
Gaze-Directed Volume Rendering

Marc Levay
Ross Whitaker

Computer Science Department
University of North Carolina
Chapel Hill, NC 27599

Abstract

We direct our gaze at an object by rotating our eyes or head
until the object's projection falls on the fovea, a small region of
enhanced spatial acuity near the center of the retina. In this
paper, we explore methods for encorporating gaze direction into
rendering algorithms. This approach permits generation of
images exhibiting continuously varying resolution, and allows
these images to be displayed on conventional television moni­
tors. Specifically, we describe a ray tracer for volume data in
which the number of rays cast per unit area on the linage plane
and the number of samples drawn per unit length along each ray
arc ftmctions of local retinal acuity. We also describe an linplc­
mcntation using 20 and 30 mip maps, an eye tracker, and the
Pixel-Planes 5 massively parallel raster display system. Pending
completion of Pixel-Planes 5 in the spring of 1990, we have
written a simulator on a Stellar graphics supercomputer. Pre!·
iminary results indicate that while users arc aware of the
variable-resolution structure of the in1agc, the high-resolution
sweet spot follows their gaze well and promises to be useful in
practice.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: PicLUre/lmage Generation - display algorithms; 1.3.6
[Computer Graphics]: Methodology and Techniques- !nlerac­
lion techniques; E.l [Data structures): Trees

General terms: Algoritluns, Human Factors, Performance

Additional Key Words and Phrases: Volume rendering, ray
tracing, eye tracking, head-mounted display

1. Introduction

The spatial acuily of the human eye varies across the sur­
face of the retina. It is highest in the fovea ccntralis, a region
occupying roughly 4 degrees of visual arc, and falls off gradu­
ally toward the periphery of the visual field [22). Directing
one's gaze at an object consists of rotating either the eye within
its socket or the entire head until the object's retinal projection
falls on the fovea.

Permission to copy without fee all or pan of this material is granted provided
that the copies arc not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
© t990 ACM 089791-351·5/90/0003/0217$1.50

217

Researchers in the flight simulator industry have con­
structed a number of proprietary real-time image generation sys­
tems that take advantage of this variation in retinal acuity to
reduce rendering costs [20, 7]. These systems track the gaze
direction of one or both eyes, generate a high-resolution inset
image or sweet spot corresponding to the detected direction, and
superimpose it using a servo-controlled mirror over the
appropriate portion of a low-resolution background linage.
Electronic blending of the two images is employed to soften the
visual impact of the transition between them. If the inset image
is large enough and is moved quickly enough in response to
changes in gaze direction, the illusion of a full-field high­
resolution image is obtained [19].

This paper explores methods for encorporating gaze
direction directly into rendering algorithms. This approach has
two advantages over analog superimposition of a separately gen­
erated inset image:

• An image of continuously varying resolution can be
generated, more closely approximating the falloff in
retinal acuity.

• The in1age can be displayed on a conventional
television monitor, obviating the need for special­
ized display devices.

The algorithm we describe is a spatially adaptive ray
tracer for volume data. Previous volume rendering teclmiqucs
include the slice-by-slice method of Orebin et al. [5), the cell­
by-cell method of Upson and Keeler [21), the voxel-by-voxcl
method of Westover [23), and the ray tracing methods of Levay
[12), Sabella [18), and Upson and Keeler [21]. Ray tracers that
modulate the number of rays cast per unit area on the image
plane have been reported by Whitted [24], Lee et al. [11), Oip1X:
and Wold [4], Cook [2], and Kajiya [9] for geometrically
defined scenes and Levay [14) for volume data. The modula­
tion criteria in each case is local image complexity. In the
present algorithm, we modulate both the number of rays and the
number of samples per ray, and the modulation criteria is local
retinal acuity.

Spatially adaptive ray tracers yield a low-density nonuni­
form distribution of samples across the image plane. Methods
for reconstructing images from such sampling patterns include
mip maps [25], sununed-area tables [3], multi-stage filtering
[16], and integration over a tiling of rectangular cells [17]. We
usc a method based on 20 mip maps and their extension into
three dimensions - 30 mip maps.

········

Polhemus_.-
3D tracker

L~======~ Pixel-Planes 5 rendering engine

Figure 1: Hardware configuration

The goal of this research is to provide users of a planned
real-time volume rendering workstation with the illusion of a
full-screen high-resolution image at reduced computational cost.
Preliminary estimates suggest that for the proposed workstation,
tracking gaze direction may reduce image generation time by a
factor of up to 5.

