
A Denotational Semantics Approach
to Functional and Logic Programming

TR89-030

August, 1989

Frank S.K. Silbermann

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal OpportunityjAfflrmative Action Institution.

A Denotational Semantics Approach to
Functional and Logic Programming

by

FrankS. K. Silbermann

A dissertation submitted to the faculty of the
University of North Carolina at Chapel Hill in par
tial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science.

Chapel Hill

1989

@1989

Frank S. K. Silbermann

ALL RIGHTS RESERVED

11

FRANK STEVEN KENT SILBERMANN. A Denotational Semantics Approach to

Functional and Logic Programming (Under the direction of Bharat Jayaraman.)

ABSTRACT

This dissertation addresses the problem of incorporating into lazy higher-order

functional programming the relational programming capability of Horn logic. The

language design is based on set abstraction, a feature whose denotational semantics

has until now not been rigorously defined. A novel approach is taken in constructing

an operational semantics directly from the denotational description.

The main results of this dissertation are:

(i) Relative set abstraction can combine lazy higher-order functional program

ming with not only first-order Horn logic, but also with a useful subset of higher

order Horn logic. Sets, as well as functions, can be treated as first-class objects.

(ii) Angelic powerdomains provide the semantic foundation for relative set ab

straction.

(iii) The computation rule appropriate for this language is a modified parallel

outermost, rather than the more familiar left-most rule.

(iv) Optimizations incorporating ideas from narrowing and resolution greatly

improve the efficiency of the interpreter, while maintaining correctness.

Ill

ACKNOWLEDGEMENTS

Bharat Jayaraman suggested I investigate unifying functional and logic pro

gramming via a lazy functional language with set abstraction. It was a fruitful

topic, drawing together a variety of programming language design ideas. He gave

his time, encouragement and patience generously.

I also thank my other committee members, David Plaisted, Dean Brock, Jan

Prins and Gyula Mago for their insightful and constructive comments on preliminary

drafts and oral presentations of preliminary work. David Plaisted and Dean Brock

were especially helpful in taking the time to read and comment under severe time

limitations. Don Stanat also provided many useful comments. Special thanks also

to David Schmidt of Kansas State University, who answered some difficult technical

questions.

This research was supported by grant DCR 8603609 from the National Science

Foundation and contract N 00014-86-K-0680 from the Office of Naval Research.

iv

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Declarative vs. Imperative Languages 1

1.2 Paradigms of Declarative Programming 3

1.2.1 Functional Programming 3

1.2.2 (Horn) Logic Programming 4

1.2.3 Equational Logic Programming 7

1.2.4 Functional and Logic Programming Combinations 9

1.3 Proposed Approach 11

1.3.1 Relative Set Abstraction 12

1.3.2 Denotational Semantics 14

1.3.3 Correct Operational Semantics 15

1.3.4 Optimization 15

1.3.5 Scope of the Research 15

2 THE POWERFUL LANGUAGE 17

2.1 Syntax of Constructs 17

2.2 Program Examples 19

2.3 Translating Horn Logic to PowerFuL 21

2.3.1 Converting Horn Logic to Set Logic 21

2.3.2 Converting Set Logic to PowerFuL 22

2.3.3 Discussion 23

3 DENOTATIONAL SEMANTICS 25

3.1 Semantic Domains 25

3.2 Powerdomains 30

3.3 Denotational Semantics of PowerFuL 33

3.3.1 Semantic Equations 34

3.3.2 Coercions 38

3.4 Summary 39

v

4 FROM DENOTATIONAL TO OPERATIONAL SEMANTICS 41

4.1 Recursion and Least Fixpoints 43

4.2 Computation Rules and Safety 44

4.3 Computation of Primitives 4 7

4.4 Operational Semantics of PowerFuL 50

4.4.1 Termination of !3-Reduction 51

4.4.2 Desiderata for the Computation Rule 52

4.4.3 PowerFuL's Reduced Parallel-Outermost Rule 56

4.4.4 Example 59

4.6 Summary 60

5 POWERFUL SEMANTIC PRIMITIVES 62

5.1 Boolean Input Primitives 62

5.2 Atomic Input Primitives 63

5.3 List Primitives 64

5.4 The Powerdomain Primitive 64

5.5 Coercions 65

5.6 Run-time Typechecking 67

5. 7 Equality 69

5.8 Summary 71

6 OPTIMIZATIONS 72

6.1 Avoiding Generate-and-Test 72

6.2 Logical Variable Abstraction 74

6.3 Simplfying Primitives with Logical Variables 76

6.3.1 Technique 1: Simple Reduction 77

6.3.2 Technique 2: Splitting by Type 78

6.3.3 Technique 3: Splitting on Equality 79

6.3.4 Discussion 83

6.4 Example 84

6.5 Correctness Results 89

6.6 Summary 89

VI

7 CONCLUSIONS

7.1 Results and Contributions

7.2 Further Work

References

Vll

91

91

93

95

1 INTRODUCTION

This chapter places functional and Horn logic programming within the gen

eral context of declarative programming languages. After reviewing previous func

tional/relational combinations, we provide an overview of our approach.

1.1 Declarative vs. Imperative Languages

Programming languages can be divided into two broad categories: zmpera

tive languages, which includes languages such as Fortran, Pascal and Ada [M83],

and declarative languages, which includes (declarative subsets of) languages such

as Prolog [CM81] and Lisp [M65]. One way to appreciate their difference is via

Kowalski's celebrated equation "Algorithm = Logic + Control," [K79] meaning

that an algorithm may be described as a combination of logical relationships and

execution control. Imperative programming languages, having evolved from Von

Neumann machine languages, express the program control explicitly, and leave the

program logic implicit in the form of assertions that are invariant at various control

points. Declarative programming languages reverse the relative emphasis of logic

and control; they express the program logic explicitly, leaving much of the control

implicit. In contrast to the machine orientation of imperative languages, declarative

languages are programmer-oriented, and their syntax and semantics are based on

mathematical theories predating the electronic computer.

Two important declarative subgroups are functional and logic. The most

expressive functional programming languages (those which treat functions as com

putational objects) are based on lambda calculus; these include pure Scheme [AS85]

and pure ML [M84], Miranda [T85] and Haskell [HW88]. Simpler (first-order)

functional languages have been based on an algebra of programs [B78] and recur

sion equation systems [085]. Most logic programming languages have likewise been

based on the first-order predicate calculus [VK76, GM84], higher-order predicate

calculus [MN86], and also equational logic [085, YS86, F84].

The benefits of declarative languages are, firstly that algorithms expressed in a

declarative language are often easier to understand than when expressed in a more

procedural language, since the parts of a program combine in a more predictable

way. Often the declarative programs are shorter. Because of their absence of side

effects and explicit sequencing, they have great potential for parallel execution.

Even on purely sequential machines they execute efficiently enough to be useful

in many applications [P87]. As the ratio of programmer costs to hardware costs

rises, and with programs becoming longer and more complex, declarative languages

are becoming ever more attractive. Furthermore, declarative languages show great

potential for implementation on massively parallel hardware [CK81, D74, GJ89,

LWH88, MSO, M82]. Declarative languages do not over specify the order of op

erations, and for many subcalculations execution order may be chosen arbitrarily.

When execution order is known to be irrelevant, sub-calculations may be freely

executed in parallel.

Another advantage of declarative over imperative languages, and indeed, a cen

tral focus of this dissertation, is that the semantics of declarative languages can be

more easily given a mathematically rigorous treatment. Programming language

semantics is a study of the association between programs and the mathematical

objects which are their meaning. Different methods have been proposed to describe

this association, e.g., denotational, operational, axiomatic, etc. [P81]. To specify

the semantics of a language denotationally means to specify functions that assign

mathematical objects to the programs and to parts of the programs in such a way

that the semantics of a program expression depends only on the semantics (i.e. not

the form) of its subexpressions. This kind of semantics seems most useful for de

scribing the language constructs, i.e. for encapsulating the essence of the language

design. Since the constructs of a declarative language are patterned after mathemat

ical ideas, denotational semantics would seem seem to be the easiest way to describe

a declarative language. Operational semantics specifies an abstract machine which

would compute the output of a program. That is, an operational semantics can be

viewed as a high-level description of a possible implementation. Since the constructs

of an imperative language are designed with conventional hardware capabilities in

mind, operational semantics would seem to be the easiest way to describe an im-

2

perative language. Axiomatic semantics seems most useful for proving properties

of specific programs in a language. Since we are interested in language design and

implementation, we will concentrate on denotational and operational semantics. As,

we are designing a declarative language, the defining semantics is the denotational;

the operational semantics will be considered correct only to the extent it agrees

with the denotational.

1.2 Paradigms of Declarative Programming

Various declarative paradigms have evolved independently of each other. We

discuss some of the more popular ones, emphasizing their unique features.

1.2.1 Functional Programming

· The functional programming paradigm, based on function definition and appli

cation, offers powerful tools for program modularization and abstraction. Typically,

a computation may be decomposed into a hierarchy of smaller components. For in

stance, one operation might produce a data structure used by the next. In a purely

imperative style, rather than defining each operation independently, references to

their common data structures make the definitions of these operations mutually

dependent. This makes it difficult to understand one part of the program inde

pendently of the rest, and hinders the reuse of code. In a more functional style of

programming, an operation can provide data for the next via function composition.

For instance, an expression denoting the result of one function is used as an input

argument to another. The location or name of the intermediary result need not be

explicitly given, thus allowing the two functions to be defined independently of each

other. More specific features common to functional programming are listed below.

1) With a form of outermost, or lazy evaluation, the data structure defined by

an argument expression is computed only to the extent necessary for its caller. With

this strategy, a function can define a data structure that is conceptually infinite,

such as an infinite list. With infinite lists, even interactive input-output can be

described in a purely functional notation, as shown by Henderson [HSOb]. The

functions being composed can be modeled as concurrent processes.

2) Functional languages permit higher-order objects, i.e., functions may take

other functions as arguments and produce other functions as results. With this

feature, one can more easily abstract code common to several routines. With the

3

ability to create general-purpose program fragments, more program parts can be

easily reused in new systems.

3) Static Jcoping permits functions to be defined within the context of other

function definitions. This provides modularization via hierarchical functional de

composition and supports information hiding.

4) To help the programmer avoid errors, many programming languages provide

a type system. An object's type constrains the range of values it may take, so that

gross errors are caught early. Many functional programming languages provide

polymorphic typing, so that typing can be parameterized.

5) To enhance its acceptance for practical programming, powerful compilation

techniques have been developed, such as incremental compilation and combinator

approaches [P87].

To give a flavor of the functional style of programming, we present a small

program, which given a function to insert a binary operator between components

of a list, easily defines functions to sum lists of numbers, compute their products,

and even to append lists:

reduce (func, identity, list) is
if null(l) then identity else
func(head(list), reduce(func, identity, tail(list)))

sumlist is lambda(list). reduce(+, 0, list)

prodlist is lambda(list). reduce(*• 1, list)

append(a, b) is reduce(cons, b, a)

1.2.2 (Horn) Logic Programming

In logic programming, computations are specified via logical constraints. In

stead of defining the solution as a function from input to output, one merely states,

in the form of relationJ, the properties the solution must satisfy. This gives pro

grams a more flexible execution moding; not until execution need it be d~termined

which parameters of a relation will be given values and which parameters are to be

computed. Execution is a search procedure to find one or more solutions. In this

sense, logic programming can be even more declarative than functional programs.

Its chief advantages are:

4

1) conceptual simplicity, in that a program can be viewed as a set of assertions

in first-order predicate logic; and

2) automatic availability of a function's inverse, i.e. when a function is pro

grammed as a relation between its input and its output, its inverse is also automat

ically defined.

The most popular form of logic programming is based on first-order Hom logic,

a subset of predicate logic. A Horn logic program defines and reasons with relations.

Conceptually speaking, each program clause states that for all instantiations of its

variables by first-order terms, if all the righthand side predicates are true, then so

is the predicate on the lefthand side. We use the term subgoal to refer to one of

the righthand side predicates. If a clause has no subgoals, then, for all possible

instantiations, the lefthand side predicate is true. Such a clause is called a unit

clause.

For instance, one can describe the appendfunction as a relation between its

input arguments and its output, as in the following Horn logic program:

append([], X, X).
append([HIT], Y, [HIZ]) :-append(T, Y, Z).

The goal is to find a set of bindings for the variables so that all the predicates in the

user query are true. In a user query, one can either provide two lists to be appended,

or one can request that two lists be found which, when appended, produce a known

list:

?- append([1,2], [3,4], Ans).

?- append(left, Right, [1,2,3,4]).

Since the universe of first-order terms can be enumerated, one could, in princi

ple, generate all possible instantiations for the goal, and check each instantiation for

suitability by verifying, if possible, the truth of each instantiated goal predicate via a

derivation. A more efficient operational procedure, called resolution, tries to derive

the truth of the original uninstantiated user query, binding values to the variables

in the goal and program clauses only to the extent needed to keep the derivation

going. Such variables are called logical variables, in current Prolog terminology.

Two basic operations of the resolution procedure are unification and search. In

unification, the logical variables in a program and in the goal are given values so that

5

a predicate in the user query will equal the lefthand side predicate of the partially

instantiated program clause. When this can be done, the instantiated righthand

side of the program clause replaces the matched predicate in the user query. In first

order Horn logic, two terms are equal if and only if they are identical, so unification

can be efficiently implemented. Higher-order unification is much more difficult; in

fact, testing the equality of two higher-order terms is not decidable, in general [R86].

"Search" refers to the fact that, an any stage in the derivation, one may have

several applicable program clauses to choose from. Breadth-first search, in which

one tries all possible choices, will find all solutions. This property is called complete

ness. Usually however, a depth-first search implemented via backtracking is used,

because of its smaller space requirements. Depth-first search, however, sacrifices

completeness.

One disadvantage of first-order Horn logic programming is its lack of higher

order capability, i.e. the inability to use relations themselves as objects. Warren

described a way to encode some higher-order Horn logic programs within first

order Prolog [W83a]. The programmer associates a special (first-order) term with

each predicate to be passed as an argument (or returned as a result) in place of

the predicate itself. To apply the 'predicate', one calls a special 'apply' predicate,

which has recorded which predicates are associated with which terms, applying the

associated predicate. Though Warren has described a useful Prolog programming

technique, higher-order predicates defined via his technique may lack referential

transparency. Referential transparency requires that when two predicates name

the same relation, they may be interchanged anywhere in the program without

changing the program's declarative meaning (though execution efficiency may be

affected). With Warren's scheme, a "higher-order" predicate testing two input

predicates for equality would test the associated terms, instead. The term.encodings

might differ even if the predicates themselves define the same relation. Though

Warren's technique provides the desired linguistic expressiveness, the possibility of

nontransparent usage makes reasoning about programs more difficult. It is for this

same reason that we consider first-order logic insufficient as the basis for higher

order programming, in contrast to the position taken in [G88]. One would prefer

that higher-order capability be directly supported in the language's actual formal

semantics.

6

Seeing the limitations of Warren's encodings, researchers (MN86, R86] are in

vestigating programming languages based on subsets of of higher-order Horn logic.

Unfortunately, full higher-order predicate logic is uncomputable, so most approaches

restrict the higher-order capability to handle only specific subclasses of higher-order

objects, or impose restrictions limiting their use. Miller and Nadathur have de

scribed a form of Horn logic incorporating terms from Church's typed lambda cal

culus (MN86], introducing some higher-order capability. However, their functions

(lambda expressions) cannot be recursively defined and were not intended to pro

vide full higher-order capability. Rather, they intended their system to be a useful

tool for meta-programming, i.e. for building program transformation systems and

theorem provers.

The next section discusses another variation of logic programming based on

equational logic.

1.2.3 Equational Logic Programming

Though this dissertation does not deal explicitly with equational programming,

we feel that some discussion is warranted, as equational programming is capable of

combining many of the features of both functional and Horn logic programming

[085, F84, YS86, DP85]. Like Horn logic programming, certain forms of equational

programming compute by solving constraints (YS86, F84, DP85]. As in functional

programming, certain forms of equational programming can define functions, exe

cuting them with reasonable efficiency (085]. As with Hom logic programming, it

provides no higher-order capability.

In equational logic, rather than defining general predicates or relations, the

program is a collection of parameterized equalities between terms, each implying

that, for all instantiations of the (logical) variables, the two resulting terms are

equal. Alternatively, the equality of a parameterization can be made conditional

upon other pairs of terms being proven equal first. The goal of an equational logic

program is to instantiate a user query so as to make it a logical consequence of the

program.

To test whether two terms are equal, one uses the equations as substitutions,

to see whether one can rewrite the two terms to identical forms. This can be very

difficult, as one must compare each equivalent form of the left term in the goal

7

with each equivalent form of the right. Furthermore, for each term, the class of

equivalent terms may be infinite.

To avoid the computational problems of unrestricted equational programming,

term-rewriting systems were developed. In proving equality of two terms, the pro

gram equations are used in one dires:tion only, i.e. one instantiates a program

equation so that its left side matches a portion of the term being rewritten, and

that portion is then replaced by the instantiated right-hand side. In order to guar

antee the sufficiency of this mechanism, the equation set must be confluent. That

is, it must be guaranteed that, if a term can be rewritten using more than one equa

tion, all results must eventually converge to a common result. It is easiest to prove

confluence when it can be shown that rewriting is always guaranteed to terminate,

in which case, every term has a unique normal form, i.e., rewrites to a single term

which can no longer be rewritten.

Confluent and terminating term-rewriting systems are called canonical. When

a canonical term-rewriting system is viewed as an equational program, it has the

property that all equal terms will rewrite to a common term, called a normal form,

which cannot be further rewritten. This greatly increases the efficiency of the

equality test, as one need not only compare two normal forms to test whether

two terms are equal. However, one disadvantage of using canonical term-rewriting

systems for functional programming is that the termination requirement rules out

functions and relations operating on infinite data structures.

An operational mechanism known as narrowing (HSOa], which combines reduc

tion and unification, allows one to solve for logical variables (DP85] [YS86] in a

goal equation. This technique reduces the parameterized equation via the rewrite

rules as much as possible. When the presence of logical variables in the goal pre

vents further reduction, the variables are replaced by somewhat more defined values

(terms which may contain new logical variables) in order that reduction may con

tinue. When the equality becomes apparent, the accumulated bindings for the

logical variables provide the solution. For completeness, each time a logical vari

able is narrowed, one must compute in a breadth-first manner many alternative

narrowings. Unfortunately, the branching on narrowing tends to quickly get out of

hand.

Constructor-based equational programming systems (R85] (JS86] [F84b] seem

8

to ameliorate the above problems. Certain functors are taken as irreducible data

constructors, and other functors are assumed to name functions. An equation's left

side is restricted to contain only one function name, placed at the outermost level,

thus distinguishing between equations to define functions, and equations stating

properties of functions, and permitting only the former. A term now no longer

stands for itself, but rather denotes the no"rmal form (which is built solely of con

structors). With this restriction, the distinction between term-rewriting and first

order functional programming begins to blur, and with narrowing, one gains Horn

logic's capability to satisfy constraints, as seen in the following example:

append([] , y) = y
append([h I t], y) = cons(h, append(t, y))

?-append([1,2], [5,6]).

?-append(x, y) = [1, 2, 3].

In a constructor-based system, narrowing becomes more efficient (at each step, fewer

narrowings need be considered) [F84b] [JS86J. Where reduction without narrow

ing suffices, non-terminating programs (denoting infinite objects) might possibly be

supported. Proofs of confluence are still required, though they are perhaps easier to

find. In some ways, reduction, the operational strategy of functional programming,

resembles term-rewriting. We should therefore not be surprised if the operational

procedure of a language combining functional and logic programming would simi

larly resemble narrowing.

1.2.4 Functional and Logic Programming Combinations

Sometimes we wish to combine both functions and relations within one pro

gram. A number of attempts have been made to combine features of functional and

logic programming into a single language (see [BL86] for a recent survey). Either

one can add functional programming to a Horn logic base, or one can add relational

capability to a functional programming language.

Some have proposed adding function definition capability to Horn logic via

an equational theory [K83] [GM84]. The equational theory may be provided via a

canonical term rewriting system. Syntactic examination of a predicate's arguments

no longer suffices when judging whether a program clause is relevant. Instead, the

interpreter must ascertain whether a predicate's arguments might rewrite to terms

9

matching the program clause, or whether patterns in the program clause may be

rewritten to match the arguments. The computational complexity of this inference

mechanism is a major difficulty.

In describing his language Fresh [SP85], Smolka begins with a functional lan

guage, written in an equational style to incorporate pattern-matching, and describes

an operational semantics reminiscent of narrowing. The resulting language is very

expressive, providing a higher-order capability via a technique similar to Warren's

(described above). As with Warren's encodings, referential transparency is lost. It

is unclear what would be a meaningful purely declarative subset, as Smolka did not

provide a denotational description.

Though Horn logic relations are defined in predicate logic, these relations could

just as easily be described via set theory. In fact, Horn logic's model-theoretic and

fixed-point semantics are described in the language of set theory. One approach to

combining functional and logic programming is to add sets as another data type.

