
TR 85-010

CSP /85 1\fanual
•

David Middleton

•.

!

June 1985 1

•

...

CSP /85: User a.nd implementation manual.

David Middleton

March 1985

Introduction.

CSP /85 is a re-implementation of the CSP /80 system described in:

Design and Implementation of a language for Communieating Se­
quential Proeesses by Jazayeri et al. in 1980 Int. Conf. on Parallel
Processing (August) [IEEE].

CSP /80: A Language for Communieating Sequential Proeesses
by Jazayeri et al. in Compcon Fall 80 (September) [IEEE].

Significant changes were made to provide a more robust, rapid and traceable language

system, while maintaining, where possible, the original skeletal structure. This report

represents the ending of further modifications and improvements. It should provide both

a user's manual, and an implementation manual for further modification of the system.

The implementors of CSP /80 are deeply indebted to Steve Bellovin for his help with the

implementation of the concurrency within the operating system level, and I am grateful to

John Zimmerman for his useful suggestions which resulted in much more rapid compilation

stages in CSP /85.

CSP is a notation developed by Hoare (CACM Aug 78] for expressing parallelism

in terms of sequential processes that can communicate with each other. CSP /85 is one

of a series of implementations of a subset of this notation. Each sequential process is

described by a separate file of CSP /85 statements. The communication links between these

processes are described in the channel file. A series of translation steps results in a group

of distinct Unix processes. An invisible parent process oversees the interaction between

June 1985 2

these processes, handling requests, and reactivating processes that were suspended. The

series of implementations leading up to CSP /85 attempts to minimise the impact of system

limits upon the CSP processes that can be run. Since it turns out that there are myriad

ways in which to miss-program in CSP /85, the system attempts to provide exhaustive

error checking.

1. Stages or a running system.

The shell file csp runs the system. It takes optional flags that are passed on to internal

programs, a channel file that describes the interconnections, and the names of the CSP

processes.

The program parse translates each CSP process into C code, and generates on the

side a linktable which is a file describing the communication ports used by that process.

That C code is compiled into an executable program; a set of separately compiled routines

are included to support the communication operations.

The program link reads the channel file and the linktables generated by parse, and

generates C data structures that describe the network in a file named config. c. These

data stmctures are compiled into a parent process called the monitor.

Finally, monitor is invoked. It invokes each CSP process in turn, and then handles

requests written in a Unix 'pipe' by any of the actual processes. An 1/0 operation in

one of the CSP processes is translated into a function call in C. The common template

for these function calls is to send the appropriate request for a particular service to the

monitor (using an atomic write to a pipe), and suspend execution. The monitor will

process requests read from the pipe, awakening particular processes at appropriate times.

The actual data transfers are via a file called msgfile, to which each process ha.s a.n

independent file descriptor (in order that lseek()s in one process will not interfere with

read()s and write()s in another).

June 1985 3

•

..

The shell file csp encapsulates this behavior, saving option flags, running the transla­

tors, creating an executable file named clean that will remove the large number of inter­

mediate files that arc generated, and finally invoking monitor. Invoking monitor after csp

has been run will re-execute the system of processes without repeating any translations.

Changes to individual CSP /85 programs can be locally recompiled with just parse and

cc unless changes to the port declarations have occurred, in which case the link and the

cc cspmon. o steps must also be repeated.

2. The CSP /85 language.

A CSP /85 system consists of a set of modules containing sequential code, each held in

a file with a . csp suffix, and a description of the interconnections between these modules

held in the channel file. The runtime options to CSP /85 and the generation of output are

described as part of the CSP /85 language in this section.

2.1 The module language.

Appendix 1 shows the BNF description of the syntax for CSP /85 code files, and the

following highlights refer to those production rules. This grammar is extracted automati­

cally from the source for the 'yacc' parser generator, by deleting the actions and peripheral

code; and so reflects the conventions of yacc. Note particularly that terminal symbols are

in upper case, and non-terminals are in lower case. For the following description, non­

terminals are represented by italicised items, sometimes in angle brackets, and t. represents

the empty string.

