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CllENG-HONG HSIEH. :\Connectionist Algori~hm fOT Image Seg~nentation (Under ~he 

direc~ion of STEP HE~ M. PIZER.) 

Abstract 

An edge-based segmentation algorithm based on ~he knowledge in human vision 

was developed. The research followed Grossberg 's bound(lf!J contour system and devel­

oped a parallel distributive algorithm wltich consists of multiple processing stage> -

mah1ly anisotropic edge filtering, corner detection, and spatial coherence check. The 

tw<>-dimensional inr>ut information is processed in parallel within each stage and pipelined 

among stages. Within each stage, local operations arc performed at each pixel. The 

apJl lication of this algorithm to many test patterns shows that the algori~hm gives good 

segmentation and behaves reasonably well against random noise. A multiscalc mechanism 

in the algorithm can segment an object into contours at different levels of detail. 

The algorithm was compared with an approximation of Grossberg's boundary con­

lour system. Both algorithms gave reasonable performance for scgmeotation. The differ­

ences lie in the level of image dependency of the conftg~•ration parameters of the algorithm. 

Also, the way random noise affects the algorithm was compared with the way it affects 

human object detection. Data obtained from psychophysical experiments and from appli­

cation of the algorithm show a similar trend. 
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Chapter 1 

Overv iew 

The goal of this rescardt is to develop an effective segmentation algorithm for a real­

t ime vision mach.ine . Since biological visual systems are generally far more powerful than 

conventional vision algorithms and there is convincing evidence that tlahtrc has c'·olvcd a 

preattentive (knowledge-free), stable, and highly-parallel early visua.l system, the design 

of the algorithm is in part based on our knowledge of the biological visual system. it 

is hoped that this research may not only help us to design an effective computer ' ' ision 

algorithm but also provide deeper understanding of the working principles of vision. 

An organism (or a robot) can be viewed as performing a cycle of percept ion and 

action. Vision, associating the vi sual inpul with stored knowledge and thus enabling the 

organism to effectively interact with its environment , plays an important role. What are 

the properties of visual input and stored knowledge? \\'hat is the required processing 

speed? What algorithms and architectures can pr·ovide the necessary pcrforma.ttce7 Tlus 

chapter provides several insights on these questions . 

The chapter first describes ~he role of image segmentation in visiOJt and then elab­

orates on rny approach to the problem of segmentation . A summary of my t ltcsis then 

follows. The chapter concludes with a .list of the main contributions of th.is research. 

1.1 The Problem of Image Segmentation 

lmage segmentation Is the separation of the image into regions. Tlte properties 

separating regions can be, among othe rs , gray level, color , texture, motion, or depth. This 

sect ion first argues thal irn«gc scgment<ttion should precede object recognition. Then it 

briefly discusses tlte reqttired speed and possible objective of segmentation. Finally the 

section presents a more specific definition of image segmentat ion. 
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1.1.1 Properties of Segmentation 

[mage scgmen~.ation is in some form essential for vision. This poin t can be supported 

from two perspectives: one is from the need for information reduction and the other from 

the functional analysis of the visual system. [n regard to the former, the in fonnation 

input rate to the visual system is tremendous.. There are about 2 x 108 receptors in a 

retina. Assuming that the dynamic range of the receptor output is 5 bits and the temporal 

resolution is 100 ms, the information input rate is on the order of 1010 bits per second. The 

visual system can harclly respond to the information at the pixel (or receptor) level because 

of the result ing requirement of huge memory and processing power. Physiologically, the 

fact that the neurons late r in the neural path tend to respond to mor~ abstra.ct stimuli 

also conhms t l1is point. 

From the point of view of visual system function, only groups of pixels , with each 

group indicating an object, are important because the visual system is to decide what is 

where in the environment. To decide what an object. is, if segmentation doe;; not pre­

cede recog1\ ition, the required informatiou for rccogni tion, like shape, shade, and spatial 

context, .is \ma.vailablc. To decide 1vhere the object is, segmentation must be done ftrst; 

otherwise the importam infommtion of an object's relative position and motion cannot 

be obtained. 

Scgmeutation in biological visual system appears to be mainly preattentive and 

data-driven . Although past experience may affect segmentation through expectation. the 

strict time constn\.int - psychophysical evidence indicates that recognition requires about 

only 200 milliseconds- impli es that a fast segmentation of image into regions ind icating 

possible objects is necessary. Since mos t objeds differ substanti;J.]ly in a.ppcaraJ\ce from 

thei r environment, it is reasonll.ble to expect knowledge-free procedures to yield reasol\ab l<> 

segmentatio11 in rnauy instances. When the region is unclear or ambiguous, docs expec­

tation derived from contextual information help. Moreover, there is no evidence for how 

knowledge can affect segmentat ion. As indicated by Cha.rles Gross's famous monkey- p;~w 

detector in the inferotemporal cortex (Gross et al, 1972J, object recognition is performed 

by the neural layers which do not map to the retina topographically. It is difficult to 

imagine how a knowled:;e atom in the later visual path extends i is axon to affect t he 

earlier segmentation process. More probably, the visual system segments an image first 

and then the shape, shade, depth, motion, and texture of a selected object are del ivered 



to higher vision for recognitiO!l. 

1.1.2 Properties of Objects in Our Visual \Vorld 

The visual system has as a major function the detection of the objects in the 

environment, so it has been highly adapted to our physical world . The regularity of 

our visual environment provides impoxt<Ull clues for understanding vision. What are the 

important characteristics of our visual world'? Most importantly, an object usually has 

uniform surface propert ies like color, grey-scale intensity, or texture, which di rfers from 

the object's environment. 'rhus a niter, sensitive to the difference of that surface property 

across a surface boundary, c<1n be used to detect the object. Other differences such as 

relative motion and depth also help segmentation but are not considered in this research. 

The following observat ions concerning object contours in a two-dimensional image 

may help in detecting the real boundary of an object: 

l. The bollnding contour is usually closed. 

2. Occlusion is ubiqui tous because of the 3d to 2d projection. 

3. Corners may be parts of au object and can be formed by occlusion. 

4. The boundary between two corners is usually a smooth curve. 

5. An object may look like a srnaJl blob or a line segment wlten it is small. 

6. Noise and blurring are common during the imaging process. 

1.1.3 A Detailed Specification of My Segmentation Algori thm 

Based on the arguments above, plus a widely accepted opinion in percep tual psy­

chology best stated by Purkinje <~bout 150 years ago: optical illusions contain visual truth., 

the objecl.ivcs of this research can be more specifically defined as the design of a segmen­

tation algorithm which 

l. detects simple closed contours successfully, 

2. detects corners properly_ 

3. h.a.IHlles noise and blurring reasonab ly, 

4. does not lose spatial accuracy, 



5. functions in real-time. 

6. can explain subjective con tours . 

1.2 My Approach 

Vision research is difficult partly because the visual process is spontaneous so intro­

spection does not help, and partly because the traditional psychophysical or physiological 

approad\es are insufficient to explain how the visua.l tasks are fulfilled. My approach is 

to perform a functional analysis on visual tasks. The algorithm thus derived is then im­

plemented by software and applied to various test patterns . The resu.lts are used to show 

the performance of the algorithm and are compared with human performance. 1n the 

following I will describe the reasons to adopt a connectionist approach and the constraints 

imposed by this approach. 

1.2.1 The Appropriate Architecture for Vision 

All effective algoritltm design must be based on a proper architecture, but what 

<W:cltitecture is a.ppropriate for vision? The von Neumann machine is not the answer 

because a sequential computer is too slow to process the time sequence of tWo-dimensional 

images. A simple calcu.lation further demonstrates this point: assuming that ten frames of 

visual input are processed per second, aud eacll frame is of 1000 x 1000 pb:els. Assuming 

fw·tber that to parse and classify all these pixels requires on average 100 instructions per 

pixel, then it takes a decticated computer of 1 UIPS to achieve the required performance. 

This rate is not possible based on curren~ technology. 

Conventional parallel processing techniques do not seem to be the 1igltt answer 

ehher. The reason is that each node of the multiprocessor is still a von Neumann ma.chin1e. 

The need to feed instructions and data to each processor requ.ires the identification of 

simultaneously executable port ions of a given algorithm. This task of parallelism detection 

is extremely difficult. Together with the overhead of interprocessor communication. the 

multiprocessing scheme is not likely l.o provide the required performan<:e. 

Therefore, a special-purpose hardwired circuit tuned to process two-dimensional 

images is needed. Just as wi th the biological visual system, a neural network (i .e., a 

connectionist) approach seems to be the answer. Contraxy to •he conventiona.l com puler, 



a. connectionist approach operates through a large number of simple processing un its. 

When properly connected, the network performs globally useful functions. 

1.2.2 P roperties of a Connect ionist Architecture 

The most promincm property of a connectionist model is local wiring, wltich, as 

Ilubel and Wiesel (1977] pointed out. is one of the common characteristics of the neu­

ral system. Local wiri11g distributes the sensory information so thaL the input image 

is processed in parallel. Local wiring also allows greate r n~xlbility for changing the lo­

cal structure, thus enabling the system to adapt and learu. Furthcnnore, tho functional 

locality of the system a.%urcs reliability. 

Adaptivity and parallelism have costs, too. Each neuron is a local processor with 

limited capability. Thus a task requiring global information is very difficult to implement. 

Moreover, the receptive field and target function of a specific neuron arc decided completely 

by the connections along the path from the input to tltis neuron. Locally a neuron has no 

control of its function. A consequence is that if a layer of neurons is topographic to the 

retiu>.\, then Lhere exist regular touncctions from receptors in the sensor to the neu rons 

in this layer. However, if a neuml layer is not topographic, then the spatial rclationship 

cannot be recovered for the neural layers whose input depends solely on this layer. tu 

other words, if vision is to answer wh(•t is where, then where has to be decided early in the 

process. The fact that only early visual areas, Vl, V2, V3a are topographic to the retina 

[Phillips, 1984; van Essen, 1983] makes this point relevant for the human visual system. 

Another problem of the connectionist approach is 1 he costly dMa representation. 

Since a neuron can represent only the value of a specific signal, it takes numerous neurons 

to represent a quantity. For example, for certain edge computation algorithms a neuron 

is needed for every orientation at every location. Therefore, the economic use of rcsoUices 

is important. 

To summarize, considering a parallel distributive approach, the algorithm under 

design must obey the following constraints: 

• All operations are local. 

• Each processing unit performs only simple functions. 



" 
• Spatial information can be obtained only through the interconnections lO the phys­

ical layout of the processing uuits. 

• The resources are efficiently used. /\ pipeline may be ideal. 

1.3 The Thesis 

My tltesis is that an image c~an be reasonably segmented into regions in real-time 

by a parallel distributive algorithm comprising processing stages of 

• multiple edge filtering with the first-order directional derivatives of Gaussian as 

kernels, 

• corner detection based only on edge filters' outputs, 

• spatial coherence processing of the edge and comer in formation 

where these stages are applied at multiple scales. 

1.4 Main Results 

The results of applying my algorithm to many test patterns show that the algorithm 

works reasonably well for various test patterns under many concUtions. The algorithm 

is atchitecturally regular, has only one parameter (edge threshold), and requires o1uy 

short sange communication among the simple processing units; hence it is adapted to 

implementatiol\ by current VLSI technology. It appears that, with proper implementation, 

the model will perform iu1ag¢ segmentation In real-ti me. 

The main contributions of this research include 

L The development of a corner detector based only on edge filter outputs. 

2. The design of an effective segmentation scheme based on spatial coherence of edge 

and corner information. 

3. The effective use ofmultiscale ;uusotropic first-order dire.ctional derivatives of Gaus­

sian as edge filter kemels. 

4. The verification and extensiQJl of Grossberg and Mingolla's lind.i ng Ott artifact can­

cellation. 



Chapter 2 

Background 

This chapter first describes conventional approac.hes to the prob lem of image seg­

mentation and then elaborates on a connectionist approach -Grossberg's boundary con­

tour system. Lastly the chapter gives a. general view of my algorithm. 

2.1 On Image Segmentation 

Traditionally, segmentation techniques based on a von. Neumann architect ure can 

he categorized into region-based and edge-based methods. Since Rubel an.d Wiesel [1979] 

d iscovered the organization of simple cells in th(• primary visual cortex, much research 

in computer vision has emphasized the edge-based methods. T his section first describes 

region-based segmentation and then elaborates on edge-ha.sed algorithms. !\'ewer alga· 

rithms based on more recent progress in computer architecture are then briefly summa.­

rized. 

2.1.1 Region-based Segmentation Algorithms 

Typical region-based segmentat ion partitions the image iu to connected regions made 

up of pixels possessing roughly un iform values of some property like grey-scale intensity. 

Ballard and Brown [1982) dassificd t he algorithms into loc.al, global , and split-and-merge 

techniques. Local techniques pu L a pixel in to a tegion according I.e the properties of the 

pixel's dose 11cighbors. An example is blob coloring [Ballard aud Brown, 1982]. Global 

techniques group pixels into regions based on properties of pixels throughout che. image. 

A widely used example is tl!resholding at the gray level which separates the peaks of 

a bimodal histogram. Region splitting sp lits an image into sets of regions according to 

some lteu.rist lcs unti l no splitting is possible, while region merging merges t he pixels into 

regions according to some heu risti<:s until no further merging is possible. The heuristics 

are usually based on proximity and simil<Hi ty and a.J'e implemented by loca.l operations 

followed by thresholding. 



The main advantages of the region-based algorithm.s are that they t1sually give 

dosed <:on tours and region properties c~ul be (:omputed during the segmentation process. 

There are also shortcomings. The performance of the algorithm depends on ~he threshold 

selected and the order of pixel scanning. For a real image, it is often difficult to choose 

a proper threshold. Moreover, a region-based algorithm often needs to calculate a global 

function, e.g ., the histogram for bimodal thresholding, or requires a complicated intennc­

diate data structure, e.g., a list of the pixels merged or split . These requirements make 

the region-based algorithms difficult to implemem on a connectionist architecture which 

consists of only simple processing un its, each working on only local information. 

2.1.2 Edge-based Segmentation Algorithms 

An edge-based segmentation algorithm includes an <)dge detection stage and an edge 

following stage. These two stages are separately described in the following. 

Edge Detection 

Generally, edge detection is performed by either convolution with a filter or by 

parameter setting within a model of an ideal edge or curve. An example of the the latter 

method is Hueckel's (1973J visual operator for edge-line recognition. Since the model­

driven approach is not considered in th is research, the fi1tering approach is describe(\ 

below in greater detail. 

Edges are abrupt intensity changes in the image, and many methods based on this 

propeny have been proposed for edge detection. Among the most famous are the gradient 

methods of Canny, Sobel, I<irsch, and the Laplacian method of Marr. [Ballard and Brown, 

1982; Rosenfeld <tud Kak, 1976; Cauny, 1986; Man, HlS2]. Torre and Poggio [1986) showed 

that edge detection is a.n ill-posed problem because the numerical differentiation in the 

process causes the result of edge detection to depend on the input data discontinuously. 

To rnakc the probkm regula r, the differentia.Lion must be coupled with a smoothing filter. 

For smoothing, many authors [Koe.nderink, 1984; Torre and Poggio, 1986; Asada 

and Brady, 1986) have shown that the Gaussian fUtcr is attractive because it gives the 

max imal deg r·ee of causality across spatial scales. For differentiation, several Gaussiarl­

based operators have been used, e.g., t!tc <liffcrcnce of Gaussians (DOG), the Laplacian of 

a Gaussian (LOG), and the directional derivatives of a Gatt~Si>lu. 



I have chosen the first ditectional derivative of the Gaussian as the edge futer 

kernel. The decision is mainly based on Koendcrink's derivative of Gaussian (GD) model 

[Ko.enderink, 1987] which provides a soU11d mathematical basis for detect ing t ](e intensity 

changes in the image. The Gaussian n-jet - the convolution of nth-order derivatives of 

the Ga\>Ssian with the image - not only describes the early visual process elegantly, but 

also provides an efficient computational scheme. This edge fll ter will be discussed in more 

detail in Chapter 3, on edge filtering. 

Edge Following 

Edge following, or boundaty completion, combines the local edges to form a more 

global element sucll a.s a long line, a curve, or a simple, closed contour indicating an object 

or a portion of an object. AccordiJig to Ashkar and Modestine [1978], edge following can 

be approached by exhaustive seard>, dynamic programming, structured tree scq.rch, and 

heuristic search. In the following an example of each of the above approaches except 

exhaustive search is briefly described . 

Fischler et a!. {1973) applied dynamic pt"Ogramming to boundary completion. The 

method requires th.at a description scheme oCtlte target object and a decision metric be 

selected. Then the algori thm uses the dedsion metric to find the described object in the 

image by dynamic programming. In my trial implementation a nearly vertical edge which 

has one point in each row of the image is the target boundary. The program starts from 

a point in the top row and scans <lownward. For each position, the minimum cost and 

the corresponding path from the top to the position under consideration are cakulated. 

When the bottom row is reached, the optlmlU(l nearly vertical edge is obtained. 

An example of str·uct>..-ed t·re-e sew·ching is described by Chien a.n<l Fu [1974] . Knowl­

edge about the specific applic,.tion u•Hler consideration is formulated int.o a criterion func­

tion wltich usually consists of a local term, e.g .. edge st rength, and a global term, e.g., 

the relation between the pixel under consideration artd other pixels. Then the boundary 

points which mi nimize the criterion function are selected. A preprocessing stage gives 

~everal candidate starting points. Then the process of including other boundary points 

proceeds like a tree $earcb. Standard techniques like backtrackir•g <1.nd tree. pruuing can 

be used to obtain the path of minimum cost. 
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algorithm image resolu tion cpu time( sec) memory (I<D) 

Fischler et al . 6•1 X 64 73.0 79 

Chen and Fu 64 X 10 61.2 40 

Ashkar et al. 64 X 64 1.6 326 

Table 2.1: Test results of 3 edge following algorithm~. 

In Ashkar and ~1odestino's heurist·ic searching algorithm [1978], contour ext raction 

is first formu lated into a tree search problem. A cost for traversing a brandt is then 

defined b<'sed on the likelihood of tlle branch's lying on t he true contour. Both local 

and contextual information, as well as as closeness to a prototype, are used for the cost 

definition. The most li kely path is then extracted by a heuristic tree sca,rch similar to 

f1lgorithm A (Ni lsson, 1.930]. 

I implemented the three algorit hms in the C programming language and applied 

the p rograms to detect a nearly vertical vessel in a digital subtraction angiogram. The 

following table summarizes the requi red resources for the t hree approaches on a Va.x 780. 

Note that for Chen a1\ d Fu's algori th m a preprocessing stage fi rst selects 20 X 10 

possible edge points from 1.lte image a nd the t ree search operates on the s.elected points 

only. 

The performance of the above algorithms are far from real-Lime, and all Lh ree algo­

rithms are target-dependent and require t he computation of a global cost function. The 

parameters in the algorith ms ate determined empirically. When random noise increases, 

the edge sttengths and ditections, which are usually calculated by an edge operator with 

a small support and serve as a local term in the cost function, are prone to error. Hence 

the weights between the local and global costs need to be adjusted, and the algorithm is 

image-dependent. 

In summary, edge following is <tn UJtsolved problem. Kcw and more effective algo­

rith ms a,re needed. 



2.1.3 Multiscale Mechanism for Image Segmentation 

The concept of multiscale perccp~ion has strong physiological and psychophysical 

evidence. T he idea originates from the well-known physiological findi ng that the ganglion 

cells in the primate retina have overlapping receptive fields of various sizes aL each location 

of the visual fteld, and the average size of receptive field increases with the distance from 

the fovea. In psychophysics, Campbell and Robson [1968] demonstrated through a set 

of ~hreshold detecLion studjes that the visual system possesses independent, spat ial-scale. 

tuned channels. Since the early 'iO's this mechanism has become a basis of several theories 

of visual organization . 

.tn the past several years many computer scientists have applied this idea lo design 

computer vision algorithms. Many previous segmentation techniques , both region growing 

and boundary detection types, use mainly local in formaLion , and the performance of Lhese 

algorithms is limited. It has been suggested that the solution lies in using local and global 

information effectively, and from t)>is poin t of view the multi·scale scheme is certainly an 

attractive one. Witkin [1983] showed ~hat intensity ext-rema can be locali~ed at a finer 

scale after being ident ified at a coarser scale. Since then this concept has been used to 

tackle numerous problems in computer vision, Several StKh methods are bdefly described 

in the following with a bt ief summary of each method's <tdvantages and disadvantages. 

Stack 

Koenderink and Pizer 's stack model appears most att ractive. In this scheme, tlte 

multiscale version of an image, the stack, is generated by successively blurring the image 

with a two-dimensional Gaussian. An example of the use of this scheme is Lifshitz's [1987] 

image segmentation algorithm wltid1 follows the 1>aths of extrema through the s~ack . Dy 

folloy,ing the intensity extrema th rough mul tiple scales , a tree structure is generated, 

and the tree can then serve as a shape description of the image. Since a node in this 

tree corresponds to a region in the base image, the ~ ree structure defines a segmentatiOI\. 

Applications of this algoritlun on se,•eral medical images were rather successful. 

This scheme has sound mathematical basi>. It originates from the study of human 

visual processes and is nat ural fdr the connectionist approach. The blurring process is 

causal. During the lrcc generation process, the object containmenL relationshi p can also 

be comJHl ted. A problem of this approach is tha~ the anni hilation sequence of ~he extrema 



l.! 

is sensitive to small changes of the image, and hence to noise, too. Besides, the generation 

of the extremal paths is time-consuming. 

Pyramid 

The pyramid image description (Hong eta!., 1982] is a muhiscale approach based on 

a rectangular sampling grid. Each pixel intensity at the co<>rser resolution is determined 

by the pixel intensities within an ovcl'iapped square in the next finer level. The reduction 

in spatial sampling between successive levels is usually 2 x 2. Thcr~:forc, if the spatial 

s<l.l11pUug of the base image is n X r~, for the scale x level away from the base image, the 

spatial sampling is n/2r X n/2%. The top level ltas only four pixels. This scheme is called 

pyramid because the shape of this multiscalc rcJ>resentation resembles one. 