Robinson and Darlington were the first advocates of adding logic programming

capability to functional programming through set abstraction. In describing SU

PERLOGLISP [BRS82], Robinson suggests that a functional language should have

a construct denoting the complete set of solutions to a Horn logic program, and that

the user be able to build functions accepting such sets as arguments. Darlington

calls his extension absolute set abstraction [D83, DFP86] to distinguish it from rel

ative set abstraction, discussed later. Absolute set abstraction permits expressions

such as

{x: p(x)},

to denote define the set of all x satisfying p(x). In this approach, nondeterminism

is replaced by set union, and unification is performed to solve equations between

non-ground objects.

Robinson's language, SUPERLOGLISP, combines LISP and Horn logic through

absolute set abstraction. He develops many useful implementation ideas, but does

not develop a mathematical justification or a formal semantics. Since the base

language is LISP, LOGLISP has some higher-order capability, though its use is

restricted when accessing the relational features. As in LISP, stream-based pro

gramming is not supported, as arguments must be evaluated before being passed

10

to functions.

Darlington's approach is similar; however, his base functional language is lazy,

with polymorphic typing. In his recent paper [DFP86), Darlington sketched a par

tial and informal operational semantics. In [DG89), he described absolute set ab

straction in a strictly first-order equational language as a variation of narrowing in

term-rewriting systems.

The work of Darlington and Robinson leaves several important open problems:

In what way does this construct interact with other traditional functional language

features, such as infinite and higher-order objects? How can the presence of this

feature be reflected in the language's denotational semantics? Will all denotable sets

be computable? To our knowledge, these semantic issues have never been rigorously

worked out.

1.3 Proposed Approach

Our goal is a language incorporating both functional and logic programming,

and providing the following features:

1) Simple semantics through referential transparency. For instance, functions

should be completely described by the mapping defined; two alternative defini

tions describing the same mapping should be indistinguishable within the language.

Analogously, sets should be completely described by the elements contained; we

should not be able to distinguish two different expressions of the same set, though

orderings of the elements may differ. In other words, we would like to satisfy the

axiom of extensionality [877) for functions and sets.

2) Higher-order objects should be first-class, i.e., they can be used freely as

function or predicate arguments and results.

3) Possibility of efficient execution. Backtracking should not be used where

simple rewriting is sufficient, and the interpreter should not rely on computationally

explosive primitives, such as higher-order unification or unification relative to an

equational theory.

4) Verifiably correct execution mechanism, 1.e., the operational and denota

tional semantics should describe the same language.

We make functional programming with set abstraction the basis for our unified

11

declarative language because:

1) simple propagation of objects can be managed without equality tests (im

portant for higher-order objects);

2) it should be easier to add the constructs from as small and simple a language

as Horn logic into the larger and more complicated functional programming, rather

than vice-versa. Functional programming languages have a richer domain of objects,

compared with Horn logic's fiat domain, and therefore a larger variety of constructs;

and

3) ordinary functional computations not making use of set abstraction might

be executed without backtracking.

For simplicity, we will not consider typing mechanisms, whether polymorphic or

otherwise, though we see no reason why such a feature could not be added.

1.3.1 Relative Set Abstraction

Neither Robinson nor Darlington have been able to implement absolute set

abstraction as a first-class object, interacting freely with other functional language

features. Both Darlington and Robinson claim that implementation of absolute set

abstractions as first-class objects would require higher-order unification, which is

not always computable. Even so, some higher-order programs in their languages

would merely be unexecutable program specifications. Robinson has criticized exist

ing combinations of higher-order functional programming with first-order relational

programming as inelegant [R86]. His goal is to create a purely declarative func

tional language permitting higher-order relational programming, without arbitrary

unorthogonal restrictions on its features. But, this line of work has yet to be fully

explored.

Replacing absolute set abstraction with the semantically simpler relative set

abstraction, the notation avoids the suggestion that full higher-order logic program

ming capability ought to be available. This removes the sense of inelegance Robinson

noted. A typical relative set abstraction would be an expression of the form:

{f(x) : x E G and C(x)}.

Here, the generating set G is provided explicitly, and those elements x which satisfy

the condition C are used in computing elements of the new set. Compare this to

12

the form of a typical absolute set abstraction:

{f(x) : C(x)}.

Here, one "solves" the condition C for suitable values of x, each solution used to

compute an element f(x) of the denoted set.

The absolute construct is powerful, but its higher-order extension is problem

atic. The implementations of the languages of Darlington and Robinson restrict a

logical variable to represent only first-order terms. This restricted domain is anal

ogous to the Herbrand univer3e in first-order Horn logic. Thus weakened, absolute

set abstraction is no longer more powerful than relative set abstraction. This set

of first-order terms, T, can easily be expressed via a recursively-defined relative set

abstraction. Thus, any first-order absolute set abstraction can easily be expressed

as a relative set abstraction. For instance, the example above would be written as:

{f(x) : x E T and C(x)}.

We observe that relative set abstraction can al3o provide the needed logic pro

gramming capability. We prefer relative set abstraction because it has a more

tractable higher-order generalization. Not only is relative set abstraction as expres

sive as first-order absolute set abstraction (as shown above), but it can mix freely

with higher-order constructs, without requiring arbitrary first-order restrictions.

David Turner pioneered the use of relative set abstraction in a functional pro

gramming language, KRC [T81]. However, in his language, sets are implemented

as lists, and may be accessed as such, thus providing an implicit ordering on the

elements. This violates the semantics of sets and does not ensure fairness. If com

putation with one element of a generator set diverges, the next element is never

tried. With this kind of implementation, the construct is no longer described as

set abstraction; rather, one speaks of li3t comprehen3ion3 [P87]. We, in contrast,

advocate true relative set abstraction.

In our system, the set of first-order terms is provided as a (semantically un

necessary but operationally convenient) primitive. In computing a relative set ab

straction, only if a variable x is recognized as being enumerated from the set of

first-order terms is it treated as a logical variable. This special treatment is merely

an optimization to the default 'generate and test' mechanism. We show that these

set abstractions generated from the Herbrand universe can be identified, and opti-

13

mized to provide efficiency comparable to Darlington's procedure.

Thus, we propose a lazy, statically-scoped, higher-order functional language

with relative set abstraction, to combine higher-order functional and logic pro

gramming.

1.3.2 Denotational Semantics

A formal mathematical description of objects computed in this language, ob

jects such as atoms, lists, functions and sets, is given by the specification of the

semantic domain. The denotational semantics consists of this and a function map

ping of the language's syntactic statements to elements of the semantic domain.

We choose to define the language through denotational semantics because, through

this method, properties of a language can be determined at a glance. Consider for

example the denotational equation for a cons structure:

£[cons(expr1, expr2)] p = <(£[expr1] p), (£[expr2] p)>.

This equation describes the meaning of the expression, cons (expr 1 , expr2),

in the .environment p, as depending upon the meaning of the sub expressions expr 1

and expr2. Note that the environment for one subexpression is unaffected by the

presence of the other subexpression. That is, the computation of expr1 can have

no side-effects that might influence the value of expr2. Therefore, the two subex

pressions can be computed independently, perhaps even in parallel. Through such

semantic equations the declarative nature of the language may be seen.

Though others have proposed languages combining functional and logic pro

gramming through set abstraction [BRS82J [DFP86], to our knowledge we are the

first to give a denotational description. One difficulty was finding a suitable domain

to represent set-valued objects. We have found that angelic powerdomains suffice,

and our reasons for this choice will be explained later in Chapter 3. Powerdomain

theory is usually used to describe nondeterministic languages, i.e. where a pro

gram is said to denote the set of objects which might be computed in any single

execution. Indeed, powerdomains were conceived for that very purpose. Our use

of powerdomain theory is unusual, in that, rather than describing the results of a

control structure (nondeterminism), it describes sets as an explicit data type.

14

1.3.3 Correct Operational Semantics

To demonstrate that the language is executable, we provide an operational se

mantics, and we show its correctness with respect to the denotational semantics.

To do so, we show that the denotational description's function to map syntactic

statements to the semantic domain can be viewed as a functional program for the

interpreter, written in terms of lambda expressions and primitive semantic func

tions. Each primitive function is defined via a set of equations, and implemented

through the use of these equations as simplification rules. This leaves unspecified

only the order of evaluation. We choose a variation of the parallel-outermost rule,

optimized in that some outermost computations may be delayed. That some de

gree of parallel evaluation is needed for complete evaluation of sets should not be

surprising; as a complete implementation of Hom-logic also requires a degree of

breadth-first evaluation.

1.3.4 Optimizations

The operational semantics described above is inefficient for two reasons. First,

it is pure interpretation; no provision has been made for compile-time pre-computation.

In defining the scope of this research, we chose to avoid such issues. Second, the op

erational semantics is inefficient when the set of first-order terms is the generator of

a relative set abstraction (analogous to an absolute set abstraction); the procedure

described above would blindly enumerate the infinite set of terms, instantiating a

copy of the abstraction for every possible term. To avoid this second cause of inef

ficiency, optimizations are provided which permit the enumerated variable in such

cases to be treated as a logical variable, instantiated only as needed to continue the

computation. This optimized operational semantics was inspired by the narrowing

technique from term rewriting systems [R85] and the resolution technique from logic

programming [184]. This development expresses our point of view that the logical

variable concept is best understood as an operational optimization, and not as part

of the language's declarative description.

1.3.5 Scope of the Research

This dissertation describes a programming language combining functional and

logic programming, and exhibiting the characteristics we have set forth as desirable.

The denotational semantics provides a deep understanding of the meaning of the

15

language constructs, and serves as a standard for correct implementation. We also

develop two variations of operational semantics. The first serves two purposes:

1) to demonstrate that the language can in fact be correctly implemented; and

2) to serve as a basis for the second operational semantics.

The second operational semantics contains optimizations essential for efficient logic

programming (the relation between the two operational semantics may be thought

of as analogous to that between Horn logic proof theory and the resolution method

[VK76]), and justifies our view that the logical variable is an operational, not a

declarative concept. In this dissertation, we do not discuss the detailed imple

mentation issues necessary for constructing a practical piece of software. Neither

operational semantics, if implemented directly, would be very fast. Rather, op

erational issues are considered only in so far as they give us a deeper theoretical

understanding of the language.

This introduction has given an overview of the dissertation, and a summary

of related work. The remaining chapters are as follows. Chapter 2 provides the

syntax of the new language, along with sample programs. Chapter 3 describes the

denotational semantics. Chapter 4 derives a simple operational semantics. Chapter

5 provides a detailed description of the semantic primitives. Chapter 6 improves

the operational semantics with optimizations for more efficient logic programming.

Chapter 7 discusses and summarizes the results of this research.

16

2 THE POWERFUL LANGUAGE

This chapter introduces a functional language with relative set abstraction. We

call the language PowerFuL, because Powerdomains provide the semantic basis

for the kind of set abstraction needed to unite Functional and Logic programming.

We first describe the syntactic features via BNF and informal explanation, and then

provide sample programs chosen to illustrate the constructs, and to show that any

first-order Horn logic program can be translated into PowerFuL.

Wishing to concentrate of semantic foundations, we emphasize the essential

features, leaving out many convenient syntactic niceties. For instance, we do not

provide the boolean connectives, as these can be easily programmed via the condi

tional. We also do not discuss (polymorphic) strong typing and numeric operations,

though these features are not incompatible with PowerFuL.

2.1 Syntax of Constructs

A PowerFuL program is an expression to be evaluated. The syntax is:

expr 0 0 = (expr) I A1 I .. . I An

cons(expr, expr) I car(expr) I cdr(expr)

TRUE I FALSE I not(expr) I if(expr, expr, expr)

bool?(expr)

func?(expr)

identifier

atom?(expr) I pair?(expr)

set? (expr) I expr = expr I null? (expr)

letrec identifier be expr, ... , identifier be expr in expr

>. identifier . expr

expr expr

phi I set-clause I U(set-clause, set-clause)

bools I atoms I terms

set-clause . ·=
qual-list · · =

qualifier : : =

enumeration : : =

condition : : =

{ expr : qual-list}

qualifier, qual-list I e

enumeration I condition

identifier E expr

expr

Most of these constructs have close analogs in other functional languages. We

provide below a brief explanation of the above syntax, in the order of their appear

ance in the BNF.

• We can put parentheses around an expression for clarity, or to override the default

left-associativity.

• We use A; to indicate an arbitrary atom. In practice, an initial quote distinguishes

an atom from an identifier.

• As in LISP, we use cons to construct ordered pairs; car and cdr select a pair's

left and right elements, respectively. Lists may. be written in the [...] notation,

e.g. ['apple, 'orange, 'grape] and have the usual nested-pair representation

usmg cons.

• As in Scheme [AS85], condition predicates end in a '?'. The basis of equality

testing is atomeq?, which compares atoms for equality. The condition null? tests

whether its argument equals the atom 'nil. The general equality condition answers

false if its arguments are of incompatible types (e.g. an atom and a list), answers

true or false if the arguments are two atoms or two booleans, and in the case of

two ordered pairs, compares the respective left and right branches, recursively. It is

undefined when comparing two functions or two sets. PowerFuL also provides the

usual type-checking conditions: bool?, atom?, etc. As is required for full referential

transparency (extensionality), equality between higher-order objects is not defined.

The result of equating higher-order objects, such as sets or functions, is l..

• The conditional, if (condition, expr2, expr:J), may also be written as if condi

tion then expr2 else expr:J fi.

• A function parameter is represented by an identifier. Lambda expressions are

used to define functions. A lambda expression with more than one parameter, such

as

,\ id1 id2. body

18

is syntactic sugar for a lambda expression with a single parameter x representing

a sequence. In this example, an occurrence of id2 in the body would be replaced

by cdr(x). Similarly, when applying a "multi-argument" lamba expression, the

argument list is converted to the appropriate list via cons.

• The syntactic form letrec is used to define statically scoped identifiers. A set of

identifiers may be defined via mutually recursive definitions. A program is invalid

if it contains a reference to an undefined identifier.

• Enumerations are the syntactic basis for relative set abstraction. Each identifier

introduced within the set-clause is associated with a set expression to provide possi

ble values. The scope of the enumerated identifier contains the principal expression

(left of the ': '), and also all qualifiers to the right of its introduction. In case of name

conflict, an identifier takes its value from the latest definition (innermost scope). In

any case, the scope of an enumerated identifier never reaches beyond the set-clause

of its introduction. When the qualifier is a condition, the expression to the left of

the ':' is in the denoted set only if the condition evaluates to true. When there

are no qualifiers to satisfy, the set-clause indicates a singleton set, and the ' : ' is

usually omitted. Expressions of the form U(set1 , ••• , se4,) are syntactic sugar

for a nesting of binary unions.

• The syntax bools refers to the set { TRUE, FALSE}. Similarly, atoms is the set

containing all the atoms A;. The set terms is a union of atoms, bools, and any

finite object which can be constructed by "cons" -ing together elements of those two

sets.

2.2 Program Examples

To illustrate the language constructs and to show their applicability for func

tional and logic programming, we now provide a series of short programs in Power

FuL.

19

Functional Programming

letrec

in

append be A 11 12. if null?(l1) then 12

else cons(car(l1), append(cdr(l1),12)) fi

map be A f.A l.if null?(l) then []

else cons(f(car(l)), map(f,cdr(l)))fi

infinite be cons('a, infinite)

Higher-order functions and infinite objects can be defined in the usual manner. The

map example shown above is in curried form.

Set Operations

letrec

in

crossprod be A s1 s2. {cons(X,Y) : XEs1, YEs2}

filter be A p s. {X : X E s, p(x)}

intersection be A s1 s2. {X : XEs1, YEs2, X=Y}

The operations crossprod and filter are similar to those in Miranda [T85]. Note

that one cannot define an operation to compute the cardinality of a set, nor can

one test whether a value is or is not a member. Such an operation would be

analogous to Prolog's negation by failure. This work concerns itself solely with

Prolog's declarative capabilities, i.e. those based on pure Horn logic.

Logic Programming

letrec

split be A list. { [XIY] : XEterms, YEterms, append(X,Y)=list}

append be A 11 12. if null?(l1) then 12

else cons(car(l1), append(cdr(l1),12)) fi

in

20

The enumerations XEterms, YEterms in split are needed because the set-abstraction

is relative, not absolute.

Higher-order Functional and Horn logic programming

letrec

in

one be ,\ v. ' a

two be ,\ v. 'b

three be ,\ v. 'c

{F: FE U({one}, {two}, {three}), map(F)(['x,'y,'z]) = ['c,'c,'c]}

The result of the above set-abstraction is the set {three}. In this example, the

generator set for F, U({one}. {two}. {three}) is first enumerated to obtain a

function which is then passed on to map. Those functions which satisfy the equality

condition are kept in the resulting set, while the others are screened out.

2.3 Translating Horn Logic to PowerFuL

This sections discusses the translation of programs from Horn logic to Pow

erFuL. First, we reinterpret Horn logic clauses as statements about sets and set

membership, rather than about the truth of predicates. Then we show how such

statements can be expressed in PowerFuL.

2.3.1 Converting Horn Logic to Set Logic

The Horn logic domain is the Herbrand Universe of first-order terms, i.e., those

terms built from the constructs found in the program. Finite sequences of these

terms are themselves in the Herbrand Universe (assuming a sequencing constructor

is provided). The set of all possible applications of predicates to Herbrand Universe

terms is called the Herbrand Base. The meaning of each Horn logic predicate is a

subset of the Herbrand Base, that is, those applications of the predicate to terms

which the program implies are true. Alternatively, we could say that the predicate

is given meaning as the set of arguments on which it is true. For instance, an

n-ary predicate is defined by the set of n-tuples for which the predicate is true.

Such a set is called a relation. In a sense, each predicate names a relation. To

say that a predicate applied to a tuple is true, is equivalent to saying that the

tuple is an element of the relation. We view Horn logic clauses as statements about

21

set membership, where each set is a relation representing a predicate. Where a

conventional Prolog program asserts P(tuple), we could equivalently assert that

tuple E P, where P now refers to a set.

For example, consider the following program and goal, written in Prolog syntax

[CM81].

app ([], Y, Y) .

app([HIT], Y, [HIZ]) ·- app(T, Y, Z).

rev ([] , []) .

rev([HIT], Z) ·- rev(T, Y), app(Y, [H], Z).

?- rev(L, [a, b, c]).

With a syntax more oriented towards sets, we could write:

[[] , Y, Y] E app

[[HIT], Y, [HIZ]] E app ·- [T, Y, Z] E app

[[] , []] E rev

[[HIT] , Y] E rev ·- [T, Z] E rev, [Z, [H] , Y] E app

?- [X, [a, b, c]] E rev

Here, we have used mutually-recursive definite clauses to define sets (instead of

predicates). We could call this paradigm set logic programming, but it is really just

another syntax for Horn logic.

2.3.2 Converting Set Logic to PowerFuL

Any such first order definite-clause set-logic program can be routinely converted

into PowerFuL. The letrec command provides mutually recursive definitions, and

each clause will correspond to a relative set abstraction. Where a predicate/set was

defined with several clauses, we use a union of relative set abstractions. Within

a relative set abstraction, each logical variable must be formally introduced as

representing an element the Herbrand Universe, i.e. terms. To indicate that a

particular first-order term is a member of a particular set, one lets the set instantiate

an enumeration variable, and then one states that the enumeration variable equals

the specified term.

Converting the above program to PowerFuL syntax results in:

22

letrec

in

app be U({ [[],L,L] : LEterms},

{[[HIT], Y, [HI Z]] : H, T, Y, Z E terms,

WEapp, W=[T,Y,Z]})

rev be U({[[], []] },

{[[HIT], Z] : H,T,Y,Z E terms, VErev, WEapp,

V = [T, Y] , W = [Y, [H], ZJ})

{ L : LEterms, VErev, V = [L, ['a, 'b, 'c]] }

We have taken the liberty of writing h,t,y,z E terms instead of four separate

enumerations.

2.3.3 Discussion

The PowerFuL program uses sets to express Horn logic predicates, which the

Horn logic program used, in turn, to define functions. With so many layers of indi

rection, it is no wonder the resulting PowerFuL version is ugly. Still, this technique

of Horn logic to PowerFuL conversion demonstrates that we have indeed captured

the full expressive power of Horn logic.

A better PowerFuL style would be to use Lisp-like functions where functions are

intended, and sets only where necessary. One could always provide Prolog notation

as a syntactic sugar wherever the relational style is more appropriate, recognizing

that its semantics are to be understood in terms of PowerFuL. We have seen that

functions such as append can be defined in PowerFuL and used in the usual way, and

also can be used within a set abstraction to choose which inputs would yield a desired

output. For both uses, only one function definition is required, which is convenient

for the programmer. For efficiency, such a function might be compiled differently for

use within and outside set abstractions. PowerFuL allows the interpreter to detect

where backtracking is needed and where it is not. Actually, a theoretically-complete

or fair implementation computes elements of sets in parallel, not via backtracking.

This kind of optimization might permit a program to be much more efficient than

would be if all functions had to be defined via set abstraction, or within Horn logic.

