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Chapter 1

INTRODUCTION

A da.tabése represents objects in the real world, their relaticnships, and the ways they com-
_bine with each other. The effective modeling of reality has often fmen difficult within conven-
tional databases. Conventional databases are really snapshot databa.;ses, since they show the state
of the rea! world at one particular point in time; they do not support the passage of time. Several
researchers have proposed extensions to databazse models and query languages that include time
as an-intrinsic part.

This paper deals with the formal semantics of aggregatesin a tempofal relational database
query language. In t,hi; chapter, we will first see how é,ggregates are hand]ec.i-in a conventional
query language. Then we will turn our attention to aggregates. in time—orient;d relational data-

bases.

1.1. Aggregates In Conventional Query Languages

A convenient way of combining data from tuples in 2 relational database is through aggre-
gate operators. They include such common statistics as the count, the sum, and the average of
the values of an attribute in a given relation (or part of a relation}. Most commercially available
relational database management systems (DBMS's) provide several aggregate operations |Date
1983, SQL/DS 1981, Ullman 1982]. One of the best known systems among these is Ingres [Stone-
braker et al. 1976]. Que! [Held et al. 1975|, the qﬁery language used with Ingres, is fairly
comprehensive in its support of aggregates. Techniques for implementing non-temporal aggre-
gates in 2 relatioﬁal query language are discussed by Epstein, with a description of the method
used by Quel for processing queries that involve arbitrarily complex aggregation-é of data [Epstein

1979]. However, no formalization of the semantics of aggregates in Quel has been done to date.



Klug introduced an approach to handle sg;grega.tes within the formalism of both relational
| algebra and tuple relational calculus [Klug 1982]. His method makes it possible to define both
standard and unigue aggregates in a rigorous way. Ceri and Gottlob present s translation from a
subset of SQL that includes aggregates into relational algebra, thereby defining an operational
sem.a.ntics for SQL aggregates |C¥ri & Gottlob 1985]. Klug's approach was exploited in this trans-

lation; his approach will be used later in this paper to build a formal semantics for aggregates in

Quel.

Finally, sig.niﬁcant. progress has been made in the area of statistical databsses [LBL 1981,
LBL 1983|. Such databases, used primarily for summary statistics gathering and statistical
analysis, contain set-valued attributes. Klug’'s relational algebra and calculus have been extended
to manipulate set-valued attributes and to utilize aggregate functions [Ozsoyoglu, et al. 19886],

thereby forming a theoretical framework for statistical database query languages. As such

languages manipulate non-first-normal-form relations, they are of limited relevance in this paper.

1.2. Aggregates in Time-Orlented Databases

A veriety of work has beenvdone on incorporating time in a database (c.f., [Anderson 1982,
Bradley 1978, Bubepko 1977, Cliflord & Warren 1983, Codd 1979, Lum et al. 1984, Sernadas
1980, Snodgrass & Ahn 1886]). The majority of the researchers focus on issues such as how to
model time, how to treat time attributes in & manner consistent with the way humans view time,

and how to represent temporal information in an efficient manner,

Few researchers, however, have investigated aggregates in time-oriented relational data-
bases. One of the first time-oriented quer,y. languages, the Legol 2.0 languagé, included aggregates
{Jones & Schwan 1979, Jones & Mason 1980]. In Legol 2.0, all the instances of aggregation are
performed over time because every tuple is time stamped. A distinction was. made between
.;ggregates at each time, or inalanianeous eggregates, that yield a distribution on thé time axis,

and aggregates over all time, or cumulative aggregaies, that yield a single value:



~ Instantaneous Cumulaiive

max highest
" min lowvest
sum- accumulate
number count

Furthermore, the purely temporal aggregates “£irst”, returning the earliest time, and “last”,

returning the latest time, were defined. No formal semantics was provided.

Ben-Zvi included severai aggregaté operators and functions in his TRM language, although
not in a very clear or comprehensive manner [Ben-Zvi 1982]; Ariav also mentioned aggregates in
the context of his TOSQL language [Ariav 1985]. Finally, although Gadia's HTQuel language
does not explicitly include aggregates, his “temporal navigation” operators {e.g., First) can be
simulated using aggregates, since they effectively extract an interval from 2 collection of intervals

|Gadia & Vaishnav 1985].

Aggregates in TQuel, a superset of Quel incorporating temporal constructs, were previously
defined informally [Snodgrass 1982|. Both instantaneous and cumulative versions of aggregates
were given. The difficulties caused by tuples that are duplicated over time and indeterminacy of
t.h_e temporal attributes, were identified and several alternative definitions of cumulative aggre-

'gates were provided. As with the previous attempts, no satisfactory semantics was given.

1.3. Structure of the Paper

For temporal relational database systems, some work has been done on aggregates, but they
still need a formal definition. It is necessary to specify the meaning of each aggregate from a
user’s point of view and to specify = rigorous semantics for each of them. Formal definitions are
slso useful for implementing the query language.

We will begin by constructing & formal semantics of aggregates in Quel, Then, an intuitive
introduction to temporal aggregates in TQuel will be given in Chapter 3. Chapter 4 is devoted to

developing a formal semantics for aggregates in TQuel.



Throughout the paper, a fixed-width font is used for functions and operators in the query

language {e.g., count), and italics is used for functions in the semantics (e.g., eount),



Chapter 2

AGGREGATES IN QUEL

This chapter will present a ¢omplete semantics for the Quel'aggregates, as a convenient

point of reference for the TQuel semantics to i)e developed in Chapter 4. An informal

specification for aggregates is given, followed by a formal semantics of the retrieve statement

with aggregates in the Quel language.

2.1. Informal Speclification of Quel Aggregates

The Quel operations for aggregation are

count The number of values that exist for a given attribute in a relation. Since every attribute

any

sum

avg

min

has exactly one value in each t.uple this operator yields the same result on all attributes
~of a refation.

An indicator of whether there exists at least one t.uple in a relation. It returns a 1 if the
relation is non-empty and O otherwise, :

The sum of the values present for a given attribute. This operator can be computed
only on 2 numeric attribute.

The average, or arithmetic mean, of the values present for a given attribute. The aver-
age is defined in the ysual way, i.e. the sum divided by the count, Because of this depen-
dency upon sum, the avg is also a Rumeric-attribute-only operator.

The smallest of the values present for a given attribute. For sn alphanumeric attribute,
the alphabetlca.l ordering is used to determine the smallest element.

. The largest of the values present for a given attribute. For an alphanumeric attribute,

the alphabetical ordering is used to determine the Jargest element.

These operators can be used in two types of aggregation:

(a)
(b)

Scalar aggregates, yielding a #ingle value as the result.

Aggregate funclions, producing several values determined by calculating the aggregate over

a subset of the relation. Each subset consists of the tuples such that the contents of one or

more attributes grouped in a by-list are the same. Hence the result of an aggregate function
. i8 a relation whose number of tuples equals the number of different values in the by-list.

While scalar aggregates are independent of the query in which they are nested, aggregate

functions are not. Since each value computed by such a funetion carries information on part of a

relation, tuple variables in the by-list must be linked to the corresponding tuple variables, if any,



in the outer query — that is, they should refer to the same part of the relation. (The inner gquery,
as opposed to the outer query, is the one consisting of the attribute to be aggregated, the by-list,
and the inner where clause.)

By their very nature, .iaoth scalar aggregates and aggregate functions operate on ithe entire
relation. However, they can be locally restricted via a where clause to operate only on certain

tuples of the relation. The local or inner where clause is processed separately from the outer one
of the query.
EXAMPLE. Suppose the relation Facully holds relevant data, say name, rank and salary, about

the professors in a university department:

Faculty{Neme, Rank, Salary):

- Naome  Rank Salary
Tom Assistant 23000

Merrie  Assistant 25000
Jane Associate 33000

range of f is Faculty .
retrieve (f.Rank, NumInRank = count(f.Name by f.Rank))

Ezample 1: How many faculty members are there in each rank?

The range statement declares a tuple variable £ that will be associsted to Facully throughout
the query. The retrieve statement contains the target list of attributes to be derived for the out-

put relation, in this case, Rank and NuminRank:

Rank NumInRank

Assistant 2
Associate 1

The output relation contains as many tuples ss actual values exist in the by-list. If there had

been no by-list, Num/nRank would be 3 in all the derived tuples, |}

Aggregation performed over the set of strictly different values in an attribute is called

unique aggregation. Quel supports three unique aggregates: countV, suml, and avgU. Unique



versions of any, max and min are not necessary.
EXAMPLE. This example Hllustrates muitiple aggregates and unique aggregation.

range of f is Eachlty _
retrieve (NumFaculty = count(f.Name). NumRanks = countU(f.Rank))

Ezample 2: How many faculty members and different ranks are there?