The pyramid scheme is efficient in memory space and in processing time. Image 

features are detected in the coarser level. while the more accurate location of the detected 

feature can be obtained by tracing down the pyramid. The scheme is also conceptually 

easy to understand. Since the connections betwe<m elements of two successive scales are 

relatively fixed , a hardware implementation is fe;~ible . T he in tensity of a pixel a.t a coarser 

scale is usually calculated by averaging the pb:cl intensities connected to this pixel in the 

next finer scale; tl1e major problem of the approach is that the procedure is not causal. 

Thus, an image feature shown in the coarser scale may be genera.Led as an artifact of the 

blurring process. An example of this effect is the aliasing of intensities in a coarser level. 

Besides, the relationship among features at the same scale is difficult to dt>fine. Lastly. 

lite scheme is rigid; it is difficult to incorporate model-driven techniques into the scheme. 

Differe nce of Low-Pass Transform (DOLP) 

Crowley and Parker [1984] developed a shape representation bas~d on the results of 

a. set of differences of low-pass filters. The peaks and ridges of this DO r. P transformation 

constitute a graph, which arc then used as a shape description. 

This shape description can be used for matching regardless of the oi>ject's size, 

orientation. and position. The DOLP transformation loses no inform~tion and is reversible. 

Matching proceeds in a top·down fashion. i.e., tile most important objects in the image 

are compared first. Both the- structure of the graph and the information at cacb node 

can be used for matching. The generation of the shape description is also computationaUy 
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efficient. The three-dimensional ridge of the DOLP transformation indicates the elongated 

form of an object and, in some sense, is like a medial axis. For a real image with multiple 

objects, the graph is usually complicated, and it is unclear how the graph for a particular 

object can be separated from olhe!S. 

Zero-crossing Across Scales 

Marr [1982] applied the Laplacian of a Gaussian (92C) of various standard devi­

ations to an image. The ?.OrO-crossings of these filter outputs give the object boundaries 

in the image. At a coarser scaJe, a hu·ger filter kernel detects the contours of larger ob­

jects. The edges, terminations, bars, and blobs in the image can be extracted from the 

zero-crossings of 9 2G in multiscale. They then serve as the row primal sketch of the 

image. 

The zerO-crossings of the resulL of filtering by the Laplacian of Gaussian (\72G) 

is widely used in computer vision. The scheme always gives a closed contour. is com­

putationally efficient, and the filter kernel resembles the familiar shape of the on·center, 

ofT-surround recepti,·e field. :-l'cvcrthcless. this approach has its shortcomings, too. First, 

the isotropy of the filter CMISCS spMial inaccuracy, especially for slt<trp cornc ,·s [Berzins, 

1984]. Second , t he second-order dilr<:rentiation in 9 2G amplifies noise when compared 

with edge detectors using only flrst-o,·der derivatives. Third, no orient:tt ion is explicitly 

represented. which makes it very difficult, if not impossible, for this scheme to further use 

edge information for connectionist modeling. For example, how can subjective contours, 

which I conjecture to be evidence for the preattentive segmentation process. be generated? 

In conclusion, the zero.crossings of 9 2C may provide preliminary information on objec~ 

boundaries, but, as Torre and Poggio (1986! commented, are insufficient to account for 

the scgmen tation process in early vision. 

Snakes 

Kass, Witkin, a.nd TenoJ>Oulos [1987] developed a contour model which integrates 

the modeJ.driven and the data,.drivcn techniques for contour detection into an energy­

minimizing scheme accounting for both edge str<•ngth and the closed ness and smoothness 

of object boundaries. With the inclusion of scale space information via successivl'ly blurred 

images, the scheme gi"cs better performance on boundary detenion. 
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The scheme is not only good at boundary completion, but can also accoUJlt for 

other early vision phenomena such as subjective contours, motion track ing, and stereo 

matching. To implement this approach on a connectionist a!"chitecture, the global energy 

term would require a large number of neurons. Moreover , based on our laboratory work 

(Oliver, 1988], given an arbitrary ini tial condition, the relaxation algorithm based o n the 

energy functional does not necessari ly converge in a few itenttions . 

2.2 On the Connectionist Approach 

As argued in Chapter 1, a connectionist approach is most likely to give real-time 

performance for early vision tasks. This section firs t introd uces t he field of oeuraJ networks 

and then describes Grossberg's UIJ1nlda;·y contour system in some detail. 

2.2.1 Introduction to the Neural Network Approach 

A connectionist network can be fully specified by the functions of each unit , the 

connections among uni ts, and the dynamics defining the changes o f the network . Usually, 

aU units in the network have the same fu nctional characteristics . Each of them performs a. 

s irnple operation, e .g ., a weighted sum of its inputs followed by a transformation according 

to the sigmoid function and a thresholding. The systeJn dynamics are generally represented 

by t.he change o f the connection weights (called the synaptic weighting jactors) according 

to a learning rule. The most pop ular learning rule in the field now is Jlebbian: t he 

change of the weighting factor between sending neuron i and receivi ng neuron j , il.w;j, 

is proportional tO the response of the neurons, ll; and rLj, i.e. , il.'ll;;j = T]O;tlj, where lJ is a 

coefficient. In my research the preattentive network is assumed to have b een st<tbilized, 

so Jearn.ing is not under consideratio n. 

The objectives of connectionist res<'arch Me two-fo ld: to study the structure and 

functions of biological systems and to investigate tile design principles of this new com­

putational device. Both software simulation and hardware implementation are used for 

con nectionist modeling, The results a re compared with l1u man behavior or are shown to 

h<we certain computational capabilit ies. 

The following su bsections briefly describe several wnuectionist scJ,emes. Among 

them, Grossberg's bomuJ!Jry contow· syst.em is physiologically feasible and unifies a great 

deal of psychological data. ~1y research started by implementing this model. Hence the 
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boundary contour system, together with the problems I encountered during the implemen­

tation, are described in a separate subsection. 

The Perceptron 

Ros~nblatt [1962) invented a class of simple pattern-lcarniug networks called the 

perceptron, which is a single-layer ne~work of linear threshold units without feedback. 

Each input pallern is presented as a teaching input. Let t, indicate the input at neuron 

i . The learning rule is D>utj ='I(~- ao)a,, i.e., the change of the weight of a connection 

is proportional to the response of the sending neuron and the difference bctwc('l\ the 

teaching input and the res ponse of the receiving neuron. The per-ceptron converger~r.e. 

them-em guarantees t ha;t if the set of patterns are learnable, the learning procedure wil l 

find a set of weights which allow the percept ron to respond correctly to all input patterns. 

The perceptron stimulated a great deal of research interest in the early 60's until 

Minsky and Papcrt [1969] showed that it cannot Jearn some simple, common functions, 

for example, the exclusive-or, 

Mead's Sili~on Retina 

.).lead (1985, 1987] designed a S<'t of silicon retina chips using analog VLS!. Th(' 

design integrates photosensors and motion.detecting circuitry based on knowledge about 

the neural connections in the retina. It was shown that the chip can detect a rotating bar 

in real-time. 

The silicon r·etina is one of the few chips im plementing connectionist vision algo­

rithms ta pr~cnt. A rationale for the hardware approach to connectionist modeling is 

the observation that software simulation of neural networks of substantial size requires 

tremendous computing power and it is almost impossible to analyze problems like motion 

detection. The development of the chip is a milestone. but, of course. the chip impll~m('nts 

only a prototype of a very specific functiou. There is still a long way to go. 

Lins ke r 's Work 

Linsker (1986] investigated the self-adaptive property of the visual system by soft­

ware simulation. His model includes a multilayer feed-forward network. Each layer con­

tains hundreds to thousands of cells, ancl each cell has up to hundreds of input~. The 
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response of each unit is normalized after activat ion. The connection can be excitatory or 

inhibitory. T he learning rule is Ffe~bian. Tni tially, synaptic weighting factors are randomly 

assigned and the environmental stimuli are shown to the 1\rs• layer. When learning com­

pletes, hls simulation result sh~ws th<t• the spatial arrangement of the orientation-sensiti ve 

cells in the seventh layer looks simllar to a photo taken of a monkey's visual cortex. 

Li nsker's work shows how computer modeling can relate to physiological data but 

is not very useful in designing a computer vision algorithm because the model does not 

aim at well-defined visual tasks. 

Fukush ima's Neocognitron 

Fukushima [1988J developed his neocognitron- a feed-forward, hierarchical, and 

mul tilayered network cap able of learning and recognizing arbitrary patterns. The idea is 

mainly based on physiological evidence: there S()()W to exist hierarcltical neural paths in 

the cortex for feat ure extraction and pattern recognit ion. After a two-dimensional input 

is presented to the network, features such as lines of va.rious orientations and corners 

of various opening angles are successively extracted. These features can form numerous 

combinations with differen t spatial telationships among them. During the lca.ming stage 

the inp ut pattems are repetitively shown to the network until proper connections are 

established. Then, d uring the recognition stage, one and only one neuron in the output 

laye r wi iJ fire when a certain input r>at tern is presented. 

The network was applied to recognize handwritten numerals. The results show that 

the network can handle patterns after deformation, change of size, and shift of positi011. 

The net.work ca.n be sell-organizing, i.e., learn without a teacher. Nevertheless, the feed­

fortvard network requites many neurons. For more complicated test patten1s, like £nglish 

letters, more 1te-uro ns a.re required. Also it is unclear how well the network can different iate 

two patterns with a small discrepancy. 

2.2.2 Grossberg's Model 

G rossbe•·g, based on psychophysical and neuropltysiologica.l evidence, separated 

early vision into a boundary extract ion process and a fi lling-in process. T he reason for 

separat.ing the early vision tasks into two slages is mainly based on the pbenorn eua. of 

brightness and color constancy: though lighting condjt ions in the environment vary con-
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(a) (b) 

Figure 2.1: Two examples of visual iUusion. (a) Yarhus (h) Kanizsa 

siderably, the perceived brightness or color of an object remains fairly COJ\stanL. For a 

pictme oJ mult iple color patches, Land [1971) showed that the perceived color of a patch 

in a picture is mainly determined by ~he contrasts aL the edges between the patch with 

and its surround. Furthermore, Yarbus [1967] showed t.hat, as in Figure 2.la, when tho 

edges of the large drcle and the vertical line are stabilized on the retina, the red color 

outside the large circle fills in the black and whi te regions except the small circles whosG 

edges are noL stabilized. Tlte red inside Ute left drcle looks brighter, and the red inside 

the right circle looks darker than the enveloping red [Grossberg and Ming<Jila, l9S;;), Thi~ 

experiment shows that the ob.iect boundary can be dissociated from the object surface 

properties like grey-scale intensity or color. The above psychophysic~J e,·idence led Gross­

berg to conclude that the visual system discounts the illuminants within objects by fhst 

extrac~ing edges of the objects <tnd then using the b•·iglttness or color information across 

the edge to fill the regions within boundaries. 

Grossberg then clevr.toped the boundttry cor~tour system Lo extract the object bound­

aries in the image. The model consists of 'l layers as illus~rated in Figure 2.2. following 

the tirsL layer of edge f1Jtcrs, there are two competitive stages: one for edge·thinning and 

the other for line-end processing. The last laycr is a cooperative layer. The outputs of the 

last layer connect to the first competith·e st«ge and form a. loop which completes the gaps 

on the boundary. Ideally, for agi1·en input, the comput;ltion converges in sen~ral iterations 

<l.nd gives simple clos<!d con Lours segmenting the image. Except for the edge fllter, whic.h 

is described in Chapter 3, each of lhese stages is brie fly dest,ribed in the following. 
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Figure 2.2: A block diagram of Grossberg's boundary contour sysiem. 
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The firs\ h<ycr after e<!gc filt~'ring is an oriented contrast-sensitive filter, wherein 

each neu ron in the laye1· receives responses from t wo edge filters with the s~c orientat ion 

as the neuron under consideration but with opposite contrast directions. Th.is operation is 

based on the fact that, as in the T<ani7.sa S<juare depicted in Figure 2.lb, illusory contours 

can be generated by joining edges with opposite direct ions of wntrast. 

F irst a nd Second Competitive Stages 

The first competitive stage defines competition between neurons of the same ori­

entation at nearby locations, and the s<!cond competitive stage defines intcrori~nt:.tioual 

competition at a. single position. The functions of these two processing stages can best be 

demonstrated by tlteir effects on tlte EhrellStein illusion depicted in Figure 2.3a. 

To generate the illusory circle . Grossberg assumed that an illusory line segment 

perpendicular to each line end must be generated. A boundary completion process then 

connects the Une segments to give the circle. Figure 2.3b shows the on-center, off-surround 

connections for the fi rst competitive stage. For each ori<mta.tion, each neuron cxcit~$ 

the neurons near its location in the next layer and inhibits the neurons farther away. 

The second compet itive stage is defi ned as a pu.sh-pu/1 op<•Pt.tion bet ween neurons "'ith 
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Figure 2.3: Ehret~stein illu.sion and G ross be rg's competitive mecha.n:sms. (a.) depicts 

Ehrenste.in illusion, (b) shows the on·centcr, off·surround connection, and (c) sltows the 

effects of the two competitive stages near a line end. 

perp<Jt\(licu lar orientationo.l sensitivity (in Grossberg's term, a dipole competition). 

The two compet.it.ive stages generate au ill usory line segment near <J.line end in t.he 

following way: in Figure 2.3c, there is a horizontal line segment ending at location (x, 

y). After tlte first competitive stage, the neurons with near·horizontal receptive fields at 

location (x+l, y) are inhibited by the neurons at (x, y). Then the second competitive 

stage a.ctivates the neuron with ne<J.r·vertical receptive field at location (x+l, y). 

Oriented Cooperation 

Oriented cooperation, together wich ~he competitive stages, forms the cooperative· 

competitive (CC) loop , which is designed for boundary comple~i on. Each neuron in the 

cooperation layer has a bip"/e receptive field as illustrated in the Figure 2.4. The neuron 

is fired only when both ltalves of the receptive field are excited above threshold. The 

response of the neuron is then fed back to the first competitive stage through other on­

renter, off-surround connection. Grossberg applied the algori•hm to several ccst p<tttcrns 

and showed ~h«~ t he CC loop col\verl(es ait~r se,·eral it.crations. 

2.3 Prob lems Faced in Implement ing the Boundary 

Contour System 

A vet·sion of Grossberg's b01mdm·y rontour· system "'"-> implrJnH).n•«d. and it was 

applied to test j);Jtterns of a.r~i ficial, medical, and n•t.nr~.l scenes. The major problems 
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encottu tered during Ute implementation and my correspo,lding solutions are briefly sum­

marized below. The detai ls of these solutions are given in later chapters. 

1) Grossberg {1985] implemented edge filtering by convolving an input image with 

<liffereJtce-of-box (DOB) filters. Is tlus a reasonable choice? 

My conclMion: The convolution result using the first-order d.irectio~<al derivatives 

of the Gaussian as filter kernel was compared with that of using the di1Ter<wcc-of-boxes 

kernel. The conclusion is that, when the length and width of the rectangular edge filter 

is carefully specified, the two kernels give similar convolution wsult&. Since the Gaussiall 

function agrees better with our knowledge of the biological visual system, it was used in 

my algorithm. 

2) Grossberg found that at each location, if the edge filter output for a certajn 

oriettta.Lion is subtracted from the edge filter output of the perpendicular orientation, then 

the follow-up processes behave much better. Wny is it so? 

My conclusion: Tltc operation is an effective way to discount artifacts due to dig· 

ital sampling and finite approx.imation, so tltis operation, co.lled artifact ccmcellation, is 

induded in rny algorithm. However, here it is performed after edge filtering instead of 

being pe rformed in tlte compelitive-COOJ~erative loop. 

3) 8dge detectors do not behave as expected near corn<!rs. At a sampling location, 

an edge det<~ctor is intended to detect the occurrence of a linear edge segment. W ltcu 

perfoTmed near a comer, does the <odge illter output correctly indicate 1!Je local shape of 

t he bounding contour? If not, how can a closed bound;~ry he defined based on the <)dg~. 
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filter output? Furthermore, can the cooperative la.yer correctly complete the gaps on the 

boundary near corners? 

My conclusion: The edge filler output ca1toot represent corners on the boundary, 

aJld a bipole field is improper to apply near corners. Hence a comer detector based on edge 

filter outputs was designed. The results of applying the detector to many test patterns 

show that the scheme is effective. 

4) The first competitive stage is a shunting competitive network for edge cont rasT. 

enhancement. How effective is this operation? 

My conclusion: Implementation following the equations in [Grossberg and Mingolla, 

1986] does not enhance the edge contrast as e:Kpected. I decided that this operation is 

unnecessary for segmentation because the edge filter outpu ts provide usdul information 

and should not be altered in this way. 

5) As illustrated in Figure 2.3, the second competitive stage is a dipole field designed 

to explain the process near line ends so that Ehrcnstcin illusion CaJl be ex-plained. Is the 

result generated by this process strong enough so tl1at the foUow-up cooperative process 

can use it to complete a boundary? 

My conclusion: My implementation showed that the dipole field in Grossberg's 

model activated a small number of neurons near a line end. Since, in the 8hrenstein illu­

sion, the gap between two nearby line ends can be several pixels wide, my implementation 

did not confirm that this mechmtism can explain the Ehrenstein illusion satisfactorily. 

lnstead I conjecture that a line in tbe image can be recognized as a long, thi.n object 

difrerenl from an edge. A specific llne a.J\d line end detector and the follow. up processing 

may be necessary. 

6) What is the range of param¢tt>.rs which al lows the network to converge? What 

are the criteria for selecting the network parameters? 

My conclusion: In my first implementation of Grossberg's model, there were l-1 pa­

rameters that define t-he network connections and operations. When the parameter values 

were properly selected, the network converged in several iterations and gave rea.~onable 

~cgmenta.tion. Pr-ograms ~i mulating eadt layer of Grossberg's model were wriHcn, ant\ 



22 

different parameters were used ag<ilnst various test patterns. An important consideration 

for selecting the parameters was tlu" balance between ~he two rnajor functions of the CC 

loop: boundary completion and edge thinn.ing. When the parameters were improperly set, 

the network would either generate more line segments than allowed or fail to complete 

required boundaries. Another criterion 1 found useful was th<tt parameters should cause 

~he dynamic. range of the neurons in a layer to be fully used . 

7) The neural layer of bipo/e fields is intended to recover lost edge information. 

How effective is this operat ion? What if the gap to be completed, as in J(a nizstJ squar·e, 

is wide? Will a multiscal.c scheme help to solve the boundary completion problem? 

lilly conclusion: The competiLive-cooperative loop in Grossberg's model is effective 

in completing the gaps between 11earby edge segments. The p roblem is that a wider gap 

in the input pattern requires a longer bipole field; thus the network is image-dependent. 

To cope with the di fficul ty of image-dependence, in my current algori th m the bipole field 

covers only the pixel's closest neighborhood. Elongated edge fil ters of three elongations 

give edge strengths at positions along a real edge, and these propagated edge strengths 

tbeu complete the g~ps up to some width between ~wo linear edge $~gm<:uts. 

But the scheme of multiple elongated edge filters does not solve the problem Lhat a 

gap with substantial width cannot he completed . .:V!y first attem pt at a solution followed 

Rosenfel<l's [Jyramid scheme [Hong et a!. 1982]. Based on the layer storing the result of 

OC filtering (which I call the ed9e map), " pyra.mid as described in Section 2.1.3 was 

established. A CC loop was then associated with each level of tile edge maps. The edge 

information first propagated bottom-up to the coarser levels. After the CC loop at each 

level performed bouJldary completion, the completed boundary at the coarser levels then 

propagated down the scales to atta.iu better localization. This scheme wa.~ implemented, 

and preliminary results showed that the model could complete larger gaps between two 

linear edge segment-s. The probl<mt with this scheme is that the aJgoriLhm requi res both 

bottom-up and top-down information flow. The control is very complicated. and the 

computation takes consider<tblu time. 

Finally I conjectured that a multiscale scheme of multiple elongated edge filters-, 

witlt different pixel size and corresponding sampl ing iJttervaJ <~teach scale, might be able 

to segment the im<l{!;e into contours at iliffercn t levels of detall and dose g<~ps of quite 
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differen t sizes . A program was implemented based on •his idea. R11oning tbc program on 

seve ral test patterns showed that •he scheme is effective. 

In summary, for Grossberg's model t-here may not exist an ideal set of parameters 

that enables the Mtwork to converge for all input images. But if a network that bas to 

hand le vastly different input data depends on data-dependent variations of the parameters, 

it seems unlikely to be prac tical. 

2.4 An Overview of My A lgorithm 

Tb..is sec tion summarizes my algorithm derived f rom the above coru;iderations . Fig­

ure 2.5 shows the block diagram of the algorithm. The algorithm consists of mu ltiple 

subsystems, each characterizing a di fferent scale. At each scale a. segnu~ntation of the 

image is provided via several processing stages. Informa•ion flow is parallel for all pixe!s 

at each stage and pipelined among stages. In a coarser scale the segmented contours are 

simpler and bigger, while in a fi ner scale (letai ls of the object contour are shown. The 

results of segm<mtation are wntinuOtlsly deliv<.recl to higher visual processes. 

l. The input is t<Lken to l>e a two-dimensional array of real-valued intensities ranging 

from 0 to 1. For artifidt<l tcsl patterns, the ]>ortion of a pixel covered by a figure is 

calculated and the pixel intensity is adjusted accordingly. 

2. Edge filte•·mg is performed by filters combining a smoothing operator with a dif. 

ferentiation operator. Each scale has mult iple edge filters, each wi\h a different 

elongation. Tlle ~dgc fllter with larger support not only provides edge information 

with higher signal-to·noise ratio, but also propagates •he edge information along a 

linear edge, which to some degree enables the network to complete the ga ps between 

two edge segments. As Ma,·r [1982] and many others pointed out, a problem witb 

this type of feature template approach is that a significant response to the filter does 

not necessarily indicate the presence of the feature. The following processing stages 

arc ma.iuly designed to cope with th is problem. 

3. Artifact cancellation is applied after edge filtering at each sampling location. Since 

excejlL 11ear <:ertain complicated image structures there should nol be perpend icular 

adges a~ a single location, •lw coun tc.r-ittteract ion between edge Jllters of pcrpendic· 

ular target orientations effectively discoun•s the anifac• due 1.0 d iscrete sampling. 
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4. Corner detection is another means to cope with the problem of false alarm in edge 

filtering. Corners are themselves important both for object recognition and for 

defw.ition of a. dosed objeet boundary. 