2.1.1 Basic Expressions .

The syntax for expressions follows closely upon the expression forms in C. The four

types allowed in CSP /85 consist of scalars or vectors of characters or integers. With the

exception that negation is accomplished with • instead of ! , most reasonable translations

June 1985 4

•

of operations will work. The intermediate file of C code generated from CSP source will

show the translation that occurred. It is stored under the same root name, with the suffix

. c replacing . csp. The following set of CSP /85 operators are directly transcribed into

C: {++,--,<<,>>,<•,>•,•a, !•,tt,ll,-,- ,+,-,*,/.~,<.>}. Various parts of CSP/85,

have associated variables beginning with the string "csp": conflicts may occur if names are

used in CSP /85 programs beginning with this string. In general, there is little validation

of identifier names. However, the process name, following the process keyword, is checked

against the name of the file. In cases of disagreement, the file name takes precedence: . c

a.nd .1 t files are named for the . csp file, and these are matched to processes named in

the interconnection specifications.

2.1.2 Control structures.

The control structures in CSP /85 are based on Dijkstra's two alternation constructs,

which contain a list of guarded statements. Each guarded statement consists of a boolean

expression, ->, and a statement. When the compound statement is executed, all the

boolean expressions are evaluated, and from the set of guarded statements with a true

boolean expression, one statement is chosen to be executed.

[guard-> $tmt;
I guard-> $tmt;
I guard-> $tmt;
]

* [guard-> 3tmt;
I guard-> &tmt;
I guard-> stmt;
]

In the first form, the compound statement is executed exactly once, and the program

fails if none of the guards is true. The second form is executed zero or more times,

until none of the guards is true. Truth corresponds to C's interpretation, namely non­

zero integers. In choosing from among more than one possible true guard, Hoare's CSP

assumes non-deterministic choice, hopes for fairness, and leaves to the programmer the

responsibility that the selection method could not affect correctness. The implementation

June 1985 5

•

of CSP / 85 relies upon the last assumption to exploit a simple though neither fair nor

non-deterministic mechanism to accomplish this construct.

2.1.3 Communication.

Interprocess communication is accomplished in CSP /85 through a channel that joins

the output port in one process to an input port of another; the channels are capable

of transferring any of the CSP /85 data types. The two communication primitives are:
•

? var • port and ! port • expn. Ports exist both as scalars, and as vectors; in the latter

case, port includes a subscript, (expn), following the name that was defined in the port

declarations. A port declaration looks like:

guarded
(

input
output port int

char
[num]

(
name

(num)
l

For example, input port int (6] plan (7) : declares an array of seven ports named

plan (0) through plan (6) , each of which is an input port that receives five element integer

arrays.

2.1.4 Properties of communication.

Communication between two CSP processes within a network is accomplished by a

pair of such statements, one performing output, and the other receiving input. The two

ports involved become associated by a connection statement in the channel file. As the

two processes execute, the first to reach one of the two statements suspends execution

until the other process reaches the other statement. After the transfer is performed, the

two processes continue separately. This implicit synchronization is a!l important aspect

of CSP; the first process is committed to completing this transfer before it can continue

execution. It only completes after the far end has communicated; if the far end terminates

before communicating, this process will terminate with an error.

June 1985 6

•

•

The communication primitives described above are excessively rigid. All that a process

can do is commit to performing an 1/0 operation, and once begun, it cannot complete

until the process at the far end of the channel also acts on this particular channel. The

language needs a mechanism to test the status of a channel, for example, in order to

build processes that could support resource managers. Hoare's CSP allows for input to be

guarded, that is the final element of a guard may be an input operation. The guard is now

true if the preceding boolean expressions are all true, and the process at the far end of the

associated channel has committed to sending output. If this guard is selected, then the

input operation is performed and the statement corresponding to the guard is executed,

otherwise no change takes place. The guard is false if the other end of a channel is a

terminated process, otherwise, the value of this guard is indeterminate. In evaluating an

alternative statement, CSP /85 chooses a true guard if one is available. Otherwise, if there

was a guard of indeterminate value, the process is suspended until the situation changes,

at which point it retries the whole statement.

CSP /80 was designed so that output operations could also occur in a guard, with

similar results. If the boolean expressions were true, and the process at the far end of

the channel had committed to receive input, the output operation would be performed,

and the corresponding statement executed. Otherwise, if no subsequent guards could be

satisfied, the process would become suspended, waiting for some change in status of one

of the ports used in this guarded statement. (For reasons of simple implementation, a

change in the status of any port is sufficient to prompt the process to retry the statement.)

