
Specification and Generation of
Constraint Satisfaction Systems

TR87-006

1987

'William Leier

~ '
r

'

The University of North Carolina at Chapel Hill
I, I ' I

1 '] Department of Computer Science ' ' ...
CB# 3175, Sitterson Hall . .
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Insti tution.

Specification and Generation of
Constraint Satisfaction Systems

Wm Leier

A dissertation submitted to the faculty of The University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill February i 5, i 987

Adviser/

tL J~"vl~ ~
Reader

/J~t:le~
~ead€i

© 1987 Wm Leier
All Rights Reserved

Do not reproduce in any form without permission.

The software described in this document is available for a nominal charge.
Inquiries should be directed to the author at the following address:
13800 NW Mill Creek Drive, Portland, Oregon 97229

This document was formatted using Trott and PostScript,
and printed on a laser printer using the following fonts:

New Century Schoolbook
Helvetica
Courier

Symbol

Abstract

WILLIAM JAY LELER

Specification and Generation of Constraint Satisfaction Systems

(Under the direction of Bharat Jayaraman.)

Constraint languages are declarative languages that have been used in various

applications such as simulation, modeling, and graphics. Unfortunately, despite

their benefits, existing constraint languages tend to be application-specific, have

limited extensibility, and are difficult to implement. This dissertation presents a

general-purpose computer language that makes it much easier to describe and

implement constraint satisfaction systems. This language, called Bertrand, sup

ports a rule-based programming methodology and also includes a form of abstract

datatype. It is implemented using a new inference mechanism called augmented

term rewriting, which is an extension of standard term rewriting.

Using rules, a Bertrand programmer can describe new constraint satisfaction

mechanisms, including equation solvers. Rules can also be used to define new

types of objects and new constraints on these objects. Augmented term rewriting

uses these rules to find a model that satisfies a set of user-specified constraints.

The simple semantics of augmented term rewriting makes it possible to take

advantage of several known techniques for optimizing execution speed, such as

fast pattern matching, compilation, constant propagation, and concurrency. Con

sequently, Bertrand programs can be executed efficiently using an interpreter or

compiled to run on a conventional or parallel processor.

This dissertation surve;ys existing constraint satisfaction techniques and

languages, and shows how they can be implemented in Bertrand. It also gives a

precise operational semantics for augmented term rewriting. Techniques for

efficient execution, including interpretation and compilation, are presented.

Finally, examples are given using Bertrand to solve problems in algebra such as

word problems and computer aided engineering, and problems in graphics, such

as computer aided design, illustration, and mapping.

Abstract 3

Contents

Dedication 6

Chapter! Introduction 8

Imperative Versus Constraint Programming .. 8

Scope of the Research .. 12

Problem Solving Versus Constraint Programming 14

Limitations of Existing Constraint Languages ... 15

Proposed Solution .. 18

Chapter2 Constraint Satisfaction 21

Constraint Satisfaction Techniques ... 21

Higher Order Constraints ... 36

Constraints Involving Time .. 37

Default Values .. 39

Summary .. 40

Chapter3 Augmented Term Rewriting 42

Term Rewriting .. 42

Augmented Term Rewriting ... 48

Bertrand 64

Chapter4 Operational Semantics 71

Syntax ... 71

Semantics 73

Adding Types, Tags, and Guards .. 80

Differences 80

Discussion 81

ChapterS Existing Constraint Languages 87

Constraint Languages That Use Numeric Techniques 88

Constraint Languages That Use Symbolic Techniques 99

Similar Systems ... 103

Contents 4

ChapterS

Chapter7

ChapterS

Chapter9

Equation Solving

Solving Linear Equations

104

104

Interesting Answers .. oo.ooooOOooooOOOOOooOOOOooooo·•oo•oo••oo··oo•oooooooo•oo••ooooooooooo•···oo•••ooOOoo 106

Booleans ooooooooooo•oo••ooooooooooooooooooooo••·oo·•·oooooo•oo•• 00 0000 •oo••oooooo•oo OOooOOOOoooOOoooooo•oo •• oooooo 107

Reasoning With Equations •ooooooooo •• oo•oo••oo•····oooooooooooo•••oooo•oooooooooo, 108

NonlinearTransformations oo oo oo oo .. oo 110

Word Problems ... 110

Electrical Circuits .. 112

Graphics Applications 116

Input and Output ... 116

Graphics ... 117

Streams ... 127

Execution

Interpreting

129

129

Preprocessing Rules ... 135

Compilation .. 137

Execution on Parallel Processors .. 146

Limitations of the Equation Solver ... 151

Conclusions 153

Summary and Contributions .. 153

Benefits ... 154

Future Work ... 157

Appendix A Libraries and Examples 161

BEEP .. 161

BAG ... 167

Appendix B An Interpreter 173

Bibliography and References 184

Index 189

Contents 5

Dedication

Some ideas feel good to us. This concept is common enough, although it appeals more

to our emotions than our intellect. For example, on the first day of class, the professor of an

introductory psychology class I took declared [Nydegger 73]:

"It will be my task during this semester to convince you that Behaviorism is not

only correct, but that it is right and good."

Another example appears in the Ideal user's manual [VanWyk 81]:

"To take advantage ofldeal's capabilities, you must believe that complex numbers

are good."

Ideal uses complex numbers to represent two dimensional graphical points, the advantage

being that since all objects in Ideal are complex numbers, the same operators and functions

can be used on all objects, whether they represent numbers or points.

Why do some ideas feel good? Perhaps there is a measure of beauty for ideas and some

are simply more appealing than others. One may worry, however, that a discussion of

aesthetic issues is not compatible with the practice of computer science, and that such argu

ments belong with other questions of taste such as those about the right way to indent nested

loops or the proper choice of variable names. Indeed, one sometimes hears computer scien

tists making exhortations resembling those of the psychology professor quoted above. A

fairly well-known example of this is the so-called war between the "big-endians" and the

"little-endians", concerning whether the bits of a machine word should be numbered starting

from the most or the least significant bit.

Should we reject aesthetic considerations as contrary to scientific method? Experience

has shown otherwise. Proper attention to the goals of aesthetics leads to measurably better

designs. As Fred Brooks says, "Good esthetics yield good economics." [Blaauw & Brooks 86,

p. 86].

The pursuit of good design principles transcends aesthetics. In order to avoid meaning

less arguments about taste we must give some basis for our aesthetic judgments. Toward

this end, Blaauw and Brooks outline four principles of good design: consistency, orthogonal

ity,propriety, and generality. They apply their principles to computer architecture, but sitni

lar principles apply to other areas. In designing computer languages, two key principles are

simplicity and generality. For example, we can say that the use of complex numbers in Ideal

Dedication 6

is good because it is simpler than having two separate data types, and because it is more gen

eral to allow operators to work on both numbers and points. To paraphrase something a

member of my thesis committee [Snodgrass] once told me, if you find a simple solution to one

problem, and then find that the same solution simultaneously solves several other problems,

then you're probably onto something exciting.

Working with constraint satisfaction systems has been, and continues to be, very excit

ing. The excitement has certainly helped me to work harder, and I hope it has not led me

into too many exhortations. But it is not enough for something to be aesthetically pleasing,

even if you justify that opinion with arguments about simplicity or generality. It is my hope

that augmented term rewriting will be important, not because it might be a simple and gen

eral way to implement constraint languages, but because it helps people to better use the

computer as a tool.

For the chance to work on such a challenging idea, I thank the people at the University

of North Carolina. I especially thank my advisor Bharat Jayaraman, who was never satisfied

with just "good enough", and whose extra effort made it possible to bridge several thousand

miles of physical distance. I would also like to thank Fred Brooks for his early encourage

ment and support; my readers, David Plaisted and Dean Brock; and Rick Snodgrass, who

was a reader in fact, if not in title. For the possibility that this idea might make some differ

ence, I am truly grateful to the wonderful people at the Tektronix Computer Research

Laboratory, especially Rick LeFaivre.

Alas, no list of acknowledgements is ever complete - I need to thank the several dozen·

people and places who somehow found out about this work and either requested copies of the

thesis or invited me to give talks. I especially want to thank two people whose careful read

ing and comments on this dissertation were invaluable during its preparation: David Maier

and Mike O'Donnell, and all the people who supplied encouragement, especially Scott Dan

forth, Marta Kallstrom, Larry Morandi and Philip Todd.

Finally, I must step back from this work and admit that it is not really important at all.

There are special people out there who have dedicated their lives to ideas that not only might

make a difference, but must. I dedicate this dissertation to Robin and John Jeavons, whose

work on Intensive Farming techniques has already made a difference to a hungry world, and

to other people like them who have the courage to work long and hard for the important

ideas they believe in.

Dedication 7

Chapter 1 Introduction

1.1 Imperative Versus Constraint Programming

In current imperative computer languages such as FORTRAN or Pascal, a program is a

step-by-step procedure to solve a specific problem. Using these languages, most of the effort

in using a computer to solve a problem is spent manually constructing and debugging a

specific executable algorithm. This style of problem solving has become so pervasive that it is

common to confuse algorithm desigu with problem solving.

In order to use an algorithmic program to solve different, but related, problems, the pro

grammer must anticipate the different problems to be solved and include explicit decision

points in the algorithm. For example, in an imperative language one might use the state

ment:

C ~ (F-32) X5/9

to compute the Celsius (c) equivalent of a Fahrenheit (F) temperature. In order to convert

Fahrenheit temperatures to Celsius, however, a separate statement would have to be

included in the program, namely:

F ~ 32 + 9/5 XC

along with a branch (if) statement to chose which one to execute. To be able to convert tem

peratures to and from degrees Kelvin, even more statements (with the associated branch

points) would have to be added:

K C - 273

C K + 273

K 290.78 + 5/9XF

F 523.4 + 9/5XK

As we add new variables to the above program, the number of statements grows exponen

tially. The resulting effort required to program using imperative languages tends to

discourage programming and thus restricts most users to canned application programs.

In constraint languages, programming is a declarative task. The programmer states a

set of relationships between a set of objects, and it is the job of the constraint satisfaction sys

tem to find a solution that satisfies these relationshlps. Since the specific steps used to

satisfy the constraints are largely up to the discretion of the constraint satisfaction system, a

programmer can solve problems with less regard for the algorithms used than in an impera

tive language. For the growing number of computer users untrained in traditional

1. Introduction 8

imperative programming, this can be a significant advantage. For example, constraint-like

spread-sheet languages such as VisiCalc have allowed many different financial modeling

problems to be solved without resorting to programming in the traditional sense.

In a constraint language, the statement:

C = (F-32) XS/9

is a program that defines a relationship between degrees Fahrenheit (F) and degrees Celsius

(C). Given either F or c the other can be computed, so the same program can be used to solve

at least two different problems, without any explicit decision points. With a typical con

straint satisfaction system we could also solve for the temperature where the value in

degrees Fahrenheit and Celsius are the same (-40 degrees), and so on. The ability to solve

many different problems with the same program, even if they were not anticipated when the

program was written, is a key advantage of constraint languages.

Constraint programs are also easy to modify and extend- to add the ability to convert

between degrees Kelvin (K) and Celsius only a single additional constraint is required:

K = C - 273

In addition, a constraint satisfaction system will combine these two relationships in order to

convert between degrees Kelvin and Fahrenheit, for example, without requiring any addi

tional statements.

A constraint language program consists of a set of relations between a set of objects. In

the constraint language program above, F and c are the objects, which we are assuming to be

numbers, and the constraint c = (F- 32) x 5/9 is the relationship between these two

objects. Given a value for either F or C the constraint satisfaction system can use the

problem-solving rules of algebra to solve for the other.

1.1.1 Assignment Versus Equality

The difference between imperative languages and constraint languages is highlighted

by their treatment of equality. Algorithmic languages typically require (at least) two dif

ferent equality operators: one for use in the mathematical sense as a relational operator, and

the other for assignment. For example, in FORTRAN the relational operator . EQ. returns

true or false depending on whether its two arguments are equal, and = is used to assign a

value to a variable.

In a constraint language, equality is used only as a relational operator, equivalent to

the corresponding operator in conventional languages. An assignment operator is unneces

sary in a. constraint language; the constraint satisfaction mechanism "assigns" values to vari

ables by finding values for the variables that make the equality relationships true.

1. Introduction 9

For example, in the constraint language statement

X= 5

the equals sign is used as a relational operator (as in mathematics), but to make this state

ment true the constraint satisfaction system will give the value 5 to X. Thus the equals sign

acts similarly to an assignment operator. Unlike the equals sign in the FORTRAN assign

ment statement, however, arbitrary expressions can appear as its left argument. For exam

ple, the above statement could be written in many different, but semantically equivalent,

ways:

5 = X
X + 1 = 6
3 XX = X + 10

The temperature conversion program above could also be expressed in many equivalent

forms. In fact, we might have forgotten the equation for the relationship between F and c,
but remember the following information:

• The relationship is linear (it can be expressed as an equation of the form "y = m·x + b").

• 212 degrees Fahrenheit is the same temperature as 100 degrees Celsius (the boiling

point of water).

• 32 degrees Fahrenheit is the same temperature as 0 degrees Celsius (the freezing point

of water).

This information is easily expressed as the following three constraints:

F = MXC + B

212 = MX 100 + B

32 = MX 0 + B

The constraint satisfaction system will determine the appropriate values for M and B using

the last two constraints, and plug them into the first constraint, yielding the desired

F = 1. 8 x c + 32. Constraint languages allow the user greater expressiveness, because a

program can be stated in whichever way is most convenient.

The treatment of equality in constraint languages is also more intuitive to non

programmers. For example, the following statement (here expressed in FORTRAN)

X= X+ 1

has always been a source of confusion to beginning programmers until they learn about the

imperative notion of incrementing variables. This statement would be a contradiction in a

constraint language since no finite value can be found to satisfy it. Furthermore, a con

straint satisfaction system can detect that this statement is false without knowing the value

1. Introduction 10

of X. The rules of algebra can be used to subtract X from both sides of the equation, yielding

0 = 1, which evaluates to false. The equivalent FORTRAN expression:

X .EQ. X + 1

if used in a loop which supplies values for x, will be blindly reevaluated to false over and over

for each new value of X. The ability to evaluate an expression containing unknown variables

to a constant can be used to advantage by a compiler for a constraint language.

Also note that in a constraint language the equals sign expresses an invariant (a con·

straint) between objects that is pennanent during the program's execution. In a conventional

language, the only time a relationship expressed by an assignment statement is guaranteed

to hold is just after the statement is executed.

1.1.2 Using Constraints for Computer Graphics

A major advantage of constraint languages is their ability to naturally describe complex

objects. As a simple example, consider the task of drawing a regular pentagon using some

computer graphics system.

This would be very difficult to do (if not impossible) with any degree of accuracy using a

typical interactive graphics system such as MacPaint [Kaehler 83]. With a typical procedural

graphics system, such as PIC [Kernighan 82] or GKS [ISO 81], this task is reasonable, but

the user must specify how to draw the pentagon by specifying the endpoints of the lines.

These endpoints must be calculated using trigonometric functions, and they depend upon the

location and size of the pentagon. For example, if the center of the pentagon is at the point

(0, 0), then the lower right corner is approximately at (.588, -.809). Even if we can specify

the endpoints relative to the center of the pentagon, calculating the endpoints is still tedious.

With a constraint language, a regular pentagon could be specified by drawing any five

sided convex polygon, constraining the vertices to lie on a circle (or equivalently, to be of

equal distance from a point), and constraining the edges to be of equal length.

1. Introduction 11

This is not only easier to do, it results in a more concise description since it does not depend

upon any extraneous information, such as the location of the center of the pentagon. It also

does not constrain the order in which the sides of the pentagon are drawn (for example, to

allow a program to optimize pen movement for a plotter). It is also easier to generalize the

constraint description to other regular polygons.

The declarative semantics of constraint languages allow us to describe graphical objects

while avoiding extraneous concerns about the algorithms used to draw them. Graphics

imagery especially benefits from this since it is inherently spatial and is produced only

grudgingly by current procedural languages.

1.2 Scope of the Research

We now make more precise some of the terms we have been using informally in the dis

cussion above. A constraint expresses a desired relationship among one or more objects. A

constraint language is the language used to describe the objects and the constraints. A

constraint program is a program written in a constraint language; this program defines a

set of objects and set of constraints on these objects. A constraint satisfaction system

finds solutions to constraint language programs. The constraint satisfaction system uses

problem-solving methods, called constraint satisfaction techniques to find the values of

the objects that will make the relationships true.

The above definitions are very broad and can be interpreted to include a wide spectrum

of systems, from languages that allow some constraint-like statements, to special purpose

systems that satisfY relationships between objects. For example, some imperative program

ming languages (such as Euclid [Popek 77] and Common LISP [Steele 84]) have an ASSERT

statement, and even FORTRAN has an EQUIVALENCE statement that effectively asserts

that two variables are always equal. Also included by the above definitions would be

languages, such as the graphics language PIC [Kernighan 82], and the spread-sheet

language VisiCalc [Flystra 80], that allow relations to be specified, but these relations must

1. Introduction 12

be ordered so that the values of the variables can be calculated in a single pass. At the oppo

site end of the spectrum allowed by the above definitions, symbolic algebra systems can solve

systems of simultaneous equations, and integer programming techniques can be used to find

optimum solutions to systems of inequalities.

In this document we· are trying to describe an emerging class of (possibly general pur

pose) programming languages that use constraint satisfaction techniques, which we will call

constraint programming languages. From this designation we will exclude a vast

number of programming languages that use constraint satisfaction techniques incidentally,

or which allow constraints, but require the user to indicate how they are to be solved (typi

cally by ordering them), and only consider those declarative languages that use constraint

satisfaction as their primary computation mechanism. We will also only consider those con

straint languages that can reasonably be called programming languages, as opposed to sys

tems that solve constraints but are not generally considered to be programming languages,

such as typical symbolic algebra systems. This distinction may seem arbitrary, but it is

analogous to the distinction between logic programming languages such as Pro log [Ciocksin

81], and resolution theorem proving systems [Loveland 78].

We will also concentrate on languages that deal primarily with numeric constraints,

and only deal briefly with languages that use searching techniques to solve logical con

straints, such as Prolog. In the future, however, these two classes oflanguages may not be so

distinct. There are already languages being proposed that have features to deal with both

types of constraints. This document, however, is mainly concerned with techniques for solv-.

ing numeric constraints.

As is true of most programming languages, a major concern will be the execution speed

of constraint programming languages. For example, some constraint satisfaction techniques

will be of interest despite their weak problem-solving abilities because they can be inter

preted quickly, or are amenable for compilation. The ability to compile constraint programs

will be of major interest in evaluating constraint satisfaction techniques.

From now on, this document will only consider numeric constraint programming

languages and constraint satisfaction systems. Therefore, unless otherwise noted, we will

use the shorter terms constraint language and constraint satisfaction system to refer

to such languages and the systems that interpret them. We will also only consider those con

straint satisfaction techniques that are suitable for implementing these constraint

languages. Many potential constraint satisfaction techniques will not be discussed (or will be

only mentioned briefly) simply because they are too slow to be used by a programming

language.

1. Introduction 13

1.3 Problem Solving Versus Constraint Programming

Because of the high level of specification possible in constraint languages it is much

easier to state constraints than to satisfY them. This is in contrast to conventional impera

tive languages, where if a program has been constructed correctly (if it terminates and does

not contain any problems such as typing errors), then it will execute. In a constraint

language, it is easy to correctly specifY a problem that any constraint satisfier cannot solve.

For example, consider the following constraints (from [Boming 79, p. 7]):

n n n x +y =z ,

x, y, z, n are positive integers,

n>2.

Finding a set of values that satisfies these constraints would constitute a counterexample to

Fermat's last theorem. This is obviously an extreme example, but there are many problems,

easily solvable by human problem solvers or even by special purpose computer programs,

that cannot be solved by currently used constraint satisfaction techniques.

The descriptive nature of constraint languages makes it easy to describe problems,

which is one of their major advantages, but it also makes it tempting to simply express a

problem to a constraint satisfaction system and then expect it to be solved automatically.

Constraint satisfaction systems, however, are not meant to be general-purpose problem

solvers. They are not even as powerful as many mechanical problem solvers such as symbolic

algebra systems. Constraint satisfaction systems are meant to quickly and efficiently solve

the little, trivial problems that surround and obscure more difficult problems. This frees the

user's problem-solving skills for use on the more interesting problems. The point is that con

straint satisfaction systems should not be thought of as problem solvers; they are tools to

help humans solve problems.

This is not to say that constraint languages cannot be used to solve difficult problems.

After all, languages such as LISP have no problem-solving abilities at all, but they can be

used to build powerful symbolic algebra systems and other problem solvers. Constraint

languages add a small amount of problem-solving skill, to help the human problem solver

concentrate on the difficult problems. This is roughly analogous to the way that LISP sys

tems automatically take care of garbage collection, so the user need not be concerned with

the management of storage. With LISP, we pay for automatic storage management by giving

up some execution speed. With constraint languages, since most problem-solving methods

are application specific, we give up some programming generality.

What a constraint language can do is make it easier for a human problem solver to

describe a problem to a computer, and thus make it easier to apply the computer's abilities to

the problem. For example, calculating the voltages at the nodes of a small network of

1. Introduction 14

resistors requires the solution of a few dozen simultaneous equations. There are several pos

sible approaches (ignoring constraint languages) to finding the solution for such a problem:

• Set up the equations and solve them by hand. This is what most people would do, but it

is a tedious and error-prone task.

• Write a program in an imperative language to calculate the voltages. Unfortunately,

writing an imperatiV'e program to solve simultaneous equations is harder, and just as

error prone, as solving it by hand. Writing such a program would only be worthwhile if

the user needed to solve many problems of this type.

• Use an existing special purpose problem solver, such as a symbolic algebra system, to

solve the simultaneous equations. The user would still have to figure out what the

simultaneous equations are from the circuit. This is still tedious and error prone, and

each change to the circuit will require a new set of equations.

Using a constraint language this problem can be described simply as a network of con

nected resistors, and the constraint satisfaction system can set up the simultaneous equa

tions automatically (an example of this is given in section 6.7). This allows the user to con

centrate on designing the circuit. While it is performing the calculations for the voltages, the

constraint satisfier can also check to make sure that we do not burn up a resistor by putting

too much power through it. A human problem solver should not be bothered with such

details.

In general, the issue is not the difficulty of the problems a constraint satisfaction sys

tem can solve, but how efficiently the constraints of interest can be solved. What the con

straints of interest are depends upon the application. Another issue is how easy it is for the

constraints of interest to be stated to the constraint satisfaction system. If a constraint

language is general-purpose and extensible, then the user can tailor the language to the

application, making the constraints of interest to that specific application easier to state.

1.4 Limitations of Existing Constraint Languages

Problem solving systems are typically very difficult to implement, and constraint satis

faction systems are no exception. Even though constraint languages have been around for

over twenty years, relatively few systems to execute them have been built in that time.

Graphics researchers are still praising Ivan Sutherland's Sketchpad system [Sutherland 63],

built in the early 60's, but few have attempted to duplicate it. Furthermore, those constraint

satisfaction systems that have been built tend to be very application specific and hard to

adapt to other, or more general, tasks. Consequently, despite the significant contributions of

existing constraint languages, they have not found wide acceptance or use. There are several

causes of this problem, and existing constraint languages suffer from one or more of them:

1. Introduction 15

• General problem solving techniques are weak, so constraint satisfaction systems must

use application-dependent techniques. It is usually difficult to change or modify these

systems to suit other applications. The few constraint languages that can be adapted to

new applications are adaptable only by dropping down into their implementation

language. For example, the ThingLab simulation laboratory [Borning 79] allows an

experienced programmer to build simulations (which in effect are small constraint satis

faction systems for solving limited classes of problems) by defining new objects and con

straints, but these new constraints must be defined procedurally, using Smalltalkl.

• The datatypes operated on by typical constraint languages are fixed. There is no way to

build up new datatypes (such as by using records or arrays as in conventional

languages). For example, in Juno [Nelson 85], an interactive graphics constraint

language, the only datatype is a two-dimensional point. In order to use Juno for even a

slightly different application such as three-dimensional graphics, the underlying system

would have to be modified extensively.

• Some languages allow the definition of new datatypes, but new constraints cannot be

added that utilize these new data types. New constraints correspond to procedures in

conventional languages. In Ideal [VanWyk 82], another graphics constraint language,

the only primitive data type is a point, but new data types such as lines, arrows, and rec

tangles can be defined. Relationships between the non-primitive datatypes, however,

must be expressed in terms of primitives (points). So, for example, to draw an arrow

between two rectangles, separate constraints must be expressed connecting the head and

tail of the arrow to the desired points on the rectangles. This is only a limitation on

expressiveness, but, like a conventional language without subroutines, it does tend to

make a constraint language unwieldy. It also takes away some of the benefit of using a

constraint language. For example, it is of little advantage when a constraint language

allows us to define a new datatype for a resistor, if we then have to describe each connec

tion between resistors in terms of primitive constraints between their voltages and

currents. We would much rather be able to define constraints for connecting resistors

together.

• Many existing constraint languages do not allow any computations to be expressed

beyond what can be expressed by a conjunction of primitive constraints. So even if new

constraints can be added to the language, these new constraints may be severely limited.

In Juno, for example, new constraints can be added as long as they can be expressed as a

conjunction of Juno's four primitive constraints. One of Juno's primitives asserts that

two line segments are to be of equal length, so we can add a constraint that two line seg

ments are perpendicular by using the standard geometric construction of a

1 Recent enhancements allow some constraints to be defined functionally or graphically [Boming 85, 85a].

1. Introduction 16

perpendicular bisector. Unfortunately, there is no way to express betweenness, (for

example, that a point lies between two other points on a line). This constraint could be
' expressed if we could only say that the sum of two distances is equal to a third distance,

but we cannot compute sums. Consequently, many objects cannot be uniquely specified.

For example, given the constraints that we used to define a pentagon in section 1.1.2,

Juno might instead produce a pentagram (five-sided star), since there is no way to assert

the relative order of the vertices.

• Even in constraint languages that do allow computation (such as Ideal, which includes

the normal complement of arithmetic operators), few are computationally complete. This

is a consequence of the difficulty of adding control structures (such as conditionals, itera

tion, or recursion) to a constraint language. Consequently, there are computable func

tions that these languages cannot compute. For example, without iteration (or recur

sion) it is impossible to express the general concept of a dashed line (where the number

ofline segments is not fixed). To solve this problem, Ideal had to add a new primitive

(the pen statement) that is a much restricted form of iterator. The few constraint

languages that are computationally complete are so only because they allow the con

straint programmer to drop down into an imperative language (typically LISP or

Smalltalk [Goldberg 83]). Unfortunately, this also destroys the declarative semantics of

the constraint language. Control structures can be added to a declarative language

without adding a procedural semantics (as in Lucid [Wadge 85], Pure LISP, and others),

so it should be possible to add them to a constraint language.

• Even if we do not require computational completeness, if our language does not have

conditionals then constraints that depend upon other constraints cannot be expressed.

Such constraints (called higher order constraints, discussed in section 2.2) allow us to

tailor the solution of a set of constraints to different circumstances. For example, we

might wish to express a constraint that centers some text inside a rectangle, unless the

width of the text is too wide, in which case the text is to be broken onto multiple lines.

• Many constraint satisfaction systems use iterative numeric techniques such as relaxa

tion. These techniques can have numerical stability problems; a gystem using these

techniques might fail to terminate even when the constraints have a solution, or might

find one solution arbitrarily for constraints with more than one solution. For example,

Juno uses Newton-Raphson iteration for satisfying constraints and so for the pentagon

example (in section 1.1.2) it will arbitrarily return either the desired regular pentagon or

a pentagram depending upon the shape of the initial polygon. This can lead to unex

pected changes to the result when some only slightly related constraint is modified.

Also, this means that the answer might depend upon the order in which the constraints

are solved, which effectively destroys any declarative semantics.

1. Introduction 17

In summary, systems to execute constraint languages are difficult to implement, and once

one is implemented we are typically stuck with a special purpose language that, suffering

from one or more of the above problems, is just as difficult to modifY to apply to other applica

tions. What is needed is an easier way to implement constraint languages, which also avoids

all of the above problems. We would like the languages so implemented to be computation

ally complete (while retaining a declarative semantics, of course), so we can handle any con

straint whose solution is computable, including higher order constraints. In addition, some

thing like abstract data types would allow new data types and constraints to be defined. And,

of course, it must be fast.

One possible approach would be generate constraint satisfaction systems using a rule

based specification language- similar to the way parsers can be built by parser generators

that accept specifications in the form of grammar rules. Of course, in order to specifY a con

straint satisfaction system, not only must we specifY the syntax of the constraint language

(as for a parser), we must also specifY its semantics (what the constraints mean), and, even

more difficult, we must give rules that specifY how to satisfY the constraints. In order to

have abstract datatypes, we must also be able to define new data types, and be able to control

the application of rules to objects based on their type.

1.5 Proposed Solution

This dissertation presents a general-purpose language called Bertrand (after Bertrand

Russell), which is a solution to the problem of building constraint satisfaction systems. Ber

trand is a rule-based specification language- a constraint satisfaction system is specified as

a set of rules and is automatically generated from those rules. Bertrand allows new con

straints to be defined, and also has a form of abstract data type.

The major goal of this dissertation is to show that Bertrand makes it easier to build

constraint satisfaction systems. In order to demonstrate how easy it is to build constraint

satisfaction systems using this language, we will show how each existing constraint language

would be used to solve some example problems2, and then generate a constraint language

using Bertrand to solve the same problems. These examples will also serve to show that the

constraint languages generated using Bertrand are as powerful as existing constraint

languages.

To interpret the rules specifYing a constraint satisfaction system we will use a form of

term rewriting [Bundy 83]. Term rewriting has been used to build interpreters for languages

other than constraint languages. For example, the equational interpreter, a term rewriting

system developed by Hoffmann and O'Donnell at Purdue, has been used to build interpreters

2 In most cases, the problems will be substantial examples taken from the thesis or other document describing
the existing constraint language.

1. Introduction 18

for LISP and Lucid [Hoffmann 82]. Bertrand uses an extended form of term rewriting I call

augmented term rewriting. Within the framework of term rewriting, augmented term

rewriting includes the ability to bind values to variables, and to define abstract data types.

These extensions make term rewriting powerful enough so that it can be used to build inter

preters for constraint languages.

Augmented term rewriting shares with standard term rewriting several desirable pro

perties: it is general-purpose and has a simple operational semantics, which makes it easy to

execute. In addition, augmented term rewriting has properties that make it possible to take

advantage of well-known optimizations, so the same mechanism also helps solve the execu

tion speed problem. It can be implemented efficiently as an interpreter using fast pattern

matching techniques, compiled to run on a conventional processor or even a parallel proces

sor such as a dataflow computer.

My thesis is that constraint satisfaction systems can be easily described using Bertrand

and efficiently implemented using augmented term rewriting.

The remainder of this dissertation is divided into seven chapters:

o Chapter two discusses existing constraint satisfaction techniques. We will use some of

these techniques to build constraint satisfaction systems using Bertrand.

o Chapter three describes augmented term rewriting, especially how it differs from stan

dard term rewriting. We also introduce the Bertrand programming language, show its

connection to augmented term rewriting, and give some examples of its use.

o Chapter four presents an operational semantics for augmented term rewriting, and

discusses its properties.

o Chapter five describes existing constraint languages, and presents example problems for

them to solve. In chapters six and seven we will build constraint languages using Ber

trand to solve these same problems.

o Chapter six uses Bertrand to build an equation solver based upon algebraic transforma

tion techniques. This algebraic constraint satisfaction system is used as a base upon

which the other constraint languages are built to solve the example problems.

o Chapter seven discusses how graphics applications can be implemented in Bertrand by

adding input and output operations, so that constraint problems involving graphics can

be solved.

o Chapter eight discusses how augmented term rewriting is amenable for efficient execu

tion, including showing how parallelism can be detected and utilized.

1. Introduction 19

• Appendix A gives further examples of constraint languages built using Bertrand, includ

inglistings of the rules for a simultaneous equation solver and a graphics library.

• Appendix B gives the code for a working interpreter for an augmented term rewriting

system.

1. Introduction 20

Chapter 2 Constraint Satisfaction

2.1 Constraint Satisfaction Techniques

Constraint satisfaction, like many other problem-solving techniques, is composed of two

distinct parts: a set of problem-solving rules, and a control mechanism I. The problem

solving rules can be fairly general purpose, such as the rules of arithmetic and algebra, or .

they can be more application specific. The control mechanism controls when and how the

rules are applied.

Unfortunately, most constraint satisfaction systems do not strongly distinguish

between the control mechanism and the problem-solving rules. This has been a major contri

butor to the difficulty of building (and modifying) constraint satisfaction systems. This is

similar to the situation that once existed for knowledge based systems, such as MYCIN,

which tended to be complex and unwieldy. Later systems, such as EMYCIN [Buchanan 84],

explicitly separated the rules from the control mechanism. Pro log is another example of the

benefits of separating the control mechanism (resolution) from the rules (a Pro log program).

The constraints that a constraint satisfaction system can solve will depend upon the

problem-solving rules that it can use. If a problem is solvable (i.e., ignoring Fermat's last

theorem and other similar problems), then we can come up with a set of rules to solve it.

Unfortunately, the kinds of rules that a constraint satisfaction system can use, and conse

quently the kinds of problems it can solve, will depend upon what control mechanism or

mechanisms are used.

We will notice that as constraint satisfaction techniques get more powerful, they tend to

get more domain specific. This trade-off is due to the weakness of general problem-solving

methods. The problems we can solve will depend upon the sophistication of our tools. By

analogy, we can fix quite a few things with a pair of pliers and a screwdriver, but there are

times when more sophisticated application-specific tools are necessary.

In the rest of this chapter, we will discuss the control mechanisms that have been used

by existing constraint satisfaction systems, and the types of problems that can be handled by

each mechanism.

1 Kowalski says that • Algorithm = L:Jgic + Control•, in that in a logic programming language an algorithm
consists of both a logic (descriptive) part and a control (procedural) part [Kowalski 79]. Since constraint
languages are declarative, the control part is either hidden from the user, or specified declaratively. Thus, in
a coDBtraint language •AJgorithm =Logic-, but the logic may also (logically) specify some control information.

2. Constraint Satisfaction 21

2.1.1 Constraint Graphs

A constraint language program can be regarded as a graph. For example, the following

graph is a representation of the temperature conversion program c x 1 . 8 + 32 = F.

+ F

The square nodes represent objects (variables), and the round nodes represent operators.

The arguments to an operator are attached on its left side, and its result is attached on its

right side. Constants are considered nullary operators.

Notice that the "equals to" operator(=) is not represented explicitly in the constraint

graph. It is required in our written form only because our infix functional notation for opera

tors has no explicit representation for the result of an operator. If we represented operators

as relations (for example, a +b = c as plus (a,b, c)) then equals would not be required, but

we would have to give names to all the arcs in a program. The resulting programs would also

be much more difficult to read.

2.1.2 Local Propagation

The simplest and easiest to implement constraint satisfaction mechanism is called

local propagation of known states, or just local propagation [Steele 79]. In this mechan

ism, known values are propagated along the arcs. When a node receives sufficient informa

tion from its arcs, it fires, calculates one or more values for the arcs that do not contain

values, and sends these new values out. These new values then propagate along the arcs,

causing new nodes to fire, and so on.

The problem-solving rules are local to each node, and only involve information con

tained on the arcs connected to that node. A constant node contains all the information it

needs, so it can fire immediately and send its value out. A "plus" node can fire when two of

its arcs contain values. For example, if a plus node is connected to arcs named p, q, and r,

such that the constraint on that node is that the sum of p and q must be equal to r, then the

node will contain the rules:

2. Constraint Satisfaction 22

p+-r-q p

r+-p+q f---r

q+-r-p q

Which rule to apply will depend upon which arcs receive values. For example, if values

arrive on arcs q and r, then the rule p +-- r- q will be triggered.

Choosing which rule to fire for a "plus" node is only dependent upon which arcs receive

values, but rule firing can depend upon other information. For example, under certain condi

tions a "times" node can fire when only one of its arcs receives a value. If a value arrives on

either p or q, and that value is equal to zero, then a zero can be sent out over r without wait

ing for a value on the other arc.

p

0
f--..-r

q

The arrowheads indicate the direction values travel on the arcs. If values arrived on both

arcs p and q, and one of those values was equal to zero, then either of two rules could be

used. In this case both rules would have the same effect, but this is not always true. If more

than one rule could be applied in a given situation there must be some way to choose one over

another. A typical way to do this is to pick the rule that is first in textual order.

In the temperature conversion program, initially both constant nodes fire and send

their values out. Since the constant 1.8 is not zero, the times node cannot fire, and the sys

tem waits until either F or c is assigned a value. If c is assigned the value 10, this value is

propagated to the times node, which fires and sends the value 18 to the plus node, which also

fires and sends the value 50 to the F node, and the system is solved.

c

50
+ F

2. Constraint Satisfaction 23

If instead, F were assigned the value -40, then this value is propagated to the plus node,

which fires and sends the value -72 to the times node, which also fires and sends the

value -40 to the c node, and the system is solved.

-40
F

Notice that operators in a constraint program will often be used backwards to compute

what an argument must be for a given result. This is not, of course, always possible. For

example, for a times node, if the result and one of the arguments are both zero then no infor

mation can be deduced about the other argument. This is not a fault with local propagation;

no constraint satisfaction mechanism could deduce anything in this situation. The following

is a complete list of rules for a times node.

trigger

p, p~O
q, q~O

q, r, q;tO
p, r, p:;tO

p, q

rule

r<-
r<-
p <-
q <-
r<-

0
0
r/q
r/p
pxq

One advantage oflocal propagation techniques is that the system can keep track of

which rule in a node caused the node to fire. This information can be used to give explana

tions for why the system gave a particular answer. For example, we could ask the system

why, in the example above, it said that the value of C was -40, and it could answer with

something like:

because -40 is -72 I 1. 8,
1.8 is a constant,
-72 is -40 - 32,
32 is a constant,
and -40 was given as the value of F.

The major disadvantage of local propagation techniques is that they can only use infor

mation local to a node. Many common constraint problems cannot be solved this way. For

2. Constraint Satisfaction 24

example, consider a constraint program for finding the average of two numbers:

A + T B
B + T C

This program constrains B to be the average of A and c, and T to be the difference between A

and B (which is also the difference between B and C).

A B c

T

If values are given to the two variables A and c, local propagation is unable to solve for

the values of either B or T. For example, if A is 1 and cis 11, then the equations become:

1 + T B

B + T 11

Neither equation, individually, can be solved because there is a cyclic dependency between B

and T, and more global information is required to deduce values for either variable. Looking

at the graph, we can see that B and T are in a cycle. If we don't give a value to either B or T, .

then neither plus node can fire, so local propagation cannot break the cycle.

A 1 B
11

c

T

At this point, local propagation will give up, and say that the program has no solution. Of

course, there is a solution, but more powerful techniques must be used to find it.

2.1.3 Relaxation

One method that can solve the above program is a classical iterative numerical approxi

mation technique cailed relaxation [Sutherland 63]. Relaxation makes an initial guess at

the values of the unknown objects, and then estimates the error that would be caused by

2. Constraint Satisfaction 25

assigning these values to the objects. New guesses are then made, and new error estimates

calculated, and this process repeats until the error is minimized. Different forms of relaxa

tion will use different heuristics to make the guesses. One way to make the new guesses is to

perturb the value of each object in tum, and watch what happens to the error estimate.

A form of relaxation used in several constraint satisfaction systems assumes that the

errors for each constrained object can be reasonably approximated by some linear function.

To determine the new guess for the value of each object, the derivative of each error function

is approximated with a linear function. Then a least squares fit is performed on the linear

functions for each object. This process is repeated in turn for each variable until the error

terms converge to zero. If the error terms do not converge, then relaxation fails. An advan

tage of iterative techniques such as relaxation is that, even if the error terms do not go to

zero they can often be minimized, so these techniques can be used to find approximate solu

tions to overconstrained problems.

