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FRANK STEVEN KENT SILBERMANN. A Denotational Semantics Approach to 

Functional and Logic Programming (Under the direction of Bharat Jayaraman.) 

ABSTRACT 

This dissertation addresses the problem of incorporating into lazy higher-order 

functional programming the relational programming capability of Horn logic. The 

language design is based on set abstraction, a feature whose denotational semantics 

has until now not been rigorously defined. A novel approach is taken in constructing 

an operational semantics directly from the denotational description. 

The main results of this dissertation are: 

(i) Relative set abstraction can combine lazy higher-order functional program

ming with not only first-order Horn logic, but also with a useful subset of higher

order Horn logic. Sets, as well as functions, can be treated as first-class objects. 

(ii) Angelic powerdomains provide the semantic foundation for relative set ab

straction. 

(iii) The computation rule appropriate for this language is a modified parallel

outermost, rather than the more familiar left-most rule. 

(iv) Optimizations incorporating ideas from narrowing and resolution greatly 

improve the efficiency of the interpreter, while maintaining correctness. 
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1 INTRODUCTION 

This chapter places functional and Horn logic programming within the gen

eral context of declarative programming languages. After reviewing previous func

tional/relational combinations, we provide an overview of our approach. 

1.1 Declarative vs. Imperative Languages 

Programming languages can be divided into two broad categories: zmpera

tive languages, which includes languages such as Fortran, Pascal and Ada [M83], 

and declarative languages, which includes (declarative subsets of) languages such 

as Prolog [CM81] and Lisp [M65]. One way to appreciate their difference is via 

Kowalski's celebrated equation "Algorithm = Logic + Control," [K79] meaning 

that an algorithm may be described as a combination of logical relationships and 

execution control. Imperative programming languages, having evolved from Von 

Neumann machine languages, express the program control explicitly, and leave the 

program logic implicit in the form of assertions that are invariant at various control 

points. Declarative programming languages reverse the relative emphasis of logic 

and control; they express the program logic explicitly, leaving much of the control 

implicit. In contrast to the machine orientation of imperative languages, declarative 

languages are programmer-oriented, and their syntax and semantics are based on 

mathematical theories predating the electronic computer. 

Two important declarative subgroups are functional and logic. The most 

expressive functional programming languages (those which treat functions as com

putational objects) are based on lambda calculus; these include pure Scheme [AS85] 

and pure ML [M84], Miranda [T85] and Haskell [HW88]. Simpler (first-order) 

functional languages have been based on an algebra of programs [B78] and recur

sion equation systems [085]. Most logic programming languages have likewise been 

based on the first-order predicate calculus [VK76, GM84], higher-order predicate 



calculus [MN86], and also equational logic [085, YS86, F84]. 

The benefits of declarative languages are, firstly that algorithms expressed in a 

declarative language are often easier to understand than when expressed in a more 

procedural language, since the parts of a program combine in a more predictable 

way. Often the declarative programs are shorter. Because of their absence of side

effects and explicit sequencing, they have great potential for parallel execution. 

Even on purely sequential machines they execute efficiently enough to be useful 

in many applications [P87]. As the ratio of programmer costs to hardware costs 

rises, and with programs becoming longer and more complex, declarative languages 

are becoming ever more attractive. Furthermore, declarative languages show great 

potential for implementation on massively parallel hardware [CK81, D74, GJ89, 

LWH88, MSO, M82]. Declarative languages do not over specify the order of op

erations, and for many subcalculations execution order may be chosen arbitrarily. 

When execution order is known to be irrelevant, sub-calculations may be freely 

executed in parallel. 

Another advantage of declarative over imperative languages, and indeed, a cen

tral focus of this dissertation, is that the semantics of declarative languages can be 

more easily given a mathematically rigorous treatment. Programming language 

semantics is a study of the association between programs and the mathematical 

objects which are their meaning. Different methods have been proposed to describe 

this association, e.g., denotational, operational, axiomatic, etc. [P81]. To specify 

the semantics of a language denotationally means to specify functions that assign 

mathematical objects to the programs and to parts of the programs in such a way 

that the semantics of a program expression depends only on the semantics (i.e. not 

the form) of its subexpressions. This kind of semantics seems most useful for de

scribing the language constructs, i.e. for encapsulating the essence of the language 

design. Since the constructs of a declarative language are patterned after mathemat

ical ideas, denotational semantics would seem seem to be the easiest way to describe 

a declarative language. Operational semantics specifies an abstract machine which 

would compute the output of a program. That is, an operational semantics can be 

viewed as a high-level description of a possible implementation. Since the constructs 

of an imperative language are designed with conventional hardware capabilities in 

mind, operational semantics would seem to be the easiest way to describe an im-
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perative language. Axiomatic semantics seems most useful for proving properties 

of specific programs in a language. Since we are interested in language design and 

implementation, we will concentrate on denotational and operational semantics. As, 

we are designing a declarative language, the defining semantics is the denotational; 

the operational semantics will be considered correct only to the extent it agrees 

with the denotational. 

1.2 Paradigms of Declarative Programming 

Various declarative paradigms have evolved independently of each other. We 

discuss some of the more popular ones, emphasizing their unique features. 

1.2.1 Functional Programming 

· The functional programming paradigm, based on function definition and appli

cation, offers powerful tools for program modularization and abstraction. Typically, 

a computation may be decomposed into a hierarchy of smaller components. For in

stance, one operation might produce a data structure used by the next. In a purely 

imperative style, rather than defining each operation independently, references to 

their common data structures make the definitions of these operations mutually 

dependent. This makes it difficult to understand one part of the program inde

pendently of the rest, and hinders the reuse of code. In a more functional style of 

programming, an operation can provide data for the next via function composition. 

For instance, an expression denoting the result of one function is used as an input 

argument to another. The location or name of the intermediary result need not be 

explicitly given, thus allowing the two functions to be defined independently of each 

other. More specific features common to functional programming are listed below. 

1) With a form of outermost, or lazy evaluation, the data structure defined by 

an argument expression is computed only to the extent necessary for its caller. With 

this strategy, a function can define a data structure that is conceptually infinite, 

such as an infinite list. With infinite lists, even interactive input-output can be 

described in a purely functional notation, as shown by Henderson [HSOb]. The 

functions being composed can be modeled as concurrent processes. 

2) Functional languages permit higher-order objects, i.e., functions may take 

other functions as arguments and produce other functions as results. With this 

feature, one can more easily abstract code common to several routines. With the 
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ability to create general-purpose program fragments, more program parts can be 

easily reused in new systems. 

3) Static Jcoping permits functions to be defined within the context of other 

function definitions. This provides modularization via hierarchical functional de

composition and supports information hiding. 

4) To help the programmer avoid errors, many programming languages provide 

a type system. An object's type constrains the range of values it may take, so that 

gross errors are caught early. Many functional programming languages provide 

polymorphic typing, so that typing can be parameterized. 

5) To enhance its acceptance for practical programming, powerful compilation 

techniques have been developed, such as incremental compilation and combinator 

approaches [P87]. 

To give a flavor of the functional style of programming, we present a small 

program, which given a function to insert a binary operator between components 

of a list, easily defines functions to sum lists of numbers, compute their products, 

and even to append lists: 

reduce (func, identity, list) is 
if null(l) then identity else 
func( head(list), reduce( func, identity, tail(list)) ) 

sumlist is lambda(list). reduce(+, 0, list) 

prodlist is lambda(list). reduce( *• 1, list) 

append(a, b) is reduce( cons, b, a) 

1.2.2 (Horn) Logic Programming 

In logic programming, computations are specified via logical constraints. In

stead of defining the solution as a function from input to output, one merely states, 

in the form of relationJ, the properties the solution must satisfy. This gives pro

grams a more flexible execution moding; not until execution need it be d~termined 

which parameters of a relation will be given values and which parameters are to be 

computed. Execution is a search procedure to find one or more solutions. In this 

sense, logic programming can be even more declarative than functional programs. 

Its chief advantages are: 
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1) conceptual simplicity, in that a program can be viewed as a set of assertions 

in first-order predicate logic; and 

2) automatic availability of a function's inverse, i.e. when a function is pro

grammed as a relation between its input and its output, its inverse is also automat

ically defined. 

The most popular form of logic programming is based on first-order Hom logic, 

a subset of predicate logic. A Horn logic program defines and reasons with relations. 

Conceptually speaking, each program clause states that for all instantiations of its 

variables by first-order terms, if all the righthand side predicates are true, then so 

is the predicate on the lefthand side. We use the term subgoal to refer to one of 

the righthand side predicates. If a clause has no subgoals, then, for all possible 

instantiations, the lefthand side predicate is true. Such a clause is called a unit 

clause. 

For instance, one can describe the appendfunction as a relation between its 

input arguments and its output, as in the following Horn logic program: 

append( [], X, X). 
append( [HIT], Y, [HIZ]) :-append( T, Y, Z). 

The goal is to find a set of bindings for the variables so that all the predicates in the 

user query are true. In a user query, one can either provide two lists to be appended, 

or one can request that two lists be found which, when appended, produce a known 

list: 

?- append( [1,2], [3,4], Ans). 

?- append( left, Right, [1,2,3,4]). 

Since the universe of first-order terms can be enumerated, one could, in princi

ple, generate all possible instantiations for the goal, and check each instantiation for 

suitability by verifying, if possible, the truth of each instantiated goal predicate via a 

derivation. A more efficient operational procedure, called resolution, tries to derive 

the truth of the original uninstantiated user query, binding values to the variables 

in the goal and program clauses only to the extent needed to keep the derivation 

going. Such variables are called logical variables, in current Prolog terminology. 

Two basic operations of the resolution procedure are unification and search. In 

unification, the logical variables in a program and in the goal are given values so that 
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a predicate in the user query will equal the lefthand side predicate of the partially

instantiated program clause. When this can be done, the instantiated righthand 

side of the program clause replaces the matched predicate in the user query. In first

order Horn logic, two terms are equal if and only if they are identical, so unification 

can be efficiently implemented. Higher-order unification is much more difficult; in 

fact, testing the equality of two higher-order terms is not decidable, in general [R86]. 

"Search" refers to the fact that, an any stage in the derivation, one may have 

several applicable program clauses to choose from. Breadth-first search, in which 

one tries all possible choices, will find all solutions. This property is called complete

ness. Usually however, a depth-first search implemented via backtracking is used, 

because of its smaller space requirements. Depth-first search, however, sacrifices 

completeness. 

One disadvantage of first-order Horn logic programming is its lack of higher

order capability, i.e. the inability to use relations themselves as objects. Warren 

described a way to encode some higher-order Horn logic programs within first

order Prolog [W83a]. The programmer associates a special (first-order) term with 

each predicate to be passed as an argument (or returned as a result) in place of 

the predicate itself. To apply the 'predicate', one calls a special 'apply' predicate, 

which has recorded which predicates are associated with which terms, applying the 

associated predicate. Though Warren has described a useful Prolog programming 

technique, higher-order predicates defined via his technique may lack referential 

transparency. Referential transparency requires that when two predicates name 

the same relation, they may be interchanged anywhere in the program without 

changing the program's declarative meaning (though execution efficiency may be 

affected). With Warren's scheme, a "higher-order" predicate testing two input 

predicates for equality would test the associated terms, instead. The term.encodings 

might differ even if the predicates themselves define the same relation. Though 

Warren's technique provides the desired linguistic expressiveness, the possibility of 

nontransparent usage makes reasoning about programs more difficult. It is for this 

same reason that we consider first-order logic insufficient as the basis for higher

order programming, in contrast to the position taken in [G88]. One would prefer 

that higher-order capability be directly supported in the language's actual formal 

semantics. 
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Seeing the limitations of Warren's encodings, researchers (MN86, R86] are in

vestigating programming languages based on subsets of of higher-order Horn logic. 

Unfortunately, full higher-order predicate logic is uncomputable, so most approaches 

restrict the higher-order capability to handle only specific subclasses of higher-order 

objects, or impose restrictions limiting their use. Miller and Nadathur have de

scribed a form of Horn logic incorporating terms from Church's typed lambda cal

culus (MN86], introducing some higher-order capability. However, their functions 

(lambda expressions) cannot be recursively defined and were not intended to pro

vide full higher-order capability. Rather, they intended their system to be a useful 

tool for meta-programming, i.e. for building program transformation systems and 

theorem provers. 

The next section discusses another variation of logic programming based on 

equational logic. 

1.2.3 Equational Logic Programming 

Though this dissertation does not deal explicitly with equational programming, 

we feel that some discussion is warranted, as equational programming is capable of 

combining many of the features of both functional and Horn logic programming 

[085, F84, YS86, DP85]. Like Horn logic programming, certain forms of equational 

programming compute by solving constraints (YS86, F84, DP85]. As in functional 

programming, certain forms of equational programming can define functions, exe

cuting them with reasonable efficiency (085]. As with Hom logic programming, it 

provides no higher-order capability. 

In equational logic, rather than defining general predicates or relations, the 

program is a collection of parameterized equalities between terms, each implying 

that, for all instantiations of the (logical) variables, the two resulting terms are 

equal. Alternatively, the equality of a parameterization can be made conditional 

upon other pairs of terms being proven equal first. The goal of an equational logic 

program is to instantiate a user query so as to make it a logical consequence of the 

program. 

To test whether two terms are equal, one uses the equations as substitutions, 

to see whether one can rewrite the two terms to identical forms. This can be very 

difficult, as one must compare each equivalent form of the left term in the goal 
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with each equivalent form of the right. Furthermore, for each term, the class of 

equivalent terms may be infinite. 

To avoid the computational problems of unrestricted equational programming, 

term-rewriting systems were developed. In proving equality of two terms, the pro

gram equations are used in one dires:tion only, i.e. one instantiates a program 

equation so that its left side matches a portion of the term being rewritten, and 

that portion is then replaced by the instantiated right-hand side. In order to guar

antee the sufficiency of this mechanism, the equation set must be confluent. That 

is, it must be guaranteed that, if a term can be rewritten using more than one equa

tion, all results must eventually converge to a common result. It is easiest to prove 

confluence when it can be shown that rewriting is always guaranteed to terminate, 

in which case, every term has a unique normal form, i.e., rewrites to a single term 

which can no longer be rewritten. 

Confluent and terminating term-rewriting systems are called canonical. When 

a canonical term-rewriting system is viewed as an equational program, it has the 

property that all equal terms will rewrite to a common term, called a normal form, 

which cannot be further rewritten. This greatly increases the efficiency of the 

equality test, as one need not only compare two normal forms to test whether 

two terms are equal. However, one disadvantage of using canonical term-rewriting 

systems for functional programming is that the termination requirement rules out 

functions and relations operating on infinite data structures. 

An operational mechanism known as narrowing (HSOa], which combines reduc

tion and unification, allows one to solve for logical variables (DP85] [YS86] in a 

goal equation. This technique reduces the parameterized equation via the rewrite 

rules as much as possible. When the presence of logical variables in the goal pre

vents further reduction, the variables are replaced by somewhat more defined values 

(terms which may contain new logical variables) in order that reduction may con

tinue. When the equality becomes apparent, the accumulated bindings for the 

logical variables provide the solution. For completeness, each time a logical vari

able is narrowed, one must compute in a breadth-first manner many alternative 

narrowings. Unfortunately, the branching on narrowing tends to quickly get out of 

hand. 

Constructor-based equational programming systems (R85] (JS86] [F84b] seem 

8 



to ameliorate the above problems. Certain functors are taken as irreducible data 

constructors, and other functors are assumed to name functions. An equation's left 

side is restricted to contain only one function name, placed at the outermost level, 

thus distinguishing between equations to define functions, and equations stating 

properties of functions, and permitting only the former. A term now no longer 

stands for itself, but rather denotes the no"rmal form (which is built solely of con

structors). With this restriction, the distinction between term-rewriting and first

order functional programming begins to blur, and with narrowing, one gains Horn 

logic's capability to satisfy constraints, as seen in the following example: 

append( [ ] , y) = y 
append([h I t], y) = cons(h, append(t, y)) 

?-append([1,2], [5,6]). 

?-append(x, y) = [1, 2, 3]. 

In a constructor-based system, narrowing becomes more efficient (at each step, fewer 

narrowings need be considered) [F84b] [JS86J. Where reduction without narrow

ing suffices, non-terminating programs (denoting infinite objects) might possibly be 

supported. Proofs of confluence are still required, though they are perhaps easier to 

find. In some ways, reduction, the operational strategy of functional programming, 

resembles term-rewriting. We should therefore not be surprised if the operational 

procedure of a language combining functional and logic programming would simi

larly resemble narrowing. 

1.2.4 Functional and Logic Programming Combinations 

Sometimes we wish to combine both functions and relations within one pro

gram. A number of attempts have been made to combine features of functional and 

logic programming into a single language (see [BL86] for a recent survey). Either 

one can add functional programming to a Horn logic base, or one can add relational 

capability to a functional programming language. 

Some have proposed adding function definition capability to Horn logic via 

an equational theory [K83] [GM84]. The equational theory may be provided via a 

canonical term rewriting system. Syntactic examination of a predicate's arguments 

no longer suffices when judging whether a program clause is relevant. Instead, the 

interpreter must ascertain whether a predicate's arguments might rewrite to terms 
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matching the program clause, or whether patterns in the program clause may be 

rewritten to match the arguments. The computational complexity of this inference 

mechanism is a major difficulty. 

In describing his language Fresh [SP85], Smolka begins with a functional lan

guage, written in an equational style to incorporate pattern-matching, and describes 

an operational semantics reminiscent of narrowing. The resulting language is very 

expressive, providing a higher-order capability via a technique similar to Warren's 

(described above). As with Warren's encodings, referential transparency is lost. It 

is unclear what would be a meaningful purely declarative subset, as Smolka did not 

provide a denotational description. 

Though Horn logic relations are defined in predicate logic, these relations could 

just as easily be described via set theory. In fact, Horn logic's model-theoretic and 

fixed-point semantics are described in the language of set theory. One approach to 

combining functional and logic programming is to add sets as another data type. 

Robinson and Darlington were the first advocates of adding logic programming 

capability to functional programming through set abstraction. In describing SU

PERLOGLISP [BRS82], Robinson suggests that a functional language should have 

a construct denoting the complete set of solutions to a Horn logic program, and that 

the user be able to build functions accepting such sets as arguments. Darlington 

calls his extension absolute set abstraction [D83, DFP86] to distinguish it from rel

ative set abstraction, discussed later. Absolute set abstraction permits expressions 

such as 

{x: p(x)}, 

to denote define the set of all x satisfying p( x). In this approach, nondeterminism 

is replaced by set union, and unification is performed to solve equations between 

non-ground objects. 

Robinson's language, SUPERLOGLISP, combines LISP and Horn logic through 

absolute set abstraction. He develops many useful implementation ideas, but does 

not develop a mathematical justification or a formal semantics. Since the base 

language is LISP, LOGLISP has some higher-order capability, though its use is 

restricted when accessing the relational features. As in LISP, stream-based pro

gramming is not supported, as arguments must be evaluated before being passed 

10 



to functions. 

Darlington's approach is similar; however, his base functional language is lazy, 

with polymorphic typing. In his recent paper [DFP86), Darlington sketched a par

tial and informal operational semantics. In [DG89), he described absolute set ab

straction in a strictly first-order equational language as a variation of narrowing in 

term-rewriting systems. 

The work of Darlington and Robinson leaves several important open problems: 

In what way does this construct interact with other traditional functional language 

features, such as infinite and higher-order objects? How can the presence of this 

feature be reflected in the language's denotational semantics? Will all denotable sets 

be computable? To our knowledge, these semantic issues have never been rigorously 

worked out. 

1.3 Proposed Approach 

Our goal is a language incorporating both functional and logic programming, 

and providing the following features: 

1) Simple semantics through referential transparency. For instance, functions 

should be completely described by the mapping defined; two alternative defini

tions describing the same mapping should be indistinguishable within the language. 

Analogously, sets should be completely described by the elements contained; we 

should not be able to distinguish two different expressions of the same set, though 

orderings of the elements may differ. In other words, we would like to satisfy the 

axiom of extensionality [877) for functions and sets. 

2) Higher-order objects should be first-class, i.e., they can be used freely as 

function or predicate arguments and results. 

3) Possibility of efficient execution. Backtracking should not be used where 

simple rewriting is sufficient, and the interpreter should not rely on computationally 

explosive primitives, such as higher-order unification or unification relative to an 

equational theory. 

