
A Node-Positioning
Algorithm for General Trees

TR89-034

September, 1989

John Q. Walker II

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

A TextLab Report
UNC is an Equal Opportunity/Affirmative Action Institution.

Abstract

Keywords

Drawing a tree consists of two stages: determining the position of each node,
and actually rendering the individuals nodes and interconnecting branches.
The algorithm described in this paper is concerned with the first stage: given a
list of nodes. an indication of the hierarchical relationship among them. and
their shape and size, wrere should each node be positioned for optimal aes
thetic effect?

This algorithm determines the positions of the nodes for any arbitrary general
tree. It is the most desirable positioning with respect to certain widely
accepted heuristics. The positioning, specified in x, y coordinates, minimizes
the width of the tree. In a general tree, there is no limit on the number of off
spring per node; this contrasts with binary and ternary trees, for example,
which are trees with a limit of 2 and 3 offspring per node. This algorithm oper
ates in time O(N), where N is the number of nodes in the tree.

Previously, most tree drawings have been positioned by the sure hand of a
human graphic designer. Many computer-generated positionings have been
either trivial or contained irregularities. Earlier work by Wetherell and Shannon
(1979) and Tilford (1981), upon which this algorithm builds, failed to correctly
position the interior nodes of some trees. Radack (1988), also building on
Tilford's work, has solved this same problem with a different method which
makes four passes. The algorithm presented here correctly positions a tree's
nodes using only two passes. It also handles several practical considerations:
alternate orientations of the tree, variable node sizes, and out-of-bounds condi
tions.

Aesthetics, computer graphics, drawing methods, tree drawing, tree structures

Abstract ii

Contents

Introduction
What Is A General Tree?
Aesthetic Rules
Application Areas

How the Algorithm Works

The Algorithm

An Example
Nodes Visited in the First Traversal
Nodes Visited in the Second Traversal

Changing the Orientation of the Root

Previous Work

Acknowledgements

References

2
3

4

6

17
17
20

21

24

27

28

An Example Underlying Tree Structure 29

Contents iii

Introduction

This algorithm addresses the problem of drawing tree structures. Trees are a
common method of representing a hierarchically-organized structure. In com
puter science, trees are used in such areas as searching, compiling, and data
base systems; in non-computer applications, they are commonly used to
construct organizational charts or to illustrate biological classifications. Visual
displays of trees show hierarchical relationships clearly; they are often more
useful than listings of trees in which hierarchical structure is obscured by a
linear arrangement of the information."

A key task in tree drawing is deciding where to place each node on the display
or output page. This task is accomplished by a node-positioning algorithm that
calculates the x and y coordinates for every node of the tree. A rendering
routine can then use these coordinates to draw the tree. A node-positioning
algorithm must address two key issues. First, the resulting drawing should be
aesthetically pleasing. Second, the positioning algorithm should make every
effort to conserve space. Each of these two issues can be handled
straightforwardly by itself, but taking them together poses some challenges.

Several algorithms for the positioning of general trees have been published; in
the works of Sweet" and Tilford". however, the authors describe anomalies
with their algorithms that can cause drawings with less-than-desirable results.
The algorithm presented here corrects the deficiencies in these algorithms and
produces the most desirable positioning for all general trees it is asked to posi
tion. Radack7 has published a node-positioning algorithm that uses a different
solution technique, but which produces results identical to those presented
here.

What Is A General Tree?
This paper deals with rooted, directed trees, that is, trees with one root and
hierarchical connections from the root to its offspring. No node may have more
than one parent.

A general tree is a tree with no restriction on the number of offspring each
node has. A general tree is also known as an m-ary tree, since each node can
have m offspring (where m is 0 or more). The common terms binary tree and
ternary tree are restrictive examples of the general case; binary and ternary
trees allow no more than 2 and 3 offspring per node, respectively. As a class,
binary trees, in particular, differ from general trees in the following respect:

An offspring of a node in a binary tree must be either the left offspring
or the right offspring. It is common practice in drawing binary trees to
preserve this left-right distinction. Thus, a single offspring is placed
under its parent node either to the left or right of its parent's position.

Introduction i

Aesthetic Rules

This left-right distinction does not apply in a general tree; if a node has
a single offspring, the offspring is placed directly below its parent.

This algorithm positions a binary tree by ignoring the distinction above. That is,
it does not preserve left or right positioning of the offspring under the parent: if
a node has exactly one offspring, it is positioned directly below its parent.
Supowit and Reingold' noted that it is NP-hard to optimally position minimum
width binary trees (while adhering to the distinction above) to within a factor of
less than about four percent.

In their paper, Wetherell and Shannon13 first described a set of aesthetic rules
against which a good positioning algorithm must be judged. Tilford" and
Supowit and Reingold' have expanded that list in an effort to produce better
algorithms.

Tidy drawings of trees occupy as little space as possible while satisfying certain
aesthetics:

1. Nodes at the same level of the tree should lie along a straight line, and the
straight lines defining the levels should be parallel. 13

In parse trees, one might want all leaves to lie on one horizontal
line; for that application Aesthetic 1 is not desirable. In this case,
though, the width of the placement is fixed and so the minimum
width placement problem for such parse trees is not interesting.
We therefore restrict our attention to the wide class of applications
for which Aesthetic 1 is desirable.'

2. A parent should be centered over its offspring. 13

3. A tree and its mirror image should produce drawings that are refiections of
one another; moreover, a subtree should be drawn the same way regard
less of where it occurs in the tree. In some applications, one wishes to
examine large trees to find repeated patterns; the search for patterns is
facilitated by having isomorphic subtrees drawn isomorphicallyB

This implies that small subtrees should not appear arbitrarily positioned
among larger subtrees.

a. Small, interior subtrees should be spaced out evenly among larger sub
trees {where the larger subtrees are adjacent at one or more levels).

b. Small subtrees at the far left or far right should be adjacent to larger
subtrees.

