UNC Report No, TR84-0110

PROCEDURE-LEVEL PROGRAM MODELING FOR

VIRTUAL MEMORY PERFORMANCE IMPROVEMENT

by

Edward L., Jones

A dissertation submitted to the faculty of The
University of North Carolfna at Chapel Hill in
partial fulfillment of the requirements for the
degree of Doector of Philosophy in the Department

of Computer Science.

Chapel Hill

1984

PROCEDURE-LEVEL PROGEA¥ MODELING FOR
VIBRTUAL-MEMORY PERFORMANCE IMPROVEMENT

Edward L. Jones

A dissertation =submitted to the faculty of The
University of North Carolina at Chapel Hill in partial
fulfillsent of the requirements for the degree of
Dector of Philosophy in the Department of Computer

Science.

Chapel Hill
1984

(Pea W.Cw&wﬂk

Advisor: Peter Calln

,____—--’

Readlé' Bharaai j Jayaraman

MQM&N

Eeader; Frederick p. rooks, Jle

EDWAERD 1. JCNES Procedure-level Program Modeling for
Virtgal Megory Ferformance Improvement [Uander the direction
of DE. EFETEF CALINGAERT]

AESTEACT

The page-tault overhead incurred ty a program e€xecuting
on a degand-paged virtual-gmemory computer system is a
functicn «c¢f the progrém®s module-to-module reference
patterr ard the prograam's layout =—-- the assignment of
progras scdules to pages in the virtual oname Space.
Defiring the layout using program restructuring methods
can greatly reduce this overhead, Lut the restructuring
Frocess iz itself expensive when an execution trace of the

prograg is required.

This Iesearch aims to reduce the computer and
prograrmer time required to perform program restructuring.
Only externally telocatatkle cogde modules {(i.e.,
subroutines or fprocedures) are treated. A generative
rrocedure—-level program model {(PAN) is defined and used to
synthesize progzram executions that, when used in prograrn
restructuring instead of actual execution traces, are
shewn tc produce acceptatble layouts. Moreover, the PBAY
prograe mcdeling system can te fully automated.

- iji -

DEDICATION

To my wife and children, the
driving force tebind this once
in a lifetime venture.

- iii -

ACKNCNLELGEBENTS

1 ag the rroduct of those people and events God in His
wisdor has used to make me me. The list is long, and I feel
~unable tc express adequately my thanks to everyone --
family, friends, teachers, encouragers —-- or for everything
~-— the successes, the setbacks, the in-tetween times. So 1
sigply tharnk God for enatliang me to profit from tte finite
experiences of ey life and, most of all, from tke infinite
reality of bteing cne of His little ones.

4 special honor is due @my parents wbo gave ge life,
fagilial 1lcve and support. 1 am what they could have been
in different times and under different circuamstances.

1i1, the darling wife of my youth, has waited patiently,
feeling alcng with me the ups and downs of graduate school.
She is Gcd's greatest gift to me. My «children, Edward,
Nicholas ard Daroyce, €xplain why it took so long and why it
was #®orth it. Their constant love keeps me reminded that
there?s ncre to life than school or work.

The list of friends is too long. Special thanks to Ecy,
Faris and bkicca Fargas, with whom we spent @many fun times
singing, Fplaying guitars, e€ating and laughing. 31l the
students whc passed through -—- ann, Judy, ILee€e and Ava,
Candy, --= were terrikly iamportant to my survival.

I arx deeply indebted to the memters of my Committee. [r.
Feter (alingaert, my advisor, «carefully and (aluost always)
patiently directed the project, always baving my best
interests ip mind, for wxhict I bold bkim in high regard. In
such ar epdeavoer as this, one pneeds someone short cn words,
but lorg co encouragement. Dr. Donald Stanat was that man,
apd I thank bim. Dr. Frederick P. Brooks, Jr., helred me in

- iv -

pany ways, Sfpiritually and professionally; I am glad I got
to kncw his. I thank Ir. Bharadwaj Jayaraman for Lis
- willipgness to serve as & reader, and Dr. £Kishor Trivedi of
Duke Upniversity, who provided much help and advice during
the early stages of the research. I also acknowledge the
contributicns of Dr. Mehdi Jazayeri and Dr. David Parnas,
%bho helped me get the research off the ground.

I vas enccuraged to develop my ideas after sharing thenm
with currently active investigators: Dr. Alan Batsom, of the
University c¢f Virginia, pr. bomenico Ferrari, of Berkeley,
and Dr. Ecwap Synder of the University of Washington. Mike
Padrick, c¢£f the ONC Computation Center bhelped me locate
sasple frrcgrams and data files that wsere used in the

research.

I ag grateful to those institutions that provided moral
and fircancial support: fThe Ford Foundation, 1BM, Wachovia
Bank ard Trust Company, and the UNC Board of Governors.
~Fimally, I acknowledge the encouragemeant, confidence and
fatience shcwn ty my current employer, #instom-Salem State
University, prisarily in tlke persons of Dr. V.K. Newell and
Dr. arncld Lcckett,

SECTIC)

T INTRCDOCTICN + o » © @« 2 = « @« 2 = a &« &« « =
1.1 THE PROBLEN 4 o o« = o ¢ @ o = a 2 = « = =
1.2 A VIEW CF FAGED VIETUAL MEMOFRY SYSTENS .

1. 2.1 Nctation and Terminology « « o « = =
1.2.2 Tvwc Impcrtant Otcervations . « « « «
1.3 EBCGE2AN EFHAVIOR 2 o o o « » =« = & o « =
1.3.1 Prcgran Referencing Ee€havior « « « =
1.3.2 Characterizing Locality of Reference
1.3.3 Phase-Transition E€havior « o« « « « «
1e4 SCME CCHMCN FAGE REPLACEMENT ALGOBITEMS .
1« 4.1 Least~Recently Used (LRU} o« o o « o »
1al.2 HCIKing Set (ES) o « a = o = = = = =
1.5 VIBRTURL MEMCEFY FPERFORMANCE . o o = o = =«
1.5.1 Prcgrax Perforpance ISSUES o = = « =
1.5.2 Syster Performance ISSUES « « =« « « =
1.6 EERFCREANCE IMPROVEMEINT TECHNIQUES . . .
te€.1 Bardware Configuration . « o « o « «
la€.2 Systen hesource Management o o = + «
1.€6.3 Frcgranping Style€ v o = o« o o o = o «
1e 6.4 Cbject Code Manipulation . « = « « «
1.7 EFCGEFRY EESTRUCTUEING o o o = o o o = = =
1a7e1 CVEIVIER & o o o « «a = = = = = = = =
fe7.1.1 Goal of restructuring o« « « « «
1.7.1.2 The Ltasic procedUre€ s« o« o = « »
1.7.1.3 Classification of methods . . .

la 7.2 The Hestructuring PhasS€e . o o« o = &

T1e7ecel The Nearness me€thod o+ o o o o o

1e7.2.2 FErogram tailoring: critical LRU
1.7.2.3 Felaticn to prograsm locality . .
i«7.3 Trends in Frogram Restructuring « . «
1e7.4 SUEREAIY 4 o = o a o = o = = = = s = =
1.8 CVERVIEW Ci THI1S KESIARCH o« « = « o o = =

—vi—

PAGE

N - . T TR ¥V T e §

14
14
15
16
16
17
18
19
20
21
22
23
23
23
23
24
25
26
26
27
28
30
31

1.8.1 The Procedure—Activation Model: The Tool

1. £.2 The Sccpe of This Research

1.9 ¥AJCF TBESES ANL CLAIMS OF TIEJS RESEARCH

i.10 ORGANIZAIICK CF THE LISSEETATICN .
2 THE ERCCELCUBRE-ACIIVATICN MOLEL
2e1 PEELIMINAFIES o« o o = a = =«

2. 1.1 2 Simrle Structured Programming

Z.1.1.1
<« 1a1.2
Zelal.3

Sequencing primitives

Lata types .

Exaaple program P11 .

2.1.2 kcdel 2=ssumptions

Ze laZal

Z.1.2.2

Mo data references .

Eredictakle flow of control

-

Ze 14243 Call-path independence . .

z. 1.3 The RAutomatic Modeling Systen

2al

2e2«1 The

FCDEI CCNSTHRUCIION

Call Sequence GraEEal e w

2.2.2 The CCKSTEROUCTCR .

2e242.1
22422
Zele2e3

kFequired data StrucCtures « « «

Description of the algor ithm*

Discussion o

2.243 Instrumenting the Sulkject Progranm . «

2.2.3.1

-

Allocating instrumentation variatles

222.3.2 Inserting instrumentation code . .

2. 2.3.3

243 FARAFETEE ESTINATION
2.3.1 Maintaining the Parameter Datakase
Z2.3.2 BRprroaches to Fiecution Sampling

z.3.2.1

PR By

2.3.2.3

2-.4.1 1he
Ze s 1.1
Zela 1.2
e l. 1.3

Extracting execution coefficients

- -

One- time observation

-

-

Fredeternmined nunter of okservations

Statistically controlled observations
2.4 SYKTHETIC BEFERENCE STRING GENEEATICN

GENERATIOE «
Lata structures .

Lata manipulation primitives

Fctation

vii -

31
33
34
36
37
38
38
38
39
40
44
44
44
44
45
47
48
50
S0
52
53
54
54
55
58
60
61
63
63
64
65
66
66
66
68
69

2.4.0.4
2.4. 1.5

The algorithl o ¢ o o o @ = «

An EX8UL1l€ o o o« « © © o o o =

2.4.2 Terpipating GEDREration e o« o = « «

2.4.3 Generation Environnents « o« « o o «
2-5 ANAIISIS CF COSTS - - - - - - - - - - -

2¢541 ASSUDELIiODS o o o« o « = o = = = = =

2.5.2 Ccppiler podificatioDS o« o o « o o
2.£.3 Irstrumented Clject Code Size . o+
«falf Instrumented Olject Code Speed . .
Z2.5.5 Pfaraging the [atakases o« =« « o o =

2.5.6 String Generaticn CostsS o« o o o = =
2.0 VAEIAKTS CF TEE EASIC MOLEL o2 o o o = =
2.€.71 B Ncroal=Form €SC v « = =« = @ « = =

2.6.2 Rerresenting Call-Path Context Information

206.3 The Descriptive PAM o v o o o« @« « = 2 = =

2.6.4 A Ccoyparison of the PAM Varijants .

2-7 SU!EARY - - - - - - - - - - - - - L J - -
3 BRESTRUCTUERABILITY OF THE SUBJECT PHCGRAMS .

3.1 A4 PCSTEEICRI PROGEAM FESTEUCIURING ISSUES
3.1.1 Overview of the Restructuring Process

3. 1.2 The
2.1 4.1
3.1.z2.2

3. 1.3 The
3. 1.3.1
3.1.3.2

3. 1.4 The
PR I
Jalat.2
3e7.4.3

Frogram Characterization Phase

Choosing the executions to sample

Feference string representation
Festructuring PhasSe . o o « « «
Choice of algoritha . . « - «
Choice of ccntrel parameter .
Clustering Phase . o « o = « =
Fstimating module sizes . . .
FAge S12€ o« = o = = o @« a = =
{lustering algorithnt o+ o « « =

3.2 13YCUT FEFFCRMANCE EV2LUATION o o « o«

Ja2.71 CVEIVICE 4w o = = o = = = = v = = =

3ece2 Eerformance MEQSULES +« « o o o = =

3.2.2.1
2e2.2.2

SCAlArS o « « o« = s a o = & =

curwes - - - - - - - - - - -

3eZ.3 Ccmraring Layouts o o o o o o = « «

?

70
(A
73
75
75
75
76
76
77
78
79
80
80
£2
84
87
89
90
g1
92
94
94
9y
97
99
100
101
101
101
102
103
103
105
105
105
106

3.3 THE SUBJECT PROGEAM COLLECTION . o« o = =« = « « o - 108
3.3.1 Feasitkility of Restructuring . . « « = = « - - 18
3.3.2 Static Frogram LescriptionS o o o o« o = = « = « 109
3.3.3 The Testbed of Execution Iraces o« « « = = « = «» 116

3.4 THE BFESTRUCTUERAEILITY EXPIBIMENT o o o« = ® o o« = 117
3uld.1 Puipose of the EIperiRelt v o o« o o o =« « =« = = 118
3.4.2 Irtrinsic Program Characteristics o« o ¢ =« = =« « 11§
3.4.3 Perfcrmance of Standard LayoutsS o o o o = o « = 124
3.4.4 Perfcreance of Computed Layouts + « « o = - = « 129
3.4.5 Setting Bestructuring Parame€ters . . « - - - « 132
3.4.6 Stability of Eestructuring Improvements . « « « 133
3.4.7 CCNClUSIiONS o « v« = o o =« o« « « =« a w = = =« a = 136

3.5 SUFFPABY o o =« = = 2 2 2 o o » @ a o= = » o » = = a = 137

4§ ELEMENTARY NMODELIBG « o« o« » @ = 2 » @« © 0o 2 » = = =« o = 138

4.1 GENERAL MCDELING ISSUES @ = o s 2 2 @ » o = = = « = 139
4ol.1 Overview Of ISSUES o « o« » o » o » =« = » » =« - 139
4. 1.2 Fcdel Version « v o o o o = 2 « o a o » = o = = 140
4. 1.3 GEAM Earameter Representation - » s ®» » a « « 142

oleo3al LOOPE o o« a @ ¢ « @« a = = » @ = = = =« = » 143
4.1.3.2 Selection conStructsS o o o o o s = =« « =« o 143
4.1.3.3 Felative importance of constructs . . « . 144
4. 1.4 farameter Estigmation <« o 2 o @ o o o & & « - o 145
4.7.4.1% ILoop and selection parameter estimators . 145
b.1.4.,2 Instrumentation requirements . . « « « « . 147
4.1.4.3 Statistics and estimators used . « « « - . 147
4o 1.5 ¥cdel ValidatioOnl « w = o 2 o = » =« a = « = = « 149
4.1.5.1 Experiment OVErvies . o o o« = = = s » o = 148
4.1.5.2 TeIRinology = = e« = = « =« » » = = =« = » o 149

4.2 THE FCINT-ESTIMATICN MOLELING AEPRCACH o o o o« o = 151
42241 IRtICGUCtION o = o = = © = = « = @ + = = =« « « 151
§.2.2 CVerview Of the StUdY « o o « = = o o « = « « o« 152
4o 243 HYFCthes€s o o o o o © o o« o = 2 o o« = = =« « - 154

4.3 PCDE]I ACCURACY &« o o o = # o © « o « = =« « »« « =« o« 155
Qo3. 10 LNF=PAN o 2 s = o o = % = o o = « o« s« =« ® o % s 155
4.3.2 GFAFE o o = = o o = =« = « o« o o= o o » a »« « « « 157

4.3.3 CCNCLUSIONE = o« = o = s = o = o = o » = « = « » 158

4.4 NULTIFLE-EXECUTICN MOLELING o o o o o o o o o =
Haee 1 INF-PAM o o v o o o o o o« o @« o« = o =« = « =
GaBe2 GEAE o o o o @ = o s = = « o= o « = « « =
4. 4.3 CCRCLUSiONS « = o &« o« = a s » s = = &« = a =

HoS SUEFBAEY o = o o o = o « o o » o« « o « o« = « »

4.5.2 Evaluation of the Eypotheses o o« = o « « «
5 AUVAECEL PMCCELING STULIES o o o a = a2 4 =« = = o = =
S41 INTIRCLUCTION @ v o o 2 2 = = = = = = = = =« = =
Se1.1 CVEIVIEGY o o o o ¢ ¢« ¢ o © a 8 & =« = o =
Se1.2 BYFCthES@S o ¢ o a o @« 2 = a » = = a w » o
5.2 THE GEAM LOOP PARAMETEE DISIRIBUIION SIUDY .
S5.2.1 Iptroduction . & 2 o 2 2 2 a 2 2 =« o = « =
5.2.2 Mean-Value Characterization of Samples . .
5.2.2.1 Ccmparison of means across samples . .
5.2.2.2 Ccnfidence intervals for the mean of r
5.2.3 The Distribution of Loop Repetitions . « .
52.4 CCNClBEIONS @« o o = = o = » © @ o o o o « =«
5.3 GEAM MCDELING REVISITEL = o o a2 « © @« = o« = o =
5.3.1 Mean—valued Modeling « o = = = 2 » o =« « =
Sede2 Interval-Eased Mod€liRg o« o o o a « o =« o »
£.3.2.1 Unifore sarpling from {mean,maximum] .
£.3.2.2 VUpiform sampling from [r—kd,r+kd] . .
£.3.3 Cistritution-fased %0G6€ling . o« o = = = = &
5e3.4 CCNCLUSIONS v o o o = o = = =« « o o = o = «
Sl SUFEBEY o o o = = & 2 % 2 » % s = 2 = & = = »
6 A CASE SIUDY w o ¢ 2 @ @a @ @a 2 » = @« @« a«a =« =« = = =
61 IMTECLUCTICN o 2 o o o o a = = s = = = = » =
6.2 PEACTIICAL ISSUES CF AUTCFEATIC EBESTHRUCTUEING . .
6.2. 1 Letermination of Frogram Bestructurakility
€az.2 Setting Restructuring Parameters .+ . . . o
€.:.3 FKeasuring hestructuring Effectiveness . . .
6.2.4 Selecting the Modeling Approach .« « « « - .
6.3 CHAEACTERISTIICS OF SUEJECT FEOGERAM ADDIX . . .
6.3.1 Static characterjistics o o o a « o ¢ o = =
6.3.2 The Tecstbed of Execution Trace€s .« o o o o »

- X -

160
160
162
163
165
166
168
175
175
176
177
178
178
179
179
1€2
185
150
191
152
194
194
196
168
199
200
202
202
203
204
204
205
205
206
206
2CS

6.3.3 Cypamic characteristics o« o« o « » « o «

€.3.4 Festructurakility Characteristics
6.4 2FFIYING IBE MOLEL 70 RLLIX .

6.li.1 Keabn~Valued Kodeling for Small Samples

6.4.2 Ecdeling Large€r SaBPlE€S o o« o o = = o

6.5 COMIUSICES o« o«

.7 CONCLUSIONS AND IDEAS FOE FUBRIHER KESEARCH

7.1 FINDINGS AND CONCLUSICHS .

7. 1.1 Revies of the Research Environnent

7-1.1.2 6Geoals .

7.1.1.3 The experimental approach
7. 1.2 2utcmatic Model Conmstruction

¥odel assumptions

7. 1.3 Eajor besults o« o o « &

7.1.4 Evaluation of Major Theses
7.2 BEESEMRCH MNEEDS FOR AUIOMATIC EESTIRUCTURING

7.3 AREAS FCR FUFTHEE ERESEARCH

7.3.1 Ecdeling and Festructuring

7-3.2 Cther Appiications . .

7.4 CCECIUSION . . .

- - -

BIBLICGRAPH! - - -» - - - - - - -

ACECNYFEM GICSSAFY/INTEX

- xi -

-

-

-

TAELE

3.7
3.8
3.9
3.10
41
4.2
4.3
.4
4.5
4.6
4.7
4.8

&
1]
(<)

L=AT - AN ~ AR < AT - AT = A - RS T IR IR T
.
N W N ow U E W N

LIST OF TAELES

The Prccedure—Activation PFodel Family o« « o «
Static Characteristics of Sulject Prograﬁs -
Trace String Testled o« o« ¢ « o = « s « @« « =
Variables cf the Restructuring Experizent . .
SID Laycut W3 Cost Keductions over L.WORSI .
STD laycut LBU Cost FReductions over L.WORST .
CHS layocut W5 Cost Reductions over L.BEST . .
CIRU layout LRU Cost Reductions over L.BEST .
Festructuring Parameter Scttings o« « o o o »
CWS Restructurability of Testied Traces « « «
Stakility of CK¥5 Cost Beductions over L.BESI

Variables of the GEAM Point-Estimation Study

DX¥F-FAM Single-Execution Model Quality . . «
GEAF Single-Execution Model Quality « « « o« =
Kcdel Quality: DNF~FP2M versus GPAMN <« o o « «
DNF-FANM Multiple-Execution Nodel Quality
GPAF FKultiple-Execution Model Quality . . - -
Y1 Mcdel Cuality: INF-PAN versus GPAM . « - .
YT Mcdel Cuality: LCNF~PAM versus GPAN <« o o .«
Suzxary Of Model ACCUrACY e o o« o = = =« = = =
kear Iccp Repetitions for GENREF Samples < .
Mear Lccp Repetitions for CLUSTER Samples «
Bear-Valued Modeling: Effect of Sample Size .
Izprcvepents for GEBREEF Nodel Instances . « o
Izprcvements for CLUSTER Model Instances . o
Ccoparative Static Characteristics of ADDIX .

Ccst Reducticns of STL Layouts for ADDIX . .
Ccst Reductions of CWS Layouts for ADDIX . .
Stability of C¥S Layouts for ADDIX =« « o« - «
Single-Execution Model Cuality o« o « o o « «
Yultiple-Execution Model Quality « « o o o o
Suxzary of Large-Sample Model Quality « « « =«

- xii -

EAGE

g7
111
116
118
127
128
129
130
132
134
135
148
155
157
158
161
162
163
164
165
180
181
152
155
196
207
215
216
217
218
218
226

FIGURE

1.1
1.2
1.3
1.k
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2. 14
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
5.1
5.2

LIST OF FIGURES

Naze Sraces in a Paged vVirtual MeRnory - « « =
Laycuts L0 and L1: Mcdule~to~Page Mappings .
Fagily of Faulf CULVES o o o« o = 2 o « = « =
¥crking Set Curves . ; e @« o @ a 2 o @ & = =
Sanrle SSEL PIOQIAE P1 o o o o « & 2 « a « =
The Autcmatic Nodeling SYStER o o o o = o o «
Pcdel CCLEIIUCEIOR « @ o« = o = = = = = » = =
Call-5equence Grammar for Sample Program P1 .
Paraceter Descriptor Lata Base Record Format
Irstrunented Procedure F of Program P1 . « .
Ipstruzentation Foutine CUMP & o o« o 2 o = =
Irstivpentation Eoutine WRITECE v @ o = o« = «
Paraseter Estinatiol o« o o « =« o o @ 2 o « o
Ccefficient Datatase Fecord format . . . « -
A Parapeter Datalase Record Format o« « « = =«
DEF Call-Sequence Grapmar for Program P1 . .
DPAM State-Diagran for Program P71 o« o o« &« « «
Sacple DPAM Execution Profil€s o« « o o« « = »
Schenatic cf the Eestructuring Process .« «
Ectization of Reference Tim€s o« o o o o « = =
Exazrle of Cutput frcm the Restructuring Phase
Iaycct Evaluation SChematiC o« o o o o o o « «
Call Tree for Sukject Program GENEEF' . « » «
Call Tree for Sutject Program RESTRUCT . « «
Call Tree for Sutject Program CLUSTER o« - . =
Trtripsic ye Cost CULVES o o o o o« o = = a =
Irtricsic ye Working Set CULVES « o « « « =« =
Irtricsic Y1 CoSt CULVES o o o o o = = = o =
Irtripsic Y1 Working Set CULVES o o « o = o =
CIUSTER STD Layout Y1 WS (oSt CULVES o« o « »
Cverviea of PAM ¥0deliDg « o o = ©« = = 2 « =
90% Ccpnfidence Intervals for Loop 1 of DUMPCSG
90% Ccnfidence Intervals for Loop 2 of MERGE

- xiii -

FAGE

10
12
41
46
47
48
52
57
59
59
60
61
62
81
g5
86
53
96
cg

103

112

113

115

120

121

122

123

126

140

1€3

184

¢« w8 B » 8 3
M & WA e OO0 =W

=B - AT = LR~ U « (U & IR W I ¥, I ¥

Lecaying Distribution for Loop 1 of MEBGE o« - . . . 1E6
Eell-Shaped Distriltution for Loop 1 of MERGE . . . 187
Hybrid Cistributicn fcr loop 2 of MEEGE « o o « - « 188
Untyped Cistribution for loop 2 of LOADPFDY 189
Call Tree fcr Program ADDIX « o o = = = = » o = = » 208
ALLIX Irtripsic Memory CosSt CUrVES o o o = » s = = 210
" BLLIX Iptrinsic Working Set CUCVES o « « = = =« o « 211
Penmcry Cost Curves fcer All PIOQLAlS o« « = = « « » « 213
Ncrking Set Curves fcer All ProgralS « « « » « = « « 214

- xXiv -

Chapter 1

IRIRODUCTICHE

This chapter contains the eotivation and claims of this
research, along with a survey of related research. For
those readers unfamiliar sith the the general area of vir-
tual mepory, Denbing®s e€xcellent tutorial [DENN70] is reconm-
mended. ¥errari's survey paper [FERR76a] gives a concise

intrcduction to program restructuring techniques.

1« THE PROBLEH

The raging overhead (i.e€e., overhead incurred when a page
fault cccurs) experienced ty a single program executing in a
demand-paged virtual mnmemory environment depends upon four

zajor factcers:
{1} the program's module-to-module reference pattern;
{2) the program's laydut in its virtual rpame space;

(3) the system's memory management policy, prisarily,

the page replacement algorithkm; and

{4) competition from other programs in the system for

resgurces.

2
Given the program's reference pattern and the system's
page size and replacement algorithe, a program restructuring
procedure can produce a near-optimal layout, <for which the
pPaging overhead is near its ainimu=z. Prograzs restructuring
procedures have been shown to reduce paging overkead signif-
icantly, but the inconvenience and high cost of coliecting
the required reference irnformation discourage the vidéspread
‘use of this effective perforeance-improvement technigque.
[FEBRR76a)] Lou-cost, easy-to-use, language-independent
restructuring packages are sorely needed to encourage the
acceptance of program restructuring as an integral part of
the prcgram development cycle for large programs.

The primpary objective of this research is to reduce the
cost of using conventiornal program restructuring techniques.
The objective is mot to define brand new restructuring pro-
cedures, but to reduce the cost of ofktaining the required
reference information. A secondary otitjective is to demorn-
strate that procedure-level program modeling is feasible,
and that it yields insights into execution-time bebavior. A
fully-autcmatic restructuring systea is designed and cco~
pared to ccnventional approaches in terms of ease of use,
effectiveness and cost. It is hoped that, with suck pack-
ages available, the use of program restructaring will become
as counzcnplace as the use of optimizing compilers to reduce

a program's execution-time cost.

1.2 A VIER OF PAGED VIRTUAL MENORY SYSTEMS

1.2.1 MNotatior and Terminology

Figure 1.1 shows an overview of a paged virtual memory
systen. The programmer writes a program using symbolic

names; the set of names used is called the sympolic nare
-§gggg {SNS) . Rhen the program is translated to produce a
load m®ocdule, each symbolically named olbject is assigned a
virtual address in the yirtual name space (ViS). The vir-

tual address identifies the page in which the first byte of
the module is stored. Shen the prograam is lcaded prior to
execution, the virtual mame space is stored in the storage
hierarchy, usually in the lLacking storage. Backing storage
and main storage (executatle memory) define tle physical
nage space (PNS) of physical addresses referenced during

procgrak execution.

Symbolic Virtual
Name Name
Space Space
|
Layout
(modules) >! {(virtual
pages) |
|
fi f2 i
- |
n/ \]
| . o
(physical Memory (physical i
page € » | page 4
frames) Manager frames) ﬂ
. V ‘i
Backing Main 1
storage storage
Physical Name Space

Fiqure 1.1

Bape Spaces in a Paged Virtual ¥emory

The pame spaces are re¢lated bty way of gmaps that are
defined at various times in the program’s life cycle. The
tual narze sraces. This pap is static, and is produced by a
series cf translation programs, including the link-editor.
¥e call this map the layout, since it describes the layout
of the frogram in its virtwal name space. Consider the lay-
outs of Figure 1.2 for a program consisting of modules A, E,
C, D and E. Layout L0 is denoted LO=[(A),(B), {C)« (D). (E})s
where each ©=xodule occupies a page Ly itself. layout

5
L1=] (2,E),(E,D}),(C)] assigns several nodules- to a single
page, but allows no module to overlap more than one page.
¥hen nc page overlap is permitted, the layout is a function
L:SNS->»VNS; otherwvise, the layout defines a relaticn. For
this research, we require layout 1 to ke a function.

Symbolic Name Space Virtual Name Space

(Program Modules) (Possible Layouts)
Size Name Lo L1
A AE]
8 A /1111
6 B B B,
Trans- (/1177 D
14 C lators | = fp====q pe===q
C C ‘
10 D e d
6 E D /11174
y /117 (/711
/ E 71111
' (/111 /////j {

Page Boundary :

{ Unused space

Figure 1.2
layouts LO and L1: Module-to-Page Mappings

The virtwal and physical name spaces are related by way
of two rarrings. The first one, f1, maps a virtual page to
a page slot in the backing store; the second, f2, =maps a
virtual rage to a page frame in main storage. Both mappirgs
are defined dypamically. although £t may change, it is
always defined; f2 is defined only when the virtual page 1is
in main storage. The set of virtual pages for which £f2 is
defined at time t is called the resident set at time t, and

6
is dencted by R(t). A reference to virtual page vi!l causes
a page fault when £2(vpl) 1is undefined. The page replace-
‘ment algcrithz fetches the virtual page from physical
address £1(vp1) in the Lbacking storage, stores that page in
soze [fage frame pf1 in main storage, and defipes
El(vEl)€-pf L.

The dypagic mapping functions {1 and f£f2 represent the
menory eanagement compoment of a virtual =aemory operating
system, and they reflect the system policies of allocation,

replacepent, and page fetcling.

1.2.2 Iwc Important Observations

Two observations atout the static and dysmamic magpping
functions defined above are important to this researckh.
First, the static module-to-page map is constructed automat-
ically, and therefore the process is amenatle tc¢ improvement
throcugh more intelligent algorithas. This is the basis for
applying program restructuring methods to this probleax.

Seccnd, the execution-tire mapping functions, though
dynamically defined, can use Iinformation gained during the
defirpition of the static mapping to control the redefinition
of the dyrparic maps. The language translators can epbed in
the chject code directives that suggest ways in which the
replacerent algorithe can alter its strategy of merory man-
agement. ¥For example, the compiler can detect when an array
spanning several pages will be accessed sequentially. = It
can then icssue directives to the memory manager (replacement

algorithm) suggesting that pages of the array be prefetched.

1«3 FEFCGEAM EEBAVIOR

1.3.1 EFrograk Beferencing Behavior

Page-level referencing tehavior is captured in the page
reference string x=x[1),x{2)se--4,x[K], where x{i] is the
page that ccntains the i*th virtual address generated by the
‘prcgraz. In the syzktolic reference string
W= 1], 2)s-e- ¥[8]), e€achk w[i] is a symbol in the symbolic
pamge space. The two major tehavioral characteristics pres-
ent at the symlolic level are also present at the page
level, nbpamely, locality of reference and phase-transition

behavior.

Locality of reference is the tendency of program refer-
ences to favor a subset of the program's amodules (pages)
during scme specific time interval. Moreover, the set of
favored mcdules (pages), termed the locality set, tends to
change zepbership slowly. Locality of reference is related
tc programming in that (1) programmers tend to concentrate
on only a =small collection of sukproktlems at any one time,
and (2) rrograns tend to make extensive use of the looping
coentrol structure, which causes certain modules to Le refer-
enced repeatedly within short time intervals
[DERN70,BATIST6b]. Locality of reference does npot kceld
throughocut prograr execution, but during relatively 1long
tiee intervals called phases, or regimes [FREI7S]. Iran-
Sitions between phases are marked by very poor locality of
reference, resulting 3in a rapid increase in the rate of
faults. Stuydies Ly EBatson and ¥adison [BRTS76b, ¥ADI76], arnd
by Dernring and Kahn [DENN75] all came to the conclusion that

%, .. phaces apd trapnsitions are of equal igportance in

prcgram tehavior —— long phases dompinate vi tuai time,

as antlcigated b{ithe earliest virtuyal memory engi-

neers, and transitions, Leing unpredictakble account
for a surstantial part of the ... [page] faults 0.

8

locality of reference explains why, <for the most part,
virtuval semory works; the phase-tramnsition behavior explains
why page faults come in Ltursts, corresponding to transitions

between phases.

At the symbolic level, locality of reference is caused by
a grcupr of modules being referenced close together in tipe.
This type cf locality is termed temporal locality. Storing
these closely related modules within contiguous pages pro-
doces sratial locality, in which the next virtual address

generated is likely to be numerically close to those gener-
ated ino the immediate past. Spatial locality increases the
density of references to a particular page (or group of
pages), thereby increasing the time the page remains in main
storage. For this reason, the module-to-page layout should
achieve maximal spatial locality, given the syskolic~level

tempcral lccality.

1.3.2 Characterizing Locality of Feference

What are some ways of characterizing or measuaring local-
ity? A single global description of a program's locality
masks cut the types of Lehavior observed within the differ-
ent prhases of execution. Decomposing an executior ipto a
sequence cof major phases, and studying each phase in detail
is one way around this difficulty. Denning [DEXNN72] sug~
gested that this decomposition might be a useful level at
whichk to study locality. Madison and Batson's bounded
locality interval (BLI) method [MADI76,BATS76L] is the first
widely-adopted approach to phase decomposition.

A mcre widely used measure of locality is the amount of
faulting activity generated ty a program execution, grapki-
cally disprlayed using a farily of ™fault curves." The inde-
pendent variable is r, the average resideant set size. The
s¥arring curve rplots f(r), the number of faults when the
average resident set size (allocation) is r. The fault-rate

9
curvé F(r) = £(r)s/K, where K is the number of references,
tlots the mean rate of faulting as a function of the allo-
cated real storage. Finally, the lifetipe curve
1(r) = 1/F(r) = K/f{r), priots the mean numsber of refereances
betweern faults, as a function of the allocated real storage.
Consider Fiqures 1.3a-c¢, showiang "fault" curves generated by
two different programs P1 and P2. Notice that the fault-
rate curve is a scaled version of the swapping curve.
Observe that for low memory allocations, Pi1 performs better
than F2; the relative perforzance switches for large alloca-

ti ons.

LI S =y IS

10
Legend Legend:
* P1 * P1
* P2 + P2
F
a
u
1
t
R
a
t
e
> >
r r
Fig 1,3a: Swapping Curves Fig 1,3b: Fault-rate
Curves ;
Legend:
* P1
R P + P2 ,r’ {
e Ve
7/
£ i
s ¢
p |
e ! ‘
r | i
3
F l ‘
a8 t
u J 1
1 i {
t 1 :
! !
A ‘.Xl 1 X2 i
—k A ‘;

Avg resident set size, r

Fig 1.3¢: Lifetime curves with
primery knees x1 and x2

Figure 1.3
Family of Fault Curves

11

A kpee of a lifetime curve is a point (resident set size)
beyond which the curve Leéegins to flatten out. The primary
knee is defined geometrically as the point of tangency
between the curve and a ray of maxizur slope emanating fronm
the origin. Figure 1.3c shows how the primary knee is

deterrined graphically.

Lifetime curves have keen studied €xtensively
[BEL269,DENNT6,LERO076,5PIR77], and are generally used to
determine a region of memory allocation in which satisfac-
tory ©Fraging performance is obtained. The replacement
algorithe cecntrol parameter (e€.qg., the working set window)
is then set to achieve an average resident set size within
the knee region. That is, the memory allocation is set to
match the locality properties of the prograsm. Cne can look
at locality improvement efforts as being directed at reduc-
ing a program's faulting activity at a given value of r.

One cther barometer of a program's locality is its demand
for space ir main storage, 'as seasured bty the average resi-
dent set size, I. Under variakle-ailocation memory manage-
ment, r reflects the over-all mean reazl-storage depand, con~

straipned by the value of the control parameter. Denring's
working set is the classic measure of nerory demand. The
working =set curve (r versus WS window size T) is widely
used tc validate models of program Ltehavior, Figure 1.4

shows working set curves for programs PY and B2. The lower
curve indicates smaller working set size for a given window
setting, ieplying a greater degree of locality., <Coffman and
Denning [COFF73] have shown that the working set curve is a
very ccapact description of program bebhavior that captures

many asrects of a program?s performance.

