
Increasing Update Rates in the
Building Walkthrough System with

Automatic Model-Space Subdivision
and Potentially Visible Set Calculations

TR90-027

July, 1990

John Milligan Airey

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hi ll, NC 27599-3175

·I

Research supported in part by Office of Naval Research Contract #N00014-86-K-
0680, and by the National Science Foundation, Grant #CCR-8609588.

UNC is an Equal Opportunity/Affirmative Action Institution.

Increasing Update Rates in the
Building Walkthrough System with

Automatic Model-Space Subdivision and
Potentially Visible Set Calculations

by
John Milligan Airey

A Dissertation submitted to the faculty of the The University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
1990

Approved by

an Prins Reader

John Milligan Airey. Increasing Update Rates in the Building Walkthrough
System with Automatic Model-Space Subdivision and Potentially Visible
Set Calculations (Under the direction of Frederick P. Brooks, Jr.)

Abstract

Pre-processing some building models can radically reduce the number of polygons
processed during interactive building walkthroughs. New model-space subdivision and
potentially visible set (PVS) calculation techniques, used in combination, reduce the
number of polygons processed in a real building model by an average factor of 30, and a
worst case factor of at least 3.25.

A method of recursive model-space subdivision using binary space partitioning is
presented. Heuristics are developed to guide the choice of splitting planes. The spatial
subdivisions resulting from binary space partitioning are called cells. Cells correspond
roughly to rooms.

An observer placed in a cell may see features exterior to the cell through transparent
portions of the cell boundary called portals. Computing the polygonal definitions of the
portals is cast as a problem of computing a set difference operation on co-planar polygons.
A plane-sweep algorithm to compute the set operations, union, intersection and difference,
on co-planar sets of polygons is presented with an emphasis on handling real-world data.

Two different approaches to computing the PVS for a cell are explored. The first uses
point sampling and has the advantage that it is easy to trade time for results, but has the
disadvantage of under-estimating the PVS. The second approach is to analytically compute
a conservative over-estimation of the PVS using techniques similar to analytical shadow
computation.

An implementation of the Radiosity lighting model is described along with the issues
involved in combining it with the algorithms described in this dissertation.

ii

Acknowledgements

Andries Van Dam and the Brown Computer Graphics Group introduced me to
computer graphics. That was a once in a lifetime experience that I won't forget.

I feel fortunate to have been a part of the graphics cluster at UNC. Everyone in it, (and
those who claim not to be in it), contribute to a great research environment. Dr. Fred
Brooks, in particular, sets an example that has inpired many students, myself included.

Finally, my family and my friends have given endless support and I thank them all,
with special thanks to Hali.

iii

Table of Contents

List of Figures VI

List of Tables vu

I. OveiView and Results I
1.1 . UNC Building Walkthrough Summary 2

1.1.1 Modelling . . . 3
1.1.2 User Interface 3
1.1.3 Display Compiler 3

1.2 Algorithm OveiView 5
1.2.1 Properties of Architectural Databases 5
1.2.2 Model Space Subdivision 7
1.2.3 Potentially Visible Set calculations 9

1.3 Results 10
1.4 Speedup Methods Used by Other Interactive 3D systems 11

1.4.1 Vehicle Simulations 12
1.4.2 Object Display Applications 12
1.4.3 Environment Simulations 13
1.4.4 Other Pre-Computation-based Speedup Schemes 14

1.5 Guide to the Chapters 15

II. Model-Space Subdivision - searching for PVS coherence 16
2.1 The Partitioning Machinery 16

2.1.1 Partition.c: C code to compute interior node splitting planes
and compute exterior node cell volumes 19

2.2 Computing Portals 23
2.2.1 Why Triangulation? 26
2.2.2 A Plane-Sweep Algorithm for Triangulation . . 27
2.2.3 Generalizing the Simple Triangulation Algorithm 31
2.2.4 Implementation 36
2.2.5 Applications 37

ill. Potentially Visible Set (PVS) Calculation 40
3.1 Over-Estimating Visibility vs. Under-Estimating Visibility 42
3.2 Sampling Algorithms 43

