneously. Each cell of

the DOT implementation goes through the execution cycle we have described,

• Section 5.1 provides information appropriate for a casual reader, while Sections 5.2-5.6
contain the details of the analytic model. Although these sections may be skipped if
desired, the summary in Section 5. 7 should be read.

222

but only according to its local needs.

From observing the behavior of the simulation model, we note that storage

management begins at the same time in all the !cells. This is because the

specification for storage management is computed in a parallel downsweep

through the tree starting at the io subsystem, where the top-level transfer

function is computed and sent down. The data path length is the same from the

io subsystem to each !cell. and exactly the same operations a1·e performed by

each tcell along the way.

The above observation is relative to our assumption within the simulation

that the the data paths are identical in their transmission characteristics. In a

hardware realization, this would not
1
be true, of course. Thus, we confine our

reasoning to the performance of the simulation, and assume that differences

between the simulation and an actual realization are negligible. With this done,

we may also speak of the beginning of storage management within the !cells as a

definite event.

Although storage management begins at the same time in the !cells, it does

not finish at the same time. Storage management is pipelined, with programs

and previous overflow being entered from the left. Programs toward the right of

the !cell array may not require movement at all (unless they are forking), and

thus may complete storage management in no time. In general, whenever

information is shifted in the !cell array, text located at the end of shift

movement will complete first, with its neighbor finishing next, and so on, down a

chain of consecutively shifted symbols, ending at the source of the shift

movement. Thus, even symbols of the same RA may not complete storage

management at the same time.

223

Immediately following completion of storage management within an

individual !cell, the !cell initiates partitioning. Clearly, the completion of

partitioning can occur at widely varying times for different RAs. In addition,

partitioning completes at different times within the !cells of a given RA -- not

because partitioning begins at different times over the lcells of the machine

(after all, a pruning downsweep within a given active area begins in a single tcell

much as the preparation for storage management downsweep), but because

area trees are not height balanced with respect to communication delays. As

shown in Chapter 3, circuit switched area channel connections may bypass tcell

area nodes.

Execution thus begins at different times within different active lcells. The

io subsystem detects the sm_grant message at some later time, while active

lcells continue execution of their individual LPL program segments, and the stop

message is sent down to the lcells. This reaches alllcells at the same time, but

clearing out an area (to guarantee that all area messages have been received)

may require time dependent on its height. • Finally, the upsweep of the

preparation for storage management reaches the io subsystem, and the value of

the top-level storage management transfer function is computed and sent down

into the tree.

As far as the overall DOT machine is concerned, it would make sense to

measure times relative to the arrival of the upsweep of preparation for storage

management (or equivalently, calculation of the topmost storage management

transfer function) within the io subsystem. Our primary concern here is with

. .
Normally, a top of area node manager 1s able to detect that the stop message has

passed through its tcell and. avoid this dependency. If, however, the stop message comes
through while the node manager is waiting for an LPL message, a stop packet may have to
rise from the lcelllevel in response to the stop message in order to notify the top of area
rnanager to clear out the channels.

224

RAs, however, for which a logical starting point of execution is the beginning of

the partitioning phase in which they are detected and allowed to come into

existence. Unfortunately, the start of partitioning is not a machine-wide (or even

RA-wide) event, and our ultimate aim of predicting execution times for complete

programs is best served by choosing a beginning for the machine cycle that is

common for all RAs of the machine.

From the above discussion, it is clear that our first concern in developing

an analytic model is to define exactly what we should measure. With the

ultimate aim of predicting the behavior of complete FFP programs, our analysis

is initially oriented around predicting execution times for an individual,

distinguished RA, in the possible presence of others within the !cell array. Since,

from the above summary of DOT operation, we know that storage management

begins at the same time for all !cells within an RA, and for all RAs within the

machine, this time will be treated as the true beginni:ng (and end) of the

machine cycle.

This will allow us to use the results of analyzing individual RAs to predict

execution times for complete programs containing multiple RAs during each

machine cycle. While dictated by the practical concerns of the analytic model,

this approach is nonetheless reasonable; prior to detection of RAs during the

phase we have called partitioning, their FFPclevel text representations must first

be created, and this is done during storage management.

Figure 5.1 shows a d\agram of the machine cycle. and depicts the progress

of individual RAs through the three phases. Note that the only machine-wide

event recognized is the beginning of the cycle, with progress through the phases

being a phenomenon local to individual RAs. RA
3

, for example, requires no

storage management, so begins partitioning immediately.

225

FIGURE 5. 1 - RA Progress Through a Single Machine Cycle

start RAl ~ ~ - - - - -
cycle n

storage
management partioning

storage
management

partioning

partioning
execution

eXecution

execution
start

cycle n+l
- - -'---~----' '--------'- - - - I

5.2. Notation

We derive upper and lower bounds for the duration of the machine cycle

phases in an RA. These are denoted by UB(phase), and LB(phase). The

particular RA of interest to the analysis is designated as the RA, and the term

"the !cells" refers to the !cells of this distinguished RA. The variable n is used to

represent the count of the !cells, and h is used to represent the height of the RA.

The height of the largest new RA within the machine (used in analysis of

partitioning phase for a new RA) is represented by h '. The number of !cells

within the largest new RA is represented by n '. The variable N represents the

total number of !cells within the machine, and His used to represent the total

height of the machine (counting the io subsystem). Angle brackets, when used

to enclose the name of an FFP operator, denote the size (in bytes) of the

corresponding LPL program.

226

During storage management, user contexts are shifted on the lateral !cell

channels. We therefore take the term user context to be synonymous with

information that is shifted during storage management, and U denotes the size

of this information -- irrespective of whether the context is executing (in which

case U is large, since an LPL code segment and the LPL environment are

included), or the context is not executing (in which case U is small, since only

the FFP-level representation is required).

The size of an executing user context is primarily dependent on the size of

the LPL program segment. For all examples shown in this dissertation, a code

area of 150 bytes suffices. This, plus LPL environment registers (presently

requiring 54 bytes of storage), results in a user context size of U = 204 bytes

within active areas. A non-active user context requires U = 4 bytes.

As for the simulation, we assume a uniform T throughout. the machine, and

predictions of the analytic model are implicitly in these units. In addition, we

assume that no new programs enter the machine during the period of time

covered by the analysis.

5.2.1. Area Heights

The height parameters H and h given above are related to the size of the

underlying !cell segment. For the overall tree, H = log2(N)+ 1, where "1" counts

the io subsystem. For an active area, we define h as the maximum number of

• nodes a message may pass .through on its way to the top of area. This

definition results from the use of circuit-switched area channels, and assumes

that processing and communication delays inherent in sending and receiving

processing cells are the predominant source of transmission delays. As shown in

• Note that we only count area nodes (i.e., places where area channels carne together and
processing is required) -- not tcells through which an area channel is circuit-switched.

•

227

Figure 5.2, h can vary from [log2(n)1 to n-1, depending on the distribution of RA

contexts among the available !cells. • Since log(n) is the height of a balanced

binary tree with n leaves, log(n) is clearly a lower bound for h. This value will be

used in lower bound formulas. Since h<H, a least upper bound for h is

min(n,H)-1. This value will be used in upper bound formulas.

FIGURE 5. 2-- Trees far Lower and Upper Area. Height Ext?·emes

Best Case

h=2

n=4
Worst Case

h=3

•
'\

' \ ' \

FIGURE 5. 3- Bounds an Area. Height {using H=21)

n LB=laa(n) UB=min(n,H)-1

2 1 1
4 2 3
8 3 7
16 4 15

r----
32 5 20
64 6 20

11-~-8 I 7 I 20
-- 20

In the interest of notational brevity within formulas, log(n) will subsequently be under-
stood to denote the integer ceiling of the base 2 logarithm of n. Using this approach,
log(3)=2.

228

As shown in Figure 5.3 (which assumes a machine with a million !cells), the

difference between the lower and upper bounds on area height is only important

as n grows large, and even for a machine of this size, H is small enough that

lower and upper bounds don't diverge greatly. In addition, as shown by the

example in Figure 5.4, uniform grouping of RA symbols within area subtrees

results in log(n) being a good approximation for h, and the presence of

interspersed empty !cells makes no difference to this result. This is because

circuit-switched area channels completely avoid portions of the tree containing

contiguous groups of empty !cells. •

FIGURE 5.4 -- Uniform Loading in the Presence of Empty Lcells

' ' ' ' " ' ' ' ' ~

' ' ' '
'

n=5
h=3

' '

' ' ' ' ' ' \

" ' " ' ' ' ' ' ' ' ' ' '

• An interesting point is that, if desired, we could guarantee uniform loading by modifying
the calculation of the storage management transfer function. This will be discussed in
Chapter 6.

229

5.2.2. Phases of RAProgress

The phases through which an RA progresses form the basis for prediction of

its execution time. Each phase is now defined in a way appropriate to a clean

division of concerns in the analytic model. While this represents a review of DOT

operation as described in Chapter 3, it is important to clarify the exact nature

of each phase within the context of the analytic model. •

5. 2. 2.1. Storage Management Phase - RA Creation

The storage management phase within an !cell involves the actual

movement of user contexts within the !cell array, and nothing else. (The time

required for calculation of the specification for storage management is included

in the execution phase.) Storage management starts in an !cell upon receipt of a

specification for storage management, and ends upon completion of the shifting

necessary to satisfy the specification.

5.2.2.2. Partitioning Phase- RA Detection

The partitioning phase for an RA includes creation of its embedded tree of

processing cells, and all other activities required prior to actually beginning

execution within its !cells. Thus, there are two types of partitioning phase: one

type associated with new RAs (for which the preparatory activities include

directory creation, and loading LPL code segments), and the other associated

with old RAs (which already have their directories and LPL code segments).

5.2.2.3. Execution Phase- RA Execution

This phase starts in an !cell with the beginning of actual LPL program

execution. Although execution starts at different times within different !cells of

' Chapter 3 gave an informal description of the overall machine cycle. Here we are con~
cerned with an exact analysis of events within the active lcells of an RA.

230

an RA (because partitioning completes at different times), the !cell that begins

execution last is on a critical path for progress of this execution. If LPL

messages are sent, this !cell delays turnaround of the first message wave. Thus,

for all practical purposes, we may consider the execution phase to begin when

all the !cells of the RA have been prepared for execution. In order for the

execution phase to end, all !cells must send an sm_grant message to the io

subsystem. Following this, a stop message arrives at the !cells, area channels

are cleared out, and the specification for storage management is computed.

The execution phase for an RA ends when the specification for storage

management reaches the !cells in which it is contained.