12

Legend:
* P1
+ P2

(P R U ey

A 2

Working Set Window

Figure 1.4
#orking Set Curves

. 3.3 Phase-Transition Behavior

A reference string ®may be decomposed into phases and

transitions, as shoun Lelows
[-X1=]~—P 1= | == X2~ = | ====mP2mmm== [~ X3=|a..

where I*s denote transitions, P's phases. Tke size of phase
Pi is the amount of main storage reguired to keep its local-
ity set 1Li resident. Since a phase is a period of rela-
tively stable memory demand, loading the entire phase local-
ity set Li into main storage at the start of Fi would bring
the page fault rate down to zero for a lokg period of tirme.
L reascnable goal of page replacement algorithms should be
the prediction and detection of phases for the purpose of
keeping resident the corresponding locality sets. Siance the
sizes of phases vary, the replacerent algorithm nust adjust

13
to the size of the current pkase to avoid excessive page
faulting, on the one hand, and wasted space, on the other.

Phase-transition behavior is primarily a conseguence of
symbolic—~level behavior: {1) traversing data structures;
{2) wcdular design of the program, and (3) 1lcoping con-
structs. This suggests that 1language tramnslators could,
with scme effort, lend @ hand in the detection of phases and
transitions. More specifically, translators could predict
- code phases, given the program's modular decozposition and a
description of its use of internal control structures, such
as loogs and selection (conditional) constructs.

Until recently, it was lelieved that most paging activity
was attritutable to transitions tLetween phases. Snyder
[SRYD7€a] has shown, however, that seguencing through large
arrays spannping multiple pages can generate substantial pag-
ing activity, even within a phase of execution. Tkis find-
ing is impcrtant Lecause it shows that page-level behavior
can nct alsays be deduced from symlbolic-level behavior.
This is because in the symbolic reference string, the size
of a mcdule is coampletely ignored, but at the page level, a
reference to a module that is larger than the page size may
generate references to one or amore of the pages containing
the podule. Moreover, the identity of the referenced pages
is ©pot determinable from the symbolic reference string.
Prograi restructuring can not te applied to such modules,
but prefetching can be used to load the pages of a large
podule [SNYD78b,TRIV?7,ABUS79].

14
1.4 SCPE CCMMON PAGE REPLACEMENT ALGORITHMS

¥e now preseat tso of the wmost popular replacement
algoerithes, for the purpose of establishing notation and
tersinclogy, and to show hov replacement strategies are
affected by the phase-transition bkehavior of progrars. Both
.algcrithas are used in this research. '

1.4.1 Least-RBecently Used (LEU)

The LEU replacement algoritha belongs to the class of
fixed-allocation algorithas, where a prograa is allowed a

fixed maximum of m page frames in main storage at any given
ti pe. The variable 8 is termed the LRU control parameter,

since it exerts control upon the replacement of pages.
LRU (e} denotes the LRU replacement algorithm for an alloca-

ticn of » page frames.

The resident set under LEU(m) at time t, R{LRU{m},t), is
the set of the @ most-recently referenced pages. If, at
tige t, a reference is made to page k, which is not in
R{IBU(®),t—-1), page k is placed in R{LBRU(m),t), replacing
the least-recently used page of R (LRU({m),t-1).

The pajor deficiency in fixed-allocation algorithms is
that dezand for pages varies according to the phase-tran-
siticn behavior of the program. kithin a phase, the set of
rages referemced is approximately constant and the faulting
rate is lcw, unless the size of the phase exceeds m pages.
During tramsitions, the faulting rate is high, unless m is
very large. Since the sizes of phases vary, finding the

proper setting of m is pnot easily done using LEU,

15
1. 4.2 J¥orking Set (WS)

The NS replacement algorithe belongs to the class of
Iggggp;g-g;;ggggigg algorithes, since the allocation of page
frases to a program is allowed ¢to vary during the course of
prograsx execution. ¥S, just like LRO, attempts tc¢ replace
pages referenced furthest tack ip time. The ¥S control
parapeter, T, is called the WS (tipe) window. The resident
set under ¥S5(7T) at time t, denoted %({t,T), is the set of

pages referenced in the time interval [t-T,t].

Duriang phases of execution, the working set size is sta-
ble, ard may even shrirnk, depending upon the time between
successive references to resident pages. Daring tran-
sitions, the working set expands rapidly, aad shrinks again
when the next phase is entered. Thkis growing and shrimnking,
in response to program referencing patteras, is what
replacemzent algorithas should do, instead of expecting a

prograg to exhibit a constant demand for its pages.

16
1«5 VIRTUAL MENMOLKY PERFOEMANCE

Perhaps the post widely accepted cost function for meas-
wring the performance of a program in a virtual memory envi-
ronrxent is the space-time product, ST, which takes into
account bcth the faulting tehavior and the memory demand of
a pregrag. On most computer systems memory charge is
assessed in "space-time™ units, although the numerical value
may not be that of the space~time product, Consider a pro-
gram execution x=x[{1],x[2],«..0x[K]e (It is often conven-
ient tc associate an execution with its reference string.)
Suppose x experiences N page faults at times t1,t2,....tk,
and has an average resident set size r. Then the space-time
product is given by the formula

N
ST= T#r + D* § [IR (ti) 1§ ;\ .
i=1 ’

In the formula, D is the mean {elapsed time) delay required
to service a page fault, T is the total execation time, and
{B{ti)} 1= the size of the resident set at the time of the
ivth page fault. It bkas been shown [DENNT76,GRAH76,GRAETT]
that ST is close to its einiamum when the average resident
set size falls near the pripary knee of the lifetime curve.

Nctice that the two performance measures, r and N, affect
ST. Eoth reflect the amount of locality of reference --
small values imply good locality. As we shail see later,
these reasures are related to e€ach other indirectly through
the zodule-to-page mape. This suggests the potential for
perforrance improvement through judicious definition of the

podule~tc-page map.

17

1.5.2 Syster Performance Issues

In a roltiprogrammed virtual memory system, each progranm
contributes to the over—all performance of the system, meas-
ured by the amount of work that passes througk the system
per unit time. One way to achieve high throughput is to

have the waxigukR pumber of simultanecus users at all times.
But, since each user program's real storage requiresents
vary (as exrplained by the phase-transition behavior), simul-
~ tapneous expansion of the working sets of two or more pro-
grams can lead to very highk page fault rates. If too few
real stordge. pﬁge _ frames are available +to atsorb tkis
increased demand, thrashing results, and the systesm begins
to spernd mcst of its time paging, instead of completing user

PLEOgIaEs.

How, then, can near-optimum throughput be achieved,
while, at the same time, staving off the onset of thrashing?
Grahar and Denning {GRAH77,DENNBO) have found that operating
each program in the region of the primary knee of its life-
tipe furnction minimizes system page fault rate, and opti-
gl zes system throughput. They have also shown [DENNBO] how
a working set dispatcher can Le used to control the load
{number of simultaneous users) in a pultiprogrammed virtual
nexory system so that near-optimum throughput is achieved.

The fecregoing discussion has an important application in
this wcrk: locality improvement techniques, such as progranm
restructuring, should have as their goal the shifting of the
location of the primary knee toward the origin. That is,
restructuring =hould@ decrease the memory derand or the

fauvlting activity of the restructured program, or both.

18
1.6 FEEFOEYANCE IMPBOVEMENT TECHNIQUES

Puck of the early research in virtual merory systens was
directed at understanding the factors contributing to per-
formance. Denning [DERN68a] suggested that

"..._ the troubles with paqed memory systems arise
not from any misconception about pfogram bebavior,
tut rather from a lack of understanding of a three-
way _relationship among program tebavior, paging
[replacerent] algorithas, and the system hardsare
coniiguration ..."“

Four arrroaches to improving virtunal memory system per-

formance have been used.

{1) Modification of parameters of the hardware configura-
tion, such as page size or pumkber of levels in the

rewcry hierarchy.

(2) Hodification of system policies and strategies such

as scheduling and merory management algorithams.

{3} Mcdification of the program's reference pattern by
strict adherence to progragming style.

{4) Modification of the program's layout, after it has
been translated into otject fora, using program

restructuring.

19

1. 6.1 Hardware Configuration

Srecial hardware devices and technigues are reguired to
achieve acceptable virtual memory performance. Look-aside
huffers and associative registers speed ap the dypanic
translaticn from virtual to physical addresses; faster pag-
ing drups and more intelligent drum scheduling algorithas
have decreased the time to handle page faults; and, nmcre
recently, special hardware and firmware have been used to

- speed up memory management algorithms [CCFF73).

Memcry hierarchies received much attention during the
early seventies [KUCK70,CHOR74])]. Ioday, most virtual BEeROYY
systems use multi-level hierarchies, although the number of
levels 1is kept low: CPU cachle, primary storage, drum or
fixed-head disk primary paging device, and disk secondary

paging device.

Much research was devoted to the selection of the optimal
page size [HATF72,CO0FF73]. Small pages were found to be
best fcr over-all main storage ntilization, but slow trans-
fer tipes required large pages. large pages, on the cther
hand, are susceptible to ®dynamic internal fragmentation®
[MASU7S]. What is needed is intelligent packing of pages,
regardless of the page size,

20

1.6.2 System Resource Ma

Studies of paging algorithes [BELAG66,JCSE70, ARHCAT1]
revealed several approaches to memory management: Ranagement
on a local cr gloktal basis; memory allocations of a fixed or
variable purber of page frames; and paging on demand or in
anticiration of demand (i.e., prefetching). MNost algorithms
can be classified according to these categories.

An interesting study bty Sneeringer [SNEE75] of solutions
to the performance improvenent protlem for time sharing sys-
tess pcints out a sensitive relationship betvween hardware
and merory management software. Any solution skould be
based ¢n a careful analysis of cost/performance tradeoffs
affected by the cost/speed ratios of the (hardware and soft-
ware) cogpopents of the solution system. A surprising con-
clusicn she reached was that pure demand paging is =not ar
optimal strategy for time sharing systems, unless the pro-
tection and sharing afforded Lty virtual BEBOLY WwWere

required.

The post recent progress in memory management is due to
the elevaticn of the role of memory management to that of
scheduling, as suggested bty Kuehner and Randall [KUEH68]. A
scheduler based on the working set model, and c¢apable of
controlling the load on a2 multiprogrammed system, has been
izplenrented and shown to achieve near-optimal throughput
f RCDR73b,GRAE77?,DENKNE0]. Tke area of 1oad control through
scheduling is currently guite active, with special interest
in shcwing that proposed-methods are not susceptible to
unpredictable anomalies that can 1lead to performance degra-

datiocn.

21
1.6.3 Frcgramhing Style

A D e

Brawt and Gustavson [BRAW6B] showed that programming
style affects the running tize of programé in both unipro-
grasmed and multiprogrammed environments. They also found
that, when programs are carefully written, virtual memory
perforzance approaches the anticipated level.

Certain tyres of programs lend themselves to improvenments
through prcogramming style. Many programs involving array
operatiocns are characterized ty sequential traversal of rows
or colusas. The major order in which rows and columnps are
stcred, and the way looping to access the arrays is per-
formed can have a drapatic effect on the number of page
faults generated [COEEéB,BCKEBQ,BEAH?O,HOLE?Z,ELSH?Q}.A

Morris [MORR73] and Rogers [ROGE75] give hints for writ-
ing high-level programs specifically for virtual wmemory
envircnsents. — They shov tkat knowing how a compiler builds
object mpodules from the source program is essential to effi-
cient program execution, and that the regquired modification
in programming style doés not appreciatly increase programo-

ning ccsts.

Ore of the latest approaches to modifying the source pro-
gram involves source-level transforeations. Trivedi
{TRIV77] and Abu-Sufah [ABUS79] +transform array programs by
rewriting lcops to reduce +the number of different arrays
accessed inside each loop, therety spacing out the expected
tipe between successive page faults. A similar idea for
optigizing array expression evaluation in AFL was used by
Abraxs [AERA70]}. His design for an APL machine used a conmbi-
nation cf deferred execution (which he termed “drag-along")
and evaluation sequence optimization (termed ®beating"), in
crder to reduce the total omemory requirement for expressicn

evaluation.

22
1l.6.4 Cbject Code Manipulation

Coreau [COME67] was among the first to demonstrate exper-
imentally that program layout has a great influence upon
progras perforzance. His findings were substantiated by
Tsao et al. [TSA072])], who showed, for fixed allocaticn
replacement algorithas, that layout bhas a greater impact
upon pregran performance ttan does thke choice of replacement

algorithzm.

Early efforts to achieve good layouts involved modifying
compilers tc perform olject code pagipnation —- placement of
modules within pages, avoiding page boundary overlaps. PMuch
attenticn sas given to ensuring that the bodies of nested
loops, esrpecially the most deeply nested ones, not overlap
page bcundaries. These attempts were characterized by con-
pile~tize analysis of the static source prograe and the use
cf bcolear ccnnectivity matrices as a model of program ref-
erencing [EAMA66,LOWE70,VERE71,BAER72].

These methods marked the beginning of program restructur-
ing, which has as its goal the determination of an assign-
pent of program modules to pages that will result in fewer
execution-time page faults. The next section is devoted to
réviewing rrogram restructuring.

23
1.7 PEOGRAM RESTRUCTURING

Program restructuring can be viewed as a so-called "opti-
mizaticn® such as that performed &Lty an optimizing coampiler.
This section gives an overvies of the goals, methods, issues
and successes of program restructuring as a viable program
perforgance improvement techﬁique. A case 1is made for the
-adoption of autcmatic restructuring systems requiring mini-

ral prcgrazmer involvenment.

1.7.% Overview

1.7.1.1 Gcal of restructuring

The goal of program restructuring is the improvezent of
page-level locality of reference. This is accomplished by
pmapping {ckserved or predicted)} module-level temporal local-
ity intc page-level spatial (within a single page, or within
a cluster of pages) locality. Restructuring usually pro-
duces reductions in the mumber of paqge faults, in the aver-

age resident set size, or in both.

1.7.1.2 The basic procedure

The general procedure for program restructuring is out-

l1ined below.

Step 13 The program's sypltolic name space is partitioned

into relocatable blocks.

Step 2: A resiructuring graph, represented by a square
matrix €, 1is constructed. Each graph node represents a
block; each edge represents a refterence tetween twc blocks.
Node weights correspond to tlock sizes. Edge weight C[1i,3]
represents the closeness of blocks i and j, i.e., the sav-
ings ir memory cost that is realized when blocks i and j are
stored within the same page. The algorithm used to calcu-
late edge weights is called the restructuring algorithm.

24

Step 3: A clustering algorithm takes the restructuring

graph, and clusters blocks together into pages, attempting

~ to maximize intra-cluster closeness, subject to the con~-
straint that cluster size not e€xceed page size.

Ster 3:‘ The program klocks are relocated in the virtual
nage Space. That is, the blocks are assigned to pages by
some rlcgram such as the comPiler or link-editor.

For procedure-level restructuring, the Lklocks in step 1
are external procedures, the restructuring gqraph contains
(edges ¢f) the program call-graph, and the Trelocation of
prograi blccks is performed by the link-editor. The differ-—
ent restructuring =methods differ primarily in the way in
which the edge weilghts are assigned in step 2.

1e 7..143 Classification of methods

Restructuring methods can ke classified according to skern
" the module—-page assignments are made, what constitutes a
block, and how the Cfi,j] are defined.

NKhen? Methods that are based on information obtaiped

fros cne or more executions of the programr are termed g pos-
teriori wmethods [HATF71,FERR74a,FYDE74,MASU74,BAB077]. A
priori methods are based on information derived from a
static representation of the program, such as the progran

source code [RAMAG6,LOWKETO,VERH71,EAER72,5NYD78a].

¥hat level? ¥hen the blocks of step 1 are groups of
instructicons or data within a procedure or data module, the
method is termed an internal method. Ctheréise, tlke method
is termed an external method. External methods reguire no
reprogrameing or alteration of the otject code produced by
the coszpiler. Furthermore, the numker of blocks is usually
less for external methods, resulting in lower restructuring

cost.

25

Hcw are the C[i,j} defined? |HKethods that make assump-
tions about the page replacement algorithm under which the
. Iestructured program will executed are called program tai-
doring methods [FERR75]. Such methods have been shown to
cutperforz mco-tailoring methods consistently, because they
take into acccunt more of the factors influencing perforg-
ance, narely, program tehavior embtodied in the reference
‘string, and the replacement algorithm used by the systern on
which the rrogram will ke executed. Ie the -next subsection
we rresent examples of non-tailoring and tailoring

approaches to defining the C[i,j].

The function of the restructuring phase is to define the
restructuring graph, represented by the closeness matrix C.
Hatrix C defipnes a closeness podel for the modules of the

prograk. The closeness model 1is also called "inter-refer-
ence®” cr Taffinity" model [JOBNT5,MASU74,RYDE74]. Closeness
models are genera%ly symmetric, since "close to% suggests a
putoal need for médules to be stored together within the

sape page.

Two issues are involved in defining the closeness eodel:
(1) what constitutes a connection, i.e., when is C{1,3]
nonzerc?; and (2) bow is the strength of connection defined,
i{e., what valuves can the C[i,j]} assume, and how are they
assigned? In the simplest a priori closeness models, a con-
necticn is said to exist tetween pmodules i and j whenever i
can reference j (or j cam reference i), and the strength of
connectior is a constant, usually zero or unity. Such con-—-
nectivity models require the least amount of information,
but, nct surprisingly, they yield the poorest results
[BATF71,5NYL78a]. ¥e now give examples of models that
require more information and yield Letter results.

26
1«7. 2.1 The Nearness metheod

The JNearness method of Hatfield and Gerald [HATF71]
defines M i,j) to be the number of times a reference to i is
followed by a 1eference to j. For the sysmbolic reference
string w=v 1232324131210

o

1}
PRI - |
RN
CEIED iy e
OO

For the Nearness method, C[i,Jj]} is the number of times "ij"
or W¥ji¥ arrears 1in the reference string. Matrix € is
defined by C = M + N', where ¥' is the matrix transpose of
M.

(]

n
Y N[
S
[l 1PV] N}
D ad

1.7.2.2 Frogranm tailoring: critical LRU

The next example of a closeness model tLelongs to the
class cf ¥critical-set" program tailoring methods [FERR75].
In general, a tailoring metbod is based upon some replace-
ment algerithe A, having control parameter 6, denoted A(€)},
and is arplied .to a syzbolic reference string
=W 1],8[2) e ,¥[K]e Each symrbol in w corresponds to a
bleck in the symbolic name space. The kehavior of A(8) on w
is sirulated, assuming each block to occupy a single page.
Block resident =sets R{a(8).,t) are computed following each
refererce w[t], and are used to update matrix C, as shown in

the fcllowing example.

The Critical LEU ([CLEU) =nmethod assumes that LRU is the
underlying replacement algorithm. The closeness measure 1s
defined as follows. If a reference to 1 causses . a fault,

increment M[i,j] by unity for €ach i tbhat belongs to the set

27
of resident modules. Consider again the reference string
"123232“13121", assuming an allocation of two (block)
frames. The sequence of resident sets is

{t. *{1}, *{1,2}, *{2.3}, (2.3}, (2.3}, (2,3},
*{2,4}, *{1,43, *{1,3), (1.3}, *(2% 2}, (1, 2}.

The asterisks identify resident sets formed as a result of
{block) faults. The resulting closeness matrix C, denoted
CLEU{2,%), is

Y ST L~
- W
MRl
(=] S ENYEY

The *critical-set® tailoring algorithms have as their
gcal the reduyction of the numnber of faults. In fact C[i,3]
is the nupker of page faults that would go away if podules i
and j are stored in the same page. Tailoring methods, in
general, tend to be more expensive than non-tailoring meth-
ods, because of the simulation of the replacement algoritknm,
and the complexity of the code to increment the C[{i,jl.

1.7.2.3 Relaticn to program locality

Every vrage replacement algorithm is based on some
implicit assumption about a program's pattern of page refer-
ences; consequently, for programs exhibiting the assumed
behavicr, the replacemént algorithm perforas nearly opti-
pally. When the underlying assumption is that the progran
exhibits lccality of reference, the replacement algorithnm
perfores the role of a locality estimator [DENN75], that is,
it atterpts to determine the identity of the set of favored

pages in crder to keep those pages resident during the time
they are being favored. The goal of the restructuring phase
is to determine the most likely (constrained) wmodule local-

28
ity sets, as approximated by tbe resident sets, and to
define the closeness measure in such a way that the cluster-
ing rhase will placeé in the same cluster (page) those mod-
ules that co-occur most frequently in the resident sets.

Prograrx tailoring attempts to ¢transform a module-level
reference string into a page reference string whose refer-
ence pattern exhibits the locality properties assumed by the
page replacement algorithm. Program tailoring methods suc-
ceed because they use replacement algorithms (prizarily WS
and LERU) that have keen shown to te good estimators of
locality. The Nearness method, which is actually a tailor-
ing method based on the LRU(1) algoritha, is a poor estima-
tor cf lccality because it has a very constrained locality
set size —— one module. In 1ight of the phase-transition
view cf rrogram behavior, it is not surprising that perform-
ance gainps obtained using the Nearness method are consis-
tently less than those of other tailoring algorithms based
on tetter locality estimators.

e — ——

The wearliest attempts at program restructuring were a
priori methods applied at +the internal level [RAB2G66,
LOWE7G, VEEB71, EAERT72]. A priori approaches based seglely
on static kcolean connectivity were limited in their effec-
tiveness, mainly tecause boolean conuectivity is a poor pre-
dictcr o¢f the dynamics of program execution [BABC77,
SNYD78b1. What was needed vas more information on which to
base 1r1estructuring decisions. Monitoring actual progranm
executions r[rrovided this dinformatiom to a posteriori
restructuring methods that achieved marked improvements over
a pricri aprroaches. The higher cost of the a postericri
approcach, due to program monitoring overhead and the
required analysis of the collected data, is compensated for
by a higher level of performance gains achieved.

29
The Nearness method vas among the first to make use of
the dyramic behavior of the program, as emkodied in the gro-
‘gran trace. Other restrocturing methods were proposed to
improve upchn the Nearness method [MASU74,FEBR74al. Jchnson
[JCHN75]) and Ferrari [FERR73,FERR74a,FERR74D] were among the
first tc use program tailoring to achieve significant
iaprovezents over the Nearness method, but at higher apaly-
sis costs. The fully-automatic, adaptive and user-transpar-
ept syster OPALE [BABO77,ACEA78], is a prograa tailoring
approach that makes use of a program's history of faulting
behavicr to modify its layout periodically.

Snyder [SNYD78a,SNYD78L) has demonstrated that language-
driven a pricri restructuring tased on static program analy-—
sis can produce layouts as good as those produced by
a postericri restructuring. He achieved this by taking into
account the internal structure of each subroutine {rroce-
dure) and the semantics of parameter passing. Snyder's
approach differed from the earlier a priori methods in that
FOKTRAN subroutines, arrays and CCMMON klocks -- into fpages.
Snyder alsc proposed a method for using static structure
inforzaticn to perform prefetching for array processing pro-
grars, a rerformance improvement technique used successfully
by cthers [JCSE70,TRIV7T].

30

—— s

Prcgrar restructuring is an ieportant technique for
enhancing the perforaance of a program running on a paged
virtual memory copputer systenm. The effectiveness of
restructuring depends wupon (1) the quality of the inforsma~-
tion availatle about the program's symbolic-level behavior
{(an execution trace provides the Lest information), and
{(2) the degree to which thke restructuring algorithm is based
upon a gocd locality estimator.

A pcsteriori program 1restructuring does work, but the
cost and effort required to otitain the execution trace make
such restructuring economical only for often-used prograss
[HATF71,FEER76a] that have significant memory cost. Another
facter ip the widespread application of restructuring is the
ease with which it can te applied. The OPALE system and the
LOCALIZER [FEER73] are systeks providing nearly fully-auto-
matic restructuring capaktility —— steps in the right direc-

tico.

The critical-set tailoring algorithas of Ferrari repre-
sent the state of the art in a posteriori program restruc-
turing, and thus provide an accepted kase for evaluating new

Iestructuring agpproaches.

31
1.8 OVEBVIEW OF THIS RESEARCH

1. 8.1 he Procedusre-Activation Model: The Tool

The Procedure-Activation Model (PAN) attempfs to use the
‘€ay a prcgram is written (decomposed into procedures and
control structures) to predict its procedure-level referernce
- behavior. The major advantages of such an approach are sim-
plicity, naturalpess and suvitatility for automation. After
all, procedures and control structures are the units of pro-
gras cciposition closest to the conceptnal solution of a

rrokbler.

PAM is used to generate synthetic procedure reference
strings tc approximate execution trace strings. The subiject
(zodeled) rrogram is modeled procedure by procedure. Each

procedare descrifption has two components.

® Static copponent. A context-free grammar, the call-se-~

it

describes the placement of calls and

el
o
I
]
<l
=
Z]
fu

UEL
cortrol structures (loops, conditionals and gotos)
within the procedure body.

ynamic corponent. Numerical vectors, called paranmeters,
describe the flow of control through the procedure,
cbserved during one or more executions of the procedure.

o
It

Paraseters are oktained simply ty counting the execution
frequency of selected program statements, an idea proposed
and strongly recommended by Knoth [KNUT69), who called the
counts prefiles. He suggested that profiles be used in pro-
graz testing to detect sections of untested code. Frofiles
can further be used to inmprove the e€efficiency of prograns
(by optisization of selected prograrm sections) and of lan-
guage tramslators (by identifying and optimizing the trans-

lation of language constructs used =most often at a particu-

32
lar inpstallation)e. In Chapter 2, the cost of parameter
~estipation is shown to ke low.

There are three major steps in prograr modeling.

© Mcdel copnstruction. The call-seguence grammar is con-

.

structed, and the sulbject program is instrumented to

frcduce parameters when it is executed.

© parapeter estimation. Each execution of the instrumented
sabject program produces a set of parameters. These can
te cogbined with parameters from other executiocns to
fecre parameters which describe a set of program execu-

ticns.

© Sysnthetic string generation. The static and dynamic con-

ponents of tke model are comkined, and used to generate

sycthetic procedure reference strings.

Fach modeling step can ke fully automated. The major
thrust cf this research is an investigation of PAM modeling
techniques and the effectiveness of synthetic reference
strings when used in program restructuring. A secoendary
concerr is the cost of «c¢onstructing and using the automatic

nodeling system.

33
1.8.2 The Scope ¢of This Research

Thi= research is basically a simulatjon study of the use
of- synthetic reference strimgs in program restructuring.
Existipg restructuring algorithmas — Perrari's CIRBU and CES
-- are wused, providing accepted bases for evaluating the
Iresults we obtain. A paged virtual memory machine is siepu-
lated tc produce performance data.

The autcmatic modeling system descrited herein bhas not
been irplenmented, kvt guidelines for its construction are
given, and clearly show how the system can ke iEplesented.
Several PL/I programrs, of medium size and corplexity, are
Bodeled and the performance of their synthetic strings in

Frograz restructuring is evaluated.

The study of model properties is limited to the use of
the model in rrogram restructuring; other applications and
investigations are suggested as topics for further research.

34
1.9 MAJOE THESES AND CLAIMS OF THIS BESEARCH

-

This research proposes an asutomatic systea for program
rodel comnstruction, parameter estimation and synthetic ref-
erence string geperation, as a front end to a poesteriori
Frogram restructuring. The theses of this research are pre-
sented in decreasing order ©f contribtution to the state of
the art.

9 Prcgraam restructuring using synthetic reference strings
preduces layouts whose perforzance does not differ sig-
nificantly from the performance of layouts obtained from
Frcgram restructuring using execution trace strings.

¢ Extensive modeling effort is mot required to obtain good
restructuring results using synthetic reference strings.

® The =synthetic-reference-string program restructuring
systeg can be fully automated.

® The cost cf constructing and using the automatic model-
ing system does not e€xceed the cost of the executicn-

tracing approach.

The following <claims, although they do not constitute
theses, dc point out some of the more promising features of
the model developed in this study. The PAX podel has possi-
ble application beyond that attempted in this research.

© PAM is a useful conceptual model that gives insights
intc the relationship tetween program structure and pro-

grag referencing behavior.

© EAM instrumentation and parameter estimation rprovide a
lcw—cost way of monitoring program execution, and can be

used in automatic program testing.

36
1. 10 CEGARIZATION OF THE I[ISSERTATION

This chapter has presented a brief overview of the
research, along with sufficient background material for
reading the remaining chapters.

The Procedure-Activation Model (PAM) is defined in Chap-
ter 2. A completely automatic modeling system is designed,
and shcwn to reguire low overhead. The model is shcwn to be
flexible enough to accommodate differemnt approaches to prod-
eling, specifically in the areas of parameter estimation and

string gemeration.

Chapter 3 describes the sutject programs used in the
research, reviews the issues of program restructuring rele-
vant tc the research, and defines the layout <ccmpariscn
sethodology. Finally, results are presented that show the
degree to which the execution of the suktject progfams can be

improved through the use of restructuring.

Charters 4, 5 and 6 present empirical resuits from pro-
gram restructuring experiments that used the synthetic ref-
erence strings generated from instances of PANM. Chapter 4
contains results from modeling using the simplest model ver-
sions and fatameter estimation approaches. In Chapter 5,
more sothisticated model versions and parameter estimaticn
were used in an attempt to improve model accuracy. Chap-
ter 6 fresents a case study, where the techniques of Chap-
ters 3-5 were applied to a final subject progranm.

Chapter 7 contains conclusions and recommendations for

further investigation.

4 glcssary of acronymns is provided for easy reference to

the rany acronymns used throughout the dissertation.

Chapter 2

THE PROCEDUERE-ACIIVATICON MNODEL

The Procedure—activation Model (PAHN) is defined in this
chapter. We begin by defining SSPL, a sipple structured
prograesing language +that will be used as the Ligh level
source language in which program examples are written, and
as the language in which the model <construction algorithms
are exrressed. Several methods of estimating model parame-
ters are given, followed by a discussion of syathetic string
generaticn technigques. ke conclude the <chapter ¥ith an
over—all analysis of the cost of using the model, and with
the defipition of model variants. ke show that thke entire
modeiing frocess can be fully automated.

38
2.1 PRELIMINARIES

The prograsming language SSPL contains the basic seguenc-
ing primitives that allow looping, selection, procedure

calls ard escapes (restricted kranching).

All rrccedures are external. 7The syntax of the procedure

statement is
Froc <procname> <parameter list>

<{declarations>
<stut>

endrroc

The zain procedure is distinguished bty the occurrence of the

keyword maip in the parameter list,

22111

Ccocnstruct

looping

selection

Escape

Call

Return

Seguencing primitives

Syotax

Iepeat {control clause)
statement

if (condl) stett

else stat

endselect;
escape<arith expr>;

all <procname>;

10

[~}

etur

]

39

Exapple

repeat (for X:=1 to 10)
S5:=5+X;
€ndrepeat;
select
Af(X>Y) X:=X+Y;
Aif(I<Y) Z:=X;
£lse Z:i=X-Y;
endselect;

€escape 3;

call A;

return;

The statement "escape n " causes an exit from n levels of

contrcl structure nesting.
when n is greater than the nesting level,

Khen n<0, no tranch is executed;

the effect of the

stategent i1s that of the "return ¥ statement.

2.1.1.2 Data types

Three

-~ sccre —— local or glokal

- gtructure -—- scalal or array

attributes characterize variatbles:

- tyre —— integer or real or string.

40
2.1.1.3 Exaumfle grogram Pl

We conclude the introduction of SSPL with an exanmple.
Prograz F1, shown in Figures 2.1(a~c), will be used
- throughout this chapter. 1ts function is of no particular
importance; we merely need to study its structure, i.e., the
sequence and nesting of control structures.

Ercc A (main);
gqlobal integer array F[1:50];
global ipteger scalar A1,32,13;

read(F[1));
endrepeat;
Sselect
if (N>25) call B(F,25):
else
call C(¥,X);
:=0;
epeat (for I:=1 to W)

L I

call D{I,F[I],5):
call B(E,N);
at ;

endrepeat
t

rerpeat {for I:=1 to J while 5<3I)
call E(¥[I]);
S:=5+F[I];

endrroc A;

Figure 2-1 (a)
Procedure A of Sample Program F1

Eroc B(X,N);
integer array X;
obal integer array F[1:50);
local integer scalar I1,d,0;
V:=X[13;
Iereat(for J:=1 to W)
call C(N,U);
select
if (U<F{N)) call D(I,F[J].U):
if (U>E[R))
call C(N,F[N));

return;

I

——

Procedure B of Sample Prograe P1

b2

43

Eroc C{4,V);
integer scalar U,V;
local integer scalar S;
S5:=U+V;
select
if (U=V) S:=0;
if (U>v) call E(V,0);
else call D{G,V,S);

i - ——

st
L=
-+
Te]
In
o}
Ith
[g]
7]
[
s}
H
t'-‘
-
<
L]
=
-e

éall E{L);
E(#);
E{N);

Exogc E{X);
integer scalar X;
print(¥) ;
endproc E;

Figure 2-1 (g)

Procedures C-E of Sacple Progranm

E1

44

2.1.2.1 Ko data references

Data references are not modeled, for three reasonse. The
first and most important reason is that no efficient soft-
ware tcols besides execution interpretation are available
‘fecr acritering data references, Tracing data references
slows program execution [HARTF71). Second, passing parame-—
ters ty reference wmakes it impossible to model data refer-
ences using a context-free grapmar, since the identity of
the data item referenced inside the called procedure depends
upron the site of the call, i.e., the context of the caller.
Any attempt to solve this proller would regquire a grammar
nore pcwerful than context-free. The third reason is that,
even 1f it could ke done, the grammar used to describe all
possible reference sequences would ke so large tikat syn-
thetic string generation would ke very inefficient.

2-.1.2.2 Predictakle flow of control

Flow cf ccntrol must te predictable from the source code,
execution must alwvays Legin at the first statement of a code
module, and a procedure aust always return contrcl to its
rost recent caller. Therefore, coroutines and interrupt

routines are not modeled.

2.1.2.3 <Call-path independence

A procedure's behavior is assumed to be independent of
the prcgras's call history. That is, a procedure is assumed
to behave the same way each time it is called, and therefore
can not te influenced to tLtehave differently for different
callers. This assumption is reguired because the call-se-
guence grammar is context-free. Procedures wviolating this
assumption can nonetheless te modeled, as we shall see in a

later secticn.

45
2.1.3 The Automatic Modeling System |

In Chapter 1 we outlined the major phases of PAM model-
ing:

(1) call-seguence gramamar construction amnd program
instrumentation;g

{2) program execution and parameter estimation; and

{3) synthetic string generation.

These steps correspond to instrumentation, observation and
generation. The process is described in Fiqure 2.2. In
the figure, rectangles jndicate steps in the process , and
arrows indicate data flow into and out of each step.

The prcgram to be modeled 1is called the subject progran.
Mode]l construction produces three catputs: the call-seguence
. grapnpar {CSG); instrumented ofbject code for the sukject pro-
gram {ICBJ); and the parameter descriptor database (FDDE),
which describes the parameters regquired to model each proce-
dure. Parareter estimation involves executing ICEJ a nue-
ber cf tises. Each execution produces execution coeffi-
cients, counts of loop and selection construct usage, which
are stcred in the coefficient datakase {(CbB) following pro-
gram execution. Coefficients must bLe converted into the
paraneters for wuse during actual synthetic string gehera—
tion. Farameters are stored in the parameter database
{PDB) « Synthetic string generation reguires the grammar
{CSG) and parameters (PLB) as inputs, and produces one or

more synthetic strings (SIN) as output.

The call-sequence grammar and the parameters used in syn-
thetic =string generation constitute an instance of PAM for
the subkject program. A nodel instance for program F 1s
dencted FAM(P,N) = <CSG(P),PARM{P,N)>. PAENM(F, W) denotes
the model parameters derived from a set ¥ of executions of

the instrumsented object code (I0BJ). #hen po ambtiguity can

result, the aodel instance can - be
PAM(W) = <CSG,PARK(W)>.

Source program P

Construct
Insidnent
et et i e e nstrumen *--]

! |
- | !