CSP /80 included a constraint preventing both ends of a channel from being able to perform

guarded 1/0. This was accomplished by declaring ports guarded if they were to be allowed

to appear within guards, and then checking during the linking process that a channel did

not connect two such guarded ports.

June 1985 7

•

•

•

CSP /85 has evolved under the motivation of circuit specification and this path of ex­

tension exposes some problems. 1/0 in Hoare's CSP has two important characteristics;

it synchronizes the two processes, and it commits a process to performing an operation

blindly. As far as performing output goes, a process must commit to beginning the op­

eration, and once begun, cannot escape until the far end eends a value (or terminates).

Consider the following two situations:

process produce ::
output port int Consumer
*[true -> /*produce value*/

!Consumer • value :
]

end process

process consume::
input port int Producer
*[?value • Producer ->

I* use value *I
]

end process

In this case, the programs will work as expected, but a naive hardware implementation

may not. This is because explicit handshake is required in hardware to keep the two

processes synchronized whereas in CSP, this facility is provided implicitly by the statement

definitions.

The second situation involves trying to rotate the contents of a ring network consisting

of copies of the same CSP process. Since the code is duplicated for each proce~s, either

the processes will all suspend trying to send output, or they will all suspend waiting for

input. Thus, the natural CSP description of the system will suffer deadlock.

These problems arise because of excessive con.straint in the definition of CSP, (at least

from the point of view of describing hardware). In the former case, the constraints confined

a dangerous definition into behaving correctly, and in the second case, the constraints

confined a reasonable definition into failing. An important characteristic for CSP /85 is to

provide a descriptive notation tool, as well as an executable one .

CSP's constraints can be viewed as having two parts: commitment and synchroniza­

tion; all a process can do is start an I/0 operation blindly, and then it must wait for

June 1985 8

•

help from a distant process before finishing. These constraints were relaxed by Hoare's

introduction of guarded input. CSP /80 relaxed this constraint further by also allowing

output operations to appear in guards. These approaches are weakening the commitment

constraint, a process can discover information about of an operation before attempting

it. Guardable output is not, however, appropriate for describing hardware; it suggests

that a channel can detect if the far end is being read. Another way to relax the problem

with over-constraint is to weaken the synchronization. CSP /85 does this by allowing an

output operation to complete before the corresponding input operation has occurred. This

proposal only removes haH of the synchronization; input operations will still be delayed

until the corresponding output operation occurs. From this behavior, it is still possible

to accomplish the full synchronization during communication by programming an explicit

acknowledgement of receipt; CSP /85 also allows the fully synchronised operation to be

chosen statically for each channel.

This new interprebtion of communication leads to some interesting changes in behavior

that now models hardware more accurately. The circular buffer will now avoid deadlock

if the CSP /85 code for each cell sends its current value to one neighbour before reading

from its other neighbor. The CSP /85 description of the producer-consumer pair is now

capable of overwriting values, more closely reflecting how the straightforward hardware

implementation would behave. An advantage of CSP /85 is that it more closely models

real hardware, while providing explicit messages when overwriting does occur. This change

also creates more separation between processes; a write operation may fail without the

sending process finding out (until a .subsequent operation).

Both forms of relaxed constraints are available in CSP /85, and as far as possible can

be combined, although without any reason being apparent. The -g option causes link

to allow output ports to be guarded. Both synchronized and non-synchronized output

operations are available depending on the channel specification in channel file.

June 1985 9

..

2.1.5 Embedded C code.

A PASSTHROUGH non-terminal is a. patch originally added to allow 1/0 with a terminal

before we had decided how to model terminal 1/0 as CSP process communication. It

consists of a line with at in the first column, and the following text is transcribed directly

into the object C code. It has since been extended to allow the use of C preprocessor

statements to define compile time constants, and include other files (with the globals non­

terminal). It can be used to allow general function calls, which are not supported in

the CSP /85 syntax. In the latter case, the cap shell file can be modified so that the C

compilation of the process also involves the . o file containing separately compiled functions

[Gross 85]. Strong modularity is advisable. Calling a distinct function maintains a well

defined interface between explicit C code and that which the CSP /85 code generated, but

building structure that extends from one PASSTHROUGH to another around intervening CSP

code is dangerous and unnecessary.