5.3. Formulas for the Duration of RA Phases

We now examine the duration of each phase of RA progress during

successive machine cycles. Figure 5.1 showed an example of this progress for a

single cycle. The general multi-cycle situation is depicted in Figure 5.5. As

shown, the duration of each cycle may be considered separately from the last,

with new RAs coming into existence, and old RAs being reborn (if necessary) for

each new cycle.

231

FIGURE 5. 5-- RA Progress Through Successive Machine Cycles

storage
storage

management partioning
management

partioning

partioning execution

execution
execution

cycle n+l partioning storage storage
management storage management

management

partioning partioning
execution

partioning

execution execution execution

cycJen+2
-

5. 3.1. RA Storage Management - (SM}

During storage management, !cells shift user contexts in a pipelined

fashion. For purposes of simplicity, we assume that alllcells of the RA complete

storage management at the same time. Although this is not strictly so, it makes

no difference to the ultimate results since the !cell taking the longest time is on

a critical path for subsequent execution within the RA. The last !cell to complete

storage management within the RA allows subsequent execution, and the storage

management time corresponding to this is used by the analytic model.

Every LPL context in an RA begins its execution phase with a forkn value of

one, and only LPL forking operations can change this value.' The LPL Jarkn

context values found within the !cells that create an RA during storage

management · therefore determine a minimum duration for the storage

• As described in Section 3.2.3.2, the forksize argument of a fork statement is loaded into
this register when the statement is executed.

232

management phase of the RA. When storage management takes place, the forkn

variable is used to indicate the number of LPL contexts to be spawned from the

containing !cell.

A lower bound for the duration of storage management for the RA is

maxRA(Ui*forkni·l), where the maximum is to be taken over all the !cells that

create the RA, and Ui is the size of the user context to be located within the ith

!cell of the RA. • This is equivalent to assuming that there are enough empty

!cells neighboring any given forking context to support its storage requirements.

An upper bound for the duration of storage management is arrived at by

examining the situation for multiple RAs, and assuming total compaction within

the !cell array with the RA at one end. The context in the !cell at the end of the

RA must then be shifted through);machine-lcells(Jorkni·l) !cells, where the sum

is to be taken over all !cells of the machine. The resulting lower and upper

bounds for the duratic:n of storage management for the RA is given in Figure 5.6.

FIGURE 5. 6- DurrLtion of Stomge MrLnrLgement for RA

LB(SM) =
UB(SM) =

mrrx RA-lceuJUi*forkni·l), 1:<>-G;n

);mrLchine-lcells(Ui *forkni·l), J.;.i:<;,N

5. 3. 2. RA Partitioning

There are two cases to consider for partitioning. In the first case, the RA

has already been executing (during the preceding cycle), so its !cells are ready

to continue execution as soon as an active area is constructed for them within

the tcells. In the second case, the RA is new and requires a directory and LPL

code as well as creation of an active area .

• Recall that for our purposes, this duration is measured in units ofT.

233

5. 3. 2.1. Partitioning Old RA - (PO)

Here just creation of the active area is required. This process is pipelined

from the !cells to the height required to determine whether the application is

innermost, and four values must be unloaded at the top and bottom of the pipe.

This gives a lower bound of 2h+B (assuming that pruning begins at the top of

area). During the initial partitioning upsweep, certain partitioning

configurations result in delays of more than 1 in nodes of the pipeline. This

delay can be up to 3, giving an upper bound of 4H+B (assuming pruning begins in

the io subsystem): Using the bounds on h (the area height) given in Section

5.2.1, Figure 5. 7 gives lower and upper bounds for partitioning an old RA.

LB(PO) ::

UB(PO) =

FIGURE 5. 7- Duration for Partitioning Old RA

Z*log(n) + 8

4H+ 8

5.3.2.2. Partitioning New RA- (PN)

Here, we must consider building the directory and loading LPL programs as

well as the initial creation of an active area. The directory is built using area

channels. and is pipe lined with four values unloaded at the top and bottom of the

pipe. This process therefore always takes 2h + B. When operator definitions are

sent to the !cells, they originate in the io subsy~tem and are broadcast

downward to the !cells where they wait until the directories for all new RAs are

•• ready. For a lower bound, we assume the LPL program for the RA is first in

• The additional delay is related to the ordering of information that is sent up during par-
titioning. Treating this aspect of partitioning requires a more detailed analysis than is
appropriate here .

•• Old RAs require no code segments, so arriving code segments only wait an the time re-
quired to compute the directory of the largest new RA. The reason for waiting on the
largest new RA to complete building its directory is that the LPL code segments are

234

the stream of operator definitions which must be delivered to the !cells. The

lower bound for input time is then the length of the operator definition, denoled

by <op>. For an upper bound, assume the operator the definition is sent last.

Then, the input time is ~new-RAs<op>. with the sum taken over all new RAs.*

In order to produce useful lower and upper bounds for PN, h', the height of

the largest new RA can be treated as follows: for a lower bound, assume h'=h

(i.e., n'=n), and for an upper bound, use h'=H-1. Although these estimates yield

' bounds which are less tight than possible (assuming complete knowledge of the

!cell array) they depend only on the RA of interest and are therefore easier to

use. With this approach, and use of the above result for PO, we get lower and

upper bounds as summarized in Figure 5.8.

FIGURE 5. 8-- Duration far Partitioning New RA

LB{PN)

UB{PN)

=

=

(PN) LB
build area Z"lo,g_(n +8
build directory Z"lag{n +8
load code <a;!!>
total LB(PN2

4*log(n) + <op> + 16

6H + ~new-RAs<op> + 14

5.3.3. RA Execution- (EX}

UB
4H+ 8
2*{H-1) + 8
l:<ap>
UB(PJ'!)___

The execution phase for the RA includes the time until sm_grant is sent up,

the time until the stop message is received (which may include further LPL

broadcast only once, and the !cells of all new RAs must be able to filter code when this is
done .
• Actually, when multiple RAs require the same operator definition, the required LPL pro-
gram is only sent in once, so duplicates need not be counted.

235

execution), and the time required to compute the specification for storage

management.

Let ts denote the duration of the execution phase until the sm__grant is sent

up by the !cells of the RA. The only contributors to ts are LPL message

operations. For each message wave, a prefix packet containing appropriate

handling instructions must be sent to the area nodes. The prefix packet

contains three bytes, so sending this information out of an !cell accounts for an

initial delay of three. The prefix packet is pipelined and followed immediately

with the key and message data, which are also pipelined. It therefore takes time

h+3 for the first message to reach the top of area, ·and time h to return to the

!cells (since the prefix packet is not returned). For each message that returns

to the !cells during a particular message wave, there is an unload time of

(3+msize).* This gives

ts = l::mwaves(2h + 3 + ((mreturn_cnti)•(msizei+3))),

where for message wave i, mreturn_snti is the number of messages that return

to the !cells on that wave, and msizei is the value coded in the corresponding

LPL send statement. Using the bounds on area height presented in Section 5.2.1

gives:

FIGURE 5. 9- J)uration of Time to SM_Grant, t
8

LB(t
8

) = l::mwaves{2"log{n) + 3 + ({mreturn_sntJ•(msizei+ 3)))

UB(t
8

) = l::mwaves{2"min{n,H) + 2 + {{mreturn_sntJ•(msizei+3)))

In addition to ts' there is the stopping interval from ts until preparation for

storage management begins. During this interval, the sm__grant goes up the

+
The 3, here, represents the byte-count and the two key values that are sent with every

message.

236

tree, and a stop message comes down. Assuming that the RA is executing in the

absence of other RAs (i.e., all other !cells have allowed storage management},

this takes time 2H. In addition, upon arrival of the stop message at the !cells, a

stop packet (as described in Section 3.4. 2.1) is sent up and then down the area

channels to guarantee they are cleared out. Thus, if the top of area node

doesn't see the stop message on its way down the cell manager channels (this

can happen in the absence of LPL message activity), it can take an extra 2h+3

time units to guarantee the end of message activity (the stop packet may have

to follow a prefix packet up into the first row of tcells}.

Therefore, preparation for storage management begins within a minimum

of 2H and a maximum of 2H + 2h + 3 time units after ts. Preparation for storage

management is pipelined on the way up, and involves a delay of 2 per tcell on the

• way down. Including the time for unloading the pipe then gives a time of 3H +

2 for preparation for storage management.

Of course, in the presence of multiple RAs, the max t over all RAs must be . s

used. The resulting bounds for the execution phase are summarized in Figure

5.10, using the established bounds for h and ts .

• The reason for this delay may be understood from the discussion on preparation for
storage management in Section 3.4.4.2. Only after both bc.lefLentries and
bc.righL . .departures are received from a parent can a tcell send lefLentries and
righLdepart ures boundary condition values to its right child.

FIGURE 5.10- Dumtion of the Execution Phase

LB(EX)

UB(EX)

(EX) LB

sm__grant max RAsLB (t s)

stop message 2H

stop packet 0

prepsm 3H+2

total LB(EX)

=
=

max RAsLB(t
5

) + 5H + 2

maxRAsUB(ts)+ ?H+ 3

5.4. Predicted Execution Time for Single RA

UB

max RAs UB(ts)

2H

2H+l

3H+2

UB(EX)

237

In our analysis for individual RAs, we do not count the storage management

phase required to produce an RA in its initial form since this is not information

that is available at this level of detail; the RA may have been shifted in as part of

a new program, or it may have been created from the execution of previous

applications. LatE~F· when we treat complete FFP programs, this information will

be available, and will be utilized. Also, we do not consider the cost of a final

storage management in the case where an RA completes through the use of the

forkc statement. This cost is also taken into account when we analyze complete

FFP programs, but only when it affects the storage management time for a

subsequently formed RA.

We now show how the formulas of Section 5.3 are used to predict the

execution times for a variety of RAs. For each example, we first present the

238

analytic model results for the general RA, and then provide a tabular

comparison giving a particular simulation and the corresponding analytic model

predictions. The basic format for the comparative presentation is shown in

Figure 5.11.

The heading indicates the FFP operator whose behavior is being examined,

lists the particular RA whose reduction is to be simulated. and gives appropriate

parameters for the analytic model. The LPL program headers given in Chapter 2

provide the parameters used for different FFP operators.

Cycle 0 within the table represents past history, and is used to normalize

the simulation times with analytic model times. Since we don't consider the

time required to initially create the RA at this level of the analytic model, the

time actually used in loading the simulation is used as an offset to the analytic

model. This allows us to use the actual simulation times (without modification)

for comparison with the predictions of the analytic model. The predicted and

' !
I
!

I
!

