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CHENG-HONG HSIEH. A Connectionist Algorithm for Image Segmentation (Under the
direction of STEPHEN M. PIZER.)

Abstract

An edge-based segmentation algorithm based on the knowledge in human vision
was developed. The research followed Grossberg’s boundary contour system and devel-
oped a parallel distributive algorithm which consists of multiple processing stages —
mainly anisotropic edge filtering, corner detection, and spatial coherence check. The
two-dimensional input information is processed in parallel within each stage and pipelined
among stages. Within each stage, local operations are performed at each pixel. The
application of this algorithm to many test patterns shows that the algorithm gives good
segmentation and behaves reasonably well against random noise. A multiscale mechanism

in the algorithm can segment an object into contours at different levels of detail.

The algorithm was compared with an approximation of Grossberg's boundary con-
tour systemn. Both algorithms gave reasonable performance for segmentation. The differ-
ences lie in the level of image dependency of the configuration parameters of the algorithm.
Also, the way random noise affects the algorithm was compared with the way it affects
human object detection. Data obtained from psychophysical experiments and from appli-

cation of the algorithm show a similar trend.
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Chapter 1

Overview

The goal of this research is to develop an effective segmentation algorithm for a real.
time vision machine. Since biclogical visual systems are generally far more powerful than
conventional vision algorithms and there is convineing evidence that nature has evolved a
preattentive (knowledge-free}, stable, and highly-parallel early visual system, the design
of the algorithm is in part based on our knowledge of the biclogical visual system. It
is hoped that this research may not only help us to design an effective computer vision

algorithm but also provide deeper understanding of the working principles of vision.

An organism (or a robot) can be viewed as performing a cycle of perception and
action. Vision, associating the visual input with stored knowledge and thus enabling the
organism to effectively interact with its environment, plays an important role. What are
the properties of visual input and stored knowledge? What is the required processing
speed? What algorithms and architectures can provide the necessary performance? This

chapter provides several insights on these questions.

The chapter first describes the role of image segmentation in vision and then elab-
orates on my approach to the problem of segmentation. A summary of my thesis then

follows. The chapter concludes with a list of the main contributions of this research,

1.1 The Problem of Image Segmentation

Image segmentation Is the separation of the image into regions. The properties
separating regions can be, among others, gray level, color, texture, motion, or depth. This
section first argues that image segmentation should precede object recognition. Then it
briefly discusses the required speed and possible objective of segmentation. Finally the

section presents a more specific definition of image segmentation.



1.1.1 Properties of Segmentation

Image segmentation is in some form essential for vision. This point can be supported
from two perspectives: one is from the need for information reduction and the ether from
the functional analysis of the visual system. In regard to the former, the information
input rate to the visual system is tremendous. There are about 2 ¥ 10® receptors in a
retina. Assuming that the dynamic range of the receptor output is 5 bits and the temporal
resolution is 100 ms, the information input rate is on the order of 10! bits per second, The
visual system can hardly respond to the information at the pixel (or receptor) level because
of the resulting requirement of huge memory and processing power. Physiologically, the
fact that the neurons later in the neural path tend to respond to more abstract stimuli

also confirms this point.

From the point of view of visual system function, only groups of pixels, with each
group indicating an object, are important because the visual system is to decide what is
where in the environment. To decide what an object iz, if segmentation does not pre-
cede recognition, the required information for recognition, like shape, shade, and spatial
context, is unavailable. To decide where the object is, segmentation must be done first;
otherwise the important information of an object’s relative position and motion cannot

be obtained.

Segmentation in biclogical visual svstem appears to be mainly preattentive and
data-driven. Although past experience may affect segmentation through expectation, the
strict time constraint — psychophysical evidence indicates that recognition requires about
only 200 milliseconds — implies that a fast segmentation of image into regions indicating
possible ob jects is necessary. Since most objects differ substantially in appearance from
their environment, it is reasonable to expect knowledge-free procedures to yield reasonable
segmentation in many instances. When the region is unclear or ambiguous, does expec-
tation derived from contextual information help. Maoreover, there is no evidence for how
knowledge can affect segmentation. As indicated by Charles Gross's famous monkeyv-paw
detector in the inferotemporal cortex [Gross et al, 1972], object recognition is performed
by the neural layers which do not map to the retina topographically. It is difficult to
imagine how a knowledse atom in the later visual path extends ils axon to affect the
earlier segmentation process. More probably, the visual system segments an image first

and then the shape, shade, depth, motion, and texture of a selected object are delivered



to higher vision for recognition.

1.1.2 Properties of Objects in Our Visual World

The visual system has as a major function the detection of the objects in the
environment, so it has been highly adapted to our physical world. The regularity of
our visual environment provides important clues for understanding vision, What are the
important characteristics of our visual world? Most importantly, an object usually has
uniform surfare properties like color, grey-scale intensity, or texture, which differs from
the object’s environment. Thus a filter, sensitive to the difference of that surface property
across a surface boundary, can be used to detect the object. Other differences such as

relative motion and depth also help segmentation but are not considered in this research.

The following observations concerning object contours in a two-dimensional image

may help in detecting the real boundary of an object:
1. The bounding contour is usually closed.
2. Occlusion is ubiquitous because of the 3d to 2d projection.
3, Corners may be parts of an objeet and ean be formed by ocelusion.
4. The boundary between two corners is usually a smooth curve.
5. An object may look like a small blob or a line segment when it is small.

. Noise and blurring are common during the imaging process.

1.1.3 A Detailed Specification of My Segmentation Algorithm

Based on the arguments above, plus a widely accepted opinion in perceptual psy-
chology best stated by Purkinje about 150 years ago: eptical tllusions contain visual truth,
the objectives of this research can be more specifically defined as the design of a segmen-

tation algorithm which
1. detects simple closed contours successfully,
2. detects corners properly.
3. handles noise and blurring reasonably,

4. does not lose spatial accuracy,



5. functions in real-time,

6. can explain subjective contours,

1.2 My Approach

Vision research is difficult partly because the visual process is spontaneous so intro-
spection does not help, and partly because the traditional psychophysical or physiological
approaches are insufficient to explain how the visual tasks are fulfilled. My approach is
to perform a functional analysis on visual tasks. The algorithm thus derived is then im-
plemented by software and applied to various test patterns. The results are used to show
the performance of the algorithm and are compared with human performance. In the
following I will describe the reasons to adopt a connectionist approach and the constraints

imposed by this approach.

1.2.1 The Appropriate Architecture for Vision

An effective algorithm design must be based on a proper architecture, but what
architecture is appropriate for vision? The von Neumann machine is not the answer
because a sequential compuler is too slow to process the time sequence of two-dimensional
images. A simple calculation further demanstrates this point: assuming that ten frames of
visual input are processed per second, and each {rame is of 1000 x 1000 pixels. Assuming
further that to parse and classify all these pixels requires on average 100 instructions per
pixel; then it takes a dedicated computer of 1 BIPS to achieve the required performance.

This rate is not possible based on current technology.

Conventional parallel processing techniques do not seem to be the right answer
either. The reason is that each node of the multiprocessor is still a von Neumann machine.
The need to feed instructions and data to each processor requires the identification of
simultansously executable portions of a given algorithm. This task of parallelism detection
is extremely difficult. Together with the overhead of interprocessor communication, the

multiprocessing scheme is not likely to provide the required performance.

Therefore, a special-purpose hardwired circuit tuned to process two-dimensional
images is needed. Just as with the biclogical visual system, a neural network (ie., a

connectionist) approach seems to be the answer. Contrary to the conventional computer,



a connectionist approach operates through a large number of simple processing units.

When properly connected, the network performs globally useful functions.

1.2.2 Properties of a Connectionist Architecture

The most prominent property of a connectionist model is local wiring, which, as
Hubel and Wiesel [1977] pointed out, is one of the common characteristics of the neu-
ral system. Local wiring distributes the sensory information so that the input image
is processed in parallel. Local wiring also allows greater flexibility for changing the lo-
cal structure, thus enabling the system to adapt and learn. Furthermore, the functional

locality of the system assures reliability,

Adaptivity and parallelism have costs, too. Each neuron is a local processor with
limited capability. Thus a task requiring global information is very difficult to implement.
Mareover, the receptive field and target function of a specific neuron are decided completely
by the connections along the path from the input to this neuron. Locally a neuron has no
control of its function. A consequence is that if a layer of neurons is topographic to the
retina, then there exist regular connections from receptors in the sensor to the neurons
in this layer. However, if a neural layer is not topographic, then the spatial relationship
cannot be recovered for the neural layers whose input depends solely on this layer. In
other words, if vision is to answer what is where, then where has to be decided early in the
process. The fact that only early visual areas, V1, V2, V3a are topographic to the retina

[Phillips, 1984; van Essen, 1983] makes this point relevant for the human visual system.

Another problem of the connectionist approach is the costly data representation.
Since a neuron can represent only the value of a specific signal, it takes numerous neurons
to represent a quantity. For example, for certain edge computation algorithms a neuron
is needed for every orientation at every location. Therefore, the economic use of resources

is important.

To summarize, considering a parallel distributive approach, the algorithm under

design must obey the following constraints:
e All operations are local.

s Each processing unit performs only simple functions.



s Spatial information can be obtained only through the interconnections to the phys-

ical layout of the processing units.

o The resources are efficiently used. A pipeline may be ideal.

1.3 The Thesis

My thesis is that an image can be reasonably segmented into regions in real-time

by a parallel distributive algorithm comprising processing stages of

o multiple edge filtering with the first-order directional derivatives of Gaussian as

kernels,
e corner detection based only on edge filters’ outputs,
s spatial coherence processing of the edge and corner information

where these stages are applied at multiple scales.

1.4 Main Results

The results of applying my algorithm to many test patterns show that the algorithm
works reasonably well for various test patterns under many conditions. The algorithm
is architecturally regular, has only one parameter (edge threshold), and requires only
short range communication among the simple processing units; hence it is adapted to
implementation by current VLSI technology. It appears that, with proper implementation,

the model will perform image segmentation in real-time,

The main contributions of this research include
1. The development of a corner detector based only on edge filter outputs.

2. The design of an effective segmentation scheme based on spatial coherence of edge

and corner information.

3. The effective nse of multiscale anisotropic first-order directional derivatives of Gaus-

sian as edge filter kernels.

4. The verification and extension of Grossberg and Mingolla's finding on artifact can-

cellation.



Chapter 2
Background

This chapter first describes conventional approaches to the problem of image sep.
mentation and then elaborates on a connectionist approach — Grossbherg’s boundary con-

tour systemn. Lastly the chapter gives a general view of my algorithm.

2.1 On Image Segmentation

Traditionally, segmentation techniques based on a von Neumann architecture ean
be categorized into region-based and edge-based methods. Since Hubel and Wiesel [1979]
discovered the organization of simple cells in the primary visual cortex, much research
in computer vision has emphasized the edge-based methods. This section first deseribes
region-based segmentation and then elaborates on edge-based algorithms. Newer algo-
rithms based on more recent progress in computer architecture are then briefly summa-

rized.

2.1.1 Region-based Segmentation Algorithms

Typical region-based segmentation partitions the image into connected regions made
up of pixels possessing roughly uniform values of some property like grey-scale intensity.
Ballard and Brown [1982] classified the algorithms into local, global, and split-and-merge
techniques. Local techniques put a pixel into a region according to the properties of the
pixel’s close neighbors. An example is blob coloring [Ballard and Brown, 1982]. Global
techniques group pixels into regions based on properties of pixels throughout the image.
A widely used example is thresholding at the gray level which separates the peaks of
a bimodal histogram. Region splitting splits an image into sets of regions according to
some heuristics until no splitting is possible, while region merging merges the pixels into
regions according to some heuristics until no further merging is possible. The heuristics
are usually based on proximity and similarity and are implemented by local operations

followed Ly threshelding.



The main advantages ol the region-based algorithms are that they usually give
closed contours and region properties can be computed during the segmentation process.
There are also shortcomings. The performance of the algorithm depends on the threshold
selected and the order of pixel scanning. For a real image, it is often difficult to choose
a proper threshold. Moreover, a reglon-based algorithm often needs to calculate a global
function, e.g., the histogram for bimodal thresholding, or requires a complicated interme-
diate data structure, e.g., a list of the pixels merged or split. These requirements make
the region-based algorithms difficult to implement on a connectionist architecture which

consists of only simple processing units, each working on only local information.

2.1.2 Edge-based Segmentation Algorithms

An edge-based segmentation algorithm includes an edge detection stage and an edge

following stage. These two stages are separately described in the following.

Edge Detection

Generally, edge detection is performed by either convelution with a filter or by
parameter setting within a model of an ideal edge or curve. An example of the the latter
method is Hueckel’s [1973] visual operator for edge-line recognition. Since the model-
driven approach is not considered in this research, the filtering approach is described

below in greater detail.

Edges are abrupt intensity changes in the image, and many methods based on this
property have been proposed for edge detection. Among the most famous are the gradient
methods of Canny, Sebel, Kirsch, and the Laplacian method of Marr. [Ballard and Brown,
1982; Rosenfeld and Kak, 1976; Canny, 1986; Marr, 1982]. Torre and Poggio [1986] showed
that edge detection is an ill-posed problem because the numerical differentiation in the
process causes the result of edge detection to depend on the input data discontinuously.

To make the problem regular, the differentiation must be coupled with a smoothing filter.

For smoothing, many authors [Koenderink, 1984; Torre and Poggio, 1986; Asada
and Brady, 1986] have shown that the Gaussian filter is attractive because it gives the
maximal degree of causality across spatial scales. Ior differentiation, several Gaussian-
based operators have been used, e.g., the difference of Gaussians (DOG), the Laplacian of

a Gaussian (LOG), and the directional derivatives of a Gaussian.



I have chosen the first directional derivative of the Gaussian as the edge filter
kernel. The decision is mainly based on Koenderink’s derivative of Gaussian (GD) model
[Keenderink, 1987] which provides a sound mathematical basis for detecting the intensity
changes in the image. The Gaussian n-jet — the convolution of nth-order derivatives of
the Gaussian with the image — not only describes the early visual process elegantly, but
also provides an efficient computational scheme. This edge filter will be discussed in more

detail in Chapter 3, on edge filtering.

Edge Following

Edge following, or boundary eompletion, combines the local edges to form a more
global element such as a long line, a curve, or a simple, closed contour indicating an ob ject
or a portion of an object. According to Ashkar and Modestino [1978], edge following can
be approached by exhaustive search, dynamic programming, structured tree search, and
heuristic search. In the following an example of each of the above approaches except

exhaustive search is briefly described.

Fischler et al. [1973] applied dynamic programming to boundary completion. The
method requires that a description scheme of the target object and a decision metric be
selected. Then the algorithm uses the decision metric to find the described object in the
image by dynamic programming. In my trial implementation a nearly vertical edge which
has one point in each row of the image is the target boundary, The program starts from
a point in the top row and scans downward. For each pesition, the minimum cost and
the corresponding path from the top to the position under consideration are caleulated.

When the bottom row is reached, the optimum nearly vertical edge is obtained.

An example of siructured tree searching is described by Chien and Fu [1974]. Knowl-
edge about the specific application under consideration is formulated into a criterion fune-
tion which usually consists of a local term, eg., edge strength, and a global term, e.g.,
the relation between the pixel under consideration and other pixels. Then the boundary
points which minimize the criterion function are selected. A preprocessing stage gives
several candidate starting points. Then the process of including other boundary points
proceeds like a tree search. Standard techniques like backtracking and tree.pruning can

be used to obtain the path of minimum cost.



algorithm image resolution | cpu time(sec) | memory (KI)

Fischler et al. G4 % 64 73.0 74
Chen and Fu 64 % 10 61.2 40
Ashkar et al, 64 % 64 1.6 324

Table 2.1; Test results of 3 edge following algorithms.

In Ashkar and Modestino's heuristic searching algorithm [1978], contour extraction
is first formulated into a tree search problem. A cost for traversing a branch is then
defined based on the likelihood of the branch’s lying on the true contour. Both local
and contextual information, as well as as closeness to a prototype, are used for the cost
definition. The most likely path is then extracted by a heuristic tree scarch similar to

algorithm A [Nilsson, 1930].

I implemented the three algorithms in the € programming language and applied
the programs to detect a nearly vertical vessel in a digital subtraction angiogram. The

following table summarizes the required resources for the three approaches on a Vax 750,

Note that for Chen and Fu's algorithm a preprocessing stage first selects 20 x 10
possible edge points from the image and the tree search operates on the selected points

anly,

The performance of the above algorithms are far from real-time, and all three algo-
rithms are target-dependent and require the computation of a global cost function. The
parameters in the algorithms are determined empirically. When random noise increases,
the edge strengths and directions, which are usually calculated by an edge operator with
a small support and serve as a local term in the cost function, are prone to error. Hence
the weights between the local and global costs need to be adjusted, and the algorithm is
image-dependent.

In summary, edge following is an unsolved problem. New and more effective algo-

rithms are needed.
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2.1.3 DMultiscale Mechanism for Image Segmentation

The concept of multiscale perception lias strong physiological and psychophysical
evidence. The idea originates from the well-known physiological finding that the ganglion
cells in the primate retina have overlapping receptive fields of various sizes at each location
of the visual field, and the average size of receptive field increases with the distance from
the fovea. In psychophysics, Campbell and Robson [1968] demonstrated through a set
of threshold detection studies that the visual system possesses independent, spatial-scale-
tuned channels. Since the early '70%s this mechanism has become a basis of several theories

of visual organization.

In the past several years many computer scientists have applied this idea to design
computer vision algorithms. Many previous segmentation techniques, both region growing
and boundary detection types, use mainly local information, and the performance of these
algorithms is limited. It has been suggested that the solution lies in using local and global
information effectively, and from this point of view the multiscale scheme is certainly an
attractive one. Witkin [1983] showed Lhat intensity extrema can be localized at a finer
scale after being identified at a coarser scale. Since then this concept has been used to
tackle numerous problems in computer vision, Several such methods are briefly described

in the following with a brief summary of each method’s advantages and disadvantages,

Stack

Koenderink and Pizer’s stack model appears most attractive. In this scheme, the
multiscale version of an image. the stack, is generated by successively blurring the image
with a two-dimensional Gaussian. An example of the use of this scheme is Lifshitz's [1987]
image segmentation algorithm which follows the paths of extrema through the stack. By
following the intensity extrema through multiple scales, a tree structure is generated,
and the tree can then serve as a shape description of the image. Since a node in this
tree corresponds to a region in the base image, the tree structure defines a segmentation.

Applications of this algorithm on several medical images were rather successful.

This scheme has sound mathematical basis. It originates from the study of human
visual pracesses and is natural for the connectionist approach. The blurring process is
causal. During the tree generation process, the object containment relationship can also

be computed. A problem of this approach is that the annihilation sequence of the extrema
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is sensitive to small changes of the image, and hence to noise, too. Besides, the generation

of the extremal paths is time-consuming,

Pyramid

The pyramidimage description [Hong et al., 1982] is a multiscale approach based on
a rectangular sampling grid. Each pixel intensity at the coarser resolution is determined
by the pixel intensities within an overlapped square in the next finer level. The reduction
in spatial sampling between successive levels is usually 2 X 2. Therefore, il the spatial
sampling of the base image is n x n, for the scale z level away from the base image, the
spatial sampling is n/2% x n/2%. The top level has only four pixels. This scheme is called

pyramid because the shape of this multiscale representation resembles one.