4) Verifiably correct execution mechanism, 1.e., the operational and denota

tional semantics should describe the same language. 

We make functional programming with set abstraction the basis for our unified 
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declarative language because: 

1) simple propagation of objects can be managed without equality tests (im

portant for higher-order objects); 

2) it should be easier to add the constructs from as small and simple a language 

as Horn logic into the larger and more complicated functional programming, rather 

than vice-versa. Functional programming languages have a richer domain of objects, 

compared with Horn logic's fiat domain, and therefore a larger variety of constructs; 

and 

3) ordinary functional computations not making use of set abstraction might 

be executed without backtracking. 

For simplicity, we will not consider typing mechanisms, whether polymorphic or 

otherwise, though we see no reason why such a feature could not be added. 

1.3.1 Relative Set Abstraction 

Neither Robinson nor Darlington have been able to implement absolute set 

abstraction as a first-class object, interacting freely with other functional language 

features. Both Darlington and Robinson claim that implementation of absolute set 

abstractions as first-class objects would require higher-order unification, which is 

not always computable. Even so, some higher-order programs in their languages 

would merely be unexecutable program specifications. Robinson has criticized exist

ing combinations of higher-order functional programming with first-order relational 

programming as inelegant [R86]. His goal is to create a purely declarative func

tional language permitting higher-order relational programming, without arbitrary 

unorthogonal restrictions on its features. But, this line of work has yet to be fully 

explored. 

Replacing absolute set abstraction with the semantically simpler relative set 

abstraction, the notation avoids the suggestion that full higher-order logic program

ming capability ought to be available. This removes the sense of inelegance Robinson 

noted. A typical relative set abstraction would be an expression of the form: 

{f(x) : x E G and C(x)}. 

Here, the generating set G is provided explicitly, and those elements x which satisfy 

the condition C are used in computing elements of the new set. Compare this to 
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the form of a typical absolute set abstraction: 

{f(x) : C(x)}. 

Here, one "solves" the condition C for suitable values of x, each solution used to 

compute an element f(x) of the denoted set. 

The absolute construct is powerful, but its higher-order extension is problem

atic. The implementations of the languages of Darlington and Robinson restrict a 

logical variable to represent only first-order terms. This restricted domain is anal

ogous to the Herbrand univer3e in first-order Horn logic. Thus weakened, absolute 

set abstraction is no longer more powerful than relative set abstraction. This set 

of first-order terms, T, can easily be expressed via a recursively-defined relative set 

abstraction. Thus, any first-order absolute set abstraction can easily be expressed 

as a relative set abstraction. For instance, the example above would be written as: 

{f(x) : x E T and C(x)}. 

We observe that relative set abstraction can al3o provide the needed logic pro

gramming capability. We prefer relative set abstraction because it has a more 

tractable higher-order generalization. Not only is relative set abstraction as expres

sive as first-order absolute set abstraction (as shown above), but it can mix freely 

with higher-order constructs, without requiring arbitrary first-order restrictions. 

David Turner pioneered the use of relative set abstraction in a functional pro

gramming language, KRC [T81]. However, in his language, sets are implemented 

as lists, and may be accessed as such, thus providing an implicit ordering on the 

elements. This violates the semantics of sets and does not ensure fairness. If com

putation with one element of a generator set diverges, the next element is never 

tried. With this kind of implementation, the construct is no longer described as 

set abstraction; rather, one speaks of li3t comprehen3ion3 [P87]. We, in contrast, 

advocate true relative set abstraction. 

In our system, the set of first-order terms is provided as a (semantically un

necessary but operationally convenient) primitive. In computing a relative set ab

straction, only if a variable x is recognized as being enumerated from the set of 

first-order terms is it treated as a logical variable. This special treatment is merely 

an optimization to the default 'generate and test' mechanism. We show that these 

set abstractions generated from the Herbrand universe can be identified, and opti-
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mized to provide efficiency comparable to Darlington's procedure. 

Thus, we propose a lazy, statically-scoped, higher-order functional language 

with relative set abstraction, to combine higher-order functional and logic pro

gramming. 

1.3.2 Denotational Semantics 

A formal mathematical description of objects computed in this language, ob

jects such as atoms, lists, functions and sets, is given by the specification of the 

semantic domain. The denotational semantics consists of this and a function map

ping of the language's syntactic statements to elements of the semantic domain. 

We choose to define the language through denotational semantics because, through 

this method, properties of a language can be determined at a glance. Consider for 

example the denotational equation for a cons structure: 

£[cons(expr1, expr2)] p = <(£[expr1] p), (£[expr2] p)>. 

This equation describes the meaning of the expression, cons ( expr 1 , expr2), 

in the .environment p, as depending upon the meaning of the sub expressions expr 1 

and expr2. Note that the environment for one subexpression is unaffected by the 

presence of the other subexpression. That is, the computation of expr1 can have 

no side-effects that might influence the value of expr2. Therefore, the two subex

pressions can be computed independently, perhaps even in parallel. Through such 

semantic equations the declarative nature of the language may be seen. 

Though others have proposed languages combining functional and logic pro

gramming through set abstraction [BRS82J [DFP86], to our knowledge we are the 

first to give a denotational description. One difficulty was finding a suitable domain 

to represent set-valued objects. We have found that angelic powerdomains suffice, 

and our reasons for this choice will be explained later in Chapter 3. Powerdomain 

theory is usually used to describe nondeterministic languages, i.e. where a pro

gram is said to denote the set of objects which might be computed in any single 

execution. Indeed, powerdomains were conceived for that very purpose. Our use 

of powerdomain theory is unusual, in that, rather than describing the results of a 

control structure (nondeterminism), it describes sets as an explicit data type. 
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1.3.3 Correct Operational Semantics 

To demonstrate that the language is executable, we provide an operational se

mantics, and we show its correctness with respect to the denotational semantics. 

To do so, we show that the denotational description's function to map syntactic 

statements to the semantic domain can be viewed as a functional program for the 

interpreter, written in terms of lambda expressions and primitive semantic func

tions. Each primitive function is defined via a set of equations, and implemented 

through the use of these equations as simplification rules. This leaves unspecified 

only the order of evaluation. We choose a variation of the parallel-outermost rule, 

optimized in that some outermost computations may be delayed. That some de

gree of parallel evaluation is needed for complete evaluation of sets should not be 

surprising; as a complete implementation of Hom-logic also requires a degree of 

breadth-first evaluation. 

1.3.4 Optimizations 

The operational semantics described above is inefficient for two reasons. First, 

it is pure interpretation; no provision has been made for compile-time pre-computation. 

In defining the scope of this research, we chose to avoid such issues. Second, the op

erational semantics is inefficient when the set of first-order terms is the generator of 

a relative set abstraction (analogous to an absolute set abstraction); the procedure 

described above would blindly enumerate the infinite set of terms, instantiating a 

copy of the abstraction for every possible term. To avoid this second cause of inef

ficiency, optimizations are provided which permit the enumerated variable in such 

cases to be treated as a logical variable, instantiated only as needed to continue the 

computation. This optimized operational semantics was inspired by the narrowing 

technique from term rewriting systems [R85] and the resolution technique from logic 

programming [184]. This development expresses our point of view that the logical 

variable concept is best understood as an operational optimization, and not as part 

of the language's declarative description. 

1.3.5 Scope of the Research 

This dissertation describes a programming language combining functional and 

logic programming, and exhibiting the characteristics we have set forth as desirable. 

The denotational semantics provides a deep understanding of the meaning of the 
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language constructs, and serves as a standard for correct implementation. We also 

develop two variations of operational semantics. The first serves two purposes: 

1) to demonstrate that the language can in fact be correctly implemented; and 

2) to serve as a basis for the second operational semantics. 

The second operational semantics contains optimizations essential for efficient logic 

programming (the relation between the two operational semantics may be thought 

of as analogous to that between Horn logic proof theory and the resolution method 

[VK76]), and justifies our view that the logical variable is an operational, not a 

declarative concept. In this dissertation, we do not discuss the detailed imple

mentation issues necessary for constructing a practical piece of software. Neither 

operational semantics, if implemented directly, would be very fast. Rather, op

erational issues are considered only in so far as they give us a deeper theoretical 

understanding of the language. 

This introduction has given an overview of the dissertation, and a summary 

of related work. The remaining chapters are as follows. Chapter 2 provides the 

syntax of the new language, along with sample programs. Chapter 3 describes the 

denotational semantics. Chapter 4 derives a simple operational semantics. Chapter 

5 provides a detailed description of the semantic primitives. Chapter 6 improves 

the operational semantics with optimizations for more efficient logic programming. 

Chapter 7 discusses and summarizes the results of this research. 
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2 THE POWERFUL LANGUAGE 

This chapter introduces a functional language with relative set abstraction. We 

call the language PowerFuL, because Powerdomains provide the semantic basis 

for the kind of set abstraction needed to unite Functional and Logic programming. 

We first describe the syntactic features via BNF and informal explanation, and then 

provide sample programs chosen to illustrate the constructs, and to show that any 

first-order Horn logic program can be translated into PowerFuL. 

Wishing to concentrate of semantic foundations, we emphasize the essential 

features, leaving out many convenient syntactic niceties. For instance, we do not 

provide the boolean connectives, as these can be easily programmed via the condi

tional. We also do not discuss (polymorphic) strong typing and numeric operations, 

though these features are not incompatible with PowerFuL. 

2.1 Syntax of Constructs 

A PowerFuL program is an expression to be evaluated. The syntax is: 

expr 0 0 = (expr) I A1 I .. . I An 

cons(expr, expr) I car(expr) I cdr(expr) 

TRUE I FALSE I not(expr) I if(expr, expr, expr) 

bool?(expr) 

func?(expr) 

identifier 

atom?(expr) I pair?(expr) 

set? ( expr) I expr = expr I null? ( expr) 

letrec identifier be expr, ... , identifier be expr in expr 

>. identifier . expr 

expr expr 

phi I set-clause I U(set-clause, set-clause) 

bools I atoms I terms 



set-clause . ·= 
qual-list · · = 

qualifier : : = 

enumeration : : = 

condition : : = 

{ expr : qual-list} 

qualifier, qual-list I e 

enumeration I condition 

identifier E expr 

expr 

Most of these constructs have close analogs in other functional languages. We 

provide below a brief explanation of the above syntax, in the order of their appear

ance in the BNF. 

• We can put parentheses around an expression for clarity, or to override the default 

left-associativity. 

• We use A; to indicate an arbitrary atom. In practice, an initial quote distinguishes 

an atom from an identifier. 

• As in LISP, we use cons to construct ordered pairs; car and cdr select a pair's 

left and right elements, respectively. Lists may. be written in the [ ... ] notation, 

e.g. ['apple, 'orange, 'grape] and have the usual nested-pair representation 

usmg cons. 

• As in Scheme [AS85], condition predicates end in a '?'. The basis of equality 

testing is atomeq?, which compares atoms for equality. The condition null? tests 

whether its argument equals the atom 'nil. The general equality condition answers 

false if its arguments are of incompatible types (e.g. an atom and a list), answers 

true or false if the arguments are two atoms or two booleans, and in the case of 

two ordered pairs, compares the respective left and right branches, recursively. It is 

undefined when comparing two functions or two sets. PowerFuL also provides the 

usual type-checking conditions: bool?, atom?, etc. As is required for full referential 

transparency (extensionality), equality between higher-order objects is not defined. 

The result of equating higher-order objects, such as sets or functions, is l.. 

• The conditional, if (condition, expr2, expr:J), may also be written as if condi

tion then expr2 else expr:J fi. 

• A function parameter is represented by an identifier. Lambda expressions are 

used to define functions. A lambda expression with more than one parameter, such 

as 

,\ id1 id2. body 
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is syntactic sugar for a lambda expression with a single parameter x representing 

a sequence. In this example, an occurrence of id2 in the body would be replaced 

by cdr(x). Similarly, when applying a "multi-argument" lamba expression, the 

argument list is converted to the appropriate list via cons. 

• The syntactic form letrec is used to define statically scoped identifiers. A set of 

identifiers may be defined via mutually recursive definitions. A program is invalid 

if it contains a reference to an undefined identifier. 

• Enumerations are the syntactic basis for relative set abstraction. Each identifier 

introduced within the set-clause is associated with a set expression to provide possi

ble values. The scope of the enumerated identifier contains the principal expression 

(left of the ': '), and also all qualifiers to the right of its introduction. In case of name 

conflict, an identifier takes its value from the latest definition (innermost scope). In 

any case, the scope of an enumerated identifier never reaches beyond the set-clause 

of its introduction. When the qualifier is a condition, the expression to the left of 

the ':' is in the denoted set only if the condition evaluates to true. When there 

are no qualifiers to satisfy, the set-clause indicates a singleton set, and the ' : ' is 

usually omitted. Expressions of the form U(set1 , ••• , se4,) are syntactic sugar 

for a nesting of binary unions. 

• The syntax bools refers to the set { TRUE, FALSE}. Similarly, atoms is the set 

containing all the atoms A;. The set terms is a union of atoms, bools, and any 

finite object which can be constructed by "cons" -ing together elements of those two 

sets. 

2.2 Program Examples 

To illustrate the language constructs and to show their applicability for func

tional and logic programming, we now provide a series of short programs in Power

FuL. 
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Functional Programming 

letrec 

in 

append be A 11 12. if null?(l1) then 12 

else cons(car(l1), append(cdr(l1),12)) fi 

map be A f.A l.if null?(l) then [] 

else cons(f(car(l)), map(f,cdr(l)))fi 

infinite be cons('a, infinite) 

Higher-order functions and infinite objects can be defined in the usual manner. The 

map example shown above is in curried form. 

Set Operations 

letrec 

in 

crossprod be A s1 s2. {cons(X,Y) : XEs1, YEs2} 

filter be A p s. {X : X E s, p(x)} 

intersection be A s1 s2. {X : XEs1, YEs2, X=Y} 

The operations crossprod and filter are similar to those in Miranda [T85]. Note 

that one cannot define an operation to compute the cardinality of a set, nor can 

one test whether a value is or is not a member. Such an operation would be 

analogous to Prolog's negation by failure. This work concerns itself solely with 

Prolog's declarative capabilities, i.e. those based on pure Horn logic. 

Logic Programming 

letrec 

split be A list. { [XIY] : XEterms, YEterms, append(X,Y)=list} 

append be A 11 12. if null?(l1) then 12 

else cons(car(l1), append(cdr(l1),12)) fi 

in 
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The enumerations XEterms, YEterms in split are needed because the set-abstraction 

is relative, not absolute. 

Higher-order Functional and Horn logic programming 

letrec 

in 

one be ,\ v. ' a 

two be ,\ v. 'b 

three be ,\ v. 'c 

{F: FE U({one}, {two}, {three}), map(F)(['x,'y,'z]) = ['c,'c,'c]} 

The result of the above set-abstraction is the set {three}. In this example, the 

generator set for F, U( {one}. {two}. {three}) is first enumerated to obtain a 

function which is then passed on to map. Those functions which satisfy the equality 

condition are kept in the resulting set, while the others are screened out. 

2.3 Translating Horn Logic to PowerFuL 

This sections discusses the translation of programs from Horn logic to Pow

erFuL. First, we reinterpret Horn logic clauses as statements about sets and set

membership, rather than about the truth of predicates. Then we show how such 

statements can be expressed in PowerFuL. 

2.3.1 Converting Horn Logic to Set Logic 

The Horn logic domain is the Herbrand Universe of first-order terms, i.e., those 

terms built from the constructs found in the program. Finite sequences of these 

terms are themselves in the Herbrand Universe (assuming a sequencing constructor 

is provided). The set of all possible applications of predicates to Herbrand Universe 

terms is called the Herbrand Base. The meaning of each Horn logic predicate is a 

subset of the Herbrand Base, that is, those applications of the predicate to terms 

which the program implies are true. Alternatively, we could say that the predicate 

is given meaning as the set of arguments on which it is true. For instance, an 

n-ary predicate is defined by the set of n-tuples for which the predicate is true. 

Such a set is called a relation. In a sense, each predicate names a relation. To 

say that a predicate applied to a tuple is true, is equivalent to saying that the 

tuple is an element of the relation. We view Horn logic clauses as statements about 
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set membership, where each set is a relation representing a predicate. Where a 

conventional Prolog program asserts P(tuple ), we could equivalently assert that 

tuple E P, where P now refers to a set. 

For example, consider the following program and goal, written in Prolog syntax 

[CM81]. 

app ( [], Y, Y) . 

app([HIT], Y, [HIZ]) ·- app(T, Y, Z). 

rev ( [] , [] ) . 

rev([HIT], Z) ·- rev(T, Y), app(Y, [H], Z). 

?- rev(L, [a, b, c]). 

With a syntax more oriented towards sets, we could write: 

[ [] , Y, Y] E app 

[ [HIT], Y, [HIZ] ] E app ·- [T, Y, Z] E app 

[ [] , [] ] E rev 

[ [HIT] , Y] E rev ·- [T, Z] E rev, [Z, [H] , Y] E app 

?- [X, [a, b, c] ] E rev 

Here, we have used mutually-recursive definite clauses to define sets (instead of 

predicates). We could call this paradigm set logic programming, but it is really just 

another syntax for Horn logic. 

2.3.2 Converting Set Logic to PowerFuL 

Any such first order definite-clause set-logic program can be routinely converted 

into PowerFuL. The letrec command provides mutually recursive definitions, and 

each clause will correspond to a relative set abstraction. Where a predicate/set was 

defined with several clauses, we use a union of relative set abstractions. Within 

a relative set abstraction, each logical variable must be formally introduced as 

representing an element the Herbrand Universe, i.e. terms. To indicate that a 

particular first-order term is a member of a particular set, one lets the set instantiate 

an enumeration variable, and then one states that the enumeration variable equals 

the specified term. 

Converting the above program to PowerFuL syntax results in: 

22 



letrec 

in 

app be U( { [ [],L,L] : LEterms}, 

{[ [HIT], Y, [HI Z] ] : H, T, Y, Z E terms, 

WEapp, W=[T,Y,Z]}) 

rev be U( {[ [], [] ] }, 

{[ [HIT], Z] : H,T,Y,Z E terms, VErev, WEapp, 

V = [T, Y] , W = [Y, [H], ZJ}) 

{ L : LEterms, VErev, V = [L, ['a, 'b, 'c]] } 

We have taken the liberty of writing h,t,y,z E terms instead of four separate 

enumerations. 

2.3.3 Discussion 

The PowerFuL program uses sets to express Horn logic predicates, which the 

Horn logic program used, in turn, to define functions. With so many layers of indi

rection, it is no wonder the resulting PowerFuL version is ugly. Still, this technique 

of Horn logic to PowerFuL conversion demonstrates that we have indeed captured 

the full expressive power of Horn logic. 

A better PowerFuL style would be to use Lisp-like functions where functions are 

intended, and sets only where necessary. One could always provide Prolog notation 

as a syntactic sugar wherever the relational style is more appropriate, recognizing 

that its semantics are to be understood in terms of PowerFuL. We have seen that 

functions such as append can be defined in PowerFuL and used in the usual way, and 

also can be used within a set abstraction to choose which inputs would yield a desired 

output. For both uses, only one function definition is required, which is convenient 

for the programmer. For efficiency, such a function might be compiled differently for 

use within and outside set abstractions. PowerFuL allows the interpreter to detect 

where backtracking is needed and where it is not. Actually, a theoretically-complete 

or fair implementation computes elements of sets in parallel, not via backtracking. 

This kind of optimization might permit a program to be much more efficient than 

would be if all functions had to be defined via set abstraction, or within Horn logic. 

Translating programs from PowerFuL to Horn logic is more difficult. To be sure, 

one might convert PowerFuL programs to Horn logic by implementing a PowerFuL 
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interpreter in Horn logic, mapping PowerFuL's higher-order domain into Horn logic's 

first-order domain. Since PowerFuL's semantic domain is much richer than that of 

Horn logic, we see no general way to directly convert PowerFuL programs to Horn 

logic. It is easier to restrict oneself to using only PowerFuL's first-order terms, than 

to arbitrarily expand Horn logic's domain to include higher-order objects. 
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3 DENOTATIONAL SEMANTICS 

This chapter presents a denotational definition of PowerFuL. After motivat

ing some fundamental terminology, we describe PowerFuL's semantic domain, and 

define the function mapping PowerFuL syntax onto this domain. Especially note

worthy is the use of powerdomains as a semantic basis for a language with set 

abstraction. 