CsG 10BJ PDDB
I
| |

Estimate 7
Farameters

—

!
3]
;L

i Update -]
Farameters
|
______ Y
lPDE
it

'

Synthetic reference strings (SYN)

Figure 2.2

The Automatic Modeling Systenm

PDB

46
denoted

The opext three sections of this chapter discuss the

phases of EAM modeling in terms of inputs, data structures,

47
algorithms, output and cost. Particular attention is given
to sho¥ing that the automatic modeling system can easily be
‘integrated into existing system software to provide an addi-
ticnal frcgraz “Yoptimization® akin to that provided by opti-

mizing coepilers.

2.2 MODEL COXNSTRUCTION

The construction phase of PAM modeling is depicted in
FPigure 2.3. The source text of a subject program module is
the irpput; the outputs are its PAM call-sequence grammar, an
instruzented version of its ohkject code (IOBJ) and a data-
base iteccrd describing the parameters required by the {SG.
Each ocutput will te descrited in the succeeding sectioxns.

Subject Program Module
|

1
[————--—--—{ CONSTRUCTOR |~=mm—m——m—n]
CSG 10BJ PDDB

Figure 2.3

Model Construction

We should point out bhere that the assumptions and
algorithms we are about to present prokatly do not represent
the most efficient way to construct automatically the podel
of the subject progranm, Our intention is rather to present
straightfcrward algorithms and analyses that give insights

into the nature of the model construction process.

48
2.2.1 Ike Cal

Seguence Grammar

- The call-seguence grammar (CSG) for program P1 is given
in Fighre 2. 4. The CSG gives a linear representation of
the structure of each procedure, i.e., the placement of sig-
nificart ceptrol structures within the procedure. A signif-
icant ccntrol strocture is defined recursively as

{1) a call or return statement;

{¢) a lcor or selection construct that contains a sig-

nificant control structure;
{(3) an escape from a significant control structure.

Only significant control structures affect the sequence of

execution-time procedure calls.

= (E|] C<KDED>) < E >;
=<C (D] C!|=-2) >E;
{ 1l E1 D)3

= E E E;

Lo I~ T o T < < I
It

Figure 2.4
Call-Seguence Grammar for Sample Program P1

Consider the CSG production for procedure A, which shows
that either A calls B, followed Ly repeated calls to E, or A
calls ¢, fcllowed by repeated calls to D and B, followed by
repecated calls to E. In the €SG production for B, the
selecticn (or conditional) construct is nested inside the
loop ccnstruct, Rhenever the second alternative is
selected, Cis called and B icmediately reéturmns to its
caller; whenever the third alternative is selected, an exit

49
is @=ade from two levels of control structure nesting,
resulting in the call to E. The production for procedure C
has as its first altermative a pull call, vwhich corresgonds
to an execution of the selection construct that does not
lead tc a procedure call. All alternatives of a significant
selecticn ccnstruct must ke modeled.

A sugmary of the CSG operators and the correspording SSFEL
keywords is presented below.

Operater (s) SSEL Keyword - Explanation

new, nyu repeat,endrepeat loop delimiters.

ngn,)" select,endselect selection comstruct
delimpiters

nyw if,else alternative separators.

Hn_u escape €xit control structure.

nrw return exit from procedure call.

n=n proc start of CSG production

definition. Left-hand side
is name of procedure; right-
hand side contains operators
and procedure names.

AL preocend production terminator.

50

A A e e s g s

- The table of CSG operators and SSPL keywords reveals that
CSG cornstruction can be keyword driven and, as such, it can
be inccrporated into either the lexical or syntactic analy~
sis pbase ¢f a compiler. ke now present one such (not nec-
essarily optimal) algorithe for CSG construction in order to
show the amount of work that is reguired. This algorithm,
called the CONSTRUCIOR, takes as input the SSPL source code
for an a;titrary procedure P, and produces as output the CSG
rrecduction for P. The CONSTRUCTOR may also be used to pro-
duce cther outputts that will be used in later phkases of the
nodéling Frocess, such as the iastrumented source progras
{source level or object 1level) and a descriptor for the
parageters required for that production. In the next sec-
tion we discuss program instrumentaton; here we #ill show
how the grasmar and parameter descriptor are comstructed.

2.2.2.1 Eequired data structures

Active Ccnstruct Stack {ACS).’ A construct is active if
its ipitial delinmiter has teen scanned, but not its terminal
delinpiter. Each stack element bhas the following format.

construct | count | size | #params |, where

ccostruct encodes the type of control structure:
-0 —— the n'th loop;
0 — the start of procedure;
+n —- the n'th selection construct.
count is the numkber of siguificant control structures
sithin the construct.
size is the number of CSG symlols generated.

#raraps is the numkter of parameters reguired.

51
Cutrut tuffer (OB) contains CSG syakols geherated during
model construction.

Copstruct Descriptor Jatle(CDT). Each comstruoct in the
final CSG rroduction has a taktle enrtry of the form

construct | #paranms {.

The Parameter Descriptor (PD) record for each producticn
has the fcrmat shown in Fiqure 2.5. It describes the nunm-
ber and@ tyfpes of constructs contained in thke production,

along with the pumber of parameters reguired for each con-
struct, arpd for the production as a whole, As an example,
rrocedure 3 has the production parameter descriptor

A6} 21 1] 2]

Procedure A requires six parameters:s two each for its two
locps, and two for its one two-way selection construct. The
are referred to collectively as the

5
selection descriptor list (SDL).

|
l

52

{EZocna;elLiliglulluzl...luq}

‘ ;rocnane is the nare of the procedure;

L is the total number of parameters required; |
1l is the numker ¢f loops; [
g is the number of selection constructs;

ui is the numkbter of alternatives in the]
i*th selecticn construct.

Figore 2.5

Parameter Descriptor Data Base Record Format

2.2.2.2 Description of the algorithm#*

The output tuffer OF is filled one symbol at a tige.
¥hen a ccnstruct initiator symkol (a "proc", ®repeat" or
"select®) is scanned, an ACS record is pushed onto the
stack, and the corresponding CSG output symiol is moved to
0B. The top element of ACS is the current corstruct; its
ccunt field is.incremented €ach time "call"™ is scanned; its
size field is ipcremented €ach time a CSG syrkol is moved to
0B; apd its #$#params field is initialized to two fcr loops,
and is incremented by one each time nif" or Yelse" is scan-

ned. Fhen the current construct terminator (an "endproc®,
"endrereat™ or "endselect")} is scanned, its CSG output sym-

bol is zcved to OB, If, when the end of the current con-

*This algorithm does not hand e €SCapes. gn%flcant
escare_ frcm® a construct makes t cohstruct 51g lcant,
and vice-versa. Determination of significance uires

lock-ahead —— to the end of a 590551t1 nest ed) ccns Tuct.
Algorithr wodifications re ulre to handle escapes are simi-
lar to the use_ of tranch-altead talkles iu assemkblers and com-
pilers. We will not give further details.

53
struct is reached, 1its count field is zero (i.e., Lo calls
were made from within the construct), OB is purged of all
output syaktcls generated by that comstruct. The size field
contains the number of symbtols to ke deleted. If the count
field is ncnzerb, a CDT entry is made for the construct, the
element is popped from ACS, and the count field of the new
current cconstruct is increszented by the count field of the
0ld current construct (this reflects the nesting of comtrol

constructs).

The PD is constructed froz the CD7T after the source pro-
grar has Leen scanned. The Paramreter Descriptor records for
the procedures of progragm P1 are given 4in the following
table.

#parapsj#loops|#selectsi SDL
I 2 1T
1 1 1 i
I 0 LI
I]
{ i

I W w N

i
i
|
¢
I
i

S O W noo;

!
l
|
|

2.2.2.3 Discusesion

This algcrithm requires only one pass over the source
Fregranm, and can be incorporated 1into the lexical analysis
phase of the compiler if the source language contains the
equivalents of SSPL constructs. - Otherwise, for languages
such as FCETEAN, some constructs must be simulated osing the
sequencing primitives available, which may require the CSG
censtructicn to be incorporated into the syntactic apalysis

phase c¢f the compiler.

54

The second aspect of model construction is the instrumen-
tation of the subject program so that it will produce parap-
eter estisates when it is executed. Instrugpentation

invclves

—allccation of instrumentation variaktles (ivars) ;

-insertion of instrumentation code ({icode) to cause
ivars to be incremented;

-insertion of code to vwrite the values of ivars to the
coefficient datalase.

The values of the ivars from a single execution of the sub-

ject prcgram are called coefficients, and are written to the

coefficient database (CDB). Coefficients from one or more
executions are c¢oabined to form the parameter datzbase

(ERB) .

We now show how the CONSTRUCTOR <can be extended to
instruzent the subject program. Again, we will discuss the
required podifications to the data structares. The iostru-
mentation algorithm we now present 1is decomposed intec two
passes to enhance clarity, although an actual implezentation

zay use only a siegle pass.

2.2.3.1 2Allocation of instrumentation variatbles

The pumber of ivars reguired for a procedure depends upon
its CSG production. Each loop counstruct regquires two, one
to court the number of times the loop is entered, the other
to court the total numler of times the Lody 1is executed.
Each selection construct requires one ivar per alternative.
Instrusentation variakles are assigned to loops first, in
the left-to-right order in whick the loops appear in the CSG

55
production. The first 1loop in the productioﬁ is assigned
ivar{ 1] and ivar[2]. Next, ivars are assigned to selection
'cohstructs in a left-to-right order of the <constructs;
within a ccnstruct, the ivars are assigned consecutively.
Copsider the CSG production right-bhand side below.

A (B 31D (B1) 1 <CT 2>) >

NEENEE

1,2 5 6 8 9 7 3,4

The indices of the ivars assigned to each construct appear

underneath the respective (SG construct symbols.

Instrupentation can ke viewed as a source-language trans-
formation that inserts statements within the source pro-
gram. Allocation of ivars amounts to declaring am array to

contain the ivars, namely the SSPL statement

global integer array <procname>ivar[1:#parans]

2.2.3.2 Insertion of instrumentation code

Instrozentation code takes the form "incr(n)", which
causes ivar[an] to be incremented by unity. Insertion of
iccde requires two items of information: the ivar index and

the inserticn point.

56
The location of the insertion point is based on syntax,
as shouwn below. Insertion points are indicated by aster-

isks.

Leop Construct: *1 repeat() *2 stat endrepeat
Selecticn construct:
select if (cond) * stotil

At the locfp imnstrumentation point *1, the loop entrance fre-
guency —— the number of times the loop is entered from the
top =- is determined. The loop repetition frequency —-- the
nugber of times the loop body is executed -— is cooputed at

2,

Inserticn points can te determined during pass one, as
the CS5G is being constructed. The ACS and CDT are extended
to include a field that points to a list of construct ipser-
ticn pcints. An insertion point 1ist (IPL) has nodes of the

fora

ip | ivar | nextj,

where ivar is the index of the ivar to be incremented, ip is
‘the pcsiticen in the source (or .intermediate) code after
which the icode is to te inserted, and next is the list
pointer. For simplicity, ip is expressed as the serial nup-
ber of the source program symkol following which tle inser~

ticn is tc be made.

At the end of pass one, the ivar field of each IPL node

is assigned an ivar index. puring pass two, each time an

inserticn pcint is reached,

57

the icode to increment the cor-

responding ivar is inserted. Thke instrumented version of

procedure E of program P1 is given in Figure

2.6.

——— ——— —

integer array IX;
local ipteger scalar I,J,U;

global integer array Bivar[1:5];
U==X{ 1];

incr(1);

Iepeat(for J:=1 to W)

incr(2};
call C(N,U};
elect
if (U<A[ND)
incr (3);
£all D(I,A[I]),0);
if {B>A[N))
ipner(4) ;
call C{¥,A[NT);

return;

itn

Figure 2.6

Instrunented Procedure B of Program P1

58

2.2.3.3 Extraction of execution coefficients

- The execution coefficients pust ke written to the coeffi-
cient database after the termination of the execution of the
. subject program. A straightforward instruamentation to cause
this tc happen requires +two nev procedures, WRITECR and
DUMP. WERITECE writes the coefficients belonging to one sub-
ject pregram procedure. It takes as parameters the name of
the procedure, the numter of parameters (ivars) and the ivar
array fcr that frocedure, and writes a CDB record bhaving the

format

procname | #params | ivar{ t:#params] |e.

Procedure DUMP, which contains ([glotal) ivar declarations
frcem each procedure, passes to WERITECR thke idivars froa the
executicns of each procedure. DUMP can be generated fron
the infcrmation in the parameter descriptor database (PDDB}.
A call tc DUMP must be the last statement executed in the
main procedure. Figures 2.7 and 2.8 show the DUMP and
WRITECE instrumentation routines for program FEl.

This instrumentation produces output that must be manigpu-
lated further tc make it suitakle for generating synthetic
strings. The parameter datakase is éonstructed froe the
coefficient databases produced by aultiple program execu-
tions, and may contain detailed historical and statistical
data such as extrema, averages and variances of coefficients
of selected constructs. For example, the gepneration
algorithm may require that loop parameters be expressed as a
single scalar representing the average loop repetition fre-
guency, ©r as a range {n1,n2}, where nl and n2 are, respec-
ti vely, the minimum and maximum Joop repetition frequencies,
or as a pair of descriptive statistics (e.q., mean and vari-

ance c¢f repetition fregquency).

global integer array Bivar{ 1:5];

global jnteger array Civarf[1:3];
call WRITECR("a",6,Aivar);

call WRITECR ("B",5,Bivar);
call WRITECR("C",3,Civar);

Instrumentation Routine DUNP

59

prcc WRITECR({PROCNAME,#PARAMS2,IVAR);
Scalar integer #P3RANSZ;
integer array IVAR;
write {PROCNAME,#PARAMS2,IVAR) to file(CDB);

erdrrec WRITECR;

Figure 2-8

Instrumentation Routine WRITECRE

60
2.3 PARARMETER ESTINATION

Parameter estimation can tegin during the testing and
debugging of individual wodules, provided that the tests use
representative input. Such an early start cam provide
insights into the mnature of the program long before it has
been ccrpleted. In fact, PAM parameter estimates provide a
characterization of the data used in program testing, as
followus. If exhaustive program unit {modules and control
structures) testing is desired, a set of test data is assen-
bled, the fgrogram is executed using the test data tc produce
executicn statistics from ﬁbiéh can te determined vwhich mod-
ules ard mcdule units have Leen exercised. Additiopal test
data are created until all tbke desired program units have
been exercised. PAM parameters record precisely the infor-
matiocn of interest, provided that the program has been

instruzented to produce execution coefficients.

Farapeter estimation is depicted in FPigure 2.9, +which
shows the reguired databases and processing.

ICEJ

v

. i

PDB ‘ PDDE

S SR

i — i ——————

Fiqure 2.9

Parareter Estimation

61

2.3.1 PMaiptaiping the Parameter Datalase

The various databases, Parameter Descriptor (PDDE), Coef-
ficiept (CCLE) and Paraxeter (PDB), which are used during
paraseter estimation, are described ir Figures 2.5, 2.10
and 2.11, respectively.

During the PDB update, the procname field is used to
ratch reccrds from each of +tte three databases, FELDE, CLEBE
and PDE. The CDE ui values for alternative constructs are
" added tc the corresponding PDB cjk fields, where the PLDE
record is used to detersine the correspondence between the
ui and cjk fields. The first 2#*] ivars are allocated to
loops. The average repetition couat for loop j is the quo~
tient u{2j]/u[2j-1]. For loop i, ai, Mi, ai and ni are
updated using uf 2i-1] and uf2i].

. . el TR A e T . s~ S — T ———_— 1 A

(‘;rocname { K} ul | u2 {| aae | uk

e A ki U e S S ———— ——— . Al A e S . . i,

] K is the number of ivars:

vl is the value of the i*th ivar.

Figqure 2.10
Coefficient Datatase Record Format

62

—— v

;rccnamelN]n!in1|n11311v11...|c111c1zl...1c[g,nq}]

A — . e S e S S S . W o S YR T S —— = ———

N is the number of numeric subfields in the

reccrd;

gl is the average minimum loop i repetition

ccunt;

i is the average maximuzr loop i repetition

ccunt;

pi is the total number of loop i executions;

ai is the average repetition frequency for loop
i.

vi is the variance of repetition freguencies for
lcecp i

cjk is the cumulative execution count for the
k'th alternative of the j'th selection unit.

-

Figqure 2.11
A Parameter Datalkase Record Format

63

2.3.2 BArrrcackes to Execution Sampling

L

Estimating PAM parameters involves obkserving, or sap-
pling, one or wmore executions of the instrumented subject
Frogras. Ope would e€xpect that as the number of observa-
tions increases, so would the confidence one could place in
the guality of the estirates. ¥e now consider three
arproaches, and show that the PAN modeling system database
contains (cr can le made to contain) the information neces-
sary tc¢ surrert any of these approaches. PAM paraseter
estipation produces a datatase which characterizes the

oLserved executions.

2.3.2.1 Opne-time observation

A single execution of the sutject program is used to col-
lect paranmeters. Although such an approach may seem unac—
ceptable, there are cases whlen it will provide a very good

characterization of the sutject program —- when the prograr
is Jdata-ipsepsitive. Some prograes have been found to
exhibit this property. But unless the subject program is

known uith certainty to have this property, a single obser—

vaticn should not be used.

The pursuit of a representative saazple is comamcn to any
sazplirg endeavor, and the intuition that the 1larger the
sanple, the mcre representative it is, gives a good rule of
thurk fecr sarpling. What is needed is a way of characteriz-
ing a sarngple, o that uncertainty can ke dealt with using
statistical methods. PAM parameters, which, as we shall see
later, can be determined at a very low cost, provide such a

characterization.

64

23.2.2 Fredetermined numlter of otservatiouns

- For mcst programs, execution +time tehavior depends upon
the inputs used to drive the progras. Although the set of
all possible input values is infinite, the set can ke parti-
tioned into a small numter of groups Gi, such that within a
particular groug, program kebavior is (approximately) con-
stant. For such progranmns a reasonatle stratified saepling
method is tc choose representative inputs from each data
group Gi, to observe the program's execution with these
inputs, and to fore cumulative parameters from these obser-
vations. This approach reguires that the programmer or user
of the program kmow the expected range of inputs and the
effect of each group 6f inputs upon the prograw's control
flovw. '

Ancther multirle-observation approach is random saapling.
That is, during the ip-production lifetime of the progranm,
executicns to be sampled are chosen at randonm, without
regard to the type of inputs used for the execution. This
approach may require a larger number of observations than
stratified sawmpling, Eut it does appeal to those desiring
some statistical basis for the parameter estimaticn
approach. Moreover, such an estimation can be undertaken
without derending upon {possiltly inaccurate) informatiocn

from prograrmers Or USErS.

In koth the stratified and random approaches, the number
of observations is predetermined. Factors contributing to
the number of observations include the sensitivity of the
subject prcgram to its inputs, deadlines for coppleting the
observaticns, . and the amount of progracmer involvement
required. 0f the two approaches, random sampling involves

nc prcgranier involvement.

65
2. 3.2.3 Statistically controlled observations

The first +two approaches to execution sawmnpling do not
atterpt an explicit statistical chlaracterization of the san-
ple. Under these conditions, one may Le concerned with the
possibility of failing to model the prograem's intrismsic
behavior. Granted, the possibility exists that a spall saa-
Fle size will give an inaccurate view of the sulkject pro-
gram, tut kecause most programs tend to ke guite data~insen-
sitive [HATF71,FERR76a],eqger array_ Bivar[1:5]); ve feel that
the 1likelihood of this happening to the detriment of
restructuring results is not great.

Although we 4o not think it necessary to control the sam-
pling frocess by statistical analysis, shenever such an
apprcach is regquired, PAM lends itself to statistical paraw-
eter apalysis. The parameter database can ke expanded to
keep track of the distribotion of each parareter. Based
upon parameter distritbution measures {means, variances) and
assumptions (such as pnormality), statistical inference meth-
ods carn be used to decide when the sampling process can be
terminated. Notice that a parameter—by-parameter statisti-
cal testing procedure involves considerable computation.
This testing process can ke simplified by focusing attention
on critical constructs that are feit to contribute most to
the characterization of the program's execution, €.g., con-
struct rarameters for top-level modules.

66
2.4 SYNTHETIC KEFERENCE SIRING GENEEREATION

" In this section we descrite the algorithme for string
generation. Az in previous sections, we begin with a defi-
nitior of data structures, and proceed to describe the
algorithms in terms of manipulations of the data structures.
ifterrﬁe fresent the generator, we discuss approaéhes to

deterszining when to terminate the generation process.

2.4.1 The GENEEATUR

The majcr data structures regqunired by the GEHEEATOR/are
the parameterized CSG (PCSG), the production descriptor
table (FDT), tke generator stack (GS5) and the loop stack
{1S). The FCSG and PDT are constructed prior to actual gen-
eration; GS and LS represent the state of the generation

process. We nok descrile each data structure.

2.4.1a1 Data structures

Farapeterized CSG (PCSG). The CSG and the parameter data-
base are combined to form an internal representation of each
production. PCS5G is a one-dimensional array which contains
a parapeterized production for each procedure. HWithin PCSG,
rroductions are stored contiguously. Parameters are

inserted between graamar €lements as follows:

lccrs*: < tody > trecomes < nl n2 body >, where nl
and n2 specify the range of repetiticn counts
for the loop; and

——— —— -—

marily for illystra-

*Je use_ this form of 00 arameter pri
P 1oop R gther representations.

tion. In a later section we suggest

67
{ casel |} case2 | ... | casen) becoges

{ T k1 casel | k2 case2 | «... | km casenm),
where T= k1 + k2 ¢+ ... + km, and each ki is

rropcrtional to observed frequency of select-
ing alternative i.

Broducticn Descriptor Takle (PDT). This takle is used to
lock up the start and end of each production in PCSG. Each
tatle entry is of the form

first | last ¢ Where

first({P) is the index into PCSG of the start of the parame-
terized prcduction for procedure P; . last {(P) is the index of

the fipal production symbol.

lccr Stack (LS). This glotal stack is used to keep track

of generate-tigze looping. Conceptually, each production has

its own stack of elements of the form

n] start s Where

n is the the nunter of remaiming repetitions;

start is the cursor position (imn PCSG)} of the start

of the loop lody.

Upon exit frem a production (procedure), amny loops active
within that fproduction are automatically popped from the

locp stack.

68
Generator Stack (GS), with stack pointer GSP. This stack

keeps track of the generate-time state. Each element has
the forzat

prodn | cursor s Where

rrcdn is the production number;

cursor indicates the current position in the produc-

tion (i.e., an index into PCSG).

Ontrut Fuffer (OB) contains output symbols,

2.4.1.2 pData manipulation primitives

The following data manipulation primitives are used in

the descrirtion of the algorithm.

push{stackname,[datalist]) pushes data onto specified

stack.

por{stacknanme,[resultlist]) pops specified stack and
extracts ipformation into result variables,

output {symbcl) places sysbol in OB.

uriform(r,g) 4generates a random number uniformly dis-

trituted between p and q.

select {n,cursor) chooses an index of a selection con-
struct alternative, given random nunter n, and the

current cursor position.

fipdernd(C,z) determices the cursor position of the end
cf the m'th enclosing comnstruct, where the current

cursor position is C.

lccreccunt{C,x}) determines the amcunt by whkich the loop
nesting level will decrease wher moving from cur-

scr position C to position x.

69
Zel4e 1.3 Nctation

puring generation, activity is centered around thke gener-
ator stack, GS. To facilitate describing the generation
algorithe, we will use the following symbols to refer to the
data on the top of the GS stack. {(Recall that GSP is the
stack-tep rcinter for 6S.)

P = G5(GSP).prodn, the current production;

C = GS{GSP) .cursor, the current cursor position within

the current production;

S = ECS5G(C), the current CSG symtol within the current

production.

The syszbol N represents a PCSG nonterminal (i.€e., the name
of a prcgrams module), as distinguished from the PCSG opera-

tors ard rarameters.

Suppcse that the main procedure of program P 1s MAIN.
The first gproduction in PCSG is "% = MAIN $%", where "8¥ is
the start symbol, representing the operating system function
of job initiatioﬁ, and "#", the special terminator symbol,

represepts job termination. The ipitial state of the
GENEBATOR is

70

2.4.1.4 The algorithm

Hhen § is

?

ﬂ(ﬂ

ﬂlll
ﬂ)“

ﬂ(ll

LS L)

Do the following
terminate generation

C €< CH+l
push (GS,[¥N,first (N)+1])

cutput (P)
C < C+1

pop {GS,[-,—1])
output (P)

repeat {(for I=1 to loopcount {C,last (P))
POP (LS, [~,~ D]

endrepeat

C <~ last(p)

E €- findend([C,PCSG(C+1))
repeat (for I=1 to loopcount (C,E))
PoP(LS,{~-.~ 13

endrepeat
C €« E+1

r <~ uniforr (1,PCSG{C+1))
i €~ select(r,C+1)
C <- position of if'th alternative

C <- findend(C, 1)
C €< (41

r <- uniform (PCSG(C+1),PCSG (C+2))
push{1S,[{r,C+37])
C <€- findend{(C, 1)

pop{ls,[n,start })

if n>0 then
push (LS,[n-1,start })
C <- start

else C <€~ C+1

71
2.4.7.5 An Exanple

Consider the following CSG, with average loop repetition
[for procedure A} of 1, and selection execution frequencies
2 and 3. '

< C > :
cCi1Db)

[]
" am I D
-e

B o
|

L X

The rarameterized €56 is

—— —— e ——

3Dy s C=3:;D=3;1l.

e S S P ol il s S S . G i i W S - — L

I
[#4]
A
-
-
o}
A\
.
to

i

$ =44 A (52¢C
CECKEEEERNUEE

1111222222222 2313
6 78696 %53588¢898¢673

F T3
(95 P 8

1 11
1234856788290 1 23

The Prcduction Descriptor Taktle (FDT) is

_prodn | first i last
$ | 11 &

LI | 5 13

B i 14 | 24
c 1 25 |

D | 28 |

Snarshcts of the GENEFATOR
fcllow. The rightemost stack

WAEDBACA"™
" top.

Step S
1 A
2 =
3 B
4 =
5 (
6 D
7 =
8 3
3)
10 :
11 <
12 >
13 C
14 =
15 :
16 ;
17 :
18 ¥

Generate Stack

(£,3)

{3.8) (1,6)

(3.4) (2,7)

($,4) {1,8) (B, 15)

($.4) (2,8) (B,16)

{$,4) (A,8) (B, 22)

($.4) (A,8) (B, 23) (D, 29)
($,4) (2,8) (B,23) {D,30)
{($,4) (A,8) (B, 23)

($,4) (2,8) {B,24)

{3.4) (3,8)

{$,4) (A, 12)

{¥,4) (A,11)

($,4) (3,12) (C,26)
($.4) (2,12 (C,27)
(3,4) (2,12}

{$,4) (2,13)

($,4)

as it genefates the

1stack

[1,11]
[0,11]
[0,11]
[0,11]
[0, 11]

72
string

elepent is at the

Qutput

r=3,1i=2

r=1,n0=1

loop exhausted

Terminate

73

2.4.2 Termipating Generation

Just as in the case of parameter estimation, vhere we had
to consider the number of observations reguired to obtain a
certaiz coafidence in the parapeters okttained, we Rust
decide how many synthetic strings should ke generated.
Three alternatives exist:

-generate one string;
—-generate a predeternined nomter of strings;

-generate strihgs until some statistical test is satis-
fied.

The GEKERATCOR can be made to terminate using any of these

approaches.

Sipgle string generation is not recomzendegd, since it
defeats the purpose of the model, namely, replacing a sgall
punber ¢f trace strings bty a potentially infinite nunber of
synthetic strimngs. A single execution trace string is pre-

ferred cver a single synthetic string.

A predetermined numier of synthetic strings is a more

appealing way to terminate string generation. As 1in any
multiple string generation, +there is «concern for the inde-

pendence of individual strings. This will improve the
chance cf "true" random sampling from the set of all possi-
ble synthetic strings. In the implementation of the

GENEFATOE used in this resecarch, e€ach string is based con a
different randcm number seed computed from the time-of-day

clock.

‘The determination of the nunber of strihgs is not easy,
because without any statistjcal ctaracterization of the gen-
eration process, it is difficult to know when the finite set
of generated strings has covered (uniforaly sampled from)
the space of all synthetic strings generable from the model

75

2.4.3 Geperation Environments

The GENFRATOR can ke used either as an off-line program
to produce an output file of synthetic strimgs, or as an
orn-line corcutine to produce symbols of the synthetic
strings on demand. Since the storage of the entire string
is nct required, the on-line approach is ideal for efficient
“fFrogram restructuring. The off-1ine approach cam be used
when the synthetic strings will be subjected to further

analyses.

2.5 ANALYSIS OF COSTS

In this section we assume that the sabject ©prograc has

the fecllowing characteristics:
=300 procedures;
-each procedure contains 2 significant loops;

-each procedure contains 2 significant selection con-

structs, each containing 3 alternatives;
Further, we assume that
-each procedure name is 8 characters long;
~each ivar is two B-lit tytes iong;

-the icode for incr reguires one 4-tyte instruction.

76

2.5.2 Corpiler podifications

Considexring the inherent complexity of good compilers,
the xodifications reguired bty the CONSIRUCTOR shounld have a
negligible effect on the size and speed of the compiler.
The descrirtion of +the CONSTRUCTOR's data structures and
algorithnms indiéate that only a small amount of code need be
‘added to the compiler, and that the data structures ACS, CDT
apd IPI will not te large.

Program instrumentation changes the subject program by
introducing ivars and icode. According to our assunmptions,
each precedure reguires 10 ivars (20 bytes) and 10 incregment
instructions (40 bytes). The over—all iacrease in space
requirerents for the entire progras is 6000 bytes
{ 60 bytes/procedure * 100 procedures). Instrupentation
routine DUMP corntains 100 call statements, Lut sipce it is
invoked only at the end of program execution, it can reuse
space cccupied by program procedures no longer reguired in
zain stcrage. DUMP does, however, increase the size of the
prograe's virtual mname space ty an amount proportiomal to
the pusber of bytes of olject code required to effect a pro-
cedure call {(to WRITECR) with three parareters. ¥We estimate
that 20 bytes are required per call; hence 2000 tytes are
reguired for DUMP. Thus the over-all increase in the pro-

gram's cbject code will ke around 8000 bytes.

77
2.5.4 Ipstrumented Object Code Speed

i

- Blthcugh the additional space requirements can be guanti-
fied, it is more difficult to characterize ttkte execution
slowdcwn experienced by the instrumented program. The slow-
deown is prcportional to the numter of execution-time addi-
tiops iptroduced by the instrumentation.

The reader may recall from the section on model construc-
tion that only significant control structures are instru-~
pented. Thus, the numrker of instrumentation additions is
propcrticnal to the pnumlter of procedure calls made. The
constant cf proportiomality is unity or less, as the follow-
ing analysis showus. Let us assume that the majority of the
procedure calls ¥ill occur from within loops, and that each
(sigonificant) loop contains at 1least one (uerconditional)
prccedure call. Now consider the two 1loops, < B > and
< A B >, both having repetition frequency n. For the first
locp, k£ calls apd n additions are made; for the second, 2n
calls ard n additions. The respective ratios of calls to
additicns are 1.0 and 0.5. We will use the higher figure of
ope additicn per procedure call, 1indeed ap extremely low,

and practically negligikle overhead.

78

¥e ncw chow that the space overhead for maintaining and
updating the required datatases is 15,000 to 20,000 bytes.
Only the coefficient database need be on-line during paraze-—
ter estimation; PDB updating and synthetic string generation
can be relegated to times of low demand for the syster.

The storage space regquired to hold the production parame-
ter descrifptor, coefficient and parameter databases is guite
smpall. The typical PPD record looks like

procoame(4]2{213|3

and reguires 13 bytes of storage. The CDB record looks like

precrame} 10jntjatin2]a2iciiljci2ici3jciitc22}c23 §,

vhich cccupies 30 bytes. {Record field definitions use the

sage syibcls used to dgscribe the PDB.)

The size of the PLE depends upon the amount of detail
maintained. Assume that the PDB record has the format given
in Figure 2.%1. <Then each record reqguires 38 bytes.

The C5G database can contain €ither the non-cospressed
(syrbolic)} o¢r compressed CSG productions. Assume that a
production comntains an average of seven procedure calls and
ten CS3G cperators. Then e€ach non-coupressed producticn

requires 7*¥8 + 10 = 66 tytes.

The tctal space reguirements for all these databases is
€600 {CSG) + 3000 (CDB) + 3800 (PDB) + 1300 (FDDB), or 14700
bytes. A more sophisticated PDB can increase this space
reguirerzent, as well as the time reguired to perforsz parame-

ter estipaticao.

79

2.5.6 Stripg Genmeratiop Costs

The speed of the GENERATOR depends upon the CSG, the lan-
guage in which the GENERATOR is written, and tke efficiency
of the GENERATOR code. The prost important GENEEATOR per-
forpance index is thke rate of synthetic string production,
which sbould be several orders of magnitude faster than that

‘of executicn tracing.

' The GENERATOR used in the research was implemented as a

PL/C prcgram running on an IBM 3081 {or 370,158) under the
MVS operating systém, and sas in no vise optimized for speed
of geperaticn., Generation speed ranged from 750 to 3000
references per CPU second, depending upon the complexity of
the CSG¢ fproductions. {Selection constructs slow down the
generation process more tharn do loops.) The performance of
the GENEEATCR can easily le ieproved ty an order of magni-
tude arcd, indeed, should ke were the GENERATOR to be imple-~-
pented as a production progras. The inefficiency of the
PL/C GENEEBATOE notwithstanding, it seems clear that syn-
thetic strings can be generated at an acceptable rate and

cost tc justify use of the model.

As a fipal word, we should note that the ease and conven-
ience ¢f using the model, from the standpoint of the program
developer, is more than adegquate compemnsation for any gener-

ation inefficiencies.

80
2.6 VARIANTS OF TIHE BASIC MODEL

In this section we relax some of the assumptions and
restricticos of the PAM mpodel. ¥e Legin by showing how to
model data—sensitive programs. Next, we sixgplify the CSG
syntax to a ncreal fora. Ee€fore proceeding, we need to give
a nape tc the version of PAM we have been discussing up to
now. We call it the generative PAM, or GPANM, since it

invclves synthetic string generation.

PAM is actually a family of models. In this section we
start with the GPAM and move in twvo directions —-- generali-
zation, to remcve the requirement of the call-path indepen—
dence assunpption -- and simplification, to reduce the cog-
plexity apd size of the CS6. PAM attempts to capture two
aspects of frogram structures static control-struc{ure
nestirg ard dynamic procedure-call nesting. Model variants
differ in the extent to which they capture these aspects of
Frcgrae structure. Each model version can be thought of as
being either generatiﬁe (vben used to produce synthetic
strings) cor descriptive (when used to describe or character-

ize cbserved program executions).

2.6.1 A Ncrmal-Form CSG

GPAM attempts to reproduce procedure level referencing

behavicr in terms of sequencipng and distribution of calls.

Seguercing is ccntrolled ty the grammar operators -— loops,
alternatico and lranching —— and ty the synthetic string
generator. By distribution of calls, w#e mean the relative

freguerscies of calls to potential targets. The distribution
of calls is governed at the level of the individual proce-
dure by the procedﬁre's parameters. If situations exist in
shich the distribution of calls is more iaportant than their
sequence, a sismpler form of PAN CSG productions is possible.
¥e say that a production of the form

X = < (x1) 22 | +ne | xn) 2; » Where

81
xi is either a call or a return (!), is in distritution-nor-
mal fcrm (DNF). This form of production gharantees (in a
statistical semse) to preserve the distribution of procedure
calls to the possible call targets, provided that the
GENEEATCR uses a random numker generator that produces true
uniforx randopr deviates. The DNF CSG for program E1l1 is
.shown in Figure 2.12,

A=< (BJIC|DILE) >;
B=< (! | C|I D) >;:
C=<{!'!}JLC)] E} >;
b =<E > ;
E= 3

Figure 2.12

DNF Call-5Sequence Grammar for Program P1

We briefly compare ONF-FAM and GFAM. The ONF grawmar is
compact because of the simpler productions. The required
CONSTRUCTCR algorithz and data structures are simpler since
no analysis of the structure of the subject program is
required. Instrumentation is simpler: ivars sigply count
the pnurber of times one procedure calls another, completely
disregarding the control-structure context of the calls.
The nugber of ivars is egual to the numker of different pro-
cedures called (plus one if the procedure contains multirple
exit pcints); the amount of icode is proportional to the
pugber of call statements in the procedure.