The pyramid scheme is efficient in memory space and in processing time. Image
features are detected in the coarser level, while the more accurate location of the detected
feature can be obtained by tracing down the pyramid. The scheme is also conceptually
easy to understand. Since the connections between elements of two sueccessive scales are
relatively fixed, a hardware implementation is feasible. The intensity of a pixel at a coarser
scale is usually calculated by averaging the pixel intensities connected to this pixel in the
next finer scale; the major problem of the approach is that the procedure is not causal.
Thus, an image feature shown in the coarser scale may be generated as an artifact of the
blurring process. An example of this effect is the aliasing of intensities in a coarser level.
Besides, the relationship among features at the same scale is difficult to define. Lastly.

the scheme is rigid; it is difficult to incorporate model-driven techniques into the scheme.

Difference of Low-Pass Transform (DOLP)

Crowley and Parker [1984] developed a shape representation based on the results of
a set of differences of low-pass filters. The peaks and ridges of this DOLP transformation

constitute a graph, which are then used as a shape description.

This shape description can be used for matching regardless of the object’s size,
orientation, and position, The DOLP transformation loses no information and is reversible.
Matching proceeds in a top-down fashion, i.e., the most important objects in the image
are compared first. Both the structure of the graph and the information at each node

can be used for matching. The generation of the shape description is also computationally



efficient. The three-dimensional ridge of the DOLP transformation indicates the elongated
form of an object and, in some sense, is like a medial axis. For a real image with multiple
ob jects, the graph is usually complicated, and it is unclear how the graph for a particular

object can be separated from others.

Zero-crossing Across Scales

Marr [1982] applied the Laplacian of a Gaussian (7*G) of various standard devi-
ations to an image. The zero-crossings of these filter outputs give the object boundaries
in the image. At a coarser scale, a larger filter kernel detects the contours of larger ob-
jects. The edges, terminations, bars, and blobs in the image can be extracted from the
zero-crossings of 7°G in multiscale. They then serve as the raw primal sketch of the

image.

The zero-crossings of the result of filtering by the Laplacian of Gaussian (7°G)
is widely used in computer vision. The scheme always gives a closed contour, is com-
putationally efficient, and the filter kernel resembles the familiar shape of the on-center,
off-surround receptive field. Nevertheless, this approach has its shortcomings, too. First,
the isotropy of the filter causes spatial inaccuracy, especially for sharp corners [Berzins,
1084]. Second, the second-order differentiation in 72G amplifies noise when compared
with edge detectors using only first-order derivatives. Third, no orientation is explicitly
represented, which makes it very difficult, if not impossible, for this scheme to further use
edge information for connectionist modeling. For example, how can subjective contours,
which I conjecture to be evidence for the preattentive segmentation process, be generated?
In conclusion, the zero.crossings of 7°G may provide preliminary information on object
boundaries, but, as Torre and Poggio [1986] commented, are insufficient to account for

the segmentation process in early vision.

Snakes

Kass, Witkin, and Terzopoulos [1987] developed a contour model which integrates
the model-driven and the data-driven techniques for contour detection into an energy-
minimizing scheme accounting for both edge strength and the closedness and smoothness
of object boundaries. With the inclusion of scale space information via successively blurred

images, the scheme gives better performance on boundary detection.
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The scheme is not only good at boundary completion, but can also account for
other early vision phenomena such as subjective contours, motion tracking, and stereo
matching. To implement this approach on a connectionist architecture, the global energy
term would require a large number of neurons. Moreover, based on our laboratory work
[Oliver, 1988], given an arbitrary initial condition, the relaxation algorithm based on the

energy functional does not necessarily converge in a few iterations.

2.2 On the Connectionist Approach

As argued in Chapter 1, a connectionist approach is most likely to give real-time
performance for early vision tasks. This section first introduces the field of neural networks

and then describes Grossberg’s boundary contour system in some detail,

2.2.1 Introduction to the Neural Network Approach

A connectionist network can be fully specified by the functions of each unit, the
connections among units, and the dynamics defining the changes of the netwark. Usually,
all units in the network have the same functional characteristics. Each of them performs &
simple operation, e.g., 2 weighted sum of its inputs followed by a transformation according
to the sigmoid function and a thresholding. The system dynamics are generally represented
by the change of the connection weights (called the synaptic weighting factors) according
to a learning rule. The most popular learning rule in the field now is Hebbian: the
change of the weighting factor between sending neuron i and receiving neuron j, Awyj,
is proportional to the response of the neurons, a; and a;, i.e., Awy; = nga;, where is a
coefficient. In my research the preattentive network is assumed to have been stabilized,

so learning is not under consideration.

The objectives of connectionist research are two-fold: to study the structure and
functions of biological systems and to investigate the design principles of this new com-
putational device. Both software simulation and hardware implementation are used for
connectionist modeling, The results are compared with human behavior or are shown to

have cerfain computational capabilities,

The following subsections briefly describe several connectionist schemes. Among
them, Grossberg’s boundury contour system is physiologically feasible and unifies a great

deal of psychological data. My research started by implementing this model. Hence the
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boundary conlour system, together with the problems I encountered during the implemen-

tation, are described in a separate subsection.

The Perceptron

Rosenblatt [1962] invented a class of simple pattern-learning networks called the
perceptron, which is a single-layer network of linear threshold units without feedback.
Each input pattern is presented as a teaching input. Let t; indicate the input at neuron
i. The learning rule is Awg; = n(4 — &)a;, i.e., the change of the weight of a connection
is proportional to the response of the sending neuron and the difference between the
teaching input and the response of the receiving neuron. The perceptron convergence
theorem guarantees that if the sel of patterns are learnable, the learning procedure will

find a set of weights which allow the perceptron to respond correctly to all input patterns,

The perceptron stimulated a great deal of research interest in the early 60’ until
Minsky and Papert [1969] showed that it cannot learn some simple, common functions,

for example, the exclusive-or,

Mead's Silican Retina

Mead [1985, 1987 designed a set of silicon reting chips using analog VLSI. The
design integrates photosensors and motion.detecting circuitry based on knowledge about
the neural connections in the retina. It was shown that the chip can detect a rotating bar

in real-time,

The silicon retina is one of the few chips implementing connectionist vision algo-
rithms ta present, A rationale for the hardware approach to connectionist modeling is
the observation that soltware simulation of neural networks of substantial size requires
tremendous computing power and it is almost impossible to analyze problems like motion
detection. The development of the chip is a milestone, but, of course, the chip implements

only a prototype of a very specific function. There is still a long way to go.

Linsker’s Work

Linsker [1986] investizgated the self-adaptive property of the visnal system by soft-
ware simulation. His model includes a multilayer feed-forward network. Each layer con-

tains hundreds to thousands of cells, and each cell has up to hundreds of imputs. The
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response of each unit is normalized after activation. The connection can be excitatory or
inhibitory. The learning rule is Hebbian. Initially, synaptic weighting factors are randomly
assigned and the environmental stimuli are shown to the first layer. When learning com-
pletes, his simulation result shows that the spatial arrangement of the orientation-sensitive

cells in the seventh layer looks similar to a photo taken of a monkey's visual cortex.

Linsker’s work shows how computer modeling can relate to physiclogical data but
is not very useful in designing a computer vision algorithm because the model does not

aim at well-defined visual tasks,

Fukushima’s Neocognitron

Fukushima [1988] developed his neocegnitron — a [eed-forward, hierarchical, and
multilayered network capable of learning and recognizing arbitrary patterns. The idea is
mainly based on physiological evidence: there scem to exist hierarchical neural paths in
the cortex for feature extraction and pattern recognition. After a two-dimensional input
is presented to the network, features such as lines of various orientations and corners
of various opening angles are successively extracted. These features can form numerous
combinations with different spatial relationships among them. During the learning stage
the input patterns are repetitively shown to the network until proper connections are
established. Then, during the recognition stage, one and only one neuron in the output

layer will fire when a certain input pattern is presented.

The network was applied to recognize handwritten numerals. The results show that
the network can handle patterns after deformation, change of size, and shift of position.
The network can be self-organizing, i.e., learn without a teacher. Nevertheless, the feed-
forward network requires many neurons. For more complicated test patterns, like English
letters, more neurons are required. Also it is unclear how well the network can differentiate

two patterns with a small diserepaney.

2.2.2 Grossbherg’s Model

Grossberg, based on psychophysical and neurophysiological evidence, separated
early vision into a boundary extraction process and a filling-in process. The reason for
separating the early vision tasks into two stages is mainly based on the phenomena of

brightness and color constancy: though lighting conditions in the environment vary con-



Figure 2.1; Two examples of visual illusion. (a) Yarbus (b) Kanizsa

siderably, the perceived brightness or color of an oliject remains fairly constant. For a
picture of multiple color patehes, Land [1971] showed that the perceived color of a patch
in a picture is mainly determined by the contrasts at the edges between the patch with
and its surround. Furthermore, Yarbus [1967] showed that, as in Figure 2.la, when the
edges of the large circle and the vertical line are stabilized on the retina, the red color
outside the large cirele fills in the black and white regions except the small circles whose
edges are not stabilized., The red inside the left circle looks brighter, and the red inside
the right circle looks darker than the enveloping red [Grossberg and Mingolla, 1985], This
experiment shows that the object boundary can be dissociated from the object surface
properties like grey-scale intensity or color. The above psychophysical evidence led Gross-
berg to conclude that the visual system discounts the illuminants within olijects by first
exiracting edges of the abjects and then using the brightness or color information across

the edge to fill the regions within boundaries.

Grossherg then developed the boundary contour system to axtract the object bound-
aries in the image. The model consists of 4 layers as illustrated in Figure 2.2, Following
the first layer of edge filters, there are two competitive stages: one for edge-thinning and
the other for line-end processing. The last layer is a cooperative layer. The outputs of the
last layer connect to the first competitive stage and form a loop which completes the gaps
on the boundary. Ideally, for a given input, the computation converges in several iterations
and gives simple closed contours segmenting the image. Except for the edge filter, which

i5 described in Chapter 3, each of these stases is briefly deseribad in the following:
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Figure 2.2: A block diagram of Grossberg's boundary contour system.

Oriented Contrast-sensitive (OC) Filter

The first layer after edge filtering is an oriented contrast-sensitive filter, wherein
each neuron in the layer receives responses from two edge filters with the same orientation
as the neuron under consideration but with opposite contrast directions. This operation is
based on the fact that, as in the anizsa square depicted in Figure 2.1b, illusory contours

can he generated by joining edges with opposite directions of contrast.

First and Second Competitive Stages

The first competitive stage defines competition between neurons of the same ori-
entation at nearby locations, and the second competitive stage defines interorientational
competition at a single position. The functions of these two processing stages can best be

demonstrated by their effects on the Ehrenstein illusion depicted in Figure 2.3a.

To generate the illusory circle; Grossberg assumed that an illusory line segment
perpendicular to each line end must be generated. A boundary completion process then
connects the line segments to give the circle. Figure 2.3b shows the on-center, off-surround
connections for the first competitive stage. For each orientation, each neuron excites
the neurons near its location in the next layer and inhibits the neurons farther away.

The second competitive stage 15 defined as a push-pull operation between neurons with
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Pigure 2.3: Ehrenstein illusion and Grossherg's competitive mechanisms. (a) depicts
Ehrenstein illusion, {(b) shows the on-center, off-surround cannection, and (c) shows the

effects of the two competitive stages near a line end.

perpendicular orientational sensitivity (in Grossberg's term, a dipole competition).

The two competitive stages generate an illusory line segment near a line end in the
following way: in Figure 2.3¢, there is a horizontal line segment ending at location (x;
¥). After the first competitive stage, the neurons with near-horizontal receptive fields at
location {x+1, v) are inhibited by the neurons at (x, ¥). Then the second competitive

stage activates the neuron with near-vertical receptive field at location (x+1, ¥).

Oriented Cooperation

Oriented cooperation, together with the competitive stages, forms the cooperative-
competitive (CC) loop, which is designed for boundary completion. Each neuron in the
cooperation layer has a bipole receptive field as illustrated in the Figure 2.4, The neuron
is fired only when both halves of the receptive field are excited above threshold. The
respanse of the neuron is then fed back to the first competitive stage through other on-
center, off-surround connection. Grossberg applied the algorithm to several test patterns

and showed that the CC loop converges after several iterations.

2.3 Problems Faced in Implementing the Boundary

Contour System

A version of Grossberg's boundary contour sysiem was implemented, and it was

applied to test patterns of artificial, medical, and natural scenes. The major problems
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Figure 2.4: The cooperative-competitive loop of the boundary contour system

encountered during the implementation and my corresponding solutions are briefly sum-

marized below. The details of these solutions are given in later chapters.

1) Grossberg [1985] implemented edge filtering by convelving an input image with

difference-of-box (DOB) filters. Is this a reasonable choice?

My conclusion:  The convolution result using the first-order directional derivatives
of the Gaussian as filter kernel was compared with that of using the difference-of-boxes
kernel. The conclusion is that, when the length and width of the rectangular edge filter
is carefully specified, the two kernels give similar convolution results. Since the Gaussian
function agrees better with our knowledge of the biclogical visual system, it was used in

my algorithm.

2)  Grossberg found that at each location, if the edge filter output for a certain
orientation is subtracted from the edge filter output of the perpendicular orientation. then

the follow-up processes behave much better, Why is it s0?

My conclusion:  The operation is an effective way to discount artifacts due to dig-
ital sampling and finite approximation, so this eperation, called aertifact cancellation, is
included in my algorithm. However, here it is performed after edge filtering instead of

being performed in the competitive-ceoperative loop.

3) Edge detectors do not behave as expected near corners. At a sampling location,
an edge detector is intended to detect the occurrence of a linear edge segment. When
performed near a corner, does the edge filter ontput correctly indicate the local shape of

the bounding contour? If not, how can a closed boundary be defined based on the edge
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filter output? Furthermore. can the cooperative layer correctly complete the gaps on the

boundary near corners?

My conclusion:  The edge filter output cannot represent corners on the boundary,
and a bipole field is improper to apply near corners. Hence a corner detector based on edge
filter outputs was designed, The results of applying the detector to many test patterns

show that the scheme is effective.

4)  The first competitive stage is a shunting competitive network for edge contrast

enhancement, How effective is this operation?

My conclusion: Implementation following the equations in [Grossberg and Mingolla,
1986 does not enhance the edge contrast as expected. [ decided that this operation is
unnecessary for segmentation because the edge filter outputs provide useful information

and should not be altered in this way.

5) Asillustrated in Figure 2.3, the second competitive stage is a dipole field designed
to explain the process near line ends so that Ehrenstein illusion can be explained, Is the
result generated by this process strong enough so that the follow-up cooperative process

can use it to complete a boundary?

My eonclusion: My implementation showed that the dipole field in Grossherg’s
model activated a small number of neurons near a line end. Since, in the Ehrenstein illu-
sion, the gap between two nearby line ends can be several pixels wide, my implementation
did not confirm that this mechanism can explain the Ehrenstein illusion satisfactorily.
Instead I conjecture that a line in the image can be recognized as a long, thin object
different from an edge. A specific line and line end detector and the follow-up processing

may be necessary.

6) What is the range of parameters which allows the network to converge? What

are the criteria for selecting the network parameters?

My conclusion:  In my first implementation of Grossherg’s model, there were 14 pa-
rameters that define the network connections and operations. When the parameter values
were properly selected, the network converged in several iterations and gave reasonable

segmentation. Programs simulating each layer of Grossberg’s model were written, and
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different parameters were used against various test patterns. An important consideration
for selecting the parameters was the balance between the two major functions of the CC
loop: boundary completion and edge thinning, When the parameters were improperly set,
the network would either generate more line segments than allowed or fail to complete
required boundaries. Another criterion | found useful was that parameters should cause

the dynamic range of the neurons in a layer to be fully used.

7)  The neural layer of bipele fields is intended to recover lost edge information.
How effective is this operation? What if the gap to be completed, as in Ranizse square,

is wide? Will a multiscale scheme help to solve the boundary completion problem?

My conclusion:  The competitive-cooperative loop in Grossberg’s model is effective
in completing the gaps between nearby edge segments. The problem is that a wider gap
in the input pattern requires a longer bipole field; thus the network is image-dependent.
To cope with the difficulty of image-dependence, in my current algorithm the bipole field
covers only the pixel’s closest neighborhood. Elongated edge filters of three elongations
give edge strengths at positions along a real edge, and these propagated edge strengths

then complete the gaps up to some width between two linear edge segments.

But the scheme of multiple elongated edge filters does not solve the problem that a
gap with substantial width cannot be completed. My first attempt at a solution followed
Rosenfeld's pyramid scheme [Hong et al, 1982]. Based on the layer storing the result of
OC filtering (which I call the edge map), a pyramid as described in Section 2.1.3 was
established. A CC loop was then associated with each level of the edge maps. The edge
information first propagated bottom-up to the coarser levels. After the CC loop at each
level performed boundary completion, the completed boundary at the coarser levels then
propagated down the scales to attain better localization. This scheme was implemented.
and preliminary results showed that the model could complete larger gaps between two
linear edge segments, The problem with this scheme is that the algorithm requires hoth
bottom-up and top-down information flow. The control is very complicated, and the

computation takes considerable time,

Finally I conjectured that a multiscale scheme of multiple elongated edge filters,
with different pixel size and corresponding sampling interval at each scale, might be able

to segment the image into contours at different levels of detail and close gaps of quite



23

different sizes. A program was implemented based on this idea. Running the program on

several test patlerns showed that the scheme is eflective.

In summary, for Grossberg's model there may not exist an ideal set of parameters
that enables the network to converge for all input images. But if a network that has to
handle vastly different input data depends on data-dependent variations of the parameters,

it seems unlikely to be practical.

2.4 An Overview of My Algorithm

This section summarizes my algorithm derived from the above considerations. Fig-
ure 2.5 shows the block diagram of the algorithm: The algorithm consists of multiple
subsystems, each characterizing a different scale. At each scale a segmentation of the
image is provided via several processing stages. Information flow is parallel for all pixels
at each stage and pipelined among stages. In a coarser scale the segmented contours are
simpler and bigger, while in a finer scale details of the object contour are shown. The

results of segmentation are continuously delivered to higher visual processes.

1. The input is taken to be a two-dimensional array of real-valued intensities ranging
from 0 to 1. For artificial test patterns, the portion of a pixel covered by a figure is

calculated and the pixel intensity is adjusted accordingly.

2. Edge fillering is performed by filters combining a smoothing operator with a dif-
ferentiation operator. Each scale has multiple edge filters, each with a different
elongation. The edge filter with larger support not only provides edge information
with higher signal-to-noise ratio, but also propagates the edge information along a
linear edge, which to some degree enables the network to complete the gaps between
two edge segments. As Marr [1982] and many others pointed out, a problem with
this type of feature template approach is that a significant response to the filter does
not necessarily indicate the presence of the feature. The [ollowing processing stages

are mainly designed to cope with this problem.

3. Artifact cancellation is applied after edge filtering at each sampling location. Since
except near certain complicated image structures there should not be perpendicular
edges at a single location, the counter-interaction between edge filters of perpendic-

ular target orientations effectively discounts the artifact due to discrete sampling.
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Figure 2.5: A block diagram describing the processing stages of my algorithm
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4, Corner detection is another means to cope with the problem of false alarm in edge
filtering. Corners are themselves important both for object recognition and for

definition of a closed abject boundary.

oy

Spatial coherence checking verifies a detected edge or corner at a certain location
by rejecting edges where the edge and corner information in adjacent locations are

incoherent. The pixel size here is proportional in size to the scale.

The following chapters elaberate on these issues and describe my research. Chapter
3 describes edge fillering and my rationale in using multiple directional derivatives of
elongated Gaussian as edge filter. Chapter 4 discusses my approach to eorner detection.
Chapter 5 describes the role of spatial coherence checking in my algorithm and shows
the results of segmentation on several test patterns. Chapter 6 gives an evaluation of the
overall algorithm by comparing its performance with Grossberg’s boundary contour system
and with human performance. The conclusions and suggested future research directions

are presented in Chapter 7.



