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MICHAEL SETH KOTLIAR. The Right Stuff - Techniques for High Speed CMOS 

Circuit Synthesis (Under the direction of Kye S. Hedlund) 

ABSTRACT 

This dissertation presents a method for improving the speed of combinational CMOS 

circuits. The original circuit is replaced by a faster circuit with equivalent function 

by restructuring the gates and their connections in the circuit. This restructuring has 

more flexibility and greater potential for reducing delays than other methods such 

as transistor sizing. However, this increased flexibility comes at a cost of increased 

problem complexity, so to solve this problem in an efficient manner, we use greedy 

heuristics that have been augmented with knowledge of the problem. 

The restructuring is accomplished by a set of transformations that are applied to 

the circuit in both a local and global manner. One of the transformations described, 

path resynthesis, is a new technique and its operation is described. 

The amount of speed-up possible using restructuring is illustrated using a set of 

representative circuits from a standard benchmark set. Since the reduction in delay 

is not without cost, the cost associated with the increased speed, namely increased 

circuit area, is also studied using the set of representative circuits. 
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Chapter I 

Introduction 

1.1 VLSI Design Process 

Very Large Scale Integration (VLSI) circuit design is the process of building an in­

tegrated circuit, or chip, from a high level behavioral description of the circuit. This 

problem is typically split into three phases: circuit design, mask generation, and 

chip fabrication. The first phase, circuit design, determines the implementation of 

the circuit from the behavioral description, including deciding on modules such as 

register files, adders, and random logic, and determining the logic gates necessary 

for their implementation. The second phase, mask generation, produces the actual 

physical masks used for fabrication from the logic description. This phase includes 

floorplanning, cell generation, and placement and routing. In the final phase, chip 

fabrication, the masks are sent to a silicon foundry to produce wafers which are then 

cut into die and packaged into chips. These phases are illustrated in Figure 1.1. The 

work described here occurs in the circuit design phase. 

One way of representing the different parts and levels of the design is the Gajski­

Kuhn diagram[GK83]. This diagram, shown in Figure 1.2, illustrates the different 

representations of the circuit as axis on the diagram. Proceeding out from the center 

on an axis increases the level of abstraction for the particular representation. The 

functional axis represents the behavior or architecture of the system. This functional 

description is the input to the circuit design phase. The structural axis represents the 

components used, or the implementation, and is produced during the circuit design 

phase. The geometrical axis represents the physical design, or realization, and is 

produced by the mask generation phase. 
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Figure 1.1: The VLSI Design Process 

Structutal Behavioral 

System 1/0 specification 

Algorithmic 

Boolean expression 

Mask 

Cells 

Layout planning 

Geometric 

Figure 1.2: Representation of Design 

2 



Boolean Equations 

------- ------

Decomposition 

Minimization 

-------r--------

Technology 
Mapping 

Perfonnance 
Optimization 

Gate· level Netlist 

I 
I 
I 

.! 

Logic Synthesis 

Figure 1.3: Circuit Design Process 

1.2 Circuit Design 

Circuit design is a difficult part of the design process since a designer must trade­

off three resources: area, time, and power, and there are limits on each of these 

resources. Large chips have much lower yields than smaller chips, so a designer must 

keep the design as small as possible. The chip also must operate at a particular 

speed set by the design specifications. Finally, there is only a limited amount of 

power that a chip can safely dissipate. Unfortunately, it is impossible to minimize 

all three factors simultaneously since they are not independent. For example, faster 

circuits often require larger transistors, which take up more area and dissipate more 

power. Another examples of this problem is evident when using gates with large 

fan-in. These gates can produce a small circuit, but are slower than gates with less 

fan-in. However, using logic gates with less fan-in requires more gates in the circuit, 

and so increases the area of the circuit. Therefore, a designer must find the right 

balance of these three resources so that the circuit can operate at the required speed, 

while not exceeding the area limit or power budget. 
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The remainder of this dissertation is limited to discussing the phase of circuit 

design that determines the gate implementation from the Boolean level description, 

as shown by the dotted arc in Figure 1.2. The other aspects of the implementation, 

while important to the design of the chip, are not part of the work described here. 

The design of gates from Boolean equations is typically broken into three steps: 

decomposition, minimization, and technology mapping. An optional fourth step, 

performance optimization, is also part of this process. These steps are illustrated in 

Figure 1.3. When this process is automated, the first two steps are usually combined 

into a single step, called logic synthesis. The final step, performance optimization, is 

the focus of this research, although each of these steps is described in detail, below. 

1.3 Logic Synthesis 

Logic synthesis consists of two steps: decomposition of a set of two-level Boolean 

equations into a set of multi-level Boolean equations, and the minimization of the 

set of multi-level Boolean equations. Decomposition is necessary because, when im­

plemented as gates, multi-level Boolean equations require less space than two-level 

Boolean equations and can produce faster circuits. In the minimization step, the 

number of literals in the circuit are minimized, reducing the area of the circuit, since 

the number of literals is proportional to the area. The computational complexity of 

minimization is co-NP-hard[KR89], but some useful heuristics have been developed 

that return satisfactory results(BHMSV84, BHJ+S7, BCDH86, BRSVW87, DeM87, 

LKB87, MBSS, HJ88, Bra83, Sas86, BS89). A more detailed overview may be found 

in [Tre87). 

1.4 Technology Mapping 

After minimizing the Boolean equations, they must be converted into gates from the 

implementation technology. This operation, called technology mapping, replaces each 

Boolean equation with one or more logic gates. The choice of gates is limited to what 

is available in the particular implementation technology. Finding the best mapping 

of the circuit is an NP-complete problem(KR89), so the most common technique is to 

break the circuit into trees of functions and then map the individual trees into gates. 
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1.5 Performance Optimization 

1.5.1 Why is it needed? 

Logic synthesis' primary goal is to minimize the number of literals in the set of 

Boolean equations, since this corresponds to minimizing the area of the circuit. How­

ever, logic synthesis tools emphasize area minimization often at the expense of circuit 

speed, and can produce circuits that are too slow for some applications. For example, 

when trying to increase sharing of gates, long chains of g~tes that can be very slow are 

produced. Technology mapping also often contributes to slow circuit because either 

delay is not considered during the mapping operation, or inaccurate delay models are 

used. 

If the circuit produced by automatic tools is too slow, one alternative is for the 

designer to modify the circuit manually. Unfortunately this method is time consuming 

and error-prone and so is undesirable. Another alternative is to enlarge some of 

the transistors in the circuit. This technique, known as transistor sizing, matches 

the driving ability of a gate with the load that it must drive. A gate that must 

drive a large load has its transistors enlarged so it will be able to drive its large 

load. While transistor sizing is useful and has been successfully applied to many 

circuits[Hed84, FD85, Mat85, Hed87], the restructuring of the circuit by adding, 

removing, and modifying the gates and their connectivity is a more flexible approach. 

The latter method is the one described in this work. 

As the size and complexity of VLSI designs increase and product life cycles de­

crease, there will be a greater reliance on automatic design and synthesis tools. The 

ability to automatically generate designs that meet certain speed requirements is 

therefore paramount. Automatic restructuring is a one technique for reducing delay 

and if applicable over a broad range of circuits, will allow automatically synthesized 

circuits to become more widely used, especially in the time critical parts of a chip. 

Therefore, this area is an important research topic. 

1.5.2 Thesis Statement 

A set of transformations, heuristically applied to a circuit, can produce significant 

reductions in delay with acceptable increases in the area of the circuit. These trans­

formations provide greater reduction in delay than transistor sizing alone. A greedy 

approach combined with knowledge of the problem provides a useful heuristic to 

5 



apply these transformations. 

This work differs from earlier work in that it includes a larger set of transfor­

mations, including one not presented before, gives a more formal description of the 

different transformations, and provides improved heuristics for applying these trans­

formations to the circuit. 

1.5.3 Problem Statement 

Given a combinational circuit described as a gate-level netlist, a set of timing con­

straints, and information about the implementation technology, such as intrinsic re­

sistance and capacitance values, produce an equivalent gate-level netlist circuit that 

has the equivalent function of the input circuit but meets the timing constraints. It 

is desired that the size of the equivalent circuit is not excessively larger than the 

original circuit. 

1.5.4 Why is this problem hard? 

There are two factors that make this problem difficult. First, the number of trans­

formations are large and there are many places in the circuit where they could be 

applied. Thus, there is a combinatorial explosion in the complexity of the problem. 

Second, the order of application can have a profound effect on the type of improve­

ment possible. Different order of the place and type of transformation can preclude 

or allow other transformations being used later on. 

1.5.5 Assumptions 

Performance optimization converts a gate-level circuit description into an equivalent 

description that operates at a faster speed than the original circuit description. Two 

assumptions simplify this problem. First, the description is assumed to be purely 

combinational logic. This assumption simplifies the timing analysis of the circuit 

by preventing feedback paths. It is reasonable to make this assumption because it is 

consistent with the Mead and Conway design style(MCSO] or the design for testability 

paradigm[McC86]. In this design style, shown in Figure 1.4, a register feeds into a 

combinational logic block that, in turn, feeds into another register. This second 

register may feed into another combinational logic block. Note that this design style 

is not limiting since most circuits can be represented in this form. 
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Figure 1.4: Mead and Conway Design Style 

The second assumption is that there is no restriction on the type of gate available 

during the restructuring operations, as long as the gate is a complex, static, full­

complementary CMOS gate. No nMOS or dynamic CMOS gates are allowed. Also, 

no bidirectional pass gates are permitted in the circuit. Unlike standard cells or 

gate arrays, however, there is no limitation to the size of the gate library. Since this 

technology is a superset of the common implementation technologies, this work can 

also be used when restricted to a particular and limited implementation technology. 

1.5.6 Method 

The general method to solve this problem is an iterative two-step approach. The first 

step is to find paths through the circuit that are too slow, called critical paths. The 

second step is to apply a transformation to these paths to reduce the delay. These 

two steps are repeated until either the circuit meets the timing constraints, or it has 

become clear that it is not possible to meet the timing constraints. 

1.6 Dissertation Overview 

In this dissertation, the theory and techniques for circuit optimization are described. 

Chapter 2 describes the previous work that has been done in this area. The models 

used to represent the problem are described in Chapter 3. In Chapter 4, the different 

transformations are described in detail. Then, in Chapter 5, the techniques used to 

apply the transformations to a circuit are presented. Chapter 6 contains the results 
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of applying these techniques to a set of circuits. Finally, Chapter 7 concludes with a 

summary of this work and describes the direction of future research. 
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Chapter II 
Previous Work 

2.1 Introduction 

Performance optimization of combinational circuits has been the subject of earlier 

research, and this chapter surveys the previous research that is closely related to the 

research presented here. There are two principal approaches to logic optimization. 

The first approach occurs in the context of technology mapping, and the second 

approach uses a separate optimization phase to reduce the delay in the circuit. This 

chapter begins with a brief discussion of technology mapping techniques, and then 

describes previously reported optimizations. 

2.2 Technology Mapping 

Technology mapping converts a set of Boolean equations into a set of logic gates. 

It is instructive to survey the most common methods used for technology mapping, 

since it is closely linked to performance optimization. The set of Boolean equations 

can be represented as a directed graph, with each equation represented by a node. 

A directed edge between two nodes occurs when the output of the Boolean equation 

associated with the first node is used as input in the Boolean equation of the second 

node. This graph is commonly called a Boolean network. If the Boolean equations 

describe a combinational circuit, then this graph is acyclic. A set of logic gates 

forming a circuit can also be represented as a graph. Each logic gate is represented 

by a node and a directed edge exists between two nodes if the output of one gate is 

used as the input of another gate. The problem of technology mapping can then be 

represented as a mapping between two graphs, with the goal of finding the optimal 

mapping that produces the best circuit, where best is usually defined as the least 

area. There are two primary techniques for technology mapping, tree-matching and 

graph-matching, both of which can be formulated as a problem of covering a DAG 
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with a smaller library of DAGs. Since the problem of DAG covering is NP-complete, 

both of these techniques are approximate. 

2.2.1 Tree Matching 

To convert the graph of Boolean equations into a graph of logic gates, the first step 

in tree matching is to divide the Boolean network into trees by partitioning the 

graph. than one edge. This partitioning is done by removing all the edges emanating 

from all nodes that have more than one edge emanating from it, and this node 

forms the root of the tree. In other words, the outputs of all nodes that a fan-out 

greater than one are removed from the tree. For example, in Figure 2.1 a graph is 

partitioned into a forest of four trees. After the partitioning of the graph into trees 

is completed, each tree is first converted into a canonical representation of two-input 

nand gates and inverters, and then mapped into logic gates using a pattern match of 

the gates in the library. Splitting the graph into trees allows each tree to be optimally 

mapped into gates in linear time using a dynamic programming techniques derived 

from an algorithm used for code generation in a compiler. The algorithm works by 

recursively finding the best mapping of each subtree in the tree, where the area or 

the delay of the gate is used to determine the quality of the mapping. While this 

method is optimal for each tree, it cannot guarantee an optimal mapping for the entire 

circuit. Both DAGON[Keu87] and MIS[BRSVW87, SWBSV88] use this technique. 

MIS improves upon the basic technique used in DAGON by adding inverter pairs at 

each internal node of the tree, allowing more flexibility in the choice of gates. An 

alternative representation of the Boolean network is used in SKOL(Ber88]. Rather 

than representing the network in terms of two-input nand gates and inverters, it 

represents the network in terms a factors. These factors are allowed to contain no 

other factors, other than themselves. This representation allows arithmetic operations 

to be used rather than pattern matching. 

2.2.2 Graph Matching 

Instead of using the tree-matching method of finding an approximate solution by 

exactly solving a related problem, graph matching solves the original problem in an 

approximate way. MIS uses a greedy technique of selecting a subgraph that covers 

the largest portion of the circuit graph. Kahrs[Kah86] also uses a greedy strategy, 

but the choice of subgraph at a particular node is restricted so that it does not 
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BEFORE 

Figure 2.1: Partitioning a Graph into a Forest of Trees 

overlap with other subgraphs already selected. Where comparisons of this technique 

to tree-matching are available[SWBSVSS], tree-matching techniques produce smaller 

circuits than those produced by graph matching. 

2.3 Optimizations 

In previous work, only optimization techniques that reduce delay have been presented. 

Since the primary goal of logic synthesis has been area minimization, and technol­

ogy mapping algorithms produce reasonably small circuits, separate techniques to 

reduce area have not been necessary. So, this section describes some of the delay 

optimizations that have been reported. 

2.3.1 Fan-in Ordering 

The selection of gates in technology mapping does not consider the arrival time of the 

inputs, even when optimizing for delay. MIS contains a timing optimization called 

fan-in ordering which modifies the structure of the Boolean network based on the 

input arrival time. Using a unit-delay model to measure delays and determine the 

critical path, this optimization collapses several gates on a critical path together and 

then decomposes the collapsed gate based on the arrival time of the input. This 

operation restructures the Boolean network so that slow signals travel through fewer 

stages than fast signals. The decision on which gates to select is guided by heuristics 

that look for groups of gates with slow inputs traveling along the longest paths using 

a least-squares fit of the arrival time versus the delay through the group of gates. 

LSS[DJBTSl, DBG+84, JTB+S6] and Socrates[BCDH86, GBdAH86] also use fan­

in ordering. Unlike MIS, however, LSS and Socrates use this technique after mapping 

the Boolean network into gates. 
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2.3.2 Gate Collapsing 

Another optimization technique collapses together pairs of gates along the critical 

path[BJSS]. This technique tries to shorten the critical paths, thus reducing the delay 

of the paths. In LSS, gates are collapsed using a method called path correction. This 

method also tries to shorten paths, but it allows for duplication of logic which may 

occur when the first gate of the pair has a fan-out that is greater than one. 

2.3.3 Gate Partitioning 

Gate partitioning splits up large gates to decrease the delay on a critical path. 

MTA[HK87] describes two techniques for partitioning gates. In the first technique, 

signal grouping, the inputs to the gate are divided into a time critical group and a 

non-time critical group. Inputs arriving within ten percent of the slowest input are 

considered part of the time critical group. The inputs in the non-time critical group 

are removed and placed in a new gate which drives the original gate. The net result 

is that the original gate is now smaller and faster, reducing path delay at a cost of 

increasing the delay for the inputs from the non-time critical group, since they must 

pass through an extra stage of logic. However, since the non-time critical inputs 

arrive much earlier, the extra logic does not adversely affect the speed of the circuit. 

Another technique of gate partitioning used in MTA is called binary partitioning. 

In this method, the gate splits into a multi-tiered network of gates, with either a two­

input nand gate or nor gate on the top tier for improved load driving ability. Socrates 

also looks for large gates on the critical path that can be broken up to reduce delay. 

McMAP[LBKSS] combines gate partitioning and gate collapsing together, us­

ing a loop of partition-collapse operations to optimize the circuit. In McMAP, the 

partition-collapse operation is performed several times, each with a different random 

initial assignment. The fastest circuit produced during all the trials is then kept as 

the final circuit. 

YLE[BCD+SS, DeM87], which is part of the Yorktown Silicon Compiler system, 

also combines gate partitioning and collapsing. However, it adds an additional step, 

gate simplification, between the partition and collapse steps. This transformation is 

described below. YLE uses a greedy heuristic that selects the slowest gates on the 

critical path first. 
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2.3.4 Logic Dual Replacement 

In logic dual replacement, one or more gates is replaced with it logic dual. For 

example, a nor gate is replaced by a nand gate, or an aoi gate is replaced by an oai 

gate. The motivation for this type of operation is to reduce the number of inverters 

in the circuit and along the critical path, reducing both area and delay. McMAP 

uses a greedy interchange algorithm with random initial assignment of the gates and 

multiple trials. The circuit with the shortest delay from all the trials is then selected. 

MIS also uses this technique, but in the context of area minimization. Two different 

heuristics are used. The first heuristic replaces each gate with its dual if it reduces 

the number of inverters in the circuit. Because the first heuristic is susceptible to 

getting caught in a local minimum, the second heuristic uses the first heuristic to 

find a local minimum and then inverts some gates, even if the number of inverters 

increase, so that later iterations may find a circuit with fewer inverters. Berkelaar 

uses heuristics that minimize inverters along the critical paths. SKOL separately 

replaces each gate on the critical path with its dual to see if there is any decrease 

in delay. MTA also uses a similar technique. LSS also tries to remove inverters on 

critical paths, but it searches for complements of the inverter's source. If such a 

signal is found and replacing the inverter with the complemented signal reduces the 

delay, then the inverter is removed. 

Socrates uses this technique from the point of view of replacing nor-nor gate pairs 

with nand-nand gate pairs when the speed of the nand gates are faster than nor gates 

in the particular implementation technology, as in the case with CMOS. 

2.3.5 Load Matching 

Load matching consists of several techniques designed to help a gate drive a large 

load. In MTA, inverters that drive large load are duplicated, with the load divided 

between the two inverters. EPOXY(OKSS] can either insert a buffer to drive a large 

load, or duplicate a gate so that the original gate drives only the critical part of the 

load and the duplicate drives the non-critical part of the load. LSS tries to choose 

the optimum buffer size based on the size of the load to be driven. Socrates looks for 

heavily loaded gates and inserts buffers between them and the load. 
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2.3.6 Gate Simplification 

In gate simplification, which is used by YLE, a logic gate is replaced by another logic 

gate that has the same function but requires less area using Boolean minimization 

techniques from logic synthesis. The simplification is done using the Boolean function 

representation of the gate and tries to take advantage of don't care conditions that 

may exist for the function. 

2.3. 7 Transistor Ordering 

Transistor ordering, a transformation available in both MTA and EPOXY, reorders 

the transistors within a gate in order to reduce the gate delay due to internal gate 

parasitics. By moving early arriving inputs closer to the power or ground nodes, the 

sources and drains of the transistors are set with the proper voltage, allowing the 

gate to switch faster when the slower inputs finally arrive. MTA and EPOXY use 

this transformation as a last resort to reduce the delay along a particular path. 
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Chapter III 

Models 

This chapter describes the different models that are used to represent the circuit. 

These models abstract away unimportant details from the problem. The models 

discussed include: the representation of the circuit, and the models for delay, area, 

critical path and power dissipation. 

3.1 Representation of Circuit Structure 

A circuit can be represented as a hypergraph with each node representing a Boolean 

function or gate, and each edge connecting the output of a node to all other nodes 

which use the function computed at the node as an input. To slightly simplify 

this representation, the hypergraph is converted to a normal graph by replacing all 

hyperedges that connect n nodes together with n - 1 edges. If the circuit is only 

combinational logic, then the graph is acyclic. Furthermore, if the nodes represent 

something where the signal flow is uni-directional, as with a Boolean equation or 

logic gate, then the edges become directed edges. 