2. Hardware configuration

Figure summarizes the proposed hardware
configuration. It consists of an NAC Eye Mark eye tracker, two
Polhemus 3SPACE trackers, the Pixel-Planes 5 rendering
engine, and a conventional 19" television monitor.

The NAC Eye Mark eye tracker is a see-tluough helmet
in which two infrared light emitting diodes have been mounted.
Reflections of the two infrared spots from the iris of each eye
are tracked in real-time by solid state cameras mounted on the
side of the he1met as shown in figure 2. If the helmet is firmly
attached to the user's head, this device measures gaze angle
relative to the helmet and is accurate to within 3 degrees of
visual arc. The position and orientation of the helmet relative to
the television monitor is given by mounting one of the
Polhemus trackers on the helmet. Combining the information
returned by the eye tracker and the Polhemus gives the X and Y
coordinates of the image pixel currently centered on the user's
fovea. The second Polhemus is held in the user's hand and
used to control position and orientation of a volumetrically
defined object, a cutting plane, or a light source.

Pixel-Planes 5 is a massively parallel raster display sys­
tem currently under development at the University of North
Carolina [8] and scheduled for completion in the spring of 1990.
It consists of 16 independently programmable 40-MFLOP
graphics processors, 1/4 million pixel processors organized into
16 independently programmable renderers, a 1024 x 1280 pixel
color frame buffer, and a 640 Mb/see ring network. The imple­
mentation on this machine of a near real-time ray tracer for
volume data has already been described [13]. The shading cal­
culations for all voxels are performed in the pixel processors,
and the ray tracing required to generate an image is divided
among the graphics processors. In the present configuration, the
combined input of the eye tracker and the two Polhemus track­
ers is used by Pixel-Planes 5 to generate a variable-resolution
volume rendered image for display on the television monitor.

218

Figure 2: Eye tracker

3. Variable-resolution volume rendering

The volume rendering method used in this paper is based
on [12]. We begin with a 3D array of voxel data. The array is
classifted and shaded to yield a color and an opacity for each
voxel. Viewing rays are tl1en traced into the array from an
observer position. For each ray, samples are drawn along the
ray, and a color and opacity is computed at each sample posi­
tion by trilinearly interpolating from the colors and opacities of
the nearest eight voxels. The resampled colors and opacities are
then composited from front to back to yield a color for the ray.

To generate a variable-resolution image for a given gaze
direction, we modulate both the number of rays cast per unit
area on the image plane and the number of samples drawn per
unit length along each ray as functions of local retinal acuity.
Since less than one ray may be cast per pixel in the visual peri­
phery, care must be taken to avoid undersampling artifacts. We
associate with each pixel a 2D convolution mask whose non­
zero extent varies as a function of distance on the image plane
from the pixel center to the gaze direction as shown in figure 3.
A ftxed number of rays is cast from each mask and tl1c spacing
between samples along a ray is made proportional to the size of
the mask. A color is computed for the pixel by integrating the
colors returned by all rays cast in the mask weighted by a 2D
filter function. A discussion of suitable filter functions is con­
tained in [6].

data sample and associated
3D convolution mask

image plane

observer
;}

image pixel and associated
2D convolution mask

viewing ray

data voxels

Figure 3: 2D and 3D convolution masks

Since the density of rays and hence of samples along rays
decreases as one moves away from the gaze direction, care must
also be taken to avoid undcrsampling the 3D data. Extending
the technique described above, we associate with each sample
along a ray a 3D convolution mask (sec figure 3) whose non­
zero extent is proportional to the spacing between samples. A
color and opacity is computed for the sample by integrating the
colors and opacities of all voxcls falling inside the mask
weighted by a 3D filter f1mction.

4. Implementation using mip maps

An analysis of numerical error in above algoritlun sug­
gests that the size and placement of 2D convolution masks can
be quantized to multiples of the pixel spacing witl10ut visibly
degrading tl1e image. This allows us to share rays among adja­
cent pixels, substantially reducing the number of rays that must
be cast to generate an image. To realize tl1esc savings, we
dclinc a pyramid of 2D texture maps whose resolutions arc
binary fractions of the image resolution. Each texture map con­
tains one-fourth as many pixels as the map beneath it in tl1c
pyramid. For each pixel, rays arc cast fTom the four comers of
each of two convolution masks that enclose the pixel and whose
quantized sizes fall just above and just below the desired mask
size. As rays are cast, their colors are stored in tllC pyramid. A
boolean flag array is used to insure that rays arc cast only once.
A single color is tl1en computed for the pixel by bilinearly inter­
polating between the colors returned by tlle four rays cast in
each mask and linearly interpolating between the two resulting
values. In essence, the tracing of rays generates a partially
populated 2D mip map [25] fTOm which a variable-resolution
image is generated by setting the pyramid's vertical coordinate
for each pixel proportional to retinal acuity.

