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LENWOOD SCOTT HEATH. Algorithms for Embedding Graphs in Books {(Under the direction

of ARNOLD L. ROSENBERG, Duke University.)

ABSTRACT

We investigate the problem of embedding graphs in books. A book is some number of half-
planes (the pages of the book), which share a common line as boundary (the spine of the book). A
book embedding of a graph embeds the vertices on the spine in some order and embeds each edge
in some page so that in each page no two edges intersect. The pagenumber of a graph is the
pumber of pages i a minimum-page embedding of the graph. The pageuwidth of a book embed-
ding is the maximum cutwidth of the embedding in any page. A practical application is in the

realization of a fault-tolerant array of VLSI processors.

Our results are efficient algorithms for embedding certain classes of planar graphs in books
of small pagenumber or small pagewidth.

The first result is a linear time algorithm that embeds any planar graph in a book of seven
pages. This establishes the smallest upper bound known for the pagenumber of the class of planar
graphs. The algorithm uses three main ideas. The first is to fevel the planar graph. The second
is to eztend a cycle at one level to the next level by doing micro-surgery. The third is to nest the

embedding of successive levels to obtain finite pagenumber.

The second result is a linear time algorithm that embeds any trivalent plapar graph in a
book of two pages. The algorithm edge-augments the graph to make it hamiltoﬁia.n while keeping
it planar.

The third result is an O{nlogn) time algorithm for embedding any outerplanar graph with
small pagewidth, Our algorithm embeds any d-valent outerplanar graph in a two-page book with
O(dlogn) pagewidth. This result is optimal in pagewidth to within a constant factor. The
significance for VLSI design is that any outerplanar graph can be implemented in small area in a

fault-tolerant fashion.
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CHAPTER 1

THE PROBLEM AND ITS MOTIVATIONS

1.1. The Problem

We study embeddings of graphs in structures called books. In this chapter, we define the
book emhbedding problem and show that it models interesting problems in VLSI design and in
parallel sorting,

A book consists of a #pine and some number of pages. The spine of a book is a line. For
simple exposition, view the spine as being horizontal. Each page of the book is a half-plane that
has the spine as its boundary. Thus any half-plane is a one-page book, and a plane with a dis-

tinguished horizontal line is a two-page book.

The embedding of an undirected graph consists of two steps. The first step places the ver-
tices of the grapk on the spine in some order. The second step assigns each edge of the graph to
one page of the book in such a way that on each page, the edges assigned to that page do not
crogs. Whether two edges cross is determined by the order of the vertices, If (s,¢) and (u,v) are
edges of the graph with s<u<v and #<{, then the edges cross if and only if s<u<{i<Cv. The

resulting embedding is called a book embedding of the graph.

For a given graph G, there are many possible book embeddings. There are two measures of
the quality of a book embedding for G. The first measure is the pagenumber of the embedding,
which is the number of pages in the book. The pagenumber of the graph G is the minimum
bagenumber of apy book embedding of G. The pagenumber of a class of graphs is the minimam

number of pages that every member of the class can be embedded in, as a function of graph size.



The width of a page is the maximum number of edges that intersect any half-line perpendicular to
the spine in the page. The second measure is the pagewidih of the embedding which is the max-
imum width of any page. The pagewidth of the graph G is the minimum pagewidth of any book
embedding of G in a book having a minimum number of pages. The pegewidth of a class of
graphs is the minimum pagewidth that every member of the class can be embedded in, as a func-
tion of graph size. The book embedding problem is to find good book embeddings for a graph fam-

ily with respect to one or both of these measures.

As an example, consider the grid graph G of Figure 1.1. A two-page embedding of G is
shown in Figure 1.2. The vertices of G are placed on the spine in the order
A-B-C-F-E-D-G-H-I. The first page consists of the upper balf-plane, and the second page con-
sists of the lower half-plane. Edge {B,E) of the first page crosses edge (F,/) of the second page, so

these two edges cannot be assigned to the same page of this book. The pagenumber of the book

Figure 1.1. Grid Graph G
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F E D G H I

Figure 1.2, Two-Page Embedding of G

embedding is two, and the pagewidth is three as witnessed by the nested edges (4,D), (B,E), and

(C,F) (both measures are optimal for G).

1.2. Motivations

The book embedding problem is of interest because it models problems in several areas of
computer science. We mention here three particular motivating problems (see Chung, Leighton,
Rosenberg [CLR] for other motivations). Our primary motivation is VLSI design; one problem is
multilayer VLSI layout, and a second is design of fauli-tolerant arrays of VLSI processors. The

third problem is sorting with parallel {noncommunicating) stacks.

1.2.1, Multilayer VLSI Layout

VLSI layout theory has been primarily a two-layer and two-dimensional theory (Leiserson
[Le]). The model of the theory is a simple and intuitively appealing one. An undirected graph
represents a VLS] circuit. The vertices of the graph correspond to components of the circuit, and
the edges of the graph correspond to connections or wires in the circuit. A two-dimensional grid
graph represents the two-dimensional layout surface. The discreteness of the grid graph models

the design rules of a VLSI techrology.

The VLSI layout problem is to map {embed) the circuit graph into the grid graph. Every

vertex of the circuit graph maps to a distinet vertex in the grid graph. Every edge of the circuit



graph maps to a path in the grid graph; no two paths may share an edge of the grid graph.
While no two paths may share an edge, two paths may share a vertex. In the VLSI layout, one
thinks of a shared vertex as a point where two wires cross. As two crossing wires must not be
electrically common, the wires must be on two different layers. Two layers are sufficient for any
layout; if two crossing wires are initially on the same layer, one of the wires must yndergo two

layer changes, one on each side of the crossing.

While two layers suffice, it is often advantageous to consider multiple {more than two) layer
models for circuit layout. Multilayer printed circuit boards have long been avaifable {(So [So],
Ting and Kub [TK]). Other multilayer packaging technologies exist or are being developed
(Blodgett and Barbour [BB]). Now multilayer VLSI technologies are being investigated (Locke
[Lo]). The possibility of many layers takes the design problem into three dimensions. Leighton
and Rosenberg {LR1] [LR2| [Rol] [Ro2] bave investigated three-dimensional layout models. Their
results show that in general, the volume and wire length of good three-dimensional layouts are

less than the area and wire length, respectively, of the best two-dimensional laycuts of the same
circuit.

Book embedding does not model arbitrary three-dimensional layouts, as the components in a
book are constrained to appear on a line. The book embedding problem is one of a class of graph
embedding problems called Kinear arrangement problems. In a linear arrangement problem, the
vertices of a graph are ordered linearly so as to optimize some measure. One example of a linear
arrangement problem is the bandwidth problem {Garey et al. [GGJK]); the measure to be minim-
ized is the length of the longest edge. Another example is the min-cut linear arrangement problem
(Gavril [Gav]}; the measure (called culwidth) to be minimized is the maximum number of edges

intersecting any line perpendicular to the linear ordering.

Linear arrangement problems occur in VLSI layout and printed-circuit board layout. Typi-
cally, a two-dimensional layout problem is decomposed into some number of one-dimensional
(linear arrangement) subproblems, and each subproblem is solved independently. The hope

behind such an approach to layout is that the one-dimensional subproblems will be easier to solve



than the general two-dimensional problem. A well-known example of such a subproblem is single
row routing (Ting, Kuh and Shirakawa [TKS|, Raghavan and Sahni |[RS]). Here, circuit com-
ponents are given as a linearly ordered set V, and connections are given by a set of nels, each of
which is a subset of V. A number of single row routing problems car be specified depending on
such restrictions as the number of wiring layers available, the maximum cutwidth allowed apny
layer, and whether wires may pass between components. If wires may pot pass between com-
ponents, then the assignment of wires to layers in single row routing is close to the page-
assignment part of book embedding. In fact, if a circuit can be realized in L layers in that single

row routing problem, then the circuit can be realized in a 2/-page book.

Book embedding models a certain multilayer circuit layout problem: the components of the
circuit are placed on a line, and all wires are routed above the line. If the graph of the circuit can
be embedded in a p-page book, then the circuit can be realized in p layers. The height of the lay-
out is proportional to the pagewidth of the book embedding; a book embedding with small
pagewidth corresponds to a layout with small area. Book embedding is the one-dimensional case

of decomposition into layers. Little is known about the corresponding two-dimensional case.

1.2.2. Design of Fault-Tolerant Processor Arrays

Rosenberg {Ro3| has proposed the DIOGENES approach to the design of fault-tolerant
arrays of processors. The elements of the approach are sketched here. One lays out some number
of identical processors in a (conceptual) line. Ope provides sufficiently many processors so that

one expects {probabilistically) that enough good processors exist to implement the desired arréy,

Bundles of wires with embedded switches run paralle] to the line of processors. Each bundle
is capable of implementing a hardware stack of connections among processors. Each connection
occurs on exactly one hardware stack (bundle). For aby processor, a connection to a processor on
its right is pushed on a stack; each cosnection to a processor on its left is popped from a stack.
In this way, each connection to a good processor requires one stack operation at that processor.
No stack operations occur at a bad processor. Since the state of a processor as good or bad is a

binary value, a single control signal can cause the shift (push or pop} of many connections. Thus,



tault tolerance is achieved by switching in only good processors.

The desired array of processors is modeled as a connection graph; the vertices represent the
processors, and the edges represent the desired connections between processors, The DIOGENES
design problem is to determine the number of stacks and the slackwidthe (the number of connec-
tions carried by each stack) required to implement the array of processors. In a way analogous to
a hardware stack, it is possible to view one page of a book embedding as a stack of edges. For
any vertex, each incident edge that connects it to a vertex to its right is pushed on a stack; each
incident edge that connects it to a vertex to its left is popped from a stack. The DIOGENES
design problem for an array of processors is exactly the book embedding problem for the
corresponding connection graph. The number of stacks is exactly the number of pages. The

stackwidths are the widths of the pages.

1.2.3. Sorting with Parallel Stacks

Even and Itai [El], Rosenstich! and Tarjan [RT|, and Tarjan [Ta] have studied the problem
of realizing a permutation with some number (say p) of noncommaunicating stacks. Let 7 be a
permutation of {1,...,n}. The realization of x by p parallel stacks has two stages. First, in the
order 1,...,n, each integer in the set is pushed on one of the p stacks., Second, in the order
7(1),...,x(n), each integer is popped from one of the p stacks. Of course, for n(s) to be popped, it
must be on the top of its stack after #(1),...,7(+~1) have beer popped. The problem can be
modeled a8 a graph-theoretic problem. lLet G be the bipartite graph with vertex set

{6y, ** " upwy, - - ,v,)} and edge set {(u,v){l<k<n}. Place the vertices of G on a line in the

order

“l:---)ussv‘l'(l)r et ,vl'(n)-
Then this order for G can be realized in a p-page book exactly when 7 can be realized with p

parallel stacks {({CLR]).



1.3. Structure of the Dissertation

The dissertation contains six chapters, of which this is the first. The second chapter reviews
what was known about book embeddings before our work. We prove book embedding properties
for three classes of graphs in chapters three through five. Our proofs are constructive; therefore,
much of the content of each of these three chapters is an efficient algorithm that constructs a
book embedding with the desired property.

In the third chapter, we are ipterested in the pagenumber of the class of planar graphs,
ﬁhich we call PPG. It was already known that 3<PPG. Our first result is an algorithm that
embeds any planar graph in a seven-page book. Thus, 3<PPG<7. The algorithm executes in
time linear in the size of the planar graph. It proves the smallest upper bound kpown for PPG.

In the fourth chapter, we are interested in the maximum valence for a planar graph that
guarantees that it is two-page embeddable. We call this maximum valence MV. There is an easy

example that shows that MV<T7. Our second result is an algorithm that embeds any trivalent

planar graph io 3 two-page book. Thus, 3<MV<7. The algorithm executes in time linear in the
size of the input graph.

In the fifth chapter, we seek small pagewidth embeddings for ocuterplanar graphs. Let G be
a d-valent outerplanar graph with n vertices. Our third algorithm embeds G in a two-page book

having pagewidth less than Cdlogn where C—-=8/(log-g-) (all logarithms are to the base two). This

result is within a constant factor of optimal in pagewidth for the class of outerplanar graphs. The
algorithm executes in time Ofnlogn). |

The sixth chapter sums up the significance of the work and makes suggestions for future
research.

We include a glossary of graph-theoretic terms. These terms are of two kinds. First, there
are new terms that we define whose use spaps more than one chapter. Second, there are terms of
wider use in graph theory that the reader may know by a different name. Whenever the reader

encounters a term that is not defined in the current chapter, he should consult the glossary.



CHAPTER 2

PREVIOUS RESULTS AND TOOLS

2.1. Previous Results

Bernhard and Kainen [BK] is the first important work on book embeddings. They charac-
terize one- and two-page embeddable graphs and show that a book embedding problem can be
reformulated as a circular embedding problem. They show that K,, the complete graph on n ver-
tices, has pagenumber rn/‘ﬂ. They are the first to raise the problem of determining PPG, the
pagenumber of the class of planar graphs; they make a conjecture whose truth would imply that

PPG is infinite. Buss and Shor [BS] disprove this conjecture by showing that PPG<9.

Chung, Leighton and Rosenberg [CLR] is the other major work on book embeddings. They
establish the connection between book embedding and sorting with noncommunicating stacks;
they use this connection to obtain the best lower bound techniques known for book embeddings.

In patticular, they establish a (nonconstructive) lower bound on the pagenumber of the class of d-
valent graphs:
Proposition 2.1. [CLR| For d>>2 and sufficiently large n, there exist n-vertex d-valent graphs

whose pagenumber is at least

i

n
log®n

Chung, Leighton and Rosenberg also develop {nonconstructive) upper bounds for d-valent graphs:

e
.

(constant)

Proposition 2.2. [CLR] Let G be an n-vertex d-valent graph. Then, for all constant €>0, G is

Fle,d,nfpage embeddable where



1 1
F(c,d,n)=min|-g-,(l+€)(2+22)(d+1)n2].

Their upper bound result for trivalent graphs is constructive:

1
Proposition 2.3, [CLR] Every n-vertex trivalent graph can be embedded in a (-2—n2+2)—page

1
book with pagewidth at most 6n%+8.

Chung, Leighton and Rosenberg also present optimal {or near optimal) book embeddings for

a large number of classes of graphs. Any n-node d-ary tree can be embedded in a one-page book
with pagewidth at most %logzn. Ap nXn grid can be embedded in a two-page book with

pagewidth n. A depth-d X-tree can be embedded in a two-page book on pages of widths 24 and
34. A Boolean ncube cap be embedded in an n-page book with one page of width 2* for 1<k<n.
Any series-parallel graph is two-page embeddable. Building o:.| the work of Chung, Leighton and
Rosenberg, Games {Ga) shows that each of the FFT network, the Benes permutation network,

and the barrel shifter network is embeddable in a three-page book (which is optimal).

Our three algorithms operate on three classes of planar graphs. The correctness of our algo-
rithms depends only on the basic results derived by [BK] and on some basic properties of planar
graph embeddings. In this section, we describe these basic results and properties. In the next sec-

tion, we describe the tools that can be applied to the problem of book embedding planar graphs.

2.1.1. Circular Embedding

The original statement of book embedding is a linear embedding performed in two parts.
First, the vertices of a graph are placed on a line in some order. Second, each edge of the graph

is embedded in one page so that po edges in the same page cross.

The resulting linear embedding can be transformed into a circular embedding in three steps.
First, choose a distinct color for each page of the book, and assign each edge the color of its page.
Second, ‘‘close’ the book by projecting all pages {and their edges) into a single page. In this one-
page book, if two edges cross, then the two edges have different colors. Third, curve the spine

into a circle so that the “‘ends” at infinity are identified.
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The result of the transformation is an alternate two-part formulation of the book embedding
problem. First, order the vertices of the graph on a circle. Second, draw the edges of the graph
as chords of the circle. Color the chords (edges) so that if two chords intersect in the interior of
the circle, the chords have different colors. The number of colors in the circular embedding is
exacﬂy the number of pages in the corresponding linear embédding. From now on, we shall use

whichever formulation is most convenient.

A useful consequence of the circular formulation is that any p-page graph is a subgrabh of a
p-page hamiltonian graph. Moreover, the order of the vertices in the circular (;mbedding is
exactly the order of the vertices in the hamiltonian cycle. To see this, let u,1, - - - ,v, be the
vertices of the p-page graph in the cyclic order of the circular embedding. Add each of the edges
(chords) (v, vp,), 1<k<n (where k-1 is taken modulo n) that are not already present. Since these
edges connect vertices adjacent on the circle, they cannot intersect any other edges. Therefore,
each of the edges can legitimately be assigned to any page. The resulting edge-zugmented graph
is a p-page graph, with hamiltonian cycle v, - - - ,v,.

The idea of adding edges to a graph to obtain a hamiltonian cycle is our first tool. We will
call a cycle obtained in this fashion superhamiltonian. The following heuristic for book embed-
ding a graph G is proposed in [CLR]:

(1) obtain a superhamiltonian cycle for G and place the vertices of G on the circle in the order

of the cycle;
{2) color the edges of G by coloring the associated circle graph.

Fim.iin'g an optimal solution to the second step in the heuristic is an NP-complete problem (Garey
et al. [GIMP]). The first step can be done in a number of ways; in fact, any ordering of the ver-
tices can be obtained for a superhamiltonian cycle by adding the right edges. Thus, the problem
of finding good book embeddings can be approached as that of finding a superhamiltonian cycle in

ap intelligent fashion so that a good (but not necessarily optimal) edge coloring can be produced.
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2.1.2. One-Page Graphs

Any one-page graph can be embedded in the plane so that its vertices are on the spine and
its edges are in the first page {the upper half-plane). Then all its vertices are exposed to the lower
half-plane, which is a subset of the exterior face of the embedding. Thus the graph is outer-
planar,

One characterization of an outerplanar graph is that its vertices can be embedded or a cir-
cle so that all its edges are inside the circle and no two edges intersect. This is just the condition

that the graph be one-page embeddable under the circular formulation. We have the following:
Proposition 2.4. [BK] G is one-page embeddable if and only if it is outerplanar.

In fact, a kpage embedding of a graph G yields a decomposition of G into E outerplanar
subgraphs, one for each page. The subgraphs share the vertices of G but are edge-disjoint. The
outerplanarity of each subgraph is witnessed by the same circular ordering as that of the original

book embedding.

2.1.3. Two-Page Graphs
Each two-page graph is a subgraph of a two-page hamiltonian graph. Every two-page graph
is planar since the two half-planes (pages) together form a plane. Thus a two-page graph is a sub-

graph of a planar hamiltonian graph.

Define a graph to be subhamiltonian if it is the subgraph of a plarar hamiltonian graph.
Given a subhamiltonian graph G, it is easy to show that G has a two-page embedding ([BK]).
Edge-augment G to obtain a superhamiltonian cycle in a planar graph. Order the vertices of ¢
on a circle according to the superhamiltonian cycle. The edges of G interior to the cycle form an
outeml;nar graph. The edges exterior to the cycle form another outerplanar graph with its ver-
tices in the same order as those of the interior one. A two-page embedding of G results. Thus we

have the following:

Proposition 2.5. |BK] G is two-page embeddable if and oely if it is subkamiltonian.
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2.1.4. Planar Grapha

There are maximal (i.e., triangulated) planar graphs that are not bamiltonian. (The smal-
lest maximal planar graph that is mot hamiltonian can be found in Capobianco and Molluzzo
ICM].) In Subsection 3.2.1 of Chapter 3, we shall see a way of generating a sequence of such
examples. Each such example requires at least three pages in any book embedding since it cannot
be edge-augmented and remain planar. Hence, three is a lower bound on PPG. There is no
known example of a planar graph that requires more than three pages.