DNF-PAM characterizes a program's execution at the level
of inter-procedural references, as opposed to the intra-pro-
cedural characterization GpAM produces. DNF-PAM is the sim~
plest version of PAM, and it used in this research primarily

as a generative model.

B2

Frce a 1rIestructuring standpoint, DNF parameters are
eguivalent to the Nearness matrix. DNF paramters measure
pair-wise call fregquencies, from which can be derived the
pairwise adjacency frequencies that constitute the entries
in the Nearness matrizx. That is, for very low ianstrumenta-
tion overhead, enough information is obtained to achieve
very acceptable performance gains froam program restructur-

ing.

2.6.2 Relaxing the Call-Path Independence Assumption

Consider the following CSG.

It

A EC;
= D;
b;
= D;
(X 1Y |2);

H

B T - I -
]

Suppose'that D always calls I, Y or Z, accordingly as D is
called by 2, B or C, respectively. Then, since D's behavior
depends upon its caller, D violates the independence of call
path assupgtion. The variation of D's behavior according to
its caller requires an examination of some data, either one
of its parametets, or some glotal variable. Such a proce-

dure is said to be data-sensitive.

Preccedure D can still ke wmodeled Ly creating aliases DA,

DB and IC, whose CSG productions are
ba = X; DB = ¥; and DC = Z; .

Productions for A, B and C kecome

A = DA; B DB; and € = DC; .

83
Wwe now fresent a general aliasing technique that introduces

Do unnecessary aliases.

1.,Deterning non—aliasakle productions, those that do
not contain any significant control structures.
{bcn~aliasable productions do not require any parame-
ters.) '

2. Assign serial number unity to each aliasable produc-

tico.

3. Copy each production. For each nonterminal on the
right-hand side whose production is aliasakle, append
t¢ the nontersinal the serial npumber of its corre-
sponding production, and increment the serial number

by cne.

4. Write new productions for each aliased production
according to step 3. When there are no mpore unex-

fanded productions, stop.

The impcrtance of this transformation is that it allows
modeling c¢f programs that contain data-sensitive godules.
Aliasipg has two side effects: an increase in the number of
rroducticons; and an increase in the amount of work done by
the CCXNSTEUCTOR. Since each alias requires its own set of
execution coefficieﬁts, the compiler must allocate and prop=-
erly reference a stack of instrumentation variatles for each
aliased rrocedure. During execution of the instrumented
Frcgram, calls to aliased procedures must include a parame-
ter valuve fcr properly indexing the ivar stack. The va lue
of this index must be determined during instrumentation. It
should be clear that aliasing increases instrumentation com-
plexity. Fortunately, however, it is protatly the case that
the aliasing transform would te applied rarely.

84

Aliasing provides a way of injecting global <call-path
context infcrmation into the model. {Non-aliased produc-
tions contain mo information atout +the static chain of pro-
cedure calls by vhich entry is made into the corresponding
procedure. The only information provided is the return point
for any calls made by that procedure.} The serial number
.assigred toc an aliased procedure encodes the call path to
the procedure fromr the start of the program. Applying the
aliasing transform to GPAM produces aliased GFAM, or AGPRM,

AGPAM comtains the maximum amount of call context and con-
trol-structure context information possible in a context-
free call-sequence grammar used by the PAM family. When
aliasing is applied to every production in a DNF CSG, the
resulting model version is called the descriptive PaN, or
DPAH.

2.6.3 The Descriptive PAM

Procedure-level program execution is captured im the
sequence of active procedure call chains. The descriptive

PAM (DP2AN) defines program state to be a procedure call
chain, and a state-transition to be a procedure call or

retuxrn.

A static representétion of an arktitrary program P is the
DPAM state-diagranm, denoted DPAM(P). Figure 2.13 shois
DEAN(E1), the state-diagram for sample prograre P1 of Figure

2.1, The state-diagram is an undirected tree, which we
terz a call tree. Each node of the tree corresponds to a
DPAM state (i.e., a call chain). Nodes are identified by
unrigue integers assigned according to a preorder traversal
cf. the tree. For example, in DPAM(P1), state 7 represents
call chain [3,B,IL]. State 7 kas lakel "b%", the most-re-

cently activated procedure in call chain [A,B,D]J.

85

114
N SO
[i]
2 B 10 € 14 D 16 E
S —_t ‘
[! 1 17 1
3C 70D 9 E11D 13 E 15 E
. i
I 1 |
4 D 6 E 8 E 12 E
I
5z

Figure Z.13

DPAM State-Diagrar for Program P1

Given prccedure reference string w=w[1Jw{2]...¥{K], there

is a corresponding DPAN state-sequence string
z=2z[1]2{ 2]..-2[K}, where symbol w[i] causes a DFAM state
transition into state z{i]. (The DPAM 1initial state is

z[0}=0.) The program execution, w, can te described (char-
acterized) in terms of DPAN(P). We now list several charac-
terizations.

(1) cfreg(s) = the nurter of times state s .1is entered

via a call transition.

{2) tctfreg(s) = the total number of times state s is

{3) tctdur{s) = the total number of state +tramsitions

{references) made to states tbelonging to tke
subtree of CPAM (P} having state s as the root.

86

(4) avgdur(s) = the average nusber of state tramsitions
gade betueen sulksequent entries and exits from
the subtree of DPAM{P) baving state s as the
root. (avgdur (s)=totdur (s)/cfreg(s))

We call these characterizations execution profiles, which

.are apalogous to GPAR execution coefficients. Figure 2.14
contains values for these profiles derived from reference
string "AECECEDECEDFIDBCFCBCECBEBAEAEA®" of length 29.

totfreq totdur avgdur
29 29

stat

i
10
I
o]
Ity
IH
Im
K

LS
&
o
=

DN WO @wVNE WA -
@mummunmmummunmw
OO OO O wb i) et LI i as et
NOOCOOOGuW il e
NOOOOOQ wl It ow
wh SOOI b b w2 O

—h sl b g

Figure 2.14
Sample DPAM Execution Profiles

Ne Dncw propose vays in which the profiles just introduced
can be used in program restructuring, to suggest one or

more areas for further investigation.

(1) DPAM(P) with ©node weights cfreq provides enough
restructuring information to duplicate the Nearness

methed.

{2) fFrefiles totdur and avgdur measure locality since

they capture the reference density to a subset of
frccedures during an interval of program execution.

87
It should be noted that CLPAM and many of its profiles are
directly derivable from GPAM C56 and parameters. Develor-
leht of restructuring algorithms tased on DPAM is suggested
as a tcpic for further research.

AM Variants

2.6.4 A Ccprarison of the

Table 2.1 summparizes +the different versions of the PAM
egodel. A level-i model version {i=1,2,3) is derivable from
level-j versions (j>i). LNF-PAM is the simplest, =modeling
only the local call-context information isplicit in the
"calls" relation tetveen procedures. AGPAM, whichk models
global call-context and local control-structure inforamation,

is the most general.

1 Level Version Context Information Represented
: 4 AGP AN glokal call and local contreol !
- Structure. |
3 GPAN ’ local call and control structure.
2 DPAM globtal call.
1 DNF-PAM local call. i
Tatle _2.1

The Procedure~Activation Model Family

The nature of the PAM family is perhaps most clearly evi-
dent frcew LFAM, where the notion of model states and state-
transiticr fprobabilities are explicit. <This tasic structure
is comgcn to all model versions, as is the capacity to gen-
erate (cr recognize) a sequence of properly formed frocedure

references.

PAM differs from many stochastic prograr models primarily
in the definition of program state. The PANM variants differ
from each cther in the way the state-transition probabili-

88
ties are derived. For DNF-PAMM and DPAM, they are based on
direct measurements of inter-procedural referencing. For
GPAX apd AGEAM, the deterzination of these probabilities has
both a static and a dynaeic cogponent. The static component
consists of the model parameters -- statistics fcr loops,
and prchbabilities for selection constructs. During syn-
thetic string generation, the choice of the next reference
to generate is based upon a dynamically-determined rrobabil-
ity, whose value is some complex function of program struc-

ture ard mcdel parameters.

89
2.7 SUMEARY

In this chapter, we have defined the elénents of the Pro-
cedure~Activation modeling system. ¥e have shosn that mod-
eling can te automated, and that the model lends itself to
varicus cheices of CSG gresemar fora, parameter estimation
_techpigques, and generation eﬁvironnents. The cost of Eodel
construction and parameter estimation vwere shown to be low.

¥e have shown that PAM is a family of models, bhaving in
cosmon a constrained {by internal control-structures or call
chain cr both) probabilistic view of the program execution
phenorencn. In this research, the primary ianvestigations
treat only GPFAM and CLCNF-PAN, Although DPAM will not be
investigated thoroughly in this research, it shows promise
of yielding insighkts into program locality, and of forring
the basis cf new restructuring algorithms,

Chapter 3

BESTRUCTURABILITY OF THE SUBJECT PEOGEANMS

This research is divided into four major studies.

{1) BRestructurability. For e€ach subject program, ve
deterrine the extent to which program restructuring can

reduce execution-time memory cost.

{2) Elenmeptary modelinge. These approaches to modeling

are attempted: the simples model version, DNF-PAN; and the
more gereral model version, GPAM, for which point estimates
for model rarameters are used.

(3) Parapeter estimpation. The execution-sazpling phase
of modeling is studied statistically: the effect of randonm
sarple size upon model accuracy, and the underlying distri-
bution cf model (loop) parameters.

(4) R2dvapced podeling. More modeling effort is expended
to achieve ketter accuracy: point estimates oi loop parame-
ters are replaced by interval estimates; model version

DNF-FA¥ is replaced by GPAM.

This charter presents the design and findings of the

restructurability study. Eflementary modeling is the subject

91
of Charter 4; the parameter estimation studies and advanced
modeling results are presented in Chapter 5. ke begin this
‘chapter with a review of the relevant issues of a posteriori
prograxk restructuring using actual program traces, and
define the method of comparing layouts. Hext we describe
the subject programs, noting in particular their static pro-
gram structure -- nesting of procedure calls and control-
structure ccnstructs. Finally, we describe and present
results frcm the restructurability study: the feasibility of
applying restructuring to sukject programs is determined;
and the rarapeters of the restructuring process are assigned

values for use in subsequént experiments.

3.1 A POSTERICRI PROGRAM RESTRUCTURING ISSUES

In thic research we do mnot study restructuring for its
own sake, but as the tool ky which PAYE will be validated.
To avcid making btad choices in applying the restructuring
procedure, vwe decided to deal systematically witlk the vari-
ables ¢f£ restructuring to determine values of +these vari-
ables that least olkscure the benefits derivable from using
PAM. ¥e now exapine the parameters of the restraocturing
process, with the primary concern for avoiding values that

consistently yield poor restructuring gains.

92

3.1.1 Overview of the Restructuring Process

Figure 3.1 illustrates the steps in the program restruc-
turiog frocess, and the input variables for each step. The
prograz characterization phase involves execution sagpling
and the rerresentation of the collected trace data, usually
in the ferm of a set R of reference strings. The set ¥,
‘restructuring algorithm A2 and control variable € (the pair
is depoted A(8)), are inputs to the restructuring phase,
during which the restructuring matrix € is constructed.
Matrix C contains module-module affinity weights that sug-
gest clusters. The <clustering phase takes the affinity
weights and =module sizes, and Luilds clusters, subject to
the paqe size (f) constraint., The extent to which tte clus-
tering suggestions contained in C can be carried out depends
upon f and the module sizes. The resulting layout is
denoted L{¥,A{®),p), which identifies the parameters of the

" restructuring process.

93

f_-- E;;grgm .
Charactérization
! Fhase

—— e e e e ol S

A ————- 1 [““‘ 8
|
Restructuring
{* Phgse _}

C
t Module

-~ Sizes
L

Clustering }
Fhase
_________ pm—————————

f

L{x,A(8)},p)

Figure 3.1
Schematic of the Restructuring Process

The fcllcwing sections discuss, for each phase in the
restructuring process, options for implementing that phase,
the effect of choices at one phase on subseguent phases, and
the raticnale fcr some of tie choices we made.

9y
3.1.2 The Progranm

3.1.2.1 Choosing the executions to sample

One of the first steps in the standard a posteriori pro-
gram testructuring‘process is to decide which executions of
the subject program to use as inputs to the restructuaring
'phase; In order to achieve the greatest benefit from
restructuring for the majority of the runs of the progras,
these executions should lte representative of the Maverage"
or tyrical behavior of the progranm. Fortunately, empirical
studies [HATF71,FERR7€a] have demonstrated that programs
tend tc be guite insensitive to their input data. This
result surpcrts the common practice of carefully choosing a
- small number of executions (sometimes just one), taking into
account the function and structure of the program, and typi-

cal ipput values.

3.1.2.2 Reference string representation

The reference string captures information alkout the
sequence and, possibly, times of program references. When
restructuring makes use of the LRU replacement algorithnm,
which is driven by seguence alone, Ieference times are not
required. Time information must, however, be provided for
restructuring based on the WS replacement algorithm. Direct
peasurezent of reference times can require significant over-
head, since calls to the operating system clock routines are
required. Furthermore, or multiprogrammed systems not pro-
viding each ccrncurrent process with its own virtual clock,
coptrcliing measurement errors is difficult because of the
sharing of the system clock. For these reasons, nost stud-

ies rescrt to estimating reference times,

¥e now examine a widely-used estimation technique, which
we terxs the counting method. Given procedure reference
string v=wil,v2,...,%wK, let the tines of each of the K refer-

95
ences ke given by the time string 1I=ti,t2,...,tkK. When the
counting method is used for machine-level tracing, the time
of the k+1'st reference is given by t{k+1]=t[k}+Ni*}, where
Ni is the number of machine instructions separating w[k] and
w[k+1], apnd 2 is the average instruction execution time.
This method is based wupon the assumption (which is quite

- reasopable at the level of machine-instruction execution)

that the time interval Letween the executions of successive

instructicns is a constant.

We have used a similar method, based upon the following

assuzptions.

{1) the cost of a call linkage is one time unit, charge-
able to the caller.

(2) the cost of a return linkage is one time unit, charge-
able tc the returner. ,

(3) the cost of executing the non-call portion of the body

cf a rrocedure is zero.

These assumptions lead to the simple time string
T=0,1,24eee,Kk~1. Notice that this is actually a counting
methcd based on the assumption of a constant rate of linkage
events. Under these assumptions, the execution time charge-
able tc a procedure is one plus the number of calls it

Rakes. An example of the time string computed for a short
refererce string is shown in Figure 3.2, where “$" repre-
sepnpts the crerating system jor initiator routine. A call
linkage has type ®wC", a return type "R",

96

kel STURI SUVEYR TRESMUSY S Su—"—
Beference: | A J] E}C B Al D} ajj D} |
e e e T e B O et s |
Tyre: fc 1 cjJC|R]JERJC}R|CI]RY
e e B e e R B O 4
Charged to: 1_5] 2 i_B fCj| BjJ Al DI A| D]
. ——ma e — e — pr—— fm e fmmmf e —
Tige: 10] 1] 2 i 31 4} 51 6} 7| 8B
S i + ——— e o f———

Figure 3.2

Estimation of BReference Times

Batson and Brundage [BATS77a] studied the distribution of
the r@ean inter—proéedural reference times for Algol pro-
grass. They found the mean to te 2-30 times the pedian,
with ccefficient of variation tetween 2 and 10. Their find-
ings suggest that (1) the median interval Leticen most link-
ages is ruch shorter than the mean, and {2) most of the
variacility 'in.times (high coefficent of variation) is
caused by the small percentage of very 1long intervals
between linkages, contrasted against a very large percent-
age cf shert intervals. Re are satisfied that the assump-
tion of {nearly) constant time Lbetween linkages holds for
the &major pcrtion of the prograr's execution-time refer-

€nCes.

Under the time-dependent replacement algorithm %S, the
working set will ke overestimated, for a given window size,
during one of the few 1long intervals tetween linkages,
resulting in an underestimation of thke number of faults for
that window. Eut this situvation will rarely occur, since
long intervals are few. Underestimation of the working set
for very short jintervals can occur in like manner, tut since
the variability is low {(when long intervals are excluded)

the axcunt cf estimation error is small.

Despite the possibility of errors in estimating the work-
ing set, we did not feel that such errors will invalidate RS

restructuring results, for the following reasons. First,

97
and perhaps most iaportant, is the fact that this study is
really a simulation study in which we felt that seguence was

" the most important program property to model. Second, if
indeed a synthetic string reproduces the reference segquence
of a subject trace string, when it is used in restructuring,

it will produce the same systematic error as was produced by
restructuring using the sulject trace string. That is, the
two strings being compared loth have roughly the sarxe amcunt
of geasurement error, and the differences in Lehavior cannot
be attributed to that systematic aseasurement error.

3.1.3 The Bestructuring Phase

The restruocturing phase takes as input a set
= f{wi,¥2,.2.,¥WH} Of reference strings. One restructuring
patrix, Ck, is constructed per string wk irn B, and the col-
lective restructuring information emkodied in set ® is cap-
tured in the matrix C=C1+C2+...4CH. Becall that C[i,]] is
the nuzber of faults that would ke eliminated should rodules
i and j cccupy the same page. Stated another way, C[i,j]}
measures the competition letween i and j for membership in
the resgident set under replacement algorithm A(8). Conpeti-
tion, hence memory cost, is reduced when modules i and j are

stored in the same page.

Matrix C spggests a clustering of modunles Lkased on mutual
corpetiticn for residency under A({®). For C[1i,37]»0, modules

1 and § belong to the same natural cluster. Ary module k
having affinity for a module tLkelonging to a natural cluster
is itself a menbter of that same natural cluster. Natural

clusters are of unconstrained size, and are usually too
larqgqe to ke stored entirely in one page. We term the 1-m
pair kaving the largest weight C[1l,m] the critical pair.

The natural cluster containing the critical pair is teroed

L e O e e

g8

Cutput from the restructuring phase is a 1list cf module
pairs and affinity weights, in decreasing order of affinity
weights. The list suggests aodule pairings difectly, and
natural clusters indirectly. Consider the 1list of weighted
affipity pairs shown in Figure 3.3. Critical pair (1,3).
havihg affinity weight 29, suggests the natural cluster
<1,3,8>, which is critical because it contains the critical
pair (1.,3). The function of the restructuring phase, then,
is to make clustering suggestions to the clustering phase;
it is up to the clustering phase to carry out the sugges-

tions.

. . . Katural
Weight i 3 Cluster
L e e e et T e T

1 29§ 1131 2a |

T e S e
i 14 §J 2§ 4§ B |
————— ———t + +
i 14 | £ 6} C i
e e e e $
i 12 § 1] 8} A l

----- T e e

§ 5 1€} 7] C 1

s o i s e o e o e o

Figure 3.3

Fxasrle of Output from the Restructuring Phase

The phase-transition view of prograe Ltehavior suggests an
interesting interpretation of the i-3j affinities. Three

types cf confetition occur.

a) Intra-phase —- toth i an¢ j Lelong toc the same phase

cf execution.

k) Inter-phase —- i and § lelong to different phases.
Corpetition is otserved during transitions between

Fhases.

93
¢) Intra-trapsition -— both i and 3§ bkelong to a tran-
siticn between the same two phases, but not to either

fhase.

The restructuring phase has as its primary goal the defini-
tion of patural clusters that correspond to intra-phase coz-
petitico. That is, intra-phase affinities should be greater
‘than the cther types of affinities.

" 3.1.3.1 Choeice of algorithm

From the outset, we intended not to introduce any new
restructaring methods, kut to concentrate on finding sources
of reference strings other than execution traces. (Critical-
set prcegran tailoring methods of Ferrari were chosen because
they have been shown to perform well [FERR76a]}, and are sim-
ple and relatively inexpensive to use. LRU and WS were cho-
sen to be the upderlying replacement algorithms because they
are the mcst widely used algorithms for fixed and variable

allocation policies, respectively.

The cbvious gquestion is whether the choice of algorithn
affects restructuring effectiveness? The many papers writ-
ten or the subject give evidence that the cloice of
algorithm is important. In the restructurability study,
however, we are concerned only with showing that both the
CWS ard CLBU restructuring algorithss are affected in the
same way ty changes in the other parameters of the restruc-

turing prccess.

100

3.1.3.2 Checice of control parameter

- What should the restructuring window, € (the ¥S window
size or the LRU allocation), ke to achieve good results from
restructuring? Can some values of € lead to poor clustering
suggestions? As far as we have teen atle to determine frosm
the literature, there is no widely accepted set of control
parameter values used for restructuring. ¥e now present a

few guidelines.

Care must be taken in choosing ®. Bad choices do exist.
Consider the reference pattern "AEAEAEAB...ABM", where "AB"
is repeated k times. CLRU restructuring with 6=1 deternines
A-B affinity to be 2k. ¥hen ©=2, the affinity is 1. If
prograc execution is dominated by this cycle, 6=1 is the
optigal setting. So we see that referencing'patterns, typi-
cally cyclic patterns produced try looping, have a bearimg on
the rrcper choice of 8. Having & too large "svallows up"

the dozipant rhase.

¥hat is too large a value of 8? The vindovw € is a func-
tion of the nusker of modules referenced during a phase, and
the pmearn time t Letween successive references to modules.
¥hen t > €, there will ke turnover in (hence, competition
for) resident set mermtership throughout the phase. The
value t is related to the <cyclic reference patterns gener-

ated by the fprogram.

A methcd for selecting the restructuring window € is to
compute the memory cost curve {s versus r), assuping each
module cccupies exactly one page. The r value for which
the ccst drops dramatically identities the average number
of mcdules residemt during the dominant phase. Since the
domipant ghase should not ke "swallowed up" ty too large a
restructuring window, 6 should not Ie set muchk larger than
this r value. Such a € will ke sufficiently small to ensure
that corpetition for the resident set is indeed observed

101
during restructuring. Furthersore, improvements obtained
for small values of ® are preserved in operating environ-
ments whose ccntrol parameters exceed 8 [FERR76a].

- e e -

The clustering suggestions received from the restructar-
ing phase are used to construct page-sized clusters. The
extent to which the suggestions can ke followed depends upon
the rage size constraint. As the page size becomes smaller,
relative to the average module size, more and more informa-
-tion ccntained in clustering suggestions is discarded.
large patural clusters must ke broken into ssmaller clusters

in crder to satisfy the page size constraint.

3.1.4.1 Estipating module sizes

Knowledge of module sizes is required to perform restruc-
turing. Since, in this study, the restructuring experiments
are basically simulations, the numter of source language
statepgents in a procedure was used to approximate the size

of eachk rrocedure module.

3.1.4.2 Page size

Program restructuring sorks test when, on the average, at
least three modules are packed to a page [HATF71]. Since
this research is a simulation study -- the executicn of the

restructured program on a paged virtual memory conputer is

sisulated —- we are free to choose page size to be at least
three times the average module size m. Since the modules
correspond tc procedures from structured preograas, it is

reasonable to assume further that no module is larger than
the fage size. ihe minimum page size p 1is tﬁerefore chosen
to be pgax(3*n,H), where M is the size of the largest module.
Given the restructuring matrix €, «clustering is perforwed

for page =sizes p, 1.5p and 2p.

102

The natural clusters suggested Lty the restructuring phase
should be stored in a single page in order to realize the
pmaximus benefit from restructuring. Hence, the optimal page
size iz a function of the program's static (module sizes)
and dynazic (locping) properties. The existence of critical
clusters exfplains why large page sizes are preferred. Fronm
a paging oyverhead perspective, optimum performance occurs

shen the minimum number of faults is generated, that is,

when the page size is the size of the program's name space.

Such a large page size is, of course, impractical. More-
over, a 1large matural cluster often reguires a page size
that is isrractically large. Smaller natural clusters are

formed when small 8 values are used during tke restructuring
phase, These =mall clusters are less likely to have to be
broken ur +to f£it small pages and, when the page size is

large, several may be stored in the same page.

3. 1. 4.3 Clustering algorithm

The clustering algoriths used im this research is essen~
tially the c¢ne descrited ty Ferrari [FERR73]. The first
phase c¢f clustering is based on pair-wise affipity weights
contairted in the restructuring matrix. The second phase is
a clean-up pass during which umclustered modules are
assigned to partially filled pages according to a first-fit
strategy, subject, of course, to the page size constraint.
The seccnd phase totally ignores the coanectivity of mod-
ules, apd is concerned mainly with reducing the pumber of

pages spanned by the layoaut.

Although this particular clustering procedure is guite
simple, it produces good layouts cheaply. More sophisti-
cated clustering metkods produce marginally tetter layouts,
but at a muck higher cost [FEBE76a].

103
3.2 1IAYGUT EERFCRMANCE EVALUATIION

3.2.1 gverview

The general Jlayout evaluation procedure is depicted in
Figure 3.4. The simulation of the replacement algoritha
A(8) cn the execution y, assuming layout L, produces somre

cost peasure, which we now define.

€
thz Evaluation
) S5tring

X

§

layout =
i T
--’———-——-4'.-"._————

t

€(L,2(6),Y)

Figure 3.3
Layout Evaluation Schematic

Definition: e(L,A(6),y) is the cost of exrecuting execution y

under replacement algorititm A{€), using layout L. Lay-
‘out L is said to be evaluated under A (8) against evalua-

-_———

ticr £tring y.

¥hen nc ambiguity as to the layout 1L and algorithm A can

occur, e{1,A(€),y) is uritten e(8).

A layout can also be evaluated against an prdered set of

strings, Y=[y1,¥2,.-+,Y%], termed an evalmation string set.

In this case, the replacement algorithm input string is
CONRCAT {Y)=yl+y2+...+yM, the concatenation of the members of
Y. As a further generalization, layout evaleation can be
extended over some arbitrary evaluation interval, C=[€i,€j].
We ters such an evaluation of layout L a [Q,Y}-evaluation.

104
E(L,3,C,y) is the extension of the cost function
er interval Q. E is given by
Gi*e(Bi)+... +6*e(8])

E(L,2Q,Y) = eis +85 -

This weighting scheme penalizes a 1large cost at high memory
allocations. In order to ensure a fair comparison cf two or
more layouts, @&ll evaluations must use identical & sagmple

points swithin the interval (.

Consider the following exauple, where the cost measure is
the nusber of faults, £, and the interval ¢={2,4 J].

Cost Extended Cost

layout f£{2) £(3) f{4) E[2,3]) E[2,4]
11 100 8¢ 20 BB 5E
L2 80 70 40 T4 59

Layout L1 experiences more faults than L2 at €=2 and &=3,
but its lower cost at e=4 (20 versus 40) reduces its cost
over {2,4] to below that of L2. Over [2,3], the cost of 11
is higher. So we see that the extended cost fumnction per-
forps a smcothing, so that poor performance at lov alloca-
tions can be comnpensated for ty good performance at higher

allocations.

Ferhaps the major issue in 1layout evaluation 1is the
choice of the evaluation interval Q. Using a narrow inter-
val can give either overly optimistic or overly pessimistic
results. Using a wide interval gives corservative results
since, given sufficient allocation of memory, 1layouts tend

to perferr about the same.

105

e B I - - — S —————

- Cost functions, which apply to executions, are also used
to measure the rerformance of a layout. In the cost func-
ticn e(L,A({6),y), holding y fixed while varying L from L1 to
12 measures the relative goodness of layouts L1 and L2.

3.2.2.1 Scalars

We use three cost functions to measure merory cost and

layout performance.

{1) t{L,A(®),y) is the mean resident sect size at a fixed

value of €.

(2) £(L,2(8),y) is the numter of page faults generated
for a fixed 6.))

(3) s(L,2(8),y) = c{lL,2{8),¥)*L(L,A(8),y) is the space-
faylt product, which is the space-time cost of han-
dling page faults, for a fixed €.

¥hen nc apbiguity can result, we refer to these fuanctions as

the scalar variables r, f and s, respectively.

3.2.2.2 Curves

Perfermance data are either presented graphically, in the
form of a curve of sope type, or they are presented in sum-
rary fcxm ag a scalar. Curves give a visual summary of the
effects of varying the values of varialtles under considera-
ticn, and often suggest places where further guantitative
analyses are needed. Scalars provide a guantitative measure

fcr cceparing performance.
¥e use three performance curves.

{1) The working set curve plots r versus 6, when the
rerlacesent algorithm is WS. This curve shows the

packing efficiency of layouts.

10¢

(2) The swarring curve plots f as a function of r. It

cehows the effect of memory allocation upon the num—-
ber of faults.

{3) The space-fault, or pmerory cost curve plots the
product r*f versus r. It shows the effect of memory

allocation upon merory cost,

3.2.3 Ccmraring Layouts

§e can ccampare the performance of 1layouts L%t and L2 by
coerparing e{L1,A(O),y) and e(L2,2(86),Y), for arbitrary cost
functicn e. If the values of € versus the appropriate inde-
pendent variable are plotted for both layouts on the sane
grarh, +the relative perforrkances of L1 and L2 can be secen.
Such curves summarize relative perforaance over a wide range

of values c¢f the independent varialkle.

At times cne is concerned with a quantification of rela-
tive performance. We use a single measure of comparison for
tvo layouts L1 and L2.

Defipition: R{Ls,L,E,A,Q,y) is the cost-reduction c¢f 1 over
ls under [Q,y}evaluation, with respect to cost function

€. R is given by

E(L,2,0,Y)
(1s,L,E, A 0Q,Y) E(Lss2,0,7) v

layout Ls is the comparison standard.

When no ambiguity can result, we write R{Ls,L). This
measure c¢f ccmparison has two uses: (1) compafing the close-
ness of two layouts, and (2) determining the superior, or
inferior, 1layout. We find it more convenient to express |
as a percentage. Negative values indicate performpance deg-
radaticn; rpositive values indicate improvement. From this

point ¢n, we will use the terms "ipprovement®", "degradation"”

and "clcseness" in comparing layouts.

107
Surpcse uwe have tyo layouts, Li=L{%1,R2{6), D) and
L2=L(u2,k(é),p), formed asing the Same restructuring
algorithmw and clustering page size. ¥e say that "wi1 pro-
duces layout L1 and "w2 produces L2" since tlte input
" strings, w! and w2, distinquish the two applications of the
restructuring process that producéd the layouts 11 and 12.
Comparing layouts L1 and L2 is tantamount to comparing the
restructuring effectiveness of the strings wi1 and w2; the
one thai leads to the tetter layout <can be thought of as
being tetter in terms of restructurability. ¥We will often
indirectly compare strings Ly comparing directly the layouts
they prcduce. That is, saying "strings w1 and w2 are within
10% of each other" means that the performances of layouts L1
and 12 are within 10% ot €ach other.

109

Type~2 rrograms provide benchmarks for GFAM &zodeling:

GPAM zust capture and reproduce the restructuring signature

of okserved executions of the subject prograsm. We expect

that the =signature is so distinctive that type-2 programs

can also Lbe modeled using DNF-PAM to produce good quality
layouts.

¥odeling type-3 programs using GPAM should prove to be
challerging. Ne expect thkis type of program to reguire
careful parameter representation and estimation.

Even if the program can not ke successfully modeled, GPAH
provides a usefunl vehicle for descrikting and characterizing
the sabject progras. Being alle to pfedict the extent to
which restructuring is viaktle is a useful <capability that

GPAM Eight fprovide.

3.3.2 Static Program Descriptions

— e — ——— T —

Three cf the four subject programs that were studied are
described in this chapter. {(The fourth one is studied sepa-~
rately in Chapter 6.) Sukiject programs were selected on the
bases cf availatility, size {in number of statements or pro-
cedures), fprogram structure {structured prograwmming style
was preferred), and programming language (PL/I). These cri-
teria sere necessary to facilitate modeling. Three of the
selected frograms were written by the author and used as a
part cf the mwmodeling and restructuring system used ip this
research. ¥o conscious attempt was gade to code these pro-
grass in a manner that would in any way bias the results of
this research. As a further guard against inadvertent bias,:
we chose as the fourth program one written for a use that is
totally unrelated to the requirements of this research.

Table 3.1 summarizes the collection of subiect prograrms.
Figures 3.5 3.7 give the procedure-level static structure
of the subject programs GENREF, RESTRUCT and CILUSTER. A

110
relatively lcng period during which a program perforzs a
distinct lcgical function is called a logical phase of exe~

cution, which corresponds coarsely to tie phase-tranmsition
behavior discussed in Chapter 1. For each subject prograsna,
logical phase boundaries were determined from a knowledge of
the over-all function of the program, and from amn examina-

tion of its source code.

The static procedure nesting 1level and sharing index
{ratic cf the number of call graph edges to the number of
nodes) reflect the inter-procedural complexity. Over-all
censtruct pnesting level, and specific construct mnesting lev-
els —— selection and loop constructs -- indicate the intra-
rrccedural control structure complexity. A procedure that
calls cther procedures is termed a caller procedure.

211 the subject programs have about the sampe static char-
acteristics. In 2all, the percentage of caller procedures is
30-40%. Ncne have very complex intra-procedural structure,
as evidenced by the low levels of construct nesting. All
appear to have the «call-graph structure one vould expect
when structured programming is used, in that procedures are
u1sed instead of deeply nested constructs.

Program GENREF perfores synthetic string generation,
given a FAM model instance for a subject program. There are
two large ({ipvolving more than e€ight procedures) logical
phases: (1) the model internalization pbase, during which
the parameterized call-sequence grammar is loaded and stored
internally; and (2) the string gemeration phase. These two
phases are essentially disjoint, the driver teirg the only
procedure ccmmon to both phases. The first phase consists
of twc smaller phases corresponding to CSG 1loadinc and CSG

paraceter lcading, respectively.

111

Subject Progranm

GENEEF RESTROCT CIUSTER
$Statements ’-;EE ——--630 590- I
#Procedures 32 21 26
#Caller procedures 14 7 - B I
#lcgical phases 2 3 3
Share—-index 1.4 1.3 1a1
Avg preccedure nesting level 2.6 1.7 2.5
Max rrocedure nesting level 4 3 4
#Lccgs 16 7 7. |
Avg leocr nesting level 0.3 0.6 0.3 1
Max loop nesting level 2 1 1
#Selecticn constructs 18 15 10
Avg selection nesting level 0.3 0.5 0.4
Max selection nesting level 2 2 2
#Constructs 34 22 17
Avg construct nesting level 1.0 Todi 0.5
Max ccnstruct nesting level 4 4 4

{
ITabklie 3.1

Static Characteristics of Subject Progranms

112

—— CUMPCSG ====COUTPUT
~—FINDLEY
| ~-CNTLESC =+--OUTPUT
—PINDLEY b--Zcrroop
-——,]-~LOGPEND
—- GENSTE ===]STRGEN =1 ——-FINLLEY
Z=——2-J T {--LPENTRY =4 -
t--QUTPUT
~—OUTPUT
¢~-FINDALT
--SEL_ALT =1
—-INITCSG t——FINDLEV
H
| ' —-GETSYNB
--GETSYNB
| ~~LOADNT =+-~INSFIND
——- L _wEwcamp
GENREF =+-{IOADCSG1=+
i Sttty —-DUPLICATE
l —-FIXJUNP
—-GETSYMB
L-~IOACEDN =+
--INSFIND
~-NEWCARD
--SETDUP ====GETSYMB
~GETSYMB
--FIND_IP
—{10apPRu]=4--1DCCND =+--GETSYNE
AR {
~—INSPARM
—-LDLGOP ====GETSYMB
{—*ﬁUHSTR
—- QUTPUTL
\—Eeus1zE

Figure 3.5
Call Tree for Subject Program GENREF

One distinctive feature of GENREF is its non-determinis-
tic behavior -— two executions of GENREF uéing the sane
inputs will produce two different outputs (and hence, dif-

113
ferent execution trace strings}. This is due to random sam-~
pling from GPAM parameter distributions during the genera-
.tion phase. On each execution of GENREF, the initial randoenm
number seeds are changed, which pakes this non-deteraminisa
possible. The procedure-level static structure of GENREF is
shown in Figure 3.5.