!
!
I

FIGURE 5.11 -Analytic /Simulation Madel Result Format

0

1

FFP OPERATOR
RA to be Simulated

Important Parameters

ANALYTIC MODEL SIMULATION
lower bound upper bound observed FFP text (.eo c)
(---) r~-J (----) text 0: <>

(ap
< arqs

{Sfl{SM}
{SM} 1'"' " <op>~ (PN) (PN) (PN) (op

(EX) (EX) {EX) < args
(++) (++) (++)
(==) I C==) (.==)

I

i

239

observed times for the three phases are displayed to the right of their

parenthesized respective phase. The total time for an individual cycle is shown

to the right of"(++)", and cumulative times are given to the right of"(==)". The

rightmost column is used to describe the progress of the FFP-level reductions.

The text given in the rightmost column is meant to be roughly indicative (given

the limited space available} of the FFP symbols present at the end of the cycle.

For cycle 0, the FFP segment to be loaded and used for the example is indicated

in this space. When a forkc is executed, the result achieved upon completion of

storage management is shown. The size of the LPL program to be loaded during

partitioning, represented as usual by enclosing the operator name in angle

brackets, is also given.

5.4.1. Analysis and Simulation of ID

The simplest LPL programs are those that require no forking and no

messages. Operators such as CONST, SELECT, HEAD, APNDI.., and ID fall into this

category. Here, all the information necessary for completing the desired

reduction is already present within the LPL environment for each lcell of the RA.

These LPL programs therefore complete in one cycle and require no messages.

We now analyze the LPL program for ID given in Chapter 2. The initial

storage management takes zero time (as explained previously). Partitioning the

new RA then requires time based on the LPL program size (<ID>=29), the height

of the active area, and the height of the tree, as shown in Figure 5. B. Since

there are no messages, ts in Figure 5.10 is zero. The predictions of the analytic

model, and simulation results are given in Figure 5.12.

{SM1) =

{PN1) =

(EX1) =

0

1

I

FIGURE 5.12- Analysis and Simulation of ID

(LB) = 0
{UB) = 0

(LB) = 4*log(n) + 29+ 16
(UB) = 6H + 29 + 14

(LB) = 5H+ 2
(UB) = ?H + 3

(ID<abcde>)-> <abcde>
H=4, n=B

ANALYTIC MODEL SIMULATION
lower bound upper bound observed FFP text (eoc2
(==) 61 (==) 61 (==) 61 text 0: <>

(id
<abc de

(SM)O (SM) 0 (SM) 0 text 1: <id>=29
(PN) 57 (PN) 67 (PN) 59 <abc de
(EX) 22 (EX) 31 (EX) 26
(++) 79 (++) 98 (++) 83
(==) 140 C==J 159 (==2 146

5.4.2. Analysis and Simulation of N-ary Add

240

The LPL program for n-ary addition completes in one cycle, and provides an

example of message use. As shown in Chapter 2, n-ary add operates by sending

argument values up into the message subsystem, where they are combined

using addition. The single result returns to the !cells, where it is accepted and

stored as the desired result. It may be analyzed as follows, with values

calculated forts parenthesised for clarity.

(SM1) =

{PN1) =

{EX1) =

0

1

I

FIGURE 5.13 --Analysis and SimW.ation of N-ary Add

{LB) = 0
{UB) = 0

(LB) = 4*log(n) +53+ 16
{UB) = 6H+ 53+ 14

(LB) = {2*log{n)+3+4) + 5H + 2
{UB) = {2*min(n,H)+2+4) + 7H+ 3

(+<12345>)-> 15
H=4, n=8

ANALYTIC MODEL SIMULATION
lower bound upper bound observed FFP text (eo c)
(--) 61 (--) 61 (--) 61 text 0: <>

(+
<12345

{SM)O {SM) 0 {SM) 0 text 1: <+>=53
{PN) 81 {PN) 91 {PN) 82 15
{EX) 35 {EX) 45 (EX) 35
(++) 116 (++) 136 (++) 117
(_==) 177 C.==) 19? (.==)1?8

5.4.3. Analysis and Simulation of SORT

241

Sort is an example of an LPL program that sends many messages, but still

requires no forking. It completes in one cycle, and if there are n numbers to be

sorted, requires Gl(n) time. It is analyzed as follows.

I

(SM1) =

(PN1) =

(EX1) =

0

1

I

FIGURE 5.14 --Analysis and SimuLation of SORT

{LB) = 0
{UB) = 0

{LB) = 4*log{n) +59+ 16
{UB) = 6H+ 59+ 14

(LB) = (2*log(n)+3+3(n-3)) + 5H + 2
(UB) = (2*min(n,H)+2+3(n-3)) + 7H + 3

(S<23514>)-> <12345>
H=4, n=8

ANALYTIC MODEL SIMULATION -lower bound upper oound observed FFP text (eo c)
(==) 61 (==) 61 (==) 61 text 0: <>

(S
<23514

(SM) 0 (SM)O {SM) 0 text 1: <S>
(PN) 87 {PN) 97 {PN) 88 <12345
{EX) 46 {EX) 56 {EX) 50
(++) 133 (++) 153 (++) 138
(.==2 194 (.==) 214 c=.=J 199

5.4.4. Analysis and Simulation of ROTR

242

The more general situation for FFP operators is to require forking in

conjunction with messages. Such operators require multiple cycles to complete

since an intermediate storage management is required. An example of such an

operator is ROTR. The rightmost argument element is sent over to occupy the

leftmost position after room has been made for it by forking. As indicated by

the header for its LPL definition in Chapter 2, ROTR completes in two cycles.

With l denoting the number of elements of its argument list, and m denoting the

size of the rotated element, its behavior may be summarized as follows:

(SM1) =

{PN1) =

{EX1) =

{SMz) =

(P02) =

FIGURE 5.15-- Analysis and Simulation of ROTR

{LB) = 0
{UB) = 0

{LB) = 4*log(n) + 143 + 16
{UB) = 6H+ 143+ 14

(LB) = (2*log(n)+3+4l) + 5H + 2
(UB) = {2*min{n,H}+2+4l) + 7H + 3

{LB) = 204*2
{UB) = 204*2

{LB) = 2*log(n) + 8
· {UB) = 4H+ 8

{EX2) =
{LB) = {2*log(n)+3+4m) + 5H + 2
{UB) = {2*min(n,H)+2+4m) + 7H + 3

0

1

2

{rr<ac<d>>)-> <<d>ac>
H=5, n=9, l=4, m=2

ANALYTIC MODEL SIMULATION
lower bound unver bound observed FFP text (eoc)
{==) 80 (==) 80 (==) 80 text 0: <>

(rr
<a<bc<d

{SM) 0 {SM)O {SM) 0 text 1: <op>
{PN) 175 (PN) 187 {PN) 179 {rr
{EX) 54 {EX) 66 (EX) 62 <a<bc<d
{++~ 225 (++) 249 ~~~j;~~ (== 305 ~'==) 329
{SM) 408 {SM) 408 (SM) 408 text 2: <>
(PO) 16 {PO) 28 {PO) 20 << d a< b c
{EX) 46 {EX) 58 (EX) 52
{++) 470 (++) 494 (++) 480
(_=-) 775 c--2 az3 c--J 801

5.4.5. Analysis and Simulation of EEl

243

Forkc is ideal for supporting operators that require no further execution

after an appropriate storage management. Its use in the EEl functional avoids

244

the cost of an. extra machine cycle. Another interesting use of forkc is found in

the COMP functional. We analyze EEl here. The summary of analytic model

parameters found in its header gives the following result, where m is the number

of applications to be created.

I
I

{SM1) =

{PN1) =

(EX1) =

FIGURE 5.16-- Analysis and Simulation of EEl

{LB) = 0
{UB) = 0

(LB) = 4log(n) + 136 + 16
{UB) = 6H+ 136+ 14

(LB) = {3log{n)+3+4(m+l)) + 5H + 3
{UB) = {3*min{n,H)+3+4{m+ 1)) + 7H + 3

{<EEl +>«1 3 3><4 56>>) _, < (+<1 4>) (+<2 5>) (+<3 6>) >
H=5, n=13, m=3

ANALYTIC MODEL SIMULATION
lower bound upper bound observed FFP text (eo c)
(--) 88 (--) 88 (--) 88 text 0: <>

0 (<ee 1 +
<<123<456

{SM) 0 {SM) 0 {SM) 0 text 1: <eel>-136
1 (PN) 158 (PN) 170 {PN) 159 <(+<1 4

{EX) 54 {EX) 66 {EX) 60 (+<35
(++) 313 (++) 336 (++)319 (+<36
(_==) 300 (_==2 334 (_==2 307

5.5. Complete Programs

The above sections have shown how the execution times for individual RAs

may be predicted. With appropriate restrictions, this approach may be

extended to the analysis of programs for which multiple RAs execute

concurrently. A simple example of this is given by a program to calculate the

245

inner product of two vectors. Such an FFP program, one that uses the EEl

functional form, is given in Figure 5.17.

FIGURE 5.17- A Program for Inner Product of <1 2 3> and <4 5 B>

(+ (<EEl * > < < 1 2 3 > < 4 5 B > >))
~--_j

Figure 5.18 shows a graphic representation for execution of this program, in

which the creation and progress of individual RAs are depicted. To predict the

execution time for this program, the same method used for individual RAs is

employed. The progress of each RA through the three execution phases is

tracked, with the primary difference being that creation time for RAs may now

be taken into account. • Also, since multiple RAs are involved, upper and lower

bounds for storage management will in general differ, and the maximum ts value

among the RAs must be used to determine the duration of the execution phase.

Assuming that H=5, the analysis is as follows. For cycle one, there is one RA

for EEL We know from Figure 5.16 that this first cycle will take between

LB(cycle 1)=212, and UB(cycle1)=23B time units.

For the second cycle, we must analyze the multiplication operation.

Multiplication can be considered an n-ary operation in the same way as addition,

and the resulting LPL program mirrors that for addition. Thus the results of

Figure 5.13 may be used. But first, we must analyze the time required to create

the RAs. At the beginning of cycle 2, as shown in the header for EEl in Section

2.4.1.8, there will be 3 contexts, each forking off 5 completed contexts. Thus, as

required by Figure 5.6, LB(SM2)=4*4=16, and UB(SM2)=4*(3*4)=4B. Using H=5

• The only uncertainty now is the time required to initially load the complete program. It
seems reasonable to ignore this time in our analysis of execution time, so the first RAs to
be detected in a program are assigned zero storage management tin1e.

246

FIGURE 5.18-- Execution '!'race for Inner Product

cycle 1 -r
eel

l
I r-----
• •

l l
l
+

l ----------·----------

and n=5 in the formulas for n-ary add found in Figure 5.13 gives results of

LB{PN2+EX2)=81+40=121, and UB{PN2+EX2)=97+54=151, therefore

LB(cycle2)=137and UB{cycle2)=199.