The problem of determining whether a planar graph is two-page embeddable is NP-
complete, as witnessed by the following:
Proposition 2.1, (Wigderson [Wi]) The problem of determining whether a planar graph is the

subgraph of a hamiltonian planar graph is NP-complete.

2.2. Tools

The first useful tool in reasoning about planar graphs is our ability to visualize and draw a
planar graph in two dimensions. In the case of maximal planar graphs, there are additional useful
properties.
Proposition 2.2. (Harary [Ha]) If a planar graph is maximal, then it is three~connected, and its

planar embedding is essentially unique (i.e., unique up to the choice of the unbounded face).

In the planar graph algorithm of Chapter 3, we shall always manipulate a fixed planar
embedding all of whose interior faces are triangles. It wili be possible to describe the algorithm

with drawings of the planar embedding.

The second useful tool is the fact that any simple, closed curve in the plane separates the
plane into two disjoint regions {Jordan curve theorem). Thus the removal of any cycle in a con-
nected planar graph separates the graph into two components (ualess the cycle bounds a face). If
the planar embedding is given, then we can unambiguously speak of the interior and exterior of a

cycle. We can say that a vertex or edge is either on the cycle, ineside the cycle or outeide the

cycle.
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A tbird useful tool is the recognition of cycles in a planar graph. A cycle in a planar graph
yields an ordering for its vertices and an assignment of edges to one of two pages. These edges
are not only the edges on the cycle but are also any edges with both endpoints on the cycle. The
importance of this tool will be evident as its use recurs in the planar graph algorithm. Ar
approach to embedding a planar graph in a book is then to seek cycles in the graph, or in fact
supercycles {a supercycle is a cycle obtained by edge-augmenting the original graph). In a general

sense, this is the approach we take in each of our algorithms.
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CHAPTER 3

EMBEDDING PLANAR GRAPHS IN SEVEN PAGES

Our main result in this chapter is a linear-time algorithm to embed any planar graph in a
seven-page book. Along the way to obtaining the algorithm, we examine the approaches that oth-

ers have taken to this problem. These results originally appeared in [He] in an abbreviated form.

3.1. Overview of the Algorithm

In this section, we introduce our planar graph algorithm with an example. The terms levels
and nesting are described here intuitively; they are defined later in the chapter. The graph G

used ip the example is illustrated in Figure 3.1. G is a triangulated planar graph.

The algorithm partitions the vertices of G into levels based on distance from the cycle
(u;,45,us) bounding the exterior face, Thus, {u),usuy} is level 0, {v;,vgvy,04,v;5} is level 1, and
{wy, w0} is level 2. The algorithm recognizes cycles at each level. At level 0, {u;,us u,) is the only
cycle; at level 1, (v),v5,v5) and (vy,v,,v) are the only cycles; at level 2, there are not cycles. We
see that level 2 is not even connected, and that the two components of level 2 are contained in
the interior of different cycles of level 1. This is a general phenomenon; any component of level

k k>0, is contained in the interior of a single cycle of level k-1.

The algorithm proceeds level by level, starting at level 0. It orders the vertices of each level
k 50 that the cycles of level k are placed in cycle order. The result of embedding level 0 of G is
shown in Figure 3.2. The order of vertices u,, us, and u, remains the same throughout the algo-

rithm, though vertices of succeeding levels are mingled among the level 0 vertices.
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Figure 3.1. Sample Planar Graph G

In going from level 0 to level 1, the algorithm extends cycle (u;,ugu,) to a cycle that
includes all level 1 vertices. As much as possible, the cycles of level 1 are placed consecutively
and in cycle order in the extended cycle. In cases where two or more cycles of level k share a ver-
tex, it may not be possible to place cycle vertices consecutively; for example, vertex v, is shared
by both level 1 cycles. The extended cycle is (u,,vy, vy, vp,ug, vy, U5, 6a); it is shown with dashed lines
in Figure 3.3. In extending a cycle from level 0 to level 1, vertices at levels greater than 1 are

ignored; thus, the level 2 vertices of G are not drawn in Figure 3.3. Note that both level 1 cycles
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Figure 3.2. Embedding of Level 0

are in cycle order, but that the vertices of cycle (v, v,,05) is not consecutive in the extended cycle.

The extended cycle determines the placement of the level 1 vertices with respect to the level
0 vertices; see Figure 3.4. Since the extended cycle is a hamiltonian cycle for the subgraph
induced by levels 0 and 1, the edges encountered up to this point can be assigned to two pages.
The edges on the hamiltoniar cycle or inside the bamiltonian cycle are assigned to the upper

page; edges oulside the hamiltonian cycle are assigned to the lower page.

Level 1 has two cycles. The algorithm extends each of these cycle to include the vertices at
level 2 in its interior. The two extended cycles are (vy,wy, vy, 1) and vy, wg, v,v5). These determine
the placement of the level 2 vertices with respect to the level 1 cycles. Figure 3.5 illustrates the
placement of w; and w,, and the assignment of the edges of levels 1 and 2 to pages. Note that
three pages are present in Figure 3.5; a solid upper page, a dashed upper page, and a solid lower

page. Because of the vertex vy shared between two level 1 cycles, a third page is required.

Our example is too small to demonstrate the use of seven pages. However, we can say that
at most two pages are needed to extend cycle {(v;,v5,1%) to include wy, and at most two pages are
needed to extend cycle (vs,v,,v5) to include uy. Edges from vy to vy, v5, and vy will be in a single
page, so that the second page used by cycle (v, v, v;5) can be identical to one of those used by

cyele (v, wy,v5,95). Further page sharing is possible. The components of a level of G are nested



Figure 3.3. Extended Cyele
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Figure 3.4, Embedding of Levels 0 And 1
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Figure 3.5. Embedding of Levels 0,1, And 2

inside the embeddings of preceding levels. Thus, if G had more than three levels, edges at later

levels would not cross edges at level 0. Thus, the first two pages can be reused. In general, pages

can be reused at alterpating levels,
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3.2. Previous Approaches

In this section, we review other approaches that have been taken to the problem of bound-
ing PPG. Along the way, we disprove a conjecture of Bernhart and Kainen [BK]. The truth of

that conjecture would have implied that PPG is unbounded.

3.2.1. The Bernhart-Kainen Conjecture

Bernhart and Kainen [BK] first raised the question of the pagenumber of planar graphs.
They recognized the importance of cycles to the book embedding problem for planar graphs. We

present the reasoning that led to their conjecture that PPG is unbounded.

Let G be a maximal planar graph with n vertices. Define the hamillonian ratio, At{G), to be
m/n where m is the length of the longest cycle in G. If G is hamiltonian, then h{{G)=1. Define
the stellstion of G, ST{G), to be the graph obtained by adding one vertex to each face of G and
three edges from the added vertex to the three vertices on the face. ST(G) is clearly planar.
Define STXG)=G ard STHG)=ST{ST*YG)) for all k>1. Bernhart and Kainen showed that
h{STHG))—0 as k—oco. In other words, the longest cycles of successive stellations becomes van-
ishingly small with respect to the size of the stellations. Beyond some point the stellations are no
longer hamiltonian. In fact, the number of edges that must be added to obtain a superhamil-
tonian cycle becomes large with successive stellations. This evidence led Bernhart and Kainen to
conjecture that the pagenumber of ST‘( G) is unbounded as k-0,

We disprove this conjecture in the case that G'=K,, a triangle. In fact, we show that each

STYK,) is three-page embeddable. This result is best possible since STe(K,) is non-hamiltonian,

Let {a,5,c} be the vertices of Ky and {{a,b),(5,c},(a,c)} its edges. Figure 3.6 shows STYK,)
where vertex d has been added to the interior face of Ky and vertex e has been added to the exte-
rior face. Figure 3.7 shows a three-page circular embedding of ST{K,). The three different pages

are represented by the solid, dashed and dotted lines.

Theorem 3.1. For each k> 1, STYK,) is three-page embeddable. For £>2, this is optimal.
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Figure 3.86. ST(K,)

Proof: The proof is by induction on k. It turns out that the embedding of the stellations exterior

to K, are symmetric to those interior to Ky. Thus we restrict attention to the interior stellations.

We peed some additional conditions on each three-page embedding to make the induction
go through. Suppose z is the vertex added to the face {u,v,w) of ST*%(Kj) on the way to obtain-

ing ST**(K,). We need the following conditions to bold on the embedding of ST*'(K}):

(1) for one of u, vor w (say u), the arc in the embedding from u to z that avoids (i.e. does not

contain} v and w also avoids all other vertices of STH(K,);
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{2) the three added edges (u,z), {r,z) and (uv,2) are embedded in three distinct pages.

Taking vertex d in Figure 3.7 to be z, condition (1) is met by arc cd. Condition (2) is satisfied for

d since its three edges are on three distinct pages. Thus we have the embedding we need for the
induction when k=2,

So assume that £>2, and that we have a three-page embedding of ST*'(Kj) satisfying con-
ditions (1) and (2). Suppose z, u, v and w are as in the preceding paragraph. Figure 3.8 shows
this situation, where we know there are no vertices on the solid arc uz but there may be vertices
on the dotted arcs. Assume vertex r is added to face (u,v,2), vertex s is added to face (u,uw,z) and
vertex ¢ is added to face (v,w,z). The vertices r, 2, ¢ and their incident edges are embedded as in
Figure 3.9. Vertices r and { are placed in the arc uz in the order urtz. Vertex g is placed on the

opposite side of z and close enough to z so that there are no vertices in the arc zs,

Figure 3.7. Three-Page Embedding of ST\ K,)



Figure 3.8. Inductive Hypothesls for Theorem 3.1

We must prove that the added edges can be assigned to the pages shown. The edges (u,r},
(t,2) and (s,z) can be on anmy page since each pair of vertices is adjacent. Edge (r,z} can be
assigned to the solid page since the only edges it intersects are (¢,v} and (¢,w}, neither of which can
be on the solid page (each intersects the solid edge {u,z)}. The page assignment of each of the
remaining added edges can be justified by its being “protected'’ by another edge in the same
page. For example, (s,w) can be assigned to the dashed page because edge (w,z) is dashed. By
construction, there is no vertex in the arc 2s. Thus any edge that intersects (s, ) also intersects
{w,z). Any such edge cannot be on the dashed page. A similar protection argument justifies the

page assignment for the remaining edges.

Now conditions {1} and (2} are satisfied for the added vertices r, # and &. For example, ver-
tex r was added to face {u,v,z). There are no vertices in the arc u, and the three edges incident to

r are in three distinct pages. The theotrem now follows by induction. [
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Figure 3.9. Inductive Step-——Add r, 2 And ¢

As an example, Figure 3.10 shows the interior of ST°(K,). Figure 3.11 gives the three page

circular embedding that results from the construction of the theorem.

Theorem 3.1 can be generalized a bit. Suppose there exists a three-page embedding of
ST\ G) that satisfies conditions (1) and (2) in the proof of the theorem. Then STHG) is three-page

embeddable for all £ The proof is the same as for the theorem.

Since an arbitrary planar graph is not a stellation of some three-page graph, we cannot hope
tq generalize the theorem to the class of all planar graphs. However, we can abstract the general
approach. Call the vertices added to ST*Y(G) to obtain ST¥G) the level k vertices. The original
vertices of G are the level  vertices. Start with the level O vertices placed on a circle and the
remainder of STHG) in the interior of the circle. For each successive level 5 1<5<k pull each
level j vertex out of the interior to a place on the circle so that it is near some vertex it is adja-

cent to on the preceding levels. Of course, this abstraction is too rough to form an algorithm.




Figure 3.10. Interlor of ST*(K,)
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Figure 3.11. Book Embedding of ST(K;)

However, our planar graph algorithm will, in some sense, match this abstraction.

3.2.2. Blfurcators

Chung, Leighton and Rosenberg [CLR| apply the notion of a bifurcator to obtain non-trivial
upper bounds on pagenumber for some classes of graphs. A bifurcator provides a measure of the
diﬂiculty of recursively dividing a graph. Formally, let G be a graph, B an integer and p a
number, p>1. We say that G has a balanced p-bifurcaior of size Bif G has fewer than B edges or
if there exists a decomposition Iree for G as follows. The root of the tree {at level 0) is G. Sup-
pose H is a graph at level k. If [H|=1, then H has no sons. If |H|=n>1, then H has two sons H,
and H, at level k+1 such that: (a) |H,|={n/2], |H)|=Ln/2]; (b) H=H\{_JH,; and (c} the number

of edges between H, and H, is no more than By,

The following proposition is proved in [CLR]:




Proposition 3.2. |[CLR] If G has a balanced p-bifurcator of size B, then it is embeddable in
L

[ ] B pages.
-1

Each bounded-degree n-vertex planar graph has a balanced /2-bifurcator of size O(vn). Thus,
for any fixed degree 4, the d-valent n-vertex planar graphs can be embedded in O{v'n) pages.
This approach is applicable to many classes of graphs but it does not make use of the special

structure of planar graphs.

3.2.3. Separating Triangles

Buss and Shor {BS] combine the notions of hamiltonian cycles and separating cycles to yield
the first proof that the pagenumber of planar graphs is bounded. In their result, the separating
cycles are always triangles that are not the boundary of any face. Their approach depends on the

following powerful result of Whitney [Wh|:

Proposition 3.3. {Wh] If G is a maximal planar graph with no separating triangles, then G is

hamiltonian.

We briefly describe their construction. G is partitioned into successive [evels. Each level
consists of some number of connected sections, each of which contains no separating triangle. In
fact, the separating triangles of the original G are the windows through which sections at succes-
sive levels view each other. Each section is hamiltonian by Whitney's result and hence two-page
embeddable. In fact, each section together with the subsections at the next level that can be seen
through the windows in the section can be embedded in six pages. Each subsection has at most
three pages incident to it. The embedding of the subsection nmests within the embedding of the
section. Thus six pages are required to go between successive levels and three pages can be
reused. Hence, a nine-page book embedding results.

There are three parallels between the Buss and Shor construction and our algorithm. First,
both embeddings are done by levels. Second, cycles are used in some way to separate levels.
Third, the embeddings of successive levels nest so that pages can be reused. We elaborate on

these points in the next section.
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3.3. Elements of the Seven-Page Algorithm

In this section, we discuss the significant elements of our solution while avoiding the details.
We first describe a decomposition of a planar graph into levels in preparation for a breadth-first
traversal of the levels. The argument is inductive; once all preceding levels have been embedded,
with the inductive hypothesis met, the algorithm shows how to add one more level and make the
inductive bypothesis true for the new embedding. Cycles at each level are the windows to the

next level and the basis for extension to the next level.

3.3.1. Levels

The first element of our solution is to partition the vertices of a planar graph into levels.
One characteristic of these levels is that each edge of the graph is either between two vertices at
the same level or between two vertices at successive levels. In contrast to the levels of Buss and
Shor, our levels are based on distance from the exterior face of the planar embedding. Buss and
Shor obtain hamiltonian cycles in each of their levels but bave no information concerning the
structure of these cycles. With our leveling, we have more control on the superhamiltonian cycles

obtained and have important information about the order of vertices in the cycles.

For convenience in defining levels, we restrict attention to a subclass of the planar graphs.
An inner-iriangulated planar graph {or I-graph) is a connected undirected simple graph that can
be embedded in the plane so that any interior face is bounded by a triangle, and the exterior face
is bounded by a cycle (the bounding cycle of the I-graph). Henceforth, whenever we have an
inner-triangulated planar graph, we also have a fixed planar embedding of the above form. The
inlerior and ezterior of any cycle are defined with respect to this embedding. Clearly, any planar
graph G is a subgraph of some I-graph G'. Since a seven-page embedding of the I-graph G'res-
tricts to a seven-page embedding of the graph &, we are justified in considering only l-graphs.
The introduction of I-graphs is also justified by the needs of an inductive proof. Given any cycle
in an I-graph, that cycle together with its interior forms an I-graph. The algorithm will use the

discovery of the bounding cycles of l-graphs at each leve] to continue the induction.



Let G=(V,E) be an I-graph. Gy=(V,,Ey) is the level 0 subgraph of G where V,, the set of
level 0 vertices, is the set of vertices on the exterior face of G, and E;, the set of level 0 edgpes, is
the set of edges on the exterior face of G. Hence, G, is just the bounding cycle of the exterior

face of G.

Levels k>0 are defined by distance from G,. Suppose we have defined G, ;={(V,,, E.,),

for ¥£>1. Gi=(V,E.}, the level k subgraph of G, is defined as follows. Vi, the set of level & ver-

k1
tices, is the subset of V- | J V, consisting of vertices adjacent to vertices in V, ;. An edge (v,u;)

=0
is in E;, the set of level k edges, if v;,u€ V; and there exists vs€ V;; such that (vy,v,,v4) is a face of

G. Clearly, V is the disjoint union of all nonpempty V,, £>0.

X, the set of level k chordsl edges, contains exactly the edges between level k vertices that
are not in Ey. B 44, the set of level k to k+1 binding edges, contains an edge {vy,1o) if v, is a level
E vertex and v, is a level k+1 vertex or vice versa. Clearly, E is the disjo.int union of all the
nonempty E;, X; and By, for £20.

The set E, can be further partitioned. C,, the set of level k cycle edges, is the set of those

edges in E; that lie on a cycle of G. Ny=FE;C}, is the set of level k non-cycle edges.

It K is a level & cycle, then call K together with its interior G |K (read G restricted to K).
G |K is ap l-graph. By the independence of the interior and exterior of K, it makes sense to
speak of the levels of G not preceding k restricted to K. For example, V]|K, j>k, consists of all
vertices of V, which are on K (if j=k) or interior to K (if 7> k). B, 4K, j2k, consists of all

edges of B, ,,; which are interior to K.

Let v, be a vertex of a cycle K of G. Let v, and v,,, be the vertices of K adjacent to v,
{(when K is traversed clockwise). Then there is a path in G |K from v, to vy, that includes only

vertices adjacent to v, since the interior of K is triangulated. Define Pv' to be this path.

Figure 3.12 shows an example of an inner-triangulated graph with two levels. Vertices
t, *° ",V are in VO: while vertices U, * "l are in Vl' Edses (0‘21”4}! (vbvlﬁ)! (Uﬁ,l’g) and (v}'ivﬂ)

are level 0 chordal edges. E,={(u,u,),(1,us).{u,u5)}. Since G has no cycles, Ny=F, and K,=8.



Figure 3.12. I-graph with Two Levels
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Examples of level 0 to level 1 binding edges are (u,u;), (v,us) and (g, ug). P, is the path

Uy, Uy, U, Ua.
Figure 3.13 shows an inner-triangulated graph with 3 levels. Level 0 vertices are v, - - - ,1,,
level 1 vertices are uj, - - - ,u; and the sole level 2 vertex is wy. The two cycles of &) are

(y, g, i, 2y, ig) and (u,,ug,ti7). The only chordal edge is (ug,u;).