Chapter 3
Edges

Given an image, what information best indicates object boundaries? This chapter
describes the measurement of intensity changes, called edge strengths, in a two-dimensional,

static, grey-scale image,

The chapter first compares the performance of different edge filter kernels and de-
scribes my decisions on edge filter design. Then it explains why an elongated directional
derivative of Gaussian (DDG) function is used in my algorithm. The operation of artifact
cancellation is then presented. Lastly the chapter explaing why multiple edge filters are

applied.

3.1 Derivative-of-Gaussian vs Difference-of-Box Filters

Many two-dimensional functions have been used for edge detection. Grossberg
[1985] used a difference-of-box (DOB) function and obtained interesting results, but, as
discussed in Chapter 2, the first-order directional derivatives of two-dimensional Gaussian
(DDG) prevails for modeling human visual system. Tt is worth comparing the performance

of these two filter kernels.

The DDG and DOB functions can be described by the following equations. Let

+(z,y) represent the two-dimensional Gaussian,
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The directional derivative along the r direction gives an edge filler with the target edge

orientation along direction y.
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A DOB with change in x direction and width w can be written as DOB(z, w) = sign(zx) [1(5%),

where
1 >0
sign(z) =49 -1 z<0 (3.3)
0 elsewhere
and
w  |z|<w/2
T
H{ﬂ] =4 1/2w o=>Zwf2 (3.4)
0 alsewhers

The DDVG and DOB filter kernels are shown in Figure 3.111, wherein small diamonds
and squares indicate positive and negative weights, respectively; the areas of the squares
and circles indicate the magnitudes of the weights at various locations. Note that in Figure
3.11I both edge filter kernels are shown on a 8% 8 grid. Though a Gaussian function extends
to infinity, for practical considerations the weights for the locations with distance to the
center larger than a critical distance, r, are set to zero. In my current implementation, r is
selected as the smallest real number such that G(r)/G(0) < 0.05. For the pixels near the
boundary of a filter kernel, the portion of the pixel area covered by the kernel is caleulated
and the weight is adjusted accordingly. This process accounts for why, in Figure 3.111b,
pixels away from the center of the kernel have smaller weights. Figure 3.11 shows the

three-dimensional graphs of these two filters.

To compare the performance of these two filter kernels, T applied the two edge filters
with various parameters to several test patterns. The results show that when the length
and width of the DOB filter is equal to the equivalent length and width of the DDG filter,
the two kernels give similar convolution results, where the terms eguivalent length and
equivalent width follow Bracewell's definition [1986]: for a positive function, the equivalent

width is the area covered by the function divided by the function's maximal value.

The equivalent length and width of a DDG filter can be calculated as follows. A
cross section along the target edge orientation of the DDG filter is a one-dimensional
Ganssian which has the maximum at the center. The equivalent length of the kernel, L.
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Figure 3.1: A comparison between a derivative-of-Gaussian and a difference-of-box filter.
Row (1) are the three-dimensional line diagrams for (a) DDG funclion with ¢ = 1.5 and
(b) DOB function with L = 3.76 and W = 2.473; Row (II) are the corresponding edge
filter kernels. (The sizes of diamonds and circles in row (II) are proporticnal to negative
and positive weights at each location within the kernel. The circle size represents the

intensity.)
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image | resolution | #edge strn > 0 | max diff | ave diff | SD
c30 16 x 16 Gads: 0.1725 | 0.0549 | 0.0418
tri 32 w32 1107 0.2039 | 0.0674 | 0.0401
owl 64 x 64 16071 0.1608 | 0.0214 | 0.0229
ctd 128 = 128 35011 0.1098 | 0.0160 | D.0145

Table 3.1: Diflerence between the convolution results of a directional derivative-of-
Gaussian filter and a diflerence-of-box filter. The test patterns, e.g.,, ¢32 and tri, are

described in Table 5.1 and depicted in Chapter 5.

Similazly, in the perpendicular direction the profile is the first-order derivative of a Gaus-
sian, G'(z) = dG{x)/dz. The maximum occurs at £ = ¢ when

£6(z 2
%:-%{1—%}(?{';]:{]. (3.6)

The equivalent width, considering only G'(z) > 0, is

v do Glz)dz _ Gl)lF 1/2 5
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In Figure 3.1b, o = 1.5, L = 1.5'% 27 = 3.76 and W = 1.5 x ¢!/? = 2.473.

The filters shown in Figure 3.1 were applied to several test patterns. One of the
test patterns, triangle, together with the edge filter outputs are shown in Figure 3.2. The
size of the circle in Figure 3.2a indicates the intensity of the pixel, which ranges from 0
to 1; the length of each line segment in 3.2b and 3.2c indicates the edge strength with
orientation as indicated by the line segment. Figure 3.2b and 3.2c also shows that at each

sampling location, edge filters of four target orientations were applied.

Table 3.1 lists the difference {labeled as maz diff and ave diff in the table) between
the DOB and DDG filter outputs for several test patterns. In the table, 5D stands for
standard deviation of the difference and, like maximal and average difference, is calculated
based only on the places and orientations where at least one of the two edge filter outputs
is nonzera. The number of these places in each image is also listed in the table. The
average difference in the convolution results ranges from 0.01 to 0.07, Compared with the
value of an edge strength, which ranges from 0 to 1, the difference between the outputs of

tlie two filters is'small,



30

|

(a) (b) (c)
Figure 3.2: A comparison between the convolution results with a derivative-of-Gaussian
and a difference-of-box filter. (a) is input pattern; (b) and (¢) show the results of DDG
filter and DOB filter, respectively. The size of a circle in (a) is proportional to the intensity
at the location. Likewise the length of aline segment in (b) and (¢) is proportional to the

edge strength (i.e., strength of the edge filter response).

The research reported in the remainder of this dissertation uses the DDG as the
edge filter kernel because the Gaussian function has the following desirable properties

[Pizer, 1988] and accords more with our knowledge of the biclogical visual system:
1. The Gaussian is isotropic and strictly decreasing about mean.

2. A n-dimensional multivariate Gaussian is separable into n one-dimensional Gaus-

sians.
3. A convelution of two Gaussian functions gives another Gaussian:
4. A Fourier transform of a Gaussian gives another Gaussian,

5. The Gaussian is the solution to the diffusion equation, du/8t = k (8%u/dzf + .+

*uj8z%) in n dimensions.

6. The Gaussian blurring operation is causal for image features associated with the

linear combination of the derivatives of the image.

7. The central limit theorem says that the effect of repetitive conveolution with any
kernel will ave the effect of convolution with a Gaussian kernel when the repetition

increases without bound.
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3.2 Issues in Edge Filter Design

This section discusses several questions about the edge filter design including edge
threshold, sampling location, angular resclution, polarity, kernel size, and computation of

the edge filter kernels.

Edge Threshold

Noise is inherent in the image, and a remedy for it is to insert an edge threshold in
the algorithm. Below the threshold, the edge filter outputs are ignored. In the current
implementation; the edge threshold is a program parameter, It is usually set to a small
value, typically 0.03 on a scale of 0 — 1. The reason for selecting a small edge threshold

will be discussed Turther in Chapter 5.

Sampling Location

Where in the image should the edge filters be applied? For an image represented
in a two-dimensional array, Figure 3.3a shows two possibilities — one is to sample at the
center of the pixel, and the other, at the corners. Figure 3.3b shows the edge filter kernels
of target orientation of 0° based on the comer sampling location, and 3.3c on the center
sampling location. Figures 3.3e and 3.3f demonstrate the convolution results of the two
types of edge filters against an input pattern shown in 3.3d. Given a perfect edge, the
fizure shows that, for the corner sampling location, positions along a single line in the edge
direction have significant output, and for the center sampling location, edge filtering at
positions along two parallel lines have significant responses. Edge filtering in my algorithm
is applied at the corner sampling location because it is more natural to do so for a step

edge such as those in several of the test patterns to be used later.

Angular Resolution

How many edge filters with different target orientations should be applied at each
sampling location? One possible answer comes from physiological data. Hubel and Wiesel
[1977] showed that a hypercolumn in vertebrate primary visual cortex has adjacent neurons
sensitive to orientations differing by 10° to 15°. So a choice of 12 to 18 orientations is
reasonable. The effectiveness of filtering in multiple orientations has been confinmed by

work in computer vision [Coggins, 1986],
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Figure 3.3: A comparison between two schemes of sampling locations. {a) depicts the two
sampling locations; (b) and (c¢) are DDG kernels with o = 1.5 pixels of sampling location
1 and 2, respectively; (d) is an input pattern of 2 horizontal edge; () and (I) show the

convelution results of (d) with the two edge filters in (b) and (c), respectively.
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On the other hand, as mentioned in Chapter 1, the data representation in a con-
nectionist approach is costly. The smallest number of processing units, if functionally
adequate, should be used. Since the objective of edge filtering in this research is to find
the object contours in the image, the essence of an edge strength lies in its indication
of the local orientation of the object boundary. Since, on a rectangular sampling grid, a
pixel has only 8 adjacent pixels, the boundary at the pixel can assume one of only four
orientations locally. In other words, each of the four orientations points to two of the
pixel’s & adjacent pixels so that the connectivity can be checked point by point on a con-
tour. Edge filtering on orienatations besides the 4 mentioned above are possible but make
checking for local connectivity more difficult. Thus the algorithm applies edge filtering in
4 orientations (0%,45°,90°, and 135°) at each sampling point. Figure 3.4b show the edge

filter outputs of the scheme of 4 target orientations, and 3.4c of 12 target orlentations.

A consequence of performing edge filtering in a finite number of orientations is
that, according to Canny [1986], if an edge does not align with one of the target edge
orientations, the convolution result of the edge will drop to a portion of the case of perfect
alignment. For the scheme of 4 target orientations, the worst case occurs when the angle
of a real edge and the target orientation of the closest filter is 22.5% apart; in that case
the filter output will fall to about 75% of its possible maximum. Imperfect alignment of
filter to edge causes the effective threshold to be slightly higher than the specified value.
For a small edge threshold of, say, 0.03, the effect of imperfect alignment causes the edge
strengths below 0.04 to be ignored, The problem is not serious from a practical point of

view,

Polarity

The edge filter has two opposite divections of contrast (called polarity later) as
illustrated in Figure 3.5, where the positive and negative weights are arbitrarily assigned
ta each half of the filter. The polarity information is represented by the sign of the edge

strength and is kept for later processing.

Filter Kernel Size

What standard deviation, o, should be used for the DDG function? It 1z well-
known that a bigger kernel gives a better signal-to-nocise ratio, and a smaller one gives

better localization of the detected feature. A clue comes from the psychophysical data.
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Figure 3.4: A comparison of applying edge filters of 4 and 12 orientations. (&) is the input

pattern; (L) and (c) show the convolution results of 4 orientations and 12 orientations,

respectively.

Posilive weight
] Megative weight

Palarity iz arbitrarily
defined =s positive for
these edgs fitars,

Edge filters of
negative polarity

Orientation

Figure 3.5: The definition of the polarity of edge filters. Edge filters, labeled by integers 0

— 3, are arranged from right 1o left to reflect the nsual representation of counterclockwise

1 I
rotating angtes.
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Marr [1982] concluded based on Wilson and Bergen's [1979] data that for cells with on-
center, off-surround receptive fields, 4 scales with o's approximately equal to 3, 6, 12, and
23 pixels suffice to explain many psychophysical phenomena. Marr, Poggio, and Hildreth
[1980] further pointed out that an additional smaller filter, say with ¢ = 1.5 pixels, is
éikel#. Note that, according to G(r)/G(0) < 0.05 to decide the filter support, the DDG
filter with ¢ = 1.5 has radius equal to 3.67 pixels and covers 42.35 pixels. It is rather
large; should there be a smaller one? As shown in Figure 3.6, the filter support of ¢ = 0.75
pixels has radius of 1.83 pixels and covers 10.58 pixels. Only one or two pixels at each
side of the target orientation have substantial weight. Therefore it gives better possible
spatial accuracy than the one with ¢ = 1.5 pixels. Nevertheless, when ¢ decreases, the
filter is more sensitive to typical levels of noise. Noise sensitivity is a substantial problem
for the filter with ¢ = 0.75. It is debatable whether this filter should exist in a real vision
system, but it is worth investigating its properties. Thus in this research the filter with

o = 0.75 pixels is also considerad.

A problem related to the kernel size is the sampling interval. Shall we apply edge
filtering at every pixel? There are two major concerns: one is the aliasing error, and the
other is how the sampling intervals should vary for edge filters of different sizes. As for the
aliasing error, according to Pizer [1987] the relationship between the sampling interval, h,
and the acceptable relative aliasing error, ¢, can be approximated by the equation,

han T (3.8)

Jein(Z)
Since in the connectionist approach the pixel intensity is represented by the response of
a procassing unit, subpixel sampling is difficult to implement. The sampling interval is
usuailv in integral pixels. In the current implementation the smallest edge filter in use
has ¢ = 0.75 pixels and is sampled with interval h = 1 pixel. Hence ¢ ~ 0.04. Is ¢ =~ 0.04
good enough? Considering the biological visual system and the limit is on the dynamic
range of the neural circuit, which Barlow [1936] estimated to be 2 orders of magnitude,

£ = 0.04 is reasonably small.

Regarding the sampling intervals for edge filters of different sizes, h is proportional
to o according to the above equation. So a filter with a larger ¢ can have a proportionally
larger sampling interval without causing greater aliasing error. Based on the above de-
scription and the fact that the test patterns under consideration have highest resolution

of 123 x 128, the o's of the edge filters are selected to be 0.75, 1.5, 3, and 6 pixels, and
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Figure 3.6: The smallest edge filter kernel used in this research.

the corresponding h's are 1, 2, 4, and 8 pixels. Moreaver, considering the conneclionist
architecture, in a coarser scale there are fewer processing units, but each processing unit
has preportionally more input connections. That the total number of connections are the
same for different scales may contribute to an efficient implementation. The sampling
interval is proportional to the size of edge filters in a scale, which is similar to Crowley’s
DOLP approach [Crowley and Parker, 1984] though the sampling interval in DOLP varies
by a factor of /2 whereas that factor of my algorithm is 2.

Computation of the Edge Filter Kernel

The edge filter kernel can be calculated as follows. Let E(z,y;8) be the edge filter

output of orientation § at location (z,y), and J(z,y) be the input image intensity at (z.y).
E(z,y:0) = K(z,y,8) « I(z,y), (3.9)

where # is convolution and K(z,y;#) is the edge filter kernel. Evidently,
E(z,4:8) = {w(z,v)lw(z,y) = k9G(z,y)/8zs, 2* +y* <%}, (3.10)

where, /814 stands for the directional derivative in orientation 8, r is the smallest real

number such that G(r)/G(0) < 0.05, and k is a normalization constant such that
Y klwey)l = Y ku(zy)=1 (3.11)

(zy)auwizy)<0 (z.9)3u(zy)>0

The normalization is necessary because the test pattern is represented by a two-
dimensional array of real numbers ranging from 0 to 1 and the normalization causes the
convolution with a perfect maximal edge in the image to be 1. With the edge strengths
ranging from 0 to 1, we can eompare the edge strengths from different edge fiiters and

specify the edge threshold based on a commeon standard.
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Figure 3.7: The kernels of an elongated and a nonelongated edge filter. Row (I) are
three-dimensional line diagrams for edge filters with (a) ¢ = ¢, = 1.5 and (b) ¢ = 1.5,

o4 = 0.75. Row (II) are The corresponding edge filter kernels.

To calculate the kernel for different target edge orientation, Koenderink [1987) shows

that in R? derivatives at all directions can be calculated by a rotation of coordinates, i.e..

EI::l:. y; 8) = El[: cosf + ysind,—zsin§ + ycosf). (3.12)
dxg oz

3.3 Elongated Gaussian Kernel

The above edge filter was implemented and tested with Gaussian kernels of various
a's, but the performance of the edge filters in multiscale was not satisfactory. The reason
is that edge filters are designed to detect the object boundary, and filters at a coarser
scale should detect bigger features. However, the above-mentioned filter (equation 3.10)

is instead tuned to detect the edges blurred to a certain degree.

To cope with this problem, I used an elongated Gaussian edge filter with widths o .
At each sampling point. multiple edge filters with constant width and different lengths

are applied. The use of elongated edge filters is justified by Canny [1986], who concluded
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Figure 3.8: A comparison between the convolution=results of elongated and nonelongated
edge filters. (a) is input pattern; (b),(c),(d), and {e) show resuits of (a) with edge filters

of (ble=0y =15, (¢c) e =15,0y =0.75,(d) e =g, = 3.0, (e) v = 3.0, 0y = 0.75.
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that an elongated edge filter gives better localization and signal-to-noise ratio of edges in

the image. Coggins [1986] used pure orientation filters but no psychophysical support.

Figure 3.7 compares the shape of one of these filter kernels with a nonelongated
edge filter. Figure 3.8 compares the convolution results of this filter and a nonelongated
edge filter on the triangle input pattern of Figure 3.8a, in which the boundary is not a
sharp edge. Note that in Figure 3.8b — 3.8d the object boundary is measured as many
parallel edge strengths instead of a sharp contour. Two reasons contribute: the edge is

not sharp, and the edge filter width extends over more than 1 pixel.

The kernel of an elongated edge filter is the first-order directional derivative of a
multivariate normal function [Duda and Hart; 1973]. The {ollowing describes an example
of the elongated edge filter kernel. Let o be the standard deviation in the target orientation
and ¢, the standard deviation in the direction perpendicular to the target orientation.

The elongated Gaussian function for target orientation of 0% can be represented as

1 x 1 =l
Pl = £ 287 e *L, 3.13
(2:9) 2ma A2nay I: )
and the edge filter with target orientation of 0° is
dF(z,y) y
e R 2 IR : 3.14
o & F(z,y) (3.14)

The edge filter of other target orientations can be calculated based on this function and a

rotation of coordinates.

As Tor the relation between ¢ and o, the filters with & < 7 are not useful
because edges are by definition a sharp change in the direction perpendicular to the target
orientation. On the other hand, a very long kernel is unnecessary because there are not
many long linear edges in the image. The highest ratio of ¢f/ey used in the current
implementation is 4 based on psychophysical evidence — the bandwidth of the human
spatial-frequency channels is 1 to 2 octaves [Ginsburg, 1978; Wilson and Bergen, 1979,

so in the spatial domain a factor of 2 to 4 among the filter sizes may be reasonable.

3.4 Artifact Cancellation

Grossberg and Mingolla [1936, 1987], in designing the boundary contour system,

found that boundary completion was more satisfactory if the magnitude of the edge
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strength is decreased by the magnitude of the edge strength of perpendicular target ori-
entation. Applying a program implementing the boundary contour system to several test

patterns confirms that this operation is important for the success of the algorithm.