The algorithm described in this paper satisfies these aesthetic rules.

Introduction 2

Application Areas
In the past, general trees displayed on a computer screen or in print have had
one of the following characteristics:

1. they were positioned by hand by a graphic artist,

2. they were small, trivial, or special-case trees, able to be positioned by one
of the existing algorithms, or

3. they had areas of irregularity within them where the algorithmic positioning
was not aesthetically desirable.

With this algorithm, a computer can reliably generate tree drawings equivalent
to those done by a skilled human. Below are some of the applications that
often use tree-drawings.

Drawings of B-trees and 2-3 trees
• Structure editors that draw trees

Flow charts without loops
Visual LISP editors
Parse trees
Decision trees

• Hierarchical database models
• Hierarchically-organized file systems (for example, directories, sub

directories, and files)
Depth-first spanning trees (graph theory)

• Organizational charts
• Table of contents in printed matter
• Biological classification

Introduction 3

How the Algorithm Works

This algorithm initially assumes the common practice among computer scien
tists of drawing trees with the root at the top of the drawing.' Node-positioning
algorithms are concerned only with determining the x-coordinates of the nodes;
the y-coordinate of a node can easily be determined from its level in the tree,
due to Aesthetic 1 and the natural convention of a uniform vertical separation
between consecutive levels. "Changing the Orientation of the Root" on
page 21 presents a variation of the algorithm for altering the relationship of the
x- and y-coordinates.

This algorithm utilizes two concepts developed in previous positioning algo
rithms. First is the concept of building subtrees as rigid units. When a node is
moved, all of its descendants (if it has any) are also moved--the entire subtree
being thus treated as a rigid unit. A general tree is positioned by building it up
recursively from its leaves toward its root.

Second is the concept of using two fields for the positioning of each node.
These two fields are:

• a preliminary x-coordinate, and
• a modifier field.

Two tree traversals are used to produce the final x-coordinate of a node. The
first traversal assigns the preliminary x-coordinate and modifier fields for each
node; the second traversal computes the final x-coordinate of each node by
summing the node's preliminary x-coordinate with the modifier fields of all of its
ancestors. This allows the simple moving of a large subtree and allows the
algorithm to operate in time O(N). For example, to move a subtree 4 units to
the right, increment both the preliminary x-coordinate and the modifier field of
the subtree's root by 4. As another example, the modifier field associated with
the apex node of the tree is used in determining the final position of all of its
descendants. (The term apex node is used here to distinguish the root of the
entire tree from the roots of individual internal subtrees.)

The first tree traversal is a postorder traversal, positioning the smallest sub
trees (the leaves) first and recursively proceeding from left to right to build up
the position of larger and larger subtrees. Sibling nodes are always separated
from one another by at least a predefined minimal distance (the sibling sepa
ration); adjacent subtrees are separated by at least a predefined subtree sepa
ration. Subtrees of a node are formed independently and placed as close
together as these separation values allow.

As the tree walk moves from the leaves to the apex, it combines smaller sub
trees and their root to form a larger subtree. For a given node, its subtrees are
positioned one-by-one, moving from left to right. Imagine that its newest
subtree has been drawn and cut out of paper along its contour. Superimpose
the new subtree atop its neighbor to the left, and move them apart until no two

How the Algorithm Works 4

points are touching. Initially their roots are separated by the sibling separation
value; then at the next lower level, they are pushed apart until the subtree sep
aration value is established between the adjacent subtrees at the lower level.
This process continues at successively lower levels until we get to the bottom
of the shorter subtree. Note that the new subtree being placed may not always
bump against a descendant of its nearest sibling to the left; siblings much
farther to the left, but with many offspring, may cause the new subtree to be
pushed to the right. At some levels no movement may be necessary; but at no
level are the subtrees moved closer together. When this process is complete
for all of the offspring of a node, the node is centered over its leftmost and
rightmost offspring.

When pushing a new, large subtree farther and farther to the right, a gap may
open between the large subtree and smaller subtrees that had been previously
positioned correctly, but now appear to be bunched on the left with an empty
area to their· right. This produces an undesirable appearance; this character
istic of left-to-right gluing was the failing of the algorithms by Sweet, Wetherell
and Shannon, and Tilford.

The algorithm presented here produces evenly distributed, proportional spacing
among subtrees. When moving a large subtree to the right, the distance it is
moved is also apportioned to smaller, interior subtrees, satisfying Aesthetic 3.
The moving of these subtrees is accomplished as above-by adding the propor
tional values to the preliminary x-coordinate and modifier fields of the roots of
the small interior subtrees. For example, if three small subtrees are bunched
at the left because a new large subtree has been positioned to the· right, the
first small subtree to shifted right by '!. of the gap, the second small subtree is
shifted right by Y. of the gap, and the third small subtree is shifted right by %
of the gap.

The second tree traversal, a preorder traversal, determines the final
x-coordinate for each node. It starts at the apex node of the tree, summing
each node's x-coordinate value with the combined sum of the modifier fields of
its ancestors. It also adds a value that guarantees centering of the display with
respect to the position of the apex node of the drawing.

How the Algorithm Works 5

The Algorithm

Since the algorithm operates by making two recursive walks of the tree, several
variables are taken to be global for the sake of runtime efficiency. These vari
ables are described below, alphabetically. All other variables are local to their
respective procedures and functions.

Variable Description

LeveiZeroPtr
The algorithm maintains a list of the previous node at each level,
that is, the adjacent neighbor to the left. Leve!ZeroPtr is a pointer
to the first entry in this list.

xTopAdjustment
A fixed distance used in the final walk of the tree to determine the
absolute x-coordinate of a node with respect to the apex node of
the tree.

yTopAdjustment
A fixed distance used in the final walk of the tree to determine the
absolute y-coordinate of a node with respect to the apex node of
the tree.