We now examine the structure of levels in an I-graph. As we noted earlier, I-graphs recur at
successive levels. We study the structure of &, together with G to understand the structure of
Gyand Gy, The vertices of G, are just those adjacent to vertices of G, but not in G,. Remove
the vertices of G and their incident edges from the planar embedding. Then V; (the vertices of
G,) are exactly those on the exterior face of the resulting planar embedding. By the definition of
E; and the fact that G is inner-triangulated, the edges on the exterior face are exactly Ey. Thus

we have the following:
Lemma 3.4. G,=(V},E;) is an outerplanar graph.
We ask when () is connected. The following lemma provides a sufficient condition for G,
to be connected.
Lemma 3.6, If X, is empty, then G| is connected.

Proofs Let v, -+ - ,v, be the vertices of G, in clockwise order. Let u;,u;€ V| be such that u, is
adjacent to v; and u, is adjacent to w. We will show that u; and u, are in the same connected

component of G;. Since the interior of G is triangulated, there exists z €G, such that {v,,v,,2) is a

triangle. Also, we may represen.t P,,1 by the path (vn,uwy, - - - ,w,t). Similarly, there exists a
path (v;,2), * * * ,z,,vs) such that each vertex in the path is adjacent to v, Since X, is empty, the
path {wy, - - - ,w} is in G,. Similarly, the path (z;, - - - ,z) is in G). Clearly, by planarity and

triangulation, z==w, =z, Since u; is some w, by triangulation, u, and z are in the same con-
pected component of G,. Similarly, u, and z are in the same component. Hence, u; and u,; are in

the same component. By a transitivity argument, all vertices of G, are in a single connected com-

ponent. [
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See Figure 3.14 for an example where X, is empty.

Assume G, is connected. Every biconnected component of G, that is not a single edge is a
cycle, all of whose edges are on the exterior face (Harary [Ha]). For each cycle K of G, add a
vertex vg in the interior of K, remove all the ng of K, and connect vy to each vertex of K. Let
H be the resulting graph and call it the biconnected components graph (or BC-graph) of G,. As an
example of a connected G, see Figure 3.15; @) contains cycles A and A" The construction of the
BC-graph adds vertex v, in the interior of cycle A and vertex v, in the interior of cycle 4’ The
construction then removes edges of A and A’ Finally, the construction connects v, to all vertices
of A and vy to all vertices of A’ Figure 3.16 illustrates the resulting BC-graph. The construction

of the BC-graph is quite similar to that of the block~cutpoint-tree of Harary and Palmer [HP].
Clearly, H is planar and connected, since G, is. In fact, His a tree.
Lemma 3.8. Suppose G is connected. Then H, the BC-graph of G, is a tree,

Proof: By induction on the number of cycles in G;. H &) kas no cycles, then G is a tree and

H=G,. Suppose G| has exactly one cycle K. If Gi=K, then H is clearly a tree. If G;#K, then

Figure 3.14. Empty X,
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Cycle A Cycle Af

Figure 3,15. Example of Connected G,
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Flgure 3.18, The BC-Graph of G;

G) minus the edges of K is a forest where each tree in the forest contains exactly one vertex of K.

The addition of vy together with edges to each vertex thus makes the forest into a tree. Hence H

is that tree,
For purpose of induction, suppose the result is true whenever G, has fewer than k cycles,
£>1. To extend the induction, assume G; has k cycles. Let K and A be distinct cycles of Gy

There exists a cut vertex v€V, on K whose removal separates G, into two or more connected
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components such that X and A are in different components. Let D be the component containing
K-v, and let D, be the component containing A-v,. Let Dy, - - - Dy be the remaining com-
ponents of G;. Each component has some vertex adjacent. to v. By inductive hypothesis, the
BC-graph of each component is a tree. Further H is exactly the umion of these BC-graphs

together with an edge from each BC-graph to v, Thus His a tree. [

We are now justified in calling H the biconnected components tree (or BC-tree} of G; when
G, is connected. Now that we know the structure of ), let us examine the connections between
G, and G,. We say an edge (v,,,) of G is visible from vertex vy if (v;,1,9) is a face of G. The
following lemma shows that we can characterize an edge of E; as a cycle edge or a non-cycle edge

according to whether the edge is visible from one or two vertices of Gj,.

Lemma 3.7. Suppose (v,,v,)EE;. Then (v;,15)€EN, if and only if there exist exactly two distinct

vertices vy, v,€ V; such that (v),v;) is visible from vy and v,

Proof: Suppose {v,,t5)EN,. By definition of N;, {w,v) does not lic on a cycle of G;. By
definition of E,, there exists € Vj such that (v, w) is visible from vy, Let v,€V be such that
(vy, ) is also visible from v, and v,7£vs. If v EV,, v is in the interior of some cycle K of G,. But
then (v, 1) must be an edge of K, s0 (vy,u,)¢N,. If v,€V), then either (v}, v;,v,) is a cycle of G, (a
contradiction) or one of {v,,v) and {vyv,) is in Xj, say (v,v,). The edge (v;, v} is in the interior of
some cycle K of G,. But then (v, 1) must be an edge of K, a contradiction. By process of elimi-
nation, v, €V,

Now suppose there exist distinct vy, v €V, such that (v,v;) i visible from v, and v,. The
edge (v,,v0) is in the interior of Go. No cycle containing (v;,1) can exist in the interior of G by
planarity. Hence (v, )}€N,. O

It is clear that the vertices and edges at levels >2 are contained in the interiors of the
cycles of G, (the level 1 cycles). Since cycles in a planar graph separate the graph, the interiors
of any two level 1 cycles are independent in the sense that there are no edges or vertices in com-

mon-between the two interiors, and there are po edges between the two interiors,
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Since G |K is an I-graph, we can translate results for G, to results for G |K. In particular,

we immediately kave these generalizations of Lemmas 3.5-3.7.
Lemma 3.8. Suppose K is a cycle of Gy, and X; |K=0. Then GJK is connected.

Lemmsa 3.9. Suppose K is 3 cycle of Giy, and G;|K is connected. Then H, the BC-graph of
G; |K, is a tree,

Lemma 3.10. Suppose K is a cycle of G, and (v,%)EEJK. Then (v, %)EN]K if and only if

there exist exactly two distinct vertices vy, v,€V, \]K such that {v;,1;} is visible from vy and v,

We complete the description of thé feveled structure of G by giving a tree decomposition for
G. First deﬁné a two-level tree for the structure of G and G). Let K, Ko, - - - ,K,, be the cycles
of G, and let V,’ be the vertices of G} not on any of K, K, - - - ,K,. Represent G; and G by
the non-oriented tree with G, as root and V\'K;, - - - K, 38 leaves. Now, each G|K| is an -
graph with fewer levels than G. Thus each leaf K, can be further decomposed until a tree results
where no leaf is a cycle and each non-leaf is a cycle. Call the resulting tree the decomposition

tree {or D-tree) for G, and call each interior node a D-cyele.

The D-tree of G is almost a partition of the vertices of G. It fails to be a partition exactly
in the case where two brother cycles at the same level share a vertex. Such a shared vertex is
called a pinch vertez. Two brother cycles can share at most ome pinch vertex. The pinch vertices

at a level will be a particular source of problems to our algorithm.

The general flow of the algorithm can be described with respect to the D-tree. The vertices
ate ordered, and the edges are assigned to pages via a breadth-first traversal of the D-tree starting
at the root. If K, and K are two brother cycles, the algorithm assigns two disjoint blocks on the
embedding circle to the two cycles. The important step in the algorithm is thus extending the

layout of a cycle in the D-tree to a layout of the cycle and all its sons. We discuss this step next.

3.3.2, D-Cycles

The second element of cur solution is the recognition of D-cycles. If a D-cycle is at level &

of the D-tree, we call it a {k}-cycle. Each D-cycle separates G into two independent parts, its
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interior and its exterior. Consider a particular D-cycle K. Let K;=G |K denote the graph con-
sisting of K together with its interior. Let V; denote the vertex set for ;. Similarly, let Ky
denote the graph consisting of K together with its exterior, and let Vz denote its vertex set. Sup-
pose we have book embeddings B; and Bg for K; and K respectively. How can we obtain a book

embedding B for G from B; and Bs? We recognize two points here.

First, K; and K¢ have exactly the cycle K in common. If the vertices of K do not appear in
the same (cyclic) order in both B, and Bp, then there is little hope of binding the two together. If
the order of K is the same in both, then at least V=1V{ JVp can be placed in an order such that
both V; and Vg are in the same order that they appear in B; and By respectively. What common
order should be chosen for K in both book embeddings? We choose the cyclic order generated by
the cycle K. A corollary of this choice is the following. When embedding the exterior of K, the
interior of K is not examined: the embeddings of K; and Kz are independent except for their

interface, K,

Second, if we do combine B; and Bg to obtain an embedding B for G, the number of pages
in B could be as large as the sum of the numbers of pages iz B; and Bp. This is undesirable, as
we want a constant (seven) upper bound on the pagenumbers of B), Bz, and B. We constrain the
structure of B; and Bg so that any new crossing edges created by the combining of By and Bg to
form B are edges incident to vertices of K. The constraint, called nesting, is covered in the next

section.

Our algorithm constructs B by induction on the level of K. We can describe in general
terms the key inductive step of extending an embedding for a D-cycle K at level -1 to an embed-
ding for K together with its soms in the D-tree. For convenience of exposition, we assume
X, |K=8, so that G;|K is connected, by Lemma 3.8. The removal of this assumption is dis-
cussed in the next section. By a suitable inductive hypothesis, K is embedded in its cycle order
within a book embedding for K We extend K to be a supercycle including all vertices of G, |K,
that is, all the vertices of the sons of K in the D-tree. K remains in its cycle order within the

supercycle, Each D-cycle in G;|K is also in ita cycle order to satisfy our requirement that the
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embedding of each D-cycle be suitable as an interface to the next level.

We first describe a method of accomplishing the extension of K, that is not the one we use.
Qur reason for mentioning this method is twofold. First, the method does work in the case that

G ]K contains no cycles {see section 3.4). Second, analysis of the failure of this method
motivates the method that we do use.

The method visits each vertex of G.|K. Each vertex of G,}K is adjacent to at least one
vertex of K. Suppose v, is a vertex of K. Let P,,' be the path (v,y,u, 4, * - ,tupm Vo). Then
(v1,u2),(22,u8), * -+ ,(Bm-1,4m) ate the edges of G;|K visible from v,. lo fact, P,,' gives the visita-
tion order for these edges; see Figure 3.17. The vertices of K are visited in counter-clockwise

order. When vertex v, of K is reached, the vertices uy, - - - ,u, in P‘,' are examined in a clockwise

order until an unvisited vertex is encountered. (If there is no unvisited vertex, then go to vy, ) If

vertex u, is unvisited, it means that u, is not yet in the supercycle. Go from v, to u, and follow

Figure 3.17 Visiting the Vertices of P,,,
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P,,' from u, to v, Once all vertices of K have beer visited, a supercycle results that contains all
vertices of K and G, |K.

We note some features of the resulting supercycle. First, we have the reason for considering
this method:

The supercycle indicates a two-page embedding for the graph consisting of K, By, ;|K

and G;|K; it orders the vertices and partitions the edges into two pages.

Second, this supercycle is really just a cycle in the graph; no edges are added to obtain the super-
cycle. Third, ¢ycle K and all (k}cycles are in their cycle order in the supercycle. Fourth, the
interiors of (k)-cycles are not examined in extending K to a supercycle. Fifth, some {k}cycles are
separated into fragments by the supercycle; see, for example, Figure 3.18 (the supercycle consists

of the dashed lines), where each (k}-cycle (4 and A’) is fragmented into two paths.

Figure 3.18. Supercycle Fragments (k}-Cycles
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The problem with this method is in the fifth feature. The vertices of a (k}cycle may be
mingled among level &1 vertices. This mingling cannot be prevented at successive levels. Thus,
there may be crossings of edges separated by an arbitrary number of levels, 8o there is no way to
reuse pages from one level at any later level and obtain a bound on the number of pages required.
The solution to this problem is discussed next. Unfortunately, as the solution eliminates the prob-

lem of the fifth feature, it also eliminates the advantage of the second feature.

3.3.3. Nesting

We wish to prevent the crossing of edges from levels that are far apart. We want to accom-
plish this by preventing the mingling of verﬁces from levels <k-1 with the vertices of a (k)-cycle.
We can do so if the supercycle extending cycle K to include G} |K contains each {k}cycle contigu-
ously. This is a requirement ir addition to the requirement of maintaining each D-cycle in cycle
order in the supercycle.

The key to placing all the vertices of a D-cycle contiguously in the supercycle is that once
one vertex of the cycle is reached, all the vertices must be picked up. In general, this cannot be
accomplished without adding edges to G. Since the interior of ¢ is maximal planar, these new
edges destroy planarity. To restore planarity, a few carefully selected edges are deleted, and
other edges are re-routed. This process of adding, deleting and re-routing edges to obtain a super-
cycle is called micro-surgery.

The subgraph of interest is composed of K, B, , ;|K and G,|K. The exterior of K and the
interiors of the (k}cycles are of no current interest, so we proceed as though they were not present
in the planar embedding. Micro-surgery is used when a vertex u, of some (k}cycle A is added to
the supercycle between v, and v,,; of cycle K: all remaining vertices of A must immediately be
added to the supercycle. Suppose the edge (u,u,) is on A, and both u, and uy, are in P.'. Sup-
pose further that u, is the rightmost vertex of P,' that is on A. Micro-surgery starts by deleting
edge (u,4,4,), which creates a gap between u, and u,; in the planar embedding. These edges

(vprpo)(vpuys), - fvpu,) are re-routed through the gap. The result is that these edges are



40

now attached to the vertices of cycle A from the inside rather than the outside; see Figure 3.19.
The re-routing opens space to add the edge (u,4y,4,41) if 4,4y exists, or the edge (u,41,V44) other-
wise. The supercycle is then extended around A (in a clockwise direction in Figure 3.19} from u,

to u,,, and thence to u,yy or vy,,.

What can go wrong? While cycle A is being traversed from u, to u,4;, a vertex of another
cycle might be added to the supercycle. An example is shown in Figure 3.20 where the pinch ver-
tex z is shared by both cycle A and cycle A’ This presents a dilemma. The vertices of A’ cannot
be picked up at this point because we must keep the vertices of A contiguous on the supercycle.
However, if the vertices of A are not picked up at this point, then vertex z will not be contiguous

with the remaining vertices of A’ on the supercycle. Therefore, we are forced to relax the require-

Cycle A

Figure 3.19. Mlcro-Surgery on a (£)-Cycle
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Figure 3.20. Vertex z: Shared by Two (k}-Cycles

ment, because of these pinch vertices.
The requirement on the supercycle that we will be able to meet is:

Each (k}cycle appears contiguously in the supercycle, except for at most one distinguished

vertex.

In Figure 3.20, the distinguished vertex for {k}-cycle A’is 2. Since z is not contiguous with the

remaining vertices of A’ z is said to be separated from A'

We must guarantee that at most one vertex is separated from each cycle. We justify the
requirement with the BC-tree T of G} |K; see Figure 3.21. Recall that T is obtained from G;|K
by performing the following operation on each cycle A of G, |K: add a vertex v, in the interior of
A, add an edge from v, to each vertex of A, and remove al} edges of 4. The process of extending
K to a supercycle can be thought of as a traversal of T. The traversal is depth-first until the first
cycle-edge is encountered. Suppose that cycle-edge is on A. At that point, the vertex v, pre-
empts all vertices of A for itself (all vertices of A are immediately picked up). This can be viewed
a8 a contraction of all vertices of A to v,; see Figure 3.22. In particular v, pre-empts z from cycle
A’ When later the edge (2,u) of cycle A'is encountered, all vertices of cycle A’ except z are pre-

empted by vertex v,. See Figure 3.23. It is clear that in a depth-first traversal of T, vertices z




|
Figure 3.21. The BC-Tree
u
{x.,y,2}
@
vA VA.
;4

Figure 3.22. Contraction of Cycle 4 to v,
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{x,y,2} {u,w}
>— o
Va Yar

Figure 3.23. Contraction of Cycle A' Except z to vy

and w will be encountered before any other vertices of A’ and that vertex w will be reached

through the vertex v, e Thus z is the only vertex separated from A’
We have established the following micro-surgery lemma.

Lemmsa 3.11. Using micro-surgery, a (k-1}-cycle K can be extended to a supercycle §containing

G | K such that
(1) each (k}cycle of G;|K is in cycle order in &
(2) each {(k}eycle of G |K is contiguous in § except for at most one separated vertex.

We now have the supercycle we want. At successive levels, the supercycle nests each (k)
cycle between two consecutive vertices of a (k-1)-cycle. For each (k}-cycle, we have to account
for three categories of pages: the pages for the edges from its father (k-1)}cycle to the (k}cycle;
the pages for the edges from the (k}-cycle to its son nodes; and the pages from the (k}cycle to its
separated vertex and from the (k)-cycle to its brother (k}cycles for their separated vertices that
are on the (k}cycle. We show that the number of pages required in each category is bounded at
every level. Because of nesting, the pages used at one level can be reused at subsequent levels.

Thus, nesting provides the last element of the solution to a bounded pagenﬁmber for planar

graphs.
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3.4. Levels Without Cycles

In this section, we address in detail the case where some level does not contain any cycles.
It is sufficient to consider the case where &) contains no cycles. The approach is to exterd the
cycle G, to a superhamiltonian cycle including G;. In fact, we can show that G is actually hamil-
tonian in this case. No edges must be added to G to obtain the desired superhamiltonian cycle.
As promised in the last section, the problems with chordal edges are resolved by an algorithm
presented in this section.
Lemma 3.12. If &) contains no cycles, then G, is a forest, and.every level greater than 1 is
empty.
Proof: If G| contains no cycles, then () is a forest by definition. No level greater than 1 can be

nonempty since there are no level 1 cycles to contain level 2 vertices. [
Lemma 3.13. If G, contains no cycles and is connected, then & is a tree.

Proof: By the definition of a tree. [

Theorem 3.14. If &, contains no cycles and if X is empty, then G, is connected; moreover,
there exists a hamiltonian cycle H for G such that the vertices of G, appear in H in the same
order as they do in the cycle G,

Prooft We construct H using micro-surgery; the constraction is simplified by the absence of {1}
cycles in G. By Lemma 3.5, G, is connected. By Lemma 3.13, G, is a tree. Let vy, - - - v, be
the vertices of Gy in cyclic [say clockwise) order. Since X is empty, all interior vertices of the
path P‘,',lgqs m, are in V). First, suppose that G, is empty. Since G is inner-trianguiated, and
since X, is empty, G is a triangle, and the theorem is easily satisfied. Now assume that &) is
nonempty. Then for each v,, there exists some vertex of ), adjacent to v,; in other words, each

P,' bas length greater than one.

We state the construction of H by micro-surgery for the case in which G, contains no (1}

cycles. Start H at v;. Whenever v, 1< ¢<m, is reached, examine P.,' for vertices not yet in H.

Let (v,y,u, © ' - ,6,vy,) denocte P,,' (subscripts of the v's are taken modulo m). If each
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u,,1< <k, is already in H, then extend H from v, to vy, via the edge (v,v,,); if vy =1, then
halt. Otherwise, let j be smallest such that u, is not in H. Extend H from v, to v 4, via the path
(vptytgrs * * * sUpUe); if ¥ ==vy, then halt. Figure 3.17 shows in dashed lines the extension of
H from v, to vy,. It is clear that every vertex of G isin H.