The result is a single tuple:

NumFaeulty NumRanks
3 2

2.2. Semantics of the Quel Retrieve Statement

A tuple relational calculus semantics for Quel statements without aggregates was defined by
Ullman [Ullman 1982 and will be reviewed here. Although attribute values in a target list can be
expressions in general, we ignore that detail in this paper for simplicity of notation. Thus the
skeletal Quel statement is

range of {, is R,
nnga of i, is R, L

retrieve (t,l.D“, —_ .D,r)
where 3

in which

1<i; <k, ..,1<4, <
1

. P
15 j; S deg(R,), ... 1S j, £ deg(R,)

deg(R) is the degree of R, that is, the number of attributes in each tuple of R. The correspond-

ing tuple czlculus statement is

{w(r) P @4)---34)
(Ra{t) \ - - N\ Rulte)
Nwltf=t i A - N wlr]et, 5]

7



pe)

This statement specifies that the tuple ¢, is in the relation B;, the result tuple u is composed of r

attributes, the m-th sttribute of u is copied from the j, -th sttribute of the tuple varjable ¢, ,

and that the participating tuples are determined by the restriction ¥'. We use ¥/ insiead of ¥ to

indicate modifications for attribute names and Que! syntax conventions.

2.3. Adding Aggregates to Tuple Relational Calculus

The semantics for the Quel retrieve statement with aggregates will be presented now. We
first introduce the aggregate operators to be used in the tuple caleulus. This material is new, and

is based on Klug's method [Klug 1982].

Let R be s relation of degree r containing »n tuples, n >0, and let ¢ be a tuple variable

associated with R.
DEFINITION.  count(R) & (n, ..., n)

That is, the count operator yields a tuple whose r components equal n.
DEFINITION.  any(R) A (sign(n), ..., sign(n))

The sign function produces the value -+ if n is positive {at least one tuple in R), and 0 if n is
gero (no tuples in R). Again, all r components of the result tuple equal the same value.

For the remaining definitions, assume n > 0.

DEFINITION.  sum{R) e( o)., X o]
t € R(t) t€R(t)

Each component of the result tuple equals the sum of 2l values in the corresponding componen .

of the tuples of R. :

DEFINITION.  ovg(R) & [% 2ot X !Ir]]
- t € R(1) Bier)

Each component of the result tuple equals the average or ariihmetic mean of all values in the
corresponding component of the tuples of R.

DEFINITION. min(R) 4 ( gzji?:h)tlll, tren}i?:h)t[r])

Each component of the result tuple equals the minimum of all values in the corresponding com-
ponent of the tuples of B,



A
DEFINITION. ma:(R ) (rrenk(f) 1, . een{e)‘lri}

'

Each component of the result tuple equals the maximum of all values in the corresponding com-
ponent of the tuples of R. :

For n =0, sum, avg, min and maz are a.rb:tra.nly deﬂned to- be 0 However, new implemen-

tations can be more consrstent. wu.h real:t,y lf they retarn a spec:al null value for those cases.

The advantage of deﬁning aggregate operators to work on relations instead of on domains
is that duplicate values enter the set calculations without difficulty. Later on we consider unique

‘aggregates which'eliminate'.duplicate values to compute aggregates over unique values,

The functions are used in the tuple calculus semantics. Let F be any of the aggregates

. defined in Section 2.1. Quel queries with one aggregate function are of the form

rmge of {, is R,

range of {, is R, . :
retrieve (¢, ' D o b, .D,f ¥ -F(t,l.D,I'by !gz.D.. g b -D,_whers y,))
where ¢ '

in which

1<, <k, .., 1<, <k
1<L<k, . 1S, <k
1< j; < deg(R,), ... 1 < j, < deg(R,)

1< m < deg(R;l}, e 1 S my < deg(R) ).
Again, we simplify the expressions appearing in the aggregate to attribute names. There is also

the restriction that the tuple variable(s) mentioned in ¥, must be either £ or one of the tuple
variables appearing in the by clause: g o b The attributes outside the aggregate,

by, -, D,, and the atiributes used within the aggregate, D, g '+ Dm, usually overlap,

but need not. This aggregate

(a) takes the cartesian product of the relations associated with the tuple variables appearing in
the aggregate,

(b) removes all resulting tuples that do not satisfy the condition in the where clause of the
aggregate,



(¢) partitions the resulting tuples by the values of the attributes listed in the by elause,
(d) applies the aggregate to each partition,

{e) and finally associates the result with each combination of tuples participating in the original
query, with the partition selected using the values indicated in the by clause. ,

We first specify the partition of the cartesian product of the relations associated with the

tuple variables appearing in the aggregate. Initially assume that the tuple variables ":’ e by are
all distinct. Define a partitioning funclion P corresponding to the aggregate in the query as a

function of n —1 values ag, ..., 8,, given by

Plag, . 85) 8 {: M} @) - (34)
Rt )N - NBR (1)
Ne=t,
Atml=me; A -~ At]m)]=a,
Ao )
where p & dcg(R;l). Each of the combinations of values a,, ..., 8, existing in the specified attri-
butes produces one partition on which the aggregate has to be applied.

EXAMPLE., The partitioning function for Example 1 is particularly simple:
P(s) -{‘ @1 @fNFaculty(f)\ t =1 N flrank] =) }

For this particular Faculty relation, P(Assistant) = {(Tom, Assistant, 23000}, (Merrie, Assistant,
25000)) and P{Associate} = {{Jane, Associate, 33000}}. Note that we use attribute names rather

than indices for notational convenience. B

Let f be the aggregate operator defined above corresponding to the Quel aggregate F (e.g.,
if Eis count, f is count). A term of the form f(R) will denote the r-tuple obtained from the

application of aggregate operator f to relation R. The operator [ applies the same aggregate to

S
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every attribute in R. Let f(P(ay, ..., 8,)){m] denote the m-th attribute of the tuple evaluated
by J(P(ag .., 8,)). For Example I, count(P(Assistant)) = {{2, 2, 2)} and
“count(P(Assistant))|Name| = 2.

The counterpart tuple caleulus statement for the Quel query is then

{w(r) 1 343
Ryt -+ N\ Rulty)

Avwlt]=tjnl A - N wlr]=t,[i]
A wlr+1] =j(P(t,=[m2], ey tl.lmn]))lﬁli

ne)

The partitioning function computes the partitions, with the approbriate partition selected

by the parameter passed to P. If the tuple variables appearing in the aggregate are not distinct,

then the first two lines in the definition of P should be altered to eliminate duplicate tuple vari-
ables.

EXAMPLE. The tuple calculus st.a.temenb for Example 1 is

-~

{w(2J V(31 Faculty(f) N\ wil] = firank] A .w{2] = count (P (f |Rank|)}{Name|) } [ |

For =z scalar aggregate, there is no by clause and the partitioning function P is simpler,

namely
pa {g(’) ' (3 "1)(3‘:“‘:) Nt -t Aé') }

Here, P is formulated to emphasize its similarity with the more generzl partitioning function

given earlier. As expected, P computes a subset of R;. The tuple calculus statement for the

query remains the same as above, except that P is used in place of P (ﬁz[mz], s 4 [y ]).

11



EXAMPLE. For the count @ggregat.e of Example 2,
P, = {t‘”’ | (AfYFaculty(fYN\t=1) } |

For a query involving several aggregates [, ..., /i ', a seﬁarate partitioning function P (of

either the scalar or the function form) is defined for each aggregate.

2.4. Unlque Aggregation

The aggregates as defined cannot do unique aggregation directly, because they operate on

relations, not on attributes. It turns out, bowever, that a slight change of the partitioning fune-

tion P solves the problem.

Let the modified partitioning function be defined in terms of P as

Usg ... 8,) & {wm | (38) (b €P(ay ..., a.) \ wil] -Hm,li }

The net effect of this is the elimination of all duplicate values from the attribute upor which

aggregation will be performed.

For a scalar unique aggregate, the partitioning function U of degree p (rather than p+¢)is

defined in a simii‘ar fashion based on P,
va {wm I (3b)b €PN\ wil] mb[m,)) }
EXAMPLE. For Example 2 for the countU aggregate,

Pz'{‘(2}= (IS W Faculty(/) N\ ¢t =1 )}

Ugm {uﬂ) L (b)Y € Py N\ ul1]=b]L]) }

= {{Assistant), (Associate)}

13
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The final tuple calculus expression is then

| {wfz) ! (3‘“{}(Faculty(f} N wii} -count(?,)[Name] A u.[2| w count(U,)|Rank} ) } [ |

'Th_e_tuple calculus éemantics of all unique aggregates is simply obtained by substituting U
for P in the main formula of the previous section, and using the previously defined operators

eount, sum, and avg.

2.5. Aggregates In the Quter Where Clause

So far we have seen standard and unique aggregates being used in the target list of a query.
They can also appear in an expression in the Quel where clause, alone or with other terms like

constants and values from attributes.

