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Abstract 

Keywords 

Drawing a tree consists of two stages: determining the position of each node, 
and actually rendering the individuals nodes and interconnecting branches. 
The algorithm described in this paper is concerned with the first stage: given a 
list of nodes. an indication of the hierarchical relationship among them. and 
their shape and size, wrere should each node be positioned for optimal aes
thetic effect? 

This algorithm determines the positions of the nodes for any arbitrary general 
tree. It is the most desirable positioning with respect to certain widely
accepted heuristics. The positioning, specified in x, y coordinates, minimizes 
the width of the tree. In a general tree, there is no limit on the number of off
spring per node; this contrasts with binary and ternary trees, for example, 
which are trees with a limit of 2 and 3 offspring per node. This algorithm oper
ates in time O(N), where N is the number of nodes in the tree. 

Previously, most tree drawings have been positioned by the sure hand of a 
human graphic designer. Many computer-generated positionings have been 
either trivial or contained irregularities. Earlier work by Wetherell and Shannon 
(1979) and Tilford (1981), upon which this algorithm builds, failed to correctly 
position the interior nodes of some trees. Radack (1988), also building on 
Tilford's work, has solved this same problem with a different method which 
makes four passes. The algorithm presented here correctly positions a tree's 
nodes using only two passes. It also handles several practical considerations: 
alternate orientations of the tree, variable node sizes, and out-of-bounds condi
tions. 

Aesthetics, computer graphics, drawing methods, tree drawing, tree structures 
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Introduction 

This algorithm addresses the problem of drawing tree structures. Trees are a 
common method of representing a hierarchically-organized structure. In com
puter science, trees are used in such areas as searching, compiling, and data
base systems; in non-computer applications, they are commonly used to 
construct organizational charts or to illustrate biological classifications. Visual 
displays of trees show hierarchical relationships clearly; they are often more 
useful than listings of trees in which hierarchical structure is obscured by a 
linear arrangement of the information." 

A key task in tree drawing is deciding where to place each node on the display 
or output page. This task is accomplished by a node-positioning algorithm that 
calculates the x and y coordinates for every node of the tree. A rendering 
routine can then use these coordinates to draw the tree. A node-positioning 
algorithm must address two key issues. First, the resulting drawing should be 
aesthetically pleasing. Second, the positioning algorithm should make every 
effort to conserve space. Each of these two issues can be handled 
straightforwardly by itself, but taking them together poses some challenges. 

Several algorithms for the positioning of general trees have been published; in 
the works of Sweet" and Tilford". however, the authors describe anomalies 
with their algorithms that can cause drawings with less-than-desirable results. 
The algorithm presented here corrects the deficiencies in these algorithms and 
produces the most desirable positioning for all general trees it is asked to posi
tion. Radack7 has published a node-positioning algorithm that uses a different 
solution technique, but which produces results identical to those presented 
here. 

What Is A General Tree? 
This paper deals with rooted, directed trees, that is, trees with one root and 
hierarchical connections from the root to its offspring. No node may have more 
than one parent. 

A general tree is a tree with no restriction on the number of offspring each 
node has. A general tree is also known as an m-ary tree, since each node can 
have m offspring (where m is 0 or more). The common terms binary tree and 
ternary tree are restrictive examples of the general case; binary and ternary 
trees allow no more than 2 and 3 offspring per node, respectively. As a class, 
binary trees, in particular, differ from general trees in the following respect: 

An offspring of a node in a binary tree must be either the left offspring 
or the right offspring. It is common practice in drawing binary trees to 
preserve this left-right distinction. Thus, a single offspring is placed 
under its parent node either to the left or right of its parent's position. 
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Aesthetic Rules 

This left-right distinction does not apply in a general tree; if a node has 
a single offspring, the offspring is placed directly below its parent. 

This algorithm positions a binary tree by ignoring the distinction above. That is, 
it does not preserve left or right positioning of the offspring under the parent: if 
a node has exactly one offspring, it is positioned directly below its parent. 
Supowit and Reingold' noted that it is NP-hard to optimally position minimum
width binary trees (while adhering to the distinction above) to within a factor of 
less than about four percent. 

In their paper, Wetherell and Shannon13 first described a set of aesthetic rules 
against which a good positioning algorithm must be judged. Tilford" and 
Supowit and Reingold' have expanded that list in an effort to produce better 
algorithms. 

Tidy drawings of trees occupy as little space as possible while satisfying certain 
aesthetics: 

1. Nodes at the same level of the tree should lie along a straight line, and the 
straight lines defining the levels should be parallel. 13 

In parse trees, one might want all leaves to lie on one horizontal 
line; for that application Aesthetic 1 is not desirable. In this case, 
though, the width of the placement is fixed and so the minimum 
width placement problem for such parse trees is not interesting. 
We therefore restrict our attention to the wide class of applications 
for which Aesthetic 1 is desirable.' 

2. A parent should be centered over its offspring. 13 

3. A tree and its mirror image should produce drawings that are refiections of 
one another; moreover, a subtree should be drawn the same way regard
less of where it occurs in the tree. In some applications, one wishes to 
examine large trees to find repeated patterns; the search for patterns is 
facilitated by having isomorphic subtrees drawn isomorphicallyB 

This implies that small subtrees should not appear arbitrarily positioned 
among larger subtrees. 

a. Small, interior subtrees should be spaced out evenly among larger sub
trees {where the larger subtrees are adjacent at one or more levels). 

b. Small subtrees at the far left or far right should be adjacent to larger 
subtrees. 