3.2.1 Environment-Independent, or Fixed, Sampling 44
3.2.2 Environment-Dependent, or Targeted, Sampling 51

3.3 Over-Estimation Methods 52
3.3.1 Concave Shadow Casters 54
3.3.2 Multiple Shadow Casters (possibly concave) 56
3.3.3 A Naive Algorithm to Analytically

Compute 2D Shadow Relationships 58
3.3.4 O'Rourke's worst case n4 example 60
3.3.5 Extending the Analytic Algorithm to Three Dimensions 61
3.3.6 Other approaches 62
3.3.7 An Over-Estimation Implementation 63

3.4 Impressions and Comparisons of the Implemented Algorithms 66
3.5 PVS computation taking account of viewing direction 71

iv

IV. A Radiosity Implementation 72
4.1 A Ray-Casting Approach 72
4.2 Interactive Light Manipulation 73
4.3 Using a Physically Based Lighting Model on Non-Physical Models 74
4.4 Adaptive Refmement . . 7 4

V. Contributions and Future Work 78

References

Appendix A. Primary Source Code

v

81

86

List of Figures

Figure 1.1 Walkthrough goals I
Figure 1.2 Overview of a virtual building system 3
Figure 1.3 Display File Compilation 4
Figure 1.4 Programs to compute model subdivision and PVSs 5
Figure 1.5 Simple three room floorplan 6
Figure 1.6 Subdivided floorplan and corresponding tree data structure 9

Figure 2.1 graphical view of the operation of partition (> 20
Figure 2.2 Data structure for polygons in axial planes . . . 22
Figure 2.3 Portal Computation 23
Figure 2.4 Maintenance of the second plane-sweep invariant 29
Figure 2.5 Triangulation example 30
Figure 2.6 Catching edge intersections 32
Figure 2. 7 A complex transition vertex 34
Figure 2.8 Modification to keep all edges present in the input 37
Figure 2.9 Fixing Cracks 39

Figure 3.1 The PVS problem . . 40
Figure 3.2 Four types of visibility 41
Figure 3.3 Ray-Line Segment Intersection 43
Figure 3.4 Hemi-cube sample pattern . . 45
Figure 3.5 Aligned hemi-cube sampling problems in a hallway 46
Figure 3.6 The jittered hemi-cube sampling pattern 47
Figure 3.7 Cosine-weighted (radiosity) hemisphere pattern (off-axis view) 48
Figure 3.8 Cosine-weighted (radiosity) hemisphere pattern (top view) 49
Figure 3.9 Linear radius-subdivision hemisphere pattern 50
Figure 3.10 Generating random target points on a polygon 52
Figure 3.11 A shadow cone 53
Figure 3.12 A shadow volume 54
Figure 3.13 Shadows cast by a concave polygon 55
Figure 3.14 Computing the umbra cast by a concave polygon . 55
Figure 3.15 Multiple shadow casters I 56
Figure 3.16 Multiple shadow casters II 57
Figure 3.17 Linear Separators 57
Figure 3.18 Solution to multiple shadow casters 58
Figure 3.19 Example for 2-D algorithm . . . 59
Figure 3.20 O'Rourke's worst case example . 60
Figure 3.21 Linear separators in 3-D 61
Figure 3.22 Counter example for direct visibility segment operations 63
Figure 3.23 Reversing direction of projection 64
Figure 3.24 Occlusion.operation 65

Figure 4.1 A hierarchical polygon 7 5
Figure 4.2 Choosing quadrilateral diagonals 7 6

vi

List of Tables

Table 1.1 Speedup results
Table 3.1 Summary of timing comparisons . . .

vii

11
70

Chapter I

Overview and Results

This dissertation research was performed as part of the UNC Building Walkthrough
project [Brooks86], [Brooks88], [Airey89d], [Airey90b]. The basic goal of the
Walkthrough project is to create a virtual building environment, a system which simulates
human visual experience with a building, without physically constructing the building. This
is intended to aid the part of building design known as design development, when the
architect explores, sometimes with the client, different design options.