The important issue for the representation of the circuit structure is the level of 

representation of the nodes in the graph used to represent the structure. The first 

choice is letting each node represent a Boolean equation. This representation, called 

a Boolean network[BBH+88], is commonly used to represent a circuit during logic 

decomposition and minimization. The second choice assigns a logic gate to each node 

in the graph. This second representation is called a net-list. 

3.1.1 Boolean Network 

The first representation, a Boolean network, is a technology-independent descrip­

tion of the circuit. Although it does not contain some important information that 

is needed for performance optimization, the description of the transformations are 

15 



sometimes easier to understand using this representation. Before defining a Boolean 

network, though, a Boolean function must be defined. 

Definition 3.1 (Boolean Function) A Boolean function is a function/: B'--> B. 

An incompletely specified Boolean function is a set of three completely specified 

Boolean functions, (!, d, r), where f: B' --> B, d: B' --> B, and r: B' --> B. The 

function f is called the on set , d is called the don't care set , and r is called the off 

~. D 

When an incompletely specified Boolean function does not have a don't care set, 

i.e. d = 0, it is sometimes called a completely specified Boolean function. Such a 

function can be specified using only the on set or only the off set. A Boolean network 

is defined in terms of Boolean functions: 

Definition 3.2 (Boolean Network) A Boolean network, TJ, is defined as a pair 

(F,PO), where F = {F;,i = 1,2, ... ,m} is a set of m on sets,/;, of incompletely 

specified Boolean functions. Each/; is associated with a variable, y;, which represents 

the function in the network. The set of variables, y;, are grouped together in the 

intermediate variable set, IV= {y1,y2 , ... ,ym}· PO is the primary output set, 

PO<; {1,2, ... ,m}. This primary output set contains those intermediate variables, 

y;, that are observable as outputs of the Boolean network. Sometimes, the set PO is 

represented as a vector z, such that Z; = YPO(i)• where i = 1, 2, ... ,p and p =I PO r. 
D 

A Boolean network is called technology independent because the Boolean functions at 

each node of the network need not correspond to a particular gate in any technology. 

Three measures commonly used to evaluate Boolean networks are: primality, 

irredundancy, and R-minimality. The first two measures, primality and irredundancy, 

can also be applied to a single Boolean equation. However, here they are considered 

only in the context of a Boolean network. The two measures are defined as follows: 

Definition 3.3 (Prime) A Boolean network, TJ, is prime if for any cube, c, in a 

function (node) in the network, F;, no literal of c can be removed without causing 

the resulting network, TJ', to be not equivalent to TJ· D 

Definition 3.4 (Irredundant) A Boolean network, TJ, is irredundantwhen no cube, 

c can be removed from any F; in TJ without causing the resulting network TJ' to be 

not equivalent. D 
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A function must be considered pnme or irredundant with respect to the entire 

Boolean network because a function may be prime or irredundant by itself, but not 

within a particular Boolean network. This situation is caused by the don't care con­

ditions associated with the particular Boolean network. A function that is prime and 

irredundant does not have any unnecessary literals or terms, which is desirable for 

area minimization (fewer transistors), delay minimization (shorter paths in the gate), 

and power minimization (fewer transistors). Also, it has been shown[BBH+S6] that 

a network that is prime and irredundant is also 100% testable for input and output 

single stuck-at faults. This result is important since a high degree of testability is an 

important requirement for circuits. 

The final concept is R-minimality. Unlike the primality and irredundancy, R­

minimality has meaning only in the context of a Boolean network. Before giving the 

definition, the reduction and expansion operations on a Boolean network must be 

defined. 

Definition 3.5 (Reduction) Given the function Fj E F in the Boolean network 

TJ = (F, PO), a cube c E Fj can be reduced to cube c' if TJ = TJ', where TJ' is defined by 

replacing Fj with F; = c'U(Fj-c), and for all c" C c', TJ i= TJ", where F;' = c"U(Fj-c). 

0 

In other words, the reduction operation replaces cube c with a cube c' that is a subset 

of the original cube and has no smaller subset that can replace the new cube and still 

preserve the function of the Boolean network. 

Definition 3.6 (Expansion) Literal lin cube c E Fj may be expanded to cube c' 

where c' = cfl( cube c with literal l removed), if c' n Fj = 0. 0 

In other words, literal l in a cube c may be expanded if the expanded term and the 

complement of the original function have no terms in common. Expansion allows us 

to remove non-prime literals from the function. Now, R-minimal is defined in terms 

of these two operations. 

Definition 3. 7 (R-minimal) A Boolean network TJ is called R-minimal if there 

does not exist a cube ck E Fj of TJ that when reduced and expanded into cube ct 

causes cubes ck C Fi and c1 c Fi (k i= /)to become redundant[BBH+SS]. o 

In practice, R-minimality occurs when none of the cubes, c, of the functions, F;, in 

the Boolean network can be reduced. A cube c ofF;, cannot be reduced when it does 
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not intersect any cube in the union of the cover of F;, :F;, and the don't care set of 

F;, d;, except itself. Since several equivalent Boolean networks may be prime and 

irredundant, R-minimality implies a local minimum among equivalent networks with 

respect to the set of functions in the network, since in an R-minimal network none 

of the individual functions can be replaced by a combination of one or more other 

functions in the network. While insuring that a network is R-minimal is useful for 

minimizing the area of a circuit, it does not indicate an optimal Boolean network as 

far as delay is concerned. In chapter 4, we will describe transformations that decrease 

the delay in the circuit, but do not maintain R-minimality. 

3.1.2 Gate-level Netlist 

Another representation used in the description of the transformations is the gate­

level netlist representation of a circuit. This representation corresponds to the actual 

implementation of the circuit, so unlike a Boolean network, the nodes of the gate­

level netlist correspond to actual gates from a particular technology. In a standard 

cell or gate array implementation, the types of gates in the net-list are restricted to 

be in a particular set or library. 

A gate-level netlist has a clear advantage over a Boolean network for modeling 

purposes in performance optimization because it contains gates rather than Boolean 

equations. The delay, area, and power requirements of the gates in the net-list can 

be more accurately modeled than Boolean equation, allowing more accurate repre­

sentation of these values in the circuit. If there is some implicit assumption about 

the implementation of the Boolean functions, then the delay, area, and power can 

be accurately modeled, but this assumption is actually a trivial technology mapping 

and so the representation is actually a netlist. Despite the Boolean network's lack of 

accurate modeling for delay, area and power, it is still useful to describe the action 

of some transformations with this representation, so both models are used here. 

3.2 Delay Model 

The delay model allows for the estimate of the speed for the circuit and is used to 

make decisions on where to reduce the delay. One common model for delay is the 

unit-delay model. In this model, each gate is given the same delay, and so the delay 

for a particular path through the circuit is just the number of gates in the path. 
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Although this method can quickly analyze a circuit, it is too inaccurate. The delay 

for a gate is dependent upon the size of the gate and the size of the load it must drive 

and neither of these factors are accurately modeled by this technique. Therefore, a 

more accurate model is required. 

In this work, delay in the circuit is estimated by the RC model[Elm48]. The delay 

of a gate, d, is the product of all of the resistances and capacitances associated with 

the gate and the load it must drive: 

(3.1) 

The delay dp through a path P in the circuit is given by: 

(3.2) 

where d; is the delay of gate i and gate i E P. The resistances are the resistance of 

the transistor that is turning on as well as any parasitic resistances in the gate and 

load. The capacitances consist of parasitic capacitances within the gate and the load 

capacitance. A more detailed description of this model is given in Appendix A. 

More accurate and complex models could be used, such as those used in device­

level simulators, but the evaluation of these complex models requires significantly 

more CPU time. Since the improvement in accuracy does not outweigh the cost of 

additional CPU times, the RC model is used. 

To simplify the modeling of the gate, a restriction is made so that only one input 

to the gate changes at any time. While this restriction is not always true, it simplifies 

the evaluation of gate delay and removes the possibility of function hazards. While 

it is possible that this restriction can cause large errors in delay for the gate, such as 

when all the inputs change at the same time, the likelihood of this situation occurring 

is highly unlikely. 

Wires are used to connect the gates in the circuit. These wires, however, con­

tribute parasitic capacitance and resistance to the circuit. Ignoring these parasitics 

causes some errors, especially at small geometry size because these parasitics become 

larger in comparison with gate resistances and capacitances. Unfortunately, these 

parasitics can only be determined from the mask-level description, and so are not 

usually available when performance optimization is done. One way to make up for 

this missing information is to estimate the wiring parasitics. However, estimation 
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of these parasitics is complicated because the parasitics can vary widely based on 

the placement of the gates in the layout and on the implementation, be it standard 

cells, gate arrays, or custom layout. For this reason, wiring parasitics are ignored, 

unless they are specifically supplied with the circuit description. If these parasitics 

are supplied, then they are incorporated into the delay evaluation of the gates. 

3.3 Area Model 

The area model is used to measure the area required to construct a circuit. Since 

large integrated circuits are costly to produce, it is important to keep track of the 

total area used. There are two components to the area of the circuit. The first 

component is the transistors and the second component is the wires that connect the 

transistors together. The area required by the transistors depends upon the imple­

mentation technology and the relative sizes. For wires, the area depends not only on 

the implementation technology and relative sizes, but the design style as well. For 

example, gate array design style has a large wiring area requirement. Standard cells, 

while not as large as gate array still use a moderate wiring area. Full custom, on 

the other hand, has the smallest area requirement. There has been some work on 

estimating wiring area(HMD77, EG81, SP86], however these models assume a partic­

ular implementation, usually gate arrays. Rather than making an assumption on the 

particular design style, we opt for modeling the area just by using the transistors. 

There are three principal methods for measuring the area of the circuit using only 

the transistors. The first method, gate count, is popular for modeling area in logic 

synthesis. However, this model is undesirable because it underestimates the area 

of the circuits because it treats all gates the same. Thus, large complex gates are 

considered to be the same size as inverters. 

Another technique used to model circuit area is the sum of transistors sizes or 

the sum of the widths of transistors. This technique, which makes sense only when 

differing transistors sizes are allowed, tends to overestimate the relative area of the 

circuit because it implicitly assumes that the wiring area of the transistor is directly 

proportional to transistor sizes, which is not correct. There are significant wmng 

sections of a circuit that are independent of the transistor size. 

The technique used here to measure area is the total number of transistors. It 

does not treat all gates with equal size and also does not overestimate relative area 

when the sizes of transistors change. Although the actual area is highly dependent 
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on the mask implementation, this model provides a reasonable approximation. 

3.4 Power Model 

Only a limited amount of power may be safely dissipated from a chip. Thus, it is 

important to keep track of the total power released. Since the circuits analyzed are 

static CMOS circuits, there are three sources of power dissipation. The first source is 

static power dissipation caused by substrate leakage current, and the second source is 

dynamic power dissipation caused by switching states. The static power dissipation 

component is very small, however, and is ignored. The other two components are 

the dynamic power, used to charge or discharge a node when changing state, and the 

short-circuit power, which occurs when there is a path between 1--dd and GN D. 

The dynamic power dissipation, Pd, is modeled for each stage using the following 

equation: 

(3.3) 

where C L is the load capacitance of the gate, 1--dd is the supply voltage, and JP is the 

frequency of operation. The short-circuit power is given by: 

(3.4) 

where T is the rise or fall time of the gate, and T is the reciprocal of the frequency 

of operation[Vee84]. 

In limiting the scope of this research, the effects on power dissipation are not 

considered in the implementation and experiments. However, they are considered in 

the discussion of the transformations in Chapter 4. 

3.5 Critical Path Model 

The signals that pass through the circuit require different amounts of time to prop­

agate through to the outputs. The amount of time required may be more than what 

the designer has intended. When there exists paths through the circuit that do not 

meet the design requirements, they are called critical paths. Before giving the formal 

definition, some terms need to be defined: 
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Definition 3.8 (Ready Time) The ready time of a gate g, t(g), is the time when 

the output of gate g is available for input to other gates. It is the sum of the arrival 

time of the slowest input to gate g and the delay associated with gate g. 0 

Definition 3.9 (Required Time) The required time of a gate g, i(g), is the time 

when the output gate g needs to be available for input to other gates in order to meet 

the timing constraints for the circuit. 0 

These first two definitions form the basis for gate slack[DeM87]: 

Definition 3.10 (Slack) The slack time of gate g, s(g) is the maximum amount of 

leeway between the ready time and the required time for the gate. If gate g drives 

a primary output, then the slack is the difference between the required time and 

the ready time: s(g) = i(g)- t(g). If gate g does not drive a primary output, then 

s(g) = minjeJ[s(j) + maxkeKt(k)- t(g)J where J is the set of all gates driven by gate 

g and K is the set of gates that drive gate j E J. 

Now, the definition a critical path in the circuit, in terms of slack, is as follows: 

Definition 3.11 (Critical Path) A critical path is a path through the circuit from 

a primary input to a primary output that does not meet the timing constraints set 

by the designer. The gates on this critical path have a negative value for slack and 

are sometimes called critical gates. 0 

The critical paths are important, because these are the paths in the circuit that are 

transformed, using techniques in chapter 4, to reduce delays. 

When determining critical paths, it is assumed that only one primary input to 

the critical path changes at a time. The critical paths then measure the delay from 

the primary input to the primary output assuming all other primary inputs do not 

change. 

3.5.1 False Paths 

The above definition for critical paths is called data-independent because the critical 

paths are found without checking every input pattern. This method has one drawback 

though. It is possible to identify paths in the circuit which appear to be critical paths 

but, in fact are not because the worst-case conditions responsible for the path wil 

never occur. This type of critical path is called a false path. Another problem that 
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may occur is that paths associated with race conditions in reconvergent fan-out will 

not be detected. 

To remove false paths and find undetected paths, a complete simulation using all 

possible input values and using a detailed circuit simulator is necessary. However, 

this approach is extremely expensive because of the large run times needed and is 

not feasible for very large circuits. 

Some recent work by McGreer [MB89] has considered the problem of finding the 

true critical paths in the circuit and provides a more efficient solution to this problem. 

However, there is still a large cost in run time associated with this technique. Because 

of these costs, our approach here is to assume that the paths determined using static 

timing analysis are correct. Fortunately, McGreer found that all but one of the 

circuits in the MCNC Benchmark set [LBKSS], which are used in the experiments in 

Chapter 6, do not contain false paths. 
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Chapter IV 

Transformations 

This chapter describes the different types of transformations that are used in per­

formance optimization. The transformations are divided into two groups: local and 

global. If the circuit is thought of as a graph, then a tree is defined as a set of con­

nected gates in the circuit that, except for the root, have fan-out of one. Then local 

transformations, with one exception, are applied only to individual trees. Their effect 

is only on a small number of gates. On the other hand, global transformations in­

volve two or more trees in the network, and therefore affect a larger number of gates. 

Because of this difference, local transformations usually have smaller effects on the 

delay of the circuit, as well as the area of the circuit, than global transformations. 

This difference will become apparent in the following sections. 

The description of each transformation uses some abbreviations which are divided 

into two groups: those for delay and those for power. The discussion of delay uses 

the following abbreviations: 

R 

c 
k; 

k~ • 

tr(v;) 

qv;)' 

t;( v;) 

d(v;) 

b.lr(v;) 

= 

= 

= 

the resistance for a minimum size transistor 

the gate capacitance for a minimum size transistor 

the transistor scaling factor for gate i, that is, each transistor 

in gate i has size k; times a minimum size transistor 

the transistor scaling factor in the transformed circuit for gate i 

that is, each transistor in gate i has size k; times a minimum 

size transistor 

the data ready time for gate v; 

the data ready time for gate v; after it has been transformed 

the ready time for the input to gate V; 

the delay due to gate v; 

tr(v;)- tr(v;)', the change in the data ready time caused by the 

transformation 
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Whenever C has a subscript, it refers to a particular capacitance value and not 

the gate capacitance of a minimum sized transistor. The equations for delay do not 

explicitly include parasitic capacitance and resistance values. However, if these values 

are available, they can be easily included in the equations. 

The discussion of power uses the following abbreviations: 

CL - the load capacitance 

Vdd - the supply voltage 

fp - the frequency of operation 

f3 - MOS gain factor 

VT - the threshold voltage of a transistor 

T - 1.. 

'· r - the rise or fall time of a gate 
pt - the power use after the transformation has been done 

b.P - P - P', the change in power use caused by the transformation 

In the discussion of dynamic power dissipation, the frequency of operation, JP, is used. 

The transformations will speed up the section of the circuit that is changed by the 

transformation. However, in the context of the entire circuit, fP may not increase, or 

the increase will be less than the improvement of the transformation because of other 

critical paths. Therefore, predicting the actual change in JP and hence the dynamic 

power dissipation becomes very difficult. Using the change in frequency implied by the 

transformation would overestimate the actual change in dynamic power dissipation. 

Therefore, in the discussion below, JP is assumed, for simplicity, to be a constant for 

some of the analysis. So, the equations in the discussion indicate a lower bound on 

the change in dynamic power dissipation. 

4.1 Local Transformations 

4.1.1 Buffering 

Transistor sizing is a commonly-used technique for allowing gates to drive capacitive 

loads. This technique, however, is not sufficient if the capacitive load is too large. By 

inserting one or more buffers between the gate and the capacitive load, a reduction in 

the path delay can occur. This insertion process is called the buffering transformation. 

25 



If the buffering operation is considered at the Boolean network level, then it adds 

Boolean equations into the network. So applying the transformation to a circuit 

revokes the R-minimal property. This change occurs because the insertion of a buffer 

does not contribute to the computation of the function, that is, it can be removed 

without changing the functions of the Boolean network. However, as will be shown 

below, the delay of the circuit can be reduced when this transformation is applied. 

Example 

Consider the following simple example, where a nand gate drives a large capacitive 

load, CL, shown on the left side of Figure 4.1. Based on the ratio of input to output 

capacitance of the gate, it is determined through a method described below, that 

in order to decrease the delay along the path, a buffer is needed between the gate 

and the load that it drives. The transformed circuit is shown on the right side of 

Figure 4.1. 

Figure 4.1: Buffering Transformation Example 

This transformation takes advantage of the analog properties of the MOS tran­

sistor. Since there is a large capacitive load, the buffer is sized larger than the gate 

originally driving the load. The buffer acts as an amplifier by providing more current 

and thus charges the capacitive load faster than the original gate. The original gate 

now has a reduced load to drive, and so it operates faster. Although the buffer adds 

delay to the signal path, the increase is more than offset by the decrease in delay for 

the original gate, so the net result is a decrease in path delay. 

Method 

The first step of this transformation is to determine the optimal number of stages 

for the load that must be driven. The formula to determine the optimal number of 
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stages, S, to drive a capacitive load comes from Lee[LS84] and is: 

( 4.1) 

where N is the number of stages in the current path, C L is the capacitive load to 

be driven, C; is the input capacitance of the first gate in the chain of gates that 

drive CL, and Rn is the resistance of the longest series chain for gate n. Notice that 

adding inverters to the path does not change the value of IT~=t Rn. This formula 

arises from solving the partial derivative of the equation for path delay with respect 

to the number of stages, and assumes that the parasitic capacitances are small in 

comparison to the gate capacitances. If this assumption is not true, the optimal 

number of stages cannot be computed analytically. For the technology that is used 

here, however, the assumption is true. 

The number of stages driving the load is determined by counting back along the 

critical path up to but not including the next gate with fan-out of greater than one. 

This is the number of stages in the worst case path of the current tree in the Boolean 

network representation. This number of stages is then compared with the optimal 

number from Equation 4.1 to determine whether or not additional stages are required. 

If more stages are required than exist, additional stages are added between the 

driving gate and the capacitive load. Since inverters are used as the additional stages, 

a phase shift, that is the replacement of a gate by its dual, may be required in order to 

get the proper number of stages. The action taken is summarized below in Table 4.1. 

The use of phase shift requires that the inverted signal of the inputs to the tree is 

also available in the circuit. 

II Stages I Operation II 
1 no change (transistor sizing only) 
2 "phase shift" and add inverter after driving gate 
3 add two inverters after driving gate 
4 "phase shift" and add two inverters after driving gate 
5 add three inverters after driving gate 

Table 4.1: Buffer Transformation Rules 
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Speed Changes 

Consider the example in Figure 4.1. Generalizing that example to an r-input nand 

gate (and introducing an r factor into the equations), the effect of the transformation 

on the speed of the gate driving the large load and the data ready time for the final 

stage to drive the large load is described by the following equations. 

tr(9) 
r 

- t;(g) + kRCL (4.2) 

tr(9bulfer) 
2r 1 

- t;(g) + WkbulferRC + -k -RCL (4.3) 
buffer 

.6.lr(g) 
~ r 1 

( 4.4) = kRCL- ( k'kbulferRC + -k -RCL) 
buffer 

If we assume that the transistors are optimally sized, then we know that the ratio of 

transistor sizes for two consecutive stages is: \:' = a. So if we add n stages to the 

circuit, the data ready time at the output of the last buffer, tr(9bulfer), is described 

by: 
n-1 1 

tr(9bulfer) = i;(g) + 2raRC + L 2aRC + nk RCL 
i=I Q buffer 

(4.5) 

Area Changes 

The change in area depends on the number of inverters that are required to buffer 

the capacitive load. Each inverter adds two transistors to the area of the circuit. 