Since the RAs during cycle 2 are all performing the same parallel computations,

their t
6

values are all the same. If this were not the case, the maximum t
5

among the RAs would be used.

In cycle 3, there is no storage management cost to be paid for creation of

the addition RA since the multiplications of the previous cycle require no

forking. Thus we have a final n-ary addition with n=6. This gives

LB(cycle3)=121 and UB{cycle3)=151.

247

The combined estimates yield LB(program}=470, and UB{program}=586 ..

Figure 5.19 summarizes these results, and presents the results of simulation.

0

1

2

3

I I

FIGURE 5.19- Analysis and Simulation of Inner Prod·uct

(+ (< ee 1 • > < < 1 2 3 > < 4 5 6 > >)) -> -> -> 32
H=5

ANALYTIC MODEL SIMULATION
lawerbaund U'f!.J!.er bound observed FFP text (eo c)
(==) 96 (==) 96 (==) 96 text 0: <>

(< ee 1 *
<<123<456

(SM) 0 (SM)O (SM) 0 text 1: <ee1>=126
(PN) 158 (PN) 170 (PN) 162 < (* < 14
(EX) 54 (EX)66 (EX) 60 (* < 25
(++)212 (++) 236 (++) 222 (* < 3 6
(==) 308 (==) 331 (==) 318
(SM) 16 (SM) 48 (SM) 32 text 2: <*>=53
(PN) 81 (PN) 97 (PN) 90 (+
(EX) 40 (EX) 54 (EX) 42 <41018

~::) !~~ (+~) 199 (++) 164
(== 531 (==) 482

(SM) 0 (SM) 0 (SM) 0 text 3: <+>=53
(PN) 81 (PN) 97 (PN) 86 32
(EX) 40 (EX) 54 (EX) 44
(++)121 (++) 151 (++) 130
(-=2 566 (=- 2 682 (--) 612

5.6. Restrictions

The above analysis of the inner product program was easy for a number of

reasons. The multiple RAs for cycle two all had the same ts value. In general, of

course, this will not be the case. Also, the program contained no conditional

execution paths, and was neither recursive nor iterative.

Koster [Kos79] has dealt with conditional execution and has shown how to

use recurrence relations to analyze programs that perform recursion or

• Note that these bounds do not include the initial load time of 96, which is used to nor-
malize analytic model predictions for comparison with simulation results. Including this
value yields total estimates as shown in Figure 5.19.

248

iteration. In addition, Mago, et. al. [Mag83] have identified a set of restrictions

for parallel RAs that serve to guarantee a determination for maxlcells(ts) for

each cycle.

The basic difficulty in determining maxlcells(ts) is that parallel execution

paths may individually require numerous sequential reductions, and to predict

max1 ll (t) for each cycle, we must know what RAs are executing. Thus we ce s s

need be able to construct a graph of the execution paths, similar to that shown

in Figure 5.18, which at least parametrically includes this information. If

parallel execution paths are allowed different data-dependent behavior {perhaps

one path involves sorting, and another parallel path requires a conditional

matrix transposition} then such a graph cannot be constructed. A useful set of

restrictions, suggested by Mago, et. a!. [Mag83], are given in Figure 5.20.

FIGURE 5.20- Restrictions on Parallel RAs for Analyzability

1) The number of parallel execution paths for a program is known,
at least parametrically

2) One of the following holds for parallel execution paths:
• no RA requires messages;
• the RAs along each path are identical; or
• in each path, only the last RA is allowed to send

messages whose number is known only at run-time.

By constraining the dissimilarity of parallel execution paths, these

restrictions define a class of FFP programs for which lower and upper bounds on

execution time are easy to derive. The situation is similar to that for von

Neumann programs; they are generally not analyzed unless they are suitably

structured and the data characteristics are sufficiently predictable.

249

5.7. Summary

This concludes our discussion of the analytic model. In our initial approach

to designing DOT, many aspects have been simplified in the interest of furthering

insight into (and identification of} the important problems facing an efficient

implementation. The analytic model presented is a great help in this respect,

since it is based on the design representation and gives useful predictions for

performance. The resulting insights aid investigation of ways to improve the

design, as the following chapter on design alternatives will show.

In the discussion of other reduction machines given in Chapter 1, we

pointed out the importance of limiting process interference -- both for reasons

of performance, and predictability. We can now characterize the degree to

which we have been successful in this.

In the context of DOT, the progress of an individual RA through the phases

of the machine cycle may be viewed as a process, and it is therefore

interference between parallel RAs that must be examined. As shown by the

analytic model we have presented, execution of parallel RAs generally proceeds

with very little interprocess interference. As much as possible, we have tried to

decouple the processing cells of DOT so that the progress of any RA through the

three phases of the machine cycle is relatively independent of other RAs. This is

the primary reason why a useful analytic model of program execution on DOT

can be developed.

There are two ways that RAs may still interfere with each other. During

every machine cycle, each RA determines a local t
8

and a corresponding lower

bound for maxlcells(ts). The greatest such lower bound, however, determines

the actual duration of the execution phase for all RAs. The penalty for this

interference is that RAs that complete without messages may have to wait on

250

RAs that do require messages. As shown in the above examples, however,

messages are handled efficiently by DOT. In addition, Chapter 4 on simulation

suggested that the penalty for being "fair" (i.e., sending only a limited number

of messages per cycle} is not serious. •

The other possibility for process interference is during storage

management. As shown by the analytic model, the situation here is more

serious in terms of its possible impact on performance. During storage

management, RAs and entering new programs must compete for space within

the !cell array. Space requirements for all RAs may be satisfied, but at the cost

of shifting some RAs a great distance through the !cell array. Storage

management is performed in such a way as to limit this kind of interference,

and simulation results confirm that this is generally successful. Nevertheless,

the cost of shifting complete LPL program contexts within the !cell array is the

main performance bottleneck of DOT. This cost is expected; it is the price to be

paid for the benefits of string reduction enjoyed throughout the rest of the

machine cycle. Because of this cost, however, the greatest improvements in

performance will most likely result from reducing the amount of information

shifted during storage management.

Possible approaches include modifications to LPL that enable an increase in

the efficiency of storage management, and modifications to DOT that allow

further de-coupling of the machine cycle phases within separate RAs. As an

example of the first category, the forkc statement drastically reduces the size

of contexts that are forked (in addition to saving an execution cycle} from 204

bytes to 4 bytes. Approaches in both categories are considered in the following

• Also, our approach for determining the duration of the execution phase can be easily
changed to remove this interdependency between RAs. The next c-hapter will discuss vari-
ous alternatives. ·

251

chapter on design alternatives.

CHAPTER 6

Design Alternatives and Extensions

Numerous alternatives are possible within the design space of the

programming system we have described. By discussing these alternatives now,

we clarify many of the dimensions of the design space, identify tradeoffs, and

examine the fiexibility and potential of the design we have constructed. Many of

the tradeoffs do not lend themselves to a formal analysis, so an important use of

the simulation will be to portray the behavior of the programming system under

the infiuence of alternative approaches.

Clearly, depending on how pervasive a particular design decision is,

modification of DOT to refiect an alternative approach will require changes of

varying scope within the simulation. For each alternative identified, we will

therefore be concerned with this practical issue as well as the possible benefits

to be realized by making changes to the design.

In addition to design alternatives, this chapter also discusses design

extensions. Both involve changes or modifications to the present design, but

extensions do not involve tradeoffs in the same sense as the alternatives;

extensions may be viewed as holding clear-cut benefits for the programming

system. They represent our suggestions for work that definitely should be done

in order to further improve the desirability of the programming system.

An overview of the design alternatives and extensions that we will discuss is

shown in Figure 6.1. Each possible change is given under the topmost system

level affected, with the understanding that lower levels may also be affected.

252

FIGURE 6.1 -Possible Design Modifications

1) ALTERNATIVES
A. FFP Level

• Text Representation
B. LPLLevel

• Message Routing
• Non-blocking Fork
• Synchronization of Segment Completion

C. DOT Level
• Duration of Execution Phase
• Shifting vs. Reloading LPL Code
• Storage Management Transfer Function

2) EXTENSIONS
A. FFP Level

• JCL for User Programs
• Temporary Storage (PUSH, POP Operators)
• Visual Tracing

B. LPL Level
• Event Indicator for Storage Management

C. DOT Level
• Variable Context Sizes
• Increased Phase Independence for RAs
• Multiple LPL Program Input Ports

6.1. Design Alternatives

First, we discuss possible alternatives to the current design.

6.1.1. FFP-level Text Representation

253

In Chapter 2, we presented an FFP-level representation for user programs

based on the use of nesting level numbers. This representation was suggested by

Mago in his original description of the tree machine [Mag79]. From this, we

derived an LPL representation that includes information required for efficient

use of the LPL multiprocessor architecture.

Since the DOT implementation is driven by these two architecture levels,

the initial choice of the FFP-level text representation is clearly of central

importance to the whole programming system. Modification of the design to

support a different FFP-level representation within the machine would require

254

pervasive changes. The detailed nature of the DOT simulation (which mirrors

and represents the design} therefore precludes a straightforward investigation

of possible alternatives at this level.

This category of alternative is mentioned here to underscore its primary

importance to the overall multiprocessor design, rather than to recommend its

investigation through use of the current simulation. By performing another

design in parallel with the one we have described, David Middleton, here at UNC,

is investigating other FFP-level representations, including the

PC Representation (for Potentially Compact) originally used by Tolle [TolBl].

6.1.2. LPL Message Routing

The LPL architecture does not include the tree structure that is used to

implement it. The primary reason for this is our desire for simplicity. As we have

made clear, DOT is quite complex in its operations, and simplicity is thus a

distinct virtue wherever possible. But. when simplicity is bought at the ultimate

cost of efficient performance, alternatives should be at least identified for

investigation by future workers.

As we have shown, simple combining and sorting operations are handled

efficiently in the current DOT implementation -- without the need for explicit

incorporation of message routing into the LPL architecture. However, some

operations might benefit by allowing explicit LPL control over the routing of

messages among the tcells of an active area. For instance, Pargas [Par82] has

shown how generalized routing may be used for efficient solution of partial

differential equations. In addition, Presnell and Pargas [PreBl] have examined

the use of shortest path routings in tree machines.

Presnell has suggested a simple generalization of the LPL message scheme

that allows shortest path routing. In this approach, the message prefix could

255

differ between the messages of a given message wave, allowing area nodes to

route messages in different ways depending on prefix instructions and message

data. Messages would be routed down to a left or right child, or up to a parent

as done presently. Downward-moving messages would be handled via broadcast

as in the current implementation.