3.1 Semantic Domains 

This section reviews some concepts and terminology from the Scott-Strachey 

theory of denotational semantics. We will not try to provide a rigorous presentation, 

but only try to motivate some of the basic definitions, which we have taken from 

[S86J. A more detailed presentation can be found there, as well as in [S77]. Special 

attention is given to the theory of powerdomains, a type of domain construction not 

usually needed for functional programming. 

Intuitively, a domain is the set of mathematical entities being manipulated as 

data objects by a program. Actually, a domain is a partially ordered set with certain 

technical properties which we will later define. Functions are defined recursively, 

and it is conceivable that in defining a function, the program might not provide a 

mapping for every possible input. So as to deal with true functions, rather than 

partial functions, a domain will include a special element to mean undefined. This 

element is usually written as l. (pronounced "bottom"). The undefined element 

results when an undefined operation is requested (such as dividing by zero), or 

when a definition is circular, possibly resulting in an infinite recursion. 

Sometimes we wish to create new domains built upon domains already defined. 

For instance, given domains D1 and D2 , we can create the domain D 1 X D2, which 

consists of all ordered pairs of elements from domains D 1 and D 2 , respectively. 

For instance, domain IJ_ x IJ_ contains all possible ordered pairs of elements from 



l.J. .. The elements in this domain are defined to varying degrees. The least defined 

element, .ll.L xl.L is the ordered pair where neither element defined, i.e. < .l, .l >. 
Note that, when combining domains like this, it is sometimes ambiguous as to 

which domain's least element .l refers. Where necessary to avoid ambiguity, we will 

subscript .l by the name of the domain intended. Here, the least defined element, 

< .l, .l >, is less defined than < 2, .l >, which is, in turn less defined than 

< 2, 3 >. 

Definition 3.1: A binary relation !; over D x D is a. partial order if C is reflexive, 

antisymmetric and transitive. 

The partial ordering of ordered pairs depends upon the partial ordering on the 

respective elements, as follows. 

Definition 3.2: For ·any two elements < a1, b1 > and < a2, b2 > of D1 x D2, 

< a1, b1 > !::::: < a2, b2 > iff both a1 !:::::n, a2 and b1 !:::::n2 b2. 

Definition 3.3: For any partial ordering!; on a set D, if there exists an element 

c E D such that for all d E D, c !; d, then c is the least element in D and is denoted 

by the symbol .l. 

Intuitively, one element A is less defined than or approximates another element 

B if A can be created by replacing part of B with something undefined. 

A list of elements for which each element approximates the next, (e.g. < 

.l, .l >, < 1, .l >, < 1, 2 >) is called a chain. 

Definition 3.4: For a partially ordered set D, a subset X of D is a chain iff X is 

nonempty and for all a, b E X, either a!; b orb!; a. 

The integer domain described above is very simple in that, aside from .lJ, all 

its elements are fully defined. That is, for any A, B E I.L, A C B iff either A = .l1 

or A= B. The longest possible chain is of length 2. A domain with this structure 

is called a discrete or fiat domain. Another example of a discrete domain is the 

domain of atoms (unlike the domain of integers, this domain has a finite number of 

elements). 

When the information content of two partially-defined elements is consistent, 

there should exist an element which combines the information of each. We call such 

an element an upper bound. This motivates the following definition. 
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Definition 3.5: For a set D with a partial ordering !;, the expression aU b denotes 

the element in D (if it exists) such that: 

1) a !; aU band b !; aU b; and 

2) for all dE D, a C d and b!; dimply aU b !; d. 

Definition 3.6: For a set D partially ordered by C and a subset X (sometimes 

written as {x; I i E .i\f}) of D, UX (pronounced the least upper bound of X, and 

sometimes written as U; x;) denotes the element of D (if it exists) such that: 

1) for all x EX, x!; UX; and 

2) for all dE D, if for all x; EX then x; C d, then U X !; d. 

It is not always possible to automatically detect (e.g. in an interpreter) that 

an arbitrary expression denotes .L When l. results from an infinite recursion, 

evaluation will fail to terminate. While waiting for a result, we can never be sure 

whether or not a result will eventually be forthcoming. Therefore, it is reasonable to 

demand that, the less defined an argument to a function is (i.e. the more places l. 

can be found), the less defined will be the output. This is expressed by a requirement 

that functions be monotonic, as defined below. 

Definition 3. 7: A function f : A ,_.. B is monotonic iff, for every (l, b E A, if 

a !; b (using the the partial order of domain A), then f( a) !; f( b) (using the the 

partial order of domain B). 

A function may be either strict or non-strict. Informally, a function is strict if 

the output is undefined whenever the input is undefined. 

Definition 3.8: A function f: A>-+ B is strict iff, f(l.A) = l.s. 

A constant function might be non-strict, for example the function f : h ~---> h 
which maps all inputs, including 1., to 1. 

In higher-order functional programming, functions are themselves used as data 

objects. So, domain D 1 >-+ D2 represents the domain of functions mapping elements 

of domain D 1 to elements of domain D 2 • The partial order on functions is as follows. 

Definition 3.9: Given two functions j, g : D 1 ,_. D 2 , we say that f !; g iff for all 

dE Dll f(d)!; g(d). 

If the input domain of a function has infinite size, then the domain of functions 

will.contain chains of arbitrary length, perhaps even chains of infinite length. The 
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least function is defined as follows. 

Definition 3.10: For any domains A and B, the least defined function Q is the 

function f such that for all a E A, f(a) =.lB. 

In a functional language, a function is typically defined as the least fizpoint of 

a functional. These terms are defined below. 

Definition 3.11: For domains A and B, a monotonic function f : A ~--+ B is 

continuous iff for any chain X~ A, f(UX) = U{f(x) I x EX}. A function of 

more than one variable is continuous iff it is continuous in each variable, individually. 

Theorem 3.1: A monotonic function over a domain in which all chains are of finite 

length (e.g. a discrete domain) is continuous. 

Proof: Let A be a domain in which all chains are finite, and let f : A ~--+ B be 

any monotonic function. Let X~ A be any (finite) chain in A. Because X is finite, 

there must exist one element of the chain Xn such that for any x; E X, x; !;;;;; Xn and 

therefore U; x; = Xn· Since f is monotonic, the set Y = {f(x;) I x; E X} is a finite 

chaininBwithUY = f(xn)· Therefore,/(U;x;) = f(xn) = UY = U;J(x;). 

End ofProof 

Definition 3.12: A functional is a function r: D ~--+ D (usually D is a domain of 

the form A>--> B). 

Definition 3.13: For a functional T : D >--> D, dis a fizpoint of r iff dE D and 

r(d)=d. 

Definition 3.14: For a functional r: D >--> D, dis the least fizpoint (lfp) of riff d 

is a fixpoint of r, and for any other fixpoint e of r, d !;;;;; e. 

Theorem 3.2 (proved in [886]): If the domain D is a pointed cpo, then the least 

fixpoint of a continuous functional r : D >--> D exists and is defined to be 

lfp r = U{ri(.ln) I i 2: 0}, where Ti = ToTo ... or, i times. 

Definition 3.15: The meaning of a recursive specification f = F(f) is taken to be 

lfp(F), the least fixpoint of the functional denoted by F. 

Consider the recursive definition, below, of the factorial function. 
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fact(x) = if((x=O),l,xxfact(x-1)). 

The factorial is the least fixpoint of the functional 

>.f. ,\x. if((x = O),l,x x f(x -1)). 

In essence, the recursive definition defines a chain of non-recursive lambda 

expressions, each of which we will call fact; for some integer i, each element of the 

sequence expanding fact's recursion one step deeper than the previous, and thus 

defining the factorial for yet another integer. This series of nonrecursive lambda 

expressions forms a chain in h >--> I1., with the full factorial function being the 

least upper bound of this chain. In general, when an infinite object, such as the 

factorial function, is the least upper bound of a chain of elements in a domain, we 

would like the least upper bound itself also to be in the domain. That is, we want 

each domain to be a complete partial order. Since each domain will have a least 

element, each domain will be a pointed cpo. 

Definition 3.16: A partially ordered set D is a complete partial ordering ( cpo) iff 

every chain in D has a least upper bound in D. 

Definition 3.17: A complete partial ordering is a pointed complete partial ordering 

(pointed cpo) iff it has a least element. 

Applied to an argument x, the factorial function is computed by expanding 

the recursion one step at a time. Mathematically, what we do is compute the chain 

fact;( x ), until for some i the chain converges. The rationale for doing this will be 

explained below. 

Theorem 3.3: Any functional defined by the composition of monotonic functions 

and the variable of the functional, is continuous. 

The details of the proof of Theorem 3.3 use induction on the structure of the func

tional. It may be found in [M74]. 

Domain constructors must also be continuous, if we are to construct new do

mains from non-trivial base domains. For instance, in constructing the domain 

(IJ. >-> I1.) X I1., we must be certain that < U; fact;, 2 > = U; < fact;, 2 >. 
The requirement that domain constructors be continuous plays an important role in 

defining powerdomains, as seen in the next section. In defining PowerFuL's domain, 

we only use domain constructors known to be continuous. 
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Another domain constructor is the sum. Given domains Dt, ... , Dn, the do

main (D1 + ... + Dn)J.. is a domain containing all the elements from then domains, 

and a new least element .lv, + ... + Dn. For any d, e E (D1 + ... + Dn), d ~ e iff 

either d = .lv, + ... + D. or both d and e came from the same component domain 

D;, and d ~D; e. 

Richer domains can sometimes be described as solutions to recursive domain 

equations [S86]. For instance, the equation 

D =(A + D x D)J.. 

describes the domain consisting of atoms, and nested ordered pairs whose leaves 

are atoms, and are nested to arbitrary (and even infinite) depth. The equation is 

actually read to say that domain D consists of the atoms plus the domain of ordered 

pairs, the elements of these pairs coming from a domain isomorphic to D. 

3.2 Powerdomains 

The denotational semantics of set abstraction requires enriching the domain 

with a new kind of object representing a set of simpler objects. Intuitively, given 

a domain D, each element of domain D's powerdomain 'P(D) is to be viewed as a 

set of elements from D. Powerdomain theory was originally developed to describe 

the behavior of nondeterministic calculations, for which a program denotes a set of 

possible results. The original application was operating system modelling, where 

results depend on the random timing of events, as well as on the values of the inputs. 

In describing powerdomains, we shall use examples in nondeterminism as motivation 

for the theory. Be aware, however, that in PowerFuL we use powerdomains to 

explicitly define sets within a deterministic language. 

Suppose an operator accepts an element of domain D, and based on this element 

produces another element in D, nondeterministically choosing from a number of 

possibilities. The operator applied to its argument must therefore denote a set 

of objects, i.e. those objects it might compute (this set is a subset of D). The set 

whose elements are ( nondeterministically) computed is said to be a member of 'P(D), 

the powerdomain of D. The operator is therefore of type D >-> 'P(D). Computation 

approximates this set by nondeterministically returning a member. 

Suppose f and g are nondeterministic computations performed in sequence, 

first f and then g. For each possible output of operation f, operation g computes 
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any of a set of possible results. The union of all such sets contains the possible 

results of the sequence. We express this sequencing of nondeterministic functions 

by ..\x. g+(f(x)). The •+' functional is of type 

(Do-+P (D) ) 1-+ ('P (D) >-+'P (D) ) , 

defined as ..\f . ..\set. U {f(x): x E set}. 

The larger the set denoted by f (x) is, the larger the set denoted by g+ (f (x)) will 

be. 

A number of powerdomain constructions have been proposed differing accord

ing to the way the partial order is defined (see [S86] for a survey). The Egli-Milner 

powerdornain was the first powerdomain developed. It is useful for analyzing the 

operational properties of nondeterministic languages. Using Egli-Milner powerdo

mains, a nondeterministic program denotes the set of possible results. The least 

Egli-Milner powerdomain element, .l'P(D), is the set containing only .l. This is the 

denotation of a nondeterministic procedure for which no computation path succeeds 

[S86]. 

Smyth developed the demonic powerdornain, used when the concern is that 

all possible computation paths be successful. (One imagines that, should failure 

be possible, a demon will guide the nondeterministic calculation toward disaster!) 

Computation upon Smyth's can be viewed as a process of determining what cannot 

be the result of a nondeterministic program. Adding more possible computation 

paths decreaJes the likelihood that all paths will terminate successfully. So long 

as computation any branch has not terminated, one assumes that anything might 

result. Therefore, the least element, .lp(D), is the set containing all elements of D. 

The angelic powerdomain is the dual of the Smyth powerdomain. Computation 

upon an angelic powerdornain can be viewed as a process of determining what can 

be a successful result of a nondeterministic program. (One imagines that, if a 

desirable result if possible, an angel will guide the nondeterministic calculation 

toward success.) One would expect that the larger the set of possible results, the 

greater the likelihood that at least one result will be successful. Both finite failure 

and nonterminating paths contribute nothing to the set. The least element, .l'P(D), 

is the empty set ¢>. 

We choose the angelic powerdomain because it is the only one of the three 
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containing the empty set as an element (the denotational equations which follow 

make use of</>). That the angelic powerdomain is the correct choice for a language 

combining functional and logic programming can be seen by considering the seman

tics of Horn logic programming. In an attempt to find values for the goal's logical 

variables so as to make the goal true, a Horn logic interpreter nondeterministi

cally chooses a logical derivation using the program clauses from among all possible 

derivations. The set of solutions contains the results of the successful derivations; 

the derivations which fail or diverge add nothing to the set. If all derivations fail 

or diverge, the set of solutions is empty. If we view the set of all answer substitu

tions as a domain D, and the set of correct answer substitutions as an element of 

'P( D), it is clear that we want ..L'P(D) to be t/>. Since a description of Horn logic in 

terms of powerdomains would use the angelic powerdomain, it seems clear that set 

abstraction for the purpose of incorporating logic programming capabilities should 

also be described via this powerdomain construction. 

We would like to have a partial order on sets which exhibits the property that 

a set becomes more defined as one adds new elements, and that it also becomes 

more defined as the elements within become more defined (according to the partial 

order of the base domain). We would like to be able to say that for two sets A 

and B, if for all a E A there exists a b E B such that a l;v b, then A I;'P(D) B. 

However, this is not a partial order, as this would equate {dbd2 } with {d2 } when 

d1 C d2. Yet, though these sets are distinct, they are computationally equivalent 

(because the angel always chooses the best possible result). So theoretically, we are 

working not with sets, but with equivalence classes of sets. Furthermore, the need 

for continuity requires that for any chain of elements t; E D, 

where singleton set { t;} actually represents the equivalence class of sets containing 

that singleton set. These requirements motivate the following definitions (taken 

from [S86]). 

Definition 3.18: A Scott-topology upon a domain 0 is a collection of subsets 

of 0 known as open sets. A set U <; 0 is open on the Scott-topology iff: 
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1) U is closed upwards, that is, for every d2 E D, if there exists a d 1 E U such that 

d1 C d2, then d2 E U; and 

2) If d E U is the least upper bound of a chain C in D, then some cEDis in U. 

Definition 3.19: The symbol r;~, pronounced 'less defined than or equivalent 

to', is a relation between sets. For A, B <; D, we say that A r;~ B iff for every a E A 

and open set U <; D, if a E U then there exists a b E B such that b E U also. 

Definition 3.20: We say A RJ B iff both A r;~ B and B C~ A. We denote the 

equivalence class containing A as [A]. This class contains all sets B <; D such that 

A~B. 

We define the partial order on equivalence classes as: [A] C [B] iff A r;_ B. For 

domain D, the powerdomain of D, written P(D), is the set of equivalence classes, 

each member of an equivalence class being a subset of D. 

Theorem 3.4 (Schmidt [S86]): The following operations are continuous: 

,P: P (D) denotes [ {}] . This is the least element. 

{-}: D >-+ 'P(D) maps d E D to [{d}]. 

_U_: P(D) xP(D)>-+P(D) maps [A] U [B] to [AU B]. 

+: (D~->'P(D)) ,__. ('P(D)~->'P(D)) is ..\L\(A].(U{f(a): a E A}]. 

An example will provide intuition about the use of •+•. Suppose we have a set 

S = {1, 2, 3}, and we wish to create a new set, each element of which is of the 

form f(x) where xis inS. Then 

(.Ax. {f(x)})+({1,2,3}) = {f(1),j(2),j(3)}. 

In this work we use a noncurried variation of •+•, that is, we use it as a primitive 

function of type 

((D~->'P(D)) X P(D)) 1-> 'P(D). 

This function is strict in its second argument. 

3.3 Denotational Semantics of PowerFuL 

This section gives the semantics of PowerFuL using the concepts reviewed 

above. After defining the domain of data objects which can be represented in 

PowerFuL, we provide a function which shows the way a PowerFuL program can 
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be mapped onto this domain. The semantic primitives used are, for the most part, 

quite conventional. However, a few unusual primitives, (called coercions) will be 

discussed in a special section. 

PowerFuL's domain is the solution to the following recursive domain equation: 

D = (B + A + DxD + D>->D + "P(D)).L, 

where B refers to the booleans, and A to a finite set of atoms. That is, PowerFuL's 

domain contains booleans, atoms, ordered pairs of smaller elements (to create lists 

and trees), continuous functions, and powerdomains (sets). Aside from the inclusion 

of powerdomains, the domain is typical of domains for other lazy, higher-order 

functional languages. The solution to this recursive domain equation are beyond 

the scope of this dissertation, but details may be found in [S86, P82, S89]. 

PowerFuL is a functional programming language, so we present its semantics in 

the denotational style usual for such languages [S77]. Our convention to differentiate 

language constructs from semantic primitives is to write the primitives in boldface. 

Language constructs are in teletype. Variables in rewrite rules will be italicized. 

3.3.1 Semantic Equations 

The meaning of a syntactic expression is defined in terms of the meaning of 

its subexpressions. In the definitions below, the semantic function E maps general 

expressions to semantic objects (called denotable values). The equations for most 

expressions are the conventional ones for a typical lazy higher-order functional lan

guage. The environment, p, maps identifiers to denotable values, and belongs to the 

domain [Id>->D]. The semantic equations for set-abstractions provide the novelty. 

For simplicity, the semantic equations ignore simple syntactic sugars. 

Many of PowerFuL's denotational equations are similar to those of any typ

ical lazy functional language. We present the semantic equations for the various 

constructs in the order of their appearance in the BNF of Chapter 2. 

• Parentheses override the natural left-associativity. 

£[( expr)] p = E[expr] p 

34 



• For each syntactic atom (represented by A;) in a program, we assume the existence 

of an atomic object in the semantic domain (represented by A;). 

t'[A;] p = A; 

• We can group objects into ordered pairs to create lists and binary trees. 

t'[cons(exprt, expr2)] p = <(t'[expr1] p), (E[expr2] p)> 
t'[car(expr)] p - left( pair!(t'[expr] p)) 
£[cdr( expr)] p = right(pair!(t'[expr] p)) 

The primitive functions left and right select the left and right sides, respectively, 

of an ordered pair. These primitives are, however, undefined over other types of 

objects. As PowerFuL is an untyped language, we cannot ensure that the program

mer will not try to take the car or cdr of an inappropriate object. Therefore, we 

protect the primitive function by first applying a coercion, pair!, to its argument, 

thus ensuring that its argument is of the appropriate type, handling errors appro

priately. Other such coercions are provided for other types of objects, as needed. 

Later in this section they will be described in more detail. Note that our use of 

the term 'coercion' differs from the normal usage in that our coercions change an 

argument's type only as a kind of error-handling. 

e We have the booleans, and boolean-valued functions. 