Part of the goal of the Walkthrough project can be stated simply as, "accurate images,
real-time feel, and big models", (figure 1.1). Choosing these objectives and attempting to
work on the area of our system that was most deficient forced us to focus on the pre­
processing partitioning approach, the pre-processing radiosity approach, and display-time
adaptive refinement. The other part of the Walkthrough goal is a natural man-machine
interface.

accurate images

Figure 1.1 The Walkthrough goal, "accurate images, real-time feel and big
models", pushed us to develop pre-processing methods to improve update
rates, adopt a pre-processing shading model, radiosity, and apply the
concept of adaptive refinement during display.

Many components of a building simulator, corresponding to many human senses, are
important. My work within the Walkthrough project concentrates primarily on techniques
to enhance visual simulation. Visual simulation can be separated into two components, a
kinetic component, how the scene moves, and a realism component, how the scene looks. I
sought to improve the kinetic visual experience by increasing update rates and to improve
the illusion of reality by using the radiosity shading model [Goral84], [Cohen85],
[Cohen88], [Wallace89], [Baum89], [Airey89]. For both components, one may use a

1

strategy of pre-computing as much work as possible prior to display. This dissertation
describes techniques developed to pre-compute data structures which are used at display
time to significantly increase the update rate. Our use of the radiosity shading model is
described io chapter IV.

The Walkthrough research team finds natural motion, the kinetic component, to be a
very important component of visual simulation. We observe user behavior to be
qualitatively different at six updates per second as compared to behavior at one update per
second.

• At one update per second (ups) or less, the system is painful to use. It is necessary to use
an auxiliary two-dimensional floorplan display, or map view, to navigate.

• As the update rate increases from one ups to around twenty ups, interactivity appears to
increase rapidly (superlioearly) before levelling off. At around six ups, the virtual building
illusion begins to work. It is possible to navigate with only the three-dimensional display,
or scene view.

In the fall of 1986, we were able to display a relatively spartan model of the Sitterson
Hall Computer Science building, composed of 7125 polygons, at about four ups with the
Pixel Planes 4 graphics machine [Fuchs85]. We wanted at least six ups and preferably
twenty ups.

We perceived the slow update rate as the greatest system deficiency. I developed a
process that automatically associates sets of viewpoints, called cells, with potentially
visible subsets (PVS) of the model. The display subsystem has to process only the PVS
that is associated with the cell containing the current viewpoiot

This process allows the Sitterson model to be displayed with at least 14 ups and often
many more, depending upon the view, on the same Pixel-Planes 4 machine that in 1986
yielded four ups.

The update rate increase due to this process is dependent upon the data. Roughly
speaking, the increase in update rate is proportional to the number of rooms in the building.

1.1 UNC Building Walkthrough Summary

A complete building walkthrough system has the following major parts (Figure 1.2).

• A modelling subsystem for the architect, where the canonical model is maintained. We
use AutoCAD.

• An image-generation process for constructing a display file from the canonical model and
generating the images. This includes the display-compiler subsystem and the display
subsystem.

• An interface subsystem that allows the use of many different man-machine interface
devices for controlling viewing parameters and illumination of the model.

2

Canonical Model design
Constructed by alterations

the Architect
model geometry,

shading attribute;..s --~----.,.

real-time
display
structures .---.L---..

device inputs
interpreted to give
viewer position. orientation
and viewing parameters

interface

other sensory
output

Figure 1.2. Overview of a virtual building system.

1.1.1 Modelling

The modelling subsystem must address ease of construction; (i.e. how many man-hours
are required to create the model), model modification, and management of many different
versions of the model (a task very similar to source code control [Tichy82]). For our
modelling capabilities, we have adopted AutoCAD. This helps us establish partnerships
with architects; these partnerships yield us datasets and system evaluation. We have only
had limited partnerships so far.

1.1.2 User Interface

The interface subsystem must coordinate input devices with the display system. We
have found that a flexible interface to a variety of devices is important. We already use
several devices, often concurrently, and need to test new devices often. Frequent users
such as architects may want complete freedom of motion Goysticks), while an infrequent
user, e.g., a client, may desire a restrictive but more natural interface, (a treadmill with a
head-mounted display or big screen display).