The following global values must be set before the algorithm is called; they are
not changed during the algorithm. They can be coded as constants.

·constant Description

Leve/Separation
The fixed distance between adjacent levels of the tree. Used in
determining they-coordinate of a node being positioned.

MaxDepth The maximum number of levels in the tree to be positioned. If all
levels are to be positioned, set this value to positive infinity (or an
appropriate numerical value).

SiblingSeparation
The minimum distance between adjacent siblings of the tree.

SubtreeSeparation
The minimum distance between adjacent subtrees of a tree. For
proper aesthetics, this value is normally somewhat larger than
SiblingSeparation.

The algorithm is invoked by calling function POSITIONTREE, passing it a pointer
to the apex node of the tree. If the tree is too wide or too tall to be positioned
within the coordinate system being used, POSITIONTREE returns the boolean
FALSE; otherwise it returns TRUE.

The Algorithm 6

For each node, the algorithm uses nine different functions. These might be
stored in the memory allocated for each node, or they might be calculated for
each node, depending on the internal structure of your application.

Function Description

PARENT(Node)
The current node's hierarchical parent

FIRSTCH/LD(Node)
The current node's leftmost offspring

LEFTSIBL/NG(Node)
The current node's closest sibling node on the left.

RIGHTS!BLING(Node}
The current node's closest sibling node on the right

XCOORD(Node)
The current node's x-coordinate

YCOORD(Node}
The current node's y-coordinate

PRELIM(Node)
The current node's preliminary x-coordinate

MODIFIER(Node)
The current node's modifier value

LEFTNE!GHBOR(Node)
The current node's nearest neighbor to the left, at the same level

Upon entry to POSITIONTREE, the first four functions-the hierarchical
relationships-are required for each node. Also, XCOORD and YCOORD of the
apex node are required. Upon its successful completion, the algorithm sets the
XCOORD and YCOORD values for each node in the tree.

The Algorithm 7

function POSITIONTREE (Node): BOOLEAN;
begin

end.

if Node I ¢ then
begin

end;
else

(*Initialize the list of previous nodes at each level. *)
INITPREVNOOEL!ST;

(* Oo the preliminary positi ani ng with a postorder wa 1 k. *)
F!RSHIALK(Node, 0);

(* Determine h01; to adjust all the nodes ~<ith respect to *)
(* the 1 ocati on of the root. *)
xTopAdjustment c XCOORD.(Node) - PREL!f.I(Node);
yTopAdjustment c YCOORD(Node);

(*Do the final positioning with a preorder walk.
return SECOND\oiALK(Node, 0, 0);

*)

(*Trivial: return TRUE if a null pointer 1;as passed.
return TRUE;

*)

Figure 1. Function POSITIONTREE. This function determines the coordinates for each
node in a tree. A pointer to the apex node of the tree is passed as input.
This assumes that the x and y coordinates of the apex node are set as
desired, since the tree underneath it will be positioned with respect to those
coordinates. Returns TRUE if no errors, otherwise returns FALSE.

The Algorithm 8

procedure FIRSTVIALK (Node, Leve 1):
begin

end.

(*Set the pointer to the previous node at this level. *)
LEFTNEIGHBOR(Node) ~ GETPREVNODEATLEVEL(Level);
SETPREVNODEATLEVEL(Level, Node); (* This is now the previous. *)
fiODIFIER(Node) ~ B; (*Set the default modifier value. *)
if (ISLEAF(Node) or Level = l·laxDepth) then

else

begin
if HASLEFTSIBLING(Node) then

(* Determine the preliminary x-coordinate based on: *)
(* the preliminary x-coordinate of the left sibling, *)
(* the separation between sibling nodes, and *)
(* tne mean size of left sibling and current node. *)
PREUM(Node) • PREL!fi(LEFTSIBUNG(Node)) +

SiblingSeparation +
14EANNODES I ZE (LEFTS I BUIIG (!lode) , Node) ;

else

end;

(*No sibling on the left to worry about.
PRELIM(Node) ~ G;

*)

(* This Node is not a leaf, so call this procedure *)
(* recursively for each of its offspring. *)
begin

Leftmost~ Rightmost~ FIRSTCHILD(Node);
FIRST\vALK(Leftmost, Level + 1);
while HASRIGHTSIBLING(Rightmost) do

begin
Rightmost • RIGHTSIBLING(Rightmost);
FIRSTVIALK(Rightmost, Level + 1);

end;
flidpoint ~ (PREL!fi(Leftmost) + PRELHI(Rightmost)) / 2;
if HASLEFTSIBLING(Node) then

begin

end;
else

PRELHI(Node) ~ PRELIM(LEFTSIBLING(Node)) +
SiblingSeparation +
fiEANNODESIZE(LEFTSIBLHIG(Node), llode);

I·IODIFIER(Node) • PRELII-I(Node) - l·lidpoint;
APPORTION(Node, Level);

PRELIM(Node) ~ Midpoint;
end;

Figure 2. Procedure FIRSTVVALK. In this first postorder walk, every node of the tree is
assigned a preliminary x-coordinate (held in field PRELIM(Node)). In addition,
internal nodes are given modifiers, which will be used to move their offspring
to the right (held in field MODIFIER(Node)).