--CLEAEF
I-—SETCFLD
-BLDLBL =+
1--SETFFLD
~ (~=SETIFLD
—-FETFLD
[~-SETCFLD
-—BLDCLEL =+
_ ; —-SETFFLD
i L—-SETIFLD
}-—FETEATA ====READATA
{ —-POSFILE
RESTESCT= +=—FETINIT =%
Lt—-RFL
~—RMLUMP ====SETIFLD
——— ;~-FETDATA ====READATA
- sczﬁg] =
—=- L--UPLATE
-_— -~FETDATA ====READATA
- scaE] =
— L—-§ SUPDATE
—-SETFILE
L sermp
Figure 3.6

Call Tree for Sulbject Program RESTERUCT

- Prcgram RESTRUCT constricts a restructuring matrix C,
given as inputs a reference string and replacement algorithm
specification {i.e., the algorithm and a value of its con-
trol parareter). BRESTRUCT's longest phase (containing three

114
procedures) occurs during construction of the restructuring
matrix. The identity of the modules referenced within the
phase depends upon the replacement algorithe. Its other two
phases, both short-lived, occar during program initiation
and terripation. The only aspect of EKESTBRUCT's behavior
subject to change appreciatly across executions is the dura-
tion of the longest phase, which is proportional +to the
'iength cf the input string. Figure 3.6 shows the call
tree for BEESTERUCT. Botice that the height of the tree is
" less than GENEEF?s, which indicates that GENREF has a more
copplex (static) call structure.

The restructuring aatrix C produced by RESTRUCT is an
ipput tc pregram CLUSTER, which is essentially a list-pro-
cessing algorithe whose Lehavior is govermed by the number
of nop-zero elements im C. Its first phase occurs during
the loading of C; the second phase, the longest, occurs dur-
ing actual clustering; the third and last phase occurs dur-

ing the assignment of clusters to pages.

Lcgical rhases of execution can Le descrited in terms of
the call trees. A phase of execution includes all refer-
ences gade from the time of entry to a sukbtree, to the time
of the succeeding exit, provided that the time (or number of
references) btetween entry and exit is sufficiently long. 1In
Figures 3.5-&8Fignum(GALLIXDPANM)., modules whose execution
leads to rhases are surrounded ty Loxes. The subtrees
defined by these modules contain the modules referenced dur-
ing these phases; the frequency with which they are refer-
enced, and the over-all ilength of the phase, depend upon the

static frcgram structure.

Observe that phases for GENREF cam involve a larger nunm-
ber of different modules than RESIRUCT or C1OSTEER. Since
Fhases regresent periods of locality of reference, modules
referenced during the same phase should, if at all possible,
be stored in the same page. The restructuring process ulti-

115

mately decides which of these modules will occupy the sanme

page.

CLUSTER

~~CLEANDP
|--CONSTCL
--TLUMPCL
--LUMPEL
-~ FETIFLD

i__CLUSTR

|
].

T*-INITCD

- o

—=~} HERGE

--PRNTMAP

-=SETCELD

1—-SETIFLD

t--{Lcapce]=4

; S

figure

iP-SEIPIRS

I—-FETIELD

l—*BEBDRHT

3.1

--DUMPEL
+-—INSERT
--BEMOVE
——DUMPMAF
=+—-PAGENUN
L—-SETIFLD
L]
T-—FETDATA ====READATA
i +——-POSFILE
--FETINIT =+
L-~RFD
--SETFILE
-—SETNAP

Call Tree for Subject Program CLUSTER

116

3.3.3 The Testked of Fxecution Traces

For each squect program, & testbed of up to twenty exe~
‘cution traces was collected. The testbed is used to deter-
mine the intrinsic referencing characteristics of the sub-
ject prcgram, based on observed executions. It is also used
to validate the synthetic strings generated from the FEAN
model. Each execution trace is associated with the input
data the subject prograe ran against to produce tke trace,
The lengths of the execution traces ranged from 500 to
50,000 prccedure references, with a median length of around
5,000. Execution traces are referred to by subject program
page (GENREF, RESTIRUCT or CLUSTER) and testbed index (e.g.,
TB-3, TE-11F).

Table 3.2 gives the names of the testbed string sets
used in the restructuratility experiment. As seen in the
table, sipgle strings from the testied are named using lower
case "y", €.g., Y€ Sets of pultiple strings (€.g., Y1 and
Y2) are actually ordered sets of strings. For instanpce, Y1
represents the string formed by the concatenation
(TE-2) + (TE-3} +{(TB-5), in the case of sutject program GENREF.
The set TBED contains all the strings in the testhed.

Testled Irace String Sets

Subject — ———————-——m—m—e e
Frcgranm Y€ 1 Y2

GENREF TB-6 TB-2¢3+45 TB-3A+4+b j
FESTRULCT TB- 4 TB-2+4+5 IB-0+143]
CLUSTER 8- 12 IB-2+3+5 TBE-1+4+6

Takle 3.2

Trace String Testtked

117
3.4 THE BRESTRUCTURABILITY EXPEEIMERT

In this phase of the research, we wvanted to verify
whether progras restructuring does indeed work for the sub-
ject ptcgrams used in this=s research, and whether the same
relative performance isprovements are achieved from restruc-
‘turing regardless of the restructuring algoriths. In order
to reduce the volume of data generated bty the succeeding
experizents, ve selected values of the restructuriang
" algorithe A, ccntrol variakle 6 and page size p for which
restrocturing yields consistent performance improveaents
when arrlied to execution trace strings. Ve also'wanted to
investigate the robustmess of restructuring as a function of
the set of evaluation strings. Finally, we wanted to see
the extent to which performance improvements differ when the
trace stripg used as input to the restructuring process is

changed.

The variables._ or parameters, of the restructuring pro-
" cess are the restructuring algorithm A, its control parame-
ter €6, and the clustering page size p. ' The values of these
variables used in this ezxperiment are presented in Table
3.3.

118

Restructuering Variable
Page size

Subject . -—2- -
Programs Algorithm Theta (8) p1 p2 p3 ‘

GEREEF CLRU 1,2,3,4 80 120 160
' CWS 1,3,5,7]
REETRUCT CLRU 1,243 60 90 120 |
CHS 1,3,5 1
CLUSIER CLRU 1,2,3,4 72 108 145 |
CiS 1,3.5,7 1
i

Table 3.!

Variables of the Restructuring Experiment

3.4.1 Purpcse of the Experjiment

In crder to deternine the extent to which restructuring
could be expected to improve the performance of the subject
pProgracs, we performed restructuring using actual trace
strings. The purpose of the experiment was four-fold.

{1) Tc demcnstrate that the choice of layout does indeed
affect the performance of the subject prograns.

{2} To dJdemonstrate the feasikility of applying progranm
restructuring to the subject programs.

{(3) Tc select values of the restructuring variables, A, €

and g, for vuse in the remainder of the research.

(4) To determine how sensitive the amount of igprovement is
tc the choice of trace string used as input to the
restructuring process, and to determine the extent to
which the agount of imﬁrovement is preserved across

different executions.

119

e e s e

~In this section we display and interpret performance
‘curves that exbibit the distinctive referencing kebavior of
each subject progras. Further, we decide upon a region of
mesory aliccation over which a significant reduction in men-
ory cost is cbserved. This will te the evaluation interval
over shich performance <comparisons ¥ill be amade, The
intrinsic characterizations presented describe a carefully
chosen set of execution traces. (Using other executions
leads to the same general results as those shown.)

Intrinsic locality properties, such as paging activity,
mepory ccst and memory demand, can be determined by sirpulat-
ing a fpage replacerent algorithe on a symbolic reference
string, assunming a one-to—one mapping of modules into pages.
The norxalired cost curves in Figures 3.8 and 3.10 plot
semory cost (relative to the zaxieum observed cost) versus
working set size. . The vorking set curves in Figures 3.9
and 3.11 show the comparative growth rate of working set
sizes for the subject prograss.

The dinptrimsic behavior of the single execution ye is
shcwro in the curves in Fiqures 3.8 and 3.9. ZThe execution
ye for subject programs GENREF, BESIRUCT and CLUSTER has
respective lengths 27K, 7K and 14K references. ERESTRUCT and
CLUSTEE tecth have phases that are shorter than those of
GENREF. A further similarity is that they «cycle through
their entire. code body, once for each value in the input
Streat. GENREF reenters only its dominant (the generation)
phase. The effect of cycling through the program body is
that the wcrking set grows with the &S window, as the window
spans kcre than one moderate 1length phase. For progragzs
whcse dorinant phase is longer than the maxiwmuw window {such

as GENREF), the growth is much slower.

120

o GENREF ']
+ RESTRUCT H
x CLUSTER ;
S [
]
o i
> l
on
o
i
e
m
— o]
> - i
—
| o I =2
< O
i m
ey]
o
147}
— o™]
0]
(4]
° l
|]
had i [| | 1 i
0 5.00 10.0 15.0 20.0 25.0
AVG WORKING SET SIZE |

Figqure 3.8
Intrinsic. ye Cost Curves

In the normalized mnemory cost curves of Figure 3.8 we
see a rapid drop in memory cost when the average working set
size agprcaches a certain value: GENREF near 6, EKESTRUCT
pear 2 and CLUSTER near 4, suggesting that the dominant
rhases require 6, 2 and 4§ modules, respectively. From our
discussion in section 3.1.3, it would appear that using
restructuring windows 6=5, €=1 and 6=3 should yield good
CWS restructuring results for GENREF, EBESTRUCT and CLOSTEER,

respectively.

121

O GENREF
+ RESTRUCT
X CLUSTER

3ZIS SM 9AY

e ' , i | i
0. 50.0 100. 150. 200. |

WINDOW T x10?

Figure 3.9
Intrinsic ye Working Set Curves

The intrinsic behavior of an ordered set {Y1} of three
execution traces sas deterzined. 1The set Y! for the subiject
prograks were shorter than the ye executioans, rangiog inm
length from 4.4K to 13K references. The executions were
carefully chcsen to represent a diversity of subject progran
input types. Y1 represents three ltack-to-back executions of
the subject program. That is, ¥1 cycles through the entire
prograr ccde three times. For programs suchk as EESTRUCT and
CLUSTEER, the behavior of Y1 1is not sigpnificantly different
froz that of ye; for GINREF, though, the induced prograsa
cycling should change the tehavior.]

122

O GENREF
+ RESTRUCT |
x CLUSTER ‘
.8 !
i
|
o
by]
o
)]
p o
D - i
=43
& 1
o {
7
Ca | _c_ l
[\]
o]
o
i {
]
l o I i I [i
0 5.00 10.0 15.0 20.0 5.0 |
l AVG WORKING SET SIZE {

Figure 3. 10
Intrinsic Y1 Cost Curves

Ccxpared to single execution ye, for execution set Y1,
the paxiomum working set sizes (at window 2000) are larger
fer all prcgrams: by 25% for CLUSTER, 60% for ERESTIRUCT and
150% fcr GEKEEF. The cycling for GERREF causes tle window
to enccrpass parts of terainal (generation) phase and the
ipitial ghase, increasing the over-all vorking set size.
The effect uwpon the &memory-cost drop-off point is most
marked for GENKEF, changing from 6 to 3; they are¢ upchanged
for FESTRUCT and CLUSTER, since ye contains the same cycling
pattern as does Y. The decrease in drop-off ©Foint for

123
GENFEEF is caused by two factors. First, imn each of the
three chort executions in Y1, the generation phase was not
" the dorinant one, whereas in ye, whick is four times longer
than the length of Y1, +the the generation pbase dosinates
virtual tige. Second, the cycling in Y1 causes the non-gen-
eraticn phases to doainate, Ly virtue of their increased

frequency.

O GENREF
+ RESTRUCT
X CLUSTER

PP

371IS SM 9AY

o - i i
0. 50.0 100. 150. 200.

Py GO

WINDOW T xi0!

Figure 3. 11

Intrinsic Y1 Working Set Curves

124

The iptripmsic curves can also help to identify an evalua-
tion interval, ¢=[061,62], of 6 values over whichk different
layouts should be compared. e use the following guide-

lines.

{1) The total cost reduction over interval Q should be
at least 50%.

(2) Cver interval Q, the KS size should reach 50-70% of
its paximum size. (This represents the norgal oper-
ating region of memory allocation on paged systems.)

Such a choice of Q0 covers loth a region of tight memory con-
straint, apd cne of lesser constraint. For the LRU replace-
sent algorithe, the interval ¢=[1,number of pages} was cho-
sen; fcr ES evaluation, 0=[1,100]. A wide evaluation
interval will result in more conservative comparisoms of
layout rerformance, because of the smoothing produced by the
veighted sum used to corpute cost over an interval. For
these choices of evaluation intervals, the subject prograres
meet guidelines (1) and (2). '

3.4.3 Perfecrmance of Standard layouts

Stardard laycuts represent typical ways of assigning mod-
ules to fpages without using restructuring techniques. We

used fcur.

{1) L.ALPHA —- the wmodules are presented to the linker
ip alghatetical order;

(2) L.EANDOM -- the modules are presented to tke linker

ip random order;

{3y L.TEXTUAL —- the podules are presented to the linker
in the order in which they appear in the source
text;.

125
{(4) L.WCEST =-- +the linker is instructed - to store one
mcdule rer page.

The layouts are formed by a first-£fit placement of aocdules
taker fror the input list. Except for L.VWOBST, page breaks
occur when an atteapt to store the next input module would
result in a page overflow.

Figure 3.12 shows typical cost curves comparing the stan-
dard layouts against a common evaluation string set ¥1. In
the figure, cordinate values are scaled {(dowa)} by the largest
factor cf ten such that the smallest scaled value is less
than ten, and the comnmon logarithm of the scaled value is
rlotted. (The scaling merely improves the appearance of the
curve.) Fcr small allocations, 1.TEXT is clearly superior,
but for increased allocations the differences among 1.TEIT,
L.AI1PHA and L.EANDON diminish.

126

O L(CL.WORST) {
+ L(CL.ALPHR)
X L(CL.RANDOM)
* L(CL.TEXTURL) 1
] |
o I
o
i
i
) _ l
]
e i
o =] 4
23S
o |
o
o
e I
o !
&
4 i
] i
1
o i T l
i] |
0 5.00 10.0 15.0 20.0 25.0 !
| AVG WORKING SET SIZE

FPigure 3.12
CLUSTER STL Layout Y1 WS Cost Curves

We ccnpared the performance of L.RLPHA, L.RANDOM and
L.TEXTURL relative to L.BOEST by evaluating them against ¥1
over the selected evaluation intervals, and for e€ach page
size. Tables 3.4 and 3.5 show the performance isprove-
zepts cver the KORST layout. In particular, we okserved the

followirng trends.

(1) The benefits of restructuring 3increase with page

size. The increase is generally monotonic.

127

) Eval Page Size
Subiect Str STD ==ce—rd—e e —eweaa=w
Prcgraz Set Layout pl Pz p3 dvg
- " —== D i
GENEEF Y1 ALPHA 32 54 62 &9
RANDOSH 32 54 60 k9
TEXTUAL 4y 55 63 54)
Avg 37 54 62 51
EESTFUCT 11 ALPHA 45 59 75 60 ‘
RANDON 38 61 71 57 i
TEITUAL 45 82 86 71 }
Avg u3_ 67 77 63
CLUSTER Y! ALPHA 49 73 88 70 !
| RANDON 50 73 91 72
' TEXTUAL 56 74 89 73 l
Avg 52 73 89 R R

Iakle 3.
STD Layout NS Cost Reductions over L.%WORST

=

{2) Excert for the subject program RESTRUCT, vhere the
TEXTURI laycut is wvastly superior to L.ALPHA and I.RANDCH,
there arrears to be no sulstantial difference in the stan-
dard layouts. For RESTRUCI, the two tightly-bound modules
that account for the dominant phase appear adjacent to each
other in the source text. Since L.ALPHA and L.R2ANDCH ignore
this order, they fail to store these modules in the sage

page.

{(3) 1he best standard layout across all subject programs
was 1.TEXTUAL. Henceforth, we denote ty L.BEST the best

standard layout for a given sutject program.

128

Now wme

turing.

would like
improvezxents are possitle

1 Page Size
. Subject Str STD ==——=———cme— e
Prcygram Set Layout B p2 p3 Avg
GENFEF ALPHA 55 63 60 59
KANDON 53 60 58 56]
TEXTUAL 58 63 o4 62 ‘
Avg 55 62 60 59
EESTFUCT Y1 ALPHA 52 28 53 44 l
RANDOM 47 27 24 33 |
TEXTUAL 47 92 94 78 |
Avyg 43 49 57 52
CLUSTER Y1 ALPHA 58 57 T4 63 !
RANDONM 54 56 62 57
TEXTUAL €4 78 80 74 |
Avg 59 64 72 65
Taktle 3.5

STD Layout LRU Cost Reductions over L.EORST

to see the extent to which

farther

fros the use of prograa restruc-

129
3.4.4 Performance of Corputed layouts

~ Each computed Jlayout is identified by the restructuring
‘algorithl (C¥S or CLRU) wused to produce it. For each sub-
ject prcgrax we computed layouts, L(YI,a({e),p), using dif-
ferent values of A, © and p. We then evaluated these lay-
outs against the evaluation string set Y. Their
-comparative performances, relative to L.BEST, the best stan-
dard layout for a given replacement algorithm, are presented
in Tables 3.6 and 3.7.

Eval . Page Size'
Subject Str Computed —=—————ssos—c—c—-—oo-
Program Set Layout pt p2 p3 Avg
GENEREF Yt C¥s(Y1,1 -7 44 53 30
Cc¥s(Y1,3 42 60 67 56 |
CES({Y1,5 45 58 72 58
cis{y1,7 38 55 71 54 |
Avg 29 54 66 50
RESTRUCT Y1 CWs{Y1,1 3 15 11 1C
CHS?YI,B} 2 -77 -86 -5
l CcwsS({Y1,5 7 -40 -42 -25
Avg L -34 -39 -23
] CLUSTEE Y1 CW3{¥1,1 6 38 25 23 !
CuS(¥1,3 34 56 42 44 |
CRS({Y1,5 3% 46 31 36
cus(y1,7 32 56 48 45
Avg 26 49 37 47 |
Taktle 3.6

CWS Layout WS Cost Reductions over L.BEST

130

. Byval Page Size
Subject Str Computed ————————— e e e
Program Set Layout p1 P2 P3 Avg
GEEREF Y1 CLRU(Y!,1 5 53 72 43
CLRU(Y1,2 13 39 76 43
CLRU{Y1,3 23 53 62 46
CLRUO{YI1,%& 34 51 69 51
Avg 19 4s 70 45
RESTEUCT Y1 CLRU(YT1,1 6 22 38 22
CLRU§Y1,2 ~7 ~-537 -583 -376
CLRU(Y1,3 10 -341 -£90 =340 1
Avg 3 -285 =445 =231
CLUSTER Y1 CLRU(Y1,1 14 53 64 44 ﬂ
CLRO{Y1,2 21 59 72 51)
CLRU{Y1,3 28 17 -2 14
CLRU(Y1,4 41 13 54 36 |
Avg 26 36 47 36
Table 3.1

CLRU Layout LRU Cost Eeductions over 1.BEST

These results suggest the following.

{1) Foer RESTRUCT, the Nearness method (C¥S{1) or CLRU{1})
any other restructuring algorithm.

since the Nearness pethod is

is clearly superior to

This is no suIiprise, howsever,

based on adjacency of reference, a one-one relation between
Negative table entries for RESIKUCT's CILEU and CWS
that other layouts actually perform worse
alsc that

page size (pl)

podules.
layouts indicate
than the TEXTUAL layout.
imprcvements occur for the szall
is toc small to contain the dominant phase consisting of two
modules. In this case that a good restructuring
algcriths can be thwarted during the clustering phase.

Botice very srcall

because it

WE S€EE€

restruacturing
The

(2) For CLUSTER, the CWS (3) and CLRU(2)
algorithms result in the best improvements over L.BEST.

131
effectiveness of the Nearness method is nearij nil for the
spall page, but increases with page size, owing largely to

' the capacity of the clustering algorithm to pack several
small clusters_ﬁithin the larger page. This trend is also

present in frrogram GENERIEF.

(3) The effectiveness of using the Nearness method varies
with the replacerent algoriths used during layout evalua-
tion.* Acrcss all page sizes, Xearness layouts reduced LEU
BC BOLY qcsté by up to tuice as much as they reduced &S

costs.

{(4) A slight anomaly in the relationship Lbetween page
size and restructuring effectiveness was observed for pro-
gram CLUSTER. As shown in Taktle 3.6, an increase from page
size [F2 to p3 resulted in a reduction ir restructaring
effectiveness, relative to the L.TEXTUAL layout. 2 possible
expianaticn is the the L.TEXTDAL layout was Letter able to
use the larger page size, resvlting im less margin for
ipprcvement through restructuring. In Table 3.4 We see
that I.TEXTUAL improved layout L.WORST by up to 90%, which
is much higher than the 60-70% inpr&vements recorded for
prograers GENEEF and RESTRULCT.

Program restructuring is indeed beneficial for the sub-
ject precgrars, the amount of Ltenefit depending upon the val-

ues c¢f the restructuring varialtles used.

132

3.4.5 Setting Restructuvring Parameters

~ We have already seen in Tables 3.4-3.7 that, for a given
restructuring algorithm, the amount of improvezent is
affected by the values of & and p. As expected, increasing
page size increases imsprovement. BExcluding RESTRUCT, cost
reductions of more than 50% are achieved for the intermedi-
ate page size. Although more impressive imkprovements are
‘realized for the large page size, improvements realized for
the interzediate sized page represent conservative estimates
of the benefits of applying program restructuring to the
subject rregrams. Table 3.6 susmarizes the € of choice for
each restructuring algorithm, using the intermediate sized

page.

. . Memory-Cost
Prcgras Algoritha Theta Page Size ReducCtion
GERRET CN3 5 120 54 J
CLRU 1 120 53 1
RESTRUCT CWS 1 90 15 ,
CLRU] 90 22 ‘
CLUSTER Cis 3 108 64
CLRYU 2 108 59 |
Tatle 3.8
Festructuring Parameter Settings

It arrears that the differences between the CWS and CLERU
layouts (for WS and LRU replacement, respectively) are not
substantial: both show the same relative effects fron
changes in ® and p, and Loth produce the same relave per-

formarce icprrovements. We will benceforth use Chk5 exclu-

sively.

133

3.4.6 Stability of Restructuring Inprovenents’

In order to identify executions that lead to good lay-
'onis, se restructured using each string in a set of selected
"traces and compared the memory costs of the 1layouts they
produced. The strings (i.e., layouts) were ranked according
to their performance against a comron trace string (1) to
give us an idea of what the chances were of making a good
{or bad) chcice of execution upon which to base restructur-
ing, apd (2) to identify the Lest <choice of evaluation
string for subsegquent lajyout comparisoans. Ke found that,
‘except for TB~2, BESTIRUCT is very insensitive to the values
of its inruts, as shown in 7Tatle 3.9. Even short execu-
ticns cof RESTRUCT provide the same restructuaring information
as guch lcnger executions. Programs GENEEF and CLUSTER
show mcre sensitivity., ¥or each subject program, the execu-
tion with the highest restructuratility rank (indicated by
the asterisk) was used as the standard layout evaluation
string, ye, for the subsequent phases of the research."

Ip Table 3.9 we see that GENREF executions TB-§, TB-4,
TB~5 and TE-31 all produce layouts whose performances differ
by less than 10%. CLUSTER's execntioans IB-11, TE-12 and
TB~5 are within 1% of eack other, and IB-1, TB-3 and TE-2
are within 15% of the fkest string {layout). e also see
that, vhen restructuring is based on multiple executioms, a
sgcothing effect occurs. For e€xample, the worst execution
{to use in restructuring) for GEKREF was TB-2, but when it
was used together with TB-3 (rank 7) and IB-5 (rank 3}, the
resultirg layout was only 15% inferior to the best layout,
as crpcsed to the 125% inferiority of TB-2 when used alome.
Similar results were olkserved for the other subject pro-
grags. We draw the conclusion that restructoring is sta-
blest when it is based on pultiple execution trace strings.

134

|
Subject Program
GENEEF BESTRUCT CLUSTER
- ID XDIFF IC XDIFF IC XDIFF 1
S E ‘
11X *TB-6 0 *«*TE-4§ 0 *TE-12 0 |
N E iB~-4 -3 IB-1 0 TB~5 0
6 C 4B-5 -4 TB-3 0 TE-11 0 i
LU IB-3A -7 TB-5 0 TB-1 -11
ET 1B-1 -16 TE=-0 -8 TE-2 =11
1 1B~22 -24 TB-2 -77 'B-3 -11
0 1B-3 -33 E-7 -37
N IB-2 -124 B-6 -83
S -4 -122 1
N |
U : |
L Y1=(TB-2 (IB-0 {TB-
1 TB-3 TE-1 “TE-3 A
% TE-5) -15 78-3) -8 IB-5) 0 |
L Y2=(TB-3A (1B-2 (TB-1
E TB-4 TE-4§ TE-4 I
TE-6) -1 1B-5) 0 TB-6) 0 l
¥3={TF1 {TB~-7
TE=-2A TE-11 1
IB-3) -1 , TB-12) =22 #
YT={Y1 0 (Y1 -8 (X 0
S Y2 Y2) Y2
Y 3) ¥3) l
[
Iatle 3.3

CWS Restructuraltility of Testbed Traces
{ Irprovenent over Layout L{ye))

Once specific values of the restructuring variables, A, ©
and p, were determined, we vanted to verify that the compa-
rable perfcrmance improverents could also be achieved using
a different set of strings as inputs to the restructuring
phase. We chose this set, Y2, to Le three strings repre-
senting different classes of subject prograa inputs than

135
those representing Y1. ike results from evaluating layouts
L{Y1,A(€),F) and L(Y2,A({0),p) against evaluation string sets
Y1, Y2 and ye are shown in Taktle 3.10. This table shows CRS
improvesents over the test standard layout. Over-all, there
"is little wvariation in the perforpmances of 1layouts L({I1),
L(Y2) apd l1(ye) across executions Y1, Y2 and ye.

Evaluation String Set
Subject == —memmcmmme—— e
Prcgranm Layout Y1 Y2 ye Avg
| GENREF L(Y1 58 66 65 63
L{Y2 59 71 69 66 |
L{ye 59 71 70 67
J RESTIRUCT L{Y} 15 14 19 16 !
L{YE{ 13 11 12 12
L{ye i5 14 19 16
j CLUSTER L{Y1 56 56 78 63 i
L{I2l 56 56 78 63 |
L{ye 56 56 78 63
I 1
Takle 3.10

Stability of (WS Cost Reductions over L.BESIT

136
3.4.7 Copclusjons

~ Prograsm Testructuring is feasible for the subject pro-
'grans. ¥e found that performance iaproveaments ar€ preserved
across a range of different executions. Cf all the subject
prograss, EESTIEKUCT is ty far the €easiest one to restructure,
sipce wery &£hort executions provide enough iunformation to
achieve ap optikal layout. The set of restructuring vari-
ables we will use during the remainder of the study are such
that intersediate improverents are achieved from restructur-
ing.

In terss of classifying the subject programs based on
restructurakility, BRBRESIRUCTI is a type-2 program, whereas
GENBREF and CLUDSTER appear to ke type-3 prograss. We expect
BRESTRUCT to be easier to model than GENREF and CLUSTER. (In
general, c¢ne can only make an intelligent quess as to the
restructurability of a program, given only its static source
text ard scme knosledge of its function.)

137
3.5 SUMNARY

-~ Preogiaz restructuring works for the subject programs. ke
have chosen values of the restructuring variables, A, € and
Pe apd the evaluation interval, C, such that prograsm
restructuring produces perforaance improvements of 20-75%
over the best standard layouts. Restructuring works best
when it is tased on more than one execution trace.

Chapter 4

ELEREETARY BODELING

This chapter describes the first level of PAM modeling in
vhich the sipplest model versions and parameter distribution
assupptions are used. ¥e begin with a revies of the issues
of mcdeling. Next we describe the two modeling experiaents
that ccnstitute this nmajor study of the research. In the
next chapter, we introduce the next bigher level of modeling
in which mcre sophisticated parameter estimation technigues

are used.

Both mcdel versions DNF-PAM and GPAM were found to repro-
duce actual trace strings successfully. The subject pro-
graes appeaf to have a range of modeling difficulty which is
related to the restructuratility of the modeled executions.

139
4.1 GENERARL MODELING ISSUES

4o 1.1 verview of Issues

The geperal PAM =modeling procedure involves the four

steps shewn in Figure 4.1, At each step, certain issues
relatirg to wmodeling must be treated before proceeding to
the next step. The issues of PAM modeling fall into four
categories.

(1) #cdel version. Which model versionm, GPAM or DNF-PaAN,
froduces ketter synthetic strings for use in program

Testructuring?

{(2) Farameter representation. What statistics should be
used to characterize loop and selection constructs?
How much detail akout the statistical distribution of
cecnstruct parameters is rejuired to produce acceptable

restructuring results?

(3) Farameter estimation., ¥Bhich prograe executions should
te sampled to provide the raw data for parameter esti-
sation? How should the raw data ke comkbined to produce

a single characterization of the sampled executions?

(u) ¥cdel validation. How accurate is a model imnstance?

Hew is accuracy determined?z

140

Construct
{V Model _}
-———— I-
Sample
Executions
- f-.

Determine
Farareters

Generate |
Synthetic Strings
Figure 4.1
Overvies of PAM Modeling

— i e e s

Of the four versions of PAN introduced in Chapter 2, vwe
studied extensively only LCKF-PAM and GPAM. Cur discussion
of fparameter estimation treats GPAM almost exclusively.
GPAM is mcre general than DNF-PAM and, since it uses wmore
ipnforzaticn about the program's static and dynamic charac-
teristics, one would expect it to bave a Letter chance of

accurately modeling the sulject progranm.

In essence, PAMN 1is a gsimulation model. PAM synthetic
string generation simulates the execution of the subject
pPrograc. The simulation is driven by model pararmeters
derived frecm observing actual program executions driven by
input data. Bs with any sirulation model, the quality cof
the model derends upon its underlying structure and upon the

quality of parameter estimates.

141

The structure of GPAM is directly related to the control
structures used in the subject prograe. GPAM recognizes
loocps, selection, escapes and procedure entry and exit as
the cnly significant program execution activity. Bo dis-
tincticp is mwade among thke three types of loops (for, while
and until) found in structured programming languages. all
loops are podeled as for loops. GPANM models all ccndition-
al-executicp statenents as selection constructs in which
exactly one of many alternatives is selected for execution
upon entry tc the construct. The minimum numkbter of alterna-
tives is tvwo; bence, the "if-then"® statesent is indistingui-
shable from the "if-then-else™ statement. The only progranm
constructs +that reguire parameterization are loops and

selecticn constructs.

Recall that the DNF~PAM call-sequence grammar takes the
form
3 =< (x1 | X2 | aee | X0) >.

DNF-PRF rarameters have slightly different interpretations,
all independent of the structure of the source prograer.
The DNF-FAX loop parameter represents the nugker of proce-
dure calls rade per entry to the procedure; selecticn con-
struct parameters are derived from the number of calls made
by the rrocedure. DNF-PAN parameters can be derived from
GPAM rarameters, or they can te gathered ty program instru-

mentatico.

142

4. 1.3 GFAM Parameter Representation

—— i E—— i — —— . i —— ——

A rrcgrar is characterized in terms of the way it was
' observed (during one or more executions) to execute its loop
and selecticn control structures. The usage of a loop is
characterized by a random varialle that represents the num-
"ber of repetitions, i.e., the nuzxber of times the body is
executed fer entry +to the loop. An m-vector of selection
probabilities characterizes the execution of an m-way selec-

ticn ccpstract.

The statistics used to characterize a loop or selection
construct can vary -- extrema, averages, variances, Rgodes
-=- depepding upon the modeler®s discretion. The choice of
statistic affects slightly the instrumentation overhead
and, tc a greater extent, the cost of calculating parameters
froaz the executicn coefficients. The process of paraseter-

izing fpregrasm constructs involves two major decisions,

(1) The statistic to be used to characterize the execu-

ticn of a construct.

(2) The amount of detail reguired akout +tte distribu-

tion. Three approaches are typically taken:
a) a point estimate of the distribution;

E) an interval estimate of the distriktution (which
pay reguire arn assumption of the class of the

distribution and several of its mozents); and

c) the identification of the form of the distribu-
tion together with its characterizing variables
{(e«g., mean and variance). For example, a locop
repetition parameter may have a normal distribu-

tion with mean 18 and variance 7.

143

Begardless of how these issues are resolvéd, e assume
that all cconstructs of a given type bave the same fora of
underlying distribution, tut different values for the

aoments.

4.1.3.1 Loops

lccps have been shown to be the primary cause of locality
of reference [DENNT76,EATS77k,SNYD78a])] tecause they cause tkhe
modules inside the loop to te referenced repeatedly. Such
modules tend to have a high <clustering affinity for each
other. The number of loop repetitions contains restructur-—
ing information. Low values discourage clustering of mod-:
ules referenced inside the loop; bigh values encourage clus-

tering.

The execution of a given loop can be characterized by
randox variables r and R, where r represents the sean loop
repetition frequency, and E is the maximum loop repetition
freguency. Each program e€xecution produces a list of fre-

quencies from which r and R are estimated.

4.1.3.2 Selection constructs

Suprpcse we have an m—-way selection coastruct. Cnhe pro-
granm eyecution produces a vector of coefficients,
S=(S1452,e+0450), where the i'th alternative was executed si
times. The vector-valued random varialle C=(g1.,92seve-,90)
is esticated using S. The proltability of selecting the i'th
alterpative upon entry to the selection construct is esti-
rated by gi=si/(s1+s2+...+sm), the relative frequency of
selecting the i'th alternative during the olserved execu-

tion.

1454

4.1.3.3 kEelative importance of constructs

~ Sipce pregram restructuring is a locality-ipproverzent
techrigue, it sbhould e influenced by the same factors
affecting locality, of which looping is a major éontributor.
GPAY must, then, capture the looping characteristics of the
" subject prcgram during parameterization, and reproduce those
properties during synthetic string generation. It was our
feeling that modeling 1loops would be crucial to successful
GPAM xcdeling.

This is nct to say that selection constructs are unimpor-
tant. The contribution of a selection construct degends
upon the global nesting level of the procedure contaiping
the construct. At the top level, a selection construct can
alter a major portion of a program execation. In such
ntransacticn-type"™ prograzs, the selection comnstruct is dom-
inant in that it explaips a great deal of the variability
among executions. Even then, it is looping at some level
that acccunts for the length of the execution, and for the
clustering of the modules invoked during the processing of a

particular transaction.

Benceforth, we focus our major attention on the estiza-

tiop of lccp parameters.

145

4.1.4 Pparaseter Estisatiop

The paraketer estimation phase of modeling involves com-
binipg coefficients from one or more executions to approxi-
mate the onderlying distrilutions of the characterizing sta-
tistics. Two approaches to «comkining coefficients fron
multigle executions:are considered.

e e o s . . ——r— — . o

(1) The composite-execution approach. Given a s=axple of
sultiple executions, ={wl,¥v2,...,wk}, statistics
are conmputed as if the actual execution were
wWwil+u2+4,...4wk, where #+4 indicates string concatena-
ticn. Such an approach leads to a single value of
the desired statistic which will, in the text that
fcilou, be identified ty the superscript 1.

{(2) The indjividual-execution approach. Each execution

centritutes one data point, and statistics are com-
Futed using these data points. For example, each
exgcution produces an average loop Trepetition fre-
guéncy, and the average for the entire sarple is
ccefuted as the mpean of thke individual execution
averages. Parameters computed in this m®mapner are

identified by the superscript 2,

In the ccorosite-execution approach, long executions tend to
contritute more to the statistic value than do shorter omnes.
Each execution contributes equally in the individual-execu-

tion argroach.

A second aspect of parameter estirmation is the selection
of the Frogram executions to observe. Tte various
arrrcaches were discussed in Section 2.3.2, where the adapt-
ability of GFAM to a variety of paramneter represertation and

estigation approaches was demonstrated.

