
- 1 -

1. Introduction

Automatic theorem proving is concerned with designing a computer program, called
a theorem prover, that can prove, or help prove, mathematical theorems. Automatic theo-
rem proving is of interest because modern computers can perform inferences rapidly and
this capability can be applied to many applications such as expert systems, proof check-
ing and program verification.

In this thesis, we are only interested in refutational theorem provers for first order
logic which accept a set of clauses and prove the inconsistency of the set of clauses. Her-
brand’s Theorem [Gallier 86] is the theoretical basis for this kind of theorem prover. A
theorem prover typically consists of an inference system and a search strategy. The infer-
ence system consists of the axioms and the inference rules applicable to clauses. The
search strategy organizes and controls the applications of the inference rules. Many infer-
ence systems have been developed over the last few decades [Loveland 78, Chang&Lee
73]. Resolution [Robinson 65] is probably the best known example of an inference sys-
tem. We say an inference system is complete if it can detect that a set of clauses is incon-
sistent whenever it is. An inference system may or may not be complete. We say a
search strategy is complete for an inference system if the search strategy can obtain all the
proofs constructible in the inference system. A search strategy may or may not be com-
plete for an inference system. We say a theorem prover is complete if the theorem prover
can construct a proof of the inconsistency of a set of clauses whenever it is. It follows that
the completeness of a theorem prover requires both a complete inference system and a
complete search strategy. Similarly, the efficiency (speed, memory requirements, etc) of
a theorem prover also depends both on the inference system and the search strategy. To
improve the efficiency of a theorem prover, we can restrict the inference system (for
example, an inference rule can only apply if certain conditions are met), or we can

- 1 -

improve the search strategy [Kow alski 70].

This thesis is mainly concerned with how to control the searches for proofs in a the-
orem prover. The problem of search control in automatic theorem proving is important
because, although theorem provers can perform thousands of inferences in a matter of
seconds, lack of guidance for this power often makes them very inefficient. The search
strategy used in the theorem prover is the depth-first iterative deepening search [Korf 85].
Although the general organization of this search strategy is well understood, there are sur-
prisingly many issues that can significantly affect its efficiency. These issues are not only
interesting for this particular theorem prover, but also for implementing any other theo-
rem prover that uses depth-first iterative deepening search. We believe that the tech-
niques and heuristics investigated in this thesis are equally applicable to other systems.

1.1. Goal of This Research
To tackle the problem of search control, we refine the search strategy and the infer-

ence system of a theorem prover. The search strategy is the depth-first iterative deepening
search and the inference system is the modified problem reduction format. We intend to
preserve both the completeness of the search strategy and the completeness of the modi-
fied problem reduction format. The resulting search strategy in the theorem prover has so-
called weak search guidance [Loveland 78]. That is, the techniques and heuristics do not
assume knowledge in any particular domain. On the other hand, domain dependent
knowledge supplied by the user is usable by the search strategy and by the inference sys-
tem. The resulting theorem prover can efficiently solve problems of moderate difficulty
with little or no user guidance at all. At the same time, the theorem prover can be used as
a research tool to solve more difficult problems when various domain dependent knowl-
edge and guidance are supplied by the user. The theorem prover can be also regarded as a
limited logic programming system [Lloyd 84] in full first order logic. A theorem prover
of this kind is interesting both to the logic programming community and for applications
in expert systems, program verification and deductive database systems.

We believe that extensive experiments are essential to evaluate proposed techniques
for automatic theorem proving. For each technique we propose, we shall first discuss the
motivation behind them, then the techniques themselves. Following discussions of each
technique, test data on a large set of problems shall be given. In the following, we will
briefly discuss the various techniques that will be covered in greater details later.

Caching. Caching is a technique proposed to avoid repeated work in depth-first iter-
ative deepening search. The idea is to record the solutions found so that they can be used
to solve other goals. The effect is that no goal will be solved more than once. We will
demonstrate that using depth-first iterative deepening search with caching makes the

- 2 -

theorem prover more efficient — obtaining proofs for more problems in less time on the
av erage — than using depth-first iterative deepening search without caching. A particular
technique to improve caching is goal generalization. The purpose of goal generalization
is to solve each goal in as full generality as possible and then cache the most possible
general solutions for the goals. We will demonstrate that goal generalization can improve
the efficiency of the theorem prover.

Subgoal Reordering. In the modified problem reduction format, a goal may be
reduced to several goals, called subgoals, and the goal will be solved if all the subgoals
are. The order in which these subgoals are solved does not affect the solvability of the
subgoals but it can greatly affect the efficiency of the theorem prover. We will investigate
different heuristics for determining the order in which these subgoals are solved. We will
demonstrate by experiments that it is important to order the subgoals reasonably. The
general heuristic we obtain is to solve at each step the subgoal containing the most infor-
mation, which can be measured in different ways.

Refinements to Depth-first Iterative Deepening Search. It is essential for the
search strategy of a theorem prover to be able to use priority information to control the
search. That is, the search strategy should be able to estimate the importance of the goals
and always work on the most important available goals at any time. Depth-first iterative
deepening search can not use priority effectively and we think this is a serious problem.
To remedy this, we shall study two refinements to the depth-first iterative deepening
search. The first refinement is based on a priority system. We try to approximate best-first
search in a depth-first iterative manner. The second refinement is based on proof com-
plexity measures. This refinement views the process of finding a proof as a process of
incrementally constructing some instance of the input clauses. We will demonstrate that
both refinements can provide substantial improvements to the efficiency of the theorem
prover.

Using Semantic Information. Domain dependent knowledge, or semantic informa-
tion, should be used in automatic theorem proving. Semantic information can be used to
detect unachievable goals which can be deleted. Semantic information can also be used to
select the inferences rules for a particular theorem. We will develop a semantic version of
the modified problem reduction format that will accomplish both.

1.2. Related Work
A large body of knowledge in the field of automatic theorem proving has accumu-

lated over the past few decades. It is beyond the scope of this thesis to give a general
review of the field. Rather, we will discuss related works in the appropriate places. For a
general introduction to the field, see [Chang&Lee 73, Loveland 78]. In general, however,

- 3 -

the work described in this thesis may be of interest to people working in general search
strategy, automatic theorem proving, machine learning and heuristic problem solving.

1.3. Organization of the Thesis
This thesis consists of several independent chapters. We will give an overview of

each chapter. We make one note first. Throughout the thesis, some experimental results
will be given. We use the problems mainly from [Stickel 88] as our standard test prob-
lems. There are 95 test problems in all.

In the next section, we will first briefly introduce first order logic. Some standard
terminology and some new terminology will be defined. Then we will discuss the infer-
ence system of the theorem prover, the modified problem reduction formation. We will
present the axioms, the inference rules and the soundness and completeness theorems
without proofs. We will use some examples to explain the inference system. The material
in this section is mainly from [Plaisted 88], to which readers are referred for a complete
discussion. Lastly, we will give an overview on various search strategies.

In Chapter 2, we will show how depth-first iterative deepening search is used to
implement the modified problem reduction format. We will also discuss how caching is
done with depth-first iterative deepening search and discuss how to deal with repeated
solutions when caching is performed.

In Chapter 3, we will discuss an interesting technique for making caching more effi-
cient, goal generalization. Basically, goal generalization finds proofs for the most general
solvable goals rather than the specific goals. We will show that goal generalization is a
special case of Explanation-Based Generalization in machine learning and discuss how it
can be implemented in the theorem prover by augmenting the inference rules.

In Chapter 4, we will discuss how subgoal reordering is performed in the prover.
Subgoal reordering considers ordering conjunctive subgoals, that is, subgoals that have to
be solved simultaneously. It is based on the observation that the order in which the sub-
goals of a goal are attempted is unimportant for the solvability of the subgoals and can be
determined by some heuristics. We will discuss those heuristics and show how subgoal
reordering is performed in the theorem prover.

In Chapter 5 and Chapter 6, we will discuss two refinements to the depth-first itera-
tive deepening search. The first refinement, the priority system, incorporates the use of
priority into the search strategy. The priority system approximates best-first search using
depth-first iterative deepening search guided by the priority information of the priority
function. Unlike subgoal reordering, which considers conjunctive subgoals, priority sys-
tem considers disjunctive subgoals, that is, subgoals of which only one needs to be

- 4 -

solved. The second refinement, the proof complexity measure, is based on a syntactic
viewpoint of proof development in goal-subgoal systems. This viewpoint regards proof
development as an incremental process of constructing an instance of the input clauses.
This incremental process can be quantified to control depth-first iterative deepening
search.

Chapter 7 discusses the use of semantic information in the theorem prover. A
semantic variant of the modified problem reduction format is presented in which the
inference rules are determined by some arbitrary interpretation. It generalizes Gelernter’s
system and is a true set-of-support strategy. We will discuss the issue of contrapositives in
modified problem reduction format and other inference systems.

In Chapter 8, we will summerize the thesis work and propose some problems for
future research.

1.4. Logical Foundations
The materials in the first two subsections are mainly from [Chang&Lee 73]. People

who are familiar with first order logic and the concept of resolution theorem proving can
skip the first subsection and the first half of the second subsection.

1.4.1. First Order Logic
Definition. The alphabet of a first order language consists of the following pairwise

disjoint sets of symbols:

Logical connectives: /\ (and), \/ (or), ¬ (not), ⊃ (implication), ≡ (equivalence), uni-
versal quantifier ∀ (for all), existential quantifier ∃ (there exists).

Variables: a countably infinite set V = {v0, v1 , . . . ,}.

Function Symbols: A (countable, possibly empty) set F of symbols. Each function
symbol takes a specified number of arguments. If a function symbol f takes n argu-
ments, we say that f is n-place function symbol, or f has arity n.

Constants: A (countable, possibly empty) set C of symbols.

Predicate Symbols: A (countable, possibly empty) set P of symbols. Each predicate
symbol takes a specified number (possibly zero) of arguments. If a predicate sym-
bol p takes n arguments, we say that p is n-place predicate symbol, or p has arity n.

Definition. A term is defined as follows:

1. A constant is a term.

2. A variable is a term.

- 5 -

3. If f is a n-place function symbol and t1, t2 , . . . , tn are terms, then f(t1, t2 , . . . , tn) is a
term.

4. All terms are generated by applying rules 1-3 above.

Definition. An atom is of the form p(t1, t2 , . . . , tn) where p is a n-place predicate
symbol and t1, t2 , . . . , tn are terms.

Definition. The scope of a quantifier occurring in a formula is the part of the for-
mula to which the quantifier applies. An occurrence of a variable in a formula is bound if
and only if the occurrence is within the scope of a quantifier employing the variable, or is
the occurrence in that quantifier. An occurrence of a variable in a formula is free if and
only if this occurrence of the variable is not bound. A variable is free in a formula if at
least one occurrence of it is free in the formula. A variable is bound in a formula if at
least one occurrence of it is bound.

Definition. A formula is defined as follows:

1. An atom is a formula.

2. If F and G are formulas, so are ¬ F, (F \/ G), (F /\ G), (F ⊃ G), and (F ≡ G).

3. If F is formula and x is a variable, then (∀x)F and (∃x)F are formulas. We say, free
occurrences of the variable x in F, or sometimes simply variable x, is universally
quantified in (∀x) F and existentially quantified in (∃x) F.

4. Formulas are generated only by a finite number of applications of rules 1-3 above.

Definition. An interpretation of a formula consists of a domain D (nonempty set)
and an assignment of "values" to each constant, function symbols, and predicate symbols
occurring in the formula as follows:

1. To each constant, we assign an element in D.

2. To each n-place function symbol G, we assign a mapping GI: Dn → D.

3. To each n-place predicate symbol P, we assign a mapping PI: Dn → {T, F}, where T
represents true and F represents false.

An interpretation I is finite if the domain D is finite. The truth value of a formula
can be evaluated in an interpretation with domain D to be T or F according to the follow-
ing rules:

1. If the truth values formula F and G are evaluated, then truth values of the formulas ¬
F, (F \/ G), (F /\ G), (F ⊃ G), and (F ≡ G) can be evaluated using truth tables.

2. (∀x) F is evaluated to T if the truth value of F is evaluated to T for every element of
D; otherwise it is evaluated to F.

- 6 -

3. (∃x) F is evaluated to T if the truth value of F is evaluated to T for at least one ele-
ment of D; otherwise it is evaluated to F.

Definition. Two formulas F and G are said to be equivalent iff the truth values of F
and G are the same under every interpretation of F and G.

Definition. If a formula F is evaluated to T in an interpretation I, we say I is a model
of F, or I satisfies F. We denote the fact that I is a model of F using I | = F. We say a for-
mula F is consistent (satisfiable) if F has a model. A formula F is valid iff every interpre-
tation satisfies F. We denote that F is valid using | = F. A formula F is inconsistent (unsat-
isfiable) iff it has no model.

Definition. A formula F is a logical consequence of formulas F1, F2 , . . . , Fn iff, for
ev ery interpretation I, if F1 /\ . . . /\ Fn is true in I, F is also true in I. Given a set of formu-
las S and a formula G, we use S | == G to denote the fact that G is a logical consequence
of the formulas in S.

Theorem. Giv en formulas F1, F2 , . . . , Fn and F, the following statements are equiv-
alent:

1. {F1, F2 , . . . , Fn} |== F;

2. (F1 /\ . . . /\ Fn) ⊃ F is valid; and

3. F1 /\ . . . /\ Fn /\ ¬ F is inconsistent.

1.4.2. Clause Form and Herbrand Theorem
Definition. A formula F in first order logic is in prenex normal form iff the formula

F is in the form of (Q1v1) . . . (Qnvn) M where every (Qivi) (i = 1 , . . . , n) is either ∀vi or
∃vi, and M is a formula containing no quantifiers. (Q1v1) . . . (Qnvn) is called the prefix
and M is called the matrix of the formula F.

Definition. Let A be an atom. A and ¬A are called literals, and A is called a positive
literal and ¬A is called a negative literal.

Definition. A formula F is in conjunctive normal form iff it is of the form F1 /\ . . . /\
Fn where each formula Fi (i = 1 , . . . , n) is a disjunction of literals. Every quantifier-free
formula can be transformed into an equivalent conjunctive normal form.

Definition. A clause is a disjunction of literals. That is, a clause is of the form L1 \/
. . . \/ Ln where L1 , . . . , Ln are literals. Variables in a clause are considered universally
quantified. We call a clause a unit clause if it has only one literal. We call a clause a Horn
clause if it contains at most one positive literal. We call a clause a non-Horn clause if it
contains more than one positive literal. We call a clause a negative clause if it only con-
tains negative literals. A set of clauses is regarded as a conjunction of all clauses in S. We

- 7 -

use to denote the clause containing no literal, called the empty clause. The truth value
of is always F.

Theorem. Each formula F can be represented by a set of clauses S such that F is
inconsistent iff S is inconsistent.

Notes. We sketch a procedure to transform a formula F into a set of clauses S such
that F is inconsistent iff S is.

1. Transform F into prenex normal form PF.

2. Transform the matrix of PF into a conjunctive normal form CPF.

3. Eliminate the existential quantifiers in the prefix of CPF by using Skolem functions.

4. Drop the remaining universal quantifiers. The result will be a set of clauses.

Definition. Giv en a set of clauses S, let H0 be the set of constants appearing in S. If
no constant appears in S, then H0 is to consist of a single arbitrary constant. For i = 0, 1,
2 , . . . , let Hi+1 be the union of Hi and the set of all terms of the form f(t1 , . . . , tn) for all
n-place function symbols f occurring in S, each where tj (j = 1 , . . . , n) are members of
the set Hi. H∞ is called the Herbrand universe of S. The terms in H∞ are called ground
terms.

Definition. Giv en a set of clauses S, a substitution is a finite set of the form {t1/v1

, . . . , tn/vn} where every vi is a variable, every ti is a term different from vi, and no two
elements in the set have the same variable after the stroke symbol. When all t1 , . . . , tn are
ground term, the substitution is called a ground substitution.

Definition. Giv en a set of clauses S, let θ = (t1/v1 , . . . , tn/vn) be a substitution and E
be an expression. Eθ is an expression obtained from E by replacing simultaneously each
occurrence of the variable vi in E by the term ti. Eθ is called an instance of E. Eθ is called
a ground instance of E if θ is a ground substitution. Eθ is called a variant of E if all ti (i =
1, 2 , . . . , n) are variables such that tm ≠ tk if m ≠ k.

Herbrand Theorem. A set S of clauses is inconsistent if and only if there is a finite
inconsistent set S′ of ground instances of clauses of S.

Definition. A substitution θ is called a unifier for a set {E1 , . . . , En} if and only if
E1θ = . . . = Enθ . The set {E1 , . . . , En} is said to be unifiable if there is a unifier for it. A
unifier θ for a set {E1, . . ., En} is a most general unifier if and only if for each unifier β for
the set there is a substitution λ such that β = θλ, that is, for each Ei (i = 1, 2 , . . . , n),
(Eiθ)λ = Eiβ.

Unification Theorem. There is an algorithm that, for a finite nonempty set of
expressions W, always terminates and finds a most general unifier for W, if one exists.

- 8 -

Definition. A simplified first-order formula is a quantifier-free first order formula
containing no logical symbols other than ¬, /\ and \/, and each negation symbol ¬ occur-
ring in the formula is applied to an atom. A clause is a simplified first-order formula by
definition.

Definition. Giv en an interpretation with domain D, an interpretation instance of a
term or a simplified first-order formula W, denoted by W′, is obtained from W by substi-
tuting elements in D for all variables occurring in W. For a simplied first-order formula
W, we use I | =E W to denote the fact that there is an interpretation instance W′ of W
which is interpreted to be T by I; We use I | =U W to denote the fact that the interpretation
I interprets all the interpretation instances W′ of W to be T; We use I |≠E W to denote
I | =U ¬W and use I |≠U W to denote I | =E ¬W. We call an interpretation I a model for a
simplified first-order formula W if I | =U W. An interpretation I is a model for a set of
simplified first-order formulae if it is a model for each formula in S.

Definition. A Horn-like clause is an expression L : − L1, L2 , . . . , Ln, which repre-
sents a clause L \/ ¬L1 \/ ¬L2

. . . ¬Ln, where L is called the head literal and the clause

body is the set of Li
′s (i = 1 , . . . , n). A clause C is converted into a Horn-like clause HC

as follows. One of the literals or the reserved literal FALSE is chosen as the head literal
of HC and all other literals in C are negated and put in the clause body of HC. A clause
containing n literals corresponds to n+1 Horn-like clauses. These n+1 Horn-like clauses
are called contrapositives of each other. If two Horn-like clauses are contrapositives of
one another, they are equivalent if we always evaluate FALSE to F in any interpretation.

1.4.3. Modified Problem Reduction Format
The modified problem reduction format is a refutational inference system for first

order logic in clause form. To prove that a formula TH is valid (a theorem), we transform
the negation of the formula (¬TH) into a set of clauses TS. If TS is proven to be inconsis-
tent, the formula TH will be proven to be valid. The modified problem reduction format
accepts a set of clauses as its input and tries to prove the inconsistency of the set of
clauses. The input clauses need to be given as Horn-like clauses. For each clause C, only
one Horn-like clause HC will be needed. Specifically, the clause heads of the input
clauses must be a positive literal (for clauses containing positive literals) or FALSE (for
all-negative clauses). An input clause whose head is FALSE is called a goal clauses.

Definition. A goal or subgoal is an expression Γ → L, where L is a literal and Γ is a
list of literals. Γ is the assumption list of the goal Γ → L. A subgoal Γ → L denotes the
formula L1 /\ . . . /\ Ln ⊃ L if Γ = [L1 , . . . , Ln]. For simplicity, we say a subgoal Γ → L
denotes the formula Γ ⊃ L. We call the goal [] → FALSE the top-level goal ([] denotes
the empty list). We abbreviate the subgoal [] → L as → L. A goal transformation is an

- 9 -

expression Γ1 → L => Γ2 → L, where Γ2 is Γ1, possibly with some literals appended at
the front. For any list of literals Γ, |Γ| denotes the length of Γ.

The inference rules for the modified problem reduction format consist of the clause
rules, which are obtained from the input clauses, the assumption axioms and the case
analysis rule. For each Horn-like clause L : − L1, L2, . . . , Ln in a set of clauses S, we
have exactly one clause rule. We show the inference rules of the modified problem reduc-
tion format in Figure 1.1. The reader can refer to [Plaisted 88] for a complete discussion
of the inference system. We giv e the soundness theorem and the completeness theorem
without proofs.

Definition. Giv en a set of clauses S, we say the goal transformation GT = Δ1 → L
=> Δ2 → L is valid according to S, denoted by |—S GT, if and only if

Clause Rule for Horn-like Clause L : − L1, L2, . . . , Ln

[Γ0 → L1 => Γ1 → L1], [Γ1 → L2 => Γ2 → L2] , . . . , [Γn−1 → Ln => Γn → Ln]

Γ0 → L => Γn → L

Assumption Axioms

Γ → L => Γ → L if L ∈ Γ L is a literal.

Γ → ¬L => Γ , ¬L → ¬L L is a positive literal.

Case Analysis Rule

[Γ0 → L => Γ1, ¬M → L], [Γ1 , M → L => Γ1 , M → L] |Γ0| ≤ |Γ1|

Γ0 → L => Γ1 → L

Figure 1.1: Inference Rules for Modified Problem Reduction Format

- 10 -

1. Δ1 = Δ2 and L ∈ Δ1; or

2. L is a negative literal and Δ2 = Δ1, L ; or

3. Δ1 = Δ2 and L is an instance of a unit clause in S; or

4. There is an instance of a Horn-like clause in S, L : − L1, L2 , . . . , Ln, and a sequence
of goal transformations GT1, GT2 , . . . , GTn, such that for each GTi =
Γi−1 → Li => Γi → Li (i = 1, 2 , . . . , n), GTi is valid according to S (|—S GTi), and
Γ0 = Δ1 and Γn = Δ2; or

5. There is a positive literal M such that two goal transformations, GT1 =
Δ1 → L => Δ2, ¬M → L and GT2 = Δ2, M → L => Δ2, M → L, such that |—S GT1

and |—S GT2.

Theorem 1.1 (Soundness Theorem. [Plaisted 88]): If |—SΓ1 → L => Γ2 → L, then list Γ1

is a prefix of list Γ2 and S | == Γ2 ⊃ L.

Theorem 1.2 (Completeness Theorem. [Plaisted 88]): If a set of clauses S is unsatisfi-
able, then |—S → FALSE => → FALSE.

The idea of the modified problem reduction format is as follows. Suppose Γ → M is
a goal. We attempt to prove this goal, detecting when subgoals of the form ¬L (negative
subgoals) occur. When a negative subgoal ¬L is encountered, we assume temporarily that
L is false, so ¬L is true and the subgoal ¬L succeeds. We indicate that we assumed ¬L is
true by adding ¬L to the assumption list Γ (see the second assumption axiom in Figure
1.1). Later, we need also to consider the case in which L is true, by adding L to the
assumption list Γ and using the case analysis rule.

We will give a simple example to illustrate what a proof would look like and how
the proof would proceed. Consider the inconsistent clause set

{¬P \/ ¬Q, ¬P \/ Q, ¬Q \/ P, P \/ Q}.

They are converted into the Horn-like clauses in Figure 1.2. All the inference rules for
this problem are shown in Figure 1.3. One proof is shown in Figure 1.4. The labels in the
parenthesis in Figure 1.4 indicate which rules are used to carry out the valid goal transfor-
mation. For example,

(A2) → ¬ Q => ¬ Q → ¬ Q

means that the assumption axiom A2 is used to solve →¬ Q to obtain the solution
¬Q→¬Q.

In the proof of Figure 1.4, the subgoals of a goal appears immediately on top of the
goal. As a result, the proof should be read from bottom to top. The chronology of the
proof in Figure 1.4 is as follows. First → FALSE (which is equivalent to [] → FALSE) is
the goal. This creates → P as one of the two subgoals (using clause rule R1), which

- 11 -

creates → ¬Q as a subgoal (using clause rule R4). → ¬Q is solved by adding an assump-
tion to the assumption list (using assumption axiom A2). So the solution to → ¬Q is ¬Q
→ ¬Q. This leads to the solution ¬Q → P to the subgoal → P. This leads to the second
subgoals ¬Q → Q of → FALSE. To solve ¬Q → Q, subgoal ¬Q → P is created (using
rule R2), which in turn creates subgoal ¬Q → ¬Q. ¬Q → ¬Q is solved by the first
assumption axiom (A1). As a result, ¬Q → P is the solution to subgoal ¬Q → P and ¬Q
→ Q is the solution to subgoal ¬Q → Q. This leads to the solution ¬Q → FALSE to the
top-level goal → FALSE. We then apply a case analysis rule (S), creating a subgoal Q →
FALSE. From subgoal Q → FALSE, one of two subgoals Q → P (using clause rule R1) is
created. Q → P is proven using clause R3 and assumption axiom A1. The second subgoal
Q → Q to the subgoal Q → FALSE is created and proven using assumption axiom A1.
From the two solutions ¬Q → FALSE and Q → FALSE, we conclude → FALSE.

The modified problem reduction format is a back chaining inference system. It starts
with the conclusion it wants to establish. In this case, it starts with the top-level goal []
→ FALSE (or → FALSE) (this is to establish the inconsistency of the input clause set).
To establish a goal, it generates a set of subgoals using either clause rules or the case
analysis rule; the goal will become the parent goal of the subgoals; if the set of subgoals
are proven, the goal itself will be proven. In general, a goal or subgoal may have sev eral
ancestor goals. This style of back chaining is the same as the back chaining of Prolog.
Since the modified problem reduction format also handles non-Horn clauses, it can be
regarded as an extension of Prolog-style Horn clause logic programming [Lloyd 84] to

false : − P, Q.
Q : − P.
P : − Q.
P : − ¬Q.

Figure 1.2: Horn-like Clauses for Clause Set {¬P \/ ¬Q, ¬P \/ Q, ¬Q \/ P, P \/ Q}

- 12 -

R1:
[Γ0 → P => Γ1 → P], [Γ1 → Q => Γ2 → Q]

Γ0 → false => Γ2 → false
(false : − P, Q.)

R2:
Γ0 → P => Γ1 → P

Γ0 → Q => Γ1 → Q
(Q : − P)

R3:
Γ0 → Q => Γ1 → Q

Γ0 → P => Γ1 → P
(P : − Q)

R4:
Γ0 → ¬Q => Γ1 → ¬Q

Γ0 → P => Γ1 → P
(P : − ¬Q)

A1: Γ → L => Γ → L if L ∈ Γ L is a literal

A2: Γ → ¬L => Γ , ¬L → ¬L L is positive

S:
[Γ0 → L => Γ1, ¬M → L], [Γ1 , M → L => Γ1 , M → L] |Γ0| ≤ |Γ1|

Γ0 → L => Γ1 → L

Figure 1.3: Inference Rules for the Example of Figure 1.2

(A1) ¬ Q → ¬ Q => ¬ Q → ¬ Q

(A2) →¬ Q =>¬ Q→¬ Q (R3) ¬ Q→P=>¬ Q→P (A1) Q→Q => Q→Q

(R4) →P=> ¬ Q→P (R2) ¬ Q→Q=>¬ Q→Q (R3) Q→P=>Q→P (A1) Q→Q=>Q→Q

(R1) →FALSE => ¬ Q → FALSE (R1) Q → FALSE => Q → FALSE

(S) → FALSE => → FALSE

Figure 1.4: A Proof for the Example of Figure 1.2

full first order logic. As a matter of fact, the modified problem reduction format without
the assumption axioms and case analysis rule is complete for Horn clause logic. As we
have noted, modified problem reduction does not need contrapositives and handles non-

- 13 -

Horn clauses using case analysis.

There are other extensions [Loveland 87, Stickel 88] of Prolog-style Horn clause
logic programming to full first order logic. One of the earliest is model elimination
[Loveland 69]. This method is very similar to Prolog but has an extra inference rule,
called basic reduction, which tests whether a subgoal (a literal in this case) is comple-
mentary to one of its ancestor goals. Model elimination has been efficiently implemented
by Stickel on a Symbolics [Stickel 88]. Stickel’s implementation has achieved about
2,000 LIPs. This method has also been implemented by a group at CMU on a multipro-
cessor using or-parallel Prolog technology [Bose&al 88]. Another extension is
Loveland’s near-Horn Prolog [Loveland 87, Loveland 88] which is an extension of Prolog
to "near-Horn" clauses but may be applied to more general clause sets as well. Informally,
"near-Horn" refers to a clause set that does not contain many non-Horn clauses and those
non-Horn clauses do not contain very many extra positive literals. One disadvantage of
model elimination is its use of all the contrapositives of the clauses, since contrapositives
may incur loss of control over the search. Loveland’s near-Horn Prolog does not need
contrapositives, nor does the modified problem reduction format.

1.5. Search Strategies
All theorem provers involves search, a systematic trial-and-error exploration of

alternatives, except where the problem domain is limited and a special decision procedure
is available. Search takes place in a problem space. A problem space consists of a set of

states1 of the problem and a set of operators that change the state of the problem. A prob-
lem instance is a problem space together with an initial state and some goal states. The
search problem is to find a sequence of operators that map the initial state to a goal state.
Such a sequence is called a solution to the problem.