It remains to show that no vertex of G| is visited twice during the construction of H. For
the purposes of obtaining a contradiction, suppose that u, €V) is visited twice, the second time
while H is being extended from v, to v,,. Consider Figure 3.24. Since ¥, is not yet in H, we
know that u,72u; however, u,.; and u, may be identical. Since (u,u,) is a non-cycle edge, by
Lemma 3.7, there exists v, € Vj such that vzv,, and edge {u,u,4,) is visible from v;. Let v, be
the vertex of G, at which u, was first visited. Since v, i8 visited before v,, and since Gj is visited
in clockwise order, we have t<s<g. Therefore, v, is visited before v,; in particular, v, is visited

before v,. But this is a contradiction to u, pot having been visited before. This contradiction

Vs

Figure 3.24. Contradiction for Theorem 3.14
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validates the construction of H.
Clearly H contzins Vj in the order v;, - - - ,v,. Hence H is the desired hamiltonian cycle for

G O
Theorem 3.16. If G, contains no cycles, then & is subhamiltonian; moreover, the order of the

vertices of G in the hamiltonian cycle is preserved.

Proof: Assume G, is not empty. IT X, is empty, apply Theorem 3.14. It X; is nonempty, re-
embed the X, edges outside G, (this can be done by outerplanarity), and triangulate the interior
of Gy in such 3 way that no new chordal edges are introduced. This triangulation is always possi-
ble for the following reason. With the X;; edges removed, any interior face of G must have a level
1 vertex on its boundary. Thus each interior face can be triangulated by connecting level 1 ver-
tices to level O vertices or to other level 1 vertices in such a way that no cycles are created in G
Now, Theorem 3.14 applies to G and its interior. Edges of X, will necessarily be exterior to the

hamiltonian cycle in the modified embedding. [J

We apply Theorem 3.15 to the graph G of Figure 3.12. @, contains no cycles and is not
connected. Hénce, we re-embed the edges of Xg={(w,v,),{v¢,v10).(vs%).(n, %)} outside G, and
retriangulate the interior of G, Figure 3.25 shows the result. The curved edges are those from
Xo- Edges (vyuy), (u,uz), (u,us) 3nd (vg,us) have been added so that the interior of G, is now
retriangulated, G is connected, and G bas no cycles (hence is a tree). We apply the algorithm of

Theorem 3.14 to obtain a hamiltonian cycle, which is shown by dashed edges in Figure 3.26.
Applying Proposition 2.5 and Theorem 3.15, we have the following:

Corollary 3.18. If C;=#, then G is two-page embeddable.

3.5. The Algorithm

In this section, the development of our algorithm for embedding a planar graph in a seven-
page book culminates in a description and analysis of the algorithm. The components that have
been obtained in previous sections are combined into an integrated unit. The reasons for the

result seven are given. The pagewidth of the resulting embedding is discussed. The linear time



Figure 3.25. Retriangulated Graph
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Figure 3.26. Hamlltonian Cycle
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performance is verified.

3.56.1. The Statement

Before stating the algorithm, we need two definitions. If K is a {k}-cycle, let T be the BC-
tree of Gy, |K. Suppose we have chosen a root for T. Define the distance from the root to v, by
the pumber of cycles between the root and v,. Call A even if the distance to v, is even, and call
A odd otherwise, The significance of this terminology is that two odd cycles cannot share a pinch

vertex, We have to account only for pinch vertices between odd/even cycle pairs.

We start with a condensed statemeat of the algorithm. Given an I-grapk G, visit the levels
of G in a breadth-first manner (by traversing its D-tree). Each (k)}cycle K of G is assigned a dis-
tinguished vertex first{ K) and two pages page(K) and avoid K) by the algorithm. K is extended to
a supercycle including Gy, |K by micro-surgery. The problem of chordal edges is taken care of
as in the previous section. The supercycle gives the embedding of the vertices of Gy, |K with
_respect to the embedding of K. The set of pages is the set of natural numbers {1,2, - - - }. In the
algorithm, each of g, &, and ¢ is a variable taking on a page as value. The edges incident to
first{K) are assigned to page{K}, as are all other edges outside the supercycle. The edges inside
the supercycle are assiguéd to a second page c¢. The BC-tree of G,y |K is constructed. The even
cycles of Gpyy |K are assigned to a page o and the odd cycles to a page b. The pages s, b and ¢
must be other than page avoid(K}. Each cycle K is assigned a firsf{ K) value; if K has a separated
vertex, then fire{ K) is that vertex.

A complete statement of the steps of the algorithm is given in Algorithm 3.1. Each step
wil] be discussed in turn in the remainder of this subsection. The choice of pages ¢, b and ¢ in
steps 4.4 and 4.5 is nondeterministic. While the choice could be made deterministically, the non-

determinism eflectively indicates the freedom available in the algorithm.
{1) The D-tree T of G is constructed by breadth-first search of G from G,, the root of T.

This search identifies the levels and the (k}cycles of G. Since the search can be accomplished in

O{|E|]) time, and since G is planar, this step requires Of|V]) time. In practice, this step would be
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{1) Construct the D-tree of G by breadth-first search.

(2) Choose an arbitrary vertex of G, to be firs{Gy).

(3) Embed Gy in a circle in its cycle order. Assign page 1 to be page(G;).
(4) For each {k}-cycle K, visit its sons by executing steps 4.1 through 4.5.

(4.1yEmbed the chordal edges X |K outside K, and retriangulate the interior of K so that no new
chordal edges are introduced.

(4.2) By micro-surgery, extend K to a supercycle Sincluding all vertices of Gy, |K.
{4.3) Nest the embedding of Gy |K within the embedding for K in the order given by §.

(4.4) Choose two pages a and & that are not incident to any vertex of K. For each (k+1)cycle A
in Gy |K, set page(A)=a and svoid A}="5 if A is even and set page(A}=) and avoid(A)=sa
if Ais odd.

(4.5} Let ¢ be a page different from ¢ and b and from any page incident to vertices of K. Assign
the exterior edges of S to page(K) and the interior edges to c.

Algorithm 3.1. Planar Graph Algorithm

accomplished at the same time as the remaining steps.

(2) This is an initialization step. Every (k}cycle K of G will be assigned a vertex first(K)
that is meant to be its separated vertex, if any. It is also the vertex at which the supercycle
extending K is to begin. Since G, will have no separated vertex, an arbitrary vertex is chosen to
be firsf{ Gy). Since firs{K) is the start of the supercycle, all edges incident to firsf{ K} are either
on or butside the supercycle. Thus all edges incident to first(K) can be assigned to the same page.

That page will be page(K). For Gy, we arbitrarily choose page( G;)=1.

(3) With this step, the book embedding actually begins. The vertices of G, are placed on-a

circle in cycle order. The vertex first{ Gy) is the first vertex in the embedding.

{4) Here is the breadth-first traversal of the D-tree. A visited (k}cycle K is extended by
vi;iting all of itz sons during the execution of steps 4.1 through 4.5. Breadth-first is not the only
traversal scheme that will work, but it will do. The important properties of the traversal are that
a father be visited before its sonsv and that all brothers be visited “‘simultaneously.’” At the point
that K is extended, we kpow that all vertices of K have been embedded and are contiguous in

that embedding, except perhaps for firsf{ K}. None of the edges on K or inside K have been
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assigned to pages, but the edges of K will be assigned to pages in this execution of step 4.5.

(4.1) The chordal edges in K may prevent Gy |K from being connected. Gy, [K can be
made connected by the operations used in Theorem 3.15. Cross edges are pulled outside X, and
the interior of K is retriangulated to make Gy, |K connected. Note that all edges of X, |K will
be on the outside of the supercycle obtained im step 4.2. Therefore, these edges will all be
assigned to page(K) in step 4.5. The solution of the problem of chordal edges thus comes with no

additional page cost.

(4.2) Gipy [K is modified by the micro-surgery technique of section 3.3 to allow K to be
extended to a supercycle S including Gy, K. Let A be any cycle of Gy |[K. Then the vertices
of A are in ¢ycle order in S, In addition, the vertices of A are contiguous in S except perhaps for

a separated vertex u, which is assigned to be first{A).

(4.3) The supercycle S gives the embedding order for the vertices of Gy, |K with respect to
the vertices of K. The vertices of K are currently contiguous in the embedding, except possibly
for ﬁrat{l(); Suppose the vertices of K are first{K)=u1y,v, - - - ,v,. Then the picture before
Gy |K is embedded is as in Figure 3.27, where w, - - - ,v, are contiguous in the embedding, but

there may be other vertices betweer v; and v, The creation of S causes all vertices of P, to be

vV

V' VZ Vz V4 ssa Vn

first(K)

Figure 3.27. K Before G,,, [ s Embedded



in S before . There will be other vertices before v, if any (k+1}-cycle edges are encountered in

P,. Denote by 5., all the vertices between 1y and 1o in the supercycle. AH other vertices of
Gy | K occur in S before v,. Thus, all of S.,: can be placed next to v, and the remainder of S
will it in the interval between vy and v,. The result is as in Figure 3.28 where the vertices of

S-K are shown larger than v, - - - v,

(4.4) Let A be any {k+1)cycle in Gy, [K and let u{=firsf{A)),us, - - - ,u, be the vertices
of A. The edges of A will not be assigned to pages until its sons are visited. (However, the non-
cycle edges Ny |K will be assigned to pages in this execution of step 4.5.) From s‘tep 43, it is
clear that no edges of A can cross any other edges already embedded, except for edges incident to
u;. The edges incident to u, consist of (u),uy) and (uj,u,), as well as edges from u; to Gy |K.
Call this set of edges the separsted edges of u;. Any u,7u, might be separated from some cycle
other than A. For example, see Figure 3.28 where u, is separated from cycle A’ and u, is
| separated from cycle A" At least the separated edge {u;,u,) will cross the separated edges of u,

and wuy, but no separated edge of u, crosses a separated edge of us. Thus A must be assigned a

4 N

' R |
F —|— — — 7 ™
YF = | — M I

r“"w'_l
W o 1L U

first(A) A . A

Figure 3,28, The Embedding of S
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page different from the page of both A’and A", but A’ and A" may be assigned the same page.
This conflict between separated edges potentially occurs at any cycle of G,y |K. Translating to
the language of the BC-tree of G, |K, the even (k+1}cycles may all be assigned the same page
¢ while the odd (k+1)<ycles may all be assigned the same page b, but s must be different from .
We choose s and b to be different from any page incident to K and from page(K). Then setting
page{A)=a if A is even and page(A)=> if A is odd avoids the page conflict.

(4.5) This is the page assignment step. The edges on K, the chordal edge X;|K, the bind-
ing edges B;;,.|K and the non-cycle edges N,y [K are assigned to one of two pages according to
whether they are inside or outside of 5. (Edges on § may be assigned to either page, except the
edges incident to firs{ K) must be assigned to page{K).) The edges outside of S are assigned to
page(K). Since all edges incident to firsf{ K) are either outsic'le S or on S, all edges incident to
firet{ K) are assigned to page{K). The interior edges of S are assigned to page ¢. Page ¢ is chosen
to differ from all other pages incident to K, including page(K) and to differ from pages 4 and b of

step 4.4.

This completes the description of the algorithm. The verification of the correctness of the

algorithm comes from the following theorem. The bounded pagenumber is proved later.
Theorem 3.17. Algorithm 3.1 yields a valid book embedding of an I-graph G.

Prooft Most of the proof has already been accomplished. Certainly Algorithm 3.1 embeds the
vertices of G on a circle. It remains only to show that the page assignments in step 4.5 never
introduce two crossing edges assigned to the same page. But this is clear: page(K) was chosen
specifically so that the separated edges of first{K) could safely reach K. The vertices of the super-
cycle S other than firsf{ K) are contiguous in the embedding. The only additional edges that can
cross edges of S are those incident to K from the outside, i.e., those embedded when the parent of

K was expanded. Hence the choices of pages 4, b and ¢ cannot raise a confict.

Thus the algorithm yields a book embedding for G. [
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3.5.2. Why Seven?!

So far we have a wvalid book embedding for an l-graph G. To obtain a bounded
pagenumber, we constrain our algorithm to select its pages from a bounded set. This is possible
because of the independence of alternate levels caused by the nesting of cycles. The analysis of

the exact number of pages in that set begins with the following result.

Lemma 3.18. Let K be any (k)}cycle of G. Book embed G using Algorithm 3.1. Then at most
five pages are incident to K. (A page is incident to K if there is an edge incident to a vertex of K

that is assigned to that page.)

Proof: Suppose K==G,. Then at the first execution of step 4.5, all edges incident to G, are

assigned to pages page(Gy) and ¢. Hence at most two pages are incident to G,.

Suppose K#G,. Let K'be the parent of K in the D-tree. Then edges incident to K that
are exterior to K divide into two classes. The first class comprises those edges assigned to pages
when step 4.5 is executed for K’ Thete are two pages used there. The second class comprises the
edges separated from cycles of G,|K' other than K. These are all assigned to page avoid(K).
Hence, three pages suffice for all incident edges exterior to K. The edges on K or interior to K
are assigned to one of two pages when step 4.5 is executed for K. Hence five pages suffice for all

edges incident to K. (]

Theorem 3.19. Algorithm 3.1 can choose from a set of seven pages. As a result, any planar

graph can be embedded in a book of seven pages.

Proof: Consider any (k}cycle K and the execution of Algorithm 3.1 at the point that X is
expanded to a supercycle. After step 4.5 is executed, all edges incident to K will have been
assigned to pages. By Lemma 3.18, at most five pages are incident to K. The choices for pages a
and b are constrained only to avoid conflict with those five pages. Hence a set of seven pages

suffices. [J
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3.5.3. Further Analysis

We consider the pagewidth of the book embedding of G. If G does not have bounded
degree, then there is no hope of bounding the pagewidth in a bounded page embedding. For
example, if G is a star, it has a vertex of degree 2(|V'|). Then any bounded page embedding of G
requires {3(] V' |) pagewidth.

So assume G has bounded degree. Even here our algorithm can give poor pagewidth. We
define a sequence of planar graphs called the cylinder of triangles. The kth cylinder of triangles
CT; consists of vertices V={4a,b,c|1<j<k} and edges

E= {(a8)(66)3,2 )11 TS B0 84 s bahlep a1 S5 < B
A drawing of €T, is shown in Figure 3.29. The leveling of CT; is obvious; each of the & levels
consists of a single triangle. Algorithm 3.1 will completely nest these triangles, giving a 6(|V|}
pagewiath in a four page embedding. Any two-page embedding of CT, has pagewidth Q| V]);
however, there exists an 1) pagewidth embedding of CT; in three pages [CLR]. Thus there is

much room to improve the pagewidth performance of Algorithm 3.1.

Figure 3.208. A Cylinder of Three Triangles
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It is obvious that Algorithm 3.1 executes in linear time. The breadth-first search is certainly
linear. Each vertex and edge is visited at most twice, and all elementary operations on vertices

and edges can be done in constant time. Theorem 3.19 can thus be strengthened to:

Theorem 3.20. Any planar graph can be embedded in a seven-page book in linear time.

3.6. Conclusions

In this chapter, we have made progress towards determining the pagenumber of the class of
plarar graphs. The best bounds currently known are 3<PPG<7. The gap between these bounds

presents two challenges.

The frst challenge is to raise the lower bound. The argument that PPG>3 is relatively
simple. If indeed PPG is greater than 3, there is a need for improved lower bound techniques.

Qur approach towards such techniques is discussed in the concluding chapter,

The second challenge is to lower the upper bound. We are the first to attain the seven page
upper bound, and we do so with a time-optimal algorithm. Wkhile it is possible to show upper
bounds on pagenumber nonconstructively [CLR], we do not believe the structure of planar graphs
is amenable to a nonconstructive proof of small upper bounds. Therefore, we require an new algo-
rithm to lower the upper bound. Our algorithm has some slack in its page assignments, but it is
not clear how to exploit the slack to obtain smaller pagenumber. Cur algorithm is targeted to the
book embedding problem for planar graphs, so the principleé on which it is based should not be
igonored in a search for other algorithms. A thoughtful modification of these principles might
suffice to obtain an improved upper bound. In particular, we feel there may be a better approach

to choosing the leveling than ours or Buss and Shor's.

Three other types of problems can be raised. First, we can seek an algorithm that gives a
bounded pagenumber for a larger class of graphs. For example, we have tried to extend Algo-
rithm 3.1 to the class of genus one graphs but were unable to do so. Second, we can seek an algo-
rithm for a subclass of planar graphs that gives a pagenumber less than seven. This is the

approach we take in the next chapter where we show that the class of trivalent planar graphs has
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pagenumber two. Third, we can seek to improve the pagewidth performance of our algorithm. In

chapter 4, we do 50 for bounded-degree outerplanar graphs.
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CHAPTER 4

EMBEDDING TRIVALENT PLANAR GRAPHS IN TWO PAGES

In this chapter, we consider the pagenumber of planar graphs of restricted valence. In par-
ticular, we seek bounds on the valence of a planar graph that guarantees that the graph is
subhamiltonian (two-page embeddable). Our main result is that all trivalent planar graphs are
subhamiltonian. Here we take frivalent to mean that every vertex has degree no greater than
three, but we do not require regularity. From the proof of this result, we obtain an algorithm for
obtaining a two-page embedding for a trivalent planar graph. Our algorithm executes in time

linear in the size of the graph. Along the way, we develop a method of traversing the faces of a

biconnected planar graph.

4.1. Overview of the Algorithm

Let G be a trivalent planar graph. Throughout we assume that a particular planar embed-
ding of G is given. To show that G is two-page embeddable, we construct a superhamiltonian
cycle for G. Qur approach is to add edges to some of the faces of the planar embedding of G and
to demonstrate a bamiltonian cycle in the resulting graph.

The following result of Bernbart and Kainen {BK] allows us to reduce the general case to
the case where G is biconnected.
Proposition 4.1 [BK] For any graph G, the pagenumber of G equals the maximum of the
pagenumbers of its biconnected components.
Therefore, if each biconnected component of & is subhamiltonian, then G is subbamiltonian.

Thus, it is sufficient to consider only biconnected G,
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The notion of adjacency places an important role in our results. A face of G is adjacent to
the edges and vertices of & on its boundary. Adjacency is symmetric; e.g., i a face is adjacent to
an edge, then the edge is adjacent to the face. Two faces of G are edfacent if there is an edge of

(G adjacent to both.

If G is biconnected, each face of a planar embedding is bounded by a cycle. Our proof that
a biconnected trivalent planar ( is subhamiltonian is by induction on the number of faces of G.
The face added in the inductive step is always adjacent to the exterior face. The added face is
formed by choosing two vertices on the exterior face and appending a new path with those ver-
tices as endpoints. Since the graph is trivalent and biconnected, these two vertices must have

degree two before the face is added.

As illustration of the idea of an added face, see Figures 4.1 and 4.2. In Figure 4.1, Gis a
biconnected trivalent planar graph with vertices r and y of degree two on its exterior face. In
Figure 4.2, G' has been constructed by appending path (z),25,2) to z and y, creating the face F.
G'is also a biconnected trivalent planar graph, and it has one face more than G. To extend a
superhamiltonian cyele H for G to a superhamiltonian cycle H' for G, we must assume that the
edges (z,u) and (v,y) are in H. Figure 4.3 shows the modification of H to obtain H'. We replace

path (v,,t) in H by edge (v,t) in H’; we replace edge {z,u) in H by path {z,2,2,2,y5,4) in H'. For

4 N
G
—= & o ® >
X u t y v

Figure 4.1. Biconnected Trivalent Planar Graph
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Figure 4.2. Creation of Face F

Flgure 4.3. Superhamiltonian Cycle H'

this to succeed, we require the following: for any degree two vertex u on the exterior face of G,
the edge of G incident to u in a counterclockwise direction is in the superbamiltonian cycle K.