146
4.1.4.1 1lcop and selection parameter estimators

~ We pmcw [fresent estimators for the mean loop repetition
'frequency r, and for the maximum loop repetition frequency
B. Given K executions of the program, we define estimators
r! and r2 for r, and B! ané BZ for E.

{total #loop repetitions),/(total #1oop'entrances);

rt =
12 = (ri+r2+...+rK) /K;
El! = pax(E1,E2,+«.,BK);
E2 = (E1#R2+...+EK) /K.

Rj and rj represent, respectively, the maximum and zean loop
repetition frequencies during the j'th otbserved execution.
R2 is the mean maximum loop repetition fregquency over the
set cf cbserved executions. Both r2 and B2 lend themselves
to calculation of wvariances and to standard statistical

estization techniques.

For an arbitrary a—way selection construct in the subject
prograzx, K prograp executions produce tle composite-execu- .
tion ccefficient vector (f1,f2,...,fn), where f£fi is the
total number of times (during K program executions) that
alternatiie i was executed. Each execution also produces
its cwr estimate of Q. Let Qi=(qif13,9i[2)sev-,qi[2]) be
the rarcdcenm varialkle of selection protatbilities derived frem
the i'th ctserved execution. #e now bave two estimators for

C, O and (2, whose j'th components are given ty

C1[§) = fj/(E1+£f2+...+4fn), and

02[3] (G 33+q2[jI*.--+gK[j]) /K, respectively.
Q1 is easily computed, but does not lend itself to statisti-
cal analysis of the individual selection probabilities, as

does (2,

147

i.1. 4.2 Ipstrumentation reguirements

GFA®X subject progreaa instrumentation can easily be
extended to rrovide raw data on repetitions from which the
desired statistics can Le computed. Collecting rav (versus
condensed) data does, however, increasec the volume of data
produced by the instrumented progras. In most cases the
condensed data should ke just as informative, kut they might
hide the nature of the wunderlying distribution of parameter
values. Until the form of the distritution bas teen ascer-
tained (cr until s=some assumption akout it is accepted), col-
lectipng raw data can yield insights for making parameteriza-
tion decisions. During preliminary stages of modeling, raw
data can pinpoint constructs that have high‘ variability in
their usage. These should te modeled carefully.

4.1.4.3 Statistics and estimators used

We have introduced a numker of statistics and estimators
that cap be used in parémeter estimation. Each row in Table
4.1 describes a set of parameter representations/estimation
arproackhes. For example, for approach A, loop parameters
are estimated from average repetition frequencies computed
using the ccmposite-execution approach, and selection param-
eters are ecstimated using the composite-execution approach.
The apprcaches investigated in this chapter are irndicated by

ap asterisk in the "Approach"™ column.

In crder tc control the arount of experimental data gen-
erated during multiple-execution modeling, we bhad to settle
upon a s£rall nucker of ihtuitively appealing approaches that
shcwed prorise in preliminary studies. For loops, we inves-
tigaéed the use of two statistics, mean and maxipum repeti-
ticn frequencies, and their respective estimators, r! and
Rl. €f rarticular interest was whether it is tetter to use
a large, extreme value of the loop repetition parameter, or
a more typical value, such as the mean. The values given by

148

estisatcrs r! and B! should differ from each othker enough to
account fcr any observatle difference in the synthetic
- strings prcdoced from the respective model instances.

Construct Estimators

. Loops jiSelect
Hodellng EPu—— -
r
} X

Arrroac Rt r2 R2|| Q1 Q2
- drme e o e -
*2 { | J X | |
—— o o e e i —— l
B 4 X i i i i | X
[S SR S —— - ———
*C P X | i X |
——— e e s} f o -
b t | X | | i i X
———prmrfmrm] |———f———
E | | X | I |
j—=—t—— b —e |

i | X | | X

e e e e e e et e fm——

o
P —
s oy
S b g
I —
|
MIN
'
'N
|
it
1

Iable 4.1
Variables of the GPAM Point-Estimation Study

Io this chapter, we deal exclusively with point estimates
of the underlying parameter distritktutions. Stratified san-
pling is used to select program executions from which model
paraneters are derived. %hese executions are driven by dif-
ferent classes of input data, present in proportion to their
expected cccurrence in the population of all executions of
the sutbtject progranm. In the next chapter, we will deal in
gore detail withk the underlying distriktutions, but only for
those subject programs that appear semnsitive to tle choice
of statistic, or that are unusually difficult tc model.
Randcr sappling will be used to ottain model parameters.

149
4. 1.5 Model Validation

4.1.5.1 Exreriment overvies

Each lcdeliné experimeht consisted of the following

stegs.

{1) Select the set OES of subiject executions, <from whick

farameters PARS (0BS) are deterumined.

{(2) Restructure using O©OBS as input to the restructuring

phase to produce layout I (OB5).

{3} Generate set SYN of synthetic reference strings fronm
godel instance PAMCCSG,PARM (OBS)>.

(4) Restructure using SYN as input to the restructuring

Fhase to produce layout L(SYN}.

(5) Evaluate layouts L({CBS) and L{SYN) against thke stan-
dard evaluation string set ye to yield performance

indices eCBS and e€SIN, respectively.

4.1.5.2 1Terminology

The guality of the model instance FAMKCSG,PALEM(CES}> is
defired in terms of the relative performances of layouts
L{CES} and 1({SYN), and given Lty

. €0BS - eSYN
Quality = 100 # ——--w=—weu- ,

the percentage rerformance improvement of L (SYN) over
1{CBS). Cuality meacsures the closeness of SYN to OBS. A
negative Cuality value indicates that SIN is inferior (for
restructuring) to OBS; a positive value indicates that SYN
is superior; and a zero value indicates that SYN is eguiva-

150
lent tc CES in restructuraltility. When Quality=0, we also

say that the model instance reproduces (the restructuring
- signature cf) the subject executions OBS.

At this pcint we feel it would te belpful to discuss the
usage ¢f terms ty which model gquality is expressed. The
quality of a model instance measures the closeness of the
syothetic strings it produces to the subject executions
(traces) from which the model imnstance was constructed.
Model accuracy is a statement of the over-all guality of
instances of the wmodel constructed for differenmt subject
Erograzs. Accuracy is somewhat subjective. ke arbitrarily

defipe four levels of accuracy:

(1) roor, when model guality is less than -20%;
(2) fair, when model gquality is Ltetween -10X and -20%;
(3) geoed

, when model quality is Lketwveen -5% and -10%;
(4) excellent, when model quality is above -5%.

The effort required to oktain a good guality =model
instance is a function cf the execution-sampling approach,
the wmodel versiom used, and the number of synthetic strings
generated from the nmodel instance. We expect that as the
nodel version Ltecomes =more general, as the number of
observed subject executions increases, and as tte number of
synthetic =strings gene€rated from the model instance
increases, so will the quality of the =model instance. A
subject prcgram is said to ke gdifficult to model whben gual-
ity dces nct improve with modeling effort.

Since there are approaches to model validation [SFIR77]
other than the one we wpsed, our conclusions akout the qual-
ity of instances of PAM may not be consistent with those
obtained when other validation techniques are used. How
well results fror our validation procedure correlate with
those obtained using other techniques (suck as WS curve
analyses or rhase decomposition) is perhaps best treated in
a separate studye.

151
4,2 TEE FCINT-ESIIBATION MODELING APPROACH

4,2.1 Jpitroduction

Frcx this pdint on, the emphasis will be on modeling pro-
gram lccps. The simplest parameter-estimation and synthetic
string-generation approach is to use point estimates of the
loor repetition frequencies to characterize loop execution.
Under such assumptions, generate-tize simulation of an arbi-
trary rrogram locp always produces the same numker of rep-
etitiors =- the value given by the parameter.

The first copcern atout suck an approach is the quality
of the approximation to the actual trace string oktainpable

using such s=implifying assumptions.
This rhase of the research bas the following objectives.

{1) To determine whether such a simple approach produces

any useful results at all.

{2} To characterize instances sbhen this approach pro-

duces acceptable results,

{(3) To determine the relative benefits of using DNF~FPAN
versus GFAM based on point estimates of model param-

eters.

152
4.2.2 0Overview of the Study

- Each execution of the subject program produced execution
coefficients which were stored in the coefficient database
{CDB) . The CDE for each subject program contained coeffi-
cients frce 80- 100 executions. The CDB was used to compute
sodel paraseters, and to perform statistical analyses of
rodel paraweters —— the topic of the next chapter. A test-
bed cf B-15 execution trace strings was collected for each
subject pxrcgram. For the modeling effort of this chapter,
the test Lbed enabled us to validate model instances against

"answer™ strings.

Tso experiments were conducted per model version: sin-
gle-executicn =modeling and zultiple-execution erodeling.
Single-execution modeling was used to deterzine the basic
accuracy of the model as a function of (1) the subject pro-
gram, {2) the restructuratility of the sulkject executicn,
and (3) the statistic used to characterize model parareters,
One tc three single executions were modeled. Ve selected
executicns that spanned a2 range of restructarability.

Since in Chapter 3 we saw that restructuring using zulti-
ple executions was superior to that using single executions,
¥e ccncluded that it was important to show that multiple
executions couvld be modeled accurately. For each subject
prograg, two sets of multiple executioas, I1 and IT, +sere
chosen, again based on restructurakility. Y1 contains three
carefully selected executions; YT contains a major portion
of the testbed,. Y1 represents a small-sample aprroach to
modeling; YT repiesents the expenditure of more effort in

executicn-sanpling phase.

It shculd be understood, at this point, that there is a
fundaszental difference lLetween modeling a single execution
and modeling sultiple executions. To illustrate, let vec-
tors X1,X2,ee-,1I8 e the model parameters.from m executions

153
of the subject progranm. Kben single-execution modeling is
used, the Bmodel instances PAMKCSG,PARN{Xi)> are based on
‘actual executions. On the other hand, the parameter vector
X used ir multiple-execution modeling is some function
I=f(i1,X2,¢eee,Xn} of parameters from actual executions. X
describes the ®wtypical" execution which, for all practical

purposes, does not really exist.

Vectcr X 1is likely to Le close to an actual execution
parameter vector ¥i, +when Xi represents the dominant execu-
tion in the set of & executions. The dominant execution
contributes most to the layout computed directly f£fror the
~set of executions. The use of statistics that measure

extrepa (such as paximum) increases the likelihood of having
a dorinant execution, as does gmodeling a small ©pumber of
executions. For 1larger sacples, or when statistics that
szxooth (such as the mean) are used, the "typical"™ execution
parameter vector X is more likely onot to describe ap actual

executicn.

The foregoing discussion points out that results fronm
vultiple-execution modeling should not be used so much to
measure model accuracy, as to measure how vwell a set of exe-
cutions can be characterized wusing PAM parameter estimaticn
technigues. In particular, multiple-execution modeling
enables wus to evaluate the use of various statistics ¢to
defire podel statistics, and to study the effect of the sam-
gle size upon the characterization. Although the term
guality cf the model instance?™ will still te used when .dis-
cussing all mcdeling results, for nultiple-executicn model-
ing it is the process wherety parameters are oktained that

is beirng judged.

154
4.2.3 Hyrpctheses

- §e pncw present some verifiatle hypotheses representing
claips that can be shown true or false on the basis of the
resulte presented in this chapter.

® Good scdel jinstances can ke constructed fror a ssall num-

ber cf subject executions.

© The sirplest model version, DNF-PAM, comes to within 10%

of the mcre sophisticﬁted'GPAH version in quality.

© The gquality of the model instance increases with the num-
ber cof sypthetic strings generated from a model instance.
That is, a smoothing effect occurs in which ttke cozposi-
ticn cf synthetic strings tetter represents the subject
executicns than does a single synthetic string.

© Obtaining a good quality aultiple-execution model instance
requires more modeling effort than is reguired to achieve
a single-execution model instance of comparaktle quality.

9 Choice of statistic and estimator affects model accuracy.

¢ Ease ¢f podeling is related to the restructurability of

the subject executions.

155
4.3 MODEL ACCURACY

Frcs Table 4.2, we see that this simple model version
did a gcod job of modeling GENEREF. In the test case, the
synthetic strings were within 1X of TB-4; in the worst case,
they were cnly 4% inferior. Sutject program CLUSTEF was the
hardest tc model. Synthetic strings for TIB-3 (wkich ranks
second in restructuratility) was just 1% inferior din the
best case, and 12% in the sorst case. Por TB-5 (rank one),
the best synthetic string set was 11% inferior to the actual

executicn trace.

i
. Synthetic Set
Subject Trace - -]
Frogram String Rank Size Quality
GENEEER TB-4 2 3)
3 -1 [
6 -4
RESTRUCT TB-3 1 3 -8 |
3 -182
3 -8
6 -8
g -8
CLUSTER TB-3 2 % —1% }
6 -12
: -5 1 3 -11
3 -1
6 -24
|
J
Isrle 4.2

Mcdel Quality: DNF-PAM Single-Execution Modeling

_ . 156
FEESTRUCT, the subject program thought to be the easiest
to restructure, exhibited a disturting, anomalous behavior
" in which it produced a synthetic string set that was nearly
200% inpferior to the sukject execution. Purther investiga-
tion disclosed that the major phase of execution correspond-
ing to CLBU 1restructuring was not present in the syanthetic
strings, although it was present in the subject execution.
The layout constructed from the synthetic strings was not
optigized with respect to the CLRU phase. The unusually
pocr perfcrzance of this layout occurred ktecause the evalua-
tiop string TB-4 contained an instance of the CLRU phase.
¥hen this anomalous synthetic string set is treated as a
data outlier, the remairing synthetic strings come to within
8% of the subject execution trace string TB-3.

& counter-intuitive relationship Letveen emodel accuracy
and the nusker of synthetic strings was observed in the case
of CLDSTEE. One would expect that increasing the pumber of
synthetic strings would provide a tetter corposite picture
of the Gfprcgram that would lead to a tetter layout. That
this dces not happen, we conjecture, is because DRF-PAN dis-
torts the =segquence of program references (since the gpodel
does pct contain intra-procedural seguence information). As
a result, a synthetic string produces a restructuring matrix
whose entries suggest different module affinities than trace
stripgs cculd possibly suggest. Since matrices froro single
synthetic strings are added to oltain the restructuring
watrix for rultiple synthetic strings, these aberrations are

magnified.

Synthetic string generation using DNF-PAM can fail to be
accurate Ltecause of loss of sequence information. HWhen data
outliers are excluded, synthetic strings from DNF-FAM model
instances were 0-24% inferior to their sutject executions.
Model instances for CLUSTER were the least accurate; those

for GEXEEF were the most accurate.

157
4.3.2 GEAM

Results in Table 4.3 show that subject program RESTRUCI
‘was easy to model using either statistic, r or B. For the
saximur lccr-repetition frequency statistic, B, synthetic
string sets for all sukject programs were as good as their
subject executions —— in the Lest case. Synthetic strings
for GEKREF were actually 3% superior to execution TEBE-5.
Except for CLUSTER, using the nean-loop-repetition frequency
statistic, r, produced synthetic strings that were as good
as thcse okbtained using R. CLUSTER was the most difficult
to model using r. Model instances for TB-3 and TB-5 were
22% ipfericr in the worst case, and 10% inferior in the best

case.
Loop Parameter Statistic ”
Mean Maximum
Subject 1Irace ———————— e ————————— e
Prograa String Rank $str Quality $#str Quality
GENBEF TB-4 2 3 0 3 -7
5 -7 i
TE5 3 3 -1 3
3 -1]
6 +3]
RESIRUCT 1TB-3 1 3 0 3 0 h
CLUSTEE TF3 2 3 -1 3 -10
3 -10 6 -10 |
6 -10 9 0
TE-5 1 3 -22 3 =22
3 -22 3 -22
6 =22 6 0 l
Tarle 4.3

Fodel Cuality: GPAM Single-Execution Modeling

158
For GENEEF and BESIRUCT, the choice of statistic appeared
to have little or no effect upon model quality. For GERREF,
"wsing the statistic r was superior for TB-4, but B was
slightly superior for IB-5. Por CLUSIER, bhowever, using the
rpaxigur sStatistic was clearly superior. Of further interest
is that with statistic R, increasing the number of synthetic
strings ierroved model gquality, a phenomenon absent from
DNF-EAY podeling.

4.3.3 Ccpclusicns

e il e

GPAX is accurate. For each subject program, there was a
choice of statistic (r or R) for which the model imstance
reprcduced the subject execution. Poor choices of statistic
exist fcr some subject programs, such as CLUSTER. DNF-PAX,
which does pot model control structures, is not as accurate,
although the model <can generate syntbetic strings that are
within 11% of the subject execution. Takble 4.4 compares
the (teSt—case) accuracy of model versions GPAM and DNF-FPAXN,

GPA¥ Estimator 1
Sutiject ———me—mmc ===
Execution Rank DNF Mean Xax
GENREF TB-4 2 -1 0 -1 1
BEESTRUCT TB-3 1 -7 0 0]
CLUSTER TB~3 2 -1 -10 0 l
TB-5 1 - 11 -22 I
Takle 4.4

Model Quality: DNF-PAM versus GPAM
{Eest results used)

We see from the table that model quality is a function of
the restructurability rank of the sukject executions, and

159

that the choice of loop parameter statistic makes a sigpifi-

cant difference in model quality, for some subject fprograms,
GPAM sas most accurate for programs GENREF

notably CLUSTER.
DNFP-PAN was most accurate for GENEEF (TB-4)

and FESTEUCT.
and CIUSTEE(TE-3).,
ity ramk two.

the sulject executions of restructurabil-

160
4.4 MNUITIFLE-EXECUTICHN MOLELIKNG

At this ©pcint we wanted to see wvhether multiple execu-
tions could be modeled as accurately as single executions,
We alsc wanted to see whether sore sets of executions were
sore difficult to model tban others. §e modeled subject
execution sets Y1 and YT which, for ERESTRUCT and CLUSTER,
had the same Trestructuratility rank (i.e., Y1 and YT pro-
duced egquivalent layouts), For GEKREF, YT bad restructor-
ability rank one, Y1 had rank five.

The following discussion refers to the results shown in
Table &4.5. It appears that model accuracy is a function of
the restructurability of the sukject executions. As the
restructurability of the subject executions increases, so
does the mcdeling difficulty. It appears that, coaversely,
sultiple-execution Eodeling can lead +to improvements over
suvbiject executions that have fair restructurability proper-
ties (such as Y1 model instances for GENEEF and ERESTRUCT).
For BESTIRUCT and CLUSTER, sets Y1 and YT, which had the sape
restructurability, were modeled to the same level of accu-

racye.

161

Synthetic String Set !
1 } %
Subject -
Ercgram fstr Quality tstr (Quality
GENREF 3 +5 2 -~18 !
3 +9 2 -4 f
6 +9 4 -5
FESIRUCT 3 -8 3 - 4
3 0 3 +5
6 -8 6 0 |
CLUSTER 3 -12 3 ~11
3 -13 3 -11 1
6 =23 6 -1]
|
Takle 4.5

ac
¥cdel Cuality: Muvltiple-Execution DNF-PAM Modeling

The apcgalcus behavior that RESTRUCT experienced when a
single execution was modeled did not appear in the =modeling
of zultirlie executions. This resunlt lends support to the
use of rultirle subject executions instead of a single sub-

ject execution.

Certain similarities Letween modeling single and multiple
executions can te seen. CLUSTER contjinues to be difficult
to model, especially for tle shorter string set, ¥!, having
a2 best-case accuracy of -11%. Modeling EESTRDUCT for rulti-
ple executions is akout same as for single executions. For
GENREF, the influence of restructuratility on model accuracy

ic pcst evident.

162
4.4.2 GP2M

- The relaticonship, seen in DNF-PAN modeling, between xodel
accuracy and the restructuratility of the subject execution
was alsc seen in GPAM modeling. In Tatle #4.6 we see that
for GENREF, YT was more difficult than Y! to model, +whereas
for BESTEBUCT and CLUSYTFR there was a smaller difference in
the difficulty cf modeling Yt and YT. Compared to DNF-PAHN,
GPAM was slightly less effective in modeling GENREF, but was
such mcre effective in modeling CLUSTER. For CLUSTER, at
least, GFAM was able to capture and reproduce more of the
restructurability signature of the subject executions than
could DXNF-EAM —— GPAM was 12X letter than DNF-PAM when sta-

tistic E was used.

|
Set of Sulject Executions
11 YT
Subject e — - -
Frcgram Stat #str Quality #str Cuality
GENREF T 3 -7 5 -8 I
R 1 +5 1 -14
FESTRUCT r 3 -8 5 v i
R -8 1 +E
CLUSTIER r 3 -6 5 c [
R 2 0 -1 i
[
Tatle 4.6

Mcdel Quality: Multiple-Execution GPAY Modeling

Model guality seems to le influenced by the size of the
subject executicn set, or its length, or Lotk. The quality

163
of wmodel ipstances based on short executioné Seens to be
inproved when the maximum statistic (R) is used, as if sta-
"tistic F ccupencates for short €xecutions. As the number of
subject executions increases, the mean {r) becomes the sta-
tistic ¢f choice.

—— A ———

For small samples, DXKF-PAN showed potential for zodeling
as accurately as GPAM. This is explained in part by the
notiob cf dceinant execuvtion: in a small set of executions,
the characterization of the entire set may be very close to
the characterization of one of the executions, the dominant
one. For example, in Talkle 4.7, we sce that using the max-
ipua lccp-repetition statistic, which increases the likeli-
bood of having a dominant execution, was more effective than
using the xean loop-repetition statistic. (Loop rarameter
statistic is not a factor in DNF-PAN modeling, since control
structures are not podeled ty DNF—PAN.)

GPAaAHN
Loog Parapeter
tatistic
Subject - - -
Frcdram Rank DNF Mean Bax
GENREF 5 +9 -7 +5 ‘
KESTRUCT 1 +3 -8 -8 i
CLUSTER 1 -12 -6 0 l
|
Talkle 4.7

Y1 Mcdel Cuality: [NI-PAN versus GPAN

(Eest resuvlts used)

164

When mcdeling was kased on a larger set of executions,
differepces in the model versions and in the subiject pro-
gtams were pcre apparent. GENREF was the most difficult to
model; EESTEUCT was the easiest. Compared to DNF-PAN, GEAN
was 10% more accurate for CLUSTER, 8% more accurate for
RESTRUCT, and 5-10% less accurate for GENREF. {See Table
4.8.) As the number of sukject executions increases, GEFAM
seeps to Le ltetter akle to albksorkt and reproduce the

increased amocunt of inforration.

Cf the sets, Y1 and Y7, of subject executions, YT is more
representative of multiple-execution sampling, in terms of
sample size and restructurakbility (restructuring should be
based cn executions that yield good layouts). We see that
for CIUSTEF, DNF-PAM could get no closer to ¥T than 10-15%,
whereas there was a GPAM podel instance that could repro-
duce ¥YT. ' '

Loop Statistic

Subject = =000 @ =ememe—eme——————
Procgran Rank CNF Mean Hax
GENREF 1 -4 -8 -14 |
BEESTROUCT 2 0 0 +7 |
CLUSTER 1 -1 0 -1

Table 4.8
YT Model Quality: LCNF-PAN versus GPAN
{Eest results)

165
4,5 SUMMARY

Restults rresented in this chapter show the effectiveness
of modeling using Sinple model versions and point-estimates
of model parameters. In the next chapter, we move towards a
more realistic representation of the distribution of model
paranmeters. The progression towards model sophistication is
expected to result in improved modeling accaracy.

The results of elementary modeling investigations are
presented in Table 4.89. Since the terem accuracy relates
to the over-all qguality of a range of model instances, per-
baps we should consider the worst, lest and average cases.
It is safe to say, based on elerentary modeling, that GEAN
and even DNF-PAM are accurate, although there are situations

in which they need improvement.

Single-Execution uultlgle-Execntxon
Kodeling odeling
GPAN Stat GP!H Stat |

Accuracy —_———— ——eme——e-—
Ievel DNF Bean Max DNF Hean Max
Eest -1 0 +43 +9 0 +8
Average -9 -10 -6 =6 -5 -2
Worst =24 =22 -22 -23 -8 ~14

Tatle 4.9

Sumnmary of Model Accuracy

166

Over-all rerformance of DNF-PAM and GPAM. Some synthetic

——N_3 -5 R

strings were superior to their subject trace strings. In
the worst case, synthetic strings were 24% inferior, but in
the Lest case, 9% superior. Surprisingly, DNF-FANM does a
good jcb of approximating execution trace strings.

Effect of sukiject program. EESTIROCT is by far the easi-
est sukject program to model. CLUSTER sas most difficult to
podel using DN¥-PAM, GENREF was most difficult using GEAM.
The success with which LCNF-PAM acd GPAN model RESTRUCT con-
firgs that these model versions work for programs whose
locality results from tight looping during whichb a small
nuasber cf scdules are referenced. The lack of accuracy with
wvhich GEFAM nmodeled executions YT of GENBEF indicates the
need fcr mcre accurate modeling technigues. Henceforth, we
vill nc lcpnger investigate RESTRUCT, tut will study GENEEF
and CLUSTER, since they represent more challenging subject

prograr tyres.

ggfggg of suvbject execution set. Modeling difficulty

increased with the restructurakility of the subject execu~
ticos. Furthermore, model instances constructed from sub-
ject executions baving the same level of restructurability
hkad nearly the same level of accuracy. Thus some executions

are inherently more difficult to model.

Effect ¢f model version. The simplest model version,
DNF-PAM, wvas fairly accurate, ©tut as the numbker of subject
executicns increased, L[NF-PAM lost accaracy. GEAM showed
the ability to represent and reproduce referencing inforema-
ticn cortained in multiple executions of the subject pro-
gram, whereas DNF-PAM, Lty virtue of its simpler model struc-
ture, was unaktle to capture the significant referencing

characteristics of program execution.

167

Effect cf loop statistic used in GPAM pmodeling. There

vas bc consistent difference in results obtained using loop
- parameter statistics r and R, except that r worked better
for large samples of long executions, whereas R worked bet-
ter for ssall samples of sbort executions. %e did not find
this result very surprising. Our conjecture is that each
locp rarapeter has a threshold value, below which locality
inforsaticp is suppressed and lost, and above which locality
informaticn is distorted. The distortion results in phases
{in the synthetic strings) whose lifetimes are extended and
shose sizes (in npumber of different modules referenced) are
changed. These distortions in the synthetic string produce
a mexory-desand signature that is different from that of the
subject execution. #hen this distorted string is aused as
input tc the restructuring phase, the distortion carries
over intc the Iestructuring matrix thbat is produced, and

into the layout.

Effect of the number of synthetic strings. Increasing
the npuzher of synthetic strings used as input to the
Iestructuring phase did not <consistently ipcrease model
accuracya. {Our limited computer budget made it infeasible
to generate a very large anumber of synthetic strings.)
These findings, although a little disturbing at first
glance, give an important insight into the role of selection
constructs in GPAM =wmodeling. When point estimates of the
ucderlying model parameter distritutions are used, the only
variation among the individual strings kelonging to the sage
synthetic string set is due entirely to selection con-
Structs, That 1little variation is otserved suggests that
selection constructs do not bhave a wmajor impact om the
locality signature of the sukject program, and that to
achieve +the variation that 1is otserved in actual trace
strings requires the introduction of randomness in the val-
ves of loofp paraxeters used during synthetic string genera-

tion. This is done in the next chapter.

168
4.5.2 Ewaluation of the Bypothbeses

. Besults presented in this chapter generally support the
hypotheses of Section 4.2.3, vith one notable exception:
the guality of the model instance does not improve with the
nunber of synthetic strings generated from that instance.
This suggests that the parameter estimation phase is more
crucial toc model accuracy than 1is the generation phase.:
That e hypothesis was overwbelmingly supported by the
experizental data suggests that the model is sensitive to a
large bumber of factors, and that as yet, we do not ander-
stand the relative importance of these factors.

Cbapter 5

ADVANCEL MODELIKRG STUDIES

5.1 INTRODUCTIOXN

In the last chapter we saw that modelimg based cn point~-
estigpation of the distritutions of model parapeters works.
The accuracy of the simplest model version, DRF~PAN, was
ipgproved by changing to a more detailed model version, GPAPN.
In this chapter we continue the guest for more accurate
podel instances by moving along two different fronts:
(1) ibcreasing the nunker of execution observations used
to ccrestruct point-estirate sodel instances, and
(2) increasing the amount of information about trparapeter

distributions that is retained in the model instance.

The recults of this chapter show that the point-estima-
tion apgprcach does not reguire a large number of sazpled
executions—--spall random samples of 10-20 executions lead to
gcced mcdel instances. Attexpts to improve uponr the point-
estigation agproach by increasing parameter distribution
informaticn in the wmodel leads to rarginal improverents in
some irstances, and to significant improvement in others.
Gocd pcint-estimate wmodel instances were mot improved ufgon
by increasing parameter distritution information.

176

5. 1.1 (Cverview

" The podels in Chapter 4 vere deterministic with respect
to loors, since point estizates of loop repetition distribu-
tions were used. In this chapter we concentrate on large-
sapple zcdeling where loops are wmodeled probkabilistically.
In the ideal case, the type of probability distribution and
a few of its moments are known. In the more likely case,
wvhen the prcbability distritution is not koown, or is not
the sarxe fcr all loops in the program, the distribution must
be apprcximated Ly some “safe" distritution which captures
the essence of the olbserved dJdistritution. As a first
approxigation, we consider the uniform distribution over
some inpterval because it is the simplest, and leads to the
most efficient generator. Given a 1large nugler of subject
executiorns, the normal distribution is a reasonable choice,
since rrograms, in the long runm, tend to have a "typical"
behavicr, and only a low percentage of executions differ
significantly froe this behavior.

The first investigation looks again at point-estimaticn
of the distribution of loop repetitions, this time using the
pean (r) as the statistic. ¥from the previous chapter ve saw
that r was a good statistic for modeling 1large samples.
' The purpose of this study is twofold: {1) to study the
effect of sample size wupon the pean-valued characterization
of sapples, and ({2) to determine wvhether the choice of sta-
tistic estimator (r! or r2) affects the mean-valued charac-
terization. Ne want to determine the lower bound on sacrrle
size irn the event that mean-valued (MV) modeling is used.

The seccpd investigation focuses on the distribution of
locp reretitions to sece if there is a standard probability
distrikbuticn that describes 1loop repetitions, given the
paranmeters for an arbitrary program loop, such as mean and
variance. If one is found, it should describe a majority of
the rrcgram loops, to make parameter estimation and string
generation as streamlined and efficient as possible.

177
Finally, ¥e construct model instances that use pore
inforpation about the distrilution of 1loop paranmeters.
"Three apprcaches are used: (1) approximate the distribution
by seans, relying on large saample size to give accurate val-
ves for the meams; (2) approximate the distribution by uni-
forsly sarpling froa some interval that covers a major por-
tion c¢f the observed distrikution; {(3) Use a standard
distribution function, where the parameters have been deter-
nined fror a large sanmple of program executions.

5.1.2 Byfpctheses

A e e s

® A ssall random saemple provides adegquate information for

effective modeling.

9 kcdel gqguality improves with an increase in the amount of
parameter distribution information contained imn the

rodel instance.

178
5.2 TEE GPAM LOOP PARAMETER DISTRIBUTIONR STUDY

In the first part of this study, we investigate the use
of the mean (statistic r) to characterize sampled execu-
tions. Ir particular, se compare the characterizations
derived from the two estimators for the mean, rt apd r2,
whick rerresent different approaches to computing =model
parameters from multiple executions. In the second part of
the study, we study the underlying loop repetition distribu-
tions in crder to identify the probakility distritution
functicn to be used in generating loop repetitions during
synthetic string generation.

5.2.1 Intrcduction

¥e are interested in answering the following questions.

{1} Ecw well does a sample of a given size reflect, in
terss of mean loop repetition fregquencies, the popula-
tion cf all executions?

{2) Lces the «choice of statistic estimator, rt or rz,
affect the mean-valued characterization of a sasple?

(3) What is the typical underlying distribution of lcop

reretition freguencies for a given loop?

Each execution of the sulject program produces an execu-
ticn ccefficient record that is stored in the Coefficient
Database (CLCE). Each CIB record contritutes up to one value
for the characterizing statistic, r. For subject prograszs
GENREF and CLUSTER, the first eighty CDB records were chosen
to represent the finite population (POP) of all subject exe-
cuticns. The testbted of trace strings introduced in the
previous chapter was used as a stratified saeple fror ECE.

179
Randox saxples 510, 520, S3C and S50, of sizes ten, twernty,
~thirty and fifty, respectively, vwere selected froa PCP, for
each o¢f which &Emean loop repetitions were computed using

estigatcres ! and rz,

For selected loops, histograss were constructed to dis-
play the distribution of values, and vere used to identify
the tyre of underlying distribution. BHo analytic fitting of
the distritution was attempted, nor was a goodness-of-fit
test used, because histograes constructed during preliminary
stages shcewed no particular pattern of distribution fron
which cculd be fornulated a single hypothesis of distribu-~

ticon tyre.
5.2.2 Keapn-Value Characterization of Samples

5.2.2.1 Ccmparison of peans across samples

#e computed r! and r? means for samples TBED, S1{-S50 and
POP. Sazrle means for S10-S50 were compared to the popula-
tion wmeans, and the coefficient of variation amcng the
S10-550 sarple =means sas computed. Talles 5.1- 5.2 show
the ! and 12 means for sulject programs GENREF and CLUSTEE.
In the tables, the columns 1lakeled "MEANY apd "CVARY refer
to statistics copputed fror the £10-550 saample means. The
coefficient of variation measures the variatility in gmeans

acrocss sagples.

For subject rrogram GENKEFP, the means of tbhe S10-550 sam-
rle rxeans (computed using either rt or r?) differ from their
respective fpopulation means ty at most one rerpetition.
(Loop 113 of program GENRIF is the only exception to this
observaticao.) The same holds trae for all loops of prograe
CLUSTER, except for 1loops L3 and L5. This suggests that

accurate means can be computed using small samples.

180

Loor Est TBED

L1

Mo

mm

mey

mm

bl

[L]
oo

A\
[1=

NN

NN

™y

TNy

Ny

NS

12

NG
[[o]

(Falfy}
NN

oo
13 I3X]

VI

!
re

L3

o

N

14

2O
-
LA |

r~r~
N

(2o leel
win

e
D0

ooy
i

[
ouy

Lo
Qo
0

[Sh1s,]

hen

oo
~e

mod
L ol el

L]
L= Lo]

Moy

mm

Ny

Moy

M

I
oo
*

20
—v

Qo
~—re

oo
L and ol

S
-

Ll
Y iy

[Lo}
hand o

OO

==

mem
oo
..

Ny
-

N

-

mey
b sk aad

N
e

™~y
e

Moy
bl

o
oo
* .

oo
i

| ol ol

oun

oo
2]y]

. -

N

QO
N

=l
W

mm

mm

mm

e

M

mey

R
o0

LR
[+l]

™Yy

NN

ey

B Iy

N

NN

Ny

[LV 8]
-

t
L& 1]

e

e

e

Lo]

Lad']

MmN
o

'
oo

L ol

o g

L aad

b aad

Ll]

Mean Loop Bepetitions for GENREF Samples

181

There is no appreciatle difference in the means conputed

by rt apd 12 for low-repetition loops {(those with fewer than
ten reretitions), where the maximum difference between r!
and r?, across all sasples tut one, is less than one repeti-
tion. Fcr high-repetition loops, differences of up to 35%
(r2 gave the higher value) were observed for prograzm
CLUSTEE, but no significant differences for GENEEF. GEKEEF
has five (cut of sixteen) bigh-repetition loops; CLUSTEF has

two (cut cf seven).