£[TRUE] p = TRUE 
e[F ALSE] p = FALSE 
e[not(expr)] p = not(bool!(t'[expr] p)) 
£[if( exprt, expr2, expr3 )] p = if(bool!(t'[exprt] p), (e[expr2] p), (e[expr3] p)) 

• To create boolean values, we can test type (whether an object is a boolean, an 

atom, an ordered pair, a function or a set), and we can test terms for equality. 

t'[bool?(expr)] p - bool?(t'[expr] p) 

e[atom?(expr)] p - atom?(t'[expr] p) 
E[pair?(expr)] p - pair?(t'[expr] p) 

f[func?(expr)] p - func?(f[expr] p) 

t'[set?(expr)] p = set?(e[expr] p) 
t'[(exprt = expr2)] p = equal?((E[exprt] p),(t'[expr2] p)) 

t'[null?(expr)] p = if(atom?(t'[expr] p) then is'nil?([expr] p) else FALSE fi) 

35 



The equality predicate can compare booleans, atoms, and, provided it can compare 

the respective subtrees, ordered pairs. It does not attempt to compare sets or 

functions for equality (if you try, it returns ..L). Applied to two first-order infinite 

lists, it returns FALSE if they differ, but fails to terminate (returns ..L) when they 

are identical. A conventional operation tests whether a "list" is empty (i.e. equals 

the atom 'nil). 

• We can look up identifiers in the environment, and also create new bindings. 

£[identifier~ p = p( identifier) 
£[letrec defs in expression] p = £[expression~ (:D[defs~ p) 
V[id be expr~ p = p[.:FIX(.A X. (£[expr~ p[X/id]))jid] 

V[id be expr, defs] p = (V[defs~ p) [:FIX(,\ X. (E[expr~ (V[defs] p[X /id])))/id] 

In the above equations, :FIX computes the least fixpoint of a functional. 

Rather than using the fixpoint operator as a primitive, we can define it via: 

:FIX(!) = f(.:FIX(f)) 

Taken as an equation, the above is true if :FIX computes any fixpoint of its ar

gument. But taken as a recursive definition with Definition 3.17 in mind, :FIX is 

taken to be the least fixpoint of the functional .AF. ,\f. f(F(f)). Using Theorem 

3.2, this can be shown to equal .Af. lfp(f). 

• We can create functions through lambda abstraction, and apply functions to their 

arguments. 

£[.Aid. expr] p = .Ax. (£[expr] p[xjid]) 
£[expr1 expr2] p = func!(£[expr1~ p)(£[expr2] p) 

In the above equations, we considered only functions of one argument. A function of 

multiple arguments can be considered syntactic sugar either for a curried function, 

or for a function whose single argument is a list. 

• To build sets, the user begins with the empty set, and singleton sets, each con

structed from an element of the powerdomain's base domain. The union operation 

builds larger sets from smaller ones. 
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£[phi] p = 1> 

E[{expr :}] p = {E[expr] p} 

E[U(expr1 , expr2)] p = set!(E[expr1 ] p) U set!(E[expr2 ] p) 

To build a new sets out of an old one, we can filter out all but those elements 

meeting a specified condition, and we can compute with each member of the input 

set individually, combining the results into a new set. 

E[{ expr : condition, qualifierlist}] p 

= set!(if £[condition] p then£[{ expr : qualifierlist}] p else </>fl.) 
£[ { expr : id E genrtr, qualifierlist}] p 

=(>.X. E[{expr : qualifierlist}] p[X/id])+(set!(E[genrtr] p)) 

• The sets denoted by bools contains only TRUE and FALSE, and the set atoms 

contains the atoms. The set of terms includes as subsets not only bools and atoms, 

but also any ordered pair which can be constructed from two smaller terms. These 

sets may be viewed as syntactic sugars, since the user could program them using 

the previously given constructs. In that sense, their presence adds nothing to the 

expressive power of the language. Nevertheless, providing them in the syntax per

mits important optimizations through run-time program transformation (discussed 

later). Thus we have: 

E[bools] p = .F[bools] 

.F[bools] ={TRUE} u {FALSE} 

£[atoms] p = .F[atoms] 

.F[atoms]=U({AI}, ... ,{An}) 

£[terms] p = .F[terms] 

.?="[terms]= .F[bools] U .F[atoms] 

U (>.s.((>.t.{< s,t >})+(.F[terms])))+(.F[terms]) 

The sets denoted by bools, atoms and terms are semantically superfluous. The 

user could create these sets with the other constructs. For instance, each reference 

to the primitive set terms could be replaced by: 

letrec 
bools 
atoms 
terms 

in terms. 

be 
be 
be 

U( {TRUE}, {FALSE}) 
U({AI}, ... , {An}) 
U(atoms, bools, {cons(X,Y) 
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PowerFuL provides these sets as primitives, so the interpreter can recognize them 

and treat their enumerated variables as logical variables, for greater efficiency. This 

will be discussed in greater detail in Chapter 6. 

The functions £, 'D, :F and :FIX are mutually recursive. Their meaning is 

the least fixed point of the recursive definition. This fixed-point exists because we 

have combined continuous primitives with continuous combinators. Most of these 

primitives are fairly standard, and will be described in a later section. Note the use 

of the primitive •+• (for distributing elements of a powerdomain to a function) in 

defining the meaning of the set abstraction construct. 

3.3.2 Coercions 

A few words must be said about some other novel primitives, here called coer

cions. Most primitives are only defined over portions of the domain D. The boolean 

operators are only defined over B.L; the operations left and right assume the argu

ments to be ordered pairs; function application (,8-reduction) is defined only when 

the left argument is in fact a lambda expression; and only sets can contribute to a 

set union. 

Five primitives coerce inappropriate arguments to the least-defined object of 

the appropriate type. The are listed below. 
bool!: D >-+ B .L 

atom!: D >-+ A.L 

pair!: D >-+ DxD 
func!: D >-+ [D>-+D] 
set!: D >-+ 'P(D) 

The function bool! maps TRUE and FALSE to themselves, and otherwise maps 

arg to j_ . The function atom! maps arg to itself if arg is an atom, and maps arg to 

j_ otherwise. The function pair! maps arg to itself if arg is a member of DxD, and 

to j_DxD (that is, < j_, j_ >) otherwise. The function func! maps arg to itself if 

arg is a member ofD>-+D and to j_DxD (that is, .Ax. j_) otherwise. The function set! 

maps arg to itself if arg is a member of 'P(D) and to j_.P(D) (that is, ¢)otherwise. 

The coercions ensure that primitives handles inappropriate input reasonably. 

For instance, the union constructor is appropriately applied only to sets. If the 

argument is something other than as set (perhaps j_), then this input is treated as 

the empty set. This make sense because 
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1) only sets contain elements- other objects do not; 

2) a set is completely defined by the elements it contains; and 

3) the empty set is the only set not containing any elements. 

Thus, the expression U(' a, expr) denotes a set containing 'a, regardless of whether 

or not expr can be computed . .This is analogous the the set of solutions to a Horn 

logic program and goal, the elements of which are determined by successful deriva

tions (or refutations), ignoring derivations which fail or diverge. For uniformity, 

we define analogous coercions to handle similar questions about primitives of other 

types. 

Theorem 3.5: The coercion set! is continuous. 

Proof: We will prove the continuity of setL Consider a chain of objects from 

domain D: to, t1, t2, ... , such that fori< j, t;!:::; fj. If there is no i such that t; is 

in 'P(D), then for all i, by definition, set!( t;) = _LP(D) = ¢. Furthermore, U; t; 

will not be in P(D), so by definition, 

set!(U; t;) = ¢. 

Thus we have, 

U; set!(t;) = ¢ = set!(U; t;), 

proving continuity for that case. The only other possibility is that the sequence 

does converge to a powerdomain element. In that case, let tk be the first member 

of the chain in 'P(D). for any i < k, t; can only equal -lv, so set!(t;) equals¢, by 

definition. Fori 2: k, set!(t;) equals t;, also by definition. Therefore, 

U; set!(t;) = Ui~k set!(t;) 

- ui~k t; 

- set!(U;~k t;) 

- set!(U; t;). 

Hence, set! is continuous. End of Proof 

Proofs of the continuity of the other coercions are similar. 

3.4 Summary 

In this chapter we described the semantic domain of PowerFuL. It resembles 

the recursively defined domains of ordinary untyped functional languages, in which 
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complex objects are built from simpler objects via sequencing constructors (ordered 

pairs) and function definition. What is new is the use of powerdomain constructors 

to build sets. We gave the rationale for chosing angelic powerdomains, rather than 

one of the other types of powerdomains. 

The semantic equations for the traditional features are unaffected by the enrich

ment of the domain. All that was needed to handle set abstraction is the addition of 

a few new equations. We consider this to be the strongest testimony of the elegance 

of this approach. 

The primitive functions used in the semantic equations are defined in the next 

chapter. The use of coercions permits simpler definitions of primitives, as we need be 

concerned only with appropriate subsets of PowerFuL's domain; redundant descrip

tions of "error handling" is avoided. This will be especially helpful when describing 

the operational semantics, and its relation to the denotational semantics, in the 

next chapter. 
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4 FROM DENOTATIONAL TO OPERATIONAL SEMANTICS 

Though the denotational semantics usually provides the clearest and simplest 

definition of the syntactic constructs, an operational semantics is essential if the 

language is to be implemented. Therefore, even those defining a language via de

notational semantics usually also provide an operational definition. In such cases, 

one would like to know the extent to which the two semantics agree. A proof of 

equivalence is rarely given; usually the operational semantics are incomplete when 

computing infinite objects f. Though Horn logic makes for a very simple language 

(simple flat domain and only two types of clauses) the proof of correctness is far 

from trivial [VK76]. The task becomes more difficult as the operational semantics 

becomes low-level (hardware-oriented). The closer to the denotational definition 

the operational semantics remains, the easier this proof should be. Therefore, in 

the remaining chapters, we devise an operational procedure from the denotational 

equations directly. This ensures that our operational semantics is consistent with 

respect to the denotational definitions; in this chapter we also speculate upon its 

completeness. 

The semantic equations provided in the last chapter are a recursive definition 

of the semantic function£, which maps PowerFuL programs into objects from the 

semantic domain (the value denoted by the program). Assuming that the primitive 

functions are continuous, the recursive equations define a functional which has a 

least fixpoint, which can be "computed" by taking successive approximations, as 

alluded to in Chapter 3. This fixpoint is taken to be the value of£. A procedure to 

execute £ on its input is, by definition, an interpreter for the PowerFuL language. 

In this section we examine ways of executing the function £ when applied to a 

PowerFuL program and an (initially empty) environment. Given implementations 

t This issue is discussed further in section 4.4.1. 



for the semantic primitives (provided in the next chapter) and the ability to reduce 

lambda-expressions, a computation rule is all that is needed to convert the semantic 

equations into an interpreter. If the computation rule is a fixpoint rule, then the 

computed result will indeed equal the fixpoint value of t'[program] A ('A' stands 

for the empty environment). In other words, we interpret the language of denota

tional semantics as a functional programming language in its own right, not merely 

reading it as a pseudocode. Since a functional program has both a declarative and 

an operational reading, the denotational equations will thus provide both the deno

tational semantics of PowerFuL, and also a simple interpreter consistent with the 

declarative reading. 

To illustrate our approach, suppose that we wish to evaluate the expression: 

car( cons( cons('a,'b), 'a)) 

The denotational equations for translating syntactic symbols of atoms to real atoms 

in the semantic domain (differentiated here by the type font), and semantic equa

tions for cons, car and cdr are as follows: 

t'[A;] p = A; 
t'[cons(expr1, expr2)] p = <(t'[expr1] p), (t'[expr2] p)> 
t'[ car( expr)] p - left( pair!( t'[ expr] p)) 
t'[cdr(expr)] p = right(pair!(t'[expr] p)) 

The rewrite rules to implement the semantic primitives left and right are: 

left( <1st, 2nd>) = 1st 
right(<1st, 2nd>) = 2nd 

The denotational equations map syntactic constructs to semantic constructs, 

and the semantic primitives map semantic objects onto other semantic objects. In 

this case, both kinds of mappings are defined through rewrite rules. We wish to 

find the semantic object denoted by the syntactic expression above. That is, we 

wish to compute: 

t'[car(cons(cons('a,'b),' a))] A. 

Using the semantic equation for car, we rewrite the above expression to: 

left t'[cons(cons('a,'b),'a)] A. 

We do not yet have enough information to apply the rewrite rule for left, so we 

must translate more syntax using the semantic equation for cons, and will then 
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obtain: 

left < E[cons('a,'b)] A, E['a] A>· 

We now have enough information to execute the semantic primitive left, and will 

get: 

E[cons('a,'b)] A. 

Further rewriting with the semantic equations produces the final value: 

<'a, 'b >. 

Thus, we see that one can sometimes execute a program directly from the denota

tional semantic equations. 

The remainder of this chapter provides a more rigorous development of this 

technique. The basic ideas come from Vuil!ernin's pioneering work on correct im

plementation of recursive programs [V74]. Following Kleene, Vuillernin views the 

meaning of a recursive definition to be the least fixpoint of an associated functional. 

As the fixpoint is shown to be the least upper bound of a (possibly infinite) chain of 

approximations, computation becomes synonymous with the production of better 

and better approximations. Usually, there are several places in an approximation 

where one can seek improvement. The computation rule chooses which of these 

places to work on next. Vuillernin provides conditions under which the successive 

approximations will converge toward the value implicitly given by the fixpoint defi

nition. We then apply these ideas to PowerFuL's denotational equations, a recursive 

definition in its own right, to produce our operational semantics. 

4.1 Recursion and Least Fixpoints 

Consider a recursive definition of the form: 

F(x) = r[F](x) 

for function F, where r is a functional over D1 x ... x Dn 1-+ D, expressed by 

composing a term from: 

a) the individual variables x =< x1, x2, ... , Xn >; 

b) known monotonic and continuous functions, called primitives; and 

c) the function variable, F. 
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As an example of such a recursive program, consider the following program P for 

append: 

append(x, y) if(null?(x), y, <car(x) ,append(cdr(x) ,y)>). 

Applying the above formalism to this case, the functional variable F is here the 

recursive function append, the parameter list x represents the parameters x andy, 

the functional T is : 

>..F. >.. x. >.. y. if(null?(x), y, <car(x) ,F(cdr(x) ,y)>), 

and the primitive functions are if, null?, car? and cdr?. 

By Theorem 3.2, there exists for T as above a least fixpoint, and this fixpoint equals 

where f! represents the least-defined object in r's domain (the function which re

turns .l for any arguments). By least fixpoint, we mean the least-defined function 

for which F = r[F]. We denote this least fixpoint by fp, and take it to be the value 

of the function described in program P. 

In our example, ri(f!) would approximate the append function, in that it would 

give the correct result provided the first argument is a list of length less than i. The 

least upper bound of these approximations would handle lists of unbounded length. 

The extension of these ideas to a set of mutually-recursive functions is straight

forward. From the mutually-recursive functions one would abstract a functional 

whose fixpoint is defined to be a sequence of functions. 

4.2 Computation Rules and Safety 

To some input d, we wish to apply a function defined as above. Let us define 

a sequence of terms s0 , 81, s2 , ••• , such that the first term so is F(d), and each 

term 8;+J is computed from s; by replacing each instance ofF ins; by r(F). That 

is, we expand each occurrence ofF in the previous term by the recursive definition. 

Let us also define a parallel series of terms 8;[!1/ F], for i 2:: 0, where s;[fl/ F] 

is computed from 8; by replacing all occurrences of the function variable by the 

undefined function. Clearly, 8;[!1/ F] is equal to ri(f!)(d). By definition, 

U;(8;[f!/F]) = U;(r;f!d) = (U;rif!)d = /p(d) 

Example: Using the append definition for input lists list1 and list2, so is 

append(list1, list2), and 8 1 is: 
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if(null?(listl), list2, <car(listl),append(cdr(listl),list2)>). 

We can keep expanding the occurrences of append to any depth. The sequence of 

approximations begins with s 0 (!2/F], which is Q(listl, list2) (i.e . ..L), followed 

by s 1 (!2/F], which is: 

if( null? (listl), list2, <car(listl) ,n(cdr(list1) ,list2) >). 

In this case, there is only one occurrence of the recursive function to expand 

at each step. In general there may be more. Let us define a new series t; similar to 

s;, where t 0 = s0 = F(d), but where each t;+l is computed from t; by expanding 

only some of the occurrences of F in t;, instead of all. 

Definition 4.1: A computation rule C tells us which occurrences of F(e) should 

be replaced by r(F](e) in each step. 

For each t;, we compute t;[Qj F] in the same way we computed s;[Qj F] from 

Si. 

Theorem 4.1 (Cadiou (V74]): For any computation rule C, 

Proof: For any i, t;[f!/ F]!;;; s;[Qj F], and therefore 

U;( t;[nj F]) !;;; U;(s;(!2/ F]) = /p(d). 

End of Proof 

Definition 4.2: A computation rule is said to be a fixpoint computation rule for 

program P if for all d in the relevant domain, 

Vuillemin gives a condition which, if satisfied, means that a computation rule is a 

fixpoint rule. To explain this condition, we need a bit more notation. 

Definition 4.3: A substitution step expands some or all occurrences of the 

recursive function calls in the term. Given a term t;, let Fy represent the occurrences 

of F which the computation rule would choose, and let Fn represent those which 

would not be chosen for expansion in the next step. Let 

represent the result of replacing all chosen occurrences by S, and the unchosen by 

T. Then 
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is just t;, and 

is the same as 

t;[f2/ F]. 

Let 

represent the result computed if the chosen occurrences were never expanded, but 

all other occurrences expanded arbitrarily far. 

Definition 4.4: A safe substitution step chooses Fy so that 

Intuitively, the computation is safe if the occurrences chosen are so important that, 

were these never expanded, no other expansions would matter. 

Definition 4.5: A computation rule is safe if it provides for only safe substitution 

steps. 

Theorem 4.2 (Vuillemin [V74]): If the computation rule used in producing the 

series v; is a safe, then 

To summarize the proof, we note that the fixpoint is equal to the least upper 

bound of approximations made by the full-substitution rule. We need only show 

that for each approximation made by the full-substitution rule, a safe rule will 

produce an approximation that is at least as good. Each approximation using the 

full-substitution rule expands only a finite number of occurrences. If we perform 

that many safe substitution steps, then either we will have expanded all of these 

(guaranteeing a suitably good approximation), or we will have had one or more steps 

in which none of the remaining occurrences expanded with the full-substitution 

rule were chosen. When that happens, the safety condition shows that the full

substitution approximation cannot be any better. 

Using Theorems 4.1 and 4.2, then for any safe computation rule, 
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and therefore all safe computation rules are fixpoint rules. Intuitively, a safe sub

stitution is one which performs enough essential work. That is, if this work were 

never done, then all other work would be irrelevant. If enough essential work is 

performed in each step, then every essential piece of work will eventually be done. 

Definition 4.6: The parallel outermost rule replaces all outermost occurrences of 

F simultaneously. Applied to an atom or identifier, there are no occurrences ofF 

to expand. Applied to a term with an occurrence ofF at the outermost, it expands 

only that occurrence. Applied to a term headed by a data constructor (such as 

an ordered pair), or to a term headed by a primitive function, it expands those 

occurrences which would be expanded when applying this rule to each argument (if 

any) individually. 

Theorem 4.3 (Vuillemin (V74]): The parallel outermost rule is a safe rule. 

Proof: This is proved by structural induction on the term. If the term is an atom 

or an identifier, then any computation rule trivially produces a safe substitution 

step. If the term has an occurrence ofF at the very outermost, than the parallel

outermost rule expands only that occurrence. If one replaces that occurrence with 

n, the result is .l no matter what one does with any remaining occurrences, so 

the parallel-outermost is a safe step. The only alternative is to have a primitive 

or constructor at the outermost. Applying the parallel-outermost rule to such a 

term is equivalent to applying it individually to each of the arguments (if any). By 

the induction hypothesis, parallel-outermost is safe for each argument individually. 

Since the computation rule is safe for each argument (replacing chosen occurrences 

by n gives the same result as replacing all occurrences by !1), it must be safe for 

the expression as a whole. End of Proof 

4.3 Computation of Primitives 

To say that a potentially infinite computation is computable, we must be able 

to describe the result as the least upper bound of a set of finite approximations. 

By finite, we mean that each approximation must require only a finite number of 

primitive, mechanical steps. In the preceding sections, we showed how a recursive 

function, written in terms of primitive functions, could be described as the least up

per bound of a chain of computations, each of which expands the recursive definition 

only a finite number of times. However, to actually compute each approximation, 
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we must be able to execute the primitive functions. If execution of each primitive 

function is guaranteed to terminate for any input it may be supplied, then each 

element of the chain does indeed represent a finite computation, and therefore we 

have an operational semantics. 