This requirement guarantees that edge (y,v) is in H, and justifies the replacement of the path
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(t,y,v) by edge (1,v).

The structure of bicornected planar graphs is examined in the next section. The resulting
structural information iz applied to the proof of the main theorem in the following section. From
the main theorem, we derive an algotithm for embedding trivalent planar graphs in two pages in
Section 4.4. The algorithm assumes that a biconnected planar graph is constructed by adding one

face at a time in a suitable order. This order, called oriented face traversasl, is developed in Sec-

tion 4.5.

4.2. Structure of Biconnected Planar Graphs

In this section, we are primarily interested in the structure of faces adjacent to the exterior
face. If & ig a biconnected plaﬁar graph with a given planar embedding, let Ug (or simply U, if G
is clear from context) be the unbounded {or exterior) face of G. Call a face F of G a boundary
face if F'is adjacent to U. For a boundary face F, let Gp=(VpE}) be the vertices and edges of
the bounding cycle of F that are adjacent to /. That is, G is the intersection of the bounding
cycles of U and F.

The boundary faces of G can be partitioned into three classes:

1. Gp is a path or G is the entire bounding cycle of F. In the second case, the only faces of
G are U and F, and G=Gy. See the example in Figure 44. G cobsists of the path
(1,02, v9,4).

II. Gp is a path together with one or more isclated vertices. See the example in Figure 4.5.
Gr consists of the path (u;,u,,uy) together with isolated vertices s and &.

II. Gp is two or more disjoint paths and zero or more isolated vertices. See the example in
Figure 4.6. Gy consists of the two paths (v,,1) and (u,,u,,us) together with isolated vertex
s. |

Since Gp is a subgraph of a cycle and contains at least one edge, these three classes exhaust the

possibilities.
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Figure 4.8. Class ITI Face

Lemma 4.3. Let F be a boundary face of a biconnected trivalent planar graphk G. Then Gy is

either of Class I or of Class Il without isolated vertices.

Proof: It suffices to show that G contains no isolated vertices. To obtain a contradiction, sup-
pose s were an isolated vertex of Gy. Since 2 is adjacent to U, two edges incident to # are adja-
cent to U. Similarly, two edges incident to s are adjacent to F. The degree of # is either two or
three. Hence some edge ¢ incident to # is adjacent to both U and F. But then ¢ is in Gp, and #
is not isolated. This contradiction proves the lemma,

It is clear from the proof that we can construct a biconnected quadrivalent planar graph G
that has a boundary face F such that G contains isolated vertices. Hence, the Lemma cannot be

extended to valences greater than three.

This emphasis on the adjacency of faces suggests that we consider the concept of the dua! of
a plapar graph (Even [Ev]). Let G=(V,E) be 3 planar graph with a given planar embedding.
The dual of G is a multigraph GD=--( VD,E'D) where V? is the set of faces of G, and E? contains
one edge for each edge of E il ¢€E is adjacent to faces F,F'€ VP, then eP=(F,F') is an edge in

EP and these are the only elements of E?. Note that G” can contain parallel edges and loops. If
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G is biconnected, GP does not contain loops. Parallel edges in G? cause no problems in our con-
text (see the discussion of Algorithm 4.3). It is clear that G® is also planar; we always use the

obvious planat embedding of G that is derived from the one for G.

An example of 3 dual graph is given in Figure 4.7. Here the edges of G are dashed while the
edges of GP are solid. @G has three Class I faces, one Class III face and one non-boundary face.
There are seven edges incident to U in G only three of which are completed in the figure. Note

that there are two parallel edges between the Class III face and the Class I face on the right.

We are particularly interested in the boundary faces of G. Let BF{G)=(V2 EP) (or simply
BF), the boundary face graph of G, be the subgraph of G? induced by the boundary faces of G.

For trivalent graphs, there iz a simple condition that guarantees the adjacency of two faces in BF.

| SRR I G D G
I
I
I
I

TR (RS G I ——

Figure 4.7. Dual Graph G°
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Lemma 4.3, Let G be a biconnected trivalent planar graph. Let (v),v, 1) be any path on the
bounding cycle of U, Let F be the boundary face adjacent to (1;,1) and let F' be the boundary
face adjacent to (v, vs). If v, is of degree two, then F==F' U v, is of degree three, then F and F'

are adjacent in BF,

Proof: If v, is of degree two, then there is no edge to separate F from F'. So suppose that v, is
of degree three, that v is diflerent from v,, and that vy is adjacent to v,. Then the edge (vs,u) is

adjacent to both face F and face F’. Hence F and F' are adjacent in BF. [
We have the following result on the structure of BF.

Lemma 4.4. Let G be a biconnected trivalent plarar graph. Then BF is a connected outer-
planar graph.
Prooft Since each face in V? is adjacent to U, BF is clearly outerplanar. To show that BF is
connected, let. F.F'e V? be distinct faces and let P=(vy,vy, - - - ,v;) be a subpath of the bounding
cycle of U such that {v;,v,) is on the bounding cycle of F and (v,,,v)) is on the bounding cycle of
F!. We say that P joins F and F'. Clearly j7>3. We show that there is a path from Fto F’ in
BF. We proceed by induction on j.

If j=3, then sicce F and F' are distinet, Lemma 4.3 implies that F and F' are adjacent in
BF. Now suppose that ;>3 and that the result holds for smaller values than 7. Let F”€V? be
the boundary face such that (v, ,v,,) is on the bounding cycle of F¥. If F'=F'  then
{v1,u, * * + ,v,) is a shorter path joining F" and F'; by induction, there is a path in BF from F to
F'. It F""=F, then (v, 5v,,v) is a path joining F and F’; by Lemma 3.3, £ and F' are adjacent
in BF. Otherwise, by Lemma 4.3, F" and F' are adjacent in BF. Since {1;,v5, - - - ,v,,) is a path
joining F and F' that is shorter than j, by induction there is a path in BF between F and F".
But now there is a path from Fto F' in BF. This completes the induction. Therefore, BF is con-

pected. ]

The following lemma characterizes the Class I faces of G. Recall that a cufpoint of a graph

is a vertex whose removal disconnects the graph.



Lemma 4.5. Let G be a biconnected trivalent planar graph. Then FEVZ is a Class | face if and

only il Fis pot a cutpoint of BF.

Proof: Suppose F is not a Class 1 face. By Lemma 4.2, F is a class III face without isolated ver-
tices. Let P; and P, be two distinct maximal paths of Gr. Choose edges ¢, in P, and ¢; in P,.
Draw 3 closed curve from F through ¢, to U and back to F through e, This closed curve can be
taken to consist of the edges ¢2 e2€EP. The result is illustrated in Figure 4.8. There are faces of
G distinct from F and U both inside and outside this curve. In particular, there are elements of
VZ_{F} both inside and. outside this curve. Any path in BF from the inside to the outside must

cross this curve and hence must pass through F. Hence Fis a cutpoint of BF.

Now suppose F is a cutpoint of BF. Let F' aod F" be in different components of BF-{F}.

Then F' and F" are not adjacent in BF. Choose ¢'€ Gy and e'€ Gpw Starting at e’, traverse the

) .
T
| | t |
| | | |
| | F o | | QU
| | | |
| | .| |
e —|— b

Figure 4.8. Curve Through a Class III Face
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bounding cycle of U in the clockwise direction to reach e” Name the faces encountered
Fy,Fs, + - - ,Fyin order. By Lemma 4.3, F, is adjacent to F,, for 1<j<k Since F’ and F" are in
different components of BF-{F}, F: == F, for some 1<j<k Furthermore, there is some maximal
path P, in G,;- that is encountered in the clockwise traversal from ¢'to ¢”. If a similar traversal
from e’ to ¢ is taken in the counterclockwise direction, then a maximal path P, in Gy is

encountered. But P, and P, are disjoint. Hence Fis in Class II1, i.e., not in Class I. [

Corollary 4.8, Let G be a biconnected trivalent planar graph. Then V& contains at least one

face of Class 1.

Proof: In any (nonempty) connected graph, there exists some vertex that is not a catpoint. To
see this, use a depth-first search of the graph to obtain a rooted spanning tree. From Lemma 4.6
of [Ev], we deduce that the leaves of this tree are not cutpoints of the graph, Since BF is con-
nected (Lemma 4.4), it contains a vertex that is not a cutpoint. By Lemma 4.5, that vertex is a

Class I faceof G. [J

The inductive step of our main theorem is based on two graphs one of which is obtained by
adding a single face of Class | to the other. Let G be a biconnected planar graph, and let Fbe a
Class I face of G. Then Gp is a path P on the bounding cycle of the exterior face U. Define
G'=G-F to be G without the edges and interior vertices of P. (If Gr=G, then G-F is the empty

graph.) Figure 4.9 shows the result of subtracting face F from the graph of Figure 4.4.

Lemma 4.7 plays a crucial role in the inductive step of the main theorem of this chapter. It

also provides part of the correctness proof for the book embedding algorithm of Section 4.4.

Lemma 4.7. Let G be a biconpected planar graph and let F be a Class I face of G. Then

G'=G-F is a biconnected planar graph.

Prooft It is clear that G'is planar. It remains to show that G'is biconnected. If G'is empty,
then it is trivially biconnected. So assume that G'is not empty. Let P=(u,uy, - - - ,u,) be the
maximal path in Gr. Let P'be the path from u; to u, in the bounding cycle of F that contains
no edges of P. Let P" be the path in the bounding cycle of Ug from u; to u, that contains no

edges of P. Figure 4.10 shows the situation described. By the definition of Class I, no edge and
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Figure 4.9. G=G-F

no interior vertex of P'is adjacent to Uz, Thus P’'and P’ constitute the boundary of Uy, and
this boundary is a cycle. All other faces of G'are the same as faces of G. Hence every face of G

is bounded by a cycle, and G'is biconnected. []

4.3. The Maln Theorem

Using the knowledge gained about the structure of biconnected trivalent planar graphs, we
can prove the main result of this chapter.
Theorem 4.8. Let G be a biconnected trivalent planar graph. Thena G is subhamiltonian.
Furthermore, a superhamiltonian cycle H for G can be constructed with these two characteristics:
(i) each edge in H-E is embedded in an interior face of G,

{ii) it (vy,v2,5) is a path on the bounding cycle of U in counterclockwise order and 1, has degree

two, then the edge (v, vy} occurs in H.
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Figure 4.10. Proof of Lemma 4.7

Proof: We proceed by induction on the number of faces of G. The statement of the inductive
hypothesis follows.

It G is a biconnected trivalent planar graph and has m>1 interior faces, then G has a

superhamiltonian cycle H satisfying characteristics (i) and (ii).

If G has one interior face, then G is a cycle, and H=G trivially satisfies characteristics (i)
and (ii).

For purposes of induction, assume that G has m>1 interior faces and that we have shown
the truth of the inductive hypothesis for m-1 interior faces. By Corollary 4.6, G has a Class 1
face F. Let G=G-F. By Lemma 4.7, G' is a biconnected planar graph. Since G'is a subgraph
of G, it is also trivalent. G’bas m-1 interior faces. By inductive bypothesis, G'has a supetham-

iltonian cycle H' satisfying characteristica (i} and (ii).
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Let P=(u;,up * - ,u), 22, be the maximal path in Gy in a counterclockwise direction.
Let P'=(uy,v,, - - * ,vp ) be the path on the bounding cycle of F that avoids Gr. Note that P’
may consist of only the edge (uj,u), in which case i=0. Let s¥u_; be adjacent to u, on the
bounding cycle of U. Note that if 7> 2 and >0, we may have e#==u,. The situation so far is
illustrated in Figure 4.11.

It is clear that u; and 4, have degree three in G and hence have degree two in G' By
characteristic (ii), H' includes either edge (uy,vy) if ¢£>0 or edge (4, u) if =0 as well as edge
{u,8). We have three cases to consider.

Case 1. j=2. Here Pis just the edge (u;,u;) and the vertex sets of G and G’ are identical.
Thus H' is a superhamiltonian cycle for G satisfying characteristics (i) and (ii).

Case 2. j>2 and i=0. Here P'is just the edge (u),u), and H' includes that edge. Let H
be the cycle gotten from H' by deleting the edge (u),u,) and adding the path P. Then His a

superhamiltonian cycle for G’ satisfying characteristics (i) and (ii).

Figure 4.11. Proof of Theorem 4.8
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Case 3. ;>2 and i>0. Both P and P'are paths of length at least two. By characteristic
(ii), H' contains edges (u;,v;} and (u,8). Figure 4.12 illustrates the crucial edges in H'. His
obtained from H' in two steps.

In the first step, u, is eliminated from H'. Let F’ be the interior face of G'adjacent to u,
Since u, has degree two in G', both v; and s are adjacent to F'. Let (s be adjacent to u, in H'.
By characteristic (i}, either {=uv; or the edge (t,1) is embedded in F'. In either case, the edge
{t,u;) can be removed from H' and the edge (,5) can be embedded in F’ to obtain a supercycle
H". The result remains planar and H" is a supercycle of G'containing every vertex of G-{u}.

The result of this first step is shown in Figure 4.13.

In the second step, the edge (uy, ;) in H" is replaced by the path {uj,up, * - ,u,v). Note
that (u,v;) is an added edge that is embedded in F. Let H be the resulting supercycle. The result

of this second step is shown in Figure 4.14. H is clearly a superhamiltonian cycle for G.

4 ™
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Figure 4.12. The Superhamiltonlan Cycle '
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Figure 4.13. The Supercycle H"

H satisfies characteristic (i) since H' satisfies it and since the only edges added are (u,v;)

and (¢,8) which are embedded in interior faces of G.

To show that characteristic (i) holds for H, suppose that z,y,z is a path in counterclockwise
order on the bounding cycle of Uz, and suppose that y has degree two in G. Since u; and u, have
degree three in G, y#u; and y7#u, Consider the possibilities. If {z,y,2} V{42 - - - ,8}=8,
then {y,z} occurs in H by inductive hypothesis. If z=u,, then there are two subcases. The first
subcase is y==u, which we have already eliminated. The second subcase is y7£u,; then (y,z) occurs
in H by inductive hypothesis. If z5£y; and z=u, we have y=—s. The first step constructing H"'
did not eliminate (s,2) which occurs in H' and bence in H by inductive hypothesis. Finally, if
=u,1<r<j, then edge (u,u,4,)==(y,2) is in H by the second step constructing H froﬁ: HY

Under all possibilities, H satisfies characteristic (ii).
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Figure 4.14, The Superhamiltonian Cycle #

This completes the proof for Case 3.
By induction, the theorem follows. [
We restate our results in terms of book embeddings.
Corollary 4.9. Every trivalent planar graph is two-page embeddable.

Proof: By the remarks of section 4.1, and by Theorem 4.3. ]
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A construction for a superhamiltonian cycle of a biconnected trivalent planar graph is impli-

cit in the proof of Theorem 4.8. In the next section, we develop an explicit algorithm for embed-

ding a trivalent planar graph in two pages in time linear in the size of the graph.

4.4. The Algorithm

This section presents our algorithm for embedding a trivalent planar graph in a two-page

book. Let G=(V,E) be a trivalent planar graph. We apply Algorithm 4.1 to G to obtain 2 two-



74

{1} Use depth-first search to find the biconnected components of G.
(2) Embed each biconnected component in a two-page book with Algorithm 4.3.
(3) Combine the two-page embeddings into a single two-page embedding of G.

Algorithm 4.1. Two-Page Embedding of a General Trivalent Planar Graph

page embedding. Algorithm 4.1 reduces the general case to the case of a biconnected trivalent
planar graph in step 2. That case is handled in Algorithm 4.3 (described later in this section).

The correctness of Algorithm 4.1 is self-evident, assuming the correctness of Algorithm 4.3,

We analyze the time complexity of Algorithm 4.1 based on the assumption (to be proven
later) that Algorithm 4.3 operates in time linear in the size of its input. To show that Algorithm
4.1 executes in linear time, we generalize it to an arbitrary k-page embeddable (not necessarily

planar) graph G in Algorithm 4.2,

Lemma 4.10, Let G be a graph with pagenumber <k If there exists an algorithm for embed-
ding each biconnected component C of G in a k-page book in time linear in |C|, then Algorithm

4.2.embeds G in a k-page book in time linear in | G|.

Prooft The determination of the biconnected components of G by depth-first search in step 1

executes in time O{|E[) [Ev]. Each edge is in exactly one biconnected component of G. Consider

(1) Use depth-first search to find the biconnected components of G.
(2) Embed each biconnected component in a k-page book.

(3) Combine the k-page embeddings of the biconnected components into a single &-page embed-
ding of G.

Algorithm 4.2. Embedding a Graph with Pagenumber at Most &
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all the biconnected components input to step 2. If G has no isolated vertices, ther the size of
that input is O{|E]). Even if G has isolated vertices, the size of that input is O{|G|). Hence, step
2 executes in time linear in |G|.
We assume that circular linked lists represent the vertex order of the bk-page embeddings.
Let v be a cutpoint of G and let €] and C; be two biconnected components of G having v in com-
mon. We claim that the k-page embeddings for £, and C, can be combined into a k-page embed-
ding for G| JC; in constant time. Let ---uvw--- be the vertex order for C,, and let
- zvy ' - - be the vertex order for C;. The vertex order for )} JCpis -~ - wvy - - qw- - -,
which can be obtained by breaking the two circular linked lists at v and creating a single circular
linked list. There are at most |G| combinations to perform in step 3, each executing in constant

time. Hence Algorithm 4.2 executes in time linear in |G|. [J

Corollary 4.11, Algorithm 4.1 executes in time O{|G|)=0(|V{}).

The problem reduces to embedding a biconnected trivalent planar graph G in a two-page
book in linear time. Following the cue of the inductive proof of Theorem 4.8, we wish to con-
struct a finite sequence of biconnected trivalent planar graphs terminating in G such that succes-
sive members of the sequence' are generated by the addition of Class I faces. We also say that
G=G"+F when F is constructed by attachment of a path to two vertices on the bounding cycle of

the exterior face of &' Define an addition sequence for G to be a sequence of biconnected

trivalent planar graphs G,, Gy, - -+ ,G, such that
(1) Gyis acycle;
{2) G=¢G
(3) Gi=Gp+F, 1<k<m;
(4) Fiis a Class | face of G,

Call each F; an addition face. Define G,,G,..,, - - - ,G2, G, to be a sublraction sequence for G if

G,,Gy, - -,y 1,G, is an addition sequence for G. Call m the length of the sequence,
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Lemma 4.12. Let G be a biconnected trivaleat planar graph with m interior faces. Then there

exists a length m addition sequence for G.

Prooft Using Corollary 4.6 and Lemma 4.7, it is an easy induction on m to show that there exists

a subtraction sequence for G. But then there exists an addition sequence for G. [

We now introduce Algorithm 4.3 for constructing a superbhamiltonian cycle of a biconnected
trivalent planar graph. The correctness of the algorithm is immediate, as it is merely a restate-
ment of the inductive proof of Theorem 4.1. It remains to show that it executes in linear time.
The proof that an addition sequence can be constructed in linear time {step 1} is deferred to the
next section. Clearly constant time suffices for step 2. Since ( is trivalent, it is easy to see that
each vertex and each edge of G is visited Of1) times during all executions of steps 4.1 and 4.2,
The work done in each execution of steps 4.1 and 4.2 is proportional to the size of F,. The sum
of the sizes of the F's is linear in |V]. The net result is that Algorithm 4.3 executes in Of| V])

time., We summarize the results of this section in the following theorem.

