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MARK CHARLES DAVIS. A Computer for Low Context-Switch Time (Under the 

direction of Frederick P. Brooks, Jr.) 

ABSTRACT 
A context switch is the suspension of one running process and the activation of an­

other in a multitasking environment. Many applications, such as process control, 

require frequent context switches among many processes. A context switch requires 

a substantial amount of time: about 1000 microseconds on a VAX 11/780 and about 

500 microseconds on Sun 4/280. Recently introduced computer architectures, such 

as the Sun 4, have not improved context-switch performance as much as they have 

improved throughput. A computer architecture with appropriate memory hierarchy 

can give better support to context switching. The Computer for Low Context-Switch 

Time ( CLOCS) is a computer with such an architecture. Because the architecture 

has minimum state inside the Central Processing Unit, CLOCS can switch context in 

less than the time required to execute one instruction. The CLOCS Memory Manage­

ment Unit provides virtual memory without degrading context-switch time as long 

as the new process is located in physical memory. Analyses of the architecture show 

that CLOCS throughput performance approaches the performance of contemporary 

RISC workstations and that it is well suited for real-time applications. Because these 

analyses showed promise for the CLOCS architecture, a register-transfer level imple­

mentation was designed and simulated to estimate more accurately the performance 

of a feasible CLOCS computer system. Although many standard implementation 

techniques were not useful, a technique called short-circuiting reduced memory ref­

erences by 15%. On the Dhrystone integer benchmark program, CLOCS performed 

at least 30% as fast as contemporary workstations constructed from the same elec­

tronics technologies, and further significant improvement of CLOCS performance is 

possible. By using this lower bound on CLOCS throughput performance, the proper 

architecture can be identified for an application with challenging context-switch re­

quirements. 
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Chapter I 

Introduction 

The computer for low context-switch time, CLOGS, is a computer architecture de­

signed to reduce context-switch time by using an unconventional memory hierarchy. 

This chapter presents the CLOCS thesis. Then sections define context switching 

and detail relevant applications. The chapter concludes with an interpretation of the 

thesis and a description of the resulting architectural features. 

1.1 Context-Switch Time May Be Reduced by Ar­

chitecture 

Many computer applications require rapid switching between independent tasks; how­

ever, most recent computer architecture research has emphasized throughput more 

than context-switch performance. As a result, the new computer designs have worse 

relative context-switch performance: the time needed to switch contexts has not de­

creased as much as the time to run programs. Much of the relative performance loss 

has come as larger register sets are added to the Central Processing Units (CPU). 

Other features of architectures and implementations (for example, caches) improve 

throughput at the expense of context-switch time. My thesis runs contrary to this 

trend: 

For applications with sufficiently high occurrence of context switching 

among large numbers of tasks, best performance may be attained from a 

computer with fewer, broader levels of memory hierarchy. 

Two developments in the last few years have increased the credibility of this thesis: 

• Real-time operating systems and process-control applications have increased 

the frequency of context switching. Faster computers can support more com­

plicated applications; this results in more context switches. Even general pur-

1 



pose operating systems such as UNIX have much higher frequency of context 

switching than is commonly assumed. 

• Advances in Very Large Scale Integrated Circuit (VLSI) technology have re­

duced the speed differential between different sizes of memory. For example, 

an eight kilobyte on-chip cache may be accessed almost as rapidly as a 64 byte 

register file. 

Section 1.6 details the architecture features suggested by the thesis, but the most 

important characteristics are that such a computer has no registers and has no cache. 

The main question of this study is: How seriously is throughput performance im­

paired by this approach to computer architecture? Reasonable estimates are possible 

only through the detailed design of a computer system, including support software 

and implementation specification. But, first, let us examine context switching in 

more detail. 

1.2 Context Switching 

A context switch is the suspension of a running program and the activation of an­

other. It differs from a subroutine call in that the running program does not know 

specifics about the task to be activated next, and the new program may have different 

ownership or other characteristics. 

In many operating systems, system service requests use a trap instruction that 

effectively changes the context. The ownership and permission of the operating sys­

tem are assumed as the trap occurs. Sometimes this type of context switch is called 

a system call and may be less expensive than activating another separate task. For 

example, UNIX minimizes the expense of system calls by the having the kernel share 

the virtual address space with all application programs, so no adjustments to the 

virtual memory system are required. Although the CLOCS operating system does 

system calls by full context switching, when I refer to context switches on existing 

computers, I will exclude system calls. 

1.2.1 Context Switching on Existing Computer Systems 

Switching context requires hundreds of microseconds. Lefler [27] reports tha.t a Dig­

ital Equipment Company (DEC) VAX 11/780 running 4.2BSD UNIX requires 280 
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Computer Context Switch Time 
Type (in milliseconds) 

VAX 11/780 1.0 
VAX 11/750 2.0 

Sun 2/50 1.7-6.0 
Sun 3/75 0.80- 2.5 

Sun 4/280 0.5 - 1.9 
DECStation 3100 0.25 

Note: The range of context-switch times for the Sun computers represents the range 
of performance when two (shorter time to switch) to 32 (longer time) processes are 

active[8]. 

Table 1.1: Measured Context-Switch Time 

microseconds for a system call and 4.4 milliseconds for a context switch. Feder [14] 

reports context-switch times for the 780 of 700 microseconds for UNIX 4.0 and of 400 

microseconds when running system Von a VAX 780. He also reports context-switch 

times of about 500 microseconds for a 3b20S. Our measurements of context-switch 

time confirm these figures. 

In more recent measurements done at the University of North Carolina[SJ, a Sun 4 

context switch required about 500 microseconds. Less than 100 microseconds were 

required to save the hardware state; the remainder was consumed by scheduling and 

related activities of the operating system. However, the Sun 4 context-switch time 

may increase to over 1250 microseconds due to required adjustments to the memory 

management system if more than 16 processes are frequently active. This computer 

has room for 16 different virtual memory contexts. When a process is activated 

that does use one of the stored contexts, activation takes much longer. If the longer 

activations occur frequently, the average context-switch time becomes longer. If each 

newly activated process requires a new memory management context, then an extra 

750 microseconds are added to each context switch, making the average time 1250 

microseconds. The increased speed of the Sun 4 barely compensates for the much 

larger amount of CPU state (represented in part by 192 registers) that must be saved 

on a context switch. The context-switch time for several types of computers at the 

University of North Carolina Computer Science Department is shown in Table 1.1. 

Table 1.2 contains representative values for the number of processes and context 

switches per second of the department's computers. 
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I Computer Type I Number of Processes I Switches per Sec ) 

Shared VAX 250 40-100 
Utility VAX 50 35 
Workstation 25-50 50- 600 
File Server 35 100- 500 

Table 1.2: Representative Processes and Context-Switch Rates 

1.3 Why Does Context Switching Take So Long? 

Context switching is time consuming because several things must be accomplished: 

1. Save general purpose registers. 

2. Save floating-point registers and related state. 

3. Save program counter and other CPU state. 

4. Adjust memory management (if required). 

5. Select next task to run. 

6. Restore new task's state (same as saved in 1, 2, and 3). 

7. After the context switch, some performance degradation may occur as cache 

fills, adding to the effective time required. 

The time required for item 5 depends on the operating system. As mentioned 

above, about 80% of the time spent on a context switch goes to task scheduling. 

How the remainder of the time is allocated depends on the computer architecture. 

For example, a computer without a memory cache does not experience item 7. A 

computer with 192 registers will spend more time saving and restoring them tha.n a. 

computer with 32. 

Other operating system approaches[17] may reduce the time required for schedul­

ing during a context switch to as few as one hundred instructions (about 10 microsec­

onds). Reducing the time required for the other items requires a new architecture 

based on principles different from the ones used for the VAX, the Sun 4, and other con­

ventional architectures. To find such a. better architecture is the purpose of CLOCS 

research. 
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1.4 Why Is Context Switching Important? 

Although context switching is quite common, it does not significantly affect general 

purpose computers. At the University of North Carolina Computer Science Depart­

ment, the main time-sharing computer in the worst case spends only 10% of its time 

on context switching. A radical new architecture to improve performance by elim­

inating that 10% would likely lose 10% performance elsewhere. So what types of 

applications need fast context switching? Here are some examples: 

1. The Microelectronics System Laboratory, a computer-prototype building group 

at the University of North Carolina, has invested considerable programming re­

sources in developing a UNIX compatible real-time operating system. UNIX is 

desirable on process-control machines to provide a reasonable program devel­

opment environment. 

2. The MegaOne, a state-of-the-art integrated circuit tester has two microproces­

sors: one runs UNIX to provide a good user interface and program development 

system; the other processor runs custom software to control the tester. In this 

case, additional hardware has been added to handle general purpose and real­

time functions. 

3. When the Andrew system[30] file manager, VICE, was originally designed, the 

file server assigned each client a separate process. Later, significant reprogram­

ming was required because this elegant design spent too much time on context 

switching. 

4. A six-legged walking machine has been built at Ohio State University[35] that 

relies on sixty processes to control the legs. The controller is constructed of a 

large amount of specialized computing equipment, and the software was difficult 

to write. 

Each of these applications can benefit from a computer system that handles many 

independent processes and frequent switching between the processes. More aggressive 

applications will require even more processes and faster context-switch rates. For 

example, a bipod walking machine with arms will require more processes than the 

six legged model because of higher articulation is required for a bipod, and faster 

context-switch time because of the dynamic requirements to maintain balance. Such 

a system may require several hundred independent tasks and thousands of context 
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Figure 1.1: Memory Hierarchies 

switches per second. Also notable, each of the applications listed above requires a 

general purpose operating system to support development or provide services such 

as protection. 

Perhaps most notable are the criteria used by the Army/Navy Computer Fam­

ily Architecture Committee in its study of computer architectures[16]. The criteria 

clearly emphasized fast context switching; several criteria valued low memory traffic 

for context switches and short interrupt latency. However, other criteria included 

features such as virtual memory, protection, and large address spaces to support 

sophisticated operating systems. The computers they sought had to run powerful 

operating systems and switch context quickly. 

1.5 The Impact of Memory Hierarchy on Context 

Switching 

Most recently designed computer architectures have several levels of memory hier­

archy. Figure 1.1 shows the levels of memory hierarchy in a generic, modern computer 

system. In general, the items at the top of the hierarchy are smaller and faster to 

access than lower items. 

The diagram at the top of the figure shows a memory hierarchy for a conventional 
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architecture. At the very highest point on the memory hierarchy is the program 

counter and status. Normally, this is only one or two words long and indicates the 

current instruction location, permissions of the running process, and status flags 

such as the result of the last comparison. If the computer is highly pipelined, several 

instructions may be held in the CPU. The third level of hierarchy is the set of reg­

isters. The Memory Management Unit (MMU) contains virtual memory addressing 

and protection information for one or more processes. The cache contains some of 

the most recently referenced instructions and data. The main memory is the next 

level of hierarchy and is much larger than the cache. Finally, the disk storage (which 

also represents the virtual memory) is the foundation of the hierarchy. This diagram 

describes a generic computer; actual designs will differ. For example, some architec­

tures may not have visible instruction pipelines or support instruction continuation, 

so the pipeline level would not exist. Some cache memories contain only information 

for one process and move higher on the hierarchy than the MMU. However, these mi­

nor differences in architectural approaches do not directly bear on the context-switch 

discussion. 

The memory hierarchy at the bottom of Figure 1.1 represents an architecture 

based on the CLOCS principles. Several of the levels. of the hierarchy have been 

removed, and the MMU has expanded to be the same width as the memory. 

The conventional architectures have very successfully used memory hierarchy be­

cause of the locality of reference of programs. Most programs use the same data 

objects repeatedly and execute the same instructions several times. This locality 

in time and space results in efficient use of smaller, faster memories, supported by 

larger, slower (and cheaper) memory systems. Thus a program can run with most 

of its instructions in cache and most of its data in registers or in cache. Transfers 

from the larger, slower main memory to the faster ones are rare, so the improved 

performance from using the faster memory dominates. 

When context switching occurs frequently, many programs are using information 

instead of just one. Even though each program may have good locality of reference, 

the combination of all of the programs references more information than can be held 

by the upper levels of the hierarchy. In this case, the time to transfer information 

between the levels of hierarchy may dominate performance. With several programs 

switching context frequently, the higher levels of hierarchy impede performance, and 

fewer levels would give higher performance. 
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1.6 How CLOCS Meets the Thesis Goals 

CLOGS is a computer architecture that reduces memory hierarchy. This computer 

architecture meets the requirements of the thesis and is otherwise simple enough for 

easy implementation so realistic comparisons may be made with existing machines. 

The CLOGS CPU has the minimum possible state; a single word contains a 

program counter and other program information. To switch context, the CPU simply 

stores that status word and loads another. As a result, there are no other registers 

in the CPU, and all operations must have operands in memory. A large instruction 

size allows addresses to be fully specified in the instruction. 

In order to support a general purpose operating system, a MMU is required. The 

guiding principle for the MMU is that if information (data or program) is in main 

storage, the MMU must support access to it without delay. This means that the 

MMU must be able to address any memory location, and that all locations must be 

treated equally. Thus, fetching the contents of a memory location always takes the 

same amount of time regardless of the preceding events. We adopted this principle 

to prevent the undesirable slow downs we had observed on the Sun 4's with more 

than 16 active tasks, but this approach does require a very powerful (and therefore 

expensive) MMU. 

As stated before, cache memory adds to the context that must be switched, and 

is therefore omitted. Another argument against using cache is that it makes perfor­

mance less predictable. Many real-time applications place as much importance on 

predictability as on performance. The combined factors of increased context-switch 

time and lack of predictability excluded most cache designs. 

CLOGS is designed to be a complete computer architecture. Simpler computer 

architectures can handle multiple tasks by combining them into a single program; 

embedded systems frequently use techniques such as polling to complete several tasks 

with a single program. However, such systems are expensive to build and maintain, 

and are often not robust. On the other hand, the CLOGS design includes all of 

the facilities to run a sophisticated operating system because such capable operating 

systems are valuable to program development and maintenance. As a result, CLOGS 

meets the requirement in Fuller's study that a computer must be able to test a new 

program without endangering any other running programs. CLOGS is an architecture 

that can support a general purpose operating system. 
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1. 7 The Tradeoff: Throughput vs. Context Switch-
. 
mg 

CLOCS cannot support faster context switching without compromising elsewhere. 

For a computer system of the same cost, it is reasonable to expect that CLOCS will 

have lower throughput performance than an architecture optimized for throughput. 

The central question is: How big is the degradation? How long must a program 

run during each activation before the lower throughput of CLOCS overcomes the 

advantage gained by a faster context switch? If CLOCS has slower throughput but 

faster context switching than a conventional computer, as long as the tasks run for a 

long time during each activation, the conventional architecture will activate and run 

the application in less time, therefore providing more activations per second. But 

when the application runs for a sufficiently short time, CLOCS will perform better. 

Figure 1.2 shows this tradeoff. When the work done by activation of a process is 

small, CLOCS takes less total time to activate it and do the work. But as the ap­

plication run time each activation increases, the total time for CLOCS will increase 

at a steeper rate because the throughput performance of the conventional design is 

better. At the point indicated by the dashed line, CLOCS and conventional archi­

tectures perform the activation and work of the task in the same amount of time. 

To the right of this line, the conventional architecture is faster. To the left, CLOCS 

is superior. The point of this study is to find this crossover point. To calibrate Fig­

ure 1.2 with numbers requires estimates of CLOCS throughput and context-switch 

performance. This study provides those estimates. It may be used to evaluate the 

best kind of architecture for a given application. 

Recent advances in integrated-circuit technology may have improved the perfor­

mance compromise. VLSI implementations allow for large, fast memories to be closer 

than ever before to the CPU. Although the trench capacitors used in dynamic memory 

integrated circuits are not commonly used on logic chips such as microprocessors, the 

most of the other components are the same for all types of digital integrated circuits. 

Since the memory and CPU fabrication processes are identical or very similar, we can 

expect little additional relative change in the speed of CPU logic and memory. As a 

result, today it is more economical than ever before to build computer systems with 

low latency, high bandwidth memory systems. Although conventional designs also 

benefit from such memory systems, this implementation technology makes CLOCS 
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Figure 1.2: Comparison of CLOCS and Conventional Architectures 
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potentially more competitive. For example, CLOCS with a dual ported, zero wait 

state memory system could attain one instruction every two memory access times. 

This compares favorably with the one instruction every 1.2 to 1.4 memory access 

time of a contemporary Reduced Instruction Set Computer (RISC)[26]. 

However, finding reasonable tradeoff points confidently requires more than defin­

ing an architecture. Estimates of performance must be based on computers that 

can be designed and built. To get better estimates of performance, the CLOCS ar­

chitecture has been defined, and an implementation designed and simulated. The 

implementation is a register transfer model, giving some estimate of the complex­

ity and expense of required components. The execution of programs written in the 

C language[25] are simulated to determine the number of implementation clock cy­

cles required for the program to run. Performance estimates may then be made by 

estimating clock rates for a realization of this implementation. 

1.8 Summary and Layout of Research 

A computer with reduced memory hierarchy will be best for certain applications 

requiring frequent context switching. Bill Gallmeister and I started this research by 

reviewing the previous work that is summarized in Chapter 2. Next, we identified 

the features not directly related to context switching that a computer architecture 

should include. Those features are described in Chapter 3. Then we designed the 

CLOCS architecture, and Chapter 4 contains details on that architecture. During 

the design, we found that a complicated MMU was needed, and it is described in 

Chapter 5. Also in that chapter is a description of alternate MMU designs that 

we considered but rejected. Once the architecture was designed, I performed the 

quantitative analyses of the architecture that are reported in Chapter 6. To obtain 

better estimates of real-system performance, I designed the implementation described 

in Chapter 7. This chapter also contains discussion of implementation designs that 

I discarded. After the chosen implementation design was completed, I simulated 

benchmark programs on it as reported in Chapter 8. My observations, conclusions 

and ideas for future work are in Chapter 9. 
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Chapter II 

Previous Work 

Computer architects have been designing microprocessors and other general purpose 

central processing units (CPU) for many years. This chapter summarizes the previ­

ous work most closely related to the development of the CLOCS architecture. The 

RISC approach to computer architecture design has heavily influenced the design of 

CLOCS. Early RISC work includes the design of the 801 by IBM and the RISC by 

the University of California at Berkeley. These early designs specified the principles 

of RISC, but did not develop into commercial products. The RISC principles affected 

the design of later architectures, many of which became commercial products. This 

chapter will also examine the Mips Company R2000, the SPARC from Sun Microsys­

tems, and the CRISP from AT&T. Some very recent commercial products are also 

summarized. 

CLOCS also has some similarities to older architectures. Particularly notable are 

the Atlas from Manchester University for its virtual memory and the Texas Instru­

ments 9900 for its memory-to-memory architecture. 

For each of these architectures I will address major contributions and identify 

problems with context switching or general purpose operating system support. 

2.1 IBM 801 

Radin reported on the IBM 801[34], a research machine designed and prototyped at 

the Thomas J. Watson Research Center in the late 1970's. This machine was based 

on principles that have become important if not essential to the definition of RISC. 

The IBM 801 was the first RISC and defined the class. The objectives of the design 

were the following: 

• Every effort was made to move hardware functions to software. 

• Each feature was evaluated for frequency of use versus cost. 
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• If possible, actions were moved from run time to compile time. 

• The instruction set was chosen to supported the needs of compiler writers. 

The 801 had 32 general purpose registers. This computer used a fixed 32-bit in­

struction format with room for two operand register number and one target register 

number. All numeric operations used this instruction format, so data had to be 

loaded from memory before each operation, and the result had to be stored after 

calculations. This approach to operands was frequently used by later RISC designs 

and has come to be called a load/store architecture. The 801 's optimizing compiler 

used the then newly developed register-coloring[6, 5] algorithm to assign values (ex­

pressions or variables) to registers and took advantage of this relatively large number 

of registers. 

The 801 was highly dependent on separate instruction and data caches for high 

performance. It used a 

"store-in-cache" strategy (instead of "storing through" ... ) 

and the cache was architecturally visible to allow software to manage the cache as 

much as possible. (The 801 also had some of the data bus control exposed architec­

turally, but that is not really germane to this research.) 

The 801 was designed for rapid interrupt handling. The designers observed that 

suitability for real time applications depends both on cycle time and on interrupt 

handling time. Radin's paper noted that IBM did not have any multiuser data and 

this architecture did not provide extensive support for multiuser operating systems. 

The 801 was clearly designed for high throughput. It was not clear that a multiuser 

operating system would run well on an 801. In any event, high context-switch rates 

would have been very inefficiently processed because saving all 32 registers would 

be time consuming. Also the time required to flush the write back cache, would 

significantly delay context switch because all changed values would have to have 

been written to main memory. 

2.2 Berkeley RISC 

Patterson, Sequin, and Katevenis designed the Berkeley RISC[32, 33, 23] with the 

major objective that an entire microprocessor could be implemented on one chip. This 

was accomplished by keeping the instruction set and arithmetic logic unit ( AL U) as 
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simple as possible. Like the 801, this was also a load/store architecture. To meet 

a design goal of fast context switching, the Berkeley RISC used registers files. The 

large number of registers in the CPU might have been divided between processes, and 

this allowed state for several processes to be in the CPU at one time. The register file 

may have contained data for up to eight processes, but that was too small a number 

for a general purpose operating system like UNIX. 

Perhaps of greater importance to the designers was the paradigm of the register 

files used as register windows for subroutine calls. During a subroutine call, the 

registers visible to programs were shifted in the register file. This allowed some 

registers to be used for parameter passing, and others to be automatically available for 

local use. No register savings was required during subroutine calls, so inter-subroutine 

register allocation is not necessary. Register windows simplified the register allocation 

task of the compiler by automating it in hardware and requiring the operating system 

to handle the case that the hardware has used all available register sets. 

Using the register files for both context switches and procedure calls would more 

rapidly exhaust the register file, so the significant contribution of the register files in 

the Berkeley RISC was the concept of register windows. If the registers were used for 

register windows, a larger number registers must be saved and reloaded on a context 

switch. Using register files to support different contexts reduced the average context­

switch time, but it did not reduce the maximum switch time because the context for 

the process that needs to be serviced next (and rapidly) may not be one of the ones 

in the CPU. 