Relaxation can only be used on objects with continuous numeric values, and not on

Boolean or even integer valued objects. For example, it cannot solve cryptarithmetic prob

lems. (Cryptarithmetic involves finding an assignment of numeric digits to letters to satisfy

some constraint, for example "SEND+ MORE= MONEY".) Even so, the class of problems it

can solve is quite large. A further limitation is that the constraints to be relaxed must be

able to be adequately approximated by linear equations, otherwise relaxation may· not con

verge, or there may be more than one solution and relaxation will arbitrarily find one of

them. Even for systems of linear equations, which are guaranteed to converge, relaxation is

usually very slow. For nonlinear systems of equations, whether or not relaxation converges

and the rate of convergence are very sensitive to a number of factors, including the number

of variables to be relaxed, the choice of initial values and the form of the constraint graph.

Relaxation can be used directly as a constraint satisfaction mechanism, but because it is

slow, relaxation is often used only after local propagation has been tried and failed.

There are a number of tricks that can be used to speed up relaxation when used in com

bination with local propagation techniques. One of these tricks reduces the number of

objects that need to be relaxed by picking one of them, and then determining what other

values could be deduced using local propagation if the value of that one were known. The

values that can be deduced do not need to be guessed at for each iteration of relaxation,

although their error terms need to be considered. This technique can be used on our con

straint program above to find the average of 1 and 11.

If naive relaxation were used, then both B and T would have to be relaxed. Instead, let

us pick B to be relaxed, and for an initial guess set its value to zero. If the zero propagates to

the second plus node, that node fires and sets the value ofT to 11. This value then pro

pagates to the first plus node, which fires and sends out 12 as the value of B.

2. Constraint Satisfaction 26

A
12

B 0 11
c

11
T

Now B has two values, the initial guess (zero), and the value that was propagated back (12).

The error for B is the difference between these two values, and the new guess for the value of

B is just the average of the two2. The average of 12 and zero is 6, which is the right value.

To check that it is the right value, we propagate it around the loop again to see that it comes

back unchanged. This final propagation step also determines the value of T to be 5.

In general, this method will converge in one iteration if the constraints are linear. In

this example, we picked a particular order for the propagation, but any order would have

worked. Note that if we had propagated the initial guess of 0 forB to both plus nodes, then T

would have received two values, -1 and 11, so we would have had to consider the error term

for T instead of B.

2.1.4 Propagating Degrees of Freedom

Another problem with naive relaxation is that much more of a graph might be relaxed

than is necessary. Since relaxation has no global information about the graph there is no

way for it to tell which variables are in a cycle and which are just in branches connected to

the cycle. For a large graph, this can result in a significant overhead. For example, consider

the following constraint program:

5XY ~ X

X + X ~ 40

This program corresponds to the following graph:

X X

2 In order to solve a constraint program to find the average of two numbers, relaxation ends up taking the
average of two (different) numbers!

2. Constraint Satisfaction 27

In this graph, nothing can be deduced using local propagation because the constraint

x + x = 4 0 contains a cycle. Relaxation can be used to find the value of X, but other variables,

such as Y, that are in branches connected to the cycle will be relaxed as well. Here the

branch containing Y is fairly small and will only cause a single extra variable to be relaxed,

but if the branch was very large, possibly containing hundreds of variables, all of them would

be subject to relaxation, resulting in extremely poor performance.

One way to avoid this problem is to temporarily prune the branches connected to cycles

during an initial local propagation step. Then relaxation is only done on the variables inside

cycles. After relaxation has determined the value of variables inside cycles, these values are

propagated back out to the branches. In order to do the pruning, local propagation of

degrees of freedom is used. Instead of looking for an object whose value is known and pro

pagating its value, this technique looks for an object with few enough constraints so that its

value can be changed to satisfy its constraints. When a part with enough degrees of freedom

is found it is removed from the constraint graph, along with all the constraints that apply to

it.

For example, in the above graph, the object X has three constraints on it, but the object

y has only a single constraint, so once the value of X is known, we will be able to satisfy the

constraint 5 x Y =X by changing the value of Y. The object Y can therefore be removed from

the constraint graph, along with the times node and the constant 5. What remains is just the

cycle containing the object x. Relaxation can be used on this cycle to determine that X is

equal to 20, then the pruned branch is restored and propagation of known states is used to

determine that the value of Y is 4.

One difficulty with this technique is determining which objects have enough degrees of

freedom. Typically, the heuristic used is that a variable has enough degrees of freedom if it

has only one constraint on it. Note that it is not important whether the constraint will

uniquely determine the value of the object during the final propagation of values step.

A further refinement of this technique is to precompile the final propagation step. This

compilation is done while propagating degrees offreedom. When an object is pruned from

the graph, a one-step deduction is compiled that is an procedure for determining the value

of the object. For example, when the branch containing Y is pruned, the deduction Y ~X/ 5 is

compiled by taking the appropriate rule from the times node and replacing the arc names

with the appropriate objects. After relaxation is finished, this rule can be used directly to

compute the value of Y, completely avoiding the final local propagation step.

Propagating degrees of freedom has an advantage over propagating known states even

if the graph does not contain any cycles. Consider again the temperature conversion pro

gram.

2. Constraint Satisfaction 28

F

If we want to use this program to find the Celsius equivalent of several Fahrenheit tempera

tures, we can precompile it by propagating degrees offreedom. Since F is our input, only the

object C has enough degrees of freedom. We remove C and its associated constraint, and com

pile the deduction C f-- Tl/ 1. 8, where Tl is a temporary variable. The graph now looks like:

F

We continue removing constraints until the graph is empty. The variable Tl has enough

degrees of freedom, so we can remove it and its associated constraint, and compile the deduc

tion Tl f-- F- 32. The graph is now empty, and we have compiled the deductions Tl f-- F- 32

and C f-- Tl/1. 8, which together form the procedure C f-- (F- 32) I 1. 8. This procedure can

be used to calculate the Celsius equivalent of several different Fahrenheit temperatures. If

we had used local propagation of known states, then a complete propagation would be

required for each new value ofF.

Propagating degrees of freedom is slightly less powerful than propagating known states

because we cannot take advantage of rules that use information about the values on arcs,

such as the rule in the times node for multiplying by zero. Consequently, propagating

degrees of freedom must use relaxation on all cycles, even if the cycle could have been broken

(or even ignored completely), for example by a fortuitous multiplication by zero.

2.1.5 Redundant Views

Relaxation can often be avoided if the user supplies a redundant view of a constraint

that can be solved using local propagation. For example, consider the constraint program

from above that had to be solved using relaxation:

2. Constraint Satisfaction 29

5XY = X

X + X = 40

The constraint X+ x = 4 0 cannot be solved using local propagation because it contains a cycle.

It could have been solved, however, if the user supplied the equivalent constraint:

2 XX = 40

The constraint program for finding the average of two numbers:

A + T B
B + T C

could also have been solved without relaxation by supplying either (or even both) ofthe fol

lowing redundant constraints:

B (A+C)/2

A + TX2 = C

Adding the latter constraint to the original program creates the graph:

A

T

c

This graph can be solved using local propagation if any two of the variables (A, B, c, and T)

are supplied.

Redundant views can also be used to help solve constraint problems that cannot be

solved using relaxation. In some sense, redundant views allow the user to help the con

straint satisfaction system solve problems that are too difficult for it to solve by itself. This is

one way in which a user can tailor a constraint satisfaction system to a particular applica

tion.

2. Constraint Satisfaction 30

Of course, rather than have the user supply the redundant views, we would rather have

them generated automatically for us. A system could use some local propagation technique

to find parts of a graph that it cannot solve, and then try and transform those subgraphs into

graphs that can he solved.

2.1.6 Graph Transformation

Graph transformation (also called term rewriting) uses rewrite rules to transform sub

graphs of a constraint program into other (hopefully simpler) graphs. For example, the

rewrite rule:

V + V ~ 2XV

where vis a variable that can match any expression, can be used to transform the expression

X+ X (from the example in the last section), into 2 x X. Other rules can be used to implement

such things as the distributive law.

In addition to just using graph transformation to transform difficult parts of constraint

graphs, it can be used to replace local propagation entirely. This is done by replacing opera·

tors whose arcs contain constants with the equivalent constant. For example, in the tern·

perature conversion program ifF is given the value 32:

c

the plus operator can be transformed away, leaving:

which can then be transformed to a single constant zero -the answer of the problem.

2. Constraint Satisfaction 31

Graph transformation is more powerful than local propagation because it can look at

more of the constraint graph. Local propagation is limited to only looking at a single node

and the values on its arcs. Unfortunately, transformation is still limited to looking at locally

connected subgraphs, so it can only transform simple cycles in a constraint graph (such as

x + x). Cycles formed by simultaneous equations, except for a few trivial cases, cannot be

solved using graph transformation techniques because these cycles are typically not local in

extent. In order to get around this limitation we need more sophisticated equation solving

techniques.

2.1.7 Equation Solving

The equation solving techniques used in symbolic algebra systems (such as MACSYMA

[MathLab 83]) can be used to solve complex constraint programs, including programs con

taining cycles, but are too slow to be considered as a general-purpose constraint satisfaction

mechanism. Consequently, equation solving techniques are often used like relaxation tech

niques- only after local propagation has failed. If there were equation solving techniques

that would execute fast enough, however, we could consider dispensing with local propaga

tion entirely.

Luckily, there are such techniques [Derman 84]. We will describe a typical equation

solving algorithm in some detail (this algorithm will be used as the basis of the equation solv

ing system we will build using augmented term rewriting in section 6.1). This algorithm is

modeled after Gaussian elimination, the most commonly used method of solving simultane

ous linear equations. For example, consider how the following two equations would be

solved:

p+2Xp+5Xq 14

p q = 2

The subexpression p + 2 x p contains a cycle which we remove by combining terms. We now

have two simultaneous equations in two unknowns:

3Xp + sxq 14
p- q = 2

We now solve one of the equations for one of the unknowns in terms of the other. For exam

ple, we can solve the second equation for p in terms of q, yielding 2 + q. We next replace p in

the fir~t equation by its value, leaving us with one equation in one unknown, which we can

solve directly for the value of q. Once we know q, we can plug it back into our solution for p,

yielding values for both p and q in terms of constants.

2. Constraint Satisfaction 32

The algorithm works by attempting to convert each equation into an ordered linear

combination. An ordered linear combination is a linear expression whose variables have

been ordered. The ordering may be lexicographic by variable name, or may use any other

method that gives a total ordering between distinct variables. From here on out, we will

assume that we are using lexicographic ordering, and the constant term is assumed to pre

cede all other terms. For example, the expression:

2Xq + 3Xr + 4 + 5Xp

is equivalent to the ordered linear combination:

4 + Sxp + 2Xq + 3xr

Because the variables are ordered, there are several operations that can be performed

on ordered linear combinations in linear time (proportional to the number of terms). An

ordered linear combination can be multiplied by a constant in linear time by multiplying

every term in the ordered linear combination by the constant. Likewise, an ordered linear

combination can be divided by a constant. Since the variables in an ordered linear combina

tion are kept in sorted order, two ordered linear combinations can be added together in linear

time by simply merging them. If the same variable appears in a term in both ordered linear

combinations, then their respective constants are added together in the merged result. The

difference of two ordered linear combinations can be formed by multiplying the second one by

-1, and adding.

An equation is converted into an ordered linear combination by traversing the expres

sion tree representing the equation in postorder. The leaves of this tree are all either con

stants or variables- constants already represent (trivial) linear combinations, and each

variable x is converted into a linear expression 1 x x + 0. As we work up the tree, linear

expressions are added together, or multiplied by constants. If the expression tree contains

any nonlinear operators, or a multiplication of two non-constant linear combinations, these

are left unconverted in tree form.

Our temperature conversion program:

CX1.8 + 32 F

is converted into the ordered linear combination:

32 + 1.8XC + -lXF ~ 0

Converting an equation into a single ordered linear combination guarantees that all

terms of the same variable have been merged. Once an equation has been converted into an

ordered linear combination that is equal to zero it can be solved (in linear time). There are

four possible solutions:

2. Constraint Satisfaction 33

• If the ordered linear combination is the constant zero, it asserts 0 = 0. This signifies that

the original equation was redundant, and we simply throw it away.

• If the ordered linear combination is a constant knot equal to zero, it asserts k = 0, which

is a contradiction. For example, if k is 5, then we are asserting 5 = 0. The usual way to

handle a contradiction is to signal an error and terminate.

• If the ordered linear combination contains a single variable, say c x p + k, where c and

k are constants and p is a variable, then it corresponds to the assertion p = -k/ c. We

set the value of p to be -k/ c, delete this ordered linear combination, and replace

occurrences ofp in the other equations by its value (-k/c).

• If the ordered linear combination contains more than one variable, then we pick one of

the variables and solve for its value in terms of the other variables. For example, if we

are solving the ordered linear combination p, and the variable p with coefficient c is

picked, then we solve for the value of p, which is (p - c x p) I -c. Again, wherever the

variable p appears in any other equation we replace it by its value. It does not matter

which variable is picked to solve for. If we are using floating point arithmetic, however,

we might want to pick the variable whose coefficient is the largest in absolute value in

order to minimize numerical accuracy problems (i.e., we would pick c, above). This is

commonly called pivoting.

In order to solve our temperature conversion program, we must somehow supply a

value for either For c. Let us add the additional constraint equation c = 10, resulting in the

following two ordered linear combinations:

32 + 1.8XC + -1XF 0
-10 + c = 0

Using pivoting, we solve the first equation for C, and substitute its value into the second, giv

ing:

-27.78 + -0.556XF 0

which can be solved for the value ofF, namely 50.

Instead of giving a constant value to either F or c, let us give the constraint F = C, to

find the temperature where the Fahrenheit value equals the Celsius value. This results in

the following two ordered linear combinations:

F + -1XC = 0
32 + 1.8XC + -1XF = 0

If we solve the first equation for F, we find that its value is just C, which we plug into the

second equation to get:

2. Constraint Satisfaction 34

32 + 0. 8 XC = 0

This equation can then be solved to find that the value of C is -40 (which is also the value of

F, since c =F).

If the equations to be solved are all linear (the equation trees can all be converted into

ordered linear combinations), then this algorithm can solve them in a single pass. The algo

rithm can also be extended to handle some classes of nonlinear equations. Any equation that

cannot be completely converted from an equation tree into an ordered linear combination is

placed on a queue, and the remaining equations processed. As linear combinations are

solved, a value might become known that will transform a nonlinear equation into a linear

one. For example, the three nonlinear simultaneous equations:

pxq = 10
q + r = 3
q- r = 1

can be solved this way, since when q becomes a constant (by solving the last two equations),

the first equation becomes linear. The algorithm continues examining the equations on the

queue until they are all solved, or until a pass has been made through them without solving

anyofthem.

A further extension is to build in some simple nonlinear transformations, such as

cross-multiplication and squaring both sides. These can be done using graph transforma

tions. Unfortunately, nonlinear transformations are not always safe to perform. For exam

ple, cross-multiplication can return p = 0 as the solution of p = 0 /p, and squaring both sides

can cause a negative root to be added. Linear transformations are always safe, but if we use

any nonlinear transformations we must be careful to check our answers to make sure they

are valid, and do not cause any denominators to vanish.

This algorithm is not as powerful as the techniques used in symbolic algebra systems,

but it is much faster and easier to implement. In fact, it is almost as easy to implement as

local propagation, making it an ideal candidate for a constraint satisfaction mechanism.

A problem with equation solving, which it shares with other graph transformation tech

niques, is that it is destructive to the constraint graph. Unlike local propagation, once a

graph has been transformed the old graph is lost, unless the old graph is explicitly saved

somewhere. Graph transformation makes it difficult to use the same graph repeatedly for

different values, or keep track of which rules fired so the system can explain why a certain

answer was returned.

2. Constraint Satisfaction 35

2.1.8 Other Constraint Satisfaction Techniques

Up until now, this chapter has only discussed constraint satisfaction techniques that

have been used in existing constraint satisfaction systems, but there are other techniques

that could be used. Some ofthese are related to equation solving techniques, such as linear

programming. Others are based upon theorem proving methods such as resolution. Still oth

ers come from artificial intelligence. Searching techniques, such as used in the General Prob

lem Solver [Newell 63], can be used to satisfy constraints. Truth maintenance systems

[Doyle 77] are also closely related to constraint satisfaction systems.

A transformation technique with goaJs similar to constraint satisfaction is narrowing

[Hullot 80]. Narrowing consists of applying the minimal substitution function to a term such

that it is reducible, and then reducing (rewriting) it in one step. Thus, narrowing does a full

unification between the head of a rewrite rule and the term to be narrowed before each

rewriting, rather than the simple pattern matching done in term rewriting. Narrowing has

recently been used as an operational semantics for logic programming languages [Dershowitz

85]. An advantage of narrowing is that, like logic programming languages, it can use search

ing techniques to explore multiple solutions. The generaJity of narrowing makes it computa

tionally too expensive to be considered as a general-purpose constraint satisfaction tech

nique. It is aJso better suited to solving for variables that range over discrete domains,

rather than the continuous domains oflinear equations.

2.2 Higher Order Constraints

In determining the power of a constraint satisfaction system we will be concerned with

whether it can handle second order constraints- constraints on other constraints. An

example of a second order constraint is:

if x=y then b=c/a

This ifi'then constraint takes a predicate and a first order constraint as an argument to make

a new constraint. Second order constraints can be treated as a Boolean combination of first

order constraints, and solved as a single (larger) constraint, assuming our constraint satis

faction system is powerful enough to handle Boolean expressions. Other higher order con

straints can resemble higher order functions in functional languages, such as the map func

tion, which takes a scalar function and maps it onto a list of scalars.

There has been some confusion between higher order constraints and meta-constraints.

Meta-constraints are constraints on the constraint satisfaction mechanism, and might be

used to specify the accuracy required by a relaxation algorithm (and thus the number of

iterations required), or even the conditions under which relaxation might be used to solve a

problem. Meta-constraints will not be discussed further in this dissertation.

2. Constraint Satisfaction 36

2.3 Constraints Involving Time

Constraint satisfaction usually deals with assertions that are time independent. In the

examples above, a constraint such as a = 0 means that a is always equal to zero. Many prob

lems are not independent of time; they involve constraints between time and other objects.

For example, in an animation we might want to constrain the position of some object as a

function of time. In this example, time is an independent variable whose value is supplied

from outside the constraint system (by a clock). Values inside the constraint system can be

dependent upon the value oftime, but not vice-versa. In the most general case, however, we

must treat time as a fully constrainable object. For example, in the same animation if we

know the velocity of the object (as a function of time) and what position we want it to be in at

some time in the future, the constraint satisfaction system should be able to calculate its

position in time by working backwards from its terminal position.

Solving constraints involving time can be very difficult, but dealing with constraints

that change only as a function of time is somewhat easier. A closely related problem is deal

ing with constraints that might change, even if they are not explicitly dependent upon time.

For example, the user :rrllght decide that a is not equal to zero, delete that constraint, and set

it equal to something else. If it is only the value of an object that changes (and not the topol

ogy of the constraint graph), we can handle such changes with a form of propagation called

retraction. Retraction works by propagating changes through the constraint graph. To pro

pagate a change, we retract the old value (set its value to unknown), which may retract other

values that were calculated from this value, and then propagate the new values.

Retraction can also work for values that change as a function of time (where time is an

independent variable). We solve the constraints as ifthey are time invariant, and then, for

each new (discrete) value of time, retract the old value and propagate the new one. In an ani

mation, for example, we would do this for each discrete frame of output. Alternatively, a cer

tain value could be set up to change automatically as a function oftime. For example, we

could read the position of a mouse or other graphic input device at some regular interval and

position some graphic object based on that value. Or the mouse could be used to point to a

value on one of several graphically displayed thermometers, one for each temperature meas

urement system. Using retraction, the constraint system could repeatedly calculate the

equivalent temperatures and display them on the other thermometers.

Retraction as a mechanism for handling change has been fairly popular in constraint

satisfaction systems that use local propagation since it is easy to propagate changes, but it

has a number of problems. For example, consider again the temperature conversion pro

gram. If we assign zero to the variable F, and propagate as before, the graph will look like:

2. Constraint Satisfaction 37

0
+ F

Now, let us change the constant 32.0 to 491.67. For simplicity, instead of retracting old

values and then propagating new values, in this example we will propagate changes. In gen

eral we cannot do this since it might result in a value remaining known when it should have

been retracted, such as a value that was known because of a multiplication by zero.

-32

0
+ F

We now have a contradiction at the plus node, since -32 plus 491.67 is not zero. The plus

node has three arcs, so we have three choices of what to change. We cannot change its lower

input arc, since 491.67 is a constant. Our next option is to change the value on its upper

input arc from -32 to -491.67. Since 1.8 is a constant, this would result in c being changed

to -273.15. Our last option is to change the value ofF to 459.67.

Changing a value in a graph will almost always result in a change to one or more of our

original premises, in this example either c or F. Knowing which value to change is a difficult

problem since it depends upon what the user intended to happen, something that cannot be

determined automatically. There are a number of methods for dealing with this problem:

• Pick the premises that cause the least change in the rest of the graph. This solution may

require changing each set of premises in turn, and determining which resulted in the

least number of propagations. It can still do the "wrong" (unexpected) thing, such as in

the example above, where the user's intent may have been to calculate the Celsius value

of absolute zero.

2. Constraint Satisfaction 38

• Pick the premises that are closest to the change (the variable F above). This solution is

cheaper than the option above, but is more often "wrong".

• Make the user specify which premises to change. This can get very annoying to the user,

especially if the user doesn't know which premises he or she wanted to be changed.

• Pick some premises, even at random, but allow the user to complain if the choice was

"wrong". This is the solution used by many constraint satisfaction systems.

If a constraint satisfaction system uses defaults (see the next section), then they should be

changed before other premises, but the system still needs to pick between the different

defaults. If the system runs out of defaults to change, then it still must have some mechan

ism for picking premises to change.

Besides the problem of trying to guess the user's intentions when picking premises to

change, retraction also has a number of other problems. Retraction will often result in many

values that did not change being retracted and recalculated. In addition, as mentioned

above, retraction can only deal with values that change, not with changes in the topology of

the constraint graph.

A similar technique that overcomes some of the problems of retraction has been used by

systems that use local propagation of degrees of freedom. If a value is going to change fre

quently, perhaps as a function of time, then we can precompile the final propagation step into

a one-step deduction from the value that changes to the values that are dependent on that

value. Then each change ofthe value involves only executing a precompiled function to

resatisfy the constraints, not a full retraction and propagation step.

The solutions discussed above regard time as an outside variable, somehow different

from the other, normal, variables in a constraint program, and severely restrict the kinds of

constraints that it can be used in. Recall from above the animation system in which we know

where a graphic object must end up at a certain time, and what its velocity is (as a function

of time). A system that uses retraction and regards time as an outside variable could not

solve this problem without outside assistance.

2.4 Default Values

A problem that is related to how to deal with values that change over time is how to

deal with default values. A default value is a value that is assigned to an object if no other

value will ever be assigned to that object. Unless retraction is used, this requires global

knowledge of the dependencies between variables. The problem is further compounded by

having many different objects with default values. The defaults given to two objects may

conflict with each other.

2. Constraint Satisfaction 39

A problem with defaults is that they can lead to trivial solutions to constraint problems.

For example, if we ask a graphics constraint system to draw a four sided object whose oppo

site sides are parallel and of equal length (a square), and the default position for points is the

origin, then the solution we are likely to get is four points at the origin. In order to avoid this

collapse we need some way to say that unless two points are explicitly constrained to be equal

to each other, then they are not to be defaulted equal to each other. A statement such as this

is called an implicit default.

2.5 Summary

Constraint languages use one or more problem solving methods, called constraint satis

faction techniques, to help the user solve problems. Because they are used in the context of

programming languages (albeit up until now special purpose languages), efficiency of execu

tion is of primary importance. Thus, the spectrum of constraint satisfaction techniques

trades off between generality and speed. A further consideration is ease of implementation

-constraint satisfaction systems are already difficult enough to build. A particular tech

nique might be eschewed because it is too difficult to implement, or because it is not easily

integrated with other techniques used by the language.

Local propagation has been very popular in constraint languages, mainly because it is

intuitive and easy to implement, but also because it is fast. Systems that use local propaga

tion are also able to separate the rules for satisfYing local constraints from the propagation

mechanism, and thus can easily be extended with new rules. Unfortunately, local propaga

tion is extremely limited because it can only consider the values impinging upon a single

node in the constraint graph. Graphs containing cycles, such as are easily introduced by

simultaneous equations, cannot be solved at all, unless the user supplies a redundant view.

Local propagation of degrees of freedom is a slightly less powerful variation oflocal pro

pagation that can be used to compile constraint graphs into functions; these functions can

then be further compiled using traditional techniques. This allows very efficient execution,

especially because the compiled constraints can be used repeatedly without re-solving them.

Relaxation can be used to solve constraint graphs containing cycles, but only at run

time, so it cannot be used as a compilation technique. It is also very slow, only works on

numeric constraints, and only in special cases. Nevertheless, it has been widely used, again,

mainly because it is easy to implement.

Graph transformation, also called term rewriting, is more powerful than local propaga

tion because subgraphs larger than a single node can be considered. This allows graphs con

taining small cycles to be solved (such as x + x ~ 6), which cannot be solved by local propaga

tion. Larger cycles, such as those introduced by simultaneous equations, still cannot be

2. Constraint Satisfaction 40

solved by traditional graph transformation techniques. Graph transformation can be as fast

as local propagation and can be used as a compilation technique, but it is more difficult to

implement so it has not been commonly used in existing constraint satisfaction systems. A

unique benefit of graph transformation is that it can be used on higher order constraints.

Equation solvers can solve many constraint programs containing cycles, such as those

introduced by linear simultaneous equations, and some forms of nonlinear equations. Equa

tion solvers, however, are very difficult to implement, and even harder to modify, and tend to
be slow. Some equation solving algorithms, such as the one discussed in section 2.1. 7, are as

fast as local propagation and have been used in constraint languages, but they are limited in

power. Equation solving could be used for compilation, but this has never been done.

None of the constraint satisfaction techniques discussed above are general purpose, in

the sense that they can be used to compute arbitrary computable functions. This has limited

constraint languages to specific applications. Some constraint languages implemented on top

of extensible languages (such as LISP or Small talk) have made the facilities of the implemen

tation language available to the user, but these facilities have not been well integrated in

with the constraint satisfaction mechanism.

Of the constraint satisfaction techniques discussed above, only local propagation and

graph transformation allow the problem solving rules to be separated from the control

mechanism. Separating the rules from the control mechanism is important for several rea

sons. If new rules are easy to add, then the constraint language is extensible- allowing new

datatypes and new constraints to be defined without having to modify the control mechan

ism. The ability to define new data types and functions is an important component of modern

general-purpose programming languages. Similar functionality would be required of a

general-purpose constraint language. Separating the rules from the control mechanism also

opens up the possibility that a constraint language could be constructed mechanically by a

constraint language generator, much like parsers are constructed mechanically from gram

mar rules. If this were possible, it would make constraint satisfaction systems much easier

to implement and modify.

What is needed is a constraint satisfaction technique that is fast, can be used for compi

lation, and can solve constraint programs containing cycles. It should be extensible, allowing

new types of objects and new types of constraints between these objects to be defined. In

order to solve these new constraints, this technique must be general (able to compute any

computable function). The user should be able to describe a constraint problem, using data

types and constraints appropriate to the problem, and work with the constraint system, by

giving it rules for solving sub-problems, until the entire problem is solved.

2. Constraint Satisfaction 41

Chapter 3 Augmented Term Rewriting

Augmented term rewriting is a new inference mechanism that is an extension of

standard term rewriting using rewrite rules. Augmented term rewriting adds a name space

to standard term rewriting that allows the single assignment of values to variables. It also

allows these variables to have types, and to be organized into a hierarchy. These extensions

make augmented term rewriting expressive enough so that it can be used for general con

straint satisfaction, while retaining most of the advantages of standard term rewriting.

3.1 Term Rewriting

Term rewriting is the application of a set of rewrite rules to an expression to

transform it into another expression [Bundy 83]. The expression to be rewritten is called the

subject expression. Each rewrite rule is an ordered pair of e.xpressions, which we will

write as:

head { body }

In the literature, rewrite rules have been written as equations "lhs = rhs", and term rewrit

ing called equational programming [O'Donnell 85]. The left hand side Ohs) of these equa•

tions corresponds to the head of our rewrite rules, and the right hand side (rhs) to the bcdy.

To apply a set of rewrite rules R to a subject expression E, we find a subexpression S of

E that matches the head of a rule Rk in R The expressions (head and bcdy) of a rewrite rule

may contain variables. The head of a rule~ matches an expressionS if there is a substitu

tion function <p for the variables in the head of Rk that make it identical to S. When such a

match is found, the same substitution function <p is applied to the bcdy of Rk and the result

ing expression replaces S in E to produce a new subject expression. This is called instan

tiating the rule.

For example, the head of the rule:

X+O{X}

where X is a variable, matches a subexpression of

((5-3) + 0) X 2

namely the subexpression ((5 - 3) + 0) where <p substitutes 5-3 for X. The same substi

tution function is applied to the bcdy of the rule, and the resulting expression replaced as a

subexpression of the original expression. The new subject expression is:

3. Rewriting 42

(5 - 3) X 2

Rewriting is done repeatedly, producing a (possibly infinite) sequence of subject expressions:

Because rewrite rules are often used to reduce expressions to a simpler form, each individual

rewriting is called a reduction, and a subexpression S that matches the head of a rule is

called a redex (reducible expression). If a subject expression does not contain any red exes,

it is irreducible. The sequence ofrewritings terminates if some subject expression En is

irreducible.

In order for term rewriting to be meaningful there must be some similarity relation

between the head and body of the rules. This relation is typically equslity, as in the example

above, but it could be any transitive relation, such as implication, or double implication (if

and only if). Thus, while rules such as 1 { 2 } are perfectly legal and there is nothing to

prevent a user from writing such a rule, they are not very meaningful.

If a set of rewrite rules obeys some similarity relation then these rules can be used to

make statements about expressions. For example, by ignoring the fact that rules are directed

pairs of expressions and allowing rewritings with body {head} as well as head {body} , if

some expression Ej can be rewritten into another expression E:k, then Ej and Ek are said to be

similar with respect to the set of rules. If the similarity relation of the set of rules is transi

tive and symmetric, then Ej and Ek are also related by the similarity relation. For example,

if the similarity relation is equality, then Ej and E:k are equal.

Notice that when matching the head of a rule to a redex, the substitution function q>

was only applied to the head of the rule, and not to the redex (as in general unification

[Clocksin 81), where the substitution function q> must be applied to both). In order to be able

to unify a redex with another expression without applying a substitution function to it, we

must insure that the subject expression does not contain any variables. We do this by requir

ing that the subject expression be initially variable-free. We also restrict the rewrite rules so

that a variable that appears in the body of a rule must also appear in the head. For example,

the rule:

o{oxx}

is illegal. This guarantees that we will not introduce any variables into the subject expres

sion. Since the subject expression cannot contain any variables, the substitution function (q>)

need not be applied to any redexes in the subject expression. These restrictions allow a

greatly simplified form of unification called one-way matching.

3. Rewriting 43

If the additional restriction is made that each variable in the head of a rule is distinct,

then each variable can match a subexpression without regard to the value or structure of the

subexpression. This restriction allows an even simpler form of unification called pattern

matching to be used to match the heads of rules (called patterns) against redexes.

For an expression E, there may be more than one rule whose head matches a subex

pression of E. When there is more than one redex, there is a choice as to which one to

rewrite first. The order in which we perform rewrites might cause a different expression to

be produced, or might even cause the rewriting to fail to terminate. We can solve this prob

lem by observing the following restrictions on rules.

• If the head of two different rules matches the same expression, then the body of these

rules must be similar. For example, the rules:

f (X, 1) { 1)

f (0, X) { 0)

are illegal since f (0, 1) could be replaced by either 0 or 1. In the case where the similarity

relation of a set of rules is transitive, this implies no added restriction since the two rules

above (whose similarity relation is equality) would imply that 1 and 0 are equal.

• When the head of two (not necessarily different) rules match two different subexpres

sions, the two subexpressions must not overlap (match different but non-disjoint parts of

the same subexpression). For example, the rules:

f(g(X)) { p }

g (h (X)) { q)

are illegal, since they overlap in f (g (h (0))). This restriction keeps the sequence ofrewrit

ings from diverging. If these two rules were allowed, then the expression f (g (h (0))) could

be rewritten into either p or f (q) .

O'Donnell showed that with these restrictions, any order of rewriting that eventually

rewrites all outermost redexes will be confluent- it will produce the same irreducible

expression from a given expression, if it exists [O'Donnell 77]. If the similarity relation of a

set of rules is transitive then the irreducible expression resulting from rewriting an expres

sion is called its normal form. If an expression has no normal form (the rewritings do not

terminate), then its normal form is undefined (equal to bottom). If the similarity relation is

equality, then the original expression is equal to bottom. The restriction on the order of

evaluation that all outermost redexes be eventually rewritten means that our term rewriting

system is not bottom preserving. For example, the rules:

3. Rewrijing 44

g(X) { g(g(X)) }

f (X, 0) { 0 }

make the expression g (0) equal to bottom, but the expression f (g (0) , 0) equal to 0.

From now on, we will assume (unless otherwise noted) that rule sets meet all of the res

trictions above, and that their similarity relation is equality (including logical equivalence).

3.1.1 Algebra and Arithmetic

One common application of rewrite rules is to reduce expressions to normal form using

rules from some algebra Typical rules might be:

- (- (X)) { X }

XX1{X}
xxo{o}
X+O{x}

where - is the Boolean "not" operator. We can also use rewrite rules to do numeric computa

tions. For example, if we take the last two rules above, and add the following two recursive

rules, they form the definitions of the integer arithmetic functions addition and multiplica

tion, where s (X) represents the integer successor of x.

X + s (Y) { s (X + Y) }

XXs(Y) {XXY+X}

Of course, an implementation of an algebraic simplification system using term rewriting

would not actually perform arithmetic this way. Instead, for efficiency, we would use the

machine language instructions for addition and multiplication.

One limitation of using the recursive definition above is that it does not let us model

arithmetic exception conditions. Instead, let us define arithmetic using rules such as:

1+1{2}
1+2{3}

and so on ...

There would be a very large number of these rules, so we would never actually write them all

out. As before, we would use machine instructions, but now we can model arithmetic excep

tion conditions. For example, we do not include a rule for a division by zero, which means

that the term n/ 0 is in normal form. This allows us to deal with infinities in a uniform

manner, including applying transcendental functions to them. For example, we can define a

rule to rewrite the arctangent ofn/0 to rc/2 for positive n. Any other division by zero would

remain in normal form, or we can explicitly define a rule that rewrites a division by zero into

an error message.

3. Rewrning 45

Similarly, since we are really using machine language instructions to perform arith

metic, we do not include rules to compute the sum of two numbers that would cause a

machine overflow. This allows us to define additional rules (perhaps recursively as above)

that perform arithmetic on multiples of the biggest number our machine instructions can

handle. Thus the efficient machine instructions can be used for normal arithmetic, but

recursively defined rules for arithmetic on big numbers would be used automatically if the

machine instruction would have overflowed.

3.1.2 The Purdue Equational Interpreter

The Purdue Equational Interpreter is a term rewriting system for rules whose similar

ity relation is equality. This language can be used directly as a programming language, and

has also been used to implement interpreters for other languages, including LISP and Lucid.

It shares with other term rewriting systems a simple, declarative semantics based upon logi

cal consequences of equational theories.

The equational interpreter uses a fast pattern matching algorithm whose speed is

linear in the size of the subject expression and independent of the number of rules. In order

to use this algorithm we must place an additional restriction on our rules, called strict left

sequentiality [Hoffmann 85] (also discussed in section 8.1.1). There is a way to remove this

restriction which still results in the same time complexity for rules that are strictly left

sequential, but which is of higher order for rules that are not left-sequential.

A program in this language is of the form:

Symbols

symdes1 ;

syrndes
0

•

For all var1, var2, ...

eqnl;

The symbol descriptors list the symbols of the language to be defined and give their arity.

Symbols of arity zero are constants, and symbols of higher arity are operators. Variables are

explicitly declared, and the rules are equations of the form lhs = rhs.

An interesting feature of the equational interpreter is that the expressions used in the

equations have no fixed syntax. The programmer can choose between several predefined syn

taxes, including a stendard mathematical functional prefix notation and a USP-style nota

tion, or even create a new one.

3. Rewriting 46

In order to avoid having to list out all numeric constants there are a number of

predefined symbol classes, including integer_numerals, truth_ values, character_strings, and

atomic_symbols. These symbol classes have corresponding predefined classes of equations

that implement the standard operations on them. The only operation on atomic_symbols is a

test for equality.

Even with the predefined equations there will be cases where the set of equations the

user wants is much too large to type in. To get around this problem, the equational inter

preter allows qualifications on the syntactic class of a symbol. For example, a predicate to

indicate whether an object is an atom (as opposed to a list constructed using cons) could be

defined as:

For all x, y :
atom (cons(x, y)) =false;
atom(x) = true where x is either

in atomic_symbols
or in integer_nurnerals.

Unfortunately this feature is limited to the predefined symbol classes. It would be desirable

to be able to define new classes of symbols so a single equation could operate on all symbols of

that class, instead of having to use a separate equation for each one. For example, we could

define a new symbol class color, whose elements are: red, green, yellow, blue, and so on.

A powerful feature of the equational interpreter that is a consequence of term rewriting

is its ability to define and use infinite data structures, which is similar to the use of non-strict

operators in USP. The following example [from O'Donnell 85], is in the equational inter

preter's LISP.M notation where function application is denoted by f:.:nc::ic:: [argl; a:::g2],

and (a .b) is a special notation for the list constructor cons [a;b]. It defines the nullary

function primes that returns an infinite list of all the prime numbers.

Symbols
/* list manipulation, logical, and arithmetic cpe=at~rs */

cons: 2;
nil: 0;
first, tail: 1;
firstn: 2;
cond: 3;
add, multiply, modulo, equ, less: 2;
/* operators for prime sieve *I
intlist: 1;
sieve: 2;
factor: 2;
primes: 0;
include integer_nurnerals, truth values.

3. Rewrfting 47

For all i, j, q, r:
/* return the head of a list */
first[(i . q)) = i;
/* return the tail of a list */
tail [(i . q) J = q;

I* return the first i elements of a list */
firstn[i; q] =cond[equ[±; 0]; ();

(first [q] . firstn [subtract [i; 1]; tail (q]])] ;

/* standard conditional */
cond[true; i; j] = i; cond[false; i; j] = j;
include addint, multint, modint, equint, lessint;
/* generate infinite list of integers beginning with i */
intlist (i] = (i . intlist [add[i; 1]]) ;

I* sieve[p; r] is all p that are not multiples of any r */
sieve[(i . q); r] = cond[factor[i; r];

sieve [q; r]; (i . sieve [q; r])] ;
/* factor[i; r} is true if r contains a factor of i */
factor[i; (j . r)] = cond[less [i; multiply[j; j]] ; false;

cond[equ[modulo(i; j]; 0]; true; factor[i; r]]];
I* primes[1 is the infinite list of prime numbers *I
primes [] = (2 . sieve [intlist [3]; primes[]]) .

This example also shows how to define rules for conditionals and list manipulation operators.

The actual primes program consists of the last three rules.

The equational interpreter is based upon equational logic, which is less expressive than

logics such as the Horn clause logic used by Pro log. The advantage of using equational logic

is that programs can be specified purely declaratively. Interpreters for Prolog cannot find all

logical consequences of a program, or waste time searching through irrelevant branches of a

search tree, unless control mechanisms such as the cut operator are used. Unfortunately,

these control mechanisms give Prolog a procedural semantics. The equational interpreter

will "always discover all of the logical consequences of a program, and avoid searching

irrelevant ones except in cases that inherently require parallel computation" [O'Donnell 85,

p. 3].

3.2 Augmented Term Rewriting

While term rewriting systems based on equational logic can be used for algebraic

simplification, they are not expressive enough to directly simplify simultaneous equations.

In order to use term rewriting as a constraint satisfaction mechanism that can handle gen

eral constraint programs (including programs containing cycles), a more expressive logical

basis is required. It was also required that the declarative semantics of constraint languages

be retained, so the logical basis chosen would have to be able to be implemented efficiently

without the use of any procedural control mechanisms.

3. Rewrijing 48

For these reasons I decided to start with term rewriting based upon equational logic,

and augment it to make it expressive enough to handle more general constraint programs. A

prime consideration was that these extensions would not destroy the non-procedural seman

tics of term rewriting. In the remainder of this chapter, we will assume that we have a stan

dard term rewriting system with a set of rules to perform algebraic simplifications. We will

then augment this system so that it can handle simultaneous equations.