On the other hand, if the primitive operations are not guaranteed to terminate, 

then we are faced with the task of approximating the primitives, just as we approx

imated the recursive function. Rather than taking the least upper bound of a single 

chain of approximations, we would need to consider an infinite sequence of such 

chains! We would prefer to compute a single chain of approximations, where each 

computation step both expands some occurrences of the main recursive function and 

computes some of the primitives. 

For example, suppose the primitive functions were defined via rewrite rules. 

The computation rule must specify not only which occurrences of the recursive 

function to expand, but also which primitive simplification opportunities to take. 

Those primitives guaranteed to terminate might be simplified as much as possible. 

In making a finite approximation, one would not only approximate the unexpanded 

recursive function occurrences by n, but applications of (possibly) non-terminating 

primitives would also be replaced by the appropriate bottom element. Even if 

primitives are guaranteed to terminate, it seems a good idea to simplify them as 

soon as possible in the hope that some occurrences of the recursive function could 

be pruned away, perhaps permitting the chain of approximations to terminate. 

For example, if we are computing append ( [1, 2, 3] , list2), then t 1 might be: 

if( null?( [1, 2 ,3]), list2, <car( [1, 2 ,3]) ,append(cdr( [1, 2 ,3]), list2) >), 

and t1 [i1/append] would be: 

if( null?( [1, 2 ,3]), list2, <car( [1, 2 ,3]) ,Q(cdr( [1, 2, 3]), list2) >), 

which simplifies to <1,..L>. By performing simplifications as early as possible, how

ever, we have as t1 : 

<1, append([2,3], list2)>. 

It should be possible to generalize the safety condition to deal explicitly with 

choice of primitive simplification opportunities, just as it now speaks of recursive 

function occurrences to be expanded. This generalization is not rigorously developed 

in this dissertation; however, the basic idea is as follows. 
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The notation for approximating the current term, t;[fl/ F] would now mean that 

we replace not only applications of the recursive function( s) by the appropriately 

typed undefined element, but we do the same for uncomputed applications of the 

primitives. The safety condition, 

now would state that a computation step is safe if, among those recursive-function 

occurrences to be expanded and those primitive applications to be simplified, are 

some so critical that, were these operations never done, the current approximation 

could never be improved upon no matter how much computation elsewhere were 

performed. This means, for any part of t; which is not yet fully computed, the 

computation rule has chosen vital steps to perform. We may say that such a safe 

computation step is fair, because it simultaneously does work necessary for each 

incomplete part the result being computed (it may do some unnecessary work as 

well, but this does not concern us). 

This is not to say that the occurrences chosen by the safe computation rule 

must be expanded immediately for convergence; the order in which necessary work 

is performed ought not affect convergence (though speed of convergence might be 

affected). For any approximation requiring only a finite amount of computation (a 

finite number of recursive function expansions and a finite number of primitive sim

plifications), any safe computation rule should eventually produce an approximation 

that is at least as good. 

One might question the claim that, in producing a finite approximation, the 

order in which necessary work is performed is irrelevant. After all, are not some 

computation rules more powerful than others? Does not the innermost computation 

rule sometimes fails to converge, where outermost evaluation succeeds? The key 

word here is necessary. An innermost computation rule may fail to converge if none 

of the steps necessary to compute some part of the denoted object are ever chosen. 

Instead, the innermost computation rule might put all its effort into computing an 

infinite subexpression whose computation is unnecessary to the main result. 

Since any computable function can be viewed as the least upper bound of a 

set of finite approximations, and since a safe computation rule should be able to 

produce a finite approximation at least as good as any of them, we believe that 

49 



a safe computation rule computes the denoted fixpoint value. Furthermore, we 

believe that, should the attempt be made to do all possible primitive simplifications 

in each computation step, and should simplifications terminate in each step, then 

a safe computation rule (to decide recursive function expansions) is still a fixpoint 

rule. Proofs of these conjectures. is a topic for future research. Nevertheless, it 

is on the basis of these conjectures that we develop the operational semantics for 

PowerFuL. 

4.4 Operational Semantics of PowerFuL 

Instead of a single recursive function, we have four mutually-recursive func

tions, e, which maps a syntactic expression and an environment to a semantic 

object, :F which maps a syntactic expression to a semantic object (without need 

of the environment), TJ, which maps a syntactic expression and an environment 

to a new environment, and :FIX, whose recursive definition is taken to define the 

least fixpoint operator. The program is written via a set of recursive equations, 

making use of pattern-matching. To fit it into Vuillemin's computational scheme 

as extended above with the new computation rule, we should rewrite the equations 

as a single large case statement, using special syntax primitives to recognize the 

outermost syntactic construct, and to replace references to the pattern-matching 

variables in the right-hand side by expressions referencing relevant portions of the 

abstract syntax tree. To compute an expression of the form 

e[syntax] p, 

we would: 

1) substitute the piece of syntax and the environment into the large case state

ment; 

2a) simplify the primitives manipulating the syntax tree (producing an expres

sion resembling the right-hand side of one of the equations); and 

2b) simplify semantic primitives and do ,8-reduction (where applicable). 

Cluttering up the denotational semantics with such syntax-tree primitives would 

be unnecessarily tedious. Therefore, in the remainder of this work, we shall work 

from the semantic equations directly, combining steps 1 and 2a into a single step. 

Because functions are written as lambda expressions, some semantic equations 
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introduce lambda variables. These variables may have to be renamed at times to 

avoid variable capture; however, this is standard in lambda calculus based lan

guages. 

As will be shown in the next chapter, semantic primitive simplification rules 

will terminate on any finite argument (or infinite argument that is yet computed 

only only to a finite degree). To implement the denotational equations as a recur

sive program, we want a safe computation rule for which ,8-reductions will always 

terminate. 

4.4.1 Termination of ,8-Reduction 

In the sense that our entire formalism assumes the ability to compose functions, 

function application is not technically a primitive. However, since functions are 

represented as lambda expressions, and executed via ,8-reduction, operationally, ,8-
reduction must be treated as a primitive. That is, we simplify lambda expression 

via the rewrite rule 

(>. var.body)arg = body[arg / var], 

Using (untyped) lambda expressions to represent functions is dangerous, as 

there exist lambda-expressions whose simplification will fail to terminate. This can 

only happen when a lambda expression is applied to another lambda expression, in 

which one ,8-reduction creates opportunities for additional ,8-reductions. Consider 

the evaluation of: 

func!(t'[>.x.x x] p)(t'[>.x.x x] p). 

If we simplify both arguments of this ,8-reduction simultaneously, we eventually get: 

(>. y.y y)(>. y.y y), 

whose ,8-reduction will never terminate. Such inherently nonterminating lambda

expressions should be treated as .L However, in our computational paradigm, this 

should be through a non-terminating computation sequence, and not by nontermi

nating simplifications within a single computation step. This expression may be 

only a small piece of the main expression, and we do not want endless simplification 

to prevent computation of the other parts. 

Suppose we systematically delay computation within the body of a lambda 

expression until after the expression has been applied. This means that, following 
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every f3 reduction, elements of the function body must be expanded before any new 

/3-reductions can be done there. This ensures that, within each computation step, 

/3-reduction will terminate. At no step will an infinity of /3-reductions be called for. 

Every approximation generated by the computation sequence, the above example 

reduces to .l, as- desired. 

If the computation rule ensures that /3-reduction will always terminate, then 

we can treat function application like the terminating semantic primitives. A user

defined function application may be treated as a primitive that is strict in the first 

argument (the function begin applied), and which simplifies (/3-reduces) as soon as 

the outermost constructor (the introduction of the lambda-variable) is computed. 

That is, given an application of the form 

we would compute the left portion to produce an expression of the form 

(.\x. (£[body] Pa))£[expr2] P2· 

Note that these computation steps may have extended the environment p1 ; hence 

we use Pa in its place. This would immediately reduce to 

(£[body] [(£[expr2] P2)/x]pa)). 

Note that the body of the lambda-expression is not be computed until after appli

cation (after which it is no longer the body of a lambda-expression!). 

The prohibition against computing the body of an unapplied lambda-expression 

means that we will not be able to compute a program which denotes an unapplied 

function, nor a structure which contains an unapplied function as a part. The 

program as a whole must denote an element of E, where 

E = (B + A+ ExE + 'P(E))J.. 

though individual parts of the program may freely denote objects from D, where 

D = (B + A + DxD + D~->D + 'P(D))J.. 

That is, we are only considering higher-order programs in which functions are de

fined for the purpose of application, but not as final values per se. 

4.4.2 Desiderata for the Computation Rule 

Aside from the restriction against expanding recursive functions in the body 
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of a lambda-expression, we should not need to always expand all outermost occur

rences of the recursive function in every step. Consider an expression headed by 

the conditional primitive (if). We would prefer to restrict computation to the first 

argument, the condition, and postpone evaluation of the other two arguments, until 

we know which one will be needed. For efficiency, one would like to limit computa

tion to any primitive's strict arguments, at least until we have enough information 

about the argument to simplify the primitive, and to delay evaluation of non-strict 

arguments, whose computation may not be needed. Even if the primitive is strict 

in more than one argument, we may wish to concentrate on just one argument at 

a time. By distinguishing essential from non-essential parallelism, we can define a 

more efficient computation rule. 

One computation rule often used for lazy functional languages is the leftmost 

rule. Of the outermost occurrences of the recursive function(s), a substitution step 

expands only the leftmost. Vuillemin proves that the leftmost computation rule is 

safe for very simple languages. 

Theorem 4.4 [V74]: If all the primitives are strict, except for the if (which is strict 

in the first argument), and the semantic domain is flat, and assuming that primitive 

simplifications are made as early as possible, then the leftmost computation rule is 

safe. 

Proof: At the outermost, an expression must be either an atom, an occurrence of 

the recursive function begin computed, or a primitive (we do not need to consider 

constructors at the outermost, as each element of a flat domain may be considered 

as an individual atom). If the expression is an atom, then there is no occurrence 

for the computation rule to choose, and any computation step is trivially safe. If 

an occurrence ofF is at the outermost, then a leftmost substitution is the same as 

a parallel-outermost substitution, already proven to be safe. The only alternative 

is a primitive at the outermost. Consider the primitives leftmost argument. If 

we replace all occurrences in the argument chosen by the leftmost rule with !1, 

the result is either an atom or .L If the result is an atom, then the expression was 

obviously amenable to simplification (since the primitive is strict in that argument). 

However, we have assumed that all possible simplifications have already been carried 

out. Therefore, the result is .l. Replacing all occurrences in this argument by !1 

yield the same result (.l). Since we get the same result either way, the substitution 
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is safe, by definition. End of Proof 

Many interesting languages do have nonfiat domains, and thus do not meet 

Vuillemin's criteria. For a higher-order language, problems occur when we try to 

evaluate a function outside the context of its application. In the following example 

in which we are computing an unapplied function as a topmost goal. Assume exp1 

denotes an infinite list, and the interpreter is asked to evaluate the function 

>..j.(if f( expr1 ) then expr2 else expr3 ). 

Using the parallel-outermost rule, we would evaluate all three arguments of the if 

expression simultaneously, producing a sequence of partial functions whose limit is 

the denoted function. The leftmost rule would produce better and better approxi

mations of expr1 , but would never get around to computing expr2 or expr3 • Though 

evaluation of/( expr1 ) fails to terminate, we cannot say that the expression as a 

whole denotes bottom; its value depends on the hypothetical value bound to f. 
Since the lambda expression is not being applied to any argument here, the first 

argument of if will not reduce to an element of the semantic domain. It remains as 

a "parameterized" description of a domain element. 

In spite of this problem, leftmost evaluation is used in implementing higher

order functional languages. The implementor simply acknowledges that, though it 

is useful to pass functions as arguments and results, we do so only for the sake of 

applying them in the computation of other objects. We have no need to expand an 

unapplied function for its own sake, no need to expand in the body of a function 

until after that function has been applied (in which case the lambda parameter has 

been replaced). Indeed, as we have seen above, this is also necessary to ensure that 

,6-reduction terminates. 

The leftmost rule has yet another deficiency when dealing with non-fiat do

mains. Consider a language with a hierarchical domain, built using the ordered 

pair constructor'<,>'. Suppose we are trying to compute an ordered pair consist

ing of two infinite sublists, F( exp1) and F( exp2 ): 

< F(exp 1 ), F(exp2 ) >. 

A safe computation rule should produce a sequence of approximations whose limit 

is the denoted pair of infinite lists. Using the left-most rule, however, no part of 

the right side would ever be computed. The limit of the approximation sequence 
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would be a pair of objects, the first an infinite list, and the second object com

pletely undefined. Lazy functional languages do permit infinite lists in the domain, 

nevertheless, they are usually implemented with a leftmost computation rule. This 

works so long as one is only concerned with computing finite objects (though finite 

portions of infinite objects may be used during the computation). 

The limitation to programs which denote finite objects is inadequate for Pow

erFuL, a language which contains the expressive power of logic programming. Many 

useful logic programs will denote an infinite set of solutions; even if the set of so

lutions is finite, the search space may contain nonterminating branches. Even with 

a complete breadth-first search strategy, the computation procedure need not ter

minate. Yet, even if computation of the set never terminates, certain elements of 

the set might be computed with only a finite amount of computation, and the user 

might wish to see those elements as they appear. Even though standard Prolog 

does not provide a complete search strategy for Horn logic (though, in principle, 

complete breadth-first Prolog interpreters could be built), Prolog does make a se

rious effort to compute infinite sets. Consider the following Prolog program, which 

denotes an infinite set of correct answer substitutions: 

app([], Y, Y). 

app([HIT], Y, [HIZ]) :- app(T, Y, Z). 

?- app([1,2]. X, Y), app(X, [1,2],Y). 

Rather than waiting for the entire set to be computed (which may never hap

pen), the system suspends and turns control over to the user, each time another 

member of this set is computed. With each new solution, the user has a better 

approximation to the complete set. 

Traditionally, lazy languages have been.demand-driven, in that they compute 

only those finite parts of an infinite object specifically requested by the user. Lan

guages computing infinite sets, however, cannot be demand driven. The problem 

is that there is no referentially-transparent command or operation that a user may 

invoke to reduce an infinite set to a single finite piece. The user cannot ask for the 

"first" element of the set (as he could ask for the first element of a list), because 

sets have no implicit ordering. All the system can do is to provide increasingly 

better approximations, in which any finite element should eventually appear, until 
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the user decides he has seen enough, and terminates the computation. This could 

be done interactively, with the system suspending each time a new element is ready 

for output, and resuming at the option of the user. This leads to the topic of 

user interfaces for PowerFuL. Perhaps in an interactive implementation, the pro

grammer will be able to direct where in the set expression the computational effort 

should be concentrated. As the desire for referential transparency prevents such 

commands from being part of the language per se, they could be provided in the 

meta-linguistic environment, analogous to online-debugger commands. Details of 

such an environment are beyond the scope of this work. 

Therefore, we would like our implementation to be complete, if possible, even 

for programs which are inherently non-terminating. That is, we want a fair driver 

which, upon learning that the program denotes a union of two subsets, computes 

both subsets simultaneously. Similarly, the top-level driver simultaneously compute 

both sides of an ordered pair. 

In summary, the leftmost computation rule is more efficient than parallel

outermost in that the delay in expanding some outermost occurrences, permits 

some subcomputations to be avoided completely. Use of the leftmost computa

tion rule for a lazy higher-order language requires two compromises: The first is 

that we never try to "compute" a function alone, though we may compute a func

tion applied to some argument. The second compromise is that we only wish to 

compute objects for which the computation sequence will terminate, namely finite 

objects. We accept the first compromise, but not the second. Therefore, we must 

develop a computation rule which is a compromise between the leftmost and the 

parallel-outermost. 

4.4.3 PowerFuL's Reduced Parallel-Outermost Rule 

The computation rule must consider four separate and exhaustive cases: (i) 

when the expression is a recursive function call (not a primitive or constructor); 

(ii) when the expression is headed by a data constructor (other than>.); (iii) when 

the expression is headed by a primitive function not within the context of a lambda 

expression (so we need not consider the presence of unbound lambda variables); and 

(iv) when the expression is an unapplied >. expression. 

We only require that the computation rule be safe when computing objects 
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from a domrun such as 'E', where 

E = (B + A + ExE + 'P(E) )_L. 

This is the subset of PowerFuL's semantic domain D, where 

D = (B + A + DxD + D>-+D + 'P(D) )_L. 

Domain E excludes those objects from D which either ar~ or contain functions 

(though we may use these excluded element of D in computing elements of E). 

We also require that primitives satisfy the following property. 

Definition 4.7: We say that a primitive is eager if it can simplify (either to the 

final result or to another primitive expression) as soon as the outermost constructor 

of any strict argument is known, or, in the case of a type-checking primitive, as 

soon as the type of the argument is known (e.g. by noticing the output type of the 

arguments outermost function). 

Definition 4.8: The reduced parallel-outermoJt computation rule chooses function 

calls according to the following: 

Case (i): If the expression is a function call, then expand only the main (single 

outermost) function call. For example, in F(l,F(2,F)), only the first F would be 

expanded. 

Case (ii): If the expression is headed by a data constructor other than .A (e.g. the 

ordered-prur or set union), then expand the union of sets of function calls chosen 

by applying a safe computation rule individually to each argument. For example, 

in< F(l,F(1,2)), F(3,4) >,the first and last occurrences would be expanded. 

Case (iii): Suppose the expression is headed by a primitive function (and is not 

within the context of a lambda expression). Let arg be any of the arguments in which 

the primitive is strict. The computation rule chooses just those occurrences in the 

primitive expression that would be chosen by applying the computation rule to arg 

alone. (Note that if the primitive is strict in several arguments, this computation 

rule gives us a choice of substitution steps.) For example, if addition is a primitive 

strict in both arguments, then in +(F(l, 2), F(2, 3)), either of the two occurrences 

could be chosen. 

Case (iv): Suppose the occurrences are within a lambda expressiOn, such as 

.Ax. if(F(x, 1), F(1,2), 7). Given the the program denotes an object from sub

domain E, and given that all primitives are eager, and assuming that primitives are 
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simplified as much as possible between recursive function expansions steps, then 

an unapplied lambda expression can only occur either within a nonstrict argument 

of a primitive, or, as a subexpression of a recursive function call. In neither case 

would the computation rule look to the lambda expression for recursive function 

calls to expand. Therefore, this case can be eliminated out of hand. (Furthermore, 

since this case will not occur, we will never compute the bodies of functions except 

after application, and therefore we may be assured that ,8-reduction will always 

terminate). 

Theorem 4.5: If all the semantic primitives are eager, and assuming that primitive 

simplifications are made as early as possible, then a computation rule which chooses 

from among the above substitution steps (depending upon the situation) is safe. 

Proof: A safe computation rule is, by definition, one which uses only safe 

substitution steps. Note that all four cases above describe safe substitution steps. 

Case (i) is a parallel outermost substitution step, a substitution already proven to 

be safe [V7 4]. Case (ii) can be proven by induction on the height of the term. If the 

substitution steps calculated for each subterm are safe, then safety holds individually 

for each argument, and therefore must also hold for the expression as a whole. Case 

(iii): If we replace the chosen recursive function occurrences with least-defined 

values of the appropriate functionality, then the argument in which the occurrences 

were found evaluates to ..l (the primitives being eager, there otherwise would have 

been opportunity to simplify; but we assumed the term was already simplified as 

far a possible). Since the primitive is strict in this argument, replacement of these 

occurrences by ..l makes the primitive application evaluate to the least element of 

the primitive's output domain. Replacement of all occurrences in all arguments by 

..l must give the save result, proving that this is a safe substitution. Case (iv): This 

case will not occur, as mentioned above. End of Proof 

Note that if the primitive is strict in several arguments, this computation rule 

gives us a choice of substitution steps. The two advantages of this approach over 

simple parallel outermost is that ,8-reductions will always terminate (for programs 

denoting elements of domain E), and also that we can sometimes avoid computation 

in a primitive's nonstrict arguments. This gives us some of the computational 

advantages of the leftmost (outermost) rule, without sacrificing safety. 
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4.4.4 Example 

We have proven that the reduced-parallel-outermost rule is safe (and there

fore probably complete for programs of interest), assuming that semantic primitives 

simplify as soon as they have enough information to do so, and assuming that all 

semantic primitives terminate. In Chapter 5, we examine the semantic primitives 

and justify these assumptions. As an aside, note that all simplifications would 

terminate under any computation rule given a first-order restriction of PowerFuL, 

so for a first-order PowerFuL, our safe computation rule is indeed known to be a 

fixpoint rule. 