2.2 The interconnections: tbe channel file language.

The channel file, given as the first file argument to csp, describes the interconnections

among the csp processes. It consists of two parts, the declarations and the connections,

each consisting of line orientated commands. Comments, any lines beginning with #, may

be placed anywhere.

Declarations either define constants, using the command set var expn, or establish

arrays of processes, using the command array <proceu name> <expn> : <expn> where

the two expressions provide the inclusive limits of the subscripts for the process being

duplicated. The variable csp_proc..nUJil can be used in CSP /85 code to provide elements of

such an array with their identity; it is the programmer's responsibility not to modify this

variable. Expressions combine decimal constants and previously defined variables using

June 1985 10

•

•

the C operators {+,-,•,/ .1}. NO PRECEDENCE RULES are applied; all operations

associate to the left, with a warning, which can be suppressed by using parentheses.

Connections join two ports from separate processes. A port is specified by a process

name, followed by a subscript in parentheses when that name has been defined as an array,

a period, and a port name that is declared within that CSP /85 process. The port name may

include a subscript expression in parentheses; scalar ports are indistinguishable from a port

name with a zero subscript. The statement connect port to port creates a channel in

which the process performing the output operation can continue execution without waiting

for the reading process to catch up. Replacing connect with sync creates a channel in

which the output operation does not complete until the input operation occurs. Gross

noted that the full synchronization behaviour provides a higher level of descriptiveness

when using the language for VLSI module specification.

These connection statements can be enclosed in iterative statements. The statement

for <var> <expn> : <ezpn> repeats a group of connections with the variable <var>

taking on successive values in the inclusive range specified. The scope of the for statement

extends to the next endfor statement which closes out all for loops.

for 1 1 : n
sync control.od(i-1) to doutpt(i).od

endfor

2.3 Execution: the csp shell file language.

A CSP /85 program is a group of files of the form <proceu>. csp as specified in section

2.1, and a channel file as specified in section 2.2. This program can be run using:

csp option& <channel file> <proceu name!>

where the proce!! name! are the roots of the . csp files.

2.3.1 Runtime options.

June 1985 11

..

-x

-g

The following options apply to various programs invoked by the csp shell file.

causes monitor to leave a trace of transactions in the file logfile. A sep­
arate line describes the result of each transaction. It consists of the request
type, the process and port id's, and the state of all the P-rocesses after that
transaction has been performed. R is running, I is in lfO, - is terminated,
and W is suspended in an activity check. The process and port id's can be
used with the config. c file (manually) to find the corresponding CSP /85
instruction.

causes link to allow output ports to be declared as guardable. (Parse would
prevent ports being used that way without declaration.)

-dnum causes the link and monitor to generate tracing information. The number
ranges from 1 for minimal output to 9 for far too much.

-p In some versions of csp, this option started up a delayed pst command that
provided UNIX process id's for dealing with lost signals that were causing
CSP /85 to hang, under the 4.1BSD operating system.

2.4 Output.

Noni tor will generate output on the stderr file in the case where it detects deadlock.

Deadlock is defined to be the situation where none of the CSP /85 processes are still

executing, and some of them are not terminated. The monitor indicates the status and

last request for each of the CSP /85 processes.

Beyond this, the programmer can generate output using a line such as

#printf("ld td\n",v1,v2) ; fflush(stdout) ;.

It is appropriate to choose one module that provides the environment for a running system,

and perform all interaction with the terminal from that module. In these cases, the CSP /85

module contain a line ##include <stdio .h> before the process keyword.

S. Implementation.

The system uses the following files:

June 1985 12

'

csp
camel
llama
parse
•.csp
•.c. *.lt
cspio.c
cspio.o
cspio.h
dirio.h
linker.c
config.c
cspmon.c
cspmon.o
monitor
msgfile
logfile
clean

The shell file that runs a system
lex source code of the CSP /85 syntax analyser
yacc source code to generate parse, the CSP /85 to C compiler
generates C code and port de3criptions from CSP /85 source
CSP /85 source code
generated by parse: code and link table
source for the 6 csp functions: init, read, write, ...
to be combined with * .c to yield the CSP processes
various general constants
three access routines to msgfile: read, write and copy
link source, which turns channel file and *.It into config.c
process and channel structures describing global interactions
supervisor and arbitrator of separate Unix CSP processes
completely compiled except for the config.c of a particular run
cc cspmon .o config.c performed in csp
CSP processes communicate here, with dirio.h through cspio.o
-x option to monitor takes a log of all requests
generated by csp to remove files after system has run