Translating programs from PowerFuL to Horn logic is more difficult. To be sure,

one might convert PowerFuL programs to Horn logic by implementing a PowerFuL

23

interpreter in Horn logic, mapping PowerFuL's higher-order domain into Horn logic's

first-order domain. Since PowerFuL's semantic domain is much richer than that of

Horn logic, we see no general way to directly convert PowerFuL programs to Horn

logic. It is easier to restrict oneself to using only PowerFuL's first-order terms, than

to arbitrarily expand Horn logic's domain to include higher-order objects.

24

3 DENOTATIONAL SEMANTICS

This chapter presents a denotational definition of PowerFuL. After motivat

ing some fundamental terminology, we describe PowerFuL's semantic domain, and

define the function mapping PowerFuL syntax onto this domain. Especially note

worthy is the use of powerdomains as a semantic basis for a language with set

abstraction.

3.1 Semantic Domains

This section reviews some concepts and terminology from the Scott-Strachey

theory of denotational semantics. We will not try to provide a rigorous presentation,

but only try to motivate some of the basic definitions, which we have taken from

[S86J. A more detailed presentation can be found there, as well as in [S77]. Special

attention is given to the theory of powerdomains, a type of domain construction not

usually needed for functional programming.

Intuitively, a domain is the set of mathematical entities being manipulated as

data objects by a program. Actually, a domain is a partially ordered set with certain

technical properties which we will later define. Functions are defined recursively,

and it is conceivable that in defining a function, the program might not provide a

mapping for every possible input. So as to deal with true functions, rather than

partial functions, a domain will include a special element to mean undefined. This

element is usually written as l. (pronounced "bottom"). The undefined element

results when an undefined operation is requested (such as dividing by zero), or

when a definition is circular, possibly resulting in an infinite recursion.

Sometimes we wish to create new domains built upon domains already defined.

For instance, given domains D1 and D2 , we can create the domain D 1 X D2, which

consists of all ordered pairs of elements from domains D 1 and D 2 , respectively.

For instance, domain IJ_ x IJ_ contains all possible ordered pairs of elements from

l.J. .. The elements in this domain are defined to varying degrees. The least defined

element, .ll.L xl.L is the ordered pair where neither element defined, i.e. < .l, .l >.
Note that, when combining domains like this, it is sometimes ambiguous as to

which domain's least element .l refers. Where necessary to avoid ambiguity, we will

subscript .l by the name of the domain intended. Here, the least defined element,

< .l, .l >, is less defined than < 2, .l >, which is, in turn less defined than

< 2, 3 >.

Definition 3.1: A binary relation !; over D x D is a. partial order if C is reflexive,

antisymmetric and transitive.

The partial ordering of ordered pairs depends upon the partial ordering on the

respective elements, as follows.

Definition 3.2: For ·any two elements < a1, b1 > and < a2, b2 > of D1 x D2,

< a1, b1 > !::::: < a2, b2 > iff both a1 !:::::n, a2 and b1 !:::::n2 b2.

Definition 3.3: For any partial ordering!; on a set D, if there exists an element

c E D such that for all d E D, c !; d, then c is the least element in D and is denoted

by the symbol .l.

Intuitively, one element A is less defined than or approximates another element

B if A can be created by replacing part of B with something undefined.

A list of elements for which each element approximates the next, (e.g. <

.l, .l >, < 1, .l >, < 1, 2 >) is called a chain.

Definition 3.4: For a partially ordered set D, a subset X of D is a chain iff X is

nonempty and for all a, b E X, either a!; b orb!; a.

The integer domain described above is very simple in that, aside from .lJ, all

its elements are fully defined. That is, for any A, B E I.L, A C B iff either A = .l1

or A= B. The longest possible chain is of length 2. A domain with this structure

is called a discrete or fiat domain. Another example of a discrete domain is the

domain of atoms (unlike the domain of integers, this domain has a finite number of

elements).

When the information content of two partially-defined elements is consistent,

there should exist an element which combines the information of each. We call such

an element an upper bound. This motivates the following definition.

26

Definition 3.5: For a set D with a partial ordering !;, the expression aU b denotes

the element in D (if it exists) such that:

1) a !; aU band b !; aU b; and

2) for all dE D, a C d and b!; dimply aU b !; d.

Definition 3.6: For a set D partially ordered by C and a subset X (sometimes

written as {x; I i E .i\f}) of D, UX (pronounced the least upper bound of X, and

sometimes written as U; x;) denotes the element of D (if it exists) such that:

1) for all x EX, x!; UX; and

2) for all dE D, if for all x; EX then x; C d, then U X !; d.

It is not always possible to automatically detect (e.g. in an interpreter) that

an arbitrary expression denotes .L When l. results from an infinite recursion,

evaluation will fail to terminate. While waiting for a result, we can never be sure

whether or not a result will eventually be forthcoming. Therefore, it is reasonable to

demand that, the less defined an argument to a function is (i.e. the more places l.

can be found), the less defined will be the output. This is expressed by a requirement

that functions be monotonic, as defined below.

Definition 3. 7: A function f : A ,_.. B is monotonic iff, for every (l, b E A, if

a !; b (using the the partial order of domain A), then f(a) !; f(b) (using the the

partial order of domain B).

A function may be either strict or non-strict. Informally, a function is strict if

the output is undefined whenever the input is undefined.

Definition 3.8: A function f: A>-+ B is strict iff, f(l.A) = l.s.

A constant function might be non-strict, for example the function f : h ~---> h
which maps all inputs, including 1., to 1.

In higher-order functional programming, functions are themselves used as data

objects. So, domain D 1 >-+ D2 represents the domain of functions mapping elements

of domain D 1 to elements of domain D 2 • The partial order on functions is as follows.

Definition 3.9: Given two functions j, g : D 1 ,_. D 2 , we say that f !; g iff for all

dE Dll f(d)!; g(d).

If the input domain of a function has infinite size, then the domain of functions

will.contain chains of arbitrary length, perhaps even chains of infinite length. The

27

least function is defined as follows.

Definition 3.10: For any domains A and B, the least defined function Q is the

function f such that for all a E A, f(a) =.lB.

In a functional language, a function is typically defined as the least fizpoint of

a functional. These terms are defined below.

Definition 3.11: For domains A and B, a monotonic function f : A ~--+ B is

continuous iff for any chain X~ A, f(UX) = U{f(x) I x EX}. A function of

more than one variable is continuous iff it is continuous in each variable, individually.

Theorem 3.1: A monotonic function over a domain in which all chains are of finite

length (e.g. a discrete domain) is continuous.

Proof: Let A be a domain in which all chains are finite, and let f : A ~--+ B be

any monotonic function. Let X~ A be any (finite) chain in A. Because X is finite,

there must exist one element of the chain Xn such that for any x; E X, x; !;;;;; Xn and

therefore U; x; = Xn· Since f is monotonic, the set Y = {f(x;) I x; E X} is a finite

chaininBwithUY = f(xn)· Therefore,/(U;x;) = f(xn) = UY = U;J(x;).

End ofProof

Definition 3.12: A functional is a function r: D ~--+ D (usually D is a domain of

the form A>--> B).

Definition 3.13: For a functional T : D >--> D, dis a fizpoint of r iff dE D and

r(d)=d.

Definition 3.14: For a functional r: D >--> D, dis the least fizpoint (lfp) of riff d

is a fixpoint of r, and for any other fixpoint e of r, d !;;;;; e.

Theorem 3.2 (proved in [886]): If the domain D is a pointed cpo, then the least

fixpoint of a continuous functional r : D >--> D exists and is defined to be

lfp r = U{ri(.ln) I i 2: 0}, where Ti = ToTo ... or, i times.

Definition 3.15: The meaning of a recursive specification f = F(f) is taken to be

lfp(F), the least fixpoint of the functional denoted by F.

Consider the recursive definition, below, of the factorial function.

28

fact(x) = if((x=O),l,xxfact(x-1)).

The factorial is the least fixpoint of the functional

>.f. ,\x. if((x = O),l,x x f(x -1)).

In essence, the recursive definition defines a chain of non-recursive lambda

expressions, each of which we will call fact; for some integer i, each element of the

sequence expanding fact's recursion one step deeper than the previous, and thus

defining the factorial for yet another integer. This series of nonrecursive lambda

expressions forms a chain in h >--> I1., with the full factorial function being the

least upper bound of this chain. In general, when an infinite object, such as the

factorial function, is the least upper bound of a chain of elements in a domain, we

would like the least upper bound itself also to be in the domain. That is, we want

each domain to be a complete partial order. Since each domain will have a least

element, each domain will be a pointed cpo.

Definition 3.16: A partially ordered set D is a complete partial ordering (cpo) iff

every chain in D has a least upper bound in D.

Definition 3.17: A complete partial ordering is a pointed complete partial ordering

(pointed cpo) iff it has a least element.

Applied to an argument x, the factorial function is computed by expanding

the recursion one step at a time. Mathematically, what we do is compute the chain

fact;(x), until for some i the chain converges. The rationale for doing this will be

explained below.

Theorem 3.3: Any functional defined by the composition of monotonic functions

and the variable of the functional, is continuous.

The details of the proof of Theorem 3.3 use induction on the structure of the func

tional. It may be found in [M74].

Domain constructors must also be continuous, if we are to construct new do

mains from non-trivial base domains. For instance, in constructing the domain

(IJ. >-> I1.) X I1., we must be certain that < U; fact;, 2 > = U; < fact;, 2 >.
The requirement that domain constructors be continuous plays an important role in

defining powerdomains, as seen in the next section. In defining PowerFuL's domain,

we only use domain constructors known to be continuous.

29

Another domain constructor is the sum. Given domains Dt, ... , Dn, the do

main (D1 + ... + Dn)J.. is a domain containing all the elements from then domains,

and a new least element .lv, + ... + Dn. For any d, e E (D1 + ... + Dn), d ~ e iff

either d = .lv, + ... + D. or both d and e came from the same component domain

D;, and d ~D; e.

Richer domains can sometimes be described as solutions to recursive domain

equations [S86]. For instance, the equation

D =(A + D x D)J..

describes the domain consisting of atoms, and nested ordered pairs whose leaves

are atoms, and are nested to arbitrary (and even infinite) depth. The equation is

actually read to say that domain D consists of the atoms plus the domain of ordered

pairs, the elements of these pairs coming from a domain isomorphic to D.

3.2 Powerdomains

The denotational semantics of set abstraction requires enriching the domain

with a new kind of object representing a set of simpler objects. Intuitively, given

a domain D, each element of domain D's powerdomain 'P(D) is to be viewed as a

set of elements from D. Powerdomain theory was originally developed to describe

the behavior of nondeterministic calculations, for which a program denotes a set of

possible results. The original application was operating system modelling, where

results depend on the random timing of events, as well as on the values of the inputs.

In describing powerdomains, we shall use examples in nondeterminism as motivation

for the theory. Be aware, however, that in PowerFuL we use powerdomains to

explicitly define sets within a deterministic language.

Suppose an operator accepts an element of domain D, and based on this element

produces another element in D, nondeterministically choosing from a number of

possibilities. The operator applied to its argument must therefore denote a set

of objects, i.e. those objects it might compute (this set is a subset of D). The set

whose elements are (nondeterministically) computed is said to be a member of 'P(D),

the powerdomain of D. The operator is therefore of type D >-> 'P(D). Computation

approximates this set by nondeterministically returning a member.

Suppose f and g are nondeterministic computations performed in sequence,

first f and then g. For each possible output of operation f, operation g computes

30

any of a set of possible results. The union of all such sets contains the possible

results of the sequence. We express this sequencing of nondeterministic functions

by ..\x. g+(f(x)). The •+' functional is of type

(Do-+P (D)) 1-+ ('P (D) >-+'P (D)) ,

defined as ..\f . ..\set. U {f(x): x E set}.

The larger the set denoted by f (x) is, the larger the set denoted by g+ (f (x)) will

be.

A number of powerdomain constructions have been proposed differing accord

ing to the way the partial order is defined (see [S86] for a survey). The Egli-Milner

powerdornain was the first powerdomain developed. It is useful for analyzing the

operational properties of nondeterministic languages. Using Egli-Milner powerdo

mains, a nondeterministic program denotes the set of possible results. The least

Egli-Milner powerdomain element, .l'P(D), is the set containing only .l. This is the

denotation of a nondeterministic procedure for which no computation path succeeds

[S86].

Smyth developed the demonic powerdornain, used when the concern is that

all possible computation paths be successful. (One imagines that, should failure

be possible, a demon will guide the nondeterministic calculation toward disaster!)

Computation upon Smyth's can be viewed as a process of determining what cannot

be the result of a nondeterministic program. Adding more possible computation

paths decreaJes the likelihood that all paths will terminate successfully. So long

as computation any branch has not terminated, one assumes that anything might

result. Therefore, the least element, .lp(D), is the set containing all elements of D.

The angelic powerdomain is the dual of the Smyth powerdomain. Computation

upon an angelic powerdornain can be viewed as a process of determining what can

be a successful result of a nondeterministic program. (One imagines that, if a

desirable result if possible, an angel will guide the nondeterministic calculation

toward success.) One would expect that the larger the set of possible results, the

greater the likelihood that at least one result will be successful. Both finite failure

and nonterminating paths contribute nothing to the set. The least element, .l'P(D),

is the empty set ¢>.

We choose the angelic powerdomain because it is the only one of the three

31

containing the empty set as an element (the denotational equations which follow

make use of</>). That the angelic powerdomain is the correct choice for a language

combining functional and logic programming can be seen by considering the seman

tics of Horn logic programming. In an attempt to find values for the goal's logical

variables so as to make the goal true, a Horn logic interpreter nondeterministi

cally chooses a logical derivation using the program clauses from among all possible

derivations. The set of solutions contains the results of the successful derivations;

the derivations which fail or diverge add nothing to the set. If all derivations fail

or diverge, the set of solutions is empty. If we view the set of all answer substitu

tions as a domain D, and the set of correct answer substitutions as an element of

'P(D), it is clear that we want ..L'P(D) to be t/>. Since a description of Horn logic in

terms of powerdomains would use the angelic powerdomain, it seems clear that set

abstraction for the purpose of incorporating logic programming capabilities should

also be described via this powerdomain construction.

We would like to have a partial order on sets which exhibits the property that

a set becomes more defined as one adds new elements, and that it also becomes

more defined as the elements within become more defined (according to the partial

order of the base domain). We would like to be able to say that for two sets A

and B, if for all a E A there exists a b E B such that a l;v b, then A I;'P(D) B.

However, this is not a partial order, as this would equate {dbd2 } with {d2 } when

d1 C d2. Yet, though these sets are distinct, they are computationally equivalent

(because the angel always chooses the best possible result). So theoretically, we are

working not with sets, but with equivalence classes of sets. Furthermore, the need

for continuity requires that for any chain of elements t; E D,

where singleton set { t;} actually represents the equivalence class of sets containing

that singleton set. These requirements motivate the following definitions (taken

from [S86]).

Definition 3.18: A Scott-topology upon a domain 0 is a collection of subsets

of 0 known as open sets. A set U <; 0 is open on the Scott-topology iff:

32

1) U is closed upwards, that is, for every d2 E D, if there exists a d 1 E U such that

d1 C d2, then d2 E U; and

2) If d E U is the least upper bound of a chain C in D, then some cEDis in U.

Definition 3.19: The symbol r;~, pronounced 'less defined than or equivalent

to', is a relation between sets. For A, B <; D, we say that A r;~ B iff for every a E A

and open set U <; D, if a E U then there exists a b E B such that b E U also.

Definition 3.20: We say A RJ B iff both A r;~ B and B C~ A. We denote the

equivalence class containing A as [A]. This class contains all sets B <; D such that

A~B.

We define the partial order on equivalence classes as: [A] C [B] iff A r;_ B. For

domain D, the powerdomain of D, written P(D), is the set of equivalence classes,

each member of an equivalence class being a subset of D.

Theorem 3.4 (Schmidt [S86]): The following operations are continuous:

,P: P (D) denotes [{}] . This is the least element.

{-}: D >-+ 'P(D) maps d E D to [{d}].

U: P(D) xP(D)>-+P(D) maps [A] U [B] to [AU B].

+: (D~->'P(D)) ,__. ('P(D)~->'P(D)) is ..\L\(A].(U{f(a): a E A}].

An example will provide intuition about the use of •+•. Suppose we have a set

S = {1, 2, 3}, and we wish to create a new set, each element of which is of the

form f(x) where xis inS. Then

(.Ax. {f(x)})+({1,2,3}) = {f(1),j(2),j(3)}.

In this work we use a noncurried variation of •+•, that is, we use it as a primitive

function of type

((D~->'P(D)) X P(D)) 1-> 'P(D).

This function is strict in its second argument.

3.3 Denotational Semantics of PowerFuL

This section gives the semantics of PowerFuL using the concepts reviewed

above. After defining the domain of data objects which can be represented in

PowerFuL, we provide a function which shows the way a PowerFuL program can

33

be mapped onto this domain. The semantic primitives used are, for the most part,

quite conventional. However, a few unusual primitives, (called coercions) will be

discussed in a special section.

PowerFuL's domain is the solution to the following recursive domain equation:

D = (B + A + DxD + D>->D + "P(D)).L,

where B refers to the booleans, and A to a finite set of atoms. That is, PowerFuL's

domain contains booleans, atoms, ordered pairs of smaller elements (to create lists

and trees), continuous functions, and powerdomains (sets). Aside from the inclusion

of powerdomains, the domain is typical of domains for other lazy, higher-order

functional languages. The solution to this recursive domain equation are beyond

the scope of this dissertation, but details may be found in [S86, P82, S89].

PowerFuL is a functional programming language, so we present its semantics in

the denotational style usual for such languages [S77]. Our convention to differentiate

language constructs from semantic primitives is to write the primitives in boldface.

Language constructs are in teletype. Variables in rewrite rules will be italicized.

3.3.1 Semantic Equations

The meaning of a syntactic expression is defined in terms of the meaning of

its subexpressions. In the definitions below, the semantic function E maps general

expressions to semantic objects (called denotable values). The equations for most

expressions are the conventional ones for a typical lazy higher-order functional lan

guage. The environment, p, maps identifiers to denotable values, and belongs to the

domain [Id>->D]. The semantic equations for set-abstractions provide the novelty.

For simplicity, the semantic equations ignore simple syntactic sugars.

Many of PowerFuL's denotational equations are similar to those of any typ

ical lazy functional language. We present the semantic equations for the various

constructs in the order of their appearance in the BNF of Chapter 2.

• Parentheses override the natural left-associativity.

£[(expr)] p = E[expr] p

34

• For each syntactic atom (represented by A;) in a program, we assume the existence

of an atomic object in the semantic domain (represented by A;).

t'[A;] p = A;

• We can group objects into ordered pairs to create lists and binary trees.

t'[cons(exprt, expr2)] p = <(t'[expr1] p), (E[expr2] p)>
t'[car(expr)] p - left(pair!(t'[expr] p))
£[cdr(expr)] p = right(pair!(t'[expr] p))

The primitive functions left and right select the left and right sides, respectively,

of an ordered pair. These primitives are, however, undefined over other types of

objects. As PowerFuL is an untyped language, we cannot ensure that the program

mer will not try to take the car or cdr of an inappropriate object. Therefore, we

protect the primitive function by first applying a coercion, pair!, to its argument,

thus ensuring that its argument is of the appropriate type, handling errors appro

priately. Other such coercions are provided for other types of objects, as needed.

Later in this section they will be described in more detail. Note that our use of

the term 'coercion' differs from the normal usage in that our coercions change an

argument's type only as a kind of error-handling.

e We have the booleans, and boolean-valued functions.

£[TRUE] p = TRUE
e[F ALSE] p = FALSE
e[not(expr)] p = not(bool!(t'[expr] p))
£[if(exprt, expr2, expr3)] p = if(bool!(t'[exprt] p), (e[expr2] p), (e[expr3] p))

• To create boolean values, we can test type (whether an object is a boolean, an

atom, an ordered pair, a function or a set), and we can test terms for equality.

t'[bool?(expr)] p - bool?(t'[expr] p)

e[atom?(expr)] p - atom?(t'[expr] p)
E[pair?(expr)] p - pair?(t'[expr] p)

f[func?(expr)] p - func?(f[expr] p)

t'[set?(expr)] p = set?(e[expr] p)
t'[(exprt = expr2)] p = equal?((E[exprt] p),(t'[expr2] p))

t'[null?(expr)] p = if(atom?(t'[expr] p) then is'nil?([expr] p) else FALSE fi)

35

The equality predicate can compare booleans, atoms, and, provided it can compare

the respective subtrees, ordered pairs. It does not attempt to compare sets or

functions for equality (if you try, it returns ..L). Applied to two first-order infinite

lists, it returns FALSE if they differ, but fails to terminate (returns ..L) when they

are identical. A conventional operation tests whether a "list" is empty (i.e. equals

the atom 'nil).

• We can look up identifiers in the environment, and also create new bindings.