There are many formalizations of the search problem [Nilsson 80, Vander-
Brug&Minker 75] and these formalizations can usually be transformed into one another.
We will formalize the search problem as a path-finding problem in a graph following
[Nilsson 80]. In this formalization, problem spaces are represented by graphs in which
the states of the space are represented by nodes, and the operators by arcs between nodes.
Solutions to the problems are represented by paths between nodes. We will first intro-
duce some graph theory terminology [Nilsson 80]. Then we will briefly describe some

1A state may represent a goal, a clause, a problem, etc, depending on the context. In this thesis, the
term state usually represents goals or subgoals.

- 14 -

search strategies [Pearl&Korf 87].

A directed graph consists of a countable set of nodes and a set of pairs of nodes
called arcs. The arc <s1, s2> is said to be directed from node s1 to node s2, node s2 is
called a successor of node s1, and node s1 is called a parent of node s2. We are only inter-
ested in the graphs in which each node can have only a finite number of successors.

A sequence of nodes (s0, s1, s2 , . . . , sn), with each node si a successor of si−1 for i =
1, 2, . . ., n, is called a path of length n from node s0 to node sn. If a path exists from node
s1 to node s2, then node s2 is called accessible from node s1. State s2 is a descendant of
node s1, and node s1 is an ancestor of node s2. A cycle is a path of length greater than 1
from a node to itself. A graph is acyclic if it has no cycles; otherwise it is cyclic.

Often it is convenient to assign positive costs to arcs. We use the notation c(s1, s2) to
denote the cost of an arc directed from node s1 to node s2. The cost of a path between two
nodes is the sum of the costs of all the arcs connecting the nodes on the path. In some
problems, we want to find that path having minimal cost between two nodes.

A tree is a special case of an acyclic graph in which each node has at most one par-
ent. A node in the tree having no parent is called a root node. There may be more than
one root nodes in a tree. A node in the tree having no successors is called a leaf. We say
the root node is of depth zero. The depth of any other node in the tree is defined to be the
depth of its parent plus 1. We define the node branching factor of a node to be the num-
ber of successors of the node.

A graph may be specified either explicitly or implicitly. In an explicit specification,
the nodes and arcs (with associated costs) are explicitly given by a table. The table might
list every node in the graph, its successors, and the costs of the associated arcs. Explicit
specification is obviously not practical for large graphs and impossible for those having
an infinite set of nodes.

A search strategy generates (makes explicit) part of an implicitly specified graph.
This implicit specification is given by the initial node, s0, and a successor operator that is
applied to a node to give all of the successors of that node (and the costs of the associated
arcs). We call this process of applying the successor operator to a node, expanding the
node. Expanding s0, the successors of s0, ad infinitum, makes explicit the graph that is
implicitly defined by s0 and the successor operator.

Simply stated, the path-finding problem is to find a path (perhaps having minimal
cost) between a given node s0 (the initial node) and any member of a set of nodes (final
nodes). A path between the initial node and a final node is called a solution and the length
(cost) of the path is the length (cost) of the solution. For our discussion, we will assume
that all the graphs are trees with the root node representing the initial state, leaves

- 15 -

representing the goal states, and each node in the tree having the same node branching
factor. We call such graphs search trees. In a search tree, each node has a unique depth.

Breadth-First Search. Breadth-first search generates the states of the search tree in
order of their depth. Breadth-first search never generates a deeper state in a tree until all
the shallower nodes have been generated. If the solution length is d and the state branch-
ing factor is b, the average time complexity of breadth-first search is O(bd), assuming that
the successor operator takes constant time for all nodes. Since all states at each level of
the search tree must be saved in order to generate the next level, and the amount of mem-
ory is proportional to the number of states stored, the average space complexity of
breadth-first search is also O(bd). As a result, breadth-first search is severely space-
limited in practice, which is its main drawback.

Best-First Search and A* Search. Best-first search is one of the simplest and most
general search strategies. Best-first search always expands the state that is most promis-
ing according to some priority function, or evaluation function. Breadth-first search is a
special case of best-first search where we always select the state with the smallest depth,
for example. Best-first search maintains two data structures, the Open and Closed lists.
The Closed list contains those states already visited in the search, and disallows revisiting
old nodes, thereby preventing infinite loops. The Open list contains the currently active
states, in order of their priority values, from which the next state to expand is selected.
The search strategy begins with just the root state. At each cycle, the best node on the
Open list is expanded, generating all its successors, and is then placed on the Closed list.
After eliminating those successors already on the Closed list, the priority function is
applied to the remaining successors, and they are placed on the Open list in order of their
priority values. The search terminates when a final state is selected from Open list for
expansion. A* search [Hart&al 68, Nilsson 80] is a special case of best-first search. A
heuristic function, is used to order the states in the Open list. The heuristic value of a state
s is of the form g(s)+h(s), where g(s) is the cost so far in reaching the state s from the ini-
tial state and h(s) is the heuristic estimate of the cost remaining to reach a goal state for
the state s. At each point, the state with the lowest heuristic value is chosen for expansion.
An important result is that A* search always finds an optimal (cheapest) path to a final
state if the heuristic function h(s) never overestimates the actual cost from any state s to a
goal state [Hart&al 68].

The main drawback of A* search, and indeed of any best-first search, including
breadth-first search, is its memory requirement [Huyn 80]. Since the entire Open list
must be saved, A* search is severely space-limited in practice and is no more practical
than breadth-first search on current machines. This limitation is removed by the iterative-
deepening-A* search.

- 16 -

Many resolution-based theorem provers employ some kind of best-first search strat-
egy [Greenbaum 86, Overbeek&al 76, Wang&Bledsoe 87]. The priority functions usually
measure the "syntactic complexity" of the states (recall that states can represent goals,
clauses, etc, depending on the problem). A simple example of the measurement of the
complexity would be the number of symbols in the clauses. Much more sophisticated
measurements of complexity have been studied in [Overbeek&al 76, Wang&Bledsoe 87].
These priority functions are largely ad hoc, but they are absolutely essential for the suc-
cess of these theorem provers.

Depth-First Search. Depth-first search expands the states in a last-in, first-out
order. It can be seen as a special case of best-first search where the state to be expanded is
always the state with the biggest depth. Since depth-first search stores only the current
search path, it does not suffer from the disadvantage of requiring too much memory. In
practice, depth-first search is time-limited rather than space-limited. But depth-first search
has one problem − it may not be complete, i.e., it may fail to find any solution even if one
exists. This limitation is overcome by depth-first iterative deepening search.

Depth-First Iterative Deepening. To remedy the incompleteness of depth-first
search, a new search strategy, depth-first iterative deepening (henceforth DFID), has been
formalized [Korf 85, Stickel&Tyson 85]. This strategy involves repeatedly performing
exhaustive depth-first search with increasing cut-off bounds. Depth-first iterative deepen-
ing search approximates breadth-first search in depth-first fashion. It does not suffer nei-
ther the drawbacks of breadth-first or depth-first search. Since at any giv en point DFID is
executing a depth-first search, the space complexity of DFID is only O(d) where d is the
length of the solution. The asymptotic time complexity of DFID is O(bd).

Iterative-Deepening-A*. To approximate A* search in depth-first fashion, iterative-
deepening-A* (IDA*) is proposed in [Korf 85]. Each iteration of IDA* is a complete
depth-first search that keeps track of the cost f(n) = g(n) + h(n) of each node generated.
As soon as this cost exceeds the cut-off bound, that branch is cut off, and the search back-
tracks to the most recently generated state. The cut-off bound starts with the heuristic
estimate of the initial state and in each successive iteration is increased to the minimum
value that exceeded the previous cut-off bound. In the same way that depth-first iterative-
deepening reduced the space complexity of breadth-first search, IDA* drastically reduces
the memory requirement of A* search without sacrificing optimality of the solution found
[Korf 85]. The memory requirement of IDA* is linear in the solution length.

- 17 -

2. Depth-first Iterative Deepening Search

In this chapter, we will show how depth-first iterative deepening search (henceforth
DFID) is used to implement the modified problem reduction format. We will also discuss
how caching is done with depth-first iterative deepening search and discuss how to deal
with repeated solutions when caching is performed.

2.1. Depth-first Iterative Deepening Search
DFID has been the subject of some study recently [Korf 85, Stickel&Tyson 85].

This strategy involves repeatedly performing depth-first search with increasing cut-off
bounds. Although this search strategy may appear to be naive and costly, analysis shows

that depth-first iterative deepening search requires only
b

b − 1
times as many operations as

breadth-first search, where b is the branching factor [Stickel&Tyson 85] of the search
tree. An important advantage of this search strategy is that it requires minimal storage
(linear to the solution length) to operate.

In this section, we show how the modified problem reduction format is implemented
using DFID. We emphasize the fact that it is a simplified discussion. We will leave out
discussions on how to detect loops in the search paths, how to simplify subgoals, how to
control splitting, how to alternate between forward chaining and backward chaining, etc.
The term rewriting facility to handle equality is not discussed either. For details see
[Plaisted 88, Smith&Plaisted 88].

The implementation uses a Prolog clause to represent each inference rule. These
Prolog clauses encode the information about the proof structures as well as information
about the search control. We use not(L) to represent a negative literal ¬L and L : − Γ to
represent the subgoal Γ → L. If A is a literal and B is a list of literals, [A | B] represents

- 18 -

the list obtained by attaching A at the front of B. The Prolog representations for all infer-
ence rules are shown in Figure 2.1. The code to implement depth-first iterative deepening
search is shown in Figure 2.2.

The procedure achieve in the representation performs depth-first search with cut-off
bound specified in one of its arguments. In a procedure call achieve((L : − Γ1),(L : − Γ2),
Start, End, Bound), Bound specifies the cut-off bound, Start indicates how much of the
cut-off bound Bound has been used and End will be the sum of Start and the cost of solv-
ing L : − Γ1 to obtain L : − Γ2. Consequently, the difference between End and Start (End
— Start) will be the cost of solving L : − Γ1 to obtain L : − Γ2. The iterative deepening
behavior is controlled in the procedure search where, in case the current round of depth-
first search fails, the procedure increment is called to increase the current search bound
and achieve will be called with the increased search bound. The basic function of the pro-
cedure match is to perform the unification operations. The procedure clause_cost esti-
mates the cost of an input clause, that is, how much the search bound will be decremented
when using the input clause. For example, the cost of an input clause can be the number
of literals in the clause body. The procedure match_cost estimates the cost of a unification
operation, which is, similar to the cost of an input clause, how much is decremented as
the result of the unification operation. Both clause_cost and match_cost can be defined
by the user arbitrarily. See Chapter 6 for more discussions on this. The multiplier
breadth_factor is used to balance the search. If breadth_factor is 0, the search is depth-
first, but if breadth_factor is greater than 0, then the search will have a breadth-first com-
ponent, since the cost of solving one subgoal will affect the search for solving its con-
junctive subgoals.

We note two special cases, which we call the size prover and the depth prover. In the
size prover, the procedure clause_cost returns the number of the literals in the clause
body, match only performs the unification operation and match_cost returns 0. We set
breadth_factor to 1. We call the provers using this setup the size prover, because we use
the size of the proof trees to control the search. We note that the search in the size prover
has a heavy breadth-first component since breadth_factor is set to 1. We show the Prolog
representation for the inference rules of the size prover in Figure 2.3. The representations
for the assumption axioms are the same as in Figure 2.1. For example, for the Horn-like
clause FALSE : − P, Q, the corresponding Prolog clause will be as in Figure 2.4. Intu-
itively, the size prover uses the number of arcs or nodes in the proof tree constructed so
far to control the search. In the depth prover, we set breadth_factor to 0. The depth
provers use mainly the recursion level of subgoal generations, which is the depth of the

- 19 -

% Representation for input clause L : − L1, L2 , . . . , Ln.
achieve((L0 : − Γ0),(L0 : − Γn), Start, End, Bound): −

match(L0, L, [L1, L2 , . . . , Ln], V, [V1, V2 , . . . , Vn]),
E0 is Start + clause_cost(L : − L1, L2 , . . . , Ln) + match_cost(L0, V),
E0 ≤ Bound,
F1 is E0 + match_cost(L1, V1),
achieve((L1 : − Γ0),(L1 : − Γ1), F1, E1 ,Bound),
F2 is E0 + match_cost(L2, V2) + breadth_factor × (E1 − F1)
achieve((L2 : − Γ1),(L2 : − Γ2), F2, E2 ,Bound),
. . .

Fi is E0 + match_cost(Li, Vi) + breadth_factor × (Ei−1 − Fi−1),
achieve((Li : − Γi−1),(Li : − Γi), Fi, Ei ,Bound),
. . .

Fn is E0 + match_cost(Ln, Vn) + breadth_factor × (En−1 − Fn−1),
achieve((Ln : − Γn−1),(Ln : − Γn), Fn, En, Bound),
End is max{E1, E2 , . . . , En}.

% Representation for a unit clause L:
achieve((L0 : − Γ), (L0 : − Γ), S, End, Bound) : −

match(L0, L, [], V, []), S + match_cost(L, V) ≤ bound,
End is S + match_cost(L, V).

% Representations for the assumption axioms:
achieve((L : − Γ), (L : − Γ), S, S, Bound) : − member(L, Γ).
achieve((¬L : − Γ), (¬L : − [¬|Γ]), S, S, Bound).

% Representation for the case analysis rule:
achieve((L : − Γ0), (L : − Γ), Start, End, Bound) : −

achieve((L : − Γ0),((L : −[not(M)| Γ]), Start, E1, Bound),
F1 is Start + breadth_factor × (E1 − Start),
achieve((L : −[M | Γ]), (L : −[M | Γ]), F1, E2, Bound),
length(Γ0) ≤ length(Γ), End is max{E1, E2}.

Figure 2.1: Representations for Inference Rules

- 20 -

search(S, Limit) : − S > Limit, !, fail.
search(S, Limit) : − achieve((false :- []), (false :- []), 0, Cost, S).
search(S, Limit) : − S1 is S + increment(S), search(S1,Limit).

Figure 2.2: Depth-first Iterative Deepening Search

proof tree constructed so far, to control the search. We show the representation of the
inference rules in the depth prover in Figure 2.5. Consider again the clause FALSE : − P,
Q. The Prolog clause for it is shown in Figure 2.6.

% Representation for input clause L : − L1, L2 , . . . , Ln:
achieve((L : − Γ0),(L : − Γn), Start, End, Bound): −

E0 is Start + clause_cost(L : − L1, L2 , . . . , Ln),
E0 ≤ Bound,
achieve((L1 : − Γ0),(L1 : − Γ1), E0, E1 ,Bound),
achieve((L2 : − Γ1),(L2 : − Γ2), E1, E2 ,Bound),
. . .

achieve((Li : − Γi−1),(Li : − Γi), Ei−1, Ei ,Bound),
. . .

achieve((Ln : − Γn−1),(Ln : − Γn), En−1, End, Bound).

% Representation for splitting rule:
achieve((L : − Γ0), (L : − Γ), Start, End, Bound) : −

achieve((L : − Γ0),((L : −[not(M) | Γ]), Start, E1, Bound),
achieve((L : − [M | Γ]), (L : − [M | Γ]), E1, End, Bound),
length(Γ0) ≤ length(Γ).

Figure 2.3: The Size Prover

- 21 -

achieve((FALSE : − Γ0),(FALSE : − Γ2), Start, End, Bound): −
E0 is Start + clause_cost(FALSE : − P, Q),
E0 ≤ Bound,
achieve((P : − Γ0),(P : − Γ1), E0, E1, Bound),
achieve((Q : − Γ1),(Q : − Γ2), E1, End ,Bound).

Figure 2.4: Clause Rule Representation in Size Prover

2.2. Caching
As we have said, DFID involves repeatedly performing depth-first search with

increasing cut-off bounds [Stickel&Tyson 85]. A subgoal could be solved many times
and, consequently, repeated work would be performed. The purpose of caching is to avoid
repeated work by solving each subgoal only once. To implement caching, we should
record which subgoals have been attempted and all the solutions that are derived for all
the subgoals, which can be used later to solve other subgoals. Let’s explain caching in
more detail.

2.2.1. How Caching is Done
Suppose G is a subgoal. If a call achieve(G, S, Start, End, Bound) (see Figure 2.1)

returns, the returned subgoal S is a solution to the subgoal G within the effort bound
Bound − Start. All the solutions to the subgoal G within the effort bound D (= Bound −
Start) will be derived if achieve(G, S, Start, End, Bound) is executed until it fails. A done
clause done(D, G) indicates that the subgoal G has been worked on and all solutions for
G hav e been derived with the effort bound D. When a subgoal L : − Γ is to be attempted
with an effort bound D, that is, achieve(L : − Γ, S, Start, End, Bound) is called with D
being equal to Bound − Start, the prover first checks to see whether there is any solution
which could be used to solve L : − Γ, that is, whether there is a solution L1 : − Γ1 that is
cached earlier, that L unifies with L1 and the cost of using L1 : − Γ1 (see below) is no
greater than D. If all the solutions for L : − Γ fail to lead to a proof, the prover is about to
solve L : − Γ using the input clauses. However, before it proceeds the prover checks
whether there is a done clause done(D1 , (L1 : − Γ1)) such that D1 is greater or equal to D
and L : − Γ is an instance or a variant of L1 : − Γ1. If there is such a done clause, the
prover does not need to work on L : − Γ at all since all the possible solutions for it have
been generated already when the subgoal L1 : − Γ1 was tried with effort bound D1. If

- 22 -

% Representation for input clause L : − L1, L2 , . . . , Ln:
achieve((L0 : − Γ0),(L0 : − Γn), Start, End, Bound): −

match(L0, L, [L1, L2 , . . . , Ln], V, [V1, V2 , . . . , Vn]),
E0 is Start + clause_cost(L : − L1, L2 , . . . , Ln) + match_cost(L0, V),
E0 ≤ Bound,
F1 is E0 + match_cost(L1, V1),
achieve((L1 : − Γ0),(L1 : − Γ1), F1, E1 ,Bound),
F2 is E0 + match_cost(L2, V2),
achieve((L2 : − Γ1),(L2 : − Γ2), F2, E2 ,Bound),
. . .

Fi is E0 + match_cost(Li, Vi),
achieve((Li : − Γi−1),(Li : − Γi), Fi, Ei ,Bound),
. . .

Fn is E0 + match_cost(Ln, Vn),
achieve((Ln : − Γn−1),(Ln : − Γn), Fn, En, Bound),
End is max{E1, E2 , . . . , En}.

% Representation for the splitting rule:
achieve((L : − Γ0), (L : − Γ), Start, End, Bound) : −

achieve((L : − Γ0),((L : −[not(M) | Γ]), Start, E1, Bound),
achieve((L : −[M | Γ]), (L : − [M | Γ]), Start, E2, Bound),
length(Γ0) ≤ length(Γ),
End is max{E1, E2}.

Figure 2.5: The Depth Prover

- 23 -

achieve((FALSE : − Γ0),(FALSE : − Γ2), Start, End, Bound): −
match(L, FALSE, [P,Q], V, [V1, V2]),
E0 is Start + clause_cost(FALSE : − P, Q) + match_cost(FALSE, V),
E0 ≤ Bound,
F1 is E0 + match_cost(P, V1),
achieve((P : − Γ0),(P : − Γ1), F1, E1 ,Bound),
F2 is E0 + match_cost(Q, V2),
achieve((Q : − Γ1),(Q : − Γ2), F2, E2 ,Bound),
End is max{E1, E2}.

Figure 2.6: Clause Rule Representation in Depth Prover

there is no such done clause, a done clause done(D, (L : − Γ)) will be asserted to indicate
that subgoal L : − Γ has been worked on or is being worked on with effort bound D. Then
the prover will proceed to solve L : − Γ, by continuing executing achieve(L : − Γ, S, Start,
End, Bound). Each solution to L : − Γ will be cached together with the effort of deriving
the solution (End − Start) and the number of input clauses are used to derive the solution.

We show the part of Prolog code for implementing depth-first iterative deepening
search with caching in Figure 2.7, in addition to the Prolog code for input clauses. Four
procedures, record_solution, use_solution, record_done and already_done, implement the
caching by asserting the appropriate Prolog clauses. The procedure solution_cost deter-
mines the cost of using a solution. The cost of a solution L : − Γ is

(S × solution_size_mult) + (P × proof_size_mult) + (C × clause_count_mult)

where S is the size of the solution (usually the number of symbols in the solution), P is
the effort incurred in deriving this solution and C is the number of the input clauses used
to derive this solution. All three multipliers in the formula can be set by the user.

2.2.2. Repeated Solutions
When caching is performed, all the solutions to the subgoals are recorded. It is pos-

sible that a newly derived solution is a repetition of a solution already cached. We call
such solution a repeated solution. Formally speaking, a newly derived solution S (L : − B)
for a subgoal G is a repeated solution if there is already a solution S1 (L1 : − B1) cached
such that

- 24 -

% Use recorded solutions:
achieve((L : − Γ), (L : − Γ1), Start, End, Bound) : −

use_solution((L1 : − Γ1)),
match(L, L1, [], V, []),
E1 is Start + solution_cost((L : − Γ1)),
E2 is Start + match_cost(L, V),
End is max{E1, E2}, End ≤ Bound.

% Check whether the subgoal has been worked on before:
achieve((L : − Γ), (L : − Γ1), Start, End, Bound) : −

E is Bound − Start,
already_done(E, (L : − Γ)), !, fail.

% Assert the the necessary done clause:
achieve((L : − Γ), (L : − Γ1), Start, End, Bound) : −

E is Bound − Start,
record_done(E, (L : − Γ)), fail.

% To solve a subgoal using the input clauses and
% record all the solutions generated:

achieve((L : − Γ0), (L : − Γ), Start, End, Bound) : −
achieve((L : − Γ0),((L : −[not(M) | Γ), Start, E1, Bound),
F1 is Start + breadth_factor × E1,
achieve((L : −[M | Γ]), (L : − [M | Γ]), F1, E2, Bound),
length(Γ0) ≤ length(Γ),
End is max{E1, E2}, E is End − Start,
record_solution(E, (L : − Γ)).

Figure 2.7: Depth-first Iterative Deepening Search with Caching

1. L is an instance or variant of L1; and

2. Each literal in B is subsumed by a literal in B1; and

3. The effort of deriving S is no bigger than that of S1; and

- 25 -

4.1. S and S1 are solutions to the same subgoal G; or

4.2. S1 is derived before subgoal G is generated.

To detect whether a solution S is a repeated solution, we need to store, with each
solution S, the identification of the subgoal for which S is a solution and the time S is
generated, in addition to the effort of deriving S. For this purpose, we keep a counter
which serves both as identification and time stamp for subgoals. Each newly generated
subgoal will have the current value of the counter as its identification and the counter will
be incremented by 1 whenever a new subgoal is generated. When a solution is derived,
the current value of the counter is used as the time stamp for this solution.

When a repeated solution is generated, the search should fail on the current path.
Otherwise the search will be repeated, because the subgoal is solved before, either by
using the old solutions or the input clauses. The efficiency of the prover will suffer if
repeated solutions are not handled properly on some problems. This is not very important
for Horn problems because repeated searches will be prevented by caching. But caching
will not prevent some of the repeated search performed by doing case analysis, thus it is
specially important for non-Horn problems that search fail on repeated solutions.

2.2.3. Experimental Results
Table A.1 in Appendix A shows the performance results of the theorem prover on

the test problems both with caching and without caching. The results are summarized in
Table 2.1. The theorem prover gets proofs for 83 of the 95 problems while caching. The
same prover without caching only gets 77. Note that the performance of the prover with-
out caching degenerates rather quickly, especially for non-Horn problems.

Our experience shows that caching usually helps from our experience. It makes the
theorem prover more reliable to use caching, in spite of the fact that the inference rate (an
inference is performed when an input clause is used or an old solution is used in the

Table 2.1. Summary Data for Caching

Prover with Caching Prover without Caching

Av erage Time
Per Theorem

224.30 491.41

Av erage Inferences
Per Theorem

1245 129196

- 26 -

prover) is much lower when caching is performed. Of course, caching can take a lot of
memory [Plaisted 88].

We hav e tested the theorem prover using different options dealing with repeated
solutions. In one case, the search fails on repeated solutions and, in another case, the
search does not fail on repeated solutions. We show the test results in Table A.2 in
Appendix A. For most problems, there is little difference between using each of the two
options. The prover with the option of failing on repeated solutions performs marginally
better. Howev er, for some problems (ls108, fex4t1, schubert, wos31), the improvements
when failing on repeated solutions are significant. We note that all of the four problems
are non-Horn problems. This indicates that the repeated search effort from doing case
analysis is rather significant.

2.3. An Example
We giv e an example to illustrate the process of finding proofs. Consider the exam-

ple in Figure 1.2

FALSE : − P, Q.
Q : − P.
P : − Q.
P : − ¬Q.

We giv e the complete trace for this problem. Attempt(D, id(I), (L : − Γ)) means subgoal
L : − Γ is attempted with effort bound D and identifier I. Done(D, id(I), (L : − Γ)) is the
done clause for subgoal L : − Γ with cost D. Newly_solved(D, id(I), (L : − Γ)) means a
solution L : − Γ has been generated within effort bound D and the solution is saved.
Already_seen(D, id(I), (L : − Γ)) means that the subgoal L : − Γ or a more general subgoal
has been attempted with effort bound D, or greater, and we need not to work on L : − Γ
any more. Given this explanation, it is not difficult to follow the trace and understand how
caching is performed. For example, the subgoal q : − [] with id(11) will not be attempted
with effort bound 4 since the same subgoal with id(7) has been worked on with effort
bound 4.

(false:-p,q)

(p:-q)

(q:-p)

(p:- not q)

solution_size_mult(0.1) is asserted

proof_size_mult(0.3) is asserted

- 27 -

clause_count_mult(0.3) is asserted

search at size 5

attempt(5,id(1),(false:-[]))

attempt(3,id(2),(p:-[]))

attempt(2,id(3),(q:-[]))

done(2,id(3),(q:-[]))

attempt(2,id(4),(not q:-[]))

done(2,id(4),(not q:-[]))

done(3,id(2),(p:-[]))

done(5,id(1),(false:-[]))

search at size 7

attempt(7,id(5),(false:-[]))

attempt(5,id(6),(p:-[]))

attempt(4,id(7),(q:-[]))

done(4,id(7),(q:-[]))

attempt(4,id(8),(not q:-[]))

assumption(id(8),(not q:-[not q]))

attempt_splits(5,id(6),(p:-[not q]))

attempt(4,id(9),(p:-[q]))

attempt(3,id(10),(q:-[q]))

already_solved(id(10),(q:-[q]))

newly_solved(1,id(9),(p:-[q]))

newly_solved(1,id(6),(p:-[]))

attempt(4,id(11),(q:-[]))

already_seen(4,id(11),(q:-[]))

fail((not q:-[q]))

done(4,id(9),(p:-[q]))

repeated_solution(1,id(6),(p:-[not q]))

attempt(4,id(12),(q:-[]))

already_seen(4,id(12),(q:-[]))

done(4,id(8),(not q:-[]))

- 28 -

done(5,id(6),(p:-[]))

done(7,id(5),(false:-[]))

retracting(solution(1,(p:-[q])))

search at size 9

attempt(9,id(13),(false:-[]))

attempt(7,id(14),(p:-[]))

already_solved(id(14),(p:-[]))

attempt(7,id(15),(q:-[]))

attempt(6,id(16),(p:-[]))

already_solved(id(16),(p:-[]))

newly_solved(1,id(15),(q:-[]))

newly_solved(3,id(13),(false:-[]))

proof found

- 29 -

3. Goal Generalization

In this chapter, we present Goal Generalization, a special case of Explanation-Based
Generalization (EBG) which is a recent development in the field of machine learning.
Goal generalization, which tries to find a proof for the most general solvable version of a
specific goal while solving the specific goal, is an application of EBG methods in auto-
matic theorem proving and is applicable to many goal-oriented theorem proving systems.
We will describe Goal Generalization as an augmentation to the modified problem reduc-
tion format. Some experimental results are also given.

3.1. Motivation
A situation may arise that, during backward chaining, a goal to be solved is very

specific and a proof for a more general version of the goal exists and has the same struc-
ture as the proof for the specific goal. Consider the example in Figure 3.1. The top-level
goal is r(a). Obviously a proof exists for a more general goal r(X). It is beneficial to find
the proof for the most general solvable version of a goal while the goal is being solved,
especially when caching is performed. For the example in Figure 3.1, a goal r(b) will be
declared as solved if r(X) instead of r(a) is solved and cached. Repeated work is avoided.

To accomplish the task of finding proofs for the most general solvable version of a
goal while solving the goal, we need some generalization capability in the theorem
prover. In this chapter, we will discuss our research to add one such generalization capa-
bility to the theorem prover. We will call our approach goal generalization. The basic
idea is to augment the theorem proving system so that, when a goal G is attempted, two
versions of G will be maintained. One of them is G itself, called the specific goal, and the
other GG, called general goal, is the most general solvable version of the specific goal G

- 30 -

false : − r(a).
r(X) : − not s(X).
r(X) : − p(X), q(X), s(X).
p(X).
q(X).