Since term rewriting systems perform rewritings on a single subject expression, and

simultaneous equations are represented as a set of equations, we need some way to treat a

set of equations as a single expression. The solution to this problem is to treat all symbols in

the language (including the equals sign) as operators. An interesting benefit of treating the

equals sign as an operator is that we can now use it "both ways". Consider the addition

operator(+). If the value of the expression:

X + 4

is known to be 7, then value of x can be deduced to be 3. Or, instead, if it is known that the

value ofx is 12, then the value of the expression above can be deduced to be 16. Likewise, we

treat the equals sign as a Boolean valued operator. Consequently, if the value of the expres

sion:

X = 4

is true, then the value ofx can be deduced to be 4. Or, instead, if the value ofx is known to

be 12, then we can deduce that the value of the expression is false. Thus we can use the

equals sign operator either to assert that two values are equal, or to ask if two values are

equal.

A problem occurs because we have no way to indicate the value of a sub expression

involving the equals sign operator. If we use another equals sign, such as

(x = 4) = true

we still need a way to express the value of the second equals sign (and so on, ad infinitum).

We solve this problem by introducing the semicolon operator (;). By convention, the right

associative semicolon operator is used to assert that its left argument is true; its value is the

value of its right argument. For example, if we want to solve the following two simultaneous

equations for the value of y:

x=y+5

x=yx2

we would ask the system for the value of the following expression:

3. Rewrijing 49

X = y + 5 ; X = y X 2 ; y

The semicolon is right associative, and has lower precedence than any other operator, so this

is parsed as:

(x = (y + 5)) ; ((x = (y X 2)) ; y)

This expression can be read as "what is the value of y, given that x = y + 5, and x = y x 2".

Note that the order of the two equations is not important.

To our algebraic simplification rules we will also need to add a few rules for equals sign

and semicolon. For example, the semicolon operator has a left identity of true.

true ; X { X }

Note that the semicolon operator must have a right argument, so if we simply want to assert

something we still must supply a (dummy) right argument. If this extra verbiage is undesir·

able, we can add a rule to make it unnecessary:

A ; { A ; true }

The unary postfix semicolon operator asserts its left (only) argument, by rewriting it to an

infix semicolon operator, with a right argument of true.

Note that in the discussion above we have been talking about the equals sign and semi

colon as if they had some iD.trinsic meaning. These meanings are only conventions, of course,

and we can define rules to give any meaning to any operator we please. It would be very

confusing to users, however, if the standard conventions were not followed. The point is that

the equals sign and semicolon are no different from any other operator, including the plus

sign(+), or even the primes operator defined in the last section.

The semicolon operator is similar to the "where" clause used in some equational

languages [Jayaraman 86]. For example, we could rewrite the above example as:

(y where

X y + 5
& X = y X 2)

The user is free to add any desired syntax; adding "where" clauses only requires a single rule:

V where E { E ; V }

3.2.1 Binding Values to Atoms

The major extension we will make to term rewriting is to allow a limited form of non

local side-effects - the binding of a value to an atom. First, we must distinguish some atoms

as bindable. Using the conventions of traditional languages, we make names such as x or

3. Rewrijing 50

height bindable atoms, while nonbindable atoms are strings (enclosed in double quotes) and

operators. The numeric constants and the constant atoms such as true, false, and nil, are

considered nullary operators.

Binding is done with a special infix operator is, whose left argument must be a bind

able atom, and whose right argument is an arbitrary expression. The is operator rewrites to

the constant true, and also binds its right argument as the value of its left argument. This

binding has a nonlocal side-effect in that all other occurrences in the subject expression of

the newly bound atom name will be replaced by the atom's value. The only restriction is that

we must never try to bind another value to an already bound atom, so that bindable atoms

will obey single assignment semantics.

The ability to bind values to atoms allows us to solve simultaneous equations. For

example, consider again the subject expression for the simultaneous equations from the pre

vious section:

x=y+5;x=yX2 y

We can rewrite the first equation to:

x is y + 5

which then rewrites to true, and binds the value y + 5 to x. We now replace every instance

of the atom x withy+ 5, yielding the following subject expression:

true ; y + 5 = y X 2 ; y

The remaining equation can now be simplified using standard algebraic simplification rules

and then solved (using the is operator) for the value of y. The subject expression is now:

true ; true ; 5

The nullary true operators are then rewritten away using the rule introduced in the last

section, leaving the constant 5, which is the desired value of y.

An alternative way to visualize binding that ties this concept in tighter with term

rewriting is to treat the binding of a value to an atom as equivalent to introducing a new

rewrite rule to the system. For example, in the example above, the value y + 5 was bound to

x. This can be thought of as adding the rule:

x{y+5}

to the set of rewrite rules, where xis treated as an atom (not as a variable) by the pattern

matcher. These added rules must obey the same restrictions as the existing rules. For exam

ple, their heads cannot overlap, which prohibits binding two different values to the same

atom name. The added rules must also have the same similarity relation as the existing

3. Rewrijing 51

rules, in this case, equality. We guarantee this by only creating expressions containing the

is operator from equations asserted with a semicolon.

A standard term rewriting system has only a single type of redex- those subexpres

sions that match the head of some rule. Adding binding to a term rewriting system means

that we now have three possible types of redexes:

• Those subexpressions whose root operator is the is operator. These redexes are rewrit

ten to the constant true, and have the side effect of binding a value to an atom.

• Those atoms that have been bound (that match one of the added rules). These redexes

rewrite to the (bound) value of the atom.

• The normal red exes (from standard term rewriting) that match the head of some rule.

If we treat binding as adding rules, however, we must place a restriction on the order of

evaluating our rules. Rules introduced by the is operator (the second type, above) must be

evaluated before other rules, in particular before we introduce any new instances of the is

operator. For example, if x has been bound the value y + 5, and the subject expression con

tains the expression:

X = 8 ; y

then two different rules can match: the added rule for the value of x, and the rule that

rewrites the expression above to

x is 8 ; y

This latter case is illegal since it would try to bind a new value to x. The atom x must be

replaced by its value, resulting in the expression

and ultimately yielding the value 3 for y.

Of course, we would never implement binding as if new rules were added to the pattern

matcher; the full power of a pattern matcher is hardly required to match a single atom name.

A simpler implementation would be to keep pointers from each atom name to all occurrences

of it in the subject expression, and when a value is bound to an atom, simply replace all

occurrences of it by its value before doin-g any more rule reductions. Nevertheless, we will

often discuss the semantics of binding as if new rules were introduced, and, as above, talk

about the properties of the added rules.

We will often call bindable atoms variables, since they behave similarly to variables in

traditional programming languages, but it is important to emphasize that they are not vari

ables to the term rewriting system. When the use of the term variable could be confusing we

3. Rewrning 52

will differentiate between the two uses by calling variables to the term rewriting system

parameter variables (because they are bound as parameters during pattern matching),

and call bindable atoms in the subject expression free variables (because they can have a

value bound to them by the is operator). Note that these are not the same as free variables

in the Lambda Calculus. Furthermore, in this chapter we will continue to distinguish

parameter variables from free variables by using upper case letters for parameter variables,

as is common for languages such as Prolog.

Free variables in Bertrand are superficially similar to logical variables in logic program

ming languages such as Pro log, because values are bound to them as a result of a confluence

of constraints. In Prolog this confluence is the result of unification. In augmented term

rewriting, however, free variables are treated as atoms to the rewriter; only parameter vari

ables participate in matching and rewriting.

By making this simple addition to term rewriting we have made it expressive enough to

solve simultaneous equations. In fact, in section 6.1 we will implement the simultaneous

equation solver discussed in section 2.1. 7. We could then use these rules as an equation solv

ing constraint system.

3.2.2 Name Spaces

Now that atoms can have values bound to them, they resemble variables in other pro

gramming languages. Thus far, however, the names of these "variables" form a flat name

space; in essence they are all global variables. A related problem is that the only objects in

our language are primitives such as numbers and Booleans. We want to be able to define

structured objects that contain sub-objects, like the record data types of Pascal.

In traditional languages these two problems are treated separately, and are solved by

introducing two different hierarchies, the hierarchy of variable name scoping for procedures,

and the hierarchy of structured object names. In constraint languages there is no such

strong distinction between procedures and data, so we would like to solve both of these prob

lems with the same mechanism. Happily, there is another extension to term rewriting that

can solve these problems.

In order to model structured objects in a term rewriting system, we are going to extend

the semantics of rules to allow them to define classes of structured objects. When such an

object constructing rule is reduced, it creates an instance of that class. The names of these

structured objects and their sub-objects are organized (as is typical) into a hierarchical name

space. We are already using rules as procedures (in the same way that Prolog clauses resem

ble procedures), so sub-objects are also like local variables of procedures. Thus, the same

(simple and general) mechanism will be used to add structure to both programs and data.

3. Rewriting 53

3.2.2.1 Labels

First we will tackle the problem of all variable names being global. The problem is that

the same name in two different rule invocations can interfere with each other. For example:

average(A,B) { 2 x mean= A+ 8 ; mean }

can be used to find the average of two numbers, say 3 and 9, by the following sequence of

reductions:

average (3, 9)
2 x mean 3 + 9 ; mean

2 x mean = 12 ; mean
mean = 6 ; mean
mean is 6 ; mean

true ; 6
6

If we use the average rule more than once, as in:

average (3, 9) + average (10, 20)

both invocations of this rule will introduce instances ofthe variable mean, which will inter

fere with each other and, in this case, cause a contradiction (note that this is not a problem

for parameter variables such as A and 8 in the head of the rule).

To solve this problem, we need a way to keep the free variables of each invocation

separate. We do this using labels. A label is a bindable atom (free variable) name followed

by a colon, and is used to label a subexpression of the subject expression. A label is treated

as an implied (and optional) parameter to every rule in the term rewriting system. When a

rule is reduced, the label name is prepended (with a period) to every free variable name in

the body of the rule. For example, the rule:

average (A, 8) { 2 x mean = A + 8 mean }

implies an additional rule with a label:

Label : average(A,B) { 2 X Label.mean A + 8 Label.mean }

Thus, if this rule is used to match the expression:

p: average(3,9)

the rewriting produces:

2 x p.mean = 3 + 9 ; p.mean

Different invocations of the same rule can be given different labels, which will keep the free

variables from interfering with each other. If a label is omitted, one is assumed. For the

3. RewrHing 54

purposes of this discussion, we will give these assumed labels names of the form in, where n

is a unique positive integer. Consequently, the expression:

average(3,9) + average(l0,20)

rewrites to:

(2 x tl.mean = 3 + 9 ; fl.mean) + (2 x t2.mean 10 + 20 t2 .mean)

which eventually rewrites to the correct answer, 21.

Note that if we consider a period to be an alphabetic character, the names constructed

by prepending the free variable names with (possibly generated) label names are still global

variables. We get the effect oflocal variables by using unique label names, but we can still

share variables by using the same label.

3.2.2.2 Defining New Datatypes

As mentioned above, the same solution allows us to create structured objects using

rules. We will use labels to name instances of these objects. An object constructing rule

defines a class of objects; when the head of this rule matches a subexpression of the subject

expression, it creates an instance of this class. If the matched subexpression is labeled, then

the label becomes the name of the instance.

We can also create instances of primitive objects (such as numbers) using rules. These

objects are like scalar variables in conventional languages. For example, if aNumber is a nul

lary operator, then:

aNumber { true }

will match a (trivial) subexpression consisting of the nullary operator aNumber and rewrite it

to the nullary constant true. For the purpose of discussion, we will consider this rule to be a

primitive object constructor that creates an object of type "rational number" as a side-effect

(we will show how this is actually done in section 3.2.3). For example, the labeled subexpres

sion:

n: aNumber

when reduced, creates an object named n (in the name space) that is an instance of a rational

number. The side-effect of creating a number does not affect normal rule rewriting- the

expression above is still rewritten to the constant true.

Now that we have at least one primitive object constructor, we can define other objects

using the primitives. For example, if aPoint is a nullary operator, then the rule:

3. Rewriting 55

aPoint { x: aNumber ; y: aNumber ; true }

when it matches a redex, creates an object with two sub-objects, both of which are numbers.

This object can be thought of as a point, although we do not yet have a way to name types

(type names will be introduced in section 3.2.3). An instance of this point-like object named

pl can be created by placing the following labeled subexpression in the subject expression:

pl: aPoint

As above, a useful operational interpretation of the name space hierarchy is that it is

implemented by prepending the label of a redex to the bindable atom names (including

labels) inside the body of the rule when the rule is instantiated. For example, the labeled

redex above:

pl: aPoint

can be thought of as rewriting to:

pl.x: aNumber ; pl.y: aNumber ; true

where the redex label pl is prepended onto the bindable atom names (x andy) in the body of

the matched rule. As mentioned above, object names form a hierarchical name space like the

name space for record data types in Pascal. For example, the sub-objects of the object pl are

pl.xandpl.y.

User defined objects can be incorporated in other objects, building new structures

hierarchically on top of others. For example, the following rule will create an object that can

be thought of as a line segment.

aLine { p: aPoint ; q: aPoint ; true }

If our subject expression contains the redex:

linel: aLine

then a single line will be inserted in the name space. This line will have two points as sub

objects, and each point will have two numbers.

3. Rewr~ing 56

lines points

linel
linel.p

lineLq

numbers

linel.p.x
linel.p .y

linel.q.x
linel.q.y

In section 3.1.1 we used rules to define operations on the primitive datstypes, and now

we can use rules to define new operations on our new datstypes. For example, horiz is a

prefix operator that is used to constrain a line to be horizontsl.

horiz L { L.p.y = L.q.y }

The horiz operator applied to a line, say linel (created by the aLine operator above):

horiz linel ;

rewrites to:

linel.p.y = linel.q.y ;

an assertion that they coordinate of the line's beginning point (p) is equal to they coordinate

of the line's ending point (q). This equation is an assertion because it is the left argument of

a semicolon operator. If used without a semicolon, the same horiz operator could be used to

ask if a line is horizontsl.

In order to clarifY how these rules work, we will now list the steps that an augmented

term rewriting system might go through in rewriting the following subject expression:

linel: aLine ; horiz linel ;

The redex about to be reduced will be shown in itslics. In this example, we always reduce the

leftmost red ex, but any other order would be just as valid. For simplicity, redexes of the form

true ;

are not shown; they are rewritten away immediately as they are created.

3. Rewriting 57

linel: aLine; horiz linel;
linel.p: aPoint; linel.q: aPoint; horiz linel;
linel.p.x: aNumber; linel.p.y: aNumber; linel.q: aPoint; horiz linel;
linel.p.y: aNumber; linel.q: aPoint; horiz linel;
linel.q: aPoint; horiz linel;
linel.q.x: aNumber; linel.q.y: aNumber; horiz linel;
linel.q.y: aNumber; horiz linel;
horiz linel;
linel.p.y ~ linel.q.y;

At this point we are left with a line, two points, and four numbers, and an assertion that two

of the numbers are equal. The is operator from section 3.2.1 could now be used to solve this

asserted equation.

3.2.2.3 Constraints on Datatypes

The astute reader may have noticed that all of our object definition rules have ended

with the constant true. This trailing constant could simply be omitted by replacing the last

infix semicolon operator in the rule with a postfix semicolon operator, but we put it there

anyway (as a matter of style) to indicate that there is something else that can go in these

rules. So far all of our objects have only consisted of data, with no constraints. But object

constructing rules can have constraints. For example, if we change the rule that defines a

point to:

aPoint2 { x: aNumber ; y: aNumber ; y ~ 0 }

then points created with this rule would be constrained to lie on the x axis. The constant

true at the end of an object constructing rule can be thought of as meaning that the (nonex

istent) constraints on that object are triviaily satisfied.

How do these constraints get enforced? In the aLine rule:

aLine { p: aPoint ; q: aPoint ; true }

notice that the aPoint operators are foilowed by semicolons. By following a subexpression

by a semicolon, we are asserting it. The redex:

p: aPoint , ...

gets rewritten to:

(p.x: aNumber; p.y: aNumber; true) ; ...

where the semicolon following the closing parenthesis is the same semicolon that foilowed

the aPoint operator. Since the value of the right associative semicolon operator is the value

of its right argument, the value of the expression in parenthesis is just true. Consequently

the expression above is equivalent to:

3. RewrHing 58

p.x: aNumber ; p.y: aNumber ; true ;

and the rule:

true ; A { A }

eliminates the redundant expression, leaving:

p.x: aNumber ; p.y: aNumber ;

If instead, the rule for aPoint2 were used instead of aPoint, then the subject expression

would end up as:

p.x: aNumber; p.y: aNumber; p.y = 0 ; ...

and the constraint on the y value of the point would be asserted.

We defined an operator horiz above to constrain lines to be horizontal. Instead of

creating some lines, and then constraining them to be horizontal, we could combine the con

straint into the object constructing rule:

aHorizLine { p: aPoint ; q: aPoint ; p.y = q.y }

Both of the methods above are exactly equivalent to adding the same constraint to each line

object that we wanted to be horizontal in the subject expression:

linel: aLine ; linel.p.y = linel.q.y ;

but, using the rules defined above, it is much easier to write, and more meaningful to read,

using either of the following two forms:

linel: aHorizLine ;
linel: aLine ; horiz linel ;

These two forms also have the advantage of being more abstract- the user does not need to

know the internal structure of a line in order to constrain it to be horizontal. If lines were

defined using polar coordinates, then the rule to make a line horizontal might be defined as:

horiz L { L.theta = 0 }

Thus we can make the internal definition of data types be local to the rules that define and

operate on those data types, instead of forcing the user to be concerned with these details.

As discussed above, a rule containing sub-objects can match a redex that is not labeled.

In this case, its sub-objects cannot be accessed (from outside the rule) because they cannot be

named. For example, if the rule:

average(A,B) { mean: aNumber ; mean-A B-:nean mean }

3. Rewrning 59

is matched by a redex that is not labeled, then the variable mean cannot be named from out

side the rule. In this case the object mean is acting as a local variable.

3.2.2.4 Variables and Declarations

Because of their similarity to local variables in traditional programming languages, we

will call variable names (bindable atoms such as mean) in the body of a rule local variables.

When a rule containing local variables is instantiated (whether the redex is labeled or not)

then the local variables become free variables (suitable for binding). Local variables and

free variables are really the same thing (they are both bindable atom names), the only differ

ence is whether they are in the body of a rule or instantiated in the subject expression. We

distinguish them mainly because it is more natural to refer to the "local variables of a rule",

or to the "free variables in a subject expression".

Note that in the last rule for the average operator we declared the variable mean to be

a number. In earlier rules, before we introduced labels and user defined objects, all variables

were numbers, so there was no need for declarations. We could make declarations optional

for numbers (as in some existing computer languages), but instead, from now on we will

require all local variables (including numbers) to be "declared" by using them as the label of

an expression that creates an object. This will also help us distinguish names used as opera

tors, such as the horiz operator above, from names used as local variables, since all local

variables must be declared. In addition, this document will always indicate when an atom

name is being used as an operator, and give its arity (and, if important, its precedence).

Primitive objects, such as numbers, strings, and Booleans, can have values bound to

them by the is operator. Note that user defined objects, such as the points and lines defined

above, are typically not subject to having values bound to them with the is operator.

Instead, these structured objects have values bound by binding values to their sub-objects.

For example, equality over points is defined with the rule:

p = q { p.x=q.x & p.y=q.y)

which says that two points are equal if their x andy components are both equal. U nfor

tunately, since this rule does not specify that p and q have to be points, the system could also

attempt to apply this rule to other objects, such as lines, or even numbers! In order to solve

this problem we need some way to distinguish objects of different types from each other.

Other languages solve this problem by prohibiting operator overloading, and so require the

user to use different operator names (procedure names) for each new datatype. As shown in

the next section, however, operator overloading is essential in a term rewriting system.

3. Rewriting 60

3.2.3 Types

Types are a general mechanism that replaces the need for syntactic qualifications on

the heads of rules, such as the wlu!re clause in the Purdue Equational Interpreter. The

where clause was used as a guard on a rule head, so the (parameter) variables of a rule would

only match objects of the correct type. For example, we might want a successor operator that

only works on integers. Using the syntax of the equational interpreter:

succ(N) = N + 1 where N is in integer_numerals

The where clause acts as a guard on the type ofN.

The same mechanism is available for an augmented term rewriting system, but with a

different syntax. To distinguish type names from other atom names, types will always begin

with a single quote('). If we assume for the moment that there exists a primitive type of

'integer, then the example above would look like:

succ N'integer { N + 1 }

The type name following a parameter variable, such as the variable N above, is called a

guard.

We would also like to extend the same mechanism to apply to US€r defined classes of

objects. For example, we would like the horiz operator above to only match parameters that

are lines, so that we do not try to make some other data type horizontal by mistake.

horiz L'line { L.p.y = L.q.y }

All that remains is to be able to attach a type name to an object created by a rule. We do this

by placing a type name after an object constructing rule. For example, the aLine and

aPoint rules become:

aLine { p: aPoint ; q: aPoint; true} 'line
aPoint { x: aNumber ; y: aNumber ; true } 'point

Wben the aPoint rule is reduced (for example in the expression p: aPoint from the body of

the aLine rule), the label of the redex (p) is inserted into the name space and given the type

'point. A type name placed after a rule body is called a tag. It should be noted that the

rule above does not define a datatype, it is merely a typed object constructor, and there could

be (and often will be) many different rules to create objects ofthe same type.

Another example of a typed object constructor is the rule to create a rational number:

aNumber { true } 'number

3. Rewriting 61

In section 3.2.2.2 this rule was treated as a special primitive object constructor, but with

types, this rule is no different from any other typed object constructor. When it matches a

labeled redex, it "creates" an object (in the name space) of type 'number, which can be used

in arithmetic expressions and have arithmetic expressions bound to it as its value by the is

operator. We make sure that the is operator only binds values to to objects of the correct

type by using guards on its arguments, as in any rule.

In the last section, we noted that user defined types of objects, such as points, are usu

ally not bound values with the is operator. This difference is not due to any special treat

ment by the language interpreter. What we have been calling user defined objects are simply

structured objects, so we naturally define equality on them with regards to equality of their

sub-objects, and do not bind values to them directly. What we have been calling primitive

objects are simply objects with no sub-objects, so equality must be defined directly. Unlike

most languages, the user is free to introduce new types of"primitive" objects (in the same

way that numbers were defined, above), but they are primitive only the sense that they are

atomic.

Type names are organized into a subtype/supertype hierarchy, much like superclasses

in object oriented languages such as Smalltalk [Goldberg 83]. A type name can (optionally)

be given a single supertype Chow this is done is described in the next section). If type ' s is a

supertype of type 't, then 'tis a subtype of 's, and a guard of type 's v.ill match any

object of type ' s or type 't. If type 't has any subtypes, then any objects of those types

will also match a guard of type 's. Supertypes, like superclasses, are used to organize

specific types into more general types.

For example, if 'vehicle is a supertype of 'bicycle, then a parameter with a guard

to match an object of type 'vehicle will also match an object of type 'bicycle. If there

are rules that match both a type and its supertype, then the more specific rule is used. For

example, we could define an operator allowed_ on_ freeway:

allowed on freeway X'vehicle true }
allowed_on_freeway X'bicycle { false }

and the more specific (second) rule is used for bicycles, but the first rule is used for any other

vehicle.

Supertypes allow special cases to be handled without resorting to a procedural seman

tics, such as trying rules in order as in Pro log. Supertypes can be implemented as a prepro

cessing step. The preprocessor makes a copy of each rule for each subtype, and marks each

copy to distinguish it from the original rule. For example, if 'motorcycle is also a subtype

of 'vehicle, then the rule:

3. Rewriting 62

allowed_on_freeway X'vehicle { true }

is copied to make the following three rules:

allowed_on_freeway x•vehicle { true }
allowed_on_freeway X'rnotorcycle { true }
allowed_on_freeway X'bicycle { true }

(original)
(copy)
(copy)

because 'bicycle and 'motorcycle are subtypes of 'vehicle. Then, when the rule:

allowed_on_freeway X'bicycle { false }

is preprocessed, it conflicts with an existing rule, but the existing rule is a copy, so the copy is

discarded. The result is the following set of rules:

allowed_on_freeway X'vehicle { true
allowed_on_freeway X'rnotorcycle { true
allowed_on_freeway X'bicycle { false }

(original)
(copy)
(original)

The order of the original rules does not matter. If the rule for 'bicycle were preprocessed

first, then, when the rule for 'vehicle was preprocessed, the copy generated for 'bicycle

would conflict with an existing original rule, and, again, the copy would be discarded.

The constant numbers (such as 7 or 42) are treated as a subtype of type 'constant.

Thus, in the rules:

fact N'constant { N * fact(N-1) }
fact 1 { 1 }

the first rule will match any constant, except the constant 1, which is matched by the second

rule. Again, the order of the rules does not matter.

In the examples above, types have mainly been applied to atoms, such as line1, but

some operators, such as the constant numbers, have also behaved as if they were typed.

Actually, types are treated as nullary operators, and typing information, such as supertypes,

can be applied to any operator. For example, if the nullary operators true and false are

subtypes of type 'boolean, we can also make the infix operators> and & be subtypes of

'boolean, so that expressions such as a>O & b>a will be matched by a rule looking for a

'boolean.

Currently, types can have at most one supertype, but can have any number of subtypes.

Multiple supertypes could be allowed, but might cause problems. For example, if 'bicycle

is a subtype of both 'vehicle and 'gift, then the two rules:

allowed_on_freeway X'vehicle { true }
allowed_on_freeway X'gift { false }

3. Rewriting 63

would cause a conflict, since an object of type 'bicycle could match either rule. Of course,

this could simply be detected as two conflicting rules, and prohibited. This solution would

only define the semantics of multiple supertypes in cases where no conflicts are introduced,

and treat all other cases as errors.

Note that our types are not like types in the traditional programming language sense,

they are more like guards on statements. Type checking is done at run time and is mainly

used for overloading operators (but note that operator overloading, as in the factorial exam

ple above, is essential). Bertrand Russell said, "The purpose of type structure is to distin

guish those phrases that denote from those that do not denote." We use types in this way; to

distinguish those rules that have meaning in a particular situation from those that do not.

3.3 Bertrand

Bertrand is a programming language based upon augmented term rewriting that can be

used to build constraint satisfaction systems. This language has been implemented; the

remaining examples in this dissertation have all been run on this implementation. This sec

tion discusses the differences between Bertrand and the language discussed in the preceding

sections.

A minor difference between Bertrand and the language described above is the treat

ment of the subject expression. In term rewriting systems the subject expression is separate

from the rules. In Bertrand, the subject expression is initially a constant, the nullary opera

tor main. The user supplies a (single) rule whose head is the constant main, and whose body

is the subject expression desired by the user. The local variables of the main rule become the

free variables of the subject expression.

Another minor difference is that, in Bertrand, parameter variables are not required to

be upper case. Parameter and local (bindable) variables can always be distinguished from

each other by the fact that local variables can only appear in the body of a rule, while any

parameter variable that occurs in the body must also appear in the head. In addition, local

variables must be declared, by using them as a label in the body of the rule.

Another difference is the order of evaluation. In order to guarantee that an answer is

produced, if it exists, the restriction was made on the order of evaluation of redexes that all

outermost redexes must eventually be rewritten. Unfortunately, this does not guarantee

how long it will take to produce the answer. For example, the rules:

main { f(g(O),O) }

g(X) { g(g(X)) }

f (X, 0) { 0 }

3. Rewriting 64

may validly be rewritten to 0 by applying the second rule one billion times, resulting in the

following subject expression:

f(g(g(g(g(g(g(g(g(...)))))))), 0)

followed by a single application of the third rule. However, on practical machines (with finite

memory) this would result in an error. The undecidability of the halting problem means that

we cannot restrict our rules to prohibit infinite (or arbitrarily large) sequences ofrewritings

without overly restricting the functions that our term rewriting system can compute. In

practice, we must depend upon the user to avoid rules such as the first one above, and so in

actual implementations of Bertrand we often drop the restriction that outermost redexes be

rewritten eventually. This gives us quite a bit of flexibility in choosing our evaluation order.

Evaluation order will be discussed further in the next section (3.3.1).

Bertrand also has some slight differences in the name space hierarchy. The hierarchy

introduced in section 3.2.2 allows access to variables in sub-objects, but not vice versa. Thus

a line linel can refer to a sub-object, linel.p, but a point cannot refer to the line it is con

tained in, or even itself. This type of hierarchy is typically used for structured objects (such

as record data types in Pascal), but is different from the seeping rules typically used for local

variables. In Pascal, a variable name inside a subroutine refers to the variable defined in the

smallest surrounding (possibly global) scope, thus, objects (procedures) are allowed to access

variables in outer objects.

There is nothing inherent in augmented term rewriting that makes one type of name

space preferable over another. We could just have easily allowed dynamic seeping of variable

names, or some other scheme. The scheme chosen, however, has the advantage that it can be

used for both local variable seeping and for naming of sub-objects of structured objects, and is

thus simpler and more general. It also has a resemblance to the name space hierarchy of

hierarchical file systems, as used in most operating systems.

The hierarchy chosen, however, has no global objects, and is very restrictive about what

can be referenced from inside an object. To relax this restrictiveness, in Bertrand an object

was added at the root of the name space hierarchy whose name is a single period("."). The

root object can be referenced from anywhere in the hierarchy, as can its sub-objects, effec

tively making them global objects. For example, if we want a line gline to be global, we

name it . gline, and we can then refer to the x coordinate of its beginning point as

. gline. p. x from inside any rule. This addition allows us to simulate scoping rules such as

those used by the C programming language, where variables are either local or global. This

scheme is also similar to hierarchical file systems that have a root directory1.

1 It would be interesting to see if an interactive programming environment built around Bertrand could take
advantage of this similarity and treat file objects as normal language objects.

3. Rewriting 65

In conventional procedural programming languages, global variables are generally con

sidered bad because their side-effects can be difficult to trace, they can be hidden by local

variables, and they can cause aliasing problems. In Bertrand, all objects (including global

objects) must obey single assignment semantics, so there can be no side-effects or aliasing

effects of any kind. Also, local variables can never hide global variables, since global names

are distinct (they begin with a period). Therefore, none of the traditional problems with glo

bal variables ever arise.

Bertrand also must include a way for the user to define new operators and types. Dif

ferent implementations have handled this in different ways, differing mainly in whether the

operator definitions are mixed in with the rules, or are contained in a separate file (or files).

For each operator the user must supply its print value and its arity (nullary, prefix, postfix,

outfix2, or infix). If the operator is infix, it can either be left or right associative, or non

associative. Except for nullary and outfix operators, each operator must also have a pre

cedence, which is defined as an integer (higher numbers indicate higher precedence). Opera

tors can optionally have a single supertype. Types are defined similarly to operators. They

are assumed to be nullary operators, and can optionally have a single supertype. With the

exception of supertype information, operator and type definitions only affect the parser.

Using a syntax reminiscent of the C preprocessor, here are some typical operator and

type definitions:

toperator + infix binary left associative precedence 600
#operator - left 600
#operator - prefix precedence 900
#operator begin end outfix
ftype 'linear supertype 'expression
#type 'constant supertype 'linear

Any blank delimited word that is not a keyword or a number is assumed to be an operator

name. The keywords are nullary, unary, binary, infix, prefix, postfix, outfix,

matchfix,left,right,non,associative,nonassociative,precedence,andsuper

type. Any and all keywords are optional, and defaults apply. For example:

foperator true

defines a nullary operator true.

Bertrand is normally used in conjunction with one or more libraries of rules. For exam

ple, a library might contain the rules for one or more constraint satisfaction techniques.

Other libraries may contain the basic rules to support some application, such as rules for

doing graphics. Several such libraries are developed in chapters six and seven; see also

2 Absolute value (I a I) is an example of an outfix operator, also sometimes called matc:h.fi:L

3. Rewrning 66

appendix A for the listings of two libraries- an equation solver and a graphics library.

Preprocessor-like statements are also used to include libraries of rules, for example:

#include beep.b

would include the equation solver.

3.3.1 Evaluation Order

Bertrand inherits many characteristics from term rewriting systems, including its abil

ity to define recursive rules. Even though Bertrand uses recursion similarly to other

languages, it is important to realize that there is no procedural interpretation attached to a

recursive definition. For example, consider a factorial function defined as the product of a

list of numbers:

fact N { prod(ints (N)) }
ints 1 { 1 }
ints A' constant { (ints A-1), A }
prod A' constant { A }
prod (A ' B) { (prod A) X (prod B) }

A typical interpreter for a language such as USP or Prolog executes in applicative order, and

so would run the ints rule to completion, producing a list of the first N integers, and then

would pass this list to the prod rule. Bertrand has no such procedural interpretation of

recursion and thus is free to rearrange the order of computation to achieve some goal. A par

tial trace of the steps that Bertrand uses to calculate the factorial of 8 is:

(prod (ints 7-1 , 7)) * (prod 8)

(8X7) X ((prod (ints 6-1)) x (prod 6))

(56X6) X ((prod (ints 5-1)) X (prod 5))

(336X5) x ((prod (ints 4-1)) x (prod 4))

(1680X4) x ((prod (ints 3-1)) X (prod 3))

(6720X3) x ((prod (ints 2-1)) X (prod 2))

40320

In this case, Bertrand automatically set up a producer/consumer relationship from ints

through prod to the ultimate multiplication, unrolling the calculation enough to keep every

thing busy. Because the ints rule produces its list of values backwards, Bertrand used the

commutative and associative laws (expressed as rules) to move the constants to the left so

that they can be multiplied together.

Since Bertrand has no prescribed order of evaluation, an interpreter can choose the

order with a particular goal in mind. The current implementation of Bertrand tries to

minimize the space used by a calculation (constraint programs can sometimes explode), and

so attempts to use a value created by a rule before it invokes the same rule again. The trace

3. Rewrning 67

shown above was executed on a single processor, but it does show how Bertrand exposes

potential pipeline concurrency without any effort on the part of the programmer. An imple

mentation of Bertrand on a parallel processor could assign producers and consumers of a list

of values to separate processors.

3.3.2 Comparison to Profog

A general-purpose language that has some similarities to Bertrand is Prolog [Clocksin

81]. A Pro log program is also a specification that is executable. The relationship between

Prolog and Bertrand (or between searching with dependency directed backtracking and aug

mented term rewriting) is very interesting- while Bertrand is a higher level language in

that it is more descriptive, it is generally Jess expressive than Pro log. Consider the standard

Prolog list append program [Ciocksin 81, p. 55].

append([), L, L).
append([XIL1), L2, [XIL3)) :- append(L1, L2, L3).

We can ask a Prolog interpreter for the value ofx in the following term:

append([1,2], [3,4,5), X).

and it will answer X= [1, 2, 3, 4, 5].

In a standard term rewriting system, we can write this program using append as an

infix operator instead of as a relation:

(] append L { L }
[X I L1] append L2 { [X I (L1 append L2)] }

We are borrowing the special list notation from Prolog where [J is the empty list, [X 1 Y] is

the list whose head is x and whose tailis Y, and [1, 2] is the list cons (1, cons (2, [J)) •

Our operator notation is somewhat easier to read, but the functor notation of Pro log is

more suggestive of the fact that Pro log deals with relations, not unidirectional functions.

Note that even though most Prolog implementations have a mechanism to define operators, it

would be difficult to write append as such since, in Prolog, the "value" returned by an opera

tor indicates the success or failure of the operator, not the result of the operation. The arith

metic operators avoid this problem by only being evaluated by the special Pro log "is" opera

tor.

Since Prolog deals with relations, it can also solve for the value ofx in the term:

append([1,2], X, [1,2,3,4,5)).

3. Rewrijing 68

namely X= [3, 4, 5]. If we ask a standard term rewriting system the equivalent question:

([1, 2] append x) = [1, 2, 3, 4, 5]

it is not powerful enough to solve for the value of x. In order to solve this problem using Ber

trand, we restate the problem:

([1, 2] append x) = [1, 2, 3, 4, 5] x

We then define equality on lists using rules:

[J = [J { true }
[XIL1] = [YIL2] { X=Y & L1=L2 }

This recursive definition of equality over lists is implicitly built into the unification rules for

Prolog, but must defined explicitly (in a Bertrand library, typically) because Bertrand has no

builtin knowledge about equality, over lists or anything else. This is in keeping with the

extensible nature of Bertrand, which allows new datatypes, including lists, to be defined with

rules, and then used as if they were primitives. (Actually, in this example only the second

rule is necessary.)

These rules then rewrite the problem in the following way:

([1,2] append x) = [1,2,3,4,5] ; x
[1, ([2] append x)] = [1,2,3,4,5] ; x
(1=1) & ([2] append x) = [2,3,4,5] ; x

([2] append x) = [2,3,4,5] ; x
[2, ([] append x)] = [2,3,4,5] ; x

(2 =2) & ([] append x) = [3, 4, 5] ; x
([] append x) [3, 4, 5] ; x

X= [3,4,5) ; X

We can then use the is operator to bind the list to the atom x, resulting in:

true ; [3, 4, 5]
[3, 4, 5]

Finally, Prolog can even answer questions that look like:

append(X, Y, [1,2,3,4,5]) _

by generating sequentially all the possible values for X and Y which, when appended together,

equal [1, 2, 3, 4, 5] . Pro log does this by searching, which adds to the expressiveness of Pro

Jog, but unfortunately, also requires a procedural semantics to keep the execution time and

space reasonable. Among other things, this procedural semantics makes it much more

difficult to detect or take advantage of parallelism. In Bertrand we would have to write a

recursive rule to generate all of the possible values for X and Y. Searching could be added to

Bertrand, but it should be done without giving up Bertrand's non-procedural semantics.

3. Rewriting 69

The ability to provide multiple solutions to a problem makes Pro log more expressive

than Bertrand, but many aspects of Bertrand are more expressive than Pro log. For example,

arithmetic in Prolog is handled using the infix "is" operator. This operator is not invertible,

so in order to solve simultaneous equations using Prolog a program would have to be written,

while in Bertrand simultaneous equations can be expressed and solved directly. Bertrand

also has abstract datatypes, while in Pro log the user is limited to terms (including lists

formed from "cons" terms).

Other languages have extended logic programming to make it more expressive. For

example, EQLOG is a language that combines logic programming with term rewriting

[Goguen 84]. This combination would make a very powerful constraint language; unfor

tunately, it has yet to be implemented, and currently known implementation techniques

(based upon narrowing) would cause severe execution speed problems. Another possible

approach to getting the expressiveness of searching without quite so high a cost would be to

use set abstraction techniques with rewrite rules, as in the language EqL [J ayaraman 86].

3. Rewruing 70

Chapter4 Operational Semantics

This chapter presents an operational semantics for augmented term rewriting, using

the functional notation ofdenotational semantics. One of the advantages of term rewriting

(augmented or not) is that the rewritings can be interpreted as purely syntactic transforma

tions, without regard to any meaning that might be attached to the symbols being

transformed. Consequently, a full denotational semantics is not required.

The semantics of augmented term rewriting are presented incrementally, using the

same order as the previous chapter. Initially we ignore types (guards and tags) and then

reintroduce them later. Finally, section 4.5 discusses some of the properties of augmented

term rewriting systems, including soundness and confluence. Readers who skip over the

semantics in this chapter might still want to read this final section.

4.1 Syntax

In order to concentrate on the semantics we will introduce a greatly simplified version

of the syntax introduced in the last chapter. Expressions are written using a functional nota

tion, and operators are only allowed to be names. For example, the Bertrand expression:

3 + 4 - 7

would be written as:

eq(plus(3, 4), 7)

Our syntactic domains are as follows:

Name= domain of names, with element name

Number= domain of numbers, with element number

Var =domain of variables, with element var

Exp = domain of expressions, with element exp

Rule= domain of rules, with element rule

Prog = a set of rules, with element prog

Op = domain of operators, with element op

An element name of Name is taken from the normal domain of identifiers, which are

alphanumeric strings that begin with an alphabetic character. An element number of Number

is a string of numeric digits, possibly containing a single decimal point, indicating a numeric

constant.

4. Semantics 71

The following syntactic description is given in tabular form, rather than using BNF, so

there is no meta-notation. The seven special characters ") { J (• : " and " , " are part of the

language syntax.