Power Dissipation Changes 

The change in dynamic power dissipation depends on two factors. First, the number 

of additional stages added, and second, the change in transistor sizes for the gate. 

Generalizing to the case of an r-input gate, the equation for dynamic power dissipation 

is as follows: 

pd = 

P' d -

.6.Pd = 

2rkCV,MP + CL V,Mp 
n 

2rkCV,MP + L 2ai kCV,MP + C L VMP 
i:l 

n 
2r.6.kCV,Mp + 'L:2cxikC~~fp 

i=l 

(4.6) 

(4.7) 

(4.8) 

where a is the transistor scaling factor and n is the total number of additional buffer 

stages in the transformed circuit. 
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The change in the short circuit power dissipation is proportional to the decrease 

in the rise/fall time of the original gate plus the rise/fall time for each of the inverters 

in the buffer, assuming the frequency of operation remains the same. 

is then given by: 
(3 )3[(-.2-- Tb ) AT] AP, = -(Vdd "'- 2Vr L.. T - T 
12 i=l 

The decrease 

(4.9) 

where AT is the change in the rise/fall time for the original gate and Tb, are the 

rise/fall times for the additional stages added to the circuit. 

4.1.2 Critical Signal Isolation 

This transformation's goal is to reduce the delay by reducing the load that a gate 

must drive by isolating the gate's critical load from its non-critical load. An isolation 

buffer is inserted between the gate and the non-critical load, reducing the total load 

that the gate drives. As with the buffering transformation, this transformation does 

not maintain R-minimality, although it does preserve primality and irredundancy. 

Example 

To illustrate this transformation, consider a simple example. The circuit on the left 

side of Figure 4.2 contains a nand gate on the critical path driving a load on the 

critical path and a load that is not on the critical path. These loads represent other 

gates in the circuit. The transformation adds an isolation buffer, implemented as two 

minimum-sized inverters, between the first gate and the non-critical load, shown on 

the right side of Figure 4.2. The capacitive load that the gate must drive is reduced 

because the buffer is minimum sized. Also, the gate's transistor sizes may be reduced 

because of the smaller load, resulting in an increase in speed for the path and a 

decrease in power consumption for the gate. 

Method 

The first step in this transformation is to separate the non-critical signals from the 

critical signals. First, all the gates driven by the gate to be transformed that have 

slack time less than zero are placed into the critical group. In the next step, an 

isolation buffer is placed between the original gate and the non-critical load. Then 

the gates in the non-critical load are re-evaluated to make sure that they are still 

non-critical. If a gate has become critical, it is removed from the non-critical load 
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Figure 4.2: Circuit for Critical Signal Isolation 

and placed in the critical load, and the remaining gates that are in the non-critical 

group are re-evaluated. This evaluation process continues until all the gates in the 

non-critical load have been verified as non-critical. This process is guaranteed to 

terminate because once a gate is place in the critical group it cannot be moved back 

into the non-critical group. 

The algorithm, described in pseudo-code, for this transformation is shown in Fig­

ure 4.3. The threshold value in the pseudo-code description is set to be slightly 

greater than zero, so those gates that are nearly critical are also put in the critical 

group. 

for each gate in load do 
if slack < threshold then 

put gate into critical group 
else 

put gate into non-critical group 
end for 
add isolation buffer between original gate and non-critical group 
repeat 

compute new slack time for non-critical gates 
order non-critical gates by increasing slack time 
if slack time of slowest gate < threshold value then 

move slowest gate to critical group 
else 

exit loop 
until all gates in critical group 

Figure 4.3: Pseudo-code for Critical Signal Isolation 

An alternate method used in earlier work duplicates the gate and then has the 
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original gate drive the critical load and the duplicate gate drive the non-critical load. 

This technique is not as effective because it adds more area, unless the duplicate gate 

is a two-input nand or nor gate, in which case it adds the same area. The reduction 

in delay of the alternate method is slightly better, but only if the resistance of each 

gate driving the duplicated gate is less than the duplicate gate. Also, this method 

can slow down other critical paths that contains one of the gates that drives the 

duplicated gate. For this reason, this alternative technique is not used here. 

Speed Changes 

The effect of this transformation is to speed up the gate by reducing the capacitive 

load it must drive. Two equations describe the data ready time of the gate before and 

after the transformation, as shown in the above example. These equations assume 

that the gate has r inputs, rather than only two inputs. The remaining equations 

describe the change in speed as a result of applying the transformation: 

r 
(4.10) qg) = t;(g) + kR(Ccritica! + Cnon-criticai) 

r 
qg)' - t;(g) + k1 R(Ceriticai + C;nvl ( 4.11) 

b.t.(g) 
r 1 1 

(4.12) = Ak RCcritical + rR( kG non-critical- k1 Cinv) 

Assuming that the inverter in the buffer has minimum sized transistors, the overall 

load decreases and so the new sizes of the transistors in gate g, k1
, are smaller. If 

we ignore the change in the size of transistors in gate g (let k = k1), the equation 

simplifies to: 

(4.13) 

Note that the data ready time for the signal that must pass through the isolation 

buffer to the non-critical load is now greater due to the :tdditional stage delay of the 

buffer. However, since the load is not on the critical path, this slowdown does not 

adversely effect the circuit speed. 

Area Changes 

One driver, the isolation driver, is added to the circuit. If this driver is implemented 

by a pair of inverters, then there are two additional gates or four transistors added 

to the circuit description. 
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Power Dissipation Changes 

Using the example shown in Figure 4.2, above, but generalizing to the case where the 

gate has r inputs, the following equations describe the change in power dissipation. 

Note that optimum transistor sizes are assumed. Because there is a reduced load on 

the original r-input gate, gate g, after the transformation takes place, its transistors 

can be smaller, and the resulting loads on the gates that drive the gate g are reduced. 

The equations that describe the dynamic power dissipation are as follows: 

Pd - r(2kCVd~!p) + Ccriticoi~~~P + Cnon-criticai~~/P (4.14) 

P~ - r(2k'C~~Jp) + CcriticoiVMP + 2Cinv~~~P + Cnon-critical~~/p (4.15) 

If the sum of capacitive load of the two inverters in the isolation buffer and the 

reduced gate capacitance of gate g is less than the sum of the original non-critical 

load and the original gate capacitance of gate g, then there will be a decrease in the 

dynamic power dissipated by this part of the circuit. The equation is as follows: 

( 4.16) 

If, for simplicity, the term ~~~P is treated as a constant, then the term 2(rt:.kC + 
Cnon-critical- 2Cinv) shows, to a constant factor, the change in dynamic power dissi­

pation. 

The change in short circuit power dissipation is given by 

t:.P = f!_(V - 2V: )3(-rbt + rb2- t:.r) 
s 12 dd T T ( 4.17) 

So, the term rb1 + rb2 - 11-r shows, to a constant factor, the change in short circuit 

power dissipation, where rb1 and rb2 are the rise/fall times of the inverter pair added 

to form the isolation buffer. Usually this value is positive, so there is a small increase 

in the short circuit power dissipation. 

4.1.3 Gate Collapsing 

The purpose of the gate collapsing transformation is to reduce the delay along a crit­

ical path by reducing the number of stages. This goal is accomplished by collapsing 

two gates together forming a larger, single gate. 
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Example 

In the circuit, shown on the left side of Figure 4.4, a gate drives several gates, including 

one on the critical path. The two gates are collapsed together, shown on right side of 

Figure 4.4. Notice that since the original driving gate also drives gates elsewhere in 

the circuit, the intermediate node cannot be removed, so there can a slight increase 

in the area of the circuit. In this example, the transistor count remains the same 

because the increase in area from the collapse operation is offset by the removal of 

the inverter. 

• 
X 

a b 

b y-

y 

• 

Figure 4.4: Gate Collapsing Without Node Elimination 

Method 

The first step in this transformation is to select two gates on the critical path to be 

collapsed together. If there is an intervening inverter, then the gates may be collapsed 

without worrying about phase of the inputs. However, if the gates are adjacent, then 

the polarity of the inputs of one of the gate must be inverted because negative logic 

is used. The gate which requires fewer inverters is chosen to be replaced by its dual. 

Then the gates can be combined in a straightforward manner. There is a limit on 

the size of the gates to be collapsed, otherwise the combined gate will not reduce the 

delay on the critical path. In most cases, replacing the pair of gates with the collapsed 

gate will actually increase the delay for the gate. However, when the load that the 

first gate drives is large enough because it drives a large fan-out, the critical path will 

decrease in delay because the transformation will by-pass the capacitive load. Care 

must be taken when applying this transformation because it may increase the delay 

along other, more critical paths because it increases the load on the gates driving the 

collapsed gate. To prevent this situation from occurring, the transformation is only 

applied when the gates to be collapsed are the most critical gates driven the by all 

of the collapsed gates' inputs. The pseudo-code for this transformation is shown in 
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Figure 4.5. 

look for pairs of gates straddling tree boundaries where the first gate 
drives a large fan-out 
if there is no intervening inverter { 

} 

determine whlch gate's dual requires fewest inverters 
replace that gate with its dual 

combine gates together 
make sure path delay decreases 

Figure 4.5: Pseudo-code for Gate Collapsing Without Node Elimination 

The implementation technology may limit the gates that may be combined. With 

full complex gate CMOS, there is no restriction, but with standard cells, the gate 

that is formed by collapsing the two gates together must be part of the standard cell 

library. Otherwise, the collapse may not take place. 

X 

~L2 

Figure 4.6: Gate Collapsing Example for Delay Analysis 

Speed Changes 

Let us consider the circuit shown in Figure 4.6. This is the same example as shown 

in Figure 4.4, but now the gates that drive the first nand gate are shown and the load 

at the output nodes are explicitly shown (they are needed to determine the change in 

delay). In this example, the path through the nand gates and inverter is the critical 

path. Assuming the first nand gate to be collapsed, g1 , has m inputs and the second 

nand gate to be collapsed, g2 has n + 1 inputs, and letting k; be the gate scaling 

factor for gate 9;, the change in delay can be seen from the equations for the data 
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ready time: 

2k1 m 
= t;(go) + koRC + kl R(CLI + Cinv) ( 4.18) 

2k1 m 2k2 
- t;(go) + -k RC + -k R(CLt + C;nv) + y:-RC 

0 1 mu 

( 4.19) 

n+1 
- t;(g2) + -r;-RCL2 ( 4.20) 

Assuming, t;(g2 )' = t;(g1 ), that is, the critical path is still the path from gate g0 

through gate g2 after the transformation, then 

m+n 
= t;(g2)' + k2 RCL2 ( 4.21) 

m 2k2 2k2 m -1 
= -k R(CLt + C;nv) + y;-RC- kRC- -k -RCLz 

1 mv 0 2 
( 4.22) 

Assuming k;nv = 1 and C;nv = 2C, since the inverter drives only a single nand gate, 

the equation for fltr (g2 ) simplifies to: 

m 2m 2k2 m -1 
fltr(g2 ) = -k RCLl + ( -k + 2k2- -k )RC- -k -RCL2 

I 1 0 2 
( 4.23) 

So the larger the value of C Lt> the greater the speed-up possible. Solving for C L! 

results in an equation that shows when the delay of the path is reduced, in terms of 

the other factors: 

( 4.24) 

Area Changes 

The area increase depends upon whether or not there is an intervening inverter that 

can be removed. If there is no intervening inverter, and there are m inputs to the 

first gate of the pair, then there is an increase of at least 2( m - 1) transistors in the 

circuit description, assuming no inverters have to be added. If additional inverters 

are needed, then two transistors are added for each additional inverter. If there is an 

intervening inverter, and it can be removed, then only 2(m- 2) transistors are added 

to the circuit description. 
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Power Dissipation Changes 

The change in dynamic power dissipation is illustrated using the general case shown in 

Figure 4.6. The dynamic power dissipation is described in the following two equations: 

Pd - 2mk1CV,Mp + 2k;n.CV,Mp + 2(n + l)k2CVd~fp 
P~ - 2mk;cv;MP + 2(m + n)k~C~~JP 

( 4.25) 

( 4.26) 

where P is the dynamic power dissipation on the left side of Figure 4.6 and P' is the 

dynamic power dissipation on the right side of Figure 4.6. The capacitive loads on 

the outputs are not included since they do not change with the application of the 

transformation. Notice that k~ = k2 since the gate drives the same load. Depending 

on the change in load driven by them-input gate, k; may equal k1 • Assuming that 

k; = k1 , then the change in power dissipation is described by the following: 

t:.Pd = P~ - Pd 

- 2((m- l)kz- kinv))CVMP 

( 4.27) 

( 4.28) 

so the term ( m- 1 )k2 - k1 will give the dynamic power dissipation within a constant 

factor. If k; =f k1 , then 

( 4.29) 

and the term mt:.k1 + (m -1 )k2 - k;nv will give the dynamic power dissipation within 

a constant factor. The change in short circuit power dissipation is given by: 

( 4.30) 

where t:.r9; is the change in the rise/fall times for gate g;. If there is no intervening 

inverter, the the last term, 7r" is zero. 

4.1.4 Gate Collapsing With Node Elimination 

This transformation's goal is to reduce the length of a path through the circuit and 

the area of the circuit. By combining two gates together, the length of the path can 

be decreased. This transformation is usually applied off of the critical path to save 

area in the circuit without effecting the overall speed of the circuit. 
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Example 

Consider the circuit shown on the left side of Figure 4.7, below. In this circuit, a two­

input nand gate is a predecessor gate that drives another two-input nand gate, and 

both gates are not on the critical path. Since both gates are small, the transformation 

collapses the two gates together and reduces the delay, as shown in the left side of 

Figure 4. 7. If the two gates were larger, then collapsing them together would not 

reduce the delay, but it would still save area . 

• 
b 

Figure 4.7: Gate Collapsing With Node Elimination 

Method 

The first step in this transformation is to identify gates with large slack time. Since 

one effect of this transformation is to slow down part of the circuit, it is necessary to 

choose gates that will not become critical after applying the transformation. Once 

these gates have been identified, they are further reduced by selecting those gates 

that have at least one direct predecessor gate that drives the selected gate. Then for 

each gate to be collapsed, its predecessors that only drives the gate to be collapsed 

are sorted by increasing size. Then a predecessor gate is selected and combined with 

the gate. If the new gate still has a large slack time, then the combination step may 

be repeated. Finally, the predecessor gates that were merged into the selected gate 

are removed from the circuit. 

There are two alternative methods for the ordering used to attempt to add the 

predecessor gates. The first method, used above, starts with the smallest predecessor 

and proceeds to the larger ones in order of increasing size, while the second method 

starts with the largest predecessor and proceeds in order of decreasing size. Although 

the best method depends on the relative sizes, the number of predecessors, and 

the slack time of the gate, the first method is used because it is more likely to 

be successful. The pseudo-code describing the operation of this transformation is 

shown in Figure 4.8. 

The implementation technology may limit the gates that may be combined. With 
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select gates with large slack time that have at least one direct predecessor gate 
that drives only the selected gate 
for each gate do 

sort the direct predecessors that drive only the selected gate in order of increasing 
(decreasing) size 

end for 
for each gate do 

for i = 1 to number of sorted direct predecessor gates do 
combine direct predecessor gate i with selected gate 
compute slack time for new combined gate 
if slack time < threshold value then 

remove direct predecessor gate 
replace selected gate with new gate 

else 
exit loop 

end if 
end for 

end for 

Figure 4.8: Pseudo-code for Gate Collapsing With Node Elimination 

full complex gate CMOS, there is no restriction, but with standard cells, the gate 

that is formed by collapsing the two gates together must be part of the standard cell 

library. Otherwise, the collapse may not take place. 

Speed Changes 

Consider the circuit shown in Figure 4. 7. Assuming the critical path is through the 

chain of gates and is not input c, the equations for delay in the two circuits, and the 

change in delay are as follows: 

t;(92) 
2mk1 2k2 ( 4.31) - t;(g0 ) + --RC + -RC 

ko ki 

t,(g2) 
n+l 

- t;(92) + TRCL ( 4.32) 

t;(g~) = max(t;(9o), t; other(92)) ( 4.33) 

tr(g;) 
n+m 

= t;(g;) + k2 RCL ( 4.34) 

D.tr(92) = D.t;(g2) + (1- m)RCL ( 4.35) 

where m is the number of inputs to predecessor gate, n is the number of additional 

inputs to selected gate (for a total of n + 1 inputs to the selected gate), CLI is the 
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capacitive load for predecessor gate, C L is the capacitive load for selected gate, and 

t; other is the arrival time of the other inputs to the second gate (c in Figure 4.7). 

Notice that k2 does not change because the load CL remains unchanged. 

The value of ilt;(g2) can take on three possible values, depending on the values 

of t;(9o) and t; other(92): 

1. When t;(g0) + 2';;.k' RCL + 'f:RC > t; other(g2) but t; other(92) > t;(9o), then 

t 1(g0 ) limits the speed of the original gates, but not the new gate. The change 

in data ready time then simplifies to: 

2. When t;(g0) > t; other(g2), then t1(g0) limits the speed of the gates before and 

after the transformation, so the change in data ready time becomes: 

(4.37) 

3. When t; other(92) > t;(9o) but t;(9o) + mR(CL1 +;,C)+ '1f;RC > t; other(92) 

then t; other(g2) limits the circuit speed only after the transformation has been 

applied. Here, the data ready time for the circuit is: 

( 4.38) 

Area Changes 

The area savings depends upon whether or not there is an intervening inverter. If 

there is no intervening inverter between the two gates, then there is a reduction of 

two transistors from the circuit description. If an inverter is also removed, then two 

additional transistors are removed from the circuit description. 

Power Dissipation Changes 

The savings in dynamic power dissipation is as follows. Using the general case for 

the transformation, the equations to describe the two figures are: 

Pd = 2mk0CVd~f. + 2k1 CVjdfP + 2( n + 1 )k2CVd~f. 

P~ = 2(m+n)k;cvM. 
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where Pd is the dynamic power dissipation for the circuit on the left side of Figure 4. 7 

and P~ is the dynamic power dissipation for the circuit on right side of Figure 4.7. 

Assuming that each group of gates must drive the same capacitive load, then k2 = 

k~. Thus, the change in dynamic power dissipation would be 

6.Pd = PrP~ 

6.Pd - (2mk0 + 2k1 + (2n + 2)k2 - 2(m + n)k2 )CV.,~JP 
- 2(mk0 + k1 - (m- l)k2 )CVJdfP 

( 4.41) 

( 4.42) 

(4.43) 

If, for simplicity, we assume that the term CVJdfP is a constant, then the term 

mk0 + k1 - (m- l)k2 will show to a constant factor the change in dynamic power 

dissipation. The change in short circuit power dissipation is given by: 

6.P = .t(l-'dd _ 2VT )3[ 7new _ ( 71 + 72 + 7inv )] 

• 12 T T T T 
( 4.44) 

where 7new is the rise/fall time of the collapsed gate, and 71 and 72 are the rise/fall 

times for the original pair of gates. If there is no intervening inverter, then the term, 
7 !}!" is zero. 

4.1.5 Gate Decomposition (Non-Uniform Arrival Time) 

In the two previous sections, gate collapsing was discussed. The next two sections 

discuss the inverse operation, that is, the splitting of large, slow gates to reduce delays 

along the critical path. This section describes the case when the arrival time of the 

inputs are not the same, while the next section describes the case when the inputs 

to the gate arrive at nearly the same time. 

Example 

First, consider the case where one of the inputs to the gate is much slower than the 

remaining inputs. On the left side of Figure 4.9, below, a nand gate has one slow 

input, marked "critical input", and the remaining inputs are fast in comparison. To 

speed up this gate, it is split into two gates, with the fast inputs removed from the 

original gate, and an inverter inserted between the two nand gates to keep the signal 

polarity correct. The transformed circuit is shown on the right side of Figure 4.9. 

The fast inputs now must go through additional stages which slow them down, but 
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the inputs are still fast enough that they are available before the critical input and 

so the overall delay of the gate decreases because the gate's resistance is now much 

smaller than before. 

critioal~ 

input ~ -
Figure 4.9: Gate Decomposition (Non-uniform Input Arrival Time) Example 

If there is more than one slow input, transformation works in the same way. As 

long as there are at least two fast inputs in the original gate, all fast inputs are 

removed from the original gate and placed in a new gate. If only one fast input 

exists, a new gate cannot be formed. 