The Algorithm 9

function SECOND'!IALK (Node; Level, flodsum): BOOLEAN;
begin

if Level ~ l·laxDepth then
begin

end;
else

x Temp ~ xTopAdj us tment + PREL!fl (Node) + flods urn;
yTemp ~ yTopAdjustment + (Level * LevelSeparation);
(* Check to see that xTemp and yTemp are of the proper *)
(* size for your application. *)
if CHECKEXTENTSRANGE(xTemp, yTemp) then

else

begin

end;

XCOORD(Node) ~ xTemp;
YCOORD(Node) ~ yTemp;
if HASCHILD(fiode) then

(*Apply the flodifier value for this node to *)
(*all its offspring. *)
Result ~ SECONDHALK(FIRSTCHILD(IIode),

Level + 1,
flodsum + HODIFIER(Node));

if (Result= TRUE and
HASRIGHTSIBLING(Node)) then
Result ~ SECOND\~ALK(RIGHTSIBLING(flode),

Level + 1,
l·lodsum);

(* Continuing would put the tree outside of the *)
(* drawable extents range. *)
Result ~ FALSE;

(* We are at a level deeper than 1·1hat we want to draw. *)
Result ~ TRUE;

return Result;
end.

Figure 3. Function SECONDWALK. During a second preorder walk, each node is given
a final x-coordinate by summing its preliminary x-coordinate and the modifiers
of all the node's ancestors. The y-coordinate depends on the height of the
tree. If the actual position of an interior node is right of its preliminary place,
the subtree rooted at the node must be moved right to center the sons
around the father. Rather than immediately readjust all the nodes in the
subtree, each node remembers the distance to the provisional place in a mod
ifier field (MODIFIER(Node)). In this second pass down the tree, modifiers are
accumulated and applied to every node. Returns TRUE if no errors, otherwise
returns FALSE.

The Algorithm 1 0

procedure APPORTION (Node, Level):
begin

Leftmost~ FIRSTCHILD(Node);
Neighbor~ LEFTNEIGHBOR(Leftmost);
CompareDepth ~ 1;
DepthToStop ~ MaxDepth- Level;

while (Leftmost f ¢ and
Neighbor f ¢ and
CompareDepth ~ DepthToStop) do

begin
(* Compute the location of Leftmost and 11here it should *)
(* be with respect to Neighbor. *)
LefU-Iodsum ~ 0;
Ri ghtl·lodsum ~ 0;
AncestorLeftmost ~ Leftmost;
AncestorNeighbor ~ Neighbor;
for ; e

until CompareDepth do
begin

AncestorLeftmost ~ PARENT(AncestorLeftmost);
AncestorNeighbor c PARENT(AncestorNeighbor);
Ri ghtModsum ~ Ri ghtflodsum +

MODIFIER(AncestorLeftmost);
Leftflodsum ~ LeftModsum +

MODIFIER(AncestorNeighbor);
end;

(* Find the floveDistance, and apply it to Node's subtree. *)
(*Add appropriate portions to smaller interior subtrees. *)
HoveDistance ~ (PRELIM(Neighbor) +

Leftl·lodsum +
SubtreeSeparation +

MEANNODESIZE(Leftmost, Neighbor)) -
(PREL!fl(Leftmost) + Ri ghtf.1odsum));

if t·1oveDistance > 0 then
begin

(*Count interior sibling subtrees in LeftSiblings*)
TempPtr ~ Node;
LeftSiblings ~ 6;
while (TempPtr f ¢and

TempPtr f AncestorNeighbor) do
begin

LeftSiblings c LeftSiblings + 1;
TempPtr ~ LEFTSIBLING(TempPtr);

end;

Figure 4. Procedure APPORTION, part 1 of 2

The Algorithm 11

end.

if TempPtr f ¢ then
(*Apply portions to appropriate leftsibling *)
(* subtrees. *)
begin

end;
else

Portion~ l~oveOistance j LeftSiblings;
TempPtr ~ Node;
while

TempPtr = AncestorNeighbor do
begin

PREWI(TempPtr) ~
PRELHI(TempPtr) + fioveOistance;

MOOIFIER(TempPtr) ~
l·iOOIFIER(TempPtr) + l·ioveDistance;

MoveDi stance ,... f·1ove0i stance -
Portion;

TempPtr ~ LEFTSIBLHIG(TempPtr);
end;

(* Don't need to move anything--it needs to *)
(* be done by an ancestor because *)
(* AncestorNeighbor and AncestorLeftmost are *)
(* not siblings of each other. *)
return;

end; (* of MoveDistance > 0 *)

(* Determine the leftmost descendant of Node at the next *)
lower level to compare its positioning against that of*) (*

(* its Neighbor.

CompareDepth ~ CompareDepth + 1;
if ISLEAF(Leftmost) then

Leftmost <- GETLEFTfiOST(Node, 0, CompareDepth);
else

Leftmost~ FIRSTCHILD(Leftmost);

end; (* of the whi 1 e *)

*)

Figure 5. Procedure APPORTION, part 2 of 2. This procedure cleans up the positioning
of small sibling subtrees, thus fixing the "left-to-right gluing" problem evident
in earlier algorithms. When moving a new subtree farther and farther to the
right, gaps may open up among smaller subtrees that were previously
sandwiched between larger subtrees. Thus, when moving the new, larger
subtree to the right, the distance it is moved is also apportioned to smaller,
interior subtrees, creating a pleasing aesthetic placement_

The Algorithm 12

function GETLEFTfiOST (Node, Level, Depth): NODE;
begin

if Level ~Depth then
return Node;

else if !SLEAF(Node) then
return ¢;

else begin
Rightmost~ FIRSTCHILD(Node);
Leftmost ~ GETLEFTt-IOST (Rightmost, Leve 1 + 1, Depth);
(* Do a postorder walk of the subtree below Node. *)
while (Leftmost = ¢ and

HASRIGHTS!BLING(Rightmost)) do
begin

Rightmost~ R!GHTSIBL!NG(Rightmost);
Leftmost ~ GETLEFTt-IOST(Rightmost, Level + 1, Depth);

end.

end;
return Leftmost;

end;

Figure 6. Function GETLEFTMOST. This function returns the leftmost descendant of a
node at a given Depth. This is implemented using a postorder walk of the
subtree under Node, down to the level of Depth. Level here is not the abso
lute tree level used in the two main tree walks; it refers to the level below the
node whose leftmost descendant is being found.

function 1·1EANNODESIZE (LeftNode, RightNode): REAL;
begin

end.