Let us first deal with an aggregate in the. main where élause. If it is a scalar aggregate, it is
independent of th_e.rest of the query and therefore it is simpij calculated and replaced by its
value. However, 1f an aggregate function appears in the outer where clause, its corresponding
partitioning function is defined, and the values of the aggregated attribute are used in place of
the aggregate in the query. Following the ryle that the tuple variables i_n by-lists are global, the -

by clause is linked to the rest of the query through the arguments to the partitioning function.

2.6. Nested Aggregatlon

A similar rule applies in the case of nested a.ggfegation, tﬁat is, when an aggregate function
£, appears in a local .where clause of an aggregate f,. The tuple variables in the by-list of [, are
linked to the tuple variables of the same name appearing in their outer environment (that is, the
J2 query).

Nesting may be deeper, with f, nested in (called from) an outer aggregate f,. Again, if
tuple variables with the same name appear in the by-list of /. and in the f, query, they will be
linked, and so on, _Linké are accomplished via the a.réuments .t,o the partitioning functions. Thus,

at any one time, only one level of nesting need be considered [Epstein 1979].

13
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2.7. Exprmlbm In Aggregates

o in the formal semantics, we assumed that a single attribute was aggregated, ﬂ'ber partition-'
ing by zero or more attribute values. Quel allows arbitrary expressions to be aggregated, and
supports express‘iohs in the by clause. ‘I.‘h.e former can be accommodated by simply subsﬁitu’t‘mg
appropriate expressions for ;ttributeé in the line relating the output attribute in the main tuple

calculus statement.
EXAMPLE. It Example 1 was modified to

range of f 18 Faculty
retrieve (f.Rank, This = count(f.Name by f.Rank) * count(f.Salary by f.Rank))

the only change would be in the computation of w(2]:
w{2] = count(P(f |Rank|))| Name | *count{P(f |[Rank}))|Salary] I
Expressions in the by clause require two changes: one in the definition of the partitioning function

where the parameters are equated and one in the main statement, where values of the parame-
ters are specified.
EXAMPLE. If Example 1 was modified to

R

range of £ is Faculty )
retrieve (f.Rank, This = count{f.Name by f.Salary meod 1000}) -

the modified partioning function definition and tuple calculus statement would be

P(ay) = {,m ' (3f)(Faculty(f) N\ t =f \ I|Salary] mod 1000 = o, ) }

{w(r) \ (3f N Faculty(£) \ w[l] = f{Rank] \ w]2] = count (P(f|Salary|mod1000))|Name)) } |

2.8, Summary

There are six fundamental operators that perform aggregation in Quel. The grc;uping and
selection of tuples to be aggregated is done by the partitioning function, which also determines

whether the standard or the unique version is being used. Aggregates may appear in the outer

14



where clause, as well as nested in the inner where clause. The depth of nesting can be arbitrary.

While only the semantics for the retrieve statement has been given, it is easy to exténd it to
specifly aggregates in the Quel modification statements (append, delete, and replace)
[Snoagrass 1986), using the strategy discussed in this chapter. It is also straightforward to extend
t.he'aggrégat,es to operate over arbitrary expf'essions.

Now that the tﬁple calculus semanties of Q_uel with aggregates is complete, we can use

these results for defining a tuple calculus semantics for TQuel aggregates.

16



Chapter 3

TEMPORAL AGGREGATES IN TQUEL

In Chapter 2 we have seen the various Quel aggregates and their formal semantics. In this
chapter we introduce TQuel aggregates in an intuitive way through examples. We first give an

overview of the TQuel language and then turn to aggregates.

TQuel is 2 fersion of Quel, augmented to handle the time dimension [Snodgrass 1985).
Relations in TQuel can represent either a collection of events that happen af certain pointﬁ in
time {event relations), or a collection of entities that have a duration, that is, 2 beginning and an
2o in time (interval relations). Thus, event relations have a distinguished valid time attribute, af,

and interval relations have two distinguished valid time attributes, from and fo.

TQuel differentiates between the valid time and the transaction time in a database
|Snodgrass & Ahn 1986], i:; a way similar to that of Lum and Dadam’s iogical and physical time
[Lum et al. 1984]. Both event and interval relations carry two transaction-time attributes, slart
and #top. The assignment of the transaction times to a target relatiop is made by the system
when data are recorded. The degree (deg) of a temporal relation is the number of explicit attri-

butes.
The TQuel retrieve statement augments the standard Quel retrieve statement by including

e a when clause, paralleling the already existing where clause, to select tuples whose temporal
attributes satisfy desired temporal constraints;

e = valid-at clause that permits the assignment of a non-default and possibly computed value
to the valid time attribute of a target event relation;

o wvalid-from snd valid-to clauses that permit the same kind of assignment to the valid time
attributes of a target interval relation; and

e an as-of clause to specify rollback to a previous transaction or series of transactions.

To simplify the exposition, we will not use transaction time, and hence the as-of-through
clause, in the examples. All relations will be Aisterical relations, containing only the from and fo

valid times,
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EXAMPLE. The relations Faculty, Submitled and Published, drawn from [Snodgrass 1986], are

assumned to contain the following tuples:

Faculty{Name, Rank, Salary):

. | Neme  Renk Salary | from to
[ Jane Assistant 25000 | 9-71 1276
Jane - Associate 33000 | 12-76 11-80
Jane Full - 44000 | 11-80 oo
Merrie  Assistant 25000 | 977  12-82
Merrie  Associate - 40000 | 12-82 0
Tom Assistant 23000 8-76  12-80

Submitted{Author, Journalj:

Author  Journal af
Jane -  CACM | 11-79
B ' Merrie CACM 9-78
Merrie  TODS 579
' Merrie  JACM 8-82

Published{Author, Journal):

Author Journal al

Jane CACM | 1-80
Merrie  CACM | 580
Merrie TODS 7-80

A representation of the tuples in the three relations is shown in Figure 1. A faculty

member’s salary is assumed, for the sake of this example, to change only on promotion.

range of f1 im Faculty

range of £2 is Faculty

retrieve (f1.Rank)

valid at begin of f1

where fl.Name = "Jane" and f£2.Name = "Merrie®™ and f2.Rank = "Associate"

when f1 overlap begin of f2

Ezample 8: What was Jane’s rank when Merrie was promoted to Associate?
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Figure 1: Example Relstions shown on a Time Line

Faculty refation . . Tom, Assistant, 20K Merrie, Associate, 40K

Mertie, Assistant, 25K

E.lue. Associate, 33K

Jaze, Assistant, 25K Jane, Full, 4K
S L I R A A R A A
: ¢ Merrie, JACM
. . ¢ Jave, CACM
Submitted relation P :
. o Merrie, TODS
¢ Metrie, CACM
mn T ®m T m T ®m T m T n T a m ' ®m T T m e
_ . i e Merrie, TODS
Published relation P
: ! ¢ Mermie, CACM
o Jane, CACM
" " T A T T ' et T T T ' m ' e | m ' s

Oaly two tuples will participate in this query, (Jane, Full, 44000, 11-80, oc) for £i and
(Merrie, Associéte. 40000, 12-82, oo) for £2, based on the where and when clauses. The target
list specifies the value of the Rank attribute and the valid-at clause specifies the value of the

implicit of attribute. The resulting relation has one tuple,

Rank at
[Fun_ | 1282 .
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3.1. Adding Aggregates to TQuel
It is desirzble that TQuel aggregates be a superset of the Quel aggregates, with a natural
time-oriented interpretation. Therefore, the TQuel version of a Quel :ggregat;e will perform the

same fundamental operation, while ranging over an event or an interval relation.

There are some diﬁeren.t.:es bet.w.i.:en.Quel and TQuel aggregates. Historical and temporal
databases are char#cterizgd ‘by the changing condition of their relations: at time L a re!ation
contains a set of tuples, and Iat time ¢, the same relation may contain a different set. Since. aggfe-l '
gates are computed from the entire relation, this in turn causes the value of an aggregate to
change from, say, v, to v, Hence, while in Quel an aggregate with no by-list {scalar aggregate)
returns a single value, in TQuel the same aggregate‘returns, generally speaking, a sequence of
values, each attached to its valid times. For an aggregate with a by-list, a sequence of values for

each value in the by-list is generated.
EXAMPLE. Let us consider Example 1, this time on an historical relation: .

range of f is Faculty
retrieve (f.Rank, NumInRank = count(f.Name by f.Rank})

The most intuitive approach is to retrieve each tank, together with the number of faculty at that

rank. As can be seen in Figure 2, for each rank there can be more than one related count.