3.1 Request mechanism for CSP/85 processes.

The file cspio. c contains 7 routines by which the CSP /85 processes request sup-

port services from monitor: cspini t, cspread, cspwri te, cspcc, cspac, cspexi t, and

cspabort (which is unused in the current implementation). Parse generates calls to these

functions in its object code. These routines use a Unix pipe that was open when moni­

tor created the processes with fork(), to send requests to monitor. They buffer data

and receive a return status in the file msgfile. This mechanism is, as much as possible,

independent of the number of processes running.

A request contains the process index (into the config. c hp [] process structure) which

is used for identification, the requested operation, and when appropriate, the port number

related to the request . Having written such a request (an atomic write is important since

many processes will likely be doing this concurrently), the process suspends itself using

the Unix pause 0 function. \Vhen the monitor has satisfied the request, by tran.sferring

data within msgfile and appropriately changing process states, it writes the status of the

operation in msgfile and sends a signal to awaken the requesting process. That process

reads the status from msgfile and continues execution of that CSP program.

June 1985 13

'

•

3.2 Critical sections.

Because these processes are all executing concurrently in the Unix environment, it is

possible that the child process will be swapped out after attempting to write its request to

the pipe. The monitor may then read and process the request, and send a signal to the child

process. When the child continues, it suspends itself waiting for a signal that has already

come. The original mechanism to avoid this, under the early Unix signal mechanism,

involved clearing a flag before sending the request, setting the flag when a signal arrived,

and then only performing the pause() if the flag was still cleared. There is still the chance

of missing signals here, and such has occurred; but, in general, this system was adequate.

The current system uses 4.2BSD signal capabilities. The function sigblockO allows

certain signals to be delayed in arrival, and a corresponding function sigpause 0 suspends

the process and allows prior permitted signals through again, as an atomic operation,

(through the explicit storage of the old mask to be restored (without WAKEUP) which was

possibly already inhibited). The chosen signal, WAKEUP, and the conversion macro NaskO,

are defined in cspio. h. This interrupt mechanism requires an interrupt handling function ,

which for CSP /85 is null.

3.3 Data buffers.

Communication is accomplished by a cspwri te 0 call in the sending process and a

cspreadO call in the receiving process. The function cspwrite() copies its data into a

buffer area in msgfile, and then sends a write request as explained above; When moni­

tor awakens it, its buffer area has been emptied, so it can immediately perform another

cspwr1 te () on the same port. The function cspread 0 performs a read request, and

when that returns, it may read the incoming data from its own buffer area in msgfile.

In general there is danger that once the transaction has completed, the sender may send

the next value before the receiver has actua.lly retrieved the data from the prior transfer;

this a symptom of uniprocessor support for a parallel language. Rather than increase the

June 1985 14

•

number of system calls for synchronising transfers, CSP /85 creates two buffer areas in

msgfile, and monitor transfers between them when both requests have been received.

With the possibility of non-synchronized output, a third buffer area has been added: every

channel now has three buffers associated with it in msgfile. The first buffer is used by

the write operation before it sends its request. The second buffer holds the data that a

read operation will retrieve after a mutual transfer has been performed. The third buffer

holds the data that a write operation sent after its request has been acted upon. This

buffer needs to be distinct from the second for the cases where the reader has nominally

received its data from a previous transfer, but has in fact not yet been rescheduled in the

(uniprocessor) operating system. If data is transferred to the third buffer before a read

operation emptied the previous contents, an error message is issued.

3.4 Handling guarded IjO.

The function cspcc 0, a commitment check, requests the status of the channel con­

nected to a port. It is used when an IJO operation appears in a guard, and the process will

continue execution as soon as monitor receives and handles the request. There are three

basic responses possible: the process at the far end of the channel has terminated, (this

guard ma.y not be selected) ; the process at the far end of the channel has performed its

part of a communication operation, (this guard is selected, and the transfer completed);

or the channel is inactive. In the last case, the process will try other guarded statements,

looking for one that can be executed immediately.