In summary, the large number of registers provided register windows that simpli­

fied register allocation during subroutine calls, resulting in better throughput, but 

increased context-switch time. 

2.3 AT&T CRISP 

The CRISP machine[! OJ is an implementation of the C Machine [11 J architecture. 

The architecture is designed to optimize execution of programs produced by the 

C compiler. The architecture is mostly memory-to-memory, but it does have an 

accumulator and a stack. 

The implementation introduces much additional state into the CPU. For example, 

there is a stack cache of 32 words. This cache greatly speeds throughput, but can be a 

major liability during context switching. During context switching, the context of the 
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process in the stack cache must be saved. Additional performance will be lost as the 

new process loads values into the stack cache. The implementation also has about 10 

pipeline stages. This large number of stages greatly complicates interrupt handling 

and increases external interrupt latency, thus delaying context switch. Furthermore 

this long pipeline challenges the designers when solving data dependency problems 

(trying to fetch a value before it is computed), but they found a solution. 

This architecture was not optimized for low context-switch time. The necessity to 

save the stack cache and the long pipeline make saving state almost as cumbersome as 

for the Berkeley RISC. This architecture does demonstrate that memory-to-memory 

architectures support language processors very well. 

2.4 MIPS Company R2000 

The MIPS company designed and markets a RISC microprocessor called the R2000[22] 

(and its successors the R3000 and R6000) based on the Stanford MIPS[18, 19, 7] de­

sign. This CPU has only one set of 32 registers. Like the 801 and the Berkeley 

RISC, this is a load/store architecture. The context-switch time required to save and 

restore these registers is increased by the presence of an architecturally visible (and 

thus mandatory) cache memory, which is a crucial component of the machine's high 

performance. A the active processes overflow the cache, poor memory system per­

formance will result. The MMU also has provision for a hardware process identifier, 

but only six bits are allocated to this field, limiting the number of active processes 

to 64. 

This processor is used in the DECStation 3100. I have used it for comparison 

with a similar CLOCS implementation in Chapter 8. 

2.5 Sun Microsystems SPARC 

SPARC(15J (for Scalable Process ARChitecture) is a RISC with many similarities to 

the Berkeley RISC. The machine has much CPU state: the first announced model 

had 192 registers. Like most of the other RISC designs, it is a load/store architecture. 

Following the Berkeley RISC, the processor has a large number of overlapping reg­

ister files to optimize procedure calls. The number of files is realization-dependent, 

and the first version has seven files. These files may be used only as register windows 

for subroutine calls; there is no ability to split the register file between different pro-
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cesses. This large amount of state seriously slows context switching. SPARC is used 

in the Sun 4 computer, and that computer uses a MMU that has a limited number 

(16) of user contexts of addressing. If a processes that does not have it addressing 

context in the MMU is activated, context-switch time will be almost three times 

longer to complete adjustments to the MMU. Under normal circumstance when just 

few processes (five is the highest we have observed under normal conditions) are ac­

tive, this method is very efficient. The large number of registers to be saved/restored 

and the MMU design of the SPARC /Sun 4 result in context-switch performance only 

slightly better (two times) than a VAX 780, while its throughput performance is at 

least seven times better than the VAX 780. This makes context switch marginally 

acceptable until more that 16 processes are active, then the system performance is 

greatly degraded as was discussed in Chapter 1. With a sufficiently high number 

of active processes (about 64) almost all of the CPU time is consumed by context 

switching. 

2.6 Other New Architectures 

Other companies have recently rele.ased RISC architectures. These architectures do 

not include any features not discussed above. 

The Hewlett-Packard Precision architecture seems to be roughly equivalent to 

the MIPS R2000, with added support for specific data types (such as decimal for 

COBOL support). I have no information on how its cache works. In their product 

information they mention that context switching is adversely affected by the number 

of registers to be saved (32, as with the R2000). This architecture appears to have 

similar throughput strengths and context-switch weaknesses as the R2000. 

The Motorola 88000 is another new architecture. It also has 32 registers. The 

on-chip floating-point support uses separate registers that also add to processor state. 

This microcomputer must use custom designed cache memory chips to form separate 

Instruction and Data caches. Fast context-switch was not a priority in this design, 

and, based on the design of the caches, the context-switch performance of this ma­

chine is likely to be poor. 

The AMD 29000 is a RISC architecture with performance similar to that of the 

architectures cited above. It has a large register file, with 192 registers that must 

be saved for a context switch. The saving is speeded by an instruction that saves 

multiple registers, but still requires a significant time to store all of the registers. This 
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appears to be the only commercial RISC that retains the Berkeley RISC capability to 

share the register file among several contexts. This feature is useful in the medium­

size controller market that AMD is supporting with this chip, but, like the Berkeley 

RISC, supports too few contexts for a general purpose operating system. 

2. 7 Texas Instruments 9900 

The Texas Instruments (TI) 9900[21] is a microprocessor designed in the mid 1970's 

based on the architecture of the TI 900 series minicomputers. This architecture is 

important to CLOCS because it was a memory-to-memory architecture. The TI 

9900 uses the concept of registers as an address abbreviation method, with a pointer 

in the CPU that located the base of this address space. Programs may address 16 

registers (that are actually located in main memory) using this method. CPU state 

consists of only three words: a program counter, a workspace pointer, and processor 

status. This machine is very strong on task switching. For example, the three words 

of CPU state are automatically stored when servicing an interrupt. 

This machine suffers from the technology available at the time it was designed. 

The word size is 16 bits, and only 16 bits are available to form a memory address, lim­

iting total memory size to 64Kbytes. The small word and instruction size made the 

registers-in-memory paradigm mandatory, but 16 registers are probably not enough 

for good compiler utilization, particularly since several are used by the CPU hard­

ware. (For example, on interrupt, t4e three words of CPU state are stored in register 

13, 14, and 15. Call and return instructions also use two of these registers.) 

Also, there is no support for virtual memory or protection. Although this ar­

chitecture has great task-switching performance, it cannot support modern virtual 

memory operating systems or software. 

2.8 Atlas 

The Atlas[13, 36] (designed at Manchester University in the late 1950s) could perform 

about 500,000 instructions per second. The memory accesses were for 48-bit words 

or 24-bit half words and some operations dealt with 6-bit characters. The memory 

system included 16,000 words of core memory, 96,000 words of drum memory and 

revolutionary virtual memory hardware and software. The Atlas computer divided 

the core memory into 32 pages of 512 words each. A page address register was as-
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sociated with each page of core memory. During memory operations, the contents 

of each of these 32 equivalence registers was compared with the high order address 

bits to determine equivalence. Equivalence meant that the desired page was in core 

memory and could be directly accessed using a page number provided by the equiv­

alence registers. These page address registers also maintained a use bit, and every 

1024 instructions, special hardware used that bit to calculate the time since loading 

and time since last access for each page of core memory. A lock bit for each page 

indicated the page reference was invalid. This was used to prevent access to a page 

while data was being rolled in from the drum or during other Input/Output. Some 

consideration for an operating system was included, but this was not really designed 

to be a multiuser machine. The address space had to be shared between all programs 

and subroutines and the only provision for protection was the lock bit. 

This virtual memory system meets the requirements set forth for the CLOCS 

MMU. The CLOCS MMU must contain registers similar to the equivalence registers. 

2.9 Conclusions 

Previous work in microprocessor design has advanced the art of RISC to produce high 

throughput. Studies have shown that increasing state will improve throughput but 

reduce context-switch performance[12]. Although designs such as the TI 9900 have 

shown that memory-to-memory architectures are possible, these architectures have 

not been investigated r~cently. Thus, CLOCS explores a potentially fruitful area. 
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Chapter III 

Design Considerations Other Than Context 
Switching 

The principal design objective for CLOCS was fast context-switch time. The impor­

tant tradeoff was execution speed for context-switch time. Chapter 1 sets forth the 

strategy, principally the flattening of the memory hierarchy, by which the objective 

is pursued. 

Fast context switching is not enough. For example, the Texas Instruments 9900 

is a machine that switches context rapidly, but the architecture has a limited address 

space (by today's standards) and does not support sophisticated operating systems. 

This architecture does not support with hardware the virtual memory and protec­

tion features that powerful operating systems require. What one needs today is a 

computer that can support the fast context-switching requirements of real-time appli­

cations such as process-control and at the same time serve as a base for development 

of those applications. 

Combining a general purpose operating system with real-time, process-control ap­

plications has normally been done with two different architectures: a controller and 

a host system. The objective of this research was to determine if a single architec­

ture, optimized for context switching, would provide an integrated platform to make 

development easier and supply adequate throughput price/performance. Simplifying 

the architecture to apply to only part of this environment (for example, process­

control) would merely repeat previous research. The purpose of CLOCS research 

was to investigate a computer architecture to support new applications. 

Thus, the applications for CLOCS added some requirements to the architecture. 

CLOCS must support challenging real-time applications that have frequent context 

switching among large numbers (hundreds or thousands) of processes. The CLOCS 

system must provide a development environment with a sophisticated general purpose 

operating system, compilers, editors, and debuggers. Even when these requirements 

were recognized, many design choices remained. Whenever possible, we opted for 
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the simplest hardware-software system that would allow the central thesis to be 

tested. We considered this approach to computer desi~n to be in keeping with the 

RISC design philosophy even though the resulting architecture does not resemble 

other current RISC architectures. Hence machine properties that would substantially 

reduce the software requirements without compromising the principle that is under 

investigation were chosen, whether or not they might have been best in some absolute 

sense. Additionally, we assumed many architectural requirements or support software 

capabilities to aid in decision making concerning the design. These assumptions fell 

into four categories: 

• Features needed to support general purpose computing 

• Operating system support features 

• Compiler support features 

• Compiler properties to support the architecture 

The remainder of this chapter describes these four categories. 

3.1 Features Needed to Support General Purpose 

Computing 

To properly execute applications and systems programs, CLOCS must provide an 

adequate address space, sufficient numeric precision, and an adequate variety of data 

types. CLOCS must provide a regular (symmetric and orthogonal) instruction set, 

but each implementation may require the emulation of some instructions. 

3.1.1 Adequate Address Space 

The amount of memory that computer programs require increases each year [1, 20]. 

We decided that to anticipate safely memory requirements of the next decade, sig­

nificantly more than one gigaword (one billion 64-bit words) would be required. We 

selected that size as a starting point because the address space of the VAX series 

of computers (one gigabyte) was adequate at the time we did the design, and en­

larging the memory by a factor greater than eight seemed adequately conservative. 

CLOCS provides enough address space for each process to access one terabyte or 128 

gigawords of main storage. 
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In order to provide this large address space without registers, CLOCS uses a form 

of address abbreviation. Since the largest common program that either designer was 

familiar with was less than two megabytes, limiting direct addressing modes to 16 

megabytes was an acceptable compromise. To abbreviate addresses, CLOCS uses a 

24-bit offset in the instruction and a 16-bit segment identifier. Default instruction 

and data segment identifiers are provided for each process. For indirect addressing, 

the abbreviation is not required, but the default segment may be used if desired. As 

a consequence, a CLOCS program may address 16 megabytes directly or one terabyte 

using indirect addressing. This address abbreviation and memory segmentation does 

not affect the efficiency of C language programs because the compiler used indirect 

addressing frequently. Because variables are dynamically allocated, their addresses 

must be calculated during program execution. As a result, C language programs use 

indirect addressing for data accesses, and the segmentation scheme does not limit 

the data space available to programs. Consequently, the C language program only 

sees the segmentation of the address space as a limit on program size. For example, 

a program could specify an array of one million by one million characters without 

causing addressing problems. 

3.1.2 Adequate Calculation Precision 

For most real-time problems, 64-bit integers and floating-point numbers are suffi­

ciently large. There are no significant architectural reasons to prevent adding dec­

imal or larger floating-point arithmetic, although such features would violate the 

RISC propriety of the architecture. 

3.1.3 Adequate Variety of Data-Object Sizes 

During design of the computer architecture, we highly valued simplicity so having 

only one data-object size (a full-word fixed-point number) was attractive. This re­

striction permitted a simpler arithmetic logic unit and memory system. However, the 

benchmark applications to be run on the machine required additional sizes of data 

objects. 

The initial design for the architecture provided only 64-bit data objects, with 

some small support for 8-bit characters. Analysis of code produced by a prototype 

compiler revealed that performance on the benchmark programs would be unsatis­

factory. In this case, the simplicity of a single data-object size directly affected the 

21 



evaluation of the principle under investigation, so the architecture had to be modified. 

Consequently, we incorporated full, regular support for several sizes of data objects 

in the design. The most obvious different-sized object was the 8-bit character. The 

benchmark programs also used 16-bit and 32-bit integers. 

Data-object size is indicated in manner orthogonal to operation specification. 

Since a field is reserved in the instruction for the data-object size, all operations 

apply to all data-objects sizes. For example, a conditional branch may examine an 

8-bit, 16-bit, 32-bit or 64-bit quantity. 

3.1.4 Expensive Operations to Be Cheaply Emulated 

A regular instruction set was an important design goal. As a result, all the usual 

arithmetic operations were included in the architecture, even though their implemen­

tation would be expensive. Consider the example of divide. The divide operation 

was included for all sizes of integer data. Implementing this feature in hardware in a 

microprocessor would be very expensive in area on the chip. However, an implemen­

tation may not incorporate the hardware. Instead, executing the divide instruction 

causes the interrupt for undefined instruction, and the operating system runs a sub­

routine to produce the quotient. Because this form of emulation works through con­

text switching on CLOCS, very little overhead is required! Divide is a good example 

because the divide instruction is infrequently used by most programs[20]. Therefore, 

most programs will not run much slower, and the silicon area or other resources nec­

essary for divide may be allocated to other purposes. Note, in this case, that the 

combination of the microprocessor chip and the operating-system emulation routine 

satisfy the requirements of the architecture. 

The design excludes unsigned arithmetic and comparisons. Porting a C compiler 

would have been much easier with them, but we believed that such an addition would 

violate the propriety of the design. The unsigned instructions are quite irregular 

because many of them· are the same as signed instructions. Also, we believed that we 

had already added enough data types and were reluctant to add more. 

Floating-point arithmetic is a similar example. Having floating-point hardware 

might be worthwhile, but may not be feasible in all implementations. However, re­

serving four operation codes for floating point operations was inexpensive and main­

tained architectural regularity. Floating-point representation and arithmetic follow 

the IEEE 754 standard. Since this standard does not conveniently support 8-bit and 
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16-bit floating-point quantities, floating-point instructions specifying these smaller 

data-object sizes .cause undefined-instruction exceptions. 

3.1.5 Predictable Worst Case Performance 

An important issue to many real-time applications is the worst-case performance. 

For these applications, the average time a program takes to run is inconsequential; 

the maximum time required to run is the only parameter that matters. The system 

must be designed to get the task completed in a specified time in every instance, 

or catastrophic failure may result[28]. As a result, architecture or implementation 

features that improve average performance at the expense of worst-case performance 

are unacceptable. This consideration eliminated architecturally-visible cache, and 

influenced the use of pipelining in the implementations. 

3.2 Operating System Support Features 

Supporting a powerful general purpose operating system is an important goal of 

the CLOCS architecture. We, the architects, had experience with several operating 

systems. Our experience ranged from writing UNIX device drivers, to using low­

level system calls on MS/DOS systems, to simply using CMS on a VM system. We 

were prejudiced: we believed that UNIX offered necessary and sufficient features 

to support a development system, so our definition of a powerful and sophisticated 

operating systems includes many of the features found in recent versions of UNIX. Of 

course, current implementations UNIX do not have the required context switch-time 

performance and most do not support real-time applications at all, but UNIX does 

supply a list of interesting features. Other facilities for interprocess communication 

and multiprocessing were also considered to be important operating-system services. 

To support such an operating system, the architecture had to perform certain memory 

system and control facilities efficiently. 

3.2.1 Virtual-Memory Support 

Virtual memory is perhaps the most crucial requirement for running a powerful op­

erating system. A good operating system for a computer system for program devel­

opment must offer the large address space and the protection that virtual memory 

affords. Processes must be able to address more data than can be loaded into the 
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physical memory currently available for that process. Also, the memory space of each 

proc~ss requires protection from the actions of other processes. For virtual memory 

to run efficiently, the architecture must provide certain services, such as address 

translation. 

3.2.2 Shared-Memory Support 

As we examined real-time systems and implementations of real time systems on 

UNIX computers, we noted that shared memory was considered important or critical 

to many real-time applications. Since these applications are important to CLOCS, 

the memory management scheme includes a shared memory facility, so that the same 

physical memory may be read and modified by different processes. 

3.2.3 Classes of Main-Storage Areas 

Closely related to virtual-memory support is the support of different classes of main­

storage areas. For example, a program deserves protection from itself, so that a 

program cannot inadvertentl:y modify itself or inappropriate portions of its data space. 

Also, reserving a part of the address space for communication improves the efficiency 

of operating system service requests. 

3.2.4 Semaphores 

The best way for an architecture to support multiprocessor synchronization and ef­

ficient interprocess communication is with an atomic operation such as test and set. 

Although supporting semaphores and other synchronization techniques was not a 

high priority, it was a factor in some decisions, such as the inclusion of conditional 

skips. 

3.3 Compiler Support Features 

In modern computer systems, almost all programs are generated by a compiler. Only 

a few specialized subroutines, such as character-string move subroutines or operating­

system memory-management operations, are coded in assembler or machine language. 

As a result, the compiler must be able to produce efficient machine language programs 

from the input programs, written in the C language in this case. As we designed the 
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architecture and ported two C language compilers to the architecture, we identified 

several important features, notably multiple data object sizes and addressing mode 

capabilities. 

3.3.1 Data-Object Size 

As described above, regular, efficient support for multiple sizes of data objects no­

ticeably affects performance of the benchmark programs. Having this size flexibility 

is important for the compiler also. The compiler is greatly simplified if it can treat 

different-sized objects similarly for both operations and addressing. 

Consider the example of operating on two 8-bit characters. If the characters must 

first be extracted from a 64-bit word, complexity will be added: 

1. Instructions must be generated to extract the character. 

2. Temporary storage must be allocated to hold the characters. 

3. The operation must be completed. 

4. The result must be stored back into some word. 

More serious than the extra work is the problem of addressing. If the characters 

have a two-part address, the address of the word and the address of the character 

within the word, the address is a different type from the addresses of a full-word 

integer. Multiple address types adds great complexity to the compiler. 

These problems can be solved. The C language compilers for the Data General MV 

series and the CRAY lS are good examples of solutions. However, the increased dif­

ficulty in compiler writing makes the two part address approach inferior for CLOCS. 

Also, this approach imposes a performance degradation which is amplified by the 

nature of the programs we selected for benchmarks. As a result, we added the design 

consideration of multiple data-object sizes with consistent addressing based on the 

size of the smallest object, the 8-bit byte. 

3.3.2 Addressing Mode Expectations 

Compilers require the ability to modify operand addresses. In the C language, ar­

rays, pointers, subroutine calls and automatic allocation of variables all require the 

calculation of addresses at program run time. This capability is provided through 

indirect addressing. 
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Although both of the compilers used with the CLOCS architecture [24, 37] assume 

the ability to add small constant offsets to calculated addresses, this useful feature is 

too expensive of instruction address bits to incorporate into the CLOCS architecture. 

3.4 Compiler Properties Required to Support the 

Architecture 

A major part of the CLOCS design was based on the assumption that the C language 

compiler would generate machine language programs that took advantage of the 

architecture and were well optimized. That is, the compiler would efficiently use the 

instructions that CLOCS provides and it would not generate unneeded or inefficient 

instruction sequences. We assumed that as long as the instruction set was regular 

and consistent, the compiler would be able to produce near-optimal machine code. 

Some features of modern compilers, such as a high-quality register allocator, were not 

required. This architecture does demand some important compiler features, though. 

3.4.1 Compiler Optimization 

Indirect addressing results in many explicit calculations of addresses, which in turn 

results in much opportunity for common expression elimination. These common 

expressions may span several basic blocks. For example, an automatic variable may 

be fetched several times during a program, and each reference involves calculating the 

address. The compiler must be intelligent enough to eliminate a significant fraction 

of the redundant address calculations. 

3.4.2 Support Different Data-Object Sizes 

The compiler for CLOCS also needs to support 64-bit integers and 64-bit word sizes. 

The size of other data types must be independent of word size. For example, if the 

compiler assumes that four characters could be placed in each word when actually 

eight will fit, significant problems arise. Many of the portable compilers we examined 

or used had such a limitation. The GNU C language compiler, even though it claims 

to support only a 32-bit word size, is relatively easy to modify to add the 64-bit 

word operations. The compiler must understand the alignment restrictions of the 

architecture, and the GNU C compiler had this feature. 

26 



Chapter IV 

Description of the Architecture 

This chapter presents the architecture of CLOCS. It begins with a survey of the 

architecture highlights, then covers instruction formats, programming model, data 

formats, and operations. A section on implementation concludes the chapter. 

4.1 Highlights 

The CLOCS architecture aims to reduce the effort of switching execution from one 

task to another by removing the highest layers of memory hierarchy. As a result, the 

CLOCS architecture is a very simple .one, with only memory-to-memory instructions. 

The program context includes a single status register containing a program counter, 

a process identification number and various flags. 

This machine was designed using applicable RISC concepts. For example, all 

instructions are 64-bits long. Data objects of eight, 16, 32 and 64-bits are supported, 

but these objects must be strictly aligned (e.g., a 32-bit object must start on a 32-

bit boundary), and all instructions start on 64-bit boundaries. These definitions of 

length and alignment permit the memory system implementation to deal only with 

64-bit words. This simplification greatly improves memory system performance[32]. 

4.1.1 Noteworthy 

The machine can switch context in less than the time required for the processor to 

execute one instruction, since only the time for one store to memory and one fetch 

is required for the switch. The result is much higher performance in programming 

environments with frequent context switching; the requirements of many applications 

for very fast context switching are satisfied. 
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Operand 1 

OP Operation Code 

OF Operation Flags for skip and branch 

M Mode (size of operands) 

AM Address Mode for Operand 1 and Operand 2 

24 

Operand 2 

Figure 4.1: CLOCS Instruction Format 

4.1.2 Peculiarities 

The only state inside the central processing unit (CPU) is a program status word. All 

operations access data in main memory. One consequence of this is that all parameter 

passing must be through memory. 