_______ Means _for Saaple

Loop Est TBED S10 S20 S30 S50 POEF MEAN CVAER |

LY rt 4 4y 7 8 6 7 6 0.30 |
I2 4 4 7 8 7 7 6 0.30

12 r1 2 1 1 1 2 1 1 C.11 |
Iz 2 2 1 1 2 2 2 0.18

13 1t 79 58 88 76 76 73 75 0.17 |
12 73 76 92 87 81 77 84 0.08

14 11! 3 1 2 1 1 1 1 0.15 |
12 3 1 2 1 2 2 z 0.13

15 rt 39 27 52 £3 47 47 45 0.27 |
Iz 34 39 57 60 54 50 52 0.18
L6 ri 5 6 5 4 5 5 5 0.11
2 4 4 5 4 5 n E Q.05
17 r! 6 6 7 7 7 7 7 G.10
Iz 7 6 7 7 7 6 7 0-12

Tatle 5.2

Bean Loo}p Repetitions for CLUSTER Samples

182

5.2.2.2 Ccnfidence intervals for the mean of ¢

The discussion from here on deals with the sample of When
the MV model instance is already accurate, up to n valuves of
.r, the mean loop repetition freguency, extracted froz n
executions of the subject program, and computed ausing ra.
{(An execution for which a loop is never executed does not
produce an estimate of r.) The mean and standard deviation
were ccroputed for each sample, and used to compute 90% con-
fidence intervals for the mean of r. The standard deviation
of the (infinite) population was assumed to he that of PCP.
Assurzing furtker that each sample was large, confidence
intervals were computed using the normal distribution. (The
Student's t-test, which requires no assumptions, yielded
tighter corfidence intervals. At any rate, the intervals we
will be using are conservatively wide.)

Frog Figures 5.+ 5.2 we see that for large saarles,
confidence intervals narrow, degenerating into point esti-
pates. Even for small samples, the intervals for low-rep-
etiticr lccpgs narrow to a width less than one repetition,
suggesting that these 1loops can be wmodeled using =means.
High-reretitiorn loops that have npon-trivial ccnfidence
intervals arpear to -have underlying distributiors that can-

not be characterized bty zeans alome.

-

|

|

TESTBED R el I |

510 |---r-memmm e mmeses o m e l [
S20 e |

S30 J-=onmmm- I i

S50 |----- i ,

POP I---1 |

i

1

Interval

Figure 5.1
90% Ccnfidence Intervals for loop 1 of DUNMECSG

¥hern the t-test is used +to compute confidence intervals,
the median widths of confidence intervals for sample S20 are
0.73 fcr CIUSTER and 0.€3 for GERREF; for sanmple 550,
respective widths are 0.51 and 0.13. For the high-repeti-
tion lccps (the one with tie highest repetition excluded) of
GENREF, the average ipterval width is 77 for S20, and and 14
for 550. 7The respective widths for CLUSTIER are 265 and 68.

184

- -

TESTBED [o=ercccm e |
S10 e bl !

520 [P I I
S30 | — l
$50 I---1 |
POP -1

Intervsasl

Figure 5.2
90% Confidence Intervals for loop 2 of MEERGE

¥e conclude that, when seans of the underlying distribu-
ticn are used, the sample size need not Lke very large; in
fact, sakples of size twenty or less are adequate. This
indicates that there is a sample size Lkeyond wbhich addi-
tional sarnpling will have 1little or no effect uwpon mean-val-
ued lccp parapeter values. Of course, using the mean as the
sole arrroximatiorm to the distritution for high-repetition
loops results in loss of information atout the distributiorn,

such ag its variakility ané range.

185
5.2.3 7The Distribution of Loop Repetitions

In the discussion that follows in this section, the ran-
dor variable is not r (the mean loop repetition frequency},
but, 1let us say, x = loop repetition frequency. Eandor
variable r is estizated from the collection of x values

observed during one or more program executions.

Because of the potential for a large volume of data, raw
loop reretition frequencies were gathered sparingly. The
data gathered were used to determine tkhe shapes of the dis-
tributions and to see whether tbhere is a commonality of dis-
tributicn types for loop repetition frequencies.

We constructed bhistograms showing the relative frequen-
cies fcr {raw) loop repetition freguencies for all loops,
since the volume of data was seall. W®e have included only a
few cf the more typical bistograss. Histogras shapes fell
into fcur categories.

(1) Tecaying. The proltabilities decreased (approximately
monctonically) with increasing repetition freguency.

(See Figure 5.3.)

{2} Bell-shaped. The prolkatilities increased, then

decreased. (See Figure 5.4.)

(3) Bytrid., Probabilities are nearly constant over an

interval of spall values (i.e., the distritution is

upifcrm over this interval), and keyond this inter-
val, the curve is type~1 or type-2. (Sce Figure
5.5.)

(4) Kc rarticular shape. {See Figure 5.6.)

186

D et D e d

w300 o, D™

>

= #POINTS = 3757
MIN = 1
MAX =
AVG = 4
m STD DEV
"M MEDIAN =
MODE = 1

B Surmary Statisties

N7

012345678290

1

LI g

Loop Repetition

e ro [

-

FPigure 5.3
Decaying Distribution for Loop 1 of EERGE

187

D o vt O =

waooooo s

Summary Statistics i

, #POINTS = 81

—_ MIN = 1 ,

e MAX = 14 :

AVG = 4,1

— STD DEV = 2.6 ,
MEDIAN = 4

MODE = 4 |

i
e anl o |

11 1 1 1 :
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 |

Loop Repetition |

Figqure 5.4
Eell-Shaped Distriltution for Icop 1 of MERGE

188

M & =+ D= g
OO Dy

Summery Stetisties

Loop Repetition

M
‘ #POINTS = 1000
MIN = 1
[MAX=3U
AVG = 7.2
STD DEV = 4,7
MEDIAN = 6
Bl MODE = 4
”Uﬂﬂﬂﬂnnnnnnnnn>
11311111111222232
0123456 0789012345607 89012314

Fiqure 5.5
Hybrid Distrikution for loop 2 of MERGE

189

R Summary Statisties [
e T
] #POINTS = 77 !
a MIN = 1 |
t F MAX = 45
ir AVG = 12.6 ‘
ve STD DEV = 10,1 1
e g r MEDIAN = 10 i
u r in MODE = 10
e |
n
e
) P
11111222223333341414 I
0246802461802 468024628024 ‘
Loop Repetition I

Figure 5.6
Untyped Distritution for loop 2 of LCADPDN

AD ipteresting finding was that the shape of tke distri-
buticn degrended upon the executions saapled. For exaample,
Figures 5.3 and 5.4 have different shapes, but describe
tvo different sets of observations of the same loop. Kotice
that, although the shapes differ, the mean repetition fre-

guenciecs are gquite close.

180
The findings are sumparized Lkelow.

{1) Ro single loop repetition distritution describes all

locgs.

{(2) For a given loop construct, the type of distribution

may vary from sazple to saample.

(3) Although the type of the distritution mpay vary from
sapple to sasple, for a given loop, the means of the
distributior appear to ke rather stable from sanple

tc =aaple.

5.2.4 Conclusions

i

¥e have shown that the means of the loop repetition fre-
guencies are guite statle across random samples of different
sizes, even though the means wmay contain very 1little
inforzration about the underlying distrikution. Across saz-
ples, variation in the sample means is so low that when the
sasple Eeans are used as point-estimates of the wpderlying
distrituticns, the differences in the resulting model
instances (one per sample) are slight.

Fipally, we =saw that there is no general distritution
functicn that generates repetition freguencies for all
loaops. This strongly suggests that one must resort teo
approxisating the distritution by some interval that pre-
serves the mean, yet contains a major portion of the distri-

bution cf repetition fregquencies.

191
5.3 GEFAK BECDELING BREVISITEL

During synthetic string generation, some approximation to
the wunderlying loop repetition dJdistribution is reguired.
Results from the previous section suggest that +the uniform
distrituticn, defined over an appropriate interval of rep-
etitiors, xay be the only viaktle representation of the dis-
tributicn, =ince the type of distribution varies from loop

te locr, and froe sample to sanmple.

Ip this section we 1investigate three modeling agproaches
that use dJdifferent representations of the distribution of
loop repetitions. Approaches (2} and (3) are intended to
produece better model instances thap approach (1).

(1) Mean-valued (MV) modeling, where the distribution is
apprcxipated by the sanple mean.

(2} Interval-based modeling, where the distributioan is
arproxisated by an interval from which repetitions
are samrled vniforely.

a) Average-Maximum (AN) interval, defined by

{ mean repetition,sarximue repetition}.

k) Extended interval, defined by [r-kd,r+kd], where a
is the sample standard deviation, and k is either
cne {(Et} or two (E2).

(3) Cistribution-based modeling, vhere a standard prob-

ability distritution is used.

a) Ncrmal distritution (ND). Negative values are clip-
red, and replaced replaced ty a zero repetition,

b) Fcisson distritution (PD).

182

In Tables 53~ 5.5 that follow, =model instances are

identified by sample identifier and modeling approach. For

exarple, the @mean-valued model for samplé S20 is written
®S20-8V®; jts Poisson instance Lty "sS20-PD".

¥e have seen that KMV podeling works well, but npowv we
would like to see if its accuracy can be improved by invest-
ing more effort in the sanpling process. ¥e computed model
instances for each sample, IBED, S10-S550 acd FCF, and com-
pared them to TEED-MV to determine whether increased sasfle
size leads to impproved model accuracy.

Percent Imaproverent
over TBED-HV

e e e me mm ome oA wme A e e b= owr ww ww
-—ee_ E R R R OEEEEEEEMRIE=E =

Sutject Program

¥odel -—-- -
Instance GENREF CLUSTER
S 10-NV -4 -11]
S20-NV -4 0
S30-KV 0 -37
550-KV +2 0
POE-NV +2 0

Iable 5.3

Mear-Valued Modeling: Effect of Sample Size

Table 5.3 shows the percentage improvement of MV model
instapnces cver model instance TBED-NV. For GEMNEEF, ECE-NMV,
constructed from the largest sample, was only 2% Ltetter than
TBED-¥V, and the over-all maxirmum difference in the quality
of the rcdel instances was €%, vhich is quite low. Three

193
CLUSTER XV model instances matched TBED-MV, but S10-HMV was
was 11% inferior, and S30-MV was 37% inferior. (Cur impedi-
ate reacticn to suchk a poor S30 sample was that it repre-
sents the bad ™luck of the drav."™ Indeed, 2 second random
sample of size thirty matched TIBED-MV, as did the other sap-
ples ¢f size greater than ten. Further examination of S30
revealed that it contained debugging executions that con-
tained calls t¢ debugging routines that were rarely (if
ever) called during ¥production" executions.) ke conclude
that fcr . ¥V modeling, there appears to be a sacple-size
threshcld, beyord which further sa=mpling does not lead to
isrrcved model accuracye Furthermore, Wchance% saxpling
notwithstanding, this tbkreshold is Letween ten and twenty

executicns.

The sizilarities in the model instances, and the lack of
marked superiority of models constructed from large sasples,
are explained in part Lty tke statistical characterization of
thke saxrles. The sample means used in mean-valued modeling
vere close pumerically, which resulted in model instances
that differed in only a few loop parameters. ¥e also found
that selection construct parameters for all the =model
instances were nearly identical across all samples. When
executions are characterized using mecans, there does appear
to be a 2typical? behavior, vhich can be surpised from

observing a ssall nunker of executions.

194
5.3.2 1Ipterval-Based Nodeling

We have seen that when MV modeling is used, there is 1lit-
tle neced for extensive sampling, since small sasples tend to
produce the same means as large samples. §e also saw that
confiderce intervals, which capture more of the underlying
distribution, degenerate into point estimates when thke sam-
ple tize ies large or the confidence level is low. We now
use sakple statistics to construct intervals that capture
some of the range of values in the underlying distributions.

5.3.2.1 Upniform sampling fron [mean,maximun]

Estizatcr B2 computes the maximum loop repetition random
variable F by averaging the maxima from the samspled execu-
tions. This Fproduces a smoothed value which negates the
effects of very large outliers. Thus the interval [r,E2]
deletes froe the distriltution very bigh values and values
less than the =mean. fhe rationale for such an interval is
the cornjecture that highk repetitions have a more sigmnificant
effect upon program locality than low repetitions.

The GENREF model instance S10-AM was 4% Letter than its
MY ccunterpart, and matched TBED-MV, the best BY model
instance. For CLUSTER, on the other hand, S10-AN was 10%
worse tham S10-AV, and 22% worse than TBED-AY.

195

PERCENT !
IMPEHEROVEMRENT i
GENREF o ver |
Ecdel - —_——— - —— [
Ipnstance TEED-NV 510-MY S20-MV ITBED
TEeesSe—— SEETEESTT smmmmmesss e = ﬂ
TBED-HY NA +4 4 -8
TEED-XD -7 -2 -2 -15]
TBEI-PD -1 +3 +3 -10]
S510~-0V -4 KA 0 -13 [
S510-4H 0 +4 +4 -8 |
S20—rV -4 0 Bl -13
520~E1 +3 +6 +6 -6 ’
S520-E2 +3 +7 +7 -5 ,
520-HD -3 +1 +2 -1
520-PD -1 +3 +3 -9 I
Tatle 5.4

Izprovements for GENREF Model Instances

196

IMBEGVENENT
CLUSTER over
%32?%353 TEED-NV_ S10-AV_ S30-KV_ _TBED _
T LTI LTI TIITLLL oo]
TBED-HV NA +9 427 0 |
TEED-ND -1 +9 +26 -1 |
! TBEI-PD -1 +9 +26 -1 ‘
S10-MV -11 N2 +19 -11 |
510- 2% -22 -10 +11 -22 |
S30-RY ~37 -24 HA -37
s30-an ~23 -11 +10 -23
S30-Et -50 ~-36 -10 -50
S30-E2 -79 -61 -30 -79 !
S30-ND -1 +10 +27 -1
S30-PD -1 +9 +26 -1 ’

Tatle 3.5
Inrrovements for CLUSTER Model Ianstances

5.3.2.2 OUnifors sampling from [r-kd,r+kd]

The Ekeanr—maximum interval captures only the tigh end of
the distritution; all repetitions less than the mean are
lost. We would like an interval that represents thke distri-
buticn ¢f values about the mean, and wve would like to form
the interval so that the there is an associated measure of
the fprcpcrtion o©f the underlying distribution that the
interval covers. Symzetric extension of the interval abcut
the rean ty k standard deviations (d), produces interval
{ r-kd,r+kd], for which, by the Chelyshev inequality, we know
that nc &wmore than 1,k2 of the distribution falls outside

197
this interval. For k=2, interval {r-2d4,r+23) covers at
least 75% cof the distribution.

Since negative numkers are not allowed, negative left-
endpoints froduced by interval extension are replaced by
Zero. In such cases, the center of the interval is oo
longer the sample rean, s0 sampling from this truncated
interval will rroduce values whose mean is higher than the
{true) sasrle mean. In fact, the maximum of the extended
interval may be larger than the otserved maximum, which may
result in synthetic strings that are much longer than the

sabject string.

Fror Table 5.4 +we see that subject program GENRBEF again
realized inprovements when E1 and E2 intervals were used.
Although S20-MY was the worst of the mean-valued model
inpstances, S20~E%1 and SZ0-E2 were 4% Lbetter than TBED-NMV,
and 6% better than S20-MV. The model instances S520-E1 and
520-E2 prcduce synthetic strings that are withkin 6% of the
subject string set TPREL.

Neither CLUSTER model instance, S30-E1 nor S30-E2, was an
inproverent over S30-AV. In fact, they were 10-30% worse.
Could the reason be that S30 %as a poor sample, and there-
fore ary attempt to improve a model instance based on it
will fail? Close examination of the samples TRED and S30
reveal a fex differences, which are related to the function
of the CLUSTER program and the nature of its irputs. For
TBED, three 1layouts were produced for each restructuring
graph, one for cach of thre¢e different page sizes; S30 pro-
duced crly one layout per restructuring graph. 530 pro-
cesses eight graphs, TBED four, so that S30 executions are
longer. S30 alsc worked on more complex grapls than TEEL,
requiring more {50 versus 40) 1list merges during the forma-
tion ¢f laycuts. Even these differences do not indicate
that TEED and S30 are as radically different as their model
instarces are. The erratic bebavior of the CLUSTER AN, E1

168
and E2 podel instances may ltest Le explained as the "luck of

the draw.™

5.3.3 rIistribution-Based Modeling

For larqge samples, the normal distributiom is generally
accepted as a good approximation to the underlying distribu-
tion, whatever its true fornm, Since leoop repetitions are
non-negative integers, the normal distritution must be trun-
. cated at the origin, to disallow kegative values. This
clipping actually skesis the wnormal approximaticn towards
values larger than the mean. khat is npeeded is a discrete,
non-pegative distribution ttat has properties similar to the
normal distribution. ¥e considered two, the geometric and

the Fcisscne.

The gecmetric distritution was appealing since its randon
nuzber geperator is efficient, and its parameter p has a
patural interpretation relative to loop execution: p is the
probability that the loop repeats its tody. The drawback is
that the distribuytionm is =wmonotone decreasing, and skewed
toward values less than the mean. The fact that spmaller
values have higher protakility than larger ones makes the
distribution unrealistic for loops with very bhigh repeti-
tions. Furthermore, very few loops in sample POF satisfied
the thecretical requirement that the standard deviation and
the mean te nearly the same. {(Interestingly, the Ligh-rep-
etiticr lccps of CLUSTER come close to this geometric dis-
tributicn requirement; those of GENREF conform more closely

to the Frcissck distritution requirement.)

Next, we considered the Poisson distritution, which, for
large Eean looks like the normal distritution. Its rate
rarageter represents the numkber of loop repetitions occur-
ring tetween loop initiation and termination. The Poisscn
randco numker generator is iterative, and requires consider-

able overhead, relative to uniform and geometric generators.

199

We investigated the use of the normal and Poisson distri-
butions. Cver-all, representing the underlying distribution
by a standard function was superior to all other modeling
-approaches- As usual, there vwas one exceptiom, S20-E1 and
S20-E2 for GENREF. As to which distritntion is superior,
they seem equally good. The Poisson distribution has the
advantage of restricting the range of repetitions geﬁerated
fer locps with high variances, whereas the normal distribu-
tion will generate a wider (sometimes unrealistic) range of
values. Despite the attractive features of the Poisson dis-
tribution, the normal distritution is probably the one of
choice, since it is more general and its generator is much

more efficient.

The cbjective of this investigation was to produce a
model instance for a sample {(e€.g., 520} that was Letter than
the ¥V podel 1instance for that sample. Thke approach used
was to increase the amount of information about the underly-
ing distribtution cf loop repetitions. %He met this objective
fcr beth subject progracs, GENREF and CLUSTEERE, but the
amount cf imrrcvement, and the effort reguired +to obtain
that igprovement sere different. For GENREF, the worst MV
model instance differed from the test one by only 4%, and
this difference was made up ty representing the distribution
as the 1interval between the mean and maximum reretiticns
observed ip the sample. Further improvement was obtained
vhen the interval was extended on loth sides of the nean.
In the case ¢of vprogram CLUSTER, attempts to construct a
model instance for the sample 530, the +worst KV instance,
were successful only wher the normal {or Poisson) distribu-
tion was used. The rest model instance for that sample was

as goed as any MV model instance for any sample.

200

Ncne of the mrodel instances were able to produce syn-

thetic strings that were superior to actual trace strings,

although symthetic strings generated from the bhest CLUSTER

model instances reproduced (in terms of restructuring) the

strings in the testbed. The Lest GENREF syntbetic strings
were within 5% of the testlied strings.

S.4 SUEMARY

We have shown, on the tkasis of sodeling results, that for
MY modeling, the observation phase of GPAM modeling need not
be very extensive. X small randozm sample of 10-20 execu-
ticns rrovides an adequate chkaracterization of the subject
prograt. MY modeling is susceptible to sampling ®chancen,
which is best rminimized ty sampling only production-type
executions. The hypothesis that a small randox sasrle
yields a gccd model ipstance is supported by the results cof

this charter.

The distributions of loop repetition freguencies tend to
be of nc predictalble type, and the type (form) may change
depending upon the sample. Lespite these obstacles to mod-
eling, we found that the means of the execution sanrples!
locp 1z1epetition frequencies are rather statle, and that
using the means to formulate the model instance yields

accertable results.

Increasing the amount of information atout the underlying
locp repetition distritution improves the gquality ¢f a poor
¥V model instance. Although the extended-interval approach,
which uses unifora sampling froz an interval defined by
loop-rerpetition statistiés, works in some instances, in oth-
ers it produces poorer aodel instances. Be feel that using
a standard distribution (normal or Poisson) is the safer
aprroach, =since neither omne was shown to result in dragati-

201
cally wcrse podel instances, as was the case with the

extended—-interval approach.

Whep the MV mode]l instapce is already accurate, increas-
ing the arourt of distritution information does not further
ieprrove model accuracy, as vwas seen with TBED-NMVY, and with
the accurate MV instances constructed from samples of size
greater than ten. Even when increased information leads to
an improvement, that improvement is at Lest marginal {(10% or
less, disccunting CLUSTER sample S30). Tke second hypothe-
sis, that mecdel quality improves with an increase in the
ancunt ¢f rparameter distritution information contained in
the epodel instance, is not strongly supported by the results
of this charter.

Chapter 6

A CASE STUDY

6.1 INTRCDUCTICKN

Up tc this point, we have conducted an investigation of
the rarameters cf the restructuring process and PAiN model-
ing techrigues, when applied to sulkject programs GENREF,
RESTRUCT and CLUSTER. The reader may recall that these pro-
grams were written by the author as a part of the modeling-
restructuring system used ir this research. Under such cir-
cugstances, a legitimate conrcern might be whether these
progrars have some property that favorally bias the results
repcrted@ in Chapters 3-5. The case study presented in this
chapter arplies @modeling and restructuring to anp arbitrary

EICgrare.

The fcourth subject program, ADDIX, was mot written by the
authcr, neither does it solve a protlem related to prograe
restructuring or modeling. khen it was selected, its refer-
encing properties (and to some extent, its function) were
unkncwe. ¥e found that, even though ADDIX was larger than
any of the other subject program, it bhad very similar static
structure, dyramic referencing properties, and restructur-
ability properties. ¥e also found that, for syanthetic-

203

string restructuring, simplest PAM model version, DNF-PAN,

——— . —

In the gnext section we present some practical problems
associated witk an auwtomatic modeling-restructuring systen,
and rropcse sore solutions that are suggested ky the results
of Charters 3-5. In section 6.3 the static, dynamic and
‘restructuratility characteristics of sukject program ALDIX
are rresented and compared with those of the other subject

FLCgIramges.

6.2 PRACTIICAL ISSUES COF AGTCHMATIC EESTRUCTURING

The subject programs GENREF, ERESTIEDCT and CLUSTEER were
studied in far more detail than would te practical for the
type cf 2automatic? modeling-restructuring systeum we pro-
pose. In particular, the careful tuning of the parameters
cf the restructuring process {A, ©® and p) that was done with
the sutiject rrograms, would pnot ke feasible for an automatic
systen. The last thing that the automatic system should de
is tc¢ force the programmer to tecome a performance analyst. -
Nonetheless, these parameters must e determined. e now

di scuss scme possible approaches.

204

There seems to be no predictor of a prograe's inherent
- potential for improvement through restructuring. The ben-
efits xust be wmeasuored ty monitoring the restructured pro-
gram's pemcly cost for some period of time, Nonetheless,
our fipdings, Lased on a small sample of programs, . along
‘with earlier results [FERR76a,HATF71], suggest that it is
safe tc assume that a program can Le improved Lty restructur-

~ing.

More than likely, the decision to restructure a progranm
will be based on some external factors: program size, run-
ning tise and frequency of use. For programs with short
rurnning times, or for small programs, the savings realigzable

from restructuring is low.

Critical-set restructuring algorithams, such as (&S,
require a knowledge of 3 and p, the paging algorithm and
page size used bty the system on which the restructured pro-
gram will execute. On a given system A and p will be fixed.
The restructuring windos, €, is the one parameter that must
be set at the time restructuring is applied. %e have
observed that bad choices of & do exist, bkut that once they
have teen avoided, there appears to be no significant dif-

ference in the layouts ottained.

¥e have seen that © is a function of the tehavior of tke
subject prcgram, especially during its dominant phase, which
can te related to the static, procedure-level structure of
the rrcgram. An analysis of the PAM parameters can identify
préceduzes that make a 1large nmumber of <calls each tipe
entered; such procedures e€ither participate in or form the
nucleus cf rhases of execution. The distribution of calls

from this @2nucleus? procedure car Lte used to determine the

205
size c¢f the fphase, which gives a reasonatle choice for €.
That is, € can be chosen from an analysis of model parame-

ters, at the time the model instance is constructed.

6.2.3 HMeasuring Restructuring Effectiveness

In an auvtcmatic modeling-restructuring systen, there will
be the stcrage of neither the execution trace strings nor
- layouts ccmputed froa trace strings. Consequently, direct
comparison of synthetic-string layouts with trace-string
laycuts will mnot be practicatle. In such an environment,
the operating system should, at minimum, make a post-execu-
ticn repcrt of =smezory cost. The effectiveness of the
restructuring can be determined from the comparative before
and after costs, monitored over a reasonable period of tirge,
or frcr head-to-head comparisons of the restructured and
non—-restructured versions of the same progranm, executing

against identical input data.

6.2.4 Selecting the Modeling Approach

our lieited experience cained from the study of the three
spall subject programs GENREF, RESTRUCT and CIUSTER, shows
that <synthetic =strings are acceptakle approximations to
trace strings. In fact, w%e have seen that model version
selecticn, DNF-PAM or GPAM, 1is an issue which 1s secondary
to that c¢f cbeerving a sufficient nunker and variety of exe-
cutions upon which to tase a model instance. Moving froa
DFK-EAX to GPAM does improve accuracy, but reguires nore
expenditure cf effort in order to achieve slight improve-
ments. In some instances, the tradeoffs do not favor using

GPAM cver DNF~PAN.

¥e dc noct have sufficient experience to ke alkle to pre-
dict the relative quality of DNF-PAM and GPAM =zmodel
instances, nor can we characterize¢ when one model version is

preferakle. We have found that model instances, whatever

206
versicn is used, should ke Lased on multiple executions of

the sukject program.

6.3 CHABACIERISTICS GOF SUBJECT PRCGRAM ALLIX

6.3.1 Static characteristics

- —

The subject rrogram ADDIX was written in well-structured
PL/I and is maintained ky the University of North Carolina
Conputaticn Center. ALILIX automatically scans a Script text
file fcr terms that are to ke included in an index. &hen a
match cccurs, Script 2.ix2 cormands are inserted at the

aprropriate places in the text file.

ACDIX has two major 1logical phases. The first phase
occurs during the construction of the <finite-state machine
used tc patch index terms. Its duration depends upon the
nugber of index terms. The second amd dominaat phase
involves scanning the text file and processing matches. The
character of this phase depends upon the processing mode
{batch ¢r interactive, under iI50), the size of the text
file, +whether or not the text file is line nuntered and the

nucber cf catches found.

There are a few noteworthy differences among the subject
pregranss. Takble 6.1 compares ADDIX to an egually-
weighted, <corposite profile of the other sukject prograsms,
GEINREF, RESTIRUCT and CLUSTERE. ADDIX is the largest prograr,
has the mest complex call graph {(average procedure mesting
level ¢f 3.5 and share-index of 1.6), btut the lowest average
censtruct nesting. RESTRUCT has the highest average con-
struct nesting. Programs CENREF and CLUSTER are guite sigi-

lar, but have no distinguishing static characteristic.

207

R O B g e .,

SOBJECT PROGRAE i

ADDIX The Others
fStatements ;EE?-_ .*—_EE;_--
#Procedures 33 2€ f
#Caller procedures 12 10
‘#chical phases 2 3 1
Share—-index 1.6 1.3
Avg rrocedure mesting level 3.5 2.3 1
Kax procedure nesting level 6 4
#Lcofs 11 10 |
Avg lcop nesting level 0.3 0.4 ﬂ
Max lcop nesting level 2 2
#Selection constructs 31 14
Avg selection nesting level 0.3 0.4
¥ax selecticn mesting level 2 2
#Constructs 42 24
dvg ccustroct nesting level 0.8 1e1
Max ccpstruct nesting level 4 4

Takle 6.1

Ccmparative Static Characteristics of ADDIX

The rrcecedure call-tree for ADDIX 1is shown in Figure
6. ta In the figure, 2AL¥#%2 and 2LIMIT*2 indicate that the
subtrees emanating from AD# and LIMIT have not been expanded

(because cf lack cf space).

ADDIX == MAIN =

- 208

——CONVTCT
¢c——EXTRACT=+
L--ERKNSG
—-FCHART
1 _] =+
- «~«FFAIL
-~ FGOTO
—ERENMSG
--CHKFILS= I-*FILEORG
] L——STATDMP
{-—DAIEQ
|--IFTS0
f ¢~—ERRASG
| |--KEYNORD====ERRMSG
+==PARMFAR= +
l—-paxnnnp
~—PARZ
I -~AD#¢ ======PUTNUH
i
i ——GETINUM ~-AD§*
}~—ERRNMSG
----- ~~ALCYCLE=+
- IXHBIT =+ -=LINIT*
—:fRDCESS—+——HATCH -—5TIKUM
r —=TGET
--GETXUM |
{ —-—NOBLANK L-—-TPOT
|
——NOSCRIP } T-—EBRHSG
j—=L1lINMIT =i—*TGET
L——~POTNON | | .
i l --PUTNUY |
-=STATDNP Lt--TEUT
i %—-S;IKUH
—-TERMINI
i ~-TGET
~~TIHES 1
--TPUT
Figure 6.1

Call Tree for Program ADDIX

209

f Execution Iraces

6.3.2 The Testked

The testbed of execution traces for ADDIX éonsisted cf
twenty executions, of length in the range 600-25,000 proce-
dure referebpces. - Three single strings, 7IB-1, TB-8 and
TB-13, were chosen as representatives of the diverse types
of ADLIX executions. TE-1 represents a short, rLatch-mode
execution: TF-8 is a long interactive execution; and TE-13
is a mcderate-length batch execution. The following sets of
executicks were chosen. ye=TB-13, Y1=TE-8%9+ 11,
Y2=TE-16+17418 and YI=Y1+1i2. The respective lengths are
19k, 25K, 42K and 67K references. Y1 is a mix of tatch and
interactive executions of moderate length; Y2 contains long
batch executions, the predoninant way ADDIX is used. ‘To
achieve larger sebsets, ve conmltined Y1 and Y2 to fornm
IT=¥1+Y2, which represents a cross—section of ALDDIX execu-
ticns., Finally, set TEFLC contains seventeen executions from
the testbed. TEED represents a large random sanmple of ADLIX
executicns, and will ke used as the Lest possilble sanple of
ADDIX executions.

6.3.3 <CLypapic characteristics

Figures 6.2 and 6.3 display the intrinsic execution-
time characteristics of ALLIX across different executions,
Figures 6.4 and 6.5 show the locality properties of ADLIX

in relaticn to the other sutject progranms.

210

o]

1S03 3ATLIYT3Y

0820

0

T

0SL°0 00

00570

O Execution Set Y]
+ Execution Set Y2
X Execution ye

I == j T I
5.00 10.0 15.0 0.0 259

AVG WORKING SET SIZE

— oy nkin A— provy -—-‘ g S— roumy A — A Fv— .
R —

Figure 6.2
ADDIX Intrinsic Memory Cost Curves

211

O Execution Set Yi
+ Execution Set Y2
X Execution ye !

0°¢c1

3ZIS SM DAY

6o0"9

adll T I]
0. 50.0 100. 150. 200, |

WINDOW T x10! {

Figure 6.3
ADLCIX Intrimsic Working Set Curves

Fecr ALDDIX, the drop-oif in memory cost occurs when the
average working set size 1s five modules, regardless of the
executicn set. Y2, the set consisting of the longest execu-
tions, bkas a much greater degree of locality, owing to its
very lorg dcminant phases. Not surprisiugly, Y!, which has
the shcecrtest executions, also kas the poorest locality, evi-
denced bty higher memory cost and larger working sets. ALLIX
is sigilar to CLUSTER and FESTEUCT, 1n that the locatior of
the wmerpcry-cost drop-off point is not affected significantly

by the chcice of executiosn. In comparing the ye executions

212
of all subject programs, ALLIX appcars closer to GLNEEF in
behavicr. Eoth have menory-cost drop-off points near 5
(Figure 6.4), and toth have working sets that grow very
‘little for working set windows over 100 references. Cf all
the precgrams, the ratio of the average working set size at
windcw 2000 to the number of modules is lowest for GENREF
(0.38) and ADLIX(0.43).

Subject fprograms GENREF and ADDIX illustrate quite well
the principle of locality: programs can execute with only a
szall pcrticn of the program resident. Such behbavior is
explained by the existence of dominant phases of executicn.

214

dZIS SM 9aY

O GENREF
+ RESTRUCT
X CLUSTER
¥ ADDIX

I T 7
56.0 160, 150.

WINDOW T x1gQ!

200.

Figure 6.5
¥orking Set Curves for All Programs

215

6.3.4 Restructurabtility Clharacteristics

ADLIX showed the same potential for improvement through
restructuring ac the other subject programs did. The stan-
dard {STD) layouts were nearly 60% better than the worst
layout, and computed (CWS) 1layouts were 50% better than the
best standard layout. (See.Takle 6.2.) As was the case
for the cther subject programs, L.TEXTU0AL was the best stan-
dard laycut, which suggests that the order in which modules
defiriticons arpear in the source prograe gives some indica-

tion of execution-time locality.

Page Size
BTD —evwmmvmmm— e
Layout p1 p2 p3 Avg
ALPHA 32 34 65 4y !
RANDON 50 66 68 61
TERTUAL 53 € 78 €6
Avg 45 55 70 57 l

Tatle 5.2

Cost Reductions of STD Layouts for ADDIX
(Over L.WORST Layout)

Based «op results for the other subiject progranms, ve
decided to use the intermediate page size. Cur choice of
Iestructuring window ® was tased on intuition, on experience
with GENREF, the program most like ADDPIX in terms of size
and phaces, and on a trial and error e€xperiment to see which
values worked best. We chose =5, which, as seen in Table

6.3, leads to the best layout for the intermediate sized
paje. '(Cur choice of € was rpade Lefore our analysis of the

intrinsic cost curve, as discussed in section 6.3.2.)

216

Page Size
Ccoruted — =—w==-——=vm——re—————-
layout p1 p2 p3 AVg |
CES(Y¥1,1 39 67 17 41
C¥s({Y1,3 46 68 71 62
CNS[Y1,5 54 B2 66 67
cW5(¥1,7 58 81 B Y 73
CR5{Y 1,9 34 77 48 53
Avg 46 75 57 59
i
Takle 6.3

Ccst Feductions of CWS layouts for ADDIX
(Over L.BEST Layouts)

Befcre rroceeding to modeling, we wanted to verify that
the sage 1level ¢f restructuring improvement occurs, even
when different trace strings were used as input to the
restructuring process. %e also wanted to sce if improve-
ments were cbserved over a range of program executions. Ve
found the ipprovements oktained from restructuring using the
intermediate page size and window € to be statle across
cther execution strings, and across layouts based on differ-

ent executicns. (See Table 6.4).

217

Evaluation String Set

Layout Yi Y2 ye Avg
L(x1 81 67 70 73
L(Y2 66 66 70 €7 i
L {ye 60 67 72 66
i
Iatle 6.3

Stability of CkS lLayouts for ADDIX
{Izeprovenent over L.BEST)

218
6.4 AFPLYING THE MCDEL TC ADDIX

- A e v e o i ——p,

The reader =should recall that the bPasic accuracy of a
model instance is best measured Ly its ability to reproduce
the restructurability signature of a single subkject execu-
ticn. Since, for a sample of size one, there is not enough
informaticn to decide upon a distribution of 1loop repeti-
tions, the mean-valued approach is reasonakle in this case.
In Table 6.5 we see that the model is accurate to within
5%, 1ir the +worst case, For execution TB-8 (wkrich ranked
last in restructurability), the GPAM produced synthetic
strings that were 25% tetter than TB-8. Execution TB-1,
which had the best restructurakility properties, was modeled
to within S%. We see agair the relationship fbetveen subiject
executicn restructurability and MV model accuracy that was
seen 1r the other subiject programs. DNF-FPAM model instances

#were also accurate.