A second observation on the original algorithm is that tl1c
large 3D convolution masks required to draw samples of the 3D
data in the visual periphery tllrcatcns to destroy the computa­
tional advantage of employing a lower sampling rate in these
areas. To overcome this difficulty, we employ a extension to
three dimensions of the quantization tcclmique described above.
Specifically, we precompute a hypcrpyramid of 3D texture
volumes whose resolutions arc binary fractions of the data reso­
lution. Each texture volume contains one-eighth as many voxels

3Ddata 0
~

3D mip map O 0? Bl

~
2Dmipmap 0 0 0

~
image 0

viewpoint-independent
shading and filtering

ray tracing, resampling,
viewpoint-dependent shading,
and compositing

resan1pling

Figure 4: Rendering pipeline

219

as the volume beneath it in the hypcrpyramid. By placing only
viewpoint-independent shading components in this data struc­
ture, the cost of computing it is amortized over the duration of
an animation sequence. A sample is drawn from the hypcrpy­
ramid by selecting tl1c two volumes whose resolutions fall just
above and just below the resolution corresponding to the desired
30 convolution mask size, trilincarly interpolating between the
nearest eight voxcls in each volume, and linearly interpolating
between the two resulting values. The viewpoint-dependent
portion of the shading calculations arc tl1cn applied to yield a
color and opacity which arc composited into the ray. In
essence, tlle hyperpyramid is a 3D mip map that is resampled
using an extension to tllrce dimensions of tl1c method described
by Williams for 2D mip maps.

Figure 4 summarizes the rendering pipeline. It begins
with a 3D scalar or vector-valued array. In a preprocessing
step, viewpoint-independent shading calculations are performed
to yield a vector-valued volume of shading components. This
volume forms the base of a 3D mip map. Repeated filtering
and rcsampling is applied to tllc volume, producing successively
lower resolution volumes to fill the mip map. For each fTamc,
gaze-directed ray tracing, rcsampling, viewpoint-dependent shad­
ing, and compositing arc performed to yield a 2D mip map.
This data structure is then rcsamplcd to generate an image at the
display resolution.

The processing required at each pixel is given by the fol­
lowing pseudocode:

procedure RenderPixel(x,y) begin

(Loop through nearest two 2D mip map levels)
m/om == L2DLevel(x,y)J, mhiw = rwLevel(x,y)l;

form= (mlorwmhiml do begin

(Cast rays fTom four comers of mask)
fori= (0,1} do begin

for j = (0,1) do begin

if not F 2111 •
2
'" • then begin

xJ +1;yl +J,m

c z'" . "'" . = TraceRay(x!2'"+i,yl2'"+));
xi +l,yl£ +;,m

end

end

end
(Bilirp to obtain one color for mask}
Cm = flilirp(x,y,m);

end

{ Lirp between resulting values}

Cpix = Lirp(c'"lor.s'c"'hiw'2DLevel(x,y) mod 1);

rctum (cp;x);

end RcnderPixel.

procedure TraceRay(x,y) begin

Cray = 0, CXray = 0;

(Loop through all samples along ray)
for z from Near to Far by 3DLevel(x,y,z) do begin

(Loop through nearest two 30 mip map levels)
nlores = L3DLevel(x,y,z)J, nloires = r3DLevel(x,y,z)l;

for n = (nloresollhires) do begin

(Trilirp to obtain one value for level)
s. = Trilirp(x,y,z,n));

end

{Lirp between resulting values)
Svox = Lirp(S.

1
,S.,. ,3DLevel(x,y,z) mod 1);

orts nJres

{Perform viewpoint-dependent shading)
Cvox,CXvox = Shade(Svox);

(Composite into ray)
C omposjt e(CvoxofXvoxoCray,CXray);

end

retum (cray);

end TraceRay.