5. Spatial coherence checking verifies a detected edge or corner at a certain location 

by rejecti ng edges where the edge and corner information in adjacent locations are 

incoherent. The pixel size here is proportional in size to the scale. 

The following chapters elaberate on these issues and describe my research. Cl1apter 

3 describes edge filtering and my rationale in using multiple directional derivatives of 

elongated Gaussian as edge filter. Chapt-er 4 discusses. my approach to corner detection. 

Chapter 5 desc ribes the role of spatial coherence checking in my algorithm and shows 

the results of segmentation on several test pattems. Chapter 6 gives an evaluation of the 

overall algorithm by comparing its performance with Grossberg's boundary contour system 

and with human performance. The conclusions and suggested future research directions 

are presented in Chapter 7. 



Chapter 3 

Edges 

Given an image, what informatio11 best ind icates object boundaries? Tltis chapcer 

describes the measurement of intensity changes, called edg~ strenaths, in a two-dimensional, 

static, grey-scale image. 

The chapter first compares the perform<~nce of d ifferent e!lge filter kernels and de­

scribes my decisions on edge filler design. Then it explains why an elongated dj,·ectional 

derivative of Gaussian (DOG) function is used in my algorithm. The operation of artifact 

cancellation is then presented. Lastly the chapter explains why mt~ltiplc edge fllters are 

applied. 

3.1 Derivative-of-Gaussian vs Difference-of-Box Filters 

Many two-dimensional functions have b-aen used for edge detection. Grossberg 

{1985) used a difference-of-box (DOD) function and obtained interesting reslllts, but, as 

discussed in Chapter 2, the first-order directional derivatives of two-d imensional Gaussian 

(DDG) prevails for modeling human visual system. 1t is wor&h comparing the performance 

of Lhese two filter ke.mels. 

The DDG and DOB functions can be described by the following equations. Let 

G(x, y) represent the two-d imensional Gaussian, 

1 ~ G(x,y) = 21l'cr2 e- >• . (3.1) 

The directional derivative along the :r d irection gives an edge filter with the t;>rget edge 

o rien taLion along d irection y. 

dG(x,y) _ x -•2 +!f2 
_ x G( ) 

- --- e 1,. - --
2

, x,y . 
dx 2•a4 a 

(3.2) 
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A DOB with change in x direct ion and width w can be written as DOB(x, w) = sign(x) 0( i':J , 
where 

and 

x>O 

X< 0 

elsewhere 

l:rl < 1/;/2 

x = ±w/2 
elsewhere 

(3.3} 

(3.4) 

The DDG and DOD ftl ter kernels are shown in Figure 3.1II, wherein small diamonds 

and squares indicate posit ive and negative weights, respectively; the areas of the squares 

and circles indicate the magnitudes of the weights at various locations . Note tltat in Figure 

3.11! both edge filter kernels are shown on a 8x8 grid. Though a Gaussian function c.-,: lends 

to infin.ity, for pTactical considerations the weights for the locations wi th distance to the 

center larger than a critical distance, r, are set to zero. In my current implementation, r is 

selected as the smallest real nu mber such that G(r)/G(O) < 0.05. For the pixels near the 

boundary of a filter kernel, the portion of the pixel area covered by the kernel is calculated 

and the weight is adjusted accordingly. This process accounts for why, in Figure 3.1Ilb, 

pixels away from the center of the kernel have smaller weights. Figure 3.ll shows the 

three-dimensional graphs of these two flltets. 

To compare the performance of these two filter kernels, I applied the two edge filters 

with various parameters to several test pattems. T-he results show tl1at when the length 

and width of the DOB filte r is equal to the equ ivalent length and width of the DDG filter, 

the two kernels give similar convolution results, where the terms equivalent length aud 

equivalent width follow Bracewell 's defi nition [1986]: [or a positive function , the equivalent 

width is the area covered by the fu nction divided by t he function's maximal value. 

The equivalent length and width of a DDG filter can be calculated as follows. A 

cross section along the target edge orientation of t he DDG filter is a one-dimensional 

Gausshto which has the maximum <tl the center. The equivalent length of the kernel, L. 

is then 

(:l .S} 
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Figure 3.1: A comparison between a deriva~ivc-of- Gaussian and a difference-of-box Hl~cr. 

Row (1) are the thrcc-dimel\Sional line diagrams for (a} DDG fl!nclion witb v = Ui and 

(b) DO B function with L = 3.76 and W = 2.473; Row (II) a.r~ the c.orres1)anding edge 

filter kernels. (The sizes of diamonds and ciicles in row (II ) are pl'Oportivnal to nega~iv~ 

and positiv<! weights at ea~h loc«t ion within the kerneL The circle size rep resents t.he 

intensity. ) 
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image resolution #edge strn > 0 ma..x diff ave diff SD 

c30 16 X 16 648 0.1725 0.0549 0.041S 

tri 32 X 32 1107 0.2039 0.0674 0.0191 

owl 64 X 64 16071 0.1608 0.0214 0.0229 

ct3 128 X 128 35011 0.1098 0.0160 0.0145 

Table 3.1: Difference be~wcen t he convolution results of a directional derivative-of. 

Gaussian filter and <t difference-of-box filter. The test patterns, e.g. , c30 and lr-i, are 

described in Table 5.1 and depicted in Chapter 5. 

Similarly, it1 the perpendicular dit·ect ion the profile is ~he first-otder derivat ive of a Gaus­

sian, G'(x) = <IG(x)fdz. The ma.:dmum occurs at x = <7 wh.en 

dZG(x) 1 x2 
• 

d? = - 2 (1- 2 ) G(x)= 0. 
x- <7 a 

( 3.6) 

The equivalent width, con~iderblg only G'(x) > 0, is 

l•V= f0
00

G
1
(x)dx = G(x)ig" 1; 2 

G I - ' e- 1/2 = e <7. '(X) •=• J"z.o> 
(3.7) 

In Figure 3.lb, a= L5, L = 1.5 x .,f2rr = 3.76 and W = 1.5 x e112 = '2.473. 

Th.<: fi lters shown in FiguJ•e 3.1 were applied to several test patterns. One of the 

test pa~tcrn-s, tr·ianyle, together with the edge fi lter ou tputs a re shown in Figure 3.2. The 

size of the circle in Figure 3.2a indicates the intensity of the pixel, which ranges from 0 

to 1; the length of each line segment in 3.2b and 3.2c indic<ttes the edge strength with 

orientation as indicated by the line segment . Figure 3.2b and 3.2c also shows that at each 

samp li ng location, edge fi.lters of four target orientations were applied. 

Tahle 3. l li sts the tl iflerence (labeled as max (1i!Jand ave diffin the table) betwe<!n 

the DOB and DUG filter outputs for several test patterns. 1n the table, SD stands for 

standard deviation of Lhe difference and, like maximal aud average difference, is calculated 

based only on the places an<l orientations whe.re at least one of the two edge filter outputs 

is nonzero. The number· of these pl<.ces in each image is also listed in the table. The 

average difference in t he convolution results ra.rlges fr·om 0.01 to 0.07. Comp<Hed with. tlte 

value of an edge strength, which ranges from 0 to l. the difference between the outputs of 

the two fil ters is smalL 
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Figure 3.2: A comparison between the convolution results with a. derivative-of-Gaussi;m 

a.nd ;, diffe:rence-of-box filter . (a) is input pattern; (b) and (c) show the results of DDG 

filter and DOB ftlter, respectively. The size of a circle in (a.) is proportional to the intensity 

at the location. Likewise the length of aline segment in (b) and (c) is prO[)Ortioual to the 

edge strength (i.e., strength of the edge filter response). 

The research reported in the remainder of this dissertation uses the DDG as the 

edge filter kernel because the Gausshn function has the following desirable properties 

[Pize r, 1988J and accords more with our knowledge of the biological visual system. 

1. The Gaussian is isotropic and s'rictly decreasing about mean. 

2. A n-di mensional multivariate Gaussian is separable into n one-dimensional Gal"­

sians. 

3. A convolution of two Gaussian functions gives another Giloussian. 

4 . A Fourier transform of a Gaussian gives anoth~r Gaussian . 

. s. The Gaussian is t be solution to the diffusion equation, ouj&t = k (82ujfJx~"" · · · + 
EPuf 8x~ ) in n dimensions. 

G. The Gaussiil-ll blurring operation is causal for image feat ures associated with the 

linear combination of the dcriv;ctive.s of the image. 

7. The central limit theorem says that the effect of repetiti,·e convolution with any 

kernel will have tbe effect of convolution wi th a Gaussian kernel when the repcti1ion 

incre<iSes without bound. 
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3.2 Issues in Edge Filter Design 

This section discusses several ques~ions about t ile edge n iter design including edge 

threshold, sampling location, angulat· resol ution , polarity, kernel size, and computation of 

the edge filter kernels. 

Edge Threshold 

Noise is inherent in the image, and a remedy for il is to insert an edge threshold in 

the a.lgoritltm. Below Ute threshold , the edge filler outputs are ignored. In the current 

implementation, the edge t hreshold is a program parameter. It is usually set to a small 

value, tYPically 0.03 on a scale of 0 - 1. The reason for selecting a small edge threshold 

will be discussed further in Chapter 5. 

Sampling Location 

Where in the image should the edge filters be applied? For an image represented 

in a two-dimensional array, Figure 3.3a sbows two possibi lities - one is to sample at the 

center of tile pixel, and the other, a~ the corners. Figure 3 .3b shows the edge fUter kernels 

of taxget orientation of 0° based on the comer saul piing location, and 3.3c on the center 

sampling locat ion. Figures 3.3c and 3.:Jf demonstrate tlte convolution results of the two 

types of edge filters against an input pattern shown in 3.3d. Given a perfect edge, the 

figure sl1ows that, for the corner sampling location, positions along a single line in the edge 

<i irect ion h;tve significan t output, and for the center sampling location, edge filtering at 

positions along lwo puallelliues h<•ve significant responses. Edge fll tering in my algori•h rn 

is applied at the corner sampli1tg location because it is more natural to do so for a step 

edge such as those in several of Lite test patterns to l>c used later. 

Angular Resolution 

How many edge filters with diiTerent ~~ rget orientations should be applied at ea<:h 

sampling location? One possi llle answer comes from physiological data. H ubel and Wiesel 

11977) showed that a hypercolu mn in vertebrate primary visual cortex ha.~ adjacent ttetLrons 

sensi tive to orientations differing hy 10° to 1.5°. So a choice of 12 to 18 orientations is 

reasonable . The effectiveness of filtering itt multiple orientations bas been confirmed by 

work in computer vi>ion [Coggins, 1986]. 
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Figure 3.3: A comparison between two schemes of sampling locations. (a) depicts the two 

sampling locations; (b) and (c) are DDG kernels with u = !.5 pixels of sampl ing loca.t ion 

1 and 2, respectively; (cl) is a1\ input pattern of a horizon tal edge; (c) and (f) show the 

convolution results of (d) with the two edge filters in (b) and (c), respeaively. 



On the other hand, as mentioned in Chapter 1, the data representation in a con­

nectionist approaclt is costly. The smallest numb<~r of processing units, if functionally 

adequate, should be used. Since the objective of edge fil~ering in this research is to find 

the object contours iu the ima.ge, the essence of an edge strengtlt lies in its indication 

of the local orientation of tlte object boundary. Since, on a rectangular sampling grid , a 

pixel has only 8 adjacent pixels, the boundary at the pixel can a.~sume one of on ly four 

orientations locaUy. In other words, each of the four orientations points to two of the 

pixel's 8 adjacent pixels so that the connectivity can be checked point by point on a con­

to'l L Edge filtering on orienatations besides the 4 mentioned above are possible but make 

checking for local connectivity more difficult. Thus the algorithm applies edge filtering in 

4 orientations (0° , 45°,90°, and 135°) at each sampling point. Figure 3.4b show tlte edge 

1\lter outputs of the scheme of 4 t<trget orientations, and 3.4c of 12 target orienLations. 

A consequence of performing edge filtering in a finite number of orientations is 

that, acconliug to Canny [1986], if an edge does not align wit.h one of the target edge 

orientations, the convolut-ion result of the edge will drop to a portion of the case of perfect 

alignment. For the scheme of 1 target orientations, the worst case occurs when the angle 

of a real edge and the target orientation of the closest filter is 22.5° apart; in that case 

the ftlter ou tput will faU to about i5% of its possible maximu1t1. Imperfect alignment of 

ftlter to edge causes the effective threshold Lo be slightly higher than the specified value. 

For a small edge threshold of, say, 0.03, the cJfcc.t of imperfect alignment causes thr~ edge 

strengths below 0.04 to be ignored. Tl1e problem is not serious from a practical point of 

view. 

P o larity 

The edge ftl ter has two opposite directions of contrast (called polarity later) as 

ill ustrated in Figure 3.5, where the positive and negative weights are a.rbitrarily assigned 

to each l1alf of the filter. The polarity information is represented by the sign of the edge 

strength and is kept for later [>roce.ssing. 

Filter Kernel Size 

What standard deviation. a, should be used for the D DG function? It is well­

known that a bigger kernel gives a better signal-to-noise ratio, and a smaller one gives 

better localization of the detec ted feature. A clue comes from the psychophysical data. 
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Figure 3.4: A compuison of applying edge filters of 4 and 12 orientacions. (;;;)is the. input 

pattern; ( b) and (c) show the convolution results of 4 orientations and 12 orien tations, 

respectively. 

Polari ty is arbitrarily 
defined as positive for 
these edge filters. 

Edge fil tees of 
negative po larity 

Orientation 3 2 

~ Positive we1ght 

0 Negative we1ght 

0 

Figure 3.5: The definition of the polarity of edge lilte,·s. Edge filters. labeled by iu tegers 0 

- 3, are arranged f1·orn right w left to reflect the usu;d rep•·esentation of counterclockwise 

rotating angles. 
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Maxr [1982! concluded based on Wi lson and Bergen's [1979] data that for cells with on­

center, off-surround receptive fields, 4 scales with <1'$ approximately equal to 3, 6, 12, and 

23 pixels suffice to explain many psychophysical phenomena. Marr, Poggio, a.nd Hildreth 

[1980] further pointed out that an addi tional smaller filter, say with <1 = 1.5 pixels, is 

J.ike!f- Note that, according to G(r)fG(O) < 0.05 to decide the filter support, the DDG 

filter with <1 = 1.5 bas radius equal to 3.67 pixels and covers 42.35 pixels. It is rather 

large; should there be a smaller one? As shown in Figure 3.6, the filter support of <1 = 0.75 

pixels has radius of 1.83 pixels and covers 10.58 pixels. Only one or two pLxels at each 

side of the target orientation have substantial weight. Therefore it gives better possible 

spatial accuracy tha.n the one with "' = 1.5 pixels. Nevertheless, when "' decreases, the 

filter is more sensitive to typical levels of noise. Noise sensitivity is a. substantial problem 

for the filter with 0' = 0.75. It is debatable whether this filter should exist In a. real vision 

system, but it is worth investigating its properties. Thus in this research the filter with 

"' = 0. 75 pixels is also considered. 

A problem related to the kernel size is the sampling interval. Shall we apply edge 

filtering a.t every pixel? There are two major concerns: one is the aliasing error, and the 

other is how the sampling intervals should vary for edge filters of different sizes. As for the 

aliasing error, according to Pizer [1987] the relationship between the sampling interval, h., 

and the acceptable relative aliasing error, t, ca.n be approximated by the equation, 

(3 .8) 

Since in the connectionist approach the pixel intensity is represented by the response of 

a proc~ssing unit, subpixel sampling is dlfficult to implement. The sampling interval is 

usually in integral pixels . In the current implementation the smallest edge filter in use 

has "' = 0.75. pixels and is sampled with interval h. = 1 pixeL Hence e ~ 0.04. Is t ~ 0.04 

good enough? Considering the biological visual system and the lirnlt is on the dynamic 

range of the neural circuit, which Barlow [19S6] estimated to be 2 orders of magnitude, 

' ~ 0.04 is reasonably small. 

Regarding the sampling intervals for edge filters of different sizes, h. is proportional 

too according to the above equat ion. So a filter with a larger u can have a propor tionally 

larger sampling interval without causing greater aliasing error. Based on the above de­

scription and the fact that the test patterns under consideration have highest resolution 

of 128 x 128, the o's of the edge filters are selected to be 0.75, 1.5, 3, and () pixels, and 
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Figure 3.6: The smallest edge filter kernel used in this re.se;.rch. 

the corresponding h's are 1, 2, 4, and 8 pixels. Moreover, considering the connec:ionist 

architecture, in a coarser scale there are fewer processing units, but eadt processing un.it 

has prcportionally more input connections. That the total number of connections are !he 

sa.me for different scales may contribute to an efficient implementation. The sampling 

interval is proportional to the size of edge fil ters in a scale, which is similar to Crowley's 

DOLP approach (Crowley and Parker, 1984] though the sampling interval in DOLP \'aries 

by a factor of J2 whereas that factor of my algorithm is 2. 

Computation of t he Edge Filter Kernel 

The edge filter kernel can be calculated as follows. Let E(z, y; 8) be the edge filter 

output of orientation 8 at location (:z:,y), and I(z,y) be the input image in tensity at (:z. y). 

E(:z:,y;8) = J\(:z:,y;O)>.J(:r,y), (3.9) 

where N is convolution and K(x, y; II) is the edge fil ter kernel. Evidently, 

(3.10) 

where, D/8z6 stands for the directional derivative in orientation 0, • is the smallest real 

number such that G(r)/G(O) < 0.05, and k is a nofmalization constant such tl:at 

k lw(z, y)l = k w(-t".y) = L (3.11) 
(r.y)~w(z.v)<O 

The normalization is necessary because the test pattern i~ represented by a two­

dimensional array of real numbers ranging from 0 to 1 and the nC>rmalization caus~>s :he 

convolution wtth a perfect maximal edge in the image to be l. \\'ith the edg~ strength~ 

rangin& from 0 to l, we can Cllrnparc the ~dge strengths from different edge filters and 

specify the edge threshold b:~Sed on a common standard . 
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Figure 3.7: The kernels of an elongated and a nonelongated edge filter. Row (I) are 

three-dimensional line diagrams for edge filters with (a) u = CTJ. = 1.5 and (b) cr = l.S. 

CT.J. = 0.75. Row (II) are The corresponding edge fil ter kernels. 

To calculate the kernel for different target edge orienLation, Koenderink [19Si] shows 

that in ~2 derivatives at a.I1 directions can be calculated bv a rotation of coordinates, i.e .. 

~G (x,y;8) = <J
8
G(zcos8+ ysin8. - zsin8+ ycos8). 

vze % 
(3.12) 

3.3 Elongated Gaussian Kernel 

The above edge filter was implemented and tested with Gaussian kernels of various 

cr's, but the performance of the edge filters in rnultiscale was no t satisfactory. The 1·eason 

is that edge filters are designed to detect the object boundary, and filtc1·s at a coarser 

scale should detect bigger features. However, the above-mentioned filter (equation 3.10) 

is instead tuned to detect the edges blurred to a certain degree. 

To cope with this problem, I used an elongated Gaussian edge filter with w1dths "J.· 

At each sampling poinl. multiple edge filters with constant w1dth and dlficrcnt lengths 

are applied. The use of elongated edge filters is justified by Canny )9SGJ , who cor,clucled 
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FigtUe 3.8: A comparison bc~ween the convolution--re>ults of elongated and nonelongated 

edge filters . (a) is input pattern; (b),(c),(d). and (e) show resu lts of (a) with edge filters 

of (b ) u = a:1 = 1.5, (c) <1 = 1.5, a l. = 0.75, (d) (f = (fl. = 3.0, (e) q = 3.0. o l. = O. i 5. 
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that an elongated edge filter gives better localization and signal -to-noise ratio of edges in 

the image. Coggins [1986] used pure orientat ion fi lters but no psychophysical support. 

Figure 3.7 compares the shape of one of these filter kernels with a nonelongated 

edge filter. Figure 3.8 compares the convolution results of this filter and a nonelongated 

edge filter on the triangle input pattern of Figure 3.8a, in which the boundary is not a 

sharp edge. Note that in F igure 3 .Sb - 3.8d the object boundary is measured as many 

parallel edge strengths instead of a sharp contour. Two reasons contri bute: the edge is 

not sharp, and the edge filter width extends over more than 1 pixel. 

The kernel of an elongated edge filter is the first-order directional derivative of a 

multivariate normal function [Duda and Hart, 1973j. The foUowing describes an example 

of the elongated edge filter kernel. Let u be the standard devia t ion in the target orientation 

and UJ. the standard deviation in the direction perpendicular to the target orientation. 

The elongated Gaussian function for target orientation of 0° can be represented as 

- L 1 ,, 1 :c:T 

F(x,y}= = e- :;;rx = e •• ... 
v 21fu v2r.u.L 

(3.13) 

and the edge filter wi t h target orientation of o• is 

dF(x,y)_ ..!!._ F( ) 
d 

- - 2 z,y . 
y UJ_ 

(3.14) 

The edge filter of other target orient ations can be calculated based on this function and a 

rotation of coordinates. 

As for tl1e relation between u Md <t l. , the nlters with u < u J. are not useful 

because edges are by definition" sharp change in the direction perpendicular to the t.-rget 

orientation. On tbe other hand, a very long kernel is unnecessary because there are not 

many long linear edges in the image. The h.ighest ratio of u fu J. used in the current 

implementation is 4 based on psychophysical evidence- the bandwidth of the human 

spatiill -frequency channels is 1 to 2 octaves [Ginsburg, 1978; Wilson and Bergen, 1979], 

so in the spatial domain a factor of 2 to 4 among the filter sizes may be reasonable. 

3.4 Artifact Cancellation 

Grossberg and Mingolla [1986, 1987], in designing the boundary 'ontou1· system, 

found that boundary ~ompletion was more satisfactory if the magn itude of the edge 
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strength is decreased by the magnitude of the edge strength of perpendicular target ori­

entation. Applying a program implementing the boundary contour system to several test 

patterns confirms that this operation is important for the 'success of the algorithm. 