19



Figure 3: An Example of count

Fasculty relation _ ! Tom’ Assistant, 25K
(just for éthe Assistant rank) P Merrie, Amamt 25K

" e ' w n a
céunt (Name)
1 ? 1
¥ n ¥ m L P ‘17" 1 = k3 ” k) ﬂ 1 ™ [ ﬂ T =0 1 .1 L] u I = T [
The query yields the following tuples
Rank NumInRenk | from o
Assistant 1 971 9-75
Assistant . 2 " 975 1276
Assistant 1 12-76 977
Assistant 2 977 12-80
Assistant i 12-80 12-82
Associate 1 12-76 11-80
Associate 2 12-82 )
Full 1 11-80 o0

This query, formulated as if it were 8 Quel! query, outputs the Aistory of the requested count,
| which is a time-varying function. When a Faculty tuple is created, or becomes invalid, the count
changes its value. Thus each tuple output is valid between two events (represented by vertical
dotted lines) in the graph of the Facully relation (Figure 1). Not,ice‘ ihat no tuples are generated
' with a size of zero. [}
Therefore, the correct way to determine valid times for the output tupies is to
(.a) compute the valid times from the valid clause in the query, and then

(b) " create s result tuple for each interval of time when an aggregate value overlaps the interval
given by those computed valid times.
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3.2. Cumulative versus Instantaneous Aggregstes
An aggregate may or may not take into account tuples that are no longer valid. The fol-

lowing definitions are useful:

. Cumulative Aggregaies. If the value returned by an iggregate for each point { in time is com-
puted from all tuples that have been valid since the beginning of the retrieval interval up to and
including #, regardless of whether the tuples are still valid at ¢, then the aggregate is said to be

cumulative, .

Instantaneous Aggregates. If the value returned by 2n aggregate for each point £ in time is com-
- puted only from the tuples valid at time #, then the aggregate is said to be inastanlaneous.

These aggregates act differently when applied to an event or an interval relation. For an
event relation, as the length of the time unit (the timestamp granularity) is reduced, the probabil-
ity of finding any valid tuples decreases [Snodgrass 1982]. Aggregates such as count, applied at
a given instant, would thus have diferent values depending upon the length of the time unit,
which is not a good feature. On the other hand, it is always possible to count the events that
have occurred in the past,,. _61' in a given period of time, in & ¢umulative fashion. For sn interval
relation, tuples are valid over an interval of time which is at least as long as the timestamp
granularity, and therefore the above. problem does ndt exist, We iherefore restriét aggregaie
operé.t.ors over event relations to be cumulative, ﬁhile a.ggregat; opera‘.t.ors over interval relations
can have both an instantaneous and a cumnulative version. This distinetion may need to be
reassessed when “fuzzy’ events are supported (c.f,, [Snodgrass 1982]). However, each value of an

aggregate, be it instantaneous or cumulative, is valid during a period of time.

PR

Each Quel aggregate has two TQuel versions: one for the instantaneous and the other for
the cumulative case. The cumulative version (defined for both event and interval relations) will

have the same name as the instantaneous version, with a ““c” appended to it.

EXAMPLE. To illustrate the difference between instantaneous, cumulative, instantaneous unique
and cumulative unique aggregates of an interval relation, consider the diagram of the output of
an instantaneous aggregate compared to the output of the cumulative one in Figur‘e 3, which

illustrates the execution of the following query,

21



rangs of £ is Faculty .
retrieve (Cl1 = count(F.Rank), C2 = countC(F.Rank}, C3 = countU(F.Rank),
o C4 = countUC(F .Rank)) S

t

on the historical Faculty relation shown in Figure 1. [

Figure 3: Instantanecus versus Cumulative versus Unique Aggregates

Facully relation , Tom, Assistant, 23K - Merrie, Associate, 40K
. —————
' ; Merrie, Assistant, 25K '
“Jane, Associate, 33K

{

Jave, Amsistant, 25K | R o Jane, Fali, 44K
Y T m T m T T nwn T T  w T n  ®m e w e u
: L s 3
Cl = count (F.Rank} . : ;
. 2 .2 . 2 2
A —r TS S b
3 N i B
P " " m " e " T et e e et T el 8t Tl
' oy S % : s
: C2 = countC(F.Rank} : : ; 5 ————
: L 1 _—_—
M s . . M
‘E 2 ——— a M
1 —_—
Ya " " @ ' a4 0w ' 2 0w ' m " m ' ' m | & ' m ' =
C3 = countU(F.Rank}: :
; 2 2 2 2 2
: S
1 1 i
™ n T T m T o T m ' ®m ' m ' m ' m o= ' m ! =m0 O® 0 &
: 3 3 3
C4 = countUC({F .Rank) —
. : 2 - 2
1 1
'n "' " »n " ¢ " " % " 7w "' m ' nmn " & " " = " & '

The above leads to our approach to TQuel aggregates: ic aggregate a given attribute of
relation R, .

(a) Determine the periods of time during which R remained “fixed” or “constant”, that is, no
new tuples entered the relation (and, if R is an interval relation, no tuples became invalid).



(b) If there is a by-list with this aggregate, subdivide each constant set of tuples into subsets,
each subset corresponding to a value of the by-list attributes.

(c) For each constant set of tuples, select the tuples that satisfy 2l the qualifications required
by the where, when and as-of clauses, if any. Defaults are used il those clauses are not
present. Each group of selected tuples is called an aggregation sel.

(d) Compute the .aggrégate for each aggregation set. Output the result from each group as a.
tuple valid during its associated period of time, intersected with the interval or event
specified by the valid clause,

The basic strategy therefore consists of reducing 8 TQuel query to a series of Quel-style

queries, each applied on a period of time when the relation does not change its contents.

Thus, TQuel queries with aggregates can result in several tuples rather than a single value.
Each tuple contains the value of the aggregate, attached to the particular period of time it was
valid, showing that the aggregate is really a time-varying function. At each point in time, there is

exactly one value of the aggregate. A set of tuples is required to model the history of the aggre-

gate.

Quel allows an inner where clause as the way to preselect tuples for the computation of the
aggregate; otherwise, aggregates always operate on the entire relation. Similarly, in TQuel the

inner where, when and as-of-throtugh clauses serve the same purpose.

3.3. New Aggregates

All Que! aggregates have a TQuel counterpart. There are also some aggregates unique to

TQuel. The first is quite similar to avg, applying both to static relations and ternporal relations:

stdev The standard deviation of the set of n values present ir a given attribute, defined as a
measure of the homogeneity of the values. This operator is restricted to operate only on
numeric attributes.

The remaining new aggregates are strictly temporal.

first This instantaneous aggregate returns, at each point in time, the oldest value of the
given attribute, that is, the one associated with the first valid tuple. If two tuples have
the same from value, the one with earlier 2o time is considered to be older. If they have
the same from and fo values, one is arbitrarily selected. .

last This instantaneous aggregate is analogous to first. It returns, at each point in time,
the newest value of the given aittribute, that is, the one associated with the last valid
tuple, If two tuples have the same o value, the one with later from time is considered to
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be newer. If they have the same from and {o values, one is arbitrarily selected.

The cumulative versions £irstC and lastC are also available. Note that, while first,

last, and lastC yield (potentially) several tuples of output, £irstC outputs just one tuple.

All

these new aggregates operate on the explicit attributes of relations. The next two are

usefu) when analyzing numeric data varying over time.

avgtl

varts

AVeraGe Time Increment: the average growth or decrease experienced by values of an
attribute over time. This aggregate is only applicable to numeric attributes. t returns a
value indicating growth per time unit; for example, feet/hour, or dollars/month. The
time unit can be optionally specified by the user by means of the per clause {see the
syntax in Section 3.6). '

The avgti is abtained by comparing the attribute value of each tuple with the attri-
bute value of its chronologically previous tuple, relative to the time elapsed, and
smoothing out all the comparisons by taking their arithmetic mean. At least two tuples
are needed to compute avgti so that the comparison can be made.

VARiability of Time Spacing: the degree of inequality of the time spacing within a given
set of attribute values. This aggregate returns a non dimensional quantity which has the
same value for each attribute. A value of 0 indicates the tuples are perfectly spaced.

The wvarts also considers the tuples in chronological order, It finds the ratio of the
standard deviation of the time lengths from one tuple to the mext, to the average of
those time lengths. Like in avgtdi, at least two tuples are needed to perform the com-

parison.

In addition, two instantaneous and two cumulative aggregates that operate on the implicit

valid {imes are available. They can be employed by the user to specify conditions in the temporal

qualification (when clayse), the valid times (valid clavse), and/or the transaction times (zs-of-

through

clause).

earliest The oldest time period of an interval relation, that is, the first from-to interval or at

latest

event. If two tuples of an interval relation have the same from value, the one with
earlier to time is considered to be older,

The newest time period of an interval reiation, that is, the last frem-fo interval or
af event. If two tupies of an interval relation have the same fo value, the one with
later from time is considered to be newer,

~ The cumulative versions earliestC and latestC are defined as well. They respectively

output the earliest and the latest time periods from the beginning of the query interval. Aggre-

gates in

the when, valid and as-of clauses are called aggregated temporsl conslructors because
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they return a time interval as their result. To adhere to the syntax of temporal expressions and
predicates, the earliest, latest, earliestC, and latestC aggregates take a tuple vari-

sble, rather than an attribute, as an argument. - S

3.4. Some Examples
The first example shows how an aggregate, which gives an interval relation, can occur with

an event relation in a query.

range of £ is Faculty
range of s 18 Submitted
retrieve (s.Author, s.Journal, NumFac = count (f.Name when f overlap s})

Ezample 4: How many faculty members were there each time a paper was
submitted to a journal?