In this pseudocode, c denotes a scalar or vector color, ex
denotes an opacity, and S denotes a vector of shading com­
ponents. The 20Level procedure accepts a pixel location, deter­
mines the distance from the pixel to the gaze direction by
referencing a 20 lookup table indexed by X and Y offset, and
returns a floating point 2D mip map vertical coordinate by
referencing a 10 lookup table indexed by distance. The
3DLcvel procedure accepts a voxel location, computes the
volume in voxels of the 3D convolution mask whose non-zero
extent is proportional to the spacing between samples, and
retmns a floating point 30 mip map vertical coordinate by
referencing a 10 lookup table indexed by mask volume. For
parallel projections, the spacing between samples along a ray is
a constant; for pcrspecti ve projections, it rises with increasing
distance from the observer. The Bilirp and Trilirp procedures
accept pixel and voxcl coordinates respectively and an integer
2D or 3D mip map vertical coordinate and return a scalar or
vector interpolated from the appropriate texture map or volume.
The Lirp procedure interpolates between two scalars or vectors
based on a floating point interpolant lying between zero and
unity. The Shade procedure accepts a vector of voxel shading
components and performs viewpoint-depending shading to yield
a color and an opacity for the voxcl. The Composite procedure
composites a voxel color and opacity into the color and opacity
accumulated along a ray. Further details on compositing and
shading calculations arc given in [12].

On Pixel-Planes 5, viewpoint-independent shading and
filtering will be performed on the 16 graphics processors (GP's)
at the start of an animation sequence. The resulting 30 mip
map will be transferred across the ring network and distributed
among the 1/4 million pixel processors (PP's). For each frame,
viewpoint-dependent shading will be performed in parallel by
the PP's on the entire mip map, followed by gaze-directed ray
tracing, rcsampling, and compositing on the GP's. The resulting
20 mip map will then be resamplcd in sections by the GP's and
transmitted to the frame buffer for display.

220

5. Discussion

Shading issues. The values stored in the 3D mip map
depend on what shading model is employed and what rendering
parameters change from frame to frame. If a Lambcrtian
(diffuse) shading model is used and objects and light sources are
fixed and only the observer moves, then the entire shading cal­
culation is viewpoint-independent. In this case, final voxcl color
and opacity may be computed and stored in the mip map. If
specular reflection is included in the shading model, then a
viewpoint-dependent component must be computed on every
frame and added to the values obtained from the mip map. If
the lighting and observer are fixed and the object moves, then
diffuse and specular components must be evaluated on every
frame. In this case, only normalized voxel gradients and voxcl
reflectance coefficients can be stored in the mip map. A gen­
eralization of the distinction between viewpoint-independent and
viewpoint-dependent components for shading of volume data is
given by the tcxelmodcl of Kajiya [10].

Sampling issues. Since the 30 mip map is intended to
be independent of observer position, an isotropic convolution
filter is used during its construction. For perspective projec­
tions, the convolution filter required at sample positions along a
ray arc generally nonisotropic as shown in figure 3. This
mismatch introduces errors into the resampled values. The
errors are minor for typical projections, and less severe than
errors arising when surfaces textured using a 2D mip map are
turned nearly on edge [25]. Since shading is a non-linear pro­
cess, calculating colors from blurred normals stored in a 30 mip
map is not equivalent to calculating colors from high-resolution
normals and subsequently blurring them for storage in the mip
map. This introduces additional errors into the computed colors.
These errors are not visually objectionable, however, as noted
by Blinn [1] for the ca~e of bump mapping.

Rendering efficiency. Using a 30 mip map to represent
volume data, the cost of drawing a sample is independent of the
distance between samples. Using a 2D mip map to represent
ray colors, the cost of computing a pixel color is independent of
the distance between rays. Rendering cost per unit area on the
image plane is therefore linearly related to the density of rays
and samples and independent of the data resolution. If one of
the shading components stored in the 30 mip map is voxcl opa­
city, and if the non-zero extent of the convolution filter used
during construction of the mip map measures 2 voxels on a side
(i.e. if each voxcl contains contributions made by exactly eight
voxels from the volume beneath it in the hyperpyramid), the
mip map can also be used as a hierarchical spatial occupancy
enumeration of the data - an octrce. Each voxel tells us
whether a particular region of space is occupied or empty. By
descending the mip map from top to bottom for each ray, occu­
pied leaf voxels can be fmmd in approximately logaritlunic time
relative to the length of the ray. This tcclmique substantially
reduces rendering time for many useful datasets [15]. In sum­
mary, a 3D mip map provides an efficient solution to both the
visibility problem and the resampling problem for volume datal