Why is the above-mentioned operation important? A due comes from a more careful 

examination of the relationship between a real edge and the four edge filters applied at a 

sampling point. A real edge in the image can orient with an edge fi lter perfectly, o r it can 

orient between two edge filters with successive target orientations. 

l applied edge filtering on two edges: one oriented at o• and the other at 20° and 

found that more than 2 out of the 4 edge fil ters always gave significant responses. Figure 

3.9a shows an edge in perfect alignment with a edge filter of target orientation 0"; 3.9b 

shows an edge at an orientation between two edge filter orientations. The convolution 

results with an edge filter of <7 = " J. = 0.75 for t he two differently oriented edges at 

ind.icated point are also shown in a. table in each figure. At the indicated sampling point 3 

out of 4 edge strengths arc significant for the edge oriented at o•, and all 4 edge filters gi\'e 

significant responses for the edge oriented M 20•. At c<J.cb sampling point, the presence 

of more than two edge filters responding t.o a real edge contradicts the intuhion that a. 

real edge should be indicated by M most two edge filters of successi\·e target orientations. 

This constraint is important because the wrongly-indicated edge strengths, if used in a 

later stage of segmentation, will cause errors. 

Grossberg and :Vlingolla's subtraction approach is an effecti\'e way to remedy this 

problem. It invol"es a subtraction from the magnitude of the edge strength under con­

sideration (E(z, y; 8)) of t'he edge strength of the perpendicular orientation (E(:t, y; 8 J.)) 

and accepting the result only if it is posith·e. Let A(z, y; 8) be the result after artifact 

cancellation: 

A(z.y;8) = srgn(E(x,y;ll)) ma.x(O, IE{:t,y;8)1- IE(z,y;8J.)I). (3.1-S} 

Figures 3.10a and 3.J0b show how two pcrpendicula.r edge filters are applied to an edge. 

For the filter outputs with target orientation right on edge. as in Figure 3.9a and 3.J Oa, 

the edge strength is not alTected. Edge strengths of all other situations are adjusted 

dowuward. For the examples in Figure 3.9. after artifact cancellation the cdgt' strengths 

become (-1, 0, 0, 0) and (-0.5177, -0.48G3. 0, 0) for the edge of orientation o• and 20°, 
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Figure 3.9: Two possible relations between edge filters anc an edge in the image. (a) an 

edge aligned perfectly with an edge filter, and (b) an edge oriented (20D) between two 

edge filters. (Numerals 0, 1, 2, and 3 in the rectangle indicates the edge sHcngtits of 

orientations 0, 1, 2, and 3, respectively.) 

respectively. These edge strengths give more accurate infotmation about the edges under 

consideration. 

' Coggins {1986) showed that a more accurate estimation of the boundary orientation 

can be obtained by a. vector sum over all orientations. However, for a connectionist 

approach the representation of the result of the vector sum requires many processing 

units (neurons). Moreover, to verify the connectivity under the posLu]at.ed conditions, 

there is no need to determine the cxaCL orientation a.t each boundary point - only the 

neighboring points to which th is pixel is connected need to be determined. 

The only pl ace artifact cancellation may destroy useful information is around a 

right-angled corner as illustrated in Figure 3.10c. However, since corners are separately 

detected in my algorithm, the loss of this information does not affect the detection of a 

right-angled corner. 

Figure 3.11 shows the convolution results before and after artifact cancella.r.ion. 

Ma:ny edge strengths are diminished utd a better representation of the input pattern is 

obtained. 
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Figure 3.10: The aTtifru:t generated by edge filters. (a) the target orien tation is right 

on edge, (b) two filters "·ith target orientation perpencticular to each other, and (c) the 

situation when the a.rtifact cancellation process may destroy useful information. 
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Figure 3.1!: The effect of ar·tifact cancellation. (a) is the input pattern: ( b) and ( c} show 

the convolut iotl results with edge fi ltering of o = 1.5 and 1J1.. = 0.75 pixels before and after 

artifact caucdlatiou. 
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(b) (c) (d) 

Figure 3.12: The convolution results of a noisy image (a) with filters of (b) a= C1J. = 0.75, 

(c) a= 1.5, C1.i = 0.75, aud (d) o = 3.0, OJ.= 0.75. 

3.5 Multiple Edge F ilters at a Sam pling Location 

In order to attain an object boundary under various levels of noise, mul•iplc edge 

filters need to be applied at each sampling point. A small edge filter behaves better for 

images wi thout noise because fewer false edges are detected and valid edges will be better 

localized. A small edge filter can also detect short edges; segmentation based on their 

ou t[lu ts shows the details of the conto'" · Unfortunately, when noise is present, using a 

small edge filter of•en runs ilno problems. Figure 3.12 demonstrates how three edge filters 

(one isotropic and two elongated, with fixed a.i) respond to a noisy image. 'C,·idently, it is 

beneficial to use edge filte.J's with larger support for their higher noise immunity. Since an 

.input image can have va.rious levels of noise, a compromise is to apply multiple edge filters 
~~ 

at a sampling point. Figure 3.13 shows the kernels of three edge filters , and Figme 3.14 

illusuates the supports of multiple-sized edge filters of target orie.ntation of o• applied at 

a sampling point. 

Another importaJ! t considerat ion for using the multiple, elongated edge filters is how 

to complete the gaps between two li1>ear edges as in the subjective contour of the Kanizsa 

square. T he fact that a longer edge fil ter responds beyond a li near edge is necessary for the 

complet ion of the !\anizsa square. HoweveJ', a given elongated edg-e fi.l ter can propagate 

the adge only to a certain extenl. \Vith a fixed number of elongated edge lihers e.t a 

particular scale, the gap that a scale can complete is limite<l. This is one of the reasons 
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Figure 3.13: The kernels of the multiple edge filters. Row (I), (II), (III): O.J. = 0.75 

and o = 0.75. 1.5, 3.0. respectively; Column (a),(b),(c), and (d) show the target edge 

orientations of o·. 45°,90°, and 135°. 
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Figure 3.14: Multiple edge filt~rs applied at a sampling point . 

that the algorithm cont<!.ins multiple segmentation mechanisms as shown in Figure 2.5 -

a coarser scale with afal. equal to that of a finer scale can complete a bigger gap. The 

effect of these mechanisms wiU be descri bed in more detail in Chapter 5. 

The integration of information from multiple scales has long been an open research 

topic. The following summarizes several such schemes. Canny [1986) used feature synthesis 

to decide whether a pixel is an edge point: if the small edge filter output at the locat.ion 

is above threshold, the pixel is deemed an edge; if not, the output of a bigger filter is 

compared with a value calculated based on the edges indicated by the small edge filters 

within the support of the big filter. If the two values are significantly different. the pixel 

is stiU marked as an edge point. This scheme gives reasonable performance, but e:-.tra 

filtering and more complicated t<>ntrol would be requi~cd for hardware implementation. 

Besides, an edge detected by the Camty edge detector somet imes shifts from its original 
~ 

position. Bergheim {1988) applied the Canny edge detector in multiscale and traced down 

t.he scale to attain better locaUzat ion. Hildreth (1933] suggested that a It near interpolation 

scheme of the multiscale informat ion might expla.in human hyperacui•y, •he ability to 

detect differences in spatial position smaller than the sampling distance of fo,·eal receptors. 

Finally Coggins [19SGj suggested an interesting method to integrate information from 

different scales: multiscale information is first mapped onto a feature space hMed on 

which effecth·c image analysis, and objec• recognition can then be done. 

A possible 11sage of the multiple edge filte r outp\t t~ is to veri fy t he "cdgcness'' ;ll 

the sampling point. The following obsen·ations on the relationships among the lG edge 
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filter outputs a1 each sampling point (4 si~es with each of 4 orientations} may help. 

• for the four edge filters of differen t orientations and the same size, the polarit ies of 

the f1lter outputs should be coherent. 

• Two edge filters of successive sizes should gh·e edge strengths of similar edge direction 

and magnitude. 

• For an edge segment shorter than tbc kernels of edge filte rs , the corresponding edge 

strengths should decrease smoothly with the increase of edge filter size. 

liote that the above heuristics can help in identifying a real edge, but they are not 

necessarily true for a noisy image or for the sampling points near a more complicated 

image structure !ike a corner. In my implementation the edge filter outputs wert) aver­

aged. Running the algorithm against several test patterns, this simple scheme gave good 

segmentation on many images. 



Chapter 4 

Corners 

Tlus chapter deals with the problem that directional edge filters cannot correct lv 

indicate the object boundary ncar more complicated image structures like corners, T­

junctions, and cross-junctions , which are important for object boundary detection. To 

cope with this problem, J propose a scheme which detects these image structures based 

on patterns of edge strengtl1s. 

Tlus chapter first in troduces the problem of corner detection and then describes a. 

solution. The results of applying this scheme to several test patterns are then presented. 

The chapter concludes wirJ, a discussion of possible improvemems to the algorithm. 

4.1 Introduction to Corner Detection 

Corners are contour points with infinite curvature , where 

with 8 being the inclination angle of the tangen t ljne a.nd s being distance along the curve. 

Corners are important cha.racteristics of an object-bounding contour in a two­

dimensional image. Besides the psychophysical evidence [Attn<~a.ve, 1954}, this point can 

be just ified from two dlrections: the inadequacy of edge filtering near a comer and the in­

sufficiency of using context-free edge strengths to define object boundaries. Edge filtering 

ncar a corner causes problems because an edge filter in tltis algodthm is a combination of 

a. smoothi ng operator a nd a rliffcrentiat iou operator. The smoothing causes a sharp corner 

to be rounded, and then the first-order direct ional derivative can not detec< the corner. 

Figure 4.1 illustrates the edge filtering near a. corner. At sampl ing location 0 in the figure 

the edge st rengths of a.U four orieu t.at.ions "rc nonzero. There is no way to determine the 

obje" boundary based on the edge filter ou tputs at a single sampling poin t . 
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Edge filter wath o = 0.75 3ixels 

d'.,. = 0.75 pixels 

A corner 

Figure 4.1: Edge filtering near a corner. 

The second problem is that edges alone are unlikely to define a closed contour 

properly. If corners are not specifically detected, connectivities between nearby edges are 

hard to define. 

Figure '1.2 - 4.5 illustrate various kinds of corners, T-junctions, and cross-junctions 

with the corresponding edge fll:er outputs. Means of detection of these image strucwres 

will be given later in llus chapter, and the resulls of segmentation will be illustrated in 

Chapter 5. Figure 4.2shows the edge filter outputs for corners of opening angles 15°, 30°, 

so•. oo•. and 1so•. 

In each of the input patterns in Figure 4.21, there is an ideal corner with the tip 

at (8, S) on a 16 x 16 grid. The sizes of the circles in the diagram indicate the portion 

of the pixel covered by the corner. It is obvious that there exists the problem of discrete 

representation: in Figure 'l.2la the corner of 15° cannot be precisely represcnced, and the 

los t information cannot be recovered by edge filters. Moreover, the p<tllcrn of edge filter 

outputs near a corner are different from those near a linear edge. It follows that when 

integrating edge strengths to indicate an ohject boundary. different rules need to be used 

for loca:ions near a corner and locations near a linear edge. 

Figure -!.3 shows the e•l&<' fiher outputs ior T-j1mctions. and figures ·1..; ~nd 4.5 

show the edge filter outputs for v~rious cross-junctions. Ncar these image structures 

the edge filter outputs deviate from tho<c of a linear edge owing to the s~·mmctry that 
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Figure 4.2: The results of edge filtering near comers. Row (I): input patterns: Row 

(ll): output of edge filters with u = u ... = 0. 75; Row (Ill): output of edge fillers with 

u = O'.t. = 1.5; Column (a)(b)(c)(d)(c): corners of 15°, 30°,60°,90° and !SO•. rcsrecti,·ely. 
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these image s~ructures impose on th~ l~ft and right halves of t he edge filter kernel. This 

phenomenon is especially evident for Figu re 4.5d, wherein the edge fi lter outputs at (8,8) 

vanish. 

It should be clear that corners are important for defining the object boundary, but 

how can they be detected based on the input of the visual system - a two-dimensional 

intensi ty array? Many approaches have been proposed for corner detection {Asa.da and 

Brady, 1986; Baugher and Rosenfeld, 1987; Davis, 1977; Dobbins , Zucker, and Cynader, 

1988], but most of these methods a.ssume ~hat a given contour e.xists and the algorithm 

determines where along the contour the corners reside. From the viewpoint of a vision 

machine, the· problem is more difficul t. The contours of object$ in the scene are not given, 

yet the corn<!rs need lo be located. 

4.2 Detection of Corners and Relat e d Image S truct u res 

Corners, T-junctions, and cross-junctions are detected by separate parallel process­

ing mechanisms based on edge informat ion. This section "first elaborates on the derivation 

of the mechanism for corner detection. Then it describes how a similar method can be 

applied to detect T-jllnct ions and cross-j\tnclions. 

4 .2 .1 Corners 

Comers can be detected by template matching, but this approach is imprauical. 

A simple calculation on the number of processing units requi red for a possible corner 

template scheme shows this poi nt: A corner can have various opening al\gles and opening 

directions. Since there is no way tO know where the.re will be a corner in the image, 

there must be a corner tem plate of every possible opening angle and opening direction 

everywhere in the visual field. A conservative estimate is based on the assumptions that 

the resolutio n of the image is 1000 by 1000 a.nd corners can open to ten different directions 

and have ten different opening angles. Wi thout counting polari•y, the required number of 

corner templates is 10 x 10 x 103 x 103 = 108, wh ich is near the total number of ne urons 

in area Vl of the visual cortex [Wiesel and Hubel, !977]. 

The derivation of my cornN detection scheme is based on two properties of a corner: 

a corner is a local properly and corner detection is a second-or-der property of edges. As 

regards the locality, since template matching is improbable, a natural question is carl the 
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Figure 4.3: Edge filLer output nc~r T·junctions. Row (I): input panerns: Row (II): output 

of edge filters with o = O.J. = 0.75; Row (Ill): output of edge filters with o = <>.i = 1.5; 

Column (a)(b)(c){d): T·junctions of 15", 30". 60". a.!td no•, respccti,·cly. 
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Figure 4.4: Edge filter outpu ~ near cross.junctions. Row (I): inpm paL•ems: Row (11): 

ou tp ut of edge filters with a = a_,_ = 0.75; Row (III) : output of edge filters with a = a_,_ = 

L5: Column (a )(b)( c)( d) : eros~- junctions of 15•. 30•, G0°, and 90°, ,·espectively. 
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Figure 4.5: Edge filte r ou tpuL ncar ol>lique cross-juncLions. Row (I): input patterns: Row 

(II): outpUL of edge filters wit h a = C1.1. = 0.75; Row (111): output of edge fi lters with 

o = o.1. = 1.5; Column !a)(b)(c)(cl): cross-j\11\Ct ions rotated by 15°. 30", 60°, and 90°, 

respecth•ely. 
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Figure 4.6: The edge strength patterns near a corner. They are labeled by 0 - 7 in the 

figure and differ mainly in the corner's opening direction. 

corners be detected from edge informatiou? Some psychophysical evidence indicates that 

humans detect corners after edges [see Oarlow, 1983; Frisby, 1980]. So, if a corner is a 

place where two edges meet, whether a corner exists with.in a pixel can be decided by edge 

filter outputs in the pixel's neighborhood. 

Corner detection can be based on a second.order statistic of edges. For a corner 

residing within a pixel, the polarities of lhe edge strengths sampled at the neighboring 

points have a certain pattern of rel:uionships. For example, let E(loc; k) represent signif· 

icant eelge strength of orientation k (ranging from 0 tO 3) at location toe; in the diagram 

of corner type 0 in FigUl'e ~.6, £(0; 1) and E(3; 3) have opposite polarities . 

Studymg the edge filter outpuls at the four corner points of a pixel, we see that 

there are only two kinds of edge strength pa.tlerns if a corner is within the pixel: one with 

the corner pointi11g to the direction between two sampling points and the other with the 

corner pointing directly to a sampling poinL Each kind has four possible arrangements 

as illustratecl in Figure 4.6, where the eight possible edge strength patterns are labeled 

by 0- 7 according to the di1ection in whir.h the corner points. T.o analyze a pixel for 

con tainment of a corner, the edge filter outputs at the~ sampling locations on the pixel. 

marked by 0 3, are checked. A small line segment at each of these sam;>ling points 
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Figure 4. 7: The edge strengths near a type 0 comer shown in more deta.il. 

indicates a significant edge strength at t he orientation of the line segment. For eac.h of the 

eight edge strength patterns showu, the locations marked with a small circle are deemed 

to be corners. 

The two kinds of corners in Figure 4.G are labeled by odd and even numbers. re;pec­

tively. Let us take corner type 0 as an example of a horizontal or vertical (even numbered) 

corner and corner type 1 as an example of a diagonal (odd numbered) corner. The follow­

ing argument about type 0 and I corners, respectively, generalizes to the other corners in 

their category. 

For corner type 0 the pair cf edge strengths E(O; 1) and E(3: 3) sltould have opposite 

polarities, and so should the pair E( l; I) and E{2; 3). However, for a type 0 corner shown 

in Figure 4.7 (especially for a long, sha.J· p one as in 4.7a), the polarity relationship described 

above holds for several pairs of edge strengths along the o• direction, e.g., E(A; l) and 

E(B;3), E(C;l) and E(D;3), and E(E;l) and E(F;3) in 4.7a. Which locations should 

be recognized as cocner points? A solution is to take into account the magnitude o~ the 

edge strengths- the edge strengths at the desired corner points 0 and 3 are usn ally ibe 

largest compared with those at locations I, 2 and A, B. To accomplish this we defbe 

a function S( Et. £1 ) or the strength of a pair of edges with strengths £ 1 and £1 . For 

example, 5 may be the maximum function. 
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But how many pairs of edge stn,ngths should be considered to find the pa.ir with the 

largest magnitude? To avoid compa.ri ng the edge strengths at several pairs of locations, 

an approKimate scheme based ou the following observation was adopted: considering the 

strengths of edge pairs in figure ·1.7a, from left to right the strengths tend lo increase 

slowly until they decrease abruptly just beyond the co rner . Therefore, a subtraction and a 

test of sign, applied only on the four edge st rengths around the pixel under consicleration, 

was applied - at each pixel where £(0;1) x E(3;3) < 0 and E(1;1)X £(2;3) < 0 the 

sclteme checks that whether ma.x(£(0;1),£(3;3))- ma.x(£( 1; l),£(2;3)) > 0. If so, the 

pixel is deemed as a corner poiut . The scheme works because beyond the tip of the corner 

the edge st rengths of proper orientation drop quickly. Hence the multiplication for the 

polarity check gives 0 and prohibits the acceptance of the pixel. 

II\ summary, the corner strength C(loc; type) of corner type, type, at tlte location, 

/oc, can be calculated bMed on the following equation. 

f max(O,max(£(0; 1), £ (3;3)) 

C(loc; 0) = l 
0 

- ma.'<(E(l; 1 ), £(2; 3))) 

if E(O; 1) X £(3; 3) < 0 & 

£(1; 1) X £(2;3) < 0 

o~herwise 

( 4.2) 

Note that the above equat.ion implies that the edge strengths E( I ; 1 ), £(2; 3). E(O; 1 ) . and 

E(3; 3) should also be significant, i .c. larger than an edge thrcsh.old (E_thd); otherwise 

either £(0; 1) x £(3;3) = 0 or E(O;l) x E(3;3} = 0. 

For corner t ype I , obviously E(O; 3) and E(2; 3) should have opposite polarities . 

\ 

max(£(0: 3), £ (2; 3)) 

C(loc; 1) = 
0 

if E(O; 3) x E (2;3) < 0 & 

E(l; 2), £(3; 0) > E _thd 

otherwise 

(4.3) 

By symmetry, sim ilar statements can be made about corner types 2, 4, and 6, and 3, 5 , 

and 7. By appropriate rot ation of one of the two cases above, an expression can be given 

for the other corner types. 

A program detecting these patterns based on the above defini tion was implemented. 

At each sampling point only the edge strengths from the smallest edge filter (e.g., u = 
O.t = 0.75 for t he flnest scale) were used for corner detection because being a corner is 

a local property whereas the convolu tion results of a bigger edge fil ter show the property 

of a more global area and are hence imptoper for locating corners. Application of the 
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$Cherne to several test patterns shows that most of the sampling locations marked by a 

small circle in Figure 4.6 are satisfactorily detected as corners. 

The algorithm has two major advantages. First, the algorithm is defined on the 

polari ty of the edge filter outputs , so it is more stable against noise than the method 

based on the numeric values of edge fi lter outputs. Second, the algorithm depends only on 

local information and is simple. Not only is an efficient implementation on a conventiOltal 

computer archi tecture possible, but also a. construction of a connectionist implementation 

is feasible. 

Figure 4.8 shows a possible connectionist implementation of this algorithm. There 

are four layers: jnput representation, edge filtering, edge pair comparison, and comer 

rep resentation. In the input layer each circle ind icates a pixel intensity of the image; each 

cross indicates where edge fil tering is to apply. Edge fi lters measu re the local intensity 

changes over the image regularly. At each sampling point there are eight edge ft.lters 

differing in target orientation or polarity. The wiring between the e<!ge filter layer and t-he 

input layer is not shown to simplify the figu re. Each Muron inlayer 3 has bputs from edge 

filters at two sampling locations. An example of the connections betweert layer 2 and layer 

3 (marked with dotted wi ring and a shaded circle) is illustrated in more detail in Figure 

4.8b, which shows how both orientation and polarity contribute to corner detection. Each 

neuron in layer 4 has inputs from neurons in layer 3. The firing of the layer-4 neuron 

indicates that there is a corner within the pixel surrounded by sampling pobt ts l - 4 in 

the input image layer. Since there are eight corner types, the neurons shown in layer 4 

need to be replicated 8 times . 
.... 

4.2.2 T -junctions 

Figure 4.3 shows that edge filters do not give proper edge strengths at the object 

boundary near aT-junc tion. Studying the edge strength patterns shown in Figure 4.3, 

i.e ., a horizontal boundary intersected by another one at a certain angle (other T-juuctions 

give similar results), the intersecti ng boundary causes the horizontal edge filters near the 

T-junction to give smaller outputs, while vertical edge strerrgths appear. As illustrated in 

Figure 4.9a, this effect peaks at the position of intersection and decreases smoothly with 

increasing distance to the junction. Another way to dcstribe this beha.vior is thaL. if the 

edge strengths a t a single sampling point defines a local edge direction, near a T-junc:tion 
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Figure 4.8: (a) ,A. possible cot\nectlonist implementat ion for corner detection. (b) A more 

detailed illus tration of connections irom layer 2 to layer 3. 
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Figure 4.9: Edge strength patterns for aT-junction. (a) E:dge filtering neac aT-junction. 