The algorithm described in this paper satisfies these aesthetic rules. 
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Application Areas 
In the past, general trees displayed on a computer screen or in print have had 
one of the following characteristics: 

1. they were positioned by hand by a graphic artist, 

2. they were small, trivial, or special-case trees, able to be positioned by one 
of the existing algorithms, or 

3. they had areas of irregularity within them where the algorithmic positioning 
was not aesthetically desirable. 

With this algorithm, a computer can reliably generate tree drawings equivalent 
to those done by a skilled human. Below are some of the applications that 
often use tree-drawings. 

Drawings of B-trees and 2-3 trees 
• Structure editors that draw trees 

Flow charts without loops 
Visual LISP editors 
Parse trees 
Decision trees 

• Hierarchical database models 
• Hierarchically-organized file systems (for example, directories, sub

directories, and files) 
Depth-first spanning trees (graph theory) 

• Organizational charts 
• Table of contents in printed matter 
• Biological classification 
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How the Algorithm Works 

This algorithm initially assumes the common practice among computer scien
tists of drawing trees with the root at the top of the drawing.' Node-positioning 
algorithms are concerned only with determining the x-coordinates of the nodes; 
the y-coordinate of a node can easily be determined from its level in the tree, 
due to Aesthetic 1 and the natural convention of a uniform vertical separation 
between consecutive levels. "Changing the Orientation of the Root" on 
page 21 presents a variation of the algorithm for altering the relationship of the 
x- and y-coordinates. 

This algorithm utilizes two concepts developed in previous positioning algo
rithms. First is the concept of building subtrees as rigid units. When a node is 
moved, all of its descendants (if it has any) are also moved--the entire subtree 
being thus treated as a rigid unit. A general tree is positioned by building it up 
recursively from its leaves toward its root. 

Second is the concept of using two fields for the positioning of each node. 
These two fields are: 

• a preliminary x-coordinate, and 
• a modifier field. 

Two tree traversals are used to produce the final x-coordinate of a node. The 
first traversal assigns the preliminary x-coordinate and modifier fields for each 
node; the second traversal computes the final x-coordinate of each node by 
summing the node's preliminary x-coordinate with the modifier fields of all of its 
ancestors. This allows the simple moving of a large subtree and allows the 
algorithm to operate in time O(N). For example, to move a subtree 4 units to 
the right, increment both the preliminary x-coordinate and the modifier field of 
the subtree's root by 4. As another example, the modifier field associated with 
the apex node of the tree is used in determining the final position of all of its 
descendants. (The term apex node is used here to distinguish the root of the 
entire tree from the roots of individual internal subtrees.) 

The first tree traversal is a postorder traversal, positioning the smallest sub
trees (the leaves) first and recursively proceeding from left to right to build up 
the position of larger and larger subtrees. Sibling nodes are always separated 
from one another by at least a predefined minimal distance (the sibling sepa
ration); adjacent subtrees are separated by at least a predefined subtree sepa
ration. Subtrees of a node are formed independently and placed as close 
together as these separation values allow. 

As the tree walk moves from the leaves to the apex, it combines smaller sub
trees and their root to form a larger subtree. For a given node, its subtrees are 
positioned one-by-one, moving from left to right. Imagine that its newest 
subtree has been drawn and cut out of paper along its contour. Superimpose 
the new subtree atop its neighbor to the left, and move them apart until no two 
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points are touching. Initially their roots are separated by the sibling separation 
value; then at the next lower level, they are pushed apart until the subtree sep
aration value is established between the adjacent subtrees at the lower level. 
This process continues at successively lower levels until we get to the bottom 
of the shorter subtree. Note that the new subtree being placed may not always 
bump against a descendant of its nearest sibling to the left; siblings much 
farther to the left, but with many offspring, may cause the new subtree to be 
pushed to the right. At some levels no movement may be necessary; but at no 
level are the subtrees moved closer together. When this process is complete 
for all of the offspring of a node, the node is centered over its leftmost and 
rightmost offspring. 

When pushing a new, large subtree farther and farther to the right, a gap may 
open between the large subtree and smaller subtrees that had been previously 
positioned correctly, but now appear to be bunched on the left with an empty 
area to their· right. This produces an undesirable appearance; this character
istic of left-to-right gluing was the failing of the algorithms by Sweet, Wetherell 
and Shannon, and Tilford. 

The algorithm presented here produces evenly distributed, proportional spacing 
among subtrees. When moving a large subtree to the right, the distance it is 
moved is also apportioned to smaller, interior subtrees, satisfying Aesthetic 3. 
The moving of these subtrees is accomplished as above-by adding the propor
tional values to the preliminary x-coordinate and modifier fields of the roots of 
the small interior subtrees. For example, if three small subtrees are bunched 
at the left because a new large subtree has been positioned to the· right, the 
first small subtree to shifted right by '!. of the gap, the second small subtree is 
shifted right by Y. of the gap, and the third small subtree is shifted right by % 
of the gap. 

The second tree traversal, a preorder traversal, determines the final 
x-coordinate for each node. It starts at the apex node of the tree, summing 
each node's x-coordinate value with the combined sum of the modifier fields of 
its ancestors. It also adds a value that guarantees centering of the display with 
respect to the position of the apex node of the drawing. 
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The Algorithm 

Since the algorithm operates by making two recursive walks of the tree, several 
variables are taken to be global for the sake of runtime efficiency. These vari
ables are described below, alphabetically. All other variables are local to their 
respective procedures and functions. 