Why is the above-mentioned operation important? A clue comes from a more careful
examination of the relationship between a real edge and the four edge filters applied at a
sampling point. A real edge in the image can orient with an edge filter perfectly, or it can

orient between two edge filters with successive target orientations,

I applied edge filtering on two edges: one oriented at 0¢ and the other at 20° and
found that more than 2 out of the 4 edge filters always gave significant responses. Figure
3.9a shows an edge in perfect alignment with a edge filter of target orientation 0°; 3.9b
shows an edge at an orientation between two edge filter orientations. The convolution
results with an edge filter of ¢ = ¢, = 0.75 for the two differently oriented edges at
indicated point are also shown in a table in each figure. At the indicated sampling point 3
out of 4 edge strengths are significant for the edge oriented at 0°, and all 4 edge filters give
significant responses for tlhe edge oriented at 20°. At each sampling point, the presence
of more than two edge filters responding to a real edge contradicts the intuition that a
real edge should be indicated by at most two edge filters of successive target orientations.
This constraint is important because the wrongly-indicated edge strengths, if used in a

later stage of segmentation, will cause errors,

Grossberg and Mingolla's subtraction approach is an effective way to remedy this
problem. It involves a subtraction from the magnitude of the edge strength under con-
sideration (E(z,y:8)) of the edge strength of the perpendicular orientation (E(z,y:8,))
and accepting the result only if it is positive. Let A(z,y;#) be the result after artifact

cancellation:
Alz,y:0) = sign(E(z,:8)) max(0,|E(z, y;8)| — |E(z,y:0.)]) (3.13)

Figures 3.10a and 3.10b show how two perpendicular edge filters are applied to an edge.
For the filter outputs with target orientation right on edge, as in Figure 3.9a and 3.10a,
the edge strength is not affected. Edge strengths of all other situations are adjusted
downward. For the examples in Figure 3.9, after artifact cancellation the edge strengths
become (-1, 0, 0, 0) and (-0.5177, -0.4863, 0, 0) for the edge of orientation 0° and 20°,
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Figure 3.9: Two possible relations between edge filters and an edge in the image. (2) an

edge aligned perfectly with an edge filter, and (b) an edge oriented (207) between two

edge filters.

orientations 0, 1, 2, and 3, respectively.)

(Numerals 0, 1, 2, and 3 in the rectangle indicates the edge strengths of

respectively. These edge strengths give more accurate information about the edges under

constderation.

1|

Coggins [1986] showed that a moere accurate estimation of the boundary orientation

can be cbtained by a vector sum over all orientations,

Hewever, for a connectionist

approach the representation of the result of the vector sum requirss many processing

units {neurons).

Moreover, to verify the connectivity under the postulated conditions,

there is no need to determine the exact orientation at each boundary point — only the

neighboring points to which this pixel is connected need to be determined.

The only place artifact cancellation may destroy useful information is around a

right-angled corner as illustrated in Figure 3.10c. However, since corners are separately

detected in my algorithm, the loss of this information does not affect the detection of a

right-angled corner.

Figure 3.11 shows the convolution results before and after artifact cancellation.

Many edge strengths are diminished and a better representation of the input pattern is

obtained.
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Figure 3.10: The artifact generated by edge filters. (a) the target orientation is right
on edge, (b) two filters with target orientation perpendicular to each other, and {c) the

situation when the artifact cancellation process may destroy useful information.
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Figure 3.11: The effect of artifact cancellation. (a) is the input pattern; (b} and (c) show
the convolution results with edge filtefing of ¢ = 1.5 and o, = 0.75 pixels before and after

artifact cancellation.
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Figure 3.12: The convolution results of a noisy image (a) with filters of (b) ¢ = o, =0.75,
ye=1.501 =075 and (d)o=230, ¢ =075

3.5 Multiple Edge Filters at a Sampling Location

In order to attain an object boundary under various levels of noise, multiple edge
filters need to be applied at each sampling point. A small edge filter behaves better {or
images without noise because fewer false edges are detected and valid edges will be better
localized. A small edge filter can also detect short edges; segmentation based on their
ocutnuts shows the details of the contour. Unfortunately, when noise is present, using a
small edge filter often runs into problems. Figure 3.12 demonstrates how three edge filters
(one isotropic and two elongated, with fixed o, ) respond to a noisy image. Evidently, it is
beneficial to use edge filters with larger support for their higher noise immunity. Since an
input image can have various levels of noise, a compromise is to &;Lp] y multiple edge filters
at a sampling peint. Figure 3.13 shows the kernels of three edg; filters, and Iigure 3.14
illustrates the supports of multiple-sized edge filters of target orientation of 0% applied at

a sampling point.

Another important consideration for using the multiple, elongated edge filters is how
to complete the gaps between two linear edges as in the subjective contour of the Kanizsa
square. The fact that a longer edge filter responds bevond a linear edge is necessary for the
completion of the Kanizsa square. However, a given elongated edge filler can propagate
the edge only to a certain extent. With a fixed number eof elongated edge filters at a

particular scale, the gap that a scale can complete iz limited. This is one of the reasons



44

on B ala i b o'l
o0 = = s A w agdH e ' = o SR ] - -
l L1 L e - 1 L . sa s cowbdbe . o) =
aw & & . - - = B aw
'
F e e R s s e L
T I R R T o | -
A e O e LR ] L .
'I e F e s - L ] L o &
R O e &8 A ag o
“me = - ES
. .
. -
. W el “w o s i
”l LT T R i “ 4 O T T 1 ‘ “mw V aa i m
CRCRCR I O BT N R ' i e i PR N VPR Al .
' - L & C 3
--------- I L N
IR .

(a) (b) (c) )

Figure 3.13: The kernels of the multiple edge filters. Row (I}, (II), (II}: ¢y = 0.75
and ¢ = 0.75,1.5,3.0, respectively; Column (a},(b),c), and (d) show the target edge

orientations of 0%, 45°,90°, and 135°.



Figure 3.14: Multiple edge filters applied at a sampling point.

that the algorithm contains multiple segmentation mechanisms as shown in Figure 2.5 —
a coarser scale with @ /o, equal to that of a finer scale can complete a bigger gap. The

effect of these mechanisms will be described in more detail in Chapter 5.

The integration of information from multiple scales has long been an open research
topic. The following summarizes several such schemes., Canny [1986] used feature synthesis
to decide whether a pixel is an edge point: if the small edge filter output at the location
is above threshold, the pixel is deemed an edge: if not, the output of a bigger filter is
compared with a value calculated based on the edges indicated by the small edge filters
within the support of the big filter. If the two values are significantly different, the pixel
is still marked as an edge point, This scheme gives reasonable performance, but extra
filtering and more complicated control would be required for hardware implementation,
Besides, an edge detected by the Cauny edge detector sometimes shifts from its original
position. Bergholm [1988] a.pplie;i _I;E; Canny edge detector in multiscale and traced down
the scale to attain better localization. Hildreth [1983] suggested that a linear interpolation
scheme of the multiscale information might explain human hyperacuity, the ability to
detect differences in spatial position smaller than the sampling distance of foveal receptors.
Finally Coggins [1936] suggested an interesting method to integrate information from
different scales: multiscale information is first mapped onto a feature space based on

which effective image analysis, and object recognition can then be done.

A possible usage of the multiple edge filter outputs is to verify the “edgeness” at

the sampling point. The following abservations on the relationships among the 16 edge
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filter outputs at each sampling point (4 sizes with each of 4 orientations) may help.

e For the four edge filters of different orientations and the same size, the polarities of

the filter outputs should be coherent.

o Twoedge filters of successive sizes should give edge strengths of similar edge direction

and magnitude.

e For an edge segment shorter than the kernels of edge filters, the corresponding edge

strengths should decrease smoothly with the increase of edge filter size.

Note that the above heuristics can help in identifving a real edge, but they are not
necessarily true for a noisy image or for the sampling points near a more complicated
image structure like a corner. In my implementation the edge filter outputs were aver-
aged. Running the algorithm against several test patterns, this simple scheme gave good

segmentation on many images.



Chapter 4

Corners

This chapter deals with the preblem that directional edge filters cannot correctly
indicate the object boundary near more complicated image structures like corners, T-
junctions, and cross-junctions, which are important for object boundary detection. To
cope with this problem, T propose a scheme which detects these image structures based

on patterns of edge strengths.

This chapter first introduces the problem of corner detection and then describes a
solution. The results of applying this scheme to several test patterns are then presented.

The chapter concludes with a discussion of possible improvements to the algorithm.
4.1 Introduction to Corner Detection
Corners are contour points with infinite curvature, where

l, {4.1)

: Af
curvature = lim |
As—D Mg

with # being the inclination angle of the tangent line and s being distance along the curve.

Corners are important characteristics of an object-bounding contour in a two-
dimensional image. Besides the psychoplysical evidence [Attneave, 1954], this point can
be justified from two directions: the inadequacy of edge filtering near a corner and the in-
sufficiency of using context-free edge strengths to define object boundaries. Edge filtering
near a corner causes problems because an edge filter in this algorithm is a combination of
a smoothing operator and a differentiation operator. The smoothing causes a sharp corner
to be rounded, and then the first-order directional derivative can not detect the corner.
Figure 4.1 illustrates the edge filtering near a corner. At sampling location 0 in the figure
the edge strengths of all four erientations are nonzero, There is no way to determine the

object boundary based on the edge filter outputs at a single sampling paoint.,
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Edge filter with & = 0.75 pixels
.ﬁ‘_j. = 0.75 piXEES

A comner

3

—éamp:ing
location

Figure 4.1: Edge filtering near a corner.

The second problem is that edges alone are unlikely to define a closed contour
properly. If corners are not specifically detected, connectivities between nearby edges are

hard to define.

Figure 4.2 — 4.5 illustrate various kinds of corners, T-junctions, and cross-junctions
with the corresponding edge filier outputs. Means of detaction of these image structures
will be given later in this chapter, and the results of segmentation will be illustrated in
Chapter 5. Figure 4.2 shows the edge filter outputs for corners of opening angles 15°, 30°,
60°, 80°, and 150°.

In each of the input patterns in Figure 4.21, there is an ideal corner with the tip
at (&,8) on a 16 x 16 grid. The sizes of the circles in the diagram indicate the portion
of the pixel covered by the corner. It is obvious that there exists the problem of discrate
representation: in Figure 4.2]a the corner of 15° cannot be precisely represented, and the
lost information cannot be recovered by edge filters, Moreover, the pattern of edge filter
outputs near a corner are different {rom those near a linear edge. It follows that when
integrating edge strengths to indicate an object boundary, different rules need to be used

for locations near a corner and locations near a linear edge.

Figure 4.3 shows the edge filter outputs for T-junctions. and Figures 4.4 and 4.5
show the edge filter outputs for various cross-junctions. Near these image structures

the edge filter outputs deviate from those of a lincar edge owing to the symmetry that
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these image structures impose on the left and right halves of the edge filter kernel. This
phenomenon is especially evident {or Figure 4.5d, wherein the edge filter outputs at (8,8)

vanish.

It should be clear that corners are important for defining the object boundary, but
how can they be detected based on the input of the visual system — a two-dimensional
intensity array? Many approaches have been proposed for corner detection [Asada and
Brady, 1986; Baugher and Rosenfeld, 1987; Davis, 1977; Dobbins, Zucker, and Cynader,
1988], but most of these methods assumne that a given contour exists and the algorithm
determines where along the contour the corners reside. From the viewpoint of a vision
machine, the problem is more difficult. The contours of objects in the scene are not given,

vet the corners need to be located.

4.2 Detection of Corners and Related Image Structures

Corners, T-junctions, and cross-junctions are detected by separate parallel process-
ing mechanisms based on edge information. This section first elaborates on the derivation
of the mechanism for corner detection. Then it describes how a similar method can be

applied to detect T-junctions and cross-junctions.

4.2.1 Corners

Cormners can be detected by template matching, but this approach is impractical.
A simple calculation on the number of processing units required for a possible corner
template scheme shows this point: A corner can have various opening angles and opening
directions. Since there is no way to know where there will be a corner in the image,
there must be a corner template of every possible opening angle and opening direction
everywhere in the visual field. A conservative estimate is based on the assumptions that
the resolution of the image is 1000 by 1000 and corners can open to ten different directions
and have ten different opening angles. Without counting polarity, the required number of
corner templates is 10 x 10 x 10° x 10° = 108, which is near the total number of neurons

in area V1 of the visual cortex [Wiesel and Hubel, 1977)].

The derivation of my corner detection scheme is based on two properties of a corner:
a corner is a local property and corner detection is a second-order property of edges. As

regards the locality, since template matching is improbable, a natural question 15 can the



.
GCOODO0 o000
tegalaRaRal ekl =R-X4-g-1-}
oo o0o t-1-2-0-1
LO000000 [-L-2-1-1-]
LA0AR000 [-1-2-3-1-]
La0Co000 L-L-2-1-1-]
egsiw e R Re ) oDoGo
00 000000 a [-X-1-1-1-]
mgtd TS
&
in wx
o % o
- e X
P s [E ¥
PR T PR g b [N &
-------- B T T R R R ey PP TR R
" i R B e e I
.............................. e IR R R
| |
Aoaf O TH B TR CF T W L e A ) i T A
AR
¥ % _4; £ L
£ ¥
- R @y i §1~ ]
e I I - e T Ao oafla = » ¥ ¥ = =
1
R R BT U O T I S T R L T [ S
li! - o . - o= N . - - a & = - .  w| om w S P " - om - - m a i . . - !
et e Y ] ik 1. LY W¥ T 14 i i

Figure 4.3: Edge filter output near T-junctions. Row (1}: input patterns; Row (II): output
of edge filters with ¢ = o, = 0.75; Row (III}: output of edge filters with ¢ = o, = 1.5
Column (2){b)(c){d): T-junctions of 15°, 30°, 60°. and 90°, respectively.



a2

]

&89 I
N - on @)
L 5 .
O S
DS B
e

e R L e

DR S

B
PEA

CRURCE A
CRCR S

Y L T

s FA e s

PP " R
Ry Y R
A EE . W
WA e S RN

L N T A
o RN R

[ s

Hi

o ey By e s e

PR R I
R R R

S R

s mlylyy e 0 F e

S L

PR B N

e I

e
e

CR

L R
N
e u b

by
LR |
O]

r
&
b
e I

L e

g

ifle & = == iy w Wy

e o gy e

-4
-

g90 0,750,735

L
~

=

= fn
=
I F o
.

= W % &

e b

R

L S
R L e S
s o LR S

Si

e

.
-

ey
B

P

PO %ﬁ% -
v e
. o

L

-

~FH
- e

L T

o
= oL
ol S
® OV -
% %
. N X
..q,a:.

L4
kil

e¥3 1.5 1.5

|

(d)

Figure 4.4: Edge filter output near cross-junctions. Row (I): input patterns; Row (11):
output of edge filters with ¢ = o, = 0.75; Row (11I): output of edge filters with ¢ = ¢, =

1.5: Column (a)(b)(c)(d): cross-junctions of 15°. 302, 60%, and 90°, respectively.
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respectively,
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Figure 4.6: The edge strength patterns near a corner. They are labeled by 0 - 7 in the

figure and differ mainly in the corner’s opening direction.

corners be detected from edge information? Some psychophysical evidence indicates that
humans detect corners aflter edges [see Darlow, 1983; Frisby, 1980). So, il a corner is a
place where two edges meet, whether a corner exists within a pixel can be decided by edge
filter outputs in the pixel’s neighborhood.

Corner detection can be based en a second-order statistic of edges. For a corner
residing within a pixel, the polarities of the edge strengths sampled at the neighboring
points have a certain pattern of relationships. For example, let E(loc; k) represent signif-
icant edge strength of orientation k {ranging from 0 to 3) at location loe; in the diagram

of corner type 0 in Figure 4.6, E(0;1) and E(3;3) have apposite polarities,

Studying the edge filter outputs at the four corner points of a pixel, we see that
there are only twe kinds of edge strength patterns if a corner is within the pixel; one with
the corner pointing to the direction between two sampling points and the other with the
corner pointing directly to a sampling point. Each kind has four possible arrangements
as illustrated in Figure 4.6, where the cight possible edge strength patterns are labeled
by 0 — 7 according to the direction in which the corner points. T.ﬂ analvze a pixel for
containment of a cotner, the edge filter outputs at the 4 sampling locations on the pixel,

marked by 0 = 3, are checked. A small line segment at each of these sampling points
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Pixel under consideration

¢! Corner

(2) (b)

Figure 4.7: The edge strengths near a type 0 corner shown in more detail.

indicates a significant edge strength at the orientation of the line segment. For each of the
eight edge strength patterns shown, the locations marked with a small eircle are deemed

to be corners.

The two kinds of corners in Figure 4.6 are labeled by odd and even numbers, respec-
tively. Let us take corner type 0 as an example of a horizontal or vertical (even numbered)
corner and corner type 1 as an example of a diagonal (odd numbered) corner. The follow-
ing argument about type 0 and 1 corners, respectively, generalizes to the other corners in
their category.

For corner type 0 the pair of edge streng;-lrs E(0;1) and E(3:3) should have opposite
polarities, and so should the pair E(1;1) and E(2;3). However, for a type 0 corner shown
in Figure 4.7 (especially for a long, sharp one as in 4.7a), the polarity relationship described
above holds for several pairs of edge strengths along the 0° direction, e.g.,, E{A;1) and
E(B;3), E(C;1) and E(D;3), and E(E;1) and E(F;3) in 4.7a. Which locations should
be recognized as corner points? A solution is to take into account the magnitude of the
edge strengths — the edge strengths at the desired corner points 0 and 3 are usually the
largest compared with those at locations 1, 2 and A, B. To accomplish this we define
a [unction S{E;, £;) of the strength of a pair of edges with strengths £; and E;. For

example, 5 may be the maximum function.
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But how many pairs of edge strengths should be considered to find the pair with the
largest magnitude? To avoid comparing the edge strengths at several pairs of locations,
an approximate scheme based on the {ollowing observation was adopted: considering the
strengths of edge pairs in Figure 4.7a, from left to right the strengths tend to increase
slowly until they decrease abruptly just beyond the corner. Therefore, a subtraction and a
test of sign, applied only on the four edge strengths around the pixel under consideration,
was applied — at each pixel where E{0;1) x E(3;3) < 0 and E(1;1) ® E(2;3) < 0 the
scheme checks that whether max({ E(0:1), E{(3;3)) — max(E(1;1), £(2;3)) > 0. If so, the
pixel is deemed as a corner point. The scheme works because beyond the tip of the corner
the edge strengths of proper orientation drop quickly, Hence the multiplication for the

polarity check gives 0 and prohibits the acceptance of the pixel,

In summary, the corner strength C{loc;type) of corner type, {ype, at the location,

loe, can be calculated based on the following equation.
max(0, max( E{0;1), E(3;3)) i E(0;1)x E(3;3) <0 &
Clloc; 0) = - max(E(11LE(2:3)  E(1i1) % E(2:3) <0 (42)
0 otherwise
Note that the above equation implies that the edge strengths E{1;1), E(2;3), E{0; 1), and

E{3;3) should also be significant, i.e. larger than an edge threshold (E_thd); otherwise
either E(0;1) x E(3;3) = 0 or E(0;1)} % E(3;3)=0.

For corner type 1, obviously E(0;3) and E{2;3) should have opposite polarities.

max( E(0;3), E(2;3)) if B(0;3)x E(2;3)<0&
Clloe;1) = E{1;2),E(3,0) > E_thd {4.3)
0 otherwise

By symmetry, similar statements can be made about corner types 2, 4, and 8, and 3, 5,
and 7. By appropriate rotation of one of the two cases above, an expression can be given

for the other corner types.

A program detecting these patterns based on the above definition was implemented.
At each sampling point only the edge strengths from the smallest edge filter (e.g, 7 =
&) = 0.75 for the finest scale) were used for corner detection because being a corner is
a local property whereas the convolution results of a bigger edge filter show the property

of a more global area and are lience improper for locating corners. Application of the
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scheme to several test patterns shows that most of the sampling locations marked by a

small circle in Figure 4.6 are satisfactorily detected as corners.

The algorithm has two major advantages. First, the algorithm is defined on the
polarity of the edge filter outputs, so it is more stable against noise than the method
based on the numeric values of edge filter outputs. Second, the algorithm depends only on
local information and is simple. Not only is an efficient implementation on a conventional
computer architecture possible, but also a construction of a connectionist implementation

ig feasible.