6. Simulation results

Pending the completion of Pixel-Planes 5, we have
implemented our rendering algorithm on a Dec 3100 worksta­
tion. The figures in this paper were generated from a 256 x 256
x 109 voxcl magnetic resonance (MR) scan of a live human
subject. Using a diff11Se shading model and a 2 x 2 x 2 box

filter, we constructed a 3D mip map containing voxel color and
opacity at varying resolutions. This preprocessing step required
5 minutes.

We then cast rays into the 3D mip map using a parallel
viewing projection and a sweet spot whose structure is shown in
figure 5. We assume a 19" television monitor (measured diago­
nally) viewed fTom a distance of 20". A horizontal line through
the middle of the displayed image subtends 37° of visual arc.
Our target resolution (shown as a bell-shaped curve in figure 5b)
falls off smoothly (a Gaussian was used) from one ray per pixel
(corresponding to one 3D sample per voxcl) inside a circle 4.2"
in diameter (12° of arc) to one ray per 16 pixels (one 3D sam­
ple per 64 voxels) outside a circle 7" in diameter (20° of arc).
(For comparison, the high-resolution area-of-interest inset image
employed in the CAE-Link system has a diameter of 18° includ­
ing a blending annulus 3° in radius [7].)

Our quantized implementation approxin1atcs the target
resolution by casting one ray per pixel inside a circle roughly 5"
in diameter (span [1] in figure 5b), one ray per 16 pixels outside
a circle 5" in diameter (spans [3]), and one ray per 4 pixels
within an annulus having an inner diameter of 4.2" and an outer
diameter of 7" (spans [2]). The resulting partially populated 2D
mip map is shown in figure 6.

Finally, we interpolate between the images in the 20 mip
map based on the target resolution at each pixel as described
earlier, producing the variable-resolution image shown in figure
7. For comparison, a full-resolution image is shown in figure 8.

1---37° of visual arc~ 13.4" -1

19, television monitor
viewed from a distance of 20"

(a)

foveal region
(7% of image area)

transition region
(14% additional)

[1] base level of2D mip map (left image in figure 6)
[2] 2nd level of 2D mip map (middle image in figure 6)
[3] 3rd level of 20 mip map (right image in figure 6)

ray density
(rays I pixel) l/2

s• ff' s• lff'

distance from gaze direction
(degree_• of visual arc)

(b)

30 sample density
liS (samples I voxel)

Figure 5: Structure of sweet spot

221

Figure 6: Partially populated 2D mip map

Figure 7: Variable-resolution image

Figure 8: Full-resolution image

fig. #of rays #of 3D samples rendering time

variable-resolution 7 9,657 55,438 13.0 sees

full-resolution 8 44,100 316,500 59.6 sees

Table I: Rendering performance

Table I compares rendering performance for the two images.
Timings include all per-frame processing. The opacily com­
ponent of the 3D mip map was used as an octree to speed up
ray tracing of both images. As the table shows, the variable­
resolution image required roughly 1/4 as many rays, 1/6 as
many voxels (this would be 1/8 for data of uniform complexity),
and 1/5 as much rendering time as the full-resolution image.

To obtain an early evaluation of the performance of our
eye tracker and the behavioral response of users to our
variable-resolution imagery, we have written a simulator on a
Stellar GS-1000 graphics supercomputer. In the simulator, we
precompute a fully populated 2D mip map for one view of a
volume dataset. The Stellar is fast enough to read gaze direc­
tion from the eye tracker and generate variable-resolution
images from the precomputed mip map at 15 frames per second.
System latency is estimated at between 100 and 150 ms. To
eliminate the need for tracking head motion in the simulator,
users are mechanically constrained by a chin rest and immobili­
zation strap. We have subjectively evaluated users in both
tracking mode (up to 200°/sec) by asking the user to follow the
motion of a cursor superimposed on the image and saccading
mode (may exceed 700°/sec). Users report that the high­
resolution sweet spot follows their gaze flawlessly in tracking
mode and adequately although with a perceptible delay in sac­
cading mode. Users are generally aware of the variable­
resolution structure of the image.