When the gate with non-uniform input arrival times is a complex CMOS gate, 

such as the gate shown on the left side of Figure 4.10, it may not be possible to 

remove some or all of the fast inputs of the gate in some circumstances. For example, 

let inputs a and b be slow inputs in Figure 4.10. Then, the fast inputs d and e are 

removed, but c cannot be removed. In fact, with some complex gate configurations 

it may not be possible to remove any of the fast inputs. In such a case, the gate 

may need to be factored in a different fashion. Techniques for factoring are discussed 

further in Section 4.1.8. 

Figure 4.10: Complex Gate for Gate Decomposition 
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Method 

Gate decomposition uses general factoring methods, such as those available in logic 

synthesis tools such as Misii(BRSVW87]. However, the heuristics are slightly modi­

fied to take into account the difference in arrival times so that the critical inputs are 

separated from the non-critical inputs. The pseudo-code for the method is shown in 

Figure 4.11. 

gate..decomposition(gate g, arrival..timelist times) { 
nand-noLnetwork = gate..decomposition(g, times) 
for each nand gate in nand-noLnetwork do 

} 

if can collapse adjacent gates then 
if both gates are (non-)critical then 

collapse gates together 
end for 
if delay reduced then 

replace original gate 

Figure 4.11: Pseudo-code for Gate Decomposition 

The gate_decomposition routine produces a network of two-input nand gates and 

inverters. This network in then collapsed into a gate containing all critical inputs and 

gate(s) containing no critical inputs. The final group of gates is then compared with 

the original to insure the transformation reduced the delay. In most cases there are 

two gates added, the non-critical input gate and an inverter. However, sometimes 

the non-critical input gate is too slow, so two or more gates are formed from the 

non-critical inputs. Also, when splitting a complex gate, the structure may not allow 

the non-critical inputs to be placed in a single gate, so more than one non-critical 

input gate must be formed. These cases, however, are not as common. The actual 

implementation uses MISII to produce the nand-not network. 

The ability to decompose gates is limited by the implementation technology. Full 

complex gate CMOS has no restriction, but standard cell CMOS requires that the 

gates formed by the decomposition be part of the standard cell library. Otherwise, 

the transformation may not take place. However, because of the way standard cell 

libraries are designed, it is unusual for gates that are the decomposition of another 

gate in the library not to be in the library too. Thus, this limitation is usually not a 

problem. 
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Speed Changes 

First consider breaking up a nand gate, shown in Figure 4.9. Generalizing so that 

the nand gate has n + 1 inputs, the data ready time for the original gate and the 

transformed gate are given by: 

(4.45) 

( 4.46) 

( 4.4 7) 

with t; 0 (g0 ) = data ready time for input the critical input. Usually tr(g2 ) < t; c(g0 ), 

and since t;(g0 ) = t; c(g0 ), then the data ready time for the transformed gate, and 

the speedup are given by: 

( 4.48) 

( 4.49) 

If tr(g2 ) > t; 0 (g0 ), implying that the data ready time for the gate split off from the 

original gate is slower than the critical input, c, then the change in data ready time 

is given by: 

( 4.50) 

Area Changes 

The change in area depends on the number of gates formed from the original when 

it is split, and if negative logic is used (requiring inverters to be inserted between 

the two gates). Since negative logic is used in CMOS, the transformation adds one 

inverter and one gate for each group of inputs split from the original gate. Thus, 

there are n +2m additional transistors when n inputs are removed from the original 

gate and placed into m gates. 
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Power Dissipation Changes 

The equations for the dynamic power dissipation caused by driving the gates before 

and after the transformation shown in Figure 4.9 are as follows: 

Pd - 2(n + l)k0CVJ,JP 

P~ - 2nk1 CVd~fP + 2k2CVJdfP + 4koCVJdfP 

f!.Pd - (2(n- 1)k0 - 2nk1 - 2k2)CVJdfP 

( 4.51) 

( 4.52) 

(4.53) 

Thus the term 2( n - 1 )k0 - 2nk1 - 2k2 gives to a constant factor the change in the 

dynamic power dissipation by applying this transformation. A decrease in dynamic 

power consumption will result if the transistors in the gate that contains the fast 

inputs have size less than the gate that contains the slow inputs ( k1 < k0 ) and offsets 

the increase in dynamic power consumption due to the added inverters. The change 

in short circuit power consumption is given by: 

f!.P = f!...(V - 2V )3[/).rorig + ~(Tinv + T; )] 
s 12 dd T T ~ T T ( 4.54) 

4.1.6 Gate Decomposition (Uniform Arrival Time) 

When all the inputs to a large gate are critical, the transformation described in the 

previous section does not work well. In this case, splitting the gates into two equal 

sized parts, forming a tree of gates, reduces the delay for all the inputs of the large 

gate. 

Example 

Consider the gate on the left side of Figure 4.12, where a m-in put nand gate is on the 

critical path. When the decomposition method is applied to this gate, the original 

gate has been split into a tree of five gates shown on the right side of Figure 4.12, 

below. The intervening inverters are required to maintain the correct phase. An 

alternative method replaces the pair of inverters and the two-input nand gate with a 

nor gate and a single inverter, reducing the area increase. 

When transforming nand gates or nor gates, the gate will always be split into a 

tree of gates, with an extra inverter between the split gates and the top of the tree, 

in order to balance the delay through the different parts of the tree. For the case 

of a complex CMOS gate, shown in Figure 4.13, the decomposition becomes more 
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Figure 4.12: Example Circuit for Uniform Decomposition 

complicated. With a uniform arrival time for the inputs, the gate may split into a 

group of gates that depends upon the structure of the gate. However, it is better to 

split the gate into two parts, even if they result in unbalanced delay, because a two­

input gate at the top of the tree is better able to drive large loads than a many-input 

gate. The right side of Figure 4.13 shows that gate has been split into two parts. 

d.q 

c .q 

d-1 

a-1 

Figure 4.13: Complex Gate for Uniform Decomposition 

Method 

Gate decomposition for uniform input arrival times uses factoring methods that are 

derived from Misii[BRSVW87]. When there is a complex gate, the factoring method 

should split the gate so that the number of literals and the depth of literals is nearly 

even between the two parts. The pseudo-code for the generic factoring method is 

shown in Figure 4.14. 
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generic.factor(function fJ { 
if( I/ I # 1) 

} 

return f 
k = choose..divisor( f) 
(h,r) =divide(/, k) 
if (ihl > 1) { 

k = cube.free( h ) 
} 
else { 

k = oneliteraLof( h ) 
} 
(h, r) = divide(/, k) 
return generic.factor(k) generic.factor(h) + generic.factor(r) 

Figure 4.14: Pseudo-code for Gate Decomposition 

The ability to decompose gates is limited by the implementation technology. Full 

complex gate CMOS has no restriction, but standard cell CMOS requires that the 

gates formed by the decomposition be part of the standard cell library. Otherwise, 

the transformation may not take place. However, these gates are usually available in 

the standard cell library, so this limitation is usually not a problem. 

When working with standard cell libraries, this transformation can be imple­

mented using table-lookup to find the best way to decompose the gate. This method 

is considerably faster than performing the decomposition on the Boolean equation 

for the gate. However, it can only be used when a fixed set of gates is available so 

that all possible decomposition rules can be determined beforehand. 

Speed Changes 

Consider breaking up a nand gate, shown in Figure 4.12. Assuming that the input 

arrival time is exactly the same for all the inputs, the data ready time for the original 

gate and the transformed gates are given by: 

t(g0 ) ( 4.55) 

t(g0 )' ( 4.56) 
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Since the load driven by gate g0 does not change, k0 = kb, and k2 = 1 (minimum 

size) since gate g2 only drives an inverter. Then the change in the data ready time 

can be expressed as: 

( 4.57) 

So, as long as (mk-
2)CL > ;;' RC +~'the decomposition of the gate will decrease the 

. 0 2 1 

delay in the circuit. 

Area Changes 

The change in area depends two factors. First, the increase depends on the num­

ber of gates produced by splitting the original gate. Second, the increase depends 

on whether or not negative logic is used, which requires additional inverters to be 

inserted. Since CMOS uses negative logic, the transformation adds one inverter and 

one gate for each division of the gate. Thus, there will be 2n +4 additional transistors 

for each group of n inputs removed from the original gate. 

Power Dissipation Changes 

Assume a circuit shown in Figure 4.12. This gate is then split into five gates, so 

that the top of the tree is an two-input gate. The equations for the dynamic power 

dissipation to drive the gate before and after the transformation are as follows: 

Pd = 2mk0CV.,~JP 

P~ - 2(2; k2 CV.,~JP + 2k1 CVMp) + 2k0CV.,~JP 
t:;.pd - (2( m - 1 )k0 - 2mk2 + 4k1 )CV.,~JP 

( 4.58) 

( 4.59) 

( 4.60) 

Thus the term 2( m - 1 )k0 - 2mk2 + 4k1 gives to a constant factor the change in the 

dynamic power dissipation by applying this transformation. A decrease in dynamic 

power consumption will result if the transistors in the gates that form the leaves of 

the tree have size less than the root of the tree ( k2 < k0 ) and offsets the increase 

in power consumption due to the added inverters. The change in the short circuit 

power consumption is given by: 

( 4.61) 
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where there are m gates after the decomposition. This equation shows that the short 

circuit power will increase. 

4.1. 7 Gate Simplification 

Unlike some of the previous transformations, this transformation does not change 

the structure of the circuit. Rather, it changes the structure of a gate by attempting 

to replace it with a smaller, yet equivalent gate by removing non-prime literals and 

redundant terms. This technique is used in logic minimization, but it is included here 

because not all circuits to be optimizied have been generated using logic synthesis; 

some manual designs may be able to take advantage of this transformation. 

Example 

Consider the gate shown in Figure 4.15, below. This gate has the function f = x E!) y 

(exclusive-or). If there exists the input don't care conditions, 1J = xy, then the gate 

can be simplified, using ESPRESSO[RSVD85], into f = x + y, shown on the right side 

of Figure 4.15. 

:=D-r 
Figure 4.15: Simple Gate Simplification Example 

A slightly more complex example, shown in Figure 4.16, contains a gate with 

the function, f = (ab +be+ acd), and the don't care condition, 1J = abed. When 

a simplification method is applied to this gate, the gate shown on the right side 

of Figure 4.16, below, is the result. The function of the transformed gate is f = 

(ab+ be+ ad). 

Method 

In gate simplification, the goal is to replace a logic gate with an equivalent one that 

uses less area and is faster. There are many published methods for removing non­

prime literals and irredundant terms. One of the most widely used is ESPRESSO. This 

transformation applies ESPRESSO to the selected gate. Speed of the simplification 

process can be controlled by how much time is spent determining the don't care set. 
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Figure 4.16: Circuit For Applying Gate Simplification 

The cost of determining the complete don't care set is prohibitive for all but the 

smallest of circuits, so approximations that are subsets of the don't care set are used. 

The gain in speed from this transformation can only be evaluated after it is 

performed since its effects are hard to predict beforehand. However, the evaluation 

is typically fast, provided the don't care set is not too large. Using a large don't care 

set, though, requires additional time to compute and use in minimization. Also, after 

minimization, the result must be factored before being evaluated to see if it improves 

the circuit. 

Speed Changes 

As mentioned earlier, the change in speed is difficult to characterize before the trans­

formation takes place because it depends on several factors: 

1. The number of literals removed. 

2. Whether there is a decrease in the maximum number of series transistors in the 

gate. 

3. Whether any of the critical literals were removed. 

Unless slow inputs are completely eliminated from the gate, the expected speed gains 

from this transformation will be small. 

Area Changes 

The change in area depends on the number of literals removed. For each literal 

removed from the gate, two transistors are removed from the circuit. 
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Power Dissipation Changes 

The dynamic power dissipation changes depends on the number of literals that are 

removed from the gate. This reduction will reduce the load of the previous stage to 

drive this gate, thus reducing the dynamic power consumption. If 2k0 C is the gate 

capacitance for each literal in the transformed gate, then reducing the appearance of 

a literal by n means a reduction of 2nk0 C in the gate capacitance that the previous 

stage must drive. This reduction allows the size of the previous stage's transistors to 

be reduced. Tf we assume that the previous stage's transistors do not change size, and 

if the literal i has n instances removed, then the change in dynamic power dissipation 

IS: 

( 4.62) 

Since the transistors in the previous stage will never increase in size due to this 

transformation, the above formula represents a lower bound on the change in dynamic 

power dissipation. The change in short circuit power dissipation is given by: 

( 4.63) 

where ,Q.r; is the change in rise/fall time for each gate driving the original gate. Since 

removing literals reduce the load on some of the inputs, this equation shows a drop 

in the short circuit power. 

4.1.8 Gate Factoring 

As in the previous transformation, this transformation, gate factoring, attempts to 

simplify a single gate, rather than restructuring part of the circuit by replacing the 

current factored form of the gate with another form that has fewer literals and/or 

transistors in series. As with gate simplification, this technique is also used in logic 

minimization, but since the input circuits are not assumed to have already had this 

technique applied, it is included in the set of transformation. 

Example 

The gate on the left side of Figure 4.17 has the function x = ((d + ag) + (d + g)af). 

When a factoring method is applied to this gate, the gate shown on the right side of 

Figure 4.17, is the result. The new function of the gate is x = ((af + b)(ag +d)). 
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Figure 4.17: Circuit For Applying Gate Factoring 

Method 

Gate factoring applies the factoring methods used in gate decomposition transfor­

mation. There are two ways of varying the factoring method: changing the routine 

for determining the divisor and changing the routine for dividing the function by 

the divisor. Here, the method for determining the divisor computes all kernels and 

chooses the kernel that contains the largest number of literals. Algebraic division is 

used to divide the function by the divisor. 

Speed Changes 

The reduction in delay will come from decreasing the worst case series transistor path 

in the circuit. If the length of the worst case path before the transformation is x, and 

the path length is x' after the transformation, then the change in data ready time is: 

( 4.64) 

( 4.65) 

So the change in the data ready time is proportional to the change in the number of 

transistors in the worst case path. The expected speed gain from this transformation 

is small. 
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Area Changes 

The change in area depends on the number of literals removed, which is difficult to 

predict beforehand. 

Power Dissipation Changes 

As in the previous transformation, gate simplification, the change in dynamic power 

dissipation depends on the number of literals that are removed from the gate. This 

reduction will reduce the load of the previous stage to drive this gate, thus reduc­

ing the power consumption. If 2k0C is the gate capacitance for each literal in the 

transformed gate, then reducing the appearance of a literal by n means a reduction 

of 2nk0C in the gate capacitance that the previous stage must drive. This reduction 

allows the size of the previous stage's transistors to be reduced. If we assume that 

the previous stage's transistors do not change size, and if the literal i has n instances 

removed, then the change in power dissipation is: 

(4.66) 

Since the transistors in the previous stage will never increase in size due to this 

transformation, the above formula represents a lower bound on the change in dynamic 

power dissipation. The change in short circuit power dissipation is given by: 

( 4.67) 

where L:.r; is the change in rise/fall time for each gate driving the original gate. Since 

removing literals reduces the load on some of the inputs, this equation shows a drop 

in the short circuit power. 

4.2 Global Transformations 

4.2.1 Fan-In Reordering 

The purpose of this transformation is to identify chains of gates that have interchange­

able inputs, and then reorder the inputs so that the slower inputs travel through a 

smallest number of gates and the faster inputs travel through a larger number of gates 

in the chain. This transformation can either be applied locally, that is, restricted to 
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gates in a tree between two fan-out points, or globally, where the transformation is 

applied across tree boundaries. Since it can be used globally, we include it in the 

global transformations section. 

Example 

This transformation is best illustrated with an example. First, let us look at the 

transformation being used as a local transformation. Consider the circuit in Fig­

ure 4.18, where a group of four and gates form a string of gates. If the order of 

arrival time of the inputs from slowest to fastest are b, c, a, e, d, then the circuit may 

be restructured as shown on the right side of Figure 4.18, so that the slower inputs 

are nearer to the output of the string of gates. 

a d 

b 

Figure 4.18: Fan-in Reordering Transformation 

The primary requirement for changing the order of the inputs is that Boolean 

associativity must hold for the inputs. In the previous example, Boolean associativity 

holds for the inputs to the chain of and gates. When working with negative logic, 

as in CMOS, Boolean associativity occurs in several combinations of gates. For 

example, chains alternating nand gates and nor gates, chains of nor-inverter pairs of 

gates, or chains of nand-inverter pairs of gates all are Boolean associative. If Boolean 

associativity does not hold for all the inputs to be ordered, the inputs cannot be 

interchanged. 

Complex gates complicate the way we handle a string of similar type gates. In 

order for the complex gate to be included in the chain, the chain feeding into the part 

of the complex gate must be the same type as the rest of the chain. For example, if 

a chain of nand-inverter gate pairs feeds into an and part of the complex gate, the 

and part can be included in the chain of gates. If the chain had fed into an or part 

of the gate then the complex gate could not be part of the chain. Unless the input 

to the complex gate is at the top of its structure (i.e. close to the output), the chain 

cannot include gates following the complex gate. The transformation breaks up the 

complex gate when they can be included in the fashion described. 
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So far only chains of gates have been discussed. This transformation also works 

on a tree of gates. Slow inputs still move up the tree to the root, and fast inputs 

move back away from the root. 

When this transformation includes gates with fan-out greater than one that are 

not the last gate in the chain, logic must be duplicated to preserve the function of the 

circuit. This situation occurs when the transformation is used globally. An example 

of this situation is illustrated in Figure 4.19. Here, the first gate in the chain must be 

duplicated so that the other gates not on the chain that use its output as an input 

still have the correct input value . 

.----• 

Figure 4.19: Logic Duplication During Fan-in Reordering 

Method 

The first step of this transformation is to identify a fan-in tree of gates where fan­

in ordering can be applied. The first requirement, which is applicable only when 

applying this transformation locally, is that each gate in the fan-in tree, except the 

final gate, must drive only the next gate in the fan-in tree. Instead of trying to find 

chains of gates that have correct nand-nor, nand-invert, or nor-invert pairs, a simple 

analysis of the fan-in tree is made. The arrival times of all inputs to the tree and 

their delay through the tree is determined. If one input is very slow and has a long 

path delay through the tree, then the tree is a candidate for fan- in ordering. The tree 

is then decomposed into a simple and-inverter tree and the inputs ordered by arrival 

time. Then, the tree is converted to CMOS gates and compared with the delay of 

the original circuit. If the delay has decreased, then the new group of gates replaces 

the old fan-in tree. The actual algorithm is shown in Figure 4.20. 
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fanjn_ordering( gatelist g, arrivaLtimes times) { 
and-not_network = gate..decomposition(g, times) 
for each nand gate in nand-not_network do 

collapse together adjacent gates when possible 
for each gate in network do 

apply gate..decomposition (non-uniform arrival time) 
} 

Figure 4.20: Pseudo-code for Fan-in Ordering 

Speed Changes 

The reduction in delay will come from decreasing the number of stages that the 

slowest inputs must travel through. If the initial number of stages the slowest input 

s must travel through is k, and the delay through each stage is d, and the number of 

stages after the transformation has been applied is l, then the data ready times for 

the original circuit and the new circuit are: 

tr(9k) - kdt;(s) 

tr(gk) - ldt;(s) 

D.qgk) = (k-l)dt;(s) 

( 4.68) 

( 4.69) 

(4.70) 

So the change in the data ready time is proportional to the change in the number of 

stages due to the fan- in reordering. 

If we have to duplicate logic because a gate on the reordering path has fan-out 

off of the path, then there will be a change in the delay due to different loads on the 

stages. 

Area Changes 

Since the transformation attempts to keep the number of gates constant, and no 

literals are removed from the circuit, the change in area caused by this transformation 

is zero. If gates are duplicated because of fan-out off of the reordering path, then 

there will be an area increase in the circuit. 
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Power Dissipation Changes 

If this transformation only reassigns the inputs to a string of gates and does not add 

additional gates, there should be no change in power dissipation, unless the gates are 

of unequal size. It is expected that any increase in dynamic power dissipation for one 

input should be canceled by a decrease in dynamic power for another input, so the 

overall dynamic power dissipation should remain constant. If gates are added to the 

circuit description, then the dynamic power dissipation will increase. As long as the 

rise/fall times of the gates do not change, the short circuit power remains unchanged. 

Otherwise the change is given by: 

( 4. 71) 

where m is the number of gates in the chain, and T; is the change in rise/fall time for 

gate i. 