Variable Description 

LeveiZeroPtr 
The algorithm maintains a list of the previous node at each level, 
that is, the adjacent neighbor to the left. Leve!ZeroPtr is a pointer 
to the first entry in this list. 

xTopAdjustment 
A fixed distance used in the final walk of the tree to determine the 
absolute x-coordinate of a node with respect to the apex node of 
the tree. 

yTopAdjustment 
A fixed distance used in the final walk of the tree to determine the 
absolute y-coordinate of a node with respect to the apex node of 
the tree. 

The following global values must be set before the algorithm is called; they are 
not changed during the algorithm. They can be coded as constants. 

·constant Description 

Leve/Separation 
The fixed distance between adjacent levels of the tree. Used in 
determining they-coordinate of a node being positioned. 

MaxDepth The maximum number of levels in the tree to be positioned. If all 
levels are to be positioned, set this value to positive infinity (or an 
appropriate numerical value). 

SiblingSeparation 
The minimum distance between adjacent siblings of the tree. 

SubtreeSeparation 
The minimum distance between adjacent subtrees of a tree. For 
proper aesthetics, this value is normally somewhat larger than 
SiblingSeparation. 

The algorithm is invoked by calling function POSITIONTREE, passing it a pointer 
to the apex node of the tree. If the tree is too wide or too tall to be positioned 
within the coordinate system being used, POSITIONTREE returns the boolean 
FALSE; otherwise it returns TRUE. 
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For each node, the algorithm uses nine different functions. These might be 
stored in the memory allocated for each node, or they might be calculated for 
each node, depending on the internal structure of your application. 

Function Description 

PARENT(Node) 
The current node's hierarchical parent 

FIRSTCH/LD(Node) 
The current node's leftmost offspring 

LEFTSIBL/NG(Node) 
The current node's closest sibling node on the left. 

RIGHTS!BLING(Node} 
The current node's closest sibling node on the right 

XCOORD(Node) 
The current node's x-coordinate 

YCOORD(Node} 
The current node's y-coordinate 

PRELIM(Node) 
The current node's preliminary x-coordinate 

MODIFIER(Node) 
The current node's modifier value 

LEFTNE!GHBOR(Node) 
The current node's nearest neighbor to the left, at the same level 

Upon entry to POSITIONTREE, the first four functions-the hierarchical 
relationships-are required for each node. Also, XCOORD and YCOORD of the 
apex node are required. Upon its successful completion, the algorithm sets the 
XCOORD and YCOORD values for each node in the tree. 
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function POSITIONTREE (Node): BOOLEAN; 
begin 

end. 

if Node I ¢ then 
begin 

end; 
else 

(*Initialize the list of previous nodes at each level. *) 
INITPREVNOOEL!ST; 

(* Oo the preliminary positi ani ng with a postorder wa 1 k. *) 
F!RSHIALK(Node, 0); 

(* Determine h01; to adjust all the nodes ~<ith respect to *) 
(* the 1 ocati on of the root. *) 
xTopAdjustment c XCOORD.(Node) - PREL!f.I(Node); 
yTopAdjustment c YCOORD(Node); 

(*Do the final positioning with a preorder walk. 
return SECOND\oiALK(Node, 0, 0); 

*) 

(*Trivial: return TRUE if a null pointer 1;as passed. 
return TRUE; 

*) 

Figure 1. Function POSITIONTREE. This function determines the coordinates for each 
node in a tree. A pointer to the apex node of the tree is passed as input. 
This assumes that the x and y coordinates of the apex node are set as 
desired, since the tree underneath it will be positioned with respect to those 
coordinates. Returns TRUE if no errors, otherwise returns FALSE. 
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procedure FIRSTVIALK (Node, Leve 1): 
begin 

end. 

(*Set the pointer to the previous node at this level. *) 
LEFTNEIGHBOR(Node) ~ GETPREVNODEATLEVEL(Level); 
SETPREVNODEATLEVEL(Level, Node); (* This is now the previous. *) 
fiODIFIER(Node) ~ B; (*Set the default modifier value. *) 
if (ISLEAF(Node) or Level = l·laxDepth) then 

else 

begin 
if HASLEFTSIBLING(Node) then 

(* Determine the preliminary x-coordinate based on: *) 
(* the preliminary x-coordinate of the left sibling, *) 
(* the separation between sibling nodes, and *) 
(* tne mean size of left sibling and current node. *) 
PREUM(Node) • PREL!fi(LEFTSIBUNG(Node)) + 

SiblingSeparation + 
14EANNODES I ZE (LEFTS I BUIIG (!lode) , Node) ; 

else 

end; 

(*No sibling on the left to worry about. 
PRELIM(Node) ~ G; 

*) 

(* This Node is not a leaf, so call this procedure *) 
(* recursively for each of its offspring. *) 
begin 

Leftmost~ Rightmost~ FIRSTCHILD(Node); 
FIRST\vALK(Leftmost, Level + 1); 
while HASRIGHTSIBLING(Rightmost) do 

begin 
Rightmost • RIGHTSIBLING(Rightmost); 
FIRSTVIALK(Rightmost, Level + 1); 

end; 
flidpoint ~ (PREL!fi(Leftmost) + PRELHI(Rightmost)) / 2; 
if HASLEFTSIBLING(Node) then 

begin 

end; 
else 

PRELHI(Node) ~ PRELIM(LEFTSIBLING(Node)) + 
SiblingSeparation + 
fiEANNODESIZE(LEFTSIBLHIG(Node), llode); 

I·IODIFIER(Node) • PRELII-I(Node) - l·lidpoint; 
APPORTION(Node, Level); 

PRELIM(Node) ~ Midpoint; 
end; 