Subject Model Engg;;;e--— }
TraCe = 2 mTmmmemmee e ——e—————ee
String CXF-FaH GP AN i
|
Tp~1 -1 -5 I
TE 8 +3 +26 |
TE- 13 -2 0
| e L
Taktle E£.5

Single—Execution Model Quality

{(Inprcvement over Subject Irace Strings)

218

¥e mere interested in the effects of modeling based on a
spall rumker of carefully selected executions. Table 6.6
choxe that for a small nunbter of okserved executions, the
resulting wmodel instances for ADDIX were excellent for
DNF-PAl. The GPAM synthetic strings for ¥2 sere almost 40%
infericr to the subject string set Y2, while the synthetic
strings fcr Y1 reproduced Y. The major differences between
Y1 ard Y2 are restructuratbility (Y2 is slightly better) and
lengthe <o¢f their respective component executions {for VY2
they average 114X references, compared to 8K for Y1). ¥ith-
out a doubt, the inaccuracy of ¥2 gives one reason to be
wary <¢f mcdeling based on a small nunter of executions,

regardless of the quality of those executions.

1

|

- . !

. Model Instance i
Subject Trace — —-s—oo-esmmsoo———————o

String Set DNE-P AN GPAN
Y1=TE-8+9+11 +3 0 ‘
Y2=TB-16+17+18 +4 -37]
Takle 6.6

Multiple-Execution Model Quality
(Inprovement over the Subkject String Set)

220
6.4.2 rodeling lLarger Samples

Wher large sawmples of ADDIX executions were modeled, we
" cbserved the same pattern of progressive increase in accu-
racy with an increase in distritution information, with ocne
resarkable exception. In Takle 6.7 we see that DNF model
instances are superior to all otherst The very model that
contaips the least amount of sequence information does the
best jct of reproducing the restructurakility signature of
its sukject executions. Shat is pore remarkable 1is that
YT-DNF pcdels TEED Letter than any other TBED nmodel
instance, even though TFEI is vastly superior to ¥T. (The
best YT mcdel instance, which comes to within 1% of YT, is
still 30% worse than TEEL.)

PERCEN T 1
I NMNPEREOVEHMNENRNT]
over
Fedel = W —-=——emmo—m e e e
instance IT—-8v IT 1EED-RY 1bED
YI-DNF +20 +3 +3 -3
IT-ny NA =20 -20 -28
IT-KD -1 -22 -21 -30
Y7-PD -1 =22 =21 -30 !
TBED~DKF +15 +3 +3 -3
TEEL-HV +17 -1 NA -7 J
TEED-E2 +17 0 +1 -6]
TEEL-ND +1¢ -1 -1 -7 !
TEEL-PD +16 -1 -1 -7 |
Tekle 6.7

Summary of Large—Sample Model Quality

221
GEAX mcdeling results for ALLCIX show the wisdom of basing
the model instance omn large samples. Sample TBED contains

seventeen strirngs, YT oanly six. 411 GPAM model ipstances
for YT are poor, all those for TBED are good, coming to
within 7% of TEED. It is reasonatle to assume that YT

inherits much of the bekavior seen in Y2, whichk also led to

poor mcdel instances.

6.5 CONCLUZIOKS

Arplying a posteriori program restructuring techniques to
reference strings generated from instances of the procedure-
activation rodel works surprisingly well for the progranm
ADDIX. Program ADDIX has many of the sare characteristics
found tke the earlier sutject programs, and has sicilar mod-
elability characteristics as Heli. The extent to which
ADDIX rerresents the typical program running in a virtual
mezory environment can te determined only by further inves-

tigaticao.

That DNF-PAE is superior to GPAM is surprising. If this
is true fcr a large class of progranms, then the automatic
modeling-restructuring system proposed in this research can

indeed be implemented at a very lox cost.

Chapter 7

CONCLUSIONS AND JDERS FOE FEBFIHERE RESEARCE

7.1 FINDINGS AKL COKNCLUSIONS

7.1.1 BReview of the Resgarch Environment

7.1a1.1 Model assumptions

The pcdel versions used in the research contained a set
of simplifying assuymptions that probakly are not satisfied

by actual pregrams.

© Call-rath indeperndence. This acsunmption is present at

the 1level of the mnodel version: it is present in
CXF-FaM and GPAK, btut not in DFA¥ and AGPAN. Under
this assumption, procedures execute in a "memory—less"
state, ipn which the caller can mot exert any distimp-
" guishing influence on the execution of the called pro-
cedure, AGPAM and ULPAM contain a memory of the call
rath (frcom the driver module), in that each procedure
has multiple sets of parameter values -- ohe per unigue

call path to that procedure.

223
ical independence of construct parameters. This

tica depengdenc
t

assupfticn is present at the level of parameter repre-

O Statis

septation and synthetic string generation. It reguires
that all construct paraceters be independently distrib-
uted, i.e., that there are no correlations among param-
eters. This assumption, when present, nullifies ttLe
effects of ccntrol variatbles defined globally or-passed
tc rrccedures as parameters. This assumption is proba-~
bly Ecre wunrealistic than the call-path independence

assurftion.

T.1.1.2 Gecals

The gcal of the research was to investigate the use of
PAM as ap integral part of a low-cost, automatic progranm

restructuring systenm.

¢ prcgrarmer—-free automatic restructuring systenm. Such a

systen requires automation at all phases: nodel ccn—-
stroction, rparameter estimation, synthetic string gener-

aticn and restructuring.

© Mcdel accuracye. The automatic modeling system should
rrcduce gcod layouts that are competitive in performance
with layouts obLtained through standard restructuring

pethods.

© Lcx cost. It was crucial that extensive parameter esti-
gcatior and generation not le required to achieve podel
irstances of good gquality, since ttese phases cf model-

ing were far more expensive than model construction.

224

7.1. 1.3 The experimental approach

Four PL/1I programs were modeled. ¥e investigated the
differences in model accuracy as a function of subject pre-
gras, xocdel version, parameter representation (statistic and
detail abcnt the underlying parameter distributions) and
Farapeter-estimation approach. The general podeling

aprroach is outlined below.

1. Mcdel version selection.

2. kodel comstruction and program instrumentation by the

ccmriler.

3. Farameter estimation: selection of executions to
observe, program execution and computation of param-

eters.
4. Synthetic string generation fros model instance.
5. Prograz restructurinog using synthetic strings.

6. rodel validation Lty layout corparison.

7.1.2 Autcmatic ¥odel Construction

¥e sheowed that all model versions can be constructed by a
zodified ccmpiler requiring very 1little additional complex-
ity or execution resource. %e further showed that executicn
of the subject program to estimate model parameters
increases the program's execution time by a @mnegligible
amournt. Algorithms for model construction and subject pro-

gran instrumentation were given only for model version GFAM.

o

225

Model-based xestructuring works. In Chapters 4-6 we saw
that synthetic-string layouts bad memory costs £-20%
higher than trace-string layouts. 1In other words, 80-95%
of the paximum performance iamprovement achievable through
restructuring was realized when synthetic strings were

used.

Mean-Valued model wersions ar€ adequate. Model instances

based ir which the distritutions of loop paranmeters are

apprcximatéd ty the mean repetition frequencies are accu-
rate, esrecially when the means are estimated from data
collected from a random sazple of 10-20 program execu-

tions.

ing. Sarpling more than twenty executions does not result
in =significantly better =model instances. Even when

improvements are realized, they are marginal {around 5%).

Corrlex models are mnot cost-effective. Increasing the

arcurnt c¢f rparameter distriktution information regresented

in a mcdel instance does not, in general, result in cost-

effective improverents in model accuracy. In some cases

only parginal improvements are achieved, 1in others model

accuracy decreases with increased complexity.

Prcgramps bave sipilar properties. Differences 1in pro-
grams, Yroth in static structure and in dynamic ctaracter-
istics, are not as great as one might think. Ferhaps the
unirfying thread is the concept of program locality. Even
thcugh the differences are mot that great, we were not

able to develop any approach to characterizing a program's

226
restructurability, or eodelakility, apart fror actual
experience with the program. Fortunately, ve have growing
evidence that programs are both restructuraktle and sodela-

ble, using PANM.

7.1.4 Evalupation of Major Theses

Cf the four theses set forth in Section 1.9, three have
been surported by the finding of the research. Tle fourth
thesis —- that the cost of using the modeling systenr does
nct exceed the cost of restructuring using execution
traces == is not supported Lty the results to date. The
zajcr cost of using the modeling system accrues during the
string generation and a posteriori restructuring phases.
Even when a small numker of synthetic strings is gener-
ated, the cost of producing them, plus the cost of model
ccostructicn apd parameter estimation, probalbly exceed
the ccst of tracing a smnall numker of program executiomns.
A nore efficient generator and the use of modeling short-
cuts may lover the cost of using the model, but the total
eligpipaticn of the need to generate synthetic strings is
sure to lcver the cost to a fraction of the cost of a pos-
tericri restructuring applied to actual trace strings.
Algorithms fcr computing layouts directly £from a =model

instarnce are needed.

227
7.2 KESEARCH NEEDS FOR AUTOMATIC BEESTRUCTURING

That PAM works at all demonstrates its potential; that
its accuracy is not predictatle suggests that wmore study
is required. The case shere model accuracy was substan-
tially improved by =moving to a more realistic eodel
instance =shows that there are situations that regquire the
post general onmember of the PAM family, togetlker with a
careful rarameter estimation effort, In other cases the

sicrlest model version is adeguate.

Sukseguent research in automatic program restructuring

using FAH should address the following unresolved areas.

© ccrrelations among Jloop parameters. What is a proce-
dure for measuring dependencies, and at what point
{e.g., correlation «coefficient) are the dependencies

significant enough to affect model accuracy?

® Characterization of modelalble programs. How can the

modelakility of a program te «characterized using FEAN
rarareters or program structure? khen is the most gen-
eral Ecdel version reguired? Khen will tre sirplest

suffice?

© putcratic terminatior of string generation. The basic

gereration terminaticon procedure outlined 1in Chapter 2

shculd te ixplemented.

228
7.3 AREAS FOF FUBTHER RESIAKCE

The studies suggested in the previous section cam be
thought of as prerequisites for the studies suggested here.
These fall into two categories: {1) expansion of the auto-
matic restructuring system and its algoritbms in order to
enhance pcdeling effectiveness and efficiency; and
{2) applicatiorn of modeling to protlems ipn other areas of
current research, such as program tehavior and program test-

- ing.

© Modelipg low—level source languages. Apply the Eodel to

asseskbler language programs, or to non-structured pro-
grazping languages. Many large programs written in such
larguages exist, Ltut have never Leen optimized for exe-

cuticn in a virtual memory environment.

o
[

Eplerentation of other model versioms. Inplerent the

e

b=
corplete modeling system.

© pata referencing. Levise approaches to referencing
data. Determine shen such modeling is feasible. The
arrroach should group data into large blocks to reduce
the size o©of the model grammar, and, ultimately, to

ensure the efficiency of synthetic string gemeration.

0 selective podeling of critical consiructs. Which proce-

dures ccntain constructs that are <crucial to the suc-
cessful modeling of the sukject program? Wtich con-
structs are iopsignificant, and can therefore be ignored

in mcdeling?

sed on PAM pararneters. Devise non—genera-

2
tive algcrithms that use the parameter database. ke
feel that the elimiration of the generation and a pos-
teriori restructuring phases will reduce the cost of

using the system Ly an order of magnitude.

229

© Use cf rage size in tailoring algoritims.. Current pro-

gram tailoring algorithms 1ignore page size until the
clustering phase. TLefine *space-critical" tailering
algorithms that allocate during restructuring a fixed-
size region in which ttke Lklock resident-sets are stored.
¥hat are the advantages and disadvantaqes of this

arrrcach?

Filtered restructuring. Eliminate from the clustering
thase @module pajrs shose affinities fall below scme
threshold, k. That is, define the restructuring matrix
C'* = C - k*¥C, It is possitle, by proper choice of k and
the restructuring window €6, to filter out faults caused
by transitions between phases, so the restructuring
ratrix records only thke competition amongst members of

the rhase.

Ccde-durlication clustering. Since code klocks tend to
be small, high-demand tlocks can te duplicated without
significantly increasing the size of the program's vir-
tual name Space. One possitle method would allow the
clustering thase to bave a threshold parameter. .
high-demand block can ke assigned to any natural cluster
having an affinity for it exceeding the threstold value.
TEA¥ pray suggest where code duplication can ke Lbenefi-

cial.

230

© Other arrtoaches to model validation. Imn this research,

se used prograr rIestructuring as the vehicle for nmodel
validation. As a validation tool, restructuring is
exrensive, cozpared to approaches such as tbose pre-
septed in [SPIR77]. These should be compared with
restructuring, to se€e whether the properties they meas-
- ure are related to program restruc;urability, and to the
nodelability of the sutject program.

Frcgram testinge. PAN instrumentation and executicn-
coefficient extraction provide a measurement tool fcr
Frcgram execution testing. Since only significant corn-
trcl structures are instrusented, and since these may be
the most crucial parts of a module to test, the voluze

of data is greatly reduced.

Butcpatic coding standards checker. The compiler can be

e o —— " o o 1 ———— e —

sade tc gcnitor prograr source code to ensure ccrformity

tc crganizational standards of program structure.

Locality studies. Batson's tounded 1locality intervals
{ELI) rrovide a way to decompose an execution into its
rhases, and to characterize each phase
[BALI76,BATST76b,BATSTIE]. DPAM appears to suggest a

gcre patural way of expressing locality [JONESO].

231
7.4 CONCLUSION

This dissertation has shown that program modeling to
‘achieve perforzance improvemeant through prograam restructur— .
ing is feasible. There remain interesting gquestions that
can be answered only ty further experimentation with a
greater number of larger prograns than those we studied. It
is our hope that this work has brought us a step closer tg¢

coofpiler—~assisted "virtual-memory" program optimization.

AERAT0

AEUS7S

ACHATE

AHCAT7 1

AIEX7E

RLJATS

ALLEBG

EREC77

BIELIOGEAPBY

e e S A . A S

Abzaps F., "“An APl Kackine,% Stanford linear
Bccelerator Center Report SLAC-114 (Fekruary 1970)a

Atu-Sufah W., Kuck F. ané Lawrie D., "Automatic
Frcgram transformations for virtual memory
ccrputers," AFIPS Conference Proceedings 49 (1979),
EF- S64-974.

Achard M.S., Eakonneau J.Y., Carpentier M.,
Mcrriset G., Mounajjed M.E., "1be clustering
algcrithes in the OPALF restructuring syster,” in
Eexrfcipance of Computer lnstallations, (D. Ferrari,
FEditcr), North-EBolland Puklishing Company (157§} .

nprinciples of coptizal
of tbe ACHM 18,1 (January

2hc A.V. and Fenning
Fage rerplacement," Jo
1S91), rr. E0-53.

et -

a

I o

dJd
o

Alexander W.G. and Wortman D.B., "Static and
dyramic characteristics of XPL programs," IEEE
Ccmruter 8,11 (Novemkier 1575), pp. 41«46,

Al-Jarrah, M.M. and Torsun I.S., "An empirical
aralysie of (CEOL programs," Software-Fractice and
Exrexience 9,5 (May 1$79), pp. 341-359.

Allen F.E., private communication (May 1980).

Eakcnpeav J.Y., Achard M.S., Morisset G., PFounajjed
¥.E., "Automatic and general soluticn to tte
adaptatica of programs in a paging environment,"™
Ercceedings of the €'th ACM Symposium on Cperating

Systebs Principles (Kovemter 1577), pp. 105-11€.

I

233

BAEE7Z EFaer J.L. and Caughey E., "Segumentation and
crtirization of programs from cyclic structure
apalysis,” AFIFS Conference Proceedings 37 (1972
SJCC), PE. 23 3¢,

BREE7€ Eaer J.l. and Sager G.R., "Dynamic improvement of
lccality in virtual memory systems,® JEEE
Iransactions on Software Engine€ering SE-2,1
(Japuary 1976), ppa- 54-62.

BAED732 Eard Y., "Characterization of program paging im a
tige-sharing environment," IBM Journal of Fesearch
2rd Develorment 17,5 (Septemter 1973), pp. 387-393.

BAEL7fa Eard Y., "Performance arnalysis of virtual memory
tigpe—~sharing systens," IEM Systems Jourmnal 17,5
(1575) , pp. Z6€-3td.

BARL7:k EFard Y., "application of the page survival index
(ESI) tc wvirtual memory system performance, I1EX
Jecurnal cf Research and Development 13,3 (ray

1575), PE- Z212-22C.

BAER7S Earrese 3.L. and Shapiro S.D., "Structuring
frcgrams for efficient operation in virtual zenory
systewms," 1EEF Iransactions on Software Encineering
Sk-5,6 (Novemter 1%57S), pp. 643-652,

BATS70 Eatsca A.P., Jdu 5.M. and kood D., "PMcasurements cf
seguent size," Cospupications of the ACH 13,3

{farch 1570), pp. 12:-159,

BATS7€a Eatscn A.P., "Program fekavior at the symtolic
level," I1ERE Lomputer £,11 (Novemker 1976), pp.
21-264

BATS76b Batscn A.P. and Madison A.W., "Measurcments of
sajcr locality phbases in symlolic reference

SyErcsivr cn Copputer EFerformance Bodeling,

Measurement and Edsluation, Canmiridge, Mass.
€4, ‘

¥

nt 2
(1576) 4 EP- 7

BATS77a

BATS77b

BELAGSG

BEL2€Y

BEQGO7%

BEAWNGE

BRAWTO

EECWT7S

BEYATS

234

Eatscn A.P. and Erundage R.E., "Segment sizes and
lifetimes 1in Rlgol €0 programs," Communications of
the ACHM 20,1 (Januvary 1S77), pp. 36-44.

Eatson A.P., Blatt D.W.E. and Kearns J.P.,
"Structure wsithin locality intervals," in
Measuring, Modeling and Evaluating Computer
Systems, (H. Beilner and E. Gelenke, Editors),
Ncrth-Holland Pultlisking Company {1977).

Felady L.A., "2 study of replacement algorithzs fcr
virtuval storage computers," IBN Systems Journal 5,2

{156€) , Ep. 785101,

Eelady L.A. and Keuvhner C.J., “Dypamic space
sharing in computer systems," Compunicaticns cf the

Ecgctt R.P. and Fraoklin M.A., "Zvaluation of
Earkcv program models in virtual memory systens,®
Scftware-Practice and F¥xperience 5,4 (Cctoler-

Lecegier 1575), Fr. 234-346.

Frawn E. and Gustavson F.G., "Program tekavior in a
Faying environment,” AFIPS Conference Froceedings
33 (1568 FJacC), pp~ 10iS-1032.

Erasn B., Gustavson F.G. and ¥Mankin E., "Scrting in
a raged environment," Coumupications of the ACK
13,86 (August 1970), pp. 4€3-494.

Ercwn P.J., "Software methods for virtual storaye
cf executakle code," Computer Journal 22,1
{Fetruary 1579), pp. E5(-52.

EFryant P., "Predicting working set sizes," IEM
Jcurnal cf kesearch and Development 19,3, (May

CHEV78

CEOR74

COFT6E

CCFF73

COHET4

COHELT

CCUF16

DEARGY

DEFEJE

235

Chevance B.J. aud HBeidet 7., "Static proriles aud
dyparpic behavior of (OEOL programs,"™ ACKE SIGEIR2X

Nctices 13,4 (April 1578), pp. 44-57.

s - —

Chcw C.K., "On optimization of storage
hierarchies," JEM Journal of Besearch angd
Levelorment 18,3 (May 1S974), pp. 194-203.

Ccffran E.G. aprd Varian 1.C., "Further experimental
data on the Ltehavior of programs in a paging
envircument," Ccmpynications of the ACM 11,7 (July

1568), Fp. 471-47%.

Ccffpan E.G. and Lenning P.d., C(perating Systen

e —

Cchen J. and Zuckerman C., "Two langquages for
estixating progras efficiency,™ Compunicaticns of
the ACM 17,6 {(June 1574), pp. 301-308.

Ccmeau L.W., "A study of the etfect of user prograsz
crtiwization in a paging system," Proceedings of
the ACHM Sympositm op Operating Syster Principles
{Octcker 1967).

Ccurteis P.J., "2 decomposaltle model of pregras
Lehavicr," 2cta Informatica 6,3 (1976), pp.
256-27%.

Dearnly F.H. and RKewell G.B., "Automatic
scgnentation of programs for two-level store

Ir-. 185 187.

Le Freitas S.l. and lavelle P.J., "A methkod for the
tize apalysis of programs," IBM Systens Jourpal
d3,1 {(1578), pp. z€-36.

DENNEE

LENNG6Ea

DENNEED

DEKRKNT70
DENNTZ

DENNTZS

DENNT6

DENKBJ

DITZ8Q

EISE74

23¢

Cernis J.B., "Segunentation and the design of
sultifpregraamed computer systems,"™ Journal of the
AcM 12,4 (Octolter ¥19¢Z)}, pp. 585-602.

PDerning P.J., "Thrashing: its causes and

FICC), PEe 915-S5z:.

Cerning F.Jd., "The working set model for progranm
sehavicr," Communications of the AC¥ 11,5 (May
1S68), Fp- 323-33:.

Lerring F.J., "Virtual Memory,” Computing Surveys
243 {(Septemker 1¢70), pp. 153~188.

Lenning PeJ., "On modeling program Lebavior,™ AFIES
Ccpference Proceedings 4C (1572 =3CC}, pp. 937-945.

Lecping P.J. and Graham G.S., "Multiprograrmed
sencry management," JIFFF Proceedings 63, (June
1575}, PP. 924-53¢.

Derning F.J., Kahr K.Ce., Leroudier J., Potier D.
and Suri R., "Cptizal multiprogramming,® Acta
Ipfcimatica 7,2 {(197€), pp. 197-216.

Derning P.J., "¥orking sets past and present," IEEE

e ————— — —— — -

{(Jaruary 1%80), pr. €t4—E4.

Litzel D.R., "Program measuremekts on a Lkich-level
larguage computer," IFEE Cosputer 13,8 {August
1560) 4, FE. &2-72.

Elsheff J.L., "Some programming techniques for
[Iccessing multi-dimensional matrices in a paginug
ervircument," AFIFS Conference Proceedings 43
(1€74) ;, Tr. YES-16G2.

E1SH7€a

ELSH7€D

FERR73

FEER74a

FEFET74b

FERE?S

FERE7¢a

FERR7€L

IFERR77

237

Elshoff J.l., "An apalysis of some commercial PL/I

Frgineering SE-2.z (1£76), pp. 113-120.

Elsheff J.L., "A numerical profile of commercial
Fl/I rrcgrams," Software-Practice and Experience
€¢4 (Octolker-Decemker 1576), ppe. 505-525.

Ferrari D., "A tocl for automatic program
restructuring, " ACK 15373 National Conference

Proceedings (1873), pp. <28-231.

Ferrari D., "Inpreving program locality Lty
strategy-oriented restructuring," IFIF Concress 74

Azsterdanm, pp. z€€-27C.

Ferrari L., "Isproving locality ty critical working
sets," Compunications of the ACK 17,11 (Movember

Ferrari D., "Tailering programs to models of
frcgram tehavior," I1iM Jcurpnal of Researchk and
Levelorment 19,3 (May 1575), pp. 244-251.

Ferrari D., "T1he improvenent of program Ltekavior,”
IFEE Ccmputer 9,11 (Novemker 1576), pp. 39-47.

Ferrari D. and lau E., YAn e€xperiment in progracm
1estructuring fecr pertormance e€nhancement,™
frcceedings of the 2n¢ Internatioral Corference ciL
Scftsare Engineering {1576), pp. 203-207.

—— e . mas el

Ferrari D. and Koktayashi M., "Program restructuring
algcrithms fcr gictel LRU esvironments,™ in
Ipternational Computing Symposium 1977, (E. Horlet
and D. Riklbens, Editors), North-Holland Futlishing
Ccnpany (1977).

238

FI1177 Filipski A., "Call Lty restricted aemofy reference,®
ACM SIGELAN Notices 12,%0 ({Octokter 1977), Fpp-

A e e e o o

FINEE6 Fine G.H., Jackson C.W and McIssac, P.V., "Lynamic
Frcgras kehavior under paging,"™ Proceedincs of the
ACH 23st Mational Conference (1966) pp 223-228.

FEAN74 Frapklin M.A. and Gupta R.K., "Computation of page
fault protatilities from program transition
diagrazs,"” Compunicetions of the ACM 17,4 ({(April

1574), pp. 186-191.

TREI7S Trieteiger w.F., Crenander U. and Sanpson F.D.,
' “Fatterns in program references,® IBM Jourmal cf
Recearch and Development 19,3 (May 1975), pp.

S —————— —— - ——— v S —————

«30-243,

GENTIJ77 Gentleman %.M. and Munro J.I., "Cesicning overlay
structures," Software-Practice and Experience 7,4
(July-&ugust 1577), pp. 4%3-500.

GRAH7é Grakam G.S., YA study of program and memory policy
tehavicr," EFh.l. [issertation, Department of
Ccrputer Science, Purdue University, k. lafayette,
Irdiana (Decemkter 197€¢).

GkAB77 Grakam G.S. and Tenning P.J., "Cn the relative
ccrtroilability of memory policies,® in Ircceedings
cf the Irternaticnal Sycposium on Computer

e e e —— mael T

(K.¥M. Ckandy and K. Reilser, Editors}, Northk-Helland
Fuclishing Company {1577).

HATF71 GHatfield D.J. and Gerald J., "Program restructuring
fcr virtval memory," 1FM Systems Journal 10,3

HATF72

IKNNETE

JOBNTE

JONEED

JCSE70

KEENT1

KI1B62

KNUTESY

KNUTT73

239

Hatfield D.J., "Experiments on page size, [rograc
access patterns, and virtual memory performauce,"
1EM Jourrnal of Eesearchk and Levelopmepi 16,1
{(January 1972), pp. 58-66.

Irnes L[.R. and Jsur S., "Interval amnalysis,
paginaticn and program locality," Information
Prccesesing Letters 5,4 (Octoter 1976), pp. 91-96.

Jchrson J.¥., "Program restructuring for virtual
pencLly systems," Froject MAC JTechuical EKepert
TE-148 (March 197%).

Jcnes E.L., "Procedure-level computer progranm
gcdeling: detecting major phases of execution,"

Naticpnal Technical Association., NASA Langley,
Baspton, Virginia {(Marchk 198Q0).

Jcseph M., “An analysis of paging and progran
tehaviocr," Computer Jourpnal 13,1 ({(Fetruary 1970),
EI- 4B-54.

Kerpnighan E.W., "Optimal sequential partitions of
graphs,™ Journal of the ACH 18,1 (January 1971),
FE- 34-40.

Kilburn T., EFditorwards D.B.G., Lanigan ¥.J. and
Surtner F.He., "Cne-level storage systeu,” IFE

(February 1962), pp. 223-235.

Kruth L.E., "An empirical study of Fortran

—e S -

(April-June 1571), pp. 105-133.

Krnuth L.F. and Stevenson F.R., "Cptimal measurermernt
fcints fcr program frequency counts,®™ BIT 13,3

KCEBAT?

KOCK70

KUEHGE

LEECTE

LOWE7Q

KADIT7E

MASU74

MASUTS

MCKEES

240

Kctayashi M., "Strategy-independent restructuring
algcrithms," Software-Practice and Experience 7,5

{Sertember-Octoker 1577}, pp. 585-594.

Kuck D.J. and Lawrie D.H., "Ihe use and performance
¢f memcry hierarchies — A survey," in Software

Press, New York {1970), pp. 45-78.

Kuvehner C.J. and kandall B., "Demandé paginc in

e S i i e . it

(1568), pp. 1011017,

lercudier J. and Eurgevin P., "Characteristics and
scdels of program tehavior," ACH Annual Conference

Lcwe T.C., "Avutomatic segmentation of cyclic
FLcgram structures tased on conmectivity and
frccessor timing," Coppunications of the ACH 13,1
{Janvary 1570), pr. 3-%.

Madison A.W. and Batson A.P., YCharacteristics of
[Icgrakc localities,"™ (ompupications of the ACM 19,5
{May 1576), pp. 2ES-2S4.

Masuda 7., Shiota H., Noguchi K. and Chki T.,
“Crtimization of program organization Lty cluster
apnalysis," 1974]1iIP Congress kroceedgings (1974),

Masuda 1., "Methods for the measurerzent of menory
utilization and thke improvement of progranm

Ergipeering SE-5,€ (Noventer 1979), pp. 618-031.

McKellar A.C. and Coffman E.G., "Crganizing
catrices and matrix operaticns for paged memory
systems,” Corrunications of the ACYK 12,3 (rarch

MCIET 2

MCEBV2

MORE73

Q11IVv74

CEDE74

RAMAEG

RANLES

ROEI7¢€

ECGE7E

241

Pcler C.E., "Matrix computation with Fortran amnd
caging," Communications of the ACHM 15,4 {ipril

1572}, FF-<t8-217Q.

Bcrris J., YLemané paging through the use of
wciking sets on tke MANIAC 11," Cowmunicaticns cf
the ACM 15,10 {Octoier 1572), pp. 867-872.

Mcrriscn J.E., "User program performance in virtual
stcrage systems," I1IMH Systens Journal 12,3 (1973),
IFe 216-237.

Cliver N.A., "Experimental data on page replacment
algcrithms," AFIPS Conference Procecdings 43

—— e o e

(1574) , Fp- 1759184,

Crderkeck H., "Performance of page—-fault frequency
rerlacement algorithes in a smultiprogrameing
ervircreent,™ IFIF Congress 74 Froceedincs (1974),
Ncith-Holland Putlishing Company, Amsterdan, pp.
235-241.

'Eamamocrthy C.V., "The analytic design of a dynartic

lcck—-akead and rrogram segmenting scheme for

e

Naticpal Conference (1566), pp. 229-239.

Randell B., "A note on storage fragmentation and
[Lcgran segmentation,"™ Communications of tie ACH
12,7 {(Jduly 15¢€9), pp. 365-364.

Rckinson S.K. and Torsun I.S., "An empirical
aralysis of FCEIR2N programs," Computer Journal
19,1 {(January 1¢7¢), pp. 56-62.

Rcgers J.Ga, "Structured programming for virtual
storage systems," JEM Systemns Jourmpnal 14,4 ({1975),
rr- 385406,

ECDEF73a

ECDE73b

BRUSSES

BYLDET7Y

S5aYE6ES

SKEE7E

Sk¥D78a

SNYD7E8b

242

Fcdriguez~Eosell J. and Dupuy J., “Ihe desigan,
ilplementation and evaluation of a working set

1573), FE. 247253

Ecdriguez~FKosell J., "Empirical working set
tehavicr," Compupications of the ACH 16,9

{(Septemker 1%73), pp. £56-560.

Fussell E.C. and Estrin G., "Measurement Lbased
autcratic analysis of FORIRAN programs,“ AFIES
Ccrference Proceedings 34 (SJ3CC 1969), pp. T723-732.

Byder Ka.Da., “"Optimizing program placement iu
virtual systems," JIEM Systems Jourpnal 13,4 (1974),
FE- 292306,

Sayre L., "Is automatic folding of prograss
eificient enocugh to replace manual?®
Ccxzunications of the ACHM 13,12 (Decemter 1969),
FFe 656—660.

Sneeringer C.C., "Hodels of memory management
technigues for time-sharing," Ph.D. Dissertation,
Uriversity of North Carolina at Chapel Hill, Charel
Hill, EK.C. {157%).

Sryder K., "On a priori program restructuring foer
virtual pemor systems,"™ Proceedings 2nd
Jrterpaticnal Symposium on Operating Systers, IKIA,
Le Chesney, France (OctokLer 1578).

Spyder R., “"On the application of a priori
kncwledge of rrogram structure to the perfcrroance
cf virtual remory computer systems," Fh.L.
Lissgertation, University of Washingtorn, Seattle, WA
{1578)

SEIEK72

SPIE76

SPIR77

TRIVi?

TSaC72

UESC7%

VEEHT7 1

WILK72Z

243

Sgirn J.F. and Lenning P.d., "Etperlments wlth

(FJCC 1572), pp. €11-€21.

Sfirm J.B., "Distance string models for precgram
tehavicr," IEFE Computer 9,11 {(Novemlker 19706}, FELE.
€11-€21,

b ogd

ll

R avior: Mogde _d
ents North-H an 19

lb—J
oulth

Firn dJd.
€3SUIEE 1977).

I= tn

Ith 4

Trivedi K.S., YAn analysis of prepagimng," EFeport
€5-1577-7, Computer Science Lept., Duke University,
Curham, KC (August 1%77).

Tsac FaF., Comeauy L.k. and Kargolin B.H., %A gulti-
factcr paging experlnent- I. The experiment and the
ccnclusicns," in Statistical Computer Perfcrrpance

Evaluaticn, (NW. Fr61terger, Editor), Acadenic ErLess

{1€72), pp. 103-134.

Urschler G., "Automatic structuring of prograems,"
IEY Jdournal of Fesearch and Developpent 19,2 (March
1575), Fpe 181-154.

Ver Boef E.W., "2utomatic prograz segmentation
based cn Boole€an connectivity,™ AFIPS Conference
Prcceedings 38 (1971 53CC), pp. 491-495.

ilkes M.V., "1he Gynamics of paging," Conmputer
3;99; 16,1 (Fetruary 1%73), pp. 4-9.

e
In prs

ACS

AGEAE

AN

BLI
CDB

CIRU

C5G
CwE

DNF

DPAN

E1, E2

GPAM
a5
I0BJ
Iprl
iLs

L.BESI

ACRONYMN GLOSSAEY/INDEX
Active-Construct Stack. See Section Z2.2.2, "model
ccpstruction.™
2liased GPAM model version. See Section 2.6.2.
Fcdeling approach stere loop-parameter
distrirtutions are estimated using the interval
[xearp,paxinun] of loop-repetition freguencies. Sece
Secticn EB.3.
Ecunded Locality-Jnterval. See Section 1.3.

Ccefficient L[atalase. See Section 2.3.1.

Critical LRU restructuring algorithm. See Section
1.7.2e2a

Call-Sequence Grammar. S€€ Section 2.2.
Critical WS restructuring algorithm. Se€e Clapter 3.

Distrikutive Kormal-Fore version of PAM. Sce
Section Z2.6.

Descriptive version of PAM. See Section z.€.3.
¥cdeling apprcach shere loop-parameter
distritutions are estimated using the interval [r-
kdor+kd], for k=1,2. Sce section t.3.

Generative version of PAM. See Section z.€,
Geperater Stack, »ith pointer GSP. See Section 2.4.
Icstrumented Clject Cocde. See Section <.Z.
Insertion-Point List. See Section Z.Z.z.

Iccp Stack, with pointer LSP. Se€e Section Z.u.

The kest of the four standard layouts. S5ee€e Secticnhn
3.4,

L.KORET

My

ND

CE

OBS

EAN

PAEXN

PC 56

FD

PDB

PDDB

PDT

POP

S5DL

SSPL

ST

245

Stapndard layout formed Lty assigning one module per
rage. See Section 3.4.3 for definition of otker
standard layouts —- L.ALPHA, L.RANDOM and 1.%OES1.

Mcdeling aprroach where loop-parawseter
distritutions are estimated using m€an loop-
repetiticn frequencies. See Chapter 5.

Mcdeling approach where loop-parameter
distritutions are assumed to Le Normal.

5. 3.

See Sectichn

Output tuffer during CSG constructiomn. See Secticn

General set of execution trace strings. See Section

Erccedure- Activationr Kodel. See Section 1.8,
Chagter 4.

Set cf parameters for model instance. Se€e€ Section
2. 1.

Parapeterized CSG. See Section 2.14.

¥cdeling approach skere loop-parameter
distritutions are assumed to ke Poisson.

Section 5.3.

Sce

Parampeter Dataltas€. See Section Z.3.1.

Parameter-Descriptor Latalase. See Section 2.2.

Prcduction Descriptor Tatle. See Section Z.4.

The set of all execution coefficients. See Secticn
5- 2.

Selecticr-Construct Descriptor list. See Section
Z.2.2.

A finple Structured Frogramming Languagé. S€e
Sectico 2.1. 1.

Srace-Time Froduct. See Section 1.5.

2b6

SYN Set ¢f synthetic strings generated from model. See
Chapter 2.
TBED The testied of actual trace strings. See Section