The result is:
Author Journal NumFae gl
Merrie CACM 3 9-78
Merrie  TODS 3 | 579
Jane CACM 3 11-79
Tom JACM 3 12-82

The count is computed for every period of time such that £ overlaps s, and then, by default,
the valid times of the output are the overlap of the valid times of the count and the s tuple
variable, producing an event relation.

This query, modified from one given in |[Epstein 1979], shows an aggregate in the inner

where clause of another aggregate; a case of nested aggregation:

range of f is Faculty
retrieve (f.name, tiny = min(f.salary where f.salary != min(f.salary))
when begin o! f precede "1980"

Ezample 5: Who was making the second smallest salary, and how much
was it, during each period of time prior to 19807

The output is



name finy from fo
Tom 23000 § 9-75 12-76
Tom 23000 | 12-76 977
Merrie 25000 | 9-77 11-80
Merrie 25000 { 11-80 12-80 |

Aggregates can also appear outside the target list:

range of f1 is Faculty

range of f£2 is Faculty

retrieve (f2.Name, f2.Rank)
where f1l.Name = f2.Name and fl.Rank = f2.Rank
when earliestC(fl by fl.Rank) overlap f2

Ezemple 5: Who were the professors hired inte or promoted to a rank
while the first faculty member ever in that rank was still in that category?

Observe that the aggregates in the when, valid and as-of clauses have a tuple varizble, rather

than an attribute, as argument, First the earliestC in each rank is computed,

Rank .earh'estcﬂl[

Assistant <9-71, 12-76>
Associate < 12.76, 11-80>
Full <11-80, 00 >

Only one tuple qualifies, and the output is

Name Rank from fo
Tom Assistant | 875  12-80

The when clause can be used inside an aggregate:

zange of f is Faculty .
retrieve (amountct = countulUC(f.salary when end of e precede "1981"))

Ezample T: How many different szlary amounts has the department paid
ite members since its creation until 19817 '

Through the use of countUC, each salary amount is counted only once for each period of time,

The count is nondecreasing since & eumulative operator is specified. The result is



amountel | from to
1 9-71 9-75
2 975 1276
3 ‘1-77 9-77
4 877 11-80
5 11-80 o0

An instantaneous and a cumulative aggregate can occur simultaneously in a query:

range of f is Faculty
range of 5 is Submitted
retrieve (f.Name,
topmost = last(f.Rank by f.Name},
fpaper = firstC(s.Journal by s.Author))
valid from begin of f to end of '
where s.Author = f.Name

Ezample 8: For each faculty member, list his/her last rank and first jour-
nal they submitted a paper to.

The coriputation of last yields

Neme lost/Rank) ! from to
“Jane Full 11-80 o¢o
Tom Associate 12-80 oo
Merrie  Associate 12-82 oo

and the computation of firstC produces

Auther  firstefJournal) I from

Jane CACM 11-79
Merrie CACM 9-78
Tom JACM 12-82

Combining the two intermediate relations, we get the final output.

Name topmoat foaper b from {0
Jane Full CACM | 11-80 o
Merrie  Associate CACM | 12-82 oo
Tom Associate JACM |} 12-82 oo

Our last example applies varts to the event historical relation ezperiment, which has the

following tuples:
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ezperiment{yicld):

pield | ot
1.78 | 32
1.79 | 34
183 | 36
1.84 | 37
1.88 | 39
1.88 | 41
1.90 | 43
191 | 45

range of x s experimant
retrieve (VarSpacing = varts(x.yield))

Ezample 9: Given the above set of experimental data, how equally spaced.
are the observations in time?

Computation of the variability of time spacing, for any attribute, consists of {a) sorting tuples by

their af attribute and (b) considering every pair of éhronolpgica!ly consecutive tuples, S, and S, ;,

and finding the coefficient of variation of the length of time from event §; to event S, that is,

standard deviation of <S,(at] — S\{at], - - -, 8, 4|0t] — S,[at]>
average of <S,|at]| ~ $)[at], - - -, §,4]at] — 8 ]at]>

The intermediate caleulations, rounded to four decimal places, are displayed in this table:

al Time Cocfficient
elapsed of varialion

- 32

34 2

35 2 0.0000
a7 1 0.2828
39 2 0.2474
11 2 0.2222
43 2 0.2033
45 2 0.1884

snd the reénlz is the following rejation:



VarSpacing | from o '
0.0000 36 37
0.2828 37 39
0.2474 39 41
0.2222 41 43
0.2033 43 . 45
0.1884 45 )

VarSpacing in this case decreases with time. Since. VarSpacing = 0 means that all tuples are
equally time-spaced, the gradual _decreaée.in VarSpecing mezns that the observations, as time
passes, are approéching uniformity in their time spacing. The initial 0.0000 says that the first
three observations were perfectly time spaced. Because of the number of elements required to

compute a standard deviation, VarSpacing is not defined before time 36.

3.5. Defaults

The computation of an aggregate is really a query in itself, thus it is natural to use the
same defaults in the three inner clauses. For each attribute being aggregated, the defaults must
guarantee that all existing tuples in the correspohding relation participate in the aggregation.

Hernce,

where true
.-when {, overlap --- overlap!;
as of "now"

These defaults permits the reduction of TQuel aggregates to Quel aggregates to be proven (é.f.,

[Snodgrass 1986]), thereby allowing TQuei aggregates to be used in exactly the same way as Quel

iggregates.

3.8. Syntax Summary

In order to accommodate aggregates, the TQuel syntax [Snodgrass 1986] is slightly aug-
mented. TQuel is a superset of Quel, that is, all legal Quel statements with aggregates are ziso
legal TQuel statements with aggregates. The following are the additions made to the above men-

tioned TQuel syntax.




< expression>>» « e In addition lo the TQuel syniaz, include:
! <aggregate term>
<aggregate term> 1w <aggregate op> ( <arith expr)(by clause)(retmve tail> )
<by clause> ;) by <sttribute list>
< attribute list> T a.rlth expr>! <attribute list>>, <arith expr>
<aggregate op>  ium count| countC] countU} countUC

! sum| sumC| sumlU} sumUC
| avg) avgC| avgu| avglc
! stdev| stdevC! stdevU] stdevlUC
| any| anyc
! min} minC
! max| maxC
! first] firstC
| last! 1lastC
! <perclause> avgti ) per <time unit> avgti
| varts
<time Gnit> im= millisecond| second! minute! hour

| day] week| month| quarter) year

<mterval element> == Inn addition fo the TQuel syntaz, include:
}4 <aggt> ( <tuple variable> <by clause><retrieve tail> )
<aggt> iw @arliest| earliestC| latest] latestC



Chapter 4

TUPLE CALCULUS SEMANTICS OF TQUEL AGGREGATES

It is convenient to base the semantics of TQuel on the sta.tic. refat_ionai database moﬁel,
especiaily because of the available mathematical foundation supporting the latter[Codd 1972].
Thus the semantics of the augmented operations are expreésed using traditional tuple calculus |
notation.

We will review the transformation of the time-speciﬁc constructs of TQuel into the tuple
calculus, and briefly give the semantics of the TQuel retrieve statement, which is needed in order
to introduce the semantics of temporal aggregates. This review is a condensation from parts of

[Snodgrass 1986]. The semantics of the TQuel aggregates is then deveioﬁed.

4.1. Review of TQuel Semantics

As stated in the overview of TQuel in Chapter 3, TQuel augments Quel by adding a valid
clause to specify the validity time(s) of tuples, a when clause to specify the relative time ordering

of the participating tuples, and an as-of clause to specily rollback in time.

The semantics makes use of several auxiliary functions: temporal constructor lunctions
(beginof, endof, overlap, extend) that take one or two intervals and compute an interval and
temporal predicate functions (precede, overlap) that take two intervals and compute a boolean
value. All of them are ultimately defined in terms of the predicate Before and two functions first

and last.

The temporal predicate rin the when clause, conta.ining'the precede, overlap, and,
or, and not operations, is transformed into a standard tuple caleculus predicate I', containing
only the Before, A .V, end = operations. The valid clause is _t.ra.ns!'ormed into the functions
¢, and P, each evaluating to an event, and containing the functions first and last. The a.s-of;

through clause is in fact a special when clause stating that the transaction times of the
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underlying tuples must overlap the (constant} interval specified in the as-of-through clause. The

constants $, and P, represent the endpoints of this interval from the expressions a and f. Asa
consequence, the query

range of {; Is R;

rangeof |, s B,
retrieve (t,‘.D)l, vy .DJ')

valid from v to x
where ¢

when 7

as of a through §

is translated into the tuple calculus statement

{,,,m '@ @n)
~ (R A -+ A Rilty)
Asl =t il A - A ule]=t, 1]
A wlr+1] =&, A wlr42] =, A Before(wlr+1], ulr+2)
A 2lr43) = now A\ wir] =oo
AV
AT,

N (VO(ALKISk)(Before(®,, t; [stop]) )\ Before(t, [etart], ®4)))

)

In this statement, now represents the current transaction time. The superscript indicates
. that the tuple u has r explicit attributes and 4 implicit attributes; this clearly refers to an inter-
val relation. The semantics for ar event relation is similar, but with only 3 implicit attributes,

since the o time is not present.