Based on an expected speedup of 32:1 moving from a
Dec 3100 to Pixel-Planes 5 (as reported in [13]) and working
from a 128 x 128 X 109 voxel dataset, we expect to be capable
of generating variable-resolution images slightly cn1der than
figure 7 at about 10 frames per second. Once Pixel-Planes 5 is
operational, we intend to perform a series of formal psychophy­
sical experiments to test the viability of our approach. Ideally,
we could simply measure the user's ability to detect the pres­
ence of a low-resolution periphery in a forced-choice experiment
in which variable-resolution sequences are randomly inter­
spersed with full-resolution sequences. Realistically, we will
probably be compelled to evaluate ease-of-use and utility for
performing specific tasks such as feature recognition or image
matching. We also intend to investigate the effect of varying
the size and shape of the high-resolution sweet spot, the relative
resolutions of the sweet spot and visual periphery, the structure
of the blending region between them, and the filter functions
employed at each stage of the rendering pipeline.

222

7. Conclusions

A hardware configuration and rendering algorithm have
been presented for generating and displaying sequences of
images whose resolution varies locally in response to changes in
the user's direction of gaze. Encorporation of gaze information
into the rendering algorithm allows images of continuously
varying resolution to be generated, and produces images that
can be displayed on conventional television monitors. Our
rendering algorithm is a spatially adaptive ray tracer in which
the number of rays and the number of samples per ray are
modulated by local retinal acuity. For a 19" television monitor
viewed at 20", a 7" high-resolution sweet spot, and a disparity
in sample spacing between the spot and the surround of about
4:1 in each of X,Y, and Z, we obtain a cost savings of a factor
of 5 over generating a full-screen high-resolution image.

The proposed system can be extended in a number of
ways. If lag time proves problematic, we can employ predictive
tracking. We expect such techniques to work well when the
user is following an object rotated under joystick control due to
the mechanical inertia of the joystick, but not as well when the
user's gaze is wandering over a static image. By modifying the
criteria for selecting 2D convolution mask sizes to encorporate
measures of local image complexity as well as retinal acuity,
images of subjectively equal quality can be generated up to an
order of magnitude faster [14]. In the context of our Pixel­
Planes implcmentat,ion, this should allow us to render 256 x 256
x 128 voxel datasets at 30 frames per second. By not clearing
the 20 mip map between frames when the object is stationary,
progressive refinement can be supported. As the user's gaze
wanders across the image, a trail of sweet spots is left behind.
If the user fixates on one spot, the sweet spot grows in size until
it encompasses the entire image. In the Pixel-Planes 5 imple­
mentation, progressive refinement should result in a full-screen
high-resolution image in less than 1 second.

By adding a Z-component to each pixel in a 2D mip
map, we create a variable-resolution Z-buffer. Preliminary
analysis suggests tl1at such a data structure could be used to
implement gaze-directed polygon rendering. Polygon scanlines
would be subdivided into segments corresponding to tl1e boun­
daries of the populated portions of tl1e various resolution Z­
buffers required for a particular gaze direction. Each segment
would then be scan-converted, Z-compared, and shaded. When
all polygons have been processed, the partially populated mip
map is converted into a variable-resolution image as described
earlier. This approach would reduce the per-pixel costs of
scan-conversion, hidden-surface removal, and shading.

In conclusion, we note that although our proposed
approach permits only one user per television monitor, it is
ideally suited for personal head-mounted displays. In that con­
text, tl1e eye tracker constitutes a unintrusive addition to the
portable hardware and promises better rendering performance
for a given image generation system. Before tlus goal can be
realized, the resolution and angle of view of current head­
mounted displays must be improved. Our approach may also
prove useful for reducing image generation costs in non-gaze­
directed environments by having the user attach a 3D cursor
specifying an area-of-interest to some object in the scene.

Acknowledgements

The aulhors wish to thank Prof. Stephen M. Pizer of the
Computer Science Department and Profs. R. Eugene Johnston
and David Beard of the Radiology Department for their
encouragement and support. Thanks are also due to Ned
Greene of Apple Computer for an enlightening discussion con­
cerning 3D mip maps. The MR scan used in this paper was
provided by Siemens AG and edited by Dr. Julian Rosenman
of the Radiation Oncology Department. This work was sup­
ported by NCI grant P01-CA47982.

References

[1) Blinn, J.F., "Light Reflection Functions for Simulation of
Clouds and Dusty Surfaces," Computer Graphics, Vol.
16, No. 3, July, 1982, pp. 21-29.