The main performance penalty to be paid for this approach is the use of

multiple prefix packets where, before, a single pipelined prefix sufficed. Also,

since each message must be handled separately, messages can no longer be

pipelined. In cases where an ®(n) dependence on the size of an RA may be

avoided, however, this would be a small price to pay. The increased overhead for

• message processing could be made up for by reduced traffic through the top of

area-- enabling more balanced communication loads and increased utilization of

the area nodes.

While the ramifications of the above message protocol require further

investigation, implementation within the current design context appears

feasible. This would allow simulation to aid analysis of the tradeoffs involved.

Synchronization will be required within area nodes to handle non-deterministic

arrival of messages from above while locally routing messages down to a child. ln

its present form, DOT requires no such synchronization within the tcells.

6.1.3. Non-blocking Fork

Since storage management potentially represents the most expensive

phase of machine execution, it is important to consider design alternatives that

reduce the need for shifting within the !cell array. One such possibility involves

virtualizing the !cells of the LPL architecture, so that a single DOT !cell may

support a contiguous segment of forked LPL-level (virtual) !cells.

256

To see why this could be valuable, consider the following. At present, FFP

reductions can require an expression to grow temporarily within the !cell array

even though the final reduced result is no larger than the original application.

Operators that merely restructure a list (e.g., ROTR) provide examples of this

phenomenon; forking is used to create room to receive symbols whose position

is to be changed, and whose original containing !cells are released when the

reduction completes. In such cases, there is no net increase in expression size,

and virtuallcells could be used to temporarily contain (within a single DOT !cell)

multiple forked LPL contexts during the process of a reduction, so that no

intermediate shifting would be required.

This would minimize the degree to which separate RAs interfere with each

other during their execution, and allow most FFP primitives to be implemented

in a single cycle machine since the LPL fork operations could proceed without

storage management within the !cell array. Shifting would be required only upon

completion of a reduction -- to create the one-to-one correspondence between

FFP-level symbols and DOT !cells required for new partitionings.

The basic concept is thus similar to multiprogramming on traditional

architectures, with the exception that only a single LPL code segment would be

required. The tradeoff to be examined is the necessary increase in the size and

complexity of DOT !cells -- needed to allow an !cell to contain, schedule, and

execute multiple user contexts -- versus increased independence between RAs

and increased execution efficiency for many FFP operators.

Implementing non-blocking LPL fork operations appears feasible within the

DOT model. Message reception would be straightforward; copies of the message

would be placed in each LPL context, and the appropriate filter would be

executed once for each context. Allowing send statements would be more

257

difficult, since combining or sorting messages would have to be done by the

containing DOT !cell. The restriction that no send statements be executed

following a forking operation seems reasonable, however, and takes care of this

problem. Support for fork operations that create more LPL contexts than can

be held by a single (limited size) DOT !cell must also be addressed. In such

cases, storage management will be required, but the implementation should be

able to handle this in a manner that is transparent to the LPL programmer (just

as virtual memory or multiprogramming is transparent to a programmer).

6.1. 4. Completion Synchronization

Because of our process-oriented design methodology, and the desire for

simple, asynchronous and free-running processes wherever possible, each

segment of an LPL program was originally allowed to simply perform its own

local duties and then complete (by executing an endsegment statement).

Although messages and forking might require multiple cycles for some of the

segments of an LPL program, other segments requiring fewer cycles were

allowed to complete without concern for the longer-running segments. This was

a convenience provided by DOT for the LPL programmer since, in reality, the

!cells of an RA must all be stepped forward together at the end of the same cycle

to prevent partitioning anomalies.

To insure that RA !cells were not stepped forward too soon, DOT !cells within

an RA originally sent a state packet up into the area channels upon receiving the

stop message from the io subsystem. This packet served the same function as

the LPL stop packet now does, by clearing out area channels, but also included

the execution state (completed or not) of the sending !cell. The state

information was combined by area nodes using logical multiplication on the way

up, and upon return to the !cells indicated whether all !cells of the RA had

258

completed and the RA should be stepped forward.

The original method had the advantage of insulating the LPL programmer

from details required for synchronizing completion of an RA, but was less

efficient than necessary. If LPL segments are required to synchronize their own

completion (which they can easily do by keeping track of messages, or forks

when necessary) then the state message is not required, and preparation for

storage management can begin earlier, thus shortening the execution cycle.

The approach we therefore took, as described in Chapters 2 and 3, was to

require LPL programs to perform their own completion synchronization. With

this done, a top of area node can detect the stop message on its way down the

tree, and immediately insert a corresponding stop packet into its down-going

area channels (following the LPL message currently in transit, if any) without

waiting for the stop message to reach the !cells and the state packet to then be

sent up and return to the top of area. Doing this therefore avoids an additional

2h delay required by the state packet approach.

Our experiences with the improved shutdown mechanism when

implemented in the simulation were surprising. In some cases, the "improved"

design actually ran slightly slower. The reason for this was the additional LPL

code required to synchronize completion. When h was small, the increased code

loading time during partitioning (due to increased code size) was not offset by

the 2h saving during shutdown. With larger areas, the desired effect is achieved

and synchronized completion results in the best performance. Nevertheless the

tradeoff remains interesting. LPL programs are considerably harder to write

with a synchronization constraint between segments. Many of the LPL programs

rewritten for the new design initially deadlocked, and new LPL programs take

longer to develop.

259

In the current design, we nevertheless decided to use the approach that is

potentially more efficient at the cost of ease in writing LPL programs. This

approach can be supported by arguing that LPL programs are essentially

microprograms, and therefore will be written infrequently. On the other hand, it

is reasonable to note that even on a large machine (say H=21) h will never be

prohibitively large, so the extra delay required to send a state packet may not

be terribly important when compared to realistic storage management times.

Looking at the benefits to be derived through the use of a state packet (in

spite of the execution overhead), the resulting decrease in LPL code size is not a

major factor; the increase in understandability is. Both factors are most

noticeable when the LPL program in question requires multiple cycles and

numerous code segments.

6.1. 5. Duration of Execution Phase

Since the stop message which originates in the io subsystem initiates the

required course of events for terminating the execution phase, regulating the

duration of the execution phase reduces to deciding how soon (following delivery

of requiredLPL code segments) the stop message should be sent. It is useful to

note that this decision can be made without concern for correct operation of the

machine. This fact is a natural result of a process oriented design methodology.

Time is never a factor in the correctness of the design -- only the partial

orderings of events made explicit in the process descriptions. Because of this,

we are free to use whatever means we wish to determine an appropriate

duration for the execution phase.

A variety of alternatives for regulating the duration of the execution phase

are possible. These include fixed durations, and heuristically varied durations.

The approach we have taken for DOT allows RAs to control the cycle time, thus

260

providing a degree of sensitivity to dynamically changing execution

requirements, while still allowing an analytic model to predict execution times.

This method can result in the shortest possible cycle times and the best possible

execution efficiency when all RAs receive few (or no) messages before

completing or forking. •

If 0(n) messages must be received by the !cells of an RA in order to

complete a reduction, however, allowing the RA to complete in a single execution

phase could seriously reduce the efficiency of other reductions within the

machine. It seems best to interrupt such an RA temporarily, so that other

reductions that have completed can be stepped forward, and then continue the

RA during the following machine cycle. In the present design, LPL programs

that allow this, by executing smanage at appropriate intervals, are called

fair operators.

As shown by simulation, the cost of being fair may not be serious. This is

due to two factors: the lower bound on storage management for an RA

interrupted for this reason is generally zero (messages are being received, and

local forks have not been executed), and the subsequent cost for repartitioning

the old RA is low (code and directories are already loaded).

As an alternative to the current approach requiring fair operators, we might

consider using a fixed duration for the execution phase. This would also prevent

a single RA from monopolizing the machine cycle. The analytic model of RA

execution time can be used for guidance in choosing an appropriate duration.

With the help of the formulas derived in Chapter. 5, we can investigate the

normalized efficiency, ~ (defined as the time required to reduce an RA

• As shown by the analytic model, only the number of received messages is important to
execution time; any number may be sent, but if combined and pipelined the delay is the
same as the transit time for a single message.

261

completely within one cycle divided by the cost of reducing the RA over a period

of k additional cycles), for a large 0{n) communication-bound reduction. The

primary assumptions required are that the lower bound on storage management

time for the RA is zero {i.e., no forks are performed), and that other RAs don't

interfere with the communication-bound RA, so that the actual storage

management time is zero as well. As mentioned above, these assumptions

appear reasonable in view of early simulation results.

Figure 6.2 summarizes the analysis when n messages of msize= 1 are

received by an RA of size n.

FIGURE 6.2- Efficiency of Fair Operators

(= best-time /actual-time

message-cost
partitioning-cost
total-cost

(:;, 4n / (4n + 4kH}
::0,1/(1+kH/n).

~4n,

,;; 4H,
,;; 4kH + 4n, thus

If the constant cycle time is equivalent tom messages/cycle,
k = n/m, so

(:;, 1 / (1 + H /m).

Alternatively, to achieve a given efficiency, f, let

From the results of Figure 6.2, to achieve 50% efficiency in communication-

bound RAs, the machine cycle should be set so at least H messages may be sent

each cycle. For a machine of height H=20, to achieve 50% efficiency the

duration of the execution phase should be at least (2H + 4H + 3) = 123r. If r is

262

100 nsec, then, the duration of the execution phase should be , 13,usec. •

Note that this value is fairly small in comparison with the times required to

shift contexts within the !cell array. Presently, the time required to receive 20

LPL messages is less than the cost to shift an executing user context a distance

of one !cell. Jn view of this result, decreased efficiency for RAs that don't require

the whole execution phase for completion may not be an important factor. This

is because the newly-formed expressions created by rapidly reduced RAs (during

the ongoing execution of a large communication-bound RA) will often require

storage management shifting due to forks that have been executed, and then

storage management costs should predominate.

Although simulation will be required to judge whether the assumptions of

this reasoning are born out by experience, the above discussion shows one

direction that a search for a constant execution phase could take. With such an

approach, execution times fcir complete programs could still be predicted in a

manner similar to that described in Chapter 5.

With a heuristic cycle time, it is no longer possible (in general) to predict

execution times. Nevertheless, a heuristic approach might still be indicated if

the observed results were good. Figure 6.3 lists some of the approaches that

could be considered.