Theorem 4.13. Let G=(V,E) be a trivalent planar graph. Then G can be embedded in a two-

page book in O{] V{} time.

(1) Find an addition sequence Gy,G,, - - - ,G,, for G, with addition faces Fy, - - - | F,.
(2) Let H=G), be the initial superhamiltonian cycle.
(3) For =23, - - - ,m, execute steps 4.1 and 4.2.

{3.1) To match the context of the proof of Theorem 4.8, let G=G,,, let H'==H, let G=GC,
and let F-_’—Fb

(3.2) Copstruct H from H' as in the inductive step of the proof of Theotem 4.8,

Algorithm 4.3. Superhamiltonian Cyecle of a Biconnected Trivalent Planar Graph
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4.5. Orlented Face Traversal

Let G be a biconnected trivalent planar graph. Our task in this section is to show that an
addition sequence for G can be constructed in linear time. We do this by constructing the faces
FoFp 1, * - ,Fy corresponding to a subtraction sequence G, G 4, - - ,G Gy for G in linear
time. Our strategy is to find a spanning tree in G'= GP-{U}, the interior dual of G, such that a
particular traversal order of the tree yields the desired sequence F, F, ;, - - - ,Fo. In particular,

the first face in this traversal, F,, must be a Class I face of G.

The key is the construction of the “proper” spannming tree for G. We observe that &' is
planar. Therefore, the planar embedding of G’ yields a circular (say counterclockwise) ordering of
the edges of EP incident to any FEVD—{U}. The generation‘ of the spanning tree is similar to
depth-first search except-for two points. First, the counterclockwise ordering of the edges incident
to F makes the choice of the order of edge traversal deterministic once the brst face is chosen.
Second, the tree is such that a post-order traversal yields a sequence of Class [ faces (ﬂ:ough they
are Class | faces of successively smaller graphs). By Lemma 4.5, this second point is equivalent to
the traversal yielding a sequence of faces that are not cutpoints of the untraversed subgraph of
G’

Algorithm 4.4 generates the spanning tree T for G’ by oriented face traversal. It is impor-
tant to recognize that F, F' and T are varisbles in this algorithm. In some general sense, Algo-
rithm 4.3 traverses the faces in G’ from the outer face in. The traversal order is deterministic
relative to the choice of K. When a face F first becomes '‘current” in step 4, exactly one of its
incident edges ¢ is marked ‘‘visited.” The ordering of the remaining edges of G’ incident to F is
consistently chosen in a counterclockwise direction from ¢. In step 5, the search for an incident
edge that is not marked “visited’’ begins at e? and proceeds in a counterclockwise direction. Step
5 makes .the order of traversing edges incident to F deterministic (or oriented). A crucial
difference between depth-first search and oriented face traversal occurs in step 8. Here the

oriented face traversal fails to go ‘‘deeper” if an ancestor of the current face is encountered.
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Let K be a boundary face of G.

If G=K, let T=G' and halt.

Let K'be the bourndary face of G that is adjacent to K in a counterclockwise direction. Set
T=({K,K'},{(K,K")}), and mark the edge (K,K) “visited.”

Let F=K' Fis the “‘current” face in the traversal.

Let (F,F') be the first edge incident to F in a counterclockwise direction that is not marked
‘‘visited.” If there is no such edge, and F=K, then halt. If there is no such edge, and F#K,

then set F to its father, and repeat step 5.

Mark (F,F') “visited.”

If F' is not in 7T, then add vertex F' and edge (F,F') to T, set F to F’, and go to step 5.
(F'isin T.)If F' is an ancestor of K in T, then set K to be its father, and go to step 5.
(F' is in T, and is not an ancestor of F.) Go to step 5 (F remains the same).

Algorithm 4.4. Oriented Face Traversal

Figure 4.15 illustrates an execution of Algorithm 4.4 on the graph of Figure 4.7. The result-

ing T is shown with solid lines. The interior faces are numbered F; through F; in the order in

which they are encountered. Therefore, K=F;. The interesting point iz that, while Fy is
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Figure 4.15. Orlented Face Traversal
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adjacent to F,, the edge (Fy,F,) is not added to T. This is because Fy encounters its ancestor F,

in step 8. F, is added to T when Fy, the father of Fy, is “‘current” for a second time.

We begin a sequence of lemmas that culminates in the statement that a post-order traversal

of T yields a subtraction sequence for G.
Lemma 4.14. If Tis a graph generated by Algorithm 4.4, then T'is a tree,

Proof: Step 3 initializes T to be a graph with two vertices and one edge. When step 7 adds an
edge to T, it also adds a verlez to 7. Hence the number of vertices in 7' is always one greater

than the number of edges. Since T is clearly connected, T is a tree. [

We prove that T is a spanning tree for G’ in Lemma 4.15. Before we can do that, we need
two other lemmas. Call the first vertex F in T that encounters an ancestor in step 8 of Algorithm
4.4 the leftmost vertex of T. (If Algorithm 4.4 halts in step 2, call the sole vertex in T the left-
most.) Clearly, this F is a leaf of T. Furthermore, F is the first vertex encountered in a post-order

traversal of the rooted, oriented tree T.

Lemma 4.15. If Fis the leftmost vertex of the tree T generated by Algorithm 4.4, then Fis a

boundary face of G of Class I.

Proofi Given the method of choosing the next edge to traverse in step 5, it is clear that Algo-
rithm 4.4 stays in BF{G) until an ancestor is encountered in step 8. Hence, F is a boundary face
of G. Let F* be the ancestor of F encountered in step 8, Then there is a cycle in G consisting of
the path in T from F to F' together with the edge (F,F'). Figure 4.16 illustrates the situation.
The edges on the path (v,vs, * - - ,v;) on the bounding cycle of F are in the interior of the cycle in

e Hence, (v, - -+ ,u,) is the unique path in Gy. We conclude that Fis a Class I face. []

Lemma 4.16. Suppose G’ contains more than one vertex. Let T be the tree generated by Algo-
rithm 4.4 when given G as input. Let F be the leftmost vertex of T, and let G=G-F. Let T'be
the tree generated by Algorithm 4.4 when given G'as input, assuming the same choice for K in

step 1. Then T'= T-{F}.
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Figure £.16. Proof of Lemma 4.15

Proof: Run Algorithm 4.4 on G until F is the current face. Since Fis a leaf of T, the F' deter-
mined in step 5 is already in T, and the current face is changed to be the father of ¥ in step 9.
Since F is not the ancestor of any vertex of T, the remainder of the execution ignores any edge
incident to F; the presence of F has no further eflect on T. Thus, removal of all parts of the exe-
cution of Algorithm 4.3 involving F yields the same result as the execution on G’ Therefore,
T'=T-{F}. O

Lemms 4.17. T is a spanning tree of G,

Prooft We must show that T spans G'. Let k be the number of interior faces of G. The proof is

by induction on k. If G has one interior face, the result is clear.
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For purposes of induction, assume that £>1 and that the result is true for k-1 interior faces.
Let F be the leftmost vertex of T. Let G'=G-F. Then G'has k-1 interior faces and the tree
generated for G'is Ti=T-{F} (by Lemma 4.14). Hence, T'spans G’ by inductive hypothesis.

Therefore, T spans G. The lemma follows by induction. [}

We now have results indicating that oriented face traversal can be used to select a Class |
face and that the deletion of that face leaves an oriented face traversal tree, It is important to
note that Algorithm 4.4 executes in O] V|) !simé. A proof of this fact is similar to one for depth-
first search. No edge of G is traversed more than twice (once in each direction). The only subtle
point is the test for ancestor in step 8. It is essential that this test be done in constant time.
Much as in depth-first search, this test can be accomplished by comparing the levels of faces F
and F' in thé tree T. Algorithm 4.4 can be augmented to store the level in T with each face in
G’ and then can accomplish the test in constant time. Therefore, Algorithm 4.4 can be imple-

mented in linear time.

The main result of this section is the construction of a subtraction sequence for G in linear
time. Algorithm 4.5 accomplishes this. By Lemma 4.17, every interior face of G occurs in the
sequence F Fp . - - F5Fy. Define the sequence of graphs G, Gy, - ,Gp G by Gu=0G,
Gi=0G-Fiyy, 1<k<m and G}, =Gp. By induction on m and application of Lemmas 4.13 and
414, G,,Gpy, -+, GG, 18 a subtraction sequence for G. It is clear that Algorithm 4.5 can be

implemented in linear time. Hence we have the following theorem.

(1) Find an oriented face traversal tree T for G using Algorithm 4.3.
{2) Traverse T in post-order and label the faces F,. F, y, - - - ,F, F) in the order visited.
(3) FpFpy, * - - Fp defines the subtraction sequence for G.

Algorithm 4.5. Construction of a Subtraction Sequence
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Theorem 4.18. Let G be a biconnected trivalent planar graph. Then a subtraction sequence for

¢ can be constructed in linear time.

Corollary 4.19. Let G be a biconnected trivalent planar graph. Then a addition sequence for ¢

can be constructed in linear time.

Proof: Take the addition sequence corresponding to the subtraction sequence produced by Algo-
rithm 4.5. J

This corollary completes the proof that Algorithm 4.1 executes in linear time.

4.8. Conclusicns

In this chapter, we have showan that every trivalent planar graph is subhamiltonian, hence
two-page embeddable. We have also given a linear time algorithm for constructing a two-page
embedding of a trivalent planar graph. An obvious question is whether similar results are possible
for higher valences. Define MV to be the largest integer suck that all planar graphs of valence at
most MV are subhamiltonian. The maximal planar graph that is not hamiltonian given in Capo-
~ bianco and Molluzzo {CM] has valence eight. Hence seven is an upper bound for MV. Our result

gives a lower bound of three for MV,

We point out some difficulties with exteanding our approach to show four to be a lower
bound for MV. Most of cur lemmas do not hoid for quadrivalent plapar graphs. In particular,
the proof of Lemma 4.3 implies a special property of degree three vertices in a planar graph. If v
is a degree three vertex, then the (at most three) faces adjacent to v are pairwise adjacent in the
dual graph. The same cannot be said for a degree four vertex. This observation is the crux of the
proof that BF is connected (Lemma 4.4). Thus it is likely that boundary faces would have to be
redefined to include interior faces that share only isolated vertices with the exterior face. We are,

therefore, not hopeful that our approach can be extended to valence four.

The upper bound of seven could be lowered by exhibiting a planar graph of valence at most
seven that cannot be triangulated to obtain a hamiltonian graph. There is a great deal of free-

dom in the triangulation; the triangulation of each nop-triangular face is independent of that of
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all others. Therefore, a proof that all triangulations fail to produce 3 hamiltonian graph requires
the consideration of many combinations.

We feel that oriented face traversal is of interest in its own right, It provides a traversal
sequence for the dual graph such that, at each point of the traversal, the untraversed subgraph is
connected. OQur results on oriented face traversal extend to valences greater than three if a
broader definition of boundary face is adopted. It would be interesting to find other applications

for oriented face traversal.
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CHAPTER &

EMBEDDING OUTERPLANAR GRAPHS IN SMALL BOOKS

In this chapter, we consider tradeofls between the pagenumber and pagewidth of book
embeddings. The question of interest is: Given a graph ¢ that admits a p-page embedding with
pagewidth w, can G be embedded in a book of p+c¢ pages, where ¢ is_a small constant, with
pagewidth significantly less than »? Chung, Leighton and Rosenberg [CLR] present a sequence of
outerplanar graphs {L,} for which the answer is in the affirmative. Each L, has 2m vertices and
requires pagewidth rm/ﬂ in any one-page embedding but can be embedded in two pages with

pagewidth 2. The main result of this chapter is an algorithm for embedding any d-valent n-vertex
outerplanar graph in a two-page book with pagewidth Cdlogn, where C=8/[ 10;%]. This result

is within a constant factor of optimal in pagewidth for the class of outerplapar graphs.

Throughout this chapter, n denotes the number of vertices in the graph G.

5.1, Tradeoffs

We investigate the problem of tradeoffs between pagenumber and pagewidth in book embed-
dings. Motivation is best provide by an example from Chung, Leighton, Rosenberg [CLR]. The
example is a sequence of outerplapar graphs {L,} for which any one-page embedding requires
large pagewidth [m/2], but for which there exist two-page embeddings with pagewidth 2. The
sequence consists of m-ladders (in [CLR], a m-ladder is called a depth-m Ky-cylinder). The m-
ladder L, has vertex set

{ul! e rum}U{Ull e ,Um}
and edge set
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{(vpupl 1S k< m} J{{vo e )1 S E<m}J {(up vt SRS m}).
The first two components of the edge set constitute the two sides of the ladder while the last

component constitutes its runge. Figure 5.1 illustrates L,. The sides are solid and the rungs are
dashed.

The m-ladder is clearly outerplanar and biconnected. By biconnectivity, L, has a cnique
outerplanar embedding (Syslo Sy]). Therefore, L, has a unique ome-page embedding up to
reflection and circular permutation. Figure 5.2 illustrates a one-page embedding of L, of minimal
pagewidth over all one-page embeddings. The rungs {(uy v,},(usv5),(ug ve),(¢7,%7}} nest over the
inbeﬁa] (w,v;). Hence the pagewidth is >4. A moment’s reflection generalizes this observation:
In any one-page embedding for L,, at least [m/?] rungs nest over some interval; hence pagewidth
is >[m/2].

Figure 5.3 illustrates a two-page embedding for L, that has pagewidth 2. The corresponding
superhamiltonian cycle is illustrated in Figure 5.4. This superhamiltonian cycle is easily general-
ized, giving a two-page embedding of any L, with pagewidth 2.

We now discuss tradecffs in the general setting of an arbitrary graph G. Let P be the

pagenumber of G. For each p> P, there exist one or more embeddings of & in a p-page book.

<

v, v, Vg Ve v Ve

—
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Figure 5.1. The 7-Ladder /,
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Figure §5.2. One-Page Embedding for [,
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Figure 56.3. Two-Page Embedding for .,

Among zll those p-page embeddings of G, let w, denote the pagewidth of one having mipimum
pagewidth. These pagewidths are non-increasing:
Wp2 Wpyy 2 - * - 2ty p2P.
In the extreme case that p>|E{, w,=1, as each edge may be assigned to a distinct page.
We are particularly interested in the product pw,. We seek cases where pw, is within a con-
stant factor of the cutwidth of G. Note that pw, is an upper bound on the cutwidth of the best
p-page embedding of &. In the context of the DIOGENES approach discussed in the first chapter,

pw, is an upper bound on the height of a p-stack DIOGENES layout of G. Hence, we seek
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Figure 5.4, Superhamiltonian Cycle for L.

DIOGENES layouts of G that are within a constant factor of optimal in area over all linear lay-

outs and within a small additive constant of optimal in stacknumber,

Our result is for the class of one-page (i.e., outerplanar) graphs. The m-ladder exhibits an
extreme pagewidth tradeofl between one-page and two-page embeddings. For general outerplanar
graphs, we do not expect such an extreme tradeofl. Since there exist outerplanar graphs that have
one-page embeddings of minimal pagewidth, e.g. complete binary trees, the tradeoff in going from
one page to two pages can be arbitrarily small, even zero.

An n-vertex complete (d-1)-ary tree has cutwidth >(d/2)logn (Lengauer [Len}). (All loga-
rithms are to the base 2.) Hence, any book embedding of a complete (d-1}-ary tree in a constant
number of pages requires pagewidth 2(dlogn). Ib general, we carnot assume that outerplanar

graphs have pagewidth o{logn).




5.2. Overview of the Algorithm

The tradeoff result we show is that any d-valent outerplanar graph G can be embedded in 2
two-page book with pagewidth Cdlogr, where CL—-B/[Iog-g—}. From the observations in the

preceding section regarding m-ladders and complete (d-1)-ary trees, this result is optimal in
pagenumber apd within a constant factor of optimal in pagewidth for the class of d-valent outer-

planar graphs. We prove our result via a recursive algorithm.

We aim for an algorithm that, when given an n-vertex d-valent outerplamar graph, returns a
two-page embedding withk pagewidth logarithmic in n. The input and output requirements of

such an algorithm are a useful place to start.

The input to the algorithm is a d-valent outerplanar graph G=(V,E). The manner of
representing this input should witness the outerplanarity of G. Hence, a one-page embedding of
G is the required form for the input. The linearization of V orders the vertices and provides
names 1,2, - - - ,n for the vertices. The order of the vertices in a two-page embedding will not be
the original orﬂer. but we shall continue to use the names. Since the algorithm is recursive, the
same vertex will have different pames at diﬂereht levels of recursion. Figure 5.5 illustrates the

form of the input whea G=1L,.

The output of the algorithm is a two-page embedding of G with logarithmic pagewidth. To
give a two-page embedding for G, it is sufficient to give a superhamiltonian cycle H in a super.
graph G'of G (Proposition 2.5). G'=(V,E)} is actually a multigraph that contains all the edges of
G plus possibly edges added to obtain H. HCFE is a set of n edges; since H is superhamiltonian,
each of 1, * « - n appears exactly twice among these edges. H represents 2n different book embed-
dings for G there are n choices for the leftmost vertex; and there are two directions to the cycle.
The algorithm fixes the desired book embedding by giving the pair of vertices (z,5) of the leftmost
and rightmost vertices of the two.page embedding. We call z and y the vertices of attachment for

G' The output of the algorithm is then the ordered triple (G| H (z,4)}.
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Figure 5.5. Input Representation for L,

We imagine the one-page embedding of G as follows. The vertices are on a horizontal line
in a plane, and the edges are arcs in the upper half-plane. In general, there are many sets of
edges that can be added to G without destroying planarity. We restrict ourselves to two iypes of
edges, upper edgee and lower edges, depending on which half-plane the edges are embedded in.
{Thus our restriction is that no edge uses both half-planes in its embedding.) The original edges of
G are always upper edges. The algorithm may add an upper edge if it will not cross an existing
upper edge. The algorithm may add a lower edge if it will not cross an existing lower edge. In
particular, we may assume that the upper edge (5,#+1),1<i<n is always present in G. If it is not
already present, it can be added safely. Note that all added edges are removed at the end of the
algorithm for purposes of determining pagewidth. Therefore, the added edge (4,i41) does not con-

tribute to pagewidth (but an already present edge (i,i+1) does).

The algorithm uses the divide-and-conquer paradigm. It determines subgraphs of G to work
on separately before the results are joined together to obtain G’ Each subgraph is induced by a
subinterval of [1,n]. We define a closed subinterval [ij] to be {i,i+1, - - - j}. We define two
types of half-closed, half-open subintervals: [i,j) denotes [i,7-1] and (i,j] denotes [i+1,7]. For any

subinterval a, size{a} denotes the pumber of vertices in the subinterval. Hence,
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size{|i,f]}=7-i+1. Define Gli,j] to be the subgraph of G induced by the vertices -in the interval
[i.7]. If the algorithm is applied to Gli,s] the result is {G'[4,],H,(2,1)), where (z,y) determines the
first and last vertices of a two-page embedding of Gli,j] with pagewidth logarithmic in size{[1,j}}.