NodeSize ~ El;

if LeftNode t ¢then
NodeSize ~ NodeSize + RIGHTSIZE(LeftNode);

if RightNode t ¢ then
NodeSize ~ NodeSize + LEFTS!ZE(RightNode);

return NodeSize;

Figure 7. Function MEANNODESIZE. This function returns the mean size of the two
passed nodes. It adds the size of the right half of lefthand node to the left
half of righthand node. If all nodes are the same size, this is a trivial calcu
lation.

The Algorithm 13

function CHECKEXTENTSRANGE (xValue, yValue): BOOLEAN;
begin

if (xValue is a valid value for the x-coordinate) and
(yValue is a valid value for the y-coordinate) then
return TRUE;

else
return FALSE;

end.

Figure 8. Function CHECKEXTENTSRANGE. This function verifies that the passe<l x
and y-coordinates are within the coordinate system b~ing used for the
drawing. For example, if the x-and y-coordinates must be 2-byte integers, this
function could determine whether xValue and yValue are too large.

procedure INITPREVNODELIST:
begin

end.

(* Start with the node at level 8--the apex of the tree.
TempPtr • LevelZeroPtr;
while TempPtr f ¢do

begin
PREVNODE(TempPtr) • ¢;
TempPtr • NEXTLEVEL(TempPtr);

end;

*)

Figure 9. Initialize the list of prev_ious nodes at each level. Three Jist-maintenance pro
cedures, GETPREVNODEATLEVEL, SETPREVNODEATLEVEL, and
INITPREVNODELIST. maintain a singly-linked list. Each entry in the list corre
sponds to the node previous to the current node at a given level (for example,
element 2 in the list corresponds to the node to the left of the current node at
level 2). If the maximum tree size is known beforehand, this Jist can be
replaced with a fixed-size array, and these procedures become trivial.

Each list element contains two fields: PREVNODE-the previous node at this
level, and NEXTLEVEL-a forward pointer to the next list element. The list is
does not need to be cleaned up between calls to POSITIONTREE, for perform
ance.

The Algorithm 14

function GETPREVNOOEATLEVEL (Level): NODE;
begin

end.

(* Start with the node at level 0--the apex of the tree.
TempPtr ~ LevelZeroPtr;
i ~ 0;
while TempPtr i ¢ do

begin

end;

if i = Level then
return PREVNODE(TempPtr)

TempPtr ~ NEXTLEVEL(TempPtr);
if-i+l;

(*Otherwise, there 11as no node at the specific level.
return ¢;

Figure 10. Get the previous node at this level. See Figure 9.

*)

*)

The Algorithm 15

procedure SETPREVNOOEATLEVEL (Level, Node):
begin

end.

(* Start with the node at level 6--the apex of the tree.
TempPtr ~ LevelZeroPtr;
i ~ 0;
while TempPtr r ¢do

begin
if i = Leve 1 then

begin

*)

(*At this level, replace the existing list *)

end;

(*element ~<ith the passed-in node. *)
PREVNODE(TempPtr) ~ Node;
return;

end;
else if NEXTLEVEL(TempPtr) = ¢ then

(*There isn•t a lfst element yet at this level, so *)
(* add one. The follo~<ing instructions prepare the *)
(* list element at the next level, not at this one. *)
begin

end;

Ne~<Node ~ ALLOCATE_A_NODE;
PREVNODE(NewNode) ~ ¢;
NEXTLEVEL(NewNode) ~ ¢;
NEXTLEVEL(TempPtr) ~ NewNode;

(*Prepare to move to the next level, to look again. *)
TempPtr ~ NEXTLEVEL(TempPtr);

~ i + 1;

(*Should only get here if LevelZeroPtr is nil.
LevelZeroPtr ~ ALLOCATE A NODE;
PREVNODE(LevelZeroPtr) ~Node;
NEXTLEVEL(LevelZeroPtr) ~ ¢;

*)

Figure 11. Set an element in the list. See Figure 9 on page 14. Function
"ALLOCATE_A_NODE" (not shown here) requests a pointer to a block of
memory, to be used to represent a node in the list.

The Algorithm 16

An Example

The operation of the algorithm during these two walks can be best illustrated
with an example. At least three levels are needed to illustrate its operation.
since a small subtree must be centered between larger sibling subtrees. The
following figure is an example tree positioned by this algorithm. Its fifteen
nodes have been lettered in the order that they are visited in the first postorder
traversal. For this example, the mean size of each node is 2 units and the
sibling separation and subtree separation values are the same: 4 units.

I

G
n

G

Figure 12. An example general tree, with 15 nodes

Nodes Visited in the First Traversal
The nodes are visited in a postorder walk. Their preliminary x-coordinate value
and modifier values are calculated in this traversal.

Node Preliminary X-coordinate and Modifier

A is a leaf with no left sibling.

PRELHI(A) = 8
MOO!FIER(A) = 8

An Example 1 7

B is also a leaf with no left sibling.

PREWI(B) = 0
I·IODIFIER(B) = 0

C is the right sibling of node B. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes.

PREWI (C) = 0 + 4 + 2 = 6
I·IODIFIER(C) = 0

0 is the parent of nodes B and C, and the right sibling of node A. It is
separated from node A by the sibling separation value plus the mean
size of the two nodes. Its modifier is set so that when it is applied to
nodes B and C, they will appear centered underneath it. The modifier is
determined by taking PRELIM(D) and subtracting the mean of the
PRELIM(its mostly widely-separated offspring) values.