4.1.3 History 

The CLOCS architecture was conceived in May of 1987 by Mark Davis as an idea of 

how he would design a RISC computer. The architecture was designed by Mark C. 

Davis and Bill 0. Gallmeister in the fall of 1987. In this dissertation, "we" refers to 

Bill and me. 

The architecture was revised in December of 1988 and February 1989 to improve 

performance on common integer-benchmark programs. The changes did not affect 

context switching, but did add complexity to the architecture. 

In August 1989, I made some additions to the architecture to ease implemen­

tation and simulation. These extra operations are discussed in the Chapter 7 on 

implementation. 

4.2 Instruction Formats 

There is one instruction format; it is always one word long (Figure 4.1 ). There are two 

operand fields. Most commonly, data addressed by Operand 1 and data addressed 

by Operand 2 are combined using the specified operation, and the result is stored in 

the location specified in Operand 2. 
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4.2.1 Address Specification 

The 24-bit operand in the instruction may be used as immediate data or may be 

combined with a 16-bit segment identifier (SID) to form a 40-bit virtual address. 

Each process has a primary instruction SID ( OSID) and a primary operand SID 

( OSID) assigned. Indirect addressing is also supported. During indirect addressing, 

the default OSID or !SID may be overridden to access any byte in the terabyte (240) 

address space. 

4.2.2 Variations of Field Use 

Although all instructions have the same format, the meaning of some of the fields are 

different for some classes of instructions. 

Operation Flags 

The four bits in the Operation Flags (OF) field have the following meanings: 

LT The result of the operation is less than zero. 

G T The result of the operation is greater than zero. 

EQ The result of the operation is equal to zero. 

NO The result of the operation did not result in an arithmetic exception. 

For the Branch and Trap operations, the first three flags are used to determine 

whether the trap will occur by evaluation of Operand 2. Since Operand 2 is only 

fetched for the comparison, no arithmetic exception is possible. For all other op­

erations, the flags are used with the result of the operation (that will be stored in 

Operand 2) to do a conditional skip of the next instruction. 

Operation Modes (Object Size) 

The Operation Mode field (M) specifies the size of the operand objects. Sizes of 

eight, 16, 32, and 64-bits may be specified. In general, this field specifies the size 

of both Operand 1 and Operand 2. However, for branches, the size of Operand 1 

(the destination of the branch) is always 64, so the Operation Mode applies only 

to Operand 2. To simplify compiler construction, the distance of shifts is always 

specified by a 64-bit number. As a result, for shifts, the size specified by the OM 

only applies to the size of Operand 2. 
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Fetch and Store of Operand 2 

The execution of instructions does not always result in the fetching of Operand 2 

nor in the storing of Operand 2. Some control instructions (Branch, Trap, and Load 

Operand Segment) do not change the contents of Operand 2. When those same 

instructions are unconditional, Operand 2 is not referenced, so need not be fetched. 

4.2.3 Spaces and Addressing 

The only numbered address space is main memory. The CPU deals with virtual 

addresses, and these are converted to physical addresses by the Memory Management 

Unit (MMU). A virtual address has 40 bits, yielding an address space of one terabyte. 

There are 30 bits in a physical address, for a space of one gigabyte. 

4.3 Programming Model 

The programming model is pretty simple. All operations are memory-to-memory. 

There is no working storage (registers). Everything is kept in main memory. The 

memory name-space is a linear sequence of 240 8-bit bytes, and it contains spe­

cial locations for items such as interrupt vectors and MMU control registers. Even 

the program counter (Status Word) may be accessed using a memory address. Pe­

ripheral devices are also memory-mapped, and so it is important that the memory 

system properly handles these special addresses. The CPU intercepts reference to 

the program counter, and the MMU handles references to its own registers. It is 

the responsibility of the operating system to make sure that other memory-mapped 

addresses are handled properly by the MMU. 

4.3.1 Control Storage 

A Status Word, MMU register, and other Input/Output registers constitute the con­

trol storage for CLOCS. The Status Word, which is the only task-dependent data 

kept in the CPU, is a single 64-bit word and is shown in Fig 4.2. It contains a 24-bit 

Program Counter, a 14-bit Process Identifier (PID) used to identify ownership of 

system resources, interrupt mask flags, and reserved bits. The interrupt mask flag 

bits have the following meanings if set: 

1. Do not interrupt for arithmetic exceptions. 
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SID PID 

UNS Unused, Reserved Bits 

INT Interrupt Mask Flags 

SID Segment Identifier 

PID Process Indentifier 

PC Program Counter 

Figure 4.2: CLOCS Status Word Format 

2. Do not allow group Zero Interrupts. 

3. Do not allow group One Interrupts. 

4. Do not allow group Two Interrupts. 

5. Do not allow group Three Interrupts. 

6. Reserved 

24 

PC 

The MMU contains an implementation-dependent number of one-word registers. 

These registers provide sufficient information to transform virtual addresses to phys­

ical addresses. These registers and the operation of the MMU is discussed in more 

detail in Chapter 5. 

CLOCS reduces the variety of required instructions by mapping all state informa­

tion of the machine into the memory space of the processor. Thus, the State Word 

may be found at location FFFF-FFFFFF (This is segment FFFF, address FFFFFF 

in hexadecimal). Other memory locations reserved for special functions include: 

• The (131, 071) MMU registers begin at FFFF-FOOOOO. 

• Location FFFF-FEFFFS contains the number of MMU registers installed on 

this CPU. 

• Input/output devices are mapped into the 7680 memory locations from FFFF­

FFOOOO to FFFF-FFEFFS. 
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• The 511 trap and interrupt vectors, likewise, can be found in the this segment, 

at addresses FFFF-FFFOOO to FFFF-FFFFFO. New status word to be loaded 

on interrupt start at FFFF-FFFOOO, and are in four groups of 64 each. The 

status words for traps follow them. 

These special locations are virtual addresses. The CPU is responsible for in­

tercepting references to the status word, providing data for read operations, and 

preventing write operations if the current PID is not zero. The MMU is responsible 

for handling references to the MMU registers. The other locations are translated to 

physical memory addresses by the MMU, so the operating system must assure that 

the correct physical locations are specified, and the page swapping routines do not 

try to swap out a memory device. By allowing virtual input/output device addresses 

and interrupt vectors, CLOCS supports simulating virtual machines. 

4.3.2 Address Calculation and Addressing Modes 

Because the CLOCS design does not include registers for use with memory addressing, 

the architecture includes more unconventional methods to access memory. Below are 

descriptions of the formation of virtual addresses, the transformation from virtual to 

physical addresses, and the addressing modes available to programs. 

Virtual-Address Formation 

A virtual address is 40 bits long, and it may formed in two ways. First, it may 

be fetched from the low-order 40 bits of a memory word by indirect addressing. 

More usually, a 16-bit segment identifier (SID) and a 24-bit offset (Operand Offset) 

are combined to form the address. Each process has a default segment assigned for 

instructions and another for data. The MMU stores these segment identifiers and uses 

the process identifier to find the correct segment identifier. The 24-bit offsets appear 

in the instructions or may be fetched from main memory by indirect addressing. 

Physical-Address Formation 

The MMU can calculate a physical address in one of two ways. In the first case, 

the CPU provides a process identification number and a 24-bit offset. The MMU 

associatively looks up the physical page corresponding to the default segment for the 

given process and the 12 high order bits of the offset. In the second case, the CPU 
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provides the entire 40-bit address. Then MMU the associatively looks up the physical 

page corresponding to the 28 high-order bits (16 SID + 12 from offset). After the 

physical page has been identified, the MMU verifies that the requested operation 

(read or write) is authorized for this process. If it is, the 30-bit physical address 

is formed from the 18-bit physical page address and the 12 low-order bits from the 

virtual address. 

Addressing Mode Overview 

Seven addressing modes apply to Operand 1, and four of these also apply to Operand 2. 

All modes used for Operand 2 have a high-order bit of zero, so only the two low-order 

bits appear in the instruction. Listed below are the addressing modes, with the ab­

breviations used by the CLOCS assembler following in quotation marks, applicability 

to operands, and a description. In these descriptions, "+" means "concatenate the 

two values," "FETCH" means "obtain the contents of main memory at the specified 

address," and ":=" indicates the assignment of the value for later use by the CPU. 

Direct "Opnd" 

Applicable to Operandi and Operand2. 

Operand:= FETCH (OSID + Opnd) 

OSID, the operand SID, is concatenated to the high-order end of Opnd to provide 

a full 40-bit virtual operand address from which the operand is fetched. This is the 

direct addressing mode used by CLOCS to obtain an operand. 

Indirect "@Opnd" 

Applicable to Operandi and Operand2. 

Operand:= FETCH (OSID +FETCH (OSID + Opnd)) 

OSID is concatenated to Opnd to form a virtual address. From this address a 

24-bit offset is fetched. This offset is concatenated with OSID to form the virtual 

operand address. This is the indirect-addressing mode used by CLOCS to obtain an 

operand. 

Zero Page "%0pnd" 

Applicable to Operandi and Operand2. 

Operand:= FETCH (0 Segment+ Opnd) 
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The operand is concatenated to a SID of zero to arrive at the virtual operand 

address. This provides rapid zero-page addressing, but otherwise is identical to direct 

addressing. This is the zero page-addressing mode used by CLOCS to obtain an 

operand. 

Absolute Indirect "%@0pnd" 

Applicable to Operand! and Operand2. 

Operand:= FETCH (FETCH (OSID + Opnd)) 

OSID is concatenated to Opnd to form a virtual address; from this address a 

word containing a 40-bit address is fetched to form a virtual address into any page. 

This is indirect addressing from the default page into any page. This is the absolute 

indirect-addressing mode used by CLOCS to obtain an operand. 

Zero Page Absolute Indirect "%@%0pnd" 

Applicable to Operand! Only. 

Operand:= FETCH (FETCH (0 Segment+ Opnd)) 

Opnd is concatenated with the zero-page SID to form a virtual address; from this 

address in the zero page a word containing a 40-bit address is fetched. This virtual 

address is used to fetch data in any page. This is indirect addressing FROM the zero 

page, INTO any page. This is the zero-page absolute-indirect addressing mode used 

by CLOCS to obtain an operand. 

Zero Page Indirect "@%0pnd" 

Applicable to Operand! Only. 

Operand:= FETCH (OSID +FETCH (0 Segment+ Opnd)) 

Opnd is concatenated with the zero page SID to form an virtual address. From 

that address, a 24-bit offset is fetched. This offset is concatenated with the OSID 

to form the virtual operand address. This is indirect addressing from the zero page 

into the default page. We do not see a great need for this instruction, however we 

put it in for symmetry. It may be of some future use for providing operating system 

services. This is the zero-page indirect-addressing mode used by CLOCS to obtain an 

operand. 
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Immediate "<Opnd" 

Applicable to Operandi Only. 

Operand := Opnd 

Opnd is a 24-bit immediate operand. For all operations except floating point 

arithmetic, the 24 bits represent a two's complement integer. For floating point, 

the immediate operand may only be zero; all other values are reserved. This is the 

immediate addressing mode used by CLOCS to obtain an operand. 

4.3.3 Addressing Mode Summary 

Table 4.1 summarizes the types of memory access that occur for each addressing 

mode. All memory transactions are for 64-bit words. Therefore, the data object size 

of the instruction is not pertinent during a fetch. The indirect-addressing modes use 

the low-order 24 or 40 bits (as appropriate) of the 64-bit word retrieved by the first 

fetch. This is true no matter what the instruction operand size. 

The first memory fetch during any indirect-addressing mode always uses the de­

fault Operand Segment Identifier ( OSID). This is necessary so that programs can 

easily store and move branch addresses; the MMU will not permit writing to the 

memory space addressed by the default Instruction Segment Identifier (!SID). Also, 

the immediate-address mode does not apply to the instruction space, and a branch 

with an immediate Operand 1 causes an exception. 

4.4 Data Formats 

4.4.1 Fixed Point 

Integer data are represented as eight, 16, 32, and 64-bit two's- complement numbers. 

4.4.2 Floating Point 

Floating-point numbers are represented as 32 and 64-bit numbers, conforming to 

IEEE 754 formats. 
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Addressing Type of Memory Access 
Mode First Fetch Second Fetch 
Direct Relative 
Indirect Relative Relative 
Zero Page Zero 
Absolute Indirect Relative Absolute 
Zero Page Absolute Indirect Zero Absolute 
Zero Page Indirect Zero Relative 
Immediate 

Relative means use the default SID. 
Absolute means use the SID provided (0 or from indirect address). 
Zero means use zero for the SID. 
A blank column means memory access is not required. 

Table 4.1: Summary of Addressing Modes 

4.4.3 Character 

An 8-bit integer may represent a character. There are no other architectural limita­

tions on the character set used. 

4.5 Operations 

The CLOCS architecture has 20 operations. There are one movement, five fixed arith­

metic, four floating-point arithmetic, three logical, four shifts, one sequencing and 

two supervisory. For ease of compiler writing and simulation, some additional pseudo 

instructions were invented (such as conversion from fixed- to floating-point formats), 

but these are not considered part of the architecture. The compiler produced the 

instructions as if they were supported by the architecture and the implementation­

level simulator simulated their execution. Two alternate, more realistic approaches 

were for the compiler to generate subroutine calls instead of these instructions or 

for the operating system to emulated the instructions. I did not use either of those 

approaches because they were more time consuming to implement and would not 

have improved the accuracy of simulation timings. 
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4.5.1 Decision 

CLOGS has no specific decision operations. Instead, a conditional branch is provided, 

and all arithmetic and boolean logical operations incorporate conditional skip. The 

behavior of this sequencing will be discussed with each category of operation. 

4.5.2 Data Operations 

Data operations are partitioned into fixed- and floating-point arithmetic, boolean 

logic operations, and shifts. 

Arithmetic Operations 

CLOGS supports 8, 16, 32, and 64-bit two's complement fixed-point arithmetic. Op­

erations require operands of the same length. For operations such as multiply, with 

larger results than sources, the high-order bits are lost. Similarly, the fractional part 

of a divide result is lost. Indication of multiply overflow is available to the program­

mer in the form of a conditional skip. The program may use the remainder instruction 

to detect and manipulate fractional divide results. 

Operation codes have been set aside in CLOGS for floating-point arithmetic. Early 

implementations of CLOGS would not include floating-point hardware: floating-point 

instructions would cause unknown operation faults, and the operating system would 

then perform the floating-point operations. Later implementations could then add 

floating-point hardware, and unchanged programs would automatically take advan­

tage of the improved performance. 

As discussed above, the Flags field of the instruction governs a conditional skip. 

For both fixed-point and floating-point arithmetic, the following instruction is skipped 

if one or more of four conditions is flagged in the instruction and that condition is 

true. These conditions are: 

LT The result of the operation is less than zero. 

GT The result of the operation is greater than zero. 

EQ The result of the operation is equal to zero. 

NO The result of the operation did NOT overflow, did NOT underflow, or NOT a 

divide-by-zero, as appropriate for the operation. 
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Boolean-Logic Operations 

CLOCS provides And, Or, and X or logical operations. 

Skips for boolean-logical operations occur for three possible conditions: 

LT The result of the operation is less than zero. 

GT The result of the operation is greater than zero. 

EQ The result of the operation is equal to zero. 

Note that Operand 2 is evaluated as a two's-complement number for the conditional 

skip; however, the sign and equivalence to zero of 4-byte and 8-byte floating-point 

numbers are also interpreted correctly. 

Shifts 

CLOCS provides Shift Left, Shift Right, Shift Right Arithmetic (extends two's-complement 

sign), and Rotate Left. The number of bits to be shifted (from zero to the size of 

Operand 2) is specified in Operand 1. The following instruction is skipped using the 

same conditions as the logical operations above. 

4.5.3 Sequencing 

The sequence of instructions is controlled by the branch instruction, supervisor calls, 

and interrupts. 

Branches 

The branch instruction is conditional, based on the contents of the second operand 

(evaluated as a fixed-point number): 

LT Operand 2 is less than zero. 

GT Operand 2 is greater than zero. 

EQ Operand 2 is equal to zero. 

Interrupt and Supervisor Call 

As described in the section above on Control Storage, CLOCS has a large number 

of interrupt vectors. On a Supervisor Call (Trap) or an interrupt, the old status 
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word is saved and the new status word for that supervisor call or interrupt is loaded. 

Interrupts are grouped into four maskable levels. Each interrupt status word should 

mask its group of interrupts long enough to move the saved status word out of the 

way. Then it may re-enable that group of interrupts. In this way, if the same interrupt 

occurs before processing of the first interrupt is complete, the first interrupt will not 

be lost. 

The Trap instruction is the form of supervisor call on CLOCS. Operand 1 specifies 

the number of the trap which is then used as an index into the trap vector beginning 

at FFFF-FFFFSOO. The corresponding trap status word it loaded into the CPU and 

the old Status word is saved. 

The trap instruction execution is conditional. If one of the flags in the instruction 

is set then Operand 2 is fetched and examined. The Trap instruction uses the same 

conditions as the branch instruction; if the corresponding condition is true, then the 

Trap occurs and the CPU stores the Status Word and loads the new Status Word 

specified by the Trap. Otherwise, the following instruction is executed. 

4.5.4 Supervisory 

Two supervisory instructions are provided. The Trap instruction conditionally causes 

the execution of a supervisor call at a trap vector location as described above. 

This qualifies as a supervisory instruction because the status word is directly loaded 

from the trap vector, allowing the machine to change to operating system process­

identification number. Condition flags for this instruction are the same as for the 

branch. 

The Load Operand Segment instruction allows a program to use a different default 

data segment. If any of the flags are set, then Operand 2 is fetched and examined. If a 

flagged condition is satisfied, the next instruction is skipped. The Load Operand Seg­

ment instruction is always executed. If the identified segment is not available to the 

process, the CPU will cause a fault. 

Although not specifically allocated as a supervisory instruction, moving data to 

certain addresses from FFFF-FFOOOO to FFFF-FFFFFF causes changes to the com­

puter system. For example, writing to FFFF-FFFFFF changes the Status Word. In 

the case of the Status Word, the CPU enforces writing only by process number zero. 

For other memory location, the operating system must use the MMU registers to 

prevent unauthorized modifications. 
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4.5.5 Input and Output 

Input and output devices are memory-mapped, so no special operations are provided 

to manage them. The memory-mapping is in the memory-address range FFFF­

FFOOOO to FFFF-FFEFFF. A special set of addresses is provided to standardize 

virtual memory and cache algorithms, so they will not interfere with proper device 

operation. 

4.6 Implementation Notes 

The architecture leaves two major hooks to permit single chip implementations with 

a reasonable numbers of transistors. First, operations are defined for floating point, 

but no hardware support is required. Under normal circumstances, floating-point 

will be emulated by operating-system routines. The second hook concerns the size of 

the MMU. Although memory addresses have been set aside for a very large number 

of MMU Registers, a machine could be built with very few registers, perhaps with as 

few as four. Although economizing on the MMU will save chip area, it will have a 

major impact on context-switching performance; therefore, we recommend having at 

least one MMU register for each page. of physical memory installed in the machine. 

The implementations of CLOCS can be heavily pipelined. A four-stage pipeline 

with interlocks or a seven-stage pipeline without interlocks seems reasonable. Note 

that pipelining will increase context-switch latency, which may be significant if a 

real-time task has to be serviced in less than 20 cycles. It is not clear how one writes 

a scheduler for such a demanding environment, but the increased latency is a con­

sideration. Also, caching inside the CPU may effectively improve performance. One. 

type of caching is already available with a pipeline design; the result of the previous 

calculation is available for use by the current instruction. I expect instructions using 

the result of the previous instruction to be common (compute address followed by 

fetch data), so this may be important for good performance. 
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Chapter V 

Description of the Memory Management 
Unit 

This chapter begins with a description of the organization of the Memory Manage­

ment Unit (MMU). The details of the MMU design and descriptions of operations 

follow. The fourth section shows how the MMU supports common virtual-memory 

algorithms. The chapter concludes by describing two MMU designs that were dis­

carded. 

5.1 Organization of the Memory Management Unit 

5.1.1 Requirements 

The CLOCS MMU must support virtual memory for large numbers of active pro­

cesses without seriously affecting context-switch performance. The guiding princi­

ple for MMU performance is: "If information for a process is in main memory, it 

must be accessed with no context-switch penalty." To support general purpose op­

erating systems adequately, the MMU must provide each process a unique address 

space. Processes that have their own address space are sometimes called heavyweight 

processes[9]. Another design requirement is that the MMU must support lightweight 

processes. This means that the MMU must provide a sharable address space with 

protection for the space owned by each process. Provision for protected sharing of 

memory between two processes is also an important requirement for real-time appli­

cations. 

5.1.2 What the MMU Does 

The purpose of the MMU is to support virtual memory for the CLOCS computer 

system. For each memory system reference, the MMU does the following: 
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The Virtual Address Referenced By a Process 

Process Segment 
Offset 

Identifier Identifier 

~ / 
( MMU 

Physical 

Address 

Figure 5.1: What the CLOCS MMU Does 

• It accepts an address specification from the CPU. 

• It determines the corresponding physical address. 

• It verifies permission for the requested memory operation. 

• It maintains information of use to the operating system. 

To specify an address, the program provides a 24-bit Offset and a 16-bit Segment 

Identifier (SID) which form a 40-bit virtual address. The Offset may come from 

either one of the operand fields of an instruction or from memory during an indirect 

address. The SID may be a default Segment Identifier for the process, zero, or a SID 

obtained from memory during an indirect address. Because each process must have 

its own address space available, the process identifier (PID) is also part of the address 

specification. This address translation function of the MMU is shown in Figure 5.1. 

Although it is very similar to the scheme used in the Atlas computers [36], the Atlas 

scheme did not have the extensive support of permissions and st~tus that the CLOCS 

MMU provides. 

Not every bit of an address is translated. In CLOCS, a memory page is 4K bytes 

of either virtual or physical memory. The real work of address translation is done at 

the page level; the low-order 12 bits of the virtual address are used as the low-order 
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bits of the physical address. The 28 high-order bits of the virtual address form the 

virtual page. 

The CLOCS MMU supports three types of operations: read, write, and execute. 