Figure 3.1: An Example for Goal Generalization

(see Theorem 3.1). The general goal is at least as general as the specific goal. The gen-
eral goal is constructed (along with its proof) as the specific goal is solved. When the spe-
cific goal is solved, the general goal will have been constructed and it can be instantiated
to the specific goal.

3.2. Goal Generalization
This section shows how goal generalization is implemented. We will give a simpli-

fied representation of the inference rules to simplify our discussion. The inference rules
will be represented as shown in Figure 3.2. A careful reader will notice that the represen-
tation in Figure 3.2 is indeed a simplified version of the representation in Figure 2.1. The
L0 in the representation of the clause rules in Figure 3.2 is a logical variable in Prolog.
The procedure unify performs the unification operation. The procedure member is
defined in Figure 3.3. We specify the unification operations explicitly so that we can
explain an important optimization later.

If a call achieve((L : − B0), (L : − B1)) succeeds, the goal L : − B1 has a proof. It is
possible that a more general goal LG : − BG1 has a proof with the same structure as that
for L : − B1. The more general goal LG : − BG1 is a generalization in the sense that all
goals that can be obtained from LG : − BG1 by a substitution have proofs of the same
structure. Goal generalization tries to find the most general solvable version LG : − BG
of a goal L : − B while solving L : − B. We achieve this by augmenting the Prolog repre-
sentation for the inference rules with extra arguments. Those extra arguments represent
the more general versions of their counterparts. To be specific, the procedure

achieve((L : − B0), (L : − B1))

- 31 -

% Representation for input clause L : − L1, L2 , . . . , Ln:
achieve((L0 : − B0), (L0 : − Bn)) : −

unify(L0, L),
achieve((L1 : − B0), (L1 : − B1)),
. . .

achieve((Li : − Bi−1), (Li : − Bi)),
. . .

achieve((Ln : − Bn−1), (Ln : − Bn)),

% Representation for a unit clause L:
achieve((L0 : − B), (L0 : − B)) : − unify(L0, L).

% Representation for the assumption axioms:
achieve((L : − B), (L : − B)) : − member(L, B).
achieve((not(L) : − B), (not(L) : − [not(L)|B])).

% Representation for the case analysis rule:
achieve((L : − B0), (L : − B1)) : −

achieve((L : − B0), (L : − [not(M)|B1])),
achieve((L : − [M|B1]), (L : − [M|B1])),
length(B0) ≤ length(B1).

Figure 3.2: Simplified Representation of Inference Rules

member(L, [X|Y]) : − unify(L, X).
member(L, [X|Y]) : − member(L, Y).

Figure 3.3: Member Predicate Definition

will be replaced by
achieve_GG((L : − B0), (L : − B1), (LG : − BG0), (LG : − BG1)),

- 32 -

where L : − B0 and L : − B1 are the goal to be solved and the goal solved, respectively, as
the two arguments in the procedure achieve in Figure 3.1 are, and LG : − BG0 and LG : −
BG1 are the more general versions of L : − B0 and L : − B1 respectively. The result is that
a proof for LG : − BG1 will be constructed which can be instantiated to be a proof for L
: − B1. The resulting representation for the clause rules will be as in Figure 3.4. The
resulting representation for the assumption axioms and case analysis rule are in Figure
3.5.

In Figure 3.4, L0 and LG0 are logical variables and make_var(Li, Vi) (i = 1, 2 , . . . ,
n) is such that Vi will be a distinct logical variable if Li is a positive literal, a term

% Representation for input clause L : − L1, L2 , . . . , Ln:
achieve_GG((L0 : − B0), (L0 : − Bn),(LG0 : − G0), (LG0 : − Gn)) : −

unify(L0, L),
variable_list(G0, VL0), make_var(LG1, V1),
achieve_GG((L1 : − B0), (L1 : − Bn),(V1 : − VL0), (V1 : − G1)),
unify(V1, LG1), unify(VL0, G0),
. . .

variable_list(Gi−1, VLi−1), make_var(LGi, Vi),
achieve_GG((Li : − Bi−1), (Li : − Bi),(Vi : − VLi−1), (Vi : − Gi)),
unify(Vi, LGi), unify(VLi−1, Gi−1),
. . .

variable_list(Gn−1, VLn−1), make_var(LGn, Vn),
achieve_GG((Ln : − Bn−1), (Ln : − Bn),(Vn : − VLn−1), (Vn : − Gn)),
unify(Vn, LGn), unify(VLn−1, Gn−1),
unify(LG0, LG).

% Representation for unit clause L:
achieve_GG((L0 : − B), (L0 : − B), (LG0 : − BG), (LG0 : − BG)) : −

unify(L0, L), unify(LG0, LG).

Figure 3.4: Augmented Clause Rule

- 33 -

not(Wi) with Wi being a variable if Li is a negative literal. LG : − LG1, LG2 , . . . , LGn (or
LG) is a copy of L : − L1, L2 , . . . , Ln (or L) (with new variables) made during the prepro-
cessing, that is, when the Prolog clause is generated. The procedure variable_list assem-
bles a list of distinct variables from a list of literals. For example, a list [X1, X2, X3] will
be returned by variable_list, giv en a list of three literals [L1, L2, L3].

Similarly, Figure 3.5 shows the corresponding Prolog clause representations for the
assumption axioms and the case analysis rule. The new, augmented procedure member is
defined in Figure 3.6.

We will use the example in Figure 3.1 to illustrate how goal generalization works.
Tw o proof trees will be constructed. We show the proof tree for the top-level goal
false : − [] in Figure 3.7. In Figure 3.8, we show the proof tree for the generalized goal.

% Representation for assumption axioms:
achieve_GG((L : − B), (L : − B), (LG : − BG), (LG : − BG)) : − member(L, B, LG, BG).
achieve_GG((not(L) : − B), (not(L) : − [not(L)|B]), (not(LG) : − BG), (not(LG) : − [not(LG)|BG])).

% Representation for the case analysis rule:
achieve_GG((L : − B0), (L : − B1),(LG : − BG0), (LG : − BG1)) : −

achieve_GG((L : − B0), (L : − [not(M)|B1]), (LG : − BG0), (LG : − [not(MG)|BG1])),
variable_list([MG|BG1], VL), make_var(L, V),
achieve_GG((L : − [M|B1]), (L : − [M|B1]), (V : − VL), (V : − VL)),
unify(VL, [MG|BG1]), unify(V, LG), length(B0) ≤ length(B1).

Figure 3.5: Augmented Assumption Axioms and Case Analysis Rule

member(L, [X|Y], LG, [XG|YG]) : − unify(L, X), unify(LG, XG).
member(L, [X|Y], LG, [XG|YG]) : − member(L, Y), member(LG, YG).

Figure 3.6: Augmented Member Predicate Definition

- 34 -

The goals in the proof tree of Figure 3.8 are the most general goals when their counter-
parts in Figure 3.7 are solved. We see that the proof tree for the more general goals has
the exact structure as that of the specific tree. As a matter of fact, we update the more
general proof tree as we construct the specific tree. However, we keep the goals in the
more general proof tree as general as possible. This makes it possible to keep the input
clauses as general as possible when they are used. Theorem 3.1 formalizes what goal gen-
eralization accomplishes.

Theorem 3.1: Giv en a set of input clauses S, if the call
achieve_GG((L : − B0), (L : − B1), (V : − VL), (V : − BG1))

succeeds, where V is a variable or a term not(W) with W being a variable depending on
whether L is a positive or neg ative literal and VL is a list with each literal in B0 replaced
by a distinct variable, then the following are true:

false: −[]

r(a): −[]

not s(a) s(a)

r(a) : − [not s(a)]

not s(a) : − [not s(a)]

p(a) : − [s(a)] q(a) : − [s(a)]

Figure 3.7: A Specific Proof Tree

- 35 -

(1) There exists a substitution θ such that (V : − BG1)θ = (L : − B1);

(2) BG1 ⊃ V is a logical consequence of S, where BG1 is interpreted as a conjunction of
the literals in it; and

(3) V : − BG1 is the most general goal with the same proof; in another word, if there is a
substitution π, a goal (G : − M) which has the same proof as (V : − BG1) does, and
(G : − M)π = (V : − BG1), then π only renames variables (Two goals L1 : − B1 and L2

: − B2 have the same proof if they use the same inference rules in the same order).

The proof is by induction on the size of the proof for V : − BG1 , where the size of a proof
is the number of inference rules used to obtain the proof. We note that whenever
mprf_GG is called, the third argument is always in the most general form (all variables).

3.3. Explanation-Based Generalization

false: −[]

r(X): −[]

not s(X) s(X)

r(X) : − [not s(X)]

not s(X) : − [not s(X)]

p(X) : − [s(X)] q(X) : − [s(X)]

Figure 3.8: A More General Proof Tree

- 36 -

Explanation-Based Generalization (EBG) is a technique recently developed in the
field of machine learning [Mitchell&al 86]. This technique deals with the problem of for-
mulating general concepts on the basis of specific training examples. This technique has
been shown to be the same as the technique in functional programming known as partial
evaluation [Harmelen&Bundy 88]. In an Explanation-Based Generalization problem, we
are given

• Goal concept — describing the concept to be learned;

• Training example — an example of the goal concept;

• Domain theory — a set of rules and facts about the domain;

• Operationality criterion — criterion to be met by the form of the learned con-
cept definition;

And we are to determine a generalization of the training example that is a sufficient con-
cept definition for the goal concept and that satisfies the operationality criterion.

Goal generalization can be regarded as a special case of Explanation-Based General-
ization. We can reformulate goal generalization in terms of Explanation-Based General-
ization:

• Goal concept — the general goal to be constructed;

• Training example — the specific goal;

• Domain theory — all the inference rules;

• Operationality Criterion — the learned concept (a goal) must satisfy the require-
ments (1)-(3) in Theorem 3.1.

Generally speaking, our work is one example of the research issues raised in
[Mitchell&al 86]:

. . .how such methods for generalization will be used as subcomponents of larger
systems that improve their performance at some given task. . . . One key issue to
consider in this regard is how generalization tasks are initially formulated. In oth-
er words, where do the inputs to the EBG method (the goal concept, the domain
theory, the operationality criterion) come from?. . .

In our approach, the attempt to solve each goal is formulated as a generalization task and
this formulation bears a task-subtask structure similar to the goal-subgoal structure of the
theorem proving system; the input clause set serves as the domain theory; and the concept
of logical consequence serves as the operationality criterion.

- 37 -

EBG is presented as an augmentation of the SLD-resolution theorem proving system
for Horn Clause Logic ([Kedar-Cabelli&McCarty 87]), where two proofs are constructed
in parallel. One of the proofs is the specific proof that the training example is a member
of the goal concept using the domain theory; the other proof, which is not unified with the
facts of the training example, is the generalized proof from which an operational defini-
tion of the goal concept can be extracted. Goal generalization extends the idea to full
first-order logic by augmenting a theorem proving system for full first-order logic.

3.4. Augmentation Related Refinements
We hav e modified the prover to incorporate the augmentation discussed above.

There are two refinements in the implementation that deserve more elaboration. The first
refinement concerns using the Prolog built-in unification in place of some calls to the pro-
cedure unify. The second refinement concerns how to eliminate unnecessary use of the
case analysis rule.

Using Prolog built-in unification. We can replace the calls to unify(R, L) that
involve the more general versions of the goals by R = L, which invokes Prolog built-in
unification. It is well known that Prolog omits the occur-check in its unification for effi-
ciency, and unification without occur-check is unsound ([Plaisted 84]). In our case, how-
ev er, we use true unification for the specific goals and the unification operations involving
the more general versions of the goals are always performed after the unification opera-
tions on the specific goals succeed. Thus unification operations on the general goals are
guaranteed to succeed and use of Prolog built-in unification is sound. This refinement
improves the efficiency of the augmented prover.

Unnecessary case analysis. The augmentation makes it possible to detect when
some splitting literals are not used during the proof and thus redundant. In the more gen-
eral version of a goal LG : − BG, the assumption list BG starts as a list of logical vari-
ables. The only place where these variables can be bound to a literal is in the assumption
axiom where the procedure member is called. If a call

achieve_GG((L : − B0), (L : − B1), (LG : − BG0), (LG : − BG1))

succeeds and there are still unbound variables in BG1, we know that there are redundant
literals in the assumption list. In this case, we simply fail on this call to mprf_GG. This is
a potentially powerful deletion strategy and is made possible by the augmentation. This
strategy seems to be similar to the requirement in Near-Horn Prolog that there be cancel-
lation within each restart block in a legal deduction ([Loveland 88]).

- 38 -

3.5. Experimental Results
We hav e tested the augmented prover, with the two refinements discussed above

incorporated, on our problem set. Table A.3 in Appendix A shows our test results. To
summarize the test results, we note that, in 72 out of the total 82 problems, the augmented
prover generates fewer or equal number of solutions and, for the 35 problems on which
the augmented prover generates fewer solutions, the number of solutions is reduced by
38.6 percent on the average. We also note that the inference rate of the augmented prover
is much smaller than that of the original prover. The augmented prover performs 3.63
inferences per second while the original prover performs 5.00 inferences per second.

One benefit we have expected from the generalization capability is that the prover
will generate and cache fewer solutions. For most problems, this is indeed the case. The
reason for the fewer solutions is twofold. On one hand, the number of different solutions
will be smaller in the augmented prover since the solutions generated are the most gen-
eral possible. On the other hand, solutions will be more likely to be subsumed by other
solutions in the augmented prover. The fact that the augmented prover generates and
caches fewer solutions is probably the main reason why the augmented prover is so much
faster on wos15. However, there are 10 of the 82 problems on which the augmented
prover generates and caches more solutions, as the table shows (ls108, for example). This
is probably because the augmentations alter the search behavior of the prover. The search
behavior can be altered in several ways. First, the search behaviors of the two prover can
differ because the size of the solutions is used to control the search, and the more general
solutions usually have a smaller size. Secondly, the search behaviors of the two provers
can be different when the problems contain non-Horn clauses, since the augmented
prover fails if unnecessary splitting literals are detected while the original prover can not
detect those literals. As a result, the two provers can perform case analysis (splitting) on
possibly different literals in possibly different part of the search space.

The inference rate of the augmented prover is much smaller than that of the original
prover. This is why the augmented prover is much slower on problems like wos4, ls65
and schubert, where the numbers of solutions generated and the numbers of inferences
performed by the original prover and by the augmented prover differ very little. The
slower inference rate is due to the need to maintain two extra arguments to implement
goal generalization. Some structure sharing techniques may be used to solve this prob-
lem. But such techniques seem to be difficult to implement in Prolog. We want to point
out that the augmented prover is even slower without using the Prolog built-in unification
on the general goals.

- 39 -

3.6. Comments
We hav e presented goal generalization — a special case of Explanation-Based Gen-

eralization and showed how it can be incorporated in a goal-oriented theorem proving
system. We think this work is interesting in several ways. First, goal generalization is a
refinement to caching since it always derives the most general solutions. Consequently,
the theorem prover using caching will be more efficient in term of space since fewer solu-
tions are usually generated and cached. Second, goal generalization is an application of
Explanation-Based Generalization. The most interesting point here may be the way in
which the generalization tasks are formulated automatically during the proof process by
introducing all-variables goals. Third, our work suggests that other techniques in machine
learning, such as similarity-based methods, may also be useful in automatic theorem
proving. Finally, we point out that our approach can be used for other goal-oriented sys-
tems to accomplish similar task.

- 40 -

4. Subgoal Reordering

In modified problem reduction format, goals are expressed as subgoals, which are
similarly expressed. A goal is solved if all of its subgoals are solved; and a goal fails if
any of its subgoals fails. Subgoal reordering is the problem of determining the order for
solving the set of subgoals of a goal to improve the efficiency of DFID. In this chapter,
we discuss our investigations into the effect of subgoal reordering based on simple syn-
tactic heuristics on the performance of the theorem prover. We show that subgoal
reordering using these simple heuristics has a considerable impact on the performance of
the prover on a large set of test problems. Some heuristics provide equally good, and
often better, performance than the hand ordering of the input clauses. The syntactic
heuristics are simple in form, cheap in their evaluation and often provide good heuristics,
as has been demonstrated by our results.

4.1. Introduction
In the modified problem reduction format, a clause rule corresponding to a Horn-

like clause decomposes a goal into a set of subgoals. Furthermore, the subgoals can be
attempted in any order. The work discussed in this chapter is based on this observation.
We formally state this as follows:

Theorem 4.1. The modified problem reduction format is still sound and complete if, for a
Horn-like clause L : − L1, L2, . . . , Ln, the clause rule is

permute([L1 , L2 , . . . , Ln], [M1 , M2 , . . . , Mn]),

- 41 -

[Γ0 → M1 => Γ1 → M1], [Γ1 → M2 => Γ2 → M2] , . . . , [Γn−1 → Mn => Γn → Mn]

Γ0 → L => Γn → L

where permute([L1, . . . , Ln], [M1, . . . , Mn]) produces an arbitrary permutation M1, . . . , Mn

of L1, . . . , Ln each time the clause rule is used.

Proof. We note that the soundness and completeness proofs of the modified problem
reduction format in [Plaisted 88] do not claim any order of the literals in the clause body
each time a clause rule is used. We can conclude that the order produced by permute is
immaterial. Q.E.D.

Theorem 4.1 enables us to order the subgoals in a clause rule during the proof pro-
cess, when the rule is invoked. The order of attempting a set of subgoals can make great
difference in the efficiency of search and it is important to consider carefully the problem
of determining the order. In some cases such as logic programming, ordering subgoals
automatically may not be as important since the user usually has a very good idea about
what the order of the subgoals should be. But in automatic theorem proving, a user may
not have the knowledge to specify a good order in the input. It then becomes relevant to
order the subgoals automatically during the proof. We call the process of ordering the
subgoals in a clause rule during the proof process subgoal reordering. There are a couple
of issues involved and we will discuss each of them.

The first issue is how to measure the quality of an ordering. We will not give a pre-
cise quantitative answer in general; instead we will roughly say that an ordering is good if
it makes the search more efficient. To be specific, we can order the subgoals so that the
most important subgoal is attempted first or to reduce the branching factors of the search
space. To this end, we have defined some ordering functions which measures the "qual-
ity" or "importance" of the subgoals and used the values of the ordering functions to
select the ordering. This raises the question about what the orderings functions should
measure. One requirement for the ordering functions is that the applications of them
incur low overhead, since it is going to be a frequent activity to apply the ordering func-
tions to the subgoals if the subgoals are ordered during the proof. We hav e considered
several ordering functions([Nie&Plaisted 87a]), two of which provide good results.

F1 evaluates the size of the subgoals where the size of a subgoal is the number of occur-
rences of predicate symbols, function symbols and variables in the subgoal.

F2 To evaluate the mass of the subgoals. Given a set of clauses S, the mass of a symbol
T (predicate or function symbol), denoted by mass(T) is defined to be

mass(T) =
Number of literals in S

Number of occurrences of T in S

For a term t,

- 42 -

mass(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

mass(C)

0

mass(s)

mass(f) +
n

i=1
Σ mass(ti)

if t is a predicate or function or constant symbol C

if t is variable

if t = ¬s

if t = f(t1, t2, . . . tn)

The second issue concerns what algorithm to use to select the ordering for a set of
subgoals. Given n subgoals, there are n! possible orderings. We will choose a specific
ordering using a greedy algorithm. For a subgoal Γ0 → L, when a clause rule corre-
sponding to the input clause L : − L1, L2, . . . , Ln is used, the algorithm will be called to
determine an ordering among L1, L2 , . . . , Ln. The algorithm first applies an ordering
function such as F1 or F2 to each of L1, L2 , . . . , Ln, then sorts them according to their
ordering function values. The resulting order among L1, L2 , . . . , Ln will be the order in
which they will be attempted. We call this static reordering because it orders the subgoals
prior to any attempt to solve any subgoal when a clause rule is invoked. A slight variation
to the algorithm leads to the dynamic reordering. In dynamic reordering, no order will be
determined prior to attempting any subgoal. Rather, each time a subgoal is to be
attempted, a subgoal will be selected from the remaining subgoals based on an ordering
function. To be specific, for any goal Γ0 → L, whenever a clause rule corresponding to
the input clause L : − L1, L2, . . . , Ln is used, a subgoal L1

′ among the n subgoals
L1,L2 , . . . , Ln will be selected and Γ0 → L1

′ attempted. After Γ0 → L1
′ returns with

Γ1 → L1
′, another subgoal L2

′ will be selected among the remaining n-1 subgoals and
Γ1 → L2

′ will be attempted, etc.

Dynamic reordering can adjust the order based on the progress of the search, such as
new variable bindings and newly derived solutions. A problem may arise from the over-
head of repeatedly applying the ordering function. If there are n subgoals, the cost of per-
forming static reordering would be O(nlog(n)) and the cost of performing dynamic
reordering would be O(n2) for our algorithm. For short clauses, this would not make a
big difference. This seems to be the case for most of our test problems.

We hav e studied many heuristics for performing subgoal reordering. We will
explain two such heuristics.

H1 Subgoal having largest size first. This heuristic uses F1 as the ordering function.
The heuristic is based on several considerations: (1) A larger subgoal usually has a
smaller branching factor since the larger size imposes more constraints on unifica-
tion. (2) A larger subgoal has a more complex structure. This can be regarded as

- 43 -

containing more information, thus being more important. (3) As shown in Chapter
2, the solution size contributes to the cost of solving a subgoal in the prover.
Attempting the larger subgoal first can make the potentially unsuccessful search
path stop earlier since larger subgoals will use larger solutions, thus contributing
more to the cost.

H2 Subgoal having the biggest mass first. This heuristic uses F2 as the ordering func-
tion. The heuristic is used in [Wang&Bledsoe 87] for the level-subgoal reordering in
SHD-prover based on hierarchical deduction. The subgoal with largest mass is likely
to contain non-variable symbols which occur less frequently or to contain more non-
variable symbols. Non-variable symbols occurring less are more likely to be the
symbols in the theorem or the skolem function symbol. Thus the subgoal with
largest mass can be regarded as being the most important. Also a subgoal with large
mass is likely to have a small branching factor.

4.2. Related Work
Similar problems are considered in some other goal-oriented theorem proving sys-

tems [Wang&Bledsoe 87, Kow alski&Kuehner 71]. In [Wang&Bledsoe 87], level goal
reordering is performed during the proof process where the search process is controlled

by suitable selection of the first literal to resolve upon in a goal clause1. The heuristic is
to select the literal with the biggest mass, which is taken to be the one with the most com-
plex structure. In SLR-based proof procedures, the choice of the literal can be made
dynamically for the application of the extension operation [Kow alski&Kuehner 71]. One
heuristic suggested is to select the literal which can be resolved upon with the least num-
ber of input chains.

The problem we consider here is similar in nature to the conjunctive problem in
[Smith&Genesereth 85]. [Smith&Genesereth 85] discusses the problem of ordering a
conjunction — a set of propositions which share variables and must be satisfied simulta-
neously — in order to reduce the size of the search. They use the size of the database to
estimate the cost of solving a conjunct and determine an ordering of conjuncts which has
the least cost by possibly searching through n! possible orderings for n conjuncts. An
adjacency theorem is proven to cut down the size of the search and some heuristics are
also suggested to avoid the search completely. While the basic problem is the same, some
assumptions in [Smith&Genesereth 85] are not valid in our case. For example, the

1Here the term goal clause does not refer to an all-negative clause. See [Wang&Bledsoe 87].

- 44 -

assumption that all solutions to a conjunct are directly available in the database is not
valid. This assumption makes it possible to estimate the cost of solving a conjunct rather
easily. In our case, however, the solutions to a subgoal are rarely directly available and
may require many inferences. And we do not know how many inferences would be
required. Also, the cost of solving the same subgoal may vary if caching is performed.
All these make good estimate of the cost of solving a subgoal very difficult. It is also
pointed out in [Smith&Genesereth 85] that an optimal ordering of the conjuncts can not
always be achieved by only considering the subgoals of a goal if inferences are required
to obtain the solutions. This implies that a global data structure is needed to store all the
unsolved subgoals and the optimal ordering is selected from all the possible orderings of
those unsolved subgoals. A general best-first search will be required.

In our work, instead of estimating the cost of solving a subgoal, we quantify certain
syntactic characteristics of the subgoals and use a cheap greedy algorithm to determine
the ordering. We only deal with the subgoals belonging to one goal to make the subgoal
reordering process compatible with the depth-first iterative deepening search used in the
prover. If the best-first search strategy were used, subgoal reordering would not be neces-
sary, but such a strategy requires a lot of memory,

4.3. Heuristics and Implementation
A convenient Prolog interface in the prover provides an easy vehicle to carry out

subgoal reordering. In the input to the prover, a subgoal of the form prolog(L) represents
a call to the Prolog procedure L. We write a Prolog subroutine, called best_subgoal, to
order a list of subgoals according to the ordering function. Another Prolog subroutine is
written to translate the standard input format into the format which includes the calls to
the Prolog subroutine best_subgoal. For example, the input clause L : − L1, L2, L3 is
translated into the clause (X1, X2, X3 and Y are logical variables)

L : − prolog(best_subgoal([L1, L2, L3], [X1|Y])), X1,
prolog(best_subgoal(Y, [X2, X3])), X2, X3.

to perform dynamic reordering; it is translated into the clause

L : − prolog(best_subgoal([L1, L2, L3], [X1, X2, X3])), X1, X2, X3.

to perform static reordering. The resulting clause will be the input to the prover.

We hav e performed tests on our test problem set, using the two heuristics. We test
both static reordering and dynamic reordering using each heuristic on 82 problems. We
show part of our experimental results in Table A.4.1 and Table A.4.2 in Appendix A. We
summarize the data in the three tables Table 4.1, Table 4.2 and Table 4.3. As we have
expected, no single heuristic, when used for subgoal reordering, performs better on all the

- 45 -

test problems. Nevertheless, there are some interesting things revealed by the data.

Before we make any comment on the data, we first explain how to interpret Table
4.1, Table 4.2 and Table 4.3. Table 4.1 and Table 4.2 are self-explanatory. We explain

Table 4.1: Average Data for Subgoal Reordering

Av erage Time Average Inference Av erage Inference
Per Theorem Per Theorem Per Second

no reordering 232.05 1335.76 5.76

dynamic-H1 315.04 1648.72 5.23

static-H1 318.68 1649.38 5.18

dynamic-H2 154.44 1175.12 7.61

static-H2 168.82 1171.12 6.93

Table 4.2: Running Time Distribution for Subgoal Reordering

(0, 10] (10, 60] (60, 300] (300, 600] (600, +∞) Total

no reordering 52 16 8 1 5 82

dynamic-H1 51 21 7 0 3 82

static-H1 52 20 7 0 3 82

dynamic-H2 50 21 7 1 3 82

static-H2 50 20 6 1 5 82

Table 4.3: Comparing with no Reordering

improvements degeneration Even

number average(%) number av erage(%) number
functions

dynamic-H1 33 15.73 20 53.4 29

static-H1 24 19.8 17 31.9 41

dynamic-H2 45 24.9 20 84.0 17

static-H2 38 24.6 24 108.0 20

- 46 -

Table 4.3 by an example. The two numbers 33 and 15.73 under improvements for
dynamic-H1 indicate that the prover with dynamic subgoal reordering using heuristic H1
does better on 33 of the 82 problems (takes fewer inferences) and the average speedup
with respect to the performance of the prover without subgoal reordering is 15.73%. The
two numbers 20 and 53.4 under degenerations for dynamic-H1 indicate that the prover
with dynamic subgoal reordering using heuristic H1 does worse on 20 of the 82 problems
(takes more inferences) and the average slowdown with respect to the performance of the
prover without subgoal reordering is 53.4%. The number 29 under even for dynamic-H1
indicates that the prover with dynamic subgoal reordering using H1 performs equally
well (takes equal number of inferences) as the prover without subgoal reordering on 29 of
the 82 problems.

We first note that subgoal reordering incurs little overhead. This is because the
ordering functions are easy to evaluate, the algorithm for selecting the ordering is simple
and the input clauses in the problems are generally short (7 literals maximal). For the
same reasons, dynamic reordering is not noticeably more expensive than static reorder-
ing. All these can be seen from the data in Table 4.1 and Table 4.2. The data in Table 4.3
suggest that, at least for our heuristics, dynamic reordering should be preferred if subgoal
reordering is to be performed at all since dynamic reordering does better on more prob-
lems than static reordering using the same heuristics.

The data in Table 4.2 suggest that subgoal reordering does not affect the perfor-
mance of the prover very much. But the data in Table 4.1 seem to suggest otherwise. This
discrepancy results from the dramatic improvements or degeneration of the performance
of the prover when performing subgoal reordering on several problems (ls108, wos15 and
wos31). These problems are difficult for the prover without subgoal reordering. This sug-
gests that subgoal reordering might be a valuable addition to the prover for solving hard
problems if we can devise specific heuristics for them.