1.1.3 Display Compiler

The display compilation task must translate the geometric and surface attribute
information from the model into a form suitable for rapid display and interaction with the
interface devices. Figure 1.3 depicts our current process of converting an AutoCAD dataset
into a form suitable for a virtual world system. The rectangles represent programs. The
ovals represent data files. The type of the data file is depicted by the Unix convention of file
name extensions.

3

jAutoCAD~

radiosity

.disp

translators
and filters

model subdivision,
potentially visible
set com utation

compile display file

Pixel
Planes 4

Figure 1.3 Display File Compilation

The AutoCAD external files (.dxf extension) are parsed and converted to a simple
format which consists entirely of polygons (.poly extension). Separate files are generated
which contain surface attribute information (.sc extension), and the sets of lights for which
we want to compute independent radiosity solutions (.circuit extension). Another file
(.template extension) allows Phigs+ -like structures to be incorporated into the fmal display
file [Van Dam88]. Instances and templates allow movable objects such as furniture, or
temporary diagnostic objects such as cell portals, to be easily added to the display. The
display compilation splits into the radiosity process and the model subdivision process.

The radiosity process is briefly described in chapter IV.

The main right fork in Fig 1.1.3.1. is the model subdivision process. It generates a
recursive subdivision of the model space [Samat90]. The result of this subdivision process
is a tree of splitting planes (.partition extension). The .partition file defmes subvolumes, or
cells,of the model (.cell extension). Each of these cells is processed to determine the
polygons that are potentially visible to an observer ranging freely inside the cell. These
polygons are then associated with the cell. During display, the cell containing the current
viewpoint is found, and only its associated polygons are rendered. Note that a particular
polygon may be associated with many ~ells- i.e., visible from many subvolumes.

The box labelled model subdivision, potentially visible set computation, (figure 1.3)
contains the programs that are the principal subject of this dissertation. Figure 1.4 is an

4

expansion of that box in figure 1.3.

The box labelled compile display file is a program whose main task is to combine all
the information generated by previous programs into one coherent structure for display.
Even though it serves primarily as a bookkeeper, it is quite a complicated program.

name.xxxxx.cell

Figure 1.4. The programs used to compute the model subdivision or
partition, and identify potentially visible sets. Vis computes the PVS for a
cell with a sampling algorithm. Occ computes the PVS for a cell with an
analytic algorithm. Triv simply assigns the polygons inside a cell to the
PVS and is usually used only to evalute the result of Partition.

1.2 Algorithm Overview

1.2.1 Properties of Architectural Databases

Architectural databases possess special characteristics. Some of these properties
follow. Techniques which exploit some of them are described later.

1. Properties of polygon configuration.

1.1. Most polygons are axial, i.e., normal to one of the coordinate axes.

1.2 Most polygons are rectangles.

1.3. Large planar surfaces are often structured into multiple, co-planar levels for
modelling purposes, shading purposes, and realism detail purposes. For example, the

5

modeller may represent a ceiling with one polygon, but it may be diced into many
smaller co-planar polygons to obtain a more accurately shaded image.

1.4. The set of polygons that appears in each view changes slowly as the viewpoint
moves, except when crossing certain thresholds, e.g., doors and windows. Consider
a simplified three room floorplan (Figure 1.5). The set of polygons visible in a 360
degree field of view from v1 does not change much until one nears v2. Then it stays
roughly the same until one gets to v3 where it changes radically again.

r----------.(2,2)

x=l

Figure 1.5 Simple three room floorplan with possible viewer path. The
set of polygons visible in a 360 degree field of view from vl does not
change much until one nears vz. Then it stays roughly the same until one
gets to v3, where it changes radically again.

2. Properties related to the inside-out viewing nature of environment models.

2.1. Many viewpoints have a large portion of the model outside the field of view.

2.2. Surface interreflections in shading calculations are very important for spatial
comprehension inside a building.

3. Properties related to depth complexity.

3.1 Any image computed from an interior viewpoint will have many surfaces covering
every pixel.

3.2. Many surfaces are completely hidden; they do not contribute to the image at all.
Besides the obvious example of back-facing surfaces, forward-facing surfaces in the
next room or on the floor above or below do not contribute to the image.