Figure 2. Procedure FIRSTVVALK. In this first postorder walk, every node of the tree is 
assigned a preliminary x-coordinate (held in field PRELIM(Node)). In addition, 
internal nodes are given modifiers, which will be used to move their offspring 
to the right (held in field MODIFIER(Node)). 
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function SECOND'!IALK (Node; Level, flodsum): BOOLEAN; 
begin 

if Level ~ l·laxDepth then 
begin 

end; 
else 

x Temp ~ xTopAdj us tment + PREL!fl (Node) + flods urn; 
yTemp ~ yTopAdjustment + (Level * LevelSeparation); 
(* Check to see that xTemp and yTemp are of the proper *) 
(* size for your application. *) 
if CHECKEXTENTSRANGE(xTemp, yTemp) then 

else 

begin 

end; 

XCOORD(Node) ~ xTemp; 
YCOORD(Node) ~ yTemp; 
if HASCHILD(fiode) then 

(*Apply the flodifier value for this node to *) 
(*all its offspring. *) 
Result ~ SECONDHALK(FIRSTCHILD(IIode), 

Level + 1, 
flodsum + HODIFIER(Node)); 

if (Result= TRUE and 
HASRIGHTSIBLING(Node)) then 
Result ~ SECOND\~ALK(RIGHTSIBLING(flode), 

Level + 1, 
l·lodsum); 

(* Continuing would put the tree outside of the *) 
(* drawable extents range. *) 
Result ~ FALSE; 

(* We are at a level deeper than 1·1hat we want to draw. *) 
Result ~ TRUE; 

return Result; 
end. 

Figure 3. Function SECONDWALK. During a second preorder walk, each node is given 
a final x-coordinate by summing its preliminary x-coordinate and the modifiers 
of all the node's ancestors. The y-coordinate depends on the height of the 
tree. If the actual position of an interior node is right of its preliminary place, 
the subtree rooted at the node must be moved right to center the sons 
around the father. Rather than immediately readjust all the nodes in the 
subtree, each node remembers the distance to the provisional place in a mod
ifier field (MODIFIER(Node)). In this second pass down the tree, modifiers are 
accumulated and applied to every node. Returns TRUE if no errors, otherwise 
returns FALSE. 
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procedure APPORTION (Node, Level): 
begin 

Leftmost~ FIRSTCHILD(Node); 
Neighbor~ LEFTNEIGHBOR(Leftmost); 
CompareDepth ~ 1; 
DepthToStop ~ MaxDepth- Level; 

while (Leftmost f ¢ and 
Neighbor f ¢ and 
CompareDepth ~ DepthToStop) do 

begin 
(* Compute the location of Leftmost and 11here it should *) 
(* be with respect to Neighbor. *) 
LefU-Iodsum ~ 0; 
Ri ghtl·lodsum ~ 0; 
AncestorLeftmost ~ Leftmost; 
AncestorNeighbor ~ Neighbor; 
for ; ..... e 

until CompareDepth do 
begin 

AncestorLeftmost ~ PARENT(AncestorLeftmost); 
AncestorNeighbor c PARENT(AncestorNeighbor); 
Ri ghtModsum ~ Ri ghtflodsum + 

MODIFIER(AncestorLeftmost); 
Leftflodsum ~ LeftModsum + 

MODIFIER(AncestorNeighbor); 
end; 

(* Find the floveDistance, and apply it to Node's subtree. *) 
(*Add appropriate portions to smaller interior subtrees. *) 
HoveDistance ~ (PRELIM(Neighbor) + 

Leftl·lodsum + 
SubtreeSeparation + 

MEANNODESIZE(Leftmost, Neighbor)) -
(PREL!fl(Leftmost) + Ri ghtf.1odsum)); 

if t·1oveDistance > 0 then 
begin 

(*Count interior sibling subtrees in LeftSiblings*) 
TempPtr ~ Node; 
LeftSiblings ~ 6; 
while (TempPtr f ¢and 

TempPtr f AncestorNeighbor) do 
begin 

LeftSiblings c LeftSiblings + 1; 
TempPtr ~ LEFTSIBLING(TempPtr); 

end; 

Figure 4. Procedure APPORTION, part 1 of 2 
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end. 

if TempPtr f ¢ then 
(*Apply portions to appropriate leftsibling *) 
(* subtrees. *) 
begin 

end; 
else 

Portion~ l~oveOistance j LeftSiblings; 
TempPtr ~ Node; 
while 

TempPtr = AncestorNeighbor do 
begin 

PREWI(TempPtr) ~ 
PRELHI(TempPtr) + fioveOistance; 

MOOIFIER(TempPtr) ~ 
l·iOOIFIER(TempPtr) + l·ioveDistance; 

MoveDi stance ,... f·1ove0i stance -
Portion; 

TempPtr ~ LEFTSIBLHIG(TempPtr); 
end; 

(* Don't need to move anything--it needs to *) 
(* be done by an ancestor because *) 
(* AncestorNeighbor and AncestorLeftmost are *) 
(* not siblings of each other. *) 
return; 

end; (* of MoveDistance > 0 *) 

(* Determine the leftmost descendant of Node at the next *) 
lower level to compare its positioning against that of*) (* 

(* its Neighbor. 