PRELIH(D) = 0 + 4 + 2 = 6
fiDDIFIER(D) = 6 - (0 + 6)/2 = 3

E is the parent of nodes A and D. It is centered over nodes A and D.

PRELIH(E) = (0 + 6)/2 = 3
MDDIFIER(E) = 8

F is a right siblfng of node E. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes. That would place it
directly over node C. We can see now that node N's subtree will later
be placed much further to the right, leaving the spacing between nodes
E and F smaller, and hence different, than the spacing between nodes F
and N. ·When node N is finally positioned, the position of node F will be
adjusted. But for now,

PRELIM(F) = 3 + 4 + 2 = 9
HODIFIER(F) = 8

G is a leaf with no left sibling.

PRELIM(G) = 0
MDDIFIER(G) = 0

H is a leaf with no left sibling.

PRELIM (H) = 0
MODIFIER(H) = 0

is the right sibling of node H. It is separated from it by the sibling sepa
ration value plus the mean size of the two nodes.

PRELIM(!) = 0 + 4 + 2 = 6
MODIFIER(!) = 0

J is the right sibling of node I. As above, it is separated by the standard
spacing from node I.

PREL!H(J) = 6 + 4 + 2 = 12
MODIFIER(J) = 0

An Example 18

K is the right sibling of node J.

PRELHI(K) = 12 + 4 + 2 = 18
I·IODIFIER(K) = 0

L is the right sibling of node K.

PRELIM(L) = 18 + 4 + 2 = 24
I·IOOIFIER(L) = 0

M is the parent of nodes H through L, and the right sibling of node G. It is
separated from node G by the sibling separation value plus the mean
size of the two nodes. Its modifier is set so that when it is applied to
nodes H through L, they will appear centered underneath it.

PRELH~ (M) = 0 + 4 + 2 = 6
I·IODIFIER(fl) = 6 - (0 + 24)/2 = -6

N is the parent of nodes G and M, and the right sibling of node F. It is
first of all given its standard positioning to the right of node F, with a
modifier that reflects the centering of its offspring beneath it.

PRELHI(N) = 9 + 4 + 2 = 15
I-IODIFIER(N) = 15 - (0 + 6)/2 = 12

Now we have to verify that node E's subtree and node N's subtree are
properly separated.

Moving down one level, the leftmost descendant of node N, node G, cur
rently has a positioning of 0 + 12 = 12 (PRELIM(G) plus the
MODIFIER(N). its parent). The rightmost descendant of node E, node D
is positioned at 6 + 0 = 6 (PRELIM(D) plus the MODIFIER(E), its
parent). Their difference is 12 - 6 = 6, which is equal to the minimum
separation (subtree separation plus mean node size), so N's subtree
does not need to be moved, since there is no overlap at this level.

Moving down one more level, the leftmost descendant of node N is node
H. It is positioned at 0 + -6 + 12 = 6 (PRELIM(H) plus MODIFIER(M)
and MODIFIER(N)). The rightmost descendant of node E, node C, is
positioned at 6 + 3 + 0 = 9 (PRELIM(C) plus MODIFIER(D) and
MODIFIER(E)). Their difference is 6 - 9 = -3; it should be 6, the
minimum subtree separation plus the mean node size. Thus node N
and its subtree need to· be moved to the right a distance of 6- -3 = 9.

PRELIM(N) = 15 + 9 = 24
I·IODIFIER(N) = 12 + 9 = 21

This opens a gap of size 9 between sibling nodes E and N. This differ
ence needs to be evenly distributed to all contained sibling nodes, and
node F is the only one. Node F is moved to the right a distance of 9/2
= 4.5.

PRELIM(F) = 9 + 4.5 = 13.5
I-IODIFIER(F) = 0 + 4.5 = 4.5

0 is the parent of nodes E, F, and N. It is positioned halfway between the
position of nodes E and N.

An Example 19

PREWI(O) = (3 + 24)/2 = 13.5
~IODIFIER(O) = 0

Nodes Visited in the Second Traversal
The nodes are all visited a second time, this time in a preorder traversal. Their
final x-coordinates are determined by summing their preliminary x-coordinates
with the modifier fields of all of their ancestors.

Node Final X-coordinate (preliminary x-coordinate + modifiers of ancestors)

0 13.5

E 3+0=3

A 0+0+0=0

D 6+0+0=6

B 0+3+0+0=3

c 6+3+0+0=9

F 13.5 + 0 = 13.5

N 24 + 0 = 24

G 0 + 21 + 0 = 21

M 6 + 21 + 0 = 27

H 0 + -6 + 21 + 0 = 15

6 + -6 + 21 + 0 = 21

J 12 + -6 + 21 + 0 = 27

K 18 + -6 + 21 + 0 = 33

L 24 + -6 + 21 + 0 = 39

An Example 20

Changing the Orientation of the Root

The algorithm illustrates tree positioning where the apex of the tree is at the
top of the drawing. Some simple modifications allow other common posi
tionings, such as where the root is on the left and the siblings are to its right.
Four such orientations of the root can be readily identified; these will be the
values taken by a new global constant, RootOrientation, to be set before the
algorithm is called.

NORTH root is at the top, as shown in the preceding algorithm
SOUTH root is at the bottom, its siblings are above it
EAST root is at the left, its siblings are to its right
WEST root is at the right, its siblings are to its left

The ability to accommodate a change in orientation involves some minor
changes to three functions: POSITIONTREE, SECONDWALK, and
MEANNODESIZE. These changes are shown below with change bars, 1-

function POSJTIONTREE (Node): BOOLEAN;
begin

if Node f ¢ then
begin

(* Initialize the list of previous nodes at each level. *)
JNITPREVNODELIST;

(*Do the preliminary positioning with a postorder walk. *)
FJRSHIALK(Node, 0);

(* Determine how to adjust all the nodes ~<ith respect to *)
(* the location of the root. *)
if RootOrientation = (NORTH or SOUTH) then

begin

end;

xTopAdjustment • XCOORD(Node) - PREL!I·I(Node);
yTopAdjustment • YCOORD(Node);

else if RootOrientation = (EAST or oiEST) then
begin

end;

xTopAdjustment • XCOORD(Node);
yTopAdjustment • YCOORD(Node) + PRELH1(Node);

Figure 13. Function POSITIONTREE. The final position of the tree's apex depends on
the RootOrientation value.