3.3.The fraction of hidden surfaces in a building is basically independent oftesselation
required for shading. The number of surfaces hidden is a function of the number of
walls, floors and ceilings. Tesselating them uniformly into small patches does not
change the fraction of hidden surfaces. Thus the methods outlined in this dissertation
should get results independent of shading tesselation.

A simple quantitative analysis comes from [Gharachorloo89], [Sutherland74].
Given P polygons projected onto the image plane, of average area A, a total of P•A

6

pixels must be calculated. Assuming the scene covers a screen of N pixels and tbat tbe
polygons are overlaid in D layers everywhere, we have: P•A = N•D, where D is
tbedeptb complexity. If walls are represented witb small individual tiles for shading
purposes, tben P increases while A decreases and D remains constant.

Additional detail such as fancy window frames and baseboard moldings, etc.has a
similar but less easily analyzed effect. The fraction of hidden surfaces increases only
slightly.

1.2.2 Model Space Subdivision

The pre-processing algorithm automatically subdivides model space or equivalently,
viewpoint space, into cells. Define tbe union of visible polygons for all tbe viewpoints in a
cell as the potentially visible set (PVS) for that cell. For any viewpoint in tbe cell,
rendering the potentially visible set for that cell generates an image with no missing
polygons. Since the size of tbe potentially visible set is usually much smaller tban the size
of tbe model it came from, it takes less time to render. The rendering process involves at
least transforming tbe polygon to tbe correct perspective view, and tben scan-converting it
into the frame buffer if it appears in the viewing frustum and faces tbe viewer.

For the simple three room floorplan given in figure 1.5, the labelled rooms
approximate what one wants in a cell. If the doors were closed (and they had no glass) tben
one could simply render the polygons in room2 when the viewpoint is in room2 and get
roughly a three-fold increase in system update time. If tbe doors are open, one must add
the polygons that can be seen through the doors from room2 to the potentially visible set
for tbat cell.

Even from tbis simple example it is obvious tbat certain model subdivisions are better
tban otbers. The subdivision process should try to satisfy tbe following objectives.

Objective 1. Minimize the size of the potentially visible sets. One wants cells whose
potentially visible set is not much larger than tbe visible set of any one viewpoint in tbe cell.
This ensures tbe best possible speedup.

Objective 2. Minimize the number of cells; split cells only if the resulting child cells have
significantly smaller PVSs.

Besides these loosely stated objectives, a subdivision algorithm must satisfy other
restrictions.

Restriction 1. It must be easy to find the cell that contains the current viewpoint. This
operation is performed for every update during display.

Restriction 2. It must be automatic. No hand-tooling allowed. Architects cannot afford
the time and may not have the expertise to hand-weave databases for esoteric display
algorithms.

Restriction 1 implies the use some type of data structure suitable for range searching. I
chose recursive binary partitioning planes. Furthermore, it is sufficient to restrict their
orientation to be normal to one of the coordinate axes. Other options include a regular 3D
grid, or adaptive space subdivision techniques such as octtrees or k-d trees [Mehlhom84],
[Samet90]. Other proposed approaches utilize the fact that adjacent cells are typically
accessed in a sequential order and usually in tbe horizontal plane. This would allow a more

7

adaptive subdivision algorithm [Prins90]. Any of these data structures allow the cell
containing a viewpoint to be found quickly.

To satisfy Objective 1 and Restriction 2, I devised a heuristic function to choose the
splitting planes used in the recursive binary subdivision scheme. Since one wants a
splitting plane that is largely opaque, one may limit the choice of splitting planes to those
that contain model polygons. The function evaluates each plane containing a polygon for its
suitability as a separating plane. Criteria considered are

• how evenly the plane separates the model, called the balance of the split,

• how well the plane hides the two sides from each other, called the occlusion factor of the
split. For example, a floor hides better than a wall with a door in it.

• how little the plane splits individual polygons, since polygons that are split will have to be
put in the potentially visible sets of both partitions. This is called the split factor.

The metrics used quantify these criteria between 0 and I. A linear combination of these
values, with the occlusion factor weighted most heavily, has proven to be successful, e.g.,

partition priority = .5*occlusion + .3*balance + .2*split.