4.2.2 Logic Dual Replacement 

Occasionally inverters may be eliminated from a circuit description by replacing a set 

of connected gates with their dual and inverting the inputs and outputs. Also, the 

speed of a gate and its dual may not be equal; thus, replacing a gate with its dual 

may also reduce the delay as well. 

Example 

Consider the circuit shown on the left side of Figure 4.21, below, where a two-input 

nor gate with inverted inputs drives another two-input nor gate with an inverted 

output. The transformation reduces the total gate count and number of stages by 

replacing the nor gates with nand gates and inverting the inputs and outputs. Since 

in CMOS technology, nand gates are faster than nor gates, the circuit gains additional 

speed by the substitution of the dual. The resulting circuit is shown on the right side 

of Figure 4.21. Note that the intermediate output requires an inverter to maintain 

the correct polarity. 
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Figure 4.21: Circuit For Applying Logic Dual Replacement 

Method 

The first step is to identify a chain of gates that can be replaced by its dual. Since 

current technology mapping procedures do a good job at minimizing inverters in a 

single tree of the Boolean network, several trees on the path must be considered by 

this transformation. Simply replacing a single gate with its dual, which is used in 

previous published methods, will not usually work well unless that gate is a single tree 

on the critical path. The first step is to identify a tree on the critical path that has 

some of its critical inputs inverted in a previous tree and has the output inverted in a 

tree occurring further down the critical path. When such a group of trees is identified, 

the gates on the chain are replaced by their dual, and the inputs and outputs of the 

gates that are not on the chain are inverted. An inverter is added to the inputs and 

outputs (not including the output on the chain of gates) only if the non-inverted 

signal is not available elsewhere in the circuit. These inverters preserve the correct 

polarity of the intermediate signals. If one of the inputs is inverted, then the input to 

that gate is used rather than inserting an additional inverter. Then the new circuit 

is compared with the old circuit to see if there is an improvement in the area and 

delay. If the gates were on the critical path and the delay is improved, then the new 

circuit is accepted. If the gates were not on the critical path and the area improved, 

then the new circuit is accepted. After accepting the new circuit, any inverters that 

are no longer used are removed from the circuit. This transformation must be used 

carefully so that the insertion of inverters to preserve correct signal polarity does 

not slow down paths that are more critical then the path being transformed. The 

pseudo-code for this transformation is as shown in Figure 4.22. 

The implementation technology may limit the gates that may be replaced by their 

dual. With full complex gate CMOS, there is no restriction, but with standard cells, 
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identify consecutive trees on critical path for candidate chain 
for each gate in chain do 

replace gate with its dual 
for each input (output) not from chain do 

if input (output) not inverted then 
invert input (output) 

else 
connect to non-inverted input (output) 

end for 
end for 
if dual of chain is faster than original chain then 

replace chain 
else 

circuit is unchanged 

Figure 4.22: Pseudo-code for Logic Dual Replacement 

the gate's dual must be part of the standard cell library. Otherwise, the transfor­

mation may not take place. Most standard cell libraries are symmetrical, so the 

availability of a gate's dual is not a problem. 

Speed Changes 

There will be an increase in speed if inverters can be removed from the critical path, 

or if faster gates replace the original gates. Consider the example in Figure 4.21. If 

the resistance for nands and nors are the same, then the change in delay is given by 

the equation for the change in ready time for the output of the chain: 

(4.72) 

Since the resistance of the nor is worse than the nand, this equation represents a 

lower bound on the improvement possible. 

Area Changes 

The change in area depends on change in the number of inverters, since changing the 

logic family of the gates will not change the area. If the number of inverters increases, 

then there will be an area increase of two transistors per inverter. Similarly, if the 

number of inverters decreases, then there will be an area decrease of two transistors 
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per inverter. 

Power Dissipation Changes 

The transformed area of the circuit will still operate at the same frequency, since all 

inputs and outputs are inverted. Thus the change in dynamic power depends on the 

number of inverters removed. The change in short circuit power also depends on the 

change in rise/fall time for the gates in the chain that are replaced by their dual. 

4.2.3 Logic Path Resynthesis 

Technology-independent logic synthesis techniques reduce the amount of area re­

quired in the circuit by increasing the amount of shared circuitry. This approach 

may result in some long, slow paths, that contain non-critical fan-out. The reduction 

in delay of the path using local optimizations is limited by this non-critical fan-out. 

Each subexpression becomes a fan-out on the critical path. With a large number 

of common subexpressions for the function, the path becomes long. An alternative 

optimization technique synthesizes replacement circuitry for the critical path that is 

optimized to compute only the function on the critical path. This technique, called 

logic path resynthesis, is described in this section. 

Example 

This transformation is best illustrated with an example. Consider the circuit in 

Figure 4.23, where several single bit adders are combined to form an adder. The 

critical path through the circuit is the carry-ripple chain. Replacing this chain with 

some carry-lookahead circuitry that is optimized to compute the carry-out signal 

improves the speed of the adder. 

Method 

Once a critical path is chosen, a cut point is selected on the critical path. The circuit 

is broken at the cut point and all the gates in the transitive fan-in of the cut point 

(gates on and off of the critical path) are used in the resynthesis operation. These 

gates are run through MISII for logic minimization, decomposition, and technology 

mapping. The resulting set of gates is added to the circuit and the output of the new 

set of gates is connected to drive the critical path starting at the cut point. Finally, 
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Figure 4.23: Adder Example 

the original set of gates in the transitive fan-in of the cut point are checked to see if 

they still drive other gates in the circuit. Those gates which are no longer used in 

the circuit are then removed. 

The remainder of the discussion on the method is split into two sections. The 

first section describes the theoretical basis for this transformation, and the second 

section describes the method for choosing the cut point. 

Theoretical Basis 

Before describing this transformation, the following definitions are needed[HL87, 

BBH+SS]. 

Definition 4.1 (External Don't Care Set) The external don't care set is a don't 

care set for a Boolean network that is derived from conditions outside of the Boolean 

network. There are two components: DXP and DXO. DXP is the set of all primary 

input minterms that will not occur as input to the Boolean network. DXO;, which 

is defined separately for each primary output i, is the set of primary input minterms 

for which primary output i will not be used. Then, the total external don't care set 

for primary output i, DX;, is: DX; = DXP + DXO;. 0 

In addition to the external don't cares, there are two sets of internal don't cares, the 

satisfiability and observability don't cares. Both of these sets arise from the structure 

of the Boolean network. 

Definition 4.2 (Satisfiability Don't Care Set) For node j in the Boolean net­

work, its functions Fi (expressed in terms of the primary input and intermediate 

variables), and its corresponding intermediate variable Yi, the satisfiability don't 

care set for j is defined as follows: D S ATi = Fi EJ) y i. 0 
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Definition 4.3 (Observability Don't Care Set) For node j in the Boolean net­

work, its functions f;, and its corresponding intermediate variable Yi• the observ­

ability don't care set for j is defined as: DOBJS; = IT (DX; + D;;), where 
iEPOnT FO(i) 

D;; = {x E Bn+m I (y;)y;(x) = (y;)y,(x)}, where (y;)y;(x)and(y;)y;(x)} are the logic 

variables that represent the cofactored functions (F;)y;(x)and(F;)y;(x)p. PO is the 

set of primary outputs, and T FO(j) is the set of nodes in the Boolean network that 

are in the transitive fan-out of j. In other words, a node nisin the T FO(j) if there 

is a path from the output of j to n. 0 

The total don't care set for each node, j, in the Boolean network is defined as: 

(4.73) 

In path resynthesis, a subnetwork of the Boolean network will be resynthesized. 

Considering just the subnetwork requires the sets DX P and DX; to change to take 

into account the structure of the remainder of the network: 

DXP = DSATy, UDXPn[Y; E Fl(y,)] ( 4. 74) 

DX; = (DSATy,) n (DX; + DOBS • .)[y; E FI(y,)] (4.75) 

The expression [y; E F I(y,)] means that all literals not in this set are dropped, since 

they are not in the subnetwork. Now if the primary outputs of the subnetwork are 

removed, except for the output on the critical path, only DOES; changes. In fact, 

the observability don't care set will not change only if the following occurs: 

1. there was only one primary output for the subnetwork, or 

2. DX; + D;; is the exact same set for every primary output i in the transitive 

fan-out of j. 

So in removing all but one output, the size of the don't care set increases, which 

improves the chances of reducing the size of the Boolean subnetwork. Even if the 

don't care set does not increase in size, the removal of all but one of the primary 

outputs allows the subnetwork to be split into fewer trees, so that the tree mapping 

phase of the technology mapping procedure can do a better job. 

1The cofactor of function F; with respect to literal v;, (F; )v;, is the function F; with all terms 
containing literal v; removed and all literals v; removed. 
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This method will never produce a slower path, assuming a "perfect" logic mini­

mization tool. In practice, where the logic minimization tool is based on heuristics, all 

cases have produced an improvement in the speed of the circuit because the heuristics 

work better on smaller circuits and the larger don't care sets. 

Cut Point 

To select the subnetwork to resynthesize, the first step is to identify a critical path. 

Then, a cut point is selected. There are three issues involved in choosing a cut point. 

First, the cut point must include a sufficient section of the circuit so that resynthesis 

will reduce the delay of the path to meet the timing constraints. This requirement 

suggests selecting a cut point close to the primary output. Second, the cut point 

should allow as many critical fan-out paths as possible that occur on the path after 

the cut point to share the speed-up from this transformation. If fewer paths share 

the speed up, then this transformations will need to be applied many times, which 

will cause a large area increase. This requirement suggests selecting a cut point close 

to the primary inputs. Third, the cut point should be selected so that there is a small 

number of gates in the fan-in tree. A small fan-in tree limits the area increase for 

each application of the transformation. Also, since the performance of logic synthesis 

tools is not even close to linear with respect to the problem size, a large fan-in tree 

may take a considerable time to resynthesize. This case is especially true when the 

fan-in tree is very broad. This requirement to limit the size of the fan-in tree also 

suggests selecting a cut point close to the primary inputs. Since this requirement is 

related to sharing, both are considered together. 

The graph in Figure 4.24 shows how the speed-up and sharing are effected by the 

number of stages before the cut point. The cross-over point represents a reasonable 

trade-off between the two, and is used as the cut point. While the amount of sharing 

can be easily evaluated, the speed-up for a particular cut point cannot be determined 

except by performing the resynthesis operation. Therefore, the actual speed-up is 

approximated by the value of the contribution to the path delay for the path up to 

the cut point, which represents an upper bound on the speed-up possible through 

resynthesis. 

Once the cut point is selected and the subnetwork consisting of the transitive 

fan-in of the cut point is built, determining if there exists an equivalent network 

with fewer literals is a co-NP hard problem[KR89]. So, even after selecting the cut 
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Figure 4.24: Speed up versus sharing 

point, determining whether or not it will reduce the delay in the circuit is a difficult 

problem. Therefore, some heuristics are used to select the cut point. 

Before describing the heuristics, notice that many paths in the circuit share the 

same gates at the beginning of the path. The critical paths that share the same gates 

at the beginning of the path with other critical paths are called mops. The set of 

gates at the beginning of the path that are shared in common between the critical 

paths in the mop is called the handle. The number of stages in the handle is called 

the handle length. Circuits that have mops that contain many critical paths can get a 

greater benefit from path resynthesis because more paths are effected. Analysis of the 

circuits described in Chapter 6 show that all the circuits contain mops with multiple 

paths even when the handle length approaches fifty percent of the total path delay. 

This result is encouraging because it indicates that a small number of applications 

of this transformation can effect a large number of paths. It also indicates that 

consideration should be made to select a cut point in the mop handle, so that paths 

in the mop all share the speed up. 

One fact helps simplify the selection of a cut point. If there are critical fan-outs 

from the critical path, then is the critical path is part of a mop. If the critical path 

is the slowest path in the mop, then a cut point that provides a sufficient decrease 

in delay for the critical path, will also provide sufficient speed up for all the other 

paths in the mop that fan-out after the cut point. This results allows the speed up 

requirements of the critical paths that fan-out from the most critical path in the mop 

to be ignored. 

There are several measures that can be used to evaluate a cut point. The first 

measure is the percentage of the total path delay that occurs along the section of the 
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path from the primary inputs to the cut point. This value gives an upper-bound on 

the reduction in delay using the cut point. A second measure is the number of stages 

on the critical path from the primary input to the cut point. The final measure is 

the number of paths in the transitive fan-in of the cut point that do not reconverge 

into the transitive fan-in. These paths represent intermediate functions computed by 

the transitive fan-in that may not be used to compute the function at the cut point 

and may be eliminated or simplified. 

After some experimentation, it turns out that a simple method is effective. To 

find the cut point, the output of a gate on the path is found where the percentage 

of the path delay up to that point is equal to a times the required speed-up for the 

path, where the value of a is between one and two. If the output has fan-out greater 

than one, then this point is the cut point. Otherwise, the cut point is the next gate 

output occurring along the path that has fan-out greater than one. This method 

allows for sharing and limits the size of the transitive fan-in tree. 

Unfortunately, this method of selecting a cut point does not always produce 

enough of a delay decrease. The method is therefore modified so that several cut 

points along a critical path may be used. The first cut point is still selected based 

on the required speed-up. However, if the path does not get a sufficient speed-up, 

then a new cut point is found on remainder of the path, and the stages up to that 

cut point, but not including the previously resynthesized part, are resynthesized. 

This process is repeated until either the path is fast enough, or the path has been 

completely resynthesized. While this method will not produce as much speed up as 

resynthesizing the entire path, the gain from increased sharing of the speed-up and 

smaller increase in area help offset that drawback. 

A parallel of this technique can be seen in the design of carry chains for adders. 

If a 32-bit adder is built, the lookahead chain is not a single unit for all 32 bits, but 

rather is made up of several units. Each of these units can be thought of as a group 

of gates resynthesized using a different cut point. 

Speed Changes 

The reduction in delay will come from two sources. First, the replacement circuitry 

is optimized for the computation of just one function. Therefore, the size of the 

subnetwork is reduced, translating into fewer stages and reduced delay. Second, the 

gates have been chosen for smallest delay. 
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Area Changes 

This transformation can have a significant cost in area because it is duplicating logic 

already present in the circuit. The size of the area increase depends on how much 

logic was selected to be resynthesized, how much of a reduction in logic was possible 

during the resynthesis, and how the resulting logic was mapped. A worst-case upper 

bound is the size of the original fan-in tree up to the cut point. 

Power Dissipation Changes 

As with area changes, the increase in dynamic and short circuit power dissipation can 

also be significant because of the possibly large number of gates that can be added to 

the circuit. A worst-case upper bound is the power dissipation of the original fan-in 

tree up to the cut point. 
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Chapter V 

Application of Transformations 

The technique described here determines a set of critical paths through the circuit and 

then applies a set of transformations to these critical paths. A greedy method is used: 

the slowest critical path is transformed first, with the transformation that gives the 

biggest gain applied to it first. This greedy approach is used because the complexity 

of the problem is large. However, knowledge about the problem is incorporated into 

the greedy heuristics to improve the results. 

Since the task of speeding up the circuit can be broken into a two-step problem 

of identifying the critical paths and applying transformations to these paths to speed 

them up, the discussion of the heuristics are broken along the same lines. The next 

section in this chapter describes the method used to select gates on the critical paths 

to be transformed. Then, the second section of this chapter discusses the selection of 

a transformation once the gates to be transformed are determined. 

5.1 Selecting Paths 

5.1.1 Critical Path Analysis 

The critical paths are found by a depth-first delay analysis of the circuit using a 

data-independent, static timing analysis technique. Beginning at a primary input, 

each path in the circuit is traced, as long as it is the slowest signal arriving at each 

node so far. This method assumes that there are no cycles in the circuit, which is 

true since only combinational logic is allowed. No clocking is allowed as input to the 

circuit, since the circuit is assumed to be combinational. After the timing analysis is 

complete, the slowest N paths that do not meet the timing requirements are kept. 

This technique is similar to the approach used in Crystal[Ous83, Ous84]. 

An alternative method is to use a breadth-first approach rather than a depth-first 

approach. The breadth-first approach is faster than the depth-first approach because 
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of only one delay analysis step occurs at each gate in the breadth-first method, while 

several may occur using the depth-first approach. Also, the breadth-first method 

can handle, without changes, circuits with feedback. However, while the breadth­

first method will determine which primary outputs are critical, extra mechanisms 

are required in order to extract the actual critical paths through the circuit. The 

depth-first method, produces this information at no additional cost. 

This method for determining critical paths can identify false paths, that is, paths 

that do not actually occur because the model takes a worst-case view of the delay of 

the gates. As mentioned in Chapter 3, we assume that they do not occur because 

of the large amount of additional run-time needed to remove false paths from the 

circuit. 

5.1.2 Path Grouping 

Many critical paths produced by this method are not disjoint; the paths may share 

fan-in, fan-out, or converge back together. Using the static timing analysis techniques 

described above, these paths would be considered distinct. However, if a transfor­

mation is applied to one of the paths and the delay on the path is reduced, then the 

delay is also reduced for all the paths that share the same transformed gates. Thus, 

from the point of view of logic optimization, these paths are not distinct. 

The timing analysis tool TV(Jou83a, Jou83b, Jou87] addresses the problem of 

providing user-informative paths, that is, only reporting critical paths that represent 

a unique timing problem. This problem is similar to the problem of grouping paths 

for logic optimization. TV groups paths into equivalence classes, and then only 

reports the slowest path in each class. A similar approach is used here. Two paths 

are considered equivalent if the slowest stages of each path that contribute at least 

60 percent of the total path delay are the same. The stages do not all need to be 

adjacent in the path, so that paths that differ only by sections between reconvergent 

fan-out can be considered equivalent paths, depending on which gates are shared. 

Unlike TV, though, two paths that are corresponding paths of duplicate bit-slices 

are considered separate paths because transforming one path will not effect the other 

path. 

The implementation of path grouping is defined by the pseudo-code in Figure 5.1. 
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while set of paths #- 0 do 
remove most critical path and place in new group 
for each gate on critical path do 

add paths attached to gate to list of candidate paths 
end for 
remove paths in candidate set from path set that share majority delay 
with the most critical path 

end while 

Figure 5.1: Path Grouping Algorithm 

5.1.3 Gate Selection on Critical Path 

Once the paths have been grouped, the gates on the paths must be selected for 

transformation. The selection depends upon which type of transformation, local or 

global, that is to be applied. 

Local transformations only affect the gates in a single tree of gates. Recall, from 

chapter 4, a tree of gates in the circuit is defined as a set of connected gates, each 

of which have fan-out equal to one, except for the root. These trees are used in 

technology mapping and are useful in deciding where to apply the transformations. 

Since local transformations only effect a tree, the critical path can be subdivided into 

trees, with a division occurring at each point where the fan-out is greater than one. 

Local transformations are then applied to some or all the gates in the tree, where 

appropriate. 

The scope of global transformations, on the other hand, crosses over tree bound­

aries and so considering a tree at a time for the global transformations is not appro­

priate. In this case, their several adjacent trees are considered, as with logic dual 

replacement and the global version of fan-in ordering, or the entire path is considered, 

as with path resynthesis. 

5.2 Order of Application 

There are three issues to be considered before deciding on the order of application for 

the transformations. The first issue is the method of choosing the next transforma­

tion: whether it is fixed or flexible. The second issue is interaction between applying 
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a transformation several times to the circuit. The third issue is the interaction be­

tween different types of transformations. All three issues guide the determination of 

the order of application for the transformations. 

5.2.1 Fixed Order Versus Variable Order 

The method used is a fixed order approach, that is, each transformation is applied 

in a particular order to the circuit. So, for example, buffering is applied everywhere 

possible on the critical paths in the circuit before gate collapsing is tried. This 

choice is based on the goal to change the circuit as little as possible in order to 

meet the timing requirements of the circuit. If we assume that the transformations 

are independent, which is not true, and if we order the transformations in terms 

of the gain in speed they produce and assume the circuit can be sped up, then 

the fewest number of transformations will be applied. This will also decrease the 

execution time of an automatic tool implementing these transformations. Since the 

transformations are not independent, the ordering is more complex, but we still use 

this heuristic as the basis for determining the order and use some knowledge of the 

transformations to reduce interactions between the transformation. Also, a fixed 

order for the transformations simplifies some of the analysis of interactions between 

the transformations. These interactions are described below. 

An alternative method is to allow the order of application to be unrestricted. 