A is a ora

prog rule rule prog

rule exp { exp)

exp labeled_exp simple_exp

labeled_exp var: opterm

simple_exp cterm opterm

cterm var number

opterm opo op (args l

op name

args arg arg, args

arg exp

var name name . var

A prog (program) is a set of rules, and a rule is a directed (ordered) pair of expressions. We

define two syntactic functions head and body, which, when applied to a rule, return the first

and second expressions of the rule, respectively.

head: Rule ~ Exp

body: Rule ~ Exp

For simplicity, labels are not explicitly prohibited in the heads of rules, but they will be

ignored. Nullary operators have an empty argument list, but the parentheses are still neces

sary, for example, nil (). Numbers are also considered to be nullary operators, but do not

need the trailing parentheses. The following names are reserved:

root true is Label untyped

They can only be used in special ways, which will be outlined below.

As indicated in the table, a var (variable name) can be either a single name or a com

pound name (two or more names separated by periods). Without losing generality, we can

restrict variable names in the heads of rules (parameters) to single names. To manipulate

compound names we define the syntactic functions concat, first, and rest.

concat: (Var x Var) ~ Var

first: Var ~ Var

rest: Var ~ Var

4. Semantics 72

The concat function takes two variable names as arguments, and concatenates them,

separated by a period. The function first returns the first name of a compound name, rest

returns the rest of the name (minus the period). For example:

concat aaa bbb ~ aaa.bbb
first aaa.bbb ~ aaa
rest aaa.bbb.ccc ~ bbb.ccc

4.2 Semantics

Following standard convention, our semantic functions will use a notation where syn

tactic entities are enclosed in double square brackets ([1). Function application is indicated

by simple juxtaposition, with parentheses used only for disambiguation. For example:

F(x[v])y

applies the function F to two arguments: the result of applying the function x to the syntactic

name v, andy.

Our semantics will use the following domains:

NameSpace = Var-+ Exp

Global= NameSpace

Param = NameSpace

An element n of NameSpace is a function that maps a variable to its value, which is an

expression. We also define the function bound, which, when applied to a NameSpace and a

Var, returns true if the variable is bound in the name space, and false othervdse. The dis

tinguished name space cjl is the empty name space, where "bound ¢ var" is false for all

variables. Name spaces are used for two purposes: (1) the Global name space stores the

values of the global variables across an entire program's execution, and (2) the Param name

space stores the values of the parameter variables for each rule invocation. An element p of

Param is the name space that holds the values for the parameter variables in the head of a

rule when the rule matches a redex.

New values are added to name spaces using the standard update function"[/]". For

example, the expression:

n [var I exp]

returns a new name space that is identical to the name space n, except that the variable var

has as its value the expression exp. We also define a function instantiate that takes a name

space and an expression and returns an expression; each variable in the expression that also

occurs in the name space is replaced (in the expression) by its value.

4. Semantics 73

instantiate: (NameSpace x Exp) -4 Exp

For example:

instantiate (cjl[[x] I [5]]) [eq (plus (x, 0) , x)] -4 [eq (plus (5, 0) , 5)]

We also define a semantic domain called State:

State = Exp x Global

An element s of State is a pair that consists of an expression, called the subject expression,

and a name space, called the global name space.

The semantic function T maps a program into a function that transforms a state, called

the initial State, into a new state, called the terminal State (by a sequence ofrewritings).

T: Prog -4 (State -4 State)

The initial state is a pair that consists of the initial subject expression:

root : main ()

and the empty name space cjl. The variable name root is reserved, and can never be used as

a label for any expression other than in the initial state. Since the initial state is a constant,

T can be regarded as a function that maps a program into a (terminal) state.

T: Prog ~State

4.2.1 Standard Term Rewriting

First we will give the semantics for a standard term rewriting system in terms of the

semantic functions T and R. The function T is defined as a term rewriting system. Term

rewriting has been covered formally elsewhere [O'Donnell 77] (see also section 3.1, and the

executable semantics in appendix B). A standard term rewriting system takes an initial sub

ject expression exPo, and a set of rules, and defines a sequence of expressions:

Each arrow (-4) indicates a single rewriting of the subject expression exp;, which produces

a new subject expression expi+ 1 • In order to be able to name subexpressions we introduce the

notation:

which denotes a subexpression of exp; at occurrence ~· An occurrence is simply a location

inside an expression. A single rewriting occurs if there exists a parameter name space p,

such that for some rule, rulek, p contains the substitutions for all the variables in

4. Semantics 74

"head rulek" to make it exactly equivalent to •exp,@ ~·. In other words, a single rewriting

occurs if the head of some rule matches a subexpression ofthe subject expression. If an

appropriate rulek and p are found for exp;, then the new subject expression is defined by:

where "exp; @ ~ +--- R rulek p" denotes the expression obtained by replacing the subexpression

of exp; at occurrence ~ by the expression "A rulek p", defined by the semantic function R. R

takes a rule and a parameter name space, and returns a new expression:

R: (Rule x Param) --7 Exp

The resulting expression is the body of the rule, with all of its variables replaced by their

values from the parameter name space p.

R rule p =instantiate p (body rule)

For example, if the set of rules contains the single rule:

op(op(X)) { op(X) }

and the initial subject expression is:

op(op(op(op(5))))

then a standard term rewriting system can match the (single) rule at the outermost term of

the subject expression, with the parameter name space p equal to:

$[[X]/[op(op(5))]]

The outermost term of the subject expression (the entire subject expression) is replaced by

the body of the rule, op (X), with X replaced by its value, resulting in the expression:

op(op(op(5)))

This process repeats, producing the following sequence of expressions:

op (op (op (op (5)))) --7 op (op (op (5))) --7 op (op (5)) --7 op (5)

Note that the initial subject expression above contains three different redexes. In cases such

as this, where more than one subexpression of the subject expression matches the head of

one or more rules in prog, the order in which they are rewritten is undefined (they can be

done in any order). When there are no more rewritings to be done, the system terminates

and returns the final expression in the sequence. If the system does not terminate, the result

is undefined (equal to bottom).

4. Semantics 75

4.2.2 Augmented Term Rewriting

Instead of the sequence of expressions defined by a standard term rewriting system, an

augmented term rewriting system defines a sequence of states. Each state si consists of

a subject expression expi, and a global name space 9i·

Each single rewriting can modify the expression or the global name space, or both. A single

rewriting can be done in one of three ways:

1) By binding a value to an unbound variable in the global name space.

2) By replacing a bound variable in the subject expression by its value.

3) By matching a red ex of the subject expression to the head of a rule in prog, and replac

ing the redex by the body of the rule, as in standard term rewriting.

The rules in prog only perform the third type of rewriting; in order to perform the other two

types of rewriting we implicitly add two "rules", which we will call A and r, to every prog.

The rule A, corresponding to the first type of rewriting, behaves as if it were written as

the rule:

is (V, E) { true() }

that matches a binary operator named is. The actual parameters to is must be a variable v
(from the domain var) that is not bound in the global name space, and an expression e (from

the domain exp). The rule A also has a side effect, namely, it modifies the global name space

by binding the expression e as the value of v.

The ruler, corresponding to the second type of rewriting, is actually a set of rules of the

form:

;:; { e 1

whose heads are variables in the global name space (bound variables), and whose bodies are

the corresponding values of the variables. These rules replace bound variables by their

values.

The augmented term rewriter T performs a sequence of rewritings (of one of the three

above types) producing a sequence of states. As in a standard term rewriting system, for

each single rewriting (of whichever type), T finds a subexpression of the subject expression,

"expi @ ~" that matches the head of some rule rulek (including A and n, using substitution

function p. T then replaces this subexpression with a new expression, defined by R. For a

standard term rewriting system R took a rule and a parameter name space, and returned an

4. Semantics 76

expression. For an augmented term rewriting system, R also takes a global name space, and

transforms it into a new global name space, which, combined with the new subject expres

sion, forms the new state.

R: (Rule x Param x Global) -7 (Exp x Global)

In a standard term rewriting system the function R only replaced the parameter variables in

the body of a rule by their values. In an augmented term rewriting system the transforma

tions are slightly more complex. We will defineR by enumeration, depending upon the type

of rewriting that is being done.

1) For the first type of rewriting, the "rule" that was matched is A:

is (V, E) { true())

so the parameter name space (p) contains parameter bindings for v and E. In this case, R is:

R[is (V, E) { true())]pg=

if bound g (p [v]) then error

eise[true()], g[p[v)lp[E]]

The update function "g [p [v] I p [E)]" updates g (the global name space) by binding

the variable bound to v in the parameter name space to the expression bound to E in the

parameter name space. If the name is already bound, then an error is returned to the term

rewriter T, which can simply print a message and halt. The meaning of the syntactic con

stant true () is the Boolean truth value true.

An example of how this rule is used is the expression:

is(x, 5)

This expression matches the rule A, binding the variable name x to v and 5 to E in the

parameter name space p. The semantic function to be evaluated is:

if bound g (p [V]) then error

else [true()], g [p [v] I p [E]]

Assuming x is unbound in g, the result of this evaluation is:

[true()],g[[x]/[5]]

consisting of a new expression true () to be inserted back into the subject expression, and a

new global name space, where the value of xis 5.

2) For the case where the rule matched is r, the redex is a bound variable and the parameter

name space p contains the single name v, whose value is the bound variable. R is:

4. Semantics n

R £ ;; 1 e J 1 P g = P £61, 9

In this case, we simply replace the name of the bound variable with its value. The global

name space (g) is unchanged.

For example, if the global name space has the value 5 for the variable x (perhaps

because of the example above), then in the expression:

plus (x, 1)

the variable x will match the rule r, binding the name x to v and 5 to e in the parameter

name space p. The semantic function R will trivially evaluate to:

[5], g

The term rewriting function T will replace the bound variable x with the syntactic constant 5

in the subject expression, resulting in the expression:

plus(5, 1)

The global name space (g) is unchanged.

3) The last case is the normal one where the redex matched the head of some rule in pro g.
As well as containing the bindings for the parameters, the parameter name space (p) also

contains the variable Label, whose value is the label of the redex. If the redex was unla

beled, we assume that some unique name is bound to the variable Label. We will omit the

details of how unique label names for unlabeled red exes are generated, but we will assume

that it is done in a functional manner, of course. For details on how this might be done see

the executable semantics in appendix B. R is:

R rule p g = (atr-instantiate p (body rule)), g

As in the last case, the global name space g is unchanged; in this case it is also unused.

In a standard term rewriting system the new subject expression was formed by replac

ing the parameter variables in the body of the rule by their values, using the instantiate

function. In an augmented term rewriting system, however, variables in the body of a rule

are not necessarily all parameter variables, so we must slightly redefine the instantiate

function. The atr-instantiate function takes a name space p and an expression, and

replaces each variable var in the expression by the result of evaluating:

if bound p var

then p var

else concat (p [Label]) var

4. Semantics 78

As for the instantiate function, atr-instantiate replaces all variables found in the (parame

ter) name space by their values. In addition, variables not found in the name space are

prefixed, using the con cat function, by the value of the name Label.

For example, let us apply the rule:

opl (Q) { op2 (5, Q, y) }

to the subexpression:

lab: opl (m)

The global name space is unchanged (and unused), and the parameter name space (p) con

tains the name Q, whose value is m, and Label, whose value is lab. The new expression is

generated from the body of the rule by replacing parameter variables by their values, and

prefixing all other names with the label name. The variable Q is a parameter, so it is

replaced by its value (m), and the variable y is prefixed with the label (lab). The resulting

expression is:

op2(5, m, lab.y)

Recall that in an augmented term rewriting system a variable name can be a compound

name (two or more names separated by periods). The atr-insta:11tiate function treats com

pound names slightly differently- each compound name is replaced by the result of evaluat

ing:

if bound p (first var)

then con cat (p (first var)) (rest var)

else co neat (p [Label]) var

Because of our earlier restriction that parameter variables cannot be compound names, an

entire compound variable cannot be a parameter, but its first name can be. In this case, the

leading parameter name is replaced by its value. If the initial name of a compound variable

is not a parameter, it is prefixed by the label name, as before. For example, the rule:

old(X) { gt (X.age, 70) }

applied to the expression:

old(president)

results in the expression:

gt(president.age, 70)

4. Semantics 79

4.3 Adding Types: Tags, and Guards

Adding types does not change the semantics that much. In addition to their old form, a

type name (tag) can optionally be appended to a rule. Variables in the head of a rule (param

eters) can also be followed by a type (a guard).

A is (also) a

rule._ exp { exp } type

var name type

type ' name

Type names are distinguished from other names by prefixing them with a single quote(').

Variables can now have a type, as well as a value. The semantic domains must be changed

as follows:

State= Exp x Global x TypeSpace

TypeSpace = Var ~Type

A TypeSpace is similar to a NameSpace, and uses the same update function. The function R

now also takes a Type Space t, and returns a new Type Space (as part of the returned state).

R: (Rule x Param x Global x TypeS pace)~ (Exp x Global x TypeSpace)

The first two cases of R (for rules A and r) just pass the type space through unchanged. The

remaining case of R (for normal term rewriting) is:

R rule p g t = (atr-instantiate p (body rule)), g, t [p [Label] I tag rule]

The Type Space tis updated by giving the label of the red ex (the variable "p [Label]") the

type of the tag of rule. The function tag returns the tag of a rule. If the rule has no tag, then

tag returns the reserved type 'untyped-

Lastly, we need to change the matching function of the term rewriting system T so that

a parameter in the head of a rule that has a guard can only match a variable of the correct

type. By correct type, we mean the same type, or a subtype.

4.4 Differences

The differences between Bertrand and the language formally defined above are mainly

syntactic. The above language used parentheses to distinguish between operators and vari

ables. In Bertrand, operator names can be used in binary infix, and unary prefix, postfix or

outfix notation, so they must be distinguished explicitly from variable names. This is accom

plished by operator definitions, which also serve to declare an operator's arity, associativity,

4. Semantics 80

and precedence (see section 3.3). Also, Bertrand allows many special characters to be used as

operators.

Bertrand also allows global variables, which are variable names in the body of a rule

that begin with a period. These are treated like local variables, except that they are not

prefixed with the label name when the rule is instantiated. We also eliminate the reserved

name root and just use the period as the root of the name space. Consequently, a local vari

able x of the main rule becomes . x instead of root .x. Bertrand also eliminates the other

reserved syntactic variables and constants (such as Label), except for the single reserved

operator is.

Lastly, Bertrand requires all free variables (bindable atoms) to be typed by using them

as a label of a redex. This is equivalent to requiring variables to be declared in a conven

tional programming language. If a labeled subexpression matches a rule that has no tag,

then the label variable is of type 'untyped, as before. Bertrand treats 'untyped as a valid

type. If a free variable never occurs as the label of a red ex, then it is undeclared, and has no

type (not even 'untyped). An undeclared free variable is treated as an error.

4.5 Discussion

This section discusses some of the properties of augmented term rewriting systems. As

in our semantics above, we will concentrate on the differences between augmented term

rewriting and standard term rewriting.

In a standard term rewriting system, if the similarity relation between the head and

body of each rule is equality (the rules are sound), then each rewriting of the subject expres

sion results in a new expression that is equal to the old subject expression. Since equality is

transitive, any sequence of rewritings performed by a term rewriting system results in an

expression that is equal to the initial subject expression (the rewriting is sound). The rewrit

ings terminate when there are no more redexes in the subject expression. If the rules are

confluent, then the same initial subject expression always produces the same normal form (if

it exists), regardless of the order in which the redexes are reduced (the system is deter

minate).

The differences between augmented term rewriting and standard term rewriting are all

upwardly compatible extensions- a program written for a standard term rewriting system

will run and give the same answer on an augmented term rewriting system. Consequently,

for the set of programs that do not use any features specific to augmented term rewriting

(such as local variables and binding), an augmented term rewriting system will have the

same desirable properties as a standard term rewriting system (outlined in the preceding

paragraph). In addition, since augmented term rewriting is more powerful than standard

4. Semantics 81

term rewriting, there are programs that have meaning to an augmented term rewriting sys

tem, beyond those acceptable to a standard term rewriting system. This section will mainly

be concerned with the properties of these programs.

4.5.1 Expressiveness

As mentioned in chapter three, some of our extensions to standard term rewriting, such

as types and local variables, can be handled in the same semantic framework, and conse

quently retain the same properties as standard term rewriting. Indeed, types already exist

in standard term rewriting systems in the form of qualifiers on parameter variables.

Labels can be treated as an additional parameter in the head of rules, and local vari

ables handled by preprocessing the rules to prepend the label name onto all local variables.

For example, the rule:

opl (Q) { op2 (5, Q, x) }

can be preprocessed into two separate rules:

Label : opl (Q) { op2 (5, Q, Label x) }
opl (Q) { op2 (5, Q, newname . x) }

where newname generates unique names, and is only required to keep local variables in dif

ferent instantiations of the same rule from having name conflicts with each other.

The major addition we are malcing to term rewriting is the is operator, which allows

expressions to be bound to variable names. This operator is implemented using a "higher

order" rewrite rule that removes an equality constraint (an equation), replaces it with the

Boolean truth value, and does an assignment to one of the variables in the equation. This

newly bound variable will then be replaced by its value whenever it occurs elsewhere in the

subject expression. This admits a limited form of non-local side effects to a term rewriting

system.

Our thesis is that adding binding increases the power and expressiveness of a term

rewriting system, so that, for example, simultaneous equations can be solved, but does it also

affect determinacy? Intuitively, this addition seems reasonable. All we are doing is taking

8n equation such as in the expression:

X = 5 i X

that is asserted to be true (by the semicolon), and saying that if xis 5, then we can replace x

by 5 everywhere, and the expression will have the same meaning. Replscing x by 5, we get:

5 = 5 ; 5

4. Semantics 82

which can be further evaluated to:

true ; 5

The semicolon allows us to remove its left argument and rewrite this expression to just the

constant 5.

As in conventional languages, it is not the addition of binding that causes problems for

the semantics of a language, it is the possibility of multiple assignments. Single assignment

languages, such as Lucid [W adge 85], allow a name to be bound a single value, and retain a

simple, non-procedural semantics. In order to ensure that binding values to atoms does not

give Bertrand any procedural semantics, we must guarantee that once a value is bound to a

name that no other value can possibly be bound to it. Since a bound variable name is always

immediately replaced by its value, this can never happen.

The addition of binding could affect termination, since binding a value to a name could

cause the program to fail to terminate. For example, in the expression:

X= x+S i X

if the expression x + 5 is bound as the value of x, then x will be replaced by x + 5, and the x in

x + 5 will be replaced by x + 5, and so on. The system will not be able to rewrite x because it

will be trapped in an infinite loop. To prevent this from happening the rewrite rule for the

is operator prohibits the value bound to a name from containing an instance of that name.

In the example above, the equation is a contradiction, since no finite variable can be equal to

five more than itself. If our augmented term rewriting system used the standard library of

rewrite rules for simplifying equations, this contradiction would have been detected by sub

tracting x from both sides of the equation, yielding:

which can be read as "what is the value of x if 0 is equal to 5?"

4.5.2 Soundness

If local variables of a rule were not prefixed by the (possibly generated) label name

when the rule is instantiated, then local variables could affect soundness by introducing con

tradictions into an otherwise sound set of rules. For example, we saw in section 3.2.2.1 how

multiple invocations of the average rule with local variable mean introduced a contradiction

into a conceptually valid set of constraints. By prefixing local variable names with the name

ofthe (possibly generated by newname) label name, we guarantee that different invocations

of the same rule will not try to "reuse" the same variable name, thus avoiding this problem,

and preserving soundness.

4. Semantics 83

In order for an augmented tenn rewriting to be considered sound, we must expand the

conditions a set of rewrite rules must meet in order to be considered sound. Nat only must

the rules have equality as their similarity relation, as in a standard term rewriting system,

but the "rules" introduced by the is operator must also have equality as their similarity rela

tion. Put another way, to be considered sound, each rule (in a program for an augmented

term rewriting system) must have equality as its similarity relation, and must only result in

the binding of equals to equals. We can guarantee this by making sure that our rules only

bind a value to a variable if the two were asserted to be equal by an equation. Assuming our

rules meet this stronger notion of soundness, then the resulting normal form (if it exists) will

be equal to the initial subject expression.

4.5.3 Confluence

For standard term rewriting, if a set of rules meets some simple restrictions (from sec

tion 3.1) then an initial subject expression always reduces to the same normal form regard

less of the order in which the redexes are reduced. For augmented term rewriting,

confluence can possibly be affected by the "rules" introduced by the is operator. As for

soundness, above, we expand the conditions that a set of rewrite rules must meet in order to

be considered confluent. In particular, we require that the "rules" introduced by the is

operator meet the same restrictions as other (normal) rules. For example, the rules intra·

duced by the is operator must not overlap (see section 3.1), or in other words, two different

values may not be bound to the same variable. Fortunately, our existing restrictions on the

is operator already ensure this.

Even with the above restrictions, use of the is operator can still affect confluence.

There are two possible ways in which this can occur. The first case is when the result

returned might depend upon the order in which a set of bindings is performed. For example,

if we have the following subject expression:

x = expl ; y = exp2 ; f(x,y)

then we could bind expl as the value of x and then exp2 as the value of y, or we could do the

bindings in the opposite order. If we bind x first, we are left with the expression:

y = exp2 ; f(expl,y)

If instead we bind y first, we are left with the expression:

x = expl ; f(x,exp2)

Eventually we will perform the other binding, but iff (expl, y) and f (x, exp2) could possi

bly rewrite to different final answers, then our system is not confluent. Fortunately, this

cannot occur, which can easily be demonstrated by reducing this example to a simpler ·

4. Semantics 84

problem, with the subject expression f (x, y) and the same set of rewrite rules as before, but

augmented by two additional rules:

x { expl }
y { exp2 }

Since rules added by the is operator must meet all of the restrictions for normal rules, this is

perfectly legitimate. Our subject expression f (x, y) contains two redices, so it will rewrite to

either f (expl, y) or f (x, exp2) depending upon which redex is reduced first. We now have

the same question of whether f (expl, y) and f (x, exp2) could possibly rewrite to different

final answers, but this problem does not use any features specific to augmented term rewrit

ing (it could be stated to a standard term rewriting system, which we know is confluent).

Therefore the original problem must be confluent (assuming the other rules meet our restric

tions for confluence).

The second case that might affect confluence is where completely different bindings

might occur. For example, in the subject expression:

x = expl ; x = exp2 ; f(x)

the variable x can be given two different values depending upon which binding is performed,

resulting in one of the following two subject expressions:

expl exp2 ; f(expl)
exp2 expl f(exp2)

Fortunately, regardless of which binding is made for the value of x, our term rewriting sys

tem is still required to prove that expl is equal to exp2, so the answers returned will be

equivalent. As discussed in section 4.5.2 above, in order for a set of rules to be considered

sound they must only result in the binding of equals to equals. Ifthere are different equa

tions in a subject expression that could give different bindings for the value of an atom, then

that atom is equal to all those possible bindings (even though only one of them will ever be

made). Consequently, if a set of rules is sound, then the different results that can be

returned by an augmented term rewriting system are all equivalent.

Unfortunately, for results that contain unbound variables, equivalent answers may still

not be the same answer. Consider the subject expression:

X = y ; X = Z ; X

If we solve the leftmost equation first then the following bindings will be made:

xis y

y is z

4. Semantics 85

The value of the subject expression (x) will be rewritten toy, and they will be rewritten to z,

and so z will be returned as the value of the expression. If, instead, we solve the second

equation first, the bindings will be:

x is z
z is y

and the value of the expression will bey. The normal form returned depends upon the order

in which bindings are performed. Of course, the variable x is certainly equal to both y and z,

so either answer is correct, and neither answer is preferable to the other.

We will denote the set of possible values that can be returned by an augmented term

rewriting system (depending upon the order of the bindings) by 9t We are guaranteed that

the elements of 9t are all equal to each other. Furthermore, if the set 9t contains a ground

term (an expression containing no unbound variables), then that ground term will always be

returned by the augmented term rewriting system. This is a consequence of the fact that the

is operator can only bind values to atoms, and not to constants.

For example, if we take the expression above and replace y by the constant 5, we get:

X = 5 i X = Z i X

The set 9t contains x, z, and 5, but all sequences of bindings will produce the ground term. If

the first equation is solved first, then 5 is bound to x, leaving:

5 = z ; 5

The constant 5 is also bound to z, but z is unused. If the second equation is solved first, then

z is bound as the value of x, leaving:

z = 5 i z

and the expression again simplifies to the constant 5. The second equation could also be

solved by binding x to z, but since z is unused in the rest of the expression, this reduces to

the first case, above. If an expression can possibly be reduced to a ground term, then that

term will always be returned regardless of the order of the bindings.

Consequently, an augmented term rewriting system is ground confluent, that is,

confluent for answers that are ground terms. If our conditions on rules are met, then an aug

mented term rewriting system will always produce the same result regardless of the order in

which the red exes are reduced, for results that do not contain any unbound atoms. If all

potential results contain some unbound atoms, then different normal forms may be produced

depending upon the order of evaluation, but these different normal forms are all equivalent

(assuming the rules are sound). This is actually a stronger statement than can be made for

standard term rewriting systems since they do not have bindable atoms.

4. Semantics 86

Chapter 5 Existing Constraint Languages

This chapter examines existing constraint languages and gives examples of their use.

The purpose of this is two-fold. In chapters six and seven we will describe some constraint

satisfaction systems built using Bertrand to solve the same example problems. We do this

primarily to demonstrate the thesis of this dissertation- that Bertrand can be used to solve

constraint satisfaction problems as well as or better than existing systems. The second pur

pose of this chapter is to demonstrate the power and usefulness of constraint languages. Pro

posing a new implementation technique is only meaningful if there is a need for what one is

proposing to implement. As there is no existing general survey of constraint languages, and

many of the references are difficult to obtain, this chapter will also serve as a survey of exist

ing constraint languages and systems.

Many existing constraint satisfaction systems have sophisticated, interactive, and often

graphical interfaces. On one hand, these interfaces are independent of the issue of constraint

satisfaction, and the constraint satisfaction systems we build with Bertrand will ignore such

interface issues. On the other hand, constraint languages lend themselves to such sophisti

cated interfaces, and it is important to show how existing languages take advantage of this.

While such a sophisticated interface has not (yet) been constructed for Bertrand, it is reason

able to indicate how one might be, so while we are examining existing languages we can at

least take a quick look at their interfaces.

Those readers who are familiar with constraint languages can skip over much of the

material in this chapter and concentrate only on the examples. Alternatively, this entire

chapter can initially be skipped; the sections in chapters six and seven that build constraint

languages to reimplement the examples in this chapter all contain pointers to the relevant

sections here. The reader can then compare the examples directly.

Constraint satisfaction systems will be classified according to the mechanisms they use.

In particular, existing systems fall into one of two categories depending upon what method

they use to solve constraint programs containing cycles. One group uses numeric techniques

such as relaxation to break constraint cycles. The other group uses symbolic techniques to

transform constraint programs containing cycles into equivalent programs that do not.

As discussed in section 2.1, as constraint satisfaction techniques become more sophisti

cated, they tend to become more application specific. Consequently, most existing constraint

languages have been written with one or more applications in mind. Existing constraint

languages have been used for such things as: modeling graphic objects, typesetting graphics,

simulating physical laws, building financial models, and doing computer algebra_

5. Constraint Languages 87

5.1 Constraint Languages That Use Numeric Techniques

The following four systems (Sketchpad, ThingLab, TK!Solver, and Juno) use iterative

approximation techniques (typically some form of relaxation) to solve constraint programs

containing cycles.

5.1.1 Sketchpad

The Sketchpad system, written by Ivan Sutherland as part of his PhD thesis at M.I.T.,

"makes it possible for a man and a computer to converse rapidly through the medium of line

drawings" [Sutherland 63, p. 329]. Its use of constraints, sophisticated interactive graphical

interface, macro facility and instancing features were years ahead of its time. Using

Sketchpad, a user could draw a complex object by sketching a simple figure and then adding

constraints to it.

For example, to construct a regular hexagon, first an arbitrary six sided polygon is

sketched. While sketching, the current line being drawn acts like a "rubber band" between

the end of the last line and the cursor position, to give the user immediate feedback. When

the cursor approaches an existing point, such as the end of a line, it "snaps" onto it so that

closed figures can easily be sketched. Next, to make the polygon regular, the vertices of the

polygon are constrained to lie on a circle and to be of equal length. Lastly, the circle used to

construct the drawing is deleted, leaving the regular hexagon.

DOOO
Points, lines and circular arcs are primitive graphical objects in Sketchpad. Any draw

ing, such as the hexagon above, can be used like a primitive object by turning it into a

macro. A macro has a set of"attachment points" that are used to merge an instance of it

into another drawing.

Primitive constraints include making two lines parallel, perpendicular, or of equal

length. Lines can also be made horizontal or vertical, and a point can be constrained to lie on

a line or arc. Another constraint type produces a set of digits on the display for some scalar

numeric value. Constraints are represented ahstractly on the display as a circular node con

taining a symbol, for example here are the graphical representations of the two constraints to

make lines parallel and to make lines be of equal length.

5. Constraint Languages 88

X, --

--x --x

The dashed lines connect the constraint to its attachment points. In this case the constraints

are not attached to anything, so they are shown attached to a dummy point- indicated by

an X.

Constraints are represented internally as error expressions that evaluate to zero when

the constraint is satisfied. These constraints are hard-coded into the system, but the macro

facility can be used to simulate the addition of new constraints. For example, the following

drawing is of two lines that are constrained to be parallel and of equal length.

' ' - ' -- '

We can use this drawing as a constraint by converting it into a macro with the two lines as

attachment points. When we want to use this constraint, we call up an instance of the macro

and merge the attachment lines with the lines we wish to constrain to be parallel and of

equal length.

A merge is like a constraint that makes two objects equal, except that the two objects

are actually replaced by the equivalent single object. Merges are performed recursively, so

that all sub-objects are also merged. For example, when two lines are merged their end

points are merged; when two points are merged, their x andy coordinates are merged. Merg

ing two scalar values is a primitive, which makes the two values equal.

Sketchpad satisfies constraints using propagation of degrees of freedom, which Suther

land calls the one pass method. When this method fails, relaxation is used. For the initial

values of the relaxation step Sketchpad uses the current values from the drawing on the

5. Constraint Languages 89

screen. This, plus the fact that the geometric constraints that Sketchpad uses are fairly well

behaved, makes relaxation reasonably fast and interactive.

Unfortunately, Sketchpad used expensive (at that time) graphics input and display

hardware. Its interactive mode of operation depended upon high band width communication

between the user and the processor, bandwidth that cannot be sustained by batch or

timeshared computer systems. The environment to support such a system was very uncom

mon until personal workstations became economically justifiable. Consequently, Sketchpad

was indeed ahead of its time; it was not to be duplicated for over 15 years.

5.1.2 ThlngLab

ThingLab is a constraint-based simulation laboratory that builds the power of a

Sketchpad-like system on top of the interactive Smalltalk-76 programming environment. It

was written by Alan Berning as part of his PhD thesis at Stanford, and (originally) ran on

the Xerox Alto computer, one of the first personal workstations.

In Sketchpad, constraints were uniformly described as error expressions. An early ver

sion ofThingLab described constraints this way, and only used relaxation. ThingLab was

extended so that constraints could include Small talk procedures that give an algorithm for

satisfYing the constraint. New classes of objects and constraints can be defined, which allows

ThingLab to be extended to new domains by a user who can program in Small talk.

ThingLab's capabilities are still being developed. The most r""ent version includes the abil

ity to define higher order constraints [Borning 85] and to edit the constraint graphs interac

tively [Berning 85a]. The version discussed in the remainder of this section is the version

reported on in Berning's thesis [Berning 79].

In addition to the constraint satisfaction methods used by Sketchpad, ThingLab also

uses propagation of known states. ThingLab gains speed by dividing constraint satisfaction

into two stages: planning and run time. During planning, a Smalltalk procedure, called a

method, is automatically generated for satisfYing a set of constraints. This method can then

be invoked repeatedly at run time. For example, the corner of a r~g!e can be dragged

around the screen in near real time and the rectangle will follow; the constraints on the rec

tangle being satisfied by calling the compiled procedure. If the user changes any constraints,

a new method is automatically compiled.

As an example, we will define a set ofThingLab classes that can be used to simulate the

connection of common electrical components such as resistors and batteries. This example is

a simplified version of an example taken from Berning's thesis [Borning 79, p. 33]. Borning

expects that classes such as these would be defined "by an experienced user of the system. •

"Using these classes, a less sophisticated user could then employ them in constructing a

5. Constraint Languages 90

simulation ... " [Borning 79, p. 33]. Simulations are constructed using ThingLab's graphical

interface. The end user need not be concerned with the textual class definitions.

In order to use ThingLab's grephical interface a grephical description would have to be

included in the class definitions, along with the electrical description. For the sake of brevity

we will ignore the graphical description, which can be quite complex, and concentrate on the

electrical description of the components.

Electrical circuits are built up from leads, defined by the class ElectricalLead A

lead is the terminal of an electrical component, such as a resistor, and has an associated

voltage and current (if represented graphically, it would also have an associated screen

location and orientation).

Class ElectricalLead
Superclasses

ElectricalObject
Part Descriptions

voltage: a Voltage
current: a Current

A Ground is an ElectricalLead whose voltage is constrained to be zero.

Class Ground
Superclasses

ElectricalLead
Constraints

voltage = 0. 0
voltage +- 0. 0

The first line under Constraints yields the error expression for the voltage- the error is

zero if the voltage is zero. The second line gives a procedure for satisfying the constraint

set the variable voltage to zero.

A TwoLeadedOb j ect is an abstract class that can be used to define components with

two leads. Its constraint is that the current flowing out of one lead must be equal and oppo

site to the current flowing out of the other lead.

5. Constraint Languages 91

Class TwoLeadedObject
Superclasses

ElectricalObject
Part Descriptions

leadl: an ElectricalLead
lead2: an ElectricalLead

Constraints

leadl current + lead2 current = 0.0
leadl current f- 0.0 lead2 current
lead2 current t- 0.0- leadl current

Notice that there are two procedures for satisfying the constraint. The first one can be used

to calculate the current through leadl if we know the current through lead2, or the second

one can be used if we know the current through leadl. ThingLab will select the first pro

cedure in order depending upon which information is known.

Given the definition of a two leaded component, the definition of a resistor is fairly

straightforward:

Class Resistor
SuperClasses

TwoLeadedObject
Part Descriptions

resistance: a Resistance
Constraints

(leadl voltage - lead2 voltage) ~ (leadl current * resistance)
leadl voltage +- lead2 voltage + (leadl current * resistance)
lead2 voltage t- leadl voltage - (leadl current * resistance)
leadl current t- (leadl voltage - lead2 voltage} I resistance
resistance reference

To the constraints on a TwoLeadedObject, class Resistor adds one additional constraint

-Ohm's law. In the Ohm's law constraint, the variable resistance has been designated as

reference only, so that the system will satisfy the constraint by changing the voltages and

currents, not by changing the value of the resistor.

We also define a class for batteries:

5. Constraint Languages 92

Class Battery
Superclasses

TwoLeadedObject
Part Descriptions

internalVoltage: a Voltage
Constraints

leadl voltage = (lead2 voltage + internalVoltage)
leadl voltage +- lead2 voltage + internalVoltage
lead2 voltage +- leadl voltage
internalVoltage reference

internal Voltage

In order to connect components together in series, we merge the appropriate leads.

ThingLab, like Sketchpad, does merges recursively, so merging two leads causes their

currents and voltages to be set equal.

We can build a simple voltage divider by connecting a battery and two resistors in

series:

Class VoltageDivider
Superclasses

ElectricalObject
Part Descriptions

rl: a Resistor
r2: a Resistor
bl: a Battery
gnd: a Ground

Merges
rl lead2 = r2 leadl
r2 lead2 = bl leadl
bl lead2 = rl leadl
bl leadl = gnd

A typical use of this simulation might be to set the resistors to be 100 ohms each, the battery

to 10 volts, and ask what the current through the circuit is. The resultant circuit, if drawn,

might look like this:

5. Constraint Languages 93

?

lOOn

+
lOV

lOOn

Local propagation cannot find a solution to this constraint graph, so relaxation is used. Pro

pagation failed because the current flowing in the circuit depends upon the total series resis

tance, but the constraint satisfier has no way to calculate this resistance directly without

knowing the voltage across each resistor, which circularly depends upon the current through

the resistor. A human problem solver (with knowledge of electrical circuits) would know that

the resistance of two resistors in series is the sum of the individual resistors, but our con

straint satisfier has no such global knowledge.

We can avoid relaxation by supplying the constraint satisfier with a redundant view

another way of!ooking at two resistors in series.

Class SeriesResistors
Superclasses

ElectricalObject
Part Descriptions

rA: a Resistor
rB: a Resistor
rSeries: a Resistor

Constraints
rSeries resistance = rA resistance + rB resistance

rSeries resistance +- rA resistance + rB resistance
rA resistance reference
rB resistance reference

Merges
rA lead2 - rB leadl
rA leadl - rSeries leadl
rB lead2 = rSeries lead2

5. Constraint Languages 94

The user can then graphically merge an object of class SeriesResistors with the two resis

tors rl and r2 above, and the system can be solved using local propagation.

A limitation ofThingLab is that in the above constraint program we had to specify that

the resistance of a resistor was a reference value so the system would not change it to satisfy

a constraint. This assumes that the user's intention was to specify the values of the resistors

and have the system calculate the voltages and currents. Suppose, instead, that the user

wanted to have a certain current flowing through a resistor; we should be able to ask the sys

tem what value to make a resistor in order to give a certain current flow. Unfortunately, in

order to do this the class definition must be modified; something that we did not want the

user to be concerned with.

Extensions have been made to ThingLab [Duisberg 85] to allow it to deal with con

straints that are dependent on time. For example, we can build a circuit containing capaci

tors and inductors, and the system will plot the current versus time. Values oftime are sup

plied from a special variable which cannot be constrained like other (ordinary) variables.

5.1.3 TK!Solver

TK!Solver is a "a general purpose problem solving environment" for the IBM PC [Kono

pasek 84]. The user states the constraints to be solved to the system as equations. If possi

ble, these equations are solved directly using local propagation (called the direct solver),

otherwise relaxation is used (called the iterative solver). The user must call the iterative

solver explicitly by specifying which variables are to be relaxed, and must also provide initial

guesses for their values.

The constraint solver is similar to that ofThingLab, except that the user cannot define

new objects or constraints. The direct solver can solve simple arithmetic constraints upon

floating point numbers, but like other local propagation techniques it has no knowledge of

algebra, so relaxation must be used to solve equations such as 10 ~ p+p. IfTK! Solver were

just an equation solver it would not be very powerful, but it has a number of features that

distinguish it from equation solvers.

The user interacts with the system through a number of windows. The equations to be

solved are entered into the rule window. As each equation is entered, the variables in that

equation are automatically entered into the variable window, or the user can enter vari

ables explicitly. Each variable in the variable window can either be used for input or output.

The user supplies values for input variables, and the system solves for the values of the out

put variables. If relaxation is to be used, initial guesses must be supplied for each variable to

be relaxed. Input variables can be assigned a table of values; the system is solved once for

each value in the table, and the results can be graphed using simple "line printer" style

5. Constraint Languages 95

graphics. Variables can be given units of measure, such as feet, pounds, or even feet per

second, and the system will automatically convert to other units, if necessary.

The following example is from "The TK!Solver Book" [Konopasek 84]. I1 is given as an

example of how to use the system to solve a reasonably difficult word problen: The original

problem is a brain teaser from the book Games for the Super-Intelligent [Fba72].

A rope lying over the top of a fence is the same length on each side. It ~ighs one

third of a pound per foot. On one end hangs a monkey holding a banan, and on

the other end a weight equal to the weight of the monkey. The bananareighs two

ounces per inch. The rope is as long (in feet) as the age of the monkey 1 years),

and the weight of the monkey (in ounces) is the same as the age of the onkey's

mother. The combined age of the monkey and its mother is thirty yemOne half

of the weight of the monkey, plus the weight of the banana, is one four as much

as the weight of the weight and the weight of the rope. The monkey's ;ther is

half as old as the monkey will be when it is three times as old as its lllter was

when she was half as old as the monkey will be when it is as old as its~ther will

be when she is four times as old as the monkey was when it was twiceold as its

mother was when she was one third as old as the monkey was when its as old

as its mother was when she was three times as old as the monkey waden it was

one fourth as old as it is now. How long is the banana?