(b) The effect of the intersecting boundary on edge strengths along the main boundary 

(horizontal for now). (c) Tile edge strength patterns used to detect aT-junction shown 

in (a) . 

tiHl edge direction changes with a pattern shown in Figure 4.9b, wherein a. small circle 

indicates the locat ion of intersection. Furthermore, a smaller intersecting angle causes a 

wider spread of this direct ion variation. 

This direction variation pattern can be used to detect !-junctions. There. arc two 

important points to consider. First, how big should the area be in which the algori;hm 

checks for the direction ''ariation pattern? evidenl!y, an area of radius of I pixel as for 

corner detection is insufficient. Since, for efficiency, the pixels under consideration should 

be a.s few as possible, the current implementat ion checks the edge st rengths within an area 

of radius equal to 2 pixels. 

Second, how can the direc tiou variation pattern be rlc tccted? An in tuitive answ~r 

is to match the pattern of Figure 4.9b directly. T his approach is unl ikely to work because. 

given two edge strengths of successive orientations a t a sampling point. the calculat ion of 

the edge direction requires an interpolation among orientations, and interpolation in,·oh·es 

a dh·ision. Hence it is difficult to accomplish using a connectionist architecture. Moreover. 

the storage of the edge direction requires many ncllrons. 
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An alternative is to match the pattern of all the edge strengths at the positions near 

the junction. But this scheme is difficult because if. at two successive positions, the same 

two edge strengths are significant, to decide if the edge directions at these positions are in 

proper sequence requires the comparisor1 of the magnitudes of these edge strengths, which 

is also costly for a connectionist approach. Moreover, comparison of absolute values. here 

edge directions, is noise-sensitive. 

A closer look at Figu re 1.9a suggests t hat an app roximation scheme can be de­

vised based on how the intersecting boundary disrupts the edge strengths along the main 

boundary. As mentioned before, the edge strengths along the boundary are diminished 

near the junction and are sometimes exceeded by the perpendicular ones. Thus after arti­

fact cancellation the edge strengths along the main boundary may disappear; instead the 

perpendicular ones occur ncar the junction. 

Based on the above arguments, the t hree edge strength patterns illustrated in Figure 

4.9c are used to detect the direction variation pattern of Figure4.!lb. In the figure numerals 

0 -4 are used to indicate the locations under consideration. At a sampling point (indicated 

by a small circle and labeled by "0'') II one of the edge patterns in 4.!lc is detected, the 

location is deemed to be" T-junctlon. l\ote that the current scheme considers only the 

T-junctions in which the intersectiug boundary affects the edge strengths at no more 

than two sampling points along the main boundary. Also, the edge strengths of diagonal 

orientations should not be considered because a significant diagonal edge strength can 

occur not only due to a T-junction but also to a wavy boundary. However, one or two 

vertical edge strengths embedded in a series of horizontal ones may well indicate the 

existence of a more compl icated image strlL<lt ure. 

In summary, the T-jur~ctiotl str•ength, T(O) at location 0 in Figure <1.\Jc, can be 

calculated by 

T (O) = 

f(E(l;O), E(2;0), if E(3;0),E(4;0),E(O;O) > £_thd & 

0 

£(3;0), £(1;0)) ((£(2;0) > E,hd & £(1;0) > EJhd) or 

(£(2; 2) > E,hd & E( 1; 0) > EJhd) or 

(£{2; 0) > EtM & E( 1: 2) > EJhd)) 

otherwise 

(4.4 ) 

where the function f (£ 1• £-z, .. , En) can be, say, a maximum-finding operation of its ar­

guments. The scheme can easily be general ized forT-junct ions composed of boundaries 
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Figure 4.10: Edge strength patterns indicating a cross-junction. 

of arbitrary orientations. Applying this approximation scheme to Figure .;.3 shoovs the 

scheme is effective. 

4.2.3 Cross J unctions 

The edge strengths neat· a cross-junction are weakened by the complicated im<tge 

structure. Further study on SGgmenta.tion (described in Chapter 5) shows that only the 

cross-junction in Figure 4.5d seriously affects the segmentation. Because 1.he pattern is 

perfectly symmetric for the edge fUters at that junction, all edge strengths vanish there. 

For all other cases reasonable segmentation can be achieved with the edge and corner 

information. 

The edge strength pattern shown in Figure 4.10 can be used to identify the cross­

junction in Figure 4.5d. That is at a sampling point, the cross-junction strength. C r( z, y ), 

can be represented by 

Cr(z,y) = 

f(E(x + l , y;O).E(.t- 1, y; 0), if E(z + J, y; 0) > E.J.hd & 

0 

E(x, y + 1; 2), E(~·.y- l ; 2)) E(x - 1. y;O) > E.thd & 

E(x,y + 1; 2) > E.thd & 

E(x,y- 1;2) > E.thd 

olherwise 

The simple scheme successfully dPlects ~he paLlern in Figure ~.5d. 

( 4.5) 
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Figure 4.11: The corner detection of a test pattern, triangle. (a) the sampled input ( b) 

the result of edge filtering (c) after artifact cancellation (d) the detected corners 

4.3 . Strengths and Limits of the Scheme 

The corner detection algorithm described above was im plemented by programs in 

C on a Sun workstat ion. Figure 1.11 shows the output after each processing stage of 

the algorithm : Figure 4.lla is the sampled input of a triangle, 4.llb is the result after 

edge detection, 4.llc is the result after artifact cancellation, and 4.lld demonstrates the 

successful detection of the three comers. What follows describes the strengths and limi ts 

of this corner-detecting algorithm. 

4.3.1 Successful Detection of Corners 

Figure 4.12 shows five corners of different opening angles, which are selected from 

a collection of simulated results on a. set of ideal corners. All corners are located at (S, 8) 

of a 16 x 16 grid. For the corner of 15° in Figu re 4.12a., the location detected is shifted 

by two pixel.l because of aliasing in the digi~ization process. In Figure 4.!2b a corner is 

cortect ly detected at (8.,$) . For each corner in the image the algori thm does not gi ,·e a 

single locat ion: instead several posWons near the exact location of the corner are Jodicated. 

T his behavior may be improved by mutual inh ibition, and in my algorithm this prob lem 

is addressed by the spatial coherence clteck, described in Cha!)ter 5. Note that Figure 

4.12JV shows that the same comer detection scheme works for both scales used in the 

figure. The segmentation results in th~-~c two scales will be shown in Chapter 5. 

Figure 4.13 shows the corne,·s detected for two triangles arbitrarily oriented. Both 

4.13a and 1.13b show 2 diagrams- t he left one is test input. and the right is t he r~-sult 

of corner d&.tect ion. 
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Figure 4.12: Corner detection for corners of v~rious opening angles . Row (I): Input 

patterns: Row (II) : results of artifact cancellation; Row (III): results of corner detection 

of the finest scale. Row (IV): results of corner detection of the next finest scale. Fh·e 

<:olumn~ indicate differeM angles: (a) 15° (b) 30" (c) 60° (d) 90° (e) 150" . 
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Figure 4.13: Corner detection for two triangles of arbitrary orientations. (<t) a t riangle of 

45° . 45•·. and 90° (b) a t riangle of 30°, 30°, and 120°. 
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Figure 4.14 shows the corners detected on a portion of a. real scene. Since a natural 

scene is usually complicated, causing the result to be difficult to see, this test pattern is 

intentionall:· selected for its relative sim1>licity. Compare the locations of detected corner 

with the input image; the result is satisfactory. 

Figure 4.15 shows the detection ofT-junctions shown in Figure 4.3. The results of 

edge filtering with artifact cancellation, the input to the T-junr.tion detection scheme, are 

also shown in Figure 4.1511. Figures 4.15III and IV show that at both scales the existence 

of a T-junction was successfully detected in each input pattern. For the patterns with 

smaller intersecting angles the detected location for the T-junction shifts. Thls is in part 

due to aliasing in the digiti:r.atiou process as occurred for a sharp corner. 

Figure 4.16 shows that a cross-junction as shown in Figure 4.5d is successfully 

detected. Xote that the scheme described previously works only for a special kind of 

cross-junction. Further study is required to develop schemes for detect ing general cross­

junctions. 

Figure 4.17 shows how the algori~hm works on two thin narrow objects, each 2 

pixels wide. The line ends are indicated by a cluster of corners. Tbis is 11nderstandable 

since a corner also defines the end of an object. 

4.3.2 Capability Limits of the Algorithm 

The corner-detecting algorithm described above has capability limits in regard to 

sharp and nearly flat angles, noise, and blurring. These capability l i mi~s are discussed 

in the following, and methods for extending the performance beyond these limits are 

described in the next section. 

The algorithm does not work as well near almost flat corners because the edge filters 

used rue 45° apart and hence the edge strengths of orientations other than 0° are small 

ncar an almost fiat corner. It is difficult to tell a corner from a straight edge. Again, we 

reach a limit due to aliasing in the digitization process. Figure 4.18 shows the corners 

detected in a triangle of 15° , 15° , and 150°. 

Sharp corners are usually less accurately located. One reason besides aliasing is that 

edge filtering is more seriously affected by noise there . Since corner detection is based on 
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Figure 4.14: Coruers detected in a real scene (a) is an image of~ building. por:ion in 

the frame is extracted as test patients, (b) shows the test pattern with a rea oi c~rcle 

representing the intensity, (c) is thr output afte r artifact C3nccll.,lion. and (d ) shows 1he 

impon an t cofllcrs detected. 
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Figure 4.15: The deLection of aT-junction. Row (I): Input patterns; Row (IT): results of 

artifact ca.ncella.tion; Row (Ill): results of T-junction detection of the finest scale. Row 

(IV): results ofT-junction detection of the next finest scale. four columns indicate differ­

ent angles: (a) 15° (b) 30° (c) Go·> (d) 90°. 
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Figure 4.16: The detection of a cross-junction. (a) input pattern (b) edge filter output (c) 

after artifact cancellation (d) cross-junction detected 
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Figure 4.19: The effect of random noise on corner detection. The noise-to-signal ratio is 

(a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4. 

the edge fllter outputs, it is accord ingiy affected. for simi lar reasons, the deteCLion of 

T-junctions has problems when one boundary intersects another at a small angle. 

:'-Ioise affects the performance of the algo•·ithm as expected because a corn,~r is a 

place where two edges meet and is hence more sensitive to noise than a single edge. In 

Figure 4.19I Gaussian noise (measured by its standard deviation, O'r.o,..) is inserted_i;J 

e<>ch of the test pa"crns. The term "nx" in the subtitle of each diagrmn indicates chat 

the noisc· to·signal ratio of the tes t pattern is x. where 

, , I , qnQig 
notse- to - stgna rat•o = I I 

.! l9 - bkg 
(H l 

and 1.,9 and hk9 arc the average intensities of signal and background, respectively. The 

corners detected by the two finest scales a.re shown in Figu re 4.19II and 4.Hllll. The 

coarse: scale gives l>ette•· performance. This point wiU be clea-rer when the segmented 

resul ts of lhese noisy images are discussed in Chap\cr 5. 
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Figure 4.20: 'I'he effect of blurring on corner detection . A two dimensional Gattssian is 

used as the blurring function. The a is (a) 0.75 (b) 1.5 (c) 3.0 (d) 6.0 pixels. Coh1mn (l}: 

input; (II): corners detected in the finest scale; (Ill): corners detec ted in the next ftnest 

scale. 

Figure 4.20 illustrates the effect of blurring. Two-dimensional Gaussians with u = 
0.75, 1.5, 3.0, and 6.0 were convolved with the test patte rn triangle. When the blurring 

level in.creases, the edge strengths spread out; hence the number of detected corners in­

creases as shown in Figure 4.20. When the blurring level is su bstautial, the corners are 

smootlied ou t as shown in figure 4.20. 

Finally, the algori thms for detecting the T-junctions and cross-junctions are not 

complete. What are the edge strength patterns for general T-junctions and cross-junctions? 

The answer awaits fu rther in\'eStigation. 

4.3.3 Remedies to 'Weaknesses and Several Implementation Issues 

There are I wo possible remedie; to the abol'e-mcntioned weaknesses M the cost 

of more resources. Figure 4.21<• demonstrates that this algorithm can be e"ended by 

considering the neighboring JG sautpling points instead of onl:· -1. All locations marked 
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(a) (b) 

Figu.re -t.21: Tlte possible schemes to improve the algorithm. (a) more sampling points 

are considered (b) a hexagonal sampling grid . 

with an arrow in the diagram ins tead of only locations 6, 7, 10, and 11 can be used to 

estimate the probability of the existence of a corner in the shaded pixel. For example, 

if the edge fi.lter pair at locatio!\ 1 and 4 with marked orientation fire substantially and 

have opposite polarity, the probability should increase. Another sc~\erne to remedy the 

weaknesses is to use the hexagonal sampling grid as shown in Figure ·1.21b. 

Though the algorithm has its shortcomings, so do all visual systems because they 

all have limited processing power and limited p~ocessing time. Yet the ,·isual environ:nent 

is arbitrarily complicated. Unpredictal;le situations beyond the visual system's. detec· 

tion capability may always occur. Therefore it is impractical _I,~ always sea.rch for perfect 

solulions; rather one should design systems the components of which are tolerant to in­

consistencies in their inputs and make economic use of resotnces. 

The resou.rces required for the comer detection are briefly analyzed as follows. For 

the current tmplement~tion , assuming the resolution of the input image is m x n and 

the number of orientations is 1.-, then we need m x n x k edge filters, G x m x n x k 

corner detectors. plus a summary layer and other intermediate connect:ons on the order 

of m x n. Note that each neuron has only local connections, say. of upper bound c. The:~ 

the ilumber of connc<:.tions in the network is in O(cmnk). lf the algorithm ·~simulated O<t 

a von Neumann machine, this figure a.lso indicates the order of computation time. for the 
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current implementation. with an image of &l x 64 and 50 neural connections on average, 

the computation load is about 1.5 X 108 operations. With a 10 MIPS machine, such as 

a Sun 4, it takes minutes to run. Evidently, with a connectionist implementation or a 

multiprocessing architecture, real-time performance could be expected. 

4.4 Summary 

This chapter described an edge· based corner detector. It has been shown that 

the inttutivcly simple scheme successfu lly detects corne.rs under V<l.fious conditions. The 

essence of the scheme lies in the locality of the detection algorithm. Thus a connectionist 

model can be built and an efficient implementation based on a multiprocessing architecture 

is conceivable. 

The design of the model is based on knowledge of the human visual system, the 

constraints imposed by our visual world, a.nd functional analysis of the computational 

needs of visual tasks. 



Chapter 5 

Segmentation 

This chapter describes how to integrate tile edge and corner information to give 

object contours. Without noise, the edge and corner detection rn<!thods described previ­

ously properly detect the object boundaries in an image. Nevertheless, noise is inherent 

in tbe imaging process. A boundary may be contamin<>ted; a feature detector may indi­

cate nonexisting features. How should one cope with this problem? One component of 

a solution is to consider contextual information- if an edge or a corner is a pa.rt of the 

object boundary, then there must exist nearby edges or corners. This operation, called 

spatial coherence check, is described in detail in Section 5.1.3. 

The chapter first discusses t he design of this segmentation algorithm and then 

summarizes the results obtained by applying this method to various test patterns. 

5.1 Design of a Connectionist Segmentation Algorithm 

This section first introduces the background for my segmentation scheme. Then 

it describes several design decisions. Lastly the section summarizes the algorithm and 

discusses why the algorithrn..is..affectivc. 

5.1.1 Background 

It has been argued in Chapter 1 that a. visual system cannot function at the pixel 

(receptor) level; a fast, data-driven infonnation reduct.ion is necessary. Image segmenta­

tion is the separation of <UI image into regions, where each region is approximately uniform 

in some property, e.g., color, motion, dep th, texture, or intensity. Tbus segmentat ion is a 

mechanism reducing the representation of an object from an intensity value at every pixel 

to a boundary and a descri1>1.ion of the \uufonn surface property of the Tegion within the 

boundary. This research operates on two-dimensional grey-scale images, and the grey­

scale intensity is the only segmentation cue considered. The information redut:tion aspect 
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of image segmentation is true for both region-based and edge-based algorithms: for the 

former , the region grows until the property under examination is differem - an object 

boundary is found; for the latter, the <tbru1>t change.s of the property in d1e image are first 

detected , and then the edges connect with each other to form a closed boundary- an 

object region is enclosed. 

For an edge-based algorithm, how can a connectionist approach, which applies only 

simple functions on local information, cope with the difficult problem of edge following? 

An indication comes from Grossberg's Coopemtive-competitive loop, which was briefly 

described in Chapter 2. Since the bipole layer is the key to the success of this process, 

the equations that Grossberg used to calculate the neural responses of bipole cells are 

summarized in the following. 

Let B(x,y;k) represent the response of a neuron with bipolar receptive field at 

location (x,y) with orientation k , and Bt(x ,y;k) and B,(x,y;k) the weighted sum from 

its left and right bipole fi~ld, respect i\•ely. Then at equilibrium state 

B(x , y:k) = g(Br(x,y;l:)) + g( B,(x ,y;k)), 

where g is a normalization function and Bt(x, y; k ) and B,(x, y; k) arc calculated based on 

the edge strengths (E(i,j; r) of orientation rat location (i,j)) and the connection weigh ts 

(Ff'fr.v: from neuron at (i, j ;•·) to neuron at (x,y;k)): 

2:: [E(i,j;r)- £(i,j; r J.)JF'[.j~;.v' 
(i,i) € Rl or n,., r E Dk 

where Rt and R, arc collections of pixels in the left and right bipole subfield for Bt 

and B., respectively, Dk is t.he set of orientations nea.r k, r is an orientation, and r i is 

the orientation perpendicular tot . Note that E(i,j;r) - E(i ,j; r J.), instead of E(i,j;r) 

alone, is used in the above calculation. Grossberg and Mingolla (1986, 1987] found that 

boundary completion is more satisfactory with this operation. The counter-interaction 

between perpendicular edge strengths is called artifact cancellation in my algorithm and 

was discussed in Chapter 3. 

The cooperative-competitive loop has two problems. Fi rst , to complete the gaps of a 

test pattern such as Koni::sa square (Figure 2.lb) of various sizes, different sizes of bipole 

fields are necessary, causing the ne twork configurat.ion to be image-dependent. Second. it 

is improper to apply the bipole field, 1vhich has a liuear shape, near corners. What are 

possible remedies? 
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To cope with the problem of image dependence, the bipole field should not vary in 

size but should be based on a fixed supporl. As for the size of the support , a small support 

not only means less processing (i.e., fewer connections). but also gives a better-connected 

boundary. For example, if the coherence for an edge is checked based on 2 pixels on each 

side, then a boundary may be deemed connected when there is act ually a one-pixel gap on 

the boundary. A problem of using a small support is that if noise destroys edge strengths 

along the boundary for more pixels than the size of the support, the boundary cannot be 

completed. In my algorith m a smal l support is used for the coherence check, and .paps 

on contours are completed by the edge strengths generated by elongated edge fi lters, as 

(Uscussed in Chapter 3. 

As regards the improper response of the bipolc field near corners, a specific corner 

detector has been devised in my algorithm, and spccillc coherence rules for corners will 

be defined. A problem with this idea is the incompatible representation of edges and 

corners: corner detection shows whether a corner resides within a pix.el in an image, 

while edge filteri ng is applied at the four corner locations of a pixel. How can the corner 

and edge informat ion be combined? The answer comes from a closer look at the corner 

detection scheme described in Chap ter ,1: the corner detection mechanism not only detects 

the existence of a corner but also differentiates the corner type. Hence a corner can be 

represented by its forming edges. 

rir,ures 5.lb and 5.lc show the detected comers in two different representations for 

test pattern 1\ani=sa square: one indicates in whkh pixels corners reside and the other 

shows the edge strengths forming corners. Note that a corner in Figure 5.l c is ittdicated by 

edge str<!ngths of 3 orientations at a sampling posit.ion. The purpose of using more than 

two edge strengths to indicate a corner is to make the spatial coherence check for edges 

easier, as will be seen more clet>rly in Section 5.1.4. Three edge strengths are also used to 

indicate aT-junction; for a cross-junction sllown in Figute 4.5d, the edge strengths of all 

foul' orientations are used. 

5.1.2 Design Decisions in my Segmen tation Sch em e 

Based on the above idea, a segmentation scheme was devised. The design deci­

sions con~erning edge polari ty, stopping criteria, and the handli ng of incoherent edges <tre 

discussed in the following. The spatial coherence rules for edges and corners are then 

discussed in the next subsection. 
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F igure 5.1: The detected cornei'S in test pattern fl'rrnizS(J square shown in two r~presen· 

tations. (a) input pattern (b) co•·ncrs llHilca ted by circles <Lt the pixels in the image (c) 

corners rcprcsclllcd by tbe edge str~ugth~ forming lltQcomers. 



Edges on an object boundary 
with opposite polarities 

Figure 5.2: An object contour may contain edge strengths of opposite pol<,rities. 
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Should the edge polari~y be considered in the definition of spatial coherence rules? 

The answer is "no" because, as illustrated in Figure 5.2, an object may occlude objects 

of different surface intensities and hence its boundary may consist of edges of opposite 

polarities. Besides, Figure 2.1b shows that a subjective contour can aiso be formed by 

edges of opposite polarities. Therefore, the spatial coherence rules defined in the next 

sub$ection consider only orient<;l,\ion a.nd lo~at)Qn. 

The spatial coherence check rejects incoherent image structures througlt an iterati,·e 

process. An import<).nt design dccisio>t , then, is to select appropriate stoppi11g criteria for 

the iterati•:e loop. In the curr<'n t implementation , the iteration continues until no edge 

strengths changes. In practice, the nu mbe•· of edge str<'ngths modified during an iteration 

usually drops to under 0.1% of the tota l number of edge strengths after 3 iterations. 

Viewing an edge strength a.~ proport ional to dte probability of having an edge oi a 

cet·tain orientat ion at the loca tion, how sho"ld an edge strength be adjusted? There are 

several possibilities, e.g., the magnitude of an incoherent edge strertgth is decreased by a 

certain 1·atio. In my curren t implcn\Cntal.ion the incoherent edge strengths are set to 0 for 

simplicity and efficiency. This schem<' will be further discussed in Section 5.1.4. 