Instead, any of transformation can be applied to each path, based on the causes of 

the delay for the path. There are two principal problems with this method. First, in 

many cases, the same order of application seems to occur because there are certain 

problems, such as load mismatches, which cause large delays. Second, the causes of 

the path delay can be complex and interrelated. Often, there is no clear choice as to 

which problem is the primary cause for the delay. For example, a gate may have a 

very slow input. The cause of the slow input may be equally shared by a large gate 

occurring earlier in the path and a large load that another gate occurring earlier in 

the path must drive. So it is not always clear which of the three gates should be 

transformed. For these reasons, a fixed order is used in the implementation, with a 

variably ordered technique to be a question of future research. 
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5.2.2 Common Framework 

Before describing the interactions, it is useful to group and classify each transforma­

tion by the way it affects the circuit as a way of grouping the dissimilar transfor­

mations together. For example, gate collapsing and gate decomposition remove and 

add gates to the network, respectively. They can be grouped together because one is 

the inverse of the other. On the other hand, fan-in ordering (the local version) rear­

ranges the inputs between gates. However, fan-in ordering can really be considered 

as a combination of several gate collapsing and decomposition operations combined 

together. The only difference is that the arrival times of the inputs are guiding the 

operations rather than the size of the gates. Looking at the Boolean network rep­

resentation, none of these operations change the Boolean network; they just change 

the mapping into gates. At this level logic dual replacement can be added, because it 

does not change the Boolean network although it does change the mapping. If any of 

these operations are applied across tree boundaries, the Boolean network will change, 

but only in small amounts. What this similarity implies is that these operations are 

really different versions of the same underlying operation, namely the mapping of a 

node in a Boolean network into a set of gates. This similarity also implies that in 

terms of ordering these transformations, the transformations in this group should be 

applied one after the other. 

Buffering and critical signal isolation also form their own group. They are clearly 

the same operation, differing only in how the circuit is connected after the operation 

is complete. They are different from the first group because they are not purely 

mapping operations, but consider loading at particular points in the circuit. 

The two other local transformations, gate simplification and gate factoring, do 

not fit together into either group, but this is not surprising since these operations are 

mainly used in logic synthesis, rather than in delay optimization. Gate simplification 

changes the underlying Boolean network so it does not belong in either group. While 

gate factoring does not change the Boolean network, its use in logic synthesis places 

it in this group. 

The remaining transformation, logic path resynthesis, also does not fit in with the 

others, but for different reasons. This operation makes large changes to the struc­

ture of the Boolean network, reversing the sharing that was done in logic synthesis. 

Therefore it is placed in its own group. 

70 



5.2.3 Interactions Between Successive Applications of a Trans­

formation 

When applying a particular transformation, it may interact with previous or succes­

sive applications of the same transformation. This section describes these interac­

tions. 

Several transformations will not interact with themselves. This non-interaction is 

a desirable property because it simplifies the heuristics needed to apply the particular 

transformation. For example, both buffering does not' interact with itself and critical 

signal isolation does not interact with itself. They can only be applied at fan-out 

points and only once at a particular fan-out point. Furthermore, the load at any 

other fan-out point does not influence whether the transformation needs to be ap­

plied at a particular fan-out point. Gate decomposition does not interact with itself 

either. Splitting any gate does not prevent adjacent gates from being split. Gate 

simplification and gate refactoring also do not interact with themselves for precisely 

the same reason. 

The global transformations and gate collapsing do interact with themselves. Ap­

plying gate collapsing between a pair of gates will prevent other pairs that include 

one of the collapsed pair from being collapsed. When optimizing for delay, gate col­

lapsing is restricted to being applied across tree boundaries which restricts some of 

the interactions, but not all of them. One problem that can occur is the slow down 

of critical paths. For example, when gate collapsing is applied across tree boundaries 

the first gate is in one tree and the second gate is in another tree driven by the 

first gate. Since the first gate must drive more than one gate, there is a choice for 

the second gate, namely each gate driven by the first gate. Several of these driven 

gates may be critical, so application of the transformation using any of the critical 

gates may speed up one of several critical paths. However, only the most critical 

gate driven by the first gate may be used, because duplication of logic caused by the 

collapse of the two gates slows down the gates that drive the first gate of the pair. 

This situation is illustrated in Figure 5.2. 

When gate collapsing is used for area savings, it is usually not applied across tree 

boundaries, and so while the previous problem may not occur, there is still another 

problem, namely the order of application when several gates can be collapsed. The 

question of order is currently resolved by selecting the gates with the highest slack 

first. While it does not guarantee an optimal choice of gates to collapse, it does insure 
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Figure 5.2: Interactions in Gate Collapsing 
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that the paths containing the gates will not become critical. 

The application of fan-in reordering also has some pitfalls. Even when limited to 

just re-ordering inputs on a tree, it can still interact with subsequent applications. 

This interaction is apparent when deciding how much of the tree to use when applying 

transformation. Using only a small part of the tree may prevent a better result when 

using more of the tree, while in other cases, there is no additional benefit using the 

entire tree because only a small part of the tree can be reordered. A simple solution 

to this problem is just to always use the entire tree. This method will always do at 

least as well as using just part of the tree. When applying this transformation across 

tree boundaries, there is much stronger interaction, similar to the problem with gate 

collapsing across tree boundaries. For example, consider one tree in the Boolean 

network that drives several other trees. If two of these trees can reorder inputs using 

some of the gates in the first tree, there is competition between them. If extra logic 

is added in, it will slow down some of the paths. Because of this duplication of logic 

and its effect of slowing paths, only the most critical pair of trees will be used for the 

transformation. 

Interactions also occur between successive applications of logic dual replacement. 

There may be several overlapping places on a single path, or application of the trans­

formation on one path may prevent its application on a second path that shares gates 

with the first path. To prevent slower paths from slowing down further, care must be 

used so that slower paths do not get additional stages. Therefore each tree considered 

during this operation must have the current path as the most critical if additional 

stages are to be inserted. 

Finally, path resynthesis also has interaction between successive applications of 

the transformation. Part of this problem is related to the choice of cut point, which 

was discussed in chapter 4. Once path resynthesis has been applied to a particular 

path, the section of the path replaced is not considered in any subsequent operation. 

5.2.4 Interactions Between the Application of Different Trans­

formations 

Local transformations can be divided into three groups, as described above: 

• buffering and critical signal isolation 

• gate collapsing, gate decomposition, and fan-in ordering 
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• gate simplification and gate factoring 

The last important step in deciding the order of application is to identify interactions 

between transformations of the different groups. 

The first group, buffering and critical signal isolation, is independent of the other 

two groups of transformations. These two transformations are only applied at the 

root of a tree, and only if the load is large. They are only applied at the root of a 

tree because this location is the only place where the fan-out will be greater than 

one, and therefore the only place where the load will be large enough to warrant the 

use of these transformations. The other transformations will not appreciably effect 

the size of the load and so are independent of buffering and critical signal isolation. 

Similarly these two transformation do not affect the other groups. However, buffering 

and critical signal isolation do interact with each other, since both are applied to the 

same place in the tree and for the same reasons. This problem is resolved by always 

applying critical signal isolation before buffering. This order prevents resources being 

spent to reduce delay on non-critical paths. Whenever buffering is applied, it is only 

to speed-up critical paths. 

The second group, gate collapsing, gate decomposition, and fan-in ordering, when 

applied locally, is independent of the first group. This is clear because the transfor­

mations in this group are used to find a better mapping of the tree, while the first 

group is concerned with the loading between trees. When gate collapsing or fan-in 

ordering are applied across tree boundaries, they do interact with the first group. But 

since these transformations are concerned with a single path rather than all the paths 

at the fan-out point as in critical signal isolation and buffering, these transformations 

are applied after the first group. As with the first group, the transformations within 

the second group are not independent of each other. To resolve this problem, the 

order of application is fan-in ordering, followed by gate collapsing, and gate decom­

position. Fan-in ordering is performed first because either it was not done during the 

original mapping of the tree, or the delay model used was too crude. The accurate 

arrival times of the inputs are not available during technology mapping. Therefore, 

applying it to the tree is most likely to decrease the delay. Then gate collapsing is 

applied, followed by gate decomposition. Gate decomposition is applied last because 

most of the gates in the circuit are not large enough to get a large gain from this 

transformation. The gates are small because of the small size of the gates available 

in the gate library used to construct the circuit. If large gates are used, this trans­

formation would still be used last because the gains from applying it would still be 
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small. 

The last group, gate simplification and gate factoring, are really Boolean network 

operations. If they can be applied to the circuit, they reduce both area and delay. The 

two transformations are considered Boolean network operations because they operate 

at the Boolean equation level, independent of the particular gate. In fact, most 

gates are too small for either of these transformations to improve them. Therefore, 

these transformations are done before any other transformations are applied to the 

circuit, but only when using gate libraries containing gates large enough for the 

transformations to be useful and only if the example has been generated by hand. 

Although these transformations interact with all the other local transformations, this 

strategy is reasonable because the resulting circuit then represents a local minimum 

for the particular Boolean network structure and so is a reasonable starting point 

for the application of the other transformations. Since gate simplification and gate 

factoring are not independent of each other, an ordering of their application is also 

needed. Gate simplification is applied first since it reduces the Boolean function. 

Gate factoring only finds the best representation of a Boolean function, so it works 

better when starting with a minimized function. 

Global transformations, by their very nature, interact with each other and with 

the local transformations. They are applied after the local transformations for two 

reasons. First, if the circuit can meet the timing constraints using only the local 

transformations, then the overall size of the circuit will not increase much. Second, 

the global transformations require more run time and increase circuit area. 

Logic dual replacement as a global transformation interacts with the local trans­

formations of buffering and critical signal isolation, but since it is a global transfor­

mation, it is applied only after the local transformations. While this restriction limit 

the number of times this transformation can be applied, better results occur with 

critical signal isolation and buffering. If the technology mapper did a reasonable job 

on phase assignment, the number of possible places to apply this transformation will 

be small anyway. 

Finally, path resynthesis obviously interacts with any transformation applied to 

the path being considered for resynthesis when it occurs before the cut point. This 

interaction is of no consequence because applying path resynthesis means that the 

other transformation did not provide sufficient decrease in delay and therefore did 

not prevent path resynthesis from being applied. Since path resynthesis has a much 

greater penalty in area, it will always be tried last. 
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So, the order of application will be: 

• gate simplification 

• gate factoring 

• critical signal isolation 

• buffering 

• fan-in ordering 

• gate collapsing 

• gate decomposition 

• logic dual replacement 

• path resynthesis 
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Chapter VI 
Results 

In this chapter, the results of some experiments are presented and analyzed. The 

presentation begins with a description of the test cases used in the experiment and 

includes an explanation of the method used to generate them. The second section 

contains a description of the experimental method and types of experiments. Two sets 

of experiments were run using POLO (Performance Oriented Logic Optimizer) [KH89], 

which is the implementation of the techniques described in the previous chapters. In 

the first experiment, all the transformations are used to minimize the delay of the 

circuit, allowing an analysis of the amount of improvement and cost expected with 

this technique. In the second experiment, the first experiment was repeated, but 

unlike the first experiment, the transistor sizes for all gates were fixed to the default 

value. In the final section, the results of each experiment are described. 

6.1 Test Cases 

The test cases used in the experiment are derived from examples in the benchmark set 

from the 1989 MCNC International Logic Synthesis Workshop[Lis88]. These circuits 

have been assembled from both academic and industrial sources and are considered 

representative combinational logic circuits. The examples in the benchmark set are in 

either PLA (two-level Boolean equation) or BLIF (multi-level Boolean network) form. 

Since the experiments require gate-level netlist circuits as input, these descriptions 

were processed to form netlist circuits, as illustrated in Figure 6.1. Each benchmark 

example was run through one of the available logic synthesis tools, DECAF[LKB87], 

MISII[BRSVW87], or BoLD[BHJ+87], to simplify the logic descriptions and map 

them to gate-level netlists. In several examples, the logic decomposition and mini­

mization operations of BOLD were combined with the technology mapping routines 

of MISII to produce the netlist. This step is illustrated by the box in Figure 6.1. 

All the tools were used in their default configuration. The target library set was the 
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Figure 6.1: Technique to Generate Examples 

MCNC International Logic Synthesis Workshop Lib2 library, which contains twenty­

six gates. Three logic synthesis tools were used rather than one, so the results of the 

experiment would not be biased by any shortcomings or idiosyncrasies of any partic­

ular logic synthesis tool. Since all three tools use different heuristics, it is unlikely 

that they all have the same limitations. For example, the BoLD technology mapper 

only used nand or nor gates and inverters. DECAF used both simple nand and nor 

gates, as well as some complex gates. MIS II, on the average, used the most complex 

gates of any of these tools. All tools use somewhat different techniques to do the 

minimization as well. These differences represent the use of different heuristics by 

the three tools. 

The PLA examples were run through all three logic synthesis tools. All the BLIF 

examples were run using Misii. However, DECAF was not used on any of the BLIF 

examples because it cannot read BLIF format descriptions. BOLD was run on only 

the smallest of the BLIF examples because it often crashes and the running time of 

even medium-sized examples is prohibitively high. 

Table 6.1 contains a description of each example circuit. Each entry names the 

original MCNC benchmark example that was the source of the circuit and the logic 

synthesis tool used to generate the circuit. It also shows the size, as measured by 

the number of transistors, the number of stages in the slowest path, and the delay 

in nanoseconds for the slowest path for each of the examples in the test case set 

before and after transistor sizing has been done. Thirty circuits were produced by 

this method, ranging in size from 140 to 2130 transistors, with an average size of 

350 transistors. The worst case path delay of these circuits ranged from 5.2 to 

25.2 nanoseconds, with an average worst case path delay of 11.2 nanoseconds. The 

delay values assume a 3 micron CMOS process from MOSIS[Tom88]. However, since 
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no mask layout for these circuits was done, the parasitic wiring capacitances and 

resistances are not available and so were not included in the delay values. If these 

values had been available, they could have been used in the delay analysis, though. 

More detailed information on each example can be found in Appendix B. 

6.2 Experiments 

6.2.1 Experiment One 

The first experiment runs each example using all the implemented transformations 

and the standard heuristic to minimize delay. The objective of the experiment is 

to evaluate the type of improvement possible and its costs on a set of representative 

circuits. The set of test cases are broad so that the results from this experiment should 

give a good indication of how well the techniques work. Several measurements are 

made to evaluate the effectiveness of the transformation techniques. Two measures, 

the change in the number of transistors and the change in delay of the slowest path, 

give an absolute measurement of the improvement to the circuit. A third measure, 

the change in the product AT2, where A is the number of transistors and T is the 

worst case path delay through the circuit, gives a measure of the efficiency of the 

circuit. This product is used as a measure of efficiency because theoretical models for 

VLSI show a trade-off between the area and the square of the time(Ull84). Therefore, 

a decrease in this product represents a better trade-off in area and delay than in 

the original circuit. In this experiment, the transistors sizes of each gate are allowed 

to vary as needed to improve its ability to drive large loads. The experiment is 

illustrated at the top of Figure 6.2. 

In the first step of the experiment, the transistors in each gate were sized for 

minimum delay using AESOP. Recall that transistor sizing matches the size of the 

transistors within the gate with the load it must drive; gates with large loads are 

made larger to produce more current and thus drive the load faster. Circuit restruc­

turing and transistor sizing are not orthogonal methods for reducing circuit delay. So, 

without an explicit transistor sizing step, some changes from applying a transforma­

tion may gain additional speed-ups because the fixed-size transistors are better suited 

for the particular load than before the transformation was applied. To remove this 

variability, transistor sizing is applied before and after circuit restructuring, and the 

sized netlist are compared to measure the effects of POLO on the circuit. While this 
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example generated number of number of max. path delay(ns) 
name by transistors stages unsized sized 

5xp1 DECAF 360 7 8.0 6.0 
9syrnrnl MIS II 518 9 11.2 9.2 

9syrnrnLb BOLD 556 28 22.8 19.7 
C880 MIS II 1136 19 28.2 23.0 
apex6 MIS II 2130 5 17.6 14.5 
apex7 MIS II 658 7 12.8 12.0 

apex7_b BOLD 734 18 12.6 11.5 
b9 Misii 388 7 7.8 7.7 

b9_b BoLD 364 11 6.0 5.4 
duke2b BoLD 1498 25 15.7 13.7 

duke2brn BoLD+Misli 1064 15 13.6 12.7 
duke2d DECAF 1198 11 14.5 14.0 
duke2rn M1sii 1138 13 16.8 14.3 

f51rn M1sii 370 21 25.2 25.2 
f51rn_b BoLD 278 12 9.6 7.9 
rnisex1d DECAF 180 5 5.9 6.1 
rnisex1rn MIS I! 282 7 8.3 7.2 
rnisex2b BOLD 416 11 7.3 6.8 

rnisex2brn BoLD+Misli 300 5 6.9 6.0 
rnisex2d DECAF 294 4 6.7 5.9 
rnisex2rn MIS I! 282 7 9.2 7.7 

rd53 DECAF 132 9 6.5 6.2 
rd53rn MIS II 140 7 6.0 5.2 

rd53brn BoLD+Misii 252 8 7.7 6.8 
rd84b BoLD 510 16 16.9 13.7 

rd84brn BoLD+Misli 417 15 16.5 13.2 
rd84d DECAF 561 10 11.9 11.3 
rd84rn M1sii 594 9 12.3 10.3 

rot M1sii 1896 16 25.1 18.4 
z4rnl Misii 162 7 8.0 6.8 

Table 6.1: Experiment Test Cases 
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method does not completely remove the effects of transistor sizing, it does minimize 

these effects. Also, some of the heuristics assume that transistor sizing is done. 

AESOP uses an RC model to measure the delay, and associates with each gate a 

scale factor, S. Aesop then uses a quasi-Newton method that uses an approximate 

second order model of the delay function to iteratively compute the optimal transistor 

sizes to meet the desired timing constraints. In the experiment, AESOP was run 

subject to a maximum width limit of 30 A and a minimum width limit of 3 A for each 

transistor in the circuit. Also, some of the heuristics in POLO assume that transistor 

sizing will be applied to the circuits. 

This type of use for POLO, where transistor sizing is used, is its expected use in 

a silicon compiler system that utilizes module generators to build the layout. These 

module generators would have control over the sizes of transistors used in the layout. 

6.2.2 Experiment Two 

A second experiment was run that differs from the first experiment only in that the 

transistor sizes of all the gates were fixed to a default size. Rather than using the 

sized circuit from AESOP, the unsized circuit produced by one of the logic synthesis 

tools is used directly as input. This experiment is consistent with POLO's use in a 

standard cell based synthesis system, where only fixed sized cells are available. The 

objective of this experiment is the same as in the first experiment, namely to evaluate 

the type of improvement possible and its costs. The same type of measurements were 

made in this experiment: change in number of transistors, change in slowest path 

delay, and change in the product AT2. This experiment is illustrated at the bottom 

of Figure 6.2. 

6.3 Experimental Results 

6.3.1 Implementation Restrictions 

The implementation of POLO differs from the techniques described in a small, but no­

table way. Two transformations, factoring and simplification, were not implemented 

because of the small size of the gates in the gate library used to map the gates. Most 

of the gates are so small that there exists only one reasonable way to factor the gate. 

For simplification, the size of the gates combined with the fact that the operation 

is already performed by the logic synthesis tools, prevents any gain from this tech-
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nique. One other transformation, logic dual replacement, was not implemented. The 

technology mappers of Misii and DECAF already do a good job at minimizing the 

number of inverters, so further improvement is not likely using this transformation. 

These restrictions are due only to the set of input circuits. 

Gate decomposition, while implemented, has only limited use in the experimental 

test cases. Its use is limited because the particular target gate library, MCNC Lib2, 

does not contain very many large gates. 

6.3.2 Results of Experiment One 

The results of the first experiment are shown in Figures 6.3 through 6.5. The effect 

of the transformations on the delay of the circuits are shown in Figure 6.3. This 

bar graph shows the normalized change in delay between the original circuit and the 

circuit after it has been optimized by POLO. The values shown for each example are 

the worst case path delay expressed as a percentage of the worst case path delay of 

the original circuit. Both the original and optimized circuit have been run through 

AESOP for transistor sizing, so this speed-up is in addition to the speed-up due to 

transistor sizing. The bottom entry represents the average for all the examples and 

shows an average decrease in the delay of the slowest path of 24%. In all cases 

these was a decrease in the maximum path delay, with two examples with about 

a fifty percent speed-up. Analyzing the four examples that had less than a ten 

percent speed-up shows that the slowest path in the final circuit had undergone path 

resynthesis. However, in these cases, the resulting speed-up from the transformation 

was not large, so the overall reduction in circuit speed was less than ten percent. The 

numerical data for all the examples is also shown in Table 6.2. 

The bar graph in Figure 6.4 shows the new transistor count as a percentage of the 

original transistor count, as determined by dividing the new transistor count by the 

original transistor count. The average increase in transistor count was 20%. However, 

one example shows an area increase of about 100%. In this example, misexlm, the 

large area increase was due to a large percentage of critical paths relative to the total 

number of overall paths. When the average of all the examples except the one with a 

very large increase is taken, the average area increase is only 20%. In sharp contrast 

to the previous example, six other examples actually showed slight decreases in area. 