£[identifier~ p = p(identifier)
£[letrec defs in expression] p = £[expression~ (:D[defs~ p)
V[id be expr~ p = p[.:FIX(.A X. (£[expr~ p[X/id]))jid]

V[id be expr, defs] p = (V[defs~ p) [:FIX(,\ X. (E[expr~ (V[defs] p[X /id])))/id]

In the above equations, :FIX computes the least fixpoint of a functional.

Rather than using the fixpoint operator as a primitive, we can define it via:

:FIX(!) = f(.:FIX(f))

Taken as an equation, the above is true if :FIX computes any fixpoint of its ar

gument. But taken as a recursive definition with Definition 3.17 in mind, :FIX is

taken to be the least fixpoint of the functional .AF. ,\f. f(F(f)). Using Theorem

3.2, this can be shown to equal .Af. lfp(f).

• We can create functions through lambda abstraction, and apply functions to their

arguments.

£[.Aid. expr] p = .Ax. (£[expr] p[xjid])
£[expr1 expr2] p = func!(£[expr1~ p)(£[expr2] p)

In the above equations, we considered only functions of one argument. A function of

multiple arguments can be considered syntactic sugar either for a curried function,

or for a function whose single argument is a list.

• To build sets, the user begins with the empty set, and singleton sets, each con

structed from an element of the powerdomain's base domain. The union operation

builds larger sets from smaller ones.

36

£[phi] p = 1>

E[{expr :}] p = {E[expr] p}

E[U(expr1 , expr2)] p = set!(E[expr1] p) U set!(E[expr2] p)

To build a new sets out of an old one, we can filter out all but those elements

meeting a specified condition, and we can compute with each member of the input

set individually, combining the results into a new set.

E[{ expr : condition, qualifierlist}] p

= set!(if £[condition] p then£[{ expr : qualifierlist}] p else </>fl.)
£[{ expr : id E genrtr, qualifierlist}] p

=(>.X. E[{expr : qualifierlist}] p[X/id])+(set!(E[genrtr] p))

• The sets denoted by bools contains only TRUE and FALSE, and the set atoms

contains the atoms. The set of terms includes as subsets not only bools and atoms,

but also any ordered pair which can be constructed from two smaller terms. These

sets may be viewed as syntactic sugars, since the user could program them using

the previously given constructs. In that sense, their presence adds nothing to the

expressive power of the language. Nevertheless, providing them in the syntax per

mits important optimizations through run-time program transformation (discussed

later). Thus we have:

E[bools] p = .F[bools]

.F[bools] ={TRUE} u {FALSE}

£[atoms] p = .F[atoms]

.F[atoms]=U({AI}, ... ,{An})

£[terms] p = .F[terms]

.?="[terms]= .F[bools] U .F[atoms]

U (>.s.((>.t.{< s,t >})+(.F[terms])))+(.F[terms])

The sets denoted by bools, atoms and terms are semantically superfluous. The

user could create these sets with the other constructs. For instance, each reference

to the primitive set terms could be replaced by:

letrec
bools
atoms
terms

in terms.

be
be
be

U({TRUE}, {FALSE})
U({AI}, ... , {An})
U(atoms, bools, {cons(X,Y)

37

X,Y E terms })

PowerFuL provides these sets as primitives, so the interpreter can recognize them

and treat their enumerated variables as logical variables, for greater efficiency. This

will be discussed in greater detail in Chapter 6.

The functions £, 'D, :F and :FIX are mutually recursive. Their meaning is

the least fixed point of the recursive definition. This fixed-point exists because we

have combined continuous primitives with continuous combinators. Most of these

primitives are fairly standard, and will be described in a later section. Note the use

of the primitive •+• (for distributing elements of a powerdomain to a function) in

defining the meaning of the set abstraction construct.

3.3.2 Coercions

A few words must be said about some other novel primitives, here called coer

cions. Most primitives are only defined over portions of the domain D. The boolean

operators are only defined over B.L; the operations left and right assume the argu

ments to be ordered pairs; function application (,8-reduction) is defined only when

the left argument is in fact a lambda expression; and only sets can contribute to a

set union.

Five primitives coerce inappropriate arguments to the least-defined object of

the appropriate type. The are listed below.
bool!: D >-+ B .L

atom!: D >-+ A.L

pair!: D >-+ DxD
func!: D >-+ [D>-+D]
set!: D >-+ 'P(D)

The function bool! maps TRUE and FALSE to themselves, and otherwise maps

arg to j_ . The function atom! maps arg to itself if arg is an atom, and maps arg to

j_ otherwise. The function pair! maps arg to itself if arg is a member of DxD, and

to j_DxD (that is, < j_, j_ >) otherwise. The function func! maps arg to itself if

arg is a member ofD>-+D and to j_DxD (that is, .Ax. j_) otherwise. The function set!

maps arg to itself if arg is a member of 'P(D) and to j_.P(D) (that is, ¢)otherwise.

The coercions ensure that primitives handles inappropriate input reasonably.

For instance, the union constructor is appropriately applied only to sets. If the

argument is something other than as set (perhaps j_), then this input is treated as

the empty set. This make sense because

38

1) only sets contain elements- other objects do not;

2) a set is completely defined by the elements it contains; and

3) the empty set is the only set not containing any elements.

Thus, the expression U(' a, expr) denotes a set containing 'a, regardless of whether

or not expr can be computed . .This is analogous the the set of solutions to a Horn

logic program and goal, the elements of which are determined by successful deriva

tions (or refutations), ignoring derivations which fail or diverge. For uniformity,

we define analogous coercions to handle similar questions about primitives of other

types.

Theorem 3.5: The coercion set! is continuous.

Proof: We will prove the continuity of setL Consider a chain of objects from

domain D: to, t1, t2, ... , such that fori< j, t;!:::; fj. If there is no i such that t; is

in 'P(D), then for all i, by definition, set!(t;) = _LP(D) = ¢. Furthermore, U; t;

will not be in P(D), so by definition,

set!(U; t;) = ¢.

Thus we have,

U; set!(t;) = ¢ = set!(U; t;),

proving continuity for that case. The only other possibility is that the sequence

does converge to a powerdomain element. In that case, let tk be the first member

of the chain in 'P(D). for any i < k, t; can only equal -lv, so set!(t;) equals¢, by

definition. Fori 2: k, set!(t;) equals t;, also by definition. Therefore,

U; set!(t;) = Ui~k set!(t;)

- ui~k t;

- set!(U;~k t;)

- set!(U; t;).

Hence, set! is continuous. End of Proof

Proofs of the continuity of the other coercions are similar.

3.4 Summary

In this chapter we described the semantic domain of PowerFuL. It resembles

the recursively defined domains of ordinary untyped functional languages, in which

39

complex objects are built from simpler objects via sequencing constructors (ordered

pairs) and function definition. What is new is the use of powerdomain constructors

to build sets. We gave the rationale for chosing angelic powerdomains, rather than

one of the other types of powerdomains.

The semantic equations for the traditional features are unaffected by the enrich

ment of the domain. All that was needed to handle set abstraction is the addition of

a few new equations. We consider this to be the strongest testimony of the elegance

of this approach.

The primitive functions used in the semantic equations are defined in the next

chapter. The use of coercions permits simpler definitions of primitives, as we need be

concerned only with appropriate subsets of PowerFuL's domain; redundant descrip

tions of "error handling" is avoided. This will be especially helpful when describing

the operational semantics, and its relation to the denotational semantics, in the

next chapter.

40

4 FROM DENOTATIONAL TO OPERATIONAL SEMANTICS

Though the denotational semantics usually provides the clearest and simplest

definition of the syntactic constructs, an operational semantics is essential if the

language is to be implemented. Therefore, even those defining a language via de

notational semantics usually also provide an operational definition. In such cases,

one would like to know the extent to which the two semantics agree. A proof of

equivalence is rarely given; usually the operational semantics are incomplete when

computing infinite objects f. Though Horn logic makes for a very simple language

(simple flat domain and only two types of clauses) the proof of correctness is far

from trivial [VK76]. The task becomes more difficult as the operational semantics

becomes low-level (hardware-oriented). The closer to the denotational definition

the operational semantics remains, the easier this proof should be. Therefore, in

the remaining chapters, we devise an operational procedure from the denotational

equations directly. This ensures that our operational semantics is consistent with

respect to the denotational definitions; in this chapter we also speculate upon its

completeness.

The semantic equations provided in the last chapter are a recursive definition

of the semantic function£, which maps PowerFuL programs into objects from the

semantic domain (the value denoted by the program). Assuming that the primitive

functions are continuous, the recursive equations define a functional which has a

least fixpoint, which can be "computed" by taking successive approximations, as

alluded to in Chapter 3. This fixpoint is taken to be the value of£. A procedure to

execute £ on its input is, by definition, an interpreter for the PowerFuL language.

In this section we examine ways of executing the function £ when applied to a

PowerFuL program and an (initially empty) environment. Given implementations

t This issue is discussed further in section 4.4.1.

for the semantic primitives (provided in the next chapter) and the ability to reduce

lambda-expressions, a computation rule is all that is needed to convert the semantic

equations into an interpreter. If the computation rule is a fixpoint rule, then the

computed result will indeed equal the fixpoint value of t'[program] A ('A' stands

for the empty environment). In other words, we interpret the language of denota

tional semantics as a functional programming language in its own right, not merely

reading it as a pseudocode. Since a functional program has both a declarative and

an operational reading, the denotational equations will thus provide both the deno

tational semantics of PowerFuL, and also a simple interpreter consistent with the

declarative reading.

To illustrate our approach, suppose that we wish to evaluate the expression:

car(cons(cons('a,'b), 'a))

The denotational equations for translating syntactic symbols of atoms to real atoms

in the semantic domain (differentiated here by the type font), and semantic equa

tions for cons, car and cdr are as follows:

t'[A;] p = A;
t'[cons(expr1, expr2)] p = <(t'[expr1] p), (t'[expr2] p)>
t'[car(expr)] p - left(pair!(t'[expr] p))
t'[cdr(expr)] p = right(pair!(t'[expr] p))

The rewrite rules to implement the semantic primitives left and right are:

left(<1st, 2nd>) = 1st
right(<1st, 2nd>) = 2nd

The denotational equations map syntactic constructs to semantic constructs,

and the semantic primitives map semantic objects onto other semantic objects. In

this case, both kinds of mappings are defined through rewrite rules. We wish to

find the semantic object denoted by the syntactic expression above. That is, we

wish to compute:

t'[car(cons(cons('a,'b),' a))] A.

Using the semantic equation for car, we rewrite the above expression to:

left t'[cons(cons('a,'b),'a)] A.

We do not yet have enough information to apply the rewrite rule for left, so we

must translate more syntax using the semantic equation for cons, and will then

42

obtain:

left < E[cons('a,'b)] A, E['a] A>·

We now have enough information to execute the semantic primitive left, and will

get:

E[cons('a,'b)] A.

Further rewriting with the semantic equations produces the final value:

<'a, 'b >.

Thus, we see that one can sometimes execute a program directly from the denota

tional semantic equations.

The remainder of this chapter provides a more rigorous development of this

technique. The basic ideas come from Vuil!ernin's pioneering work on correct im

plementation of recursive programs [V74]. Following Kleene, Vuillernin views the

meaning of a recursive definition to be the least fixpoint of an associated functional.

As the fixpoint is shown to be the least upper bound of a (possibly infinite) chain of

approximations, computation becomes synonymous with the production of better

and better approximations. Usually, there are several places in an approximation

where one can seek improvement. The computation rule chooses which of these

places to work on next. Vuillernin provides conditions under which the successive

approximations will converge toward the value implicitly given by the fixpoint defi

nition. We then apply these ideas to PowerFuL's denotational equations, a recursive

definition in its own right, to produce our operational semantics.

4.1 Recursion and Least Fixpoints

Consider a recursive definition of the form:

F(x) = r[F](x)

for function F, where r is a functional over D1 x ... x Dn 1-+ D, expressed by

composing a term from:

a) the individual variables x =< x1, x2, ... , Xn >;

b) known monotonic and continuous functions, called primitives; and

c) the function variable, F.

43

As an example of such a recursive program, consider the following program P for

append:

append(x, y) if(null?(x), y, <car(x) ,append(cdr(x) ,y)>).

Applying the above formalism to this case, the functional variable F is here the

recursive function append, the parameter list x represents the parameters x andy,

the functional T is :

>..F. >.. x. >.. y. if(null?(x), y, <car(x) ,F(cdr(x) ,y)>),

and the primitive functions are if, null?, car? and cdr?.

By Theorem 3.2, there exists for T as above a least fixpoint, and this fixpoint equals

where f! represents the least-defined object in r's domain (the function which re

turns .l for any arguments). By least fixpoint, we mean the least-defined function

for which F = r[F]. We denote this least fixpoint by fp, and take it to be the value

of the function described in program P.

In our example, ri(f!) would approximate the append function, in that it would

give the correct result provided the first argument is a list of length less than i. The

least upper bound of these approximations would handle lists of unbounded length.

The extension of these ideas to a set of mutually-recursive functions is straight

forward. From the mutually-recursive functions one would abstract a functional

whose fixpoint is defined to be a sequence of functions.

4.2 Computation Rules and Safety

To some input d, we wish to apply a function defined as above. Let us define

a sequence of terms s0 , 81, s2 , ••• , such that the first term so is F(d), and each

term 8;+J is computed from s; by replacing each instance ofF ins; by r(F). That

is, we expand each occurrence ofF in the previous term by the recursive definition.

Let us also define a parallel series of terms 8;[!1/ F], for i 2:: 0, where s;[fl/ F]

is computed from 8; by replacing all occurrences of the function variable by the

undefined function. Clearly, 8;[!1/ F] is equal to ri(f!)(d). By definition,

U;(8;[f!/F]) = U;(r;f!d) = (U;rif!)d = /p(d)

Example: Using the append definition for input lists list1 and list2, so is

append(list1, list2), and 8 1 is:

44

if(null?(listl), list2, <car(listl),append(cdr(listl),list2)>).

We can keep expanding the occurrences of append to any depth. The sequence of

approximations begins with s 0 (!2/F], which is Q(listl, list2) (i.e . ..L), followed

by s 1 (!2/F], which is:

if(null? (listl), list2, <car(listl) ,n(cdr(list1) ,list2) >).

In this case, there is only one occurrence of the recursive function to expand

at each step. In general there may be more. Let us define a new series t; similar to

s;, where t 0 = s0 = F(d), but where each t;+l is computed from t; by expanding

only some of the occurrences of F in t;, instead of all.

Definition 4.1: A computation rule C tells us which occurrences of F(e) should

be replaced by r(F](e) in each step.

For each t;, we compute t;[Qj F] in the same way we computed s;[Qj F] from

Si.

Theorem 4.1 (Cadiou (V74]): For any computation rule C,

Proof: For any i, t;[f!/ F]!;;; s;[Qj F], and therefore

U;(t;[nj F]) !;;; U;(s;(!2/ F]) = /p(d).

End of Proof

Definition 4.2: A computation rule is said to be a fixpoint computation rule for

program P if for all d in the relevant domain,

Vuillemin gives a condition which, if satisfied, means that a computation rule is a

fixpoint rule. To explain this condition, we need a bit more notation.

Definition 4.3: A substitution step expands some or all occurrences of the

recursive function calls in the term. Given a term t;, let Fy represent the occurrences

of F which the computation rule would choose, and let Fn represent those which

would not be chosen for expansion in the next step. Let

represent the result of replacing all chosen occurrences by S, and the unchosen by

T. Then

45

is just t;, and

is the same as

t;[f2/ F].

Let

represent the result computed if the chosen occurrences were never expanded, but

all other occurrences expanded arbitrarily far.

Definition 4.4: A safe substitution step chooses Fy so that

Intuitively, the computation is safe if the occurrences chosen are so important that,

were these never expanded, no other expansions would matter.

Definition 4.5: A computation rule is safe if it provides for only safe substitution

steps.

Theorem 4.2 (Vuillemin [V74]): If the computation rule used in producing the

series v; is a safe, then

To summarize the proof, we note that the fixpoint is equal to the least upper

bound of approximations made by the full-substitution rule. We need only show

that for each approximation made by the full-substitution rule, a safe rule will

produce an approximation that is at least as good. Each approximation using the

full-substitution rule expands only a finite number of occurrences. If we perform

that many safe substitution steps, then either we will have expanded all of these

(guaranteeing a suitably good approximation), or we will have had one or more steps

in which none of the remaining occurrences expanded with the full-substitution

rule were chosen. When that happens, the safety condition shows that the full

substitution approximation cannot be any better.

Using Theorems 4.1 and 4.2, then for any safe computation rule,

46

and therefore all safe computation rules are fixpoint rules. Intuitively, a safe sub

stitution is one which performs enough essential work. That is, if this work were

never done, then all other work would be irrelevant. If enough essential work is

performed in each step, then every essential piece of work will eventually be done.

Definition 4.6: The parallel outermost rule replaces all outermost occurrences of

F simultaneously. Applied to an atom or identifier, there are no occurrences ofF

to expand. Applied to a term with an occurrence ofF at the outermost, it expands

only that occurrence. Applied to a term headed by a data constructor (such as

an ordered pair), or to a term headed by a primitive function, it expands those

occurrences which would be expanded when applying this rule to each argument (if

any) individually.

Theorem 4.3 (Vuillemin (V74]): The parallel outermost rule is a safe rule.

Proof: This is proved by structural induction on the term. If the term is an atom

or an identifier, then any computation rule trivially produces a safe substitution

step. If the term has an occurrence ofF at the very outermost, than the parallel

outermost rule expands only that occurrence. If one replaces that occurrence with

n, the result is .l no matter what one does with any remaining occurrences, so

the parallel-outermost is a safe step. The only alternative is to have a primitive

or constructor at the outermost. Applying the parallel-outermost rule to such a

term is equivalent to applying it individually to each of the arguments (if any). By

the induction hypothesis, parallel-outermost is safe for each argument individually.

Since the computation rule is safe for each argument (replacing chosen occurrences

by n gives the same result as replacing all occurrences by !1), it must be safe for

the expression as a whole. End of Proof

4.3 Computation of Primitives

To say that a potentially infinite computation is computable, we must be able

to describe the result as the least upper bound of a set of finite approximations.

By finite, we mean that each approximation must require only a finite number of

primitive, mechanical steps. In the preceding sections, we showed how a recursive

function, written in terms of primitive functions, could be described as the least up

per bound of a chain of computations, each of which expands the recursive definition

only a finite number of times. However, to actually compute each approximation,

47

we must be able to execute the primitive functions. If execution of each primitive

function is guaranteed to terminate for any input it may be supplied, then each

element of the chain does indeed represent a finite computation, and therefore we

have an operational semantics.

On the other hand, if the primitive operations are not guaranteed to terminate,

then we are faced with the task of approximating the primitives, just as we approx

imated the recursive function. Rather than taking the least upper bound of a single

chain of approximations, we would need to consider an infinite sequence of such

chains! We would prefer to compute a single chain of approximations, where each

computation step both expands some occurrences of the main recursive function and

computes some of the primitives.

For example, suppose the primitive functions were defined via rewrite rules.

The computation rule must specify not only which occurrences of the recursive

function to expand, but also which primitive simplification opportunities to take.

Those primitives guaranteed to terminate might be simplified as much as possible.

In making a finite approximation, one would not only approximate the unexpanded

recursive function occurrences by n, but applications of (possibly) non-terminating

primitives would also be replaced by the appropriate bottom element. Even if

primitives are guaranteed to terminate, it seems a good idea to simplify them as

soon as possible in the hope that some occurrences of the recursive function could

be pruned away, perhaps permitting the chain of approximations to terminate.

For example, if we are computing append ([1, 2, 3] , list2), then t 1 might be:

if(null?([1, 2 ,3]), list2, <car([1, 2 ,3]) ,append(cdr([1, 2 ,3]), list2) >),

and t1 [i1/append] would be:

if(null?([1, 2 ,3]), list2, <car([1, 2 ,3]) ,Q(cdr([1, 2, 3]), list2) >),

which simplifies to <1,..L>. By performing simplifications as early as possible, how

ever, we have as t1 :

<1, append([2,3], list2)>.

It should be possible to generalize the safety condition to deal explicitly with

choice of primitive simplification opportunities, just as it now speaks of recursive

function occurrences to be expanded. This generalization is not rigorously developed

in this dissertation; however, the basic idea is as follows.

48

The notation for approximating the current term, t;[fl/ F] would now mean that

we replace not only applications of the recursive function(s) by the appropriately

typed undefined element, but we do the same for uncomputed applications of the

primitives. The safety condition,

now would state that a computation step is safe if, among those recursive-function

occurrences to be expanded and those primitive applications to be simplified, are

some so critical that, were these operations never done, the current approximation

could never be improved upon no matter how much computation elsewhere were

performed. This means, for any part of t; which is not yet fully computed, the

computation rule has chosen vital steps to perform. We may say that such a safe

computation step is fair, because it simultaneously does work necessary for each

incomplete part the result being computed (it may do some unnecessary work as

well, but this does not concern us).