Figure 4.8 shows a possible connectionist implementation of this algorithm. There
are four layers: input representation, edge filtering, edge pair comparison, and corner
representation. In the input layer each circle indicates a pixel intensity of the image; each
cross indicates where edge filtering is to apply. Edge filters measure the local intensity
changes over the image regularly. At each sampling point there are eight edge filters
differing in target orientation or polarity., The wiring between the edge filter layer and the
input layer is not shown to simplify the figure. Each neuron inlayer 3 has inputs from edge
filters at two sampling locations. An example of the connections between layver 2 and layer
3 {marked with dotted wiring and a shaded circle) is illustrated in more detail in Figure
4.8b, which shows how both orientation and polarity contribute to corner detection. Each
neuron in layer 4 has inputs from neurons in layer 3. The firing of the layer-4 neuron
indicates that there is a corner within the pixel surrounded by sampling points 1 — 4 in
the input image layer. Since there are eight corner types, the neurons shown in layer 4

need to be replicated 8 times.

o

4.2.2 T-junctions

Figure 4.3 shows that edge filters do not give proper edge strengths at the object
boundary near a T-junction. Studying the edge strength patterns shown in Figure 4.3,
i.e., a horizontal boundary intersected by another one at a certain angle [other T-junctions
give similar results), the intersecting boundary causes the horizontal edge filters near the
T-junction to give smaller outputs, while vertical edge strengths appear. As illustrated in
Fignre 4.9a, this effect peaks at the position of intersection and decreases smoothly with
increasing distance to the Junction. Another way to describe this behavier is that, if the

edge strengths at a single sampling point defines a local edge direction, near a T-junction
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Figure 4.9: Edge strength patterns for a T-junction. (a) Edge filtering near a3 T-junction.
(b) The effect of the intersecting boundary on edge strengths along the main boundary
(horizontal for now). (c) The edge strength patterns used to detect a T.junction shown

in {a).

the edge direction changes with a pattern shown in Figure 4.9b, wherein a small circle

indicates the location of intersection. Furthermore, a smaller intersecting angle causes a

wider spread of this direction variation.

This direction variation pattern can be used to detect T-junctions. There are two
important points to consider. First, how big should the area be in which the algorithm
checks for the direction variation pattern? Evidently, an area of radius of 1 pixel as for
corner detection is insufficient. Since, for efficiency, the pixels under consideration should
be as few as possible, the current implementation checks the edge strengths within an area

of radius equal to 2 pixels.

Second, how can the direction variation pattern be detected? An intuitive answer
is to match the pattern of Figure 4.9b directly. This approach is unlikely to work because,
given two edge strengths of successive orientations at a sampling point, the calculation of
the edge direction requires an interpolation among orientations, and interpolation involves
a division. Hence it is difficult 1o accomplish using 2 connectionist architecture. Moreover.

the storage of the edge direction requires many neurons.
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An alternative is to match the pattern of all the edge strengths at the positions near
the junction. But this scheme is diflicult because if, at two successive positions, the same
two edge strengths are significant, to decide if the edge directions at these positions are in
proper sequence requires the comparison of the magnitudes of these edge strengths, which
is also costly for a connectionist approach. Moreover, comparison of absolute values, here

edge directions, is noise-sensitive,

A closer look at Figure 4.9a suggests that an approximation scheme can be de-
vised based on how the intersecting boundary disrupts the edge strengths along the main
boundary. As mentioned before, the edge strengths along the boundary are diminished
near the junction and are sometimes exceeded by the perpendicular ones. Thus after arti-
fact cancellation the edge strengths along the main boundary may disappear; instead the

perpendicular ones occur near the junction.

Based on the above arguments, the three edge strength patterns illustrated in Figure
4.9¢ are used to detect the direction variation pattern of Figure 4,9b. In the figure numerals
0 - 4 are used to indicate the locations under consideration. Atasampling point (indicated
by a small circle and labeled by “0") if one of the edge patterns in 4.9¢ is detected, the
location is deemed to be a T-junction. Note that theé current scheme considers only the
T-junctions in which the intersecting boundary affects the edge strengths at no more
than two sampling points along the main boundary. Also, the edge strengths of diagonal
orientations should not be considered because a significant diagonal edge strength can
occur not only due to a T-junction but also to a wavy boundary. However, one or two
vertical edge strengths embedded in a series of horizontal ones may well indicate the

existence of a more complicated image strusture.

In summary, the T-junction strength, T{0) at location 0 in Figure 4.9¢, can be
talculated by

[ 7(E(1;0), E(2:0), if E(3;0), E(4;0), E(0;0) > E-thd &

E(3;0), E(4;0))  ((E(2:0) > Egpa & E(1;0) > Ethd) or
T(0) = (E(2:2) > Ewa & E(1;0) > E_thd) or (4.4)
(E(2:0) > B & E(1:2) > Ethd))

1] otherwise

L]

where the function f(E;.E;,.., E,) can be, say, a maximum-finding operation of its ar-

guments. The scheme can easily be generalized for T-junctions composed of boundaries
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Figure 4.10: Edge strength patterns indicating a cross-junction.

of arbitrary orientations. Applying this approximation scheme to Figure 4.3 shows the
scheme is effective.

4.2.3 Cross Junctions

The edge strengths near a cross-junction are weakened by the complicated image
structure. Further study on segmentation (described in Chapter 5) shows that enly the
cross-junction in Figure 4,5d seriously affects the segmentation, Because the pattern is
perfectly symmetric for the edge filters at that junction, all edge strengths vanish there.
For all other cases reasonable segmentation can be achieved with the edge and corner

information.

The edge strength pattern shown in Figure 4.10 can be used to identify the cross-
junction in Figure 4.5d. That is at a sampling point, the cross-junction strength, Cr(z,y),

can be represented by

([ HE(z+ 1,510), Bla - 1,10), if Ble+1,:0)> Exhd &
Elz,y+1:2), E(z,y - 1;2)) E(r—1,1;0) > E_thd &

Cr(z,y) = < E(z,y+ 1;2)> Ethd & (4.5)
E(z,y—1;2)> E_thd

0 otherwise

.

The simple scheme successfully detects the pattern in Figure 4.5d.
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Figure 4.11: The corner detection of a test pattern, triangle. (a) the sampled input (b)

the result of edge filtering (c) after artifact cancellation (d) the detected corners

4.3 Strengths and Limits of the Scheme

The corner detection algonithm described above was implemented by programs in
C on a Sum workstation. Figure 4.11 shows the output after gach processing stage of
the algorithm: Figure 4.11a is the sampled input of a triangle, 4.11b is the result after
edge detection, 4.11c is the result after artifact cancellation, and 4.11d demonsirates the
successiul detection of the three corners, What follows describes the strengths and limits

of this corner-detecting algorithm.

4.3.1 Successful Detection of Corners

Figure 4.12 shows five corners of different opening angles, which are selected from
a-collection of simulated results on a set of ideal corners. All corners are located at (8, 8|
of a 16 x 16 grid. For the corner of 15° in Figure 4.12a, the location detected is shifted
by two pixels because of aliasing in the digitization process. In Figure 4.12b a torner Is
correctly detected at (8,8). Tor each corner in the image the algorithm does not give a
single location; instead several positions near the exact location of the corner are indicated.
This behavior may be improved by mutual inhibitien, and in my algorithm this problem
iz addressed by the spatial coherence clieck, described in Chapter 5. Note that Figure
4.121V shows that the same corner detection scheme works for both scales used in the

figure. The segmentation results in these two scales will be shown in Chapter 5.

Figure 4.13 shows the corners detected for two triangles arbitrarily oriented. Both
4.1%a and 4.13b show 2 diagrams — the left one iz test input. and the right is the result

of corner detection.
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Figure 4.12: Corner detection for corners of various opening angles. Row (I): Input
patterns; Row {_II']: results of artifact cancellation; Row (III): results of corner detection
of the finest seale. Row (IV): results of corner detection of the next finest scale. Five

columns indicate different angles: (a) 15% (b) 30° {¢) 60° (d) 90° (e} 150°.

(a) (o}

Figure 4.13: Corner detection for two triangles of arbitrary orientations. (a) a triangle of

452, 45%, and 907 (b) a triangle of 30°; 30°, and 120°.
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Figure 4.14 shows the corners detected on a portion of a real scene. Since a natural
scene is usually complicated, causing the result to be difficult to see, this test pattern is
intentionall: selected for its relative simplicity. Compare the locations of detected corner

with the input image; the result is satisfactory.

Figure 4.15 shows the detection of T-junctions shown in Figure 4.3, The results of
edge filtering with artifact cancellation, the input to the T-junction detection scheme, are
also shown in Figure 4.1511. Figures 4.1511I and IV show that at both scales the existence
of a T-junction was successfully detected in each input pattern. For the patterns with
smaller intersecting angles the detected location for the T-junction shifts. This is in part

due to aliasing in the digitization process as occurred for a sharp corner.

Figure 4.16 shows that a cross-junction as shown in Figure 4.5d is successfully
detected. Note that the scheme described previously works only for a special kind of
cross-junction. Further study is required to develop schemes for detecting general cross-

junctions.

Figure 4.17 shows how the algorithm works on two thin narrow objects, each 2
pixels wide. The line ends are indicated by a cluster of corners. This is understandable

since a corner also defines the end of an object.

4.3.2 Capability Limits of the Algorithm

The corner-detecting algorithm described above has capability limits in regard to
sharp and nearly flat angles, noise, and blurring. These capability limits are discussed
in the following, and methods for extending the performance beyond these limits are

described in the next section.

The algorithm does not work as well near almost flat corners because the edge filters
used are 45° apart and hence the edge strengths of orientations other than 0° are small
near an almost flat corner. It is difficult to tell a corner from a straight edge. Again, we
reach a limit due to aliasing in the digitization process. Figure 4.18 shows the corners

detected in a triangle of 15°, 15%, and 150°.

Sharp corners are usually less accurately located. One reason besides aliasing is that

edge filtering is more seriously affected by noise there. Since corner detection is based on
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Figure 4.14: Corners detected in a real scene. (a) is an image of a building, portion in
the frame is extracted as test patterns, (b) shows the test pattern with area of circle
representing the intensity, {¢) is the output after artifact cancellation, and (d) shows the

important corners detected,
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Figure 4.15: The detection of a T-junction. Row (I}: Input patterns; Row (I1): results of

artifact cancellation; Row (II1): results of T-junction detection of the finest scale. Row
(IV): results of T-junction detection of the next finest scale. Four columns indicate differ.
ent angles: (a) 15% (b) 30¢ {c) 607 (d) 90°.
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Figure 4.16: The detection of a cross-junction. (2) input pattern (b) edge filter output (c)

after artifact cancellation (d) cross-junction detected

Figure 4.18: Corner detection for a triangle of 15°, 13°, and 150°.
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Figure 4.19: The effect of random noise on corner detection. The noise-to-signal ratio is

() 0.1 (b) 0.2 (¢) 0.3 (d) 0.4,

the edge filter outputs, it is accordingly affected. For similar reasons, the detection of

T-junctions has problems when one boundary intersects another at a small angle.

Noise affects the performance of the algorithm as expected because a corner is a
place where two edges meet and is hence more sensitive to noise than a single edze. In
Figure 4.19] Gaussian noise [measured by its standard deviation, o) 15 inserted in
cach of the test patterns. The term “nz” in the subtitle of each diagram indicates tha:

the noise-to-signal ratic of the test pattern is ', where

' : i Trnotsn ¢ 1
noise — to — signal ratio = ——= (4.8)
Ia:g = Ibkg

and [y and [, are the average intensities of signal and background, respectively. The
corners detected by the two finest scales are shown in Figure 4.1911 and 4.19II1. The
coarser scale gives better performance. This point will be clearer when the segmented

results of these noisy images are discussed in Chapler 5.
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Figure 4.20: The effect of blurring on corner detection. A two dimensional Gaussian is
used as the blurring function, The & is (a) 0.75 (b) 1.5 (¢) 3.0 (d) 6.0 pixels. Column (I):

input; (I1): corners detected in the finest scale; (I111): corners detected in the next finest
scale.

Figure 4.20 illustrates the effect of blurring. Two-dimensional Gaussians with o =
0.75, 1.5, 3.0, and 6.0 were convolved with the test pattern triangle. When tlie blurring
leve] increases, the edge strengths spread out; hence the number of detected corners in-
creases as shown in Figure 4.20. When the blurring level is substantial, the corners are

smoothed out as shown in Figure 4.20,

Finally, the algorithms for detecting the T-junctions and ¢ross-junctions are not
complete. What are the edge strength patterns for general T-junctions and cross-junctions?

The answer awaits further investigation,

4.3.3 Remedies to Weaknesses and Several Implementation Issues

There are two possible remedies to the above-mentioned weaknesses at the cost
of more resources. Figure 4.21a demonstrates that this algorithm can be extended by

considering the neighboring 16 sampling points instead of onlv 4, All locations marked
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Figure 4.21: The possible schemes to improve the algorithm. (2) more sampling points

are considered (b) a hexagonal sampling grid.

with an arrow in the diagram instead .nf only locations 6, 7, 10, and 11 can be used to
estimate the probability of the existence of a corner in the shaded pixel. For example,
if the edge filter pair at location 1 and 4 with marked orientation fire substantially and
have opposite polarity, the probability should increase. Another scheme to remedy the

weaknesses is to use the hexagonal sampling grid as shown in Figure 4.21b.

Though the algorithm has its shortcomings, so do al! visual systems because they
all have limited processing power and limited processing time. Yet the visual environment
is arbitrarily complicated. Unpredictable situations beyond the visual system's detec-
tion capability may always oceur. Therefore it is impractical to always search for perfect
solutions; rather one should design systems the components of which are tolerant to in-

consistencies in their inputs and make economic use of resources,

The resources required for the corner detection are briefly analyzed as follows, For
the current implementation, assuming the resolution of the input image is m x n and
the number of orientations is k, then we need m x » x k edge filters, 6 X m X n X k
corner &EI.E.CIGTS, plus a summary layer and other intermediate connections on the order
of m X n. Note that each neuron has only local connections, say. of upper bound . Then
the number of connections in the network is in Ofemnk). if the algorithm is simulated on

a von Neumann machine, this figure also indicates the erder of computation time. For the
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current implementation, with an image of 64 x 64 and 50 neural connections on average,
the computation load is about 1.5 x 10® operations. With a 10 MIPS machine, such as
a Sun 4, it takes minutes to run. Evidently, with a connectionist implementation or a

multiprocessing architecture, real-time performance could be expected.

4.4 Summary

This chapter described an edge-based corner detector. It has been shown that
the intuitively simple scheme successfully detects corners under various conditions. The
essence of the scheme lies in the locality of the detection algorithm. Thus a connectionist
mode] can be built and an efficient implementation based on a multiprocessing architecture

is conceivable.

The design of the model is based on knowledge of the human visual system, the
constraints imposed by our visual world, and functional analysis of the computational
needs of visual tasks.



Chapter 5

Segmentation

This chapter describes how to integrate the edge and corner information to give
object contours. Without noise, the edge and corner detection methods described previ-
ously properly detect the object boundaries in an image. Nevertheless, noise is inherent
in the imaging process. A boundary may be contaminated; a feature detector may indi-
cate nonexisting features. How should one cope with this problem? One component of
a solution is to consider contextual information — if an edge or a corner is a part of the
object boundary, then there must exist nearby edges or corners. This operation, called

spatial coherence check, i5 described in detail in Section 5.1.3.

The chapter first discusses the design of this segmentation algorithm and then

sumimarizes the results obtained by applying this method to various test patterns.

5.1 Design of a Connectionist Segmentation Algorithm

This section first introduces the background for my segmentation scheme. Then
it describes several design decisions. Lastly the section summarizes the algorithm and

discusses why the algorithm issfTective,

5.1.1 Background

It has been argued in Chapter 1 that a visual system cannot function at the pixel
{receptor) level; a fast, data-driven information reduction is necessary. Image segmenta-
tion is the separation of an image into regions, where each region is approximately uniform
in some property, e.g., color, motion, depth, texture, or intensity. Thus segmentation is a
mechanism reducing the representation of an ebject from an intensity value at every pixel
to a boundary and a description of the uniform surface property of the region within the
boundary. This research operates on two-dimensional grey-scale images, and the grey-

scale intensity is the only segmentation cue considerad. The information reduction aspect
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of image segmentation 15 true for botll region-based and edge-based alporithms: for the
former, the region grows until the property under examination is different — an object
boundary is found; for the latter, the abrupt changes of the property in the image are first
detected, and then the edges connect with each other to form a closed boundary — an

ob ject region is enclosed.

For an edge-based algorithm, how can a connectionist approach, which applies only
simple funetions on loeal information, cope with the difficult problem of edge following?
An indication comes from Grossberg's Cooperatlive-competitive loop, which was briefly
described in Chapter 2. Since the bipole layer is the key to the success of this process,
the equations that Grossberz used to calculate the neural respeonses of bipole cells are

summarized in the following.

Let B{z,y;%) represent the response of a neuron with bipolar receptive field at
location (z,y) with orientation k, and B(z,y: k) and B.(z,y;k) the weighted sum from

its left and right bipole field, respectively. Then at equilibrium state
Bz, yik) = g(Bilz,y: %)) + g( Be (2, 13 k),

where g is a normalization function and By(z,y;k) and B.(z, y; k) are calculated based on
the edge strengths ( E({,j;r) of orientation r at location ({, j)} and the connection weights

{}*"IF;”J__E_r from neuron at (i,7;r) to neuron at (z,y: k)):

;T [E(i,d;7) - EGgsr )IFEE
(fJ1eRorfe, re Dy
where R; and R, are collections of pixels in the left and right bipole subfield for B,
and B,, respectively, D)y is the set of orientations near k, v is an orientation, and r is
the orientation perpendicular to r. Note that E(i,7;r) — E{i,7ir.), instead of E{i,j;r)
alone, is used in the above calculation. Grossberg and Mingolla [1986, 1987] found that
boundary completion is more satisfactory with this operation. The counter-interaction
between perpendicular edge strengths is called artifuct cancellation in my algorithm and

was discussed in Chapter 3.

The cooperative-competilive loep has two problems. First, to complete the gaps of a
test pattern such as Nanizsa square (Figure 2.1b) of various sizes, different sizes of bipole
fields are necessary, causing the network configuration to be image-dependent. Second, it
is improper to apply the bipole field, which has a linear shape, near corners. What are

possible remedies?
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To cope with the prablem of image dependence, the bipale field should not vary in
size but should be based on a fixed support. As for the size of the support, a small support
not only means less processing (i.e., fewer connections), but also gives a better-connected
boundary. For example, if the coherence for an edge is checked based on 2 pixels on each
side, then a boundary may be deemed connected when there is actually a one-pixel gap on
the boundary. A problem of using a small support is that if noise destroys edge strengths
along the boundary for more pixels than the size of the support, the boundary cannot be
completed. In my algorithm a small support is used for the coherence check. and gaps
on contours are completed by the edge strengths generated by elongated edge filters, as

discussed in Chapter 3.

As regards the improper response of the bipole field near corners, a specific corner
detector has been devised in my algorithm, and specific coherence rules for corners will
be defined. A problem with this idea is the incompatible representation of edges and
corners: corner detection shows whether a corner resides within a pixel in an image,
while edge filtering is applied at the four corner locations of a pixel. How can the corner
and edge information be combined? The answer comes from a closer look at the corner
detection scheme described in Chapter 4: the corner detection mechanism not only detects
the existence of a corner but also differentiates the corner type. Hence a corner can be

represented by its forming edges.