Variable names in TK! Solver refer to numbers and there is no facility for 6ing datatypes,

so we need to introduce some naming conventions. Each variable name c01ts of two parts

that refer to an object and an attribute of that object:

Prefix Suffix

b banana a age

m monkey 1 length

M monkey's mother w weight

w weight ld linear density

r rope

For example, the variable name rw refers to the weight of the rope, and thname ba would

be the age of the banana. Linear density is weight per unit length.

We enter the information from the problem into the rule sheet.

5. Constraint Languages 96

Rule

ww mw
rl rna
mw Ma
mw/2 + bw

(ww + rw)/4
Ma 1/2 *

3 *
1/2 *

4 *

2 *

1/3 *

3 *
1/4 *rna

RULE SHEET
Comment

weight of·weight equals weight of monkey
rope length in feet equals age of monkey in years
weight of monkey equals age of monkey's mother
1/2 weight of monkey, plus weight of banana equals
1/4 weight of weight plus weight of rope
monkey's mother is 1/2 as old as monkey will be
when it is three times as old as its Mother
when she was half as old as the monkey will be

when it is as old as its mother will be
when she is four times as old as the monkey was
when it was twice as old as its mother was
when she was 1/3 as old as the monkey was
when it was as old as its mother was
when she was three times as old as the monkey was

when it was 1/4 as old as it is now

To finish entering the data from the problem, we supply values for the rope linear density

and banana linear density in the variable sheet, and give units to the other variables.

VARIABLE SHEET
Input Name Output Unit Comment

.33333333 rld lb/ft rope linear density
ww oz weight of weight
mw oz weight of monkey

2 bld oz/in banana linear density
rl ft rope length
rna year age of monkey
Ma year age of monkey's Mother
bw oz weight of banana
rw lb weight of rope

bl in length of banana

At this point we have entered all the information from the problem, but there are a few addi

tional requirements. We must supply the conversion factors for our units of measure.

UNITS SHEET
Convert From To Multiply by

ft in 12
lb oz 16
lb/ft in/oz 1.4444444

We must also add the definitions for linear density to the rule sheet.

5. Constraint Languages 97

Rule

bw * bld * bl
rw rld * rl

RULE SHEET (continued)
Comment

definition of banana linear density
definition of rope linear density

We can now try the direct solver Oocal propagation) but nothing can be solved because the

problem contains simultaneous equations. If we supply a guess of 6 inches for the length of

the banana, the system responds by guessing that the weight of the banana is 12 ounces, but

nothing else. There must be another simultaneous equation, so we must specify another

variable to be relaxed. Due to the complexity of its constraint, we might guess that the age of

the monkey or its mother need to be relaxed. We can pick either one, and supply a guess of

zero for its value. Now TK! Solver has enough information to solve this problem, and it tells

us that the length of the banana is -1.75 inches! What did we do wrong?1

We got the wrong answer because we mixed units in our rules. We can fix the units

problem by picking one set of units (feet and pounds, or inches and ounces) and putting

everything into these units. Let's say we want to work in inches and ounces. We convert the

rope linear density to in!oz, which sets its value to .44444444, and change the units for the

length and weight of the rope. We must also change the second rule from r l ~rna to

rl/12 ~rna since the problem gave this rule in terms of feet. After we do this, TK!Solver

gives the length ofthe banana as 5.7499992, which is close enough to the correct answer

(5.75 inches).

This example points up a few limitations ofTK!Solver. Unit conversions can only be

applied to input and output variables, so if units are mixed in a problem the system will not

figure out the correct conversions, nor will it flag an error. It is also inconvenient to have to

specifY which variables are to be relaxed, and to supply guesses for them. Despite its limita

tions, TK! Solver is a powerful problem solving system, and it has enjoyed wide popularity.

5.1.4 Juno

"Juno is a system that harmoniously integrates a language for describing pictures with

a what-you-see-is-what-you-get image editor" [Nelson 84]. With Juno, a constraint language

program can be represented either in its textual form or by the image it produces. The user

can edit either form, and the changes will be reflected back into the program.

The underlying Juno language is relatively simple. Juno variables represent points; a

line is referred to by its two endpoints. There are four constraints upon points:

I This is the answer given by TK!Solver when the solution was typed in exactly from the book. It took some
time to figure out where the error was.

5. Constraint Languages 98

HOR (p, q)

VER (p, q)

(p, q) PARA (r, s)

(p,q) CONG (r,s)

the line (p, q) is horizontal

the line (p, q) is vertical

the lines (p, q) and (r, s) are parallel

the lines (p,q) and (r,s) areofequallength

Since these constraints act upon points, not lines, there can be a constraint on a line between

two points without there actually being a line drawn between those two points. For example,

the constraint VER (m, n) really only specifies that the points m and n have the same x coor

dinate.

Constraints are represented graphically as icons. For example, the HOR constraint is

represented as a horizontally oriented T-square, and the CONG constraint as a drafting com

pass. If the user picks up the compass icon and selects four points, the corresponding CONG

constraint is inserted in the program. The current drawing can be converted into a pro

cedure, much like Sketchpad's macros, which can then be called like a primitive.

Juno uses a constraint satisfaction method similar to relaxation. Since the PARA and

CONG constraints are quadratic, local propagation would not be of much use, but a general

relaxation method is not required either. Juno uses Newton-Raphson iteration to solve its

constraints. Although faster than relaxation, it still takes time proportional to the cube of

the number of variables. Juno speeds this calculation up by having the user supply a guess

for the initial value; this guess can be supplied either textually or graphically.

The main contributions of Juno are the way it represents constraints graphically and

the ability to automatically construct a constraint program from a graphical representation.

But Juno's intended domain is very limited. Its only data object is the point, and there are

only four constraints upon points. Drawing pictures with Juno is like doing geometry with a

compass and straight-edge. It would be desirable to adapt Juno's programming interface to a

more general system so that new objects and constraints could be defined graphically without

ever having to drop down into the underlying implementation language. A recent paper by

Borning provides a first cut at this by allowing the user to interactively edit a constraint

graph to define a new constraint [Borning 85a).

5.2 Constraint Languages That Use Symbolic Techniques

The remaining languages use algebraic simplification techniques to solve constraint

programs containing cycles.

5. Constraint Languages 99

5.2.1 Steele's Constraint Language

The precursor to algebraic manipulation of constraint programs containing cycles was

work done by Guy Steele, and others, in the artificial intelligence lab at MIT. They imple

mented several constraint satisfaction systems based upon local propagation while investi

gating problem solving techniques. While the language described in [Steele 80] does not

actually use algebraic simplification techniques, their use is suggested. This language, how

ever, is interesting for other reasons.

Steele's constraint language could be held accountable for its actions. As each con

straint was satisfied, information was stored containing the rule that was used to satisfy the

constraint, and what caused this rule to be activated. The user could ask the system why a

c_ertain answer was given for a problem, and the system could respond with a reasonable

explanation, to various levels of detail.

The system also allowed values to be retracted, so that changes could be incrementally

computed without re-solving the entire constraint program. This also allows the constraint

system to make assumptions, and later retract them if they lead to invalid conclusions,

5.2.2 Magrltte

Magritte is an interactive graphical layout system in the same mold as Sketchpad or

ThingLab, written by James Gosling as part of his PhD thesis at CMU [Gosling 83l It differs

mainly from the earlier systems in that it does not use relaxation. Instead, algebraic tech

niques are used to transform graphs that cannot be solved using local propagation into

equivalent graphs that can,

The only primitive objects understood by Magritte are scalar values, but Magritte, like

ThingLab, has a type system that allows the user to define new datatypes. These objects are

built up from scalars by putting them into structures, Unlike ThingLab, in Magritte the data

objects are separate from the constraints that act upon them, This difference is consistent

with the philosophies of the languages used to implement these systems (ThingLab in

Smalltalk, and Magritte in LISP). New constraints are built up from the primitive con

straints sum, product, equals, and less than.

Gosling states that constraints should be "treated as full-fledged constrainable objects."

He suggesta treating a constraint as a Boolean predicate, and a constraint program as a con

junction of these predicates. This would allow higher order constraints to be used, but unfor

tunately these ideas are not incorporated into Magritte.

The major contribution ofMagritte is its use of graph transformations to break pro

grams containing cycles. The graph transformer is automatically invoked from local

5. Constraint Languages 100

propagation as needed. Gosling suggests that a good constraint satisfaction system would

have a number of techniques at its disposal. For example, local propagation could be used as

much as possible, then transfonnation, and then perhaps relaxation or some other technique.

5.2.3 Ideal

Ideal is a language for typesetting graphics into documents. It was written by Chris

VanWyk as part of his PhD thesis at Stanford (where it was called LELAND) [VanWyk 80],

and is distributed as part of the Trofftypesetting software from AT&T. This language has

several features that set it apart from other constraint languages.

Constraints in Ideal are expressed as equations, which are solved using the linear equa

tion solving algorithm described in section 2.1. 7. This limits the constraints that can be

solved to those that reduce to linear relationships, but in practice this is usually more than

sufficient. For example, the simultaneous quadratic equations for finding the circle that

passes through three points can be solved. The primitive objects in Ideal are complex

numbers, which are used both for numbers and points. Consequently, each constraint equa

tion is really two constraints, one on the real parts, and one on the imaginary parts.

Ideal allows images to be built up hierarchically, using boxes. For example, here is a

definition for a rectangle.

rect {
var ne, nw, sw, se, center, height, width;
ne se + (0, 1) * height;
nw ~ sw + (0, 1) * height;
ne = nw + width;
center ~ (ne + sw) I 2;
conn ne to nw to sw to se to ne;
}

This box contains a declaration for seven local variables, four constraints, and a command to

draw four lines.

The box rect defines a data type which we can use to create instances of rectangles,

each specified differently if desired. When we call a box we can specify additional con

straints, hopefully enough so that the system has sufficient infonnation to draw it. For

example, we can specify a rectangle by giving its center, width and height.

call rect {
center~ (0, 0);
width ~ 0. 75;

height~ 0.5;
}

5. Constraint Languages 101

Or we could give any other combination of information that uniquely constrains it, such as

the position of two opposite corners, or the area and two adjacent points.

Ideal also has a facility for repeating objects, called pens, mainly used for drawing

dashed lines. This special purpose feature was required only because Ideal does not have any

general purpose control structures, such as iteration or recursion. There are also sophisti

cated graphics facilities for drawing curves and arcs, opaquing the interiors or exteriors of

figures, and merging pictures.

Boxes in Ideal allow new objects to be defined, but there is no corresponding facility to

define new types of constraints. The only constraints are numeric relationships between

complex numbers. This ends up making the language wordy. For example, in order to con

strain two rectangles R1 and R2 to be equal, we cannot just say R1 = R2, we must supply

sufficient constraints on their points to make them equal.

As an example of using Ideal, let us draw four rectangles in a square with arrows going

clockwise between them.

1 2

4 3

If we assume we have primitives for rectangles and arrows (these are normally supplied in a

library with Ideal)2 the program to draw this figure would look like:

put r1: rect { center 0; "1" at center } ;

put r2: rect { center rl.center + (1.25, 0) ; "2" at center } ;
put r3: rect { center r2.center + (0, -1) ; "3" at center } ;
put r4: rect { center r3.center + (-1.25, 0) ; "4" at center

put arrow { tail rl.e; head r2 .w; } ;

put arrow { tail r2.s; head r3.n; } ;
put arrow { tail r3.w; head r4.e; } ;
put arrow { tail r4.n; head rl.s; } ;

Ideal uses constraint satisfaction to allow the positions and sizes of objects to be stated as

relationships, which makes it very easy to lay out complex figures. For example, we could

place some rectangles side by side across the width of a page without specifying their

2 Note that the definition ofrect in the library adds a few more variables, such as n, s, e, w, for the compass
points at the center of each side. ·

5. Constraint Languages

} ;

102

individual widths, except that they are each to be of equal width. The width of each object

will then be determined by the width of the page, even if the width ofthe page might change

later, or even if the number of rectangles changes. This makes the description of images '

more flexible and natural.

The main drawback of Ideal is its inability to define new types of constraints between

objects. This severely limits its extensibility, and causes the descriptions of objects to be

unnecessarily verbose.

5.3 Similar Systems

• VisiCalc, and similar spread-sheet systems, use some techniques similar to constraint

satisfaction, but cannot be considered true constraint satisfaction systems. As in the

systems discussed above, the constraints in a spread-sheet are arithmetic relationships

between numbers. When the user changes a number at the top of the sheet, the changes

propagate down the sheet. This allows us to ask questions like "if! increase sales 7%,

how much does my income increase?" Unfortunately, changes only propagate in a single

direction (down), so statements in the language must be in order so that all values can be

calculated in a single pass. In order to ask a question like "how much do I have to

increase sales in order to increase income 5%?" we must try different values for sales

until we get the desired result. This is the manual equivalent of relaxation.

• Metafont, a system by Donald Knuth for describing typefaces, uses an equation solver

that is similar to Ideal's, except that it makes only a single pass though the equations

before it gives up. Both Juno and Ideal were in part inspired by Metafont's ability to
define the lines and curves that make up a character outline equationally.

• HEQS, a financial modeling language by Emanuel Derman, uses an extended version of

the equation solver used in Ideal [Derman 84].

• EQLOG is a language that combines narrowing with term rewriting, resulting in a

language which adds the power of a logic programming language to that of a constraint

language [Goguen 84]. Unfortunately, it has yet to be implemented, and other imple

mentations of narrowing have severe execution speed problems.

5. Constraint Languages 103

Chapter 6 Equation Solving

In the latter part of chapter three we gave some simple examples of how to use Ber

trand directly as a language. Bertrand's main purpose, however, is implementing other

languages, in particular, constraint languages. In this chapter we use Bertrand to build a

constraint satisfaction system using the equation solving algorithm discussed in section

2.1.7. We will then extend it to handle Booleans and slightly nonlinear equations. We can

use this new system directly to solve constraint problems, or we can use it as a base upon

which to build more sophisticated constraint satisfaction systems.

6.1 Solving Linear Equations

In order to implement an equation solver we need primitives for numeric constants and

variables (bindable atoms). For numbers, we need the standard arithmetic primitives for

addition, subtraction, multiplication, division, and so on. These may be implemented using

floating point, rational, or some other arithmetic. Numeric constants will be of the primitive

type 'constant.

For atoms, we need the primitive is operator to bind a value to an atom, but we also

need other primitive operations. In order to construct ordered linear combinations we intro

duce a primitive to lexically compare two atoms called lexcompare. The infix lexcompare

operator returns 0 if the two atoms are identical, -1 if the first precedes the second, or 1 if

the second atom precedes the first. We will also need primitives to measure the interesting

ness of atoms; this concept will be explained in section 6.2.

The heart of the equation solving algorithm from section 2.1. 7 is the conversion of

expressions into ordered linear combinations. Our ordered linear combinations will be given

a type of 'linear, which is a supertype of 'constant. We also change the rule for the

primitive aNurnber operator so that:

n: aNurnber

creates an object named n of type 'linear that represents the ordered linear combination

1xn + 0. Ordered linear combinations are represented as a list of terms, with the constant

term at the end of the list. If an object n is oftype 'linear, then n. first is the first term

of n, and n. rest represents the remaining terms. These lists are constructed by the infix

build operator. A term t consists of two parts: t. variable, the atom of the term, and

t. coefficient, the variable's coefficient. Terms are constructed by the infix buildterm

operator that takes a constant and an atom and returns a term.

6. Equation Solving 104

We can now write recursive rules to add or subtract two objects of type 'linear

together. The prefix merge operator controls the order in which the tenns are combined.

p'linear + q'linear { merge (
p.first.variable lexcompare q.first.variable , p , q) }

merge (0 , p' linear, q' linear) {
if (p.first.coefficient = -q.first.coefficient)
then p.rest + q.rest
else ((p.first.coefficient + q.first.coefficient)

buildterm p.first.variable) build (p.rest + q.rest) }
merge (-1 , p'linear, q'linear) { p.first build (p.rest + q) }
merge (1 , p'linear, q'linear) { q.first build (p + q.rest) }
p'constant + q'linear { q.first build (p + q.rest) }
p'linear + q'constant { p.first build (p.rest + q) }
p'linear- q'linear { p + -1Xq }

The case when p and q are both constants is handled by the primitive arithmetic operators.

We will define the if, then, and else operators later, but their usage is standard. Likewise,

we can define rules to multiply or divide a 'linear by a 'constant:

0 x p'linear { 0 }
k'constant X p'linear {

((kXp.first.coefficient) buildterm p.first.variable)
build (kXp.rest) }

p'linear X k'constant { k X p }
p'linear I k'constant { p X 1lk

Lastly, we can define rules to solve an equation.

p'linear = q'linear { 0 = p- q
0 = p'linear ; d { p.first.variable is

(p.rest I -p.first.coefficient) ; d }

Note the semicolon in both the head and body of the last rule, above. The equals opera

tor can be used both to test for equality, or, with the semicolon operator, to assert equality.

This is why the last rule needs a semicolon in its head. Equality must be asserted with a

semicolon before an expression becomes an equation that can be solved. Since semicolon is

an infix operator, it requires a right argument, the atom d above. This dummy argument is

merely passed through unchanged.

If a linear expression is asserted to be equal to zero, then it can be solved using the is

operator. The last rule, above, does this by taking the variable in the first term of the linear

expression and setting it equal to the remaining terms, divided by the negated coefficient of

the first term. Note that if a linear term contains only a single variable, then the "remaining

terms" contain only a constant.

6. Equation Solving 105

The last rule above solves an equation for the atom in the lexically first term, but if we

were using floating point arithmetic and were worried about numerical accuracy, we could

solve for the term whose coefficient is largest in magnitude. If we do this, then the rules

above, combined with a few dozen rules for doing algebraic simplifications (see appendix A),

completely implement the equation solving system described in section 2.1. 7. As we shall see

in the next section, however, this is not always what is desired.

It should be noted that although the above recursive rules for adding and multiplying

objects of type 'linear are correct, for efficiency they are not actually used in Bertrand. As

with the simple numeric primitives such as numbers, linear expressions are treated as primi

tive objects, and addition and multiplication of linear objects are primitive operations. In

addition, solving linear expressions that are asserted to be zero is a primitive, instead of

using the is operator as in the last rule above. Making solve a primitive allows us to pick

which variable is to be solved for based upon how interesting each variable is.

6.2 Interesting Answers

As discussed in section 4.5.3, if the answer to a set of equations is a constant we will

always get the same constant, regardless of which variables we solve for. If we always solved

the equations to a constant (as in Ideal), then there would be no reason to pick one variable

to solve for over any other, beyond numerical accuracy considerations. If the answer contains

unbound atoms, however, we might get different answers, depending upon which variables

were solved for. For example, in the program:

main { x = y + 2 ; y }

we are interested in the value of y, but there are two possible answers. If the equation

x= y+2 is solved for y, then the answer given will be x- 2, but if the equation is solved for x

(which happens to be lexically first), then the answer given will bey. Of course, y is certainly

equal toy, but this answer is not very interesting.

In the example above, y is the more "interesting" variable, since it is the atom we are

asking the value of, so we would like to solve for it. Consequently, we introduce a partial ord

ering upon bindable atoms that is a measure of how interesting they are. Initially, all atoms

are of equal low interest. Atoms are deemed more interesting under the following conditions:

• Atoms occurring in the value of the main rule are the most interesting.

• Atoms occurring in the value of other rules are less interesting than those in the main

rule.

6. Equation Solving 106

• When an equation is solved for an atom (which must be the most interesting one), and its

value contains other atoms, then they are set to be of the same interest as the atom

solved for.

If there is no most interesting atom in an equation to be solved, then from the set of most

interesting atoms we must pick one. One way to do this is to pick the most interesting atom

based on the lexical ordering of their names (this is easy to do since the linear expressions

are kept lexically sorted). Note that we should not pick the most interesting atom based on

some method that depends upon the ordering of the statements in a program, since we would

like the answer to a problem not to depend upon the the order in which its statements are

executed. For example, we should not pick the most interesting atom based on the order in

which the variables were encounted by the interpreter (such as by hashing on the pointer

value of their symbol table entries, as is often done by interpreters). By picking the most

interesting atom based on their lexical ordering, the answer to a problem can change if the

name of an atom is changed, but this can be used to advantage. For example, if we want to

indicate that a certain variable should be solved for, we can give it a name with a lexically

extreme value.

The above guidelines were developed experimentally, and they work reasonably well.

More work should probably be done on understanding the semantics of interesting answers,

and developing a better definition of an "interesting" atom.

6.3 Booleans

The rules in section 6.1 were only concerned with solving simple equations. Other

researchers have commented on the desirability of treating systems of equations as a con·

junction of constraints [Gosling 83]. A major advantage of using augmented term rewriting

for solving constraints is that we can deal with arithmetic and Boolean constraints in a uni·

form manner. Here are the rules that define Boolean arithmetic.

false & a'boolean { false }
true & a'boolean { a }
-true { false }
-false { true }
- -a' boolean { a }

Note that because of the small number of constants in Boolean arithmetic there is no need for

any machine language primitives. Everything that is needed can be declared using rules.

We can also define other Boolean operators in terms of the "not" (-)and "and"(&) operators

defined above. For example:

6. Equation Solving 107

a'boolean I b'boolean { - (-a & -b) }
a'boolean -> b'boolean { -a 1 b }

The unary "not" (-) operator has the highest precedence of the Boolean operators, followed

by the infix "and"(&) operator, then "or" (I), and finally"implies" (->).

The implication operator (->) can be used as an "if" statement, except that it is more

powerful in that it can be used backwards. For example, if we assert:

p=q-> r=s

then if we find that pis equal to q, then we can assert that r is equal to s. In addition, if we

find that r is not equal to s, then we can assert that p is not equal to q.

It is also a fairly simple matter to define an if/then/else operator.

if a'boolean then b'boolean else c'boolean { a->b & -a->c }

where if is a prefix operator, and both then and else are infix. Like the implication opera

tor, this operator can be used backwards.

By adding rules for Boolean logic to the equation solver we can treat systems of equa

tions as a conjunction of constraints, which allows us to express and solve higher order con

straints. It also gives us conditionals, such as the ifYthen!else statement, which, along with

recursion, makes Bertrand able to compute any computable function (Turing equivalent). Of

course, standard term rewriting systems are computationally complete, but augmented term

rewriting allows Turing equivalence to be straightforwardly extended to equation solvers and

other symbolic algebra systems.

The above equation solving rules can perform Boolean and numeric arithmetic, but, so

far, we can only solve equations for numeric variables. An interesting exercise would be to

develop additional rules to solve Boolean equations. Or we could abandon normal arithmetic

entirely and develop rules for other arithmetics, such as for complex numbers, or even for the

toleranced numbers used in mechanical design.

6.4 Reasoning With Equations

The above equation solver allows us to reason about objects without knowing their

values. For example, the following simple problem defines two numbers and a relationship

between them, and then asks a question about them:

6. Equation Solving 108

main {
m: aNumber;
n: aNwnber;
m + 1 ~ n;
m ~ n
}

We want to know if m is equal to n. To show how the equation solver works, we will list the

steps that might be used to solve this problem.

m: aNumber ; n: aNumber ; m+l = n
true ; true ; m + 1 = n ; m = n
m+l=n;m=n
1Xm + 1 ~ 1Xn + 0 ; m ~ n
0 ~ 1Xm + -1Xn + 1 ; m ~ n

m = n

m is 1 Xn + -1 ; m ~ n (the value n-1 is bound to m)

true; 1Xn + -1 ~ n (m was replaced by n-1)
1Xn+-1 1Xn+0
0 ~ -1
false

This problem had a constant answer, but we could ask a slightly more interesting question:

main {
m: aNumber;
n: aNumber;
m+1~2xn;

m = n
}

In this case, the answer is 0 ~ n -1, which means that the answer is true when n (or m) is

equal to 1. The answer was stated in terms of n because the equation was solved form. In

this case, both variables were of equal interest, so the lexically first one was solved for.

The ability to reason about numbers is easily applied to other objects. For example, m

and n could have been points whose positions are related by some complicated function, and

we can ask under what conditions they coincide, perhaps to do collision detection. Or we can

test geometric theorems. For example, if we bisect the sides of an arbitrary quadrilateral and

connect the four midpoints, the resulting figure is a parallelogram. Existing constraint sys

tems have "proved" this theorem by drawing the figure, and having the user observe that the

resulting figure is a parallelogram. Since Bertrand can reason about objects without know

ing their values, we can prove this theorem algebraically without making any assumptions

about a specific quadrilateral.

6. Equation Solving 109

6.5 Nonlinear Transformations

As discussed in section 2.1. 7, there are several nonlinear transformations that are use

ful for solving nonlinear simultaneous equations. Unfortunately, nonlinear transformations

are not safe to make -they can result in incorrect answers. An advantage of using Ber

trand is that we can make nonlinear transformations safe by adding constraints check our

assumptions. For example, the following rule performs cross multiplication:

a' constant = b I c { b I a = c }

If the value of c evaluated to zero, however, the denominator would vanish, rendering the

solution invalid. We can check for this error by adding an additional constraint to the rule:

a' constant = b I c { c - = 0 ; b I a = c }

If c eventually evaluates to zero, then the added constraint will evaluate to false, causing a

contradiction (since the semicolon asserts it is true). An example equation solver, including

rules for some nonlinear transformations, is given appendix A

In addition to the rules above, there are many other possibilities. For example, we can

define a set of rules to solve simple calculus problems. The following rules do simple differen

tiations:

diff a'constant { 0 }
diff (x ~ n' constant) { n X x ~ (n -1) }

diff (a + b) { (diff a) + (diff b) }
diff a' constant X x) { a X (diff x) }

diff f I g) { (gX (diff f) - fX (diff g)) I g~2}

We could also define rules for integration.

6.6 Word Problems

Let us now use the resulting equation solver to solve some constraint problems. For

example, in section 5.1.3, we used TK!Solver to solve a brain teaser about the length of a

banana. In this section we use the Bertrand equation solver to solve the same problem. In

the following program, an ellipsis (...) begins a comment that runs to the end of the line.

main {
rld: aNurnber;
rl: aNumber;
rw : aNumbe r;
bld: aN umber;
bl: aNurober;
bw: aNumber;
ww: aNumber;

6. Equation Solving

rope linear density
length of rope
weight of rope
banana linear density
length of banana
weight of banana
weight of weight

110

rnw: aNurnber; weight of monkey
rna: aNurnber; age of monkey
Ma: aNumber; age of monkey's Mother

rld = 113 X 16 I 12; ... oz I in
bld = 2;
ww rnw;
rl I 12 = rna; ... rope length in feet
mw Ma;
rna + Ma = 30;
mw I 2 + bw = (ww + rw) I 4;
Ma 112 X 3 X 112 X 4 X 2 X 113 X 3 X 114 X rna;
bw bl X bld;
rw rl X rld;
bl }

Bertrand's equation solver can handle these nonlinear simultaneous equations directly,

instead of using relaxation like TK!Solver. Not only does this relieve us ofthe need to supply

guesses, it is also much faster, and the result is 5.75, not 5.7499992.

As with TK!Solver, while formulating the problem we had to be careful about units. We

picked ounces and inches for the base units, and had to explicitly make sure all of the equa

tions were stated in the correct terms. So when the problem said the rope's linear density

was 113 pound per foot, we had to convert it into ounces per inch. In the fourth equation, we

also had to divide by 12 to convert the rope's length back into feet.

The solution above uses Bertrand only as an equation solver, so it does not use the full

power of the language. A better way to solve the above problem is to introduce a new data

type called an object, which contains fields for weight, length, age, and linear_ density.

An instance of an object is created with the nullary make_ object operator.

make_ object {
weight: aNurnber;
length: aNurnber;
age: aNumber;
linear_density: aNurnber;
linear_density = weight I length }

Note that there is a constraint, the definition of linear_density, in the datatype definition.

We can also introduce some rules to do unit conversions. The following "in_ units" rules

are all postfix operators.

6. Equation Solving 111

x in ounces { X

X in _pounds { X I 16 }
x in inches { X }
X in feet { X I 12 }
X in _years { X }

Our problem specification is now very close to the original word problem (see section 5.1.3).

main {
rope: make_object;
banana: rnake_object;
monkey: make_object;
mother: make_object;
weight: make_object;

rope.weight in_pounds I rope.length in_feet = 1/3:
banana.weight in_ounces I banana.length in_inches 2;
weight.weight = monkey.weight;
rope.length in_feet = monkey.age in_years;
monkey.weight in_ounces = mother.age in_years;
monkey.age in_years + mother.age in_years = 30;
monkey.weight in_pounds I 2 + banana.weight in_pounds

(weight.weight in_pounds + rope.weight in_pounds) I 4:
mother.age in_years

112 X 3 X 1/2 X 4 X 2 X 113 X 3 X 1/4 X monkey.age;
banana.length
}

Now there is no need to be concerned about mixing units. All unit conversions are done

automatically.

This example shows that Bertrand can be used simply as an equation solver, without

defining new data types or operators (constraints), but that the ability to define new data

types and operators makes it easier to solve problems.

6.7 Electrical Circuits

As a better example of how using rules to define datatypes can make solving problems

easier, let us use the equation solver to build some electrical circuits, as was done using

ThingLab in section 5.1.2. We introduce a new datatype, 'eob, which stands for electrical

object. We define two types of 'eob, a resistor and a battery.

6. Equation Solving 112

resistance'linear resistor
voltagein: aNumber;
voltageout: aNumber;
current: aNumber;
voltagein - voltageout
) 'eob

voltage'linear battery {
voltagein: aNurnber;
voltageout: aNumber;
current: aNumber;

current X resistance

-voltage = voltagein - voltageout
) 'eob

The operators resistor and battery are both postfix, and take a single argument. The

rule to define a resistor, which takes the resistance as its argument, defines a resistor using

Ohm's law. The rule to define a battery takes the voltage ofthe battery as its argument, and

says that this voltage is the difference between the input voltage and the output voltage. The

voltage is negative because batteries generate voltage, rather than dropping it as in a resis

tor.

The following rule defines an operator for connecting electrical objects in series.

a'eob series b'eob {
a.current = b.current &
a.voltageout = b.voltagein
)

This rule states that the current through two objects in series must be the same, and the vol

tage on the output terminal of the first must be equal to the voltage on the input terminal of

the second.

As a measure of how easy it is to describe new objects and constraints in Bertrand, com

pare the above three rules with the equivalent problem definition written for ThingLab1, in

section 5.1.2. We can also define some rules to do unit conversions, and for "syntactic sugar".

n kilo { 1000 x n)
n volt { n)
n ohm { n)
ground { 0)

Except for the nullary ground operator, these operators are unary postfix.

1 An earlier version of Bertrand did not require numbers to be declared, So the entire program to define resis-
tors, batteries, and series circuits was three lines long!

6. Equation Solving 113

We can now solve the problem ofhooking two 100 ohm resistors in series with a 10 volt

battery.

main {
b1: 10 volt battery;
r1: 100 ohm resistor;
r2: 100 ohm resistor;

bl series rl;
rl series r2;
r2 series bl;
b1.voltagein ground;
rl.current
}

This constraint program is equivalent to the following schematic diagram:

?

1000

+
10V

1000

ThingLab used relaxation to solve this problem, but the Bertrand equation solver can solve it

directly as a set of slightly nonlinear simultaneous equations. Our problem description is

much more concise since, unlike ThingLab, we do not have to supply procedures for the local

computation of each variable. Lastly, we can say that r1 is ann ohm resistor and solve

for the value of the resistor given a desired current. In ThlngLab, the resistance had to be

specified as a reference value so that the constraint satisfier would not try to change it.

Since we can solve this problem directly, there is no need to introduce a redundant view

of two resistors in series. The advantage ofthis is that we can use the same rules to solve

more complicated problems. For example, we can solve for the resistance of a circuit with

five resistors connected in a bridge, for which a human solver would have to use mesh

analysis. An even more difficult problem is to connect 12 resistors as the edges of a cube, and

6. Equation Solving 114

ask for the resistance value across one of the major diagonals. This graph is not planar, so

even mesh analysis cannot be used to solve it. As a measure of the difficulty of this problem,

Bertrand's answer disagreed with the value computed by some human problem solvers. We

finally built the circuit and measured it to confirm that Bertrand was giving the correct

answer.

Lastly, as mentioned in section 1.3, we might want to add a constraint to make sure

that we do not burn up a resistor by putting too much power through it. This would only

require adding an additional variable and one additional constraint to the definition of a

resistor:

resistance'linear resistor {

voltagein: aNumber;
voltageout: aNumber;
current: aNumber;
wattage: aNumber;

6. Equation Solving

(voltagein - voltageout) x current < wattage;
voltagein - voltageout = current X resistance

} 'eob

115

Chapter 7 Graphics Applications

7.1 Input and Output

Up to this point, all input to Bertrand has been performed by assigning values to vari

ables, and all output was taken from the final value of the subject expression. This is accept

able for a system that is run in batch mode, such as Ideal or TK!Solver, where all input is

supplied before the program is run, and all output printed or displayed after the run is com

plete. Other constraint langnages, such as ThingLab and Sketchpad, are run interactively,

which contributes greatly to their utility. Interaction is especially important for graphics

applications.

Interactive input and output, including graphic VO, can be added to Bertrand by creat

ing new primitive operators that, as a side effect, perform an input or output operation. For

example, we could add a primitive read operator that is rewritten into a value read from the

user's terminal. Since this value is used as an expression, the user can type in an arbitrary

expression, not just a simple value. For example, a program could ask the user for the width

of a rectangle, and the user could respond with an expression that constrains the rectangle to

be one half as high as it is wide.

Likewise, a write operator can be added that takes a single argument, writes it out to

the terminal, and rewrites to the constant true (or to a constant that is the number of charac

ters that were written, or any other useful information). Both the input and output primitive

could optionally take a file name, and perform VO to a file instead of the terminal.

Adding VO primitives is relatively easy- the more difficult task is to synchronize

input and output with the outside world. A major advantage of Bertrand is that its non

procedural semantics allow operations to be performed in parallel whenever possible. When

dealing with the outside world, however, this turns into somewhat of a liability. When one

operation must precede another, an explicit dependency must be set up between them to

make sure they are performed in the proper order.

For example, if we want to ask the user to enter the width of a rectangle using our read

and write operators, we might write the following program fragment:

write "enter width of rectangle: "; rect. width = read; ...

Since statements are not required to execute sequentially, there is nothing to prevent the

read operation from occurring before the write operation, causing the program to wait for

input before it asks the question. To prevent this misordering, we must make the read

7. Graphics 116

operation depend explicitly upon the write operation. For example, in the I/0 library we

could define the following rules:

ask a' string { (write a) then read }
true then_read { read }

Ask is a prefix operator that calls the write operator with a string argument, and then calls

the postfix then_read operator, passing to it the result of the write operation. The

then_ read operator waits until the write operation returns true before it is rewritten into

a read operation. Our program fragment can now be changed to:
'

rect.width = ask "enter width of rectangle: ";

and the correct sequence of operations is assured.

For a long dialog of input and output operations, explicit dependencies must be set up

for each operation that is to be sequenced. This can be quite cumbersome, but fortunately

there are other forms of interactive input and output that are easier to program using Ber

trand than the lengthy question and answer form that is most natural for conventional pro

cedural languages. For example, the event driven interaction used by the Smalltalk pro

gramming environment, and later by the Macintosh computer, is impossible to program

using conventional single thread of control languages without resorting to polling loops or

interrupt handlers. In Bertrand, since there is no single thread of control, this sort of

interaction is actually easier to program than a conventional dialog. For example, multiple

read requests can be made active at the same time; the user selects which request to respond

to by pointing at it with the mouse, or by selecting it from a menu.

7.2 Graphics

Existing constraint languages, such as Sketchpad and Ideal, are particularly useful for

describing graphical objects. Once the objects are described using constraints, these systems

use traditional rendering techniques to draw them. Thus, the abilities of constraint

languages complement existing graphics research on rendering objects.

While the ability to output graphics is important for demonstrating that graphics con

straint languages can be built using Bertrand, beyond demonstrating this capability, little

work has been done to add all the graphics features that would be required to turn it into a

full graphics system. Since Bertrand is an extensible language, once the graphics primitives

are in place other features can be added using rules. In addition, the current implementation

of Bertrand is run only in batch mode, so we have not significantly investigated the problems

of interactive graphic input and output. Even so, Bertrand's graphic abilities compare favor

ably to popular (batch) graphics languages such as PIC [Kernighan 82], mainly because of

7. Graphics 117

the power of being able to describe graphic objects using constraints and the extensibility pro

vided by being able to define new data types and constraints.

Graphic output is done with a small number of primitive operators for drawing lines,

circles, rectangles, and character strings at specified positions. We can also specify graphic

input locations using a mouse. These prjmitive graphic operations have side effects, so the

Bertrand interpreter must be modified to add them, but the new data types and constraints

(operators) can be added using standard rules. The first thing that is required is a datatype

for points:

aPoint { x: aNumber; y: aNumber; true) 'point

A point is created with the aPoint operator, and has two sub-objects, the x andy coordinates

of the point. We can also define operations on points, for example:

p'point ~ q'point { p.x ~ q.x & p.y ~ q.y)

Two points are equal if their x andy coordinates are both equal. Note that the value of this

rule is a Boolean, so it can be used both to ask if two points are equal, or to assert that two

points are equal using the semicolon operator. Another operation on points is to sum two

points:

p'point + q'point { r: aPoint;
r.x ~ p.x + q.x; r.y ~ p.y + q.y; r)

The sum of two points is taken by summing the x andy coordinates and returning a new

point. Other operations on points can be added in the same manner.

New datatypes can be built up hierarchically upon the point data type. A line segment

is defined by its two end-points:

aLine { p: aPoint; q: aPoint; true) 'line

Again, we can define some operations on lines:

l'line ~ m'line { l.p ~ m.p & l.q
l'line conn m'line { l.q ~ m.p)
horiz l'line { l.p.y ~ l.q.y)
vert l'line { l.p.x ~ l.q.x)

m.q)

As well as a definition of equality, we have also added operators to connect two lines end to

end, and to constrain a line to be horizontal or vertical. The intuitive nature of these rules is

readily apparent. For example, the third rule defines a line to be horizontal if they coordi

nates of its endpoints are equal. All of these operators can be used either as assertions or as

tests.

7. Graphics 118

Again, building hierarchically, we can define a datatype for an upright rectangle:

aRect {
left: aLine;
top: aLine;
right~ aLine;

vert left;
horiz top;
vert right;

bottom: aLine; horiz bottom;
left conn top; top conn right;
right conn bottom; bottom conn left;
true } 'rect

top

left right

bottom

The data type for a rectangle has four sub-objects, but unlike the data types for line and point,

it also includes some constraints to connect the four sides together, and to constrain the sides

to be appropriately horizontal or vertical. Note that putting the constraints on a part on the

same line as its declaration is only a matter of style, both the declarations and the con

straints could occur anywhere and in any order inside the body ofthe rule.

In the definition of a rectangle above, the comers of the rectangle can only be refer

enced indirectly. For example, the upper left comer is either top. p or left. q. A frequent

and useful tactic is to add redundant parts to a datatype, so that the user can refer to these

parts directly. We can add names for all the compass points of a rectangle, plus its center,

width and height, by adding the following text to the definition of a rectangle.

7. Graphics

nw: aPoint; nw
ne: aPoint; ne
se: aPoint; se
sw: aPoint; sw
n: aPoint; n.x
s: aPoint; s.x
e: aPoint; e.x
w: aPoint; w.x
c: aPoint; c.x
width: aNurnber;
height: aNurnber;

top.p;
right.p;
bottom.p;
left.p;

(nw.x + ne.x)/2; n.y
(nw.x + ne.x)/2; s.y
nw.y; e.y = (ne.y +
nw.x; w.y = (nw.y +
n.x; c.y = w.y;

width = e.x - w.x;
height = n.y- s.y;

= nw.y;

= sw.y;
se.y)/2;
sw.y)/2;

119

n

t
nw ne

height w c. e

! sw se
s

width

As in the constraint language Ideal, we can now define a rectangle in a multitude of ways.

