Generalized Closed World
Assumption is \(\Omega^3 \)-complete*

TR89-036
October, 1989

Jan Chomicki
V.S. Subrahmanian

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

1 Dept. of Computer Science, University of Maryland, College Park, MD 20742.
UNC is an Equal Opportunity/Affirmative Action Institution.
Generalized Closed World Assumption is \(\Pi^0_2\)-complete *

Jan Chomicki †

Dept. of Computer Science
University of North Carolina
Chapel Hill, NC 27599
chomicki@cs.unc.edu

V.S. Subrahmanian

Dept. of Computer Science
University of Maryland
College Park, MD 20742
vs@mimsy.umd.edu

October 3, 1989

Keywords: logic programming, non-Horn logic programs, negation, undecidability, arithmetical hierarchy.

1 Introduction

Minker [9] has defined an inference rule called the Generalized Closed World Assumption (GCWA). According to this rule, a negated ground atom \(-A\) can be inferred from a non-Horn (called also disjunctive or indefinite) logic program \(P\) iff \(A\) is not in any minimal Herbrand model of \(P\). GCWA, as opposed to CWA ([12]), does not lead to inconsistency and has been adopted as a standard rule for inferring negative information from a disjunctive logic program [16,3,15,7,11,6]).

In this note, we show that GCWA is \(\Pi^0_2\)-complete, i.e. at the second level of the arithmetical hierarchy [13]. The non-obvious part is \(\Pi^0_2\)-hardness. Therefore, GCWA is strictly harder than CWA which is \(\Pi^0_2\)-complete [2] for both Horn and non-Horn logic programs. Moreover, GCWA is strictly harder than a weaker inference rule called Weak GCWA in [10] and Disjunctive Database Rule in [14] which, like CWA, is \(\Pi^0_2\)-complete.

2 Preliminaries

Definite Horn logic programs [8] consist of universally-quantified clauses with exactly one positive literal. Non-Horn logic programs [9,5] consist of universally-quantified clauses with at least one positive literal.

Reiter [12] defined the Closed World Assumption (CWA) as the following inference rule:

*Submitted for publication.
†Research performed at the University of Maryland Institute for Advanced Computer Studies.
\neg A \in CWA(P) \iff P \not\models A

where \(P \) is a logic program and \(A \) is a ground atom belonging to the Herbrand base of \(P \). For any definite Horn logic program \(P \), \(CWA(P) \) can be defined equivalently as:

\neg A \in CWA(P) \iff M_P \not\models A

where \(M_P \) is the least Herbrand model of \(P \). In that case, \(P \cup CWA(P) \) is consistent. Moreover, it is maximally consistent. However, in the case of non-Horn logic programs, \(P \cup CWA(P) \) may be inconsistent.

Minker [9] defined the Generalized Closed World Assumption (GCWA) as the following inference rule:

\neg A \in GCWA(P) \iff \forall K, \ P \models A \lor K \Rightarrow P \models K

where \(P \) is a logic program, \(A \) is a ground atom, \(K \) is a disjunction of ground atoms, and \(A \) and all the disjuncts in \(K \) belong to the Herbrand base of \(P \). He also showed that the above definition has a model-theoretic counterpart:

\neg A \in GCWA(P) \iff A \text{ does not belong to any minimal Herbrand model of } P.

For any (Horn or non-Horn) logic program \(P \), \(P \cup GCWA(P) \) is consistent. Moreover, it is maximally consistent in the sense that adding more negative literals would result either in an inconsistency or in a new positive conclusion being derivable.

3 Main result

Theorem 3.1 \(GCWA(P) \) is a \(\Pi^0_2 \)-complete set.

Proof: We show first that \(GCWA(P) \) is in \(\Pi^0_2 \). The complementary problem:

\neg A \notin GCWA(P) \iff \exists K, \ P \models A \lor K \text{ and } P \not\models K

is recursively enumerable in \(\Pi^0_2 \), and therefore is in \(\Sigma^0_2 \).

We now show \(\Pi^0_2 \)-hardness. Take an arbitrary \(\Pi^0_2 \) subset \(Q \) of some finitely generated Herbrand universe \(U \) that contains at least one constant and one function symbol. We will exhibit a non-Horn logic program \(P \) over the same Herbrand universe \(U \) such that

\neg c(x) \in GCWA(P) \iff Q(x)

for all \(x \) and some predicate symbol \(c \).

By the definition of \(\Pi^0_2 \), there is a recursively enumerable relation \(R \) over \(U \) such that:

\(Q(x) \) iff \(\forall y, R(x, y) \).

For this relation \(R \), there is a definite Horn logic program \(S \) such that:

\(R(x, y) \) iff \(S \models r(x, y) \)
by a result of Andreka and Nemeti [1] (also [2, Theorem 7] and [4]).

We define the non-Horn logic program P postulated at the beginning of the proof in several steps.

First, we include the program S in P. Second, we introduce a new predicate symbol term, not appearing in S. The predicate $\text{term}(t)$ is true of any term t from U and can be defined by a finite set of definite Horn rules in an obvious way. Those rules are included in P.

Third, we introduce three new predicate symbols a,b and c, not appearing in S and defined by the following rules, the second of which is non-Horn:

\begin{align*}
 a(X,Y) & \leftarrow r(X,Y). \\
 a(X,Y) \lor b(X,Y) & \leftarrow \text{term}(X), \text{term}(Y). \\
 c(X) & \leftarrow b(X,Y).
\end{align*}

We will show now that for all x:

$$c(x) \text{ is not in any minimal Herbrand model of } P \text{ iff } \forall y, S \vdash r(x,y)$$

which is equivalent to:

$$c(x) \text{ is in a minimal Herbrand model of } P \text{ iff } \exists y, S \not\vdash r(x,y)$$

and establishes the hardness result.

Assume first that:

$$\forall y, S \vdash r(x,y).$$

We will assume that $c(x)$ is in a minimal Herbrand model M_0 of P and derive a contradiction. If $c(x)$ is in a minimal Herbrand model M_0 of P, then there exists a y such that $M_0 \models b(x,y)$. Now because S is definite Horn, the original assumption implies:

$$\forall y, M_S \models r(x,y)$$

where M_S is the least Herbrand model of S. Thus also

$$\forall y, M \models r(x,y)$$

for any minimal Herbrand model M of P, because every such model has to contain M_S. Consequently,

$$\forall y, M \models a(x,y)$$

and because M is a minimal model:

$$\forall y, M \models \neg b(x,y).$$

This contradicts the fact that:

$$M_0 \models b(x,y).$$
We prove now the opposite direction. Assume:

\[\exists y, S \not\models r(x,y). \]

We will prove that \(c(x) \) is in a minimal Herbrand model of \(P \). From the assumption follows that:

\[P \not\models r(x,y) \]

and there exists a Herbrand model \(M \) of \(P \):

\[M \not\models r(x,y) \]

Consequently, there is a minimal Herbrand model \(M_0 \) of \(P \):

\[M_0 \not\models r(x,y) \]

Then there is also a minimal Herbrand model \(M_1 \) of \(P \) such that:

\[M_1 \models b(x,y) \]

which implies that:

\[M_1 \models c(x). \]

It is easy to see that the transformation leading from \(S \) to \(P \) is total and recursive. Therefore, given any \(\Pi^0_2 \) set, we have shown how to construct a non-Horn logic program \(P \) such that:

\[\neg A \in GCWA(P) \text{ iff } A \in X. \]

End of proof.

References