Figures 5.1b and 5.1c show the detected corners in two different representations for
test pattern Nanizsa square: one indicates in which pixels corners reside and the other
shows the edge strengths forming corners. Note that a corner in Figure 5.1c is indicated by
edge strengths of 3 orientations at a sampling position. The purpose of using more than
two edge strengths to indicate a corner is to make the spatial coherence check for edges
easier, as will be seen more clearly in Section 5.1.4. Three edge strengths are also used to
indicate a T-junction: for a cross-junction shown in Figure 4.5d, the edge strengths of all

four orientations are used.

5.1.2 Design Decisions in my Segmentation Scheme

Based on the above idea, a segmentation scheme was devised. The design deci-
sions concerning edge polarity, stopping criteria, and the handling of incoherent edges are
discussed in the following. The spatial coherence rules for edges and corners are then

discussed in the next subsection.
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Figure 5.1: The detected corners in test pattern Kanizsa square shown in two represen-
tations, (a) input pattern (b) corners indicated by circles at the pixels in the image (c)

corners represented by the edge strengths forming the corners,
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Edges on an object boundary
with opposite polarities

Figure 5.2: An object contour may contain edge strengths of opposite polarities.

Should the edge polarity be considered in the definition of spatial coherence rules?
The answer is “no” because, as illustrated in Figure 5.2, an object may occlude objects
of different surface intensities and lence its boundary may consist of edges of oppaosite
polarities. Besides, Figure 2.1b shows that & subjective contour can also be formed by
edges of opposite polarities. Therefore, tle spatial colierence rules defined in the next

subsection consider enly orientation and location.

The spatial coherence chieck rejocts incoherent image structures through an iterative
process. An important design decision, then, is to select appropriate stopping criteria for
the iterative loop. In the current implementation, the iteration continues until no edge
strengths changes. In practice, the number of edge strengths modified during an iteration

usually drops to under 0.1% of the total number of edge strengths after 3 iterations,

Viewlng an edge strength as proportional to the probability of having an edge of a
certain orientation at the location, how should an edge strength be adjusted? There are
several possibilities, e.g., the magnitude of an incolierent edge strengtlh is decreased by a
certain ratio. In my current implementation the incolierent edge strengths are set to 0 for

simplicity and efficiency; This scheme will be further discussed in Section 5.14.

5.1.3 Spatial Coherence Rules

The spatial colierence rules describe liow an edge or 4 corner should be connected
locally and is essential for this segmentation-scheme, What should (he spatial contest be

for an edge, a corner;a T-junction, and a nl'uss-junction?
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Figure 5.3: Several allowable local connections in Frager's algorithm.

A clue comes from Prager's work on edge relaxation, wherein an edge strength is
adjusted according to the connectedness of its two vertices [Prager, 1930]. An implemen-
tation of this algorithm in our laboratory shows that the algorithm behaves reasonably
well on many images. However, several peoints on the design and performance of that

algorithm are waorth further consideration:

1. Only the vertical and horizontal edge gradients are used to decide thie vertex type,
Furthermore, the edge gradients are usually calculated on a small suppert and are

lienice sensitive 1o noise.

2. Corners are not explicitly detected but are accepted implicitly in the definition of
the allowable local connections. Thus the definition of allowable local connections
(a portion of them illustrated in Figure 5.3) needs to allow 90° turns. The above
two factors cause a small amount of noise to result in bad sepmentation. Iigure 54

illustrates this point.

3, The algorithm i not guarantecd to give closed contours, causing difficulties for

further processing.

My algorithm differs {rom Prager's tainiy in two respects, First, not only are edges
and corners specifically detected. but also the types of these features are determined. Tlus
colrerence rules hecome easv to define — the necessary spatial context required to form

a closed contour from an edge with known orientation and a corner with known forming
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Figure 5.4: The segmentation results of Prager's algorithm on noisy images.

edges is straightforward to define. Second, my algorithm rejects incoherent edge strengths
and does not increase others, while in Prager’s algorithm an edge strength can be generated

or enhanced.

The following describes the spatial coherence rules for edges, corners, T-junctions.

and cross-junctions, respectively,

Edges

Figure 5.5 lists the spatial colierence rules for various edges. As described in Chapter

3, it is impossible to have more than two edge strengths at a sampling location after artifact

cancellation. In particular, the edge strengths, as shiown by the line segments with a circle
——a

in them in Figure 5.5, have only ejglt pnssihﬂe crientations or combinations thereof, as
labeled by 0,1,2,3,(0,1):(1,2).{2,3)(3.0).

The coherence rules for edges are defined separately for the two categories of edges:
for one category the edge is oriented in ene of the four principal directions (numbered by
0 - 3 in Figure 5.5) and lor the other category the edge is oriented between two successive
principal directions (numbered by two numerals). For the former, unless there is an edge
or a corner at the positions indicated by small line segments at both sides = an edge
{e.z., positions A, B for edges with orientation 3}, the edge strength under consideration
is set to 0. For the latter, hesides Lhe & closest pixels, one more location is checked. For

example. for the edae onented in direction (3,0) in Figure 5.5, the coherence rule requires
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Figure 5.5: The spatial coherence rules for edges.

that there be corners or significant edges of indicated orientations at both sides — at least
one of the locations C,D, and E has an edge or a corner, and so does one of locations F.G,
and H.

In summary, the edge strength after spatial coherence check, M(z, y1 &) at location
{z,y) of orientation k (ranging from 0 to 3), is calculated by
{ E(z, ;) if E(z.y:k) > Euq and R(z,y:8) = 1

olherwise

M{z,y:k) = (5.1)

where R{loe;t) represents the result of the spatial coherence check at location loe for type
t and 1 can be any of the eight indicated in Figure 5.5. As before, let E{loc; k) be the edge
strength at location lee for orientation k. Then the following shows by example how the
values R(z,y;t) and Rz, y;(h. 1)) can be computed (see Figure 5.5).
Baceils s { I if E(4;3) > Eua & E(B;3) > Ennd
0 otherwise
and for edge type (3,0),
1 if (E(C;0)> Emgor E{D;3) > Eqngor E(E;3) > Ewi)
Riz, (3,00} = and (E(F:3) > Eygor E(G:0) > Egpgor E(H:3) > Ed)

0  otherwise
[3:3)
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Figure 5.6: The spatial coherence rules for corners.

Note that since a corner is represented by its forming edges and edge strengths of three
orientations are used to indicate a corner point, the above eqguations do not need to test

for corners explicitly. For edges of other orientations similar rules apply.

Corners

Figure 5.6 illustrates the colierence rules for the eight corner types. In the figure
the sampling locations around the pixel under consideration are labeled with numerals 0
— 3. The edge strengths forming the corner are indicated by small circles. The spatial

locations considered by the spatial coherence rules are labeled by letters A - F,

The coherence rules for corners are similar to those for edges. At each of the two
sides of the corner there must be an edge or a corner, For diagonal cerners (odd numbered
in Figure 5.6) the rules are simple: using corner type 1 as an example, E(2;3) is verified
if E(1;2) and E(3;0) are significant. For a horizontal or vertical corner, the situation is
more complicated., Figure 5.7 illustrates that different edge strengths should be checked
for corners of different angles. Hence in the current implementation a type 0 corner is
verified il there is at least one significant edge with the indicated orientation at eacl side

of the corner. Let fi (loc; ) represent the result of spatial coherence check for a type t
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Pixel under consideration
Bl Cormer

Figure 5.7: The spatial coherence rule for various corners of type 0.

corner at location loe, The expressions for two corner types are listed below; for other

corner types similar expressions can be ebtained by symmetry.

1 if (E(A;2)> Epgor E(B;1) > B or E(C;0) > Epg)
R.(0;0) = and (E{D;2) » Eqng or E(E;3) > Ewg or E(F;0) > Epyg)  (5:4)

0 otherwise

and

1 1f B{1;2) > Epg & E(3;0 E
Ry > SRR b S (55)
0 otherwise

T-junctions and Cross-junctions

= —l

The spatial coherence rules for T-junctions and cross-junctions are simply the con-
ditions for detecting these image structures as described in Section 4.2.2 - 4.2.3. To be
precise, the result of spatial colierence check for the T-junction at location 0in Figure 4.9,
Ry (0), can be calculated by

1 E(L;0) > Egu & B(2;0) > Epg b £(3;0) > Epg &
Ry(0) = E(4;0) > Eyg & E(0:2) > Ejna {5.6)

0 atherwise

Note that the condition is simpler than that in equation 4.7 because the edge strength

along the main boundary is activated for a detected T-junction.
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The result for a cross-junction, R.os.(2,y) at location (z,y), is

1 fE(z+1,5;0)> Ega & E(z -1, 7:0) > Eng &
Berosslz,y) = E(z,y+1;2) > Epg & E(z,y - 1;2) > Epy (5.7)

0 otherwise

5.1.4 Summary of the Segmentation Algorithm

This subsection summarizes my segmentation algorithm and discusses the algo-

rithm's edge-strength-adjusting scheme.

Figure 2.5, repeated in this section, summarizes this segmentation algorithm. The
algorithm consists of parallel, multiple segmentation mechanisms, each segmenting the
input image into boundaries at different levels of detail. There are two major differences
among scales. First, the edge filters in different scales have different o 's. The current
implementation mainly uses three scales with oy = 0.75,1.5, and 3 pixels, respectively.
Values of ¢, > 3 pixels are not used because the highest resolution of the test patterns
applied is only 128 x 128, and an edge filter of #; > 3 causes most test results to be
too blurred for accurate feature detection. an uninteresting resolution. Second, different
sampling intervals are used by different scales. As discussed in Chapter 3, for the scales

with o, = 0,75, 1.5, and 3 pixels, the sampling intervals are 1, 2, and 4 pixels, respectively.

Within each scale, multiple edge filters first extract edges from the image. The
edge integration stage then summarizes edge filter outputs. Corners, T-junctions, and
cross-junctions are detected based on the outputs of the smallest edge filter. For each
image structure a corresponding spatial coherence rule is applied. For locations where two
or more image structures are detected, the more complicated image structure is selected,
(The priority sequence is cross-junction, T-junction, corner, and edge.) The iteration of
the coherence check assures that all edge strengths remaining are spatially coherent and

form a closed contour.

The current implementation of my algorithm does not generate or increase edge
strengths to complete a boundary. This approach is different from other relaxation
boundary-finding schemes [Grossherg, 1985; Prager, 1980] in which edge strengths at a
position can be adjusted both upward and downward. It is hard to define good heuristics
to extrapolate an object boundary based on local information. Smoothness is the most

common one used; the bipole field of Grossberg’s beundary contour system is an example.
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Figure 2.5: A block diagram describing the processing stages of my algorithm,

Unfortunately, the gaps that can be completed depend on the particular heuristics used.
causing the system configuration to be image-dependent. More importantly, object con-
tours in the image are not always smooth curves — there are corners, T-junctions, and
cross-junctions. too. If a more tolerant colierence rule is used to cope with this problem
(as with Prager’s algorithm), the algorithm becomes semsitive to noise. My algorithm
avoids uging such heuristics; instead the propagated edges are generated by the elongated
edge filters. Thus the extra edge strengths required to complete the paps are obtained
from the detection of nearby lincar edge segments in the image instead of from a strength-

adjustment scheme.

Propagated edge strengths can cause trouble by forming contours not indicating
object boundaries in the image. This problem is lessened in part because corner detection
is based only on the outputs of the smallest edge filter. Hence most propagated edge
strengths, if not connected with correct edge strengths and forming a closed contour, will
disappear after iteration: This arrangement prevents the occurrence of many undesired

contours but enables the completion of gaps boetween two nearly linear edoe segments.
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Figure 5.8: Closed contours defined on a rectangular sampling grid.

At the same time, gaps on boundaries can be closed, if not at one scale, then at
another. Examples illustrating this gap-completion effect are shown in Figures 5.17 - 5.18.
Though in my algorithm edge filters do nat interact across scalés, it is conceivable that
the edges in different scales might be combined by certain mechanisms. The investigation

of the principle and usage of this inter-scale interaction requires future research.

The colierence rules cause definition of a closed contour on a rectangular sam-
pling grid — a closed contour is composed of edge strengths which are above a certain
edge threshold and lezally follow the spatial coherence rules. Therefore, starting from an
arbitrary position and following the spatial ccherence rules according to the local edge
strengths, we can follow the boundary until we return to the original position. With this
definition, if the later processing is performed on a sequential computer, a chain code
can be used to represent the boundary, and the statistics about the region can be calcu-
lated. Figure 5.8 illustrates a closed contour; the coherence rulesinvoked by different edge

strengths are also indicated.

5.2 Test Results and Evaluation

This section describes the results of my segmentation procedure on a collection of
test images. In order to cvaluate the results of my algorithm, criteria for judging the
quality of a segmentation are needed. The following subsections first discuss my opinlons
on what is a good segmentation and then introduce the test patterns. The test results are

lastly presented.
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5.2.1 Ewvaluation Criteria for Segmentation Algorithm

What is a good segmentation? Unfortunately, the answer depends on how useful
the segmented information is to the visual system. Poggio, Torre, and Koch [1985], among
others, showed that image segmentation is an ill-posed problem because of the informa-
tion loss in the imaging process. There is generally not a unique correct or measurable

segmentation for an image.

What features, derived from the input data without interaction with a knowledge
base, are important for recognition? Evidence from biological vision suggests that bound-
ing contours, corners, surface properties, and the spatial relationship among the parts of
an object are important. Segmentation is a data reduction process, but a good segmenta-
tion for object recognition should extract the above-mentioned information to feed higher

visual processes.
Section 1.1.3 listed several properties of segmentation. The following further dis-
cusses these properties by listing the conditions for an acceptable segmentation:

1. Each segmented contour is closed so that the surface properties of a region can be

computed. Each region can be an object or a portion of an object.
2. The corners are detected because corners are important for recognition.

3. The curvature magnitude and curvature pattern of each contour segment are speci-

fied with satisfactory accuracy.

4. The orientation of each contour segment is specified with satisfactory accuracy so

that, for example, a diamond and a cube can be distinguished.

5. An object boundary is specified with satisfactory spatial accuracy so that the spatial

refationship among objects and among parts of an object is preserved.
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name | resolution | description main purpose
hldg_ 128 % 128 | Natural scene dithered CGI’I:&].‘S

it 16 x 16 | Synthesized cross-junctions Cross junctions
ct0 128 x 128 | Synthesized CT images Segmentation
de. 16 ¥ 16 | Synthesized corners Corners

dsa 128 x 128 | Digital subtraction angiogram | Segmentation

ksg 64 x 64 | Synthesized Kanizsa's square | [llusory contour

ladder | 32 x 32 | Synthesized figure of ladder Multiresolution

line 32 x 32 | Synthesized line Corner, segmentation
owl 64 x 64 | MNatural scene ditherad Segmentation

5QT 32 x 32 | Synthesized square Noise

fex 64 ® 64 | Synthesized figure of a texture | Multiresolution

Ll 16 ®x 16 | Synthesized T-junctions T-junctions

tri 32 x 32 | Syntlesized triangle Corner

wheel | @4 x 64 | Synthesized circle with gaps Multiresolution

Tahble 5.1; A list of test patterns.

5.2.2 Test Patterns

The input patterns used to test the algorithm can be catezorized into three types;
synthesized figures, medical images, and natural scenes. Table 5.1 lists the test patterns.
In the figures illustrating segmentation results, shown later in this section, the name of
each test pattern is shown in the subtitle. The dots in ¢.., d.., and .. indicate numbers
which stand for test patterns having different angles. The pattern ¢tfis an artificial image

generated from real computerized tomegraphy images.

5.2.3 Results

Segmentation of Objective Contours

Figure 5.9 shows the segmentation results for the more complicated image struc-
tures: corners, T-junctions, and cross-junctions whose input patterns were shown in Figure
4.2 = 4.5, Note that due to artifact cancellation an edge is indicated by at most twe line

segments; thus a location marked with more than two line segments indicates a more
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Figure 5.9: Segmentation results for more complicated image structures shown in Figure

4.2 — 4.5. Row (I) are corners. (11} are T-junctions, and (III) (IV) are cross-junctions.

Columns (a) (b) () [d) show four different kinds of ecach imasge structure:
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Figure 5.10; The effect of multiple edge filters within a single scale. (a) is test pattern
ladder, (b) shows detected corners, (¢) (d) (e) () are segmentation results for edge filters
with (¢) ¢ = o1 = 0.5, (d) ¢ = 15;0. = 0.75 (e) ¢ = 300 = 0.75,. () ¢ =
0.75,1.5.3.0; o) = 0,75,

complicated structure. Figure 5.91Id shows a T-junction, and 5.911Id a cross-junction.
Without the detection of these structures, the spatial coherence rule would reject the

vertical edges in 5.911d and all edge strengths in 5.9111d.

Figure 5.10 shows the effect of the multiple edge filters within each scale. Since
the test pattern ladder has no noise and no sampling error; the algorithm gives proper
segmentation using each edge [ilter separately. Figure 5.10¢, 5.10d, and 5.10e show this
point. Figure 5.10b shows the corners detected. Note that a corner is Tepresented as a
combination of edges. Figure 5.10[ is the segmentation result from the finest scale with
the the outputs from the three edge filters averaged. Figure 5.10c¢ gives the contour with

the best spatial accuracy, but other segmentation results are also reasonable.

The algorithm performs well on more complicated images. The segmentation of
test patterns etf and owl are shown in Figure 5.11 - 5.12. Both images are processed by

the finest s_cale with edge filters of o= 0.75.1.5,3.0and &, = 0.7
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(a)

Figure 5.11: The segmentation of the test pattern ctfl. (a) input (b) segmented result
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(a) | (b)
Figure 5.12: The segmentation of the test pattern owl. (a) input (b) segmented result

The Effect of Random Noise

The patterns ksg and sgr with various degrees of Gaussian random noise were input
to the algorithm. The algorithm gives reasonable segmentation for low levels of noise.
When the noise increases, either a portion of the boundary disappears or extra boundaries
are generated. The behavior in the presence of noise will be discussed further in Chapter
6. Figure 5.13 gives two examples of successful segmentation of test pattern ksg and sgr

with noise, respectively.

The Results of a Blurred Image

Figure 5.14 shows the segmentation®*results for images of various blurring levels.
Compare these results with the results of corner detection in Figure 4.20. Though corners
are smoothed out with heavier blurring as expected, reasonable segmentation is obtained
for both scales.

The Segmentation Results at Different Scales

Different scales can locate object contours at different levels of detail. Figure 5.15
shows the segmentation results of test pattern ladder by the two finest scales separately.
A single edge filter was used in each scale. This scheme can be expected to perform well
because there is no noise in the input image, Tle results show that the two scales segment

contours inte different levels of detail, Similarly, Figure 5.16 shows the segmentation of
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Figure 5.13: Examples of segmentation against noisy images.
noise (b} The segmentation result against {a) for edge filters ¢ = 0.75,1.5,3.0;0, = 0.75
(c) Test pattern ksg with noise (d) The segmentation result against (¢) for edge filtess

=075, 1530w = 0.758
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Figure 5.14: The segmentation results of blurred images by the two finest scales. Row
(I} are input patterns, (II) are results of scale of ¢ = 0.75 pixels, and (III) are results
of scale of o, = 1.5 pixels. Columns (a) (b) (¢) (d) show four images blurred by an

two-dimensional Ganssian of ¢ = 0,75,1.5, 3.0, and 6.0, respectively.
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Figure 5.15: The segmentation of the test pattern lodder at two scales. {a) 7 =0 =10.75
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Figure 5.16: The segmentation of the test pattern fer at two different scales. (a) with
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(a) (b)

Figure 5.17: The completion of Kanizsa square by two scales. (a) scale of ¢4 = 0.75 (b)

scale of &y = 1.5,

the test pattern tez in two different scales. The coarser scale has resolution of only 1/18
of the finer scale and segments a more global triangle from the image. Figure 5.16a also

shows that a cross-junction and several T-junctions were detected.