It allows the operation only if the addressed virtual page has the appropriate autho­

rizations for the current process. Authorizations for a virtual page may be one of the 

following: 

• No operations authorized for this page 

• Read operation only 

• Read or write operations 

• Fetch instruction operations only 

The MMU also keeps records of access and writing to physical pages. It records if 

a physical page has been read and written, a state called USED, so the operating 

system can later determine the best page to swap out using a well known algorithm 

for virtual memory(9]. The MMU also records if a read or writ.e type physical page has 

been changed, a state called DIRTY, so the operating system can avoid unnecessary 

. saving of pages to backing store. The encoding and manipulation of this information 

is discussed later in this chapter. 

5.1.3 External Appearance of the MMU 

All the information to do the above - determine physical addresses, check permis­

sion, and remember physical memory status- is kept in 64-bit registers in the MMU. 

Each register relates one PID and virtual page to one physical page. These MMU 

registers are memory-mapped, beginning at location FFFF-800000, and are specially 

protected from user processes. Only the superuser, PID =zero, may change them. To 

support the guiding principle of equal time access for all data in memory, the MMU 

must contain at least as many registers as the computer system contains physical 

pages. More registers must be provided, because one extra MMU register is required 

for each page of memory shared between two processes. In the absence of data for 

specific applications, we estimate that an additional 10% of MMU registers over the 

maximum number of expected physical pages is sufficient. CLOCS can address up 

to 256K physical pages (218), but since this corresponds to one gigabyte of memory, 

most machines will have less physical memory and need many fewer MMU registers. 
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Memory address FFFF-FEFFFS is reserved for a 64-bit fix-point integer represent­

ing the number of MMU registers installed. When this location is read, the MMU 

responds with the number of MMU registers installed. This same memory location 

is also used as a command register. Writing to this location causes special MMU 

operations such as resetting the USED flags for all pages, as described later in this 

chapter. 

5.1.4 Physical Page Status 

One function of the MMU is to maintain status information on the memory pages, so 

a part of each MMU register contains bits indicating the status of the corresponding 

virtual and physical page. The statuses are not orthogonal, so an encoding scheme 

reduces the number of bits needed to indicate the status. The USED and DIRTY 

statuses are maintained for the physical page. More than one MMU register may 

refer to a physical page; this allows memory to be shared. In this case, the MMU 

must provide the correct status for a physical page when any MMU register referring 

to that physical page is read. For example, suppose MMU register FFFF-FOOOlO and 

FFFF-F00090 both point to physical page four. A write is made using the entry at 

FFFF-F00090. If the register at FFFF-FOOOlO is subsequently read, its status will 

indicate that the page is DIRTY even though no write was made using that MMU 

entry. 

The implementer may use any means to accomplish this subtle updating of physical­

page status, but one solution is suggested. An auxiliary memory with a 2-bit word 

for each physical page stores the correct status of each physical page. During routine 

memory operations, the status of a page is updated concurrently parallel with the 

memory operation. When an MMU register is read, the physical-page address in 

the MMU register is used to access the auxiliary memory. The USED and DIRTY 

bits from the auxiliary memory are used to update the MMU register before it is 

provided to the CPU. As long as the page status is fetched and the MMU register 

status updated in the time of a main memory fetch, the MMU organization does not 

affect performance. 
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5.2 Contents of the MMU Word 

Before we examine the MMU registers, here is a quick review of terms describing 

CLOCS memory addressing and MMU register fields. Each abbreviation is followed 

by the number of bits allocated in this system. 

VA ( 40) Virtual address 

PA ( 30) Physical address 

P ID ( 14) Process identifier 

SID (16) Segment identifier 

OSID (16) the primary (or default) SID for operands 

!SID (16) the primary (or default) SID for instructions 

VO (24) Virtual Offset (the address contained in instructions) 

PC (24) Program Counter, a VO 

OPND (24). Operand address in an instruction, a VO 

VP (12) Virtual-page address, the high order bits of the VO 

PP (18) Physical-page address 

PO (12) Physical Offset, the low-order bits of VO 

FLG ( 4) Flags, indicating permissions and status of a virtual page 

The MMU takes the VA (made up of a SID and a VO) and the PID and produces 

a PA that is 30 bits long. The translation process is shown graphically in Figure 5.2. 

Each MMU register (or entry) is a 64-bit word. The MMU registers are divided 

into six fields. The MMU may store the information for each entry in any convenient 

format, but it must appear as a 64-bit memory word with the format shown in 

Figure 5.3 when read by the CPU. 

5.2.1 Sizing Considerations for Fields 

We determined the size of each of the fields in the MMU registers in two iterations 

through the design process. First, we determined the most desirable size for each 
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Figure 5.2: CLOCS MMU Address Translati~n (Detailing of Figure 5.1) 

14 4 16 

PID SID 

PID 14 bits - Process Identifier 

FLG 4 bits - Permissions and Physical Page State 

SID 16 bits - Segment Identifier 

VP 12 bits - Virtual Page 

PP 18 bits - Physical Page 

12 

VP 

Figure 5.3: CLOCS MMU Word Format 
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field. As frequently happens, there were not enough bits available to satisfy all us, 

so we made some compromises and solved some simple inequalities to make the field 

size assignments. We started from some quantities fixed by previous architecture 

design decisions, then adjusted the other fields using the considerations mentioned 

as guidelines in Chapter 3. 

As we began the process of setting desirable field sizes, we had one fixed starting 

point: the size of the virtual address offset ( VO), which occupied 24 bits in the 

instruction. In order to make the address space sufficiently large, we set the size 

of the SID to 16 bits. We wanted at least one gigabyte of physical storage, so the 

physical address required 30 bits. FLG required about four bits. We wanted 16 bits 

for PID adequate to support 64K processes, a number that was more than sufficient 

for the UNIX systems we had studied. We set the physical page size to 1024 bytes 

based on our opinions concerning data object sizes. This size represents 128 words, 

a quantity small enough to allow very complete use of available physical memory. 

Since the VO was 24 bits, this physical page size would have required the VP to be 

14 bits and the PP to be 20 bits. The 34 bits for VP and PP plus the 16 bits for SID 

leaves only 14 bits for FLG and PID. We estimated that at least four bits would be 

required for FLG, leaving only 10 bits for PID. 

Now it was time for us to compromise. Since the 64K processes limit available 

under UNIX was much larger than needed, the PID was a good place to start looking 

for some additional bits. A 10-bit PID, allowing only 1024 active processes, was too 

small to meet the design consideration of handling thousands of processes. Instead 

we accepted a 14-bit PID, allowing 16K processes. This total of 34 bits for the PID, 

SID, and FLG left 30 bits. Then solving the constraints: 

VP + PP = 30 bits 

PP + PO = 30 bits 

VP + PO = 24 bits 

we obtained the final values listed in Figure 5.3. The 12 bits allocated to the physical 

offset resulted in a physical page size of 4K, which was larger than we desired, but a 

size commonly used for UNIX virtual memory systems. This compromise increased 

the importance of maintaining the FLGfield no larger than four bits, so we minimized 

the number of bits required, as discussed below. 
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p p p p Reason 
D D D D for 

u u u u Elimination 
1 • • • • • • • Unallocated cannot be P,D,U 

X 2 3 • • 4 5 • • Executable cannot be DIRTY 
w • • • • • • • • No Write only pages 
w X • • • • • • • • No X and (R or W) 

R 6 7 • • • • • • No D and P without W 
R w 8 9 10 11 12 13 14 15 
R X • • • • • • • • No X and (R or W) 
R w X • • • • • • • • No X and (R or W) 

Table 5.1: All Possible MMU Page Conditions 

5.2.2 Mapping of Word Use to FLG 

The MMU has to maintain much permission information and status for each physical 

page. Here are the conditions (with the FLG abbreviations that represent them) that 

naturally suggested themselves: 

R The page is readable by the process. 

W The page may be written by the process. 

X The page may be executed by the process. 

P The SID is the default SID for this type of page (program or data) for this process. 

U This page has been USED (executed, read or written). 

D This page has been written, DIRTY. 

If one bit was used to represent each of these conditions, the flag field would 

require six bits instead of the allotted four. 

Many of the combinations do not make sense or represent conditions not allowed 

by the design considerations of Chapter 3. To see these nonsensical combinations, 

we constructed a truth table (Table 5.1 ). A bullet ( •) in this table indicates that the 

entity is not a viable alternative. A number indicates that this entity represents a 

useful combination of attributes and should be represented in the MMU registers. 

With only 15 usable states to represent, only four bits of state will be required. 

We reorganized the states as shown in Table 5.2. The numbers at the left of the table 

are the two high-order bits of the flag field in the MMU word. The numbers at the 
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Primary Primary 
USED USED 

FLG 00 01 10 11 
Executable 00 2 3 4 5 
Read Only 01 6 7 1 

Read or Write 10 8 9 12 13 
(Read or Write) and Dirty 11 10 11 14 15 

Table 5.2: MMU Condition Assignments 

top of the table are the low-order bits of the flag field. The numbers inside the table 

correspond to numbers in the first table. 

With this bit assignment, the third bit becomes the USED bit, the fourth bit is 

the Primary bit, and the first and second bit must be taken together to interpret the 

permissions. The combination 0110 represents an unassigned physical page: 

5.3 MMU Operations and Exceptions 

The MMU must perform several operations. The operations may not work properly; 

they may cause exceptions that result in execution of an interrupt handler on the 

CPU. The operations and related exceptions are described below. 

5.3.1 Normal Read and Write 

The MMU registers can be read and written by the superuser process, PID = 0. The 

MMU registers are addressed as normal memory, so the MMU must recognize virtual 

addresses starting at FFFF -800000 and respond to them with the MMU registers 

rather than trying to calculate a physical address. 

Possible exceptions: 

• Memory not present 

(Addressing MMU register not installed) 

• Memory permissions incorrect 

(PID =F 0) 

• Flag 0111 not permitted 

(Unassigned Flag combination) 

49 



5.3.2 From PID, VP Get PP for an Operand and Check Per­

missions 

When presented with a PID, a VP, and a signal that this fetch is for an operand, the 

MMU must supply the default OSID, determine the correct PP, and check permis-

SIOnS. 

Possible exceptions: 

• PID, SID, VP not in MMU 

• Memory pernrissions incorrect 

5.3.3 From PID, VP Get PP for Text and Check Permissions 

When presented with a PID, a VP, and a signal that this fetch is for an instruc­

tion, the MMU must supply the default OSID, determine the correct PP, and check 

permiSSIOns. 

Possible exceptions: 

• PID, SID, VP.not in MMU 

• Memory permissions incorrect 

5.3.4 From PID, OSID, VP Get PP, and Check Permissions 

When presented with a PID, an SID, a VP, and a signal that this is an operand fetch, 

the MMU must deternrine the correct PP and check permissions. 

Possible exceptions: 

• PID, SID, VP not in MMU 

• Memory permissions incorrect 

5.3.5 From PID, !SID, VP Get PP, and Check Permissions 

When presented with a PID, an SID, a VP, and a signal that this is an instruction 

fetch, the MMU must determine the correct PP and check permissions. 

Possible exceptions: 

• PID, SID, VP not in MMU 

• Memory permissions incorrect 
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5.3.6 Change Primary OSID 

When directed by the CPU, change the primary OSID to the SID provided on the 

low-order 16 bits on the data bus. This update requires setting the Primary flag on 

all entries with the PID and new OSID and resetting the Primary flag in all MMU 

registers with the PID and the old OSID. 

Possible exceptions: 

• PID, SID not in MMU 

(An authorized page has been paged out.) 

(This PID is not authorized to share this page.) 

• Memory permissions incorrect 

(The new segment identified by SID is not writable. The primary operand page 

must be writable. This is not strictly required, but is the proper thing to do.) 

5.3. 7 Change Primary !SID 

Branch instructions may specify addresses in segments other than the primary seg­

ment by using appropriate indirect addressing modes. When such a branch is taken, 

the MMU must update the primary !SID for this process. This update requires set­

ting the Primary flag on all entries with the PID and new SID and resetting the 

Primary flag in all MMU registers with the PID and the old !SID. The implementa­

tion of the CLOCS architecture must provide communication between the CPU and 

the MMU to update correctly the !SID in this situation. 

Possible exceptions: none 

The exception PID, SID, VPnot in MMU cannot occur for this operation, because 

the MMU must first fetch the new instruction using one of the above operations. 

If there is an interrupt, the branch instruction will be restarted, so at the time 

the branch is taken the physical page is available. Furthermore, the instruction 

fetch operation will verify that this page contains executable code, so no Memory 

Permissions Incorrect exception may occur. 

Some implementations may not specifically use this MMU operation. If the CPU 

does not fetch the instruction until it decides to take a branch, then the MMU may 

automatically change the default !SID during the fetch. This possibility is left open 

to the implementers. 
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5.3.8 Reset USED for All Physical Pages 

When the operating system selects a page to swap out of main memory it may 

reference the USED bit as described below. Frequently, the operating system will 

want to set all USED bits to zero. To set the USED bit for all physical pages to 

zero, a program writes a word with the low-order bit set to the memory location 

FFFF-FEFFF8. The MMU intercepts the reference to that special memory location 

and interprets the low order bit set to one as a command to reset the USED status 

for all installed MMU registers. That location when read contains the number of 

MMU registers installed. 

Possible exceptions: none 

CLOCS explicitly supports this operation with hardware because it would be 

very time consuming for a program to update each individual MMU register. Many 

algorithms call for updating all USED bits each time a page fault occurs, so this 

clearing operation would be frequent. On the other hand, the DIRTY bit only need 

be reset when a page was written to the backing store. Consequently, it is reset by 

the operating system writing to the MMU register. 

5.4 Implementing Common Virtual-Memory Oper­

ations 

We decided that the CLOCS architecture should support the three of the most com­

mon virtual memory algorithms described in Dietel [9]: write-back virtual memory, 

copy-on-write, and not-recently-used replacement. 

5.4.1 Write-Back Virtual Memory 

Before a page may be removed from physical memory, the DIRTY status should be 

checked for any MMU register referring to that physical page. Saving the page on 

disk before reusing the page is required only when the DIRTY status is set. This 

method significantly reduces memory traffic because much data memory is read, but 

not changed before it is paged out. 
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5.4.2 Copy-on-Write 

Copy-on-write is an algorithm frequently used by UNIX operating systems and VAX 

computers. A process is assigned a block of memory containing information or code. 

As long as it does not change this memory, it shares the memory with another process. 

As soon as the process attempts to change the memory, the operating system must 

intervene to make a separate copy for this process, and then allow the change to 

happen. This facility is very useful for the "fork" system call in UNIX. Copy-on­

write may be simulated by assigning the page as a shared, read-only page. In this 

case shared simply means that the page has more than one MMU register pointing 

to it. When the process tries to write to the copy on write page, the MMU causes 

an exception. The operating system exception handler then copies the page to an 

unused physical page. It t_hen corrects the MMU register to point to the new physical 

page and restarts the user process with the instruction that caused the fault. 

5.4.3 Not-Used-Recently Page Replacement 

One popular page replacement algorithm is not-used-recently. This technique is de­

scribed in detail in Dei tel [9]. Briefly, when a page fault occurs, the operating system 

selects a page that does not have the USED bit set to swap out. It then can use 

the vacated page to load the needed page that caused the page fault. Deitel points 

out that a USED bit and a DIRTY bit must be maintained for each page. CLOCS 

maintains this information in the MMU. 

5.5 The MMU Designs We Discarded 

During MMU design, we considered several schemes. Some of the alternate design 

were interesting to us or involved important design decisions. Some of the designs 

we threw away are described here. 

5.5.1 Alternate A - Virtual and Physical Tables 

In the alternate A design, the MMU contained two tables instead of one. One table, 

Tablel, contained a PID, a FLG, and a SID for each entry. The other table, Table2, 

held a Dirty bit, a SID and a VPfor each entry. Table2 had one entry for each physical 

memory page, so the PP did not have to be included in the table. The advantage 
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of the alternate A scheme was that it was more proper for support of lightweight 

processes. The PID, SID, FLG relationship was unique. The chosen scheme was 

better in that it could support heavyweight as well as lightweight processes and 

also could resolve the permissions down to the physical-page level. With the chosen 

scheme, one segment could hold both code and data space on separate pages, so 

small processes need not take up two segments of address space. The other difference 

between the schemes was the simplicity of the data structure (only one type of MMU 

register) and duplication of PID's for the chosen scheme and duplication of SID's in 

the alternate A scheme. 

The final decision of which scheme to use was based on the projected silicon area 

of the two schemes. We assumed field sizes to be the same for the two schemes 

except that the alternate A scheme needed one extra DIRTY bit. PID, FLG, SID, 

and Virtual Page fields were all associative memory. The fact that these fields were 

associative was important because associative bits would require at least 25% more 

silicon area to implement. Most associative-bit implementations would require about 

50% more area than a non-associative bit. 

To compare the two schemes, we specified a computer system with 4000 pages 

of physical memory and capable of running 1000 processes. This machine was a 

representative system for using the power of the CLOCS architecture and supporting 

large applications. For a machine of this size, the chosen scheme required 4500 table 

entries (one for each physical page plus 500 for memory sharing). Each entry was 64 

bits long, 44 of which were associative. The Alternate A scheme required Tablel with 

2500 entries, two for each processes (one data, one code) and 500 extra for memory 

sharing. Each entry in this table was 34 bits long, and all were associative. The 

second table, Table2, contained 4000 entries, one for each physical page. Each entry 

was 29 bits long, and 28 of them where associative. Table 5.3 shows the bits and the 

relative area for the two schemes. The column labeled "Total Relative Area" is the 

total area of the table in non-associative bits, assuming that associative bits are 50% 

larger than non-associative ones. 

The small additional cost of associative bits and the increased function of the 

chosen scheme, particularly since the chosen scheme supported heavyweight processes 

(a concept used by many available operating systems) tipped the scales in favor of 

the primary scheme. 
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MMU Scheme Associative Total Total Relative 
and Table Bits Bits Area 

Alternate A Tablel 80,000 85,000 125,000 
Alternate A Table2 112,000 116,000 172,000 
Alternate A Total 192,000 201,000 297,000 

Chosen Total 198,ooo 1 288,ooo 1 387,000 

Table 5.3: Comparison of Chosen and Alternate A MMU Designs 

5.5.2 Alternate B - Some Registers Permanently Mapped 

The alternate B MMU design attempted to reduce the number of bits of memory 

in the MMU and to make some operating-system functions more efficient by perma­

nently assigning some of the MMU registers to physical pages. In this scheme, mem­

ory locations FFFF-800000 through FFFF-FOOOOO were assigned to physical pages 

zero through 262,144. These memory locations always returned the corresponding 

physical page number when read, and the physical page was ignored during writes to 

these MMU registers. In other words, these MMU registers appeared like the other 

chosen scheme MMU registers except that the PP could not be changed. The mem­

ory from FFFF-F40000 through FFFF-FEFFFE could be assigned to any physical 

page. 

The advantages of this alternate B scheme were fewer memory bits in the MMU 

and a possible improvement in operating-system speed. If a computer system had 

N physical pages and allowed for an additional M pages to be shared, then N + M 

MMU registers would be required. We estimated that the alternate B scheme could 

have saved N * 18 bits of memory over the primary scheme. Another advantage 

for this scheme was improved performance during a naive search for a page to swap 

out. With alternate B, a search for a potentially shared page would have required 

only O(M) steps while the chosen scheme takes O(N + M). As estimated above, 

M would be only 10% of N, so the new scheme would have yielded an order of 

magnitude performance improvement. This advantage disappeared, though, when 

Bill Gallmeister suggested a O(log M) software algorithm. The data structures and 

algorithm to attain this superior level of performance are well understood[38, 9, 17]. 

With one major advantage of this scheme eliminated, the disadvantages became 

more persuasive. Having two classes of MMU registers lacked propriety. Although 

the same operations could be performed on the two types of MMU registers, different 
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actions resulted. If the systems programmer made an error and tried to set the 

physical page number of one of the permanently assigned MMU registers, the action 

would be ignored and the programmer would receive no warning of his error. An 

additional disadvantage of the alternate B scheme was that the number of shared 

pages was limited toM. With the chosen scheme, all MMU's registers may be used 

for shared pages, with the only disadvantage that some physical pages may not be 

accessible, a much more graceful degradation of performance. 

Since the only advantage to alternate B was the saving of some memory in the 

MMU and it introduced such serious impropriety, we selected the chosen scheme over 

it. 
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Chapter VI 
Quantitative Analysis of CLOCS 

This research would not have been worth the trouble without some indication that 

the CLOCS computer would perform reasonably well. When we began the study we 

estimated that gains in context switch performance could compensate for a through­

put performance loss of 75%. That is, if CLOCS took less than four times longer to 

run a program as a conventional computer architecture, then its improved context­

switch performance would compensate, and CLOCS would be the better architecture 

for enough applications to warrant further study. 

To estimate the relative performance of CLOCS to conventional architectures, I 

performed several analyses that are reported in this chapter. A small exercise checks 

that the architecture does not have any flaws that prohibit efficient programming. 

CLOCS performance is estimated using expected bandwidth requirements and a com­

parison to the MIPS R2000. A final check of the CLOCS architecture's potential is 

the application of Fuller's evaluation techniques. These analyses all show good po­

tential for CLOCS. 

6.1 Programming a Small Problem on CLOCS 

In an attempt to reveal major flaws in the CLOCS architecture, I examined a few 

small problems to identify inconvenient features of the architecture. It was easy to 

write CLOCS assembler code for small programs involving pointers, subroutine calls 

and Input/Output. 

As an example of these small programs, I present the solution to Exercise 9-2 in 

the computer architecture book by Blaauw and Brooks[3]. They suggest a character 

translation exercise to be programmed on different computer architectures. The 

problem statement is below, and the solution is in Figure 6.1. 

9-2 In a stream of 1000 characters of running text, characters are to 

be replaced according to the following table: 
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; Program Translate 
.data 

input: ; Input data 
.ascii "Some text of length 1000" 

output: Output data 
.space 1000 Reserve space for 1000 characters 

table: 256 character translation table 
.ascii "ZBCDEFGHI6KLMNOPQRSTUVWXYZ1294567890:,,:\" 

table_pointer: pointer to the translation table 
. P table 

input_ptr: pointer to input data 
.P input 

output_ptr: pointer to output data 

count: 

start: 

.P output 

.di 

. text 

movqi 

movqi 

adddi 
adddi 

subdi 
bne 

.end 

counter for characters remaining 
1000 

; Begin the program . 
; Zap last 8 bits of table pointer. 