One general heuristic does suggest itself. It seems that subgoals with complex struc-
tures should be favored. The reasons are exactly those behind H1 and H2. Subgoals with
complex structures tend to have small branching factors and can be seen as more impor-
tant. Special attention should be paid to function symbols since they represent objects in
the problem domain. The good performance of the prover when performing subgoal
reordering using H2 enforces this rather strongly.

4.4. Comments
It requires domain dependent knowledge to find the optimal ordering for a set of

subgoals. In case such knowledge is not available, we have to resort to general heuristics.
We hav e tested several such heuristics and shown that they can have great impact,

- 47 -

sometimes adverse, on the performance of the prover. But some heuristics seem to work
better or equally well most of the time. Such heuristics are useful since they can make the
theorem prover more automatic. We also point out that our heuristics are almost purely
syntactic in nature. Heuristics of this sort are simple in form and impose low overhead in
their evaluations; and they often provide performance improvements. In general, we think
that the importance of the syntactic aspect of mechanical theorem proving is not to be
ignored, although it may not play a decisive role in the success of theorem proving in the
future.

- 48 -

5. Priority Systems

In Chapter 4, we discussed subgoal reordering, which considers ordering a set of
subgoals, which must be resolved either by a failure on a single subgoal or by success on
all of them. The selection of a subgoal in subgoal reordering is made locally within the
set of immediate subgoals of a goal. Subgoal reordering considers subgoals that belong to
one proof path.

In this chapter, we address the question of how to select among subgoals which are
on different proof paths. The task is to find one successful proof path for one of these
subgoals. The best-first search strategy can estimate the importance of ALL the available
goals and always work on the best one based on the estimation. This feature is essential
for the search strategy of a theorem prover. We will discuss a refinement to the depth-first
iterative deepening search strategy. The refinement approximates best-first search using
depth-first iterative deepening search, using the information provided by a priority func-
tion to control the search. We will introduce a new data structure, the priority list, into
depth-first iterative deepening search for this purpose.

5.1. Motivation and the Basic Idea
One of the essential features in any automatic theorem proving system is for its

search strategy to estimate the importance or relevance of its goals and always to work on
the best available goal based on the estimation [Plaisted&Greenbaum 84]. The best-first
search strategy is the most commonly used search strategy to achieve this. In best-first
search, a priority function is defined which assigns priority values to the goals. A goal
queue, sometimes called the open list, is also maintained in best-first search, which con-
tains all the unfinished goals together with their priority values. The search always
selects the goal from the goal queue with the "best" priority value to attempt next. It has

- 49 -

been demonstrated that the best-first search strategy adds substantial power to a theorem
prover [Wang&Bledsoe 87, Greenbaum 86, Overbeek&al 76]. The brute-force depth-first
iterative deepening search we implemented in Chapter 2 does not have a good way of
using the heuristic information provided by the priority function to control the search. We
think this is a big disadvantage, and we tried to eliminate it by incorporating priorities
into depth-first iterative deepening search. In the following discussion, we assume that a
smaller priority value indicates a more important goal; we also use the more general term
operation to refer an unit of work performed by the search process. In particular, an oper-
ation can refer to a goal.

Suppose we have a priority function and we would like to find a solution by solving
only the goals with the smallest priority values possible. If we know that a solution exists
and know the smallest bound B which allows the solution to be found, we can just set the
priority bound to B and perform the depth-first iterative search until the solution is found,
deleting the goals whose priority values exceed B. The problem is that we usually do not
know the value of B unless we have found a solution. What we would like to do is to find
the solution using some bound not much larger than the smallest bound B. We call the
resulting strategy a priority system.

Assume that a solution exists. Then there will exist two numbers B and L0 such that
the solution can be found using L0 operations with priority values smaller than B. These
L0 operations are the most important operations. But we know neither B nor L0. Howev er,
we can start by assuming L0 to be some fixed number K. That is, we will be interested in
the K smallest operations performed in the search. At any moment of the search, we
know the L smallest operations performed so far. Assume C1, C2, . . . CK are the priority
values of the K smallest operations performed so far. If an operation has a priority value
P larger than or equal to the largest of C1, C2, . . . CK, we know that this operation will not
be one of the K smallest operations we are interested in. If an operation has a priority
value P smaller than one of C1, C2, . . . CK, this operation may be among the K smallest
operations and we should replace the largest value in C1, C2, . . . CK with C. This is the
basic idea behind the priority system. In general, the priority system will repeatedly per-
form the search with increasing values K. The bound B will not be considered explicitly,
but will be implicitly increased until it is larger enough to permit a solution to be found.

5.2. Formal Development
We propose a priority system. The priority system will operate as the depth-first

iterative deepening search does. We call DFID the underlying strategy. The priority sys-
tem will maintain a priority list of some fixed length K, which stores a sequence of prior-
ity values C1, C2 , . . . , CK in non-increasing order. The priority system records in the

- 50 -

priority list the K smallest priority values of the operations performed so far. The priority
list is initialized by performing the first K operations that are allowed by the underlying
strategy and putting their priority values on the list. For each successive operation, we
compute its priority value P. If P is less than C1, the operation is performed and the prior-
ity list is updated by deleting C1 and inserting P at the appropriate place. If P is greater or
equal to C1, the operation is rejected. This will continue until no operation is possible or a
solution is found. If no solution is found before all the operations are exhausted, the
length of the priority list will be increased and the process will be repeated. At any
moment, the priority values C1, C2, . . . CK in the priority list are the K smallest opera-
tions performed so far. But this fact is not important. What is important is that the search
will favor small operations more and more as the search proceeds. We would also like to
point out that, if a solution is found by the priority system with the largest value in the
priority list being B, B may not be the smallest possible bound. This fact is not important
either.

Let’s consider an example of how the priority list is used and updated. Suppose that
a priority list of length 5 is [10, 7, 6, 6, 3]. An operation with priority value 10 or greater
will be rejected. An operation with priority value 5 will be accepted and the priority list
will updated to [7, 6, 6, 5, 3]. Note that each operation is either rejected or updates the
priority list to a strictly (lexicographically) smaller list.

The following theorem formalizes the basic idea behind the priority system.

Theorem 5.1: Giv en a problem P, suppose N operations are performed by the underlying
strategy to find a solution S for P. Let B0 be the smallest bound for the priority values
which permits the solution S to be found. Let L0 be the number of operations among the
N operations whose priority values are less than B0. The priority system will find the
solution S when the priority list is of length greater than or equal to L0, if the underlying
strategy satisfies the monotonicity condition, which states

for any bound B, if some or all of the operations with priority values ≥ B are
deleted, the number of possible operations with priority value less than B will not
increase.

Proof: At any giv en time after L0 operations have been performed and before the solution
is found, the largest element in the priority list will be greater than or equal to B0. Since
the priority list is of length greater than or equal to L0 and the number of remaining oper-
ations with priority values smaller than B0 will not increase by the monotonicity condi-
tion, all the remaining operations with priority values smaller than B0 will be performed
and the proof will be found. Q.E.D.

- 51 -

The monotonicity condition ensures that the region of the search space explored by
the priority system is within the region of the same search space explored by the underly-
ing strategy. This condition could be violated, for example, if the cut-off bound of the pri-
ority system is bigger than that of the underlying strategy when both strategies perform
depth-first search.

We now analyze the priority system. We assume that a priority value is a positive
integer. The question we ask is: Given that the length of the priority list is K, what is the
number of operations that could be performed. Suppose the first successive K operations
allowed by the underlying strategy have priority values C1, C2, . . . , CK in non-increasing
order and let ML = C1. Note that each operation is either rejected or changes the sequence
to a strictly smaller list. With a priority list of length K, we can have a minimum of K
operations (the first K operations allowed by the underlying strategy to initialize the list)
and a maximum of (MK − 1) × K operations afterwards, since a priority value is a natural
number. We inv oke successive trials of the procedure with the priority list being of length
L × Ci (i = 0, 1, . . . , L is the initial length of the priority list and C > 1) respectively, until
a solution is found. We show that the amount of work in each trial increases by a nearly
constant factor in comparison with its preceding trial. We also show that the total amount
of work is dominated by the last trial.

Letting w(i) denote the amount of work when the priority list is of length L × Ci, we
easily have

Ci × L ≤ w(i) ≤ L × Ci × MCiL

where MCiL (i = 0, 1, . . . ,) is the largest priority of the first Ci × L operations. We can use
this to bound the ratio of work of successive trials:

P1(i) =
w(i + 1)

w(i)
≤ C × MCi+1L.

This shows that the amount of work in each trial is increased by a nearly constant factor
(C × MCi+1) in comparison with its preceding trial.

Let I be the smallest i such that a solution is found by the priority system when the
priority list is of length L × CI. We try to estimate the ratio

P2(I) =

I

k=0
Σ w(k)

w(I)

Note that P2(I) bounds the unnecessary work performed by the priority system.

- 52 -

I

k=0
Σ w(k) =

I

k=0
Σ Ck × L × MCkL ≤ MCIL × L

I

k=0
Σ Ck = MCIL × L ×

CI+1 − 1

C − 1
≤ MCIL × L ×

CI+1

C − 1

Let’s simply take
I

k=0
Σ w(k) = MCIL × L ×

CI+1

C − 1
. Since we already have derived

Ci × L ≤ w(i) ≤ L × Ci × MCiL, we hav e

C

C − 1
≤ P2(I) =

I

k=0
Σ w(k)

w(I)
≤

C

C − 1
× MCIL

This shows that the amount of total work is dominated by the last trial.

The analysis above is a worst-case analysis and the result is admittedly weak. Note
that the time complexity depends on the bound MCIL, and we do not know its expected
value. Theoretically it can be arbitrarily large. The fact that the complexity depends on
MCIL also presents a practical problem: At the beginning of the search, we do not have
any control over the complexity of the operations. The priority system will not have any
effect until the priority list fills up. In practice, though, we believe that the values for
P1(i) and P2(I) are almost constant with respect to C. Our experiments on our test prob-
lem set support this. Table 5.1 shows the average values for P1(i) and P2(I).

5.3. A Modification
We propose a modification of the priority system. In this modified priority system,

we define the priority of an operation to consist of possibly multiple units of work. The
number of units of an operation is called the weight of the operation. As before, we
assume the priority list is of some length K and is represented by a sequence of priority
values C1, C2 , . . . , CK in non-increasing order. An operation with priority value C and
weight W will be rejected if one of the first W values (the W largest) in the priority list is
less than or equal to C. If the operation is not rejected, the priority list will be updated by

Table 5.1. Average Values for P1(i) and P2(I)

C = 2 C = 3 C = 4

P1(i) 2.10 3.13 4.24

C/(C-1) 2.00 1.50 1.33

P2(I) 2.88 1.98 1.93

- 53 -

deleting the first W entries from the priority list, then inserting W copies of C into the pri-
ority list.

If we invoke successive trials of the procedure with the priority lists being of length
L × Ci (i = 0,1 , . . . , L is the initial length of the priority list and C > 1) respectively, until
a solution is found, we can show that the amount of work in each trial increases by a con-
stant factor in comparison with its preceding trial. We can show that the total amount of
work is dominated by the last trial. Let’s first determine how many operations can be per-
formed when the priority list is of length K. This is, again, a worst-case analysis. For the
sake of simplicity and without loss of generality, we assume that an operation with prior-
ity value C will have weight C as well. The analysis is straight forward if we realize that
it takes at most K/N operations of priority N to fill an empty priority list of length K with
weight N. To perform the maximal number of operations, we should fill the list with the
largest priority value possible first. So the first candidate is the operation with weight K,
the second candidate is the operation with weight K − 1, the third with weight K − 2, etc.
The last operations are those with weight 1. Therefore, the maximal number of operations
is

K

i=1
Σ K

i
= K ×

K

i=1
Σ 1

i
= O(K × ln(K))

We inv oke successive trials of the procedure with the priority lists being of length L × Ci

(i = 0, 1 , . . . , L is the initial length of the priority list and C > 1) respectively, until a solu-
tion is found. Letting v(i) denote the amount of work when the priority list is of length
L × Ci, we can show

Q1(i) =
v(i + 1)

v(i)
=

Ci+1 × ln(Ci+1 × L)

Ci × ln(Ci × L)
= C ×

i × ln(C) + ln(C) + ln(L)

i × ln(C) + ln(L)
=

C × (1 +
ln(C)

i × ln(C) + ln(L)
) ≤ C × (1 +

1

i
) ≤ 2C (i > 0)

That is, the work for successive trials of the procedure increases only by a constant factor.
And if a solution is found when the priority list is of length CI × L, we have

Q2(I) =

I

k=0
Σ Ck × L × ln(Ck × L)

CI × L × ln(CI × L)
=

I

k=0
Σ 1

CI−k
×

ln(Ck × L)

ln(CI × L)
≤

I

k=0
Σ 1

Ck
≤

C

C − 1

That is, the work is dominated by the last trial, if the last trial performs the maximal num-
ber of operations before the solution is found. Table 5.2 shows the average values of Q1(i)
and Q2(I) obtained from our experiment on our test problem set.

- 54 -

Table 5.2. Average Values for Q1(i) and Q2(I)

C = 2 C = 3 C = 4

Q1(i) 2.09 3.12 4.18

C/(C-1) 2.00 1.50 1.33

Q2(I) 2.90 2.19 1.90

5.4. Implementations of the Priority System
As illustrated in Figure 5.1, the implementation of the priority system consists of

stages, denoted by a pair of natural numbers{n1, n2}. Each stage consists of several
rounds of depth-first search with increasing bounds. To be specific, the stage {n1, n2}
will consist of the consecutive rounds of depth-first search with cut-off bound being m1,
m2 , . . . , mk, which are determined by n1 and n2 and n1 = m1 < m2 < . . . < mk ≤ n2. A
simple example for a stage {n1, n2} would be n1 = m1, m1 + 1, m1 + 2 , . . . , m1 + k = n2.
In Figure 5.1, we usually have Si = Sj and Ei < Ej for all i and j (i < j) and the priority list
for stage i is of length Ci−1L where C (> 1) and L are constants. We note that the mono-
tonicity condition in Theorem 5.1 may be invalid in our implementations. We also note
that the bounds P1 (Q1) and P2 (Q2) may not work unless Ei = ∞ and Si = 1 for all i. Nev-
ertheless they seem to work well in practice.

The Prolog code in Figure 5.2 specifies the control structure of the priority system in
greater detail. Each stage is defined by the procedure search which performs several

stage 1 stage 2 stage 3 stage 4 stage i

{S1, E1} {S2, E2} {S3, E3} {S4, E4} {Si, Ei}

Figure 5.1: Control Structure of Priority System

- 55 -

rounds of depth-first search until its termination is called for by the procedure stage_end
or the discovery of a proof by the procedure achieve, which is defined in Figure 2.1 in
Chapter 2. The bounds for a stage (the pair of numbers Si, Ei in Figure 5.1) are deter-
mined by the procedure initialize_stage. With each stage are also associated some prior-
ity lists which are initialized by the procedure initialize_priority_list. L is the initial
length of the priority lists and C (>1) is the constant. For each stage except the first one,
the priority lists will be of the length C × P where P is the length of the priority list of the
previous stage.

The priority list is represented as a multi-set, that is, a list of the tuples (P, N) where
P is the priority value and N is the number of entries being P in the priority list. For
example, [7, 6, 6, 5, 5, 3] is represented as [(7,1),(6,2),(5,2),(3,1)].

search_stage(L, CI, C, B) : −
terminate(L, CI, B), !, fail.

search_stage(L, CI, C, B) : −
initialize_stage(Start, Stage_Bound),
initialize_priority_list(L, CI),
search(Start, Stage_Bound).

search_stage(L, CI, C, B) : −
CI1 is CI × C,
search_stage(L, CI1, C, B).

search(Start, Stage_Bound) : −
stage_end(Start, Stage_Bound), !, fail.

search(Start, Stage_Bound) : −
achieve((false : − []), (false : − []), 0, Cost, Start).

search(Start, Stage_Bound) : −
increment(Start, S1),
search(S1, Stage_Bound).

Figure 5.2: Control Structure of Priority System

- 56 -

The control structure of the priority system illustrated above raises several important
practical issues concerning the implementation of the priority system. How to resolve
these issues can make a dramatic difference in the efficiency of the priority system. We
will discuss these issues. First we note that some design decisions for resolving these
issues may violate the monotonicity condition.

What will be defined as an operation and what will defined as a unit of work? In
general, an operation should represent some "unit expansion" of the search space. For this
prover in particular, an operation can be either generating a new subgoal, or performing
an inference, or deriving a new solution. As to the definition of a unit of work in the
prover, we can define it to be some number of symbols. For example, a subgoal contain-
ing 12 symbols will have 3 units of work if 4 symbols is defined to be a unit of work.
Other possibilities exist also.

How to identify the end of a stage? To stop a stage prematurely will not take full
advantage of the priority system since some important operations may be left out. To stop
a stage too late will result in useless work. It can also lead to a infinite loop in the search
if this is not properly done. Ideally a stage should be terminated if no progress can be
made toward the proof. We can say some progress is being made if some new solution is
derived. One terminating condition for a stage suggests itself: A stage can be terminated
if no new solution is generated in a round of depth-first search in the stage. This condi-
tion, however, can lead to an infinite loop in the search when used alone. We need some
auxiliary conditions to avoid infinite loops. The basic idea of the auxiliary conditions is to
guarantee that, for any integer n0, there is an integer n (≥ n0) such that a round of depth-
first search with cut-off bound n will be performed eventually.

If caching is done, which is usually the case, what can we do with the information
from the previous stages? Assume we start each stage at the same search bound, that is,
all S′

is in Figure 5.1 are equal. This, by the way, seems to favor shorter proofs and works
well. Upon the termination of each stage, many solutions and subgoals may be cached.
The question is what we do with the information. We usually remove all the cached sub-
goals since each stage starts at the same search bound. The question remaining is what to
do with the solutions. What we want to achieve is to avoid repeated work on one hand
and to avoid increasing the branching factor too much on the other hand. There are sev-
eral choices. (1) We can delete all the solutions between stages. This is simple and will
not increase the branching factors of the search space. But this choice may result in too
much repeated work, which is what we are trying to avoid by caching. (2) We can save all
the solutions between stages. This tends to complicate the search since the solutions can
increase the branching factors significantly, since solutions are used to solve subgoals.
(3) We can save only the solutions satisfying certain conditions. The conditions are

- 57 -

devised to avoid some repeated work while not substantially increasing the branching fac-
tors. The priority functions can come into play here. One condition is that the saved solu-
tions have to hav e priority values within a specified bound and only contain ground liter-
als. Another condition is to save solutions whose proof size is relatively bigger than their
priority values. If solutions are kept between stages, the monotonicity condition may be
violated.

How should a priority function be chosen? A good priority function should be (1) a
good measurement of the relevance of the operations (2) sufficiently problem indepen-
dent to be applicable to a large class of problems and (3) easy to evaluate. We intend the
priority functions to reflect the syntactic characteristics of the operations. Operations with
smaller priority values are to be favored. The most commonly used priority function in
our experiments is the number of symbols in the subgoals or solutions involved in an
operation. The search will favor smaller subgoals if such priority function is used. We
can design some specialized priority functions for individual "hard" problems using the
following ideas. (1) We can use the priority function to measure the similarity of a sub-
goal or a solution to the intended theorem, using ideas like not counting the skolem con-
stants occurring in the theorem. (2) We can consider the number of occurrences of a
symbol in the problem input. The symbols in the axioms are likely to occur more in the
input. These symbols may be regarded less important than the symbols which occur less
in the input. Thus different symbols may be weighted differently based on their occur-
rences in the input. This idea is similar to the idea of the symbols’ mass in
[Wang&Bledsoe 87]. An elaborate and more general scheme is described in [Over-
beek&al 76] for calculating the complexity of the clauses in a resolution theorem prover.
That scheme could also be used to define our priority function. We emphasize that prior-
ity functions basically use information which is syntactic in nature and local to the opera-
tions.

5.5. A Subgoal-Based Priority System
We describe a particular implementation of the priority system based on subgoal. In

this implementation, we primarily use the priority values of the subgoals. Each subgoal
contributes one entry in a priority list. This seems to work quite well in practice in spite
of some theoretical complications. The priority function returns the size of the largest lit-
eral in the subgoal G plus the number of literals in the assumption list G. The effect is
that small subgoals or subgoals with shorter assumption lists are favored. The stages are
determined statically, as shown in Figure 5.3. Although there is no theoretical justification
for this static setup, it does work well in practice. All solutions are kept between stages.
This does not seem to present a problem in general since the priority lists for solutions

- 58 -

function as "solution filters". Also, the condition for rejecting a subgoal is less restrictive
than in the formal presentation of the strategy. This will invalidate the complexity analy-
sis but, again, it works well in practice.

The theorem prover alternates between backward chaining and forward chaining.
Backward chaining starts with a goal clause. There may be more than one goal clause in
some problems (non-Horn problems, typically). We hav e used several priority lists in this
implementation. For each goal clause false : − L1, . . . , Lk, we maintain two priority lists
which are called solution list and subgoal list respectively. These two lists are used when
the theorem prover performs backward chaining starting with this goal clause. We also
maintain a solution list and a subgoal list for when the prover performs forward chaining.
The decision to maintain multiple priority lists is based partially on a practical observa-
tion. In backward chaining phase, the search always starts with the first goal clause in the
input. If only one priority list is maintained, the list tends to soon fill up with small prior-
ity value. As a consequence, little room is left for working on other goal clauses. Of
course, the user can order the input clauses so that the most promising goal clause comes
first, but this is not always easy to do. Another purpose of using different priority lists for
different goal clauses and for forward chaining is to balance the search effort spent on
backward chaining and forward chaining and the search effort spent on each goal clause
during backward chaining. We increase the length of the priority lists for backward chain-
ing more quickly than we do the priority lists for forward chaining so that backward
chaining is encouraged while some forward chaining is still performed. We use separate
priority lists for forward chaining and for each goal clause during backward chaining so
that the search effort spent on one part does not affect the search effort on other parts, as

stage 1 stage 2 stage 3 stage 4 stage 5

{5, 7} {5, 11} {5, 15} {5, 19} {5, 23}

Figure 5.3: Control Structure of A Priority System

- 59 -

different goal clauses would affect each other in backward chaining if one priority list
were used.

The subgoal-based priority system works as follows. When a new subgoal G is to
be attempted, the procedure check_subgoal will be called. The procedure first calls the
priority function to determine the priority value of G. It then checks the priority value
against the current priority list (subgoal list). If the priority value is bigger than the
largest in the priority list, the subgoal G will be rejected. If the priority value is equal to
or smaller than the largest value in the subgoal list, the priority list will be updated in case
the priority value is smaller than the largest value in the subgoal list and G will be
attempted. The solution lists are maintained differently, howev er. Whenever a new solu-
tion is generated or an old solution will be used, the procedure big_solution will be
called. This procedure checks whether the priority value of the new solution or the old
solution is smaller than the largest value in the current solution list. Only when
big_solution succeeds, is the new solution saved or the old solution used. Note this pro-
cedure does not alter the solution list. In case a new solution is generated and the call to
big_solution succeeds, the procedure check_solution is called. This procedure first calls
the priority function to get the priority value of the solution. It then checks whether the
priority value of the solution is smaller than the largest value in the solution list. If it is,
the priority value of the solution will replace the largest value in the solution list; other-
wise, the solution list will not be altered. The solution will be always be saved, however.
Since we have carefully selected solutions during the stage using the two procedures, all
the cached solutions will be kept between stages.

Next we show some performance statistics of the implementation on our test prob-
lems and compare them with the underlying strategy. The test results are given in Table
A.5 and Table 5.3. We note that the prover using the priority system obtains proofs for
three more problems and it has a better average time among all the problems whose
proofs are obtained. Note also that the inference rate is much larger when the priority
system is used. This is because the inferences tend to be smaller in the priority system,
thus consuming less time for each inference. There are three problems, wos15, ls108 and
wos31, on which the priority system is much faster than the underlying strategy. The rea-
son is that all the subgoals in the proofs are small subgoals. There are, however, some
problems on which the priority performs less well. fex6t1 is one of them. The reason is
that the proof for fex6t1 has many large subgoals, as shown in Figure 5.4. If we use the
subgoal size as the priority values of the subgoals, the priority lists have to be rather long
before the proof is found. The priority system can prove fex6t1 much faster if it uses a
new priority function which counts less for terms of the form f(t1, t2). The same can be
said about fex6t2 and wos19. In general, however, it is often a good idea to favor small

- 60 -

subgoals.

We mention in passing that this priority system obtains a proof for SAM’s Lemma
[Pelletier 86] in a little over 100 seconds. 2340 inferences are performed. The theorem
prover without the priority system takes over 4600 seconds for the proof after performing
17000 inferences. It is interesting to note that RRL [Zhang 88] takes nearly 300 seconds
to solve this problem. This shows that the prover is pretty efficient handling the equality
axioms.

5.6. Related Work
The priority system incorporates the use of priority into depth-first iterative deepen-

ing search. With a priority list of length ∞, the priority system will be the same as depth-
first iterative deepening search. What is the relationship between the worst case complex-
ity of the priority system and the complexity of depth-first iterative deepening search?
The worst-case behavior of the priority system occurs when the priority list reaches its
maximal length in Theorem 5.1 to find a solution. Consider the search space formalized
as a tree. Assume that the minimal solution length is N, the branching factor is B. We also
assume that Si is 1 and Ei is i × S for all i in Figure 5.1, and at stage i, the priority list is of

length Ci−1 × L. Suppose a solution is found at stage I. We note that I = max{
N

S
,

(N + 1) × logC B − logC(L(B − 1)) + 1} since we need to have I × S ≥ N and CI−1 × L ≥
BN+1

B − 1
. We use DFID(d) to denote the time complexity of the depth-first iterative deepen-

ing search when the final cut-off bound is d. The total number of operations performed by
the priority system will be at most

PS(I) =
I

i=1
Σ DFID(i × S) =

I

i=1
Σ E × Bi×S = E ×

I

i=1
Σ Bi×S

Table 5.3. Summary Data for Subgoal-Based Priority System

Underlying Strategy Subgoal-Based System

Av erage Time
Per Theorem

224.30 178.86

Av erage Inferences
Per Theorem

1245 4038

Total Theorem 82 85

- 61 -

false: −[]
p(a,d,d): −[]

input(p(a,g(g(d)),f(a,g(g(d))))
input(p(a,d,f(a,d)))
q(g(g(d)),d,d): −[]

q(g(g(d)),d,d): −[]
input(q(g(g(d)),g(d),d)
input(q(g(d),d,d))
input(q(d,d,d))

input(q(d,d,d))
input(q(d,d,d))

q(f(a,g(g(d))),f(a,d),d): −[]
q(g(f(a,d)),f(a,g(g(d))),f(a,g(g(d)))): −[]

input(q(g(f(a,d)),f(a,d),d))
q(f(a,d),f(a,g(g(d))),f(a,g(g(d)))): −[]

input(p(a,d,f(a,d)))
input(p(a,g(g(d)),f(a,g(g(d)))))
input(q(d,g(g(d)),g(g(d))))
input(p(a,g(g(d)),f(a,g(g(d)))))

input(q(d,f(a,g(g(d))),f(a,g(g(d)))))
q(f(a,g(g(d))),f(a,d),f(a,d)): −[]

input(p(a,g(g(d)),f(a,g(g(d)))))
input(p(a,d,f(a,d)))
lemma((q(g(g(d)),d,d): −[]))
input(p(a,d,f(a,d)))

input(q(g(f(a,d)),f(a,d),d))

Figure 5.4: The Proof for fex6t1

≈
BS

BS − 1
× E × BI×S =

BS

BS − 1
DFID(I × S)

where E = (
B

B − 1
)2. This analysis is similar to that in [Stickel&Tyson 85] and uses one

result DFID(d) = E × Bd from it. We can see that under these assumptions, the worst case

- 62 -

performance of the priority system is generally a constant factor
BS

BS − 1
times as expen-

sive as depth-first iterative deepening search. But the priority system can also be less effi-
cient because the depth I × S can be much larger than the depth required for depth-first
iterative deepening search. We point out that this comparison is based on worst-case anal-
ysis and does not consider the heuristic effect of the priority system. From our experi-
ence, the priority system generally performs better than pure depth-first iterative deepen-
ing search. Furthermore, the priority list can be implemented using much less space than
the goal queue in the breadth-first [Pearl&Korf 87] search or A* search [Hart&al 68,
Huyn&al 80], since only the priority values need to be stored, which seems to be a signif-
icant advantage.