CompareDepth ~ CompareDepth + 1; 
if ISLEAF(Leftmost) then 

Leftmost <- GETLEFTfiOST(Node, 0, CompareDepth); 
else 

Leftmost~ FIRSTCHILD(Leftmost); 

end; (* of the whi 1 e *) 

*) 

Figure 5. Procedure APPORTION, part 2 of 2. This procedure cleans up the positioning 
of small sibling subtrees, thus fixing the "left-to-right gluing" problem evident 
in earlier algorithms. When moving a new subtree farther and farther to the 
right, gaps may open up among smaller subtrees that were previously 
sandwiched between larger subtrees. Thus, when moving the new, larger 
subtree to the right, the distance it is moved is also apportioned to smaller, 
interior subtrees, creating a pleasing aesthetic placement_ 
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function GETLEFTfiOST (Node, Level, Depth): NODE; 
begin 

if Level ~Depth then 
return Node; 

else if !SLEAF(Node) then 
return ¢; 

else begin 
Rightmost~ FIRSTCHILD(Node); 
Leftmost ~ GETLEFTt-IOST (Rightmost, Leve 1 + 1, Depth); 
(* Do a postorder walk of the subtree below Node. *) 
while (Leftmost = ¢ and 

HASRIGHTS!BLING(Rightmost)) do 
begin 

Rightmost~ R!GHTSIBL!NG(Rightmost); 
Leftmost ~ GETLEFTt-IOST(Rightmost, Level + 1, Depth); 

end. 

end; 
return Leftmost; 

end; 

Figure 6. Function GETLEFTMOST. This function returns the leftmost descendant of a 
node at a given Depth. This is implemented using a postorder walk of the 
subtree under Node, down to the level of Depth. Level here is not the abso
lute tree level used in the two main tree walks; it refers to the level below the 
node whose leftmost descendant is being found. 

function 1·1EANNODESIZE (LeftNode, RightNode): REAL; 
begin 

end. 

NodeSize ~ El; 

if LeftNode t ¢then 
NodeSize ~ NodeSize + RIGHTSIZE(LeftNode); 

if RightNode t ¢ then 
NodeSize ~ NodeSize + LEFTS!ZE(RightNode); 

return NodeSize; 

Figure 7. Function MEANNODESIZE. This function returns the mean size of the two 
passed nodes. It adds the size of the right half of lefthand node to the left 
half of righthand node. If all nodes are the same size, this is a trivial calcu
lation. 
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function CHECKEXTENTSRANGE (xValue, yValue): BOOLEAN; 
begin 

if (xValue is a valid value for the x-coordinate) and 
(yValue is a valid value for the y-coordinate) then 
return TRUE; 

else 
return FALSE; 

end. 

Figure 8. Function CHECKEXTENTSRANGE. This function verifies that the passe<l x
and y-coordinates are within the coordinate system b~ing used for the 
drawing. For example, if the x-and y-coordinates must be 2-byte integers, this 
function could determine whether xValue and yValue are too large. 

procedure INITPREVNODELIST: 
begin 

end. 

(* Start with the node at level 8--the apex of the tree. 
TempPtr • LevelZeroPtr; 
while TempPtr f ¢do 

begin 
PREVNODE(TempPtr) • ¢; 
TempPtr • NEXTLEVEL(TempPtr); 

end; 

*) 

Figure 9. Initialize the list of prev_ious nodes at each level. Three Jist-maintenance pro
cedures, GETPREVNODEATLEVEL, SETPREVNODEATLEVEL, and 
INITPREVNODELIST. maintain a singly-linked list. Each entry in the list corre
sponds to the node previous to the current node at a given level (for example, 
element 2 in the list corresponds to the node to the left of the current node at 
level 2). If the maximum tree size is known beforehand, this Jist can be 
replaced with a fixed-size array, and these procedures become trivial. 

Each list element contains two fields: PREVNODE-the previous node at this 
level, and NEXTLEVEL-a forward pointer to the next list element. The list is 
does not need to be cleaned up between calls to POSITIONTREE, for perform
ance. 
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function GETPREVNOOEATLEVEL (Level): NODE; 
begin 

end. 

(* Start with the node at level 0--the apex of the tree. 
TempPtr ~ LevelZeroPtr; 
i ~ 0; 
while TempPtr i ¢ do 

begin 

end; 

if i = Level then 
return PREVNODE(TempPtr) 

TempPtr ~ NEXTLEVEL(TempPtr); 
if-i+l; 

(*Otherwise, there 11as no node at the specific level. 
return ¢; 

Figure 10. Get the previous node at this level. See Figure 9. 

*) 

*) 
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procedure SETPREVNOOEATLEVEL (Level, Node): 
begin 

end. 

(* Start with the node at level 6--the apex of the tree. 
TempPtr ~ LevelZeroPtr; 
i ~ 0; 
while TempPtr r ¢do 

begin 
if i = Leve 1 then 

begin 

*) 

(*At this level, replace the existing list *) 

end; 

(*element ~<ith the passed-in node. *) 
PREVNODE(TempPtr) ~ Node; 
return; 

end; 
else if NEXTLEVEL(TempPtr) = ¢ then 

(*There isn•t a lfst element yet at this level, so *) 
(* add one. The follo~<ing instructions prepare the *) 
(* list element at the next level, not at this one. *) 
begin 

end; 

Ne~<Node ~ ALLOCATE_A_NODE; 
PREVNODE(NewNode) ~ ¢; 
NEXTLEVEL(NewNode) ~ ¢; 
NEXTLEVEL(TempPtr) ~ NewNode; 

(*Prepare to move to the next level, to look again. *) 
TempPtr ~ NEXTLEVEL(TempPtr); 

~ i + 1; 

(*Should only get here if LevelZeroPtr is nil. 
LevelZeroPtr ~ ALLOCATE A NODE; 
PREVNODE(LevelZeroPtr) ~Node; 
NEXTLEVEL(LevelZeroPtr) ~ ¢; 

*) 

Figure 11. Set an element in the list. See Figure 9 on page 14. Function 
"ALLOCATE_A_NODE" (not shown here) requests a pointer to a block of 
memory, to be used to represent a node in the list. 
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An Example 

The operation of the algorithm during these two walks can be best illustrated 
with an example. At least three levels are needed to illustrate its operation. 
since a small subtree must be centered between larger sibling subtrees. The 
following figure is an example tree positioned by this algorithm. Its fifteen 
nodes have been lettered in the order that they are visited in the first postorder 
traversal. For this example, the mean size of each node is 2 units and the 
sibling separation and subtree separation values are the same: 4 units. 