5.1.3 Spat ial Coherence Rules 

The spatial coherence rules descri be how an edge o:· a carne•· should be co,•nected 

loc;~ll; and is essential ior this s<'glllcnt<>ti<)l\ sdwmc. What should 1 he >ral.ial corH~xl b~ 

for an edge, a corner, a T ·.iuuct'""' al\d a r.ross.junction? 



= Edges to be enhanced 

Edges deciding the vercex type 

Figure 5 .3: Several allowable local connections in Prager's algorithm. 

A due comes from P rager 's 1\'0rl\ on edge reta.'>a~ion , wherein an edge strength is 

adjusted according to the connectedness of its two vertices (Prager, 1980]. An implemen­

tation of this algorithm in C)\lf laboratory show~ tha t the algorithm behaves reasonabl~· 

well on nP-ny images. Howe,·er, s~vcral [Ninls on the design a,nd performattce of that 

algo rithm are worth further considet·ation: 

1. Only ~he ,·ertical and horizontal edge gradients are used to decido the ver tc." type. 

Furthermore, the edge g t·adient s are usually calculated on a small support and are 

hence sensitive 10 nois<'. 

2. Comers are not explicitly detected but are accepted implicitly it\ the definition of 

~he allowable local connections. Thus the defittition of allowable local connections 

(a porl ion of them ill ustrated in F igure 5.3) needs to allow 90• turns. The abow 

two factors cause a small amount of noise to result in bad segmentation. Figure 5.4 

illustrates this poin t. 

3 . The algorithm is not ~uarantccd to g;ivc closed contou rs, causing diffitult\es for 

further processing. 

:My algorithm differs from Pra~cr'~ mainly ill two respects. First. not only are edge> 

and corn<!rs spedficaJ1 1 detected . bm aL~o the types of these features arc deLcrmined. Thus 

coherence rules become easy to clcfiae - the nctcssary spatia l context requ1red to form 

a. closed contour from au edge with known orien tation and a coruer with known forming 
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(a) (b) (c) (d) 

Figure 5.4: The segmentation results of Prager's algorithm on noisy images. 

edges. is straightforward to define. Second, my algori thm rejects incoher~n t edge str.engths 

and does not increase others, while in Prager's algorithm an edge strength can be generated. 

or enhanced. 

The following describes the spatial coherence rules for edges, corners, T ·junctions. 

and cross. junctions, rcsp ccti vely. 

E dges 

Figure 5.5 lists the spatial coherence rules for various edges. As described in Chapter 

3, it is impossible to have more than two edge strengths at a sampling location after a•·tijact 

cancellation. In particular, the edge strengths, as shown by the Hue segments with a circle 
- __.., 

in them in Figure 5.5, have only eight possible orientations or combinations thereof, as 

labeled by 0,1,2, 3, (0,1),(1, 2).(2,:1),(3. 0) . 

The coherence rules for edges are defined separaLely for the two categories of edges: 

for one category ~he edge is oriented in one of the four principal directions (numbered by 

0- 3 in Figure 5 .5) and for the other category ~he edge is oriented between two successi,·e 

principal direc tions (numbered b~· two numerals). For the form~r, unless there is a11 edge 

or a comer at the posi tions indicated hy small line segments at both sides • ,;n edge 

(e.g., positions A, B for edge5 with orientation 3). the edge strength under consideration 

is se t to 0. For the lancr, besides t he~ closes\ pixels, one more locat ion is checked. For 

example. for the edge oriented in direction (3,0) in Figure 5 .5 , t he cohere!lce ru!e requires 
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Figure 5.5: The spatial coherence rules for edges. 

that there be corners or significan~ edges of indicated orientations at both sides - at least 

one of the locations C,D, and E ha.~ an edge or a corner, and so docs one of locations F.G, 

and H. 

In summary. the edge strength after spatial coherence check. M (z, y;k) at location 

( %,y) of orientation k (ranging from 0 to 3), is calculated by 

{ 
£(%,y;k) 

M (x,y:k) = 
0 

if E(x,y;k) > E1M and R{%,y:t) =I 

otherwise 
(5.1) 

where R(loc; t) represents the result of the spaiial coherence check at location foe for type 

I and t can be any of the eight mdicated in f.'igu re 5 .5 . As bcforc.let E(loc; !:) be the edge 

strength at location loc fo1· o1·icntation /~. Then the following shows b)' example how the 

values R(x,y;t) and R(x,y ;( fl,l)) can be computed (see Figure 5.5). 

R(:t,y;3) = { 
0 

if E( A ; 3) > E,hd & E( 8; 3) > So,d 

otht>rwise 

and for edge type (3,0), 

II{ q; (3 , O)) • ~ : 

1/ CECC; O) > E:M or· E(D;:l) > Er.\d or £(£;3) > Erod) 

and t£(F;3) > Eo.1 or E (G:O ) > Erhd or£, H:3\ > E,M) 

ot hc rwisc 

( .5.2) 

L.'l 3) 
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Figure 5.6: The spatial coherence rules for corners. 
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Note that since a comer is represented by its forming edges and edge strengths of thre.e 

orientations a re used to indicate a corner point, the above equations do not need to test 

{or corners explicitly. for edges of other oricntatio!ls similar rules apply. 

Corners 

Figure 5.15 illustrates the cohcreMe rules for the eight corner types. In the figure 

the sampling locations around lhe pixel under consideration are labeled with numerals 0 

- 3. The edge strengths form.i~the corner are indicated by small circles . The spatial 

locations considered by the $p!ltial coherence rules are labeled by letters A- F. 

The coherence rules for corne rs a.re simiiar to those for edges. At each of the t " '0 

sides of the con\er there must be an edge or a comQr. For diagonal corners (odd numbered 

in Figure 5.6) the rules a.re simple: usiDg cornl!.r type 1 as an example, £(2; 3) Is ,·erified 

if E(l; 2) and £(3;0) are significant. For a horiMntal or vertical corner, the situ~ tion is 

more complic;.ucd. Figure .5.7 illusLr~tas t ha t difrercnt edge strengths shO<tld be checked 

for corners of different angle;. lienee in the runent implementat ion a type 0 corner is 

\'Crified if there is at least onr sig;n i iic~nt edge 1\'ilh the indicated orientation a\ each ~ide 

of the corner. Let R<(loc; I) rt'JH·cs<>nt the ,·esult of s;>a.t ial coher!!nce check for a type t 
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Figure 5. 7: The spatial coherence rule for various corners of type 0. 
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corner at location loc. The expressions for two corner types are listed below; for other 

corner types similar expressions can be obtained by symmetry. 

1
1 if (E(A; 2) > E;M or El(B; 1} > Ethd or E(C; 0) > Ethd ) 

R.(O;O) = 
0 

and (E(D : 2) > E,hd or E(E; 3} > E,M or E(F; 0) > E,ha) 

otherwise 

R ( . )- { 1 ifE(l; 2)>E1M&E(3;0 )>Ethd 
c 2, l -

0 otllc rwise 

T-ju11ctions and Cross-junctions 

(5.4) 

(5.5) 

The spatial coherence rule.s for T.junctions and cross·junc~ions are simply the con. 

dit ions for detecting these image st ructures as described in Section 4.2.2 . ->.2.3. To be 

precise, the result of spatial coherence check for the T-junction at location 0 in Figure 4.9, 

Rr(O) , can be calculated by 

if E(l;O) > E<hd & £ (2;0) > EtM!! £(3;0) > EtM & 

£(<1;0) >Eo,~ & E(0;2) > E;hd 

otherwise 

(5.6) 

~ote that tbc condit ion is simpler than that in equat ion 4.7 because the edge strength 

along the main boundary is ac.th·<>•cd for '' detected T-junct lon. 
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The result for a cross-junction, R.,.0 .,(:t,y) at location (x,y), is 

ll if E(x + l,y;O) > E,hd & E(x- l ,y;O) > E,M & 

Rcr ••• (x, y) = E(:r:, y + 1; 2} > Eu.d & E(x, y- 1; 2) > E,hd 

0 otherwise 

(5.7} 

5.1.4 Summary of the Segmentation Algorith m 

Thls subsection summarizes my segmentation <\lgoritlun a.nd discusses the algo­

rithm 's edge-strength-adjusting scheme. 

Figure 2.5, repeated in this section, summarizes thls segmentation algorithm. The 

algorithm consists of parallel. multiple segmentation mechanisms, each segmenting the 

input image into boundaries at different levels oi detail. There are l"-'O major differences 

among scales. First, the edge filters in different scales have different <1.1 's. The current 

implementation mainly uses three scales with <1.1 = 0.75, 1.5, and 3 pixels, respectively. 

Values of <1.1 > 3 pixels are not used because the highest resolution of the test patterns 

applied is only 128 x 128, and an edge fi lter of <1.1 > 3 causes most test results to be 

too blurred for accurate feature detection. an uninteresting resolution. Second, different 

sampling intervals are used by different scales. As discussed in Chapter 3, for the scales 

with <1.1 = 0.75, 1.5, and 3 pixels, the sampling int-ervals are 1, 2, and 4 pixels, respectively. 

Within each scale, multiple edge filt<!rs first extract edges from the image. The 

edge integration stage then summari~es edge filter outputs. Comers, T-junctions, and 

cross-junctions are detected based on the outputs of the smallest edge filter. For each 

im~ structure a corresponding spatial coherence rule is applied. For locations where two 

or more image structures are detected, the more complicated image structure is selected. 

(The priority sequence is cross-junc tion, T-junctlon, corner, and edge.) The iteration of 

the coherence check assures that all edge strengths remaining are spatially coherent and 

form a closed con tour. 

The current implementation of my algorithm does not generate or increase edge 

strengths to complete a boundary. Thls approacll is different from other relaxation 

boundary-finding schemes (Grossberg, 1985; Prager, 1980] in which edge strengths at a 

position can be adjusted both upward and downward. It is hard to define good heuristics 

to extrapolate an object boundary based on local information. Smoothness is the most 

common one used; the bipole field of Grossberg's boundary contour sy.~tem is an example. 
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Scale ! 

Figure 2.5: A block diagram describing the processing stages of my algorithm. 

Unfortunately, the gaps thM call be completed depend on the panicular heuris·tics us.ed. 

causing the system configuration to be image-dependent . More importantly, object con­

tours in the image are no~ always smooth curves - there a re corners, T-junctions, and 

cross-junctions. too. If a more tolerant coherence rule is used to cope with this problem 

(as with Prager's al·gorithm), the algorithm becomes sensitive to noise. My algorithm 

avoids using such heuristics : instead the propagated edges arc gencr<tted by the elongated 

edge filters. Thus the extra edge strengths !:_equired to SB~UPlete the gaps are obtained 

from the detection of nearby li1tc1tr edge segments in the image instead offi'Om a. strength­

adjnstmenl scheme. 

Propagated edge strengths can cause trouble by forming contours not illdicat ing 

object boundaries in the image. Tl1is. problem is lessened in part because corner detection 

fs based only on the outputs of the smallest edge filter. Hence most propag<Hed edge 

strengths, if nol connected with correct edge strengths and forming a closed contour. will 

disappear after itcra.t ion. This arrangement pr~,·en•s the occurrence of many undesired 

contours but enables tht• completion of g~ps between t\\'O neady linear edge segmen1s. 
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Figure 5.8: Closed contours defined on a rectangular sampling grid . 

At the same time, gaps on boundaries can be closed, if not at one scale, then at 

another . Examples ill ustrating this gap-completion effect are shown in Figures 5. l i- 5.18. 

Though in my algorithm edge filters do not interact across scales, it is conceivable that 

the edges in different scales might be combiMd by certain mechanisms. The investigation 

of the principle and usage of this inter-scale interaction fequi res future research. 

The coherence rules cause dcnni lion of a closed contour on a rectangular sarn. 

piing grid - a closed contour is composed of edge strengths which are aboYC a cert~.i!l 

edge threshold and lo~a.lly follow the spatial coherence rules. Therefore, starting from an 

arbitrary position and following the spatial coherence rules according to the local edge 

strengths, we can follow the bound:ny unti l we return to the original position. With this 

definition , if the later processing is performed on a sequential computer, a c!1ain code 

can be used to represent the boun<lary, and the statistics abou t the Tegion can be calcu­

lated. Figure 5.8 illustrates a closed contour; the coherence ru les invoked by different edge 

strengths are also indicated. 

5 .2 Test R esu lts and Evaluation 

This section descl'ibes the rcsul ls of my segmentation procedure on a collection oi 

test images. In ordor to c'"<llua tc the results of my algorithm, criteria for judgi ng the 

quality of a segmetnation ar·c needed. Tl1e foUowing subsect ions first discuss my opinions 

on what is a good segmentnt ion ;~no th~n introduce the test pal te rns. The :est results ?.r~ 

last!~· presented. 
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5.2.1 Evaluat ion Criteria for Segmentation Algorithm 

What is a good segmentation? Unfortunately, the answer depends on how useful 

the segmented informati·on is to the visual system. Poggio, Torre, and Koch [1985], among 

others, showed that image segmentation is an iU-posed problem because of the informa­

tion loss in the imaging protcess . There is generaJly not a unique correct or mea.~urable 

segmentation for an image. 

Wha1. features, derived from the input data without interaction with a knowledge 

base, are important for recognition? Evidence from biological vision suggests that bound­

ing contours, corners, surface properties, and the spatial relationship among the parts of 

an object are important. Segmentation is a data reduction process, but a good segmenta· 

tion for object recognition should extract the above-mentioned information to feed higher 

visual processes. 

Section 1.1.3 lis ted several properties of segmentation. The following furtlter dis­

cusses these properties by usting the conditions for an acceptable segmentation: 

1. Each segmented contour is closed so that the surface properties of a region can be 

computed . Each region can be an object or a portion of an object. 

2. The· corners are detected because corners are important for recogn.ition. 

3. The curvatu re magnitude and curvature pattern of each contour segment are speci­

fied with satisfactory accuracy. 

4. The orientation of each contour segment is specified with satisfactory accuracy so 

that, for example, a diamond and a. cube can be disting11ished. 

5. An object boundary is specified with satisfactory spatial accu ra,cy so that the spatial 

relationship among objects and among parts of an object is preserved. 
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name resolution description main purpose 

bldg 128 X 128 Natu ral scene dithered Comers 

c .. 16 X 16 Synthesized cross-junctions Cross junctions 

ctO 128 X 128 Synthesized CT images Segmentation 

d .. 16 X 16 Synthesized corners Corners 

dsa 128 X 128 Digital subtraction angiogram Segmen tation 

ksq 64 X 64 Synthesized Kanizsa's square illusory contour 

ladder 32 X 32 Synthesized figu re of ladder Multiresolut ion 

line 32 X 32 Synthesized li ne Corner, segrnen ta.tion 

owl 64 X 64 Natural scene dithered Segmentat ion 

sqr 32 X 32 Synthesized square Noise 

tex 64 X 64 Synthesized figUie of a. texture M ultiresolution 

tj .. 16 X 16 Synthesized T-junctions T ·junctions 

tri 32 X 32 Synthesized triangle Corner 

wheel 64 X 64 Synthesized circle wi th gaps Multi resolu tion 

Table 5.1; A list of test patterns. 

5.2.2 Test Patterns 

The input patterns used to test the algorithm can be categorized into three t ypes ; 

synthesized figures, medical images, and natural scenes. Table 5.1 list s the test patter ns. 

ln the figUicS illustrat ing segmentation results, shown later in this sect ion, the name of 

each test pattern is shown in the subt itle. T he dots in c .. , d .. , and tj .. indicate numbers 

wltich stand for test patterns having di fferent angles. The pat tern t;tO is an artificial image 

generated from real computerized tomography images. 

5.2.3 R esults 

Segmentation of O bjective Conto urs 

Figure 5.9 shows the segmentation results for the more complicated image struc­

tures: corners, T. junctions, and cross~ ju nc<ions whose input patterns were shown in Figure 

4.2 - 4.5. Note that due to artifact cance ll a[ion an edge is indicated by a t most two li ne 

segments; thus a loc<ttion marked with more than two li ne segments indicates a more 
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Figure 5.9: Segmentation results fo•· mer~ comp li cated image structures shown in Figure 

4.2- 4.5. Row (J) arc comer$. (11) ~rc T -junctions, and (Ill) (IV) are cross-junctions. 

Columns (a) ( b) (c) (d ) show four different kinds of each image structure. 
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\0) (c) 

j : ~ }:: . 

. ,, .. ::>·:. :~:hj: ''1 

(dl {e) 

Figure 5.10: The effect of mult iple edge filters wi thin a single scale. (a) is test pattern 

ladder, (b} shows detected corners, (c) (d) (e) (f} are segmentation results for edge filters 

with (c} a = a.1 = 0.75, (d) a = 1.5,a.l = 0.75, (e) a = 3.0,0'.1 = 0.75, (f) <1 = 

0.75,1.5,3.0; (j.l = 0.75. 

complicated strudure. Figure 5.9Ild shows a T-junction, and 5.9IITd a cross-junction. 

Without the detection of t. hese st ructures, the spatial coherence rule would reject the 

vertical edges in 5.9IId and all edge strengths in 5.9ll!d. 

Figure 5.10 shows the efl'cc t of th<.> multiple edge filters within each scale. Since 

the test pattern lctdder has no noise and no sampling error, the algorithm gives proper 

segmentation using each edge filter separately. Figure 5.10c, 5.l0d, and 5.10e show this 

point . Figure 5.10b shows the corners detected. Note that a corner isrepresented as a 

combination of edge.s. Figure 5.10f is the segmentation result from the finest scale with 

the the outputs from the three edge filters averaged. Figure 5.10c gives the contour with 

the best spatial accuracy, l>ut other segmentation ~esults are also reasonable. 

The algorithm performs well on more complicated images. The segmentation of 

test patterns ctO and owl are shown in Figure 5.11 - 5.12. Both images are processed by 

the finest scale with edge filters of c = 0. i.O . 1.5, 3.0 and <1.L = 0. 75. 
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(a) 

(b) 

Figure 5. 11 : T he segmcnt;uion of the test p?.ttern c!O. (a.) input (b) segmented result 
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•;: ::: .... : . : 

Figure 5.12: The segmentation of the test panern owl. (a ) input (b) segmented result 

The Effect of Random Noise 

The patterns ksq and sqr wiih various degrees of Gaussian random noise were input 

to the algorithm. The algorithm gives reasonable segmentation for low levels of nois.e. 

vVhen the noise increases, <>ilhcr a portion of the boundary disappears or extra boundaries 

are generated. The behavior in the presence of noise will be discussed further in Chapter 

6. Figure 5.13 gives two examples of successful segmentation of test patteru ksq and sqr 

with noise, respectively. 

The Results of a Blurred Image 

Figure 5.1<! shows the segmentatiOfi" results for images of various blurring levels. 

Compare these results with the results of corner detection in Figure ·1.20. Though comers 

arc smoothed out wi th heavier blurrin:; ~s expected, reasonable segmentation is obtained 

for both scales. 

The Segmentadon Results at Different Scales 

Different scales can locate objcc~ contours at different le,·els of detail . Figure 5.15 

shows the segmentation results of test pattern /udder b,· the two finest scales separately. 

A sin:;le edge filter was used in ~ach scale. This scheme can be expected to perform well 

because there is no noise in the input intage. The result s show that the two scales se):ment 

contours into d1fTerent levels of de tai l. Simi l'fly, F'igure 5.JG ohows the >egmcntation of 
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(c) 

·· ····-- ~············ ............ ...... ........ .... .. 

...... .- ... .. ... ...... ....... .-...... . ................. .. ... . 

(b} 

(: ~::::~li~~ ~l . ~ :: .... .. .. :":::::::: . ............. .... .. 
. . ... , ·!~ : ! 

(d) 

F igure 5 .13: Examples of segmentation agai >tSt noiS)' images . (a) Test pattern sqr with 

noise (b) The segmentation result against (a) for edge filters a= 0.75, t,;,, 3.D;oJ. = 0.75 

(c) Test pattern ksg with noise (d) The segmentation result ~gainst (c) for edge filters 

0 = 0.75, 1.5, 3.0; 0 J, = 0.75 
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II 

Ill ...... .. 

(a) (b) (c) (d) 

Figure 5.14: The segmentation Iesuits of blurted images by the two finest scales. Row 

(I) axe input patterns, (II) are results of scale of <T J. = 0. 75 pixels, and (III) are results 

of scale of <TJ. = 1.5 pixels. Columns (a.) (b) (c) (d) show four images blurred by an 

two-dimensional Gaussian of <r = 0.75, 1.5, 3.0, and 6.0, respectively. 
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(b) 

Fig\ll'~ 5.15: The segmen 1.11.tion of the test pattern loddar at two scales. {a) rr = <7J. = 0.15 

in the finest scale (b) a= O'J. = 1.5 in the second finest scale. 
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(b) (C) 

Figure 5.16: The segmentation of the test pattern tex a~ two different scales. (a) with 

edge filters (b) t7 = t7J. = O.i5 (c) q = q.!. = 3.0 
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(b) 

Figure 5.17: The complet ion of J<anizsa square by t wo scales . (a.) scale of O.J.:: 0 .75 (b) 

scale of o .J. = 1.5. 

the test pattern tez in l wo different scales. The coarser scale has resolution of only 1/113 

of the fi ner scale and segments a more g lobal triangle from the image. Figure 5 .16a also 

shows •hat a cr.oss-junction and sevenll T -junctions were detected. 

As mentioned in Chapter 3, wi th a fixed number of edge filters in each scaie, a 

subjective cont our not com ple ted in a finer scale may be completed in a coarser one. 

Figure 5.17 shows that a 1\anizsa squar<) with the gap twice as long as the inducing edge 

(8 pixels} cannot be com pleted at the scale of C1.J. = 0.75 but is completed at the scale of 

O.L = 1.5 with each scale using 3 edge filters. 

Another e..xample is o n the tes t pattern wheel of curve boundary as shown in Figure 

5.18. The scale of OJ. = 0.75 com pletes the gaps oi 2, 4, and 6 pixels wide, but not the 

gaps of 8 and 10 pixels. These bigger gaps a.re, however, completed in scales of a .L = 1.5 

and 3.0 pixels. 