0input_ptr,table_pointer+7 
; Move the selected character. 

0table_pointer,0output_ptr 
; Increment the pointers. 

<1, output_ptr 
<1,input_ptr 

; Decrement the count and loop. 
<1,count 
start,count 

; Return to main program 

Figure 6.1: Solution to Exercise 9-2 from Blaauw and Brooks 
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3 

A 

J 

9 

z 
6 

Any invalid character blank 

All valid characters are to remain unaltered. The character set has 48 

characters. Write a program, assuming input and output are in memory. 

Although CLOCS has no special character handling operations or looping instruc­

tions, the availability of all operations for all data type sizes allows a simple inner 

loop. This program does not reveal any weaknesses in the CLOCS architecture. 

Note that the loop ending instructions calculate a new value for count then use it 

in the following instruction. This is a common construct in CLOCS assembler code 

produced both by humans and compilers. 

6.2 Expected Memory-Bandwidth Requirements 

CLOCS requires higher CPU-to-main-memory bandwidth than many contemporary 

computer systems because of the flattened memory hierarchy. There are two main 

causes for this higher bandwidth requirement: all of the data is stored in memory 

(there are no registers to store intermediate results), and instructions and data may 

not be cached. 

I estimate that CLOCS uses three data references for each instruction. For an 

instruction that uses direct addresses, the three memory references are: 

1. Fetch Operand 1. 

2. Fetch Operand 2. 

3. Store the result at the address Operand 2. 

This estimate of three data memory reference per instruction on average is based 

on the assumption that the number of instructions requiring less than three references 

compensates for the instructions requiring more than three. For example, instructions 

that use immediate data do not have to reference memory to obtain Operand 1, so 

they use less than three operand memory references. Full-word moves do not have 
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to fetch Operand 2 from memory, so they also require one less memory reference. 

The conditional-branch instruction requires only one data-memory reference, and 

unconditional branches require no data-memory references. On the other hand, and 

instruction with one indirect addressed operand uses four memory references, and 

instructions with indirect addresses for both operands use five references to obtain 

and store the operands. Assuming that the average CLOCS instruction requires three 

data-memory references and one instruction-memory reference, I estimate that the 

average instruction will reference memory four times. This estimate is conservative; 

the Dhrystone benchmark program requires 3.29 references per instruction, and an 

implementation feature further reduces to below 3.0. See Chapter 8 for the specifics. 

Other common computer architectures reference data memory much less fre­

quently, about two memory references per instruction. Most IBM System/360 in­

structions reference one data memory location; these instructions require two memory 

references. RISC architectures frequently have separate load and store instructions 

constituting about 30% of all instructions executed(34, 20]. Therefore, seven instruc­

tions operate on the data referenced in three load/stores. To execute 10 instructions, 

13 memory references are required: 10 for instruction fetches and three for data 

fetches. However, only 10 of those instructions really do work (not counting loads 

and stores as computation), so the memory references per instruction doing real work 

is 13/7 = 1.85. These two examples show that conventional and RISC architectures 

use about two memory references per instruction. 

Because CLOCS requires about twice the memory access of RISC architectures, 

a CLOCS computer system needs twice the bandwidth. Higher bandwidth may 

be obtained by using faster memory at greater cost or implementation techniques 

such as dual-ported memory systems. However, even with the best technology avail­

able, the CLOCS computer would likely run slower than a contemporary RISC-based 

computer. The calculations above show that the expected degradation from mem­

ory bandwidth is approximate 50%, well about the 25% estimate mentioned in the 

introduction to this chapter. 

Most modern microprocessor~ based computer systems use caches to improve per­

formance. In 1989, many microprocessors introduced from major vendors featured 

cache memory on the microprocessor chip (e.g., the Intel 80860 and 80486 and Mo­

torola 68040). However, using a cache adds hierarchy that violates the major design 

goal of CLOCS. As a consequence, CLOCS must fetch all instructions and data from 

memory, rather than from an on-chip cache. To compensate for the lack of cache 
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R2000 CLOCS 
Type Instruction Memory Weighted Memory Weighted 

Instruction Frequency Operations Operations Operations Operations 
Calculation 30 1 0.30 4 1.20 

Branch (Cond) 12 1 0.12 2 0.24 
Branch 8 1 0.08 1 0.08 

No Operation 20 1 0.20 0 0.00 
Load or Store 30 2 0.60 0 0.00 

Total 1.30 1.52 

Table 6.1: Comparison of CLOCS and R2000 Memory Use 

memory, CLOCS must use a higher-performance memory system than contemporary 

designs or suffer another performance degradation. This degradation is difficult to 

estimate without implementation details, but I assume it will not reduce CLOCS 

performance by more than another 50%. Therefore, CLOCS estimated performance 

is sufficient to warrant more detailed simulations to obtain better estimates of per­

formance. 

6.3 Favorable Comparison with MIPS R2000 

To investigate the effect of our two-operand, memory-to-memory architecture, we 

compare CLOCS to a MIPS R2000. The purpose of this comparison is to find an 

upper bound on the CLOCS performance relative to the R2000, so assumptions are 

made in favor of better performance for CLOCS. Data from runs of the CAD tool 

Timberwolf (26] show that the R2000 dynamic-instruction utilization is about 30% 

loads or stores, 20% branches, 20% no operations, and 30% computation. These are 

typical values for contemporary RISC processors. 

Table 6.1 shows the dynamic-instruction execution percentages along with the 

number of memory operations required for the R2000 and for CLOCS. By weight­

ing the number of memory operations with the fraction of instructions executed and 

totaling them, the average number of memory accesses per R2000 instruction is cal­

culated to be 1.30. Similar weightings for CLOCS give 1.52, which represents the 

average number of memory references to do the same work as the R2000 instructions. 

The CLOCS value is only 17% higher, showing only a small architectural advantage 

for the R2000. This difference can be reduced to only 11% using the short-circuit 

61 



implementation feature discussed in Chapter 7. 

This small comparison does not prove that CLOCS is potentially as fast as a MIPS 

R2000, but the result does provides some insight concerning the relative performance 

of the two approaches. As mentioned above, the effect of cache is difficult to estimate 

without detailed simulation data. Since the R2000 cache runs faster than the CLOCS 

memory and the R2000 main memory runs slower that CLOCS memory, I assumed no 

average difference in memory reference time. This assumption also ignores the effect 

of large numbers of tasks overflowing the R2000 cache, eliminating its advantage. 

Overall, because the analysis neglects cache and memory-latency effects, CLOCS has 

probably been given an unwarranted advantage. Another favorable assumption I 

make is that the R2000 is really not able to take advantage of the data stored in its 

32 registers and its three operand instructions, so CLOCS can perform as well with 

the same number of operations. In spite of the advantages given to CLOCS, the close 

result gives hope that CLOCS throughput performance will not be much worse than 

the R2000, and certainly will be within the factor of four mentioned above. 

6.4 Using the "Measurement and Evaluation of Al­

ternative Computer Architectures" Technique 

In the mid 1970's, Samuel H. Fuller, while working with the Army/Navy Computer 

Family Architecture (CFA) Committee, developed an approach for quantifying the 

relative performance of alternative computer architectures. The committee's method­

ology and their evaluation of nine computer architectures was published in 1977[16]. 

The criteria the CFA committee used placed great importance on servicing inter­

rupts and exceptions. The analysis method used memory transactions measured in 

bits to assess costs of these operations, and they used the resulting cost as part of 

a final weighting of each architecture's merit. This approach has been criticized by 

advocates of RISC architectures because it did not directly measure throughput per­

formance for calculations and consequently rates modern RISC machines poorly[20]. 

The analysis did not directly measure the memory bandwidth required for typical 

calculations. As a result, performance improvements from the use of cache memory 

and large numbers of registers do not help an architecture's score for this analysis. 

Instead, since the registers would have to be saved at context-switch time, the large 

number of registers in a typical RISC design would unfavorably affect the context-

62 



switch measures and ultimately degrade the final score. However, the CFA committee 

was looking for computers for ruggedized military use. By ruggedized, they implied 

computers for embedded applications such as combat information computers on ships 

or navigation and target tracking computers on aircraft. Most of the applications 

would involve real-time or near-real-time tasks. The criteria were based on their 

expected applications. 

The sections that follow explain the criteria that Fuller defined and explain how I 

assigned values for CLOCS. The last section reports the results a Fuller-type analysis 

of CLOCS and the machines considered by Fuller. 

6.4.1 Fuller's Criteria 

Fuller specified both absolute and quantitative criteria. The absolute criteria had 

to be satisfied for the architecture to be acceptable for further evaluation. The 

quantitative criteria were combined to give a relative rating. In his study, the three 

architectures with the highest composite score were further studied by programming 

and running several sample problems. 

Candidate architecters had to meet nine absolute criteria. Apparently some of 

the criteria were sufficiently vague that the CFA committee disagreed on whether 

machines met them. In the published report, two cases were unresolved, and sev­

eral were marked as questionable. The criteria are listed below, some with brief 

definitions. 

1. Virtual memory support - address translation 

2. Protection - experimental applications do not endanger other programs 

3. Floating-point support 

4. Interrupts and traps 

5. Subsetability - working computers may be built with certain subsets of fea­

tures 

6. Multiprocessor support - a test and set instruction or equivalent 

7. Controllability of I/0 -a criterion vague enough that all architectures appear 

to satisfy it 

8. Extensibility - at least one spare operation code 

63 



9. Read-only code - programs must be able to reside in read-only memory while 

they are executed 

CLOCS meets all of these criteria. Of the nine architectures that Fuller investi­

gated, only two met all the criteria without question. However, most new micropro­

cessor designs meet all of the criteria, reflecting progress in the field that has been 

incorporated in the CLOCS architecture. 

Fuller specified 17 quantitative criteria. Groups of criteria are discussed in para­

graphs below: 

Four criteria concern address-space sizes. Vi is the number of bits that can be 

addressed using virtual addresses. V2 is the number of bits that can actually be 

accessed using virtual addresses. For CLOCS, both values are 257 : 14 bits from the 

PID, 16 from the SID, 24 from the offset, and three for the eight bits per addressed 

byte. Similarly, Pi and P2 concern the physical memory. Both Pi and P2 are 235 : 

32 for the physical address and three for the eight bits per address. 

U is the fraction of the operation unassigned codes; it is 24/32 = 0.25 for CLOCS. 

CPU state size is measured by four criteria. CSi and CS2 are the size of state for 

full and subsetted architectures. Both values are 64 bits for CLOCS. CMi and CA12 

are the number of bits transferred between the CPU and main memory on a context 

switch for full and subsetted architectures. This value is 128 for CLOCS, since the 

machine automatically writes the old status word to memory and fetches a new one 

upon interrupt or trap. 

[(is assigned the value one for computer architectures that may be virtualized, 

zero otherwise. CLOCS meets this criterion. 

Bl and B2 are the usage base prior to June 1, 1976. CLOCS has no delivered 

computers. 

The number of bits of memory traffic to start an input/output(I/0) operation is 

I. From the numbers assigned for the other computer architectures, I inferred that 

no error checking is required. Therefore, to start an I/0 operation, CLOCS uses 128 

bits: one 64-bit word is fetched to get the instruction, then one 64-bit word is written 

to the memory address associated with the I/0 device. 

D is the number of bits that each instruction can directly address using only one 

base register. For CLOCS, this is 227 , representing 24 bits of address offset and three 

bits for the eight bit byte. 

L is the interrupt latency, expressed in bits transferred between memory and 
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processor. This is the same as a context switch for CLOCS (128 bits). 

Subroutine linkage efficiency is measured by Jl and J2, the number of bits required 

for a subroutine call with no parameters with and without floating point, respectively. 

6.4.2 CLOCS and Other Architectures 

To obtain a composite quantitative score, the CFA committee assigned weights to 

each category. To calculate final quantitative scores for each architecture, all values 

were normalized. Criteria concerning address space were further adjusted to obtain 

a standard deviation of 1.00. The CFA committee added this normalization of the 

standard deviation for address space measures because they did not feel that several 

orders of magnitude of address space represented several orders of magnitude of merit. 

The resulting total scores had an average of 1.00. 

I added the values for CLOCS to this calculation. This extra architecture required 

recalculating all the averages and standard deviations for each of the criteria. This 

recalculation changed the absolute values, but not the relative order of the composite 

scores. Table 6.2 presents the criteria values and final composite scores for CLOCS 

and the top three scoring original architectures. The Interdata 8/32 had the highest 

original score, followed by the IBM S/370 and the PDP 11. CLOCS scores consid­

erably better than the other architectures because of significantly better values for 

address space size and context-switch metrics. The advantage in these areas was 

partially offset by the large word size since all of these metrics were based on the 

number of bits transferred between the CPU and main memory. The only areas 

where CLOCS scored poorly were I/0 and installed base. The I/0 score was not too 

bad, and the weights for installed base were relatively low. 

All in all, this analysis shows CLOCS to be a good potential architecture for 

military computers. 

6.5 Summary 

The quantitative analyses of CLOCS show good potential. The machine is not dif­

ficult to program. Memory utilization is high, but not worse than about two times 

that of other machines. The simple comparison of CLOCS with the R2000 running 

Timberwolf shows that CLOCS may perform competitively under some conditions. 

Finally, a detailed evaluation method (the Fuller-type analysis) shows CLOCS to 
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Quantitative Criteria Interdata DEC 
Criteria Weights IBM 370 8/32 PDP-ll CLOCS 

V1** 0.0433 27 27 20 57 
V2** 0.0529 27 27 19 57 
P1** 0.0612 27 27 25 35 
P2** 0.0554 27 27 24 35 
u 0.060 0.371 0.355 0.043 0.250 

CS1 0.0466 1344 1632 1168 64 
CS2 0.0371 576 576 144 64 
CMl 0.0596 3168 1120 736 128 
CM2 0.0450 1312 32 480 128 

K 0.0558 1 0 1 1 
B1 0.0313 17300 185 14700 0 
B2 0.0254 16000 14 3ll 0 
I 0.1238 64 16 16 128 

D** 0.1025 15 27 19 27 
L 0.0917 6192 560 ll2 128 
J1 0.0629 1904 2368 1040 1024 
J2 0.0475 ll36 1280 400 1024 

New Score 1.00 1.30 1.28 2.39 
Old Score 1.36 1.68 1.43 

** These values are of the form 2X where X IS the md1cated data. 

Note: Data for the ROLM AN/UYK-28, UNIVAC AN/UYK-7, SEL 32, Burroughs 
B6700, UNIVAC AN/UYK-20 and Litton AN/GYK-12 were used for the 

computation but the results are not shown here to conserve space. 

Table 6.2: Results of a Fuller-Type Analysis 
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have excellent potential for applications such as those run on military computers. The 

next chapter addresses implementation designs to assess whether a CLOCS computer 

could be feasibly built. 
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Chapter VII 
Implementation of the CLOCS Architecture 

During my research, I investigated several different implementations of the CLOCS 

architecture. This chapter begins by differentiating architecture and implementa­

tion and presenting common implementation techniques. As with Chapter 5 on the 

MMU, this chapter will describe the chosen implementation design, and some of the 

discarded designs. 

I attempted to design implementations reasonable for a microprocessor realized in 

a technology that could place one million transistors of random logic on a single chip. 

The major assumption was that the CPU could accomplish just about anything in 

the time required for a memory operation. This assumption is not completely valid; 

for example, a floating-point multiply in one cycle is quite challenging. However, for 

the purposes of this research, these assumptions will give sufficiently accurate timing 

results, because long operations are infrequent. 

This chapter begins with an explanation of the purpose for spending the research 

time to create implementations. A tutorial on Central Processing Unit (CPU) im­

plementations follows. The next section presents the chosen implementation and 

defines the operations added to ease the task of implementation and simulation. The 

remainder of the chapter deals with discarded implementation designs. 

7.1 Why Implement CLOCS? 

Since we are dealing with computer architecture research, one might ask "\Nhy im­

plement the CLOCS machine?" (By implement I mean design a computer system in 

enough detail to estimate the time required to execute a program.) A radically different 

architecture must perform well in the real world in order to be useful. The archi­

tecture does not specify any timing information, so a more detailed definition of the 

machine is required that allows reasonably accurate estimates of program-execution 

performance. 
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An implementation is a specification of a computer at a lower level than architec­

ture, but at a higher level than a realization. Architectures give no timing information 

at all: they simply describe the way the machine will function, i.e. what programs 

will run and what answers they will produce. An architectural diagram consists of 

functional units selected for ease of understanding and with no regard for the actual 

possibility building a system. An implementation breaks the functions up enough 

that reasonable relative-timing estimates may be made for each part. The realization 

will specify the physical layout and the types of the parts well enough for precise 

timing to be determined. Blaauw defines these three levels in [2] thus: 

The design of digital systems can be viewed from three levels. The highest 

level concerns the architecture, which specifies the functional behavior of 

a system. The lowest level concerns the realization, and deals with the 

components from which a system may be constructed. The middle level 

of systems design concerns the implementation, or the logic structure that 

embodies the architecture and utilizes the logic of the components of the 

realization. 

In a sense, even the highest level architectural (or functional) simulator can rep­

resent an implementation. However, such an implementation may not be economical 

or buildable. If an implementation requires the memory system to complete three 

reads and one write each cycle, the realization (the actual building of the system) 

will be very expensive and probably very slow. Multiported memory systems with 

four or more ports have been implemented, particularly to support multiprocessor-, 

mainframe-class machines[l], but memory system of this kind would not be appro­

priate for a single microprocessor. When more than two memory ports are used, 

handling collisions efficiently becomes much more complicated, and I estimate that it 

would add too much cost to a CLOCS system to justify the anticipated performance 

improvement. 

The implementation of CLOCS must represent a machine that can be built at 

reasonable cost. The desired implementation must strike a balance between economy 

of potential realizations and performance. We want to compare CLOCS to real-world, 

successful, commercial computers that are realized from an implementation resulting 

from such a balance. 
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7.2 What Does an Implementation Look Like? 

To reduce the number of objects that the designer must handle, the most basic logic 

components are grouped to form functional units. The designer may then connect 

(describe the interaction among) instances of these units to perform the functions 

required by the architecture description. Since the functional units are formed from 

basic logic components, the implementation describes how a machine may be realized 

(built). 

What are common implementation functional units? The functional units have 

well defined inputs and outputs. The functions they perform are easily understood 

or are commonly required, and the time required for each of them to complete its 

function is easy to determine. In summary, the blocks are big enough that the 

designer may describe the machine using them but small enough to permit easy 

timing estimates and realization. 

Common functional units are: 

• Registers 

• Register files 

• Read-only memories 

• Small read/write memories 

• Adders 

• Multipliers 

• Data path for arithmetic/logic units 

• Finite-state machines 

• Combinational logic 

These devices can be realized in several different ways. Also, some of the devices 

can be composed of others. For example, an adder may be made up of pieces of 

combinational logic. Also, the designer may invent new functional units comprised 

of existing ones to minimize the number of objects he must handle. 
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7.3 What Implementation Techniques May Be Used? 

There are some very well understood and frequently used techniques of implementa­

tion. These ideas certainly help the implementation of CLOCS. 

7.3.1 Pipelining 

Pipelining describes a type of concurrency with serial restrictions. In this case, it 

means that more than one instruction or operation is in progress. The different 

operations must be at different stages of completion. For example, a CPU may have 

a four-stage pipeline: 

Stage Function 

First Decode Instruction i + 3. 

Second Fetch Operands for Instruction i + 2. 

Third Calculate Result for Instruction i. 

Fourth Store Result for Instruction i. 

Pipelining is a common way of obtaining parallelism in computing because it has 

fewer problems than other types of concurrency. One disadvantage of pipelining is 

that the system will not attain theoretical performance because unpredictable discon­

tinuities in the instruction sequence will require the pipeline to be (at least partially) 

refilled. The most common form of discontinuity of the instruction sequence is a 

conditional branch, which occurs approximately every eighth instruction during the 

execution of most programs. If the pipeline does not handle unconditional branches 

efficiently, the discontinuities occur more frequently, since branches make up 20% of 

all instructions[26, 34, 20]. Another source of discontinuity is a context switch, but 

that occurs at a considerably lower rate for most applications. More importantly, to 

execute programs correctly this technique must work around two significant difficul­

ties: control of the pipeline and data dependencies. 

First, advancement of instructions through the pipeline must be appropriately 

controlled. If all stages can always complete their tasks in a constant amount of 

time, then the pipeline may be advanced at that rate. However, if the amount of 

time a stage needs to complete its work depends on the instruction it is processing, 

communications will be necessary to determine when to move the instructions down 

the pipeline. Providing the interlocks to control the pipeline in this circumstance 

may add much complexity to the CPU and slow down execution. 
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The second problem is caused by data dependencies. In the pipeline hypothesized 

above, consider what happens if the first instruction calculates a value, and the second 

instruction then uses it? The second instruction will try to fetch the value at the same 

time as it is being calculated, and the first instruction will not get around to storing it 

until later. The data-dependence problem is sometimes made a visible feature of the 

architecture; in such a case it is up to the programmer or the compiler to avoid data 

dependency problems. Implementations of architectures that conceal the problem 

commonly use one of two solutions: scoreboarding (make the fetch stall until the 

data is written) and shortstopping (taking the answer directly from the calculation 

step to the fetch step). Note that scoreboarding leads to pipeline interlock problems, 

and shortstopping adds considerable complexity to the CPU[36, 3, 31]. 

In spite of the difficulties, pipelining is effective. If the architecture avoids or min­

imizes the difficulties, a good four-stage pipeline can approach a four-fold increase 

in peak throughput performance. Most RISC computer designers carefully consid­

ered pipelining as they selected features for their architectures; perhaps the greatest 

contribution of the RISC design methodology was easing of pipelining. 

7.3.2 Data Caching 

Frequently a program will access the same piece of data more than once, with very 

little intervening time, as in x <--- x 2 • The data dependencies discussed in the pipeline 

section above occur often. If this frequently used data happens to be inside the CPU 

when it is needed, delays from accessing the memory system may be avoided. 

Keeping data in the CPU is a technique dating back to von Neumann[4]. Registers 

are the most frequently used example of that technique. Unfortunately, the use of 

registers is the main architectural feature that CLOCS eliminates. 