As mentioned in Chapter 3, with a fixed number of edge filters in each scale, a
subjective contour not completed in 2 finer scale may be completed in a coarser one.
Figure 5.17 shows that a Kanizsa square with the gap twice as long as the inducing edge
(8 pixels) cannot be completed at the scale of o) = 0.75 but is completed at the scale of

ay = 1.5 with each scale using 3 edge filters.

Another example is on the test pattern wheelof curve boundary as shown in Figure
5.18. The scale of ¢y = 0.75 completes the gaps of 2, 4, and & pixels wide, but not the
gaps of 8 and 10 pixels. These bigger gaps are, however, completed in scales of ¢, = 1.5

and 3.0 pixels.

Figure 5.19 shows the segmentation results of inages with different levels of noise.
Evidently, the finer scale of o is heavily affected for noise-to-signal ratio above 0.3, while

the coarser scale still gives a reasonable segmentation. This figure should be compared
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Figure 5.19: The sezmentation results of noisy images by two finest scales. Row (I} are

input patterns, (II) are results of scale of o = 0.75 pixels, and (III) are results of scale of

g1 = 1.5 pixels. Columns (a) (1) (c) (d) show four images with different noise-to-signal

ratios: 0.1, 0.2, 0.3, and 0.4.
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with the results of corner detection in Figure 4,19 and the results of Prager's algorithm

in Figure 5.5.

5.3 Conclusion

In summary, my segmentation algorithm performs reasonably under a variety of
conditions. The algorithm is robust against random noise and behaves as expected under
blurring., Different scales in the algorithm can segment an object contour into different

levels of detail; a coarser scale can complete bigger gaps and has better noise immunity.

The algorithm consists of only local wiring and is intuitively simple. Locality and
simplicity contribute to the high processing speed. The segmentation of a 128 X 128 image
with four edge filters in a single scale takes a Sun 4 a few minutes to compute. The

algorithm demonstrates reasonable performance on vastly different input patterns.

In conclusion, my edge-hased algorithm detects the intensity changes which are
locally significant and globally form a closed contour. Compared with other algorithms
for early visual tasks, this segmentation algorithm does not detect both what and where,
but tries to answer a simpler question — given the observed intensity distribution alone,

where is there something in the visual field?



Chapter 6

Evaluation

This chapter describes the evaluation of my algorithm. It first compares the al-
gorithm’s performance with Grossberg's boundary contour system and then with human

performance on a specific task — object detection in the presence of random neise.

6.1 Comparison with Grossberg’s Algorithm

This section describes the difference between my algorithm and Grossberg's bound-
ary contour system. The comparison consists of two portions: the difference in the design

and the difference in the resulting performance.

6.1.1 Differences in Algorithm Design

The differences in algorithm design between my algorithm and Grossberg’s boundary

contour system are briefly summatized in the following.

1. A different edge filter is used. Instead of a Difference of Box (which works fine with
proper length and width selections), my algorithm applies the elongated first-order
directional derivative of Gaussian. Also, only 4 edge orientations are sampled at

each location instead of 8 or 12 in Grossberg's implementations.

2. The artifact cancellation operation is treated as a follow-up step of edge filtering. Itis
not performed in the iterative loop (cooperative-competitive loop) as in Grossberg's

design.
3. Corners are separately detected in my algorithm.

4. To complete gaps of different sizes, the bipole field of Grossberg’s configuration is
image-dependent. In my algorithm the purpose of bipole cells is replaced by a spatial

coherence check, which is defined on a small fixed support.



83

5. Bipole celis in Grossberg’s cooperative layer can generate new edge strengths between
two separate linear ~dge segments. In my algorithm incoherent edge strengths are

rejected.

6. In Grossberg’s mode] there are two on-center off-surround connections: one from
the edge filter to the first competitive layer, and the other from the cooperative
layer to the first competitive layer. A function of these connections is edge thinning.
There is no corresponding processing in my algorithm. The parallel edge segments
between two neighboring regions indicate that the intensities vary smoothly between

the regions and are deemed as useful information.

7. The concept of multiscale is essential for my algorithm. With multiple elongated edge
filters within each segmentation mechanism, each with fixed ¢, and different &, noise
effects are minimized and gaps on boundaries are closed. With multiple segmentation
mechanisms, each with different o, and sampling interval, more global contours are
labeled, and bigger gaps are completed. Grossberg mentioned multiple-sized edge
filters and multiple-sized bipole fields as possible extension to the boundary contour

system [Grossberg and Mingolla, 1987] but did not show results.

8. My algorithm does not depend on an analog neural formalism as does Grossberg's
model. Moreover, my algorithm uses only one parameter, edge threshold, instead
of eleven and applies only local operations; global operations like normalization are
avoided.

6.1.2 Differences in Performance

The performance of Grossberg’s boundary contour system was evaluated by imple-
menting an approximation of his model [Grossberg and Mingolla, 1986] and applying the
program to the test patterns listed in Table 5.1. The implementation deviates {from the
original model in two malin respects: a different edge filter was applied and an approxima-
tion scheme was used to calculate the neural responses. Also, the anisotropic first-order

derivative of Gaussian was used as the edge filter instead of the difference-of-box function.

It is assumed that the time derivative terms in the nonlinear differential equations
that model the behavior of the neurons rapidly converge, and therefore, the response
of each neuron at the stable state can be calculated by algebraic manipulations instead

of a solution of a system of differential equations. For example, the neuron at (i,j)
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of orientation %, y;ji, in the second competitive stage obeys the shunting on-center off-
surround equation [Grossberg and Mingolla, 1985]
d
Wik = =Dyije + (B = vis)Ouse — sk 3, Oijm (6.1)
mgk
where O, is the neural response at (1, j) of orientation k in the previous layer and A, B
are constants. Setting ;i = 0 gives
Eoij.i:
gk = D+ D,‘j
where Oy; = ¥, Oijm for all orientations m at (i,7). The above equation shows that the

(6.2)

neural response thus calculated does not depend on the transient behavior of the circuit
but rather on the connection patterns. Mingolla contends that using the transient is
essential to the performance of the Grossberg/Mingolla model, but the problems of basing
detection on the transient seems insurmountable: On the one hand, the instability of the
transient response would lead to dependence of time period in which a neuron gives proper
response. On the other hand, using the transient presents the problem of synchronization

among many mutually-interacting neurons.

For each test pattern the parameters of the boundary contour system were tuned to
obtain a reasonable result (Recall the discussion of evaluation criteria in Section 5.2.1). All
the test patterns listed in Table 5.1 served as inputs to Grossberg's algorithm. The results
are shown in Figure 6.1 - 6.2. The effect of various levels of random noise is measured for
two simple patterns, a square and an illusory square. These results are shown in Figure
6.3.

In brief, with the parameters properly selected, Grossberg's boundary contour sys-
tern gives a reasonable segmentation for all the test patterns listed in Table 5.1. With
multiple edge filters the system also gives different levels of detail for an object contour,
which is shown in the results of test patterns ladder and ter. Compared with my algorithm

described in Chapter 5, there are several differences in performance:

1. The configuration of my algorithm has only one parameter, edge threshold, and is
not image-dependent, whereas Grossherg's model [1985] has 11 parameters among

which the ones defining the bipole field are image-dependent.

2. My algorithm more explicitly defines a closed contour because, after iteration, all
edge strengths and corners remaining are spatially coherent and form a portion of a

closed contour.
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Figure 6.3: The effect of random noise on th
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3. Grossbherg's model handles line ends and may explain the Ehrenstein illusion; my

algorithm does not.

4, My algorithm has better noise immunity. Compared with Figures 5.12 and 6.8,
which show the segmentation results of noisy images by my algorithm, Figure 6.3
shows that since the boundary contour system adds more edge strengths to the edge
map, the result becomes very noisy when the noise level is above a certain value.

(In the figure, this value is where noise-to-signal ratio = 0.4,)

6.2 Human Object Detection vs. Noise

My algorithm was designed in part based on knowledge of the biological visual
system, so it is worth comparing the performance of my algorithm with that of human
vision. A comparison between the characteristics of the two systems may help to improve
the artificial visual system defined by my algorithm. Unfortunately, biological vision is
so complicated that it is impossible to perform a thorough analysis in a short period of
time. As a compromise, a very specific task concerning the effect of random noise on
object detection was selected as the basis of comparison. The following section deseribes

the experiment.

6.2.1 Objective

The objective of the experiment was to measure the threshold noise level at which
a human subject fails to detect an object in the stimulus. The independent variable in
this experiment is the random noise level; the dependent variable is the sub ject’s object
detection capability at that noise level. It follows that the task of the experiment is for

the subject to state whether the subject detects an object in the stimulus or not.

To assure that results from the psychophysical experiment are comparable with
that of my algorithm, the stimuli shown to the subject need to be the same as the images
input to my algorithm. The environment must be carefully controlled; the task must be

specific so that the effect of factors other than the independent variable are minimized.

Detection targets with both subjective and ob jective contours were used for the
experiment. It is well-known that humans see objects consisting of subjective contours,

and the perception of visual illusions may suggest aspects of the underlying architecture
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Figure 6.4: The test patterns used for the psychophysical experiment

of the visual system. Hence a comparison between the effect of random noise on human
detection capability of a Kanizsa square and on my algorithm’s segmentation capability

with that test pattern seemed useful,

The comparison between the performance of a human and since my algorithm can
be based on the absolute values of the thresheld noise level or on a certain trend, e.g., how
the threshold noise level varies with the sizes of the detection target. Since the biclogical
visual system applies knowledge and multiple segmentation cues, and my algorithm is by
no means a complete model of the human visual syvstem, it is not very informative to
compare the absolute values. A comparison of some trends is more reasonable. Therefore,
four sizes were selected for each of the two test patterns, sqrand ksg, and each subject ran
through test patterns of multiple sizes of each detection target. The hypothesis is that
the way random noise aflects the algorithm’s performance on objects of different sizes is
similar to the way it affects uman object detection. To be more specific, the profiles of
threshold noise level versus object sizes should be similar for my algorithm and human

subjects.

6.2.2 Method
Experimental Paradigm

Several experimental procedures can be used for point estimation, e.g.. method of

constants, method of inats, wp-down procedures, and mazimum-{ikelthood estimation. For
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this experiment, an up-down method was used because of its simplicity, high efficiency,

small-sample reliability, and relative freedom from restrictive assumptions [Levitt, 1970).

The noise level in this experiment is specified as the noise-to-signal ratio, as defined
in equation 4.6, and the measurement of the threshold noise level proceeds as follows.
Each test pattern was shown to the sub ject with various levels of random noise was shown
to the subject, and to each the subject answered whether an object was perceived or not.
A positive answer increased the nojse-to-signal ratio in the test pattern for the next trial,
and a negative one decreased the noise-to-signal ratio. After a certain number of changes
of response type, i.e., from yes to no or no to yes, the program stopped and the threshold

noise level was estimated based on the resulting data.

The step size for the noise level adjustment was fixed through the experiment and
was decided based on the results of a preliminary study: A bigger step size allows [aster
convergence and hence a shorter run, while a smaller step size gives better accuracy of
the final result. To compromise, the noise in the initial image was set at a value near the
possible threshold value, and reasonably small step sizes were selected. This step size is
0.05 (in noise-to-signal ratio defined in equation 4.6) for test pattern ksq and 0.1 for test

pattern sgr.

An adjustment of the noise level was performed after each trial. However, it was
found that if the same step size was used for both increment and decrement of the noise
level, a subject easily noticed that convergence had been reached and might lose concen-
tration for the later stimuli. A standard technique to cope with this problem is to integrate
several tests into one run and interleave among different test patterns. Unfortunately, the
integration also lengthens a run of the experiment. Each test of this experiment took 30
to 40 trials. A combination of, say, 4 tests might bore the subjects, resulting in lower data
accuracy. Therefore, I decided to use a simpler scheme: the decrement of the noise level
for each negative response (the subject does not see the object) was three times that of the
increment. A result of this scheme is shown in Figure 6.5. The experiment can be viewed
as a combination of alternating up and down sequence; each sequence is the result of an
application of the method of limits, Note that the up and down sequences have different

step sizes.
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Figure 6.5: A set of data obtained from the experiment with the estimation method
illustrated. The expression uses the Wetherill [1963] estimate of the 50% threshold based
on the last 4 upper turning points. Foreach of the turning point the estimate of threshold

is midway between the turning point level and the preceding level.

Given a set of data, the procedure for estimating the threshold value was discussed
thoroughly by Wetherill et al. [1963]. In this experiment the turning points indicate the
50% point of a subject’s psychometric function. There are two sequences and hence two
kinds of turning points as shown in Figure 6.5. Let U be the threshold suggested by the
up-sequence, in particular the average of the values at point A and B on Figure 6.5. Let V
be the threshold suggested by the down sequence, in particular the average of the values
at points C and D. Then there are several ways to estimate the threshold noise level based
on U/'s and V's. For this experiment only the trend of the data points was considered; the
absolute value of thresholds was not essential. Therefore, this simple estimation scheme
was adopted. After studying the possible combinations of U'’s and V's for many sets of
data, I decided to use the average of U/’s at the last 4 upper turning points as the threshold
noise level. The first 2 upper turning points are discarded as suggested by Brownlee et al
[1953]. This scheme is equivalent to successive applications of the method of limits with

up sequence only.

The decision ecritenion of a subject could change over time during the experiment.

This potential inconsistency was checked by the insertion of catch trials. Before the ex-
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periment two patterns, one with small noise and the other with large noise were generated
and shown to the subject. The experiment began after the subject agreed that there was
an object in the pattern with small noise and none in the other. During the experiment,
the catch trials of these two test patterns were randomly inserted in the trial sequence.
If there was more than one error for the catch trials in a run of the experiment, the data

were deemed inconsistent and were discarded. Five out of 34 sets of data failed the test.

Equipment

The images were displayed on a Comtal 10/24 imaging system. The host computer
was a Vax 11/730 running the Berkeley 4.3BSD UNIX! operating system. The grey-scale
monitor was calibrated and converged prior to the experiment. The luminance range of
the monitor was 0.004 footlamberts for the driving level of 0 and 50 footlamberts for the
driving level of 255.

The Comtal 10/24 system has three 1024 x 1024 8-bit frame buffers which allow
fast display of a sequence of test patterns. The 64 x G4 test pattern was at the center of
the upper left quarter of the monitor, A zoom factor of 2 % 2 was performed by hardware

to make the test pattern occupy the center region of the screen.

The subjects entered the answers through a keyboard. The four consecutive keys
of 1, 2, 3, and enter at the lower right corner of the keyboard were the only ones needed

after the program started.

Software for the Experiment

Programs in the C programming language were written to display the sequence of
test patterns and collect data. The start-up time of the program was about 20 seconds.
The inter-trial interval was 6 seconds on average. No subject felt the procedure uncom-
fortable, and all of them understood the operation of the program after a brief explanation
and several minutes of practice. All stimuli and the user answers were recorded by the

computer.

VUNIX is a trademark of ATLT Bell Laborataries.



Environmental Layout

The subject was seated approximately 85 centimeters from the display with viewing
direction perpendicular to the screen. Each side of the test pattern extended for 27 mm
on the monitor and thus subtended 2° of visual angle. The kevboard rested on a side

table, which the subject could comfortably reach.

The perception laboratory provided good environmental control in the experimental
area. The ambient light was set to 4 footlamberts. The black-painted room minimized

undesired reflections en the menitor.

Test Images

There were two sets of test patterns: sq¢r and ksq, each with spatial sampling of
64 % 64 pixels. The test pattern ksg was composed of four pacmen with the inducing edges
properly aligned te form an illusory square. The opening angles of the pacmen were 90°,
and the radius was eight pixels. A test pattern generation program put the four pacmen
at the proper locations according to the size of the illusory square. All inducing edges
were sharp. The sizes of the square were selected to be 20, 24, 28, and 32 pixels so that
the illusory contour was substantial in each case. The test patterns of sqr were simpler.
There were again 4 sizes of 20, 24, 28, and 32 pixels. The boundaries of the test pattern
sqr were step edges.

The test pattern was shown on a grey-scale monitor with dynamic range of 0 — 255
driving levels. The range of pixel intensity of the test pattern without noise was 88 — 168.
This decision was a compromise between the need for a contrast to show the signal and
the need for an intensity range to show the noise. Note that when the noise-to-signal ratio
is above 0.33, the thresholding at driving levels 0 and 255 oceurs, This operation might

affect the subjects’ performance though the current data do not indicate so.

Gaussian white noise was added to the image. Remember that the standard devi-
ation, o, of the Gaussian was defined as the strength of noise, and the difference between
the average intensities of the background and the signal was the strength of signal. The
noise-to-signal ratio was defined in equation 4.6,

Trnoise

noise — to — signal ratie = -
Tsig = Loy



Figure 6.6: An example of the the test stimuli. (a) sgr2{ (b) ksg28, where the number

indicates the size of the square,

and served as the independent variable of the experiment. Note that when the o was
large, the intensities were truncated at 0 and 255, respectively, This truncation occurred
when the noise-to-signal ratio was above 1/3, and the number of pixels with truncated
intensities reached 1% of the total number of pixels when noise-to-signal ratio was above
0.5, Moreover, for reasons ol display speed all the data points were obtained with the
same noise pattern. Further studies are needed to find out the effect of different noise

patterns.

A control pattern was shown beside the test pattern ksg to help the subject decide
whether the central region was darker than the surrounding region or not. The control
pattern was compeosed of four pacmen with only outlines {shown in Figure 6.6). The
central squares of the control and test patterns had the same sizes. A single noise pattern
was added to both patterns. Since the control pattern was known not to generate the
subjective contour, when the difference between the central region and the surrounding
region of the test pattern is small, the pattern can help a subject to decide whether there
is indeed a brightness dilTorence, Moreover, to avoid the possible interference from the
dark background, the substantial area outside the two patterns was filled in with random

noise,
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The Task

For the set of stimuli of an objective square, the question for a subject to answer
was: do you see an object in the stimulus? The question for the stimuli of the subjective
contour was not as obvious. A psychophysical experiment on the Kanizsa square [Halpern,
1987] suggested that the question of "do you see a difference between the brightness in the
central region and the surrounding region?” was reasonable. This question was adopted
in my experiment. The subjects were instructed to compare the brightness difference
between the central region and surround in the control pattern when the answer to the

above question was unclear.

Subjects

Eight naive subjects (5 female, 3 male) participated in the experiment. All subjects
were graduate students or had attained a graduate degree recently. Most of them did
not have previous experience in visual psychophysical experiments. The observers were
guaranteed that the result would not be associated with each individual and were informed
that it was more important to be consistent than to be competitive with respect to the
threshold,

Procedure

Each subject ran through the experiment for 2 sessions on two separate dates.
During each session a subject did 8 runs of experiment, each for a different test pattern.
The runs for the same kind of test pattern were performed consecutively, but in a random
sequence,

B

Before running the experiment, a subject was first seated in front of the monitor and

an explanation of the experimental setup and the stimuli were given. Before and during

the experiment, the subjects were allowed to ask the experimenter to give the explanation

again.