In the case where no other guards are satisfied, this process must wait; it cannot exit

the alternative statement until all guards definitely fail. The function cspac 0 performs a

general •activity check"; the process has suspended operation until something interesting

happens to one of its ports, at which time monitor will signal it, and it will retry the

entire alternative statement. There is the possibility that a distant process will make its

communication request between the time when a particular process performs cspcc 0 to

June 1985 15

•

discover that a channel is inactive, and the time when it performs cspac 0 to be put to

sleep. Every channel has a flag called ac...race to detect this situation. When monitor

receives a commitment check request upon a port, it sets this flag to noted. H something

affects the far end of the channel, the ac...race is modified so that when the activity check

request occurs, that process is immediately awoken to retry the alternative statement.

Some false alarms may occur: the various ac...race flags remain at noted even when a

subsequent guard is chosen. Care must be taken so that when the flags are cleared by an

activity check request, only those associated with the process are altered. Link ensures

that guardable ports always come first in a channel. The function cspac 0 clears the flags

for all the ports the process owns that appear first in their channel, clearing both real

notes and stale ones. These are exactly the ports that may be guarded by this process.

A call to cspini t 0 is the first executable statement in the C code parse generates. It

performs various initialisation, including reading data placed on an initialisation pipe by

monitor describing the port buffer positions within msgfile for this process. The function

cspexi t 0 is called both for proper termination and in the case of errors. Cspabort ()

provides for a more urgent termination, and is unused.

The code generated by parse uses a number of variables for temporary results:

csp-proc...num is the single variable meant to be visible to the programmer, it contains

the subscript that distinguishes otherwise identical copies of a process. Other such vari­

ables are supposed to be hidden, and the programmer should not modify any variables

beginning with •csp" . They include csps which holds the status of a port returned by the

cspcc 0 commitment check call, copx which holds the subscript of a target variable which

is an element of an array, (for example, the value 4 in ?a [4] • A :),and cspp which holds

the subscript of an array of ports, (for example, the value 1 in ! B (1) • S :) .

3.5 Guarded statements.

June 1985 16

•

In implementing the two forms of the CSP alternation command, the interpretation was

chosen to be that on each cycle, the lexically first true guard would determine the statement

to be executed. This is consistent with perceived intent of the CSP operation, provides

simple and repeatable operation, but unfortunately does not drive execution through any

sort of fair, or even reasonable, program path.

A conditional C statement is generated for each guard and statement pair; the C test

comes from the CSP guard, and the C statement body comes from combining the CSP

statement and a branch to the bottom of the block. H the guard is not true, then execution

will fall into the code for the next guarded statement. H none of the guards is true, then

the result depends on whether this statement is simple alternation, in which case this is a

program error, or a repetition, in which case the program exits the alternation command.

When an I/0 operation appears within a guard, cspcc 0 returns the status of the port

which is saved in csps. There are three possible states: terminated which corresponds

to a false guard, co~:~mitted to I/0 which corresponds to a true guard, and inactive

which means the result depends on some future action . In the latter case, subsequent

guarded statements are attempted, but the difference from a false guard is noted by setting

cspi. If, at the end of the block, none of the other statements could be executed, and

cspi is set, then the program performs an activity check with cspac 0, which means this

program will remain suspended until some activity occurs on one of its ports. Rather than

specify particular ports of interest in this block, any port is considered, which leads to

the possibility of false alarms in returning from cspac 0. Thus, a simple alternative is

encased in a while statement that waits for cspi to be cleared. It is cleared before any

guards are attempted, it is set when any commitment check returns an indefinite answer,

and it is cleared again by any chosen statement in case an indefinite guard preceded that

choice. The repetition is further encased in a while loop whose controlling variable, cspg,

June 1985 17

a

remains true until all the guards in the inner block fail, and execution drops through to a

statement that clears cspg.

4. Installation.

A system should start with the following files: .. /include/cspio.h, . . /in-

clude/dirio.h, camel, cop, llama, linker . c, cspio .c, and cspmon . c.

The following steps should produce a running system:

lex camel
yacc llama
cc y.tab . c -11 -o parse
cc linker.c -o link
cc cspio.c -c cspio.o
cc cspmon.c -c cspmon.o

The variable CSPHONE in csp should be set to reflect the directory where these files are

situated.