Other related caching techniques are possible, though. For example, several data 

values could be stored in the CPU as they are calculated. When the value is needed, a 

memory reference would be avoided. The space of temporary data could be managed 

using approximations to Least-Recently-Used discarding algorithms that are used in 

virtual-memory systems. Unfortunately, this approach would add to complexity and 

increase CPU size. Also important, the running time of a program depends on the 

state of this temporary data area. Accurately predicting the time for a program to 

run is important to many real-time applications, so they would not be able to use 

the improved performance from this technique. 
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It may be acceptable to use data that is already in the CPU. Shortstopping solves 

the data-dependency problem and eliminates a memory reference. Since shortstop­

ping normally refers to using the data as it comes out of the execution unit, I use 

the term short-circuiting to describe the very similar process of using data in a CPU 

register to avoid a memory reference. This technique may be successfully used in 

implementations of CLOCS if it can be accomplished without too much added com­

plexity and if there is little variability of program performance. For example, if only 

the output of the Alu is used for short-circuiting, only the result from one instruction 

is lost when a program interruption occurs. The difference in performance is a max­

imum of one memory reference for each interruption, so performance differs greatly 

only if a program is interrupted after every instruction (which is an unlikely event). 

7.3.3 Multiported Memory 

One way for an implementation to improve performance is to allow more than one 

access to memory at a time. For example, two operands may be needed. The imple­

mentation could include two memory-address busses and two memory-data busses. 

Several designs exist to allow simultaneous access to different memory locations. 

Dual-ported memory chips exist. Also, the memory system may be made up of 

several banks of memory. As long as the accesses go to different banks, such a sys­

tem can easily handle two simultaneous accesses. The more banks, the lower the 

chances of the same bank is being accessed by both busses. Very little added com­

plexity is required to handle the case of both busses, accessing the same bank, so 

an interleaved, two-ported memory system may be a very economical performance­

improvement technique. 

7.3.4 Posted Write 

One technique of improving memory system performance is posted write[22]. With 

this technique, the memory system is responsible for completing a write operation; 

the CPU assumes that the write has completed correctly and immediately continues 

with the next instruction. This technique is very effective in systems with latency 

in the memory system, because completing the write does not interfere with instruc­

tion execution. However, handling exceptions can be quite complicated, because if 

the write fails some time after an instruction completes, the effects of subsequent 

instructions may have to be undone. However, if it does not take too long to iden-
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Figure 7.1: CLOCS Implementation Overview 

tify exceptions or the CPU does not perform many operations that must be undone, 

posted write is an inexpensive way to make the memory appear much faster to the 

CPU than it really is. 

7.4 Chosen Implementation 

The chosen implementation used to produce the reported simulation results reflects 

the lessons learned from the previous attempts (discussed later in this chapter). The 

chosen implementation resembles a hard-wired CISC (Complex Instruction Set Com­

puter) more than a pipelined RISC. The CPU processes only one instruction at a 

time. Combinational logic units perform each minor required function and the units 

communicate asynchronously. The state of the instruction resides in four sets of reg­

isters that are connected by the logic units. The assumption that activities inside 

the CPU are relatively fast compared to memory operations justifies our expectation 

that this implementation accurately estimates the performance of a buildable system. 

7.4.1 Implementation Overview 

Figure 7.1 is a top-level diagram of the chosen implementation. Four sets of 

registers are in the CPU, and they contain the instruction, the two operands, and 

the result of the operation. The CPU communicates through the register sets with 

the MMU, and the MMU in turn communicates with the memory system. 

Each register set in the CPU contains data, but the address associated with the 

data. For example, the address part of the instruction register is actually the status 

word (which includes the program counter). Also in each register set are the MMU 

command and the status of the last MMU command. 

The registers are connected by functional units composed of combinational logic. 
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These units read fields in the instruction and the MMU status, and they modify the 

MMU command and data fields. These functional units also communicate directly 

with each other. Because the functional units are stateless and communications are 

asynchronous, several functions might be accomplished in a single cycle. For example, 

an immediate value can be assigned to a full word in one clock cycle. The Operand 1 

immediate conversion, Operand 2 address calculation, and Alu action (a simple copy 

in this case) all follow rapidly from instruction decode because no memory access is 

required. 

The registers sets are 

• Status word (with program counter) and instruction 

• Operand 1 address and operand 

• Operand 2 address and operand 

• Alu result address and result 

The address registers are larger than an address, because they hold other information. 

This information includes all of the data normally in the status word, such as the 

Process Identification (PID), and flags identifying the type and validity of the address. 

These registers are read and written by nine functional units: 

Direct I Get Operand 1 immediate, or first memory fetch. 

Direct2 Get Operand 2, first memory fetch. 

Indirect! Get Operand 1, second memory fetch. 

Indirect2 Get Operand 2, second memory fetch. 

Alu Calculate results and write to memory. 

Check Check for exceptions and cause interrupts. 

Mmu Handle memory and memory management operations. 

Short-circuit! Short-circuit Operand 1 memory fetches. 

Short-circuit2 Short-circuit Operand 2 memory fetches. 
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These functional units (including Alu and mmu) do not have any state. The terms 

ALU and MMU refer to higher level components which in some implementations have 

state. For example, the MMU contains the MMU registers. 

The interrelationship between the registers and functional units for the CPU side 

of the registers is shown by Figure 7.2. In this figure, the register sets are shown as 

two rectangles: the address and the data. The registers both contain data visible 

to the architecture, such as operands and addresses, and they also hold the status 

and commands for the MMU. The memory and exception handling portions of this 

implementation are shown in Figure 7.3. The same registers appear, but the figure 

shows their relationship with the MMU, memory, and short-circuit functional units. 

Each of the short-circuit functional units continuously compares the address for 

their operand to the address for the AL U result. If during operand fetching the ad­

dresses are the same, the short-circuit unit transfers the data to the operand register. 

It also cancels the MMU command, which is some form of read operation, and in­

dicates in the operand status field that the MMU has successfully fetched the data. 

This method of short-circuiting does not require any special logic in the get-operand 

units (Directl, Direct2, Indirectl, and lndirect2). 

7.4.2 Practicality of this Implementation 

This implementation is somewhat more aggressive that the Two-Instruction Pipeline 

model. For the move instruction example mentioned above, about 15 gate delays 

would be required per clock cycle. Given the assumed realization technology, this 

would be attainable and would not seriously imbalance the CPU and memory system 

speeds. 

7.4.3 Performance Assessment 

This implementation attains· an average of 2. 7 cycles per instruction, a reasonable 

number for CLOCS. This instruction issue rate uses every memory cycle and is able 

to avoid another 20% of potential memory accesses through short-circuiting. The 

implementation is robust and provides for the addition of features. For example, 

experimental addressing modes and multiport memory were easily added to this 

implementation. 
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7.4.4 Implementation Feature Additions 

The compiler that was used as part of the simulation system (see Chapter 8) as­

sumed the availability of certain operations that were not likely to be supported by 

most implementations or were not part of the CLOCS architecture. The general 

design philosophy had been that such cases would be handled by operating-system 

routines. For example, operation codes were reserved for floating-point arithmetic. 

If the CPU did not support these operations, it would generate an invalid instruction 

interruption, which the operating system could catch. The operating system then 

could call a subroutine to emulate the unimplemented instruction. This approach 

was justified because typical programs infrequently used these operations. For ex­

ample, no floating-point instructions appear in the timed portion of the D hrystone 

benchmark program. However, writing and debugging the operating-system han­

dling and emulation routines would not be an easy task. The value of producing 

these routines would be very low to this research effort because these operations are 

relatively unusual and the technique of emulating unimplemented instructions is well 

understood(3]. Instead, I simulated all operations of the architecture and added some 

new ones using spare operations codes. 

Floating-Point Operations 

Although the important benchmark programs are integer programs, they call sys­

tem subroutines that contain floating-point operations. Rather than attempt to port 

IEEE floating-point routines to CLOCS, I just support all of the floating-point in­

structions in the simulator. I consider implementing floating-point arithmetic in one 

memory cycle to be unreasonable, especially for divide, but my simulator does this. 

This unreasonable feature does not affect the benchmark performance, though. It 

only simplifies the research effort. 

Conversion Operations 

The GNU C compiler expected size conversion instructions and instructions to con­

vert between integer and floating point. Size conversions for integer numbers were 

easily emulated in CLOCS assembler (and will affect final benchmark performance). 

However, size conversions for IEEE floating point are more complicated, as are con­

versions between IEEE floating point and fixed point. Since these operations would 

not affect benchmark performance, and were infrequently used, spare opcodes were 
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assigned and the simulator modified to handle the new instructions. This saved the 

time otherwise necessary to write subroutines in CLOCS assembler to accomplish 

these functions and to modify the compiler to call the subroutines. 

7.5 Discarded Designs 

As soon as architecture definition neared completion, I considered several imple­

mentation designs. These implementations were educational, but did not satisfy 

the requirements. They were discarded because they did not provide timing esti­

mates for systems that could be built economically. Either the individual functional 

units were too complicated and expensive, or the designs were too wasteful of sys­

tem resources (some expensive functional units were underutilized). One design, the 

Two-Instruction Pipeline, was more promising, so a simulator was created for this 

implementation design; however, it too was discarded because it was too inefficient. 

7.5.1 Functional 

The first and most obvious design was a functional (or architectural) simulator. Part 

of an architectural simulator was actually built to support C language compiler work. 

It only simulated CPU operation. A complete simulator, able to run the designated 

benchmark programs, could have been provided by adding memory management and 

instrumenting the design. Such a simulator could have provided data on the number 

of instructions executed. The biggest flaw with this approach is the implicit assump­

tion that processing each instruction is the most important and time-consuming task, 

and that counting the number of instructions executed accurately estimates the time 

required to run the program. This approach explicitly assumes that the number 

of memory accesses does not affect the running time of a program, clearly a false 

assumption. In reality, the memory accesses drive performance on this memory-to­

memory machine. Even with further additions to the simulator to count memory 

accesses, this enhanced simulator could not be used to investigate realistic memory 

systems or describe a system that could actually be built. As a result, the functional 

design was scrapped in favor of an implementation centered around memory access. 
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7.5.2 Seven-Instruction Pipeline 

To more effectively attack the memory-system performance problems, the next imple­

mentation design isolated each type of memory access. An instruction pipeline would 

hold different instructions, and one type of memory operation (or AL U operation) 

would be accomplished at each stage. 

The pipeline stages were: 

Stage Function 

First Instruction Fetch for instruction i + 6. 

Second Operand One Address Fetch for instruction i + 5. 

Third Operand One Data Fetch for instruction i + 4. 

Fourth Operand Two Address Fetch for instruction i + 3. 

Fifth Operand Two Data Fetch for instruction i + 2. 

Sixth AL U Operation for instruction i + 1. 

Seventh AL U Result Operand Store for instruction i. 

In the second and fourth stages addresses were fetched during indirect addressing. 

Ideally, there would have been work to do in each of the seven stages. However, many 

CLOCS instructions do not use indirect addressing for both operands, and some use 

immediate operands or only one operand. As a result, in several stages there was 

nothing to do. 

The idea of this design was that the Memory Management Unit would have six 

ports, one for each of the pipeline stages that access memory. The MMU would then 

service all of the ports that had active requests. If the MMU could not perform 

all required operations, it would stall the pipeline and take any required additional 

cycles to satisfy the remaining memory-operation requests. 

This design better supported memory as the limiting component. Also, because 

it had a stage for each function and accessing memory once would complete each 

stage's work, no interstage interlocks were required. Note that I again assumed that 

the ALU could complete its work in one memory cycle. 

The design had three major deficiencies. First, this design did not benefit much 

from the very long pipeline because of frequent flush and refill of the pipeline. 

Branches could be expected every four or five instructions, and, because the CLOCS 

architecture contains no special operation code for unconditional branch, even un­

conditional branches would cause some pipeline difficulties. As a result, keeping the 

pipeline full would have been difficult. The expense of all the pipeline stages would 
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have been hard to justify, since, for a typical set of seven instructions, many of the 

stages were idle. For example, if the first operand was an immediate constant, the 

second and third stages had no work to do. The third problem was the worst: the 

data dependencies caused serious problems in this implementation. If, for exam­

ple, the pipeline stage that was processing instruction i + 6 required a data address 

calculated by instruction i + 5, the result would not be available for four more ad­

vances of the pipeline. Although techniques exist to solve these problems, in general 

those solutions violate the premises of the CLOCS architecture and are extremely 

expensive. For example, CRISP has a deep instruction pipeline and stores decoded 

instructions. However, when control transfers to another section of code as the result 

of an unconditional branch, significant delays occur as the pipeline is refilled[lOJ. 

Although this implementation scheme was discarded because the pipeline was too 

long, instruction pipelining has been a very successful technique for other computer 

architectures. Consequently, that technique could not be totally ignored, and the 

next design was also pipelined, but with fewer stages. 

7.5.3 Two-Instruction Pipeline Overview 

Since memory accesses were expected to limit CLOCS performance, I wanted to en­

sure that there was always memory traffic waiting. One way to make this more likely 

was to have two instructions in the CPU, both of which were being processed continu­

ously. I called this the Two-Instruction Pipeline Implementation. An implementation 

level simulator was written, and small test programs were run on this simulator. 

I broke up the tasks for instruction processing and assigned them to finite-state 

machines. The two instructions in the CPU were labeled a and b. Stored with each 

instruction were the status word (which includes the program counter) and each of 

the two operands and the address for each of the two operands. I referred to the 

combination of status word, instruction, operands, and addresses as a line. This was 

a two-stage pipeline, so there were two lines: a line and b line. 

The finite-state machines were autonomous and communicated via clocked control 

signals. The machines and their functions were: 

Nextpc Calculate the next instruction address. 

Geti Fetch the next instruction. 

Opndl Get Operand one. 
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Opnd2 Get Operand two. 

Alu Calculate the result, including branches and store results. 

Mmu simulate MMU function 

In this design the Memory Management Unit had four ports, and these ports 

connected to the finite-state machines of the same name in the CPU: 

Geti Fetching instructions 

Opndl Fetching Operand 1 or its address 

Opnd2 Fetching Operand 2 or its address 

Alu Storing calculated results 

The Memory Management Unit serviced the ports in the order listed above. It 

completed only one memory operation per cycle. 

Nextpc calculated the program counter, then activated Geti to fetch the instruc­

tion. Geti then signaled the operand-fetching units ( Opndl and Opnd2) 

Opndl and Opnd2 filled in the operand registers in the a line. During an indirect­

addressing-mode memory reference, the operand-fetching unit deposited the address 

temporarily in the operand register while it conducted the second memory fetch to get 

the actual operand. Before attempting to get an operand from memory, these func­

tional units checked the operand address for each operand in the b line. If either of the 

b line operands had the same address, the fetching unit copied the corresponding data 

instead of generating a memory reference. One additional complication arose if the 

b line Operand 2 contained the desired data. In that case, the operand-fetching unit 

had to check that the Alu had completed its calculations, and that the correct data 

was actually in the register. Using the data already in the CPU instead of fetching 

it from memory was called Short-Circuiting since it short-circuited the memory-fetch 

requirements. I suspected the memory savings was valuable, because many times a 

calculated result would be used in the next instruction, and occasionally the same 

value for Operand 1 would be reused. 

The Alu Unit performed the operation specified by the instruction in the b line 

instruction register, using the b line operands as inputs, placing the result in the b 

line Operand 2 register, and requesting the Memory Management Unit to write out 

the data if required. 

83 



Key: 

Register 

line a 

line b Status 

Note: MMU connects to 
Geti, Opndl, Opnd2, and 
Alu Functional Units 

Figure 7.4: Two-Instruction Pipeline Implementation 
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Figure 7.4 shows the organization of the two-stage pipeline implementation. The 

memory system is not shown in this diagram because of the numerous connections. 

With short-circuiting and the MMU, there were eight additional connections. 

This design was a conservative implementation. The utilization of the memory 

management ports was reasonable, and the realization of each of the finite-state 

machines would have been easy. 

7.5.4 Simulation Results and Conclusions 

When the simulation program was written, I ran small test programs through it. 

The simulation had a clock that ran at the memory system access rate; one memory 

access could be completed in one clock cycle. I was appalled at the poor performance. 

Instructions' execution times averaged over ten clock cycles. The poor performance 

was the result of interlock propagation delays. Because the units were simulated 

as state machines, communications had to wait for clock boundaries. Consider the 

example of a fetch of Operand 1. The MMU fetched the operand and signaled that the 

data was ready. Then the Operand 1 Unit signaled to the Geti Unit that the operand 

was now ready. Then the Geti Unit signaled the Alu Unit to begin work. As a result, 

the data sat around for two extra clock cycles without any work accomplished on it. 

To improve performance, a different control scheme would have been required. 

Short-circuiting was frequently used for Operand 2; the value calculated in one 

instruction was used in the next instruction. On the other hand, none of the programs 

I simulated had instructions that used Operand 1 from the previous instruction. From 

this, I concluded that Short-circuiting was useful only for Operand 2, the result of 

the previous instructions calculations. 
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Chapter VIII 

Simulation Programs and Results 

To find out how an implementation performs, we use a set of programs that make 

up a simulation system. These programs compile C language programs into CLOGS 

assembly language, assemble programs into CLOGS object modules, and simulate 

running the modules on an implementation. Other parts of the simulation system 

are scaffolding programs such as debuggers, and library routines for common tasks 

such as printing. This simulation system is described in the following section. To 

obtain interesting results from the simulations, we need some test programs. Short 

programs are interesting because they can be easily understood, but a better indicator 

of throughput performance is the Dhrystones benchmark program. The second sec­

tion of this chapter describes these benchmark programs. The third section analyses 

the results of the simulations. The final section uses the results to compare a 16Mhz 

CLOGS computer to a DECStation 3100, and from that characterizes applications 

better suited to CLOGS. 

8.1 Simulation System Description 

All of the simulation programs are written on a Sun 3/60 running Sun OS. Programs 

are written in C language, Flex (a Lex-compatible regular-expression language), or 

AWK. These programs are described in more detail in Appendix A, but following 

are brief descriptions of the compiler, the assembler, the simulator, scaffolding, and 

library routines. 

8.1.1 GNU C Compiler 

Version 1.35 of the GNU C language compiler has been ported to generate code for 

CLOGS. The GNU C Compiler(GCC) is a modern and flexible compiler that performs 

several different types of optimization. I selected it because of its high reputation and 
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the fact that many people within the research community were working to improve 

it. The compiler is available free from the Free Software Foundation and may be 

freely distributed. 

The major part of the compiler unique to CLOCS is contained in the files "md" 

and "tm.h." The "md" file is a machine description written in a Lisp-like notation 

describing the architecture. Each entry describes an operation and the operand 

specifications, and the entry includes a template for the corresponding assembler 

instruction. Functions not supported by the target architecture may be simulated 

by entries defining expansions into two or more operations that are supported. For 

example, CLOCS does not have a compare instruction. Instead, compare is expanded 

into move and subtract instructions. Peephole optimization may also be specified 

to combine multiple operations into another that is supported by the architecture. 

Although the description language is powerful, it is aided by the ability to use C 

language subroutines in the file "aux-output.c." For CLOCS, this file is only 48 lines, 

but it contains a subroutine that greatly simplifies the "md" file. The"tm.h" file 

is a C language header file containing machine-dependent macro definitions. This 

file describes the machine's registers and provides C language code for tasks such 

as checking address validity and producing assembly language for function prologues 

and epilogues. 

Other than the configuration files described above, other portions of the compiler 

required modification. The support for 64-bit integers is not always correct. The 

compiler also makes some incorrect assumptions about the addressing capabilities of 

the target machine. Also, version 1.35 of GCC has several unnecessary restrictions 

concerning data-object sizes. For example, the type short int must be one-half the 

word size. I provided the corrections for these problems to the maintainers of GCC, 

and version 1.36 of the compiler includes the corrections. 

Another facet of the compiler work is noteworthy. The vast majority of data 

references are to dynamically assigned storage locations on the stack. In order to ad­

dress those locations, the programs require storage locations whose address is known 

at compile time. I solve this need by reserving about 64 words in the data space 

for address and scratch space calculations. I then specify to the compiler that these 

are registers and let the GCC register allocator manage them. Some locations are 

reserved for parameters and system pointers. Unfortunately, because C is a recur­

sive language, these registers (really fixed memory locations) cannot be allocated 

globally to avoid saving them on subroutine calls. Instead, the prologue for each 
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function copies the contents of fixed locations that are needed onto the stack. At 

return, these values are restored so the calling program will execute properly. This 

adds significant overhead to procedure calls. For hand-optimized, assembler-language 

subroutines that do not call other subroutines, such as "strcpy," this extra overhead 

may be avoided. Adding optimization to GCC to use fixed-storage locations more 

efficiently is possible, but potentially very difficult. 

The compiler includes a macro-language preprocessor that is used without modifi­

cation. The compiler produces assembler code, but does not include an assembler. A 

working versions of GAS, the GNU Assembler, was not available in time to support 

CLOCS research. 

8.1.2 Assembler 

The CLOCS Assembler ( CASM) is a combination Flex and C language program. Flex 

is a regular-expression language translator compatible with the UNIX lex program. 

It was written by Vern Paxson and contributed to the University of California at 

Berkeley. Flex extends the capability of lex, it translates programs faster, and the 

resulting programs run faster. CASM contains about 400 lines of regular expression 

rules and about 1150 lines of supporting ·c code and header files. 

The assembler takes input from all of the specified files and produces a CLOCS 

load module. The CLOCS assembler is limited in that all symbols are global. GCC 

reuses data and branch address symbols, so the assembler cannot handle more than 

one GCC-produced assembler-source file. In order to avoid writing a linker, and still 

compile subroutines separately using GCC, an extra processing step was added to 

make the GCC-produced labels unique to each assembler file. 

8.1.3 Implementation-Level Simulator 

The CLOCS implementation-level simulator (CAS) is a C language program with 

2000 lines of code and 800 lines of supporting header files. The program consists of 

a top-level main program and several subroutines. 

The main program calls memory and memory-management-unit initialization rou­

tines, which in turn call a program to load the object module to be simulated. The 

main program then loops, calling modules that simulate each of the functional units 

of the implementation, a subroutine to simulate the MMU, and a statistics-gathering 

routine. After the simulated program terminates or encounters an error condition, 
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the main program calls a statistics-printing routine and then exits. 