EXAMPLE. Example 3,



range of f1 is Faculty
range of £2 is Faculty
retrieve (fi.Rank)

valid at begin of f1
where f1.Name = "Jane" and f2.Name = "Merrie" and £f2.Rank = "Associate"

when f1 overlap begin of f2

which results in an event relation, has the following tuple calculus semantics,

{w‘”" ! | (-a“,)ém
(Faculty(f1} )\ Faculty(f2)
A w(1] = f1[Rank]
A .w{.1+1_] =/1lfrom]
A wlt42] = now /\ wj14] =co
~ A f1Name] ="Jane" A\ f2|Name] ="Merrie” A f2|Rank] ="Associate”

/_\. Befdrg(fl.[from}, f2|from)) /\.Befare(.f2[fram[, f1lte])
)

4.2. New TQuel Aggregates
Let us specify the semantics of the new aggregates introduced in Section 3.3. Let B be an
event relation of degree r (recall that the degree only concerns the explicit attributes) with n

tuples, n >2. These aggregates zll compute a single static tuple of degree r.

DEFINITION.

§ A chronorder(R) <=> (Vi1 < i <ISH @) (RO N t =S5,)
/\ Before (.5',_.116‘], S,ldf])
N\ Silet] % 5[at])

where | 5| is the length of the sequence 5. Each element of § is a full tuple from R, and the ele-
ments of § are ordered by the af times of K. If several tuples in R show identical at times, only
one of them is taken into S, Hence, the length of § is less than or equal to n.

1 It S, [1]—5,[1]
51T 2 Folal| =5.1af] }

tam]

DEFINITION. avpti(R) A [ [;
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i Isl Slﬂ['] =S, [r]
[sl-1 = 8,.at) =S, [at] |

where S = chronorder(R) and ISl >1. Each attribute of the result tuple equals the average
~ increment (positive or negative) in the values of the corresponding attribute in R, per unit of
time (the default is the timestamp granularity, defined in Chapter 3). An optional per clause can
be used to specify the time unit desired; this causes multiplication of the result by a fixed conver-
sion factor. For example, if timestamp granularity was a millisecond and the user specified “per
menth' then the computed result is multiplied by the conversion factor of milliseconds to
months (2.592X10°) before being output.

' 2d(D(R)) #d(D(R))
DEFINITION. varts(R) 4 [mecn(D(R))’ “+ mean(D(R))

where D(R) & <d,, + - -, djs|,> such that § = chronorder{R), [s] >1,

ENTI B <lS|-1 /\ d = S,ul0t] =~ S;[at]), and mean(X) and #d(X) respectively denote the
arithmetic mean and the arithmetic standard deviation of the real numbers in the set X. Each
attribute of the result tuple equals the variability of the spacing between the at times among the
tuples in R. This is in fact the coefficient of variation of the set D(R). The value is the same for

all r attributes.

Observe that mean(D(R)) is never zero since S,[af| and S,.,,]#t] are distinct. Not neces-
sarily all tuples from R will make their way into §; § was so defined in order to ensure that
avgli or veris will not attempt a division by zero. Should the user need to specify which of the

. tuples from R has to be chosen for the chronological order, one of the other a.ggregatr;s can be
u.sed to create 2 temporary relation T’ that contains the relevant tuples, and then avgti or

~ varts may be applied to T.

Let R be an interval relation of degree r, a.nd ¢ be a tuple variable associated with R.
DEFINITION,

wieo®) 2 N/ L T -4 enp
R,eR(t) B° teR(t)
VL er-40s
tER(Y) R” teR(t)

Each component of the result tuple equals the standard deviation of afl values in the correspond-
ing component of the tuples of R.

DEFINITION. firstagg(R) & (t4rutl1), oos tiralr])
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where tﬁ,s,'represents the tuple such that

rs!)
/\ (Vt)( (¢) =>> Before (Lg,air+1], t]r41]))
A (V) ((R(E) N\ Lpras[r+1] = t]r+1}) =2 Before ({50 ]r 42], f[r+";

The result tuple equals that tuple whose valid times are the earliest valid times in R. More

specifically, the second line of this predicate says that f5,, began before all other tuples in R, and

~ the third line means that if another tuple from 'R had the same from time as {g,, then {5,
ended before that tuple. .

DEFINITION. lasiagg(R) 2 (Liaell], --er bragt|r])
where {,, represents the tuple such that

R(tfnsf)
© A (V) (R(2) => Before (t[r 2], tioqu[r+2]))
N (V) C(RUEY A b [r+2) = t]r 42]) =2>Before (t[r+1], fau|r+1]) )

The result tuple equals that tuple whose valid times are the latest valid times in R, More
specifically, the second line of this predicate says that #;,; ended after all other tuples in R, and
the third line means that if another tuple from R had the same fo time as {,,,, then #,,; began
after that tuple.

Notice that, like the other aggregate operators, firsfagy and laatagg. both yield a single
tuple with r explicit attributes. The implicit time attributes will be given later in the complete

tuple caleulys statements. -

Let R be an interval relation, R[from| be the value of the from implicit temporal attribute

of R, and R|to] be the value of the to temporal attribute of R.

DEFINITION. carliest(R) & < firstagg(R)|from), firstagg(R }to]>
The result is the interval represented by the valid times of the earliest tuple in the relation.
DEFINITION. latest(R) & <lastagg(R)|from), lastagg{R)[te]>

The result is the interval represented by the valid times of the latest tuple in the relation.

4.3, The Constant Predlcnﬁ:

A.é we have seeﬁ, aggregates change their values over time. This will be reflected as
different values of an iggregat.e being associa.te& with different valid times, even in queries that
‘may look similar to Quel queries with scalar aggregates, in which no inner when or as-of-through
clauses exist (recall the default ¢lauses from Chapter 3). In TQuel, the role of the e.xterual or

outer where, when and a# of clauses will be similar to that of the outer where in Quel: they
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determine which tuples from the underlying relations participate in the remainder of the quéry,
These selected tuples ere combined with the tuples computed from the aggregation sets to obtain

the final output relation. -

‘Aggregates always generate temporary interval relations, even though ar aggregated attri-

bute ¢an appear in an event relation. The interval relation has exactly one value at any point in

time {for an aggregate function, the interval relation has at most one value at any point in time

for each value in the by list). It is convenient to determine the points at which the value changes.

Let us first define the fime-partition of a set of relations as

T(Ry, .o Ri) & {e ¢ @NEHASTISEAREN (e =tlfrom] \/ e = ¢[ta])) }

TEe time partition brings together all the events ¢ of the relations By, ..., B, , that is, all
tuple beginnings and endings (if the tuple is from ar event relation, only one event is contri-
buted). If two events ¢ and 4 are neighbors, i.e. no other event occurred between them, the time
interval from ¢ to d did not witness any change in the set of relations, or in other words, ail the

relations remained “constant”. Define then the Constant predicate as

Constont(R,, ..., Ry, ¢, d) smi>e € T(R,, ..., B})
A deT(Ry ... R
Newd
I\ Before (e, d)

N\ (WeXe € T(R,, ..., R) => Before(e, ¢) \/ Before(d, ¢))

In this predicate, the last line means that there is no event in the time between ¢ and 4.
The constant predicate will allow us to treat each constant time interval <e¢, d> separately,
thus reducing the inner query to a number of queries, each dealing with a constant time interval.
In of.her words,. we will be able to follow the same steps 3s in t.h’e static Quel case. For each time
interval <e, 4> given by the constant predicate s value of the aggregate, valid froﬁ ¢ tod,
will be computed and will potentially go into the result. This value is guaranteed to be unique by

the definition of Censtont.