Unlike Ideal, the definition of an object does not necessarily draw it. We could have placed a

command to draw the rectangle inside its definition, but since Bertrand makes it easy to

define new operators, we will introduce the postfix bang (!) operator, with the convention

that a bang applied to any object outputs that object. For every graphic object we define a

rule that matches that object followed by a bang, which rewrites to the appropriate primitive

graphic operation(s). For objects such as lines, this operation is indeed a primitive. For com

posite objects such as rectangles, we define a rule such as:

r' rect! { r.left! ; r.top! ; r.right! ; r.bottom! ; true }

All of the rules above for defining graphic data types and operations can be put into a library,

like the library that the rules for solving equations were placed in. The language user can

then use these libraries to draw two dimensional figures.

Since Bertrand is an extensible language, in order to draw three-dimensional objects we

only need to redefine some of our graphic objects. For example, a point will need a z coordi

nate, and equality on points will have to check the z coordinate. But lines still only consist of

two points, and rectangles consist of four lines, so their definitions remain intact. The availa

bility of an additional dimension does open up new possibilities, however, such as a new data

type of rectangular prism made up of six rectangles.

7.2.1 Diagrams

To show how Bertrand can be used to build a simple constraint language for doing

graphics, we will now define some rules for doing simple flow-chart type diagrams. Instead of

using the datatypes for lines and rectangles above, we will define our datatypes from scratch

to show how easy it is. All we will assume is the following primitive graphics operators.

(x, y, rad) ! drawcircle
(string, (x, y)) ! drawstring
(xl, yl, x2, y2) ! drawarrow
(left, top, right, bottom) ! drawrect

7. Graphics 120

The drawcircle operator draws a circle with a specified position and radius, drawstring

centers a string at the specified location, and drawarrow draws an arrow between two

points. Upright rectangles are specified by giving the coordinates of the top left and bottom

right corners (sometimes called "Manhattan style"). Since these operators are primitives, all

oftheir arguments must become constants before they are invoked.

Besides the primitives above, the only other operator we need is:

X inch { X X 100 j

The postfix inch operator converts numeric quantities in inches into device units for the

current graphic output device. In this case, our output device is a workstation with 100 pix

els to the inch. Using this operator we can define all of our dimensions in device independent

units. If we change to a different device, we only need to change a constant in this one rule.

Now let us define an object that is a one inch high by 1.5 inch wide box with a string

centered inside it.

box s'string {
width: aNumber;
height: aNumber;

width= 1.5 inch;
height = 1 inch;

center.x: aNurnber; center.x = (left+right)/2;
center.y: aNumber; center.y = (top+bottom)/2;
left: aNumber; right: aNumber; width = right - left;
top: aNumber; bottom: aNumber; height = top -bottom;
{left, top, right, bottom) ! drawrect;
(s, center.x, center.y) ! drawstring
} 'gob

Notice that a variable name can be used in an expression before it is declared, if desired.

Next, we define a rule for a circle with a string centered inside it.

circle s'string {

width: aNurnber;
height: aNumber;

width = 1 inch;
height = 1 inch;

center .x: aNumber; center .x = (left+ right) /2;
center.y: aNumber; center.y = (top+bottom)/2;
left: aNumber; right: aNumber; width = right - left;
top: aNumber; bottom: aNumber; height = top - bottom;
(circle.x, circle.y, width/2) ! drawcircle;
(s, center.x, center.y) ! drawstring

} 'gob

This rule is the same as the rule for a box, except that a one inch diameter circle is drawn.

Circles and boxes are both of type ' gob, which stands for graphic object. Gobs are arranged

relative to each other with four infix operators called right to, upto, left to, and down to.

Here is the rule for the rightto operator:

7. Graphics 121

a'gob rightto b'gob {
a.right + 1 inch = b.left;
a.center.y = b.center.y;
(a.right, a.center.y, b.left, b.center.y)
)

The other three operators are defined similarly.

drawarrow

Once these six rules are defined we can use them to draw diagrams. For example, the

following constraint program draws a figure with four objects:

main {
input: circle "constraints";
process: box "bertrand";
output: circle "pictures";
program: circle "rules";

input rightto process;
process rightto output;
program upto process;

input.left 0; input.top
)

0; true

The resulting output diagram looks exactly as described:

constraints bertrand

rules

pictures

Note that we did not have to supply locations for each object. Instead, the positions of the

objects were specified relative to each other, and the system calculated their absolute posi

tions. Of course, at least one object had to be given an absolute screen location. The last line

of the constraint program gives an absolute screen location to the object named input. We

7. Graphics 122

can make this even easier by defining a rule:

origin a'gob { a.left = 0 & a.top = 0 }

The prefix origin operator places the upper left comer of its argument at the origin of the

screen, which (on our workstation) is the upper left comer of the screen.

These six rules show how easy it is to define a simple constraint system for doing graph

ics. The same rules can be used to draw many different diagrams (other examples of

diagrams described using these rules are in appendix A). For example, in section 5.2.3 we

used Ideal to describe four rectangles connected by arrows. Compare Ideal's description to

the foilowing constraints written in Bertrand:

rl: box "1";
r2: box "2";

r3: box "3";
r4: box "4";
r1 rightto r2;
r2 downto r3;
r3 leftto r4;
r4 upto rl;
origin rl;

Of course, with these few rules only simple diagrams can be described, but rules for more

complex diagrams are easily added.

7.2.2 Describing Graphic Objects

Graphics is often used to model real objects, as in applications such as Mechanical Com

puter Aided Design {ME-CAD). An advantage of Bertrand is that it allows a user to describe

objects in terms more meaningful than just linear dimensions. The following example hints

at how this could be used in a real application.

We wish to describe a metal plate with a number of screw holes; the holes are used to

fasten the plate to something with screws. Instead of specifying the position of the holes, or

even the number of holes required, we want to have them calculated automatically from

other information, such as the force exerted on the plate. For example, we could specify such

a plate with the foiiowing simple constraints.

force= 2.5 newtons;
length ~ 12 centimeters;
width ~ 1.2 inches;

We will discuss the rules to interpret these constraints later, but for now all we need to know

is that our rules assume that each screw can hold one newton afforce, so the above con

straints define the following plate:

. 7. Graphics 123

0 0

Instead of specifYing the force, we could add a new constraint:

pressure= force I (length X width);

and then give the pressure on the plate instead of the force.

pressure = .25 psi;
length = 12 centimeters;
width = 1.2 inches;

0 0 0 0 0 0

0

0

The rules for solving equations can invert the (nonlinear) equation for pressure to calculate

the force on the plate. If the pressure on the plate is changed, the number of holes will

change.

pressure= .1 psi;
length = 12 centimeters;
width= 1.2 inches;

0 0 0

If the length or width of the plate is changed, the number of holes should also change, since

pressure is a function of both force and area (but the spacing between the holes will remain

relatively constant).

7. Graphics 124

pressure = .1 psi;
length = 16 centimeters;
width = 1.2 inches;

0 0 0 0

If the force had been specified, instead of the pressure, then the number of screw holes would

have been independent of the size of the plate.

" Notice in the constraints above we used several different postfix operators for units of

measure such as newtons, centimeters, and psi. Like the postfix inch operator defined

in the last section, these are defined using rules. As well as converting standard measures

into screen coordinates, we can use such rules to convert between units such as centimeters

and inches, newtons and pounds, or psi and pascals. A set of these conversion rules can be

placed in a library.

We have kept this example fairly trivial, but it is easy to imagine other examples. The

thickness of a metal part could be dependent upon how much stress it will be subject to,

which might not be known until later in the design. The value of a constraint can be given as

an expression, so that the proper value will be calculated later" For example, the size of a

bolt holding on an aircraft engine may depend upon the weight or thrust ofthe engine. The

ability to delay the binding of design decisions allows the designer to work more abstractly,

and thus gain expressiveness. Even if a value is later specified as a constant, the expres.sion

can be used to check that the value will be sufficient, and thus avoid a potentially dangerous

design flaw.

We now discuss the rules and constraints that define the plate with holes above. The

binding of the value of the number of screw holes was delayed by using an expression for its

value. In fact, this expression is not a simple arithmetic expression; it includes a conditional:

if force>2 then numBcrews = trunc(force)+l else n~crews = 2;

This conditional expression ensures that there are at least two screw holes to hold the plate

onto something. If the force is greater than 2, then it is truncated up to the nearest integer.

The following rule draws a circle to indicate the screw hole:

7. Graphics 125

screw(x,y) (x, y, . OS inch) ! drawcircle }

Notice that screw could have been an infix operator, but we choose to simulate functional

notation, with its two operands, the x andy position of the screw hole, separated by an infix

comma operator. We can extend this rule so that it can take a list of numbers for the x posi

tion of the screw holes by adding the following rule:

screw((head, tail), y) { screw(head, y); screw(tail, y) }

This rule places a hole at the head of the list, and calls itself recursively on the tail of the list.

Finally, we define some constraints to calculate the positions of the screw holes and

place them in a list.

border = .5 inch;
spacing = (length - 2 x border) I (numscrews - 1) ;
screw(numscrews from xpos+border spaced spacing, ypos};

The numbers xpos and ypos are the position of the left side of the plate. The border is the

distance to inset the screws from the edge of the plate. Spacing gives the distance between

the screw holes. The last constraint above uses the operators from and spaced to generate

the list of hole positions with the following rules:

n' constant from b spaced s { b, n-1 from b + s spaced s }
2 from b spaced s { b, b + s }

The left associative infix operators from and spaced are used to recursively generate a list

of numbers, separated by commas. These rules generate a list ofn numbers (the number of

screw holes desired), starting with b (the position of the first hole), and incrementing by s

(the spacing between the holes). In this case, we know from other rules that the number of

screw holes must be an integer greater or equal to 2, but we could have added explicit checks

for this. The first rule applies when n is a constant greater than 2, and the second rule is the

base case that applies when the number of holes desired is exactly 2. These rules act as an

iterator, for example, the following input would be rewritten in the following way:

4 from 10 spaced 2
10, 3 from 12 spaced 2
10, 12, 2 from 14 spaced 2
10, 12, 14, 16

Also note that even though the positions of the screw holes are defined recursively, recursion

has no procedural semantics. In fact, the current Bertrand interpreter does not draw the

screw holes in order from left to right. Instead, a divide and conquer-like ordering is used

(nine holes are drawn in the order 1, 3, 5, 7, 9, 2, 6, 4, 8). The actual order is not important,

what is significant is that (as in the factorial example in section 3.3.1) the lack of a pro-.

cedural interpretation of recursion allowed the interpreter to reorder the execution. On

7. Graphics 126

graphics hardware with multiple processors (which is becoming common) the interpreter

would have been free to use a divide and conquer scheme to split the process of drawing the

screw holes over different processors, or to reorder the drawing of the holes to minimize the

pen movement of a pen plotter, or sort them by scan line so they can be more easily raster

ized for an electrostatic or laser plotter.

7.3 Streams

The example of a plate with holes in the preceding section, and the factorial example (in

section 3.3.1) both used recursion to define a stream of values that passed from a generator

operator to a consumer operator, like data passed between coroutines. Since we already have

the ability to generate and consume streams of data, we might consider using streams for

input and output. The UNIX operating system uses a similar scheme. I/0 streams can be set

up between processes with a pipe, or can even be to or from a device. For example, input

from, and output to a terminal are treated as streams of characters, using the standard

input, output and error streams.

To use streams for I/0 in Bertrand, we change the read operator so that instead of

rewriting to the value read from the terminal, it rewrites to a list whose head is the value

read from the terminal, and whose tail is a recursive call to the read operator to read the

next value. When the read operator encounters the end of file (EOF) indicator, it returns

the empty list (or some equivalent end-of-stream indicator). We also change the write

operator so that it can take a stream Oist) of values, which it writes out recursively.

Our constraint programs using stream I/0 are now filters. For example, the following

program:

write (read + 2)

reads a stream of values, increments them by 2, and writes them out. In order for this pro

gram to work we must modifY the definitions of operators such as + to take stream argu

ments. This modification is not quite as easy as it seems. If (as is the case above) one of the

arguments to an operator is a stream, and the other isn't, the non-stream argument must be

converted into a stream. So, in the example above, the constant 2 actually represents a

stream of constants, one for each value in the stream generated by the read operator (as in

the language Lucid [W adge 85]).

Extending the semantics of operators so that they apply to streams as well as constants

is easier if we do it on a case by case basis. In the plate with holes example, we extended the

screw operator so that its first argument could be a stream with the rule:

screw((head, tail), y) { screw(head, y); screw(tail, y)

7. Graphics 127

In the factorial example in section 3.3.1, we added a similar rule to allow the product of a

stream of numbers to be calculated. A more difficult problem is encountered with the is

operator, which binds values to atoms. Since the values bound can be arbitrary expressions,

we :niight imagine extending this operator to allow streams to be bound as the value of an

atom. This requires that the value of an atom contein a recursive call to itself. Unfor

tunately, in section 3.2.1 we made the restriction that the value of an atom cannot contain an

instance of itself, in order to ensure single assignment semantics for binding. This restric

tion makes streams second class objects in Bertrand because they cannot be assigned as the

value of an atom. Of course, this restriction could be relaxed in order to make streams first

class objects in Bertrand, but the semantics of the resulting language would have to be

reworked.

7. Graphics 128

Chapter 8 Execution

The current implementation of Bertrand is strictly an interpreter, but Bertrand has

several important properties that make other more efficient execution mechanisms possible.

This chapter discusses three ways for implementing Bertrand, starting with interpretation,

through compilation for sequential machines, and finally by showing how the non-procedural

semantics of Bertrand allow parallelism to be easily detected and taken advantage of on a

multiprocessor.

8.1 Interpreting

The current Bertrand interpreter consists of three parts, a pattern matcher that

repeatedly searches the subject expression for a redex, an instantiator that replaces a redex

with the body of the rule that was matched, and a name space that manages the hierarchy

of names, along with their types and values.

8.1.1 Pattern Matching

The pattern matcher takes a set of rules and converts it into a table-driven finite state

automaton. This automaton is constructed and interpreted using a pattern matching algo

rithm that is similar to the one used in the Purdue Equational Interpreter [Hoffmann 85].

This algorithm converts the problem of pattern matching on trees into the simpler problem of

pattern matching on strings. The string pattern matching is then performed using a stan

dard fast algorithm. The following description assumes some familiarity with the Aho

Corasick string matching algorithm [Aho 75].

The pattern expression in the head of each rule is a binary tree to be matched against a

subexpression of the subject expression. Each pattern tree is flattened in preorder, ignoring

the parameter variables, into an annotated string. Each element of the string is a triple that

consists of the operator symbol at that node of the tree, and the tree movements required to

get to the next element of the string. For example, the simple pattern expression:

true & A

which represents the tree:

8. Execution 129

is flattened into the two element match string:

(& 0 left) (true 1 match)

The movement annotations consist of a non-negative integer and an element from the set

[left, right, match). The integer gives the number oflevels to move up the expression tree

(towards the root) and the set element indicates whether to move down the left or right child

to look for the next node to match. In the last element of the string, the set element is used

to indicate that a match has been made, and the non-negative integer indicates how far up

the tree to move to get to the root of the matching expression.

Let us see how this pattern would be matched against a typical subject expression:

true & x=O

which represents the following expression tree:

Starting at the root of the expression tree, the first element of the string says that the node

we are pointing to must be the & operator. It is, so we move up zero levels in the expression

tree, and then follow the left child. The next element of the string then says that the node we

are pointing to must be the (nullary) true operator. It is, so we move up one level (to the &

node) in the tree, and indicate that we have a match at that node. The right argument of the

& operator was not examined because the pattern contained a variable in that position, which

can match any expression.

8. Execution 130

A match string is generated for each rule in the program, and these strings are used to

construct tables for an automaton using the Aho-Corasick algorithm. Each state of the auto

maton is annotated with the pair of movement instructions from the string. For example,

consider the following pattern:

false & A

which corresponds to the match string:

(& 0 left) (false 1 match)

We can combine this string with the string

(& 0 left) (true 1 match)

from above into the following automaton:

& 0 true 1
start

left match

false

1

match

Combining match strings like this allows our automaton to run in time independent of the

number of rules, since no backtracking is required for match strings that begin with the

same prefix. Unfortunately, the automaton cannot be annotated consistently if different

strings attempt to assign different annotations to the same state. For example, consider the

pattern:

A & false

which corresponds to the match string:

(& 0 right) (false 1 match)

An automaton for this rule and either of the rules above cannot be annotated consistently

because, after matching the & operator, the automaton doesn't know whether to walk down

the left or the right child. We say that these rules violate strict left-sequentiality. Infor

mally, strict left-sequentiality means that in a depth-first, left to right traversal of a tree, we

must always be able to determine whether a redex has been found before we go onto the next

node of the tree. Strict left-sequentiality is defined formally by Hoffmann and O'Donnell

[Hoffmann 85].

8. Execution 131

Currently, rule sets that violate strict left-sequentiality cause an error at table genera-

tion time. Because of this restriction, parallel rules such as:

true I A { true }
A I true { true }
false I false { false

cannot be used, and must instead be written as:

true I A { true }
false I A { A }

This can result in the left argument to "or" being evaluated unnecessarily when the right

argument is true.

This restriction, however, allows the resulting automaton to run very fast. It can find a

match in time proportional to the length of the subject expression, and independent of the

number of rules (certainly the lower bound for deterministic tree matching). The time

required to construct the tables for the automaton is also very reasonable; it is linear in the

total size of the match strings. The size of the resulting tables is also linear in the same

measure [Aho 85]. Thus, programs with hundreds or even thousands of rules are practical.

Except for the parallel "or" case discussed above, rule sets that violate strict left

sequentiality rarely occur in practice. In programming Bertrand only one other violation has

been encountered, and that was in the equation solving rules. We could overcome the left

sequentiality restriction by allowing the annotation at each state to be a set of pairs, instead

of just a single pair. The automaton could then try all the pairs in the set until one succeeds.

This scheme has the advantage that it keeps the good performance characteristics of the

Aho-Corasick algorithm for rule sets that are strictly left-sequential, while allowing non-left

sequential sets with a reasonable penalty. Because violations ofleft-sequentiality are so

rare, this extension has not been made to the current interpreter.

8.1.2 Instantiating Rules

Once the rule heads have been compiled into a table the pattern matching automaton is

started. When the head of a rule matches a redex in the subject expression the redex is

replaced by a transformed copy of the body of the rule. This is called instantiating a rule.

The body of the rule is transformed by replacing each parameter variable by a copy of its

value!, and creating free instances of the local variables in the name space. In the example

of matching in the last section, the only parameter was A, which matched the expression

1 If a parameter variable is only referenced once in the body of a rule then this copying is unnecessary. In the
case of multiple references there are standard techniques for avoiding copying [Mellish 80], but they have
DDt yet been used by a Bertrand interpreter.

8. Execution 132

x = 0, so each occurrence of A in the body of the rule is replaced by the expression x = 0. Any

remaining variables in the body of a rule are local variables. These local variables (none, in

the above example) are inserted into th.e name space tree.

The name space is stored as an n-ary tree. The root of this tree is the top of the name

space. When the main rule is instantiated, its local variables (the labels in the body of the

rule) wiii be inserted into the tree as children of the root. As other rules are instantiated,

their local variables are inserted into the name space tree. For example, the rule:

head { p: expl ; q: exp2 ; r: exp3 ; p + q = r }

conteins three local variables (p, q, and r). If this rule matches the labeled redex:

foo: head

then the three local variables are inserted into the tree as children of the label foo. Note

that a label (such as foo) wiii always have been inserted into the name space before the

expression it labels is reduced. For example, once the above rule is reduced, the labels p, q,

and r wiii correspond to three new nodes in the name space tree. If expl then matches a

rule with local variables, these local variables are inserted into the tree as the children of p.

The name of a name space node is the label of the red ex that created it. In the formal

semantics in chapter four, unlabeled redexes were automaticaily assigned a label with a gen

erated name. Since in typical programs most redexes are unlabeled, the resulting name

spaces would contain mostly generated names. Fortunately, it is not actuaily necessary to·

insert these names into the name space. Instead, the name space is stored as multiple, dis

jointed trees. An unlabeled redex starts a new root of the name space. This means that we

no longer have to generate names for unlabeled redexes, and also makes it possible to gar

bage coilect old names.

Each node of the name space tree also contains space for the value of the variable and

its type. A variable has no value until one is bound to it by the is operator. A variable has a

type if it was a label on a redex that matched a rule that was tagged with a type name.

Once the body of the rule that matched the redex has been copied, its parameter vari

ables replaced by their values, and the local variables replaced by pointers to variables

inserted into the name space, then it replaces the redex in the subject expression.

In addition to redexes found by pattern matching, another type of redex is an expres

sion consisting of the is operator with a first argument that is a free variable (bindable

atom). This type ofredex is reduced by simply assigning the second argument of the is

operator as the value of the first argument in the name space tree. A third type of redex is a

variable that is no longer free because a value has been bound to it by the is operator. The

bound variable is simply replaced in the expression tree by (a copy of) its value.

8. Execution 133

The process of finding a redex and replacing it repeats until no additional redexes can

be found. At that point the subject expression is printed out and the interpreter terminates.

8.1.3 Types and Operators

In the pattern matching algorithm presented above, parameter variables in the head of

a rule were ignored when the match strings were constructed. If a parameter variable has a

guard, however, it cannot be ignored, because it must match against a free variable of the

proper type. Instead, we treat the type just like an operator. In an expression tree, each

node has an operator, and the operator of a node representing a (free or guarded parameter)

variable is the type of that variable. Consequently, the pattern:

true & A'boolean

becomes the match string:

(& 0 left) (true 1 right) ('boolean 1 match)

The third element of this string will match a node whose operator is the type name

'boolean.

In the discussion above it is no coincidence that we are treating a type name as an

operator. As mentioned during the discussion of supertypes in section 3.2.3, type names and

operators actually are the same thing. In fact, in the current implementation they are both

stored in the same symbol table. Types can have supertypes, so all operators can have super,

types. A type name can always be distinguished from an operator name by the fact that it

begins with a single quote, but even this is not really necessary (it does help with debugging,

of course).

An operator that is not a type can be thought of as a functor that defines a mapping

between selectcrs taken from the natural numbers from one through the arity of the opera

tor, and the arguments of the operator. For example, a binary operator has two positionally

distinguished arguments. Types are operators whose arguments are selected by name,

rather than by position. For example, an object of type 'point can have two arguments, its

x and y coordinates.

In Prolog, unevaluated terms are used as datatypes. For example, a point can be

represented as the term:

point (X, Y)

Bertrand, like any term rewriting system, can also represent datatypes this way. For exam

ple, we can represent a list using a comma as an infix operator:

8. Execution 134

head, tail

or we can represent it as a typed object, with two sub-objects named head and tail.

Depending upon which way we represent lists, a rule for a prefix operator that matches a sin

gle list parameter must be written in one of the following ways:

op (H, T) { expression involving H and T }
op L'list { expression involving L.head and L.tail }

The advantage of the second notation is that we do not need to know the structure of a

datatype to match it, nor does a human reader have to figure out what datatype is being

matched from its structure. Also, if we wished to take the head of the head of a list, the first

rule's pattern would have to be changed to op ((H, Tl) , T2) , while for the second·rule's pat

tern would be unchanged. We would merely reference the variable L .head.head in the body

of the rule. On the other hand, if we wish to match a list whose head is the constant zero, it

is easy to change the first rule's pattern to op (0, T) , while the other representation requires

adding an additional rule.

Having two different ways to represent the same object can lead to confusion, especially

since there are cases where either representation has advantages over the other. There

should be a uniform representation for objects that allows us to refer to them using either

notation, or possibly a single notation that has the advantages of both of the notations above.

Some work has been done in this area [Leier 84], but it was never included in a Bertrand

interpreter.

8.2 Preprocessing Rules

There are a number of ways to improve the performance of the interpreter; most of

these fall into the category of preprocessing. Currently, all rules (including rules in libraries)

are read in and converted into tables for the pattern matching automaton every time a pro

gram is run. If the same program is being run over and over, say with different input data,

this is an enormous waste. For programs of moderate size, the time spent constructing the

tables is greater than the execution time of the automaton by an order ofmagnitude2• It

should be possible to save the tables into some sort of"object file", so a program can be run

repeatedly without "recompiling" it.

Even if the rules in the user's program are changed for each run, most of the table gen

eration time is typically spent processing the rules in the equation solving and graphics

libraries. Since these libraries rarely change, it would be a significant time savings to

preprocess them, and for each run only link their tables in with the user's rules.

2 For example, for the electrical circuits example in section 6.7, on a 10 MHz 68010, table generation (for 82
rules) takes 3 seconds while run time (89 reductions) takes about .27 seconds.

8. Execution 135

The next step beyond linking rule tables together would be to allow rules to be dynami

cally added, deleted, or modified by the user. This would allow an interactive interpreter to

be built so that the user could modify and run programs with only minimal delays for table

generation. Adding new rules is quite easy- the current table generation program can

already do this since it builds the tables a rule at a time. Modifying the bodies (right hand

sides) of rules is also easy, since it does not affect the tables, which are built solely from the

heads (patterns) of rules. The hardest part is deleting rules from a table. If we could delete

rules, modifying the head of a rule could then be done by deleting the rule and adding the

modified one.

The last preprocessing trick we can use saves run time, rather than table generation

time. It is based on the observation that the right hand sides of rules typically contain

red exes that can be preprocessed out of the rule. For example, the meaning of a conditional

expression is defined with the following rules:

if a then b else c { a -> b & -a -> c }
P -> q { -p I q }

f I g { - (- f & -g) }

--d { d}

Each i£1then/else expression in the suhject expression will be matched by the first rule above.

The body of this rule uses the implication operator twice, and the rule for the implication

operator uses the "or" operator, which finally translates into an expression containing only

the "not" and "and" operators. Since the rules of Boolean arithmetic are written in terms of

the "not" and "and" operators, every i£1then/else expression requires several rule rewritings

before it actually gets interpreted.

This problem is compounded by the fact that Bertrand encourages rules to be built on

top of existing rules. Luckily, we can easily get around this by preprocessing the right hand

sides of rules. For example, the first rule above could be preprocessed into the following rule:

if a then b else c { - (a & -b) & - (-a & -c) }

This rule rewrites an i£1then/else expression into normal form in a single rewriting. Prepro

cessing rule bodies is especially effective for the equation solving library, since the equation

solver spends most of its time rewriting expressions into normal form.

One danger of preprocessing is that it violates the normal order rewriting of redexes

that is required by our semantics to avoid infinite loops. For example, if the body of a rule to

be preprocessed contains a redex that would match its own head, then the preprocessed body

of the rule may be infinitely large! This case is not easily avoided, since it can also occur in

an arbitrarily large set of mutually recursive rules. For example, a rule p1 might contain a

redex that matches the head of rule p2, which contains a redex that matches the head of rule

8. Execution 136

p3, which contains a redex that matches the head of rule p1. One fairly simple way to avoid

this problem is to limit the depth (number of rewrites) to which preprocessing is done. This

can result in a recursive loop being "unrolled" a few times (as in loop unrolling), so the depth

of preprocessing can be used as a parameter to trade off between the space and time used for

execution. Another solution is to keep track of each rule that is used in preprocessing, and

simply not rewrite a redex if it matches a rule that has already been used.

The changes to speed up the interpretation of Bertrand programs discussed above are

not of particular theoretical importance, so they have taken a back-seat to other work (i.e.,

they have not been implemented yet). The last technique described, however, does show how

some of the nice properties of term rewriting systems (such as referential transparency) can

be used to advantage.

8.3 Compilation

Programs in a constraint language define relationships between objects. In order to

compile these programs we must be able to convert these relations into functions. The

resulting functions can either be directly interpreted or further compiled into machine code

using standard techniques. Existing constraint languages have demonstrated that it is pos

sible to compile constraint language programs, and similar techniques can be used to compile

Bertrand programs. Before examining how this would be done in Bertrand, let us recall how

this is done in existing constraint satisfaction systems such as ThingLab.

ThingLab uses propagation of degrees of freedom to find a path through a constraint

graph from the outputs to the inputs, compiling "one-step deductions". In section 2.1.4 this

allowed us to compile a procedure for the temperature conversion program once we knew

which variable (F or C) would be supplied as input. It is important to note that even though

we can generate code, there is no distinction between compile time and run time. A single

program may be partially compiled and partially interpreted, or the system may pause to

generate code in the middle of execution. Since compilation is done at run time, it should

only be performed if the compiled code fragment will be used more than once, otherwise it is

usually more efficient to use interpretation. This requires some mechanism to control when

code is generated.

Some work has been reported recently on code generation using pattern matching and

rewriting techniques [Aho 85]. Since Bertrand is already based upon pattern matching and

term rewriting, this work can be naturally applied to allow Bertrand programs to generate

compiled code. In some sense, one can write a Bertrand program to compile code for Ber

trand programs. This is done by having the result of a rewriting be a code fragment that can

be executed by some other rewriting. Consequently, compilation can be performed con

currently with other rewriting. How this is done is outlined in the following sections.

8. Execution 137

As mentioned above, compilation is only worthwhile if the compiled code can be used

multiple times. An advantage of Bertrand is that, since the generation of code is specified

using rewrite rules, it can be controlled directly by the programmer using existing mechan

isms. In the following discussion, however, we will avoid these issues and assume that com

pilation is being performed at preprocessing time. Since preprocessing is also done using

term rewriting, the same techniques are applicable at run time.

8.3.1 Compiling Simple Arithmetic Constraints

An augmented term rewriting system can intermix compilation with interpretation by

combining rules that generate code with other rules. To understand how compilation would

work for arithmetic constraints, let us look at how arithmetic is done in the current inter

preter. The equation solving library contains rules for doing arithmetic such as:

A' constant+ B'constant { primitive to return sum of A and B }

As discussed in section 3.1.1 this rule represents a large set of rules of the form:

1+0{1}
1+1{2}
1+2{3}

Arithmetic is performed when both of the arguments to an arithmetic operator become con

stants.

Compilation is based upon the idea that, instead of waiting for a variable to become a

constant and then doing arithmetic, if we know which variables waz become constants, then

we can generate code to perform the arithmetic when they actually become constants. This

has the same effect as "mode declarations" sometimes used in compiling Pro log programs,

except that the required mode information is inferred automatically (using the rule typing

facilities of Bertrand), instead of requiring the user to explicitly supply such information.

This is similar to the way propagation of degrees of freedom works.

Propagation of degrees of freedom detects which variables will become constants by

looking for variables with only one constraint (the outputs) and working backwards to the

inputs. Instead, if we know which variables are inputs, then we can "propagate" knowledge

of which variables will become known when the input is supplied (we assume the input is

supplied as a constant value, not an expression). For example, our system might contain a

built-in variable called mousey that returns they coordinate of the mouse when a mouse but

ton is depressed. We give this variable a type of 'input to indicate that it will rewrite to a

constant value as the result of an input operation. We can now add some rules to our equa

tion solving library:

a. Execution 138

A' input+ B'constant { generate code to add A to B }

This rule rewrites into a code fragment to add the input value A to the constant B. Since the

variable mousey is of type 'input, the expression:

mousey + 32

will rewrite into a fragment that adds 32 to the y value of the mouse. Since the value

returned by this fragment will also become a constant, we would like to continue compiling

code if possible. Unfortunately, the rule above only generates code for variables of type

'input.

To start generalizing the above rule, first we introduce a new type called 'lambda. An

object of type 'lambda represents an expression (written as a function) that takes a con

stant argument and evaluates to a constant (the argument and result can be structured

objects, of course). The operators in a lambda expression have their traditional mathematical

meanings. We also introduce a primitive prefix apply operator that takes a lambda expres

sion and a constant and evaluates the function represented by the lambda expression applied

to the constant.

Our rules for arithmetic are then augmented with rules of the form:

I' input + 1 { apply ("Ax.x + 1", I) }

where the lambda expression (in quotes) is a function that adds one to its argument (the

input variable I) when I becomes a constant. Note that the plus sign inside the lambda

expression is the mathematical addition operator, not the Bertrand plus operator.

Rather than have a separate rule for each constant, we will parameterize our lambda

expressions:

I' input + C'constant { apply ("h.x + [C]", I) }

The variable c in square brackets inside the lambda expression indicates that it is a regular

(constraint) expression, not a lambda expression, and is subject to substitution by the term

rewriting system. This rule rewrites:

mousey + 32

into:

apply("Ax.x + 32", mousey)

We would like to continue compiling constraints into functions, but unfortunately the

above rule still only works on objects of type 'input. Rather than define new rules, we sim

ply define a new type called 'known that is a superlype of both the apply operator and the

type 'input. The above rule can then be slightly changed into:

8. Execution 139

I'known + C'constant { apply("Ax.x + [C]", I))

This rule only compiles code for the + operator, but we can add similar rules for other opera

tors, such as:

I'known X C'constant { apply("Ax.x x [C]", I))

If we apply these rules to the expression:

mouseyXl.8 + 32

it will be rewritten into:

apply("Ax.x + 32", apply("Ax.xXl.8", mousey))

Finally, we can write a rule to combine two nested apply operators:

apply(Ll'lambda, apply(L2'lambda, C)) {
apply(merge(Ll,L2), C))

Where' the merge operator performs the functional composition of two lambda expressions

(this can be done using standard term rewriting, see the next section). For example, the

expression above becomes:

apply("Ax.xX1.8 + 32", mousey)

The resulting objects represent the application of simple arithmetic functions to con

stants. To execute apply terms, we define the following rule:

apply(L'lambda, C'constant) { evaluate L with argument C)

This rule will wait until c becomes a constant (for example, when mousey becomes a con

stant because a mouse button was depressed) before evaluating the lambda expression.

8.3.2 Why Lambda?

In the rules and expressions above we enclosed expressions of type 'lambda in double

quotes so that they would not be confused with regular (constraint) expressions. Actually,

the only differences between lambda expressions and other expressions are the operators.

The operators in a lambda expression represent functions (noninvertible procedures) that

take an argument and return a value. Operators in a constraint expression represent rela

tions.

If we rename all of the operators used in lambda expressions with names that are dis

tinct from their constraint language cousins, then we can freely mix the two types of opera

tors in expressions. We make the type 'lambda a supertype of these new, distinct opera

tors. Consequently, the term rewriting system can be used to transform expressions contain

ing lambda operators or the regular operators, or both. The user's manual for the Purdue

8. Execution 140

Equational Interpreter gives examples of using rewrite rules on lambda expressions

[0'Donnell85].

For example, let the functional versions of the operators+ and X be Ell and®, respec

tively. These new operators are subtypes oftype 'lambda. For notational consistency with

other operators in Bertrand, we will also change the A. operator to be infix, so that A.x. e will

now be written x A. e. The roles to perform compilation become:

I'known + C'constant { apply(x A. (x Ell C)), I) }
I'known X C'constant { apply(x A. (x ®C)), I) }

The variable x in these rules is now a regular Bertrand local variable, so it will automatically

be prefixed it with a (possibly generated) label name when either of these rules is instan

tiated. This will keep different instances of x from interfering with each other.

The expression:

mousey X 1. 8 + 32

will now be rewritten into:

apply (x A. (x ® 1. 8 Ell 32), mousey)

We used lambda calculus notation in the examples above mainly because of its familiar

ity. We could have as easily compiled into some other form, such as combinator expressions

[Curry 58], dataflow graphs [Ackerman 82], or even into a machine language. For example,

let us compile the expression in the example above into assembly code. For simplicity we will

assume a standard single address machine with an accumulator, but most any architecture

(including stack and multiple general purpose register architectures) would work as well.

The instruction set for this machine includes:

LOAD X
ADD X
MULX

load the accumulator with X
add X to the accumulator
multiply by X to the accumulator

The operand X can either be a constant or the address of a variable. We will treat each of

these instructions as a prefix operator, all of which are subtypes of a type 'code. The rules

for compiling code now become:

I'known + C'constant { apply(ADD C, I) }
I'known X C'constant { apply(MUL C, I) }

We perform the composition of two pieces of machine code by simply concatenating them, so

that one will execute before the other. Following the syntax of most assembly languages, we

will indicate that two machine instructions are to be executed in sequence by placing a new

line (-1) between them. Since Bertrand likes to treat everything as an operator, we will

8. Execution 141

represent the newline explicitly as an infix operator.

apply(Ml'code, apply(M2'code, C)) {
apply((M2 ..J Ml), C) }

Such a sequence of machine instructions is also made a subtype of type ' code (by simply

making the newline operator be a subtype of type 'code). The rule to evaluate apply terms

becomes:

apply(M'code, C'constant) {
execute LOAD C ..J

M ;
return accumulator as the result of this rule
}

Consequently, our familiar expression:

mousey~ 1. 8 + 32

is rewritten into:

apply(MUL 1.8 ..J ADD 32, mousey)

When mousey becomes a constant, the instruction stream:

LOAD mousey
MUL 1.8
ADD 32

is executed, and the contents of the accumulator is returned as the value of the apply

expression.

8.3.3 Compiling Higher Order Constraints

Bertrand treats a system of constraints as a conjunction of Boolean expressions. This

allows us to treat conditional expressions and other higher order constraints in a uniform

manner. The compilation techniques for arithmetic expressions above can be extended to

higher order constraints by adding rules for Boolean expressions. Note that in this section

we return to using the notation of lambda calculus for our compiled expressions.

A typical higher order constraint, the expression:

p-=0 -> q=5;

asserts that if p is not equal to zero, then q is equal to five. In a constraint language the

implication operator Gike all operators) represents a relation, so this expression also means

that if q is not equal to 5, then p must be equal to zero. Consequently, we cannot compile

this expression until it is known which variable will be the input.

· 8. Execution 142

The equation solving library contains rules to rewrite Boolean expressions into a nor

mal form conteining only the & and - operators (see section 6.3). These rules rewrite the

expression above into:

-(-{p=O) & -(q=S));

This is as far as we can take this expression until either p or q becomes a variable of type

'known. Ifp becomes known then, using the techniques discussed in section 8.3.1, we can

rewrite the expression - (p = 0) into an object of type 'known. Likewise, if q becomes

known, then - (q = 5) will become known.

The expression above is of the form of a NAND expression:

- (F & G)

where F and G are expressions which might become known if p or q become known. This

expression can be read as saying that F and G cannot both be true for the expression to be

true. If p were to become known (causing F to become known) we could use the rule:

- (F' known & G) { apply ("Ax. if x then [- G] else true", F) }

to compile a conditional lambda expression3. This rule says that ifF is true, then G must be

false, but ifF is false, then the expression - (F & G) is true, regardless of the value of G.

Notice that in this rule the lambda expression contains the expression -Gin square brack

ets, indicating that the "not" operator is a normal Bertrand operator.

If p becomes known, then the expression above can be rewritten to:

apply("Ax.if x then [-- (q=S)] else true",
apply("Ax.not(x=O)", p)) ;

The two lambda expressions can be combined, resulting in:

apply("Ax.if not(x=O) then[-- (q=S)] else true", p) ;

Finally, the two consecutive not operators can be eliminated by the term rewriting system,

resulting in the expression:

apply("Ax.if not (x=O) then [q=S] else true", p) ;

On the other hand, if q were to become of type 'known, instead of p, causing G to

become known, we could use a rule:

a & b'known { b & a }

3 The lambda expression if A then B else cis equivalent to the USP (if A B C).

8. Execution 143

to reduce this case to the same situation as above. The resulting expression would be:

apply ("A.x. if not (x • 5) then [p = 0] else true", q) ;

When q finally does become a constant; if it is not equal to 5 then the expression above

rewrites to:

p=O ;

Which will cause the value zero to be bound top (by the interpreter). If q is equal to 5, then

it rewrites to:

true ;

because nothing can be deduced about the value of p if q is 5.

In the example above we did not compile the binding operation, but we could have if we

had a procedural (lambda expression) version of the is operator. To make sure that the is

operator is only used if equality is asserted, we include the semicolon operator explicitly in

the rule that does the compilation. The rule where F became known becomes:

- (F'known & G) ; { apply("A.x.if x then [-G ;]

else [true]", F) }

The resulting of applying this rule to the original expression with F known would be:

apply("A.x.if not(x=O) then [q=5 ;] else [true]", p)

the constraint expression q = 5; could then be rewritten to q r 5, and the resulting expres

sion would be:

apply ("A.x.if not(x=O) then q r 5 else [true]", p)

The left arrow operator (r) used in lambda expressions is semantically very similar to the is

operator. It binds a value (which must have been a constant) to a variable, and rewrites to

(returns the value) true.