I 

G 
n 

G 

Figure 12. An example general tree, with 15 nodes 

Nodes Visited in the First Traversal 
The nodes are visited in a postorder walk. Their preliminary x-coordinate value 
and modifier values are calculated in this traversal. 

Node Preliminary X-coordinate and Modifier 

A is a leaf with no left sibling. 

PRELHI(A) = 8 
MOO!FIER(A) = 8 
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B is also a leaf with no left sibling. 

PREWI(B) = 0 
I·IODIFIER(B) = 0 

C is the right sibling of node B. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes. 

PREWI (C) = 0 + 4 + 2 = 6 
I·IODIFIER(C) = 0 

0 is the parent of nodes B and C, and the right sibling of node A. It is 
separated from node A by the sibling separation value plus the mean 
size of the two nodes. Its modifier is set so that when it is applied to 
nodes B and C, they will appear centered underneath it. The modifier is 
determined by taking PRELIM(D) and subtracting the mean of the 
PRELIM(its mostly widely-separated offspring) values. 

PRELIH(D) = 0 + 4 + 2 = 6 
fiDDIFIER(D) = 6 - (0 + 6)/2 = 3 

E is the parent of nodes A and D. It is centered over nodes A and D. 

PRELIH(E) = (0 + 6)/2 = 3 
MDDIFIER(E) = 8 

F is a right siblfng of node E. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes. That would place it 
directly over node C. We can see now that node N's subtree will later 
be placed much further to the right, leaving the spacing between nodes 
E and F smaller, and hence different, than the spacing between nodes F 
and N. ·When node N is finally positioned, the position of node F will be 
adjusted. But for now, 

PRELIM(F) = 3 + 4 + 2 = 9 
HODIFIER(F) = 8 

G is a leaf with no left sibling. 

PRELIM(G) = 0 
MDDIFIER(G) = 0 

H is a leaf with no left sibling. 

PRELIM (H) = 0 
MODIFIER(H) = 0 

is the right sibling of node H. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes. 

PRELIM(!) = 0 + 4 + 2 = 6 
MODIFIER(!) = 0 

J is the right sibling of node I. As above, it is separated by the standard 
spacing from node I. 

PREL!H(J) = 6 + 4 + 2 = 12 
MODIFIER(J) = 0 
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K is the right sibling of node J. 

PRELHI(K) = 12 + 4 + 2 = 18 
I·IODIFIER(K) = 0 

L is the right sibling of node K. 

PRELIM(L) = 18 + 4 + 2 = 24 
I·IOOIFIER(L) = 0 

M is the parent of nodes H through L, and the right sibling of node G. It is 
separated from node G by the sibling separation value plus the mean 
size of the two nodes. Its modifier is set so that when it is applied to 
nodes H through L, they will appear centered underneath it. 

PRELH~ (M) = 0 + 4 + 2 = 6 
I·IODIFIER(fl) = 6 - (0 + 24)/2 = -6 

N is the parent of nodes G and M, and the right sibling of node F. It is 
first of all given its standard positioning to the right of node F, with a 
modifier that reflects the centering of its offspring beneath it. 

PRELHI(N) = 9 + 4 + 2 = 15 
I-IODIFIER(N) = 15 - (0 + 6)/2 = 12 

Now we have to verify that node E's subtree and node N's subtree are 
properly separated. 

Moving down one level, the leftmost descendant of node N, node G, cur
rently has a positioning of 0 + 12 = 12 (PRELIM(G) plus the 
MODIFIER(N). its parent). The rightmost descendant of node E, node D 
is positioned at 6 + 0 = 6 (PRELIM(D) plus the MODIFIER(E), its 
parent). Their difference is 12 - 6 = 6, which is equal to the minimum 
separation (subtree separation plus mean node size), so N's subtree 
does not need to be moved, since there is no overlap at this level. 

Moving down one more level, the leftmost descendant of node N is node 
H. It is positioned at 0 + -6 + 12 = 6 (PRELIM(H) plus MODIFIER(M) 
and MODIFIER(N)). The rightmost descendant of node E, node C, is 
positioned at 6 + 3 + 0 = 9 (PRELIM(C) plus MODIFIER(D) and 
MODIFIER(E)). Their difference is 6 - 9 = -3; it should be 6, the 
minimum subtree separation plus the mean node size. Thus node N 
and its subtree need to· be moved to the right a distance of 6- -3 = 9. 

PRELIM(N) = 15 + 9 = 24 
I·IODIFIER(N) = 12 + 9 = 21 

This opens a gap of size 9 between sibling nodes E and N. This differ
ence needs to be evenly distributed to all contained sibling nodes, and 
node F is the only one. Node F is moved to the right a distance of 9/2 
= 4.5. 

PRELIM(F) = 9 + 4.5 = 13.5 
I-IODIFIER(F) = 0 + 4.5 = 4.5 

0 is the parent of nodes E, F, and N. It is positioned halfway between the 
position of nodes E and N. 
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PREWI(O) = (3 + 24)/2 = 13.5 
~IODIFIER(O) = 0 

Nodes Visited in the Second Traversal 
The nodes are all visited a second time, this time in a preorder traversal. Their 
final x-coordinates are determined by summing their preliminary x-coordinates 
with the modifier fields of all of their ancestors. 