EXAMPLE. For the Faculty relation, only for the following values of ¢ 2and d is i;he

Constant(Facully, ¢, ) predicate true:

c d
9-71 9-75
9.75 12.76

1276 9-77
9-77 11-80
11-80 12-80

"12-80  12-82

12-82° now

Note that these consecutive intervals are exactly the ones indicated in Figure 1. §

4.4. Instantaneous Aggregates

For a muiti—relationa.!. query with one instantaneous aggregate we will take the approach
used in fhe Quel semantics: tuples from the aggregate pperation will be computed first via parti-
tioning functions. Again, let F be any of the aggregate operators deﬁngd sc.; far. Consider the
TQuel query with one aggregate function,

.ra.nge of{; s R, |
rangeof f; s R, .
retrieve (t,l.DJ-l, s LD, y=f (t,,‘.a'D,,‘1 by Dy .o by Dy

where ¢,

when 7,
as of o, through 5, })

valid from v to x
where ¥

when 7

as of a through 3

in which

IS"IS*:---sIS‘rSk

1<, <k, ., 1<, <k

1<, < deg(R,), .., 1 £ J, < deg(R,}
1< m < deg(Ry), ... 1 S m, S deg(R, )

As with Quel, the where predicate should refer only to the tuple variable 4 or the tuple vari-

ables appearing in the by clause. The same restriction holds for the when and as-of clauses
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appearing in the aggregate. ' ‘
Here, the partitioning functions will be based upon the four clauses that modify the aggre-

gate (the by, where, when and as-of clauses). Hence, using the same notation as in Chapter 2,

P (83, .., 8y, c,d) 8 {5 ®Y} @e) --- (34)
Bt )N -~ AR (1)
Nbé=t

Atdmd=az A << At im] e,

IARZY

AT,

N (WB)ASA<r) Before (4, [start], ®5) [\ Before (¥, , ¢, [stop])
N\ Before(t, {frem], ¢) ]\ Before(d, ¢, [to])

N\ (VAY1ESA<n) Before (4, [from], ¢) ]\ Before(d, 4, [to])

J
where ¢ and d are valid times, with ¢ <d and p = deg(ﬁ';’).

This definition assumes that the tuple varjiables by o b are distinet. If they are not, then

the duplicate_ tuple vafiabies should be removed from the first three lines. Line 7 translates the
as-of-through clause., specifying that the transaction times of all tuples of the inner query, includ-
ing those in the inner where and when clauses, must overlap the rollback time specified in the
as-of-through clause. This is similar to the as-of line in the outer query in TQue!, Lines 8 and 9

indicate that the tuple £, associated with the aggregated attribute, and all tuples participating

in the by-list must overlap the interval <z, d> (incidently, from the definition of the Constant
predicate, which will supply the intervals <z, d>» it is not difficult to see that the overlapping is
total.) This way, aggregates will always be computed from the tuples that were valid during that

interval.

The output refation from a query with an instantaneous aggregate is



| {w«rw L (@) -+ @4) 3e) @)
R A - A Rilte)
N Constent(R,, ... R, ¢, d)
Awltl =t il A - A wlr] =17
A wlr 1] = £ (P (b Jma, o b, ], <, &)
Pwlr42] = last (8,0 <) J\ wlr45] = frei(8,, &) 7\ Before(wlr 2], wir+9)
A wlr44) =now A\ w[r45] =0
"
AT,

- | N (VO(ZILSE) (Before(®,, t[stop]) /\ Before(t;|start], €;))

l

A comharison with the tuple calculus expression given in Section 4.1 reveals that lines three
and five are new and lines .on_e and six are altered. The Constant predicate involves the relations
appearing in the aggregate; the relation whose attribute is befng aggregated plus all the different
relations in the by-list; other relations car;not affect the aggregate. Again, these relations are
. assumed to be distinct for notational convenience, It ensures that the value of the aggregate,
computed in line five, is constant during the interval <¢, d>{recall that ¢ and 4 are events del-
imiting one of the intervals oceurring in a relation appearing as a parameter to the Consfant
predicate.) Line six states that the tuple u is valid during the overlap of <¢, 4> and the valid
interval specified in the valid-from-to clause. Those portions of the valid interval not accounted
for will appear ir another tuple, using a different ¢ and 4 and probably a different value for the

aggregate,

EXAMPLE. Let us translate Example 6 operat.ihg on an historical database into tuple calculus.



P(oy ¢, d) 48 {b‘*’ yan
(Facilty(f)
Ab=t
N\ J{Rank| = s,
N Before(ffrom), ¢) \ Before(d, f{to])
)

P(Assistant, 9-71, 9-75) = {{Jane, Assistant, 25000, 9-71, 12-76)}

P{Assistant, 6-75, 12.76) ={(Jane, Assistant, 25000, 9-71, 12-76),
(Tom, Assistant, 23000, 9-75, 12-80)}

The output relation is

{w""*’ MENED EL)
(Fd-cultv(f )
A Conatcnt(Faculty,. ¢, d)
A wl] =7[Rank|
A wlz] = count(B(/ [ém], ¢, d)|Name]
N\ wi3] =last(f[from], ¢} N\ w]4] = first(f [t0), )

}

Note it is not necessary to explicitly write Before(w(3], wi4]) here, as it was the case when no

aggregate was present. i

For an sggregate with no by-list, only the where, when and as-of clauses may be present,

and the partitioning function P becomes again s subset of R’x :
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Pea={) @ - @
Ry - N\ Ru(t)
At=t, |
A
AT,

N (VB)IZh<r) (Before (i, [start], &5} [\ Before (9, t,; [atop]))

~

/\ Before(t,l[fram[, ¢) /\ Before(d, t,llto[)

)

The tuple calculus statement for the query remains the same as above, except that P (¢, d) is

used inplace of P (t,zlmz]. o 4 [m,], ¢, d) and only Ry, e, and d are needed as arguments to
the Consfant predicate.

Once again, in the case of a multi-aggregate query, say fi, ..., f4, @ separate partitioning
function P of either the by-list or the non-by list form has to be defined for each aggregate. The
Constant predicate should mention the relations associated with all the tuple variables appearing

in any aggregate in the query. -

4.5. Cumulsatlve Aggregates

In TQuel, cumulative aggregates can be defined for both event and interval relations, A
cumulative aggregate operator applied on an event or an interva) relation computes a function f
on all tuples that have been valid prior to now.

The instantaneous aggregates have their cumulative peers. They perform the same opera-
‘tions, but in an additive fashion as far as tuple validity is concerned, that is, assuming at all
times that the tuples created so far are still valid. It is possible to compute them' by taking

advantage of the already defined instantaneous aggregates. To do this, any event relation B may
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be converted into an interval relation by defining all tuples in the interval relation to begin at R's
event times and to end in the infinite. Then aggregates can be computed as in the instantaneous

case over this interval relation snduced by B, 85 shown below:

Figure 4: Converting an Event Relation into an Interval Relation

Events of /
original :

relation \

. - -

. : : —a-

¥
t
\

If R is an event relation of degree r, then its induced stretch is given by the interval rela-
tion,
DEFINITION,
I'(R) -{:{'ﬂ; 3t
(R(t")
At =t A o P\ tr) =]
N tr4) ;l’|r+l] N tlr42] =00

N tr 3 =t'|r2] A\ tir+4] =t'[r43] ) }

" A tuple is added to I*(R) at the time a new tuple enters R, apd no tuple is added to or deleted

" from I°(R) at other times. Thus a cumulative aggregate will change its value at the time a new

tuple is added to the relation, and will remain constant at all other times.

Now consider an interval relation. Cumulative aggregates depend on the beginning points of
tuples. That is, they change their value whenever a pew tuﬁle begins, and their valye is

unaffected when a tuple ends. This suggests how to define an induced streteh for interval rela-
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tions. Tuples in it will have valid times beginning at R’s beginning times and ending in the

infinite. If R is an interval relation of degree r, then its induced stretch is given by the interval

rglation
DEFINITION.

rms iy @
®eH |
Attt A < A ] =e]
A Hr41) = e 41] 7 tlr42] moo
A tl45] 5] 7\ Hr ] = ) b

EXAMPLE. The induced stretch of Facultyis

Name =~ Rank Salary | from

Jane Assistant 25000 | 9-71
Jane Associate 33000 | 12-76
Jane Full 44000 | 11-80
Merrie  Assistant 25000 | 9-77
Merrie  Associate 40000 | 12-82
Tom Assistant 23000 | 9-75

888888|s

With these defi niﬁons, the same time partition and constant predica.té as for event relations
can be employed.

Let [ represent the cumulative version of any of the aggregate operators defined thus far,
namely, anyC, countC, sumC, avgC, stdevC, maxC, minC, firstC, or lastC. The gep-
eral query will be exactly the same as for interval relations. To obtain the aggregation sets, the
appropriate [ should be computed from R,l znd then used instead of R‘z in each of them. An
example will be given sht;rtly.

The output from 8 cumulative aggregate is also an interval relation, because computed

aggregate values are valid during intervals of time.
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It is interesting to note that first may change over time, because the set of tuples
comprising an interval relation may change over time. f£irstC, on the other hand, stays the
same. Another, perhaps obvious, fact is that the same tuple results from apﬂying either last or

1astC on an interval relation.

The semantics of avgtl and varts is the same as that of the other cumulative aggre-

gates. Partitioning functions and the Conetani{ predicate are used with or without the R, A R;‘
list depending on whether or not the query contains a by-list.

EXAMPLE. This is the tuple calculus version of Example @ from Chapter 3.