A separate subroutine simulates each of the functional units shown in Figure 7.2. 

Static variables in the main routine simulate communication between the functional 

units. The order in which the main program evaluates the variables and calls the 

subroutines simulates the way in which asynchronous signals propagate through the 

functional units within one machine cycle. 

At the beginning of a cycle, if the instruction register is newly updated from 

memory, modules simulating direct-addressing for operands one and two are acti­

vated. The direct addressing modules will set a flag if indirect addressing is required. 

If indirect addressing is required and the operand register has been updated, then 

modules simulating indirect addressing are activated. When the operands are ready, 

a module simulating the arithmetic-logic unit (ALU) is activated. 

When CAS runs, several parameters govern the simulation. The MMU uses some 

of these parameters to set the number of commands that may be executed each cycle 

(equivalent to the number of memory-system ports), and the latency for read and 

write operations. CAS also has a debug level that can be set to select: no instruction 

tracing (just end-of-run statistics), minimal instruction tracing, complete instruction 

tracing, or maximum information (only useful for debugging the simulator). 

The Sun 3/60 is efficient at running these simulations. A simulation of 5000 cycles 

without producing trace output only takes about 5 seconds. 

8.1.4 Scaffolding 

The simulation system includes several small programs to accomplish mundane tasks. 

I refer to these programs as scaffolding because they are useful for getting the job 

done, but have little use after everything is put together. 

CLOCS Module-Dumping Routine 

The CLOCS Module-Dumping Routine, CDUMP, loads a CLOCS program into mem­

ory, then displays the symbol table, data area, and a disassembled version of the 

program text. Initially this program was used for debugging the assembler, but it 

proved most useful for producing the symbol table to analyze simulation traces. 
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Address Generation 

To aid in debugging from simulation traces, a seven-line AWK program reads CLOCS 

assembler code and writes it out with a hexadecimal address printed at the beginning 

of the line. This can easily be done by the assembler, but there is no other reason 

for the assembler to produce listings, and the AWK program is faster to write and 

debug. 

Symbol Reference Debugger 

A similar debugging aid is post hoc symbol identification in the simulation traces. 

A two-line AWK program takes the symbol-table dump produced by CDUMP and 

generates a new AWK program to identify and print symbols in simulation traces. 

This works best when the output of the simulator is piped directly to the label-adding 

AWK program, which then writes it to disk for later analysis. This procedure greatly 

slows down simulation, extending the time to simulate 5000 cycles to about two 

minutes. However, two minutes is an acceptable run time for a simulation (hardly 

time to get a cup of coffee). 

8.1.5 Library Routines 

The Dhrystone benchmark program expects several standard library routines to be 

available. Some programs are written in C and compiled to CLOCS assembler lan­

guage, then hand optimized; others were directly written in CLOCS assembler lan­

guage. The C and CLOCS assembler source language programs are listed in Ap­

pendix B. 

Important to the Dhrystone performance were the subroutines "strcpy" and "str­

cmp." These routines copy and compare character strings, respectively. They opti­

mize well to a few lines of assembler. 

The routine "malloc" allocates dynamic storage. The CAS simulator initializes 

a fixed storage location (default operand segment, offset FFFEOO) with a pointer to 

an area of free storage, and the "malloc" subroutine that was written in CLOCS 

assembler language maintains the pointer and returns the appropriate value to the 

calling routine. 

The routines "times," "printf," and "scanf'' are null or very simple routines. Their 

functions are not required to obtain results. 
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8.2 Benchmark Programs 

8.2.1 Short Test Programs 

A group of very short test programs proved to be useful during simulation-system 

development, so their performance is reported in Appendix A. "Assign.c" is a simple 

assignment of a 32-bit integer. "Lloop.c" is a simple loop executed 50 times. "Sub.c" 

is a single subroutine call. These programs contain common constructs, and they are 

useful to evaluate memory-system performance. 

8.2.2 Dhrystone 2.1 

The Dhrystone benchmark is a synthetic benchmark program that measures integer 

performance of computer systems. The number of times that the measured portion of 

the benchmark program may be executed per second is the Dhrystones the architec­

ture may produce. First published in 1984[39], it has been revised by the author to 

prevent unfair optimizations. For this study, I used version 2.1, dated May 25, 1988. 

This version consists of two files of C code ( dhry _l.c and dhry ..2.c) and a header file 

dhry.h. 

Although I do not modify those files, I do modify the behavior of the prograin by 

writing specialized library functions for "scanf." My "scanf'' routine always returns 

a value of one. Thus the program always runs through the timed loop only one time. 

The library routines "times" and "printf" do not do anything either. I measure 

the performance of CLOCS using the Dhrystone benchmark program by measuring 

the number of cycles between calls to "times," then dividing that number into the 

estimated clock rate for CLOCS of 16 megacycles per second. 

8.3 Simulation Results 

Detailed simulation results are presented in the tables in Appendix A. Usually be­

tween 2. 7 and 3.0 memory references per instruction are required. 

8.3.1 Instruction Mix 

As shown in Table 8.1, the Dhrystone program uses only 10 of the available 24 

instructions. The unused instructions are mostly floating-point and system-control 
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Operations Count Percentage 
ADD 489 27.27 
SUB 183 10.21 
MUL 4 0.21 
DIV 1 0.06 
OR 1 0.06 

LEFT 11 0.61 
RIGHT 2 0.11 

RIGHT A 12 0.67 
MOVE 787 43.89 

B 303 16.90 

I Total I 1793 I 100.00 I 
The Dhrystone program did not use the following operations: 

REM, AND, XOR, ROTATE, TRP, LOB, 
FADD, FSUB, FMUL, FDIV, FIX, FLOAT, or SIZE. 

Table 8.1: Percentage of Operations for Dhrystone Benchmark Program 

instructions. The unused arithmetic or logical instructions are not commonly used 

operations in any event. The high percentage of move instructions is surprising. Most · 

of these moves are associated with subroutine calls. The called program is moving 

the contents of some commonly used addresses to the stack so it may use them as 

temporary storage locations. Using these locations as registers incurs some procedure­

call overhead, but greatly reduces address computation and indirect addressing. 

The performance of CLOCS benefited from the short-circuiting feature in the 

implementation. By using the value remaining in the AL U output register instead of 

fetching it from memory, the program saved 13% of memory operations. Table 8.2 

provides specifics on Dhrystone memory operations. Some programs ( "lloop.c" and 

"quicksort.c") realized savings of 30% with short-circuiting. 

With the best appropriate compiler optimizations, the Dhrystone benchmark pro­

gram required 768 instructions in the timed portion of the program. With a simple 

memory system, those instructions completed in 2220 cycles. At 16Mhz, 2220 cycles 

per Dhrystone is 7207 Dhrystones/sec. 

8.3.2 Effect of Memory System Design 

The 7207 Dhrystones/sec quoted above is for a one-port memory system with no 

read or write delay. This is the simplest system, but an expensive one to build. 
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Value Count Percent 
Instruction Fetchs 1793 30.83 

Data Fetchs 2533 43.55 
Data Stores 1490 25.62 

Total Memory 5816 100.00 

Actual Memory 5045 86.74 
Short Circuits 771 13.26 

Table 8.2: Effect of Short Circuits on Memory Access 

1 Port Memory 
Write Delay 0 1 2 3 

Read Delay 0 100.00 92.93 75.82 62.86 
Read Delay 1 73.06 69.22 65.75 56.70 
Read Delay 2 49.17 49.17 47.40 45.75 
Read Delay 3 37.05 37.05 37.05 36.04 

2 Port Memory 
Write Delay 0 1 2 3 

Read Delay 0 150.24 134.83 100.32 77.40 
Read Delay 1 75.15 75.15 71.09 67.44 
Read Delay 2 50.11 50.11 50.11 48.27 
Read Delay 3 37.58 37.58 37.58 37.58 

Table 8.3: Memory-Design Effect on Dhrystone Performance 

Table 8.3 shows the relative performance of CLOGS on the Dhrystone program for 

many configurations of memory systems. 

Because read operations (data or instruction fetches) far outnumber writes, read­

operation speed has a greater effect on performance than write speed. In single­

ported, multiple-cycle-delay memory systems, writes only have to be one cycle faster 

than reads to be totally hidden from the system performance. This is because data 

is ready to be written at the same time that instruction fetch begins. As a result, 

the write is always delayed one cycle, and if the write takes one fewer cycle than the 

instruction fetch, it will complete at the same time as the instruction fetch. Only 

after the instruction is in the instruction registers will further memory operations for 

operand fetch begin. 

In the two-port memory systems, the write will not impact performance as long as 

it completes in the same time as the read. In this case the writes are hidden behind the 
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next instruction fetch, so no improvement is observed by making write delay less than 

read delay. This observation is disappointing, because it shows that posted writes do 

not help the performance of a CLOCS two-ported memory system. As discussed in 

Chapter 7, the technique of posted writes is an inexpensive implementation technique 

to improve performance. It also has the advantage of being reliable. The performance 

advantage is not affected by bank-interleaving alignment or other hazards of dual­

ported memory systems. Also, posted write does not require double performance 

from the MMU. 

The two-ported memory-system performance is also disappointing for the delayed 

cases when compared to one-ported systems. For one cycle delays, the more complex 

memory design yields only a 6% difference in performance. Using posted writes with 

the simpler design reduced this difference to just 2%. 

Consequently, the best tradeoff of price-performance is the one-port, one-cycle 

delay for read and a posted (zero-cycle delay) write. That design achieves a cycles­

per-instruction ratio of 3.90 and runs 5342 Dhrystones per second at 16Mhz. 

8.3.3 Effect of GCC Optimizations 

Table A.5 shows the relative performance of different GCC optimizations. Weicker 

states that using inline functions is not an appropriate optimization for Dhrystones, 

so the performance listed above is for "-0 -£combine-regs" only. Using the "-0" option 

improves performance by 45%, but adding "-£combine-regs" only adds another 7% to 

performance. 

8.4 Findings: When CLOCS Pays 

From the results of the simulations, I can estimate the performance of a real CLOCS 

computer system. I selected a commercial computer system, the DECStation 3100, 

for comparison. The 3100 is based on the same MIPS R2000 microprocessor used for 

comparison in Chapter 6 and operates with a clock frequency of 16 MHz. Using the 

technology available at the same time that the 3100 was introduced in early 1989, a 16 

MHz CLOCS machine could be built with the one-wait state, posted-write memory 

system described above. Relative manufacturing costs of CLOCS and the 3100 are 

difficult to estimate, but the integrated circuits for CLOCS memory would be more 

expensive than the main memory chips used in the 3100. On the other hand, CLOCS 
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is a simpler design and does not have cache, so the total component count is lower. 

I estimate that manufaj;turing costs for CLOCS would be higher, but not more than 

twice those of the DECStation 3100. 

A DECStation 3100 attains approximately 18,000 Dhrystones/sec (slight vari­

ations are due to the compiler used and optimizations available). Therefore, the 

DECStation is 18000/5342 = 3.4 times faster than a CLOCS. Using techniques we 

developed[S, 17], we measure the context-switch time of 250 microseconds for a DEC­

Station 3100. Based on estimates from Gallmeister's research[17], CLOCS will switch 

context in 100 CLOCS instructions, which will take 100*3.90/16 = 25 microseconds. 

Now if a task takes X microseconds to run on a DECStation 3100, then it will 

take 3.4 * X to run on a CLOCS. The task will be activated and run in the same 

time on a CLOCS or a DECStation 3100 if 

or if X is 95 microseconds. An application must run in less than 95 microseconds 

after a context switch for it to perform better on CLOCS. In those 95 microseconds, 

a DECStation 3100 will execute about 1300 machine instructions. This corresponds 

to a context-switch rate on .the DEC Station of 1, 000, 000/(95 + 250) = 2898. In 

other words, applications that require context switches more often than 3000 times 

per second can benefit from the CLOCS architecture. 

Consider the example of an ethernet RPC transaction. Our studies[8] indicate 

that 30% of network overhead is context-switch time. For each context switch, the 

application needs more than 500 microseconds of CPU processing time on a Sun 4, a 

computer with approximately the same throughput performance as the DECStation 

3100. In this case, the DECStation 3100 can switch context and do the processing 

in 250 + 500 = 750 microseconds, and a CLOCS would require 3.4 * 500 + 25 = 1700 

microseconds. 

However, if servicing an interrupt takes only 40 instructions, the calculation time is 

three microseconds. The DEC Station requires 253 microseconds and CLOCS requires 

only 3 * 3.4 + 25 = 35 microseconds. In this case, the CLOCS architecture provides 

much better performance. 

Figure 8.1 graphically represents this tradeoff. As with Figure 1.2, applications to 

the left of the dashed line, that is, applications that run in less than 95 microseconds 

on a DECStation 3100, are activated and run faster on CLOCS. 

Thus, from the results of CLOCS throughput performance on simulated bench-
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Figure 8.1: Comparison of CLOCS and a DECStation 3100 
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marks, given an application and the processing time it requires for each activation of 

a process, we can determine if the application benefits from the CLOCS architecture. 
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Chapter IX 

Conclusions and Future Work 

This study revealed much about the issues of context switching. A candidate ar­

chitecture meeting the main design goals was designed and simulated. Quantitative 

analyses showed that the architecture has good potential performance. Simulation 

of an implementation produced estimates of the performance of a feasible CLOCS 

computer system relative to a commercial workstation. Armed with simulation data, 

it is possible to evaluate if a given application would run faster on CLOCS than on a 

computer of conventional design. The study also revealed other observations about 

context switching and fewer levels in computer memory hierarchy. These observations 

identified future work. 

9.1 CLOCS Potential Performance Is Close to Con­

temporary RISC 

The comparison of CLOCS to a R2000 in Chapter 6 showed that by using assumptions 

moderately favorable to CLOCS, the new architecture performed 85% as well as the 

R2000. 

9.2 CLOCS Fuller-Type Analysis Score Is High 

The score for the CLOCS architecture (using Fuller's quantitative criteria) was much 

higher than the architectures evaluated by the original study. This indicates that 

CLOCS has high potential for real-time applications similar to those run on military 

computers. 
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9.3 CLOCS Uses 3.2 Memory References per In­

struction 

Simulation results indicate that programs will average 3.2 memory references per in­

struction (including fetch of the instruction). This is better than initial bandwidth 

estimates and indicates potential performance better than 50% of conventional ar­

chitectures. 

9.4 Short-Circuiting Saves 15% of Memory Refer-

ences 

The implementation technique of short-circuiting, using the result of one instruction 

as an operand and avoiding an unnecessary fetch of the data from memory, saves 

15% of the memory references. This savings is realized in most reasonable-cases, but 

could not be considered for worst case analysis. 

9.5 Feasible CLOCS System Performance Is Good 

The implementation of CLOCS that I designed, supported by the GNU C compiler 

and other software, performs about 30% as fast as a DECStation 3100. This CLOCS 

design is conservative, and better performance is possible. 

9.6 When Is a New Architecture Indicated? 

As discussed in Chapter 8, it is possible to estimate from these results when such an 

architecture will provide better performance than conventional RISC architectures. 

The inequality to verify is: 

CLOCS Application Time + CLOCS Context-Switch Time 

Less Than 

Conventional Application Time + Conventional Context-Switch Time 

For the example implementation, CLOCS performs better for applications requir­

ing fewer than 1266 instructions per activation on a DECStation 3100. I expect that 

comparisons with other contemporary computer systems, such as the Sun 4, would 
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have produced substantially the same results. This proves the original thesis that a 

flat memory hierarchy provides better performance for applications that switch con­

text often. This study conservatively defines the nature of applications for which this 

design approach is superior. 

9. 7 When a Conventional Architecture Is Indicated 

Because conventional architectures perform better when more than approximately 

1000 machine instructions are executed per task activation, many common applica­

tions do not perform better on CLOCS. Most general purpose time-sharing, commu­

nications, and file-serving functions run better on conventional machines. Therefore, 

a specialized architecture like CLOCS does not make sense for these applications. 

Even with small work per activation and many context switches per second, more 

conventional architectures may still perform better than CLOCS if only a few tasks 

are activated repeatedly. If the application is known well enough in advance for the 

designer to estimate the number of desired active processes, it is possible to design a 

hierarchical memory system that can run more efficiently than CLOCS. For example, 

the six-legged walking machine[35] requires 66 processes. To support this application 

a computer only has to handle that many processes to run efficiently. Three designs 

that can take advantage of known context-switch requirements are shared register 

files, a special register backing store, and trickle register refill. 

9.8 Register File Sharing 

If the number of tasks is very small (eight or fewer), then the sharing of the register 

file by the tasks as is done on the Berkeley RISC and AMD 29000 will perform well. 

In this approach, the register file is divided into groups of registers, and each group 

may contain the information for one task. Then each task is assigned one group of 

registers when it is activated. If the register file is divided into eight groups, eight 

different tasks can be activated very rapidly. For this approach to be effective, the 

memory system must also support the same number of active tasks, but since the 

number of tasks is small, no novel techniques are required. For example, the Sun 4 

MMU stores context for 16 processes and would be quite suitable for use with register 

file sharing. 

Registers and the data paths to them consume significant area on integrated 
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circuits[29]. For larger numbers of processes, more sets of registers would be required 

and there would not be room to put all of them on a single chip. To keep the state 

for more processes on a single chip a more compact type of memory could be used as 

is described next. 

9.8.1 Register Backing Store 

For larger numbers of tasks, a special backing store for the registers can be added. An 

example of this is the Intel 80960CA, which implements register windows by having 

a backing store on the chip connected to the actual register set by two 128-bit wide 

busses. When a subroutine call is made, these busses are used to save and restore 

simultaneously sixteen 32-bit registers in only four cycles. During each cycle, four 

words move from the registers to the backing store, and four move from the backing 

store to the registers. In this implementation, the backing store contains 16 sets of 

registers. 

Similar techniques could be used to design a machine for fast context switching. 

A machine with only 16 registers could have a backing store of 192 sets of registers: 

microprocessors introduced in 1989 commonly have an on-chip cache of that size. As 

long as fewer than 192 active processes are expected, this design could switch context 

only slightly more slowly than CLOCS, but throughput would be much higher. 

As with register file sharing, the memory system for a machine with fast context 

switching would have to support all of the active processes. When a process is 

activated, it would have to use instructions and data in memory, and no extra delay 

could be added as a result of switching context. With 192 processes, a bigger, more 

capable MMU than the Sun 4 design would be required. To support virtual memory 

efficiently, an MMU design like the CLOCS design would be required. 

The register backing-store design limits the number of processes based on the area 

of one integrated circuit. For an unlimited number of active processes, program state 

must be moved off of the chip. However, fast context-switch performance may be 

obtained by not reloading all program state at once, as I describe next. 

9.8.2 Register 'frickle Refill 

With trickle register refill the CPU keeps track of the registers that have not been 

restored every time a context switch occurs. Only when the new program uses a 

register are its contents fetched from memory. The old value (from the pre-switch 
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program) could be saved by extra hardware when memory bandwidth is available_ 

As a result, the context switch is very rapid, and a potentially smaller degradation 

occurs because values are saved and fetched only when required_ 

High bandwidth to memory is not required, but there are two disadvantages to 

this scheme_ Much complexity must be added to the CPU to keep track of register 

status and to interlock affected operations_ Another disadvantage is that performance 

is not predictable_ A program will run much slower if it is interrupted frequently_ 

Even the first few instructions after activation will run at different rates depending 

on the status of the register file during execution of the previous program_ 

It is difficult to predict the context-switch time of this design, because the delay 

from context switching is spread out over several instructions, and the number of 

registers referenced between context switches will determine the average context­

switch time_ Obviously, the average context-switch time depends on the switching 

rate and the nature of register references for each application_ In any event, delay 

associated with a context switch will always be greater for a register refill design than 

for CLOCS_ In the worst case (every register reference causes a refill) it would also 

require twice as many data references as CLOCS (save old and fetch new data), so 

its throughput performance would be almost twice as slow as CLOCS_ 

The register trickle-refill scheme supports any number of tasks, but, as with reg­

ister backing store, the MMU must also handle larger numbers of context_ It is likely 

that a CLOCS-style MMU and memory system would be necessary_ 

Each of the above approaches requires a detailed knowledge of the application 

set_ For register-file sharing and register backing-store designs, a computer designed 

to run N applications may not be able to handle N * 2 applications, even if the 

context-switch rate remains the same_ The register trickle-refill scheme provides 

lower context-switch performance_ 

9.9 Programming Language Observations 

During compiler porting and simulation runs, I observed two features of the C lan­

guage that did not work well with the CLOCS architecture: recursion and dynamic 

memory allocation_ Both of these features are used in many but not all languages-
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9.9.1 Dynamic Allocation Inefficient 

Since the C language assigns variables to dynamic storage by default, CLOGS must 

use indirect addressing for most of the variables. This reduces the efficiency of the 

architecture. The estimates made in Chapter 6 assumed that indirect addressing 

could be avoided in many cases. However, since addresses must be deternrined at 

run time, the compiler generates instructions at the beginning of each procedure to 

calculate the address of each variable. Then, as the subroutine does its computation, 

it must use these calculated addresses with an indirect-addressing mode to access the 

variables. 

9.9.2 Recursion Works Poorly 

Recursion is very inefficient on CLOGS because all of the scratch space for inter­

mediate values and the space necessary for dynamic storage allocation must be in 

fixed-storage locations. These locations must be copied to the stack for each subrou­

tine call to prevent a corruption of the data during recursive calls. 

From examination of the CLOGS assembler-language source produced by the GCC 

compiler, I estimate that the supporting dynamic variables and recursion added 50% 

more instructions to the instructions that did the computation. 

9.10 Future Work 

The interaction of the architecture with programming-language features had a greater 

effect than expected. The experience obtained in this study revealed several invit­

ing new avenues of research. Although expected improvements would still leave 

CLOGS with less throughput performance than that of a conventional architecture, 

any improvement would widen the range of appropriate applications. Three different 

approaches could improve CLOGS performance by as much as 50%: the existing C 

language compiler could be improved, the architecture could be improved to run C 

language programs, or another language could be used that is better suited to the 

CLOGS architecture. 
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9.11 Improve the C Language Compiler 

Although the GCC compiler does many optimizations, it does not make any attempt 

to avoid register saving and restoration during subroutine calls. Instead, it relies 

on machine-dependent routines to implement callee saves during subroutine calls. 