4.1 Important defines in capio.h.

There are three important constants in the cspio.h file, Nost _procs, Most _por t s ,

and Nost_Inst. Nost_procs is the ma.ximum number of processes that a CSP /85 system

may start up, which is limited by a system defined constant, and must leave room for at

least monitor and the user's shell. Most_procs allows link to provide more informative

messages than an indication that the fork() system call failed in monitor (-27 : no such

process!). It also defines the appropriate size for the hp [] system table. Most -ports

is the maximum number of port names that may be declared within a single . csp file.

Arrays of ports still count for one. Most-Inst is the number of instances of ports in the

complete CSP /85 system. It differs from Nost_ports in that it covers ports in all the

. csp files, rather than each file alone, and each array of ports counts for many entries.

It is needed by link which checks that all declared ports are connected to exactly one

June 1985 18

channel. It is difficult to choose a reasonable limit for this constant since it can easily grow

quadratically with Most_procs, as well as linearly with Most-ports. We found it useful

to raise Most_procs to 100 on our machine. Kost_porta being 20 meant that a 200,000

element array is created . It is reasonable to choose something lower, and raise it when an

error message along the lines of Link: 'used • overflow occurs.

proceaa

1lobala

port dec

decla

decl
dim

portdia

&uarded

r;tuta

ccmmud

alt
choice

alteraa

altern
rua.rd

bool

aub

op

io

target
tnb

port
pnb

&lobala PROCESS IDEJt DDLCOL
portdec decla atmnta EN~ PROCESS
I• empty •I
&lobala PASS!BRDUCB ;
I• apty •I
portdec 1uarded INPOt PORt tYPE dia I• element aize •I
IDEit portdia I• aumbar of porta •I SENICOL ;
I• e~~~pty •I
decla decl SENICOL ;
tTPE IDE1JT dia ;
I• ao bound •> acalar •/
LEU lt1N &BlU ;
I• ao bound z> acalar •/
LP 1&£1 ltTN I.P A£EI
CtJARDED
I• empty •/ ;
command

Appendix 1.
atuta COIUUlJld
SKIP S"'..:.NI COL
oxpa SENICDL
io SENICOL

BNP p:-oductions for CSP.

alt
PASSTIDlOtJCB
error ;
choice altern• !BRA
IEP
LBU;
altern
altern• !01 altern
ruard AllOW decla atanta
bool decla
bool SENICOL dec:la io
decla io ;
expn
bool SENICDL expa
ltJN
St!IRG
QUOTE
IDEit nb
LP !lEN expn BP A!.E1l
expn op expn
expn op
op expn
I• npty •/
LBU expn JlBU
OP
EQUALS ;
QUEll tar1et EQUALS port
EICLAN pert EQUALS axpn
IDEHt taub ;
I• empty •I
LBU expn lBIJ
IDEit pnb ;
I• empty •/
LPAIEJ cxpa IPAJLEI

•

Appendix 2. Further work.

Various possibilities that would improve the system, but were not crucial to its oper­

ation have been indefinitely postponed. They include the following:

The system needs a makefile that will install it appropriately. This includes making

the site for storing the include files less rigid.

The interface between config. c , monitor, and cepio . c ·should provide more descrip­

tive messages. For example, config. cis already generated so that port and process names

appear in a comment. If these were moved into strings in the hp (] and ch (] structures,

then tracing information could refer to them directly. Line numbers identifying which of

potentially many transfers through a particular port would also be useful.

The routines in dirio. h belong in a separately compiled dirio. c file.

A large fraction of the lines in the lcgfile, created by the -x option, are commitment

transactions. These can often be deduced from the 1/0 or activity check transactions, and

crowd out the useful entries. This option should take a parameter that can disable the

reporting of commitment check transactions.

A common situation is exemplified by a clock module sending signals to each element

of an array of processes. The clock module needs the number of processes for it to declare

an array of ports for sending signals, and during execution for counting. There needs to be

a mechanism for the compilations (parse and cc) to get information from the channel file.

An example of this is shown in Appendix 3, where the number 7 appears in two distinct

files.

A concise notat ion for iterating through alternative statements a specific number of

times, rather than explicitly encoding such cases, appears to be useful in practice.

June 1985 21

Link could use true variables in the middle of for statements. The tree example in

Appendix 3 shows both the ugliness possible in expressions for connection statements; this

can be reduced by suitable choice of variable range. Minor differences often occur among

similar connections, for example, the different names of processes at the periphery of a

network. These cause the number of connection statements to grow rapidly.