This is not to say that the occurrences chosen by the safe computation rule

must be expanded immediately for convergence; the order in which necessary work

is performed ought not affect convergence (though speed of convergence might be

affected). For any approximation requiring only a finite amount of computation (a

finite number of recursive function expansions and a finite number of primitive sim

plifications), any safe computation rule should eventually produce an approximation

that is at least as good.

One might question the claim that, in producing a finite approximation, the

order in which necessary work is performed is irrelevant. After all, are not some

computation rules more powerful than others? Does not the innermost computation

rule sometimes fails to converge, where outermost evaluation succeeds? The key

word here is necessary. An innermost computation rule may fail to converge if none

of the steps necessary to compute some part of the denoted object are ever chosen.

Instead, the innermost computation rule might put all its effort into computing an

infinite subexpression whose computation is unnecessary to the main result.

Since any computable function can be viewed as the least upper bound of a

set of finite approximations, and since a safe computation rule should be able to

produce a finite approximation at least as good as any of them, we believe that

49

a safe computation rule computes the denoted fixpoint value. Furthermore, we

believe that, should the attempt be made to do all possible primitive simplifications

in each computation step, and should simplifications terminate in each step, then

a safe computation rule (to decide recursive function expansions) is still a fixpoint

rule. Proofs of these conjectures. is a topic for future research. Nevertheless, it

is on the basis of these conjectures that we develop the operational semantics for

PowerFuL.

4.4 Operational Semantics of PowerFuL

Instead of a single recursive function, we have four mutually-recursive func

tions, e, which maps a syntactic expression and an environment to a semantic

object, :F which maps a syntactic expression to a semantic object (without need

of the environment), TJ, which maps a syntactic expression and an environment

to a new environment, and :FIX, whose recursive definition is taken to define the

least fixpoint operator. The program is written via a set of recursive equations,

making use of pattern-matching. To fit it into Vuillemin's computational scheme

as extended above with the new computation rule, we should rewrite the equations

as a single large case statement, using special syntax primitives to recognize the

outermost syntactic construct, and to replace references to the pattern-matching

variables in the right-hand side by expressions referencing relevant portions of the

abstract syntax tree. To compute an expression of the form

e[syntax] p,

we would:

1) substitute the piece of syntax and the environment into the large case state

ment;

2a) simplify the primitives manipulating the syntax tree (producing an expres

sion resembling the right-hand side of one of the equations); and

2b) simplify semantic primitives and do ,8-reduction (where applicable).

Cluttering up the denotational semantics with such syntax-tree primitives would

be unnecessarily tedious. Therefore, in the remainder of this work, we shall work

from the semantic equations directly, combining steps 1 and 2a into a single step.

Because functions are written as lambda expressions, some semantic equations

50

introduce lambda variables. These variables may have to be renamed at times to

avoid variable capture; however, this is standard in lambda calculus based lan

guages.

As will be shown in the next chapter, semantic primitive simplification rules

will terminate on any finite argument (or infinite argument that is yet computed

only only to a finite degree). To implement the denotational equations as a recur

sive program, we want a safe computation rule for which ,8-reductions will always

terminate.

4.4.1 Termination of ,8-Reduction

In the sense that our entire formalism assumes the ability to compose functions,

function application is not technically a primitive. However, since functions are

represented as lambda expressions, and executed via ,8-reduction, operationally, ,8-
reduction must be treated as a primitive. That is, we simplify lambda expression

via the rewrite rule

(>. var.body)arg = body[arg / var],

Using (untyped) lambda expressions to represent functions is dangerous, as

there exist lambda-expressions whose simplification will fail to terminate. This can

only happen when a lambda expression is applied to another lambda expression, in

which one ,8-reduction creates opportunities for additional ,8-reductions. Consider

the evaluation of:

func!(t'[>.x.x x] p)(t'[>.x.x x] p).

If we simplify both arguments of this ,8-reduction simultaneously, we eventually get:

(>. y.y y)(>. y.y y),

whose ,8-reduction will never terminate. Such inherently nonterminating lambda

expressions should be treated as .L However, in our computational paradigm, this

should be through a non-terminating computation sequence, and not by nontermi

nating simplifications within a single computation step. This expression may be

only a small piece of the main expression, and we do not want endless simplification

to prevent computation of the other parts.

Suppose we systematically delay computation within the body of a lambda

expression until after the expression has been applied. This means that, following

51

every f3 reduction, elements of the function body must be expanded before any new

/3-reductions can be done there. This ensures that, within each computation step,

/3-reduction will terminate. At no step will an infinity of /3-reductions be called for.

Every approximation generated by the computation sequence, the above example

reduces to .l, as- desired.

If the computation rule ensures that /3-reduction will always terminate, then

we can treat function application like the terminating semantic primitives. A user

defined function application may be treated as a primitive that is strict in the first

argument (the function begin applied), and which simplifies (/3-reduces) as soon as

the outermost constructor (the introduction of the lambda-variable) is computed.

That is, given an application of the form

we would compute the left portion to produce an expression of the form

(.\x. (£[body] Pa))£[expr2] P2·

Note that these computation steps may have extended the environment p1 ; hence

we use Pa in its place. This would immediately reduce to

(£[body] [(£[expr2] P2)/x]pa)).

Note that the body of the lambda-expression is not be computed until after appli

cation (after which it is no longer the body of a lambda-expression!).

The prohibition against computing the body of an unapplied lambda-expression

means that we will not be able to compute a program which denotes an unapplied

function, nor a structure which contains an unapplied function as a part. The

program as a whole must denote an element of E, where

E = (B + A+ ExE + 'P(E))J..

though individual parts of the program may freely denote objects from D, where

D = (B + A + DxD + D~->D + 'P(D))J..

That is, we are only considering higher-order programs in which functions are de

fined for the purpose of application, but not as final values per se.

4.4.2 Desiderata for the Computation Rule

Aside from the restriction against expanding recursive functions in the body

52

of a lambda-expression, we should not need to always expand all outermost occur

rences of the recursive function in every step. Consider an expression headed by

the conditional primitive (if). We would prefer to restrict computation to the first

argument, the condition, and postpone evaluation of the other two arguments, until

we know which one will be needed. For efficiency, one would like to limit computa

tion to any primitive's strict arguments, at least until we have enough information

about the argument to simplify the primitive, and to delay evaluation of non-strict

arguments, whose computation may not be needed. Even if the primitive is strict

in more than one argument, we may wish to concentrate on just one argument at

a time. By distinguishing essential from non-essential parallelism, we can define a

more efficient computation rule.

One computation rule often used for lazy functional languages is the leftmost

rule. Of the outermost occurrences of the recursive function(s), a substitution step

expands only the leftmost. Vuillemin proves that the leftmost computation rule is

safe for very simple languages.

Theorem 4.4 [V74]: If all the primitives are strict, except for the if (which is strict

in the first argument), and the semantic domain is flat, and assuming that primitive

simplifications are made as early as possible, then the leftmost computation rule is

safe.

Proof: At the outermost, an expression must be either an atom, an occurrence of

the recursive function begin computed, or a primitive (we do not need to consider

constructors at the outermost, as each element of a flat domain may be considered

as an individual atom). If the expression is an atom, then there is no occurrence

for the computation rule to choose, and any computation step is trivially safe. If

an occurrence ofF is at the outermost, then a leftmost substitution is the same as

a parallel-outermost substitution, already proven to be safe. The only alternative

is a primitive at the outermost. Consider the primitives leftmost argument. If

we replace all occurrences in the argument chosen by the leftmost rule with !1,

the result is either an atom or .L If the result is an atom, then the expression was

obviously amenable to simplification (since the primitive is strict in that argument).

However, we have assumed that all possible simplifications have already been carried

out. Therefore, the result is .l. Replacing all occurrences in this argument by !1

yield the same result (.l). Since we get the same result either way, the substitution

53

is safe, by definition. End of Proof

Many interesting languages do have nonfiat domains, and thus do not meet

Vuillemin's criteria. For a higher-order language, problems occur when we try to

evaluate a function outside the context of its application. In the following example

in which we are computing an unapplied function as a topmost goal. Assume exp1

denotes an infinite list, and the interpreter is asked to evaluate the function

>..j.(if f(expr1) then expr2 else expr3).

Using the parallel-outermost rule, we would evaluate all three arguments of the if

expression simultaneously, producing a sequence of partial functions whose limit is

the denoted function. The leftmost rule would produce better and better approxi

mations of expr1 , but would never get around to computing expr2 or expr3 • Though

evaluation of/(expr1) fails to terminate, we cannot say that the expression as a

whole denotes bottom; its value depends on the hypothetical value bound to f.
Since the lambda expression is not being applied to any argument here, the first

argument of if will not reduce to an element of the semantic domain. It remains as

a "parameterized" description of a domain element.

In spite of this problem, leftmost evaluation is used in implementing higher

order functional languages. The implementor simply acknowledges that, though it

is useful to pass functions as arguments and results, we do so only for the sake of

applying them in the computation of other objects. We have no need to expand an

unapplied function for its own sake, no need to expand in the body of a function

until after that function has been applied (in which case the lambda parameter has

been replaced). Indeed, as we have seen above, this is also necessary to ensure that

,6-reduction terminates.

The leftmost rule has yet another deficiency when dealing with non-fiat do

mains. Consider a language with a hierarchical domain, built using the ordered

pair constructor'<,>'. Suppose we are trying to compute an ordered pair consist

ing of two infinite sublists, F(exp1) and F(exp2):

< F(exp 1), F(exp2) >.

A safe computation rule should produce a sequence of approximations whose limit

is the denoted pair of infinite lists. Using the left-most rule, however, no part of

the right side would ever be computed. The limit of the approximation sequence

54

would be a pair of objects, the first an infinite list, and the second object com

pletely undefined. Lazy functional languages do permit infinite lists in the domain,

nevertheless, they are usually implemented with a leftmost computation rule. This

works so long as one is only concerned with computing finite objects (though finite

portions of infinite objects may be used during the computation).

The limitation to programs which denote finite objects is inadequate for Pow

erFuL, a language which contains the expressive power of logic programming. Many

useful logic programs will denote an infinite set of solutions; even if the set of so

lutions is finite, the search space may contain nonterminating branches. Even with

a complete breadth-first search strategy, the computation procedure need not ter

minate. Yet, even if computation of the set never terminates, certain elements of

the set might be computed with only a finite amount of computation, and the user

might wish to see those elements as they appear. Even though standard Prolog

does not provide a complete search strategy for Horn logic (though, in principle,

complete breadth-first Prolog interpreters could be built), Prolog does make a se

rious effort to compute infinite sets. Consider the following Prolog program, which

denotes an infinite set of correct answer substitutions:

app([], Y, Y).

app([HIT], Y, [HIZ]) :- app(T, Y, Z).

?- app([1,2]. X, Y), app(X, [1,2],Y).

Rather than waiting for the entire set to be computed (which may never hap

pen), the system suspends and turns control over to the user, each time another

member of this set is computed. With each new solution, the user has a better

approximation to the complete set.

Traditionally, lazy languages have been.demand-driven, in that they compute

only those finite parts of an infinite object specifically requested by the user. Lan

guages computing infinite sets, however, cannot be demand driven. The problem

is that there is no referentially-transparent command or operation that a user may

invoke to reduce an infinite set to a single finite piece. The user cannot ask for the

"first" element of the set (as he could ask for the first element of a list), because

sets have no implicit ordering. All the system can do is to provide increasingly

better approximations, in which any finite element should eventually appear, until

55

the user decides he has seen enough, and terminates the computation. This could

be done interactively, with the system suspending each time a new element is ready

for output, and resuming at the option of the user. This leads to the topic of

user interfaces for PowerFuL. Perhaps in an interactive implementation, the pro

grammer will be able to direct where in the set expression the computational effort

should be concentrated. As the desire for referential transparency prevents such

commands from being part of the language per se, they could be provided in the

meta-linguistic environment, analogous to online-debugger commands. Details of

such an environment are beyond the scope of this work.

Therefore, we would like our implementation to be complete, if possible, even

for programs which are inherently non-terminating. That is, we want a fair driver

which, upon learning that the program denotes a union of two subsets, computes

both subsets simultaneously. Similarly, the top-level driver simultaneously compute

both sides of an ordered pair.

In summary, the leftmost computation rule is more efficient than parallel

outermost in that the delay in expanding some outermost occurrences, permits

some subcomputations to be avoided completely. Use of the leftmost computa

tion rule for a lazy higher-order language requires two compromises: The first is

that we never try to "compute" a function alone, though we may compute a func

tion applied to some argument. The second compromise is that we only wish to

compute objects for which the computation sequence will terminate, namely finite

objects. We accept the first compromise, but not the second. Therefore, we must

develop a computation rule which is a compromise between the leftmost and the

parallel-outermost.

4.4.3 PowerFuL's Reduced Parallel-Outermost Rule

The computation rule must consider four separate and exhaustive cases: (i)

when the expression is a recursive function call (not a primitive or constructor);

(ii) when the expression is headed by a data constructor (other than>.); (iii) when

the expression is headed by a primitive function not within the context of a lambda

expression (so we need not consider the presence of unbound lambda variables); and

(iv) when the expression is an unapplied >. expression.

We only require that the computation rule be safe when computing objects

56

from a domrun such as 'E', where

E = (B + A + ExE + 'P(E))_L.

This is the subset of PowerFuL's semantic domain D, where

D = (B + A + DxD + D>-+D + 'P(D))_L.

Domain E excludes those objects from D which either ar~ or contain functions

(though we may use these excluded element of D in computing elements of E).

We also require that primitives satisfy the following property.

Definition 4.7: We say that a primitive is eager if it can simplify (either to the

final result or to another primitive expression) as soon as the outermost constructor

of any strict argument is known, or, in the case of a type-checking primitive, as

soon as the type of the argument is known (e.g. by noticing the output type of the

arguments outermost function).

Definition 4.8: The reduced parallel-outermoJt computation rule chooses function

calls according to the following:

Case (i): If the expression is a function call, then expand only the main (single

outermost) function call. For example, in F(l,F(2,F)), only the first F would be

expanded.

Case (ii): If the expression is headed by a data constructor other than .A (e.g. the

ordered-prur or set union), then expand the union of sets of function calls chosen

by applying a safe computation rule individually to each argument. For example,

in< F(l,F(1,2)), F(3,4) >,the first and last occurrences would be expanded.

Case (iii): Suppose the expression is headed by a primitive function (and is not

within the context of a lambda expression). Let arg be any of the arguments in which

the primitive is strict. The computation rule chooses just those occurrences in the

primitive expression that would be chosen by applying the computation rule to arg

alone. (Note that if the primitive is strict in several arguments, this computation

rule gives us a choice of substitution steps.) For example, if addition is a primitive

strict in both arguments, then in +(F(l, 2), F(2, 3)), either of the two occurrences

could be chosen.

Case (iv): Suppose the occurrences are within a lambda expressiOn, such as

.Ax. if(F(x, 1), F(1,2), 7). Given the the program denotes an object from sub

domain E, and given that all primitives are eager, and assuming that primitives are

57

simplified as much as possible between recursive function expansions steps, then

an unapplied lambda expression can only occur either within a nonstrict argument

of a primitive, or, as a subexpression of a recursive function call. In neither case

would the computation rule look to the lambda expression for recursive function

calls to expand. Therefore, this case can be eliminated out of hand. (Furthermore,

since this case will not occur, we will never compute the bodies of functions except

after application, and therefore we may be assured that ,8-reduction will always

terminate).

Theorem 4.5: If all the semantic primitives are eager, and assuming that primitive

simplifications are made as early as possible, then a computation rule which chooses

from among the above substitution steps (depending upon the situation) is safe.

Proof: A safe computation rule is, by definition, one which uses only safe

substitution steps. Note that all four cases above describe safe substitution steps.

Case (i) is a parallel outermost substitution step, a substitution already proven to

be safe [V7 4]. Case (ii) can be proven by induction on the height of the term. If the

substitution steps calculated for each subterm are safe, then safety holds individually

for each argument, and therefore must also hold for the expression as a whole. Case

(iii): If we replace the chosen recursive function occurrences with least-defined

values of the appropriate functionality, then the argument in which the occurrences

were found evaluates to ..l (the primitives being eager, there otherwise would have

been opportunity to simplify; but we assumed the term was already simplified as

far a possible). Since the primitive is strict in this argument, replacement of these

occurrences by ..l makes the primitive application evaluate to the least element of

the primitive's output domain. Replacement of all occurrences in all arguments by

..l must give the save result, proving that this is a safe substitution. Case (iv): This

case will not occur, as mentioned above. End of Proof

Note that if the primitive is strict in several arguments, this computation rule

gives us a choice of substitution steps. The two advantages of this approach over

simple parallel outermost is that ,8-reductions will always terminate (for programs

denoting elements of domain E), and also that we can sometimes avoid computation

in a primitive's nonstrict arguments. This gives us some of the computational

advantages of the leftmost (outermost) rule, without sacrificing safety.

58

4.4.4 Example

We have proven that the reduced-parallel-outermost rule is safe (and there

fore probably complete for programs of interest), assuming that semantic primitives

simplify as soon as they have enough information to do so, and assuming that all

semantic primitives terminate. In Chapter 5, we examine the semantic primitives

and justify these assumptions. As an aside, note that all simplifications would

terminate under any computation rule given a first-order restriction of PowerFuL,

so for a first-order PowerFuL, our safe computation rule is indeed known to be a

fixpoint rule.

Below is a sample program execution to translate into the semantic domain the

object program:

letrec

inf be cons('joe, inf)

in

car(inf).

We start with an empty environment, so the initial input is:

t'[letrec inf be cons(' joe, inf) in car(inf)D A.

Expanding the outermost call yields:

t'[car(inf))(V[inf be cons(' joe, inf)] A).

There are still no simplifications to be performed, so we again expand the outermost

function call, yielding:

left(pair!(t'[inf](V[inf be cons(' joe, inf)] A))).

Expanding the outermost function call yields:

left(pair!((V[inf be cons(' joe, inf)] A)inf)),

and then:

left(pair!([(.:FIX AX. (£[cons(' joe, inf)] [X/inf]))/inf]inf)).

Note that when introducing new lambda variables, one must be careful to stan

dardize variables apart (rename bound variables so as not to confuse them with

pre-existing lambda variables). Simplifying (applying the environment) yields

left(pair!(.:FIX(AX.(£[cons(' joe, inf)] [X/inf])))).

59

Expanding the outermost call yields:

left(pair!((.\X. (£[cons('joe, inf)D [X/inf]))

(FIX(.\X. (£[cons('joe, inf)D [X/inf]))))).

A ,8-reduction yields:

left(pair!(£[cons(' joe, inf)D p)),

where pis:

[(FIX(XY.(£[cons(' joe, inf)D [Y/inf])))/inf].

Expanding the outermost function call yields:

left(pair!(< (£['joeD p), (£[inf] p) >)).

This simplifies to:

£['joeD p.

Expanding the remaining function call yields:

'joe.

4.6 Summary

When proposing a language, it is good to show that it can be correctly imple

mented, at least theoretically. In this chapter we adapted Vuillemin's methodology

to interpret a language's denotational description as an interpreter, thus ensur

ing that the operational semantics is consistent with the 'denotational sel):lantics.

We developed the reduced-parallel-outermost computation rule, which we believe is

complete for those programs in which an unapplied function is not part of the final

result.

Because we chose earlier to map set abstractions onto angelic powerdomains,

an approximation to the denoted set consists of those elements of the denoted set

which we have proven to be contained therein. If a set is described as a union of

two subsets, then whatever is contained in one subset must surely be contained in

the union. For completeness, we must therefore compute of both parts of a union

in parallel. Had we used demonic powerdomains, an appro:¥:imation to the denoted

set would consist of those elements which we have not yet ruled out as being mem

bers. To prove that an element is not a member of a union, we must prove for

both subsets that the element is not a member. Had we been interested in this

60

sort of computations, the computation of a union could be sequentialized. With

demonic powerdomains, an undefined subset makes the whole set undefined, so we

could compute the subsets in sequence. Had we used the Egli-Milner powerdomain,

our approximations have to give more information, i.e., an approximation would

have to indicate whether the approximation is capable of being enlarged with addi

tional elements, or whether the computation has in fact terminated. This is added

precision is not required for any of the features in PowerFuL, though it would be

necessary if PowerFuL contained a predicate to test whether a set were empty.

In writing PowerFuL's denotational semantics, we have carefully chosen the

semantic primitives in such a way that a correct implementation can be derived di

rectly. For an efficient implementation, we do not recommend that this procedure be

followed too literally. Many optimizations are needed to make the implementation

efficient. So long as each optimization maintains correctness, then the resulting

efficient operational semantics will also be correct with respect to the normative

denotational description. Much research has already been done on techniques to

implement lazy functional languages (see [P87]), and we will not discuss these tech

niques here. This thesis will concern itself only with one very special optimization

to introduce logical variables. This optimization, to be discussed in Chapter 6, will

avoid blind generating and testing when the set denoted by terms is a relative set

abstractions generator.