Figure .5.19 shows t he segmcnt<l.t!Oll resu lts of images with dirferent !e,·els of noise. 

E'·idently, the finer sc<J,le of C1.L is hea.vil ~· affected for noise-to-signa l ratio abo,·c 0.3, while 

the coarser scale still gives a reasonable segmentation. Thi> figure should be compared 
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Figure 5.18: The completion of the gaps in a curve boUildary on test pat tern wheel in 

three scales. (a) input pattern ( b) scale of O'J. = 0.75 (c) scale of O'J. = 1.5 (d) scale of 

0' 1. = 3.0. 
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Flgurc &.!9: The segmentation results of noisy images by two finest scales. Row (Il are 

input pa<terns, (II) arc res ults of scale of O'J. = O.i .'> pixels, and (Ill) are results of scaie oi 

O'J. = 1.5 pixels. Columns ( a) ( b ) (c) (d) show iour images with different noise-to-signa l 

ratios: O.t, 0.2 , 0.3 , a nd 0.4. 
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with the results of corner detection in Figure 4.l9 and the results of Prager's algorithm 

in Figure 5.5. 

5.3 Conclusion 

ln summary, my segmentation algor ithm performs reasonably under " variety of 

condit ions. The algorithm is robust against random noise and behaves as expected under 

blurring. Different scales in the algorith m can segment an object contour into different 

levels of detail; a coarser scale can complete bigger gaps and has bett.er noise immuni ty. 

The algorithm consists of only local wiring and is int uitively simple. LocaUty and 

simplicity contribute to the !ugh processing speed. The segmentation of a 128 x 128 image 

with four edge filters in a single scale takes a Sun 4 a few minutes to compute. The 

algorithm demonst rates reasonable performance on vastly different input patterns . 

In conclusion , my edge-based algorithm detects the intensity changes which are 

locally significant and globally form a closed contour. Com pared with other algorithms 

for early visual tasks, this segmentation algorithm does not detect both what and where, 

bu t t ries to answer a simpler quest ion- given the observed intensity distribution alone, 

wh<:re is there someth ing i·n the visual field? 



Chapter 6 

Evaluation 

This chapter describes the evaluation of my algorithm. It first compares the al­

goritlun's performance with Grossberg's boundary contour system and then with human 

performance on a specific task - object detection in the presence of random noise. 

6.1 Comparison with Grossberg's Algorithm 

This section describes the difference between my algorithm and Grossberg's bound­

anJ contour system. The comparison consists of two portions: the difference in the design 

and the difference in the resulting performance. 

6.1.1 Differences in Algorithm Design 

The differences in algorithm design between my algorithm and Grossberg's boundary 

corltour system are briefly summarized in the following. 

I. A different edge filter is used. Instead of a Difference of Box (wh ich works fine wi th 

proper length and width selections), my algorithm applies the elong<tted first-order 

d irectional derivative of Gaussian. Also, only 4 edge orientations are sampled at 

each location instead of 8 or 12 in Grossberg's implementations. 

2. The artifact cancellation operation is treated as a follow-up step of edge Jlltering. It is 

not performed in the ite.-ative loop (cooperative-competit ive loop) as in Grossberg's 

design. 

3. Corners are separately detected in my algorithm. 

4. To complet~ gaps of different sizes, the bipole field of Grossberg's configuration is 

image-dependent.. In my algorithm the purpose of bipole cells is replaced by a spatial 

coherence check, which is defined on a small fixed support. 
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S. Bipole cells in Grossberg's cooperative layer can generate new edge strengths between 

two separate linear ndge segments. In my algorithm incoherent edge strengths are 

rejected. 

6. In Grossberg's model there are two on-center off-surround connections: one from 

the edge filter to the first competitive layer, and the other from the cooperative 

layer to the first competitive layer. A function of these connections is edge th.inning. 

There is no corresponding !)roccssing in my algorithm. The parallel edge segments 

between two neighboring regions indicate that the intensities vary smootWy between 

the regions and are deemed as useful information. 

7. The concept of multiscale is essential for my algorithm. With multiple elongated edge 

filters with.in each segmentation mechanism, each with fixed o .1. and different o, noise 

e.ffects are llllnimized and gaps on boundaries are closed. With multiple segmentation 

mechanisms, each with different 0.1. and sampling interval, more global contours are 

labeled, and bigger gaps are completed. Grossberg mentioned multiple-sized edge 

filters and multiple-sized bipole fields as possible extension to the boundary contour 

system [Grossberg and Mingolla, 1987) but did not sho'~ rCSiilts. 

8. My algorithm does not depend on an analog neural formalism as does Grossberg's 

model. ~loreover, my algorithm uses only one parameter, edge threshold, instead 

of eleven and applies only local operations; global operations like normalization are 

avoided. 

6.1.2 Differences in Performance 

The performance of Grossberg's boundary contour system was cva!U'atcd by imple­

menting an approximation of his model [Grossberg and Mingolla, 198G) and applying the 

program to the test patterns listed in Table 5.1. The implementation deviates from the 

original model in two main respects: a different edge ftlter was applied and an approxima­

tion scheme was used to calculate the neural responses. Also, the anisotropic first-order 

derivative of Gaussian was used as the edge filter instead of the difference-of-box function. 

It is assumed that the time deri,·:.ti,·e terms in the nonlinear differential equations 

that model the beha,·ior of the neurons ratlidly con,·erge, and therefore, the response 

of each neuron at the stable state catt be calculated by algebraic manipulations instead 

of a solution of a system of differential equations. l"or example, the neuron at ( i, j) 
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of orientation k, y;1b in the second competitive stage obeys the shunting on-center off­

surround equation (Grossberg and Mingolla. 1985) 

d 
dtY•ik = -Dy;Jk + (£ - YoJk)O,jk - Yijk L O;pn (6.1) 

m¢k 

where 0;1k is the neural response a.t (i,j) of orientation kin the previous layer and A, B 

are constants. Setting f.Yijk = 0 gives 

EO--, 
Y" '·- 'J 

'
1
"- D + O;i 

(6.2) 

where 0;; = L:m O;;m for all orientations mat (i,j). The above equation sl10ws that the 

neural response thus calculated does not depend on the transient behavior of the circuit 

but rather on the connection patterns. ~1.ingolla contends that using the transient is 

essential to the performance of the Crossberg/~lingolla model, but the problems of basing 

detection on the transient seems insurmountable: On the one hand, the instability of the 

transient response would lead to dependence of time period in which a neuron gives proper 

response. On the other band, using the transien t presents the problem of synchronization 

among many mutually-interacting neurons. 

For each test pattern the parameters of the boundanJ contour· syslem were tuned to 

obtain a reasonable result ('Recttll the discussion of evaluation criteria in Section 5.2.1 ). Ali 

the test patterns listed in Table 5.1 served as inputs to Grossberg's algorithm. The results 

are shown in Figure 6.1 - 6.2. The effect of various le\'els of random noise is measured for 

two simple patterns, a square and ou1 illusory square. These results a.re shown in Figure 

6.3. 

In brief, with the parameters properly selected, Grossberg's boundary contour sys­

tem gives a reasonable scgment::ltion for <lll the test patterns listed in Table 5.1. With 

multiple edge filters the sys tem also gives different levels of detail for an object contour , 

which is shown in the resu.lts of test pal tern$ ladder and tex. Compared with my algorithm 

described in Chapter 5, there arc several differences in performance: 

1. The configuration of my algorilbm has only one parameter, edge threshold. and is 

not image-dependent. whereas Grossberg's model (1985) bas II parameters among 

which the ones defining the bipole field are image-dependent. 

2. ~!y algorithm more explicitly ddlnes a dosed contour because, after iteration. all 

edge strengths and corners remaining are spatially coherent and form a portion of a 

closed con tour . 
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Figure G.l: The scgmemation results for ,·arious test patterns by Grossberg's boundary 

contour systt1ll. 
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Figure 6.2: The segmentation results for test pattern tez by Grossberg's boundary contour 

system. The pa~tern to the left is with a small edge filter (o = OJ. = 0.75); the right 

segments a bigger structure with edge filter of o = o J. = 3.0. 
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F'igure 6.3: The effect of random n?ise on the performance of the boundary contour S!J;Iem. 

The sub tides of the P"-ll<'rM show t h,,l i<'ft pat tec11 is with not>e· to-sig:•al ratio ('quzl to 

0.25; the right pattern has nc,,c. to.sisnal ratio of OA . 
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3. Grossberg's model handles line ends and may explain the Ehrenstein iUusion; my 

algorithm does nol. 

4. My algorithm has better noise immunity. Compared with Figuies 5.12 and 6.8, 

which show the segmentation results of noisy images by my algorithm, Figure 6.3 

shows that since the boundary contour system adds more edge strengths to the edge 

map, the result becomes very noisy when the noise level is above a certain value. 

(In the figure, this value is where noise-to-signal rat io = 0.4.) 

6.2 Human Object Detection vs. Noise 

My algorithm was designed in part based on knowledge of the biological visual 

system, so it is worth comparing the performance of my algorithm with that of human 

vision. A comparison between the characterist ics of the two systems may help to improve 

the artificial visual system defined by my algorithm. Unfortunately, biological vision is 

so complicated that it is impossible to perform a thorough analysis in a short period of 

time. As a compromise, a very specific task concerning the effect of random noise on 

object detec.tion was selected as tl1c basis of comparison. The followi ,lg section describes 

the experiment. 

6.2.1 Objective 

The objective of the experiment was to measu re the threshold noise level at which 

a human subject fails to detect :ln object in the stimulus. The independent ,·ariable in 

this experiment is the random noise level; the dependent variable is the subject's object 

detection capab'ility at that noise level. It follows that the task of the experiment is for 

the subject to state whethe r the subject detects an object in the st imul us or not. 

To assure that resul ts from the psychophysical experiment are comparable with 

that of my algorithm, the stimuli shown to the subject need to be the same as the images 

input to my algorithm. The en,·ironment must be carefully controlled; the task must be 

specific so that the effect of fa.ct.ors other than the independent variable are minimized. 

Detection targets with both subjective and objective contours were used for the 

experiment. It is well-known that humans see objects consisting of subjecti,·c contours, 

and the perception of visu;Ll illusions may suggest aspects of the underlying architecture 
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Figure 6.4: The ten patterns used for the psychophysical experiment 

of the visual system. lienee a comparison between the effect of random noise on human 

detection capability of a 1\anizsa square and on my algorithm's segmeotation capability 

with that test pattem seemed useful. 

The comparison betw~cn the performance of a human and since my algorithm can 

be based on the absolute \'alues of the threshold noise le,·el or on a ccrtai:l trend. e.g., how 

the threshold noise level varies with the sizes of tlte detection target. Since the biological 

visual system applies knowledge and multiple segmentation cues. and ID! algorithm is by 

no means a. complete model of the human visual system, it is not ''e:~ informath·e to 

compare the absolute values. A comparison oi some trends is more reasonable. Therefore, 

four sizes were selected for e<tch of the two test patterns, sqr and ksq,,:).!ld each subject ran 

tbrouglt test pattems of multiple sizes of each detection target . The h~·pothesis is that 

the way random noise n.ffccts t h ~ a lgorithm's performance on objects of d ifferent sizes is 

similar to the way it a ffects h111nan object detection. To be more specific. the profiles of 

Lhreshold noise level \'crsu~ objec t sizes should be simil~r for my algorithm and human 

subjects. 

6. 2. 2 .\1ct hod 

Experimental Paradigm 

Se"eral exp<:>rimental llroccdurp, can he used for point estimatior .. e.g .. method of 

constcrnts. meU•od of /writ.;, 11/)·dOtt'H i>rvr.C<Iutr·s. and ma:inwm./rh!ihoCI<! (,<lwwtion. for 
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~his experimem, an up-clown methocl was used because of its simplicity, high efficiency, 

small-sample reliability, and relative freedom from restrictive assumptions (Le,·itt, 1970). 

The noise level in tb.is experiment is specified as tb.e noise-to-signal ratio, as defined 

in equation 4.6, and the mcasurcmeut of the threshold noise level proceeds as follows. 

Each test pattern was shown ~o the subject with various levels of mndom noise was shown 

to the subject, and to each the subject answered whether an object was perceived or not. 

A positive answer increased the noise-to-signal n tio in the test pattern for the next trial, 

and a negative one decreased the noise-to-signal ratio. Aiter a certain number of changes 

of response type, i.e., from yes to no or no to yes, the program stopped and the threshold 

noise level was estimated based on the resulting data. 

The step size for the noise le,•cl adjustment was fixed through the experiment and 

was decided based on the results of a preliminary study: A bigger step size allows faster 

convergence and hence a shorter run, while a smaller step size gives better accuracy of 

the final result. To compromise, the noise in the initial image was set at a value near the 

possible threshold value, and reasonably small step sizes were selected. Tllis step size is 

0.05 (in noise-to-signal ratio defined In equation 4.6) for test pattern ksq and 0.1 for test 

pattern sqr. 

An adjustment of the noise level was performed after each trial. However. it was 

found that if tbe same step size was used for both increment and decrement of the noise 

level, a subject easily noticed that con,•ergence had been reached and might lose concen­

tration for the later stimuli. A standard technique to cope with this problem is to integrate 

several tests into one run and interleave among different test patterns. Unfortunately, the 

integration also lengthens a run of the experiment.. Each test of this experiment took 30 

to 40 trials. A combination of, say, •I tests migh t hore the subjects, resulting in lower data 

accuracy. Therefore, l decided to use a simpler scheme: the decrement of the noise level 

for each negative response (the subject does not see tl\e object) was three times that of the 

increment. A result of this scheme is shown in Figure 6.5. The experiment can be viewed 

as a combination of alternating up and down sequence; each sequence is the result of an 

application of tbe method of limit$. 1'\ote that the up and down sequences ha,·e different 

step sizes. 
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Figure 6.5: A set of data obtained from the experiment with the estimation method 

lllust rated. The expression uses the Wetherill [1963] estimate of the 50% th reshold based 

on the last 4 upper turning poin ts . For each of the turning poin. the estimate of threshold 

is midway betwcCJI the turning point level and the pteceding level. 

Given a set of data, the procedure for estimating the th reshold value was discussed 

thoroughly by Wetherill et al. IHlG3). !11 this experiment the turning points indicate the 

50% point of a subject's psychometric function. There are two sequences and hence two 

kinds of tuming points as shown in Figure 6.5. Let U be the threshold suggeHed by the 

up-sequence, in particular the a'·erage of the values at point A and Bon Figure G.5. Let i · 

be the 1hreshold suggested by the down sequence, in particular the average of the values 

at points C and D. Then there are sever" a! ways to estimate the threshold noise level based 

011 (i's and V's. For this exporimeut ouly the t rend of the data points was considered; the 

absolu te value of thresholds was not essential. Therefore, th is simple estimation scheme 

was adopted. After studying the possible combinations of U's and ll's for many sets of 

data, l decided to use the average of U's at the last ·l upper turning points as the threshold 

noise level. Tlte first 2 UJlJ>er turning points are discarded as suggested by llrownlee et a! 

[1953). This scheme is equJ\·alent to successi,·e applications of the mctlto<i of limits with 

up sequence only. 

The deCJsiott crit,.rion of n ~ul>Ject could chnnge OH'r tim<' during tit!! experiment. 

This potet1tial inconsistency """~ cltcc·ked by the inscrtton of catclt tm•ls. llcfote the ex-
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perirncnt two patterns, one with small noise and the other with large noise were ge~teratcd 

and showll to the subjec t. T he experiment began after the subject a.greed that the re wa.s 

an object in the pattern with small noise and none in the other. During the experiment, 

the catch trials of these two test patterns were randomly inserted in the trial sequence. 

If there wa.s more than one error for the catch trials in a run of the experiment, the data 

were deemed inconsistent and were discarded. Five out of 34 sets of data failed the test. 

Equipment 

The images were displayed on a Comtal 10/24 imaging system. The host computer 

was a Vax 11/730 running the Berkeley •1.3DSD UNIX 1 operating system. The grey-scale 

monitor was calibrated and converged prior to the experiment. The luminance range of 

the monitor wa.s 0.00<1 footlambcrts for the dri"ing level of 0 attd 50 footlamberts for the 

driving level of 255. 

The Comtal 10/24 system has three 1024 x 1024 8-bit frame buffers which allow 

fast display of a sequence of test patterns. The 64 x 64 test pattern was at the center of 

the upper left quarter of the monitor. A zoom factor of 2 x 2 was performed by hardware 

to make the te.st pattern occupy the center region of the screen. 

The subjects entered the answers through a keyboard. The four consecutive keys 

of 1, fl, 3, and enter at the lower right corner of the keyboard were the only ones needed 

after the program started. 

Software for the Experiment 

Programs in the C programming language were written to display the sequence of 

test patterns and collect data. The start-up time of the program was about SO seconds. 

The inter-trial interval was 6 second$ on average. No subject felt the procedure uncom­

fortable, and all of them understood the operation of the program after a brief explanation 

and several minutes of practice. All stimuli and the user answers were recorded by the 

computer. 

1 UNIX is a trademark oC AT&T Dell L>horatoriCJ<. 
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Environmental Layout 

The subject was seated approximately 85 centimeters from the display with viewing 

direction perpendicular to the screen. Each side of the test pattern extended for 27 mm 

on the monitor and thus subtended 2• of '~sua! angle. The keyboard rested on a side 

tab le, which the subject could comfortably reach. 

The perception laboratory provided good env ironmental cont rol in the experimental 

area. The ambient light was set to •I footlamber ts. The bla<:k-painted room minimized 

undesired reflections on the monitor. 

Test Images 

There were two sets of test pattems: sqr and ksq, each with spatial sampling of 

64 X 64 pixels. The test pattern ksq was composed of four pacmen with the inducing edges 

properly aligned to form an illusory square. The opening angles of the pa.cmen were 90•, 

and the radius was eight pixels. A test pattern generation program put the four pacmen 

;\t the proper locations according to the size of the illusory square. All inducing edges 

were sharp. The sizes of the square were selected to be 20, 2~, 28, and 32 pixels so that 

the Illusory contour was substantial in each case. The test patterns of sqr were simpler. 

There were again 4 si~es of 20, 2,1. 2S. and 32 pLxels. The boundaries of the test pattern 

sqr were step edges. 

The test panern was shown on a grey-scale monitor with dynamic range of 0 - 2.:>5 

driving levels. The range of pixel intensity of the test pattern without noise was 88- 168. 

This decision was a. compromise betw~u the n<!<!d for a contrast to show the signal and 

the need for an intensity range to show the noise. Note that when the noise-to-signal ratio 

is ;~.bove 0.33, the th resholding a.t d ri ving levels 0 and 255 occurs. This 01>era.tion might 

affect the subjects' pe rformance though the current data do not ind icate so. 

Gaussian white noise was added to the image. Remember that the standard devi­

ation, (1, of the Gaussian was dcfincxl as the strength of noise, and the difference between 

the average intensities of the background and the signal was the strength of signal. The 

noise-to-signal ratio was defined in equation 4.6, 

noise- to- 8ignal ratio 
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a b 

Figure 6.6: An example of the the l-est stimuli. (a.) sqr2l (b) ksq~S. where the number 

indicates the size of the square. 

and aerved as the independent variable of the experiment. Note th<tt when the 11 was 

large . the intensi ties were truncated at 0 and 255, rcspecth·ely. This truncation occurred 

when the noise-to-signal ratio ''-:IS above 1/3. and the number of pixel~ with truncated 

intensities reached 1% of th~ •otal numbe1· of pixels when noise-to-signal ratio was above 

0.5. ~·lorco,·cr, for reasons o f display SJ}CCd <l.ll the data pointS were obta ined wi th the 

same no ise pattern. fu rther studies are n<!cded to flnd out the eJTect o f different noise 

patterns. 

A control pattern was shown beside t he test pattern ksq to help the subject decide 

whether the central region was darker than th~ su rrounding region or not . The comrol 

pattern W<l.S composed of four pacmen wi th only outlines (s ho wn in Figure 6.6). The 

central squares of the control and test patterns had the same sizes. A single noise pattern 

was added to both patterns. Since the control pattern was known not to generate the 

subjective contour, when thu difference between the central region and the surrounding 

region o f t he test pat tent is small, the pattern Cilll help a subject to decide whether there 

is indeed a brigh tness oi rr~I"('IICC. !\[Ol"eO\W, tO avoid the possible interference from the 

dark background, the substauti11l area outside the two patterns was filled in with random 

noise. 
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The Task 

For the set of stimuli of an objective square, the question for a subject to answer 

was: do you see an object in the stimulus? The question for the stimuli of the subjective 

contour was not as obvious. A psychophysical experiment on the Kanizsa square [Halpern, 

1987) suggested that the question of ··do you see a difference between the brightness in the 

central region and the surrounding region?" was reasonable. This question was adopted 

in my experiment. The subjec ts were instructed to compare t he brightness difference 

between the central region and surround in the control pattern when the answer to the 

above question was unclear. 

Subjects 

Eight naive subjects (S female, 3 male) participated in the experiment. All subjects 

were graduate students or had attained a graduate degree recently. Most of them did 

not have previous experience In visual psychophysical experimen ts. The observers were 

guaranteed that the result would not be associated \\~th each individual and were informed 

that it was more imponant io be consisten t than to be competitive wi th respect to t he 

threshold. 

Procedure 

Each subject ran through the experiment for 2 sessions on two separate dates. 

During each session a subject did 8 runs of experiment, each for a different test pattern. 

The runs for the same kind of test pattern were performed consecutively, but in a random 

sequence. 

Before running the experiment, a subject was first seated in fro1tt of the moni tor and 

an explanation of the experiment~! setup and the stimuli were given. Before and during 

the experiment, the subjects were allowed to ask the experimenter to give the explanation 

again . 