What is the relationship between the priority system and the conventional best-first
search strategy, or, more specifically, the A* strategy? We note that the priority system is
especially designed for depth-first search. In best-first search, the best subgoal in the
Open list will be worked on next. Thus the priority lists would be redundant since their
purpose is served by the Open list. In best-first search, the search space occupied by some
states will be searched first before the search space occupied by others. That is, we have
an "unbalanced" expansion of the search space based on the priority function. We try to
achieve this effect in our strategy in an iterative deepening fashion with the introduction
of the priority list. In a sense this strategy is a compromise between the best-first search
and the depth-first iterative deepening search. The priority list would usually dictate a
much smaller set of states to explore than the pure depth-first iterative deepening search
which explores all possible states. But the priority list is obviously much less informed
than the global queue. The priority list will also require much less storage to represent
than the subgoal queue would. We can regard the priority system as the iterative-
deepening version of the best-first search. However, the well-known results about A*
search, such as optimality, admissibility, etc, do not hold for the priority system, when the
heuristic functions in A* search are used as the priority functions in the priority system.

What is the relationship between the priority system and the iterative-deepening-A*
search? In iterative-deepening-A* search, the priority function returns the estimate of the
path cost which is analogous to the concept of the depth in the depth-first search. Both are
distance measures. The function of the priority lists can be accomplished by a single
threshold value in the iterative-deepening-A* search. In this sense, the iterative-
deepening-A* search can be regarded as a special case of the priority system where the
priority functions are in a special form. Again, the well-known results about iterative-
deepening-A* search, such as optimality, admissibility, etc, do not hold for the priority
system.

- 63 -

6. Proof Complexity Measures

In this chapter, we will discuss another refinement to the depth-first iterative deepen-
ing search strategy. This refinement is based on the observation that the process of find-
ing a proof is a process of incrementally constructing a ground instance of the input
clauses. This incremental process can be quantified and used to control depth-first itera-
tive deepening search.

6.1. The Basic Idea
Many applications in deductive database, logic programming and theorem proving

require finding instances which satisfy a certain property. For example, a query p(X) to a
database system directs the database system to find an instantiation x for X such that p(x)
is a logical consequence of the facts in the database. In resolution-based theorem proving
systems, proving a theorem is equivalent to finding an inconsistent set of ground clauses
which are instances of the general clauses from the negation of the theorem. Our refine-
ment is based on the observation that search for proofs can be viewed as an incremental
process of building up the required instances. This viewpoint is especially natural for a
back chaining theorem proving system and can be used to control the search process.

Let’s consider the problem reduction format in its purest form [Loveland 78]. One is
given a conclusion G to be established and a set of assertions of the form
L : − L1, L2, . . . , Ln (implications) or L (premises). An implication L : − L1, L2, . . . , Ln is
understood to mean L1 /\ . . . /\ Ln ⊃ L. The L′

is are the antecedents and L is the conse-
quent. The top-level goal will be the conclusion G. To confirm a goal L, one begins with a
search of the premises to see if any premise matches L. If there is such a premise, L is
confirmed. Otherwise, the set of implications is searched and one implication whose con-
sequent matches with L will be selected, if one exists. The antecedents in the implication

- 64 -

will be considered as new goals to be confirmed, much in the same manner as L has been.

If a goal L contains some logical variables, a match with a premise or the conse-
quent of an implication will bind these variables with other structures through unification.
These bindings will increase the complexity of the proof if a variable in L is bound to a
non-variable term, because a structure is more complex than a variable. On the other
hand, if a function symbol in L matches with the same function symbol in a premise or
the consequent of an implication, the complexity of the proof will not be increased. The
complexity of the proof can also be increased if some of the new subgoals L1, L2, . . . , Ln

generated to confirm a goal L are more complex than L.

The search should be controlled to avoid the increases in the complexity of the
proof. This is particularly easy to do in depth-first iterative deepening search, if we can
quantify the increase in the complexity of proofs. We propose a method based on quanti-
fying the complexity of proofs using the proof complexity measure.

6.2. Implementation
To implement the proof complexity measure in the prover, we define the two proce-

dures match_cost and clause_cost used in Figure 2.1. We first define the function com-
plexity for a term t.

complexity(t) =

⎧
⎪
⎨
⎪
⎩

0

n +
n

i=1
Σ complexity(ti)

if t is a variable

if t = f(t1, t2, . . . , tn) and n ≥ 1

For a positive literal L = p(t1, t2 , . . . , tn), we define
complexity(L) = max{complexity(t1) , . . . , complexity(tn)}.

For a neg ative literal N = ¬ L, we define
complexity(N) = complexity(L).

The procedure clause_cost measures the increase of proof complexity in subgoal
generation using the input clauses. Let C denote the input clause L : − L1, L2 , . . . , Ln. We
say that clause C satisfies the variable condition, denoted by variable_condition(C), if
there is a variable V in C such that V occurs more in one of L1, L2 , . . . , Ln than it does in
L. Let

B = max{complexity(L1), complexity(L2) , . . . , complexity(Ln)}

and
H = complexity(L).

- 65 -

we give two definitions for clause_cost, which are called CC1 and CC2 respectively.

CC1: clause_cost(C) =

⎧
⎪
⎨
⎪
⎩

B − H

1

1

0

if B > H

if B = H

if variable_condition(C) and B < H

otherwise

CC2: clause_cost(C) =

⎧
⎪
⎨
⎪
⎩

B − H

1 + ⎣ log3 n⎦
1

0

if B > H

if B = H

if variable_condition(C) and B < H

otherwise

These two definitions obviously favor the input clauses which reduce the complexity of
the goals. The variable condition is introduced to take into consideration that more occur-
rences of a variable in a literal of the clause body will increase the complexity of the sub-
goals during the proof. The logarithmic term in CC2 is introduced to penalize clauses
with large numbers of antecedents since they result in bigger branching factors.

The procedure match_cost can also be defined in different ways. Its purpose is to
determine the complexity increase resulting from binding variables to complex terms as a
result of unification. First we explain how the procedure match introduced in Figure 2.1
works. The procedure call

match(L0, L, [L1, L2 , . . . , Ln], V, [V1, V2 , . . . , Vn])

collects the variables in L0 in the list V, performs the unification operation between L0

and L, then collects the variables in Li in the list Vi (1 ≤ i ≤ n) after the unification opera-
tion. In a call match_cost(L,V), L is the goal and V will be the list of terms bound to the
variables in L. Let

V = [t1, t2 , . . . , tn] and S = [s1, s2 , . . . , sm]

where S is the set of non-variable subterms of t1, t2 , . . . , tn. We giv e two definitions for
match_cost, which will be called MC1 and MC2 respectively.

MC1: match_cost(L, V) =
n

i=1
Σ complexity(ti)

MC2: match_cost(L, V) =
m

i=1
Σ complexity(si)

Note that MC2 does not charge for repeated subterms. The idea is that we can regard a
subterm as a piece of information about the proof. The multiple occurrences of the a sub-
term should be encouraged since this may indicate better concentration of the search pro-
cess.

- 66 -

Consider an example where the goal is p(f(g(a),X)) and the clause is
p(f(X, Y)) : − q(f(X, Y)). The match_cost between p(f(g(a),X)) and p(f(X,Y)) is 0 since
no variable in the goal is bound to a complex term. If the subgoal is p(Y) and the clause is
p(f(g(a, X))) : − q(X), the match_cost between p(Y) and p(f(g(a,X))) is complex-
ity(f(g(a,X))). In general, it is the variable bindings to complex terms in the goals that
increase match_cost.

We hav e experimented with different definitions of match_cost and clause_cost
using the depth prover in Figure 2.10. We use (CC1, MC1) to denote the prover using
CC1 for clause_cost and MC1 for match_cost. The results are shown in Table A.6 in
Appendix A and are summarized in Table 6.1. All four combinations perform well. The
combination (CC2,MC2) appears to be the best in general. No special attention is given
to any individual problem in these experiments.

6.3. Some Examples
We hav e customized the definitions for match_cost and clause_cost to solve sev eral

problems from [Wang&Bledsoe 87], including AM8, GCD, LCM, EXQ1 and EXQ2
[Wang 65]. The basic idea is to favor certain function symbols, certain clauses or certain
terms by charging less for them. The prover without the proof complexity measures can
not solve them as efficiently or can not solve them at all. We will give the details on two
problems.

The greatest common divisor problem (GCD). Let gcd(a,b) be the greatest com-
mon divisor of two positive integers a and b, for any positive integer c, gcd(a × c,b × c) =
gcd(a,b) × c. The first computer proof of this problem is reported in [Wang&Bledsoe 87].
The input clauses are shown in Figure 6.1. The meanings of function and predicate sym-
bols are: g(X,Y,Z) means Z is equal to gcd(X,Y), d(X,Y) means X divides Y, f(X,Y) is
equal to X×Y, k(X,Y) is equal to gcd(X,Y), q(X,Y) is the quotient of X dividing Y, and h
is a skolem function. All variables denote natural numbers. We added three clauses,
d(V,f(X,Y)) : − d(V,f(Y,X)), d(Y,f(X,Y)) and d(f(Y,X), f(Z,X)) : − d(Y,Z), to handle the
commutativity of multiplication function f.

Table 6.1. Summary Data for Proof Complexity Measures

underlying strategy (CC1,MC1) (CC1,MC2) (CC2,MC1) (CC2,MC2)

Av erage Time
Per Theorem

224.30 154.95 158.57 191.95 110.26

- 67 -

We giv e two new definitions for the two functions clause_cost and match_cost.
Clause_cost is defined as follows: (1) It returns 1 if the clause body has extra variables or
the function nesting in the clause body is deeper than that in the clause head. (2) It
returns 0 if the function nesting in the clause head is less or equal to that in the clause
body. Match_cost is defined as follows:

match_cost(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0

0

1

1 + complexity(x) + complexity(y)

3 + complexity(t1) + . . . + complexity(tn)

if t is a variable

if t∈[f(a, c), f(c, a), f(b, c), f(c, b), f(e, c), f(c, e)]

if t is constant symbol

if t = k(x, y)

if t = r(t1, t2, . . . , tn)

where r is any function symbol other than k. These definitions are a customization since
they favor subgoals which are syntactically similar to the theorem, by virtue of containing
the terms appearing in the theorem and terms which have meaning close to the theorem.
Some rewrite rules (demodulators), e.g., re write(f(c,a), f(a,c)) and re write(k(X,X),X), are
used to simplify the subgoals and to convert the equivalent terms to some uniform repre-
sentations. The proof for GCD is shown in Figure 6.2. The prover takes about 310 sec-
onds to get the proof after 38 solutions are generated.

The least common multiple problem (LCM). Let lcm(a,b) be the least common

multiple of two positive integers a and b, lcm(a,b) =
a × b

gcd(a, b)
. The input clauses for

LCM are shown in Figure 6.3. To deal with the commutativity of multiplication function
f, we added two clauses d(v,f(x,y)) : − d(v,f(y,x)) and d(f(y,x),f(z,x)) : − d(y,z). All the
predicate and function symbols have the same meaning as in GCD except that k(X,Y,Z)
means Z is equal to lcm(X,Y).

Similar ideas as those used for GCD are used to solve this problem. The procedure
clause_cost is defined similarly and match_cost is defined as follows, favoring terms
closely related to the theorem.

match_cost(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0

0

1

complexity(x) + complexity(y) + complexity(z)

1 + complexity(t1) + . . . + complexity(tn)

if t is a variable

if t∈[f(a, c), f(a, b), a, b, q(f(a, b), c)]

if t is constant symbol

if t = k(x, y, z)

if t = r(t1, t2, . . . , tn)

where r is any function symbol other than k. The proof for LCM is in Figure 6.4. The
prover takes about 220 seconds to obtain the proof after 35 new solutions are generated.

- 68 -

false : − g(f(a,c),f(b,c),f(e,c)).
g(X,Y,U) : − d(U,X),d(U,Y),d(h(X,Y,U),U).
d(V,f(X,Y)) : − d(V,f(Y,X)).
d(X,f(Y,Z)) : − d(Y,X),d(q(X,Y),Z).
d(X,Z) : − d(X,Y),d(Y,Z).
d(V,U) : − g(X,Y,U),d(V,X),d(V,Y).
d(Y,f(X,Y)).
d(X,f(X,Y)).
d(X,f(Y,Z)) : − d(X,Y).
d(q(X,Y),Z) : − d(X,f(Y,Z)),d(Y,X).
d(k(Y,X),X).
d(k(Y,X),Y).
g(a,b,e).
d(V,k(Y,X)) : − d(V,X),d(V,Y).
d(h(X,Y,U),X) : − d(U,X),d(U,Y), not g(X,Y,U).
d(h(X,Y,U),Y) : − d(U,X),d(U,Y), not g(X,Y,U).
d(f(X,Y),f(X,Z)) : − d(Y,Z).
d(f(Y,X),f(Z,X)) : − d(Y,Z).
not g(f(a,c),f(b,c),f(e,c)).
d(X,q(Y,Z)) : − d(f(X,Z),Y),d(Z,Y).
d(U,Y) : − g(X,Y,U).
d(U,X) : − g(X,Y,U).
d(q(X,X),Y).
d(X,X).

Figure 6.1: Input Clauses of GCD Theorem

- 69 -

false: −[]
g(f(a,c),f(b,c),f(e,c)): −[]

d(f(e,c),f(a,c)): −[]
d(e,a): −[]

input(g(a,b,e))
d(f(e,c),f(b,c)): −[]

d(e,b): −[]
input(g(a,b,e))

d(h(f(a,c),f(b,c),f(e,c)),f(e,c)): −[]
d(h(f(a,c),f(b,c),f(e,c)),k(f(a,c),f(b,c))): −[]

d(h(f(a,c),f(b,c),f(e,c)),f(a,c)): −[]
lemma(d(f(e,c),f(a,c)): −[])
lemma(d(f(e,c),f(b,c)): −[])
input(not g(f(a,c),f(b,c),f(e,c)))

d(h(f(a,c),f(b,c),f(e,c)),f(b,c)): −
lemma(d(f(e,c),f(a,c)): −[])
lemma(d(f(e,c),f(b,c)): −[])
input(not g(f(a,c),f(b,c),f(e,c)))

d(k(f(a,c),f(b,c)),f(e,c)): −[]
d(k(f(a,c),f(b,c)),f(c,e)): −[]

d(c,k(f(a,c),f(b,c))): −[]
input(d(c,f(a,c)))
input(d(c,f(b,c)))

d(q(k(f(a,c),f(b,c)),c),e): −[]
input(g(a,b,e))
d(q(k(f(a,c),f(b,c)),c),a): −[]

input(d(k(f(a,c),f(b,c)),f(c,a)))
lemma(d(c,k(f(a,c),f(b,c))): −[])

d(q(k(f(a,c),f(b,c)),c),b): −[]
input(d(k(f(a,c),f(b,c)),f(c,b)))
lemma(d(c,k(f(a,c),f(b,c))): −[])

Figure 6.2: Proof of GCD Theorem

- 70 -

not lcm(a,b,q(f(a,b),c)).
false : − lcm(a,b,q(f(a,b),c)).
lcm(X,Y,U) : − d(X,U),d(Y,U),d(U,k(Y,X,U)).
d(X,q(Y,Z)) : − d(f(X,Z),Y).
d(q(X,Y),Z) : − d(Y,X),d(X,f(Y,Z)).
g(f(X,Z),f(Y,Z),f(U,Z)) : − g(X,Y,U).
d(V,U) : − g(X,Y,U),d(V,X),d(V,Y).
d(U,f(X,Y)) : − d(U,f(Y,X)).
d(f(X,Y),f(X,Z)) : − d(Y,Z).
d(f(Y,X),f(Z,X)) : − d(Y,Z).
d(X,f(Y,Z)) : − d(X,Y).
d(U,Y) : − g(X,Y,U).
d(U,X) : − g(X,Y,U).
g(a,b,c).
d(X,k(Y,X,U)) : − d(X,U),d(Y,U),not lcm(X,Y,U).
d(Y,k(Y,X,U)) : − d(X,U),d(Y,U),not lcm(X,Y,U).
d(X,X).
d(X,f(X,Y)).
d(q(X,X),Y).
d(X,f(Y,Z)) : − d(q(X,Y),Z),d(Y,X).
d(h(Y,X,U),X) : − not g(X,Y,U),d(U,X),d(U,Y).
d(h(Y,X,U),Y) : − not g(X,Y,U),d(U,X),d(U,Y).
g(X,Y,U) : − d(h(Y,X,U),U),d(U,X),d(U,Y).
d(X,Z) : − d(X,Y),d(Y,Z).

Figure 6.3: Input Clauses for LCM Theorem

6.4. Comments
The idea of using proof complexity measures to control depth-first iterative deepen-

ing search is very intuitive. Although it requires more user interaction, proof complexity
measures are easy to use. More importantly, they can be used to solve more difficult prob-
lems. The proof complexity measures that we use do not charge anything for the matches
between constant symbols (function symbols or predicate symbols) in unification and
usually do not charge anything for a match between variables and constants. As a result,
proof paths which contain fewer variables are favored. This makes our method similar to

- 71 -

false: − []
lcm(a,b,q(f(a,b),c)): − []

d(a,q(f(a,b),c)): − []
d(f(a,c),f(a,b)): − []

d(c,b): − []
input(g(a,b,c))

d(b,q(f(a,b),c)): − []
d(f(b,c),f(a,b)): − []

d(f(b,c),f(b,a)): − []
d(c,a): − []

input(g(a,b,c))
d(q(f(a,b),c),k(a,b,q(f(a,b),c))): − []

d(c,f(a,b)): − []
lemma(d(c,a) : − [])

d(f(a,b),f(c,k(a,b,q(f(a,b),c)))): − []
g(f(a,k(a,b,q(f(a,b),c))),f(b,k(a,b,q(f(a,b),c))),f(c,k(a,b,q(f(a,b),c)))): − []

input(g(a,b,c))
d(f(a,b),f(a,k(a,b,q(f(a,b),c)))): − []

d(b,k(a,b,q(f(a,b),c))): − []
lemma(d(a,q(f(a,b),c)): − [])
lemma(d(b,q(f(a,b),c)): − [])
input(not lcm(a,b,q(f(a,b),c)))

d(f(a,b),f(b,k(a,b,q(f(a,b),c)))): − []
d(f(a,b),f(k(a,b,q(f(a,b),c)),b)): − []

d(a,k(a,b,q(f(a,b),c))): − []
lemma(d(a,q(f(a,b),c)): − [])
lemma(d(b,q(f(a,b),c)): − [])
input(not lcm(a,b,q(f(a,b),c)))

Figure 6.2: Proof of LCM Theorem

the idea of twin symbols in [Wang&Bledsoe 87], although we use depth-first iterative
deepening search and [Wang&Bledsoe 87] uses best-first search.

- 72 -

7. Using Semantic Information

7.1. Overview
It is widely acknowledged that the syntactic approaches alone are not sufficient to

produce a powerful theorem prover; problem domain knowledge must be used [Bledsoe
77, Bledsoe 86, Reiter 76]. For an excellent survey on the various techniques of using
problem domain knowledge, see [Bledsoe 86]. One such technique is to encode problem
domain knowledge in some models or examples which will be used to guide the proof. In
this technique, only the semantically provable paths are pursued, that is, only the goals
which are interpreted to be T in the models (or interpreted to be F if some refutation pro-
cedures are used) will be attempted. In the following, we will call problem domain
domain knowledge semantic information or simply semantics since interpretations are
used to define the semantics of first order logic.

Many inference systems that use semantic information have been studied. Gelern-
ter’s Geometry Theorem Prover [Gelernter 59], which proves theorems in plane geome-
try, is the earliest system, Gelernter’s system uses back chaining and represents semantic
information by diagrams. Subgoals are tested in the diagram and unachievable subgoals
are discarded. The inference system in Gelernter’s system is similar to that of Prolog and
is only complete for Horn clauses. Reiter [Reiter 76] propose a natural deduction system
which uses arbitrary interpretations to delete unachievable subgoals. Reiter’s system is
not complete for first order logic either. The set of support strategy [Wos 65] is a power-
ful and completeness preserving restriction strategy for resolution [Chang&Lee 73]. The
set of support strategy uses some interpretations to divide the clauses set into two subsets,
one of which is satisfiable and the other is called the set of support. Resolution is allowed
between two clauses only if one of the two clauses depends on the set of support. Slagle

- 73 -

[Slagle 67] proposes semantic resolution which is a generalization of hyper-resolution to
arbitrary models. Semantic resolution gives a semantic criterion for restricting which res-
olutions are performed. Sandford [Sandford 80] proposes hereditary lock resolution
which combines lock resolution [Boyer 70] and the model strategy [Luckham 70] and
also gives a semantic criterion for restricting resolutions. No implementation is described
in [Sandford 80]. Wang [Wang 85] proposes semantically guided hierarchical deduction
which uses only false resolvents in some model as goal clauses in the hierarchical deduc-
tion procedure. Wang’s method is complete if the models are designed properly.

We will present a generalization of the modified problem reduction format. The
resulting system, semantic modified problem reduction format, is in the spirit of Slagle’s
system and is developed based on the observations that the modified problem reduction
format selects its inference rules according to a particular interpretation in which all the
positive literals are true. The semantic modified problem reduction format uses an arbi-
trary interpretation for selecting its inference rules and deletes unachievable subgoals
according to the interpretation. It can also use multiple models of a subset of the clause
set to stop application of some inference rule (the case analysis rule). The advantage of
our system over Slagle’s semantic resolution is that the semantic modified problem reduc-
tion format has a natural goal-subgoal structure and supports back chaining. Our infer-
ence system can be regarded as a generalization of Gelernter’s system to first order logic.
It is compatible with the set of support strategy and can use interpretation to suggest
instantiations for free variables in a natural way. Also, a technique similar to the splitting
technique in [Bledsoe 71] can be incorporated into the system.

7.2. Semantic Modified Problem Reduction Format
We generalize the modified problem reduction format as follows. For the moment,

we will assume that, for a set S of clauses, the input clauses include all the contraposi-
tives of the clauses in S and all the clauses of the form false : − L1 , L2 , . . . , Ln where
¬L1 \/ ¬L2 \/ . . . \/ ¬Ln is a clause in S. Given an interpretation M for S, the inference
rules for the semantic modified problem reduction format are in Figure 7.1. The inference
rules in Figure 7.1 differ from those in Figure 2.1 in that, before a subgoal Γ → L can be
solved using the clause rules or the case analysis rule, a semantic test has to be performed
on L to make sure that L is satisfied by the interpretation M.

We will show the soundness and completeness of the semantic modified problem
reduction format. We only deal with the ground case, which can be lifted to first order
logic in the usual way.

- 74 -

Clause Rule for Horn-like Clause false : − L1 , L2 , . . . , Ln

M | =E L, [Γ0 → L1 => Γ1 → L1] , [Γ1 → L2 => Γ2 → L2] , . . . , [Γn−1 → Ln => Γn → Ln]

Γ0 → L => Γn → L

Assumption Axioms

Γ → L => Γ → L if L ∈ Γ L is a literal.

Γ → ¬L => Γ , ¬L → ¬L L is a positive literal.

Case Analysis Rule

M | =E L, [Γ0 → L => Γ1, ¬N → L], [Γ1 , N → L => Γ1 , N → L] |Γ0| ≤ |Γ1|

Γ0 → L => Γ1 → L

Figure 7.1: Semantic Modified Problem Reduction Format

Theorem 7.1 (soundness): If |—SΓ1 → L => Γ2 → L, then list Γ1 is a prefix of list Γ2

and S| == Γ2⊃L.

Proof. We can prove this by induction on the size of the proof, i.e., the number of
times the inference rules are used, making use of the length restriction in the case analy-
sis rule (This theorem is the same as the soundness theorem in [Plaisted 88]). Q.E.D.

Theorem 7.2 (completeness) If a set of clauses S is unsatisfiable and M is an interpreta-
tion for S which interprets false to be T, then |—S → false => |—S → false.

Proof. Let atom(S) denote the set of atoms in S and N-atom(S) denote the set of lit-
erals ¬L where L ∈ atom(S). Let P be the set of literals in S which are interpreted to be T
by M, then P ⊆ atom(S) ∪ N-atom(S) ∪ {false}. For every atom A (∈ atom(S)), either A
∈ P or ¬A ∈ P, but not both. Specifically, false ∈ M. Consider the following set of infer-
ence rules which includes the clause rules of all the contrapositives of clauses in S

L∈P, [Γ0 → L1 => Γ1 → L1] , [Γ1 → L2 => Γ2 → L2] , . . . , [Γn−1 → Ln => Γn → Ln]

Γ0 → L => Γn → L

plus the assumption axioms

- 75 -

Γ → L => Γ → L if L ∈ Γ

Γ → L => Γ , L → L if ¬L ∈ P

and the case analysis rule

L∈P, ¬N∈P, [Γ0 → L => Γ1, N → L], [Γ1 , ¬N → L => Γ1 , ¬N → L] |Γ0| ≤ |Γ1|

Γ0 → L => Γ1 → L

This system is complete from the proof of Theorem 1.2 [Plaisted 88], if we regard all the
literals in P as positive and all other literals as negative. The completeness of our system
follows if we observe that, if we use the assumption axioms and case analysis rule as
shown in Figure 7.1, we are merely fixing the order of the two cases for each application
of the case analysis rule. Obviously it does not matter in which order the case analysis is
done. Q.E.D.

7.3. Discussions
The modified problem reduction format can be regarded as a special case of the

semantic modified problem reduction format where M = atom(S) ∪ {false}. However,
this generalization has some advantages over the modified problem reduction format. We
will discuss them in this section.

7.3.1. Strengthening the System
The semantic modified problem reduction format can be made stronger than pre-

sented above in sev eral ways. First, consider the input clause L : − L1 , L2 , . . . , Ln. M is
the interpretation used. Suppose a subgoal Γ0 → L is being attempted during the proof.
The use of the clause rule

M | =E L, [Γ0 → L1 => Γ1 → L1] , [Γ1 → L2 => Γ2 → L2] , . . . , [Γn−1 → Ln => Γn → Ln]

Γ0 → L => Γn → L

can be stopped if there exists a literal Li among L1, L2 , . . . , Ln such that Li is a positive
literal and M |≠E Li and Li ∈/ Γ0. This is because when Γi−1 → Li is attempted, the only
way to solve it is to use the assumption axiom. But it is impossible to have any extra posi-
tive literal in Γi−1 other than those already in Γ0, since the assumption axiom only adds
negative literals and the case analysis rule, although adding positive literals, will remove
them itself. Second, a new solution Γ0 → L need not be recorded, in case caching is per-
formed, if M |≠E L, since the subgoals of the form Γ → L will never be attempted except
using the assumption axioms. Finally, consider the clause L : − L1, L2 , . . . , Ln. If M |≠E

L, the corresponding clause rule will never be used in the inference system. Thus we
need not include such clauses in our input. In general, we only need to include those

- 76 -

clauses whose heads are existentially satisfied by M.

7.3.2. Set of Support Strategy
The set of support strategy [Wos 65] is a powerful and completeness preserving

restriction strategy for resolution. This strategy divides a clause set S into two sets A and
T where S = A ∪ T and A ∩ T = ∅. A usually represents the axioms and the special
hypotheses and is satisfiable and T represents the negation of the theorem and is called
the set of support. A resolution operation is only allowed for two clauses if at least one of
them comes from the set of support T. The modified problem reduction format is not
compatible with the set of support strategy because its goal clauses are always all-
negative clauses which do not always come from the negation of the theorem. We will
show that semantic modified problem reduction format is compatible with the set of sup-
port strategy. In fact, we will show in Theorem 7.3 that it is only necessary to have one
goal clause according to some interpretation M (a goal clause is a clause whose clause
head is the literal false), which is a somewhat stronger result. This means that we need
not include all the clauses of the form false : − L1, L2 , . . . , Ln where ¬L1 \/ ¬L2 \/ . . . \/
¬Ln is a clause, contrary to what we stated earlier.

Theorem 7.3: If a set of clauses S is unsatisfiable, then there is an interpretation M, a
subset S1 of S and a clause G ∈ S1, such that, M | =U S1 − {G} and S1 is unsatisfiable.

Proof. Assume that S = A ∪ T, A ∩ T = ∅, T ≠ ∅ and A is satisfiable. Further
assume T = {C1, C2 , . . . , Cn}. If there exists an interpretation I such that M | =U A and
M | =U Ci (i = 1, 2 , . . . , n−1) and M |≠U Cn, we are done since we can let S1 = S, G = Cn

and M = I. S1 is obviously unsatisfiable. If there is no such an interpretation, we have |==
(A ∪ {C1, C2 , . . . , Cn−1}) ⊃ Cn, that is, (A ∪ {C1, C2 , . . . , Cn−1}) ⊃ Cn is valid. Thus A
∪ {C1, C2 , . . . , Cn−1} = S0 is unsatisfiable since S is. We can apply the same argument to
S0. Q.E.D.

7.3.3. Multiple Models
The inference system allows limited use of multiple models to delete unachievable

subgoals. Consider the case analysis rule, where M is the interpretation used,

M | =E L, [Γ0 → L => Γ1, ¬N → L], [Γ1 , N → L => Γ1 , N → L] |Γ0| ≤ |Γ1|

Γ0 → L => Γ1 → L

Suppose the clause set is S = S0 ∪ {G} where G is the only goal clause. We may have
several models M1 , . . . , Mk for S0. In this event, the application of the case analysis rule
can be stopped if there exists a Mj among M1 , . . . , Mk such that Mj |≠E Γ1 → L. This fol-
lows from the soundness theorem since S0 |== Γ1 → L and G is the only goal clause.