61

5 POWERFUL SEMANTIC PRIMITIVES

This chapter formally defines the semantic primitives of PowerFuL. To justify

the operational semantics developed in the previous chapter, we must:

1) identify which arguments of each primitive are strict;

2) verify that the primitive simplifies upon knowing the outermost constructor

of any strict argument, (or, in the case of a type-checking primitive, as soon as the

type of the argument is known);

3) verify that after any application of the computation rule, primitive simplifi

cations will terminate; and

4) verify that all primitive functions are continuous.

These requirements affected the way the semantic equations were written. For

instance, the fixpoint operator would never do as a primitive, as it would lead

to non-terminating simplifications. Instead, we implemented the fixpoint operator

using the denotational equations themselves. That way, only a finite amount of

work is called for within each computation step. Creating a denotational description

suitable for direct interpretation requires this kind of special care.

We define the primitives via equations. Each equation is also a simplification

rule, rewriting from left to right. These functions are well-defined. Their values at

the limit points are defined by the continuous extension.

5.1 Boolean Input Primitives

A boolean input primitive is one which requires one or more of its arguments

be from the subdomain B.L. This is a flat domain consisting two elements, TRUE

and FALSE, and the least element .L PowerFuL has two such primitives, the

conditional and the negation. Each is strict in its boolean argument, and each

simplifies when the outermost constructor of that argument is available.

The equations defining if: B.L xD XD >-+ D are:

if(TRUE, arg2, arg3) = arg2
if(FALSE, arg2, arg3) = arg3
if(J., arg2, arg3) = 1..

For clarity when writing nested conditionals, we shall feel free to express this prim

itive using the alternative if ... then ... else ... ft notation.

The equations defining not: B.L >-+ B.L are:

not(TRUE) = FALSE
not(FALSE) = TRUE
not(J.) = 1..

Simplifications for these primitives obviously terminate, as only one rewriting is

needed.

The function not is a monotonic function over a discrete domain, and therefore

is continuous (by Theorem 3.1.). To show that the function if is continuous, we must

show that it is continuous in each argument. It is continuous in the first argument

by Theorem 3.1. For the second argument, we must split into cases, according to

the value of the first argument. If the first argument is either l. or FALSE, then

the second argument is completely ignored, and so if is continuous in that argument

by default. If the first argument is TRUE, then if simplifies to the identity function

(which is continuous) applied to the second argument.

5.2 Atomic Input Primitives

From the syntax of each program, we determine a finite set of atoms, each

beginning with a quote ('). The set of atoms is always assumed to include 'nil.

For each such atom A; in the syntax there exists a corresponding semantic zero

arity constructor A;. These objects, together with the bottom element 1., make up

the subdomain of atoms, A.1.

For each atom A; is a primitive function isA;?: A.L >-+ B.L, strict in its only

argument. The simplification rules are:

isA;?(J.) = l.
isA;?(A;) = TRUE
isA;?(Ai) = FALSE fori# j.

Note that the last rewrite rule actually represents a number of rewrite rules, one

for each pair of distinct atoms. For instance, the primitive is'nil? tests whether an

63

atom is equal to 'nil. Each primitive of the form isA;? is strict in its argument, and

simplifies whenever the outermost constructor of that argument (the atom itself)

is available. Simplifications for these primitives obviously terminate, as only one

rewriting is needed.

Using the primitives just described as a base, we define a primitive to compare

two atoms for equality. The simplification rules for

are:

atorneq?: A.i XA.i >--> B.i

atorneq? (.l, arg2) = .l
atorneq? (arg1, .l) = .l
atorneq? (A;, arg2) = is A;? (arg2)
atomeq?(arg1, A;) = isA;?(arg1).

This primitive is strict in both arguments, and simplifies whenever the outermost

constructor (an atom) of either argument is available. With one simplification, it

either terminates or simplifies to another primitive (isA;) which terminates. Note

that the third and fourth rules are actually rule schemas, each defining a rewrite

rule for each atom A;.

These primitives are also continuous by theorem 3.1.

5.3 List Primitives

The primitive left: DxD >--> D is strict in its only argument; likewise for the

primitive right. Each needs only a single simplification rule:

left(<1st, 2nd>) = 1st
right(<1st, 2nd>) = 2nd.

Even before we have fully computed the argument, as soon as we have broken it

into an ordered pair (computed the outermost constructor), the primitive simplifies.

Termination is obvious, as only one rewriting is needed.

The proof continuity of these functions may be found in [S86].

5.4 The Powerdornain Primitive

The primitive •+> lets us iterate a function of typeD >--> P(D) over the elements

of an input set, combining the results via union into a single new set. It is strict in

the second argument. We can define •+> recursively via the rules:

64

F+ (1/J) = ,P
F+({Expr}) = F(Expr)
F+ (Setl U Set2) = (F+ (Setl) U F+ (Set2))

Note that it simplifies immediately as soon as the outermost constructor (either ¢>,

{ }, or U) is available. It is not quite strict in the first argument, since

could produce {.l}, which, though less defined than most powerdomain elements,

is not less defined than .l'P(D) = ,P (¢>can be interpreted as, "We do not know any

elements of this set, nor even if any exist," whereas { .l} can be interpreted as, "We

know this set has at least one element, but we do not know anything about it.")

At any stage of computation, any union tree will have been constructed to only

a finite height. Though <+' is defined recursively, each recursion goes deeper into

the finite union tree, so simplifications must tenninate. In other words, though it

might not terminate when applied to a fully-computed infinite set, in practice no

infinite set is ever fully computed. The best one can produce are arbitrarily good

finite approximations.

The proof continuity of this function may be found in [586].

5.5 Coercions

Chapter 3 introduced the coercions, and showed their use in handling error con

ditions. That is, they protect typed primitives from having to deal with arguments

of an inappropriate type. The rewrite rules defining them are listed below. All are

computed with a single simplification, guaranteeing tennination. All simplify when

the argument's outermost constructor is known, as can be verified by looking at the

equations.

The coercions, first described in Chapter 3, are bool!, atom!, pair!, func!

and set!.

The function bool!: D >-+ B.1 maps arg to itself if arg is a member of B.1, and

to l.. otherwise, and is implemented using these equations:

boo!! (.l) = .l
bool! (TRUE) = TRUE
bool!(FALSE) = FALSE
boo!! (A;) = .l
boo!!(< exp1, exp2 >) = .l

65

bool! (.A ...) = j_
bool! (r/>) = j_
bool!({ ... }) = j_
bool!(... U ...) = j_

The function atom!: D >-+ AJ. maps arg to itself if arg is a member of AJ., and

to j_ otherwise.

atom! (j_) = j_
atom! (TRUE) = j_
atom!(FALSE) = j_
atom!(A;) = A;
atom!(< exp1, exP2 >) = j_
atom! (.A ...) = j_
atom!(r/>) = j_
atom!({ ... }) = j_
atom!(... U ...) = j_

The function pair!: D >-+ DxD maps arg to itself if arg is a member of DxD,

and to j_DxD (that is, < j_, j_ >)otherwise.

pair! (j_) = < j_, j_ >
pair! (TRUE) = < j_, j_ >
pair!(FALSE) = < j_, j_ >
pair! (A;) = < j_, j_ >
pair!(< exp~, exJl2 >) = < exp1 , exJl2 >
pair! (.A ...) = < j_, j_ >
pair! (r/>) = < j_, j_ >
pair!({ ... }) = < j_, j_ >
pair!(... U ...) = < j_, j_ >

The function func!: D >--+ [D>-+D] maps arg to itself if arg is a member of D>-+D

and to j_D,_.D (that is, .Ax. j_D, also written as !1) otherwise.

func! (j_) = n
func! (TRUE) = n
func!(FALSE) = n
func! (A;) = !1
func!(< eXp!, €XJl2 >) = !1
func!(.A var. body) = .A var. bedy
func!(r/>) = n
func!({ ... }) = n
func!(... u ...) = n

The function set!: D >--+ 'P(D) maps arg to itself if arg is a member of 'P(D)

and to j_:P(D) (that is, r/>) otherwise.

set! (j_) = r/>
set! (TRUE) = r/>
set! (FALSE) = r/>

66

set! (A;) = ¢>
set!(< exp1 , exP2 >) = r/>
set! (A ...) = ¢>
set! (¢>) = ¢>
set! ({element}) = {element}
set! (set1 U set2) = set1 U set2

We can reduce sequences of coercions by noting that for two coercions c. and

c. (Cb (arg)) = c. (arg) when c. and Cb are the same coercions.
c. (cb (arg)) = c. (.l) when c. and cb are different coercions.

For instance, we can simplify set!(set!(arg)) to set!(arg), and set!(func!(arg)) to

¢>. The continuity of these functions was discussed at the end of Chapter 3.

5.6 Run-time Type-checking

PowerFuL is an untyped language. To allow the programmer to specify run

time type-checking, provide these primitive semantic functions over D 1-> BJ.: bool?,

atom?, pair?, func? and set?. We can determine an object's type by viewing

the outermost constructor, or in some cases, by the output type of the primitive

heading the argument (i.e. if the primitive never returns a result that is completely

undefined. For instance, the expression set?(set!(arg)) always denotes TRUE).

The equations defining bool? are:

boo I? (..L) = ..L
bool?(TRUE) = TRUE
bool?CFALSE) = TRUE
bool?(A;) = FALSE
bool?(< exp1. exP2 >) = FALSE
bool?(A ...) = FALSE
bool?(r/>) = FALSE
bool?({ ... }) = FALSE
bool?(. .. u ...) = FALSE.
bool?(pair!(arg)) = FALSE.
bool?(func!(arg)) = FALSE.
bool?(set!(arg)) =FALSE.
bool?(. .. + ...) = FALSE.

In other words, bool? returns TRUE ifthe argument is a boolean, FALSE if the

argument is an atom, an ordered pair, a function or a set, and ..L if the object's type is

unknown. The primitive is computed with just one simplification, so termination is

guaranteed. When the outermost constructor of the object is known, simplification

can proceed.

67

The other type-checking primitives are similar, and have the same termination

and simplification properties. The equations for atom? are:

atom? (.l) = .l
atom?(TRUE) = FALSE
atom?(FALSE) = FALSE
atom?(A;) = TRUE
atom?(< expb exJ12 >) = FALSE
atom?(>. ...) = FALSE
atom?(/fo) = FALSE
atom?({ ... }) = FALSE
atom?(... u ...) = FALSE.
atom?(pair!(arg)) =FALSE.
atom?(func!(arg)) =FALSE.
atom?(set!(arg)) = FALSE.
atom?(... + ...) = FALSE.

The equations for pair? are:

pair?(.l) = .l
pair?(TRUE) = FALSE
pair?(FALSE) = FALSE
pair?(A;) = FALSE
pair?(< exp1, exJ12 >) = TRUE
pair?(>. ...) = FALSE
pair?(/fo) = FALSE
pair?({ ... }) =FALSE
pair?(. .. u ...) = FALSE.
pair?(pair!(arg)) = TRUE.
pair?(func! (arg)) = FALSE.
pair?(set!(arg)) =FALSE.
pair?(... + ...) = FALSE.

The equations for func? are:

func? (.l) = .l
func?(TRUE) = FALSE
func?(FALSE) = FALSE
func?(A;) = FALSE
func?(< exp1, exJ12 >) = FALSE
func? (>. •.•) = TRUE
func?(/fo) = FALSE
func?({ ... }) = FALSE
func?(... u ...) = FALSE.
func?(pair!(arg)) = FALSE.
func?(func!(arg)) = TRUE.
func?(set!(arg)) =FALSE.
func?(. .. + ...) = FALSE.

The equations for set? are:

set? (.l) = .l
set?(TRUE) = FALSE

68

set?(FALSE) = FALSE
set?(A;) = FALSE
set?(< exp1 , exP2 >) = FALSE
set?(). ...) = FALSE
set?(<,D) = TRUE
set?({ ... }) = TRUE
set?(. .. U ...) = TRUE.
set? (pair! (arg)) = FALSE.
set? (func! (arg)) = FALSE.
set? (set! (arg)) = TRUE.
set?(. .. + ...) = TRUE.

To prove continuity, note that, because these functions are monotonic, the

continuity requirement holds for all finite chains. For any infinite chain in D, the

least upper bound of the chain and every chain element (with the possible exception

of ..l.n are all contained within one of these subdomains: B1., A.L, D X D, D >-> D

and 'P(D). When applied to members of the same subdomain, each type-checking

always returns the same constant result, permitting continuity to be easily verified.

5. 7 Equality

We define first-order equality by saying that two first-order objects are equal

if and only if they are identical. First-order objects include atoms, booleans, and

nested ordered pairs whose leaves are atoms and booleans. We wish to define equal

ity over all first-order objects, not just atoms. There are several ways we could have

done this. We could have given the programmer access to the atomeq? primitive,

letting the user include a definition for equality within his program. Alternatively,

we could have defined equality construct via the denotation equations. However,

an important optimization technique developed in the next chapter requires that

equality be made a primitive. As a primitive strict in both arguments, there must be

a simplification available whenever the outermost constructor of either argument is

available. This motivates the following equations, broken into groups for discussion.

The first two equations simply indicate that the primitive is strict in both argu

ments.

equal?(..!., arg2) = ..!.
equal? (arg1, ..!.) = ..!..

If we know anything at all about either argument, we know whether it is a member

of B (a boolean), A (an atom), DxD (an ordered pair), D>->D (a function) or 'P(D) (a

set). As soon as we know this about an argument (either by having computed the

69

outermost constructor, or by computing it to the form of a primitive application

headed by pair!, func!, set! or •+•), we can apply a simplification rule.

If B is known to be a boolean, then:

equal?(B, exp) =
if bool?(exp) then if(B, bool!(exp), not(bool!(exp))) else FALSE fi

and by symmetry:

equal?(exp, B4 =
If bool.(exp) then if(bool!(exp),B,not(B)) else FALSE fi.

If A is an atom, then

equal?(A, exp) =
If atom?(exp) then atomeq?(A, atom!(exp)) else FALSE fi

and by symmetry

equal?(exp, A) =
if atom?(exp) then atomeq?(atom!(exp),A) else FALSE fi

If F is a function, then

equal?(F, exp) -
equal?(exp, F) -

if func?(exp) then .l else FALSE fi
if func?(exp) then .l else FALSE fi

If Sis a set, then

equal?(S, exp)
equal?(exp, S)

= if set?(exp) then .l else FALSE fi
= if set?(exp) then .l else FALSE fi

If P is an ordered pair, then:

equal?(P, exp) =
If not(pair?(exp)) then FALSE
elseif not(equal?(left(P), left(pair!(exp)))) then FALSE
else equal?(right(P), right(pair!(exp))) fi

and by symmetry:

equal?(exp, P) =
If not(pair?(exp)) then FALSE
elseif not(equal?(left(pair!(exp)), left(P))) then FALSE
else equal?(right(pair!(exp)), right(P)) fi

Though the simplification rules for equal? are recursive, simplifications will

always terminate. The recursion only occurs when comparing two ordered pairs. At

any stage of computation, any ordered-pair tree will have been constructed to only a

70

finite height. Each recursion goes deeper into the finite union tree, so simplifications

must terminate. In other words, though it might not terminate when comparing

two identical fully-computed lists, in practice no infinite list is ever fully computed.

The best one can produce are arbitrarily good finite approximations.

Essentially, equal? is the least fixpoint of a recursive functional built usmg

the function composition of the function variable and continuous primitives, and is

therefore itself a continuous function [S86].

5.8 Summary

In this chapter, we have defined the primitives through equations which also

serve a rewrite rules. We have shown that each primitive does indeed simplify

upon availability of the outermost constructor of any argument in which it is strict.

We have also shown that the simplification stage of every computation step must

terminate.

With these definitions of the primitives, the definition of our language is com

plete. Because they satisfy the above properties, as required by the developments in

chapter 4, we have an operational semantics as well. The next chapter will improve

the interpretation procedure, and there these primitives play a central role.

71

6 OPTIMIZATIONS

This chapter improves the basic operational procedure described in the last

chapter. The problem being attacked is the inefficiency of relative set abstraction

when the set of terms acts as a generator. Rather than enumerating terms blindly,

we would like to treat the enumerated parameter as a logical variable, analogous to

the implementation of absolute set abstraction. This chapter explains why this is

proper to do, and provides a scheme for how to implement this optimization.

6.1 A voiding Generate-and-Test

In Section 2, we specified a Horn logic program using letrec (the feature

for creating recursive definitions), set abstraction, the conditional and the equality

primitive. Executing this program using PowerFuL's denotational equations as the

interpreter would be analogous to using Herbrand's method [Q82] to solve problems

in logic. Herbrand's "generate-and-test" approach is simple but inefficient.

The resolution method avoids blind generation of instantiations, preferring to

do as much work as possible on non-ground expressions. In logic programming, a

logical variable denotes an element from the set of terms (the Herbrand Universe).

In resolution, a logical variable becomes instantiated only to the extent necessary

to satisfy the inference rule's equality test. Partial instantiation narrows the set of

candidate bindings, without necessarily settling on a single choice. When performed

to ensure equality of non-ground terms, partial instantiation is called unification,

and the substitution implementing the partial instantiation is called a unifier.

In PowerFuL, to compute a relative set expression, we normally begin by com

puting the generator set. As an example, consider the following expression.

letrec

append be A 11 12. if null?(ll) then 12

else cons(car(ll), append(cdr(l1),12)) fi

in {X: X E terms, append(X, ['a,'b]) = ['c,'d,'a,'b]}

Whenever we isolate an expression denoting an element of the generator, in

this case a term, a copy of the relative set abstraction is created, with the generator

element expression replacing the enumeration parameter. In this case, the set terms

evaluates to a union tree, whose leaves are each a singleton set containing one term.

The set abstraction reduces to a union tree, each of whose leaves contains the value

denoted by

letrec

append be A 11 12. if null?(l1) then 12

else cons(car(ll), append(cdr(l1),12)) fi

in

{ term : append(term, ['a, 'b]) = ['c, 'd, 'a, 'bJ}

where term represents one element of the set of terms. It is clear that each such

instantiation can easily be computed. Where term satisfies the condition, the result

is a singleton set containing this term. For terms that do not satisfy the condition,

the result will be ¢. The complete result is union of all these subsets. We would

like to modify this procedure so that when terms is the generator set, we treat the

enumeration parameter as a logical variable, rather than blindly enumerating its

many simple objects. Similarly, an enumeration parameter generated by atoms, or

boola can be viewed as a partially-instantiated, or constrained, logical variable.

In Horn logic, each correct answer substitution provides ground bindings for the

goal's logical variables. Members of this set can be grouped into families. Within a

family, all answer substitutions share common aspects, with the remaining details

varying freely. The Herbrand derivation of one member of the family is almost iden

tical to the Her brand derivation for any other member. For each family of correct

answer substitutions, Herbrand's method would derive each member individually,

with an infinity of essentially similar derivations. Resolution, however, produces

most general computed answer substitutions, one per family. A general computed

answer substitution only partially instantiates a goal's logical variables, and does

73

so in such a way that for any ground completion of the general computed answer

substitution would result in a correct answer substitution. The derivation of the

general answer substitution resembles a parameterized Herbrand derivation.

Resolution performs modus ponens inferences on the non-ground clauses di

rectly, rather than first instantiating them. Logical variables become partially in

stantiated (via a most general unifier) only to the extent necessary to satisfy the

inference rule's equality requirement. Pure Horn logic ignores logical variable bind

ings which make the equality false. PowerFuL primitives are more complex, in that

we are interested in all possible logical variable bindings to produce all possible

results. However, some versions of Prolog [N85] add the inequality predicate as

well. Rather than actively generating bindings for logical variables, the inequality

primitive constrains future bindings.

In a sense, program execution is left unfinished. Though it is easy to extend a

most general answer substitution, to produce (ground) correct answer substitutions,

this is not done. Reporting results in the general form is more economical than

individually reporting each of the infinite ways in which each most general answer

can be extended.

6.2 Logical Variable Abstraction

To treat an enumeration parameter as a logical variable, we must recognize

that its generator is the set of first-order terms (or part of this set). An expression

of the form

(>..x.body)+ F[terms]

or equivalently

(>..x.body)+ set!(F[terms])

is rewritten at run-time to

term(x). body

to indicate that x is to be treated as a logical variable, rather than blindly enumer

ating its generator. We can look out for this situation by noting when the semantic

equation

t'([{expr : idE genrtr, qualifierlist}] p)

=(>..X. t'[{expr : qualifierlist}] p[Xjid])+(set!(t'[genrtr] p))

74

is used, and checking to see whether genrtr refers to terms, atoms or bools. The

expressions atom(x).body and bool(x).body are constructed analogously. In an ex

pression of the form

atom(x). body

x is a logical variable representing a term, under the constraint that this term

must be an atom (not a boolean or ordered pair). Rather than recomputing the

body for each trivial instantiation, we will evaluate body in its uninstantiated form,

leaving it parameterized by the enumeration variable, computing a parameterized

set expression. This parameterized set expression stands for the union of all possible

instantiations, allowing us to express results more compactly.