Node Final X-coordinate (preliminary x-coordinate + modifiers of ancestors) 

0 13.5 

E 3+0=3 

A 0+0+0=0 

D 6+0+0=6 

B 0+3+0+0=3 

c 6+3+0+0=9 

F 13.5 + 0 = 13.5 

N 24 + 0 = 24 

G 0 + 21 + 0 = 21 

M 6 + 21 + 0 = 27 

H 0 + -6 + 21 + 0 = 15 

6 + -6 + 21 + 0 = 21 

J 12 + -6 + 21 + 0 = 27 

K 18 + -6 + 21 + 0 = 33 

L 24 + -6 + 21 + 0 = 39 
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Changing the Orientation of the Root 

The algorithm illustrates tree positioning where the apex of the tree is at the 
top of the drawing. Some simple modifications allow other common posi
tionings, such as where the root is on the left and the siblings are to its right. 
Four such orientations of the root can be readily identified; these will be the 
values taken by a new global constant, RootOrientation, to be set before the 
algorithm is called. 

NORTH root is at the top, as shown in the preceding algorithm 
SOUTH root is at the bottom, its siblings are above it 
EAST root is at the left, its siblings are to its right 
WEST root is at the right, its siblings are to its left 

The ability to accommodate a change in orientation involves some minor 
changes to three functions: POSITIONTREE, SECONDWALK, and 
MEANNODESIZE. These changes are shown below with change bars, 1-

function POSJTIONTREE (Node): BOOLEAN; 
begin 

if Node f ¢ then 
begin 

(* Initialize the list of previous nodes at each level. *) 
JNITPREVNODELIST; 

(*Do the preliminary positioning with a postorder walk. *) 
FJRSHIALK(Node, 0); 

(* Determine how to adjust all the nodes ~<ith respect to *) 
(* the location of the root. *) 
if RootOrientation = (NORTH or SOUTH) then 

begin 

end; 

xTopAdjustment • XCOORD(Node) - PREL!I·I(Node); 
yTopAdjustment • YCOORD(Node); 

else if RootOrientation = (EAST or oiEST) then 
begin 

end; 

xTopAdjustment • XCOORD(Node); 
yTopAdjustment • YCOORD(Node) + PRELH1(Node); 

Figure 13. Function POSITIONTREE. The final position of the tree's apex depends on 
the RootOrientation value. 
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function SECONO\•IALK (Node, Level, ftodsum): BOOLEAN; 
begin 

if Level s ftaxDepth then 
begin 

if RootOrientation =NORTH then 
begin 

xTemp ~ xTopAdjustment + (PRELHt(Node) + 1-lodsum); 
yTemp ~ yTopAdjustment + (Level * LevelSeparation); 

end; 
else if RootOrientation =SOUTH then 

begin 
xTemp ~ xTopAdjustment + (PRELHI(Node) + 1-todsum); 
yTemp ~ yTopAdjustment- (Level * LevelSeparation); 

end; 
else if RootOrientation = EAST then 

begin 

end; 

xTemp ~ xTopAdjustment + (Level * LevelSeparation); 
yTemp ~ yTopAdjustment - (PRELIH(Node) + Hods urn); 

else if RootOrientation = \~EST then 
begin 

end; 

xTemp ~ xTopAdjustment - (Level *Level Separation); 
yTemp ~ yTopAdjustment - (PRELHI(Node) + l·lodsum); 

(* Check to see that xTemp and yTemp are of the proper *) 
(*size for your application. *) 
if CHECKEXTENTSRANGE(xTemp, yTemp) then 

Figure 14. Function SECONDWALK. The values of xTemp and yTemp now depend on 
the RootOrientation value. 
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function t·IEANNOOESIZE (LeftNode, RightNode): REAL; 
begin 

NodeSize ~ G; 

if RootOrientation = (NORTH or SOUTH) then 
begin 

end; 

if LeftNode '}¢then 
NodeSize ~ NodeSize + RIGHTSIZE(LeftNode); 

if RightNode '} ¢ then 
NodeSize ~ NodeSize + LEFTSIZE(RightNode); 

else if RootOrientation = (EAST or \•lEST) then 
begin 

end; 

if LeftNode '} ¢ then 
NodeSize ~ NodeSize + TOPSIZE(LeftNode); 

if Ri ghtNode '} ¢ then 
NodeSize ~ NodeSize + BOTTOt·IS!ZE(RightNode); 

return NodeS i ze; 
end. 

Figure 15. Function MEANNODESIZE. This function now returns the mean width of the 
two nodes if the RootOrientation is NORTH or SOUTH; if the RootOrientation 
is EAST or WEST, it returns the mean height of the two nodes. 
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Previous Work 

Early algorithms concentrated on drawing binary trees. Knuth' is generally 
credited with the first published algorithm for drawing binary trees. Its posi
tioning of nodes in the drawing was sometimes rather crude; later algorithms 
tried to improve upon it."· 12. "· 14 

The drawing of optimally-positioned general trees, because of their distinctions 
from binary trees (as noted above), is not an NP-hard problem. However, the 
problem was approached somewhat later than the problem of drawing binary 
trees. In the algorithms of Sweet'o and Tilford," the authors both note their 
algorithm's irregular behavior under certain conditions. 