•

FIGURE 6. 3 --Possible Variabla Oycle Time Heuristics

l)less than 100%sm.,orantsrequiredfromlcells (e.g. 80%)
2) set cycle times based on RA operators
3) set cycle timas based on storage management shift requirements

Alternatively, to achieve 90% efficiency at least 9H messages should be received each
cycle. With H=20, this would result in an execution phase duration of (2H + 36H + 3) =
763T, or "' 77 t-tsec.

I

263

In the first approach, a mechanism similar to the present use of sm_grant

messages would be appropriate. Instead of waiting for all !cells to allow storage

management, however, a particular threshold would be used (e.g., the stop

message might be sent down after 80% of the !cells allow storage management).

The threshold could be chosen dynamically each cycle, based on !cell contents,

or fixed arbitrarily.

In the second approach, the particular LPL programs active within the !cell

array (and possibly their corresponding RA sizes) would be used to determine an

appropriate duration of the execution phase. Such information could easily be

made available to the io subsystem during partitioning. Determining a

satisfactory approach toward such an heuristic, by weighting various LPL

program characteristics and RA sizes, would be very interesting.

In the third approach, information concerning the extent and distribution

of storage management shift requirements would be used. When large amounts

of shifting are required to create an RA, a longer execution phase would allow

the shifting activity to complete and some useful work to be performed before

termination of the execution phase.

Of course, the essence of an heuristic is that it attempts to balance

complex and conflicting forces through simple means. The fact that the above

examples are so different merely indicates the variety of factors that influence

execution efficiency within the current design. In addition, the results of Figure

6.2 indicate that duration of the execution phase, although important, is not the

predominant factor influencing execution efficiency -- rather, the duration of

the storage management. phase appears to be the most crucial. This is a useful

result, since it indicates that a simple fixed duration for the execution phase

may turn out to be generally satisfactory.

264

6.1.6. Shifting vs. Reloading LPL Code

At present, the LPL code segment is part of the user context that is shifted

during storage management. This means that once a code segment is loaded,

successive partitionings complete much more rapidly, and this allows good

efficiency for fair operators. However, loading LPL code segments during each

partitioning would reduce the time presently required for storage management

• by a factor of three. This is clearly an important tradeoff, and it involves the

number of FFP operators that are active during each cycle, and the number of

machine cycles required for their reductions.

lt is likely that a small number of commonly used LPL _programs could be

stored in ROM within the !cells. This would shift the balance toward loading

necessary LPL programs during each partitioning, as opposed to shifting them

with active environments during storage management. lf non-blocking fork

operations are feasible, most reductions would complete in one cycle anyway, so

the frequency of reloading LPL code would be reduced even further.

Investigation of this tradeoff will require only moderate changes to the

current design.

6.1. 7. Storage Management Transfer Function

Calculation of the storage management transfer function is relat,ively

unconstrained as long as it results in a feasible solution as described in Chapter

3. In addition, storage management is the most important phase to handle

efficiently because of its great potential effect on execution efficiency. A variety

of alternatives should therefore be identified and investigated. An important

consideration for any method is that it should pipeline effectively .

• Recall that the LPL context size is 204 bytes, of which 150 bytes are used to hold the
LPL code segment.

265

Although we use the method originally suggested by Mago that minimizes

movement between subtrees rooted at higher levels of the machine [Mag79},

Stanat and Mago have shown how to optimize the overall context movement by

minimizing the maximum distance traveled by any context during storage

management [Sta81a].

Other possibilities include purposely distributing available empty !cells

among user contexts. This could serve to insulate separate RAs from each

others' storage requirements, resulting in execution times generally close to the

theoretical lower bounds predicted by the analytic model. If effective, such an

approach would shift symbols farther than necessary in order to produce

interspersed empty !cells and reduce the need for shifting later. To lower the

cost of shifting symbols further than necessary, this activity might be restricted

to non-active contexts only.

In the absence of advance knowledge concerning future storage demands of

executing FFP programs, however, the method we presently use is probably

close to optimal; it pipelines efficiently, and limits shifting during storage

management effectively. In order to provide better overall performance during

the execution of complete programs, guidance concerning beneficial placement

of interspersed empty !cells from the FFP programmer might be useful.

Automated analysis of FFP program text might also provide information useful

to effective management of the !cell array during execution.

6.2. Design Extensions

We now give recommendations for design extensions.

266

6.2.1. Job Control Language

At present, the mkusr program accepts user-supplied FFP programs and

creates a batch of user programs organized as required for loading and

execution on the DOT machine. The FFP programs are presently written using

the aln FFP-level representation, and the primary job of the mkusr program is

to create a file in which user program symbols and alns occur in pairs in reverse

(right-to-left) order as required for loading. This file is accessed during a

simulation run by the vm subsystem, which enters the hatched programs into

the !cell array when indicated by the top-level storage management transfer

function.

While this approach is quite satisfactory in its support for testing the DOT

design and simulating the execution of FFP programs for evaluation of tradeoffs,

a more realistic user interface will ultimately be required.

An interface between the outside world and the DOT machine that allows

entry of jobs concurrently with machine operation is necessary. This should be

fairly easy to develop within the present simulation. More important than this,

however, is development of a smarter mkusr program. Facilities that mkusr

could ultimately include are given in Figure 6.4.

FIGURE 6.4- User Interface Facilities

• Translate user FFP to the machine ·s FFP-level representation
• Translate operator names to the appropriate machine op-codes
• Translate FP to FFP
• Support user-defined operators
• Support run-time data entry

The first three items simply require the development of a more

sophisticated translation mechanism than now employed. The last two, however,

will in addition require development of a Job Control Language to allow the user

267

to define and use logical identifiers for reference to desired user-defined

operators and read-only data sets. Corresponding to this JCL must be a runtime

system to allocate unique identifiers for binding to logical identifiers during

program execution.

When a program is run, its user-defined operators and read-only data sets

will be associated with appropriate unique identifiers and placed (at least

logically) within the LPL program library. When the program has completed, the

associated user-defined operator definitions will be removed, and their op-code

identifiers freed to allow allocation to the user-defined operators of new

programs. This facility will allow general programs to be written in a structured

fashion (data and program may be kept separate, and user-defined operators

are similar to procedures).

JCL support for user-defined operators and read-only data sets will generate

LPL programs (with temporary op-codes assigned as described above) that

create the desired FFP text within the !cell array when encountered as the

operator of an innermost reduction. Automatic generation of this restricted

type of LPL program should be straightforward. Figure 6.5 shows a user-defined

operator and gives the corresponding LPL program. The operator calculates the

Euclidean distance from the origin to a point. Although FFP function names are

used in the LPL program for clarity, the appropriate op-codes would actually be

used. The LPL program source given in Figure 6.5 is only an intermediate step

on the way to the corresponding object code. In practice, the required object

code would be generated directly from the user-level FFP operator definition.

FIGURE 6. 5- A User-defined Operators and its LPL Program

Defuserop
DIST"'

.

<COMP + <CONS

>

<COMP • <CONS <SELECT 1> <SELECT 1>>
<COMP • <CONS <SELECT 2> <SELECT 2>>
>

268

progrmnDIST /*called in when innenrost (DIST arg) is encountered
destination 1 0 0 0 j• replace DIST with its definition

. cselect "< 0 "COMP : 1 "+ : 1 "< : 2 "CONS : 3
"< 3 "COMP : 4 "* · 4 "< : 5 "CONS : 6
"< 6 "SELECT 7 #1 7 "< 6 "SELECT 7 #1
"< 3 "COMP : 4 "* · 4 "< : 5 ''CONS : 6
"< 6 "SELECT : 7 #2 7 "< : 6 "SELECT 7 #2

forkc #27
endsegment

destination 0* 0* 0* 0*
keep

/*all other s~ols unchanged

endsegment
endprogram

6.2.2. Pushdown storage for Lcells

7

7

From the nature of the DOT design, it is clear that argument copying should

be avoided by LPL programs whenever possible because of the corresponding

necessity for forking and increased storage management time. Some LPL

programs cannot avoid this. DEL and ROTR, for instance, must copy all or parts

of their argument to produce the desired result. COND, the first phase of the

FFP conditional operator, also needs to copy its argument, but not because of

the result it produces. Rather, a temporary copy of the argument for COND is

required so that the predicate can be evaluated-- off to the side, as it were --in

order to apply the correct function. To illustrate this, Figure 6.6 gives an

example reduction for an FFP text segment that uses COND to return 1 if the

argument length is less than 10, and 2 otherwise.

269

FIGURE 6. 6-- COND Copies its Argument

{<COND <CONST 1> <CONST 2> <COMP <LT 10> LENGTH» arg)
the argument is copied, and an inner evaluation of the predicate
is begun

{<CONDZ <CONST 1> <CONST 8>> <{<COMP <GT 10> LENGTH> arg) arg>)
within in predicate evaluation, composition results in

{<CONDZ <CONST 1> <CONST 2» <{<GT 10> {LENGTH arg)) arg>)
which ultimately reduces to, say,

{<CONDZ<CONST 1> <CONST2>> <Targ>)
cond2 sees that the first function should be applied to arg, so
it creates the appropriate reduction

(<CONST 1> arg)
which reduces to

1

Note that in the first step, the size of the RA may double. This overhead of

argument copying required for support of COND is unfortunate since conditional

execution is generally necessary in realistic programs. Mago has suggested a

method to avoid argument copying in such cases [Mag82]. The mechanism is

interesting since its implementation requires changes to both DOT and the LPL

architecture.

The basic idea is that !cells are given a pushdown register capable of saving

the FFP-level representation for a text symbol. A push operation copies a symbol

into this register, which is not affected by following reductions. A subsequent pop

then brings the symbol back into the !cell array to again participate in

reductions. For COND, then, we push the argument down, and evaluate the

predicate, destroying the original argument. We then pop the earlier-pushed

copy of the argument back up for use by the appropriate function.

The push operation may be implemented within FFP or LPL. Since efficiency

is of concern, LPL is the best place for it. An extra cycle would be required if

pushing were done at the FFP level. In addition, including a push operation in

FFP would require modification of the FFP architecture -- something of concern

270

in a language-based design. •

The pop operation, on the other hand, cannot be easily implemented within

LPL. This is because only RAs execute LPL, and the pushed symbols are not

allowed to affect partitioning and the creation of RAs. Thus, there is no easy way

to guarantee that lcells holding pushed symbols will be part of an RA whose !cells

might execute a pop instruction. Unfortunately, placing the pop operation in

FFP is also unfeasible -- for the same reasons as given above for the push

operation.