The experimental procedure is Sltmmarized in the following. Two patterns were 

first shown to the subject. One was witlt small amount of noise and the other with large 

noise. These ttoise levels were selected from a pre li minary study which showcu that one 

could detect the signal in the less noisy pattern but could not in the other. All subjects 

confirmed this before the exp~J"iment. During the experimen t each test pattern was shown 
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subject id size 20 size 24 size 28 size 32 mean 

hh 0.6750 0.6750 0.3875 0.1875 0.4813 

hh 0.5750 0.3500 0.3375 0.2250 0.3719 

hs 0.2750 0.0875 0.1500 0.0750 0.1469 

hs 0.2375 0.1500 0.1625 0.1125 0.1656 

hw 1.0875 0.7750 0.9000 0.4875 0.8125 

hw 1.0875 0.8500 0.9125 0.6750 0.8813 

js 0.8000 0.7125 0.6000 0.4375 0.6375 

js 0.8000 0.6125 0.6750 0.6125 0.6750 

lm 0.8750 0.4625 0.4125 0.3500 0.5250 

lm 1.0750 0.7500 0.8625 0.6250 0.8281 

me 1.0250 0.6750 0.7875 0.6125 0.7750 

me 0.8250 0.6500 0.6000 0.5125 0.6469 

sj 0.9750 0.8500 0.8000 0.6625 0.8219 

sj 0.6875 0.7000 0.5625 0.5000 0.6125 

Table 6.1: The ~xp~rimcntal results of test pattern ksq. 

until the subject responded. U the subject percci\'ed the signal, the key I was entered. 

otlterwise 2. The subject could change each decision unci! a.? was entered. Each positive 

response increased the noise level hy a. fixed UJtil, and each negative one decreased the 

noise by three units for the next stimulus. After 12 turnings of the data, i.e., 12 up 

sequences and down sequences in total , the program stopped and estimated the threshold 

noise level based on the values of the last 4 upper t urning points [Wetherill et al., 1963]. 

The two test patterns first shown were used in the catch trials. Each test pattern was 

inserted into the trial sequence randomly. The answers to the catch trials were separately 

recorded and printed. 

In each session, the subject ran through eight test patterns consecutively. The first 

run served as a trial run to allow the subject to become familiar with the experiment . 

After the subject complct~d all four si~es of the k$q, the test pattern of sqr then followed . 

The eight runs took about one and a half hours. 
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subject id size 20 size 24 size 28 size 32 mean 

hh 1.1000 JAOOO 1.5500 1.5750 1.4812 

hh 1.3000 1.2750 1.4750 l.G250 1.<1187 

hs 1.7000 1.5500 1.7500 1.9000 1.7250 

hs 1.7000 1.7000 1.8000 2.1500 1.8375 

hw 1.2250 1.2000 1.4000 1.4250 1.3125 

hw 1.1500 1.3250 1.4000 1.3000 1.2937 

lm 2.3000 1.6000 2.3500 2.8000 2.2625 

lm 2.2750 2.7000 2.5750 2.4750 2.5063 

lw 1.8000 l.G250 1.7750 1.7000 1.7250 

lw 1.8750 1.7250 1.8750 2.0000 1.8688 

me 1.0250 ).1750 1.0500 1.2250 1.1187 

me 0.8750 1.0250 1.1000 1.1000 1.0250 

sj 1.1250 1.2750 1.3250 1.4250 1.2875 

sj 1.2750 1.4750 1.<1250 1.5750 1.4375 

Table G.2: The experimental res ults of t est pattern sqr. 

Results 

The experimental result s are listed in Tables G.1 and 6.2. Each row in the table 

shows t he four threshold noise levels that a subject gave for a detection target of a certain 

size. Note tha t each threshold noise level was obtained from one run of the experiment 

and the 4 thresholds in the row was rcc<iill'ed consecutively. U any of the 4 data points did 

not pass the consistency test , that row of data were discarded. Among the eight subjects 

for each experiment , there were 2 out of 16 rows discarded for each test pattern. 

Both tables show that the data obtained on two separate dates for a single subject 

do not differ much - the average of the difference between the results obtained during 

the two separate sessions is 0.1589 with standard deviation 0.2011 for test pattern sqr and 

0.1375 with s tandard devia t ion 0.1153 for test pattern ksq. The subjects were consistent. 

Though there was substantial variation across people, since t.he goal was to analyze the 

trend between the two sets of data from h11mans and from the algorithm, this variation was 

an ert·or t erm and was hand led by the m1alysis method described in section 6.4 . Tables 6.3 
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sttbjcct id size 20 size 24 size 28 size 32 

hh 0.(\250 0.5125 0.3625 0.2063 

hs 0.2563 0.1188 0.1563 0.0938 

hw 1.0875 0.8125 0.9062 0.5813 

js 0.8000 0.6625 0.6375 0.5250 

lm 0.9750 0.6063 0.6375 0.4875 

me 0.9250 0.6625 0.6938 0.5625 

sj 0.8312 0.7750 0.6813 0.5812 

mean 0.7857 0.5929 0.5822 0.4339 

SD 0.2753 0.2318 0.2460 0.1994 

Table 6.3: The ave.rage threshold noise. levels of each subject for test pattern ksq. 

and 6.4 give the means o{ the thresltold noise levels for each subject on each test patterns, 

as well as the means and sample standard deviations (SD) across all subjects. 

6.3 My A lgorithm vs. Noise 

This section describes how random noise affected the segmentation performance of 

my algori t hm. In the following the procedure for determining the threshold noise level is 

briefly described. 

The same test patterns as used for the ,,sychophysical experiment were used as the 

input to the algorithm except that the test pattcms of ksq were presented without the 

control pattern and with a smaller background region. A single configuration of four edge 

filters with u .L = 0. 75 and u = 0.75, 1.5, 3.0, 6.0, and a single edge threshold of 0.03 was 

applied to all the noisy test patterns. After various levels of noise wa.~ added to the images, 

eacll of these test patterns was input to the segmentation algorithm. 

The noise level at which the algorithm fails to segment the test pattern properly 

is recorded as t he threshold noise level for the algorit hm. For this experiment I use an 

operational definition of 1.hc fail ure of segmentation: if t he the area of the segmented 

region differs from that of the target region by more than 25%, then the segmentation is 

deemed as failure. Empirically, then! are two ways a failure can occur: either a portion 
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subjec• id size 20 size 24 size 28 size 32 

hh 1.3500 1.3375 1.5125 1.6000 

hs 1.7000 1.6250 1.7750 2.0250 

hw 1.1875 1.2625 1.4000 1.3625 

lm 2.2875 2.1500 2.4625 2.6375 

lw 1.8375 1.6750 1.8250 1.8500 

me 0.9500 1.1000 L.0750 1.1625 

sj 1.2000 1.3750 1.3750 1.5000 

mean 1.5018 1.5036 1.6321 1.7339 

SD 0.4631 0.3481 0.4457 0.4919 

Table 6.4: The average threshold noise levels for each subject of test pattern sqr. 

test pattern size 20 size 24 size 28 size 32 

Kanizsa square 0.765 0.745 0.550 0.095 

square 0.325 0.465 0.405 0.485 

Table 6.5: The threshold noise levels measured by my algorithm. 

of the boundary of the detection target disappears or ext ra contours appear. r'igures 5.7 

and 6.8 demonstrate the segmentation results with 1toise levels at which the algorithm was 

deemed to give improper segmentation. 

The determination of the du-eshold noise level proceeded as follows. Since only a 

single noise level could be tested at one time, the range of possible noise levels was first 

deterntined empirically. A series of images, with fixed difference in noise-to-signal ratio, 

was created. These images were fed to the algorithm in a sequence sintilar to a binary 

search to find a range includi ng tl\e th reshold noise level. This procedure was repeated 

until the desired accuracy was obtained. Also, a fixed random number seed was used to 

add noise to all the test images. The effect of different noise p<tt•erns requires further 

research. The results are shown in Table 6.5. 



----------------------~ 

. . . . . . -. 
......... ...... ··-.... ... -·· .. . .... . 

. . .. ..... .. . ..... .. . 
" ... ' ' .. .. , .... . .... ... . 

.. .... . . . . .. . .. . ........ - ... -.......... . .. ... .. . 
·:::;:: .. : .. ::~~~:: .. : i[:: . ~~:: .~:: "....... .. . . . . ...... .... . ........ . ........ . 

(a) 

...... . .. . ..... . .. . 
" . ' . ... .... .. , .. "' .......... .. . ........ . . ... . ........................... .. . ... . ........ .... . ...... . 

:: : .. ; :· •;::::: ... 

. . . . .... .... ........... . 

. ... . . .... . .... . 

(c) 

······ -·· 

. .. . . .. . .. .. . 

... ,. . 

. . .... . . . . . . . . . ' 
• " • 0 ••••• 

. .... ··-··· .. . ...... 

....... . ... .. .. . . . . .. . 

. ... .. . .. . .. .... . 

.. . . .. 

...... ........ .. ...... . 
•• • •• •• • 40 

.... .............. ···················· 

(b) 

.. ........ ... ····· .... . ..... . .... . ...... . ... . ... .. .. .. .. .. ... . .. 
:: .. :· ·:;: ::::::· ... . .. 

. .......... . .. . .. 
,. ' ·········· ·· 

......... ... . .. .... .... .. 

......... . ........ ····· . . .......... . 
.... . .. 
' .. :: " ; : -: :::: 

(d) 

I 
I 

114 

Figure G.i: Two exa:nples of the segmented results showing the threshold noise le,•e) for 

test pattern l;sq, Top row are with central region of 20 x 20 pixels, while that of the bottom 

row are 2S x 2S pixels. Pattern (a) has noise-to-signal ratio of 0.76 and segmentation is 

deemed as good. (b) has noise- to.signaJ ratio of 0.77 ad is deemed as bad . Similarly. 

pa tterns (c) ~nd (d) arc with noise-to-signal ratio of 0.5 and 0.6 and a rc deemed as good 

anc bad segmentation. respecti\"e)y, 
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Figu r~ 6.8: Two examples of the s~gmented results showing thel threshold noise level for 

test pattern sqr. Top row squares are 20 X 20 pixels, while that of the bottom row are 

28 x 2S phels . Pattent (:t) has noise . to·signal ratio of 0.3 and segmentation is dee med 

as good, (b) has noise· to.signal ratio of OA ad is deemed as bad. Similarly, paaerns (c) 

and (d) are with noise. to·signal 1'<1\io of 0.4 and O.f> and are deemed as good and bad 

scgmen ta lion, respectively. 
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6.4 A Comparison of Human Vision and My Algorithm 

The Statistical Met hod 

This subsection briefly describes the method of data analysis . A proftle analysis 

for two independent groups was u~ed to compMe the parallelism between the trend of the 

psychophysical data and the data obtained by my algorithm. The analysis was in the 

form of hypothesis testing. The 11ull hypothesis, flo, was that the random noise affected 

the human object detection and algorithm segmentation in a similar way. More precisely, 

let 'X = (X!, x2, :r3, x.) be the vector of the sampled mean of the e..xperimental results and 

X!, :tz,x3, x4 be the a.verage of N1 observers' responses for test pattern of size 20, 24, 28, 

and 32, respectively. Likewise, let Y = (Y,, y1 , y3 , y.1) be the vector of the sampled mean 

for N2 results obtained by running the algorithm against test inputs with noise. 

H0 :CX = CY, (6.3) 

where 

[: 
-1 0 _: l C= I - 1 (6.4) 

0 1 

T he alternative hypothesis was that the two profiles were not parallel. According to [Mor­

rison , 1976], Hotelling's T 2 is a reasonable statistic for the test . 

(6.5} 

wltcre CSC'/N is the sampled covari<~nce matrix. T 2 is related to tl1e F distribution by 

F = "'---!ft + Nz - P 1'2 
(N1 t N2 -2)(p-J) ' 

(6.6) 

where pis the number of elements in the mean vector. For trus experiment, p = 4. flo 

would be rejected at the level of significance, a, if the observed F exceeded F,;p-l,N,+No-p· 

Results 

According to Table 6.3 and 6.4, N1 for both J.:sq and sqr· are 7, N2 = 1, and p = 4. 

Thus the cri tical values to re.iect Ho for various <>'s are Jjsted below. 

0 0.1 0.05 0.02.5 O.Ql 

}"<,;3.·1 <J.l9 ().59 9.98 16.69 



Notsc 10 signal 

0 ·! 
0.7 

06 

0.5 

0.4 

0.3 

ratio 

0.2 , .... - -

1:··· ···~·- :1 Hct;Hul 
A l ~orithm 

0. 1 Size of 
s<; u are 

20 24 28 32 (pixels) 

117 

Figure 6.9: A plot of the results from psychophysical experiments and test of the algorithm 

on test pattern ksg. 
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Figure 6.10: A plot of the result~ ftOIIt psychophysical experiments and tc>t o: the also· 

rithm on test pattern Mfr. 
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The means of the psychophysical data, with the results obtained from successively 

applying the algorithm to the test inputs. are plolted in Figures 6.9 and 6.!0. For the 

iUusory contour. T 2 = 27.3$55. F = G.O~i > 4.19. Hence H0 is rejected foro = 0.1. 

Foro = 0.05, F = 6.0857 < 6.59; the data fail to reject H0 • For the square of physical 

con tour, T 2 = 3.1350, F = O.G96i < 4.19. Hence for the physical square the data fail to 

reject Ho. 

Although the psychophysical data reject the hypothesis of parallel proflles for the 

test pattern ksq for a= 0.1, Figure 6.9 shows that, for a bigger object less noise is required 

for both human and my algorithm to discount the effect of subjective contour than that 

for a smaller object. It is encouraging that both curves are monotonically decreasing. 

For the test pattern sqr. the psychophysical data shows that more noise is needed 

for a bigger object as expected, and the results obtained by applying my algorithm to the 

test inputs of various sizes show a similar trend. The profile analysis does not reject Ho, 

confirming this point . 

- · 



Chapter 7 

Conclusions 

T his chapter summari~cs the considerations behind the design of my algorithm, 

its implementation, and evaluation. It concludes with a discussion about possible future 

research directions. 

7.1 Summary of the Algorithm 

My algorithm is based on the assumption that an effective vision algorithm should 

be based on a connectionist architecture because of the strict speed constraint of visual 

tasks. The effectiveness of the connectionisc approadl is possible because our visual world 

is highly regular - the shape of many objects have common properties. Therefore, if 

the world const raints, viewed as segmentation cues, arc built into the detection hardware, 

reasonable segmen tation c:.n be obtained In real-t ime. I.n this sense the definition of 

connections ls really the process of including knowledge about our visual world iMo the 

physical architecture of the ''isual system. 

The special-purpose circuits provide high processing speed but have their con­

straints too: they can implement only local operations; their functions are 7tgid and 

their capabil it ies limited. Hence side effects may occur. For example, the need of special­

purpose circuitry for fast information reduction in ea rly vision causes optical illusions. 

One way to cope with this deficiency is to have repetitions of the circuitry with each 

unit covering a different range of spatial and temporal frequencies. This notion is the 

bas is underlying mult iple segmentation mechan isms and multiple edge filters witlun each 

segmentation mechanism. 

My edge-based segment<nion algorithm consists of three stages: edge filtering. cor· 

ner detection, and a spatial whcreucc cilcck. All the later stages depend on edge filtering. 

After studying several functions for edge filtN kernels, the multivariate Gaussian filters 
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at four orientations and with a and cr .1. following certain relationshlps wete selected. A 

problem with this template scheme is the possibility of false alam1s - significant response 

in au edge filter does not necessaril y indicate an edge. Several measures were taken to cope 

with this problem. Fi rst, multiple clot\gatcd edge filters were applied at each sampling 

point to handle the various levels of noise in the image. Second, artifact cancellation was 

used to ruscount the sampli ng artifacts based on the edge strengths at a single sampling 

location. T hird, a scheme for detecting corners in the image was used because edge fil­

tering does not give proper iniormation about object boundaries there. Fourth, a spatial 

coherence check was developed to verify the local information based on spatial context. 

7.2 Summary of the Implementation and Evaluation 

A program implementing tltis edge-basecl segmentation algorithm was developed, 

and this program was applied to many test patterns to in vestigil.te the properties of the 

algorith m. It was found that the a.lgorithm gives reasonable segmentation under various 

conditions, the multiscale mechanism in the algorithm can segment an object contour at 

different levels of detail. and t he algorithm behaves reasonably well against random noise. 

The algorithm has its problems too: the current implementation does not work well for 

lines in the image and has difficulty with a sharp angle or aT-junction with a small 

intercep ting angle. 

A version of Grossberg's boundary contour system was also implemented, and the 

sil.me input patterns used to test my algorithm were input to this program. The results 

show that, with the parameters properly selected, the boundary contour system a.lso gives 

reasonable results (or al l test patterns within a few iterations. Compared to my a.lgorithrn, 

the boundary contour system handles li nes and may explain the Ehrenstein illusion bu t 

has the following sbortcomi11gs relative to my algorithm: 

• The system configuration is image-dependent. 

• The J)erformance depends on many system parameters. 

• The model does not work well for noisy images. 

The effect of ril.ndom noise on my a.lgo•·i thm 's segmentation capil.bility was further 

investigated to compare with data from human subjects. Psychophysical experiments 

measuring t he noise level at which a subject fails to detect an object in the stimuhts were 
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designed and performed. The results ob tained from the experiment and my algorithm 

showed a similar trend. 

It may be concluded that an algorith m with mul tiple elongated edge filters, explicit 

corner detection, and explicit local spatial coherence checking, when applied at many reso­

lutions with corresponding spatial sanq}ling, can detect both real ar1d subjective contours 

successfully. The performance is competitive witlt Grossberg's method and comparable in 

certain ways to buman per formance. 

7.3 Future Work 

My algorithm is by no means a complete model of the human visual system, but 

it is an example showing that computer simulation provides a useful means for studying 

vision. Besides, the knowledge t hus obtained can be used to design an effective vision 

machine. This section first lists several points which. I found, during this research, to be 

either possible alten~ ati ves to the cu rrent design decisions or require further investigat ion. 

Lastly the section outlines the directions in which research on this connectionist method 

might expand. 

7.3.1 Design Decisions 'Worth a Second T hought 

Effect of Noise. The same noise pattern with different magnit ude was inserted in 

the input pa t terns for test ing both my algorithm and human vision. The effect of different 

noise patterns should be further studied. 

--"" 
Coherence Rules for Edges and Corners. The coherence rules for edges and 

corners may be impro,·ed. For example, the coherence rules for diagonal corners consider 

a location beyond the neigh boring 8 pixels of the position under consideration. Therefore, 

a contour may have a one. pixel gap on it. What is the probability of this situation? Can 

we leave out this position in the definition? 

· T-junct ions and Cross-Junctions. The T.junctions and cross-junctions are places 

where object boundaries interact; as mentioned in Chapter 4, the detection of these fea­

t ures and the design of corresponding coherence rule> require more thorough study. 
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On the Observer Experime nt. The results at tained from the observer experi· 

ments were interesting but not decish·e: the task was spedfic; the effect of noise pattern 

and in tensity thresholding needs further investigat ion; a fixed viewing condition (e.g., vi­

sual angle covered by a test stimulus) was used through the experiment; the test patterns 

applied did not cover the whole range of possible object sizes; the threshold noise levels 

obtained for test patterns 8qr vary by a small amount and might need more experimental 

data to confirm the trend. ~·lore work is required. 

7.3.2 Future Directions 

Line Detection. As pointed out before, the algorithm does not work wcU on lines 

or thin objec ts in the image. Special filters and follow·\lP processing are necessary to 

obtain satisfactory behavior for such objects. Second-order directional derivatives of a 

twe>-dimensional Gaussian may serve as line detectors as physiological e,·idence suggested. 

A different spatial coherence rule is required for lines. Moreover, the combination of the 

detected lines and edges is also worth further investigation. 

More Precise Corner Detection. As suggested in Chapter 4, a corner may be 

detected based on the edge strengths in a bigger area.. Fu-rtl\ermorc, edge filtering can 

be applied on a hexagonal sampling grid. WiU these measures improve the algorithm 

performance? 

Interaction with Other Segmentation Cues. Biological vision applies multiple 

segmentation cues. Besides intensity differences, there may be color. texture, motion, 

and depth differences. What is the mechanism to extract these segmentation cues from 

au image'! How can the results from different segmentation cues be combined to give a 

segmented image? 

Connections from Learning. Adaptivity enables a connectionist model LO in­

corporate knowledge into its parallel distributive architecture. There have been many 

learning paradigms in the field of neural networks. It would be interesting to see that if 

the connection patterns described in my algorithm can be learned from an initi<LIIy random 

network. 

Multiscale mechanism . L;lStly, as mention('<! in Charner 5, 1>roper multi~cale or­

ganization. integrating individually function-limited units into a globally effecth·e system, 
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is the key to the success of this algorithm. Tbere are many related problems to be sol\"ed. 

For example, during edge filtering, the support of the edge filter, when applied at two 

successi'"e sampling points, overlap with each other. What is the optimal relationship be· 

tween the edge filter size and the sampling interval' What is the optimal number of scales? 

How should the outputs at different scales be combined? Answers to these questions await 

further investiga tion. 

Besides the functional aspect, the multiscale mechanism also provides the necessary 

redundancy for reliability- the visoal system is elegantly built: a unit, when it is normal, 

enhances the system perfomta.ncc, and when it is not, it does not cause the system to fill. 

l conjecture that this mechanism is not only essential for vision but for the brain as well. 

There is still much to learn. 

-· 
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Conclusions 

This chapter summarizes the considerations behind the design of my algorithm, 

ils implementation, and evaluation. It concludes with a discussion about possible future 

research directions. 

7.1 Summary of the Algorithm 

My algorithm is based on the assumption that an effective vision algorithm should 

be based on a connectionist architec ture because of the strict speed constraint of visual 

tasks . The effectiveness of the connectionist appro~h is possible because our visual world 

is highly regular - the shape of many objects ltave common properties. Therefore, if 

the world constraints, viewed as segmentation cues, are bu.ilt into the detection hardware, 

reasonable segmentation can be obtained in real-time. In this sense the definition of 

connections is really the process of including knowledge about our visual world into tbe 

physical architecture of the visual system. 

The special-purpose circuits pro;·ide high processing speed but have their con­

straints too: they can implement only local operations; their functions are 71g!d and 

their capabili ties limited. l·lence side eiTects may occur. For example, the need of special­

purpose circuitry for fast information reduction in early vision causes optical illusions. 

One way to cope with this deficiency is to have repetitions of tbe circuitry with each 

unit covering a different range of spatial and temporal frequencies. This notion is the 

basis underlying muhiple segmentation mechanisms and multiple edge filters wilhin each 

segmentation mechanism. 

My edge-based segmentation algorithm consists of three stages: edge ftltering, cor­

ner detection, and a spatial cohc•cncc check. All the later stages depend on edge lilt(•ring. 

After studying several functions for edge filter kernels, the multivariate Gaussian filters 