- 77 -

7.3.4. Gelernter’s method
The earliest and perhaps most successful example of using semantics could be Gel-

ernter’s Geometry Engine[Gelernter 59], which proves theorems in plane geometry,
where diagrams are used as interpretations and the subgoals unachievable in the diagram
are discarded. Gelernter’s Geometry Engine uses an interpretation, which is usually a dia-
gram, and a set of inference rules of the form

G1 , G2 , . . . , Gn

G

where G1 /\ G2 /\ . . . /\ Gn ⊃ G is an axiom or a hypothesis. We call G’s goals or sub-
goals. The inference system is in problem reduction format of the purest form [Loveland
78]. and is that of Prolog and only complete for Horn Clause Logic [Lloyd 84]. A rule
can be used only if the goal G is interpreted to be T by the interpretation.

If the clause set consists of only Horn clauses and the interpretation only interprets
positive literals to be T, the semantic modified problem reduction format is the same as
Gelernter’s method. Since it is complete for first order logic, the semantic modified prob-
lem reduction format is a generalization of Gelernter’s method to first order logic.

7.3.5. Other Refinements
Limiting variable instantiations. When a subgoal Γ → L is attempted, if there are

only a few, or possibly one, instantiations for some variables in Γ → L which make the
subgoal true in the interpretation, we can limit all the future instantiations for these vari-
ables to those few.

Splitting technique. In [Bledsoe 71], the splitting technique is proposed where, to
prove a theorem A /\ B, A and B are proven as separate theorems. A similar technique
can be used in our system by making use of the assumption list. The inference rule

Γ , ¬L → L

Γ → L

is sound since it is a special case of the case analysis rule

[Γ → L => Γ, L → L] [Γ, ¬L → L => Γ, ¬L → L]

Γ → L => Γ → L

where Γ → L => Γ, L → L is the assumption axiom in the semantic modified problem
reduction format.

The splitting technique as presented has some advantages. First, we can make use of
the unit fact which is the negation of the subgoal via the assumption axiom. This can be
regarded as a limited use of the ancestry resolution as in the Model Elimination

- 78 -

[Loveland 69] or SL-Resolution [Kow alski&Kuehner 71]. Second, the search can be bet-
ter directed since we can start a new search on the goal Γ, ¬L → L, which is easy since
back chaining is supported by the inference system. However, this technique is powerful
only if we can effectively identify the important subproblems and is admittedly difficult
to control, since it can be used to solve any goal. Some heuristics or user guidance is usu-
ally needed. One useful criterion for using the technique to solve a goal Γ → L is that L
is interpreted to be T by the interpretation and L is a frequently encountered subgoal or is
a subgoal of the top-level goal.

A set theoretic problem can be used to illustrate splitting as a proof technique: A ∩
B = B ∩ A ([McCharen&al 76]). To show two sets A and B are equal, it suffices to prove
A ⊆ B and B ⊆ A. To prove A ∩ B = B ∩ A, the following subgoals are generated:

(1) false : − []

(2) A∩B = B∩A : − []

(3. 1) A∩B⊆B∩A : − [] (3. 2) B∩A⊆A∩B : − []

Subgoal (3.1) can be proven by proving A∩B⊆B∩A : − [¬(A∩B⊆B∩A)] and subgoal
(3.2) can be solved by proving B∩A⊆A∩B : − [¬(B∩A⊆A∩B)].

7.3.6. Contrapositives
The Prolog-style extension to first order logic (non-Horn clauses) using the Model

Elimination procedure [Loveland 69] requires the use of all the contrapositives if the
clause set contains non-Horn clauses [Stickel 88]. The modified problem reduction for-
mat, on the other hand, does not need any contrapositive at all. Using contrapositives
sometimes reduces efficiency since it increases the number of clauses. More importantly,
though, it can lead to unnatural search behavior and make the search process difficult to
control. See [Plaisted 88] for some examples. However, our experience has shown that,
especially for non-Horn problems, some contrapositives can significantly improve the
efficiency of the prover using the modified problem reduction format. The reason is that
contrapositives may reduce the number of case analyses by performing unit resolution
using negative literals [Chang 70, Overbeek&al 76]. For example, consider a ground ver-
sion for part of the intermediate value theorem. Using the clause set in Figure 7.2, a proof
will need two case analyses if the case analysis is done at the top-level (at the subgoal of
the form false : − Γ). They correspond to the four cases ([¬ B, ¬ E], [B, ¬ E], [¬ B, E], [B,
E]). A proof which needs no case analyses at all can be found if we use the set of clauses
in Figure 7.3, which includes some contrapositives.

- 79 -

FALSE : − A.
A : − ¬B, C, D.
D : − ¬E.
E : − B.
A : − E.
C : − D.

Figure 7.2: An Example on Contrapositive

The problem is to decide which contrapositives to use. A semantics-based solution
would be best since each input clause represents a potential proof path for some goals,
and all the proof paths should be semantically provable. The semantic modified problem
reduction format provides such a solution by making use of the problem domain knowl-
edge represented in an interpretation. Given an interpretation M for a set S of clauses, we
need only include the Horn-like clauses whose clause heads are existentially satisfied by
M. We require existential satisfiability since the inference system is a refutational sys-
tem. This point will become clearer in the discussion on interpretations.

Interpretations. As we hav e noted, given a set of clauses S and an interpretation M
for S, we only need to have, as input clauses, those whose clause heads are existentially

FALSE : − A.
¬A.
A : − ¬B, C, D.
D : − ¬E.
¬B : − ¬E.
¬E : − ¬A.
C : − D.

Figure 7.3: An Example on Contrapositive (cont.)

- 80 -

satisfied by M. The problem of how to design a suitable interpretation for a given theo-
rem is not a trivial one. It is difficult to automate, since problem domain knowledge is
usually required and it is hard to give a precise description of what is a suitable interpre-
tation. The difficulty for a human in designing an interpretation lies in the interpretation
of the skolem functions.

A method for designing interpretations for a set of clauses is proposed in [Wang 85].
The basic idea of Wang’s method is to put together all the clauses containing the same
uninterpreted symbol, which are often skolem function symbols, and use some interpreta-
tion rules to interpret the uninterpreted symbol. It is a general method and can be slightly
modified to select the input clauses for our system. We will briefly present the modified
method.

Given a natural interpretation I for a theorem and the natural interpretations for the
function symbols and predicate symbols, we need to interpret the uninterpreted symbols.
We call a simplified first-order formula an interpretation normal form (INF) if it is in the
following form:

L1 \/ . . . \/ Lk \/ [C1 /\ . . . /\ Ch]

where Li’s are literals and Ci’s are clauses. The concept of INF is defined so that all the
clauses containing the same uninterpreted symbol can be grouped together in one INF.
Note that, corresponding to each INF L1 \/ . . . \/ Lk \/ [C1 /\ . . . /\ Ch], there is an equiv-
alent set of clauses L1 \/ . . . \/ Lk \/ C1, L1 \/ . . . \/ Lk \/ C2 , . . . , L1 \/ . . . \/ Lk \/ Ch.
There are two special cases of INF: a clause L1 \/ . . . \/ Lk is in INF form where h = 1
and C1 = (denotes the empty clause) and a formula C1 /\ . . . /\ Ch is in INF form
where k = 1 and L1 = .

There are two interpretation rules for a formula in INF form. These two interpreta-
tion rules can be used to select all the necessary contrapositives when the two interpreta-
tion rules are applied. For each interpretation instance of an INF form

L1 \/ . . . \/ Lk \/ [C1 /\ . . . /\ Ch]

R1 if I | =E [¬L1 /\ . . . /\ ¬Lk], then for each i (1 ≤ i ≤ h), I | =U Ci, except when Ci is the
negation (or part of) of the theorem. This rule simply states that the interpretation
should satisfy all axioms and hypotheses of the theorem. Note that each Ci

(1 ≤ i ≤ h) is a clause. Let some Ci be the clause N1 \/ N2 \/ . . . \/ Nn. Each Nj (1 ≤
j ≤ n) would be the head of some Horn-like clause. However, if for some Ns

(1 ≤ s ≤ n), I |≠E Ns, we need not to have the Horn-like clause whose head is Ns for
the simple reason that the clause would never be used if it were an input clause. If
for some j, I |≠E Cj, we will have a goal clause false : − ¬L1 , . . . , ¬Lk , ¬Cj, with a

- 81 -

little misuse of notation.

R2 if I | =U [L1 \/ . . . \/ Lk], then there should be at most one i (1 ≤ i ≤ h), I | =E ¬Ci.
This rule simply states that there should be at most one proof path for any subgoal.
Each Li (1 ≤ i ≤ h) would be the clause head of some Horn-like clauses. For the
same reason, we need not have those Horn-like clauses whose head is Ls (1 ≤ s ≤ h)
where I |≠E Ls. If I | =E Lm (1 ≤ m ≤ h), we would have, again, with a little misuse
of notation, the following Horn-like clauses

Lm : − ¬L1 , . . . , ¬Lk , ¬C1.
Lm : − ¬L1 , . . . , ¬Lk , ¬C2.

. . .

Lm : − ¬L1 , . . . , ¬Lk , ¬Ch.

Consider the task of proving Lm. Rule R2 states that there should be only one rule
for proving Lm since there is at most one Cj such that I | =E ¬Cj.

7.4. Some Examples
It is easy to implement the semantic modified problem reduction format, using the

existing implementation of the modified problem reduction format in Chapter 2. We only
need to add the necessary Prolog procedures to perform the semantic test. We will discuss
several examples and show some experimental results.

Intermediate Value Theorem (IMV). If a function f is continuous in a real closed
interval [a, b], where f(a) ≤ 0 and f(b) ≥ 0, then ∃ x [(a ≤ x) /\ (x ≤ b) /\ (f(x) = 0)]. The
input clauses of IMV are shown in Figure 7.4. In Figure 7.4, p(X, Y) means X ≤ Y, a and
b are the endpoints of a closed interval [a, b], f is a continuous function in [a, b], k, h and
g are skolem functions. Some discussion of this problem can be found in [Ballan-
tyne&Bledsoe 82, Bledsoe 82]. This problem is interesting for us because several tech-
niques contribute to solving it.

We hav e designed an interpretation for IMV using the method described in Section
7.3. At the same time, we select the necessary contrapositives based on the resulting
interpretation. Some contrapositives are determined to be unnecessary. For example, one
of the clauses in Figure 7.4 is

p(f(x),0) \/ ¬p(a, x) \/ ¬p(x, b) \/ ¬p(x, h(x))

Note that any reasonable interpretation will not interpret ¬p(a, x) or ¬p(x, b) to be T. Thus
the Horn-like clauses with ¬p(a, x) or ¬p(x, b) as heads are unnecessary.

The top-level goal for IMV is ∃ x [f(x) = 0], which is instantiated to f(d) = 0 using
the interpretation. From the interpretation for the predicate p, we get two subgoals p(f(d),

- 82 -

p(a, b).
p(f(a), 0).
p(0, f(b)).
p(X, d) : − p(X, b), p(f(X), 0).
p(f(g(X)), 0) : − not(p(d, X)).
p(g(X), b) : − not(p(d, X)).
p(d, X) : − p(g(X), X).
p(X, X).
p(X, Z) : − p(X, Y), p(Y, Z).
p(X, Y) : − not(p(Y, X)).
p(X, Y) : − p(X, q(Y, X)).
p(X, Y) : − p(q(Y, X), Y).
p(f(X), 0) : − p(a, X), p(X, b), p(X, h(X)).
p(f(X), 0) : − not(p(Z, h(X))), p(a, X), p(X, b), p(Z, X), p(f(Z), 0).
p(0, f(X)) : − p(a, X), p(X, b), p(k(X), X).
p(0, f(X)) : − not(p(k(X), Z)), p(a, X), p(X, b), p(X, Z), p(0, f(Z)).
false : − p(f(X), 0), p(0, f(X)).

Figure 7.4: Input Clauses for IMV Theorem

0) and p(0, f(d)). The splitting technique is used to solve these two subgoals separately,
much like a human would do for this problem. Our prover fails to obtain a proof for IMV
without the contrapositives. With the contrapositives and without using the splitting tech-
nique, a prover takes about 15,000 seconds to obtain the proof. More than 45,000 infer-
ences are performed. The prover is able to obtain a proof in about 200 seconds using the
splitting technique and the contrapositives. However, if we delete the ground subgoals
interpreted to F in the interpretation, the prover obtains a proof in about 300 seconds
using the splitting technique and the contrapositives.

Schubert’s Statement [Walther 84]. This problem has been the subject of much
study. We hav e done several experiments on it. The prover gets a proof for this problem
in 748 seconds, without any contrapositive. 8921 inferences are performed. With all the
contrapositives, the prover takes 730 seconds to get a proof. 7939 inferences are per-
formed. For some reason, it does not makes a big difference if an interpretation is used to
delete false subgoals. The proof obtained using contrapositives is much smaller than the

- 83 -

one without contrapositives.

Attaining Minimum (or Maximum) Theorem (AM8). A continuous function f in
a closed real interval [a, b] attains its minimum (or maximum) in this interval
[Wang&Bledsoe 87]. Some contrapositives are added when we design an interpretation
for the input clauses of this problem. Without the contrapositives, the prover did not
obtain a proof. The prover finds a proof in about 2 hours with the contrapositives. A look
at the proof tells why. The added contrapositives reduce the number of case analyses by
solving many neg ative subgoals directly.

7.5. Comments
We hav e presented a generalization of the modified problem reduction format, the

semantic modified problem reduction format. The resulting system supports back chain-
ing and is compatible with the set of support strategy. It allows the deletion of false sub-
goals in some interpretation. What is most interesting about our system is probably that it
provides an answer to the problem about how contrapositives are handled in similar sys-
tems. It seems that similar back chaining systems can not be compatible with the set of
support strategy without using contrapositives. The semantic modified problem reduction
format can still benefit from the set of support strategy while not needing to use all the
contrapositives. This is not without cost, however. The user has to provide an interpreta-
tion and the necessary contrapositives, although the process of selecting the contraposi-
tives can be automated if the user provides the interpretation.

- 84 -

8. Conclusions

8.1. Comparison with Other Provers
How does our theorem prover compare with other similar theorem provers? We

have tested two other well known theorem provers using our test problem set. These two
provers have been used to solve many problems efficiently, some of them are open prob-
lems. One of them is the resolution-based theorem prover OTTER [McCune 88]. The
other is the SHD-prover dev eloped by T.C. Wang [Wang 86]. We show the performance
statistics of the two provers on the test problems in Appendix B and Appendix C.

Before we make any comment on the test results, we have to concede that it is diffi-
cult to compare different theorem provers. One reason is that different theorem provers
are designed for different purposes. For example, the theorem prover by Boyer and
Moore [Boyer&Moore 86] is primarily for proof checking, which requires a lot of user
interaction. The theorem prover by Greenbaum [Greenbaum 87] is designed to be used
with as little user interaction as possible. Another reason is that different theorem provers
use different problem representations. While the most common is the clause form repre-
sentation, other representations are also used. An example is the computational logic in
[Boyer&Moore 79]. Yet another reason is that different theorem provers use different
implementation techniques and different implementation languages. Finally, people who
undertake the task of comparing different theorem provers may understand one prover
better than others.

OTTER, SHD-prover and our theorem prover all use the clause form representation.
None of them needs any user interaction during the proof process. During our experi-
ments, we have only used the default strategies without any special attention to any indi-
vidual problem. We hav e been also very careful to prepare the problem input to OTTER

- 85 -

and SHD-prover so that the best possible results be obtained. We hope these precautions
will offset some of the difficulties mentioned above to giv e us an objective view of how
well our theorem prover performs.

We think the performance of our prover is comparable with OTTER and SHD-
prover on our test problem set, in spite of the fact that our prover is implemented in Pro-
log. OTTER seems to perform best. However, we hav e to be very careful to select the
right set of support when using OTTER. Failure to do so often leads to much poorer per-
formance. SHD-prover seems to be erratic, especially when dealing with problems con-
taining equality axioms. On the other hand, OTTER could not prove some problems
(LCM, IMV, GCD, AM8) which are efficiently solved by SHD-prover. The reason is that
SHD-prover uses a priority structure which suits these problems.

8.2. Summary
Larry Wos published his book "Automated Reasoning: 33 Basic Research Prob-

lems" [Wos 33] in order to promote research. All the topics in this thesis can be consid-
ered as an attempt to solve some problems in [Wos 88], although they are mainly con-
cerned with the implementation of a particular theorem prover. As we hav e stated at the
beginning of the thesis, and demonstrated throughout the thesis, that there are many
important issues involved in the implementation of a theorem prover and quite a number
of them are of general interest. For theorem prover to be successful, both syntactic knowl-
edge and semantic knowledge should be used. It is interesting to note how far the pure
syntactic approaches based on resolution has brought us in the field of automatic theorem
proving and we think it is important to recognize the importance of using the syntactic
knowledge.

Caching. The purpose of caching is to avoid repeated work in depth-first iterative
deepening search. We hav e discussed how caching is implemented with DFID and have
shown that the theorem prover using DFID with caching is very competitive in compari-
son with other theorem provers, in spite of the limitation of the implementation language.
People who use DFID to implement theorem provers should consider caching a serious
option, especially when the inference rate is slow, making it prohibitively expensive to
repeat work. However, when the inference rate is high enough, caching may not help. We
regard the work on goal generalization as an attempt to make caching more space-
efficient, by deriving and recording the most general solutions possible. This is a tech-
nique that can be applied to other back chaining systems.

Subgoal Reordering. Subgoal reordering is made possible by the linear structure of
the modified problem reduction format. However, it is usually difficult to perform subgoal
reordering properly, due to the lack of knowledge about the problem domain

- 86 -

[Smith&Genesereth 85]. We hav e investigated and experimented with many different
heuristics for performing subgoal reordering. One general heuristic suggests itself from
our experiments: We should always favor the subgoal that contains more information
(with larger size or more complex structure, e.g.). This is a good heuristic because (1) a
subgoal containing more information is more important and should be attempted first, and
(2) solving a subgoal containing the most information will often be easier because we can
be better guide it and we can detect the failure of solving it earlier. Although the issue of
ordering subgoals has been raised before, our work has demonstrated that, in the context
of theorem proving, there is a general heuristic for performing the task.

Priority. The power of depth-first iterative deepening search is limited because it
can not use priority. It is essential that the search strategy of a theorem prover be able to
use priority to control the search. Although depth-first iterative deepening search can uti-
lize the information given by the heuristic functions using iterative-deepening-A* search,
it can not use the information given by the priority functions in the more general best-first
search. Furthermore, good heuristic functions in A* search are rarely available. We pro-
pose two refinements to incorporate priority into depth-first iterative deepening search.
The first refinement is the priority system, which can be regarded as a depth-first iterative
version of the best-first search. The second refinement is the use of proof complexity
measures, based on viewing the process of finding a proof as one of incrementally con-
structing an instance of the input clauses. These two refinements can be useful in many
situations. Our experiments with priority systems suggest that we should favor subgoals
that are simple, that is, those with small size or less complex structure.

The experiments with subgoal reordering suggest that we should prefer subgoals
containing more information. The experiments with priority systems, on the other hand,
suggest that we should prefer simple subgoals. This, however, is not a contradiction. Sub-
goal reordering considers ordering conjunctive subgoals, that is, subgoals that have to be
solved simultaneously; these subgoals belong to one proof. A priority system, on the
other hand, considers disjunctive subgoals, that is, subgoals of which only one needs to
be solved. Thus, the underlying heuristics suggested by both subgoal reordering and pri-
ority system is that we should control the search so that it favors the simplest proof and it
uses the information about the proof as early as possible.

Semantics. We dev eloped a semantic version of the modified problem reduction for-
mat, the semantic modified problem reduction format. This inference system seems to be
the first complete back chaining inference system which allows semantic deletion and is a
set of support strategy. Using set of support strategy is important this strategy is still one
of the most powerful in automatic theorem proving. An interesting point about this infer-
ence system is its treatment for contrapositives. As we have pointed out, the main

- 87 -

problem with contrapositives is to identify which one to use. This inference system
selects the contrapositives in a semantic way, by using a particular interpretation.

8.3. Future Research
Automatic theorem provers have already been used to solve open problems in math-

ematics, to help people prove difficult mathematical theorems, and to verify hardware and
software designs. I believe that the power of automatic theorem provers will steadily
increase, as old techniques are improved, new techniques and technology are developed
and applied and new problems are solved. We will present several problems which can be
topics for future research and development to increase the power of this theorem prover.

1 There are several ways of encoding problem dependent knowledge in the theorem
prover. We can use problem domain knowledge to design priority functions, to per-
form subgoal reordering, to add contrapositives, to design special proof complexity
measures and to design models to delete unachievable subgoals. It would be interest-
ing to adapt the theorem prover to some special class of problems where concrete
problem domain knowledge is available. Research on this problem could produce a
powerful "special-purpose" theorem prover.

2 The inference rate of the theorem prover could be significantly increased if we used
an appropriate data structure to implement caching. One such data structure is the
discrimination net [Greenbaum 86]. However, the expected improvement in effi-
ciency is not likely to be gained if the data structure is implemented in Prolog itself,
due to the necessary and extensive use of assertions and retractions to implement the
data structure [Nie&Plaisted 87b]. Possible alternatives are to implement the theo-
rem prover in some language like C or to use the foreign function interface available
in some Prolog systems.

3 Many applications in program and hardware verification require extensive use of
induction. Adding an inductive capability to the theorem prover is another topic for
future research.

- 88 -

Bibliography

[Ballantyne&Bledsoe 82] Ballantyne, A and W.W. Bledsoe, "On Generating and Using
Examples in Proof Discovery", Machine Intelligence, Vol. 10, pp. 3-39, Harwood,
Chichester 1982.

[Bledsoe 71] Bledsoe, W.W., "Splitting and Reduction Heuristics in Automatic Theorem
Proving", Artificial Intelligence, Vol. 2, pp. 55-77, North-Holland Publishing
Company, 1971.

[Bledsoe&al 72] Bledsoe, W.W., R.S. Boyer and W.H. Henneman, "Computer Proofs of
Limit Theorems", Artificial Intelligence, Vol. 3, pp. 27-60, North-Holland Pub-
lishing Company, 1972.

[Bledsoe 77] Bledsoe, W.W., "Non-resolution Theorem Proving", Artificial Intelligence,
Vol. 9, pp. 1-35, North-Holland Publishing Company, 1977.

[Bledsoe 82] Bledsoe, W.W., "Using Examples to Generate Instantiations for Set Vari-
ables", Technical Report No. ATP-67, Department of Computer Science, Univer-
sity of Texas at Austin, July 1982.

[Bledsoe 83] Bledsoe, W.W., "The UT Interactive Prover", Technical Report No.
ATP-17B, Department of Computer Scienc, University of Texas at Austin, Apirl
1983.

[Bose&al 88] Bose, S., E.M. Clarke, D.E. Long and S. Michaylov, "Parthenon: A Parallel
Theorem Prover for Non-Horn Clauses", Technical Report No. cmu-cs-88-137,
Computer Science Department, Carnegie Mellon University, 1988.

[Boyer 70] Boyer, R., "Locking: A Restriction of Resolution", Ph.D. dissertation, Univer-
sity of Texas at Austin, Austin, TX, 1970.

[Boyer&Moore 79] Boyer, R.S. and J.S. Moore, A computational logic, Academic Press,
New York, 1979.

- 89 -

[Boyer&Moore 86] Boyer, R.S. and J.S. Moore, "Overview of a theorem-prover for a
computational logic", 8th International Conference on Automated Deduction,
Oxford, England, July 1986.

[Chang 70] Chang, C.L., "The Unit Proof and the Input Proof in Theorem Proving",
JA CM, Vol. 17, pp. 698-707, 1970.

[Chang&Lee 73] Chang, C and R. Lee, "Symbolic Logic and Mechanical Theorem Prov-
ing", Academic Press, New York, 1973.

[Fleisig&al 74] Fleisig, S., D. Loveland, A.K. Smiley and D.L. Yarmush, "An Implemen-
tation of the Model Elimination Proof Procedure", JA CM, Vol. 21, No. 1, pp.
124-139, 1974.

[Gallier 86] Gallier, J.H., "Logic for Computer Science: Foundations of Automatic Theo-
rem Proving", Harper & Row, New York, 1986.

[Gelernter 59] Gelernter, H., "Realization of a Geometry Theorem-Proving Machine",
Proc. ICIP, pp. 273-282, Paris UNESCO House, 1959.

[Greenbaum 86] Greenbaum, S., "Input Transformation and Resolution Implementation
Techniques for Theorem Proving in First-Order Logic", Ph.D. Dissertation, Com-
puter Science Department, University of Illinois at Urbana-Champaign, 1986.

[Harmelen&Bundy 88] Harmelen, F. and A. Bundy, "Explanation-Based Generalization =
Partial Evaluation", Artificial Intelligence 36, pp. 401-412, 1988.

[Hart&al 68] Hart, P.E., N.J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths", IEEE Trans. on Sys. Sci. and Cybernet-
ics, July 1968.

[Henschen&al 74] Henschen, L. and L. Wos, "Unit Refutations and Horn Sets", J. ACM
21 (1974), pp 590-605.

[Huyn&al 80] Huyn, N., R. Dechter and J. Pearl, "Probabilistic Analysis of the Complex-
ity of A*", Artificial Intelligence, Vol. 15, pp. 241-254, 1980.

[Kedar-Cabelli&McCarty 87] Kedar-Cabelli, S.T. and L.T. McCarty, "Explanation-Based
Generalization as Resolution Theorem Proving", In P. Lanley, editor, Proceedings
of the 4th International Machine Learning Workshop, pp. 383-389, Morgan Kauf-
mann, 1987.

[Kling 71] Kling, R.E., "A Paradigm for Reasoning by Analogy", Artificial Intelligence,
Vol. 2, pp. 147-178, North-Holland Publishing Company, 1971.

[Korf 85] Korf, R.E., "Depth-first Iterative Deepening: an Optimal Admissible Tree
Search", Artificial Intelligence, Vol. 27, 97-109, 1985.

[Kow alski 70] Kow alski, R., "Search Strategies for Theorem-Proving", Machine Intelli-
gence, Vol. 5, pp. 181-201, 1970.

[Kow alski&Kuekner 71] Kow alski, R. and D. Kuekner, "Linear Resolution with Selection
Function", Artificial Intelligence, Vol. 2, pp. 227-260, 1971.

- 90 -

[Lloyd 84] Lloyd, J.W., Foundations of Logic Programming, New York , NY, Springer-
Verlag.

[Loveland 69] Loveland, D.W., "A Simplified Format for the Model Elimination Theo-
rem-Proving Procedure", J. ACM, Vol. 16, No. 3, pp. 349-363, July 1969.

[Loveland 78] Loveland, D.W., "Automated Theorem Proving: a Logical Basis", North-
holland Publishing Co., 1978.

[Loveland 87] Loveland, D.W., "Near-Horn Prolog", Technical report CS-1987-14,
Department of Computer Science, Duke University, April, 1987.

[Loveland 88] Loveland, D., "Near-Horn Prolog and Beyond", Technical Report
#CS-1988-25, Computer Science Department, Duke University, Durham, 1988.

[Luckham 70] Luckham, D., "Refinement Theorems in Resolution Theory", Proc. IRIA
Symp. Automatic Demonstration, Versailles, France, 1968, Springer-Verlag, New
York, pp. 163-190, 1970.

[McCharen&al 76] McCharen, J.D., R.A. Overbeek and L.R. Wos, "Problems and Exper-
iments for and with Automated Theorem-Proving Programs", IEEE Transactions
on Computers, Vol. C-25, No. 8, August 1976.

[McCune 88] McCune, W.W., "Otter 1.0 User’s Guide", ANL-88-44, Mathematics and
Computer Science Division, Argonne National Laboratory, 1988.

[Mitchell&al 86] Mitchell, T.M., R.M. Keller and S.T. Kedar-Cabelli, "Explanation-
Based Generalization: A Unifying View", Maching Learning, Vol. 1, No. 1, pp.
47-80, 1986.

[Nevins 74] Nevins, A.J., "A Human Oriented Logic for Automatic Theorem-proving", J.
ACM, Vol. 21, No. 4, pp. 606-621, Oct. 1974.

[Newell&Simon 72] Newell, A. and H.A. Simon, "Human Problem Solving", Englewood
cliffs, NJ, Prentice-hall, 1972.

[Nie&Plaisted 87a] Nie, X. and D.A. Plaisted, "Some Experimental Results on Dynamic
Subgoal Reordering", TR-87-027, Dept. of Computer Science, UNC Chapel Hill,
September, 1987.

[Nie&Plaisted 87b] Nie, X. and D.A. Plaisted, "Implementation of SPRFN - A Natural
Deduction Theorem Prover", TR-87-28, Dept. of Computer Science, UNC Chapel
Hill, September 1987.