In these cases, this decrease was a result of the path resynthesis operation. When the 

transformation is applied, the old circuitry that was duplicated during resynthesis 
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is checked to make sure it is still driving some part of the circuit, otherwise the 

parts that are no longer used are removed from the circuit. If many of the gates are 

only used to compute the function at the cut-point, they will be deleted after the 

replacement circuitry is added. This occurrence is exactly what happened in the six 

examples that showed an area decrease. The numerical data for all the examples is 

also shown in Table 6.2. 

The bar graph in Figure 6.5 shows the optimized circuits' AT2 product, expressed 

as a percentage of the original circuits' AT2 product. The average decrease was 28%. 

Only five examples showed an increase at all, and only one example had an increase 

of greater than 15%. For these examples, this data indicates that the speed-up was 

gained at a much greater cost of area. So, while the circuits were faster, they were 

not as efficient as before. However, most of the examples showed a reduction in AT2, 

with six examples showing a reduction of at least 50%. The numerical data for all 

the examples is shown in Table 6.3. Complete data for the experiment can also be 

found in Appendix B. 

6.3.3 Results of Experiment Two 

Since PO 10 assumed the availability of transistor sizing in the way it implemented 

the transformations, the results produced by this experiment are not as good as in 

experiment one. However, there still was an average decrease in path delay of 20%, 

and an average decrease in AT2 of 9%. There was a much larger area increase, 

however, averaging 35%. 

The bar graph in Figure 6.6 shows the speed-up for each of the examples. In 

general, the speed-ups were somewhat less than in the sized case, although in a 

few examples, the percentage of decrease in delay was greater in experiment one. 

However, none of the examples are as fast as the examples in experiment one. Two 

examples were not able to speed up the most critical path at all. Although other 

critical paths were sped up, there was no change in the slowest path. This situation 

occurred because there was no way to compensate for the additional loads placed on 

some gates caused by some of the transformations, such as path resynthesis. Usually 

transistor sizing is used, but in this experiment it was not allowed. 

The change in transistor count is shown in the bar graph in Figure 6. 7. The area 

increase is greater than in experiment one because the same timing constraints were 

used. Since the original circuits in this experiment were slower than the original 
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example number of transistors max. path delay (ns.) 
name before after %change before after %change 
5xp1 360 438 22 6.0 4.0 -33 

9symml 518 764 47 9.2 8.9 -4 
9symml..b 556 554 -0.36 19.7 18.2 -8 

C880 1136 1666 47 23.0 17.5 -24 
apex6 2130 2334 9.6 14.5 9.5 -34 
apex7 658 682 3.6 12.0 10.2 -15 

apex7_b 734 938 28 11.5 9.3 -19 
b9 388 374 -3.6 7.7 6.3 -18 

b9_b 364 356 -2.2 5.4 4.2 -22 
duke2b 1498 1938 29 13.7 12.2 -11 

duke2bm 1064 1196 12 12.7 11.5 -9 
duke2d 1198 1480 24 14.0 9.4 -33 
duke2m 1138 1328 21 14.3 11.7 -19 

f51m 372 462 24 25.2 13.8 -45 
f51m_b 278 372 34 7.9 5.1 -36 
misex1d 180 278 54 6.1 4.1 -32 
misexlm 178 368 107 7.2 4.1 -44 
misex2b 416 462 11 6.8 5.8 -14 

misex2bm 300 344 15 6.0 5.6 -5 
misex2d 294 448 52 5.9 5.1 -14 
misex2m 282 396 40 7.7 6.6 -13 

rd53 132 130 -1.5 6.2 3.1 -50 
rd53m 140 160 14 5.2 4.4 -15 

rd53bm 252 168 -33 6.8 4.2 -38 
rd84b 510 664 30 13.7 10.5 -23 

rd84bm 416 426 2.4 13.2 6.7 -49 
rd84d 560 500 -11 11.3 6.3 -44 
rd84m 594 612 3.0 10.3 8.2 -20 

rot 1896 1976 4.2 18.4 16.4 -11 
z4ml 162 212 31 6.8 5.1 -25 

Table 6.2: Experiment! Results: Area, Delay 
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example number of stages AT2 

name before after %change before after %change 

5xp1 7 5 -29 1.3 X 104 7.1 X 103 -45 
9symml 7 10 43 4.4 X 104 5.9 X 104 35 

9symml..b 7 10 43 2.2 X 105 1.8 X 105 ' . -15 
C880 23 15 -35 6.0 X 105 5.1 X 105 -15 
apex6 11 7 -36 4.5 X 105 2.1 X 105 -53 
apex7 9 11 22 9.5 X 104 7.1 X 104 -25 

apex7_b 18 11 -39 9.6 X 104 8.1 X 104 -16 
b9 5 7 40 2.3 X 104 1.5 X 104 -36 

b9_b 7 7 0 1.1 X 104 9.3 X 103 -12 
duke2b 22 21 -5.5 2.8 X 105 2.9 X 105 1.5 

duke2bm 12 8 -33 1.7 X 105 1.6 X 105 -6.9 
duke2d 15 13 -13 2.4 X 105 1.3 X 105 -45 
duke2m 13 7 -23 2.3 X 105 1.9 X 105 -19 

f51m 5 16 180 2.4 X 105 8.9 X 104 -63 
f51m_b 13 6 -54 1.8 X 104 9.6 X 103 -45 
misex1d 6 4 -33 6.6 X 103 4.8 X 103 -28 
misex1m 7 7 0 9.3 X 103 6.1 X 103 -34 
misex2b 10 5 -50 1.9 X 104 1.6 X 104 -17 

misex2bm 8 5 -38 1.1 X 104 1.1 X 104 3.4 
misex2d 7 5 -29 1.0 X 104 1.2 X 104 13 
misex2m 6 4 -33 1.7x104 1.8 X 104 5.1 

rd53 9 3 -67 5.1 X 103 1.3 X 103 -75 
rd53m 7 5 -29 3.8 X 103 3.1 X 103 -18 

rd53bm 7 8 14 1.2 X 104 3.0 X 103 -74 
rd84b 12 11 8.3 9.5 X 104 7.4 X 104 -22 

rd84bm 9 9 0 7.3 X 104 1.9 X 104 -73 
rd84d 9 10 11 7.1 X 104 2.0 X 104 -72 
rd84m 11 7 -36 6.2 X 104 4.1 X 104 -34 

rot 15 17 13 6.4 X 105 5.3 X 105 -17 
z4ml 8 9 13 7.5 X 103 5.5 X 103 -26 

Table 6.3: Experiment! Results: Number of Stages on Critical Path, AT2 
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circuits in experiment one, more paths had to be transformed, requiring greater 

area. One example, 9symmL.b, grew particularly large, by over two hundred percent. 

This large area increase resulted from a combination of several applications of path 

resynthesis and because there was only a single output in the circuit, so the gates 

replaced by the resynthesis operation were still needed by other parts of the circuit. 

Finally, the efficiency, as measured by AT2, is shown in Figure 6.8. The average 

decrease in efficiency is much smaller, and as seen in the Figure, there are several 

examples that showed a large decrease in efficiency. 
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example number of transistors max. path delay (ns.) 
name before after %change before after %change 

5xp1 360 492 37 8.0 6.2 -22 
9symml 518 714 38 11.2 11.8 0 

9symmLb 556 1706 210 22.8 22.3 -2 
C880 1136 1666 47 28.2 22.2 -21 
apex6 2130 2560 20 17.6 10.7 -39 
apex7 658 700 6 12.8 10.9 -15 

apex7_b 734 1074 46 12.6 9.4 -25 
b9 388 374 -4 7.8 7.0 -10 

b9_b 364 350 -4 6.0 4.1 -33 
duke2b 1498 2120 42 15.7 13.8 -12 

duke2bm 1064 1398 31 13.6 12.9 -5 
duke2d 1198 1500 25 14.5 11.0 -24 
duke2m 1138 1716 51 16.8 14.3 -15 

f51m 372 462 24 25.2 21.4 -15 
f51m_b 278 408 47 9.6 6.4 -33 
misex1d 180 278 54 5.9 5.1 -14 
misexlm 178 340 91 8.3 5.4 -35 
misex2b 416 416 0 7.3 5.9 -20 

misex2bm 300 468 56 6.9 5.8 -15 
misex2d 294 432 47 6.7 6.0 -11 
misex2m 282 522 85 9.2 6.4 -30 

rd53 132 132 0 6.5 3.3 -48 
rd53m 140 160 14 6.0 5.2 -14 

rd53bm 252 168 -33 7.7 4.8 -38 
rd84b 510 698 37 16.9 13.7 -19 

rd84bm 416 450 8 16.5 13.6 -18 
rd84d 560 542 -3 11.9 9.0 -24 
rd84m 594 834 40 12.3 12.3 0 

rot 1896 2252 19 25.1 23.0 -8 
z4ml 162 212 31 8.1 5.5 -32 

Table 6.4: Experiment2 Results: Area, Delay 
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example number of stages AT2 

name before after %change before after %change 

5xp1 7 7 0 2.3 X 104 1.9 X 104 -17 
9symml 8 12 50 6.5 X 104 8.9 X 104 38 

9symmLb 28 22 -14 2.9 X 105 8.5 X 105 190 
C880 23 15 -35 9.0 X 105 8.2 X 105 -9 
apex6 11 5 -55 6.6 X 105 2.9 X 105 -55 
apex7 9 9 0 1.1 X 105 8.3 X 104 -23 

apex7_b 16 11 -31 1.2 X 105 9.6 X 104 -18 
b9 9 5 -44 2.3 X 104 1.8 X 104 -21 

b9_b 8 3 -63 1.3 X 104 5.8 X 103 -56 
duke2b 22 13 -41 3.7x105 4.0 X 105 10 

duke2bm 15 15 0 2.0 X 105 2.3 X 105 18 
duke2d 9 9 0 2.5 X 105 1.8 X 105 -28 
duke2m 13 11 -15 3.2 X 105 3.5 X 105 9 

f51m 5 16 180 2.4 X 105 2.1 X 105 -11 
f51m_b 12 7 -42 2.6 X 104 1.7 X 104 -35 
misexld 5 5 0 6.3 X 103 7.2 X 103 14 
misex1m 7 5 -29 1.2 X 104 9.8 X 103 -19 
misex2b 10 5 -50 2.2 X 104 1.4 X 104 -36 

misex2bm 7 6 -14 1.4 X 104 1.6 X 104 13 
misex2d 7 4 -43 1.3 X 104 1.6 X 104 17 
misex2m 7 5 -29 2.4 X 104 2.2 X 104 -9 

rd53 9 4 -56 5.5 X 103 1.5 X 103 -73 
rd53m 7 5 -29 5.0 X 103 4.2 X 103 -15 

rd53bm 7 5 -29 1.5 X 104 3.8 X 103 -74 
rd84b 12 13 8 1.5 X 105 1.3 X 105 -9 

rd84bm 7 10 43 1.1 X 105 8.3 X 104 -27 
rd84d 14 10 -29 7.9 X 104 4.4 X 104 -45 
rd84m 9 10 11 9.0 X 104 1.3 X 105 40 

rot 15 14 7 1.2 X 106 1.2 X 106 -0 
z4ml 8 8 0 1.1 X 104 6.4 X 103 39 

Table 6.5: Experiment2 Results: Number of Stages on Critical Path, AT2 
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Chapter VII 
Conclusions 

7.1 Summary and Conclusions 

We have investigated automatic restructuring as a method to reduce delays in the 

circuit. The results from the first experiment are very promising. Although further 

improvement by tuning the heuristics is possible, the results already show significant 

improvements in speed and efficiency of the circuits by restructuring, averaging 24% 

and 28% respectively, with a somewhat modest increase in the overall area of the 

circuits, averaging 20%. Not counting the two circuits that had unusually large area 

increases, the average area increase was only 18%. 

Some circuits, even after having all the transformations applied to the critical 

paths, showed less than a ten percent speed-up. So, although large speed-ups are 

possible, there are some examples that do not gain much from restructuring. One of 

the causes of this problem is the function being computed. For example, two of the 

examples showing little speed-up had a high fan-in tree structure with only a single 

output, which limited the amount of change possible in the circuit. Another cause 

of limited speed-up is the limits of the logic minimization and technology mapping 

used in the path resynthesis operation. The path produced was as good as possible 

using the current minimization and mapping heuristics so that further improvement 

is possible only if logic minimization and technology mapping methods are improved. 

The greedy approach for applying the transformations worked well in almost all 

test cases. However, it tends not to work as well when there is a large number of paths 

that have about the same delay. The two examples from experiment one where this 

case occurred showed large area increases. However, it is not clear if other techniques 

would work well in this situation either. 

The area decrease that occurred in several of the examples from experiment one 

was a surprising result. Since this effect occurred only in the smaller circuits, one 

cause of this effect is the high percentage of the total paths that are critical. Nonethe-
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less, it does indicate that some of the current area minimization heuristics in logic 

synthesis may not always produce the smallest circuit, and the transformation re­

sponsible for the area savings, path resynthesis, may be useful in some circumstances 

for area optimization. Also, since this effect occurred in examples produced by each 

logic synthesis tool, the effect is not limited to any particular one of them. 

It is clear from the results of the experiments that the heuristics in PoLO cannot 

be the same when using POLO with transistor sizing and using POLO without tran­

sistor sizing. The heuristics were tuned for working with circuit that had undergone 

transistor sizing, and did very well in decreasing delay and increasing efficiency in 

the first experiment. However, the results from the second experiment where the 

circuits had not undergone transistor sizing were disappointing. Although there were 

decreases in delay, the cost in area was much greater than in the first experiment 

and the efficiency of the circuits did not improve as much on the average. The re­

sults of experiment two do not indicate that the basic idea of a greedy application of 

transformations will not improve the delay and efficiency of the circuit, since many of 

the examples did show improvement. However, since several example circuits showed 

reduced efficiency or no improvement in delay, the heuristics need to be tuned differ­

ently for working with unsized gates. 

The new transformation, path resynthesis, proved to work well when used with 

multiple cut points and resynthesis operations per path. As mentioned above, in 

several cases, it actually reduced the area of the circuit. In general, it provided a 

good trade-off between area increase and delay decrease as long as the number of 

times it is applied is not too large. The two examples with large area increase show 

the area penalty for a large number of applications. Even though most of the circuits 

did not have very long paths through the circuit, there was a difference between using 

a single cut point and multiple cut points per path. 

7.2 Future Research 

Some interesting ideas have developed as an outgrowth of this work and bear further 

investigation. These topics are described below. 
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7.2.1 Further Thning of Heuristics 

The current heuristics produce good speed-ups. However, it should be possible to 

reduce delay even further. In addition, gate collapsing can be applied as an area 

saving transformations off of the critical path so that the overall area increase will 

be smaller or the area will decrease, and so that all examples will show smaller AT2 

products. As mentioned above, the heuristics also need to be tuned to work better 

when transistor sizing is not available. 

An interesting experiment would be to run the tool on circuits created using a 

larger set of gates than in MCNC Lib2. This experiment would also allow further 

tuning of the heuristics by studying the effects of using much larger gates in the 

circuits and will determine whether or nor the same heuristics can be used. 

The effects of the transformations on the power usage in the circuits are not mea­

sured. Another interesting experiment is to measure the effects of the transformations 

on the power use of the circuit and use this information to guide the heuristics. 

7.2.2 Improved Technology Mapping 

One of the results of this research is the improvement in speed using fan-in reorder­

ing within a tree of gates in the circuit. This transformation reduces delay because 

during the technology mapping phase the correct delay information is not available. 

Therefore, when deciding how to break apart a gate, the arrival times are not con­

sidered, and it is done arbitrarily and many times incorrectly. In the performance 

optimization step, this information is available, so trees on the critical path can be 

remapped using this delay information. It should be possible to move this operation 

into technology mapping. Moving this operation requires two changes in the basic 

technology mapping method. First, the order of mapping of the trees now becomes 

important. Mapping must begin at the trees that use the primary inputs and pro­

ceeds in a breadth-first fashion through the circuit. This order insures that correct 

delay information will be available when determining the best way to split a tree. 

Second, a more accurate delay model, such as the RC model, must be incorporated 

into the mapping operation. Since these changes are a modification to technology 

mapping, they were not included in the main research of this dissertation. However, 

this idea will be investigated shortly. 
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7.2.3 Cross-tree Optimizations 

The principal deficiency of the technology mapping techniques is the the local aspect 

of all the operations; no global improvements are possible. This deficiency is caused 

by the local nature of the technology mapping algorithms; the Boolean network is 

split into trees which are mapped individually. Even the modification described in 

the previous section does not overcome this problem. Some of the transformations 

are initial attempts at the cross-tree optimizations, but further research is needed to 

investigate further ways of reducing delay through this technique. 

7.2.4 Logic Decomposition 

As can be seen from the improvement in delay through path resynthesis, current 

decomposition techniques for building the Boolean network do a good job at area 

minimization, but are suboptimal for delay optimization. Some early work used 

simple delay information to help guide the use of algebraic (weak) division offunctions 

in the Boolean network[BH85], but no further work seems to have been done in this 

area. One area of future research is to model and study the trade-offs between the 

sharing of common minterms by different Boolean equations and the effects on area 

and delay. 

7.2.5 Testability Issues 

The input circuits are assumed to be 100% testable before transformation. Ap­

pendix C shows that most of the transformations do not effect the testability of the 

circuit. One extension of this work is to include transformations that improve the 

testability by removing redundancies. Some work has already been done in this area 

that only considered improved testability[BBL89], but it may be possible to combine 

the goals of improved performance and improved testability together. 
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Appendix A 
RC Model 

This appendix describes the RC delay model and discusses why it is a reasonable first 

order model for circuit delay. The next section introduces the important properties 

of the M OS transistor that are used in the model. Then, the second section discusses 

the theoretical basis for the RC model. In the third section, the sources of resistance 

and capacitance are described. Then, the final section concludes with the limitations 

of this model. 

A.l MOS Transistor 

A MOS (Metal Oxide Semiconductor) transistor has three regions of operation: cut­

off, resistive, and saturated. When a transistor is in the cut-off region, it acts, to the 

first order, as an open switch. There is only a very small leakage current through the 

transistor that is ignored. In the second region, the resistive region (also called non­

saturated), the transistor acts as a voltage-controlled resistor. In the final region, 

the saturated region, the transistor acts as a current source, where the current is 

proportional to the square of the drain-to-source voltage. The first order equations 

for the drain-to-source current, Id., in the three regions are as follows: 

I 
0 when ~. - ~ :=:; 0 (cut-off) 

Id. = ,8((~.- ~)}d.-~~ when 0 < Vd. < ~.- ~ (resistive) 

%CY.J.- ~)2 when o < ~.- ~ < vd. (saturation) 

(A.l) 

The term, ,8, is called the MOS gain factor, and its value is given by the following 

equation: 

,8 =,(fie)( W) 
tor L 

(A.2) 

where 11 is the effective mobility of the electrons in the channel, e is the permittivity 

of the gate insulator, tor is the thickness of the gate insulator, W is the width of the 
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channel, and L is the length of the channel. When the transistor is in the resistive 

region, the resistance of the channel, Rc, is given by the following equation: 

A.2 

L 
Rc=k­

W 

Delay Model 

coer )-l where k = (p.--Yy. - v; 
lox 

(A.3) 

Consider the simple circuit shown in Figure A.l, below, in which a simple inverter 

drives a capacitive load, CL· Let V.n be equal to logic 0, and V.ut be equal to logic 

one. 

Figure A.l: Inverter Driving A Capacitive Load 

Changing the value of V.n from logic 0 to logic 1 as a step function, turns off the 

p-type transistor (it goes into the cut-off region of operation), and turns on then-type 

transistor, first operating in the saturation region, and then in the resistive region. 

As a result of this change, the capacitor, CL, is discharged. The circuit in Figure A.l 

can be represented by two equivalent circuits, shown in Figure A.2 corresponding to 

the two regions of operation that then-type transistor goes through while discharging 

the capacitor. 