Below is a sample program execution to translate into the semantic domain the 

object program: 

letrec 

inf be cons('joe, inf) 

in 

car(inf). 

We start with an empty environment, so the initial input is: 

t'[letrec inf be cons(' joe, inf) in car( inf)D A. 

Expanding the outermost call yields: 

t'[car(inf))(V[inf be cons(' joe, inf)] A). 

There are still no simplifications to be performed, so we again expand the outermost 

function call, yielding: 

left(pair!(t'[inf](V[inf be cons(' joe, inf)] A))). 

Expanding the outermost function call yields: 

left(pair!((V[inf be cons(' joe, inf)] A)inf)), 

and then: 

left(pair!([(.:FIX AX. (£[cons(' joe, inf)] [X/inf]))/inf]inf)). 

Note that when introducing new lambda variables, one must be careful to stan

dardize variables apart (rename bound variables so as not to confuse them with 

pre-existing lambda variables). Simplifying (applying the environment) yields 

left(pair!(.:FIX( AX.( £[cons(' joe, inf)] [X/inf])))). 
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Expanding the outermost call yields: 

left(pair!((.\X. (£[cons('joe, inf)D [X/inf])) 

(FIX(.\X. (£[cons('joe, inf)D [X/inf]))))). 

A ,8-reduction yields: 

left(pair!( £[cons(' joe, inf)D p) ), 

where pis: 

[(FIX(XY.( £[cons(' joe, inf)D [Y/inf])))/inf]. 

Expanding the outermost function call yields: 

left(pair!(< (£['joeD p), (£[inf] p) >)). 

This simplifies to: 

£['joeD p. 

Expanding the remaining function call yields: 

'joe. 

4.6 Summary 

When proposing a language, it is good to show that it can be correctly imple

mented, at least theoretically. In this chapter we adapted Vuillemin's methodology 

to interpret a language's denotational description as an interpreter, thus ensur

ing that the operational semantics is consistent with the 'denotational sel):lantics. 

We developed the reduced-parallel-outermost computation rule, which we believe is 

complete for those programs in which an unapplied function is not part of the final 

result. 

Because we chose earlier to map set abstractions onto angelic powerdomains, 

an approximation to the denoted set consists of those elements of the denoted set 

which we have proven to be contained therein. If a set is described as a union of 

two subsets, then whatever is contained in one subset must surely be contained in 

the union. For completeness, we must therefore compute of both parts of a union 

in parallel. Had we used demonic powerdomains, an appro:¥:imation to the denoted 

set would consist of those elements which we have not yet ruled out as being mem

bers. To prove that an element is not a member of a union, we must prove for 

both subsets that the element is not a member. Had we been interested in this 
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sort of computations, the computation of a union could be sequentialized. With 

demonic powerdomains, an undefined subset makes the whole set undefined, so we 

could compute the subsets in sequence. Had we used the Egli-Milner powerdomain, 

our approximations have to give more information, i.e., an approximation would 

have to indicate whether the approximation is capable of being enlarged with addi

tional elements, or whether the computation has in fact terminated. This is added 

precision is not required for any of the features in PowerFuL, though it would be 

necessary if PowerFuL contained a predicate to test whether a set were empty. 

In writing PowerFuL's denotational semantics, we have carefully chosen the 

semantic primitives in such a way that a correct implementation can be derived di

rectly. For an efficient implementation, we do not recommend that this procedure be 

followed too literally. Many optimizations are needed to make the implementation 

efficient. So long as each optimization maintains correctness, then the resulting 

efficient operational semantics will also be correct with respect to the normative 

denotational description. Much research has already been done on techniques to 

implement lazy functional languages (see [P87]), and we will not discuss these tech

niques here. This thesis will concern itself only with one very special optimization 

to introduce logical variables. This optimization, to be discussed in Chapter 6, will 

avoid blind generating and testing when the set denoted by terms is a relative set 

abstractions generator. 
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5 POWERFUL SEMANTIC PRIMITIVES 

This chapter formally defines the semantic primitives of PowerFuL. To justify 

the operational semantics developed in the previous chapter, we must: 

1) identify which arguments of each primitive are strict; 

2) verify that the primitive simplifies upon knowing the outermost constructor 

of any strict argument, (or, in the case of a type-checking primitive, as soon as the 

type of the argument is known); 

3) verify that after any application of the computation rule, primitive simplifi

cations will terminate; and 

4) verify that all primitive functions are continuous. 

These requirements affected the way the semantic equations were written. For 

instance, the fixpoint operator would never do as a primitive, as it would lead 

to non-terminating simplifications. Instead, we implemented the fixpoint operator 

using the denotational equations themselves. That way, only a finite amount of 

work is called for within each computation step. Creating a denotational description 

suitable for direct interpretation requires this kind of special care. 

We define the primitives via equations. Each equation is also a simplification 

rule, rewriting from left to right. These functions are well-defined. Their values at 

the limit points are defined by the continuous extension. 

5.1 Boolean Input Primitives 

A boolean input primitive is one which requires one or more of its arguments 

be from the subdomain B.L. This is a flat domain consisting two elements, TRUE 

and FALSE, and the least element .L PowerFuL has two such primitives, the 

conditional and the negation. Each is strict in its boolean argument, and each 

simplifies when the outermost constructor of that argument is available. 



The equations defining if: B.L xD XD >-+ D are: 

if( TRUE, arg2, arg3) = arg2 
if(FALSE, arg2, arg3) = arg3 
if(J., arg2, arg3) = 1.. 

For clarity when writing nested conditionals, we shall feel free to express this prim

itive using the alternative if ... then ... else ... ft notation. 

The equations defining not: B.L >-+ B.L are: 

not(TRUE) = FALSE 
not(FALSE) = TRUE 
not(J.) = 1.. 

Simplifications for these primitives obviously terminate, as only one rewriting is 

needed. 

The function not is a monotonic function over a discrete domain, and therefore 

is continuous (by Theorem 3.1. ). To show that the function if is continuous, we must 

show that it is continuous in each argument. It is continuous in the first argument 

by Theorem 3.1. For the second argument, we must split into cases, according to 

the value of the first argument. If the first argument is either l. or FALSE, then 

the second argument is completely ignored, and so if is continuous in that argument 

by default. If the first argument is TRUE, then if simplifies to the identity function 

(which is continuous) applied to the second argument. 

5.2 Atomic Input Primitives 

From the syntax of each program, we determine a finite set of atoms, each 

beginning with a quote ('). The set of atoms is always assumed to include 'nil. 

For each such atom A; in the syntax there exists a corresponding semantic zero

arity constructor A;. These objects, together with the bottom element 1., make up 

the subdomain of atoms, A.1. 

For each atom A; is a primitive function isA;?: A.L >-+ B.L, strict in its only 

argument. The simplification rules are: 

isA;?(J.) = l. 
isA;?(A;) = TRUE 
isA;?(Ai) = FALSE fori# j. 

Note that the last rewrite rule actually represents a number of rewrite rules, one 

for each pair of distinct atoms. For instance, the primitive is'nil? tests whether an 
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atom is equal to 'nil. Each primitive of the form isA;? is strict in its argument, and 

simplifies whenever the outermost constructor of that argument (the atom itself) 

is available. Simplifications for these primitives obviously terminate, as only one 

rewriting is needed. 

Using the primitives just described as a base, we define a primitive to compare 

two atoms for equality. The simplification rules for 

are: 

atorneq?: A.i XA.i >--> B.i 

atorneq? (.l, arg2) = .l 
atorneq? ( arg1, .l) = .l 
atorneq? (A;, arg2) = is A;? ( arg2) 
atomeq?(arg1, A;) = isA;?(arg1). 

This primitive is strict in both arguments, and simplifies whenever the outermost 

constructor (an atom) of either argument is available. With one simplification, it 

either terminates or simplifies to another primitive (isA;) which terminates. Note 

that the third and fourth rules are actually rule schemas, each defining a rewrite 

rule for each atom A;. 

These primitives are also continuous by theorem 3.1. 

5.3 List Primitives 

The primitive left: DxD >--> D is strict in its only argument; likewise for the 

primitive right. Each needs only a single simplification rule: 

left(<1st, 2nd>) = 1st 
right( <1st, 2nd>) = 2nd. 

Even before we have fully computed the argument, as soon as we have broken it 

into an ordered pair (computed the outermost constructor), the primitive simplifies. 

Termination is obvious, as only one rewriting is needed. 

The proof continuity of these functions may be found in [S86]. 

5.4 The Powerdornain Primitive 

The primitive •+> lets us iterate a function of typeD >--> P(D) over the elements 

of an input set, combining the results via union into a single new set. It is strict in 

the second argument. We can define •+> recursively via the rules: 
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F+ (1/J) = ,P 
F+({Expr}) = F(Expr) 
F+ (Setl U Set2) = (F+ (Setl) U F+ (Set2)) 

Note that it simplifies immediately as soon as the outermost constructor (either ¢>, 

{ }, or U) is available. It is not quite strict in the first argument, since 

could produce {.l}, which, though less defined than most powerdomain elements, 

is not less defined than .l'P(D) = ,P (¢>can be interpreted as, "We do not know any 

elements of this set, nor even if any exist," whereas { .l} can be interpreted as, "We 

know this set has at least one element, but we do not know anything about it.") 

At any stage of computation, any union tree will have been constructed to only 

a finite height. Though <+' is defined recursively, each recursion goes deeper into 

the finite union tree, so simplifications must tenninate. In other words, though it 

might not terminate when applied to a fully-computed infinite set, in practice no 

infinite set is ever fully computed. The best one can produce are arbitrarily good 

finite approximations. 

The proof continuity of this function may be found in [586]. 

5.5 Coercions 

Chapter 3 introduced the coercions, and showed their use in handling error con

ditions. That is, they protect typed primitives from having to deal with arguments 

of an inappropriate type. The rewrite rules defining them are listed below. All are 

computed with a single simplification, guaranteeing tennination. All simplify when 

the argument's outermost constructor is known, as can be verified by looking at the 

equations. 

The coercions, first described in Chapter 3, are bool!, atom!, pair!, func! 

and set!. 

The function bool!: D >-+ B.1 maps arg to itself if arg is a member of B.1, and 

to l.. otherwise, and is implemented using these equations: 

boo!! (.l) = .l 
bool! (TRUE) = TRUE 
bool!(FALSE) = FALSE 
boo!! (A;) = .l 
boo!!(< exp1, exp2 >) = .l 
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bool! (.A ... ) = j_ 
bool! (r/>) = j_ 
bool!({ ... }) = j_ 
bool!( ... U ... ) = j_ 

The function atom!: D >-+ AJ. maps arg to itself if arg is a member of AJ., and 

to j_ otherwise. 

atom! (j_) = j_ 
atom! (TRUE) = j_ 
atom!(FALSE) = j_ 
atom!(A;) = A; 
atom!(< exp1, exP2 >) = j_ 
atom! (.A ... ) = j_ 
atom!(r/>) = j_ 
atom!({ ... }) = j_ 
atom!( ... U ... ) = j_ 

The function pair!: D >-+ DxD maps arg to itself if arg is a member of DxD, 

and to j_DxD (that is, < j_, j_ >)otherwise. 

pair! (j_) = < j_, j_ > 
pair! (TRUE) = < j_, j_ > 
pair!(FALSE) = < j_, j_ > 
pair! (A;) = < j_, j_ > 
pair!(< exp~, exJl2 >) = < exp1 , exJl2 > 
pair! (.A ... ) = < j_, j_ > 
pair! (r/>) = < j_, j_ > 
pair!({ ... }) = < j_, j_ > 
pair!( ... U ... ) = < j_, j_ > 

The function func!: D >--+ [D>-+D] maps arg to itself if arg is a member of D>-+D 

and to j_D,_.D (that is, .Ax. j_D, also written as !1) otherwise. 

func! (j_) = n 
func! (TRUE) = n 
func!(FALSE) = n 
func! (A;) = !1 
func!(< eXp!, €XJl2 >) = !1 
func!(.A var. body) = .A var. bedy 
func!(r/>) = n 
func!({ ... }) = n 
func!( ... u ... ) = n 

The function set!: D >--+ 'P(D) maps arg to itself if arg is a member of 'P(D) 

and to j_:P(D) (that is, r/>) otherwise. 

set! (j_) = r/> 
set! (TRUE) = r/> 
set! (FALSE) = r/> 
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set! (A;) = ¢> 
set!(< exp1 , exP2 >) = r/> 
set! (A ... ) = ¢> 
set! ( ¢>) = ¢> 
set! ( {element}) = {element} 
set! (set1 U set2) = set1 U set2 

We can reduce sequences of coercions by noting that for two coercions c. and 

c. ( Cb (arg)) = c. (arg) when c. and Cb are the same coercions. 
c. ( cb (arg)) = c. (.l) when c. and cb are different coercions. 

For instance, we can simplify set!( set!( arg)) to set!( arg ), and set!( func!( arg)) to 

¢>. The continuity of these functions was discussed at the end of Chapter 3. 

5.6 Run-time Type-checking 

PowerFuL is an untyped language. To allow the programmer to specify run

time type-checking, provide these primitive semantic functions over D 1-> BJ.: bool?, 

atom?, pair?, func? and set?. We can determine an object's type by viewing 

the outermost constructor, or in some cases, by the output type of the primitive 

heading the argument (i.e. if the primitive never returns a result that is completely 

undefined. For instance, the expression set?( set!( arg)) always denotes TRUE). 

The equations defining bool? are: 

boo I? (..L) = ..L 
bool?(TRUE) = TRUE 
bool?CFALSE) = TRUE 
bool?(A;) = FALSE 
bool?(< exp1. exP2 >) = FALSE 
bool?(A ... ) = FALSE 
bool?(r/>) = FALSE 
bool?({ ... }) = FALSE 
bool?(. .. u ... ) = FALSE. 
bool?(pair!(arg)) = FALSE. 
bool?(func!(arg)) = FALSE. 
bool?(set!(arg)) =FALSE. 
bool?(. .. + ... ) = FALSE. 

In other words, bool? returns TRUE ifthe argument is a boolean, FALSE if the 

argument is an atom, an ordered pair, a function or a set, and ..L if the object's type is 

unknown. The primitive is computed with just one simplification, so termination is 

guaranteed. When the outermost constructor of the object is known, simplification 

can proceed. 
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The other type-checking primitives are similar, and have the same termination 

and simplification properties. The equations for atom? are: 

atom? (.l) = .l 
atom?(TRUE) = FALSE 
atom?(FALSE) = FALSE 
atom?(A;) = TRUE 
atom?(< expb exJ12 >) = FALSE 
atom?(>. ... ) = FALSE 
atom?(/fo) = FALSE 
atom?({ ... }) = FALSE 
atom?( ... u ... ) = FALSE. 
atom?(pair!(arg)) =FALSE. 
atom?(func!(arg)) =FALSE. 
atom?(set!(arg)) = FALSE. 
atom?( ... + ... ) = FALSE. 

The equations for pair? are: 

pair?(.l) = .l 
pair?(TRUE) = FALSE 
pair?(FALSE) = FALSE 
pair?(A;) = FALSE 
pair?(< exp1, exJ12 >) = TRUE 
pair?(>. ... ) = FALSE 
pair?(/fo) = FALSE 
pair?({ ... }) =FALSE 
pair?(. .. u ... ) = FALSE. 
pair?(pair!(arg)) = TRUE. 
pair?(func! (arg)) = FALSE. 
pair?(set!(arg)) =FALSE. 
pair?( ... + ... ) = FALSE. 

The equations for func? are: 

func? (.l) = .l 
func?(TRUE) = FALSE 
func?(FALSE) = FALSE 
func?(A;) = FALSE 
func?(< exp1, exJ12 >) = FALSE 
func? (>. •.• ) = TRUE 
func?(/fo) = FALSE 
func?({ ... }) = FALSE 
func?( ... u ... ) = FALSE. 
func?(pair!(arg)) = FALSE. 
func?(func!(arg)) = TRUE. 
func?(set!(arg)) =FALSE. 
func?(. .. + ... ) = FALSE. 

The equations for set? are: 

set? (.l) = .l 
set?(TRUE) = FALSE 

68 



set?(FALSE) = FALSE 
set?(A;) = FALSE 
set?(< exp1 , exP2 >) = FALSE 
set?(). ... ) = FALSE 
set?(<,D) = TRUE 
set?({ ... }) = TRUE 
set?(. .. U ... ) = TRUE. 
set? (pair! ( arg)) = FALSE. 
set? (func! ( arg)) = FALSE. 
set? (set! ( arg)) = TRUE. 
set?(. .. + ... ) = TRUE. 

To prove continuity, note that, because these functions are monotonic, the 

continuity requirement holds for all finite chains. For any infinite chain in D, the 

least upper bound of the chain and every chain element (with the possible exception 

of ..l.n are all contained within one of these subdomains: B1., A.L, D X D, D >-> D 

and 'P(D). When applied to members of the same subdomain, each type-checking 

always returns the same constant result, permitting continuity to be easily verified. 

5. 7 Equality 

We define first-order equality by saying that two first-order objects are equal 

if and only if they are identical. First-order objects include atoms, booleans, and 

nested ordered pairs whose leaves are atoms and booleans. We wish to define equal

ity over all first-order objects, not just atoms. There are several ways we could have 

done this. We could have given the programmer access to the atomeq? primitive, 

letting the user include a definition for equality within his program. Alternatively, 

we could have defined equality construct via the denotation equations. However, 

an important optimization technique developed in the next chapter requires that 

equality be made a primitive. As a primitive strict in both arguments, there must be 

a simplification available whenever the outermost constructor of either argument is 

available. This motivates the following equations, broken into groups for discussion. 

The first two equations simply indicate that the primitive is strict in both argu

ments. 

equal?(..!., arg2) = ..!. 
equal? (arg1, ..!.) = ..!.. 

If we know anything at all about either argument, we know whether it is a member 

of B (a boolean), A (an atom), DxD (an ordered pair), D>->D (a function) or 'P(D) (a 

set). As soon as we know this about an argument (either by having computed the 
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outermost constructor, or by computing it to the form of a primitive application 

headed by pair!, func!, set! or •+•), we can apply a simplification rule. 

If B is known to be a boolean, then: 

equal?(B, exp) = 
if bool?( exp) then if(B, bool!( exp ), not(bool!( exp ))) else FALSE fi 

and by symmetry: 

equal?( exp, B4 = 
If bool.(exp) then if(bool!(exp),B,not(B)) else FALSE fi. 

If A is an atom, then 

equal?(A, exp) = 
If atom?( exp) then atomeq?( A, atom!( exp)) else FALSE fi 

and by symmetry 

equal?(exp, A) = 
if atom?(exp) then atomeq?(atom!(exp),A) else FALSE fi 

If F is a function, then 

equal?(F, exp) -
equal?( exp, F) -

if func?(exp) then .l else FALSE fi 
if func?(exp) then .l else FALSE fi 

If Sis a set, then 

equal?(S, exp) 
equal?( exp, S) 

= if set?( exp) then .l else FALSE fi 
= if set?( exp) then .l else FALSE fi 

If P is an ordered pair, then: 

equal?(P, exp) = 
If not( pair?( exp )) then FALSE 
elseif not(equal?(left(P), left(pair!(exp)))) then FALSE 
else equal?(right(P), right(pair!( exp))) fi 

and by symmetry: 

equal?( exp, P) = 
If not(pair?( exp )) then FALSE 
elseif not( equal?(left(pair!( exp )), left( P) )) then FALSE 
else equal?( right( pair!( exp) ), right( P)) fi 

Though the simplification rules for equal? are recursive, simplifications will 

always terminate. The recursion only occurs when comparing two ordered pairs. At 

any stage of computation, any ordered-pair tree will have been constructed to only a 
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finite height. Each recursion goes deeper into the finite union tree, so simplifications 

must terminate. In other words, though it might not terminate when comparing 

two identical fully-computed lists, in practice no infinite list is ever fully computed. 

The best one can produce are arbitrarily good finite approximations. 