A compromise approach is to place pop in an intermediate position between

the LPL and FFP levels. Pop can then be considered a "pseudo-operator"

possibly found at the FFP-level during partitioning, but always pruned out of the

area before reduction begins, and only placed in the lcell array by LPL code as a

special non-FFP reserved symbol. Figure 6. 7 shows the above example as it

might appear during successive execution cycles with use of the LPL push

statement and the pop pseudo-operator. The pushed symbols of the argument

are represented in curly brackets. Pop is represented by t .

• Currently, the FFP architecture is based on linear (one dimensional) expressions. The
push operation requires that a second dimension be visualized.

FIGURE 6. 7- COND with Push and Pop

(<COND <CONST 1> <CONST 2> <COMP <LT 10> LENGTH» arg)
The COND LPLprogrampushes the argument, and creates an
innermost RAfor evaluation of the predicate

271

(<COND2 <CONST 1> <CONST 2>> <(<COMP <LT 10> LENGTH> arg !argj)>
The predicate is ultimately reduced, yielding

(<COND2<CONST 1> <CONST 2>> <T!argj>)
COND2 checks the result and then creates

(1 <CONST 1> !argj)
During partitioning, the pop pseudo-op is detected. Only in
this case are pushed symbols included in the RA, and they appear
in their popped up form. The pseudo-op is pruned from the I
active area during the downsweep, so that the RA seen by CONST is

(<CONST 1> arg)
which reduces as desired.

1

As can be seen, the above approach requires no argument copying, no extra

cycles, and no changes to user-level FFP. lt is important that the pop pseudo-op

be pruned from the area so the RA will appear as expected by the function

selected by the predicate. Jn the form described, push operations may not be

nested. With further extension of the push-down storage in the !cell, nesting to a

fixed depth would be possible.

Although a variety of modifications of DOT are required to support push and

pop, these changes are not complex. Storage management should never shift

contexts "over" pushed symbols. With this restriction, pushed symbols will

always be available for inclusion in an RA created by a subsequent pop

operation. As indicated above, partitioning must be changed so pushed but

' empty cells are treated as empty unless a pop pseudo-op is detected. Jn this

case, the pushed symbols are popped and included as usual FFP-level symbols in

that RA, while the pop pseudo-operator is pruned and the containing !cell made

empty.

272

6.2.3. Visual Tracing

At present, all simulation output is oriented towards a terminal or line

printer. Since detailed information concerning computational activities and

data transfers is available from simulation tracing, however, the possibility of

visually oriented simulation output is raised.

In addition to making visible the fiow of information and the progress of FFP

reductions within the DOT machine, such a trace package could also provide

statistical assistance, and allow run-time factors such as channel utilization to

be graphically displayed. Simulation results of interest in evaluating design

alternatives could be accumulated and presented at the user's request.

Figure 6.8 shows the steps necessary to provide such a facility.

FIGURE 6. 8-- Steps to Provide Visual Tracing

• develop a graphical machine model

• modify the simulation to produce appropriate data

• connect simulation output to the visual model

• provide user interaction

An appropriate visual model might employ graphical representations

similar to those used within this dissertation to depict a simulated machine, but

flexible windowing operations would be required. The largest machine depicted

within this dissertation contained only 16 !cells, while the machines required for

realistic simulations will be much larger. Because of this, the ability to handle

different levels of abstraction in the visual model, by using different

representations of the cells and communication lines, would be desirable. At a

top level, visual access to windowed segments of the lcell array would allow

storage management and the ongoing progress of FFP text reductions to be

273

examined. At a lower level, a more detailed visual model might include the tcells

as well, highlighting active areas, and portraying the flow of information between

cells during execution.

At present, simulation output is keyed to process ids that are maintained

by the ClassC scheduling mechanism. The correspondence between process ids

and cell locations must be made more explicit if trace information is to be

displayed graphically. The most direct approach would be for the geometric

location of each cell to be encoded into a variable globally available to members

of each cell during initialization, and for every trace message to include this

information. Making such a modification to the current simulation will be easy,

since this facility was envisioned during the initial design and the appropriate

hooks are in place.

Although it would be possible to pipe simulation output directly to a visual

trace package, it seems better to batch the simulation as done presently, and

use the simulation output later-- filtering it as appropriate for the desired visual

trace. One reason for this is that simulation time can progress quite slowly.

Program execution can require hours of wall time when large machines are

simulated. By decoupling simulation from visual tracing, reasonable viewing

times are made possible.

Performing visual tracing separately from simulation also expands the

possibilities for user interaction. The progress of simulation time might be a

variable to be selected by the user during tracing. Interactive windowing of the

visual model would also be very useful. The ability to change levels of

abstraction interactively is another possibility.

In summary, visual tracing represents a useful and relatively

straightforward improvement to the current simulation environment, and it is

274

highly recommended.

6.2.4. LPL Storage Management Event Indicator

A useful (and easily accomplished) extension for LPL would be to provide a

read-and-reset register that indicates whether or not storage management has

occurred since the last time the register was examined. This facility would be

oriented towards support for fair FFP operators, and would allow an exact count

of the number of messages processed since the last storage management.

At present, fair operators incorrectly assume that no messages are

received following an smanage. This assumption is made because storage

management is completely invisible to LPL code, thus a count of messages

received in the interim between the smanage and the end of the execution

phase is not possible. A read-and-reset boolean register to reflect the

occurrence of storage management would allow the correct message count to be

maintained.

6.2.5. Storage Management with Variable Context Sizes

At present, two different sizes of user contexts are shifted during storage

management: active (204 bytes) and non-active (4 bytes). Besides the 54 bytes

of LPL environment included in an active context, a fixed size code area of 150

bytes is shifted. Since code segments are often quite small (many contain only a

one byte long endsegment op-code), a more flexible approach is indicated.

Storage management should only shift the actual amount of code that is

resident -- not the complete code area. This could result in greatly improved

performance.

275

6.2.6. Increasing Phase Independence

The efficiency of the DOT implementation arises from decoupling as much

as possible the phases of the machine cycle in separate RAs. Unfortunately,

coupling still occurs during storage management, when large user contexts are

shifted in pipelined fashion in the !cell array. We might ask if we can further

decouple the activities of different RAs during storage management as well.

Luckily, we can.

The key is to recognize that partitioning requires only the symbol, aln,

state, and forkid context information. This could be shifted first, during an

initial storage management phase, allowing partitioning to begin as soon as

possible and proceed while the shifting of all other context information

(required for execution only) takes place. The storage management phase would

therefore take place in two pipelined shift operations. First, the information

required for partitioning would be shifted, and then, after this was finished, all

remaining information would be moved. For RAs that are already active,

partitioning would be effectively free. For RAs that are new, the upper bound for

storage management would involve the non-active context size only. Both these

results would be very important for execution efficiency.

Implementation should be straightforward. A new process will be required

to complete storage management by shifting the balance of executing contexts

within the !cell array while the !cell manager proceeds with partitioning. In

addition, execution must wait until the new process signals that the complete

context required for execution has arrived. This extension can be made in

conjunction with modifications to support shifting variable context sizes.

276

6.2. 7. Multiple Input Ports

Although we have used a single port located above the tree root for LPL

program input, there is no reason why multiple ports distributed throughout the

tree might not be used in a similar fashion.

As is done now, top of area node managers that wish to request an LPL

program would have their requests sent up by tcell managers, which merge

these requests with those from underneath. Such requests could be served by

the first tcell they reach that includes an io port. Requests for LPL programs

would only reach the top of the tree if no io port exists between the top of the

tree and the node in which pruning for a newly-discovered RA starts. An io port

would act as a filter for input broadcast from above; only LPL programs not

broadcast from the local port need be passed down.

Questions concerning the optimal placement of io ports should be

investigated. They should be located high enough to catch a reasonable number

of requests (hence, locating them at height 3 is probably not a good idea), and to

provide balanced operation. Simulation seems a good way to initially investigate

this problem, and the current design would require few changes to implement

the approach suggested above.

It would be also possible to provide more generalized routing through the

tree, so an io port could serve areas whose top of area is located higher than the

port. This would require developmental work to determine an appropriate

routing protocol.

CHAPTER 7

Conclusion

Our main goal in this dissertation has been the presentation of the LPL

architecture and the DOT implementation model. These are the essential

components of an efficient and highly parallel programming system designed to

execute FFP languages. A complete programming system was presented,

including a variety of LPL definitions for useful FFP operators.

To express the DOT design, we used a concurrent programming language

with support for process-oriented simulation. The result is a model of the top­

level implementation characteristics of a multiprocessor capable of efficiently

supporting LPL and FFP. AspeCts related to the simulation approach for

multiprocessor design in general, and for DOT in particular, were discussed and

initial results of simulation were given.

An analytic model for the progress of reductions on the programming

system was derived. This model is based on the actual data manipulation and

message transfer protocols embodied in the DOT design, and it accurately

predicts upper and lower bounds for RAs.

Alternative approaches to the design were discussed, and in some cases

these were analyzed with the help of the analytic model. In general, comparison

of alternatives will require use of different simulation models, and we have

indicated fruitful directions of approach within the context of the current DOT

model. Important extensions and directions for future development work have

also been indicated.

277

278

A natural question to ask at this point is whether the DOT design

representation of the desired multiprocessor implementation can be directly

mapped into VLSI. For example, could the DOT implementation of the !cell and

tcell classes be given to a silicon compiler? Unfortunately, the answer is no. For

such an approach to be effective, a lower level of implementation should

probably be used, such as the circuit level or the register transfer level.

Attempting to map DOT processes directly into dedicated hardware is likely to

be wasteful of circuit logic.

To produce efficient realizations for the !cells and tcells, the behavior of

their processes in time must be carefully examined. The first thing to be noticed

is that DOT processes spend most of their time waiting for the arrival of

information that is required for a subsequent operation. The tcell manager, for

instance, is essentially idle throughout the entire execution phase of the

machine cycle, waiting for the stop message which originates in the io

subsystem. Because of this, dedicating an entire block of VLSI circuitry to the

tcell manager, including logic for all required arithmetic manipulation, would be

wasteful. Logic required for arithmetic operations should probably be shared

between the node manager and the tcell manager. The same considerations will

apply to the !cell as well; the LPL interpreter process should share an arithmetic

unit with the !cell manager.

In addition to examining the characteristics of the cell processes with the

aim of efficient processor utilization, usage of logical communication channels

over time should be investigated carefully in order to achieve efficient

utilization of physical intercell communication lines. An intercell

communication line might be time-division multiplexed to provide shared use of

a single line by multiple logical channels, but, if so, it is likely that the

279

appropriate balance of communication scheduling will differ dynamically, as

cells move through the execution cycle. For instance, the communication

bandwidth available on the cell manager channels during the execution phase

could be minimal.