For uniformity, we will keep parameterized sets in an analog of logic program

ming's clause form. That is, we will strive to represent a parameterized set as a

union tree, each leaf of which is a possibly parameterized singleton (or empty) set.

Therefore, a •+• expression with a parameterized set as the second argument will be

rewritten as a parameterized •+• expression, and a parameterized union of subsets

will be replaced by a union of parameterized subsets. That is, an expression of the

form:

will be rewritten as:

This transformation is valid, because the first expression is an alternate notation

for:

and the second is an alternate notation for

and these two are equal (due to the associativity of set union). When breaking up

a parameterized union, an expression of the form

becomes

term(x).exp 1 U term(x).exp2 •

75

A parameterized empty set, such as term(x).¢>, can be simplified to ¢>, if desired.

One computes a parameterized set expression by expanding the occurrences of

the semantic function (E, :F or 1J) in the parameterized body as specified by the

computation rule, and doing all possible primitive simplifications between expan

sion steps. In other words, one strives to compute the parameterized body just as

one would if each logical variable had been replaced by a ground term. Though

expansion of the semantic function is unaffected by the fact that some terms are

represented by logical variables, simplification of primitives becomes more difficult.

Simplification of primitives applied to logical variables is discussed in the next sec

tion.

6.3 Simplifying Primitives with Logical Variables

Suppose a parameterized body contains a subexpression headed by a primitive,

one of whose strict arguments is a logical variable. If the logical variable were

replaced by a term, we could simplify the primitive with the appropriate primitive

rewrite rule chosen according to the value of the term. But how do we choose which

rewrite rule to use, when the logical variable represents any of a whole range of

possible terms? For any such case, one of three techniques will permit simplification

of the primitive. Cases motivating each technique are listed below.

1) When the same rewrite rule would be chosen for any possible instantia

tion of the logical variable, Technique 1 allows us to simplify directly, without any

instantiation of the logical variable.

2) When the choice of rewrite rule depends upon whether a term represents a

boolean, an atom or an ordered pair, and the logical variable is unconstrained (i.e.

it could represent any of these), the second technique allows us to split into three

subsets, each of which handles one of the possibilities.

3) When two logical variables are being compared for equality, the third tech

nique splits the set into two subsets, one in which the equality is assumed to hold,

and the other in which an inequality constraint is generated.

We describe each case in the notation:

term(u).(... prim(u) . ..),

where prim is some specific primitive. The ellipses indicate that the primitive subex-

76

pression occurs anywhere in the body of the parameterized set expression. Between

any two expansion steps, all possible primitive simplifications are performed, so the

primitive's position in the expression is irrelevant.

6.3.1 Technique 1: Simple Reduction

Often, due to implied or stated constraints on the logical variable, the same

rewrite rule would be chosen regardless of which term the logical variable represents.

In this case, simplification of the primitive is straightforward. One applies the single

applicable rewrite rule to the parameterized subexpression. For example, consider a

parameterized expression containing a subexpression headed by the primitive func?:

term(u).(... func?(u) ...).

We can simplify func?(u) to FALSE, without knowing the value of u, since any

value would certainly not be a function. Below is a comprehensive list of similar

situations. The rationale for these cases is that a logical variable never represents

a function or a set, and a logical variable constrained to one subtype will never

represent a term of another type.

term(u).(... func?(u) ...) --> term(u).(o. 0 FALSE ...)
term(u).(... func!(u) .. o). --> term(u).(... n ...)
atom(u).(... func?(u) ...) --+ atom(u).(... FALSE ...)
atom(u).(... func!(u) ...) --> atom(u).(.. o!"!.oo)
bool(u)o(o .. func?(u)oo•) --> bool(u).(.o.FALSE.oo)
bool(u).(o 0 0 func!(u) ...) -+ bool(u).(o 00 n. 0 o)
term(u)o(o.oset?(u) ...) -+ term(u).(o .. FALSE ...)
term(u).(o o. set!(u) .. .) -+ term(u).(... <P •• •)

atom(u).(.. . set?(u) 0 ••) -+ atom(u).(.. . FALSE ...)

atom(u)o(. 0. set!(u) .. .) -> atom(u).(... <P •• •)

bool(u).(... set?(u) ...) --+ bool(u).(... FALSE ...)
bool(u).(.. . set!(u) ...) -+ bool(u).(... <,? •••)

atom(u).(... bool?(u) ...)--+ atom(u).(... FALSE ...)
atom(u).(. o. bool!(u). 0 .) -+ atom(u)o(... .l. o .)
bool(u).(... bool?(u) ...) -+ bool(u)o(o .. TRUE ...)

bool(u).(... boo!!(u) .. .) --+ bool(u).(... u .. .)
atom(u).(... atom?(u) .. .) --+ atom(u).(. .. TRUE ...)

atom(u).(... atom!(u) ...) -> atom(u).(... u ...)
bool(u).(... atom?(u) ...) -> bool(u).(... FALSE ...)

77

bool(u).(... atom!(u) ...)--> bool(u).(... .l ...)

atom(u).(... pair?(u) . ..) --> atom(u).(... FALSE ...)

atom(u).(... pair!(u) ...)->atom(u).(... <.l, .l> ...)

bool(u).(... pair?(u) .. .) --> bool(u).(. .. FALSE ...)

bool(u).(... pair!(u) ...) --> bool(u).(... < .l, .l > ...)
bool(u).(... equal?(u, ex) ...) --> if(boo!?(ex), if(u, ex, not(bool!(ex))), FALSE)

bool(u).(... equa!?(ex, u) ...)--> if(boo!?(ex), if(bool!(ex),u,not(u)), FALSE)

atom(u).(... equal?(u, ex) ...) --> if(atom?(ex), atomeq?(u, atom!(ex)), FALSE)
atom(u).(... equal?(ex, u) .. .) --> if(atom?(ex), atomeq?(atom!(ex), u), FALSE)

term(u).(.. . equal?(u, u) .. .) --> term(u).(... TRUE ...)

atom(u).(... atomeq?(u, u) ...) --> atom(u).(... TRUE ...).

6.3.2 Technique 2: Splitting by Type

Given any of the primitives: boo!?, boo!!, atom?, atom!, pair? and pair!,

the rewrite rule chosen depends upon the type of the argument (boolean, atom,

ordered pair, function or set). Unless otherwise constrained, a logical variable can

represent three of these types (atom, boolean and ordered pair); in order to simplify,

we must consider each possibility separately. We divide the parameterized set ex

pression into three subsets, so that for each subset, Technique 1 (simple reduction)

will apply.

Let prim represent one of these four primitives. An expression of the form

term(u).(... prim(u) . ..)

is replaced by:

bool(u).(... prim(u) ...)

U atom(u).(... prim(u) ...)

U term(v).term(w).(... prim(u) .. .)(< v, w > /u].

In the first branch of the union, we have partially instantiated the logical variable by

constraining it to represent a boolean; in the second branch, we have constrained it

to represent an atom; in the third branch, we have constrained it to represent a term

which is an ordered pair of subterms. The primitive function simplifies immediately

in each subset, thus computes each branch of the union separately.

To prove that this technique is correct, note that the original expression is an

alternate notation for:

78

(... prim(u) .. .)+(F[terms]).

Expanding F yields:

(F[bools])
U (F[atoms])

U (term(u).term(v). < u,v >).

Simplifying + by distributing (... prim(u) ...) over the union yields:

(... prim(u) ...)+(F[bools])

U (... prim(u) .. .)+(.r[atoms])

U (•.. prim(u) .. .)+(term(v).term(w). < v,w >).

Putting this into the standard format for a parameterized set yields the replacement

expresswn.

This technique is analogous to narrowing in constructor-based term-rewriting

systems [R85], where, to permit further reduction of a non-ground term (a term

containing logical variables), one instantiates a variable in all possible ways which

would enable further reduction. This technique is also analogous to the use of most

general unifiers in Horn logic resolution. Unification prepares two clauses for modus

ponens by instantiating them no more than is necessary to satisfy the equality

requirement. One difference is that traditional Horn logic does not use negative

information. Horn logic only considers instantiations to make the equality true. In

PowerFuL, we are concerned with all possible outcomes. Some variations of Horn

logic do consider negative information through the use of a inequality predicate and

negative unifiers [N85] [K84]. We discuss primitives based on equality next.

6.3.3 Technique 3: Splitting on Equality

This section describes what to do when an argument of an equality primitive

(equal? or atomeq?) is a logical variable. Combined with the rewrite rules

for equality and the techniques given earlier, this technique implements syntactic

unification. Actually, a generalization of unification results, as negative bindings

(to make the equality false) are also considered.

Chapter 5 provided a comprehensive set of equal?'s rewrite rules. It simplifies

to a conditional expression whenever the type of either argument becomes known.

79

If the logical variable is constrained to one particular type, a simple reduction can

be performed, as was shown in a previous section.

If the lambda variable can represent more than one type, then, theoretically, one

could split according to type (divide into three cases, and then do simple reductions

for each case). In each case, the equality primitive would simplify to a conditional,

whose strictness demands that the type of the other argument be next ascertained.

However, a more efficient way is to delay the reduction of equality until the type of

the other argument (the one which is not a logical variable) is known, and simplify

according to itJ type. This way, preliminary computation of the other argument

needs be done only once, instead of three times.

When Both ArgumentJ are Logical VariableJ

If both arguments of the equality predicate are logical variables unconstrained

in type, then we mrut simplify. Consider an expression of the form:

term(u).(... term(v).(... equal?(v, u) .. .) ...)

This parameterized set expression contains somewhere in its body a primitive subex

pression comparing two unconstrained logical variables. Theoretically, one could

break this into an infinity of special cases, in each case u and v each being replaced

by an element of the set of terms. For some combinations the predicate equal?

would simplify to TRUE, and FALSE for other combinations. This could also

have been done with the primitives described earlier, but it is better to deal with

a few large subsets, than an infinity of individual cases. Splitting them into atoms,

booleans and ordered pairs does not help. We must recognize that the instantiations

fall into two cases: those for which the two terms are equal, and those for which

they are not. The subset handling the cases in which the two terms are equal can

be summarized by replacing all occurrences of v with occurrences of u:

term(u).(.. . term(v).(... equal?(v, u) ...) [v/u] ...).

Since there are no more occurrences of v in the subexpression

term(v).(... equal?(v, u) ...) [v/u],

we can simplify this to

(.... (... TRUE ...) [vfu]).

80

(In fact, this simplification can be performed whenever a body does not depend on

the enumerating variable. The special case of term(x). ¢> being replaced by ¢> was

given earlier.)

Inequality Constraints

We also need to summarize the cases when u and v are not equal. This could

be summarized by

term(u).(... term(v).if not(equal?(v, u)) then (... FALSE ...) else¢> ...).

This summarizes the elements of the set for which which the two terms u and v are

not equal. Is there a way to compute this further, without trying individually all

possible combinations of unequal terms?

Lee Naish [N85] proposes for Prolog a inequality predicate, defined on terms.

His inequality predicate would fail when two terms are identical, succeed when two

terms cannot be unified, and delay when two terms are unifiable, but not identical.

In the last case, the other subgoals would be executed first, until the values of

logic variables have been instantiated enough to prove either the terms' equality or

their inequality. If all other subgoals succeed, without instantiating the variables

enough, Naish's Prolog gives an error message. This is not ideal behavior, since

unequal instantiations can certainly be computed. A better alternative woqld be

to make the inequality part of the solution, as a kind of negative unifier. Khabaza

describes a way in which this can be done [K84]. In essence, the inequality becomes

part of the general solution. Specific ground solutions can be generated from the

general solutions by instantiating logical variables in all possible ways subject to the

inequality constraint. Constraint logic programming [JL87] sets another precedent

for this approach. Computation of general non-ground solutions greatly improves

efficiency, and because replacing term variables by arbitrary ground terms is such a

trivial operation it matters little that the computation has terminates prematurely.

Requiring such term enumerations to satisfy a few inequalities adds little to the

complexity of the output, and makes it more compact.

To express such a constraint, we could write the above subset as:

term(u).(... term(v)u =f v.(... FALSE ...)).

81

We have simplified the equality predicate by splitting into two expressions: one

expression representing the cases for which the equality holds, and the other ex

pression representing the cases for which it is false, without the need to consider

every case individually.

Solving subsequent inequalities result in a constraint which is a conjunction

of inequalities. If the satisfaction of other predicates cause u and v to become

refined into the ordered pairs, < u11 u2 > and < v11 v2 >, respectively, then the

inequality u =f v will become< u 1 ,u2 >=f< v11 v2 >,which simplifies to or(u1 =f
vr, u2 =f v2). In general, the total constraint will be an and/or tree of simple

inequalities. As these simple constraints a,re satisfied, they can be replaced by

TRUE. Those inequalities which become unsatisfiable can be replaced by FALSE,

leading to further simplifications of the and/ or tree. If the whole tree simplifies to

FALSE, then we are enumerating an empty set, and the whole expression within

can be replaced by ¢.

Similar techniques are used for the predicates atomeq? and isA;? (where A;

represents an arbitrary atom). To be thorough, the cases are itemized below.

List of Cases for Equality Splitting

term(u).(... term(v) ... constraint.(.. . equal?(v, u) . ..)) ->

term(u).(... constraint(... TRUE ...) [vju])
U term(u).(... term(v)and(constraint, (u =f v)).(... FALSE ...)).

atom(u).(... atom(v) ... constraint.(... atomeq?(v, u) . ..)) ->

atom(u).(... constraint(... TRUE ...) [vju])
U atom(u).(... atom(v)and(constraint,(u =f v)).(.. . FALSE ...)).

atom(u).(... constraint.(.. . isA;?(u) ...)) ->

(... constraint(... TRUE ...) [u/ A;]).
U atom(u).(... and(constraint, (u =fA;)).(... FALSE ...)).

These optimizations are of course symmetrical in the order of argunrents to equal?

and atomeq?.

Note that we consider the binding of logical variables separate from the def

inition of the equality primitive itself. Robinson also split unification into these

82

components [BRS82]. We have generalized the approach to also consider negative

unification.

6.3.3 Discussion

We have already considered these primitives applied to logical variables: bool?,

t ? • ? f ? t? b I' t 1 • 1 f ' t' ·r t · A ? (" a om., patr., unc., se ., oo ., a om., patr .. , unc., se ., 1, no, Is i• 10r

each atom A;) and equal?. The primitives not discussed are: left, right, not, if,

t9-reduction and •+'.

According to the denotational equations, left and right are always applied

in conjunction with the coercion pair!. Since we have already considered logical

variables as arguments to pair!, we need no special mechanism for left and right.

The denotational equation producing function applications coerces the first

argument via the func! primitive. Since we have already considered logical variables

as arguments to func!, we need no special mechanism for t9-reduction, either.

Analogously, the coercion set! intercedes between •+' and its strict second

argument. Actually, since the second argument of •+, must be a set, one should

not expect to see a logical variable (which represents a term) in that position. We

have already discussed the case in which the second argument is a parameterized

set expression.

When a logical variable is an argument to not, or the first argument to if,

these arguments are protected by the coercion boo!!, so the logical variable must

already have been constrained to be a boolean. In that case, we simply split into two

subsets, one for which the logical variable is TRUE and one for which it is FALSE.

Though this involves a split, this is not really a special optimization technique. It

is the default procedure when bools is a relative set abstraction generator! The

only difference is that we delay the enumeration of bools until a boolean primitive

needs to know which one.

The only case not covered under any of these techniques is the case when a

logical variable represents a nonstrict argument of a primitive, e.g. if a logical

variable is the second or third argument of if. A semantic primitive of PowerFuL

will always simplify if it is given the outermost constructor of any strict argument. If

the primitive is not strict in that argument, however, the primitive will not simplify,

until something about a strict argument is known. So, consider

83

term(u).(.. . if((£[exp1] p),u, exp 3) • ••).

Assuming the outermost constructor of exp1 is not available, the primitive if would

not yet simplify no matter which term might replace u. Therefore, the occurrence

of a logical variable in this position does not call for any special consideration.

6.4 Example

Suppose we wish to unify these two non-ground first-order terms: [A I B] and

[C I 'd] . i.e., to find replacements for logical variables A, B and C so that [A I B]

= [C I 'd]. It is clear that there are an infinite number of possible unifiers, each of

the form [A/D, B/'d, C/D] for some term D. In fact, this parameterized substitution

(parameterized by logical variable C) [A/D, B/' d, C/D] is the most general unifier.

It is a general unifier in that replacing C by any term will result in a unifier, and

most general in that any unifier is an instantiation of this form.

To calculate the set of unifiers, one might execute the Powerful program:

{ [AI[BIC]]: A,B,C E terms, [AIB]=[CI'd]}

That is, each unifier is represented by a list, whose elements are the respective

bindings for A, B and C. Removing some syntactic sugars, the denoted object is

defined as

E[{cons(A,cons(B,C)): A,B,C E terms,cons(A,B) = cons(C,' d)}] A.

Without the optimizations, this program would produce a set represented by

an infinite union tree with a leaf for each possible assignment of terms to A, B and

C. Where the assignment is a unifier, the leaf would be a singleton set containing

these bindings in a list. Where the assignment is not a unifier, the leaf would be

the empty set. The following derivation, however, uses the optimizations discussed

in this chapter, and succeeds in avoiding much redundant work. As we shall see, it

will construct a finite union tree, with a few leaves representing the empty set, and

a single leaf containing a parameterized singleton set. This parameterized singleton

set will represent the most general unifier [A/C, 'd/B]. Expanding the outermost

call, the above expression becomes

(AX. E[{cons(A, cons(B, c)) : B, C E terms, cons(A, B)= cons(C,' d)}] [X/A]
)+set!(E[terms] A).

84

Since •+• is strict in the second argument, we rewrite its outermost occurrence of

£,yielding

(>.X. £[{ cons(A,cons(B, C)) : B, C E terms, cons(A, B)= cons(C,1 d)}] A
)+set!(F[terms]).

Putting the whole expression into the new notations yields

term(X).£[{ cons(A, cons(B, c)) : B, C E terms, cons(A, B) = cons(C,' d)}] [X/ A].

Evaluation of the body proceeds as before, eventually producing

term(X).term(Y).term(Z). set!(
if(efual?(E[cons(A,B)] p1 ,£[cons(C,' d)] p1)

£ {cons(A, cons(B, C)) :}] PI,
q,),

where PI is [XjA,YjB,Z/C]. The computation rule allows us to expand either the

first or second occurrence of£. We choose the first and simplify. Continuing in this

manner eventually yields

term(X).term(Y).term(Z). set!(
if(if(not(pair?(E[cons(C,' d)] pi)),

FALSE,
if(not(equal?(

£[A] Pl•
left(pair!(E[cons(C,' d)] PI))))

FALSE,
equal?(E[B] PI, right(pair!(E[cons(C,' d)] PI))))),

t'[{cons(A, cons(B, C)) :}] PI,
q,)).

The leftmost function call expands to an ordered pair. Then, the primitive pair?

simplifies to TRUE, and the primitive not simplifies to FALSE. The inner if

simplifies, producing

term(X).term(Y).term(Z). set!(
if(if(not(equal?(

£[A] P1,
left(pair!(E[cons(C,' d)] PI)))),

FALSE,
equal?(E[B] p1,right(pair!(£[cons(C,' d)] PI)))),

£[{cons(A, cons(B, c)) : }H PI,
¢>)).

Expanding the leftmost function call yields

85

term(X).term(Y).term(Z). set!(
if(if(not(equal?(X,left(pair!(£[cons(C,' d)] PI)))),

FALSE,
equal?(£[B] PI>right(pair!(£[cons(C,' d)] PI)))),

£[{cons(A,cons(B,C)) :}] PI,
1/>J).

The body is strict in the outermost if, which is strict in its leftmost argument. The

leftmost argument is itself an if, strict in its leftmost argument. That argument

is a not which is strict in an expression headed by equal?. This first occurrence

of equal? is strict in both arguments, one of which is a parameter enumerated by

terms, the other a function call. No matter how the equality would simplify, were

a term provided in place of the parameter, further simplification would be require

evaluation of the other argument. Therefore, we delay simplification of the equality

to compute the other argument, yielding

term(X).term(Y).term(Z). set!(
if(if(not(equal?(X, left(pair!(< £[c] PI,£[' d] PI >)))),

FALSE, .
equal?(£[B] PI, right(pair!(£[cons(C,' d)] PI)))),

£[{cons(A, cons(B, C)) :}] PI,
4>)).

Now we can simplify to

term(X).term(Y).term(Z). set!(
if(if(not(equal?(X, £[c] PI)),

FALSE,
equal?(£[B] PI, right(pair!(£[cons(C,' d)] pi)))),

£[{cons(A, cons(B, c)) : }] PI,
4> J).

The equality still requires evaluation of the second argument, which finally evaluates

to Z, yielding

term(X).term(Y).term(Z). set!(
if(if(not(equal?(X, Z)),

FALSE,
equal?(£[B] PI,right(pair!(£[cons(C,' d)] PI)))),

£[{cons(A, cons(B, C)) :}] Pb
4>)).