Essentially, equal? is the least fixpoint of a recursive functional built usmg 

the function composition of the function variable and continuous primitives, and is 

therefore itself a continuous function [S86]. 

5.8 Summary 

In this chapter, we have defined the primitives through equations which also 

serve a rewrite rules. We have shown that each primitive does indeed simplify 

upon availability of the outermost constructor of any argument in which it is strict. 

We have also shown that the simplification stage of every computation step must 

terminate. 

With these definitions of the primitives, the definition of our language is com

plete. Because they satisfy the above properties, as required by the developments in 

chapter 4, we have an operational semantics as well. The next chapter will improve 

the interpretation procedure, and there these primitives play a central role. 
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6 OPTIMIZATIONS 

This chapter improves the basic operational procedure described in the last 

chapter. The problem being attacked is the inefficiency of relative set abstraction 

when the set of terms acts as a generator. Rather than enumerating terms blindly, 

we would like to treat the enumerated parameter as a logical variable, analogous to 

the implementation of absolute set abstraction. This chapter explains why this is 

proper to do, and provides a scheme for how to implement this optimization. 

6.1 A voiding Generate-and-Test 

In Section 2, we specified a Horn logic program using letrec (the feature 

for creating recursive definitions), set abstraction, the conditional and the equality 

primitive. Executing this program using PowerFuL's denotational equations as the 

interpreter would be analogous to using Herbrand's method [Q82] to solve problems 

in logic. Herbrand's "generate-and-test" approach is simple but inefficient. 

The resolution method avoids blind generation of instantiations, preferring to 

do as much work as possible on non-ground expressions. In logic programming, a 

logical variable denotes an element from the set of terms (the Herbrand Universe). 

In resolution, a logical variable becomes instantiated only to the extent necessary 

to satisfy the inference rule's equality test. Partial instantiation narrows the set of 

candidate bindings, without necessarily settling on a single choice. When performed 

to ensure equality of non-ground terms, partial instantiation is called unification, 

and the substitution implementing the partial instantiation is called a unifier. 

In PowerFuL, to compute a relative set expression, we normally begin by com

puting the generator set. As an example, consider the following expression. 



letrec 

append be A 11 12. if null?(ll) then 12 

else cons(car(ll), append(cdr(l1),12)) fi 

in {X: X E terms, append(X, ['a,'b]) = ['c,'d,'a,'b]} 

Whenever we isolate an expression denoting an element of the generator, in 

this case a term, a copy of the relative set abstraction is created, with the generator 

element expression replacing the enumeration parameter. In this case, the set terms 

evaluates to a union tree, whose leaves are each a singleton set containing one term. 

The set abstraction reduces to a union tree, each of whose leaves contains the value 

denoted by 

letrec 

append be A 11 12. if null?(l1) then 12 

else cons(car(ll), append(cdr(l1),12)) fi 

in 

{ term : append(term, ['a, 'b]) = ['c, 'd, 'a, 'bJ} 

where term represents one element of the set of terms. It is clear that each such 

instantiation can easily be computed. Where term satisfies the condition, the result 

is a singleton set containing this term. For terms that do not satisfy the condition, 

the result will be ¢. The complete result is union of all these subsets. We would 

like to modify this procedure so that when terms is the generator set, we treat the 

enumeration parameter as a logical variable, rather than blindly enumerating its 

many simple objects. Similarly, an enumeration parameter generated by atoms, or 

boola can be viewed as a partially-instantiated, or constrained, logical variable. 

In Horn logic, each correct answer substitution provides ground bindings for the 

goal's logical variables. Members of this set can be grouped into families. Within a 

family, all answer substitutions share common aspects, with the remaining details 

varying freely. The Herbrand derivation of one member of the family is almost iden

tical to the Her brand derivation for any other member. For each family of correct 

answer substitutions, Herbrand's method would derive each member individually, 

with an infinity of essentially similar derivations. Resolution, however, produces 

most general computed answer substitutions, one per family. A general computed 

answer substitution only partially instantiates a goal's logical variables, and does 
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so in such a way that for any ground completion of the general computed answer 

substitution would result in a correct answer substitution. The derivation of the 

general answer substitution resembles a parameterized Herbrand derivation. 

Resolution performs modus ponens inferences on the non-ground clauses di

rectly, rather than first instantiating them. Logical variables become partially in

stantiated (via a most general unifier) only to the extent necessary to satisfy the 

inference rule's equality requirement. Pure Horn logic ignores logical variable bind

ings which make the equality false. PowerFuL primitives are more complex, in that 

we are interested in all possible logical variable bindings to produce all possible 

results. However, some versions of Prolog [N85] add the inequality predicate as 

well. Rather than actively generating bindings for logical variables, the inequality 

primitive constrains future bindings. 

In a sense, program execution is left unfinished. Though it is easy to extend a 

most general answer substitution, to produce (ground) correct answer substitutions, 

this is not done. Reporting results in the general form is more economical than 

individually reporting each of the infinite ways in which each most general answer 

can be extended. 

6.2 Logical Variable Abstraction 

To treat an enumeration parameter as a logical variable, we must recognize 

that its generator is the set of first-order terms (or part of this set). An expression 

of the form 

(>..x.body)+ F[terms] 

or equivalently 

(>..x.body)+ set!(F[terms]) 

is rewritten at run-time to 

term( x). body 

to indicate that x is to be treated as a logical variable, rather than blindly enumer

ating its generator. We can look out for this situation by noting when the semantic 

equation 

t'([{expr : idE genrtr, qualifierlist}] p) 

=(>..X. t'[{expr : qualifierlist}] p[Xjid])+(set!(t'[genrtr] p)) 
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is used, and checking to see whether genrtr refers to terms, atoms or bools. The 

expressions atom(x).body and bool(x).body are constructed analogously. In an ex

pression of the form 

atom( x ). body 

x is a logical variable representing a term, under the constraint that this term 

must be an atom (not a boolean or ordered pair). Rather than recomputing the 

body for each trivial instantiation, we will evaluate body in its uninstantiated form, 

leaving it parameterized by the enumeration variable, computing a parameterized 

set expression. This parameterized set expression stands for the union of all possible 

instantiations, allowing us to express results more compactly. 

For uniformity, we will keep parameterized sets in an analog of logic program

ming's clause form. That is, we will strive to represent a parameterized set as a 

union tree, each leaf of which is a possibly parameterized singleton (or empty) set. 

Therefore, a •+• expression with a parameterized set as the second argument will be 

rewritten as a parameterized •+• expression, and a parameterized union of subsets 

will be replaced by a union of parameterized subsets. That is, an expression of the 

form: 

will be rewritten as: 

This transformation is valid, because the first expression is an alternate notation 

for: 

and the second is an alternate notation for 

and these two are equal (due to the associativity of set union). When breaking up 

a parameterized union, an expression of the form 

becomes 

term(x).exp 1 U term(x).exp2 • 
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A parameterized empty set, such as term( x ).¢>, can be simplified to ¢>, if desired. 

One computes a parameterized set expression by expanding the occurrences of 

the semantic function ( E, :F or 1J) in the parameterized body as specified by the 

computation rule, and doing all possible primitive simplifications between expan

sion steps. In other words, one strives to compute the parameterized body just as 

one would if each logical variable had been replaced by a ground term. Though 

expansion of the semantic function is unaffected by the fact that some terms are 

represented by logical variables, simplification of primitives becomes more difficult. 

Simplification of primitives applied to logical variables is discussed in the next sec

tion. 

6.3 Simplifying Primitives with Logical Variables 

Suppose a parameterized body contains a subexpression headed by a primitive, 

one of whose strict arguments is a logical variable. If the logical variable were 

replaced by a term, we could simplify the primitive with the appropriate primitive 

rewrite rule chosen according to the value of the term. But how do we choose which 

rewrite rule to use, when the logical variable represents any of a whole range of 

possible terms? For any such case, one of three techniques will permit simplification 

of the primitive. Cases motivating each technique are listed below. 

1) When the same rewrite rule would be chosen for any possible instantia

tion of the logical variable, Technique 1 allows us to simplify directly, without any 

instantiation of the logical variable. 

2) When the choice of rewrite rule depends upon whether a term represents a 

boolean, an atom or an ordered pair, and the logical variable is unconstrained (i.e. 

it could represent any of these), the second technique allows us to split into three 

subsets, each of which handles one of the possibilities. 

3) When two logical variables are being compared for equality, the third tech

nique splits the set into two subsets, one in which the equality is assumed to hold, 

and the other in which an inequality constraint is generated. 

We describe each case in the notation: 

term( u ).( ... prim( u) . .. ), 

where prim is some specific primitive. The ellipses indicate that the primitive subex-
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pression occurs anywhere in the body of the parameterized set expression. Between 

any two expansion steps, all possible primitive simplifications are performed, so the 

primitive's position in the expression is irrelevant. 

6.3.1 Technique 1: Simple Reduction 

Often, due to implied or stated constraints on the logical variable, the same 

rewrite rule would be chosen regardless of which term the logical variable represents. 

In this case, simplification of the primitive is straightforward. One applies the single 

applicable rewrite rule to the parameterized subexpression. For example, consider a 

parameterized expression containing a subexpression headed by the primitive func?: 

term( u ).( ... func?( u) ... ). 

We can simplify func?(u) to FALSE, without knowing the value of u, since any 

value would certainly not be a function. Below is a comprehensive list of similar 

situations. The rationale for these cases is that a logical variable never represents 

a function or a set, and a logical variable constrained to one subtype will never 

represent a term of another type. 

term(u).( ... func?(u) ... ) --> term(u).(o. 0 FALSE ... ) 
term(u).( ... func!(u) .. o). --> term(u).( ... n ... ) 
atom(u).( ... func?(u) ... ) --+ atom(u).( ... FALSE ... ) 
atom(u).( ... func!(u) ... ) --> atom(u).( .. o!"!.oo) 
bool(u)o(o .. func?(u)oo•) --> bool(u).(.o.FALSE.oo) 
bool(u).(o 0 0 func!(u) ... ) -+ bool(u).(o 00 n. 0 o) 
term(u)o(o.oset?(u) ... ) -+ term(u).(o .. FALSE ... ) 
term( u).(o o. set!( u) .. . ) -+ term( u ).( ... <P •• • ) 

atom(u).( .. . set?(u) 0 •• ) -+ atom(u).( .. . FALSE ... ) 

atom( u )o(. 0. set!( u) .. . ) -> atom( u).( ... <P •• • ) 

bool(u).( ... set?(u) ... ) --+ bool(u).( ... FALSE ... ) 
bool(u).( .. . set!(u) ... ) -+ bool(u).( ... <,? ••• ) 

atom(u).( ... bool?(u) ... )--+ atom(u).( ... FALSE ... ) 
atom( u).(. o. bool!( u). 0 .) -+ atom( u)o( ... .l. o .) 
bool(u).( ... bool?(u) ... ) -+ bool(u)o(o .. TRUE ... ) 

bool( u).( ... boo!!( u) .. . ) --+ bool( u ).( ... u .. . ) 
atom(u).( ... atom?(u) .. . ) --+ atom(u).( . .. TRUE ... ) 

atom( u ).( ... atom!( u) ... ) -> atom( u ).( ... u ... ) 
bool(u).( ... atom?(u) ... ) -> bool(u).( ... FALSE ... ) 
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bool(u).( ... atom!(u) ... )--> bool(u).( ... .l ... ) 

atom(u).( ... pair?(u) . .. ) --> atom(u).( ... FALSE ... ) 

atom(u).( ... pair!(u) ... )->atom(u).( ... <.l, .l> ... ) 

bool(u).( ... pair?(u) .. . ) --> bool(u).( . .. FALSE ... ) 

bool(u).( ... pair!(u) ... ) --> bool(u).( ... < .l, .l > ... ) 
bool( u ).( ... equal?( u, ex) ... ) --> if( boo!?( ex), if( u, ex, not(bool!( ex))), FALSE) 

bool(u).( ... equa!?(ex, u) ... )--> if( boo!?( ex), if(bool!(ex),u,not(u)), FALSE) 

atom( u).( ... equal?(u, ex) ... ) --> if( atom?( ex), atomeq?(u, atom!( ex)), FALSE) 
atom( u).( ... equal?( ex, u) .. . ) --> if( atom?( ex), atomeq?(atom!( ex), u), FALSE) 

term(u).( .. . equal?(u, u) .. . ) --> term(u).( ... TRUE ... ) 

atom(u).( ... atomeq?(u, u) ... ) --> atom(u).( ... TRUE ... ). 

6.3.2 Technique 2: Splitting by Type 

Given any of the primitives: boo!?, boo!!, atom?, atom!, pair? and pair!, 

the rewrite rule chosen depends upon the type of the argument (boolean, atom, 

ordered pair, function or set). Unless otherwise constrained, a logical variable can 

represent three of these types (atom, boolean and ordered pair); in order to simplify, 

we must consider each possibility separately. We divide the parameterized set ex

pression into three subsets, so that for each subset, Technique 1 (simple reduction) 

will apply. 

Let prim represent one of these four primitives. An expression of the form 

term( u ).( ... prim( u) . .. ) 

is replaced by: 

bool( u ).( ... prim( u) ... ) 

U atom(u).( ... prim(u) ... ) 

U term(v).term(w).( ... prim( u) .. . )(< v, w > /u]. 

In the first branch of the union, we have partially instantiated the logical variable by 

constraining it to represent a boolean; in the second branch, we have constrained it 

to represent an atom; in the third branch, we have constrained it to represent a term 

which is an ordered pair of subterms. The primitive function simplifies immediately 

in each subset, thus computes each branch of the union separately. 

To prove that this technique is correct, note that the original expression is an 

alternate notation for: 
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( ... prim(u) .. . )+(F[terms]). 

Expanding F yields: 

(F[bools]) 
U (F[atoms]) 

U (term(u).term(v). < u,v >). 

Simplifying + by distributing ( ... prim( u) ... ) over the union yields: 

( ... prim(u) ... )+(F[bools]) 

U ( ... prim(u) .. . )+(.r[atoms]) 

U ( •.. prim(u) .. .)+(term(v).term(w). < v,w >). 

Putting this into the standard format for a parameterized set yields the replacement 

expresswn. 

This technique is analogous to narrowing in constructor-based term-rewriting 

systems [R85], where, to permit further reduction of a non-ground term (a term 

containing logical variables), one instantiates a variable in all possible ways which 

would enable further reduction. This technique is also analogous to the use of most 

general unifiers in Horn logic resolution. Unification prepares two clauses for modus 

ponens by instantiating them no more than is necessary to satisfy the equality 

requirement. One difference is that traditional Horn logic does not use negative 

information. Horn logic only considers instantiations to make the equality true. In 

PowerFuL, we are concerned with all possible outcomes. Some variations of Horn 

logic do consider negative information through the use of a inequality predicate and 

negative unifiers [N85] [K84]. We discuss primitives based on equality next. 

6.3.3 Technique 3: Splitting on Equality 

This section describes what to do when an argument of an equality primitive 

(equal? or atomeq?) is a logical variable. Combined with the rewrite rules 

for equality and the techniques given earlier, this technique implements syntactic 

unification. Actually, a generalization of unification results, as negative bindings 

(to make the equality false) are also considered. 

Chapter 5 provided a comprehensive set of equal?'s rewrite rules. It simplifies 

to a conditional expression whenever the type of either argument becomes known. 
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If the logical variable is constrained to one particular type, a simple reduction can 

be performed, as was shown in a previous section. 

If the lambda variable can represent more than one type, then, theoretically, one 

could split according to type (divide into three cases, and then do simple reductions 

for each case). In each case, the equality primitive would simplify to a conditional, 

whose strictness demands that the type of the other argument be next ascertained. 

However, a more efficient way is to delay the reduction of equality until the type of 

the other argument (the one which is not a logical variable) is known, and simplify 

according to itJ type. This way, preliminary computation of the other argument 

needs be done only once, instead of three times. 

When Both ArgumentJ are Logical VariableJ 

If both arguments of the equality predicate are logical variables unconstrained 

in type, then we mrut simplify. Consider an expression of the form: 

term( u).( ... term( v ).( ... equal?( v, u) .. . ) ... ) 

This parameterized set expression contains somewhere in its body a primitive subex

pression comparing two unconstrained logical variables. Theoretically, one could 

break this into an infinity of special cases, in each case u and v each being replaced 

by an element of the set of terms. For some combinations the predicate equal? 

would simplify to TRUE, and FALSE for other combinations. This could also 

have been done with the primitives described earlier, but it is better to deal with 

a few large subsets, than an infinity of individual cases. Splitting them into atoms, 

booleans and ordered pairs does not help. We must recognize that the instantiations 

fall into two cases: those for which the two terms are equal, and those for which 

they are not. The subset handling the cases in which the two terms are equal can 

be summarized by replacing all occurrences of v with occurrences of u: 

term(u).( .. . term(v).( ... equal?(v, u) ... ) [v/u] ... ). 

Since there are no more occurrences of v in the subexpression 

term(v).( ... equal?(v, u) ... ) [v/u], 

we can simplify this to 

( .... ( ... TRUE ... ) [vfu]). 
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(In fact, this simplification can be performed whenever a body does not depend on 

the enumerating variable. The special case of term( x). ¢> being replaced by ¢> was 

given earlier.) 

Inequality Constraints 

We also need to summarize the cases when u and v are not equal. This could 

be summarized by 

term(u).( ... term(v).if not(equal?(v, u)) then ( ... FALSE ... ) else¢> ... ). 

This summarizes the elements of the set for which which the two terms u and v are 

not equal. Is there a way to compute this further, without trying individually all 

possible combinations of unequal terms? 

Lee Naish [N85] proposes for Prolog a inequality predicate, defined on terms. 

His inequality predicate would fail when two terms are identical, succeed when two 

terms cannot be unified, and delay when two terms are unifiable, but not identical. 

In the last case, the other subgoals would be executed first, until the values of 

logic variables have been instantiated enough to prove either the terms' equality or 

their inequality. If all other subgoals succeed, without instantiating the variables 

enough, Naish's Prolog gives an error message. This is not ideal behavior, since 

unequal instantiations can certainly be computed. A better alternative woqld be 

to make the inequality part of the solution, as a kind of negative unifier. Khabaza 

describes a way in which this can be done [K84]. In essence, the inequality becomes 

part of the general solution. Specific ground solutions can be generated from the 

general solutions by instantiating logical variables in all possible ways subject to the 

inequality constraint. Constraint logic programming [JL87] sets another precedent 

for this approach. Computation of general non-ground solutions greatly improves 

efficiency, and because replacing term variables by arbitrary ground terms is such a 

trivial operation it matters little that the computation has terminates prematurely. 

Requiring such term enumerations to satisfy a few inequalities adds little to the 

complexity of the output, and makes it more compact. 

To express such a constraint, we could write the above subset as: 

term(u).( ... term(v)u =f v.( ... FALSE ... )). 
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We have simplified the equality predicate by splitting into two expressions: one 

expression representing the cases for which the equality holds, and the other ex

pression representing the cases for which it is false, without the need to consider 

every case individually. 

Solving subsequent inequalities result in a constraint which is a conjunction 

of inequalities. If the satisfaction of other predicates cause u and v to become 

refined into the ordered pairs, < u11 u2 > and < v11 v2 >, respectively, then the 

inequality u =f v will become< u 1 ,u2 >=f< v11 v2 >,which simplifies to or(u1 =f 
vr, u2 =f v2). In general, the total constraint will be an and/or tree of simple 

inequalities. As these simple constraints a,re satisfied, they can be replaced by 

TRUE. Those inequalities which become unsatisfiable can be replaced by FALSE, 

leading to further simplifications of the and/ or tree. If the whole tree simplifies to 

FALSE, then we are enumerating an empty set, and the whole expression within 

can be replaced by ¢. 

Similar techniques are used for the predicates atomeq? and isA;? (where A; 

represents an arbitrary atom). To be thorough, the cases are itemized below. 

List of Cases for Equality Splitting 

term(u).( ... term(v) ... constraint.( .. . equal?(v, u) . .. )) -> 

term(u).( ... constraint( ... TRUE ... ) [vju]) 
U term(u).( ... term(v)and( constraint, ( u =f v)).( ... FALSE ... )). 

atom( u).( ... atom( v) ... constraint.( ... atomeq?(v, u) . .. )) -> 

atom(u).( ... constraint( ... TRUE ... ) [vju]) 
U atom(u).( ... atom(v)and(constraint,(u =f v)).( .. . FALSE ... )). 

atom(u).( ... constraint.( .. . isA;?(u) ... )) -> 

( ... constraint( ... TRUE ... ) [u/ A;]). 
U atom( u).( ... and( constraint, (u =fA;)).( ... FALSE ... )). 