The choice of subintervals depends on the structure of the one-page embedding of G. Define
an ezposed verlez wof G to be one for which G contains no {upper) edge (u,v) satislying u<w<v.
Thus an exposed vertex w is one that is ‘‘visible’’ from the infinite region of the upper half-plane.
Each exposed vertex of & except 1 and n is a cutpoint of GG whose removal separates & into left
and right subgraphs.

An example will itlustrate the divide-and-conquer paradigm. Figure 5.6 shows a sample G
in a one-page embedding. The exposed vertices of G are 1, 3, 7 and 10. The algorithm recognizes
that each of the edges (1,3), (3,7) and (7,10) is ‘‘highest” in the sense that no other edge passes
over it. These three edges determine three nondizjoint subintervals [1,3], {3,7] and [7,10]. In
otder to decompose the interval into disjoint subintervals, the algorithm chooses the largest, [3,7],
to remain intact, and removes one vertex from each. of the other two subintervals. The resulting
subintervals are [1,2], [3,7] and [8,10]. The algorithm recursively applies itself to each of the
subintervals, The result to this point is shown in Figure 5.7. Each subproblem displays a

superhamiltorian cycle of its subgraph and the first and last vertices of the corresponding two-

Figure 5.8. Sample G for Divide-And-Conquer
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Figure 5.7. Results of Subproblems

page embedding. In Figure 5.8, these three superhamiltonian cycles are replaced by a superhamil-
tonian cycle for the entire graph. Lower edges (1,2), (4,6) and (8,10) are deleted and lower edges
{2,4), (6,8) and (1,10) are added.

If two exposed vertices ¢ and j are joined by an (upper) edge (i j), then there are no other

exposed vertices in the interval [4,7]. In this case, we call Gli,j] a block, denoted Bls,j]. When the
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Figure 5.8. Superhamliltonian Cycle for G



interval [1,n] is partitioned into subintervals, there will be edges with endpoints in different subin-
tervals. Such dangling edges are exactly those edges of G not in any of the subgraphs generated
by the subintervals, In the case of a block Bli,j], these dangling edges can be incident to only i or
j. The total pumber of such edges incident to i or j is called the edge deficst of Bli,j], denoted
def{[i,j]}. It is always true that
def{[5,7]} <2(4-1).

In Figure 5.6, B{1,3], B{3,7] and B{7,10] are the blocks of G, and def{[3,7)}==5.

The example of Figures 5.6-5.8 illustrates the execution of the algorithm in the case that G
has two or more blocks. There is another possible case: G has only one block. In that ‘case, the
divide-and-conquer comnstruction is more complex. The two divide-and-conquer constructions

corresponding to these two cases are developed in turn in the next two subsections.

5.2.1. String Construction

We now describe cne of the two constructions used to obtain a superhamiltonian cycle for G
from superhamiltonian cycles for the grapbs induced by subintervals. It is called the sfring con-
atruction. (The name suggests that the superhamiltonian cycles for the subintervals are strung
together sequentially to obtain a superhamiltonian cycle for the entire interval.) It is invoked
when the number of exposed vertices is greater than two, so G is not one block. The partition
into subintervals keys on the largest block, say Blij]. B{:j] is taken to be one of the subinter-
vals. Note that not every block can be chosen in a partition into subintervals, since blocks share

endpoints.

A precise description of the partition into subintervals requires more notation. Let
my,mg, - * + ,m, be the exposed vertices of G in ascending order. Suppose B{m, m; .} is the fargest
block in G. Figure 5.9 illustrates the situation. The partition into ¢—1 subintervals is

{[”‘l:m):["&;ma)r vt v[mt—lamt):lmhmb-Hl:(thymk—{rzla T !(mf—l:mql}-
Note that Bim,,m,,,] is the only block of G in the partition. It is called the key block of the par-

tition. The other subintervals in the partition are called side subintervals. Figure 5.10 illustrates

the partition of G.
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Figure 5.10. Partition Into Sublntervals

The algorithm is recirsively applied to the jth subinterval to obtain

(GJ’,H,,(ZJ,VJ)).
G'is obtained in two steps. First, all edges added to the {G,’} are added to G (Figure 5.11).
Second, the lower edges {{z,y,)} are deleted and the lower edges

{{ypzﬁl)lls.fs ?“2}U{(31r§¢—1)}
are added. H is obtained from | _JH, by deleting and adding the same edges (Figure 5.12). Assign-
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Figure 5.11. Results for Subintervals

ing {z,y)=(71,y,,) completes the string construction. The correctness of the comstruction is

proved in Lemma 5.3,

?
X Y Xp.q Yp- k+1 Y Xa-1 Yg-
e TRL D Codt I
L__—u_—————“J

Figure 5.12, Subintervals Strung Together |
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5.2.2. Ladder Construction

In this subsection, we consider the case when G has only one block. We are upable to
divide G into subintervals based on blocks. Te reach a solution, we frst focus on the problem of
obtaining logarithmic pagewidth. To obtain logarithmic pagewidth, it is clearly sufficient that the
linear layout corresponding to the two-page embedding have logarithmic cutwidth. An approach
to small cutwidth is the recursive application of a separator theorem {see Lipton and Tarjan
[LT]). A separator theorem states that the removal of some number of vertices from a graph will
partition the remainder of the graph into two subgraphs of approximately equal size. For outer-

planar graphs, a two-vertex separator always exists.
l.emma 5.1. Let G be an outerplanar graph containing at least 3 vertices. There exist vertices z
and y whose removal separates G into subgraphs G, and G, such that %n(]G;]<%n,k=1,2. i

(z,¥} is not an upper edge of G, then it can be added to G as an upper edge without inducing a
crossing.

Proof: Since G is outerplanar, we can use the circular formulation of book embedding to embed
it in a circle. The vertices of G are placed equidistantly on the circle. The edges of G are chords
of the circle with no two chords intersecting. If the center of the circle lies on an edge, let z and y
be the endpoints of the edge; the result follows. Otherwise, let F be the face the center is in. U
two vertices on F are on a diameter, let them be z and y, and the result follows. Otherwise, tri-
angulate F within the circle. The center of the circle lies within some resulting triangle {u,v,uw).
We may assume that the angle /uvw is the largest of the triangle. This angle is between 60 * and
90 °. Let z=u and y=—w. Let G, be the graph induced by the vertices within the angle /uvw,
and let G, be the graph induced by the vertices outside the angle [uvw. Then the removal of z,y

separates (0 into Gy and G where

1 1
-§-n<[G';|<-§~n.
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The lemma follows. [

If (z,y} is not already an edge of G, it can be added without destroying outerplanarity. An
edge (z,y) that satisfies Lemma 5.1 is called a acpar_-ating edge. An algorithm to obtain loga-
rithmic cutwidth for a d-valent outerplapar graph G can select a separating edge (z,y) and apply
itself recursively to the resulting G, and G,. However, it is unclear how to obtain a superhamil
tonian cycle for G from superhamiltonian cycles for G, and G,.

QOur algorithm uses separating edges in another way so as to make it possible to derive a
superhamiltonian cycle from superhamiltonian cycles for the pieces. The key is the following
definition. Let G be an outerplanar graph, and let (z,5) be a separating edge for G. A set PCE

is parallel to (z,y) if

(1) (zy)ep

(2) if (u,v}(w,2)€P, then {u,v}("\{w,z}=® (there are no shared endpoints);
{3) P can be ordered as {{(u;,v),(uz,v2), * * * (upvy)} in such a way that

< Lt - Cply
(the edges of P nest).

A éample set of parallel edges for a graph G is shown in Figure 5.13 by dashed lines. A set Pof
para.llel_ edges is mazimal if no edge of G can be added to P to obtain a larger set of parallel
edges.

Suppose P is 3 maximal set of parallel edges for G. Let Vp be the set of endpoints of edges
in P. The removal of the vertices Vp from G separates the interval [1,n] into some number of
subintervals. Let Gp be the subgraph of C resulting from the removal of Vp and all incident
edges. Let li,,7)], - - - [inf] be these subintervals in left-to-right order. The planarity of G and
the maximality of P guarantees that there is no edge of G between two vertices in different subin-
tervals. This in turn guarantees that Gp can be obtained an alternate way: Gp is the (disjoint)
union of the induced subgraphs GJi,.ji],1<k<s. By Lemma 5.1, the presence of a separating edge

in P guarantees that
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Figure 5.13. Parallei Edges In G

size{[z},jd}(%n, 1€k 0,
Figure 5.14 shows the graph of Figure 5.13 after the removal of Vp.

The algorithm is applied recursively to each GlijJ to obtain a superhamiltonian cycle for
each. To obtain a superhamiltonian cycle for G, one need only reintroduce the endpoints of the
parallel edges V. A second look at Figure 5.13 provides inspiration. If each subinterval [i,j
were replaced by an edge (i,—i,jd-l) between two vertices in Vp, the result is the one-page embed-

ding of a ladder where all the rungs nest. The construction of a superhamiltonian cycle H for & is

AAN.A

iy 1 12 joiz Jzisjais Js g Je 17

Flgure 5.14. Removalof V




patterned after the superhamiltonian cycle for a ladder, as illustrated in Figure 5.4.

Appropriately, we name the construction of H the ladder construction. There are two cases
to consider, depending on whether or not the edge {1,n) is in P. The case (1,n)EP illustrates all

the ideas and is simply modified to cover the case (1,n)¢P.

Start with the picture of the parallel edges alone in Figure 5.15. Some lower edges are
added to obtain a supercycle containing exactly the vertices in Vp. This supercycle is indicated in
Figure 5.16 by arrows. It remains to place all the subintervals within this supercycle. To accom-
plish this, each lower edge is replaced by new lower edges that connect two subintervals into its
place in the supercycle. For a right arrow (u;u;,,;), the result is as in Figure 5.17. For a left
arrow (v, ,,v;), the result is as in Figure 5.18; ¢ is chosen so that [i,j] is the subinterval between
U4 and vg.

For the case {1,n}¢P, [4,;] is to the left of the ladder and {¢,,5] is to the right of the ladder.
The connection of [f,,/;] into H is shown in Figure 5.19. The connection of [i,j] into H is shown

in Figure 5.20.

Figure 5.15. Paraliel Edges
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Figure 5.18. Supercycle for Parallel Edges
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Figure 5.17. Replacing a Right Lower Edge
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Figure 5.18. Replacing a Left Lower Edge
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Figure 5.19. Adding a Sublnterval on the Left
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Flgure 5.20, Adding a Sublnterval on the Right

5.3. The Algorithm
This section describes our algorithm for embedding a d-valent outerplanar graph in a two-
page book with logarithmic pagewidth. The correctness of the algorithm, embodied in Theorem

5.2, is given in the next section. Section 5.5 analyzes the performance of the algorithm.

The statement is Algorithm 5.1. As the algorithm is recursive, it is useful to give it a name.
The name is TRADEOFF. TRADEOFF is a recursive function which has as input the d-valent
outerplanar graph G and as output the planar supergraph G'having hamiltonian cycle H and ver-
tices of attachment z and p.

For simplicity, it is to be noted that certain trivial cases are not included in the statement
of TRADEOFF. These cases occur when a recursive invocation of TRADEOFF returns an empty
G’ This cannot occur in step 5, as each subinterval contains at least one vertex. However, it can
occur in step @ when some G is empty. In that case, the ladder copstruction merely skips the

empty interval [i,,j] {which is caused by two adjacent elements of Vp).
We pow describe TRADEOFF step by step.

(1) These are the trivial cases when n<2. If G is empty, return G'=9. If G is a single ver-

tex, return G'having a single loop. If G has two vertices, then it has one edge {1,2). Return G’
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Function TRADEOFF(G), returas (G H,(z,3)).

(1) (Trivial cases) .
It G=@, then assigr G'=@, H=9 and {z,y)=undefined.
It V={1}, assign G'={{1},{(1,1)}), H={(1,1)} and (z,y)=(1,1).
It v={1,2}, assign G'=({1,2},{(1,2).(1,2)}), H={(1.2),(1,2}} and (z.3)=(1,2).
Return (G H,(z,)).

(2) Let S={m,|1<;< g} be the set of exposed vertices of G in increasing order.
(3) Choose k1< k< ¢-1 such that B{my, m,,,| is the key block of G.
(4) If Bimym,|=G, then go to step 7.

String Construction

(5) (G has more than one block.} For 1<j<k, assign
(G,"H,(z,y,)) = TRADEOFF(G{m, m.,)}.
For j=k, assign
(G,"H,(z,y)) = TRADEOFF(Gmy, myy]).
For k<j<g, assign
(G, H.{z,y)) = TRADEOFF(G{m,m ).

(6) Use the string construction to obtain G', H and (z,y). Return (G’ H{z.y,).

Ladder Construction

(7)  (B{mymis|=G.) Choose a separating edge (u,v) for G. If (1,v) is not already an edge of G,
then add it as an upper edge.

{8} Choose P a maximal set of edges paralle! to (u,v}. Let Vp be the set of endpoints of edges in
P.

(8) V-Vp determines a sequence of disjoint subintervals [iy.f,).}i7d, - -« Jind). For 1<k<s,
make the assignment:

(G,',Hb(zbyt)) = TRADEOFF{GIINA)
Construct G'from G and {G,'} using the ladder construction. Return (G’ H,(z,y)).

Algorithm 5.1. The Tradeoff Algorithm
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having the added lower edge (1,2} which is parallel to the upper edge (1,2).

(2) From the ope-page embedding of G, determine the exposed vertices of G. It is straight-
forward to accomplish this step in linear time with Algorithm 5.2, Algorithm 5.2 requires time
O(d n) and generates the elements of S in increasing order.

(3) Choose the key block of G, B{mymyy]. Clearly, this can be accomplished in time linear
in |S].

(4) This step determines which of two cases is current. If G is a single block, then the
Iadder construction iz applied (steps 7 through 9). If G has more than one block, then the string
construction is applied (step 5 and 6).

(5) Decompose the interval [1,n] into subintervals so that the key block Bjm, m;, )] is one of
the subintervals. Note that each side subinterval contains fewer than %n vertices. Apply

TRADEOFF to the graphs induced by each subinterval to obtain supergraphs G, 1<j<¢-1.

(6) Apply the string construction to obtain the planar hamiltonian supergraph G’ and the

hamiltonian cycle H for G’ Assign (z,y)=(z1,y,). Return (G’ H,(z,)).

(7) We know that G is entirely covered by the edge (1,n). We show that it is then safe to
add a separating edge to G. If this is the initial call to TRADEQFF, we can always add a
separating edge. If this is a deeper recursive call to TRADEOFF, we imagine that there are inter-

vals to the left and right of {1,n] with dangling edges incident to vertices in [1,n]. Since these

(1} Assign S={1} and i=1.
(2) If i>n, then halt.
(3) Assign i=max{i+1, [ax. k}.

{4) Assign S=S| J{}. Go tostep 2.

Algorithm §5.3. Determining Exposed Vertices in Linear Time




(1)
2
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Triangulate the interior faces of G.
Examine each edge (u,v) of the triangulated G to find one such that %nﬁ(u—u)ﬁ%n_

Algorithm §5.3. Finding a Separating Edge

dangling edges can only be incident to exposed vertices {in this case, 1 and n), any upper edge

added to G at this recursive level cannot cross an edge at a higher recursive level, The determi-

nation of a suitable separating edge is accomplished in linear time by Algorithm 5.3. (Note that

the triangulated G has a linear number of edges.)

(8) Select a maximal set of paraliel edges. The construction of P is accomplished in linear

time by Algorithm 5.4,

(9) This step completes the ladder construction. TRADEOFF is invoked recursively for

each subinterval disjoint from Vp. G'and H are obtained by the ladder construction described in

the previous section.

(1)
()
(3}

{4)

(5)
(6)

Assign P={(1,v)}, &=u-1 and t=v.

I #<1, then go to step 4.

Assign r=max{l, maxs k}. If r<t!, then assign #=o&-1 and go to step 2. Else assign
P=P| J{(#,r)}, #=4-1 and t=r and go to step 2.

Assign s=u+1, and t=v.

If 22, then halt,

Assign r=max{1, (ﬁ?exa k}. It r>s, then assign P=PU{(a,r)}, #=s+1 and t=r and go to
step 5. Else, assign s=3+1 and go to step 5.

Algorithm 5.4. Generating a Maximal Set of Parallel Edges
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6.4. Correcthess
In this section, we demonstrate the correctness of algorithm TRADEOFF. Correctoess is
embodied in the following theorem.

Theorem 6.2. Let G be a dvalent outerplanar graph. Let (G’ H,(z,y)) result from applying
TRADEOFF to G. Then H is a supethamiltonian cycle for G with the following property: follow-

ing H from z to yyields a two-page embedding of G with pagewidth < Cdlogn, where Cis a con-

stant. C can be chosen to have any value 28/[ log-g—].

Prooft The proof naturally decomposes into the proof of pagenumber (Lemma 5.3) and the proof

of pagewidth (Lemma 5.4). [J

Lemma 6.3. Given the assumptions of Theorem 5.2, following H from z to y yields a two-page

embedding of G.

Proof The proof is by induction or n. The inductive hypothesis is:
(H.1) GC G

(H.2) G'is planar;

(H.3) H is a bamiltonian cycle of G/;

{H.4) (z,y)eH is a lower edge of G'such that there is no lower edge {u,1) of G’ with u<z<y<y

(i.e., z and y are on the unbounded region of the lower half-plane).
Step 1 of Algorithm 5.1 guarantees that the inductive hypothesis is satisfied when n<2.

For purposes of induction, assume that the inductive hypothesis is true for graphs of size
less than n and that n>2. There are two cases determined by the cardinality of the set S of
exposed vertices of G: (1) |S|>2 and (2) |S|=2.

(1) |5]|>2. TRADEOFF applies the string construction in steps 5 and 6. The inductive
hypothesis guarantees that after the applications of TRADEOFF to all the subintervals, each z,
and each y, is on the unbounded region of the lower half-plane. Therefore, the lower edges

(¥p241),1<7<¢1 and (z;,y,) can be added while maintaining planarity (H.2). Clearly, GC G’
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(H.1), and H is a hamiltonian cycle of G'(H.3). Finally z=~z, and y=y, satisfy H.4.

(2) 1S|=2. The edge {1,n} is in G and covers all other upper edges. TRADEOFF applies
the ladder construction to ¢ in steps 7 through 9. In section 5.2.2, the addition of the separating
upper edge {u,v) was shown to maintain planarity. In step 9, the application of TRADEOFF to
each Glinjy yields (G, H {2, 1;)) that satisfies the inductive hypothesis. In particular, H.4 applies
to each (2,,y,). Since each 2, and y; is on the unbounded region of the lower half-plane, the
ladder construction yields a planar result (H.2). The ladder construction also makes GCG'(H.1)

and H a hamiltonian cycle of G/ (H.3). Finally, (z,y) is explicitly chosen to satisfy H.4.

This extends the induction for arbitrary . Since H is a hamiltonian cycle of a planar
supergraph of G, it yields a two-page embedding of G |BK]. [OJ

To complete the proof of Theorem 5.2, we must bound the pagewidth of the two-page
embedding. It is sufficient to bound the cutwidth of the underlying linear embedding. We use
the notation cw(H) to mean the cutwidth of the linear embedding obtained by following H from =z
through y. (G, z and y will be clear from context.} If { and j are vertices in H such that i comes
before j in the linear embedding, define cw([:,f]) to be the cutwidth of the linear subembedding

from i to j.
Lemma 5.4. Given the assumptions of Theorem 5.2, cw(H)< Cdlogn, where C=8/l]og-g—] .