Also, GCC does not allocate registers between subroutines. Instead it uses the same 

registers in all routines. These features affect CLOCS because the register-allocation 

routine manages fixed storage-locations used for addresses and scratch space. By 

enhancing the register allocation function of the C language compiler, these fixed 

locations could be allocated between subroutines. If only one subroutine uses a 

storage location it need not be saved unless the procedure is called recursively. This 

leads to three possible optimizations: 

1. The most complete but difficult optimization is to trace the program call tree 

to determine if a subroutine may be in a recursive chain, and to insert save and 

restore instructions only in case recursion is possible. 

2. One case of non-recursive behavior is easy to identify: if the subroutine is a leaf 

(does not call other subroutines). In that case, saving of locally used values is 

never required. 

3. Another possible approach is to save the status as to whether a recursive call 

is in progress. If the program determines that the current call is part of a 

recursive chain of calls, it may save the fixed locations; otherwise no saving is 

required. 

Determining possible recursion is difficult because the compiler does not necessar­

ily process all subroutines at one time. If two subroutines in separate source files call 

each other, recursion may be possible, but may undetectable to the compiler since it 

processes only one file at a time. Also, the compiler must consider more details than 

just the location of subroutine calls, because the logic of the subroutines may prevent 

recursion. Thus the first optimization is difficult and potentially too conservative. 

The second and third optimizations would be easier to implement using GCC, and 

the combination of the two would likely provide the same performance improvement 

as the combination of the first and the third optimizations. I estimate that these and 

other optimizations discovered by further research could provide a 40% improvement 

in performance. 
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9.11.1 Improve the CLOCS Architecture for the C Language 

The dynamic storage-allocation feature of the C language is not well supported by 

CLOCS. Additional addressing modes might make CLOCS much more efficient. Some 

efficiency could be obtained by adding addressing modes that are stack-pointer or 

frame-pointer based. This addition would eliminate many of the calculations at sub­

routine activation. I did not put these into the architecture because of propriety 

considerations, but their incorporation might improve performance up to 50% by 

eliminating the instructions added to handle dynamic variables and recursion. Ad­

dress calculations for dynamic variables could be avoided by placing the variables in a 

space easily addressed by the new modes. Also, all register save and restore overhead 

would be removed because the fixed-storage locations for address calculation would 

no longer be required. These modifications would have to be carefully evaluated; 

the savings during subroutine initialization may be offset by the larger number of 

memory references during subroutine execution. 

9.11.2 Try Another Language: FORTRAN 

It may be that the best performance may be obtained simply by using a language 

that does not use recursion or dynamic memory. Although such a language is more 

difficult to use for operating-system work, most real-time applications could easily 

use one. 

If any combination of these improvements resulted in a 50% improvement in 

CLOCS performance, the crossover point would move by a factor of two to 190 

microseconds, as shown by Figure 9.1. 
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Figure 9.1: Comparison of Improved CLOCS and a DECStation 3100 
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A.l 

Appendix A 

Detailed Simulation Results 

General Performance 

The general performance for Dhrystones, Assign, Lloop, Sub, and Quicksort are 

shown in Table A.l. These statistics were printed by the CAS simulation program. 

A.2 Various Memory Designs 

Table A.2 contains the number of cycles for each of the programs to run using different 

memory systems. The Dhrystone portion of this data is presented in normalized form 

in Table 8.3. Table A.3 contains the cycles per instruction for each case. 

A.3 Effect of GCC Optimizations 

The effects of various optimizations provided by GCC are displayed in Table A.4. 

A more compact presentation is given in Table A.5. Keep in mind that the author 

of the Dhystone benchmark program states that procedure inlining is not an appro­

priate optimization when comparing systems. When comparing CLOCS with the 

DECStation 3100, I use values obtained without use of "-finline-functions." 

As expected, the standard GCC optimizations provide the greatest incrementa.] 

improvement. The combine-regs option looks for the special case of a register copied 

to another register. This generally adds an incremental improvement of 3% by fixing 

redundancies introduced by address calculations. 
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Compiled with gccc -0 II dhrystone I assign I lloop sub I quicksort I 
General Counts 

Total Cycles 5046 26 498 85 99999 
Total Operations 1793 9 218 30 38003 

Cycles Per Instruction 2.8142 2.8889 2.8440 2.8333 2.6313 
Total MMU Operations 5046 26 498 85 99999 

Total Memory Ops 5046 26 498 85 99999 

Operations (Number of Occurrences) 
ADD 489 1 52 5 9441 
SUB 183 2 54 6 4785 
MUL 4 0 0 0 0 
DIV 1 0 0 0 0 
OR 1 0 0 0 0 

LEFT 11 0 0 0 4693 
RIGHT 2 0 0 0 0 

RIGHT A 12 0 0 0 4694 
MOVE 787 0 59 16 9661 

B 303 1 53 3 4728 

Operand 1 Address Modes (Number of Occurrences) 
RELATIVE 570 3 107 10 18983 
INDIRECT 288 2 3 5 4759 

ZERO 83 0 0 1 12 
ABSJNDIRECT 84 1 1 2 11 

IMMEDIATE 768 3 107 12 14238 

Operand 2 Address Modes (Number of Occurrences) 
RELATIVE 1340 8 216 25 37881 
INDIRECT 453 1 2 5 122 

Short Circuits (Number of Occurrences) 
psw to MMU.l 83 0 0 1 12 
alu to MMU.l 197 3 54 7 9407 
alu to MMU.2 574 1 105 6 23572 

Table A.1: General Performance Results of CLOCS 
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Write Delay 0 1 2 3 
Ports 1 I 2 1 I 2 1 1 2 1 1 2 

Dhrystones 
0 Read Delay 5048 3360 5432 3744 6658 5032 8030 6522 
1 Read Delay 6909 6717 7293 6717 7677 7101 8903 7485 
2 Read Delay 10266 10074 10266 10074 10650 10074 11034 10458 
3 Read Delay 13623 13431 13623 13431 13623 13431 14007 13431 

assign 
0 Read Delay 47 32 51 36 65 50 80 65 
1 Read Delay 61 61 65 61 69 65 83 69 
2 Read Delay 90 90 90 90 94 90 98 94 
3 Read Delay 119 119 119 119 119 119 123 119 

Hoop 
0 Read Delay 933 656 1089 812 1366 1089 1643 1366 
1 Read Delay 1309 1309 1465 1309 1621 1465 1898 1621 
2 Read Delay 1962 1962 1962 1962 2118 1962 2274 2118 
3 Read Delay 2615 2615 2615 2615 2615 2615 2771 2615 

sub 
0 Read Delay 128 85 138 95 178 135 220 177 
1 Read Delay 168 167 178 167 188 177 228 187 
2 Read Delay 250 249 250 249 260 249 270 259 
3 Read Delay 332 331 332 331 332 331 342 331 

quicksort 
0 Read Delay 32284 20745 36667 25128 43753 33281 52985 42600 
1 Read Delay 43686 41487 48069 41487 52452 45870 59538 50253 
2 Read Delay 64428 62229 64428 62229 68811 62229 73194 66612 
3 Read Delay 85170 82971 85170 82971 85170 82971 89553 82971 

Table A.2: Cycle Counts for Various Programs and Memory Systems 
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1 Port Memory 
Write Delay 0 1 2 3 

Read Delay 0 2.90 3.12 3.83 4.62 
Read Delay 1 3.97 4.19 4.41 5.12 
Read Delay 2 5.90 5.90 6.12 6.35 
Read Delay 3 7.83 7.83 7.83 8.05 

2 Port Memory 
Write Delay 0 1 2 3 

Read Delay 0 1.93 2.15 2.89 3.75 
Read Delay 1 3.86 3.86 4.08 4.30 
Read Delay 2 5.79 5.79 5.79 6.01 
Read Delay 3 7.72 7.72 7.72 7.72 

Table A.3: Memory Design Effect on Dhrystone Cycles per Instruction 
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None 
Memory System Start Stop Diff Dhrystones 
Instruction Count 438 1551 1113 
1 Port, 0 Delay 1304 4620 3316 4825 
1 Port Posted 1843 6299 4456 3590 
1 Port, 1 Delay 1900 6588 4688 3413 
2 Ports, 0 Delay 889 3051 2162 7401 
2 Ports, 1 Delay 1777 6101 4324 3700 

gccc -0 
Memory System Start Stop Diff Dhrystones 
Instruction Count 423 1211 798 
1 Port, 0 Delay 1266 3552 2286 6999 
1 Port Posted 1798 4882 3084 5188 
1 Port, 1 Delay 1848 5089 3241 4936 
2 Ports, 0 Delay 866 2356 1490 10738 
2 Ports, 1 Delay 1731 4711 2980 5369 

gccc -0 -fcombine-regs 
Memory System Start Stop Diff Dhrystones 
Instruction Count 423 1191 768 
1 Port, 0 Delay 1266 3496 2230 7207 
1 Port Posted 1798 4793 2295 5342 
1 Port, 1 Delay 1848 5003 3155 5071 
2 Ports, 0 Delay 866 2313 1447 11057 
2 Ports, 1 Delay 1731 4625 2894 5528 

gccc -0 -£combine-regs -finline-functions 
Memory System Start Stop Diff Dhrystones 
Instruction Count 423 1161 738 
1 Port, 0 Delay 1266 3401 2135 7494 
1 Port Posted 1798 4683 2885 5545 
1 Port, 1 Delay 1848 4884 3036 5270 
2 Ports, 0 Delay 866 2260 1394 11477 
2 Ports, 1 Delay 1731 4519 2788 5738 

Note: -£strength-reduce had no effect 
on the timed portion of Dhrystones. 

Table A.4: GCC Optimizations for Dhrystones 

114 



1 Port 1 Port 1 Port 2 Ports 2 Ports 
Optimizations 0 Delay Posted 1 Delay 0 Delay 1 Delay 

Write 
None 100.00% 100.00% 100.00% 100.00% 100.00% 
Add-0 145.05% 144.49% 144.62% 145.10% 145.10% 
Add combine-regs 149.37% 148.78% 148.58% 149.41% 149.39% 
Add inline-functions 155.31% 154.45% 154.41% 155.08% 155.o7% 

The results from Table A.4 are shown here normalized 
to the no optimization cases and expressed as percentages. 

Table A.5: Effect of GCC Optimizations (Percentages) 
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B.l 

Appendix B 

Source Listings 

Arrangement of Support Software 

The CLOCS architecture was simulated using several pieces of software. These in­

cluded: 

CCC The C language compiler produced CLOCS assembler code. 

GCCC The Gnu C language compiler also produced CLOCS assembler code. 

CASM The CLOCS assembler produced a CLOCS object module. 

CLOADER The CLOCS loader reads an object module into memory. 

CDUMP This simple dumping program reads and disassembles object modules. 

CAS The CLOCS implementation-level simulator produces a trace of the simulated 

execution of object modules. 

Each of these programs had to work with the next one; writing the programs for 

reliable communications was challenging. 

B.l.l CCC (C Language Compiler for CLOCS) 

The C language compiler was initially written by three graduate students taking 

an advanced compiler course. They produced the compiler as their class project. 

They used the Amsterdam Compiler Kit (ACK)[24] to facilitate the creation of the 

compiler. Unfortunately, a CLOCS assembler and simulator were not available by 

the time the project had to be presented to the instructor. A small test program was 

run through the compiler, hand assembled and run on a very high-level architectural 

simulator. The tediousness of hand-assembly limited the testing and debugging done 

by the class-project participants. Several bugs and undesirable features were later 
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corrected as the assembler began operations and a comprehensive C library was 

compiled. 

As C library functions were compiled and output from benchmark and other test 

programs was exarrrined, it became clear that ACK would not be a satisfactory tool 

for this research. Much work remained before it could support multiple data types, 

and the output was poorly optimized, preventing a good assessment of the capabilities 

of the CLOCS architecture from the results of benchmark-program performance. 

B.1.2 GCCC (GNU C Language Compiler for CLOCS) 

The Gnu C compiler(37] was also examined. This high-quality compiler had the 

advantages of containing more optimizations and being available in C language source 

form with good documentation. This compiler was also well supported. Although 

the compiler was in development at the time, it was relatively free of bugs, and only 

one bug ever impeded progress. Several very helpful people were available locally and 

via electronic mail to give advice and offer solutions to the more difficult problems 

of porting this compiler. 

B.1.3 CASM (CLOCS Assembler) 

CASM, the CLOCS Assembler, was written using lex. The lex program and its C 

language support routines produce an object module in main memory and then write 

a CLOCS object module. 

B.1.4 CLOADER (CLOCS Loader) and CDUMP (CLOCS 

Object Module Dumper) 

CLOADER is a subroutine that loads a CLOCS object module into main memory. 

CDUMP produces human readable output of CLOCS object modules. It tested 

CLOADER and provided data for the debugging of CASM. 

B.1.5 CAS 

The CLOCS Architectural Simulator (CAS) is a large C language program to simulate 

implementations of the CLOCS architecture. The program was initially written to 

simulate the two-instruction pipeline implementation. However, minor modifications 
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adapted it to the final implementation. The simulator supports several different 

models of main memory; the number of ports and the delay of reads or writes are set 

as the simulation begins. CAS uses CLOADER to get the object module loaded, does 

some MMU initialization and then simulates the program, producing trace results and 

summaries of instruction use and address modes. 

B.2 Arrangement of Application Software 

For the purposes of this appendix, application software consists of the programs that 

run on the CLOCS machine. 

B.2.1 C Library Routines 

The C language supports many data manipulations and all operating-system services 

with calls to standard subroutines[25]. The most important data manipulations rou­

tines for this research are the character string compare "strcmp" and character string 

move "strcpy" routines. These routines are called in the timed portion of the Dhrys­

tone benchmark program, so they have to be reasonably efficient. The Dhrystone also 

uses the operating service call to obtain memory "malloc" because some of the vari­

ables it uses are dynamically allocated. The Dhrystone program also calls "scanf" 

to ask the number times to run the timed loop, "printf" for printing results, and 

"times" to calculate the elapsed time. I supplied dummy subroutines for the complex 

functions because I could obtain results without writing complicated subroutines to 

be called only once. 

"strcmp" 

Figure B.l shows the C language source[25] for the "strcmp" routine. After it was 

compiled by GCC, I hand optimized it to remove unnecessary saving of parameters 

on the stack. The CLOCS assembler source code is in Figure B.2. 

"strcpy" 

The routine "strcpy" was generated the same way as "strcmp." Figure B.3 con­

tains the C language source, and Figure B.4 contains the CLOCS assembler source 

code. 
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I* 
* STRCOMP from K&R version 2 
* page 106 
*I 

I* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t *I 
int strcmp(char *s, char *t) 
{ 

for ( ; *s == *t; s++, t++) 
if (*s == '\0') 
return 0; 
return *s - *t; 
} 

Figure B.l: Strcmp.c Source 

"malloc" 

The CLOGS simulator establishes several extra pages of virtual memory and stores 

the location of this data space in a standard location in the user's data segment. 

The "malloc" subroutine may use this pointer and the corresponding data pages 

to provide dynamic memory to the running program. By adding this capability 

to the simulator, I avoided the necessity of writing a program to do this virtual­

memory allocation dynamically. Writing such a program is not difficult, but it is 

time-consuming. The simple "malloc" program source is listed in Figure B.5. 

"scanf" 

The Dhrystone benchmark program calls the "scanf'' routine to get the user's 

input of the number of iterations of the timed loop. I replaced the standard routine 

with a C program that just sets the value to one. The source is shown in Figure B.6. 

I also hand optimized this subroutine into the assembler language program shown in 

Figure B.7. 

"printf" and "times" 

The standard C language subroutines "printf" and "times" are called by the 

Dhrystone Benchmark program. Since data collection does not require these routines 

to work, null subroutines are substituted. Figures B.S and B.9 list these programs. 
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; Compiled_By_GCCC.: 
.text 
.align 8 
.globl _strcmp 
_strcmp: 
; BEGIN NEW FUNCTION. 
b STRCMP_L2 
STRCMP_L6: 
bqine STRCMP_L4,0R_48 
movsi <O,RTN 
b STRCMP_L1 
STRCMP_L4: 
adddi <1,R_48 
adddi <1,R_49 
STRCMP_L2: 
movqi 0R_48,RTN 
subqi 0R_49,RTN 
bqieq STRCMP_L6,RTN 

; Sign extension is a drag. At least it only has to be done once 
leftsi <24,RTN 
rghtasi <24,RTN 
STRCMP_Li: 
movdi 0STACK_PTR,BRANCH_TGT 
b %0BRANCH_TGT 
; END THIS FUNCTION. 

Figure B.2: Strcmp.s Source 
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I* 
* STRCPY from K&R version 2 
* page 106 
*I 

I* copy t to s; pointer version 3 *I 
void strcpy(char *s, char *t) 
{ 

while(*s++ = *t++) 

} 

Figure B.3: Strcpy.c Source 

Compiled_By_GCCC.: 
From K&R, version 2, page 106, then hand optimized. 
Changed to jump into middle to lower loop overhead 

.text 

.align 8 

.globl _strcpy 
;_strcpy: 
; BEGIN NEW FUNCTION. 
; b STRCPY_START 
STRCPY_L2: 
adddi <1,R_49 
adddi <1,R_48 
_strcpy: 
STRCPY_START: 
movqi ~R_49,~R_48 
bqine STRCPY_L2,~R_48 
movdi ~STACK_PTR,BRANCH_TGT 
b Y.~BRANCH_TGT 
; END THIS FUNCTION. 

Figure B.4: Strcpy.s Source 
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Hand assemble by Mark C. Davis 
1/16/90 

.text 

.align 8 

.globl _malloc 
_malloc: 

BEGIN NEW FUNCTION. 
Register 48 (first parameter) contains size of desired storage. 

normalize SI to DI for addition 
rghtdi <32,R_48 
movdi OXFFFEOO,RTN 
adddi R_48,0XFFFEOO 
movdi OSTACK_PTR,BRANCH_TGT 
b Y,OBRANCH_TGT 

END THIS FUNCTION. 

Figure B.5: Malloc.s Source 

I* A Dummy scanf subroutine to set the drystone to one *I 
I* iteration. *I 

I* Mark Davis 1125190 *I 

void scanf( char *fmt, int *n) 
{ *n = 1;} 

Figure B.6: Scanf.c Source 
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Compiled_By_GCCC.: 
Then Hand Optimized by Mark Davis 
1/25/90 

.text 

.align 8 

.globl _scanf 
_scanf: 
; BEGIN NEW FUNCTION. 
movsi <1,1DR_49 
movdi IDSTACK_PTR,BRANCH_TGT 
b Y.IDBRANCH_TGT 
; END THIS FUNCTION. 

Figure B. 7: Scanf.s Source 

Hand assemble by Mark C. Davis 
1/16/90 

.text 

.align 8 

.globl _printf 
_printf: 
; BEGIN NEW FUNCTION. 
; Don't Do anything except set RTN code to zero 
movdi <O,RTN 
movdi IDSTACK_PTR,BRANCH_TGT 
b Y.IDBRANCH_TGT 
; END THIS FUNCTION. 

Figure B.S: Printf.s Source 
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Hand assemble by Mark C. Davis 
1/16/90 

.text 

.align 8 

.globl _times 
_times: 
; BEGIN NEW FUNCTION. 
; Don't Do anything except set RTN code to zero 
movdi <O,RTN 
movdi ~STACK_PTR,BRANCH_TGT 
b Y.~BRANCH_TGT 
; END THIS FUNCTION. 

Figure B.9: Times.s Source 

void main() { 
long i =1; 
} 

Figure B.lO: Assign.c Source 

B.2.2 Test Programs 

During the writing and debugging of the simulation system, I wrote many small C 

language programs to test various features. Four of the programs provide interesting 

simulations results, so I include their performance statistics in Appendix A and their 

source here. The source for "assign," a simple assignment program, is shown in 

Figure B.IO. Figure B.ll presents the source for a small looping program call "!loop." 

To test and evaluate performance of subroutine calls I wrote "sub," the program in 

Figure B.l2. The "quicksort" program is a minor modification of a test program used 

by a group of students who wrote a CLOCS C language compiler for a course. The 

program is listed in Figures B.l3 and B.14. Many other programs were written and 

run, but are not of sufficient interest to include here. 

124 



main() 
{ 

inti,j; 

for (i=O; i < 50; i++) j += 3; 

} 

int sp(); 

void main() { 
int i=1; 
i=sp (i); 
i+=1; 
} 

int sp(ip) 
int ip; 
{ 

return ip; 
} 

Figure B.ll: Lloop.c Source 

Figure B.l2: Sub.c Source 
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int a[100]; 

void swap(int x,int y) 
{ 

int temp; 
temp= a[x]; 
a[x] = a[y]; 
a[y] = temp; 
} 

void sort(int bottom,int top) 
{ 

int low = bottom,high = top; 
int mid = (low + high)/2; 
int pivot= a[mid]; 
while (low < high) 
{ 

while (a[low] < pivot) 
low = low + 1; 
while (a[high] > pivot) 
high= high - 1; 
if (low < high) 
{ 

swap(low,high); 
low++; 
high--; 
} 
} 

if (bottom < top) 
{ 

sort(bottom,mid); 
sort(mid+1,top); 
} 
} 

Figure B.l3: Quicksort.c Source (Subroutines) 
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main() 
{ 

int bottom= 0, top; 
int num; 
long long int i; 
num=8; 
a[0]=12; 
a[1]=63; 
a[2]=3; 
a[3]=13; 
a[4]=57; 
a[5] =31; 
a[6]=61; 
a[7] =11; 
sort(bottom,num-1); 
for (i=O;i < num;i++) 
top=a[i]; 
} 

Figure B.l4: Quicksort.c Source (Main Program) 
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B.2.3 Dhrystones Version 2.1 

I used the Dhrystone source as distributed. However, the null "printf" and "times" 

library routines described prevent the program from determining and printing the 

results. Simulator timings are used instead to determine Dhrystone performance. 

I obtained the source from a Usenet posting by Rick Richardson (return electronic 

mail address ... !seismo!uunet!pcrat!rick) dated 4 Dec 88. The source is available from 

PC Research, Inc, at 94 Apple Orchard Drive, Tinton Falls, NJ 07724 and from the 

server at netlib@mcs.anl.gov. 
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