These optimizations are of course symmetrical in the order of argunrents to equal? 

and atomeq?. 

Note that we consider the binding of logical variables separate from the def

inition of the equality primitive itself. Robinson also split unification into these 
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components [BRS82]. We have generalized the approach to also consider negative 

unification. 

6.3.3 Discussion 

We have already considered these primitives applied to logical variables: bool?, 

t ? • ? f ? t? b I' t 1 • 1 f ' t' ·r t · A ? (" a om., patr., unc., se ., oo ., a om., patr .. , unc., se ., 1, no, Is i• 10r 

each atom A;) and equal?. The primitives not discussed are: left, right, not, if, 

t9-reduction and •+'. 

According to the denotational equations, left and right are always applied 

in conjunction with the coercion pair!. Since we have already considered logical 

variables as arguments to pair!, we need no special mechanism for left and right. 

The denotational equation producing function applications coerces the first 

argument via the func! primitive. Since we have already considered logical variables 

as arguments to func!, we need no special mechanism for t9-reduction, either. 

Analogously, the coercion set! intercedes between •+' and its strict second 

argument. Actually, since the second argument of •+, must be a set, one should 

not expect to see a logical variable (which represents a term) in that position. We 

have already discussed the case in which the second argument is a parameterized 

set expression. 

When a logical variable is an argument to not, or the first argument to if, 

these arguments are protected by the coercion boo!!, so the logical variable must 

already have been constrained to be a boolean. In that case, we simply split into two 

subsets, one for which the logical variable is TRUE and one for which it is FALSE. 

Though this involves a split, this is not really a special optimization technique. It 

is the default procedure when bools is a relative set abstraction generator! The 

only difference is that we delay the enumeration of bools until a boolean primitive 

needs to know which one. 

The only case not covered under any of these techniques is the case when a 

logical variable represents a nonstrict argument of a primitive, e.g. if a logical 

variable is the second or third argument of if. A semantic primitive of PowerFuL 

will always simplify if it is given the outermost constructor of any strict argument. If 

the primitive is not strict in that argument, however, the primitive will not simplify, 

until something about a strict argument is known. So, consider 
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term(u).( .. . if((£[exp1 ] p),u, exp 3 ) • •• ). 

Assuming the outermost constructor of exp1 is not available, the primitive if would 

not yet simplify no matter which term might replace u. Therefore, the occurrence 

of a logical variable in this position does not call for any special consideration. 

6.4 Example 

Suppose we wish to unify these two non-ground first-order terms: [A I B] and 

[C I 'd] . i.e., to find replacements for logical variables A, B and C so that [A I B] 

= [C I 'd]. It is clear that there are an infinite number of possible unifiers, each of 

the form [A/D, B/'d, C/D] for some term D. In fact, this parameterized substitution 

(parameterized by logical variable C) [A/D, B/' d, C/D] is the most general unifier. 

It is a general unifier in that replacing C by any term will result in a unifier, and 

most general in that any unifier is an instantiation of this form. 

To calculate the set of unifiers, one might execute the Powerful program: 

{ [AI[BIC]]: A,B,C E terms, [AIB]=[CI'd]} 

That is, each unifier is represented by a list, whose elements are the respective 

bindings for A, B and C. Removing some syntactic sugars, the denoted object is 

defined as 

E[{cons(A,cons(B,C)): A,B,C E terms,cons(A,B) = cons(C,' d)}] A. 

Without the optimizations, this program would produce a set represented by 

an infinite union tree with a leaf for each possible assignment of terms to A, B and 

C. Where the assignment is a unifier, the leaf would be a singleton set containing 

these bindings in a list. Where the assignment is not a unifier, the leaf would be 

the empty set. The following derivation, however, uses the optimizations discussed 

in this chapter, and succeeds in avoiding much redundant work. As we shall see, it 

will construct a finite union tree, with a few leaves representing the empty set, and 

a single leaf containing a parameterized singleton set. This parameterized singleton 

set will represent the most general unifier [A/C, 'd/B]. Expanding the outermost 

call, the above expression becomes 

(AX. E[{cons(A, cons(B, c)) : B, C E terms, cons(A, B)= cons(C,' d)}] [X/A] 
)+set!(E[terms] A). 
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Since •+• is strict in the second argument, we rewrite its outermost occurrence of 

£,yielding 

(>.X. £[{ cons(A,cons(B, C)) : B, C E terms, cons(A, B)= cons(C,1 d)}] A 
)+set!(F[terms]). 

Putting the whole expression into the new notations yields 

term( X).£[{ cons( A, cons(B, c)) : B, C E terms, cons( A, B) = cons(C,' d)}] [X/ A]. 

Evaluation of the body proceeds as before, eventually producing 

term( X).term(Y).term(Z). set!( 
if( efual?(E[cons(A,B)] p1 ,£[cons(C,' d)] p1 ) 

£ {cons( A, cons(B, C)) :} ] PI, 
q, ), 

where PI is [XjA,YjB,Z/C]. The computation rule allows us to expand either the 

first or second occurrence of£. We choose the first and simplify. Continuing in this 

manner eventually yields 

term( X).term(Y).term(Z). set!( 
if( if( not(pair?(E[cons(C,' d)] pi)), 

FALSE, 
if( not( equal?( 

£[A] Pl• 
left(pair!(E[cons(C,' d)] PI)))) 

FALSE, 
equal?(E[B] PI, right(pair!(E[cons(C,' d)] PI))))), 

t'[ {cons( A, cons(B, C)) :} ] PI, 
q, )). 

The leftmost function call expands to an ordered pair. Then, the primitive pair? 

simplifies to TRUE, and the primitive not simplifies to FALSE. The inner if 

simplifies, producing 

term(X).term(Y).term(Z). set!( 
if( if( not( equal?( 

£[A] P1, 
left(pair!(E[cons(C,' d)] PI)))), 

FALSE, 
equal?(E[B] p1,right(pair!(£[cons(C,' d)] PI)))), 

£[ {cons( A, cons(B, c)) : }H PI, 
¢> )). 

Expanding the leftmost function call yields 
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term(X).term(Y).term(Z). set!( 
if( if( not(equal?(X,left(pair!(£[cons(C,' d)] PI)))), 

FALSE, 
equal?(£[B] PI>right(pair!(£[cons(C,' d)] PI)))), 

£[{cons(A,cons(B,C)) :}] PI, 
1/>J). 

The body is strict in the outermost if, which is strict in its leftmost argument. The 

leftmost argument is itself an if, strict in its leftmost argument. That argument 

is a not which is strict in an expression headed by equal?. This first occurrence 

of equal? is strict in both arguments, one of which is a parameter enumerated by 

terms, the other a function call. No matter how the equality would simplify, were 

a term provided in place of the parameter, further simplification would be require 

evaluation of the other argument. Therefore, we delay simplification of the equality 

to compute the other argument, yielding 

term(X).term(Y).term(Z). set!( 
if( if( not( equal?( X, left( pair!(< £[c] PI,£[' d] PI >))) ), 

FALSE, . 
equal?(£[B] PI, right(pair!( £[cons(C,' d)] PI)))), 

£[ {cons( A, cons(B, C)) :} ] PI, 
4> )). 

Now we can simplify to 

term(X).term(Y).term(Z). set!( 
if( if( not( equal?( X, £[c] PI)), 

FALSE, 
equal?(£[B] PI, right(pair!(£[cons(C,' d)] pi)))), 

£[{cons( A, cons(B, c)) : }] PI, 
4> J). 

The equality still requires evaluation of the second argument, which finally evaluates 

to Z, yielding 

term(X).term(Y).term(Z). set!( 
if( if( not( equal?(X, Z)), 

FALSE, 
equal?(£[B] PI,right(pair!(£[cons(C,' d)] PI)))), 

£[ {cons( A, cons(B, C)) :} ] Pb 
4>)). 

This simplifies to either TRUE or FALSE, depending upon whether or not X 

equals Z. The first subset is 
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term(X).term(Y).term(Z).X # Z. set!( 
if( if( not(FALSE), 

FALSE, 
equal?(£[B] P1,right(pair!(£[cons(C,1 d)] p1)))), 

£[ {cons( A, cons(B, C)) :}] P1, 
<I>)). 

which simplifies to (term(X).term(Y).term(Z).X # Y.</>), or simply¢>. The second 

subset in the union is 

term(X).term(Y). set!( 
if( if( not(equal?(X,X)), 

FALSE, 
equal?(£[B] p2,right(pair!(£[cons(C,' d)] p2)))), 

£[ {cons( A, cons(B, c)) :} ] P2, 
<I>)), 

where p2 is [X/ A, Y /B, X/C]. This simplifies to 

term(X).term(Y). set!( 
if( equal?( £[B] P2, right(pair!( £[cons(C,' d)] P2)))), 

£[ {cons( A, cons(B, C)) :}] P2, 
<I>)), 

The body is headed by an if, strict in its first argument, which is headed by an 

equal?. Computing as before rewrites the first argument of equal? to the param

eter Y, and the second argument to 'd, yielding 

term(X).term(Y). set!( 
if( equal?(Y, 1 d), 

£[{cons( A, cons(B, C)) :}D P2, 
<I>)), 

Simplifying the equality yields 

term(X).term(Y). set!( 
if( if( atom?(Y), 

atomeq?(Y, 'd), 
FALSE) 

E[ {cons( A, cons(B, C)) :}] P2, 
</>)), 

Simplifying the atom? primitive requires splitting into the union of three 

cases: 
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term(X).bool(Y). set!( 
if( 1f( FALSE, 

atomeg._?(Y, 'd), 
FALSE) 

f[ {cons( A, cons(B, C)) : }D P2, 
<P) ), 

term(X).atom(Y). set!( 
if( if( TRUE, 

and 

atomeq?(Y, 'd), 
FALSE) 

f[ {cons( A, cons(B, C)) : }D P2, 
<P J), 

term(X).term(Yi).term(Y2 ) set!( 
if( if( atom?(< Yi, Y2 > ), 

atomeq?( < Yi, Y2 >, 1 d), 
FALSE) 

f[{cons(A,cons(B,C)) :}] Pa, 
</1)), 

where p3 is [X/ A,< Yb Y2 > /B, X/C]. The first and third subsets simplify to ¢1, 

but the second simplifies to 

term(X).atom(Y). set!( 
if( is' d(Y), 

f[{cons(A,cons(B,C)) :}D P2, 
<P )). 

Simplifying is'd? requires splitting Y into two cases: 

term(X).atom(Y).Y =J 'd. set!( ¢1)). 

which simplifies to </1, and 

term(X). set!(f[{cons(A,cons(B,C)) :}] [X/A,'d/B,X/C]). 

This latter clearly evaluates to 

term(X). ({<X, < 'd,X >}). 

Theoretically, we should still compute this expression as the union of all possible 

instantiations, each instantiation replacing the logical variable X by a first-order 

term (or approximate the result by doing some of these instantiations). For practical 
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purposes, such instantiation is trivial, so computation would terminate here. The 

final result of this calculation is therefore a finite union tree, with </> for the first few 

leaves (for the branches which split off earlier) and the last leaf being the above. 

6.5 Correctness Observations 

Soundness: Ift; is a partially computed parameterized set expression, and t;[fl/£] 

is an approximation produced by setting all unevaluated function calls ('D, £or :F) 

to ..l, then for every instantiation !7 replacing logical variables with terms satisfying 

the constraints, t;[fl/ £] !7 approximates a subset of U{ t;[fl/ £]}. 

Proof: The theorem is true because of the meaning of a parameterized expression 

(in terms of •+•), and the fact that all steps in a parameterized derivation replace 

expressions by equals. End of Proof 

Completeness: Any element of a set which can be computed by a non-optimized 

derivation can be computed as an instantiation of a parameterized derivation. 

Proof: This theorem is true because when dividing a parameterized expression 

into cases (for the purpose of simplifying a primitive), every possible instantiation 

of logical variables which satisfies the constraints is a possible instantiation of one of 

the subcases. No possible instantiation is ever lost. Furthermore, any computation 

which can be performed after replacement of the enumeration variable by a term 

can be performed on the parameterized body. End of Proof 

6.6 Summary 
-

A type 1 simplification (simple reduction) does not require splitting; a type 

2 simplification (splitting by type) requires a three-way split; type 3 simplifica

tions (splitting on equality) requires a two-way split. When performing primitive 

simplifications, it is efficient to do first those simplifications which do not split the 

computation into subcases, then those which split into two subcases and save for last 

those requiring a three-way split. These optimizations avoid blind enumeration of 

the sets terms, atoms and bools when used as relative set abstraction generators. 

Instead, the enumeration parameter becomes a logical variable. An enumeration 

variable from the set atoms is treated as a logical variable carrying the constraint 

that it can be bound only to an atom. Enumeration variables from the set bools are 

handled analogously. Inequality constraints relating two logical variables are also 
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used. The logical variables are instantiated only to the extent needed to simplify 

the body. Wherever a logical variable is the argument of a primitive function, and 

the primitive function needs more information about its argument to execute, the 

generating set is divided into a few subsets, thereby dividing the whole expression 

into subsets. In each subset, the range of the logical variable is narrowed enough 

that the primitive has enough information to execute. Computing with logical vari

ables and constraints gives the set abstraction facility "resolution-like" efficiency. 

Treating an enumeration parameter as a logical variable is practical because the 

generating set terms is so simple in structure. 

The optimizations described in this chapter modify the simple (though inef

ficient) operational semantics derived from the denotational equations in Chapter 

4. Even with these optimizations, the result is far from a production-level imple

mentation! The purpose was rather to explain the role of the logical variable in 

functional programming with set abstraction. The syntax and denotational seman

tics of PowerFuL made no reference to logical variables. The logical variable is 

merely an operational concept to improve the execution efficiency when terms is 

used as a generator. More complicated sets are also permitted as generators (e.g. 

such as sets of functions, sets of sets, etc.), and in these cases, the default mechanism 

(generate, instantiate, and continue) is used. 
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7 CONCLUSIONS 

During the past decade, proponents of declarative programming languages have 

discussed the possibility of combining of functional and logic programming styles 

within one declarative language. Many proposals have been based on equational 

logic, reasoning that equations could be used to define both functions and relations. 

A weakness of this approach is the difficulty of maintaining functions (and other 

higher-order constructions) as first-class objects. Testing higher-order objects for 

equality is very difficult, and is not always computable, so a higher-order exten

sion will either relinquish referential transparency (through the use of an efficient 

but unreliable higher-order equality test), or will require a very difficult and per

haps impractical, operational primitives such as higher-order unification, general 

theorem-proving and unrestricted narrowing. Traditional functional programming, 

in contrast, does not require tests of equality when passing arguments to proce

dures, and so avoids this problem. Since our approach is based on ordinary func

tional programming, incorporation of higher-order programming proved to be no 

problem. Our approach supports both functions and sets as first-class higher-order 

constructs. The underlying theses of our approach are: 

1) Functional programming with relative set abstraction subsumes the expres

siveness of logic programming. 

2) The resulting language does not require higher-order unification to maintain 

first-class higher-order objects. 

3) The use of logical variables is most properly viewed as an implementation 

tool rather than as part of the language definition. 

7.1 Results and Contributions 

The principal results of this dissertation are: 



(i) Relative set abstraction can combine lazy higher-order functional program

ming not only with first-order Horn logic, but also with a useful subset of higher

order Horn logic. Sets, as well as functions, can be treated as first-class objects. 

(ii) Angelic powerdomains provide the semantic foundation for relative set ab

straction. 

(iii) The computation rule appropriate for this language is a modified parallel

outermost, rather than the more familiar left-most rule. 

(iv) Optimizations incorporating ideas from narrowing and resolution greatly 

improve the efficiency of the interpreter, while maintaining correctness. 

We are not the first to advocate set abstraction as a means of incorporating 

Horn logic capability into higher-order functional programming. However, we do 

believe this design is the first to be rigorously described via denotational seman

tics, mapping the syntax onto computable semantic primitives. The brevity and 

simplicity of the denotational description attests to the elegance and integrity of 

the design. To consider set-valued functions and sets as objects, we had to incor

porate angelic powerdomains into the complete semantic domain (each object in a 

powerdomain represents a set of elements from some simpler domain). Our use of 

powerdomains is novel in that we make the set an explicit data type, rather than 

the implicit result of a non-deterministic control structure. 

Horn logic programming can be described by either the fixed-point semantics 

(closely related to Horn logic's model-theoretic semantics) or by its operational 

semantics (SLD resolution). Soundness and completeness proofs attest the equiv

alence of these two descriptions. We feel that this result is an important feature 

of Horn logic programming, and that our language should have a similar property. 

Extending Vuillemin's theory of correct implementation of recursion, and apply

ing the resulting technique to the denotational equations themselves, we derived 

an operational semantics equivalent to the denotational description. We think this 

novel technique may be an important addition to the methodology of functional 

programming, independent of the set abstraction problem. 

To derive equivalent operational semantics by this technique, the denotational 

semantics must handle most recursion explicitly, ensuring that primitives will al

ways terminate. Primitives must be rigorously defined via rewrite rules, rewriting 
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whenever the outermost constructor of any strict argument is available. Though 

these restrictions make writing the denotational semantics more difficult, they en

sure the rigor of the definition. In extending Vuillemin's theory, we propose a new 

computation rule which is a compromise between the parallel-outermost and the 

leftmost computation rules. Like the leftmost rule, it permits evaluation to concen

trate in a primitive's strict arguments, but provides for parallel evaluation where 

necessary due to the presence of non-flat domains. 

Of special interest for logic programming is the set of terms, objects for which 

identity is synonymous with equality. We showed that, when the set of terms is 

used as a generating set in a relative set abstraction, the enumeration parameter 

can be computed as a logical variable, instead of using the default blind generate

and-test procedure which would otherwise result. In the general case, however, the 

enumeration parameters are instantiated by the various generator set elements as 

these elements are computed. Thus, generators need not be arbitrarily restricted to 

contain only first-order types. 

Incorporating logical variables into the operational procedure complicates the 

simplification of semantic primitives. That is, simplification sometimes requires 

knowing more about a primitive's argument than that it is a term. It may depend 

upon whether the logical variable represents an atom, a boolean or an ordered pair. 

In such a case, we split the set into three subsets, one for each assumption. In each 

subset, the primitive can simplify. A similar splitting procedure is used for handling 

equality /inequality primitives. 

7.2 Further Work 

Several areas of additional research seem apparent: 

1) Our decision to derive the operational semantics from the denotational equa

tions was motivated by a desire to ensure that the operational semantics remained 

true to the denotational definition, and not by a conviction that this kind of inter

pretation would be most efficient. Practical software to implement this language 

should make use of a more efficient strategy. The optimizations described in chap

ter 6 do not address the inefficiencies of interpreting from semantic equations in 

general; rather, they solve a separate problem specific to set abstraction, i.e. the 

desire to use logical variables in computing set abstractions generated by the set of 
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first-order terms. A challenging problem would be to describe this optimization in 

terms of a more conventional operational semantics. In this dissertation we strove 

to unify the declarative aspects of functional and logic programming; combining the 

efficient implementation strategies developed for these kinds of languages (W83b] 

(P87] is yet another topic. 

2) Possible inefficiency aside, we feel that generating operational semantics from 

denotational equations is an interesting idea, giving much insight as to the relation 

between denotation and computation. We would like to study further the semantics 

of denotational semantics as a programming language. From our experience in this 

research, we feel that next time it might be better to define the semantics of the 

language in terms of typed lambda calculus. This should permit greater rigor in 

proving the relationship between operational and denotational semantics. 

3) We would like to supplement PowerFuL with a polymorphic type system like 

those provided for many other modern functional languages. This would lead to 

many types of constructors. The most interesting aspect would be its effect on the 

optimizations providing for logical variables. Would it increase the complexity of 

computing with logical variables? Our feeling is that it might make the interpreter 

more complex, but ought not to hurt efficiency. 

4) Computation of infinite sets requires closer interaction between user and 

interpreter. This places additional demands on the language environment, so new 

programming enVironments may also need to be developed. 
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