If, as in the example above, more than one variable could become known, we can use a

greedier approach to compilation. We treat the question of which variable will become

known as a conditional expression. For example, we could create the lambda expression:

"A.x.if known(x) then [exp]"

and then compile exp as if the argument of the lambda expression were actually known. In

the example above, we could use this technique to compile code for the conditional expression

for both the case where p becomes known, and where q becomes known. When either p or q

actually does become known (becomes a constant) then we can use the appropriate code frag

ment without pausing to compile it.

8. Execution 144

We could use this technique on the temperature conversion program to compile code to

convert F into C and C into F, and allow the user to supply values for either one. We must

use this technique sparingly, however, since it can result in quantities of code being gen

erated for cases that might never occur. Worse, a program with many conditionals might

generate code for each possible combination of inputs, leading to an explosion of generated

code. Code should only be generated for cases that we expect our program to encounter fre

quently. Since in general there is no way for the compiler to deduce this information, compi

lation should be under the control of the user. In Bertrand, the user controls compilation by

specifying which variables will become, or might become, known.

A Bertrand program will then become a combination of compiled code that can be exe

cuted by the machine, and some remaining constraint expressions that continue to be inter

preted. Interpreted expressions can result both from expressions containing variables not of

type 'known, and from constraint expressions, possibly containing known variables, that are

too complex to be converted into lambda expressions. For example, a set of simultaneous

nonlinear equations might become linear (and compilable) depending upon the value of one of

the variables. We could test for such conditions in a lambda expression, but it probably is not

worth the trouble of compiling for each special case.

8.3.4 Code Generation and Optimization

As shown above, it is possible to use term rewriting itself to generate machine code for

Bertrand programs. One advantage of this is that if the machine code is generated by a set

of rewrite rules, then different sets of rules can be used to generate code for different

machines. Altematively, in graphics it is common to use systems that include one or more

separate graphics processors in addition to the host processor. A Bertrand program could be

written that partitions the generated code between heterogeneous processors according to

their capabilities.

In addition, some code optimization problems, such as optimal assignment of registers,

memory locations, and other resources, can be treated as constraint satisfaction problems.

This would allow further optimizations to be made on code generated by rules. For example,

the Mumble microcode compiler for the Cm* multiprocessor used constraint satisfaction tech

niques to optimally assign microinstructions to microwords [Gosling 80].

As mentioned above, compilation is only worthwhile if we are going to use the same

code multiple times, otherwise we should just go ahead and use interpretation. If we perform

compilation at preprocessing time, for example on the rules in the equation solving library,

then it is a safe assumption that these rules will be used multiple times. If compilation is

performed at run time, however, we can still control the generation of code by designating

variables to be of type 'known (or 'input), otherwise the interpreter is used. Since the

a. Execution 145

.. , .. -·.·-.-

Bertrand interpreter does not treat compiled code differently from any other expression, such

code can match a parameter variable in the head of a rule, or can even be bound to a free

variable (bindable atom). This makes it easy to create and use multiple copies of compiled

code.

Input requests, such as the reference to the variable mousey above, will often occur

inside of a recursive rule that repeatedly reads an input value and performs some action.

Using the techniques discussed above, these recursive rules can be precompiled, and the

resulting code used repeatedly on a stream of input values. Note, however, that if our

preprocessor avoids infinite loops by not preprocessing recursive calls, then each invocation

of even a compiled recursive rule will require at least one rule rewriting by the interpreter.

If instead the recursive rule is unrolled during preprocessing, then some of these rewritings

are avoided, but, like any loop unrolling scheme, at the possible cost of some extra computa

tion when the recursion terminates.

By using a combination of compilation and interpretation, very effective code can be

generated. For example, the expression:

s + 2 = 2xs; -8 +mousey+ (sX4)

will be rewritten using existing simplification rules in the equation solving library into the

much simpler expression:

mousey

rather than generating code to perform the unnecessary arithmetic. This is similar to con

stant propagation techniques used by optimizing compilers, but since compilation is done

concurrently with rewriting, there are typically many more constants available to propagate.

In graphics, for example, a commonly used routine is one to multiply a stream of points by a

4 by 4 matrix representing a graphic transformation. If the matrix, whose elements will only

become known at run time, represents a translation (one of the most common graphic

transformations), it will contain many ones and zeros that can be propagated out. This turns

a matrix multiply (64 multiplications and 48 additions) into just three scalar additions, which

can then be compiled. The resulting compiled code can then be applied to a sequence of

points describing some graphic object to be drawn.

8.4 Execution on Parallel Processors

An important unsolved problem is how to execute programs on parallel processors. The

availability of cheap microprocessors that can be hooked together to form large, but inexpen

sive, compute engines has made finding an answer to this problem imperative. Unfor

tunately,just because we can hook hundreds or even millions of processors together does not

mean that we can run programs any faster.

8. Execution 146

My original interest in the work described in this dissertation started while trying to

find ways to execute graphics programs faster. The abundant parallelism available in most

graphics algorithms led to an investigation of parallel dataflow architectures, including a

machine design that (in simulation) executed graphics programs very rapidly [Leier 83].

Unfortunately there was no easy way to program this processor, a problem which seems to be

common among parallel processors. So while there was parallelism in the algorithms and in

the processor, there was still no easy way to connect the two to take advantage of it. The

problem was that it is much harder to write parallel programs than sequential programs, and

sequential programs are hard enough to write to begin with.

On the other hand, constraint languages have been proposed as a way to make graphics

programming easier, but since constraint langnages are also non-procedural they are amen

able for execution on highly parallel processors. So, at least for these applications, constraint

languages may make it much easier to write parallel programs. Some researchers had

noticed the similarity between constraint graphs and dataflow graphs [Steele 80], but no

further work had been done in this area.

A major problem in translating traditional languages to execute on parallel processors

is that their procedural semantics prescribe a specific order of program execution. Since the

semantics of these languages depends upon statements being executed in the proper order, a

compiler changes this order only with great effort.

If a set of rules for a term rewriting system is confluent, then the order in which the

rules are applied to the subject expression does not affect the result. This allows rewritings

to be done in any order, even in parallel. We used this property to set up automatic pipelin

ing for a factorial program in section 3.3.1, and for a graphics program in section 7.2.2.

When term rewriting is augmented by allowing binding of values to atoms, then the

system is still confluent regardless of the order of the bindings modulo equality over expres

sions (see section 4.5.3). Unfortunately, if binding is allowed to be done in parallel, we run

the danger of violating single assignment semantics. For example, if the expression:

•.. i X= p-1 i ••• i X= q+l i •••

is split across two processors so that the equation on the left is being rewritten on processor

A, and the equation on the right is being rewritten on processor B, then processor A might

try to bind p- 1 to x, while at the same time processor B is trying to bind q + 1 to x. This

would not be a problem on a single processor since, once a value is bound to x, all other

instances of x are replaced by its value, preventing another value from being bound to it.

One way to avoid this problem on a multiprocessor is to keep the name space on a single

processor, but this reduces parallelism and requires communication every time a variable is

8. Execution 147

encountered to check if a value has been bound to it by another processor. Before a value

could be bound to a variable, it would have to be locked, so that no other processor will try to

bind a value to it.

A better solution is to simply keep separate name spaces on separate processors and

allow different values to be bound to the same variable in different name spaces. At some

point both processors will have rewritten their subject expressions as far as they can and will

need to combine their answers. This is done by concatenating their subject expressions and

doing a merge on their separate name spaces. Ifthe same variable has a value in both name

spaces, then one of the values is discarded, and a constraint is added to the subject expres

sion that equates the two values.

In the example above, if processor A thinks the value of x is p -1, and processor B

thinks the value of x is q + 1, then when the name spaces are merged one of these values, say

the value on processor B, is discarded, so the value of x in the merged name space is p -1. It

doesn't matter which value of xis kept (except that we might choose the value to keep based

upon which variable is more "interesting"). In addition, the constraint p- 1 = q + 1 is added

to the merged subject expression. Since p -1 and q + 1 are both equal to x, they are certainly

equal to each other, so the added constraint is valid.

In the expression returned by processor A, all occurrences of x were replaced by p- 1,

on processor B, all occurrences of x were replaced by q + 1. The purpose of the added con

straint is to allow the expressions in terms of p and q to be unified. If the equation

p -1 = q + 1 is solved for, say, p, then all expressions containing p will be rewritten into

equivalent expressions in terms of q. This will restore confluence, modulo equality over

expressions.

The added constraints should not significantly impact performance because they can

only be created as a consequence of a name being bound twice. Unlike Prolog, where one or

more bindings will occur for each rule invocation, in Bertrand binding occurs relatively infre

quently. Binding the same name twice should be an even rarer occurrence.

Augmented term rewriting allows quite a bit of flexibility in writing an interpreter for a

multiprocessor. For example, as discussed above, each processor could contain all the rules,

and the subject expression could be dynamically split among the processors. When a subject

expression in a processor exceeds a certain size, it can send subexpressions to other proces

sors, along with a copy of the name space. We can use virtual copies of the name space and

only fetch entries on demand to avoid excessive copying. When a child processor finishes

rewriting its subexpression, it sends the resulting expression and name space back to its

parent to be merged.

8. Execution 148

Another approach partitions the rules onto different processors. This partitioning is

done so that the rules on one processor interact minimally with the rules on other processors.

A subexpression is sent to a processor only when it contains operators that can be interpreted

by the rules on that processor. For example, in section 8.3 we defined rules to convert regu

lar Bertrand (constraint) expressions into expressions containing procedural operators

(lambda expressions). These rules could reside on one processor. A separate processor could

be set up with the rules for compiling the lambda operators into machine code. Yet a third

processor could do the actual execution of the machine language programs. This sets up a

pipeline, where all execution is done on one processor, compilation on another processor, and

interpretation of the user's rules is done on another processor, all concurrently.

If, as discussed in the section 8.3.4, we are compiling and executing fragments of

machine code interleaved with interpreted code, the compiled code fragments can be split

across different processors. As mentioned above, these processors do not need to be homo

geneous. One could be a graphics processor, another could be floating point unit, another

could perform 1/0 operations. The interpreter, which could itself be split across different pro

cessors, could do remote procedure calls on the code fragments residing on the different pro

cessors. If the network architecture does not have uniform access cost for all processors

(such as a hypercube network), then smaller compiled fragments could be assigned to nearby

processors, while large fragments could be sent to distant processors.

8.4.1 Dataflow

In section 8.3 we compiled constraint programs into procedural expressions. Because of

the non-procedural nature of Bertrand we can evaluate these expressions in any order, as

long as we do not evaluate an operator until its operands become available. In other words,

these expressions are actually trees that represent data driven dataflow graphs (since they

are evaluated when their operands become available), so they can be executed directly on an

appropriate dataflow processor. For example, the lambda expression:

Ax.32 + l.Sxx

is precisely the following dataflow graph:

8. Execution 149

input 1.8

32

result

Binding a value to a variable, since it obeys single assignment semantics, corresponds to a

datsiiow arc from the value to all operators that use that variable as input. Conditional

expressions correspond to the datsiiow "switch" operator.
A B

if P then A else B
T F

f-E--- p

Finally, iteration (including singly recursive rules) can be executed using streams of dataflow

tokens, as demonstrated by the factorial example in section 3.3.1.

Alternatively, expressions could be generated in the applicative intermediate form IFl

[Skedzielewski 84]. Execution systems for IFl exist, or are planned, on several multiproces

sor systems, including the Manchester dynamic dataflow computer, the Cray-2, the HEP-1

static dataflow processor, and the DEC VAX.

The point of this section is that the procedural expressions produced by a Bertrand

compiler can be executed directly on a dataflow processor. In fact, they are easier to execute

on a dataflow processor than on a conventional sequential processor. The execution of a con

straint program can involve many related computations that depend upon each other for

values in unpredictable ways. A conventional processor must keep track of these dependen

cies, arid schedule the appropriate computation only when it has enough data to proceed. In

section 8.3 the Bertrand interpreter performed this scheduling function by waiting until the

second argnment of the apply operator became a constant. In a dataflow processor,

a. Execution 150

computations proceed automatically when their data arrives, so this complicated scheduling

is done by the hardware, instead ofbeing simulated by software.

8.5 Limitations of the Equation Solver

Compilation depends upon the successful conversion of relational constraint expres

sions into functional expressions. This conversion is performed by the equation solver, so

how successful we are at compiling depends upon how powerful the equation solver is. For

example, consider again the electrical circuits example from section 6. 7.

+
Vvolts

R2n

This time, instead of supplying values for the voltage of the battery or for either resistor, we

specifY that the resistors are of equal value (Rl ~ R2), and solve for the voltage across the

lower resistor (VR) in terms of the battery voltage (V). Since the resistors are of equal value,

this circuit is a simple voltage divider, and VR should be one half ofv.

Unfortunately, the current equation solving rules cannot handle this problem, and so

the interpreter returns the following simultaneous nonlinear equations, rewritten as far as

they could be:

VR = current X R2;

V = 2 X current XR2;

When resistance values are assigned to the resistors these equations become linear and so

are able to be solved. Without specific values for the resistors, however, the equation solver

is unable to recognize that the (nonlinear) term current x R2 occurs in both equations. If it

could recognize this, it could set up the single equation:

8. Execution 151

VR current X R2

V 2 X current X R2

and then cancel the variables current and R2 from the numerator and denominator of the

right hand fraction.

Of course, our equation solving rules were never meant to be a general purpose sym

bolic algebra system. When we were only interpreting our programs, these rules were gen

erally sufficient since we normally supplied constant values for such things as the battery

voltage and the resistance of the resistors. If we are compiling, however, we need to be able

to solve equations containing variables without knowing their values.

If the circuit above were part of a larger circuit with the battery replaced by a signal

source whose voltage varies over time, we would like to know that the voltage across the

resistor is one-half the signal voltage without solving the simultaneous equations over and

over for each value of the source signal. In order to do this we need more powerful equation

solving rules that will let us compile such a resistance network. Note that more powerful

constraint satisfaction techniques, such as relaxation, would not help at all, since relaxation

only works with numeric values and cannot be used on symbolic values (such as V). Adding a

redundant view of two resistors in series also does not help.

Luckily, the literature on symbolic algebra systems has much to offer in the way of non

linear transformation techniques for solving equations. Techniques that use rewrite rules to

solve complex polynomial equations, such as using Groebner bases [Winkler 85], are com

monly used in symbolic algebra systems such as MACSYMA, and should be used in a system

that does compilation. These techniques are slower than the current slightly nonlinear equa

tion solver, resulting in a (to be expected) trade off between compile time and run time. For

tunately, since our system is based upon rewrite rules, advanced equation solving techniques

can be added without discarding the entire constraint satisfaction mechanism and the exist

ing equation solver.

Beware, however, that nonlinear transformations are not always safe. In particular, in

the example above, what if the resistance of both resistors is zero? We only specified that the

two resistors were of equal resistance, so this is perfectly valid. If a resistor has no resis

tance, then the voltage across it is zero. Consequently the voltage across the bottom resistor

must be zero, not half the battery voltage. It would be difficult to add constraints to guard

against the resistance of a resistor being zero, however, since the answer to the problem

above never needed to know the actual value of the resistors. We mention this problem only

to point out going to a more powerful equation solver might not be as trivial as it first seems.

A human problem solver would solve the equations above, but with the implicit knowledge

that if the values of the resistors are zero then all bets are off. A constraint satisfaction sys

tem cannot be so cavalier.

8. Execution 152

Chapter 9 Conclusions

9.1 Summary and Contributions

The major contributions of this research are:

• Bertrand, a rule-based language for specifying constraint languages and constraint

satisfaction techniques, and

• augmented term rewriting, a simple inference mechanism for satisfying constraints.

Bertrand and augmented term rewriting together form a solution to the problem of specify

ing and generating constraint satisfaction systems.

Bertrand is a rule-based programming language for specifying constraint satisfaction

systems. It has a simple and extensible syntax that allows expressions and equations to be

treated uniformly. Bertrand also has a form of abstract datatype, which allows new types of

objects and operations (constraints) to be defined, even including primitives. There is no dis

tinction between user-defined abstract datatypes and primitive datatypes, allowing a high

degree of flexibility in adapting the language to specific applications.

Augmented term rewriting is a simple but powerful mechanism for implementing con

straint satisfaction systems. It is based upon standard term rewriting, and inherits many

valuable properties from that mechanism, notably confluence. The extensions added to term

rewriting make it expressive enough to solve a large class of constraint satisfaction problems.

Although there are more powerful mechanisms, none are as easy to implement efficiently.

For example, Horn clause logic, used as a logical basis by the programming language Prolog,

is too inefficient if interpreted breadth first, and so must be executed in depth-first order.

When executed depth first, Horn clause logic is incomplete, and also has a procedural seman

tics that would be undesirable in a constraint language.

Augmented term rewriting consists of three extensions to term rewriting: binding,

objects, and types. These extensions are are well integrated with term rewriting: Binding

can be treated as allowing new rules to be added to a term rewriting system; objects are

defined using rules; and types are defined as tags on rules. In some cases these extensions

are general replacements for specialized language features of existing term rewriters. For

example, types subsume the need for qualifications on the heads of rules as found in the Pur

due Equational Interpreter. The hierarchical name space used for objects in Bertrand unifies

the concepts oflocal variables and structured objects so that data and procedures can be

treated uniformly.

9. Conclusions 153

The major feature that sets augmented term rewriting apart from existing constraint

satisfaction techniques such as propagation or relaxation is its foundation in equational logic.

This separates the problem-solving rules from the control mechanism that invokes the rules.

With the formal theory of term rewriting behind it, it was relatively simple to define the

semantics of augmented term rewriting (in chapter four), unlike other constraint satisfaction

techniques and languages whose semantics have never been defined, and whose implementa

tions tend to be ad hoc at best.

9.2 Benefits

The benefits derived from basing a constraint language upon equational logic are simi

lar to the benefits that resulted from basing parser technology on a formal theory. With a

formal theory, parser generators were much easier to construct. In addition, the syntax of

new computer languages has become more regular. With a formal theory, we can make our

constraint languages more regular, too. For example, in most constraint languages, con

straints are expressed as equations, but term rewriting systems operate on expressions. By

treating the equals sign as a Boolean valued operator, we provide for a uniform treatment of

equations and expressions. This also allows our system to solve Boolean constraints, includ

ing conjunctions of equations (higher order constraints). Bertrand is the first constraint

language to be able to either express or solve higher order constraints, and it did not cost·

anything extra in the implementation. Treating everything as a single expression tree also

allows external programs (such as an interactive interface) to easily construct or manipulate

constraint expressions.

9.2.1 Computational Completeness

Basing a constraint satisfaction system on term rewriting also means that we inherit

computational completeness- the ability to express and compute any computable function.

This has significant advantages over other constraint languages. For example, Ideal

required a special iterating construct for drawing dashed lines. Other languages, such as

ThingLab, have provided an "escape hatch" into their implementation language to compute

things that they cannot.

Making the constraint language itself general purpose creates a constraint program

ming language, which provides benefits similar to those provided when Horn clause logic was

used to build logic programming languages, such as Prolog. Unlike Prolog, however, Ber

trand is simple enough that it does not need to compromise its semantics to gain execution

efficiency. So while in some respects Bertrand is less expressive than Prolog, it retains a

non-procedural semantics. Chapter one discussed some of the advantages of the declarative

semantics of constraint programming languages, especially for the growing number of

9. Conclusions 154

computer users untrained in traditional imperative computer programming techniques. Ber

trand also has features that let the user tailor a constraint programming language to a

specific application.

The simplicity and generality of augmented term rewriting is also a significant advan

tage. The same mechanism can be used for:

• Solving constraints with cycles

• Solving constraints without cycles

• Defining new data types

• Defining new constraints

• Compilation of constraints into functions

• General purpose computation

• Symbolic computation

• Arithmetic

In existing constraint satisfaction systems, different mechanisms are used for each ofthese

capabilities- if they are available at all. For example, Thing Lab uses local propagation to

solve constraints without cycles, relaxation to solve constraints with cycles, the object

definition facilities of Small talk to define new datatypes, and machine language primitives

for arithmetic.

9.2.2 Extensibility

As shown in chapter five, different constraint languages have different limitations on

their extensibility. Some languages, such as Ideal, can define new structures that are like

objects, but not new types of constraints (operations) on those objects. Other languages, such

as Sketchpad and Juno, can define new operations on their existing datatypes, but cannot

define new types of objects. Some languages, such as TK!Solver, are not extensible at all. In

Bertrand, new objects can be defined, and constraints can either be associated with the

objects, or as operations on those objects. Section 6.6 demonstrated how an extensible con

straint language makes it easier to solve problems.

Another advantage of Bertrand is that a meaningful solution can be given even to a

problem that is under-eons trained. As shown in section 6.4, the answer to a problem can be

an expression (possibly containing equations) which, when true, will make the larger prob

lem true. This allows problems to be solved as far as possible automatically, and then

handed over to a human problem solver. The human problem solver can, if desired, only

9. Conclusions 155

solve the part of the returned problem that the system could not handle, express that solu

tion as a rule, and reenter the problem for further processing. Ifthe rule is general enough,

it can be incorporated into a library and used to solve other problems.

The only language comparable in extensibility to Bertrand is ThingLab. ThingLab bor

rows heavily upon the Smalltalk system it was implemented in, and defines new constraints

and datatypes using Small talk classes. Section 6. 7 compares defining new datatypes and

constraints using rules with an example from section 5.1.2 showing how they are defined in

ThingLab. The solution using rules is much more concise, and is also able to solve some

related problems that the ThingLab solution cannot. The Bertrand solution is also more

efficient computationally.

A recent paper by Earning presents some extensions to ThingLab that allow the user to

interactively edit a constraint graph to define new constraints, rather than requiring new

constraints to be defined using Smalltalk [Earning 85a]. This graphical interface is aided by

the Smalltalk programming environment's excellent interactive graphics facilities, but a

similar interface could be applied to Bertrand_ A companion report discusses defining con

straints functionally [Earning 85], including recursive functions.

9.2.3 Efficiency

Augmented term rewriting is powerful enough to allow many constraint problems con

taining cycles to be solved directly, instead of using slow iterative numeric approximation

techniques such as relaxation. In addition, augmented term rewriting has many properties

that allow for the utilization of known techniques and optimizations for fast execution. This

includes interpretation, where fast pattern matching techniques make it possible to perform

term rewriting rapidly, and compilation, using the term rewriting system itself to generate

efficient code to solve constraint problems. Augmented term rewriting also makes it easy to

detect and take advantage of parallelism, opening up many new possibilities for fast compu

tation. For example, as shown in section 3.3.1, producer/consumer relationships are esta

blished automatically. Many enhancements to the execution speed of an augmented term

rewriting system such as Bertrand can be expressed in the language itself. For example,

code optimization can be expressed as a constraint satisfaction problem, so the code gen

erated by a constraint satisfaction system can even be optimized by the same system.

This dissertation has shown that augmented term rewriting can be used to generate

constraint satisfaction systems using a rule based specification language called Bertrand.

Consequently, this language helps solve one of the major problems of constraint satisfaction

systems- their difficulty of implementation. The resulting constraint languages are both

powerful and efficient.

9. Conclusions 156

9.3 Future Work

While the language presented by this mssertation has been implemented, the current

implementation is only an interpreter that runs on a standard sequential computer (a work

station with a graphics <lisp lay). Consequently, some of the topics mscussed in this disserta

tion, especially those in later chapters, have not yet been "put to practice." Opportunities for

interesting work abound. For example, constraint languages such as ThingLab have shown

how constraint programs can be compiled into procedures. Section 8.3 mscussed how such

compilation could be done mrectly, using Bertrand itself. This would allow extremely rapid

execution of constraint language programs.

9.3.1 Parallel Execution

Implementing Bertrand on a parallel processor is another area that requires much

more work. Section 8.4 mscussed how this would be much easier for a language with a ·

declarative semantics, such as Bertrand, than for a typical imperative language, but it is still

far from trivial. Parallel execution would open up the possibility of even faster execution of

constraint language programs. Conversely, the problem of programming parallel processors

is a research topic in its own right, which Bertrand might help solve, at least for some appli

cations.

9.3.2 Interaction

Another useful admtion to the implementation of Bertrand would be an interactive

graphical front end. Constraint satisfaction systems such as Juno and Sketchpad have

demonstrated how natural such an interface is for a constraint language. Unfortunately,

such interfaces are difficult to implement. A research area that might prove fruitful is to

allow Bertrand to specify interface objects and constraints in the same way that it currently

specifies other abstract datatypes. Bertrand allows new operators to be defined that operate

on user-defined objects, so a natural extension would be to allow user-defined operators to be

(dynamically) associated with graphical screen icons, which can then operate on graphically

selected objects. For example, in sections 3.2.2.2 and 7.2, we defined a rule for a horiz

operator that constrained a line to be horizontal:

horiz l'line { l.begin.y = l.end.y }

This rule could be implemented graphically by associating the operator (horiz) with an icon

(say of a horizontal T-square). If the user selected this icon and then selected a line, this

would match the above rule, and constrain the line to be horizontal.

9. Conclusions 157

9.3.3 Multiple Solutions

The major weakness of augmented term rewriting is its inability to deal with multiple

values for variables. This problem manifests itself in several different ways. For example,

Bertrand is currently unable to handle default values, since overriding a default might

involve assigning a new value to a variable. This problem also makes it difficult to deal with

multi-valued computations, such as the solution of quadratic equations. In addition, even

though streams of values can be generated (using recursion), they cannot be bound to vari

ables.

Several potential solutions to this problem are being investigated. One promising

approach is to annotate bound values with a set of assumptions, as is done in truth mainte

nance systems [Doyle 77]. This would allow default values and multi-valued computations to

be handled directly. Streams could be handled by allowing (possibly infinite) streams of

assumptions. The major problem with this approach is that separate copies of parts of the

constraint program must be kept for each assumption set. Even ignoring streams, there

might need to be a possibly exponential number of copies if they are not managed carefully.

A more ambitious approach which might be more computationally efficient is to expand

the semantics of augmented term rewriting to allow streams as first-class objects. This could

be done, without compromising the declarative semantics of Bertrand, by treating streams

similarly to the way they are treated in Lucid [Wadge 85]. As discussed in section 7.3, this

would also benefit input and output, which in conventional languages require the use of

side-effects, but which can be treated non-procedurally as streams. This approach is particu

larly interesting since an interpreter for a subset of Lucid has been written using the Purdue

Equational Interpreter [0'Donnell85], which can be trivially translated into Bertrand (since

term rewriting is a subset of augmented term rewriting).

Once a solution to the problem of binding multiple values has been defined, Bertrand

would attain the expressiveness of Horn clause logic. In addition, many other extensions

would be possible. The most important would be to extend the equation solver so it can han

dle more difficult problems, such as nonlinear systems of equations. One approach to this

would be to implement a rule-based equation solving method (such as using Groebner bases

[Winkler 85]), directly in Bertrand.

9.3.4 More Powerlul Equation Solvers

Another approach is to use Bertrand as a front end to a conventional symbolic algebra

system. This would allow Bertrand to take advantage of the effort that has gone into these

systems, both in terms of power and execution speed. Such an interface could be imple

mented so that Bertrand could use its own equation solver as much as possible, and only pass

9. Conclusions 158

those equations on to the algebra system that are too difficult for it. The algebra system

could then return the (possibly multiple) solutions to the equations, which would be further

processed by Bertrand. Interfacing Bertrand to a symbolic algebra system would also pro

vide a much friendlier interface to these systems. For example, geometric theorems could be

expressed as a set of constraints, instead of forcing the user to translate them manually into

equations to be solved.

Other potential extensions to the equation solver include the ability to deal with ine

qualities. For example, the constraints ":x~5" and "xs.5" should constrain the value ofx to be

5. We would also like to be able to constrain a number to be an integer. Such extensions

need to be made carefully, however, to keep them from slowing down the entire system.

9.3.5 Datatypes

Another interesting research area is abstract data types. Term rewriting systems, such

as the Purdue Equational Interpreter, typically use unevaluated terms for datatypes (as does

Pro log). For example, the point (5, 3) might be represented as the term point (5, 3) . Aug

mented term rewriting allows datatypes to be represented this way, but it supplies an addi

tional, incompatible, representation. For example, in section 3.2.3, a point could be created

using the rule:

aPoint { x: aNurnber ; y: aNumber ; true } 'point

As discussed in section 8.1.3, both representations have their advantages. The main advan

tage of using unevaluated terms for datatypes is notational- elements of data types can be

selected by position. This suggests that some notation to define selectors on elements of

Bertrand's abstract datatypes would solve this problem.

9.3.6 Acceptability of Non-procedural Languages

Finally, one of the strengths of Bertrand, its non-procedural semantics, is also one of its

main weaknesses. Programmers are unused to non-procedural languages, such as dataflow

languages, and often resist using them. It is hoped that this prejudice on the part of pro

grammers can be overcome by using augmented term rewriting to implement constraint

languages, where procedural information is the exception rather than the rule. Until these

prejudices can be overcome, however, this will tend to limit the potential use of augmented

term rewriting to descriptive tasks such as graphics and modeling, but these are rich fields,

with many interesting problems.

Alternatively, procedural constructs could be added to Bertrand to improve its

efficiency on sequential processors. For example, we could easily add operators that control

when their arguments are to be evaluated. This would allow conditional operators

9. Conclusions 159

(if/then/else) to wait until their predicate expression evaluates to either true or false before

either other argument is evaluated. Similar restrictions could help the performance of other

operators.

9. Conclusions 160

Appendix A Libraries and Examples

Bertrand is nonnally used in conjunction with one or more libraries of rules. This appendix

discusses these libraries and gives examples of their use.

A.1 BEEP

BEEP is the Bertrand Elementary Equation Processor, the equation solver used in this

document. BEEP defines rules for the foil owing operators, listed in order of increasing pre

cedence.

Category

Statement separator

Expression separator

Logical

Relational

Arithmetic

Constants

Typed object

A. Libraries

Operator

;

->

-1
&

-&

>
>~

<
<~

+

*
I

trunc
abs
sin
cos
tan

a tan

true
false
nil

aNwnber

Description Associativity

assert right

list right

implication right
Boolean or left
nor left
Boolean and left
nand left
Boolean not prefix

equality non-associative
inequality non-associative
greater than non-associative
greater or equal non-associative
less than non-associative
less or equal non-associative

addition left
subtraction left
multiplication left
division left
integer part prefix
absolute value prefix
sine prefix
cosine prefix
tangent prefix
arc tangent prefix
exponentiation non-associative
unary minus prefix

Boolean nullary
Boolean nullary
distinguished value nuilary

declare a number nullary

161

BEEP also uses the following types:

'nonzero
'constant
'linear
'expression
'number

any numeric constant except 0
numeric constant
constant or linear expression
any expression that is not linear or a constant
any of the above

The type 'linear is a supertype of 'constant, and 'constant is a supertype of

'nonzero. This means that any rule that will match a linear expression will also match a

constant, unless there is another rule that only matches a constant, and so on. Type

'number is a supertype of 'linear and 'expression.

The following is the complete set of rules for BEEP. An ellipsis (...)introduces a com

ment that runs to the end of the line.

true ; a
(a; b) ; c

(a & b) ; c

semicolon patterns

... Boolean patterns
a -> b

a - & b
a I b

a - I b
false & a
true & a
-true

-false
--a

a -~ b
a > b
a >~ b

... relational patterns

. . . simple algebra
a'constant = b ~ c'constant

a'linear = b'linear + c'expression
a'linear = b'constant * c'expression
a'constant = b I c
o I b

0 * b
a' linear - 0
a'expression - 0
a' linear ... 1
a'expression ... 1

... standard form
a'expression = b'linear

A. Libraries

{a}
{a; b; c)
{a; b; c)

{ - (a & -b) }

{- (a & b) }

{-(-a&-b)}
{-a&-b}
{false}
{a}
{false}
{true}
{a}

{-(a=b)}
{b < a}
{ b <~ a}

{a- (1/c) b)
{a-b~c}

{a/b =c)
{c -~ 0; b/a c)
{b -~ 0; 0}
{ 0}
{a-~0;1}

{a-=0;1}
{a}
{a}

{b ~ a}

162

a'expression + b'linear
a'expression b'linear
a'expression * b'linear
a'linear * b'constant

a' linear b'linear
a'nonzero = b'linear ; c

... builtin
0 • b'linear ; c
a'linear + b'linear
a'linear b'linear
a'linear * b'constant
a'linear I b'constant
- a'linear
a'constant = b'constant
a'constant < b'constant
a'constant <= b'constant
a'constant ~ b'constant
trunc b'constant
abs b'constant
sin b'constant
cos b'constant
tan b'constant
atan b'constant

{b + a}
{C-bl +a}
{b * a}
{b * a}

{ 0
{ 0

b
b

{$solve}
{$add}
{$sub}
{$rnul}
{$div}
{$neg}
{ $eq}
{ $lt}
{ $le}
{ $exp}
{$floor}
{ $abs}
{$sin}
{$cos}
{$tan}
{$a tan}

a}
a; c}

Any operator that begins with a dollar sign($) is a primitive. The $solve operator,like the

others, is a primitive for efficiency reasons (see section 6.1 for a version of $solve written in

Bertrand). As discussed in section 3.1.1, all primitives could (at least conceptually) be writ

ten as rules.

Most of these rules are fairly intuitive- things like "not false is replaced by true" and

so on. Also notice that the rules for dealing with division (under the comment . . . simple

algebra) add constraints to make sure that denominators do not vanish. Other rules deal

with getting constants near each other so arithmetic can be done on them. These rules use

the commutative and associative laws, but in order to prevent infinite loops we cannot

include rules such as:

a+b{b+a}

Instead, the second rule under the comment . . . standard form moves constants to the

left. By moving constants in the same direction, eventually they will find each other so that

arithmetic can be performed on them.

A Libraries 163

A.1.1 Factorial

In section 3.3.1 we defined some rules that evaluated the factorial function of n as the

product of the first n integers, which is a non-standard way of defining factorial. We did it

that way because it better showed the pipe lining automatically set up by Bertrand. We can,

of course, define a more conventional factorial:

fact 1 { 1 }
fact n' constant { n X fact (n-1) }

Like the other version, Bertrand automatically sets up a stream between the producer of the

list of values (the fact rule) and the consumer (the multiplication), using the associative law

of multiplication. This program is also simple enough to show the tree at every step of the

rewriting: A complete trace of the execution of fact 5 (produced by the Bertrand tracer) is:

fact 5
5 x (fact(5- 1))
5 x fact 4
5 x (4 x fact(4- 1))
(5 X 4) X fact(4- 1)
20 x fact(4- 1)
20 x fact(3)
20 X (3 x fact(3- 1))
(20 x 3) x fact(3- 1)
60 x fact(3- 1)
60 x fact(2)
60 X (2 x fact (2 - 1))
(60 X 2) X fact(2 - 1)
120 x fact(2- 1)
120 X fact(1)
120 X 1
120

A.1.2 Simultaneous Equations

Here is a set of simultaneous equations from a textbook on linear algebra:

main {

A. libraries

4.6237Xa + 2.6914Xb- 3.7517Xc
-2.4037Xa + 1.0432Xb + 0.7589Xc

1.0462Xa + 2.0495Xb + 6.3524Xc
a, b, c
}

1. 4023;
0.3724;
-2.4728;

164

··--~-

Bertrand produces the (correct) answer:

-.188747 ' .23866 ' -.435184

with 18 rule rewritings and 23 calls to primitive arithmetic routines, in 0.15 seconds.

A.1.3 Triangle Equality

Here is an example of a simple quadratic equation that can be solved by the above

rules:

main {
CA2 aA2 + bAZ; a=3; C=5; b
}

The answer returned is 4.

Note, however, that only the positive root is returned. This is a result of the rule:

a' constant = b ... c' constant {a A (1/c) =b)

in the equation solver. This rule causes the expression:

which has two possible solutions, to be rewritten into:

16 A (1/2) = b

which only has one solution. Since, as discussed in section 3.3.2, the current version of Ber·

trand cannot bind multiple values to a variable, there is no easy way to avoid this problem.

This problem also occurs in the rule that calls the primitive operator $a tan, since it only

returns a single value.

A.1.4 More Word Problems

Here is a slightly more challenging problem. I have 25 coins in my pocket, nickels,

dimes and quarters. They are worth $3.45. I have 7 more nickels than dimes. How many

coins of each type do I have?

If we write this problem out as Bertrand program, it looks like:

A. Libraries 165

main {
nickels: aNumber;
dimes: aNumber;
quarters: aNumber;
nickels + dimes + quarters - 25;
nickelsXS + dirnesXlO + quartersX25 345;
dimes ~ 7 + nickels;
nickels, dimes, quarters
}

The answer returned is 5 nickels, 12 dimes, and 8 quarters.

If (for some unimaginable reason) we were going to solve lot of problems of this type, we

might want to define some datatypes to help us make the program look more like the prob

lem statement. We define a postfix operator coins that creates a set of coins of a certain

value, and a postfix cent operator, for syntactic sugar.

value'number coins {
total: aNumber;
value: aNwnber;
num: aNumber;
total = valuexnum
} 'money

n cent { n I 100 }

main {
nickels: 5 cent coins;
dimes: 10 cent coins;
quarters: 25 cent coins;

nickels.num + dirnes.num + quarters.num = 25;
nickels.total + dirnes.total + quarters.total
dimes.num = 7 + nickels.num;
nickels.num, dimes.num, quarters.num
}

3.45;

This example shows how a rule for creating an object can be parameterized, in this case with

the value of the coin. Of course, we get the same answer.

A.1.5 Temperatures

And last, but not least, here is the temperature conversion program written in Ber

trand.

E' = 32 + 9/SXC

A. Libraries 166

What could be simpler?

We can also define operators for different units of temperature measurement. For

example, we can define rules for the postfix operators Celsius, Fahrenheit, and Kelvin,

and one for a postfix degrees operator, purely for syntactic sugar:

n Celsius { n }
n Fahrenheit { (n - 32) x (5/9)
n Kelvin { n - 273 }
n degrees { n }

We are using Celsius as our reference unit. We can then write programs asking questions

like:

main { x: aNumber;
0 degrees Kelvin
X

}

x degrees Fahrenheit;

This program solves for the value of x in degrees Fahrenheit that is equal to zero degrees

Kelvin (-459.4). Since we can solve simultaneous equations, we can ask questions such as:

main { x: aNumber;
x degrees Celsius
X

x degrees Fahrenheit;

and get the answer -40, since -40 degrees Celsius is the same temperature as -40 degrees

Fahrenheit.

A.2 BAG

BAG is the Bertrand Archetype Graphics library1. It defines the types 'point and

' line, and provides access to graphical primitives for drawing lines, circles, and strings at

specified locations. These rules use two special character operators beyond those supplied by

BEEP, the infix at sign(@) used to create new points, and the bang (!)operator, both postfix

and infix, used to draw graphic objects. These rules provide only rudimentary support for

graphics -most programs define further rules.

... points
aPoint { x: aNumber; y: aNumber; true } 'point
X @ y { p: aPoint; p.x = x; p.y = y; p }
p'point q'point { p.x=q.x & p.y=q.y }
p'point + q'point { p.x+q.x @ p.y+q.y }

1 After this one, I think I will give up trying to give libraries acronyms starting with the letter B.

A. libraries 167

aLine
l'line
horiz l'line
vert 1' line

lines

ll'line conn l2'line
widthof l'line
heightof l'line

{ begin: aPoint; end: aPoint; true } 'line
{ ((l.begin.x,l.begin.y), (l.end.x,l.end.y))
{ l.begin.y = l.end.y }
{ l.begin.x = l.end.x }
{ ll.end = 12.begin }
{ l.end.x- l.begin.x }
{ l.begin.y - l.end.y }

... draw primitives

}

(a' constant, (x' constant, y' constant))

((xl'constant, yl'constant), (x2'constant, y2'constant))

(a' string, (x' constant, y' constant))

{ $drawnum}

{ $drawline}

{ $drawstr}

... mouse primitives

rnousex {$rnousex} X coordinate of mouse

mousey {$mousey} y coordinate of mouse

mouseb { $rnouseb} mouse buttons

A.2.1 Diagrams

Here are some additional diagrams, drawn using the rules defined in section 7.2.1.

Since the rules are defined elsewhere, we will only show the constraint program for each

diagram.