The experimental procedure is summarized in the following. Two patterns were
first shown to the subject. One was with small amount of noise and the other with large
noise. These noise levels were sclected from a preliminary study which showed that one
could detect the signal in the less noisy pattern but could not in the other. All subjects

confirmed this before the experiment. During the experiment each test pattern was shown



subject id | size 20 i size 24 | size 28 | size 32 | mean
hh 0.6750 | 0.6750 | 0.3875 | 0.1875 | D.4813
kh 0.5750 | 0.3500 | 0.3375 | 0.2250 | 0.3719
hs 0.2750 | 0.0875 | 0.1500 | 0.0750 | D.1469
hs 0.2375 | 0.1500 | 0.1625 | 0,1125 | 0.1656
hw 1.0875 | 0.7750 | 0.9000 | 0.4875 | 0.8125
hw 1.0875 | 0.8500 | 0.9125 | 0.6750 | 0.8813
s 0.8000 | 0.7125 | 0.6000 | 0.4375 | 0.6375
js 0.8000 | 0.6125 | 0.6750 | 0.6125 | 0.6750
Im 0.8750 | 0.4625 | 0.4125 | 0.3500 | 0.5250
lm 1.0750 | 0,7500 | D.8625 | 0.6250 | D.8B281
mc 1.0250 | 0.6750 | 0.7875 | 0.6125 | 0.7750
mc 0.3250 | 0.6500 | 0.6000 | 0.5125 | 0.6469
5j 6.9750 | 0.8500 | 0.3000 | 0.6625 | 0.8219
5] 0.6875 | 0.7000 | 0.5625 | 0.5000 | 0.6125

Table 6.1: The experimental results of test pattern ksq.
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until the subject responded. If the subject perceived the signal, the key / was entered,

otherwise 2. The subject could change each decision until a 3 was entered. Each positive

response increased the noise level by a fixed unit, and each negative one decreased the

noise by three units for the next stimulus. After 12 turnings of the data, i.e., 12 up

sequences and down sequences in total, the program stopped and estimated the threshold

noise level based on the values of the last 4 upper turning points [Wetherill et al., 1963].

The two test patterns first shown were used in the catch trials. Each test pattern was

inserted into the trial sequence randomly. The answers to the catch trials were separately

recorded and printed.

In each session, the subject ran through eight test patterns consecutively, The first

run served as a trial run to allow the subject to become familiar with the experiment.

After the subject completed all four sizes of the ksq, the test pattern of sqr then followed.

The eight runs took about one and a half hours.
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subject id | size 20 | size 24 | size 28 | size 32 | mean
hh 1.4000 1,~I'IJ_EIF 1.5500 | 1.5730 | 1.4812
hh 1.3000 | 1.2750 | 1.4750 | 1.6250 | 14187
hs 1.7000 | 1:5500 | 1.7500 | 1.8000 | 1.7230
hs 1.7000 | 1.7000 | 1.8000 | 2.1500 | 1.8375
hw 1.2250 | 1.2000 | 1.4000 | 1.4250 | 1.3125
hw 1.1500 | 1.3250 | 1.4000 | 1.3000 | 1.2937
lm 2.3000 | 1.6000 | 2.3500 | 2.8000 | 2.2625
lm 2.2750 | 2.7000 | 2.5750 | 2.4750 | 2.5063
lw 18000 | 1.6250 | 1.7750 | 1.7000 | 1.7250
bw 1.8750 | 1.7250 | 1.8750 | 2.0000 | 1.5688
mic 1.0250 | 1.1750 | 1.0500 | 1.2250 | 1.1187
me 0.8750 | 1.0250 | 1.1000 | 1.1000 | 1.0250
5] 1.1250 | 1.2750 | 1.3250 | 1.4250 | 1.2875
5] 1.2750 | 1.4750 | 14250 | 1.5750 | 14375

Table 6.2: The experimental results of test pattern sgr.

Results

The experimental results are listed in Tables 6.1 and 6.2. Each row in the table
shows the four threshold noise levels that a subject gave for a detection target of a certain
size. Note that each threshold noise level was obtained from one run of the experiment
and the 4 thresholds in the row was recortfed consecutively. If any of the 4 data points did
not pass the consistency test, that row of data were discarded. Among the eight subjects

for each experiment, there were 2 out of 16 rows discarded for each test pattern.

Both tables show that the data obtained on two separate dates for a single sub ject
do not differ much — the average of the difference between the results obtained during
the two separate sessions is 0.1589 with standard deviation 0.2011 for test pattern sgrand
0.1375 with standard deviation 0.1153 for test pattern ksq. The subjects were consistent.
Though there was substantial variation across people, since the goal was to analyze the
trend between the two sets of data from humans and from the algorithm, this variation was

an error term and was handled by the analysis method described in section 6.4. Tables 6.3



subject id | size 20 | size 24 | size 28 | size 32
hh_ 0.6250 | 0.5125 | 0.3625 -ﬂ,EGGJ]
hs 0.2583 | 0.1188 | 0.1563 | 0.0938
howe 1.0875 | 0.8125 | 0.9062 | 0.5513
js 0.8000 | 0.6625 | 0.6375 | 0.5250
lm 0.9750 | 0.6063 | 0.6375 | 04875
me 0.9250 | 0.6625 | 0.6938 | 0.5625
5] 0.8312 | 0.7750 | 0.6813 | 0.5812
mean o 0.7857 | 0.5929 {}.535_[1.4339
sD 0.2753 | 0.2318 | 0.2460 | 0.1594
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Table 6.3: The average threshald noise levels of each subject for test pattern ksq.

‘and 6.4 give the means of the threshold noise levels for each subject on each test patterns,

as well as the means and sample standard deviations (SD) across all subjects.

6.3 My Algorithm vs. Noise

This section describes how random noise affected the segmentation performance of
my algorithm. In the following the procedure for determining the threshold noise level is

briefly described.

The same test patterns as used for the psychophysical experiment were used as the
input to the algorithm except that the test patterns of ksq were presented without the
control pattern and with a smaller background region. A single configuration of four edge
filters with ¢, = 0.75 and ¢ = 0.75,1.5,3.0,6.0, and a single edge threshold of 0.03 was
applied to all the noisy test patterns. After various levels of noise was added to the images,

each of these test patterns was input to the segmentation algorithm.

The noise level at which the algorithm fails to segment the test pattern properly
is recorded as the threshold noise level for the algorithm. For this experiment I use an
operational definition of the failure of segmentation: if the the area of the segmented
region differs from that of the target region by more than 25%, then the segmentation is

deemed as failure. Empirically, there are two ways a failure can occur: either a portion

i
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subject id | size 20 | size 24 | size 28 | size 32
hh 1.3500 | 1.3375 | 1.5125 | 1.6000
hs 1.7000 | 1.6250 | 1.7750 | 2.0250
hw 1.1875 | 1.2625 | 1.4000 | 1.3625
Im 2.2875 | 2.1500 | 2.4625 | 2.6375
1w 1.8375 | 1.6750 | 1.8250 | 1.8500
me D.9500 | 1.1000 | 1.6750 | 1.1625
5] 1.2000 | 1.3730 | 1.3750 | 1.5000
e i 1.5018 | 1.5036 | 1.6321 1;33_9|
SD 0.4631 | 0.3481 | 0.4457 | 0.4818

Table 6.4: The average threshold noise levels for each subject of test pattern sqr.

test pattern size 20 | size 24 | size 28 | size 32

Kanizsa square | 0.765 | 0.745 | 0.550 | 0.095 l

square 0,325 | 0465 | 0405 | 0485

Table 6.5: The threshold noise levels measured by my algorithm.

of the boundary of the detection target disappears or extra contours appear. Figures 6.7
and 6.8 demonstrate the segmentation results with noise levels at which the algorithm was
deemed to give improper segmentation.

——d

The determination of the threshold noise level proceeded as follows. Since only a
single noise level could be tested at one time, the range of possible noise levels was first
determined empirically. A series of images, with fixed difference in noise-to-signal ratio,
was created. These images were fed to the algorithm in a sequence similar to a binary
search to find a range including the threshold noise level. This procedure was repeated
until the desired accuracy was obtained. Also, a fixed random number seed was used to
add noise to all the test images, The effect of different noise patterns requires further

research. The results are shown in Table 6.5,
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Figure 6.7: Two examples of the segmented results showing the threshold noise leve] for

test pattern ksqg. Top row are with central region of 20 x 20 pixels, while that of the bottom
row are 28 x 28 pixels. Pattern (a) has noise-to-signal ratio of 0.76 and segmentation is
deemed as good, (b) has noise-to-signal ratio of 0.77 ad is deemed as bad. Similarly,

patterns (¢) and (d) are with noise-to-signal ratio of 0.5 and 0.6 and are deemed as good

and bad segmentation, respectively.
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Figure 6.8: Two examples of the segmented results showing the threshold noise level for

test pattern sqr, Top row squares are 20 x 20 pixels, while that of the bottom row are
28 % 28 pixels, Pattern (a) lias noise-to-signal ratio of 0.3 and segmentation is deemed
as good, (b} has noise-to-signal ratio of 0.4 ad is deemed as bad. Similarly, patterns (c}

and (d) are with noise-to-signal ratio of 0.4 and 0.5 and are deemed as good and bad
segmentation, respectively.
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6.4 A Comparison of Human Vision and My Algorithm

The Statistical Method

This subsection briefly describes the method of data analysis. A profile analysis
for two independent groups was used to compare the parallelism between the trend of the
psychophysical data dnd the data obtained by my algorithm. The znalysis was in the
form of hypothesis testing, The null hypothesis, Hy, was that the random noise affected
the human object detection and algorithm segmentation in a similar way. More precisely,
let X = (T1,T7,T3,Tq) be the vector of the sampled mean of the experimental results and
Ty,T3,T3, 21 be the average of Ny observers' responses for test pattern of size 20, 24, 28,
and 32, respectively. Likewise, let ¥ = (77,73, 75, 71) be the vector of the sampled mean

for N3 results obtained by running the algorithm against test inputs with noise.
By CX =Y, (6.3)

where

G=|0 1 =1 0 (6.4)

The alternative hypothesis was that the two profiles were not parallel. According to [Maor-
rison, 1976], Hotelling’s T is a reasonable statistie for the test.

,!"'Ii ,!"'IF — — - ¥ v
e MR P EYekese) e -, (6.5
Ny + Ny
where CSC'/N is the sampled covariance matrix, T* is related to the F distribution by

F: _N]_ +Jil|lr'3—p |2_
(M4 Ny =2)(p-1)

(6.6)
where p is the number of elements in the mean vector. For this experiment, p = 4. Hy
would be rejected at the level of significance, a, if the observed F exceeded Fiop_1 vy 4855
Results

According to Table 6.3 and 6.4, Ny for both ksg and sqrare 7, No =1, and p = 4.

Thus the critical values to reject [y for various a's are listed below.

r 0.1 | 0.05 | 0.025 | 0.01
Fagq | 410 | 6.59 | 9.98 | 16.69
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Figure 6.9: A plot of the results from psychephysical experiments and test of the algorithm

on test pattern ksq
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Figure 6.10: A plot of the results from psychophysical experiments and test of the algo-

rithm on test pattern sgr.
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The means of the psychophysical data, with the results cbtained from successively
applying the algorithm to the test inputs, are plotted in Figures 6.9 and 6.10. For the
illusory contour, T? = 27.3855.F = 6.0857 > 4.19. Hence Hj is rejected for @ = 0.1.
For @ = 0.05, F = 6.0857 < 6.59; the data fail to reject Hg. For the square of physical
contour, T? = 3.1350, F = 0,6967 < 4.19. Hence for the physical square the data fail to
reject Hyg.

Although the psychophysical data reject the hypothesis of parallel profiles for the
test pattern ksgfor a = 0.1, Figure 6.9 shows that, for a bigger ob ject less noise is required
for both human and my algorithm to discount the effect of subjective contour than that

for a smaller object. It is encouraging that both curves are monotonically decreasing.

For the test pattern sqgr, the psychophysical data shows that more noise is needed
for a bigger object as expected, and the results obtained by applying my algorithm to the
test inputs of various sizes show a similar trend. The profile analysis does not reject Hag,

confirming this point.



Chapter 7

Conclusions

This chapter summarizes the considerations behind the design of my algorithm,
its implementation, and evaluation. It concludes with a diseussion about possible future

research directions.

7.1 Summary of the Algorithm

My algorithm is based on the assumption that an effective vision algorithm should
be based on a connectionist architecture because of the strict speed constraint of visual
tasks. The effectiveness of the connectionist approach is possible because our visual world
is highly regular — the shape of many objects have common properties. Therefore, il
the world constraints, viewed as segmentation cues, are built into the detection hardware,
reasonable segmentation can be obtained in real-time, In this sense the definition of
connections is really the process of including knowledge about our visual world into the

physical architecture of the visual system.

The special-purpose circuits provide high processing speed but have their con-
straints too: they can implement only local operations; their functions are ﬁﬁd and
their capabilities limited. Hence side effects may occur. For example, the need of special-
purpose circuitry for fast information reduction in early vision causes optical illusions.
One way to cope with this deficiency is to have repetitions of the circuitry with each
unit covering a different range of spatial and temporal frequencies. This notion is the
basis underlying multiple segmentation mechanisms and multiple edge filters within each

segmentation mechanism.

My edge-based segmentation algorithm consists of three stages: edge filtering, cor-
ner detection, and a spatial coherence check. All the later stages depend on edge filtering.

After studying several functions for edge filter kernels, the multivariate Gaussian filters



120

at four orientations and with ¢ and ¢, following certain relationships were selected. A
problem with this template scheme is the possibility of false alarms — significant response
in an edge filter does not necessarily indicate an edge. Several measures were taken to cope
with this problem. First, multiple clongated edge filters were applied at each sampling
point to handle the various levels of noise in the image. Second, artifact cancellation was
used to discount the sampling artifacts based on the edge strengths at a single sampling
location. Third, a scheme for detecting corners in the image was used because edge fil-
tering does not give proper information about object boundaries there. Fourth, a spatial

coherence check was developed to verify the local information based on spatial context.

7.2 Summary of the Implementation and Evaluation

A program implementing this edge-based segmentation algorithm was developed,
and this program was applied to many test patterns to investigate the properties of the
algorithm. It was found that the algorithm gives reasonable segmentation under various
conditions, the multiscale mechanism in the algorithm can segment an object contour at
different levels of detail, and the algorithm behaves reasonably well against random noise.
The algorithm has its problems too: the current implementation does not work well for
lines in the image and has difficulty with a sharp angle or a T-junction with a small

intercepting angle.

A version of Grossherg’s houndary contour system was also implemented, and the
same input patterns used to test my algorithm were input to this program. The results
show that, with the parameters properly selected, the boundary contour system also gives
reasonable results for all test patterns within a few iterations, Compared to my algorithm,
the boundary contour system handles lines and may explain the Ehrenstein illusion but

has the following shortcomings relative to my algorithm:
# The system configuration is image-dependent.
e The performance depends on many system parameters,
# The model does not work well for noisy images.
The effect of random noise on my algorithm’s segmentation capability was further

investizated to compare with data from luman subjects. Psychophysical experiments

measuring the noise level at whicl a subject fails to detect an object in the stimulus were
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designed and performed. The results obtained from the experiment and my algorithm

showed a similar trend.

It may be concluded tlhiat an algorithm with multiple elongated edge filters, explicit
corner detection, and explicit local spatial coherence chacking, when applied at many reso-
lutions with corresponding spatial sampling, can detect both real and subjective contours
successfully. The performance is competitive with Grossberg’s method and comparable in

certain ways to human performance.

7.3 Future Work

My algorithm is by no means a complete model of the human visual system, but
it is an example showing that computer simulation provides a useful means for studying
vision. Besides, the knowledge thus obtained can be used to design an effective vision
machine, This section first lists several points which I found, during this research, to be
either possible alternatives to the current design decisions or require further investigation,
Lastly the section outlines the directions in which research on this connectionist method

might expand.

7.3.1 Design Decisions Worth a Second Thought

Effect of Noise. The same noise pattern with different magnitude was inserted in
the input patterns for testing both my algorithm and human vision. The effect of different

noise patterns should be further studied.

Coherence Rules for Edges and Corners. The coherence rules for edges and
corners may be improved. For example, the colierence rules for diagonal corners consider
a location beyond the neighboring 8 pixels of the position under censideration. Therefore,
a contour may have a one-pixel gap on it. What is the probability of this situation? Can

we leave out this position in the definition?

T-junctions and Cross-Junctions. The T-junctions and cross-junctions are places
where ob ject boundaries interact; as mentioned in Chapter 4, the detection of these fea-

tures and the design of corresponding coherence rules require more thorough study.
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On the Observer Experiment. The results attained from the observer experi-
ments were interesting but not decisive: the task was specific; the effect of noise pattern
and intensity thresholding needs further investigation; a fixed viewing condition (e.g., vi-
sual angle covered by a test stimulus) was used through the experiment; the test patterns
applied did not cover the whole range of possible object sizes; the threshold noise levels
obtained for test patterns sgr vary by a small amount and might need more experimental

data to confirm the trend. More work is required.

7.3.2 Future Directions

Line Detection. As pointed out before, the algorithm does not work well on lines
or thin objects in the image. Special filters and follow-up processing are necessary to
obtain satisfactory behavior for such objects. Second-order directional derivatives of a
two-dimensional Gaussian may serve as line detectors as physiological evidence suggested.
A different spatial coherence rule is required for lines. Moreover, the combination ef the

detected lines and edges is also worth further investigation.

More Precise Corner Detection. As suggested in Chapter 4, a corner may be
detected based on the edge strengths in a bigger area. Furthermore, edge filtering can
be applied on a hexagonal sampling grid. Will these measures improve the algorithm

performance?

Interaction with Other Segmentation Cues. Biological vision applies multiple
segmentation cues. Besides intensity differences, there may be color, texture, motion,
and depth differences. What is the mechanism to extract these segmentation cues from
an image? How can the results from different segmentation cues be combined to give a

segmented image?

Connections from Learning. Adaptivity enables a connectionist model to in-
corporate knowledge into its parallel distributive architecture. There have been many
learning paradigms in the field of neural networks. It would be interesting to see that if
the connection patterns described in my algorithm can be learned from an initially random

network.

Multiscale mechanism. Lastly, as mentioned in Chapter 5, proper multiscale or-

ganization, integrating individually function-limited units into a globally effective system,
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is the key to the success of this algorithm. There are many related problems to be solved.
For example, during edge filtering, the support of the edge filter, when applied at two
successive sampling points, overlap with each other. What is the optimal relationship be-
tween the edge filter size and the sampling interval? What is the optimal number of scales?
How should the outputs at different scales be combined? Answers to these questions await

further investigation.

Besides the functional aspect, the multiscale mechanism also provides the necessary
redundancy for reliability — the visual system is elezantly built: a unit, when it is normal,
enhances the system performance, and when it is not, it does not cause the system to fail.
1 conjecture that this mechanism is not only essential for vision but for the brain as well.

There is still much to learn.
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Chapter 7

Conclusions

This chapter summarizes the considerations behind the design of my algorithm,
its implementation, and evaluation. It concludes with a discussion about possible future

research directions.

7.1 Summary of the Algorithm

My algorithm is based on the assumption that an effective vision algorithm should
be based on a connectionist architecture because of the strict speed constraint of visual
tasks. The effectiveness of the connectionist approach is possible because our visual world
is highly regular — the shape of many objects have common properties. Therefore, if
the world constraints, viewed as segmentation cues, are built into the detection hardware,
reasonable segmentation can be obtained in real-time. In this sense the definition of
connections is really the process of including knowledge about our visual world into the

physical architecture of the visual system.

The special-purpose circuits provide high processing speed but have their con-
straints too: they can implement only local operations; their functions are rigid and
their capabilities limited, Hence side effects may occur. For example, the need of special-
purpose circuitry for fast information reduction in early vision causes optical illusions.
One way to cope with this deficiency is to have repetitions of the circuitry with each
unit covering a different range of spatial and temporal frequencies. This notion is the
basis underlying multiple segmentation mechanisms and multiple edge filters within each

segmentation mechanism.

My edge-based segmentation algorithm consists of three stages: edge filtering, cor-
ner detection, and a spatial coherence check. All the later stages depend on edge filtering.

After studying several functions for edge filter kernels, the multivariate Gaussian filters