Ple,d) 8 {l(l) ! (3z){(z € I'(ezperiment)

ANt=z
N\ Before(z|from), ¢) ]\ Before(d, zto])

}

{wﬂ*’: ERERDELED!
{ezperiment(z) /\ t € I*(ezperiment)
N\ Constant(I*(ezperiment), ¢, d)
A\ ©l1] = varts(P(c, d))|picid]
N\ w(2] =last{t|from}, ¢} \ w[3] = firat(d, t]to])

)

Note the tuple variable z appears only within the aggregate. Thus Jz and ezperiment(z) ean be

cmitted from the tuple calculus statement in this case, The last line provides the default valid

clause. J

44

T L L R L L e LT RS AP P,



4.8. Mixing Different Aggregates in a Query

A TQuel query may call for several aggregates, some of them inst.a.nta._aeous and some oth-
ers cumulative. Of course, each of the aggregates is c&mputed from its own partitioning func-
tions. When each of thé partitioning functions refers to a dilf_eru_xt set of relations, the Constant
predicate ta_k?s as argﬁzﬁents the relations in all partitioning functions. A simple'r ﬁrocedure,
however, is to take a._ll the relations: in _I:he query.

Valid times for each output tuple are computed by following the same approach as before:
each output tuple is valid during an interval when tuples from all the non-aggregate attributes

are in the <®,,®,> interval, and this interval overlaps the valid times of the calculated aggre-

gates.

4.7. Aggregates in the Outer Where Clause

TQuel aggregates, or arithmetic expressions containing TQuel aggregates, may be part of

the main where or when ¢lause. .

EXAMPLE. Example 6 illustrates this point. Let | be the induced stretch of Faeully,

P(ay ¢, d) & {i.“) V (31)(f € I'(Faculty)
| Ni=i
N\ [|Ronk| =q,

N\ Before(f{from], ¢} ]\ Before(d, fito])

}

Actually, since flto] m oo for all f € I'(Faculty), the last Before is not necessary.
P(Assistant, 9-71, 9-75) = {{Jane, Assistant, 25000, 9-71, 12-76)}

The relation resuiting from the query is
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{w‘“": ETN T EBED)
(Faculty(f) ]\ Faculty(f2)
/\ Constant(I'(Facuity), ¢, d)
A wt] = f2[Nome] \ w[z] = f2{Renk]
A (3] =last(F1]from], last(f 2lfrom], £)) A\ w|4] = first(F1{to], firat(f2]to], d))
N f|Name] % [2[Name] A f1|Rank] = f2(Rank]
A Befm(e'uzie.:(m 1[Rank], ¢, d))jfrom], fg[:a]j

/\ Before(f 2lfrom|, earliest(P(f 1[Rank]|, ¢, d))}to])
)}

The fifth line originates from the default valid clause, which in this case is

valid from begin of (f1 overlap f£2) to end of (f1 overlap f2)

Note that the instantaneous earlicet is used. The fact that the cumulative version of the aggre-
gate was specified in the TQuel query is reflected in the use of I'(Faculty) in the definition of
P(c, d) and its presence in the constant predicate, [ |

Through the partitioning functions, the values of the aggregated attribute are frst com-
puted, then used in place of the aggregate in the predicate of the query. Since the variables in

by-lists are ‘‘global”, its by clause is linked to the rest of the query, as in Quel.

4.8. Nested Aggregation

In nested aggregation, the local where clause of an aggregate f, invokes another rtggrega.t.e
Ja I f2 has & by-list, links are established between the tuple variables in the by-list of f, and
the tuple variables in the f, query.
EXAMPLE. Example 5 contains 1 nested aggregate. Let us show the partitioping functions P,

and P, for the outer and the inner aggregates respectively:
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Pyfc, d) = {f“’ i B1) (Faeutty(f)
Nt=r
/\ Before(fifrom), ¢) ]\ Before(d, f|to])

)

Pyc, d)= {t“’ | @) (Feculty(s)
At =f1f A - Atld] =14
N\ 1 [satary) # min{Py(c, d))]salary]
A\ Before(f|from], ¢) ]\ Before(d, f[to])

J

The tuple calculus statement for the retrieve statement will contain Py(c, d) but not Py(e, d);

that is, only one level of nesting occurs at any one time in a tuple calculus statement. [

4.9. Unique Aggregsation

Unique aggregation is also possible in TQuel. There are four instantaneous unique aggre-
gates: countl, sumlU, avgl, and stdevl, and four cumulative veréions of the same: coun-
tUC, sumlUC, avgUC, and stdevUC. It is not necessary to define unique versions for any,
max, min, first, -last, avgtl and varts, or their cumulative counterparts, because the

same results can be obtained with the non-unique aggregates.

Let p and g be as usual, When the inner query has a by-list, the modified partitioning func-

tion is defined in terms of the ordinary P as
U(ag, vy 8y, ¢, d) = {wm | (3b)b € P(sg, ..., 8, ¢, d) /\ w[l] =d{m,]) }

With no by-list, the modified partitioning function U{e, d) is similarly defined from

P(e,.d).
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The simple substitution of U for P in the final tuple calculus statement, together with the
use of the nop-unique versions of the sggregates, yields the tuple calculus semantigs of uniqug
aggregates.

EXAMPLE. To obtain the tuple calculus expression for the aggregation' set in Example 7, the

induced stretch 7 is obtained from Facully, P is defined from I, and then

Ule, d) -{W““’ i (38)(b € Ble, d) N\ w1] =b[salary]} } i

4.10. Aggregates In the Other Outer Clauses

Four aggregates may be used in the when, as-of, and valid clauses: earllast, latest,
earliestc, and latestec. Just like in the case of aggregates in the where clause, an aggre-
gate that is used in the when clause can be modified with inner by, where, when and as-of

clauses.

With these restrictions, the semantics of the aggregated temporal constructors is the same
as that of the other aggregates. For the linking of tuple variables, the same notes as in the outer
and inner where ¢lause apply. Being based on'ﬁrat and last (c.f., Section 4.1), there is no need to

define unique versions of the aggregated temporal constructors.’

As in the case of first, for the earllest aggregate, note that, as the composition of an
interval relation is time-dependent, earliest of an interval relation may also change over time.
Moreover, as in the case of last and lastC, the latest and latestC aggregates always

produce the same result from an interval relation,
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‘Chapter 5

CONCLUSION

We first defined the tuple caléulug semantics of Quel agg::egat.es. This deﬁnitién, eoupled
with that of the core {anguag'e [Snodgra.%s 1986], prqvidés a conipi_ete formal semantics of Quel.
To the timé-oriented aggregates corresponding to the énes already .ava.II.ab'le in Quel, we defined
new operators that permit summarizatior over the time dimension. We then constructed a for-

mal semantics for aggregates in the retrieve statement of the TQuel language.

We started by introducing the Constant isredicat.e and the partitioning function. Within
intervals computed by Censfani, a relation remains static, Iand aggregates can be computed in
the way shown in Chapter 2. This enabled us to forma.ﬂj define the serﬁantic; for instantaneous
aggregates. Later, the introductién of the induced stretch, which transforms any relation into an
interval relation ending in the iﬁﬁnite, permitted us to conveh.ientiy .specify the semantics of
cumulative aggregates as a special case of instantaneous aggregates. The issues of freely mixing
different aggregates, as well as the semantics of aggregates in the outer where and in the inner
where clauses (nested aggregation), were discussed and resolved. When appropriate, unique ver-
sions of the aggregates are also provided. For the when, as-of, and valid clauses, the aggregated
temporal constructors earliest and latest, with the con"esponding cumulative versions, are
available,

It is easy to extend the semantics to specify the TQuel modification statements (append,
delete, and replace) to include aggregates, using the strategy discussed in Chapter 4. It is
also straightforward to extend the aggregates to include arbitrary expressions, using the tech-
nique discussed in Section 2.7.

The result is a complete formal semantics for TQuel and its static subset Quel. A complete

formal semantics for no other relaticnal query language, temporal or otherwise, has been defined,

The specifications of several other languages come close: the semantics of SQL [Ceri & Gottlob
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1985] includes almost all of the SELECT statement, including aggregates, but no modification
statements; HTQuel [Gadia & Vaishnav 1985] and Tansel’s slgebraic language [Clifford & Tansel

1985] do not include modification statements nor aggregate operators.

The next step is to develop'an operational semantics in terms of a temporal relational alge-
bra (c.f., [McKenzie 198_6]). Here the challenge is the language core, rather than the aggregate
functions, which can be added quite easily. Implementation techriques, such as those developed

for Quel [Epstein 1979], need to be developed for temporal aggregétes.

Throughout this ﬁork we have seen that TQuel aggregates can be specified in a natural
way, consistent with the core of the query language, and with minimal additions to both the
language definition and to its semantics. The semantics of the TQuel aggregates let the DBMS
handle the implicit time attributes, consistent with the rest of TQuel. The presence of the time

dimension, while adding some complexity to the specification and handling of aggregates, pro-

vides the user a rich set of functions capable of extracting information from the database at each

point of time or across time.
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