In our design approach, we were motivated by the desire to borrow

techniques useful in the design of parallel software, and apply them within the

larger context of multiprocessor design. The results have been successful. DOT

is the first complete implementation model based on Mago's design goals.

Although the overall system is quite complex in its operation, the use of small,

simple, sequential processes for its description produced an intellectually

manageable design.

To make the transition from the DOT implementation model to actual

realization, however, requires that processes and logical channels which were

carefully separated in our high-level design, for the purpose of clarity, be

efficiently integrated into their respective cellular components. Our design does

not provide guidance for this; the tasks to be performed within the tcells and

!cells have been identified, but the allocation of tasks to specific hardware and

firmware remains an open issue.

These low-level considerations were outside the scope of this dissertation,

but they ultimately need to be addressed in order to produce a hardware

realization. As indicated in Chapter 6, many design alternatives still need to be

investigated, and many improvements to the present design are possible.

Although a final decision on realization must wait for further resolution of these

higher-level alternatives, general investigation of important issues related to

realization, such as those mentioned above, is indicated. In addition to

providing advance insight into problems to be expected in a realization, such

280

research may indicate a more fruitful high-level design methodology than the

one we have used, when the desire for straightforward realization is taken into

account.

REFERENCES

[Abr70] P. Abrams, "An APL Machine," SLAC Report No. 114, Stanford Linear
Accelerator Center, Ph.D. dissertation, Stanford University, 1970.

[AckB2] W. Ackerman, "Data Flow Languages," Computer, Vol 15, #2, pp. 15-25,
February 19B2.

[AggB2] S. Aggarwal, "Flexibility of Computer Network Simulation Using the
Hierarchical Class Concept," Proceedings of the Tenth IMACS World
Congress on System Simulation and Scientific Computation, pp. 207-
209, 19B2.

[AndB1] G. Andrews, "Synchronizing Resources," ACM Transactions on
Programming Languages, Vol. 3, #4, pp. 405-430, October 19Bl.

[Bac72] J. Backus, "Reduction Languages and Variable-free Programming," IBM
Research Report RJ1010, Yorktown Heights, NY, April 1972.

[Bac73] J. Backus, "Programming Language Semantics and Closed Applicative
Languages," IBM Research Report RJ1245, Yorktown Heights, New York,
July 1973.

[Bac7B] J. Backus, "Can Programming be Liberated from the von Neumann
Style? A Functional Style and its Algebra of Programs," CACM Vol. 21,
#B, pp. 613-641. August 197B.

[BacB1] J. Backus, "Is Computer Science Based on the Wrong Fundamental
Concept of Program? An Extended Concept," in Algorithmic Languages,
Bakker /Vliet (eds.), IFIP, North-Holland Publishing Co., pp. 133-165,
1981.

[BacB2] J. Backus, "Function Level Computing," IEEE Spectrum, Vol. 19, #B. pp.
22-27, 19B2.

[Ber75] K. Berkling, "Reduction Languages for Reduction Machines," Second
Annual Symposium on Computer Architecture, pp. 133-138, 1975.

[BlaB3] G. Blaauw and F. Brooks, Computer Architecture, in preparation, 19B3
draft.

[Bri77] P. Brinch-Hansen, The Architecture of Concurrent Programs, Prentice
Hall, 1977.

2B1

282

[Bur78] H. Burkle, A. Frick and Ch. Schlier, "High Level Language Oriented
Hardware and the Post-Von Neumann Era," Fifth Annual Symposium on
Computer Architecture, ACM-SIGARCH Newsletter Vol. 6, 1/7. pp. 60-65,
April1978.

[Car81] W. Carlson, "The Pascal Microengine", Workshop on High-Level Language
Computer Architecture, Los Angeles, Ca., 1981.

[Chu81] Y. Chu, "Design of Jovial Direct-execution Architectures," Workshop on
High-Level Language Computer Architecture, Los Angeles, Ca., 1981.

[ClaBO] T. Clarke, et. al, "SKIM -- The S, K, and I Reduction Machine,"
Proceedings of the LISP-80 Conference, pp. 128-135, August, 1980.

[Dav75] A. Davis, "The Architecture and System Method of DDM-1: A
Recursively-structured Data Driven Machine," Proceedings of the Fifth
Annual Symposium on Computer Architecture, 1978.

[DelB3] P. Delesalle, "Computer Architecture Taxonomy," Tenth Annual
Symposium on Computer Architecture, 1983.

[Den79] J. Dennis, "The Varieties of Data Flow Computers," Proceedings of the
First International Conference on Distributed Computing Systems, pp.
430-439, October 1979.

[Des78] A. Despain, "X-Tree: A Tree Structured Multiprocessor Architecture,"
Fifth Annual IEEE Symposium on Computer Architecture, 1978.

[Fra77] W. Franta, The Process View of Simulation, North Holland, 1977.

[Fri76] D. Friedman and D. Wise, "CONS should not evaluate its arguments," in
Michaelson and Milner (eds.), Automata, Languages, and Programming,
Edinburgh Press, pp. 257-284, 1976.

[Fuc82] H. Fuchs, J. Poulton, A. Paeth, and A. Bell, "Developing Pixels-Planes, A
Smart Memory-Based Raster Graphics System," 1982 Conference on
Advanced Research in VLSI, MIT, pp. 137-146, January 1982.

[Hoa78] C. Hoare, "Communicating Sequential Processes," Communications of
the ACM, pp. 666-677, August, 1978.

[Ich79] J. Ichbiah, et. al, "Ada Reference Manual," ACM SJGPLAN Notices, Vol14,
#6, June, 1979.

[Keh78] D. Kehs, "A Routing Network for a Machine to Execute Reduction
Languages," Ph.D. dissertation, University of North Carolina at Chapel
Hill, 1978.

283

[Kel79] R. Keller, G. Lindstrom, and S. Patil, "A Loosely-coupled Applicative
Multi-processing System," AFIPS Conference Proceedings Vol. 48, pp.
613-622, 1979.

[Ker78] B. Kernighan, and D. Ritchie, The C Programming Languag~ Prentice­
Hall, 1978.

[Klu82] W. Kluge, "A Concept for Cooperating Reduction Machines," Proceedings
of the International Workshop on High-level Language Computer
Architecture, pp.170-180, 1982.

[Kos77] A. Koster, '.'Execution Time and Storage Requirements of Reduction
Language Programs on a Reduction Machine," Ph.D. dissertation,
University of North Carolina at Chapel Hill, 1977.

[Leu76] C. Leung, D. Misunas, A. Neczwid and J. Dennis, "A Computer Simulation
Facility for Packet Communication Architecture," Proceedings of the
Third Annual Symposium on Computer Architecture, pp. 58-63.
January, 1976.

[Mag79] G. Mago, "A Network of Microprocessors to Execute Reduction
Languages," International Journal of Computer and Information
Science, Vol. 8, Nos. 5,6, pp. 349-385 and 435-4 71, 1979.

[MagBO] G. Mago, "A Cellular Computer Architecture for Functional
Programming," Digest of papers, IEEE Computer Society COMPCON, pp.
179-187, Spring 1980.

[Mag83] G. Mago, D. Stanat, and A. Koster, "Program Execution in a Cellular
Computer: Some Matrix Algorithms," in preparation.

[Man74] Z. Manna, Mathematical Theory of Computation, McGraw Hill, 1974.

[MarSO] F. Maryanski, Digital Computer Simulation, Hayden, 1980.

[Par82] R. Pargas, "Parallel Solution of Elliptic Partial Differential Equations on
a Tree Machine," Ph.D. dissertation, University of North Carolina at
Chapel Hill, 1982.

[Pre81] H. Presnell, and R. Pargas, "Communication along Shortest Paths in a
Tree Machine," Proceedings 1981 Conference on Functional Languages
and Computer Architecture, pp. 107-114, October 1981.

[Ric71] R. Rice and W. Smith, "Symbol -- A Major Departure from Classic
Software Dominated von Neumann Computing Systems," AFJPS
Conference Proceedings, Vol. 38, SJCC, pp. 575, 1971.

[Sha75] R. Shannon, Systems Simulation -- the art and science. Prentice Hall,
1975.

284

[Sha82] D. Shaw, "The NON-VON Supercomputer," Technical Report, Department
of Computer Science, Columbia University, 1982.

[Shu83] M. Shute, "The Role of Simulation in the Study of Multiprocessor,
Control Flow, and Data Flow Systems," Ph.D. dissertation, Westfield
College of the University of London, 1983.

[Sid83] W. Siddall, "Virtual Memory Algorithms for Tree-Structured
Processors," Ph.D. dissertation in preparation, University of North
Carolina at Chapel Hill.

[Sta79] D. Stanat and G. Mago, "Minimizing Maximum Flows in Linear Graphs,"
Networks, Volume 9, #4. pp. 333-361, 1979.

[Sta81] D. Stanat and E. Williams, "Optimal Associative Searching on a Cellular
Computer," Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture, pp. 99-106,
October, 1981.

[Sta81a] D. Stanat and G. Mago, "Optimal Storage Management in a Cellular
Computer," Technical Report 81-006, Department of Computer Science,
University of North Carolina at Chapel Hill, 1981.

[Ste81] G. Steele and G. Sussman, "Design of a LISP-based microprocessor,"
CACM Vol. 23, # 11, pp. 628-645, 1981.

[Sto83] S. Stolfo, "Architecture and Applications of DADO: A Large-scale Parallel
Computer for Artificial Intelligence," Technical Report, Department of
Computer Science, Columbia University, 1983.

[Str82] B. Stroustrup, "Adding Classes to the C Language: An Exercise in
Language Evolution," to appear in Software: Practice and Experience.

[Tei:t82] A. Tanenbaum, Computer Networks, Prentice Hall, 1981.

[Tol81] D. Tolle, "Coordination of Computation in a Binary Tree of Processors:
An Architectural Proposal," Ph.D. dissertation, University of North
Carolina at Chapel Hill, 1981.

[Tre80] P. Treleaven and G. Mole, "A Multi-processor Reduction Machine for
User-defined Reduction Languages," Proceedings Seventh Annual
Symposium on Computer Architecture, pp. 121-130, May 1980.

[Tre82] P. Treleaven, D. Brownbridge and R. Hopkins, "Data-Driven and
Demand-Driven Computer Architecture," ACM Computing Surveys, Vol.
14, #1. pp. 93-143, March 1982.

[Tur79] D. Turner, "A New Implementation Technique for Applicative
Languages," Software Practice and Experience, Vol. 9, pp. 31-49,

285

September, 1979.

[Wil81] E. Williams, "Analysis of FFP Algorithms for Associative Searching,"
Ph.D. dissertation, University of North Carolina at Chapel Hill, 1981.