Proof: The proof is by induction on n. The statement of the inductive hypothesis mirrors the

two cases of the algorithm. The inductive hypothesis is:
(L.1) It G bas more than one block, then cw(H)}< Cdlogn;

(L2} If G is a single block, then ew{H)<max(l,Cdlogn}-def{[1,n]}. Some explanation of the
presence of the edge deficit in .2 is in order. In the string comstruction, a large key block
[my,myy,] must be able to absorb def{|m;,m, |} additional cutwidth, as its cutwidth will
dominate the cutwidth of the entire string construction. The precise meaning of this state-
ment will be clear from the proof. The max(1,Cdlogn) takes care of the case n=1. Note

that a & with a single vertex can never be the key block in a string construction.
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For the basis of the induction, it is easy to check the inductive hypothesis for n=1 and
n=2,

For purposes of induction, assume that the inductive hypothesis is true for graphs of size
less thap n and that n>>2, There are two cases: {1} G has more than one block and (2) G iz a
single block.

(1) G has more than one block. In this case, the string construction is applied {steps 5
and 6). Let us examine the linear order induced by H and (z,y) on V. H, iz a superbamiltonian
cycle for G{[m;,my)) that begins at 2=z, and ends at y,. As such, H, can be viewed as a permuta-
tion on [m;,m;). The string construction places the vertices of [m,,m,} fitst in H, in this permuted
order. Similarly, the vertices of [m,, my) come next in H, in the permuted order given by H,. In
general, the ¢-1 subintervals appear in the same order in H as they do in the partition, though H
permutes the vertices within each subinterval. The permutation of the jth subinterval is always

that of H,.

It is npow possible to bound cw(H) based on {cw(H))}. First, consider the cutwidth of H
between two subintervals, that is, cw([y,z,44])1<7<¢-2. Suppose j<k. Then the only edges
that pass over the interval [y, z,,,] are dangling edges from m,, to [m,m;). Hence,

ew([y,z )< 1< Cdlogn.

It 7> k, by a similar argument, we have
ew([y,2,41]) L d-1< Cdlogn.

Second, consider the cutwidth over a side subinterval. Consider the jth subinterval in H,
[z,4]. I j<k, then there are at most (d-1) dangling edges from m,,, to [m,m,,) that can contri-
bute to cw{[z,y]) and at most d dangling edges from m, to [m,;,m) that can contribute to
cw{[z,y]). Hence, by L1,

ew([z, ) < 2d+ Cdlog(size{[m,m ;)})

< Cdlogn

since size{[mj,mﬁl)}<%n. If >k, we have similarly
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ew([z, y}) < 2d+ Cdlog(size{(m,m.4]}) '
< Cdlogn.

Third and finally, consider the cutwidth over the key block, B{m, m,,)}. By .2,
cw([zy, g} < (Cdlog{size{[my, mpp] )} }-del{[mymp|}.
The only dangling edges that can contribute to the cutwidth over |z, 5, are those incident to m,

and my4;. There are def{{m,m,, ]} of these. Hence

e[z, 1)< Cd log(size {{my,my1]})
< Cdlogn.

Putting these three results together yields cw(H)< Cdlogn. Thus G satisfies 1.1.

(2) G 1s a single block. In this case, the ladder construction is applied (steps 7 through 9).
The subintervals are [4;,7;], - - - ,[i.7). Let P={{uy,v,){usv2), - - - (usv,)} where

n<my< - <yl u - - <up<vy and t=[(s+1)/2.

We first consider the case (1,n)EP. We can represent the order in H of the vertices of V and of
the subintervals by the following string:

“1"1[‘}11.1}-1]["5:.?' s] ”2"2{"1’1'1”"-25.7'2] uy vs[’.s—s’js—sl["s—%js—d ”4“4["3:1'31 ["4:.7'4] Ugls....

Of course, the vertices of the subintervals are permuted with H as they were in case (1}.

From the ladder construction, there are four recognizable fypes of subintervals, two types on
the left and two types on the right. While we could write down subscript formulas for each of the
four types, for the cutwidth argument it is sufficient to consider the following four representatives
of the four types: [isfa], [f0.7d, [fesfes] and [i,27.4. The only edges that add to cw(H,) are
edges incident to vertices ip Vp that pass over the kth subinterval in H. The diagram in Figure
5.21 illustrates the pofential for a vertex in Vp to have edges incident to some subinterval. For
example, u, or v might have one or more edges to subintervals [i,,7)), [i.7], [2.7d, and [i,y,7.4].
Since we are interested only in a upper bound on cutwidth, we ignore the possibility that the

existence of some edge may preclude the existence of other edges. .

We start with the type represented by subinterval [&,/s]. An examination of the string for

together with Figure 5.21 reveals the potential for edges passing over {zy,yy] from ug, vy, uy, vy, ug
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Figure 5.21. Proof of Lemma 5.4

and vg only. Hence, by inductive hypothesis,

ew(|z5,1a]) <6 d+cw(Hy)

<6d+ Cdlog(size{[iy, 7 })

Sﬁa‘+Cdlog-§-n

<(Cdlogn)-2d

<(Cdlogn)-def{[1,n]}

since each subinterval contains at most -:-n vertices.

[i s-!’j s-—I:l

h s-2’] s-2
[} 5_3)] 5_3 ]

[i s-4'j s-41
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Similarly, consideration of the three types represented by [ij), [f,avss] and [i, 24,4

reveals that at most § vertices in Vp can have incident edges adding to the cutwidth of a subin-

terval. Hence, for all subintervals [z, y] in H,
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ew{{z, v} <(Cdlogn}-def{[1,n]}.
Consideration of intervals in H between the subintervals (e.g., [y v;]) yields no worse ar upper

bound. Hepce we conclude that cw(H}<(Cdlogn)-def{|1,n]}.
The case in which (1,n)¢P is similar to the preceding case. The additional left or right

subinterval cannot boost the cutwidth above {Cdlogn)-def{[1,n]}. Hence in all cases, 1.2 holds.

This completes the induction and the proof of the lemma. [

5.5. Performance

In this section, we analyze the time and space complexity of TRADEOFF. Of course, the
complexity depends on the representation of data. While we do not prescribe the details of the
data representation, we do require that the representation make elementary operations efficient
(i.e., constant time per edge or vertex). A place where this requirement is crucial is Algorithm 5.3
for finding a separating edge. To accomplish step 1 in linear time, it is necessary to be able to
recognize the next (counterclockwise) edge of an interior face in constant time. It is easy to
represent G so that this is possible,

First, we note that all operations of TRADEOFF performed on G except the recursive calls
require linear time. From the description of the steps in section 5.3, all steps are clearly linear
time except steps 6 and 9. From the description of the string construction, G'can be constructed
in linear time from the {G,} (step 6). Similarly, the ladder construction can be accomplished in
linear time (step 9). Hence, the entire algorithm excluding recursive calls can be implemented in

linear time.

Let T{n) be the time complexity of TRADEOFF when n=n. Let ny,n, - - - ,n, be the sizes

of the subintervals either in step 5 or in step 9, depending on which case holds. Then, i n<n
by

and nts-g-n,lgks p. By the result of the previous paragraph, there exists a constant ¢ such that

T(n)< ent 32 T{n).
]
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Lemma 5.5. If T(1) is one unit of time, then for all n>1,

T(m)< (<flog 3. )rlogn.
Proof: By induction on n. The lemma is certainly true for n=2. Assume n>2 and assume the

truth of the lemma for values smaller than n. Then,
T(n)=cn+ Y. T(n,)
by
<cnt i: (c/iog-a-)n, logn,
3. 2
<ent(eflog=) Y nplog—n
g/ & %
&cn+(c/log%)n!og§n

= cn+(c/log-‘3-)nlog n~{ c/log-g-)nlog%

-—-(c/log%)nlogn.
The lemma follows by induction. [
The space requirements of TRADEOQOFF are clearly n times some small constant. We thus
have the following:

Theorem 5.8, TRADEOFF has time complexity at most Cynlogn and space complexity at most

Con, for small constants C),C),.

5.8. Conclusion

In this chapter, we have investigated tradeofls between pagenumber and pagewidth that are
gignificant in a VLSI context. Our main result is an algorithm for obtaining a book embedding
for outerplapar graphs that is within a constant factor of optimal in VLSI area for the class of
outerplanar graphs. While this near-optimality is not guaranteed for individusl outerplanar
graphs, we know of no example of an outerplanar graph for which our algorithm fails to obtain

near-optimal area.
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CHAPTER 6

CONCLUSIONS

We have presented three algorithms for embedding graphs in books. Each algorithm
guarantees the quality of the book embedding that it generates. Hence the correctness of each
algorithm constitutes a proof of a book embedding property for the class of graphs input to the
algorithm. Each algorithm is eflicient in time and space, hence of practical value for embedding
graphs in books.

Our first algorithm embeds any planar graph in a book of at most seven pages. Thus we
have shown that PPG, the pagenumber of the class of planar graphs, is at most seven, the
smallest upper bound currently knowa.

Our second algorithm embeds any trivalent planar graph in a two-page book. In particular,

our algorithm edge-augments any trivalent planar graph to obtain a planar hamiltonian graph in

time linear in the size of the graph. Thus we have shown that MV, the maximum valence of a

planar graph that guarantees the graph is subhamiltonian, is at least three.
Our third algorithm embeds any d4valent n-vertex outerplanar graph in a two-page book
with at most Cdlogn pagewidth, C=8/(!og%); the algorithm executes in time O{nlogn). More-

over, we know of no outerplanar graph for which our algotithm fails to attain pagewidth within a
small constant factor of the cutwidth of the grapk. We show that at the cost of one additional
page above optimal pagenumber, layouts of near-optimal cutwidth for outerplanar graphs can be

obtained constructively.
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Our results are applicable to the motivating VLSI problems in Chapter 1. For the mul-
tilayer VLSI layout problem, our results bound the number of layers required to realize circuits
represented by planar graphs. Of particular interest is the outerplanar graph result; it bounds
both the pumber of layers (i.e., two) and the area (essentially proportional to nlogn for an n-
component circuit). For the DIOGENES design problem, our results bound the number of stacks
required to realize planar graphs. The outerplanar graph result also bounds the area of a

DIOGENES layout for a circuit represented by an outerplanar graph.

Our algorithms are based on principles that should apply to the development of book
embedding algorithms for other classes of graphs. It is of extreme importance to choose the order
of vertices intelligently so as to make small pagenumber or small pagewidth possible. I an algo-
rithm can find a cycle in the input graph whose removal separates the graph into two parts, it has
the basis for a recursive decomposition. However, it is essential that the book embedding solution
for each part preserve cycle order, or else the two solutions cannot be joined together to obtain a
solution for the entire graph. In a more general approach, a separating subgraph other than a
cycle can be chosen provided that it is possible to preserve the same order for the vertices of the

separating subgraph in the solution of each subproblem.

To lend evidence that it will not be easy to extend our results to other classes of graphs, we
present the following sequence. For n=1,2, - -, G, is a trivalent graph having 2n vertices. Its
vertex set is {vy, + - - ,22,}, and its edge set is

{{vnvipsmos 21 S ES 2} J{(vpva )1 < k< n}.
Figure 6.1 illustrates G,. It is easy to show that G, is a genus-one {i.e.,, embeddable on a torus)
graph, but not a planar graph. There is an obvious hamiltonian cycle H for G, (vy,tm, - -+ ,vp,).
Using the order of H to obtain a book embedding for G, requires an n-page book. However, G, is
just the n-ladder (Chapter 5) with added edges (v,,v,41)(v2,,»y). The ladder-like order
(V1 Vb1, Vater U2, Uy, Ungs, * )
yields a three-page embedding for G,. This example demonstrates that merely choosing a bamil-

tonian cycle in a (genus-one} graph does not guarantee a good book embedding. {The pinwheel in
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Figure 8.1. The Genus-One Graph ¢,

[CLR] is another such example.)

We wish to suggest some directions for future research. It would be most interesting to
determine PPG. We have investigated a sequence of graphs similar to the stellations of K,
(Chapter 3) that we call nested friangles. The first nested triangle is Ny=K,;. The k-th nested
triangle N, k> 1 is derived from N, , by adding a triangle to each interior face of N, , and con-
necting edges from the triangle to the face. Figure 6.2 iliustrates N;. We have attempted to
obtain three-page embeddings for this sequence using the same approach that succeeded for the
stellations of K, The attempts failed. We conjectnre that some member of this sequence
requires at least four pages in any book embedding. The proof of this conjecture would imply
that PPG>4. We also recognize the existence of some freedom remaining in our planar graph

algorithm. We believe that PPG<T,

Another fruitful area for research is tradeoffs between pagenumber and pagewidth. It is not
known how prevalent such tradecfls are or whether dramatic tradeoffs exist for any pagenumber.
In a VLSI context, algorithms for embedding a graph in a bounded number of pages with
pagewidth close to the cutwidth of the graph could be most practical. We do not know of any

example where adding one or two pages above the pagenumber of G does not give us an embed-
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Figure 6.2. The Second Nested Triangle A,

ding whose pagewidth is within a small constant factor of the pagewidth of G there is hope that
such algorithms exist for important classes of graphs. In particular, we believe that such an algo-
rithm is possible for planar graphs. The algorithm would embed any dvalent planar graph in a
Bpage book with Cdvn pagewidth where C is a small corstant. Our planar graph algorithm
provides the. starting point for obtaining bounded pagenumber. The small pagewidth will depend

on a stronger version of Lipton and Tarjan’s [L'T] planar separator theorem.
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GLOSSARY

Adjacent: Two vertices are adjacent if there is an edge between them.

Two faces in a planar embeddings are adjacent if their boundaries have an edge in com-
mon.

Blconnected: A graph G=(V,E) is biconnected if for every pair u,v€V, there exists a cycle in G
containing both u anﬁ v. This definition is equivalent to & not having a cutpoint.

Biconnected component: A maximal biconnected subgraph.

Bipartite graph: A graph G=(V,E) is bipartite if V can be partitioned icto subseté Vy and V,
such that every edge joins a vertex in V| to a vertex in V.

Book: A line (the spine) together with some numbers of halfplanes (the pages) having the line as
boundary.

Book embedding: A linear embedding of a graph in a book such that each edge of the graph is
assigned to a single page of the book in such a way that on each page, the edges assigned
to that page do not intersect.

Boundary: If Fis a face in a planar embedding, then the boundary of F consists of those vertices

and edges making up the topological boundary of the connected region of F.

Bounding cycle: If the boundary of a face F is a cycle (this is the case whenever the planar

graph is biconnected), it is the bounding cycle of F.

Complete graph: A complete graph on n vertices, denoted K,, has every pair of n vertices adja-

cent,
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Connected: A graph G=(V,E) is connected if for every pair u,v€V, there exists a path in G
from uto v
Connected component: A maximal connected subgraph.

Cutpolnt: A vertex whose removal increases the number of connected components.

Cutwlidth: Given a graph & and a linear embedding of G, the cutwidih of a point, p, on the line
is the number of edges having one endpoint on the left of p and the other on the right of p.

The cutwidth of the linear embedding is the maximum cutwidth over all p.

Cycle: A cycle i a graph (multigraph) G is a list of three or more {one or more) distinct vertices
{v1,u, * * * ,vn) such that v, is adjacent to vy, 1<k<m, and v, is adjacent to v;. mis

the length of the cycle.

Degree: The degree of a vertex is the number of edges incident to it.

Depth-first search: A method of visiting each vertex of a graph exactli once.

Dual: The dual of a planar embedding of G=(V,E} is a multigraph GP=(V?,E?) defined as fol-
lows: VP={F|F is a face}, and EP=={(F,F')[F is adjacent to F'}.

Endpolnt: If (u,v) is an edge, then u and v are its endpoints.

Exterlor face: The unique unbounded face of a planar embedding.

Face: Given a planar embedding of a planar graph G, a face of the embedding is a maximal con-

nected region in the complement of the planar embedding.

Genus: A surface has genus & if it is homeomorphic to a sphere with & attached handles. The

genus of a grapk G is the minimum k& such that & can be embedded in a surface of genus k.
Hamiltonlan: A graph is hamiltopian if it has a hamiltonian cycle.
Hamiltonlan cycle: A cycle containing all vertices of the graph.
Ineldent: An edge and a vertex are incident if the vertex is an endpoint of the edge.

Interior face: Any bounded face of a planar embedding.
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Linear embedding: Any embedding in which the vertices of a graph are ordered on a line. Book

embedding is an example.
Loop: An edge incident to only one vertex, i.e., an edge of the form (u,u).

Matching: A matching in a graph is a set of edges, no two of which have an endpoint in com-
mon.
Maximal planar graph: A graph to whick no edge can be added without rendering it non-

planar.

Multigraph: A generalization of the concept of graph where any edge may occur more than

once, i.e., parallel edges are allowed.
MYV: The maximum valence of a planar graph that guarantees the graph is subhamiltonian.

Outerplanar: A graph is outerplanar if it has a planar embedding in which alf vertices are on

the boundary of the exterior face,

Pagenumber: The pagenumber of a book embedding is the number of pages in the book.
The pagerumber of a graph G is the minimum pagenumber of any book embedding of .
The pagenumber of a class of graphs is the minimum number of pages that every member

of the class can be embedded in, as a function of graph size.
Pagewldth: The width of a page is the maximem number of edges that intersect any half-line
perpendicular to the spine in the page. The pagewidth of a book embedding is the max-

imum width of any page.

The pagewidth of the graph G is the minimum pagewidth of any book embedding of G in
a book having a minimum number of pages.

The pagewidth of a class of graphs is the mirimum pagewidth that every member of the

class can be embedded iz, as a function of graph size,
Parallel edges: Edges that occur more than one time in a multigraph.

Path: A path in a graph G is a list of two or more distinct vertices (v),w, - - - ,v,) such that v, is

adjacent to vy, , 1<k<m. m-1is the length of the path.
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Planar embedding: A planar embedding of a graph G maps each vertex of G to a distinct point
in the plane, and each edge (u,v) of G to a simple curve joiring u and v, such that no two

curves intersect.
Planar graph: A graph G is planar if it has a planar embedding.
PPG: The pagenumber of the class of planar graphs.
Quadrivalent: A.quadriva.lent graph has valence at most four.
Simple: A graph is simple if it containe no loops and no parallel edges.
Sl:;: The size Qf a graph is the cardinality of its vertex set,
Subgraph: A graph G%=(V' E'} is a subgraph of a graph G=(V,E) if VC Vand E'CE.
Subhamiltonlan: A graph is subhamiltonian if it is a subgraph of a planar hamiltonian graph.
Supercycle: A supercycle of a graph G iz a cycle in a supergraph of G.
Supergraph: A graph G'=({V' E’) is a supergraph of a graph G=(V,E}if V=V'and ECFE'
Superhamiltonlan cyclet A superhamiltonian cycle of a graph G is a hamiltonian cycle in a
supergraph of G. The term is especially applied when the supergraph is pianar.

Three-connected: A graph is threeconnected if the removal of fewer than three vertices does

not disconnect the graph.
Triangle: A face in a planar embedding whose boundary is a cycle of length three.

Triangulate: Add edges to a face of a planar embedding so that, in the resulting planar embed-

ding, ghe face is partitioned into triangles.

Triangulated: A planar graph (or a plapar embedding} is triangulated if all its faces are trian-
gles. This is equivalent to the graph being a maximal planar graph.

Trivalent: A trivalent graph has valence at most three,

Valence: The valence of a graph is the maximum degree of any of its vertices.