Sweet'o published his algorithm as an appendix to his dissertation and noted 
the following: 

The principal shortcoming of the algorithm is somewhat difficult to dem
onstrate in a small tree. Figure 8.3 is a somewhat contrived example 
that points out the problem. Consider the sons of node 0: they are E, 
F, and G. Since the subtree E is "shallow," it is placed quite far to the 
left. The nodes F and G must be placed considerably farther to the right 
in order to make room for their subtrees. With larger, wider trees, a 
shallow subtree such as E can be so far from its brothers that it gets 
"lost." Shallow subtrees in son positions other than the first lead to 
uneven spacing of the sons. One could probably add a pass to the 
algorithm that, once having established the rightmost subtree of a node, 
then reformats the other subtrees for compactness and even spacing. 

A 

,--.,1_--,, 
• 0 ! ~---_J _____ ci 

I , ,1, ,1, 
lA very wide subtreeJ H I J l 

. Figure 8.3. Example tree showing a shortcoming of th"C printing algorithm. 

Figure 16. Sweet's illustration showing deficiencies in his algorithm. From page 96 of 
Sweet.10 

Tilford's Masters thesis, Tree Drawing Algorithms," included algorithms for 
both binary and general tree drawings. He stated: 

Consider the three trees in Figure 5.1; in the first, subtrees were glued 
from left to right; in the second, from right to left. Of course, the most 
desirable positioning is given by the third drawing, which cannot be 
produced by Algorithm 5.1 [for drawing general trees] regardless of the 
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gluing order, because Algorithm 5.1 always puts a pair of subtrees as 
close together as possible. 

The problem arises when a tree has the general shape shown in Figure 
5.2, in which two non-adjacent subtrees are large, and the intervening 
ones are small enough that there is freedom in deciding where to place 
them. Although this will not always lead via Algorithm 5.1 to a violation 
of Aesthetic 4 [which states: "A tree and its mirror image should 
produce drawings that are renections of one another; moreover, a 
subtree should be drawn the same way regardless of where it occurs in 
the tree."], it is clear that the small subtrees ought to be spaced out 
evenly rather than bunched up on one side or the other. 

Figure 1·l· A ~all ternary tree positioned (a) by Algorithm 5.1, with 
left-to-right gluing; (b) by Algorithm 5.1, with right-to-left gluing; 
and (e) ideally. 

Figure 17. Examples of centering vs. two types of gluing. From page 37 of Tilford.ll 

Figure 5.2. The general shape of a tree for which Algorithm 5.1 
produce8&n unsatisfactorY positioning. 

Figure 18. Tilford's illustration showing deficiencies in his algorithm. From page 38 of 
Tilford." 
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Radack7 follows directly from Tilford's work, solving the left-to-right-gluing 
problem by essentially running his algorithm twice. The first time. the subtrees 
are agglutinated left to right; the second time, from right to left. A node is posi
tioned at the average of the two assigned positions. Radack's algorithm posi
tions the nodes in four passes. 

Andy Poggio of SRI International, describing an unpublished algorithm used on 
their CCWS systems noted, "As their display is not a central aspect of our 
research, we developed a simple, expedient algorithm for that purpose." s It 
adheres to three aesthetic rules: 

1. nodes at the same level are displayed on the same horizontal level, 
2. all successors of a node are displayed below the node in an area bounded 

by the midpoint distance to adjacent nodes, and 
3. the display root node is always centered at the top of the display area. 

Trivial algorithms also exist for drawing general trees in an outline-like form, 
where the apex node is positioned to the left of the display and not centered 
above its offspring (for example, Petzold'). 

The algorithms by Manning and Atallah' are examples of the class of algo
rithms that do node positioning with a different set of aesthetic rules; their 
primary goal was to highlight the symmetry inherent in hierarchical relation
ships. 
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An Example Underlying Tree Structure 

In this example, I use the internal tree notation described by Knuth [Reference 
2, section 2.3.3] for a triply-linked tree. Each node consists of three pointers, 
FATHER, LSON, and RLINK, and its information in field INFO. FATHER points to 
the parent of the node. LSON points to the leftmost offspring of a node. RLINK 
points to the right sibling of a node. Thus, if node T is the root of a binary tree, 
the root of its left subtree is LSON(T) and the root of its right subtree is 
RLINK(LSON(T)). 

This node structure is illustrated below, using the syntax of the C programming 
language. 

struct position ( 

} ; 

l*------------------------------------------------------------------------*1 
/*This structure contains the node positioning information. 
/* I 1 ve used floating point values here; use integer values, if 

'I 
*I 

/* necessary, but you may need to handle rounding errors. * J 
1*------------------------------------------------------------------------*l 
float x_coordinate; I* the value identified as XCOORO(Node) *I 
float y_coordinate; /*the value identified as YCOORD(Node) *I 
float preliminary; /*the value identified as PRELII·I(Node) *I 
float modifier; /*the value identified as 1·10DIFIER(Node) *I 

struct information. ( 

} ; 

l*------------------------------------------------------------------------*1 
/*This structure contains whatever node information your application 
I* requires. Here I show a fixed-length, 80-character label for the node. 
I* If the sizes of the nodes differ, a node's width or height could be 

'I 
*I 
*I 

I* included here (see function fiEANNODESIZE). *I 
1*------------------------------------------------------------------------*l 
char node_ label [80]; 

struct node { 

} ; 

struct node *father; 
struct node *lson; 
struct node *rlink; 
struct node *left_neighbor; 
struct position pas; 
struct information info; 

/*pointer to the parent of this node */ 
/*pointer to this node's leftmost offspring 'I 
/*pointer to the right sibling of this node *I 
/*pointer to the adjacent node to the left. *I 
J* positioning values, as defined above */ 
/* node information, as defined above */ 
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