Changing the Orientation of the Root 21

function SECONO\•IALK (Node, Level, ftodsum): BOOLEAN;
begin

if Level s ftaxDepth then
begin

if RootOrientation =NORTH then
begin

xTemp ~ xTopAdjustment + (PRELHt(Node) + 1-lodsum);
yTemp ~ yTopAdjustment + (Level * LevelSeparation);

end;
else if RootOrientation =SOUTH then

begin
xTemp ~ xTopAdjustment + (PRELHI(Node) + 1-todsum);
yTemp ~ yTopAdjustment- (Level * LevelSeparation);

end;
else if RootOrientation = EAST then

begin

end;

xTemp ~ xTopAdjustment + (Level * LevelSeparation);
yTemp ~ yTopAdjustment - (PRELIH(Node) + Hods urn);

else if RootOrientation = \~EST then
begin

end;

xTemp ~ xTopAdjustment - (Level *Level Separation);
yTemp ~ yTopAdjustment - (PRELHI(Node) + l·lodsum);

(* Check to see that xTemp and yTemp are of the proper *)
(*size for your application. *)
if CHECKEXTENTSRANGE(xTemp, yTemp) then

Figure 14. Function SECONDWALK. The values of xTemp and yTemp now depend on
the RootOrientation value.

Changing the Orientation of the Root 22

function t·IEANNOOESIZE (LeftNode, RightNode): REAL;
begin

NodeSize ~ G;

if RootOrientation = (NORTH or SOUTH) then
begin

end;

if LeftNode '}¢then
NodeSize ~ NodeSize + RIGHTSIZE(LeftNode);

if RightNode '} ¢ then
NodeSize ~ NodeSize + LEFTSIZE(RightNode);

else if RootOrientation = (EAST or \•lEST) then
begin

end;

if LeftNode '} ¢ then
NodeSize ~ NodeSize + TOPSIZE(LeftNode);

if Ri ghtNode '} ¢ then
NodeSize ~ NodeSize + BOTTOt·IS!ZE(RightNode);

return NodeS i ze;
end.

Figure 15. Function MEANNODESIZE. This function now returns the mean width of the
two nodes if the RootOrientation is NORTH or SOUTH; if the RootOrientation
is EAST or WEST, it returns the mean height of the two nodes.

Changing the Orientation of the Root 23

Previous Work

Early algorithms concentrated on drawing binary trees. Knuth' is generally
credited with the first published algorithm for drawing binary trees. Its posi
tioning of nodes in the drawing was sometimes rather crude; later algorithms
tried to improve upon it."· 12. "· 14

The drawing of optimally-positioned general trees, because of their distinctions
from binary trees (as noted above), is not an NP-hard problem. However, the
problem was approached somewhat later than the problem of drawing binary
trees. In the algorithms of Sweet'o and Tilford," the authors both note their
algorithm's irregular behavior under certain conditions.

Sweet'o published his algorithm as an appendix to his dissertation and noted
the following:

The principal shortcoming of the algorithm is somewhat difficult to dem
onstrate in a small tree. Figure 8.3 is a somewhat contrived example
that points out the problem. Consider the sons of node 0: they are E,
F, and G. Since the subtree E is "shallow," it is placed quite far to the
left. The nodes F and G must be placed considerably farther to the right
in order to make room for their subtrees. With larger, wider trees, a
shallow subtree such as E can be so far from its brothers that it gets
"lost." Shallow subtrees in son positions other than the first lead to
uneven spacing of the sons. One could probably add a pass to the
algorithm that, once having established the rightmost subtree of a node,
then reformats the other subtrees for compactness and even spacing.

A

,--.,1_--,,
• 0 ! ~---_J _____ ci

I , ,1, ,1,
lA very wide subtreeJ H I J l

. Figure 8.3. Example tree showing a shortcoming of th"C printing algorithm.

Figure 16. Sweet's illustration showing deficiencies in his algorithm. From page 96 of
Sweet.10

Tilford's Masters thesis, Tree Drawing Algorithms," included algorithms for
both binary and general tree drawings. He stated:

Consider the three trees in Figure 5.1; in the first, subtrees were glued
from left to right; in the second, from right to left. Of course, the most
desirable positioning is given by the third drawing, which cannot be
produced by Algorithm 5.1 [for drawing general trees] regardless of the

Previous Work 24

gluing order, because Algorithm 5.1 always puts a pair of subtrees as
close together as possible.

The problem arises when a tree has the general shape shown in Figure
5.2, in which two non-adjacent subtrees are large, and the intervening
ones are small enough that there is freedom in deciding where to place
them. Although this will not always lead via Algorithm 5.1 to a violation
of Aesthetic 4 [which states: "A tree and its mirror image should
produce drawings that are renections of one another; moreover, a
subtree should be drawn the same way regardless of where it occurs in
the tree."], it is clear that the small subtrees ought to be spaced out
evenly rather than bunched up on one side or the other.

Figure 1·l· A ~all ternary tree positioned (a) by Algorithm 5.1, with
left-to-right gluing; (b) by Algorithm 5.1, with right-to-left gluing;
and (e) ideally.

Figure 17. Examples of centering vs. two types of gluing. From page 37 of Tilford.ll

Figure 5.2. The general shape of a tree for which Algorithm 5.1
produce8&n unsatisfactorY positioning.