[2] Cook, R.L., "Stochastic San1pling in Computer Graph­
ics," ACM Transactions on Graphics, Vol. 5, No. 1,
January, 1986, pp. 51-72.

(3] Crow, F.C., "Summed-Area Tables for Texture Map­
ping," Computer Graphics, Vol. 18, No. 3, July, 1984,
pp. 207-212.

[4] Dippe, M.A.Z. and Wold, E. H., "Anti aliasing Through
Stochastic Sampling," Computer Graphics, Vol. 19, No.
3, July, 1985, pp. 69-78.

[5] Drebin, R.A., Carpenter, L., and Hanrahan, P., "Volume
Rendering," Computer Graphics, Vol. 22, No. 4, August,
1988, pp. 65-74.

[6] Feibush, E., Levay, M., and Cook, R., "Synthetic Tex­
turing using Digital Filters," Computer Graphics, Vol.
14, No. 3, July, 1980, pp. 294-301.

[7] Fisher, R.A. and Tong, H.M., "A Full-Field-of-View
Dome Visual Display for Tactical Combat Training,''
Proc. Image Conference N, Phoenix, Arizona, June,
1987.

(8] Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather,
J., Ellsworth, D., Molnar, S., Turk, G., Tebbs, B., and
Israel, L., "A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories," Computer
Graphics, Vol. 23, No.3, July, 1989, pp. 79-88.

[9] Kajiya, J.T., "The Rendering Equation," Computer
Graphics, Vol. 20, No.4, August, 1986, pp. 143-150.

[10) Kajiya, J.T., Kay, T.L., "Rendering Fur with Three
Dimensional Textmes," Computer Graphics, Vol. 23,
No.3, July, 1989, pp. 271-280.

223

(11] Lee, M.E., Redner, R.A., and Uselton, S.P., "Statistically
Optimized Sampling for Distributed Ray Tracing," Com­
puter Graphics, Vol. 19, No.3, July, 1985, pp. 61-67.

[12] Levay, M., "Display of Surfaces from Volume Data,"
IEEE Computer Graphics and Applications, Vol. 8, No.
3, May, 1988, pp. 29-37.

[13] Levay, M., "Design for a Real-Time High-Quality
Volume Rendering Workstation," Proc. Chapel Hill
Workshop on Volume Visualization, ed> C. Upson,
University of North Carolina, 1989, pp. 85-92.

[14] Levay, M., "Volume Rendering by Adaptive
Refinement," The Visual Computer, Vol. 6, No. 1, Janu­
ary, 1990. In press.

[15] Lcvoy, M., "Bftlclem Ray Tracing of Yolumtl Oa~u."

ACM Transactions on Graphics, 1990. In press.

[16) Mitchell, D.P., "Generating Anti-Aliased Images at Low
Sampling Densities," Computer Graphics, Vol. 21, No.
4, July, 1987, pp. 65-72.

(17] Painter, J. and Sloan, K., "Antialiased Ray Tracing by
Adaptive Progressive Refinement," Computer Graphics,
Vol. 23, No. 3, July, 1989, pp. 281-288.

[18] Sabella, P., "A Rendering Algorithm for Visualizing 3D
Scalar Fields," Computer Graphics, Vol. 22, No. 4,
August 1988, pp. 51-58.

(19] Peters, D., CAE-Link Corp., Personal communication,
September, 1989.

[20] Tong, H.M. and Fisher, R.A., "Progress Report on an
Eye-Slaved Area-of-Interest Visual Display," ?roc.
Image Conference /IJ, Phoenix, Arizona, May, 1984.

[21] Upson, C. and Keeler, M., "VI3UFFER: Visible Volume
Rendering," Computer Graphics, Vol. 22, No.4, August
1988, pp. 59-64.

[22] Uttal, W.R., The Psychobiology of Sensory Coding,
Harper & Row, 1973.

[23] Westover, L., "Interactive Volume Rendering," Chapel
Ilill Workshop on Volume Visualization, Chapel Hill,
North Carolina, May, 1989, pp. 9-16.

[24] Whitted, T., "An Improved Illumination Model for
Shaded Display," Communications of the ACM, Vol. 23.,
No. 6, June, 1980, pp. 343-349.

[25] WilliiUns, L., "Pyramidal Parmnetrics," Computer
Graphics, Vol. 17, No.3, July, 1983, pp. 1-11.