The first equivalent circuit represents the original circuit when Vds ;::: Yy.- v;, that 

is, when the n-type transistor is saturated. The second equivalent circuit represents 

the original circuit after lid. < Yy. - v;, when the n-type transistor is resistive. The 

following two equations describe the behavior of the two equivalent circuits: 

(A.4) 
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J 

ttansistor in saturated state transistor in resistive state 

Figure A.2: Equivalent Circuits For Inverter Driving A Capacitive Load 

(A.5) 

To determine the equation to compute the time for the output to change from 

0.9~d to 0.1 ~d, we must integrate the two previous equations and sum the resulting 

two terms. The resulting equation for the time spent in saturation and resistive mode 

IS: 

2CL(V,- ~d) -:-:c:-C--'L~=ln(19~d- 20V,) 
i= +-:: 

,B(Vdd- V,) ,B(Vdd- V,) Vdd 
(A.6) 

Assuming V, = 0.2Vdd• the previous equation simplifies to: 

Notice that the term 13~ •• is a resistance. It is called the effective resistance of the 

transistor. Thus, the equation for time is simplified to: 

This equation forms the basis for the RC delay model. Each stage in the circuit 

has an effective resistance and a capacitive load that it must drive. Thus for each 

stage, the delay is that value computed by equation A.S. Then the sum of successive 

stage delays gives the value of the delay through the circuit. A similar derivation can 

be used for the case when the p-type transistor is used to charge the capacitive load. 
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If we have an arbitrary complex CMOS gate, then the effective resistance for the 

gate can be approximated by finding the longest series transistor path in the gate. 

The resistance is then the number of transistors in the path multiplied by the effective 

resistance of one transistor. This method assumes that all the transistors have the 

same size. 

A.3 Resistance and Capacitance Values 

In the simplest version of the RC model, the resistance comes from the pull-up 

chain (for a rising transition) or the pull-down chain (for a falling transition) of 

the driving gate, and the capacitance comes from the gate-to-substrate (or gate­

to-bulk) capacitance, gate-to-source capacitance, and gate-to-drain capacitance of 

the load gates. All other resistances and capacitances are ignored. These sources 

are the primary sources of resistance and capacitance for delay. Additional sources, 

called parasitic resistances and capacitances, are sometimes included. One source of 

parasitic resistance that sometimes can be large is the resistance of the wires between 

the driving gate and the load. This resistance can be especially large if diffusion or 

polysilicon wires are used, or if the metal wires are very long. These wires also have 

a parasitic capacitance associated with them. This capacitance is due to capacitance 

with the substrate or other layers, and from capacitive coupling with wires on the 

same layer. Another source of parasitic capacitance is from the diffusion regions 

inside the driving gate associated with transistors that are turned off but adjacent 

to the nodes in the pull-up or pull-down path. 

Figure A.3: Parasitic Capacitance of aMOS Transistor 

In the data, the parasitics resistances and capacitances are not available. Since 
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the parasitics are highly dependent on the mask layout of the circuit and no layout 

is available when the circuits in the test cases are optimized, there is no information 

on these parasitics. Assuming particular values for these parasitics can be done, if 

there is an implicit assumption about the implementation, such as standard cells 

or gate arrays. Since this work should be applicable to different implementations, 

no assumption about typical parasitics values can be made. However, if the wiring 

parasitics are available, they are included in the delay analysis. 

A.4 Problems with RC Model 

The RC model has several drawbacks. First, the effective resistance depends on 

the input waveform. To overcome this problem, different values are used for the 

resistance, depending on the input waveform. However, this solution still assumes a 

uniform trigger voltage. If varying beta ratios occur, this assumption is no longer 

valid. A more detailed model[Hor83, MEG86), modifies the RC model in order to a 

better job of modeling delay with slow-rising inputs. In this model, delay d, is given 

by the following equation: 

(A.9) 

where 
Tr - RgateCload 

7 9m - G;;;~••• Cioad 

Tin - Rprev Cprev 

v. - normalized switching voltage 

Gm w - 9meT 

9m. - current gain for minimum-sized transistor 

Another problem with the RC model arises from unequal rise and fall times for 

a stage caused by different resistance values for n-type and p-type transistors which 

arise from the differences in the mobility of electrons and holes in the substrate. 

The worst case method, using the largest delay for each gate, is too pessimistic and 

results in values for path delay that are much worse than other models. This problem 

is especially noticeable in nMOS circuits. In CMOS circuits, the rise and fall times 

can be made nearly equal by sizing transistors properly, and therefore this problem 
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is not significant for circuits discussed in this dissertation. 
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Appendix B 

Raw Experimental Data 

This appendix contains the raw numbers from running the experiments, which are 

shown in Table B.l, below. In this table, the first column is the example name and 

the second column contains the tool used to generate the example. The remaining 

columns in the table show the number of inputs and outputs, and the size of each 

circuit in terms of gates and transistors. The last column indicates if the original 

benchmark was a two-level description (PLA) or a multi-level description (BLIF). 

The tools used to generate the examples are DECAF, Misii, and BoLD. In addition, 

for a few examples, the logic decomposition and minimization of BOLD are combined 

with the technology mapping of MIS II to produce circuits. Not all the tools were run 

on all the examples. DECAF can only accept two-level input descriptions, and BOLD 

requires excessive CPU times (on the order of several SPARC CPU-days) for all but 

the smallest example. 

The raw data for the delay analysis of the examples from both experiment one 

and two is shown in Table B.2, below. In Table B.3, the raw data for the area mea­

surements from experiment one and two is shown. Table B.4 contains the raw data 

for the measurements of efficiency, AT2• These values are derived from Tables B.2 

and B.3. 
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Example Synthesis Inputs Outputs Gate Transistor Type 
Name Tool Count 

5xp1 DECAF 7 10 80 360 PLA 
9symml MIS II 9 1 79 518 BLIF 
9symmLb BoLD 9 1 127 556 BLIF 
C880 MIS II 60 26 211 1136 BLIF 
apex6 MIS II 135 99 385 2130 BLIF 
apex7 MIS II 49 37 127 658 BLIF 
apexLb BoLD 49 37 199 734 BLIF 
b9 MIS II 41 21 78 388 BLIF 
b9_b BoLD 41 21 95 364 BLIF 
duke2b BoLD 22 29 457 1498 PLA 
duke2bm BoLDjMisii 22 29 240 1064 PLA 
duke2d DECAF 22 29 259 1198 PLA 
duke2m MIS II 22 29 229 1138 PLA 
f51m MIS II 8 8 61 370 BLIF 
f51m_b BoLD 8 8 67 278 BLIF 
misex1d DECAF 8 7 40 180 PLA 
misex1m MIS II 8 7 37 282 PLA 
misex2b BoLD 25 18 128 416 PLA 
misex2bm BOLD/MIS!I 25 18 70 300 PLA 
misex2d DECAF 25 18 69 294 PLA 
misex2m MIS II 25 18 58 282 PLA 
rd53 DECAF 5 3 27 132 PLA 
rd53m M1sii 5 3 27 140 PLA 
rd53bm BOLD/MIS!I 5 3 49 252 PLA 
rd84b BoLD 8 4 122 510 PLA 
rd84bm BoLD/Misii 8 4 83 417 PLA 
rd84d DECAF 8 4 114 561 PLA 
rd84m MIS II 8 4 117 594 PLA 
rot M1sii 135 107 377 1896 BLIF 
z4ml Misii 7 4 30 162 BLIF 

Table B.1: Details on Example Set 
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Example Original Path Delay Final Path Delay 
Name Exp 1 Exp 2 Exp 1 Exp 2 
5xp1 6.0 8.0 4.0 6.2 
9symml 9.2 11.2 8.8 11.2 
9symml.b 19.7 22.8 18.2 22.3 
C880 23.0 28.2 17.5 22.2 
apex6 14.5 17.6 9.5 10.7 
apex7 12.0 12.8 10.2 10.9 
apex7_b 11.5 12.6 9.3 9.4 
b9 7.8 7.7 6.3 7.0 
b9_b 5.4 6.0 4.2 4.1 
duke2b 13.7 15.7 12.2 13.8 
duke2bm 12.7 13.6 11.5 12.9 
duke2d 14.0 14.5 9.4 11.0 
duke2m 14.3 16.8 11.7 14.3 
f51m 25.2 25.2 13.9 21.4 
f5lm_b 7.9 9.6 5.1 6.4 
misex1d 6.1 5.9 4.2 5.1 
misexlm 7.2 8.3 4.1 5.4 
misex2b 6.8 7.3 5.9 5.9 
misex2bm 6.0 6.9 5.7 5.8 
misex2d 5.9 6.7 5.1 6.0 
misex2m 7.7 9.2 6.7 6.4 
rd53 6.2 6.5 3.1 3.3 
rd53m 5.2 6.0 4.4 5.2 
rd53bm 6.8 7.7 4.2 4.8 
rd84b 13.7 16.9 10.6 13.7 
rd84bm 13.2 16.5 6.8 13.6 
rd84d 11.3 11.9 6.3 9.0 
rd84m 10.3 12.3 8.2 12.3 
rot 18.4 25.1 16.4 23.0 
z4ml 6.8 8.1 5.1 5.5 

Table B.2: Raw Numbers for Delay from Experiment One and Two 
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Example Transistor Count 
Name Original Exp 1 Exp 2 
5xp1 360 438 492 
9symml 518 764 714 
9symmLb 556 554 1706 
C880 1136 1666 1666 
apex6 2130 2334 2560 
apex7 658 682 700 
apex7_b 734 938 1074 
b9 388 374 374 
b9_b 364 356 350 
duke2b 1498 1938 2120 
duke2bm 1064 1196 1398 
duke2d 1198 1480 1500 
duke2m 1138 1382 1716 
f51m 372 462 462 
f51m_b 278 372 408 
misex1d 180 278 278 
misex1m 178 368 340 
misex2b 416 462 416 
misex2bm 300 344 468 
misex2d 294 448 432 
misex2m 282 396 522 
rd53 132 130 132 
rd53m 140 160 160 
rd53bm 252 168 168 
rd84b 510 664 698 
rd84bm 416 426 450 
rd84d 560 500 542 
rd84m 594 612 834 
rot 1896 1976 2252 
z4ml 162 212 212 

Table B.3: Raw Numbers for Area from Experiment One and Two 
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Example AT2 

Name Original Sized Exp 1 Original Unsized Exp 2 

5xp1 1.3 X 104 7.1 X 103 2.3 X 104 1.9 X 104 

9symml 4.4 X 104 5.9 X 104 6.5 X 104 8.9 X 104 

9symml.h 2.2 X 105 1.8 X 105 2.9 X 105 8.5 X 105 

C880 6.0 X 105 5.1 X 105 9.0 X 105 8.2 X 105 

apex6 4.5 X 105 2.1 X 105 6.6 X 105 2.9 X 105 

apex7 9.5 X 104 7.1 X 104 1.1 X 105 8.3 X 104 

apex7_b 9.6 X 104 8.1 X 104 1.2 X 105 9.6 X 104 

b9 2.3 X 104 1.5 X 104 2.3 X 104 1.8 X 104 

b9_b 1.1 X 104 6.3 X 103 1.3 X 104 5.8 X 103 

duke2b 2.8 X 105 2.9 X 105 3.7 X 105 4.0 X 105 

duke2bm 1.7x105 1.6 X 105 2.0 X 105 2.3 X 105 

duke2d 2.4 X 105 1.3 X 105 2.5 X 105 1.8 X 105 

duke2m 2.3 X 105 1.9 X 105 3.2 X 105 3.5 X 105 

f51m 2.4 X 105 8.9 X 104 2.4 X 105 2.1 X 105 

f51m_b 1.7 X 104 9.6 X 103 2.6 X 104 1.7xl04 

misex1d 6.6 X 103 4.8 X 103 6.3 X 103 7.2 X 103 

misex1m 9.3 X 103 6.1 X 103 1.2 X 104 9.8 X 103 

misex2b 1.9 X 104 1.6 X 104 2.2 X 104 1.4 X 104 

misex2bm 1.1 X 104 1.1 X 104 1.4 X 104 1.6 X 104 

rnisex2d 1.0 X 104 1.2 X 104 1.3 X 104 1.6 X 104 

misex2m 1.7 X 104 1.8 X 104 2.4 X 104 2.2 X 104 

rd53 5.1 X 103 1.3 X 103 5.5 X 103 1.5 X 103 

rd53m 3.8 X 103 3.1 X 103 5.0 X 103 4.2 X 103 

rd53bm 1.2 X 104 3.0 X 103 1.5 X 104 3.8 X 103 

rd84b 9.5 X 104 7.4 X 104 1.5 X 105 1.3 X 105 

rd84bm 7.3 X 104 1.9 X 104 1.1 X 105 8.3 X 104 

rd84d 7.1 X 104 2.0 X 104 7.9 X 104 4.4 X 104 

rd84m 6.2 X 104 4.1 X 104 9.0 X 104 1.3 X 105 

rot 6.4 X 105 5.3 X 105 1.2 X 106 1.2 X 106 

z4ml 7.5 X 103 5.5 X 103 1.1 X 104 6.4 X 103 

Table B.4: Raw Numbers for AT2 from Experiment One and Two 
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Appendix C 

lnvariance Proofs 

In this appendix, proofs are presented that show the properties of primality and 

irredundancy, defined in chapter 3, are preserved by the transformations, except 

for path resynthesis. This results has important implications with regard to the 

testability of circuits, namely a combinational circuit is 100 % testable for single 

stuck-at faults if and only if it is prime and irredundant[BBH+88]. 

Theorem C.l The buffering transformation preserves the primality and irredun­

dancy of circuits. 

Proof: A:ssume a circuit, C is prime and irredundant. Let F; be the Boolean function 

associated with a gate in the circuit, and let y; be a variable representing the output 

of function. By applying the buffering transformation, two gates are added to the 

circuit, each of which has a Boolean function associated with it: F1 = Y; and F2 = y1 . 

Each of these new Boolean functions has only one literal and only one term, so there 

do not exist any literals or terms that can be removed without changing either of the 

Boolean functions. Therefore, by definition, they are prime and irredundant. D 

Theorem C.2 The critical signal isolation transformation preserves primality and 

irredundancy of circuits. 

Proof: The proof is similar to the previous theorem. Assume a circuit, C is prime 

and irredundant. Let F; be the Boolean function associated with a gate in the circuit, 

and let Y; be a variable representing the output of function. By applying the critical 

signal isolation transformation, two inverter gates are added to the circuit, each of 

which has a Boolean function associated with it: F1 = Y; and F2 = y1 • Each of these 

new Boolean functions have only one literal and only one term, so there do not exist 

any literals or terms that can be removed without changing either of the Boolean 

functions. Therefore, by definition, they are prime and irredundant. D 

117 



Theorem C.3 The gate collapsing transformation preserves primality and irredun­

dancy of circuits. 

Proof: From the point of view of logic synthesis, the gate collapsing transformation 

is algebraic resubstitution. Hachtel et al.[HJKM89] show that algebraic substitu­

tion preserves primality and irredundancy. When gate collapsing occurs across tree 

boundaries the first gate of the pair must be duplicated to preserve the intermediate 

node. While this operation converts any untestable single fault on the inputs to the 

first gate into a untestable multi-fault, it does not introduce a redundancy where 

none existed. Thus gate collapsing transformation preserves testability. 0 

Theorem C.4 The gate decomposition transformation preserves primality and irre­

dundancy of circuits. 

Proof: From the point of view of logic synthesis, gate decomposition is an algebraic 

decomposition operation. Hachtel et al.[HJKM89] show that algebraic decomposition 

preserves primality and irredundancy. 

Theorem C.5 The gate simplification transformation preserves primality and irre­

dundancy of circuits. 

Proof: By definition, gate simplification tries to remove any non-prime literals or 

redundant terms from the gate. So if the circuit is already prime and irredundant, 

then gate simplification will not modify the circuit, hence preserving 100% testability. 

0 

Theorem C.6 The gate factoring transformation preserves primality and irredun­

dancy of circuits. 

Proof: Gate factoring does not add or remove any literals or terms to the underlying 

two-level Boolean equation, therefore if the gate is part of a prime and irredundant 

circuit, then the circuit remains prime and irredundant. 0 

Theorem C. 7 The fan-in ordering transformation preserves primality and irredun­

dancy of circuits. 

Proof: Fan-in ordering can be thought of multiple applications of the gate collaps­

ing and gate decomposition transformations. Since both transformations have been 

shown to preserve primality and irredundancy, the fan-in ordering transformation also 
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preserves primality and irredundancy. When this transformation is applied across tree 

boundaries and gates in the fan-in tree must be duplicated to preserve intermediate 

nodes, the circuit remains testable because this is the same operation as described in 

gate collapsing across tree boundaries. 0 

Theorem C.8 The logic dual replacement transformation preserves primality and 

irredundancy of circuits. 

Proof: Assume the following Boolean equations are part of a Boolean network: 

F1 = a, F2 = b, F3 = y1 • y2 , and F4 = y3 • Since algebraic resubstitution preserves 

testability, it can be applied to the above equations to get Fnew = a· b, which is just 

the same as Fnew = a + b using deMorgan's Laws. So clearly, the testability remains 

the same. When applying this transformation across tree boundaries, a duplicate 

inverter may be required, similar the the duplicate gate in gate collapsing. Since this 

operation preserves primality and irredundancy, then the global application of this 

transformation preserves primality and irredundancy as well. 

Theorem C.9 The path resynthesis transformation does not preserves primality and 

irredundancy of circuits. 

Proof: Since current multi-level logic synthesis tools do not always produce prime 

and irredundant circuits, this transformation will not maintain primality and irre­

dundancy if the logic synthesis tool used in resynthesis does not produce a prime and 

irredundant replacement path. 
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Appendix D 
Implementation Details 

D .1 Machine Environment For Experiment 

All experiments were run on a Sun 4/260 with 64 megabytes of memory and 250 

megabytes of swap space. The operating system was version 4-3.2 of the Sun Oper­

ating System, which is based on Unix 4.2 BSD. The software of POLO was written 

in C++[Str86] using GNU C++[Tie89] version 1.36.0 from the Free Software Foun­

dation. 

D.2 Software System Structure 

The software used to run the experiments consists of three parts: PoLO, AESOP, and 

MISII. POLO controls the operation as well as applying the transformation. POLO 

also calls AESOP to do transistor sizing, and calls Misii for certain logic synthesis 

operations. The author acknowledges the people who developed both of these tools 

since it saved countless hours of work that would have been required to write code 

to implement the same function. 

D.3 Running POLO 

Running PoLO requires four different files. First, the circuit must be described 

in a gate-level netlist. Also, a file containing the input arrival times and output 

required times for the primary inputs and outputs is needed. The third file is an 

AESOP control file to allow running AESOP on the circuit. Finally, a technology file 

is needed to describe the set of gates used in the circuit and to describe the intrinsic 

technology parameters such as unit capacitance and resistance for the implementation 

technology. 

There are several run-time options that are available when running PoLo. 

120 



-F file name (required) 

- T technology file name (required) 

-a use all the transformations to speed up the circuit 

-b apply the buffering and critical signal isolation transformations 

-c apply the gate collapsing transformation 

-d apply the gate decomposition transformation 

-e apply the gate factoring transformation 

-f apply the fan-in ordering transformation 

-g apply the gate simplification transformation 

-1 apply the logic dual replacement transformation 

-p apply the path resynthesis transformation 

-r use path grouping (default is not to use path grouping) 

-s use transistor sizing (default is not to use transistor sizing) 

-P print out critical paths after each transformation 

-D debugging flag 

If the -a option is used, then it is an error if any flag is used that specifies a particular 

individual transformation. The separate option flags for each transformation allow for 

experimentation with subsets of the transformations. The option flags for experiment 

one (and for normal use) are: -F, -T, -a, -r, and -s. 

D.4 Software Implementation Details 

This section describes the software in POLO. The software, written in C++, is class­

based, with each data structure defined as a class. The classes are grouped together 

into three hierarchies: a circuit class hierarchy, a technology class hierarchy, and a 

path class hierarchy. The circuit class hierarchy, shown in Figure D.1, holds infor­

mation about the circuit including the gates, electrical nodes, and their connectivity. 

The transformations are implemented as functions defined as part of the class Circuit. 
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Figure D.l: Circuit Class Hierarchy 

This decision, made early in the design, resulted in the class definition for Circuit 

being large. A better way to do it would have been to provide a few more basic 

operations in the definition of Circuit, and then define non-class operations for each 

of the transformations. Time limits did not allow this change to be made to the 

current implementation. In the future this change will be made. 

The technology class hierarchy holds information about the implementation tech­

nology. This hierarchy, shown in Figure D.2, contains process technology information, 

such unit resistances and capacitances for different layers, as well as the types of gates 

available and their internal structure, down to the transistor level. 

The final class hierarchy, the path class hierarchy, contains the critical paths for 

a circuit. Each path contains a list of gates on the path as well as the input, output 

and delay information. The hierarchy is shown in Figure D.3. 

The implementation of the class library was aided by the use of class generators 

supplied in the GNU C++ Library[Lea89]. These generators quickly produced the 

sets, lists, priority queues, and hash tables that were used throughout the system, 

especially in the class hierarchies described above. 
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Figure D.2: Technology Class Hierarchy 

Figure D.3: Path Class Hierarchy 
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