Figure 18. Tilford's illustration showing deficiencies in his algorithm. From page 38 of
Tilford."

Previous Work 25

Radack7 follows directly from Tilford's work, solving the left-to-right-gluing
problem by essentially running his algorithm twice. The first time. the subtrees
are agglutinated left to right; the second time, from right to left. A node is posi
tioned at the average of the two assigned positions. Radack's algorithm posi
tions the nodes in four passes.

Andy Poggio of SRI International, describing an unpublished algorithm used on
their CCWS systems noted, "As their display is not a central aspect of our
research, we developed a simple, expedient algorithm for that purpose." s It
adheres to three aesthetic rules:

1. nodes at the same level are displayed on the same horizontal level,
2. all successors of a node are displayed below the node in an area bounded

by the midpoint distance to adjacent nodes, and
3. the display root node is always centered at the top of the display area.

Trivial algorithms also exist for drawing general trees in an outline-like form,
where the apex node is positioned to the left of the display and not centered
above its offspring (for example, Petzold').

The algorithms by Manning and Atallah' are examples of the class of algo
rithms that do node positioning with a different set of aesthetic rules; their
primary goal was to highlight the symmetry inherent in hierarchical relation
ships.

Previous Work 26

Acknowledgements

I appreciate the written correspondence I received from the experts on this
topic (listed alphabetically): Brad A. Myers at the Computer Systems Research
Institute in Toronto, Andy Poggio at SRI International, Edward Reingold at the
University of Illinois, Bob Tarjan at AT&T Bell Laboratories, and C.S. Wetherell
at AT&T Information Systems.

Thanks to Jane Munn, Jim Staton, and Dr. Bill Wright at IBM who reviewed an
earlier version of this paper. Bob Gibson and John Broughton have also given
me a lot of help.

Acknowledgements 27

References

[1] Knuth, D.E. Optimum Binary Search Trees. Acta Informatica 1 (1971)
14-25.

[2] Knuth, D.E. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, Reading, MA, 1973.

[3] Manning, J.B. and M.J. Atallah. Fast Detection and Display of Symmetry
in Trees. Congressus Numerantium 64 (November 1988) 159-169.

[4] Petzold, C. A Sight Better Than TREE. PC Magazine 4, 22 (October 29,
1 985) 199-206.

[5] Poggio, A.A., et a/. CCWS: A Computer-Based, Multimedia Information
System. IEEE Computer 18, 10 (October 1985) 92-103.

[6] Poggio, A.A., personal communication, October 21, 1985.

[7] Radack, G.M. Tidy Drawing of M-ary Trees. Department of Computer
Engineering and Science, Case Western Reserve University, Cleveland,
Ohio, Report CES-88-24, November 1988.

[8] Reingold, E.M. and J.S. Tilford. Tidier Drawings of Trees. IEEE Trans
actions on Software Engineering SE-7, 2 (March 1981) 223-228.

[9] Supowit, K.J. and E.M. Reingold. The complexity of drawing trees nicely.
Acta Informatica 18, 4 (January 1983) 377-392.

[10] Sweet, R.E. Empirical estimates of program entropy. Department of Com
puter Science, Stanford University, Stanford, CA, Report STAN-CS-78-698,
November 1978. Also issued as Report CSL-78-3, Xerox PARC, Palo Alto,
CA, September 1978.

[11] Tilford, J.S. Tree drawing algorithms. M.S. Thesis, Department of Com
puter Science, University of Illinois, Urbana, IL, Report
UIUCDCS-R-81-1055, April 1981. Available as document UILU-ENG-81-1711
from the College of Engineering Document Center at the Univ. of Illinois.

[12] Vaucher, J.G. Pretty-Printing of Trees. Software- Practice and Experience
10 (1980) 553-561.

[13] Wetherell, C.S. and A. Shannon. Tidy Drawings of Trees. IEEE Trans
actions on Software Engineering SE-5, 5 (September 1979) 514-520.

[14] Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1976.

References 28

An Example Underlying Tree Structure

In this example, I use the internal tree notation described by Knuth [Reference
2, section 2.3.3] for a triply-linked tree. Each node consists of three pointers,
FATHER, LSON, and RLINK, and its information in field INFO. FATHER points to
the parent of the node. LSON points to the leftmost offspring of a node. RLINK
points to the right sibling of a node. Thus, if node T is the root of a binary tree,
the root of its left subtree is LSON(T) and the root of its right subtree is
RLINK(LSON(T)).

This node structure is illustrated below, using the syntax of the C programming
language.

struct position (

} ;

l*--*1
/*This structure contains the node positioning information.
/* I 1 ve used floating point values here; use integer values, if

'I
*I

/* necessary, but you may need to handle rounding errors. * J
1*--*l
float x_coordinate; I* the value identified as XCOORO(Node) *I
float y_coordinate; /*the value identified as YCOORD(Node) *I
float preliminary; /*the value identified as PRELII·I(Node) *I
float modifier; /*the value identified as 1·10DIFIER(Node) *I

struct information. (

} ;

l*--*1
/*This structure contains whatever node information your application
I* requires. Here I show a fixed-length, 80-character label for the node.
I* If the sizes of the nodes differ, a node's width or height could be

'I
*I
*I

I* included here (see function fiEANNODESIZE). *I
1*--*l
char node_ label [80];

struct node {

} ;

struct node *father;
struct node *lson;
struct node *rlink;
struct node *left_neighbor;
struct position pas;
struct information info;

/*pointer to the parent of this node */
/*pointer to this node's leftmost offspring 'I
/*pointer to the right sibling of this node *I
/*pointer to the adjacent node to the left. *I
J* positioning values, as defined above */
/* node information, as defined above */

An Example Underlying Tree Structure 29