[Nilsson 80] Nilsson, N.J., "Principles of Artificial Intelligence", Tioga Publishing Com-
pany, Palo Atlo, California, 1980.

[Overbeek&al 76] Overbeek, R, J. MeCharen and L. Wos, "Complexity and Related
Enhancements for Automated Theorem-Proving Programs", Comp. & Math. with
Appls, Vol. 2, pp. 1-16, 1976.

[Pearl 83] Pearl, J., "Heuristic Search Theory: Survey of Recent Results", Proc. of IJCAI,
pp. 554-562, 1983.

- 91 -

[Pearl&Korf 87] Pearl, J., and R.E. Korf, "Search Techniques", Ann. Rev. Comput.Sci.,
pp. 451-467, Vol 2, 1987.

[Pelletier 86] Pelletier, F.J., "Seventy-five problems for testing automatic theorem
provers", J. of Automated Reasoning, Vol. 2, pp. 191-216, 1986.

[Plaisted 82] Plaisted, D.A., "A Simplified Problem Reduction Format", Artificial Intelli-
gence, Vol. 18, pp. 227-261, 1982.

[Plaisted 84a] Plaisted, D.A., "The Occur-Check Problem in Prolog", Journal of New
Generation Computing 2, pp. 309-322, 1984.

[Plaisted 84b] Plaisted, D.A., "Using Examples, Case Analysis, and Dependency Graphs
in Theorem Proving", 7th International Conference on Automated Deduction,
Napa, California, May 1984.

[Plaisted&Greenbaum 84] Plaisted, D.A. and S. Greenbaum, "Problem Representations
for Back Chaining and Equality in Resolution Theorem Proving", First Annual AI
Applications Conference, Denver, Colorado, December 1984.

[Plaisted 88] Plaisted, D.A., "Non-Horn Clause Logic Programming Without Contraposi-
tives", Journal of Automated Reasoning, Vol. 3, No. 4, September 1988.

[Reiter 76] Reiter, R., "A Semantically Guided Deductive System for Automatic Theorem
Proving", IEEE Transaction on Computers, Vol. C-25, No. 4, pp. 328-334, April
1976.

[Robinson 65] Robinson, J.A., "A Machine-Oriented Logic Based on the Resolution Prin-
ciple", Journal of ACM, Vol. 12, No. 1, January 1965.

[Robinson 79] Robinson, J.A. , "Logic: Form and Function - the Mechanization of
Deductive Reasoning", Edinburgh University Press, 1979.

[Sandford 80] Sandford, D.M., "Using Sophisticated Models in Resolution Theorem
Proving", Lecture Notes in Computer Science, No. 90, G. Goos and J. Hartmanis
eds, Springer-Verlag, 1980.

[Schoppers 83] Schoppers, M.J., "On A* as a Special Case of Ordered Search", Proc. of
IJCAI, pp. 783-785, 1983.

[Slagle 67] Slagel, J.R., "Automatic Theorem Proving with Renamable and Semantics
Resolution", JA CM, Vol. 14, No. 4, pp. 687-697, October 1967.

[Smith&Genesereth 85] Smith, D.E. and M.R. Genesereth, "Ordering Conjunctive
Queries", Artificial Intelligence, Vol. 26, pp. 171-215, 1985.

[Smith&Plaisted 88] Smith, M.P. and D.A. Plaisted, "Term-Rewriting Techniques for
Logic Programming I: Completion", Technical Report No. TR88-019, Department
of Computer Science, University of North Carolina at Chapel Hill, April 1988.

[Stickel&Tyson 85] Stickel, M.E. and M.W. Tyson, "An Analysis of Consecutively
Bounded Depth-first Search with Application Automated Deduction", Proc. of
IJCAI, pp. 1073-1075, 1985.

- 92 -

[Stickel 88] Stickel, M.E., "A PROLOG Technology Theorem Prover", Journal of Auto-
mated Reasoning, Vol. 4, No. 4, pp. 353-380, 1988.

[VanderBrug&Minker 75] VanderBrug, G.J. and J. Minker, "State-Space, Problem-
Reduction, and Theorem Proving — Some Relationships", CACM, Vol. 18, No. 2,
pp. 107 - 115, 1975.

[Walther 84] Walther, C., "A Mechanical Solution of Schubert’s Steamroller by Many-
sorted Resolution", Proc. 8th AAAI, pp. 30-334, 1984.

[Wang 60] Wang, H., "Tow ard Mechanical Mathematics", IBM Journal, Vol.4, pp. 2-22,
1960.

[Wang 65] Wang, H., "Formalization and Automatic Theorem Proving", Proceedings of
IFIP Congress 65, Washington, D.C., pp. 51-58, 1965.

[Wang 85] Wang, T.C., "Designing Examples for Semantically Guided Hierarchical
Deduction", Proc. of IJCAI, pp. 1201-1207, 1985.

[Wang 86] Wang, T.C., "SHD-prover at University of Texas at Austin", 8th International
Conference on Automated Deduction, Oxford, England, July 1986.

[Wang&Bledsoe 87] Wang, T.C. and W.W. Bledsoe, "Hierarchical Deduction", Journal of
Automated Reasoning, Vol. 3, No. 1, 1987.

[Wos 65] Wos, L.R., "Efficiency and Completeness of the Set of Support Strategy in The-
orem Proving", J. of ACM, Vol. 12, No. 4, October 1965.

[Wos 88] Wos, L.R., Automated Reasoning: 33 Basic Research Problems, Prentice Hall,
New York, 1988.

[Zhang 88] Zhang, H.T., "Reduction, Superposition & Induction: Automated Reasoning
in an Equational Logic", Ph.D thesis, Department of Computer Science, Rensse-
laer Polytechnic Institute, August, 1988.

- 93 -

Appendix A: Performance Statistics of the Prover

We giv e the performance statistics of the theorem prover on our test problems. We
note that several problems, such as apabhp, wos20, wos22, wos26, wos28, ls37 and ls76t2
are not listed here. Absence of a problem indicates that the theorem prover fails to get a
proof for it. There are six tables which give the performance statistics for the theorem
prover with various refinements. An entry with — also indicates the prover fail to get a
proof for the problem in the entry. All the data are obtained on a SUN3/60 workstation
with 12Mb memory. The Prolog system is the ALS Prolog Compiler (Version 0.60) from
Applied Logic Systems, Inc. The † marker in the tables indicates that some contraposi-
tives are added in the input clauses for the prover.

- 94 -

Table A.1: Prover with Caching and without Caching

Prover with Caching Prover without Caching

cpu seconds inferences cpu seconds inferences
Theorem

ances1 2.93 22 1.25 67
burstall 3.62 91 2.27 307
Chang&Lee1 0.55 9 0.10 6
Chang&Lee2 5.47 295 6.17 1986
Chang&Lee3 0.80 27 0.85 214
Chang&Lee4 0.82 28 0.17 23
Chang&Lee5 0.13 4 0.05 5
Chang&Lee6 2.48 134 0.15 10
Chang&Lee7 0.65 13 0.18 7
Chang&Lee8 2.30 54 24.77 5097
Chang&Lee9 2.82 36 0.53 47
dbabhp 6.15 151 0.60 102
dm 0.47 8 0.07 6
ew1 0.48 6 0.30 12
ew2 0.37 4 0.25 12
ew3 1.23 11 2.50 381
example 10.08 238 1317.80 193547
fex4t1 590.18 2858 181.27 4550
fex4t2 126.02 1015 191.27 4040
fex5† 231.78 2970 — —
fex6t1 23.18 881 271.45 86616
fex6t2 23.58 882 632.03 200043
group1 0.65 10 0.05 6
group2 5.43 295 6.08 1986
hasparts1 1.30 23 0.25 19
hasparts2 3.80 78 0.87 86
ls100 0.20 4 0.03 5
ls103 5.50 99 1325.25 168315
ls105 0.37 5 0.13 11
ls106 0.32 5 0.18 11
ls108 1557.38 8380 — —
ls111 0.30 5 0.20 9
ls115 10.97 165 101.00 5105
ls116 10.63 131 23.70 1784
ls118† 7611.18 28722 — —
ls121† 54.55 908 — —
ls17 3.32 65 2.13 344
ls23 12.25 331 0.90 243
ls26 1.45 63 0.17 9
ls28 46.27 579 5.47 1533
ls29 45.13 564 3.63 985

- 95 -

Table A.1: Prover with and withoug Caching (Cont.)

Prover with Caching Prover without Caching

cpu seconds inferences cpu seconds inferences
Theorem

ls35 7.92 350 17.20 4892
ls41 1.93 44 0.28 77
ls5 0.52 5 0.22 11
ls55 1.93 31 0.32 62
ls65 164.20 2957 1043.33 297377
ls68 4.92 122 0.95 257
ls75 25.48 548 29.82 6904
ls76t1 5.65 140 1.13 316
mqw 0.63 5 0.17 4
num1 0.62 14 0.17 8
prim 2.18 55 0.77 94
qw 0.75 10 0.20 10
rob1 0.30 2 0.13 16
rob2 5.23 284 5.67 1757
schubert 112.97 1488 3364.18 291645
shortburst 1.00 19 0.18 16
wos1 64.22 1059 3863.72 1350954
wos10 223.05 3950 3006.12 942882
wos11 235.53 4222 183.32 51706
wos12 0.57 27 0.22 39
wos13 8.55 304 0.65 171
wos14 8.32 310 0.37 68
wos15 6045.23 20556 — —
wos17 37.90 1101 103.35 30297
wos19 62.58 1280 15897.00 5556974
wos2 4.78 159 1025.30 335456
wos23 1.57 46 0.33 72
wos24 15.65 431 2.32 541
wos25 31.83 752 2.67 587
wos27 18.08 473 3.00 758
wos29 45.17 963 586.12 108027
wos3 0.30 9 0.07 10
wos30 0.67 19 0.18 20
wos31† 7742.22 29783 — —
wos32† 1.57 17 0.25 18
wos33† 7.33 81 6.18 597
wos4 656.17 7239 4389.60 227143
wos5 4.22 140 1.65 465
wos6 13.53 446 51.05 15666
wos7 9.25 375 139.60 42803
wos8 8.57 317 0.60 117
wos9 13.87 519 6.03 1729

- 96 -

Table A.2: Test Result for handling Repeated Solutions

not fail on repeated solution fail on repeated solution

proof running number of number of proof running number of number of
depth time inference solution depth time inference solution

theorem

ances1 18 3.03 22 7 18 3.03 22 7
burstall 9 3.77 91 19 9 3.77 91 19
Chang&Lee1 7 0.65 9 2 7 0.63 9 2
Chang&Lee2 9 5.57 295 5 9 5.42 293 5
Chang&Lee3 7 0.82 27 4 7 0.82 27 4
Chang&Lee4 7 0.85 28 4 7 0.87 28 4
Chang&Lee5 5 0.15 4 2 5 0.13 4 2
Chang&Lee6 7 2.53 134 9 7 2.63 134 9
Chang&Lee7 7 0.65 13 6 7 0.67 13 6
Chang&Lee8 11 2.40 54 8 11 2.28 54 8
Chang&Lee9 9 2.83 36 9 9 2.67 35 9
dbabhp 9 6.28 151 45 9 6.40 151 45
dm 7 0.55 8 2 7 0.50 8 2
ew1 7 0.55 6 7 7 0.53 6 7
ew2 7 0.35 4 4 7 0.35 4 4
ew3 11 1.30 11 6 11 1.27 11 6
example 14 10.25 238 37 14 9.50 224 37
fex4t1 18 607.13 2865 245 18 263.23 1067 196
fex4t2 18 130.47 1022 17 18 165.20 873 152
fex5 9 237.80 2970 419 9 224.08 2911 418
fex6t1 18 23.78 881 36 18 23.38 881 36
fex6t2 18 24.10 882 31 18 23.60 882 31
group1 7 0.68 10 2 7 0.63 10 2
group2 9 5.58 295 5 9 5.28 293 5
hasparts1 9 1.23 23 6 9 1.22 23 6
hasparts2 18 3.93 78 12 18 3.90 78 12
ls100 5 0.22 4 3 5 0.20 4 3
ls103 14 5.62 99 11 14 5.52 99 11
ls105 5 0.32 5 4 5 0.33 5 4
ls106 5 0.35 5 4 5 0.37 5 4
ls108 24 1595.25 8380 71 24 454.55 3559 67
ls111 5 0.33 5 4 5 0.32 5 4
ls115 11 11.22 165 13 11 10.75 164 13
ls116 9 10.92 131 39 9 10.53 126 39
ls121 11 55.58 908 57 11 53.37 884 57
ls17 9 3.40 65 8 9 3.48 65 8
ls23 9 12.55 331 29 9 10.85 315 29
ls26 7 1.50 63 6 7 1.43 63 6
ls28 9 47.67 579 131 9 48.00 579 131
ls29 9 46.50 564 130 9 45.78 564 130
ls35 11 8.12 350 6 11 7.98 350 6

- 97 -

Table A.2: Test Result for handling Repeated Solutions (Cont.)

not fail on repeated solution fail on repeated solution

proof running number of number of proof running number of number of
depth time inference solution depth time inference solution

theorem

ls41 5 1.97 44 11 5 1.88 43 11
ls5 7 0.43 5 5 7 0.58 5 5
ls55 5 2.03 31 5 5 2.17 31 5
ls65 9 169.40 2957 285 9 153.75 2940 285
ls68 5 5.03 122 16 5 4.52 120 16
ls75 7 26.28 548 51 7 24.97 541 51
ls76t1 5 5.83 140 17 5 5.23 138 17
mqw 7 0.62 5 5 7 0.58 5 5
num1 7 0.70 14 6 7 0.67 14 6
prim 11 2.15 55 8 11 2.07 53 8
qw 9 0.80 10 4 9 0.80 10 4
rob1 7 0.30 2 2 7 0.28 2 2
rob2 9 5.40 284 5 9 5.17 282 5
schubert 32 114.03 1490 74 32 66.08 1124 67
shortburst 7 1.07 19 6 7 1.00 19 6
wos1 9 66.17 1059 145 9 63.23 1059 145
wos10 9 230.40 3950 251 9 221.98 3950 251
wos11 9 242.70 4222 292 9 231.50 4222 292
wos12 5 0.57 27 3 5 0.55 27 3
wos13 7 8.80 304 52 7 8.77 304 52
wos14 7 8.58 310 49 7 8.48 308 49
wos15 11 6321.13 20556 2303 11 6225.37 20535 2303
wos17 7 38.93 1101 123 7 36.00 1099 123
wos19 7 64.42 1280 203 7 62.32 1280 203
wos2 7 4.88 159 8 7 4.70 159 8
wos23 5 1.57 46 2 5 1.42 44 2
wos24 7 16.12 431 60 7 15.80 431 60
wos25 7 38.80 808 167 7 38.33 808 167
wos27 7 21.65 523 92 7 21.02 523 92
wos29 7 69.40 1133 248 7 68.37 1131 248
wos3 5 0.27 9 3 5 0.28 9 3
wos30 5 0.68 19 3 5 0.60 19 3
wos31 14 7455.30 28946 927 14 5553.23 22847 888
wos32 5 1.62 17 4 5 1.62 17 4
wos33 7 7.50 81 10 7 7.23 81 10
wos4 11 677.23 7244 4 11 664.05 7235 4
wos5 7 4.33 140 20 7 4.10 140 20
wos6 7 14.02 446 73 7 13.77 446 73
wos7 7 9.42 375 22 7 9.10 375 22
wos8 7 8.88 317 49 7 8.68 314 49
wos9 7 14.22 519 33 7 13.38 519 33

- 98 -

- 99 -

Table A.3: Test Result for Goal Generalization (GG)

original prover augmented prover

proof running number of number of proof running number of number of
depth time inference solution depth time inference solution

theorem

ances1 18 2.98 22 7 18 4.20 22 8
burstall 11 4.97 103 15 11 7.98 103 2
Chang&Lee1 9 0.95 14 2 7 0.77 9 2
Chang&Lee2 11 5.87 308 7 11 8.27 309 2
Chang&Lee3 9 1.13 33 4 7 1.02 27 4
Chang&Lee4 9 1.23 35 4 7 1.12 28 4
Chang&Lee5 7 0.33 6 2 7 0.42 6 2
Chang&Lee6 9 2.68 134 9 9 3.53 134 9
Chang&Lee7 9 0.87 13 6 9 1.07 13 6
Chang&Lee8 11 2.30 54 8 11 2.90 55 8
Chang&Lee9 11 3.02 37 8 11 3.77 37 8
dbabhp 11 8.60 163 51 11 13.47 163 51
dm 9 0.73 11 2 7 0.58 8 2
ew1 9 0.70 7 5 9 0.83 7 5
ew2 7 0.38 4 4 7 0.40 4 4
ew3 11 1.25 11 6 11 1.50 11 6
example 18 20.97 613 10 18 22.00 417 4
fex4t1 18 242.22 1033 196 18 383.58 1038 173
fex4t2 18 159.60 853 150 18 222.97 833 118
fex5 11 309.72 2967 297 11 1461.28 3710 318
fex6t1 24 26.93 935 27 18 35.72 881 36
fex6t2 24 25.20 895 24 18 37.88 887 31
group1 9 1.12 18 2 7 0.80 10 2
group2 11 5.90 308 7 11 7.80 309 2
hasparts1 11 1.45 24 6 11 2.05 25 6
hasparts2 24 4.30 81 11 24 5.90 80 10
ls100 7 0.40 6 3 7 0.50 7 3
ls103 18 6.67 115 9 18 10.18 116 5
ls105 7 0.70 11 4 7 0.75 11 4
ls106 7 0.67 11 4 7 0.75 11 4
ls108 24 375.07 3403 67 24 1358.47 3572 129
ls111 7 0.55 9 4 7 0.77 11 4
ls115 11 10.78 164 13 11 19.93 150 13
ls116 9 10.40 126 39 9 19.70 122 38
ls118 11 7611.18 28722 1382 14 37201.96 31371 2360
ls121 11 52.85 884 57 11 83.82 748 48
ls17 9 3.50 69 9 9 4.90 64 9
ls23 11 11.73 318 24 9 15.70 300 24
ls26 9 1.68 63 6 9 2.15 63 6
ls28 11 60.45 610 131 9 61.00 579 133
ls29 11 58.83 602 130 9 55.95 575 132
ls35 14 8.48 358 6 11 9.93 350 6

- 100 -

Table A.3: Test Result for Goal Generalization (Cont.)

original prover augmented prover

proof running number of number of proof running number of number of
depth time inference solution depth time inference solution

theorem

ls41 7 2.12 45 8 7 2.92 46 5
ls5 7 0.43 5 5 7 0.57 5 5
ls55 7 2.45 37 4 5 2.82 31 5
ls65 11 200.52 2944 281 11 489.05 2927 273
ls68 7 5.12 121 16 5 6.48 114 14
ls75 9 28.17 561 51 9 50.75 545 13
ls76t1 7 5.88 140 17 7 9.62 140 17
mqw 7 0.60 5 5 7 0.68 6 4
num1 9 0.80 14 6 9 1.10 14 6
prim 11 2.03 53 8 11 2.78 53 8
qw 9 0.77 10 4 9 0.85 10 4
rob1 7 0.35 2 2 7 0.35 2 2
rob2 11 5.88 299 4 11 7.90 298 2
schubert 32 65.30 1124 67 32 178.43 1124 68
shortburst 9 1.48 26 5 9 2.15 26 2
wos1 11 78.40 1154 90 9 201.72 1152 145
wos10 11 258.58 3981 233 11 1091.10 4143 115
wos11 11 281.20 4248 288 11 791.20 4336 130
wos12 7 0.73 27 3 7 0.97 27 3
wos13 7 8.43 301 51 7 11.17 301 51
wos14 9 10.87 313 49 9 13.57 313 48
wos15 14 8966.92 20553 2302 11 179.25 1594 102
wos17 9 47.52 1124 120 9 108.45 1124 12
wos19 9 89.05 1301 203 9 204.98 1291 194
wos2 9 5.00 166 8 7 7.00 159 8
wos23 7 1.85 48 2 7 2.77 48 2
wos24 9 19.45 443 60 9 29.23 419 56
wos25 9 57.22 828 167 9 75.77 793 129
wos27 9 28.22 542 94 7 51.97 522 92
wos29 9 106.13 1135 248 9 172.00 1135 235
wos3 7 0.63 14 3 7 0.85 14 2
wos30 7 1.62 40 4 5 1.08 19 3
wos31 18 5111.42 21510 552 18 6832.45 12120 250
wos32 5 1.73 21 7 7 8.13 67 6
wos33 9 7.85 90 7 9 12.53 86 6
wos4 11 653.38 7235 4 11 1988.20 7236 4
wos5 9 5.22 153 20 7 5.50 140 20
wos6 9 18.35 459 73 9 22.52 458 16
wos7 9 10.38 389 22 9 16.35 389 3
wos8 9 11.17 325 49 7 11.35 314 49
wos9 9 14.80 527 33 9 27.42 528 14

- 101 -

Table A.4.1: Subgoal Reordering Using H1

No Reordering Dynamic Reordering Static Reordering

seconds inferences seconds inferences seconds infereces
Theorem

ances1 2.93 22 3.03 22 3.17 22
burstall 3.62 91 3.70 91 3.82 91
dbabhp 6.15 151 6.50 167 6.82 167
dm 0.47 8 0.50 7 0.50 7
ew1 0.48 6 0.52 6 0.62 6
ew2 0.37 4 0.35 4 0.43 4
ew3 1.23 11 1.28 11 1.40 11
fex4t1 590.18 2858 1635.57 3755 1637.50 3755
fex4t2 126.02 1015 126.07 1015 132.00 1015
fex5 231.78 2970 268.83 3710 269.07 3708
fex6t1 23.18 881 24.58 888 25.05 881
fex6t2 23.58 882 23.63 871 25.20 882
group1 0.65 10 0.72 9 0.63 9
group2 5.43 295 5.52 295 5.88 295
hasparts1 1.30 23 1.07 14 1.17 14
hasparts2 3.80 78 2.45 34 2.77 34
ls100 0.20 4 0.18 4 0.18 4
ls103 5.50 99 5.05 90 5.27 90
ls105 0.37 5 0.25 6 0.27 6
ls106 0.32 5 0.27 6 0.28 6
ls108 1557.38 8380 29.37 575 29.25 575
ls111 0.30 5 0.32 7 0.27 7
ls115 10.97 165 11.67 157 11.72 157
ls116 10.63 131 12.32 177 12.57 177
ls121 54.55 908 51.38 835 51.22 840
ls17 3.32 65 3.57 69 3.55 69
ls23 12.25 331 13.30 337 12.45 331
ls26 1.45 63 1.48 63 1.50 63
ls28 46.27 579 46.40 579 46.72 579
ls29 45.13 564 45.93 564 45.35 564
ls35 7.92 350 7.70 330 8.63 354
ls41 1.93 44 1.88 43 1.93 43
ls5 0.52 5 0.47 5 0.50 5
ls55 1.93 31 1.82 21 1.90 21
ls65 164.20 2957 140.72 2703 146.07 2703
ls68 4.92 122 5.07 122 5.32 122
ls75 25.48 548 17.35 410 18.58 410
ls76t1 5.65 140 5.47 134 5.85 134
mqw 0.63 5 0.62 5 0.65 5
num1 0.62 14 0.70 14 0.75 14
prim 2.18 55 1.82 41 1.97 41
qw 0.75 10 0.83 10 0.82 10

- 102 -

Table A.4.1: Subgoal Reordering Using H1 (Cont.)

No Reordering Dynamic Reordering Static Reordering

seconds inferences seconds inferences seconds infereces
Theorem

rob1 0.30 2 0.30 2 0.37 2
rob2 5.23 284 5.45 284 5.82 284
shortburst 1.00 19 1.02 19 1.13 19
wos1 64.22 1059 47.32 922 53.12 974
wos10 223.05 3950 200.65 3615 238.52 3950
wos11 235.53 4222 224.12 4070 247.23 4166
wos12 0.57 27 0.57 27 0.63 27
wos13 8.55 304 8.33 296 8.82 296
wos14 8.32 310 8.48 308 8.92 308
wos15 6045.23 20556 62.38 1403 66.80 1458
wos17 37.90 1101 33.20 974 32.75 970
wos19 62.58 1280 55.95 1106 55.97 1108
wos2 4.78 159 32.08 881 5.17 159
wos23 1.57 46 1.87 49 2.00 53
wos24 15.65 431 15.57 418 15.80 431
wos25 31.83 752 35.67 799 37.28 786
wos27 18.08 473 18.80 519 20.72 531
wos29 45.17 963 48.43 1004 53.05 1044
wos3 0.30 9 0.25 9 0.37 9
wos30 0.67 19 1.35 40 1.43 40
wos31 7742.22 29783 21079.78 78273 21162.65 78274
wos32 1.57 17 2.10 17 2.35 17
wos33 7.33 81 8.52 79 9.30 79
wos4 656.17 7239 704.83 8247 729.28 8388
wos5 4.22 140 4.00 132 4.57 140
wos6 13.53 446 13.70 444 14.60 446
wos7 9.25 375 8.98 361 9.95 375
wos8 8.57 317 8.58 310 9.45 314
wos9 13.87 519 13.68 508 14.93 519

chang&lee1 0.55 9 0.60 8 0.57 8
chang&lee2 5.47 295 5.57 295 6.08 295
chang&lee3 0.80 27 1.50 50 0.88 27
chang&lee4 0.82 28 0.80 27 0.85 28
chang&lee5 0.13 4 0.18 4 0.15 4
chang&lee6 2.48 134 2.48 134 2.75 134
chang&lee7 0.65 13 0.72 13 0.65 13
chang&lee8 2.30 54 2.33 54 2.52 54
chang&lee9 2.82 36 2.83 36 2.95 36
example 10.08 238 10.18 238 10.65 238
schubert 748.45 8921 649.52 11014 761.42 11014

- 103 -

Table A.4.2: Subgoal Reordering Using H2

No Reordering Dynamic Reordering Static Reordering

seconds inferences seconds inferences seconds infereces
Theorem

ances1 2.93 22 2.42 13 2.45 13
burstall 3.62 91 3.72 91 3.77 91
dbabhp 6.15 151 40.82 598 41.55 598
dm 0.47 8 0.53 7 0.50 7
ew1 0.48 6 0.48 6 0.52 6
ew2 0.37 4 0.38 4 0.37 4
ew3 1.23 11 1.37 18 1.37 18
fex4t1 590.18 2858 1670.18 3755 1681.22 3755
fex4t2 126.02 1015 126.98 1015 129.27 1015
fex5 231.78 2970 259.57 3644 266.15 3632
fex6t1 23.18 881 24.07 822 23.97 875
fex6t2 23.58 882 21.30 762 23.90 876
group1 0.65 10 0.68 9 0.70 9
group2 5.43 295 5.12 254 5.35 291
hasparts1 1.30 23 1.15 14 1.18 14
hasparts2 3.80 78 2.62 34 2.50 34
ls100 0.20 4 0.17 4 0.17 4
ls103 5.50 99 5.22 89 5.15 89
ls105 0.37 5 0.27 6 0.23 6
ls106 0.32 5 0.28 6 0.25 6
ls108 1557.38 8380 29.43 575 30.37 575
ls111 0.30 5 0.35 7 0.37 7
ls115 10.97 165 11.57 156 11.77 156
ls116 10.63 131 12.45 181 12.68 181
ls121 54.55 908 43.71 724 52.13 805
ls17 3.32 65 3.53 69 3.65 69
ls23 12.25 331 3.60 103 3.75 107
|s26 1.45 63 1.52 57 1.48 63
ls28 46.27 579 46.42 579 47.53 579
ls29 45.13 564 45.22 564 46.45 564
ls35 7.92 350 7.63 326 8.40 354
ls41 1.93 44 2.20 46 2.25 46
ls5 0.52 5 0.48 5 0.55 5
ls55 1.93 31 1.90 21 1.87 21
ls65 164.20 2957 100.37 1786 102.78 1786
ls68 4.92 122 4.08 78 4.23 78
ls75 25.48 548 25.47 437 26.10 437
ls76t1 5.65 140 5.13 85 5.32 85
mqw 0.63 5 0.65 5 0.60 5
num1 0.62 14 0.68 14 0.68 14
prim 2.18 55 2.13 49 2.13 49

- 104 -

Table A.4.2: Subgoal Reordering Using H2 (Cont.)