The following program:

main {

A. Libraries

user: circle "user";
gin: box "graphic input";
bertrand: box "Bertrand";
database: box "database";
gout: box "frame buffer";
display: circle "display";
app: box "applications";

user.left = 100; user.top = 80;

user rightto gin; gin rightto bertrand;
bertrand downto database; database upto bertrand;
bertrand rightto gout; gout rightto display;
database rightto app;

true
}

168

produces the following diagram:

1----oj graphic dialog 1----oj Bortnnd frame buffur

database applJcatlon•

This diagram shows how a constraint language built with Bertrand would fit into a design

system (such as for ME-CAD). The user interacts with the system through an interface,

called "graphic dialog", giving the system constraints on the design. These constraints are

satisfied by Bertrand, which draws the resulting figures in a graphic output device, a "frame

buffer". Information about specific designs is store in a database- this database can also be

accessed by other application programs.

A slight change to the program, and we get a different diagram, this time with a "cycle":

main {

A. Libraries

user: circle ''user";
gin: box "graphic input";
dialog: box "graphic dialog";
bertrand: box "Bertrand";
database: circle "database";
gout: box "frame buffer";
display: circle "display";

new gob

app: box "applications";
display.left = 100; display.top SO;

user rightto gin;
gin rightto dialog;
dialog upto bertrand;
bertrand rightto database;
database leftto bertrand;
bertrand leftto gout;
gout leftto display;
display downto user;
database rightto app;
true
)

169

This cycle is not like a cycle in a constraint graph, since it corresponds to the constraint prob

lem being overconstrained. The position of the box "graphic dialog" is fixed relative to both

"Bertrand" and "graphic input", which in tum are fixed relative to each other. Since these

constraints do not contradict each other, they are merely redundant, and do not cause any

problems.

frame buffar Bertrand application•

graphic Input f-----1 graphic dialog

A.2.2 Graphics Appflcatlons

The following pages contain examples of output that are meant to be evocative of dif

ferent graphical applications of constraint languages, including mapping and mechanical

design [Leier 85]. They have all been produced using Bertrand.

A.2.2.1 Mechanical Design

The following pictures are sketches for a plug and socket. The plug and socket are the

same datatype, with similar topologies, but with different dimensions.

l t 200

1

A. Libraries

200

-so

---lr---90

i
90

.f.____,

170

The size of the mating parts of the plug and socket are constrained to be the same size.

200

... 50

-ao -=::::

--- '------
250 110

j 1 ----
r--

We also use constraints to arrange objects in the drawing relative to each other, so that when

one object is moved, the others move to maintain their proper relationships.

200

... 50 ...

-so

--- '----
250 110

-- - - -- - +-:-:!-,...-
110 160

j 1 1 ---- -1------

A. Libraries 171

A.2.2.2 Mapping

This example shows a map constrained to lie within a certain rectangle.

We can stretch maps arbitrarily, including constraining the right side of the map to be to the

left of the left side, or the top to be below the bottom, as in the following picture.

A. Libraries 172

Appendix 8 An Interpreter

This appendix presents a working interpreter for an augmented term rewriting system writ

ten in Scheme [Rees 86] [Abelson 85] (Scheme has been described as a lexically scoped dialect

of LISP). In addition, we have restricted ourselves to a purely functional subset of Scheme,

so this program will also serve as an operational semantics for augmented term rewriting.

Scheme is an especially appropriate language for this task because of its clear and simple

semantics.

This interpreter does run, and has been tested on a variety of inputs, but it is not meant

to be used as a production interpreter since it was written for clarity rather than speed1• The

major purpose of this program is to precisely codify the semantics presented in chapter four.

It could be used as the basis of a faster interpreter, however, or to verify the behavior of a

production interpreter.

There are three differences between the following program (which I will call the exe

cutable semantics) and the semantics presented in chapter four (the operational seman

tics). Only the first one is significant. In the operational semantics, if the subject expression

contained more than one redex, the order in which they were reduced was not defined. In the

following executable semantics, the outermost redex is reduced first. If there is more than

one outermost redex, the leftmost is reduced first. Since the order of reduction does not

matter this should not cause any problems. Strictly speaking, however, a semantics should

not restrict the order in which the reductions are performed (for example, we could rewrite

the executable semantics so that it finds all possible redexes, and then randomly chooses one

of them).

The second difference is purely syntactic and could be handled by a simple preprocess

ing step. The syntax of the input language accepted by the executable semantics differs from

the syntax used by the operational semantics (which, in turn, differs from the syntax actually

used by Bertrand). In this syntax, expressions are constructed from Scheme lists. These

lists all begin with a symbol which indicates what kind of expression the list represents. The

following table presents the correspondence between the two different syntaxes.

1 'Th.e current production interpreter for Bertrand is written in C.

B. Interpreter 173

Expression Type Operational

variable name

compound variable nl. n2. n3

parameter pname

compound variable with first

element a parameter pl. n2. n3

parameter (with guard) pname' type

parameter (multiple guards) - N/A-

123

Executable

(' var name)

('var nl n2 n3)

('parameter pname)

('parameter pl n2 n3)

('typed pname type)

('typed name tl t2 t3)

('constant 123) numeric constant

term op(argl, arg2)

label: op(arg)

11.12: op (arg)

is(exprl, expr2)

('term (:) op argl arg2)

labeled term

compound labeled term

"is" expression

('term (label) op arg)

('term (11 12) op arg)

('is exprl expr2)

In this syntax, all terms (operators) must have a label. If a term is to be unlabeled it is given

a label consisting of a list containing a single colon (which will be replaced by a generated

label during execution).

We define a number of help functions for detecting the different kinds of expressions:

(define constant? (lambda (x) (and (pair? x) (eq? (car x) 'constant))))
(define parameter? (lambda (x) (and (pair? x) (eq? (car x) 'parameter))))
(define typed? (lambda (x) (and (pair? x) (eq? (car x) 'typed))))
(define var? (lambda (x) (and (pair? x) (eq? (car x) 'var))))
(define term? (lambda (x) (and (pair? x) (eq? (car x) 'term))))
(define isis? (lambda (x) (and (pair? x) (eq? (car x) 'is))))

The last difference between the executable semantics and the operational semantics can

also be handled by a preprocessing step. The executable semantics does not allow types to

have supertypes. Instead, it allows a guard on a parameter variable in the head of a rule to

have multiple guard types. Since the supertype relation is a strict hierarchy, any type can

only have a finite number ofsupertypes. Thus, if we use a preprocessor to replace all guards

by a list containing the transitive closure of the supertype relation for that guard, the follow·

ing executable semantics (without supertypes) is equivalent to the operational semantics.

For example, if d is a supertype of 't2, and 't2 is a supertype of t3, then a guard on a parame

ter that contains the type t3 would be replaced by the list (t3 t2 tl).

Our program uses two data types (rule and state), both represented as vectors. A rule

is a vector containing a head expression, a body expression, and an optional tag. These three

elements of a rule are accessed using the functions head, body and tag. If a rule does not

B. Interpreter 174

contain a tag, then H (the Scheme constant representing the boolean value FALSE) is

returned instead.

(define head (lambda (x) (vector-ref x 0)))
(define body (lambda (x) (vector-ref x 1)))
(define tag

(lambda (x)
(if (=? (vector-length x) 3)

(vector-ref x 2)
#f))) ; return false if no tag

head of rule
body of rule

; tag of rule

A state is a four-tuple, containing a subject expression, a global name space, a global

type space, and an integer. The integer is used for generating label names for unlabeled

redexes (the newname function). The elements of a state are accessed using the functions

subject, globals, typesp, and newname.

(define make-state (lambda (s g t n) (vector s g t n)))

(define subject (lambda (x) (vector-ref x 0))) subject expression
(define globals (lambda (x) (vector-ref x 1))) global name space
(define typesp (lambda (x) (vector-ref x 2))) global type space
(define newname (lambda (x) (vector-ref x 3))) ; for generating labels

We also define four functions that take a state and return a new state with one of the ele

ments updated.

(define replace-s replace subject expression in state
(lambda (state new-subject)

(vector new-subject
(globals state)
(typesp state)
(newname state))))

(define replace-g replace globals in state
(lambda (state new-globals)

(vector (subject state)
new-globals
(typesp state)
(newname state))))

(define replace-t replace type space in state
(lambda (state new-typesp)

(vector (subject state)
(globals state)
new-typesp
(newname state))))

B. Interpreter 175

(define incr-n
(lambda (state)

increment label name generator in state

(vector (subject state)
(globals state)
(typesp state)
(+ 1 (newname state)))))

The main function of the augmented term rewriter takes a subject expression and a list

of rules, constructs a state, and passes the initial state and the rules to the rewriter.

(define augmented-term-rewriter
(lambda (subject-exp rules)

(rewrite
(make-state
subject-exp
init-phi
init-phi
0)

rules)))

state
subject expression
initial global name space
initial type space
initial generated label name

; rules

(define init-phi '((*reserved* . *reserved*)))

This function returns a state, which was returned by the function rewrite. Name spaces

(and type spaces) are represented as a list of name/value pairs. The variable init-phi

represents the empty name space.

The function rewrite takes a state and a list of rules, and returns a new state contain

ing the completely rewritten subject expression, a global name space containing all of the

bound variables and their values, a type space containing all the typed variables and their

types, and an integer which indicates how many label names were generated.

(define rewrite
(lambda (state rules)

(let ((no-bv-state (rewrite-globals state)))
(if no-bv-state ; bound var was found

(rewrite no-bv-state rules)
(let ((new-state (rewrite-exp state rules rules)))

(if new-state ; match (or "is") found
(rewrite new-state rules)
state)))))))

Rewrite first calls the function rewrite-globals which replaces bound variables by their

value (corresponding to the "rule" r). If a bound variable was found, rewrite-globals

returns a new state, otherwise it returns H. If a bound variable was found, then rewrite

calls itself recursively. Otherwise, rewrite-exp is called, which rewrites subexpressions of

the subject expression that match one of the rules, and also rewrites is expressions

(corresponding to the "rule" A). The reason for having a separate rewriter for bound

B. Interpreter 176

variables, rather than combining it into rewrite-exp, is because of the requirement that all

bound variable be replaced by their value before any more binding is performed. If no

redexes are found by either rewrite-globals or rewrite-exp (they both return tf) then

rewrite terminates and returns the state.

Rewrite-exp is passed two copies of the rules. It first attempts to match the outer

most term of the subject expression against the first rule in rules (by calling try-rule). If

this fails, it recursively calls itself, removing the head of the list of rules.

(define rewrite-exp
(lambda (state rules-left-to-try rules)

(if (null? rules-left-to-try)
(rewrite-subexpressions state rules)
(let ((new-state (try-rule state (car rules-left-to-try))))

(if new-state
new-state
(rewrite-exp state (cdr rules-left-to-try) rules))))))

When the list of rules is empty, then the outermost term has failed to match any rule in

rules, so rewrite-subexpressions is called with the original list of rules.

(define rewrite-subexpressions
(lambda (state rules)

(let ((expr (subject state)))
(cond ((constant? expr) ff)

((var? expr) ff)

((term? expr)
(rewrite-args (first3 expr) (cdddr expr) state rules))

((isis? expr) (rewrite-is state))
(else {error "Invalid subject expression:" expr))))))

(define rewrite-args
(lambda (previous-terms terms-to-try state rules)

(if (null? terms-to-try)

B. Interpreter

H
(let ((new-state (rewrite-exp

(if new-state

(replace-s state (car terms-to-try))
rules rules)))

(replace-s new-state
(append previous-te~

(cons (subject new-state)
(cdr terms-to-try))))

(rewrite-args {append previous-terms
(list (car terms-to-try)))

(cdr terms-to-try) state rules))))))

177

(define first3 ; return the first 3 elements of a list
(lambda (alist)

(list (car alist) (cadr alist) (caddr alist))))

If the outermost term is an operator with arguments, then rewrite is called recursively on

each of the arguments (by rewrite-args). If any argument was a redex, then that

transformed argument is reinserted into. the subject expression in the state. The first3

function is used to skip over the first three elements of a list representing an expression (the

symbol 'term, the label, and the operator) when calling rewrite-args.

If the outermost term is an is expression (it matches the "rule" A), then rewrite

subexpressions calls the function rewrite-is.

(define rewrite-is
(lambda (state)

(let ((expr (subject state))
(space (globals state)))

(if (and (pair? (cdr expr))
(var? (cadr expr))

; two args?
first is var"?

(pair? (cddr expr)) ; second is expr?
(not (lookup (cdadr expr) space)); var not bound?
(not (rewrite-globals ; var not in expr?

(make-state (caddr expr)
(bind (cdadr expr) ' () init-phi)
init-phi 0))))

(replace-g (replace-s state true-expr)
(bind (cdadr expr) (caddr expr) space))

(error "invalid "is" expression:" expr)))))

(define true-expr ' (expr (:) true))

Rewrite-is checks to make sure the is expression is well formed, that the variable is not

already bound, and that the value does not contain an instance of the variable. If everything

is in order, then a new state with a new subject expression and a new global name space is

returned. The new global name space is the old global name space with the addition of a new

name/value pair for the new bound variable. The new subject expression is the nullary

operator (constant) true.

The try-rule function (which was called by rewrite-exp) takes a state and a single

rule, and tries to match the head of the rule against the subject expression in the state.

B.lnterpreter 178

(define try-rule
(lambda (state rule)

(let ((phi (match state (head rule) init-phi)))
(if phi

(let ((label (get-label (subject state) (newname state))))
(replace-s
(bind-type
(if (eq? (last label) (newname state))

(incr-n state)
state)

rule label)
(transform (body rule) phi label)))

tf))))

Match returns tf if there is no match, otherwise it returns a name space which gives the

bindings for all the parameter variables in the head of the rule. If a match was found then

get-label returns the label of the matched subexpression, or generates a label. Try-rule

returns a new state, with a new subject expression, possibly a new type space (if the rule was

typed), and possibly an incremented newname (if the label was generated). The new subject

expression is the transformed body of the rule.

Match takes a state (containing a subject expression) a pattern (head of a rule) and an

initial parameter name space, and builds the parameter name space.

(define match
(lambda (state pattern phi)

(let ((expr (subject state)))
(cond
((parameter? pattern) (bind (cadr pattern) expr phi))
((and (typed? pattern) (var? expr))
(let ((var-type (lookup (cdr expr) (typesp state))))

(if (and var-type (memq var-type (cddr pattern)))
(bind (cadr pattern) expr phi)
#f)))

((and (typed? pattern) (constant? expr)
(eq? (caddr pattern) 'constant))

(bind (cadr pattern) expr phi))
((and (constant? pattern) (constant? expr)

(=? (cdr pattern) (cdr expr))) phi)
((and (term? pattern) (term? expr)

(eq? (caddr pattern) (caddr expr)))
(match-args (replace-s state (cdddr expr))

(cdddr pattern) phi))
((var? pattern) (error "Local variable in head of rule"))
(else tf)))))

B. Interpreter 179

(define match-args
(lambda (state patterns phi)

(let ((args (subject state)))
(cond
((and (null? args) (null? patterns)) phi)
((null? args) itf)
((null? patterns) ff)
(else

(let ((new-phi (match (replace-s state (car args))
(car patterns) phi)))

(if new-phi
(match-args (replace-s state (cdr args))

(cdr patterns) new-phi)
H)))))))

Get-label checks to see if the last element of the label of the matched expression is a colon,

and if so replaces it with a generated name, which is simply a number (the user is not

allowed to use numbers for labels, so there can be no conflict from generated labels).

(define get-label
(lambda (expr lgen)

(if (eq? (last (cadr expr)) ':)
(replace-last (cadr expr) lgen)
(cadr expr))))

(define last
(lambda (1st)

; return the last element of a proper list

(if (pair? 1st)
(if (null? (cdr 1st))

(car 1st)
(last (cdr 1st)))

(error "Cannot return last element of an atom:" lst))))

(define replace-last ; replace the last element of a list
(lambda (1st val)

(if (and (pair? 1st) (null? (cdr 1st)))
(list val)
(cons (car 1st) (replace-last (cdr 1st) val)))))

Bind-type (called by try-rule is a match was found) binds a type to the label in the type

space if the rule was tagged (even if the label was generated).

B. Interpreter 180

(define bind-type
(lambda (state rule label)

(let ((rule-tag (tag rule)))
(if rule-tag

(replace-t state (bind label rule-tag (typesp state)))
state))))

The function transform takes the body of the matehed rule, a parameter name space, and a

label, and returns a transformed expression.

(define transform
(lambda (rule-body phi label)

(cond
((parameter? rule-body)
(let ((param-val (lookup (cadr rule-body) phi)))

(if param-val
(if (=? (length (cdr rule-body)) 1)

param-val ; not qualified parameter
(if (var? param-val)

(cons (car param-val)
(append (cdr param-val) (cddr rule-body)))

(error
"Qualified parameter matched a non-variable:"
param-val)))

(error "Parameter in body that is not in head:,. rule-body))))
((var? rule-body)

(cons (car rule-body) (append label (cdr rule-body))))
((constant? rule-body) rule-body)
((term? rule-body)

(append (list
(car rule-body) 'term
(append label (cadr rule-body)) label
(caddr rule-body)) operator

(transform-args (cdddr rule-body) phi label))) args
((isis? rule-body)

(cons (car rule-body) (transform-args (cdr rule-body) phi label)))
(else (error "Invalid body of rule:" rule-body)))))

(define transform-args
(lambda (args phi label)

(if (null? args)

' ()
(cons (transform (car args) phi label)

(transform-args (cdr args) phi label)))))

We still need to define the functions for dealing with name spaces (including parameter

and global name spaces, and type spaces).

B. Interpreter 181

(define bind
(lambda (var val name-space)

(cons (cons var val) name-space)))

(define lookup
(lambda (var name-space)

(let ((entry (as soc var name-space)))
(if entry

(cdr entry)
Hl)))

Bind constructs a name/value pair, and adds it onto the beginning of the name space list.

Lookup searches the list for the specified name. They are quite simple (and, of course, quite

inefficient).

Now that we have finished with rewrite-exp we can define rewrite-globals, which

replaces bound variables by their values.

(define rewrite-globals
(lambda (state)

(let ((expr (subject state))
(space (globals state)))

(cond

B. Interpreter

((var? expr)
(let ((val (lookup (cdr expr) (globals state))))

(if val ; variable is bound
(replace-s state val) ; replace by value

Hl))

((constant? expr) tf)
((term? expr)
(rewrite-g-args (first3 expr) (cdddr expr) state))

((isis? expr)
(rewrite-g-args (list (car expr)) (cdr expr) state))

(else (error "invalid subject expression:" expr))))))

182

(define rewrite-g-arg~
(lambda (previous-term~ terms state)

(if (null? terms)
ff
(let ((new-state (rewrite-globals (replace-s state (car terms)))))

(if new-state
(replace-s new-state

(append previous-terms
(cons (subjec t new-st ate)

(cdr terms))))
(rewrite-g-args

(append previous-terms (list (car terms)))
(cdr terms) state))))))

The main purpose of this executable semantics is to precisely state what augmented

term rewriting does, and how it does it. It can also be used to validate implementations of

augmented term rewriting systems. As an actual augmented term rewriting system, how

ever, it would be extremely inefficient. It also has no primitives (such as addition), or the

primitives to detect the interestingness of atoms that would need to be added to make a

usable system.

B. Interpreter 183

Bibliography and References

Annotated Bibliography

Abelson, H., & Sussman, G. J., Structure and Interpretation of Computer Programs, MIT press

(1985). [Excellent introduction to programming using Scheme.]

Ackerman, W. B., "Data Flow Languages", IEEE Computer, 15:2 (February 1982), 15-25.

Aha, A., and Corasick, M., "Efficient String Matching: an Aid to Bibliographic Search," Com

munications of the ACM 18:6 (June 1975) 333-343. [A fast string matching algorithm that

can be extended to operate on trees for term rewriting.]

Aha, A., and Ganapathi, M., "Efficient Tree Pattern Matching: an Aid to Code Generation,"

12th ACM Symposium on Principles of Programming Languages (1985). [Term rewriting can

be used to generate code for constraint languages.]

Ashcroft, E., and Wadge, W., "Lucid, a Nonprocedural Language with Iteration," Communica

tions of the ACM 20:7 (July 1977), 519-526. [Lucid is a declarative language based upon

streams.]

Backus, J., "Can Programming be Liberated from the von Neumann Style? A Functional

Style and its Algebra of Programs," Communications ofthe ACM, 21:8 (August 1978), 613-

641. [Generic reference.]

Blaauw, G. A., and Brooks, F. P., Computer Architecture, draft manuscript (Spring 1986). [To

be published in 1988.]

Berning, A., ThingLab-A Constraint-Oriented Simulation Laboratory, Xerox PARC technical

report SSL-79-3 (July 1979). [This is a revised version of Earning's PhD thesis, also pub

lished as Stanford technical report STAN-CS-79-746.]

Earning, A., "The Programming Language Aspects ofThingLab, A Constraint-Oriented

Simulation Laboratory," ACM Transactions on Programming Languages and Systems 3:4

(October 1981), 353-387. [ThingLab isn't really a programming language, but it is closely

integrated into Smalltalk.]

Earning, A., Constraints and Functional Programming, University of Washington Computer Sci

ence Department Technical Report No. 85-09-05 (September 1985). [Unifies the constraint

and functional programming paradigms.]

Bibliography 184

Gosling, J.,Afgebraic Constraints, PhD Thesis, CMU Technical Report CS-83-132 (May 1983).

[Uses algebraic techniques rather than relaxation to solve constraint graphs with cycles.]

Gosling, J., "The Mumble Microcode Compiler," from The Cm• Multiprocessor Project: A Research

Review, Carnegie-Mellon University Computer Science Department (1980). [Code optimiza

tion as a constraint satisfaction problem.]

Hoffmann, C. M., and O'Donnell, M., "Programming with Equations," ACM Transactions of

Programming Languages and Systems, 4:1 (January 1982), 83-112. [Term rewriting.]

Hoffmann, C. M., O'Donnell, M. J ., and Strandh, R. 1., "Implementation of an Interpreter for

Abstract Equations," Software- Practice and Experience, 15:12 (December 1985), 1185-

1204. (Fast algorithm for term rewriting.]

Hullot, J-M., "Canonical Forms and Unification," Proc. 5th Workshop on Automated Deduc

tion, Springer-Verlag Lecture Notes (1980), 318-334. [Discussion of narrowing.]

International Standards Organization, "Graphical Kernel System (GKS), Version 6.6," (May

1981).

Jayaraman, B., and Silbermann F., "Equations, Sets, and Reduction Semantics for Func

tional and Logic Programming," LISP and Functional Programming Conference, M.I.T.,

(August 1986), 320-331. [Unifies functional and logic programming, to get the benefits of a

logic language without the procedural semantics of Pro log.]

Johnson, T., "Sketchpad III, A Computer Program for Drawing in Three Dimensions," IFIPS

Proceedings of the Spring Joint Computer Conference (1963). [An extension to Sketchpad to
allow it to construct three dimensional objects.]

Kaehler, C., "MacPaint Manual", Apple Computer Inc. #Ml501, Cupertino, California, (1983).

Kernighan, B. W., PIC -A Graphics Language for Typesetting, User Manual, Bell Labs Computer

Science Technical Report No. 85 (March 1982).

Knuth, D. E., TeX. and METAFONT. New Directions in Typesetting , published jointly by the Ameri

can Mathematical Society and Digital Press (1979). [Metafont uses simple equation solving

to describe character outlines.]

Konopasek, M., & Jayaraman, S., The TK!Solver Book, Osborne/McGraw-Hill, Berkeley, CA

(1984). [A commercial constraint language.]

Kowalski, R A, "Algorithm= Logic+ Control," Communications of the ACM, 22:7 (August

1979), 424-431.

Bibliography 186

Skedzielewski, S., and Glauert, J., IFJ, An intermediate Form for App/icative Languages, Lawrence

Livermore Labs Technical Report (June 1984).

Snodgrass, R, private communication.

Steele, G. L., Fahlman, S. E., Gabriel, R. P., Moon, D. A, and Weinreb, D. L., Common Lisp:

The Language, Digital Press, Burlington, Massachusetts (1984).

Steele, G. L., The Definition and Implementation of a Computer Programming Language Based on Con

straints, PhD Thesis, MIT AI-TR.595 (August 1980). [Holding a constraint language responsi

ble for its decisions.]

Steele, G. L., & Sussman, G. J., "CONSTRAINTS," APL conference proceedings part 1, APL

Quote Quad (June 1979), 208-225. [Good introduction to propagation.]

Sutherland, I., "SKETCHPAD: A man-machine graphical communication system," IFIPS

Proceedings of the Spring Joint Computer Conference (1963). (also Lincoln Laboratory

technical report 296, January 1963). [See also his PhD thesis from MIT.]

Treleaven, P., Brownbridge, D. & Hopkins, R., "Data-Driven and Demand-Driven Computer

Architectures," Computing Surveys, 14:1 (March 1982), 93-143. [Good introduction to dataflow

architectures, which show promise for executing constraint languages.]

Turner, D., "The Semantic Elegance of App!icative Languages," Conference on Functional Pro

gramming Languages and Computer Architecture (October 1981). [SASL and KRC are applicative

languages, but have some similarities to constraint languages.]

VanWyk, C. J., A Language for Typesetting Graphics, PhD Thesis, Stanford University (June

1980). [Description of the IDEAL language.]

VanWyk, C. J., "IDEAL User's Manual," Bell Labs CS TR No. 103 (December 1981).

VanWyk, C. J., "A High-Level Language for SpecifYing Pictures," ACM Transactions on

Graphics, 1:2 (April1982), 163-182.

Wadge, W., and Ashcroft, E., Lucid, the Dataflow Programming Language, Academic Press (1985).

Winkler, F., Buchberger, B., Lichtenberger, F., Rolletschek, "An Algorithm for Constructing

Canonical Bases of Polynomial Ideals," ACM Transactions on Mathematical Software, 11:1

(March 1985), 66-78. [Groebner basis (solving systems of nonlinear equations).]

8 ibliography 188

Index

abstract datatypes ... 18, 59, 70, 153, 157, 159
algebra .. 9-1 0, 21, 45, 87, 95, 109, 163-164
algebraic simplification ... 9, 45, 48-51, 87, 99-100, 106, 146, 161
algorithms .. 8, 12, 21, 90, 147
application specific techniques .. 14, 16, 21, 30, 41, 66, 87, 153-154
arithmetic 17, 21, 45-46, 62, 68, 70, 104-105, 108, 138-139,142, 155, 161, 163, 165
assignment ... 9-11, 42, 51, 66, 82-83, 128, 133, 150
associative law .. 67, 163-164
augmented term rewriting 18-19,42,48, 53, 57, 61, 64, 68, 71, 76-78, 81, 83-86, 107-108

... 138,147-148, 150,153-156,158-159,173,183

BAG 167-168
BEEP ... 67, 161-163, 167
Bertrand 18-19, 53, 64-69, 80-81, 83, 87, 104, 106, 108-110, 112-113, 116-117

...... 120, 123, 126, 128-129, 134, 137-138, 142, 145, 148-149, 153-159, 161, 164-165, 169, 173
bindable atoms .. 50-54, 56, 60, 64, 81, 86, 104, 106, 132, 134
binding 18, 50-52, 60, 62, 76, 81-86, 104,128, 133, 144, 147-148,150, 153, 158, 165, 176
Booleans ... 26, 36, 49, 53, 60, 63, 100, 107-108, 136, 142-143, 154, 161
bottom ... 44, 75

calculus ... 110
code optimization .. 145-146, 156
combining terms 31-33, 105
comments .. 110,162
commutative law 67,163
compilation 11, 13, 19,28-29,39-41, 90,_137-139, 141-146,149,151-152,155-157
computational completeness .. 16-18, 41, 102, 108, 154
conditionals ... 17, 47, 108, 125, 136, 142-145,150, 159
confluence .. 44, 81,84-86,147,153
constraint cycles .. 25, 27-30,32, 40-41, 48, 87-88, 99-100, 155-156
constraint graphs .. 22,25-28,31-32,35,37,40, 90, 99,147, 156
constraint languages 8-18, 21 , 40-41,48, 53, 87, 117, 137, 147, 154-155
constraint programming languages .. 13, 154
constraint programs ... 9-10, 12, 22, 72, 98, 132, 137, 145
constraint satisfaction systems 8-10, 12-17, 19, 21, 30, 36-37, 87, 100, 155
constraint satisfaction techniques 12-13, 16-17,21,36,40-41,66, 87,100, 154
constraints ... 8, 11-12,16, 37,39, 53, 101, 137, 140
constraints on datatypes, ... 58-59, 111, 119
constraints, defining new ... See: defining new constraints
contradictions ... 10, 34, 38, 54, 83,110, 170
control mechanisms .. 18, 21, 36, 41, 48, 137-138, 145, 154, 159

Index 189

control structures ... 17, 67, 102, 108,117,126, 146, 150,154
convergence ... 26-27
cryptarithmetic 26
cycles See: constraint cycles

dataflow ... 19,141, 147, 149-150, 159
dat.atypes .. 41, 53, 56-57,60-61, 65,119,134-135,159,170
datatypes, abstract : See: abstract datatypes
dat.atypes, constraints on See: constraints on datatypes
data types, defining new .. See: defining new data types
declarative languages .. 8, 13, 17
declarative semantics 12, 14, 17-18, 21, 46, 48, 154, 157-158
declaring variables ... 46, 60, 64, 81
defaults ... 39, 158
defining new constraints 16, 18, 41, 89-90,99-100, 102,112-113, 120, 127, 155-156
defining new dat.atypes 16, 18, 41 , 55, 90,100-101,111-112,118-120,153, 155-156, 166
defining new operators See: defining new constraints, operator definitions
determinacy .. 81-82
division by zero .. 45, 163

EMYCIN ... 21
· EQLOG 70,103
equality 9-12,22,37, 43-47,49-51, 60, 62, 69, 81-82, 84, 89, 105, 118, 144, 147-148, 154
equation solving 14, 32, 41, 51 , 53, 70, 95, 104, 108-110,112, 151-152, 158,161, 165
equational logic ... 46,48-49, 154
equational programming 42, 46, 50
equations as expressions .. 49, 51, 57, 82, 105, 107, 153-154
Euclid .. 12
Examples:

append 68-69
average of two numbers ... 24, 26, 30, 54, 59
b icycle 62-63
combining terms 27, 29
diagrams .. 120, 122, 168-169
electrical circuits 14, 90, 112, 151
factorial ... 63, 67, 127, 147,164
four rectangles ... 102, 123
hexagon (see also pentagon) 88
horizontal line 57, 61, 157
monkey and banana ... 96, 110
parallelogram 109
pentagon .. 11, 16-17
plate with h oles .. 123, 127, 147
rectangle 101, 119
temperature conversion ... 8-10, 22-23,28, 31, 33-34, 37, 166

Index 190

execution speed .. 13, 18-19, 26, 32, 40, 46, 90, 132, 135-137, 156, 165
explanations ... 24, 35, 100
expressiveness 10, 16, 42, 48, 53,68-70, 82, 125, 153-154, 158
extensibility 9, 15-16, 18, 30, 40-41, 69, 90, 103, 117, 120, 153, 155-156

Fermat's last theorem .. 14,21
floating point arithmetic .. 34, 95, 104, 106, 149
FORTRAN ... 8-10, 12
free variables .. See: bindable atoms

garbage collection 14,133
Gaussian elimination ... 32
General Problem Solver 36
generating constraint satisfaction systems ... 18, 41, 64, 104, 120, 153
GKS 11
global information .. 25, 27, 39, 94
global variables .. , 53-55, 65-66,73,81,175
graph transformation 31-32,35,40, 100
graphics 11, 15, 37, 55-59, 87-88, 90, 98, 100-101, 117, 120, 123, 146-147, 157, 167-170
Groebner basis 152, 158
guards .. 61-62, 80, 134, 174

halting problem 64
HEQS .. 103
higher order constraints ... 17-18,36, 40, 90, 100, 108, 142, 154 ,
Ideal .. 16-17, 101, 103, 106, 116-117, 120, 123, 154-155

imperative languages ······················-·· 8-10, 14-15, 17, 154, 157
implementation of Bertrand 19, 48,64-67,106,117, 129, 137, 157,183
implementing constraint languages 15, 18, 21-22, 35,40-41, 90, 104, 153
implicit defaults ... 40
infinite data structures .. 47
input ... 37, 95, 116-118, 127, 137-138, 146, 158
instantiating rules 42, 60, 81, 129, 132-133
interaction 11, 65,87-88,90, 95,99-100, 116-117,136, 154, 156-157, 169
interesting answers .. 106-107,109,148
invariants ... ~ ... 11, 37
irreducible expressions ... 43-44
iteration 17, 126, 150
iterative numeric techniques ... 17, 25-26, 88, 156

Juno ... 16-17, 98, 155, 157

labels .. 54-56, 59-62, 64, 72, 78, 81-83, 133, 174-175
lambda expressions ... 139-140, 142-145, 149
LELAND See: Ideal
libraries ... 66, 120, 135-136, 138, 143, 145, 155, 161

Index 191

linear equations ... 10, 26, 32, 101, 104, 151
LISP .. 12, 14, 17-18,41,46-47, 67, 100, 143, 173
local propagation .. 22, 32, 37, 40, 90, 94-95, 155
local propagation of degrees offreedom ... 27-28, 39-40,137-138
local variables See: bindable atoms
logical constraints .. 13
loop unrolling ... 67, 146
Lucid .. 17-18,46, 83, 127,158

machine language .. 45-46, 107, 137, 141-142,145
MacPaint 11
MACSYMA ... 32,152
Magritte .. 100
ME-CAD .. 123, 169-170
meta-constraints 36
Metafont ... 103
multiple solutions .. 36, 70, 158, 165
multiple supertypes 63
multiplication by zero ... 23-24,29, 38
MYCIN .. 21

name space 42, 53, 56, 62, 65, 73, 76, 81, 132-133,147-148, 153, 175,181
narrowing ... 36, 70, 103
Newton-Raphson iteration 17, 99
non-procedural semantics 17,49-50, 67, 69, 83, 116, 126, 147, 149, 154, 159
nonlinear equations 26, 33, 35, 41, 110-111,114, 124, 151, 158, 163, 165
nonlinear transformations 35, 110,152
normal form 44-45, 81, 84, 86, 136,143
numeric constraints 13, 26, 40, 102-103, 108, 152

object constructing rules 53, 55, 58-59, 61
one-step deductions 28-29, 39, 137
one-way matching 43
operator definitions 66, 80, 161, 167
operator overloading 60, 64
operators 9, 22, 24, 49-50, 60, 63, 68, 80, 105, 108, 134, 140, 142, 154, 157, 161, 167
Operators:

! ... 120-121, 125, 167
& 107, 129-131, 134, 143, 161
X 23-24, 45, 105, 140-141, 149, 161

+ ·· 22, 45, 49-50, 66, 105, 118, 140-141, 149, 161
, 126, 134, 161

- ·· 66, 105, 161
-> .. 107, 136, 142, 161
1 .. 105,110,161
; 49-51,57-58,82, 105,118,161

Index 192

- ... 22, 49-50, 69, 82, 118, 161
@ 167
aLine .. 56, 61, 118, 167
aNumber 55, 104, 161
aPoint .. 55, 61, 118, 159, 167
append 68
apply 139-144, 150
average .. 54, 59-60
cons 47, 68
cliff .. 110
fact 63, 67, 164
false .. 50, 107, 131, 161
horiz 57, 59, 61,118, 157
if/then 36, 125
if/then/else 105, 108,136, 150
inch 121
is ... 50-52, 58, 60, 62, 69, 76-77, 82-84, 104-106,128, 133, 144
main 64, 74, 81, 106, 133
nil .. 50, 161
read ... 116-117, 127
true 50, 66, 107,129-130, 134, 161
write 116-117, 127
I .. 107, 132, 136, 161
- 45, 107, 136, 143, 161

operators, defining new See: defining new constraints, operator definitions
order of evaluation ... 44, 64, 67, 75, 84, 116, 126, 173
ordered linear combinations ... 33, 104
ordering .. 12, 23, 33, 48, 62, 92, 107, 119, 147
output ... 95, 116-118,120-121, 127, 158, 169

parallel execution 19, 48, 67, 69, 116, 146-147, 156-157
parameter variables .. 52, 61-62, 64, 72, 77-80, 82, 129, 132, 134, 174
Pascal 8, 53, 56, 65
pattern matching 19, 42, 44, 46, 74, 76, 80, 129, 132, 134, 137, 156, 179
PIC ... 11-12, 117
pivoting 34, 106
preprocessing .. 62, 82, 135-136, 138, 145-146, 173-174
primitive object constructor ... See: object constructing rules
primitives 16-17,53, 55, 60·62, 69, 104,106-107, 116-118,120,153, 163,167, 183
problem solving .. 8-9, 13-16,21,36,40, 155
procedural languages 11-12, 16, 21, 66, 117,159
procedural semantics ... 48, 62, 69, 147, 153,159
procedures ... 8, 16, 28-29, 53, 65, 137, 140, 144, 150, 153, 157
Prolog .. 13, 21, 48,52-53, 62, 67-70, 134, 138, 148, 153-154, 159
Purdue Equational Interpreter ... 18, 46, 61, 129, 140, 153,158-159

Index 193

quadratic equations ... 99, 101, 158, 165

reasoning with equations ... 108-109
recursion .. 17, 67, 108, 126-127, 146, 158
redex 43-44, 52, 57, 64, 75, 81,129,131-134, 136, 173
reduction 43,45,57,84,173
redundant views ... 29-30, 40, 94, 114, 152
relational operators ... 9
relations ... 8-9, 12, 22, 68, 108, 137, 140, 142, 151
relaxation .. 17, 25, 40, 88, 94-95, 98, 100, 103,156
restrictions on rules ... 43-46, 51-52, 64, 84-85, 128, 132
retraction 37-39, 100
rules 18,21-22,24,31,40-43,45-46, 53, 57, 66, 72, 76,129, 132,152-154, 161-162
Bertrand Russell .. 18, 64

semantics ... 18, 71, 73-74, 76, 128, 136, 154, 173
similarity relation ... 43-46, 51, 81, 84
simultaneous equations 14, 24, 32, 35, 48-49, 51, 53, 70, 98, 110-111, 114, 151, 164, 167
single assignment semantics .. 42, 51, 66, 83, 128,147, 150
Sketchpad .. 15, 88, 90, 93,99-100,116-117,155, 157
Smalltalk .. 16-17, 41, 62, 90, 100, 117,155-156
solving .. 32-34, 68, 105-106, 108,163
solving, picking variables for .. 34, 106, 109
soundness ... 81, 83
specification .. 14, 18, 68, 153, 156
standard term rewriting .. 19, 42, 46, 48, 52, 68, 74, 81-82, 85, 108,153
Steele's constraint language ... 100
streams 127-128, 150, 158
strict left-sequentiality ... 46, 131-132
structured objects ... 53, 55, 60, 62, 65, 100, 102, 118-119, 134, 139, 153
subject expression ... 42-43, 64, 74, 116, 130, 132, 134, 148, 175
substitution function .. 36, 42-43, 74, 76
supertypes .. 62-64, 66, 104, 134, 139-140,162, 174
symbolic algebra systems ... 12-15, 32, 35, 108, 152, 158
syntactic qualifications 47, 61 , 82, 153

tags .. 61, 80-81, 153
term rewriting 18, 31, 36, 40, 42, 46, 49, 67,70-71, 74, 103, 134, 137,153-154,158-159
termination ... 17, 43-44, 75, 81, 83
theorem proving systems .. 13, 36
ThingLab .. 16, 90, 95, 100, 112-114, 116, 137, 154-157
time 37, 95, 152
TK!Solver 95, 110-111,116,155
transformation ... See: graph transformation
truth maintenance systems ... ~6, 158
typed object constructors ... See: object constructing rules

Index 194

types .. 42, 56, 61-64, 66, 71, 80-82, 133-134, 153, 162, 167, 174
types as operators .. 63, 134
Types:

'boolean .. 63, 107-108, 134
'code .. 141
'con3tant .. 63, 66-67,104-105,110,138-140,162,164-165
'expre33ion ... : .. :-.... 66, 162
'input 138-139
'known .. 139, 143, 145
'lambda .. 139-140
'line 61, 118, 167
'linear .. 66, 104-105, 162
'nonzero ... 162
'number ... 61,162
'point .. 61,118,134,159,167
' untyped .. 80-81

unification ... 36, 43, 53, 69
units of measure 98, 111-113, 125
using operators backwards ... 24, 49, 105,108, 142

. variables .. See: parameter variables, bindable atoms
VisiCalc ... 8, 12, 103

word problems .. 110,165

Index 195