Two further facilities in link would be useful in modelling networks of identical hard­

ware modules. Where one hardware unit is composed of many CSP /85 modules, some

system of hierarchical grouping would improve the descriptiveness. The CSP /85 system

is also intended to provide a software environment in which a hardware module can be

tested in place of the CSP /85 code that describes it. This requires some kind of reconnect

command in link that will allow the hardware module to replace a particular element of

a CSP /85 network, without disrupting the iterative loops describing the structure.

Linenumbers reported in link ignore null lines.

Since monitor is already noting ports on which it has recently performed a commitment

check, cspac 0 could be woken only by actions that affect ports that have the ac_race

flag noted. This should reduce false alarms in awakening processes.

Monitor should print out the current state of the various CSP /85 processes on receiving

some interrupt. This should be synchronised with the request handling cycle, to ensure

internally consistent results and safe behaviour at the signal handling level.

June 1985 22

•

Appendix 3. An example.

include <stdio.h>
process env : :

output port
input port
output port
input port

int code: int val:

int
int
int
int

#printf("encode bits :")
tfflush(stdout) :
#scanf("%d".~code) :
* [code>=O ->

!Left c code
?code • Right :

printf("\n") :
f f lush(stdout)

?val=Childi :
!ChildO = 0 :
!Left • code :
?code • Right :

Left :
Right :
ChildO
Child! :

printf("\nencode bits :")
t fflush(stdout) :
scanf("%d".~code)
)
end process

include <stdio.h>
process 1 ::

output port int
guarded input port int

output port int
input port int

int result: int code:
result • 0 :
*[?code=Left ->

Right :
Left :
ParentO
Parenti

t# include <stdio.h>
process t ::

output port
output port
output port
input port

guarded input port
input port

int v1: int v2:

int
int
int
int
int
int

ParentO :
LeftO :
RightO ;
Parenti :
Left! :
Right! :

*[?v1•Lc:!ti - >
?v2=Righti
!ParentO • v1 + v2
?v2 • Par enti
!LeftO • v2 :
!RightO • v1 + v2

)
end process

•
result • (code >> (7-csp_proc_num))
printf("%2d " ,result)

l 1

• •
)

!Right • code :
fflush(stdout) :
!ParentO c resul t
?result • Parenti
?code..,Left :
printf("%2d ",result)
fflush(stdout) :
!Right • code :

end process

June 1985 23

•

•

#number of T cells
set n 7
array t 1 : n
array 1 0 : n
for 1 1 : n/2

connect t(i) .Leftl to t(2*1).Parcnt0
connect t (1) . Right I to t((2*1)+1).Parent0
connect t(i) .LeftO to t(2*1) .Parentl
con.nect t (1) . RightO to t((2*1)+1).Parentl

endfor

for 1 (n/2)+1 . n .
connect t(i) .Leftl to 1(2* (1-((n/2)+1))) .Parent0
connect t(1) .R1ghtl to 1((2*(1-((n/2)+1)))+1) .Parent0
connect t(i).LeftO to 1(2*(1-((n/2)+1))) .Parentl
connect t(i).RightO to 1((2*(1-((n/2)+1)))+1).Parenti

endfor

for 1 1 : n
connect l(i).Left to 1(1-1) . Ri~;ht

endfor
connect env .Left to 1 (0) .Left
connect env.Right to l(n) .Right
connect env.ChildO to t(1).Parentl
connect env.Ch11di to t(1). Parent0

This example builds a tree of t modules with 1 modules at the leaves and surrounds

this structure with an env module. It performs an algorithm used by the FFP machine to

generate cumulative sums. (It took about one hour and eight iterations to get running.)

There are some points of interest. The number 7 appears both in the channel file, as

well as in the code. With a higher process limit, this might be changed to 15 or 31 (in both

places). Choosing stranger odd numbers for n will yield a non full tree in which the zeroth

1 module will begin in the middle of the string of 1 modules. T his requires more complex

programming either in the l.csp code, or else with the connections in the channel fue.

Care mud be taken with synchronization of the various print operations.An early run of

this example ran into problems with the 1 modules not printing their values in left to right

order, despite seemingly obvious constraints to do so.

J une 1985 .. 24