No Reordering Dynamic Reordering Static Reordering

seconds inferences seconds inferences seconds infereces
Theorem

qw 0.75 10 0.78 10 0.80 10
rob1 0.30 2 0.30 2 0.32 2
rob2 5.23 284 5.20 254 5.35 285
shortburst 1.00 19 1.07 19 1.02 19
wos1 64.22 1059 681.03 5665 696.50 5680
wos10 223.05 3950 136.68 2282 138.40 2322
wos11 235.53 4222 239.52 3732 245.40 3905
wos12 0.57 27 0.63 29 0.65 29
wos13 8.55 304 7.07 239 7.35 254
wos14 8.32 310 8.23 295 8.60 310
wos15 6045.23 20556 62.08 1339 61.57 1382
wos17 37.90 1101 31.00 834 30.38 846
wos19 62.58 1280 47.93 904 48.83 930
wos2 4.78 159 20.77 525 21.78 542
wos23 1.57 46 1.62 42 1.57 44
wos24 15.65 431 12.42 335 12.80 338
wos25 31.83 752 27.77 601 28.50 633
wos27 18.08 473 14.02 385 14.48 391
wos29 45.17 963 42.32 804 2548.62 10471
wos3 0.30 9 0.28 9 0.32 9
wos30 0.67 19 1.00 29 1.03 29
wos31 7742.22 29783 5816.27 28086 5987.40 28136
wos32 1.57 17 2.00 19 2.03 19
wos33 7.33 81 11.77 165 12.00 165
wos4 656.17 7239 597.80 6302 640.72 6863
wos5 4.22 140 2.87 86 3.02 91
wos6 13.53 446 12.33 349 12.38 377
wos7 9.25 375 6.93 283 7.60 305
wos8 8.57 317 7.38 253 7.92 272
wos9 13.87 519 10.50 364 11.15 389

chang&lee1 0.55 9 0.62 8 0.58 8
chang&lee2 5.47 295 5.00 240 5.10 274
chang&lee3 0.80 27 1.43 44 1.60 54
chang&lee4 0.82 28 0.73 23 0.93 29
chang&lee5 0.13 4 0.12 4 0.13 4
chang&lee6 2.48 134 2.30 120 2.57 134
chang&lee7 0.65 13 0.68 14 0.65 14
chang&lee8 2.30 54 2.32 54 2.43 54
chang&lee9 2.82 36 2.82 36 2.92 36
example 10.08 238 15.87 368 16.30 368
schubert 748.45 8921 2306.73 24208 695.25 12680

- 105 -

Table A.5: Subgoal-Based Priority System

Default Prover Priority System

cpu seconds number of cpu seconds number of
used inferences used inferences

Theorem

ances1 2.93 22 10.07 49
burstall 3.62 91 4.10 48
Chang&Lee1 0.55 9 0.42 6
Chang&Lee2 5.47 295 3.32 125
Chang&Lee3 0.80 27 1.13 27
Chang&Lee4 0.82 28 1.10 28
Chang&Lee5 0.13 4 0.22 4
Chang&Lee6 2.48 134 1.67 54
Chang&Lee7 0.65 13 0.97 13
Chang&Lee8 2.30 54 3.73 60
Chang&Lee9 2.82 36 5.32 40
dbabhp 6.15 151 21.72 695
dm 0.47 8 0.40 6
ew1 0.48 6 0.77 6
ew2 0.37 4 0.53 4
ew3 1.23 11 1.67 11
example 10.08 238 18.53 393
fex4t1 590.18 2858 128.70 1029
fex4t2 126.02 1015 131.93 1415
fex5† 231.78 2970 398.28 7206
fex6t1 23.18 881 972.07 38419
fex6t2 23.58 882 1278.72 54022
group1 0.65 10 0.40 6
group2 5.43 295 3.33 125
hasparts1 1.30 23 2.83 31
hasparts2 3.80 78 3.87 48
ls100 0.20 4 0.33 4
ls103 5.50 99 13.63 197
ls105 0.37 5 0.50 5
ls106 0.32 5 0.60 5
ls108 1557.38 8380 27.87 332
ls111 0.30 5 0.52 5
ls112 — — 643.23 9775
ls115 10.97 165 12.60 111
ls116 10.63 131 61.48 1190
ls118† 7611.18 28722 1501.58 17358
ls121† 54.55 908 90.22 1048
ls17 3.32 65 6.65 92
ls23 12.25 331 2.58 71
ls26 1.45 63 1.37 38
ls28 46.27 579 9.37 283
ls29 45.13 564 13.53 446
ls35 7.92 350 15.10 485
ls36 — — 421.30 15130

- 106 -

Table A.5: Subgoal-Based Priority System (Cont.)

Default Prover Priority System

cpu seconds number of cpu seconds number of
used inferences used inferences

Theorem

ls41 1.93 44 3.45 67
ls5 0.52 5 0.75 5
ls55 1.93 31 3.18 53
ls65 164.20 2957 50.20 1360
ls68 4.92 122 5.58 133
ls75 25.48 548 60.20 1728
ls76t1 5.65 140 6.65 148
mqw 0.63 5 1.00 5
num1 0.62 14 0.92 14
prim 2.18 55 2.88 46
qw 0.75 10 0.98 10
rob1 0.30 2 0.38 2
rob2 5.23 284 3.38 122
schubert 112.97 1488 69.47 1154
shortburst 1.00 19 1.45 13
wos1 64.22 1059 8.60 257
wos10 223.05 3950 60.18 1718
wos11 235.53 4222 75.18 2039
wos12 0.57 27 2.32 55
wos13 8.55 304 2.83 89
wos14 8.32 310 5.32 174
wos15 6045.23 20556 50.43 1740
wos17 37.90 1101 47.85 1544
wos19 62.58 1280 5394.00 91791
wos2 4.78 159 5.18 149
wos23 1.57 46 2.70 70
wos24 15.65 431 33.48 922
wos25 31.83 752 58.63 1658
wos27 18.08 473 37.72 1060
wos29 45.17 963 38.37 1116
wos3 0.30 9 0.47 9
wos30 0.67 19 0.87 19
wos31† 7742.22 29783 3334.40 79398
wos32† 1.57 17 2.07 17
wos33† 7.33 81 11.58 143
wos4 656.17 7239 43.17 1637
wos5 4.22 140 4.60 143
wos6 13.53 446 17.27 618
wos7 9.25 375 20.47 750
wos8 8.57 317 20.17 716
wos9 13.87 519 21.62 800

- 107 -

Table A.6: Proof Complexity Measures

theorem Default (CC1,MC1) (CC1,MC2) (CC2,MC1) (CC2,MC2)

ances1 2.93 2.52 2.43 2.85 2.55
burstall 3.62 3.75 3.77 8.33 8.30
Chang&Lee1 0.55 3.78 3.70 4.55 4.77
Chang&Lee2 5.47 8.08 8.00 15.52 15.63
Chang&Lee3 0.80 2.43 2.38 2.15 2.35
Chang&Lee4 0.82 3.42 3.33 2.22 2.32
Chang&Lee5 0.13 0.20 0.22 0.23 0.20
Chang&Lee6 2.48 0.60 0.58 0.53 0.60
Chang&Lee7 0.65 1.78 1.80 2.40 2.33
Chang&Lee8 2.30 2.33 2.32 3.78 3.47
Chang&Lee9 2.82 3.92 3.83 5.30 4.87
dbabhp 6.15 2.58 2.52 4.30 4.60
apabhp — — — — —
dm 0.47 1.72 1.70 2.53 2.27
ew1 0.48 0.87 0.87 1.65 1.55
ew2 0.37 0.52 0.55 0.80 0.70
ew3 1.23 1.20 1.18 1.08 1.17
example 10.08 16.35 14.98 44.60 41.92
fex4t1 590.18 — — — —
fex4t2 126.02 — — — —
fex5† 231.78 133.22 134.95 628.70 647.07
fex6t1 23.18 — — 4559.22 546.37
fex6t2 23.58 — — 4096.55 621.82
group1 0.65 7.67 7.37 8.55 8.80
group2 5.43 8.18 7.98 14.58 14.85
hasparts1 1.30 1.02 1.00 1.52 1.47
hasparts2 3.80 2.43 2.48 2.97 3.02
ls100 0.20 0.35 0.33 0.63 0.63
ls103 5.50 3.82 3.82 4.02 4.25
ls105 0.37 1.38 1.30 2.18 2.03
ls106 0.32 1.38 1.32 2.27 2.33
ls108 1557.38 51.00 49.97 — —
ls111 0.30 1.43 1.27 2.05 2.02
ls112 — 226.20 222.07 44.48 42.38
ls115 10.97 12.33 11.92 6.58 7.27
ls116 10.63 36.15 34.65 19.32 20.02
ls118† — 713.48 719.78 744.02 741.80
ls121† 54.55 121.60 120.98 37.97 37.90
ls17 3.32 5.20 5.15 4.98 5.10
ls23 12.25 255.87 309.60 44.90 46.12
ls26 1.45 0.70 0.57 0.63 0.57
ls28 46.27 74.45 74.70 87.48 91.10
ls29 45.13 92.20 92.83 44.47 46.15

- 108 -

Table A.6: Proof Complexity Measures (Cont.)

theorem Default (CC1,MC1) (CC1,MC2) (CC2,MC1) (CC2,MC2)

ls35 7.92 13.43 13.17 15.35 15.48
ls36 — 2129.52 2097.90 1105.08 1265.17
ls41 1.93 0.35 0.35 0.68 0.75
ls5 0.52 0.65 0.77 0.60 0.68
ls55 1.93 29.90 16.33 8.13 13.32
ls65 164.20 62.10 61.72 25.93 26.13
ls68 4.92 4.05 4.12 1.50 1.60
ls75 25.48 628.53 642.27 415.32 435.07
ls76t1 5.65 0.45 0.42 0.83 0.80
ls87 — 1030.07 1042.35 159.65 162.12
mqw 0.63 0.58 0.62 0.63 0.62
num1 0.62 1.67 1.52 1.85 1.87
prim 2.18 1.93 1.98 2.82 2.97
qw 0.75 0.75 0.63 0.82 0.62
rob1 0.30 0.82 0.98 0.83 0.87
rob2 5.23 7.75 7.77 14.33 14.28
schubert 112.97 220.65 214.38 309.78 313.18
shortburst 1.00 0.72 0.75 1.35 1.45
wos1 64.22 4640.13 2129.23 8.72 8.80
wos10 223.05 44.72 44.20 104.82 104.50
wos11 235.53 727.47 707.70 282.87 284.00
wos12 0.57 0.27 0.30 0.20 0.25
wos13 8.55 0.90 0.88 0.40 0.40
wos14 8.32 12.60 12.67 1.93 1.98
wos15 6045.23 304.23 127.10 111.43 663.48
wos17 37.90 53.83 52.63 77.70 80.22
wos19 62.58 905.92 929.40 — —
wos2 4.78 10.58 10.43 8.15 8.20
wos23 1.57 22.87 22.63 2.88 2.88
wos24 15.65 90.22 87.08 40.95 40.73
wos25 31.83 1002.62 993.53 42.98 43.05
wos27 18.08 161.95 159.77 114.63 114.48
wos29 45.17 19.35 19.18 29.00 28.88
wos3 0.30 0.28 0.30 0.50 0.52
wos30 0.67 0.38 0.40 0.80 0.82
wos31† 7742.22 1921.17 1886.15 2049.17 2067.68
wos32† 1.57 3.93 3.97 34.00 34.25
wos33† 7.33 14.92 14.87 10.28 10.47
wos4 656.17 54.97 53.47 13.75 13.57
wos5 4.22 44.88 44.92 6.67 6.78
wos6 13.53 38.30 37.85 11.88 11.95
wos7 9.25 154.38 153.60 215.15 218.77
wos8 8.57 25.82 25.50 20.35 20.40
wos9 13.87 42.83 42.00 24.57 24.60

- 109 -

- 110 -

Appendix B: SHD-prover Performance Statistics

We show the performance statistics of the SHD-prover on our test problems. The
data are obtained on a SUN3/60 workstation using compiled Kyoto Common Lisp. The
letter n in the data-file colume indicates that the input to SHD-prover is a set of clause
and all the parameters of SHD-prover hav e their default values. The letter y in the data-
file colume indicates that the input to the SHD-prover is in the form of a data-file. A data-
file for a problem is created after we have failed to obtain a proof for the problem using
the set of clauses as input. Some parameters of the SHD-prover, such as function nesting
limit, will be adjusted in the data-file. No locking is used.

- 111 -

Table B.1: Performance Statistics of SHD-prover

Theorem cpu time accepted-resolvents useful-resolvents data-file

ances1 0.367 11 10 n
burstall 3.65 35 13 n
dbabhp 4.3667 15 12 y
ew1 0.217 6 7 n
ew2 0.2 6 6 n
ew3 0.383 9 8 n
Chang&Lee2 129.92 203 11 n
Chang&Lee3 67.35 125 14 y
Chang&Lee4 56.583 80 9 n
Chang&Lee5 44.267 50 8 n
Chang&Lee6 24.4 72 11 y
Chang&Lee8 0.933 12 10 n
Chang&Lee9 0.483 9 9 n
example 23.583 148 25 n
hasparts1 0.667 7 8 n
hasparts2 1.3333 11 12 n
ls103 5.0667 36 12 n
ls105 2.9667 18 6 n
ls106 23.25 93 6 n
ls111 2.8 18 6 n
ls115 131.32 481 8 n
ls17 133.4 192 11 n
ls23 79.15 127 9 n
ls26 22.87 53 11 y
ls28 135.05 521 10 n
ls29 365.53 1347 8 n
ls5 0.183 4 5 n
ls55 2.7 14 5 n
ls65 1464.5 2927 10 n
ls75 103.53 691 8 n
ls76t1 2.6167 16 4 n
mqw 0.417 8 8 n
num1 1.8167 11 7 n
prim 3.6833 28 19 n
rob1 0.683 8 9 y
wos14 6.9667 20 7 n
wos17 22.667 105 10 n
wos19 1097.2 3158 12 n
wos23 18.267 88 6 n
wos24 28.583 134 7 n
wos25 24.783 95 7 n
wos27 90.683 359 7 n
wos31 83.917 268 35 n
wos33 2157.8 3724 29 y
wos4 50.75 202 12 n

- 112 -

Table B.1: Performance Statistics of SHD-prover (Cont.)

Theorem cpu time proof data-file

Chang&Lee1 0.93 proof obtained during forward chaining n
Chang&Lee7 0.15 proof obtained during forward chaining n
dm 0.65 proof obtained during forward chaining n
fex6t1 11.07 proof obtained during forward chaining n
fex6t2 11.08 proof obtained during forward chaining n
group1 7.73 proof obtained during forward chaining n
group2 12.02 proof obtained during forward chaining n
ls100 0.08 proof obtained during forward chaining n
ls35 81.55 proof obtained during forward chaining n
ls41 0.20 proof obtained during forward chaining n
ls68 1.80 proof obtained during forward chaining n
rob2 11.65 proof obtained during forward chaining n
shortburst 0.20 proof obtained during forward chaining n
wos10 15.65 proof obtained during forward chaining n
wos12 21.67 proof obtained during forward chaining n
wos13 23.23 proof obtained during forward chaining n
wos3 10.67 proof obtained during forward chaining n
wos30 65.07 proof obtained during forward chaining n
wos32 1.80 proof obtained during forward chaining n

fex4t1 proof terminates and fails y
fex4t2 proof terminates and fails y
qw proof terminates and fails y
apabhp stopped after 1700 goals generated y
fex5 stopped after 4400 goals generated y
ls108 stopped after 3000 goals generated y
ls121 stopped after 4000 goals generated y
ls36 stopped after 5500 goals generated y
schubert stopped after 4000 goals generated y
wos1 stopped after 5000 goals generated y
wos11 stopped after 5000 goals generated y
wos15 stopped after 4500 goals generated y
wos2 stopped after 5300 goals generated y
wos21 stopped after 5000 goals generated y
wos29 stopped after 4500 goals generated y
wos5 stopped after 4000 goals generated y
wos6 stopped after 4000 goals generated y
wos7 stopped after 5000 goals generated y
wos8 stopped after 8000 goals generated y
wos9 stopped after 4000 goals generated y

- 113 -

Appendix C: Otter Performance Statistics

We giv e the performance statistics of Otter on our test problems. We use the default
weights on all the symbols. All the other systems flags are in their default states unless
otherwise indicated in the tables. A set of support clauses will be selected for a problem if
Otter fails to get a proof for the problem with all the clauses as support clauses. The fact
that a set of support clauses is selected for a problem is indicated by a letter y under the
colume SOS. The data are obtained on a SUN3/60 workstation.

- 114 -

Table C.1: Performance Statistics of Otter

hyper resolution hyper res. + UR res
forward + bacward subsumption forward + bacward subsumptionTheorem

run-time generated kept run-time generated kept

SOS

ances1 0.12 12 12 0.14 13 13 no
burstall 0.40 48 32 1.16 155 77 no
dbabhp 126.88 2619 2097 198.70 5523 2969 no
apabhp 117.86 2475 1630 13.54 946 356 y
dm 0.16 5 5 0.14 5 5 no
ew1 0.12 6 6 0.08 9 6 no
ew2 0.06 3 3 0.10 4 4 no
ew3 0.12 7 7 0.14 9 7 no
fex4t1 527.92 5936 1419 1482.38 5935 1418 no
fex4t2 522.96 5936 1413 1610.44 5935 1412 no
fex5 991.92 46722 1965 2932.54 61541 6738 no
fex6t1 1011.04 247965 3257 1070.62 295083 1879 y
fex6t2 1019.74 252992 3444 1067.86 295079 1872 y
group1 0.28 18 18 0.24 18 18 no
group2 0.36 88 5 0.48 116 5 no
hasparts1 0.30 14 12 0.38 20 12 no
hasparts2 0.40 18 16 0.40 15 13 no
ls100 0.22 11 9 0.20 13 9 no
ls103 0.84 80 30 0.74 63 26 no
ls105 0.32 18 11 0.36 25 12 no
ls106 0.36 18 11 0.40 25 12 no
ls108 285.02 4375 1616 293.92 4308 1579 y
ls111 0.38 20 11 0.42 29 13 no
ls112 — — — — — — y
ls115 128.28 5259 925 2.40 220 45 y
ls116 22.58 1748 212 3.54 293 64 y
ls118 — — — — — — y
ls121 671.42 8905 2590 284.00 3786 1249 y
ls17 0.34 26 13 0.54 55 24 no
ls23 1.62 327 124 0.58 67 18 no
ls26 0.20 12 8 0.20 7 5 no
ls28 32.68 1978 1215 3.36 429 141 no
ls29 — — — — — — y
ls35 1.62 572 7 2.92 879 17 no
ls36 12.52 1096 681 3.06 568 60 y
ls41 0.34 40 17 0.54 64 23 no
ls5 0.08 15 4 0.16 15 4 no
ls55 7.20 1498 326 2.26 365 99 no
ls65 4.34 946 207 1.52 318 49 y
ls68 1.66 362 98 10.68 1871 343 no
ls75 53.52 5864 1827 13.24 1645 625 y
ls76t1 1.90 383 116 14.54 2350 498 no
ls87 1379.06 34456 11143 19.46 2108 549 y
mqw 0.14 22 9 0.26 22 9 no

- 115 -

Table C.1: Performance Statistics of Otter (Cont.)

hyper resolution hyper res. + UR res
forward + bacward subsumption forward + bacward subsumptionTheorem

run-time generated kept run-time generated kept

SOS

num1 0.22 11 8 0.22 20 10 no
prim 0.38 65 29 0.74 115 33 no
qw 0.22 54 9 0.28 54 9 no
rob1 0.10 2 2 0.16 3 2 no
rob2 0.44 88 5 0.54 116 5 no
shortburst 0.14 10 10 0.32 22 17 no
wos1 2.58 477 165 4.48 887 182 y
wos10 0.84 178 6 1.04 267 6 y
wos11 17.24 4601 236 3.68 664 30 y
wos12 0.32 9 3 0.48 23 5 no
wos13 1.04 179 32 0.78 101 10 y
wos14 0.84 169 26 0.46 32 6 y
wos15 48.30 7780 2403 36.98 6272 466 y
wos17 17.90 2201 499 11.40 2114 218 y
wos19 2634.46 19485 6607 116.48 13397 1905 y
wos2 2.64 473 161 0.98 141 14 y
wos21 — — — 182.22 27093 2751 y
wos23 2.18 375 30 3.62 539 24 y
wos24 2.08 339 37 3.48 485 14 y
wos25 22.12 5392 169 53.54 10037 190 y
wos27 46.32 8868 1279 1.70 209 12 y
wos29 3.12 405 96 4.98 611 88 y
wos3 0.56 82 5 0.40 33 4 y
wos31 — — — 103.19 3943 517 y
wos30 1.02 102 4 1.76 170 14 y
wos32 0.52 50 14 0.66 70 15 no
wos33 265.34 3694 807 185.36 2569 590 no
wos4 6730.30 232096 32641 7818.76 429448 32693 y
wos5 2.58 473 159 0.98 115 22 y
wos6 2.06 433 73 2.06 349 39 y
wos7 1.92 456 44 1.40 281 25 y
wos8 5.72 1294 301 1.56 338 28 y
wos9 6.78 1349 392 3.96 940 67 y

Chang&Lee1 0.14 5 5 0.18 5 5 no
Chang&Lee2 0.40 88 5 0.52 116 5 no
Chang&Lee3 0.62 147 20 0.48 86 13 no
Chang&Lee4 0.72 147 20 0.26 27 7 no
Chang&Lee5 0.14 2 2 0.16 2 2 no
Chang&Lee6 0.16 7 4 0.14 5 4 no
Chang&Lee7 0.20 11 8 0.18 20 10 no
Chang&Lee8 0.48 65 29 0.70 115 33 no
Chang&Lee9 0.32 14 12 0.48 35 21 no
example 47.48 3599 665 145.20 3651 667 no
schubert 10.72 708 402 3.92 659 207 no

- 116 -

Abstract

XUMIN NIE. Automatic Theorem Proving in Problem Reduction Formats. (under
the direction of DAVID A. PLAISTED).

This thesis explores several topics concerning the sequent-style inference sys-
tem - the modified problem reduction format. Chapter 1 is the introductory chap-
ter. In Chapter 2, we will present how caching is performed with the depth-first
iterative deepening search to implement the modified problem reduction format, in
order to avoid the repeated work involved in solving a subgoal more than once. In
Chapter 3, we present the formalization of goal generalization and how it is imple-
mented by augmenting the modified problem reduction format, where goal gener-
alization is a special case of Explanation-Based Generalization in maching learn-
ing. In Chapter 4, we will present how subgoal reordering is performed in the
modified problem reduction format and how it is implemented. In Chapter 5 and
Chapter 6, we will present two refinements to the depth-first iterative deepening
search strategy in the implementation. The first refinement, the priority system,
concerns how to incorporate the use of priority of subgoals into the depth-first iter-
ative deepening search. We show that the time complexity of the priority systems
is within a constant factor of the complexity of the depth-first iterative deepening
search. The second refinement is based on a syntactic viewpoint of proof develop-
ment, which views the process of finding proofs as an incremental process of con-
structing instances with a certain property. In Chapter 7, we present how seman-
tics, or domain dependent knowledge, can be used in the inference system. In

- i -

particular, we will present a semantic variant of the modified problem reduction
format which selects its inference rules from any interpretation. This results in an
inference system which is a true set-of-support strategy and allows back chaining.
We will also discuss how contrapositives are used in the modified problem reduc-
tion format and its semantic variant. We will show that only some contrapositives
are needed according to some interpretation.

- ii -

Acknowledgements

I am most indebted to my advisor Professor David Plaisted for suggesting a fascinat-
ing dissertation topic, for continuously guiding me during the course of research, for
carefully reading and correcting several drafts. His contributions to the dissertation are as
much as mine, if not more. His support and motivation were essential in the completion
of my graduate study. His academic excellence has been, and will always be, an inspira-
tion to me.

I am thankful to Professor Bharat Jayaraman for his gentle, consistent support and
encouragement during my graduate study. I hav e learned a lot from him, both as a fine
teacher and outstanding scholar. I am equally thankful to Professor Donald Stanat, who
has generously spent time with me, reading and correcting drafts of my dissertation, liter-
ally word by word. I also thank Professor Dean Brock and Professor Jan Prins for serving
on my committee.

I would also like to thank my friends who have made my stay at University of North
Carolina enjoyable and productive. I also thank the Computer Science Department for
providing me the opportunity and good environment to pursue my graduate study. My
research has been supported by the National Science Foundation under grants
DCR-8516243 and CCR-8802282.

The love, understanding and support of my parents have been boundless. They hav e
allowed their son to go to college far away from home and, even farther away from home,
to graduate school.

- iii -

Table of Contents

1. Introduction ... 1

1.1. Goal of This Research .. 2

1.2. Related Work ... 3

1.3. Organization of the Thesis ... 4

1.4. Logical Foundations ... 5

1.4.1. First Order Logic ... 5

1.4.2. Clause Form and Herbrand Theorem 7

1.4.3. Modified Problem Reduction Format 9

1.5. Search Strategies .. 14

2. Depth-first Iterative Deepening Search ... 18

2.1. Depth-first Iterative Deepening Search .. 18

2.2. Caching .. 22

2.2.1. How Caching is Done ... 22

2.2.2. Repeated Solutions .. 24

2.2.3. Experimental Results .. 26

2.3. An Example ... 27

3. Goal Generalization .. 30

3.1. Motivation .. 30

3.2. Goal Generalization ... 31

3.3. Explanation-Based Generalization ... 36

- iv -

3.4. Augmentation Related Refinements .. 38

3.5. Experimental Results ... 39

3.6. Comments .. 40

4. Subgoal Reordering .. 41

4.1. Introduction .. 41

4.2. Related Work ... 44

4.3. Heuristics and Implementation .. 45

4.4. Comments .. 47

5. Priority Systems .. 49

5.1. Motivation and the Basic Idea ... 49

5.2. Formal Development .. 50

5.3. A Modification ... 53

5.4. Implementations of the Priority System .. 55

5.5. A Subgoal-Based Priority System ... 58

5.6. Related Work ... 61

6. Proof Complexity Measures ... 64

6.1. The Basic Idea .. 64

6.2. Implementation .. 65

6.3. Some Examples .. 67

6.4. Comments .. 71

7. Using Semantic Information ... 73

7.1. Overview .. 73

7.2. Semantic Modified Problem Reduction Format 74

7.3. Discussions .. 76

7.3.1. Strengthening the System ... 76

7.3.2. Set of Support Strategy ... 77

7.3.3. Multiple Models .. 77

7.3.4. Gelernter’s method .. 78

7.3.5. Other Refinements .. 78

7.3.6. Contrapositives .. 79

7.4. Some Examples .. 82

7.5. Comments .. 84

8. Conclusions ... 85

- v -

8.1. Comparison with Other Provers ... 85

8.2. Summary .. 86

8.3. Future Research ... 88

Bibliography ... 89

Appendix A: Performance Statistics of the Prover ... 94

Appendix B: SHD-prover Performance Statistics .. 111

Appendix C: Otter Performance Statistics .. 114

- vi -

List of Tables

Table 2.1. Summary Data for Caching .. 26

Table 4.1: Average Data for Subgoal Reordering ... 46

Table 4.2: Running Time Distribution for Subgoal Reordering 46

Table 4.3: Comparing with no Reordering ... 46

Table 5.1. Complexity of Priority System ... 53

Table 5.2. Complexity of Priority System ... 55

Table 5.3. Summary Data for Subgoal-Based Priority System 61

Table 6.1. Summary Data for Proof Complexity Measures 67

- vii -

List of Figures

Figure 1.1: Inference Rules for Modified Problem Reduction Format 10

Figure 1.2: Horn-like Clauses for Clause Set {¬P \/ ¬Q, ¬P \/ Q, ¬Q \/ P, P \/ Q}
... 12

Figure 1.3: Inference Rules for the Example of Figure 1.2 13

Figure 1.4: A Proof for the Example of Figure 1.2 ... 13

Figure 2.1: Representations for Inference Rules ... 21

Figure 2.2: Depth-first Iterative Deepening Search .. 21

Figure 2.3: The Size Prover .. 21

Figure 2.4: Clause Rule Representation in Size Prover .. 22

Figure 2.5: The Depth Prover ... 23

Figure 2.6: Clause Rule Representation in Depth Prover ... 24

Figure 2.7: Depth-first Iterative Deepening Search with Caching 25

Figure 3.1: An Example for Goal Generalization ... 31

Figure 3.2: Simplified Representation of Inference Rules .. 32

Figure 3.3: Member Predicate Definition ... 32

Figure 3.4: Augmented Clause Rule ... 33

Figure 3.5: Augmented Assumption Axioms and Case Analysis Rule 34

Figure 3.6: Augmented Member Predicate Definition .. 34

Figure 3.7: A Specific Proof Tree ... 35

Figure 3.8: A More General Proof Tree .. 36

Figure 5.1: Control Structure of Priority System .. 55

- viii -

Figure 5.2: Control Structure of Priority System .. 56

Figure 5.3: Control Structure of A Priority System .. 59

Figure 5.4: The Proof for fex6t1 ... 62

Figure 6.1: Input Clauses of GCD Theorem ... 69

Figure 6.2: Proof of GCD Theorem .. 70

Figure 6.3: Input Clauses for LCM Theorem ... 71

Figure 6.2: Proof of LCM Theorem .. 72

Figure 7.1: Semantic Modified Problem Reduction Format 75

Figure 7.2: An Example on Contrapositive .. 80

Figure 7.3: An Example on Contrapositive (cont.) .. 80

Figure 7.4: Input Clauses for IMV Theorem .. 83

- ix -