This simplifies to either TRUE or FALSE, depending upon whether or not X

equals Z. The first subset is

86

term(X).term(Y).term(Z).X # Z. set!(
if(if(not(FALSE),

FALSE,
equal?(£[B] P1,right(pair!(£[cons(C,1 d)] p1)))),

£[{cons(A, cons(B, C)) :}] P1,
<I>)).

which simplifies to (term(X).term(Y).term(Z).X # Y.</>), or simply¢>. The second

subset in the union is

term(X).term(Y). set!(
if(if(not(equal?(X,X)),

FALSE,
equal?(£[B] p2,right(pair!(£[cons(C,' d)] p2)))),

£[{cons(A, cons(B, c)) :}] P2,
<I>)),

where p2 is [X/ A, Y /B, X/C]. This simplifies to

term(X).term(Y). set!(
if(equal?(£[B] P2, right(pair!(£[cons(C,' d)] P2)))),

£[{cons(A, cons(B, C)) :}] P2,
<I>)),

The body is headed by an if, strict in its first argument, which is headed by an

equal?. Computing as before rewrites the first argument of equal? to the param

eter Y, and the second argument to 'd, yielding

term(X).term(Y). set!(
if(equal?(Y, 1 d),

£[{cons(A, cons(B, C)) :}D P2,
<I>)),

Simplifying the equality yields

term(X).term(Y). set!(
if(if(atom?(Y),

atomeq?(Y, 'd),
FALSE)

E[{cons(A, cons(B, C)) :}] P2,
</>)),

Simplifying the atom? primitive requires splitting into the union of three

cases:

87

term(X).bool(Y). set!(
if(1f(FALSE,

atomeg._?(Y, 'd),
FALSE)

f[{cons(A, cons(B, C)) : }D P2,
<P)),

term(X).atom(Y). set!(
if(if(TRUE,

and

atomeq?(Y, 'd),
FALSE)

f[{cons(A, cons(B, C)) : }D P2,
<P J),

term(X).term(Yi).term(Y2) set!(
if(if(atom?(< Yi, Y2 >),

atomeq?(< Yi, Y2 >, 1 d),
FALSE)

f[{cons(A,cons(B,C)) :}] Pa,
</1)),

where p3 is [X/ A,< Yb Y2 > /B, X/C]. The first and third subsets simplify to ¢1,

but the second simplifies to

term(X).atom(Y). set!(
if(is' d(Y),

f[{cons(A,cons(B,C)) :}D P2,
<P)).

Simplifying is'd? requires splitting Y into two cases:

term(X).atom(Y).Y =J 'd. set!(¢1)).

which simplifies to </1, and

term(X). set!(f[{cons(A,cons(B,C)) :}] [X/A,'d/B,X/C]).

This latter clearly evaluates to

term(X). ({<X, < 'd,X >}).

Theoretically, we should still compute this expression as the union of all possible

instantiations, each instantiation replacing the logical variable X by a first-order

term (or approximate the result by doing some of these instantiations). For practical

88

purposes, such instantiation is trivial, so computation would terminate here. The

final result of this calculation is therefore a finite union tree, with </> for the first few

leaves (for the branches which split off earlier) and the last leaf being the above.

6.5 Correctness Observations

Soundness: Ift; is a partially computed parameterized set expression, and t;[fl/£]

is an approximation produced by setting all unevaluated function calls ('D, £or :F)

to ..l, then for every instantiation !7 replacing logical variables with terms satisfying

the constraints, t;[fl/ £] !7 approximates a subset of U{ t;[fl/ £]}.

Proof: The theorem is true because of the meaning of a parameterized expression

(in terms of •+•), and the fact that all steps in a parameterized derivation replace

expressions by equals. End of Proof

Completeness: Any element of a set which can be computed by a non-optimized

derivation can be computed as an instantiation of a parameterized derivation.

Proof: This theorem is true because when dividing a parameterized expression

into cases (for the purpose of simplifying a primitive), every possible instantiation

of logical variables which satisfies the constraints is a possible instantiation of one of

the subcases. No possible instantiation is ever lost. Furthermore, any computation

which can be performed after replacement of the enumeration variable by a term

can be performed on the parameterized body. End of Proof

6.6 Summary
-

A type 1 simplification (simple reduction) does not require splitting; a type

2 simplification (splitting by type) requires a three-way split; type 3 simplifica

tions (splitting on equality) requires a two-way split. When performing primitive

simplifications, it is efficient to do first those simplifications which do not split the

computation into subcases, then those which split into two subcases and save for last

those requiring a three-way split. These optimizations avoid blind enumeration of

the sets terms, atoms and bools when used as relative set abstraction generators.

Instead, the enumeration parameter becomes a logical variable. An enumeration

variable from the set atoms is treated as a logical variable carrying the constraint

that it can be bound only to an atom. Enumeration variables from the set bools are

handled analogously. Inequality constraints relating two logical variables are also

89

used. The logical variables are instantiated only to the extent needed to simplify

the body. Wherever a logical variable is the argument of a primitive function, and

the primitive function needs more information about its argument to execute, the

generating set is divided into a few subsets, thereby dividing the whole expression

into subsets. In each subset, the range of the logical variable is narrowed enough

that the primitive has enough information to execute. Computing with logical vari

ables and constraints gives the set abstraction facility "resolution-like" efficiency.

Treating an enumeration parameter as a logical variable is practical because the

generating set terms is so simple in structure.

The optimizations described in this chapter modify the simple (though inef

ficient) operational semantics derived from the denotational equations in Chapter

4. Even with these optimizations, the result is far from a production-level imple

mentation! The purpose was rather to explain the role of the logical variable in

functional programming with set abstraction. The syntax and denotational seman

tics of PowerFuL made no reference to logical variables. The logical variable is

merely an operational concept to improve the execution efficiency when terms is

used as a generator. More complicated sets are also permitted as generators (e.g.

such as sets of functions, sets of sets, etc.), and in these cases, the default mechanism

(generate, instantiate, and continue) is used.

90

7 CONCLUSIONS

During the past decade, proponents of declarative programming languages have

discussed the possibility of combining of functional and logic programming styles

within one declarative language. Many proposals have been based on equational

logic, reasoning that equations could be used to define both functions and relations.

A weakness of this approach is the difficulty of maintaining functions (and other

higher-order constructions) as first-class objects. Testing higher-order objects for

equality is very difficult, and is not always computable, so a higher-order exten

sion will either relinquish referential transparency (through the use of an efficient

but unreliable higher-order equality test), or will require a very difficult and per

haps impractical, operational primitives such as higher-order unification, general

theorem-proving and unrestricted narrowing. Traditional functional programming,

in contrast, does not require tests of equality when passing arguments to proce

dures, and so avoids this problem. Since our approach is based on ordinary func

tional programming, incorporation of higher-order programming proved to be no

problem. Our approach supports both functions and sets as first-class higher-order

constructs. The underlying theses of our approach are:

1) Functional programming with relative set abstraction subsumes the expres

siveness of logic programming.

2) The resulting language does not require higher-order unification to maintain

first-class higher-order objects.

3) The use of logical variables is most properly viewed as an implementation

tool rather than as part of the language definition.

7.1 Results and Contributions

The principal results of this dissertation are:

(i) Relative set abstraction can combine lazy higher-order functional program

ming not only with first-order Horn logic, but also with a useful subset of higher

order Horn logic. Sets, as well as functions, can be treated as first-class objects.

(ii) Angelic powerdomains provide the semantic foundation for relative set ab

straction.

(iii) The computation rule appropriate for this language is a modified parallel

outermost, rather than the more familiar left-most rule.

(iv) Optimizations incorporating ideas from narrowing and resolution greatly

improve the efficiency of the interpreter, while maintaining correctness.

We are not the first to advocate set abstraction as a means of incorporating

Horn logic capability into higher-order functional programming. However, we do

believe this design is the first to be rigorously described via denotational seman

tics, mapping the syntax onto computable semantic primitives. The brevity and

simplicity of the denotational description attests to the elegance and integrity of

the design. To consider set-valued functions and sets as objects, we had to incor

porate angelic powerdomains into the complete semantic domain (each object in a

powerdomain represents a set of elements from some simpler domain). Our use of

powerdomains is novel in that we make the set an explicit data type, rather than

the implicit result of a non-deterministic control structure.

Horn logic programming can be described by either the fixed-point semantics

(closely related to Horn logic's model-theoretic semantics) or by its operational

semantics (SLD resolution). Soundness and completeness proofs attest the equiv

alence of these two descriptions. We feel that this result is an important feature

of Horn logic programming, and that our language should have a similar property.

Extending Vuillemin's theory of correct implementation of recursion, and apply

ing the resulting technique to the denotational equations themselves, we derived

an operational semantics equivalent to the denotational description. We think this

novel technique may be an important addition to the methodology of functional

programming, independent of the set abstraction problem.

To derive equivalent operational semantics by this technique, the denotational

semantics must handle most recursion explicitly, ensuring that primitives will al

ways terminate. Primitives must be rigorously defined via rewrite rules, rewriting

92

whenever the outermost constructor of any strict argument is available. Though

these restrictions make writing the denotational semantics more difficult, they en

sure the rigor of the definition. In extending Vuillemin's theory, we propose a new

computation rule which is a compromise between the parallel-outermost and the

leftmost computation rules. Like the leftmost rule, it permits evaluation to concen

trate in a primitive's strict arguments, but provides for parallel evaluation where

necessary due to the presence of non-flat domains.

Of special interest for logic programming is the set of terms, objects for which

identity is synonymous with equality. We showed that, when the set of terms is

used as a generating set in a relative set abstraction, the enumeration parameter

can be computed as a logical variable, instead of using the default blind generate

and-test procedure which would otherwise result. In the general case, however, the

enumeration parameters are instantiated by the various generator set elements as

these elements are computed. Thus, generators need not be arbitrarily restricted to

contain only first-order types.

Incorporating logical variables into the operational procedure complicates the

simplification of semantic primitives. That is, simplification sometimes requires

knowing more about a primitive's argument than that it is a term. It may depend

upon whether the logical variable represents an atom, a boolean or an ordered pair.

In such a case, we split the set into three subsets, one for each assumption. In each

subset, the primitive can simplify. A similar splitting procedure is used for handling

equality /inequality primitives.

7.2 Further Work

Several areas of additional research seem apparent:

1) Our decision to derive the operational semantics from the denotational equa

tions was motivated by a desire to ensure that the operational semantics remained

true to the denotational definition, and not by a conviction that this kind of inter

pretation would be most efficient. Practical software to implement this language

should make use of a more efficient strategy. The optimizations described in chap

ter 6 do not address the inefficiencies of interpreting from semantic equations in

general; rather, they solve a separate problem specific to set abstraction, i.e. the

desire to use logical variables in computing set abstractions generated by the set of

93

first-order terms. A challenging problem would be to describe this optimization in

terms of a more conventional operational semantics. In this dissertation we strove

to unify the declarative aspects of functional and logic programming; combining the

efficient implementation strategies developed for these kinds of languages (W83b]

(P87] is yet another topic.

2) Possible inefficiency aside, we feel that generating operational semantics from

denotational equations is an interesting idea, giving much insight as to the relation

between denotation and computation. We would like to study further the semantics

of denotational semantics as a programming language. From our experience in this

research, we feel that next time it might be better to define the semantics of the

language in terms of typed lambda calculus. This should permit greater rigor in

proving the relationship between operational and denotational semantics.

3) We would like to supplement PowerFuL with a polymorphic type system like

those provided for many other modern functional languages. This would lead to

many types of constructors. The most interesting aspect would be its effect on the

optimizations providing for logical variables. Would it increase the complexity of

computing with logical variables? Our feeling is that it might make the interpreter

more complex, but ought not to hurt efficiency.

4) Computation of infinite sets requires closer interaction between user and

interpreter. This places additional demands on the language environment, so new

programming enVironments may also need to be developed.

94

[A82]

[A83]

[AS85]

[AW82]

[BL86]

[BRS82]

[CK81]

[CM81]

[D74]

[D83]

[DP85]

References

S. Abramsky, "On Semantic Foundations for Applicative Multipro

gramming," In LNCS 154: Proc. 1Oth ICALP, Springer, Berlin, 1982,

pp. 1-14.

S. Abramsky, "Experiments, Powerdomains, and Fully Abstract Mod

els for Applicative Multiprogramming," In LNCS 158: Foundations of

Computation Theory, Springer, Berlin, 1983, pp. 1-13.

H. Abelson, G. Sussman, Structure and Interpretation of Computer

Programs, MIT Press, Cambridge, 1985.

E. A. Ashcroft and W. W. Wadge, "Prescription for Semantics," A CM

Transactions on Programming Languages and Systems, Vol. 4, No. 2,

April 1982, pp. 283-294.

M. Bellia and G. Levi, "The Relation between Logic and Functional

Languages: A Survey," In J. of Logic Programming, vol. 3, pp.217-236,

1986.

K. Berkling, J. A. Robinson and E. E.G. Siebert, "A Proposal for a

Fifth Generation Logic and Functional Programming System, Based

on Highly Parallel Reduction Machine Architecture," Syracuse Univ.,

Nov. 1982.

J. S. Conery and D. F. Kibler, "Parallel Implementation of Logic Pro

grams." In Conf Functional Prog. Lang. and Comp. Arch., ACM,

1981, pp. 163-170.

W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer

Verlag, New York, 1981.

J. B. Dennis, "First Version of a Data Flow Procedure Language." In

Lecture Notes in Comp. Sci., Ed. G. Goos and J. Hartmanis, Springer

Verlag, New York, 1974, pp. 362-376.

J. Darlington, "Unification of Functional and Logic Programming,"

internal report, Imperial College, 1983.

N. Dershowitz and D. A. Plaisted, "Applicative Programming cum

Logic Programming," In 1985 Symp. on Logic Programming, Boston,

95

[DFP86]

[DG89]

[F84]

[F84b]

[G88]

(GJ89]

[GM84]

[H80a]

[H80b]

[JLM84]

(JL87]

MA, July 1985, pp. 54-66.

J. Darlington, A.J. Field, and H. Pull, "Unification of Functional and

Logic Languages," In DeGroot and Lindstrom (eds.), Logic Program

mmg, Relations, Functions and Equations, pp. 37-70, Prentice-Hall,

1986.

J. Darlington, Y. Guo, "Narrowing and Unification in Functional Pro

gramming - An Evaluation Mechanism for Absolute Set Abstrac

tion," In 3rd International Conference, Rewriting Techniques and Ap

plications, Chapel Hill, NC, April 1989, pp. 92-108.

L. Fribourg, "Oriented Equational Clauses as a Programming Lan

guage." J. Logic Frog. 2 (1984) pp. 165-177.

L. Fribourg, "A Narrowing Procedure for Theories with Constructors."

In Proceedings of the 7th International Conference on Automated De

duction, LNCS 170 (1984) pp. 259c301.

J. Goguen, "Higher Order Functions Considered Unnecessary for

Higher Order Programming", SRI Project No. 1243, SRI International,

1988, 29 pages.

G. Gupta and B. Jayaraman, "Compilied And-Or Parallelism on

Shared-memory Multiprocessors," to appear in North American Con

ference on Logic Programming, Oct. 1989, 20 pp.

J. A. Goguen and J. Meseguer, "Equality, Types, Modules, and

(Why Not?) Generics for Logic Programming," J. Logic Frog., Vol.

2, pp. 179-210, 1984.

G. Huet, "Confluent Reductions: abstract properties and applications

to term rewriting systems," J. A CM, 27, 1980, pp. 797-821.

P. Henderson, Functional Programming Application and Implementa

tion, Prentice-Hall International, 1980.

J. Jaffar, J.-L. Lassez, M. J. Maher, "A Theory of Complete Logic

Programs with Equality," In J. Logic Frog., Vol. 1, pp. 211-223, 1984.

J. Jaffar, J.-1. Lassez, "Constraint Logic Programming," In 14th ACM

POPL, pp. 111-119, Munich, 1987.

96

[JS86] B. Jayaraman and F.S.K. Silbermann, "Equations, Sets, and Reduc

tion Semantics for Functional and Logic Programming," In 1986 ACM

Conf on LISP and Functional Programming, Boston, MA, Aug. 1986,

pp. 320-331.

(K79] R. A. Kowalski, "Algorithm = Logic + Control," In Communications

of the A CM, July 1979, pp. 424-435.

[K83] W. A. Kornfeld, "Equality for PROLOG," In Proceedings of the 8th

IJCAI, 1983, pp. 514-519.

[K84] T. Khabaza, "Negation as Failure and Parallelism." In Internatl. Symp.

Logic Programming, IEEE, Atlantic City 1984, pp. 70-75.

[L84] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, New

York, 1984.

[L85]

[LWH88]

[M65]

[M74]

[M80]

[M82]

G. Lindstrom, "Functional Programming and the Logical Variable,"

In 12th ACM Symp. on Prine. of Prog. Langs., New Orleans, LA, Jan.

1985, pp. 266-280.

E. Lusk, D.H.D. Warren, S. Haridi et. a!. "The Aurora Or-Prolog Sys

tem", In Proceedings of the International Conference on Fifth Gener

ation Computer Systems, Tokyo, 1988, pp. 819-830.

J. McCarthy, eta!, LISP 1.5 Programmer's Manual, MIT Press, Cam

bridge, Mass., 1965.

Z. Manna, Mathematical Theory of Computation, McGraw-Hill Inc.,

New York, 1974.

G. A. Mag6, "A Cellular Computer Architecture for Functional Pro

gramming." Digest of Papers, IEEE Computer Society COMPCON

(Spring 1980) pp. 179-187 .

. T. Moto-oka (ed.) Fifth Generation Computer Systems, Proc. of Inti.

Conf. on Fifth Generation Systems, Japan Information Processing De

velopment Center (North-Holland), 1982.

[M83] B. J. MacLennan, Principles of Programming Languages, Holt, Rine

hart and Winston, New York, 1983.

[MMW84] Y. Malachi, Z. Manna, and R. Waldinger, "TABLOG: The Deductive-

97

[MN86]

[N85]

[P81]

[P82]

Tableau Programming Language," In ACM Symp. on LISP and Func

tional Programming, Austin, TX, Aug. 1984, pp. 323-330.

D. Miller and G. Nadathur, "Higher-Order Logic Programming," In

Third International Conference on Logic Programming, London, July

1986, 448-462.

L. Naish, "Negation and Control in Prolog," Doctoral Dissertation,

University of Melbourne, 1985.

F. G. Pagan, Formal Specification of Programming Languages, Prentice

Hall, Inc., Englewood Cliffs, New Jersey, 1981.

G. Plotkin, "The Category of Complete Partial Orders: a Tool for Mak

ing Meanings," Postgraduate lecture notes, Computer Science Dept.,

Univ. of Edinburgh, Edinburgh, 1982.

[P87] S.L. Peyton Jones, The Implementation of Functional Programming

[Q82]

[R85]

[R86]

Languages, Prentice-Hall, 1087.

W. Quine, Methods of Logic, Harvard University Press, Cambridge,

1982.

U. S. Reddy, "Narrowing as the Operational Semantics of Functional

Languages," In 1985 Symp. on Logic Programming, Boston, MA, July

1985, pp. 138-151.

J. A. Robinson, "The Future of Logic Programming," Symposium on

Logic in Computer Science, Ireland, 1986.

[S77] J. E. Stay, "Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory," MIT Press, Cambridge, Mass., 1977.

[S86J D. A. Schmidt, "Denotational Semantics: A Methodology for Language

Development," Allyn and Bacon, Inc., Newton, Mass., 1986.

[S89]

[SJS9]

D. A. Schmidt, personal communication, April1989.

F.S.K. Silbermann and B. Jayaraman, "Set Abstraction in Functional

and Logic Programming," To appear in 1989 ACM Conf on Func

tional Programming and Computer Architecture, London, UK, Sept.

1989.

98

[SP85]

[T81]

[V74]

[VK76]

[W83a]

[W83b]

(YS86]

G. Smolka and P. Panangaden, "A Higher-order Language with Uni

fication and Multiple Results," Tech. Report TR 85-685, Cornell Uni

versity, May 1985.

D. A. Turner, "The semantic elegance of applicative languages," In

ACM Symp. on Func. Prog. and Comp. Arch., New Hampshire, Octo

ber, 1981, pp. 85-92.

J. Vuillemin, "Correct and Optimal Implementations of Recursion in

a Simple Programming Language," Journal of Computer and System

Sciences 9, 197 4, 332-354.

M. H. van Emden and R. A. Kowalski, "The Semantics of Predicate

Logic as a Programming Language," J. ACM23, No.4 (1976) pp. 733-

743.

D. H. D. Warren, "Higher-order Extensions of Prolog: Are they

needed?" Machine Intelligence 10, 1982, 441-454.

D. H. D. Warren, "An Abstract Instruction Set for Prolog'', Tech. Note

309, SRI International, 1983, 28 pages.

J-H. You and P. A. Subrahrnanyam, "Equational Logic Programming:

an Extension to Equational Programming," In 13th ACM Symp. on

Prine. of Prog. Langs., St. Petersburg, FL, 1986, pp. 209-218.

99