To satisfy Objective 2, the recursive process terminates when no partitioning plane has
a partition priority exceeding a user-defined threshold or when a maximum tree-depth is
exceeded. The process generates a tree with interior nodes representing binary separating
planes and leaf nodes representing cell volumes. Several people have noted that feedback
from the second phase of the pre-processing algorithm, described in the next section, could
be used to adjust the model-subdivision [Prins90].

If one runs this function on the "planes" in our simple example floor plan, the wall that
separates rooms 2 and 3 from room I, the plane y= 1, has a higher partition priority than the
wall that separates room 2 from room 3, the plane x=l, based on its higher occlusion
factor. This yields two cells, room I and the combination of room 2 and room 3.
Recursively evaluating our heuristic function on these two cells suggests that room 2 and
room 3 can be further split into two cells along the plane x=1 (figure 1.6).

8

r---------,(2,2)

room!

\ y=l y=l

~~
x=l

/ ~ rooml

room2 room3

(0,0) x=l room2 room3

Figure 1.6. Left, the subdivided floor plan. Rooml is separated from
room2 and room3 by the plane y=l. Room2 is then separated from room3
by the plane x=l. Right, the corresponding tree data structure. Interior
nodes represent splitting planes and leaf nodes represent cell volumes.

1.2.3 Potentially Visible Set calculations

After model-space subdivision, the subset of the model potentially visible to an
observer inside each cell is computed and stored with the cell. If the cell is completely
sealed, that is, its boundary is composed of opaque surfaces, then this is easy to do. The
potentially visible set for the cell is simply the set of polygons that intersect the cell.
However, if the cell has holes in its boundary, called portals, then the problem is more
difficult.

In our simple example, the only portals are doors. In real-life datasets, hallways,
stairwells, elevator shafts, windows, and oddly shaped rooms give rise to other portals.
Portal geometry is defined only implicitly as the absence of polygons in the boundary of the
cell. Explicit polygonal descriptions of the portals are obtained by computing the boolean
difference of the cell boundary and polygons lying in the cell boundary planes. Algorithms
that perform boolean set operations on co-planar sets of polygons can compute the explicit
polygonal definitions of the portals [0ttman85], [Weiler81], [Airey89c]. Section 3.2
describes one such algorithm.

We call the question of what external polygons one should add to the potentially
visible set for a cell the polygon-to-cell visibility problem. This can be reduced to another
problem. One really has to worry only about what can be seen from the cell portals, which
can each be represented with polygons. Taking the union of what is visible from all the cell
portals of a cell solves the cell-to-polygon visibility problem.

Unfortunately, this is also a difficult problem. One needs to know what is visible from
a portal which is an area, an infinite albeit bounded set of viewpoints. Call this problem
the polygon-to-portal visibility problem.

Computing the PVS is equivalent to identifying the polygons that receive direct
illumination from an area light source [Nishita85], [Chin89], (the portal acts as an area light
source). This is similar to the underlying problem of surface-to-surface reflection that

9

appears in models of global lighting effects, such as the radiosity lighting model. Other
researchers have examined a related problem in two dimensions which deals with visibility
from an edge [Avis86], [O'Rourke87].

Since algorithms to compute the exact solution for the portal-to-polygon visibility
problem are very complex, I have developed two complementary classes of algorithms to
compute approximations to the exact solution. These are detailed in Chapter III.

One class of algorithms uses point sampling and may underestimate the set of
polygons to add to the cell's potentially visible set. This is analogous to the use of point
sampling in radiosity solutions. In fact, the same ray-polygon intersection library is used in
the Walkthrough radiosity implementation [Airey90b].

Another class of algorithms establishes occlusion relationships among polygons. This
is similar to the computation of shadow volumes [Crow77]. Since exhaustive computation
of shadow volumes is expensive, the only alternative is to compute a partial solution. This
may overestimate the set of polygons to add to the cell's potentially visible set. Since the
exact solution is bracketed by these two algorithms, one hopes they can be combined into a
more accurate algorithm in the future.

Currently, these approaches are both expensive. In practice we use mostly the
sampling-based methods because they are less expensive than the occlusion-relation based
methods, although they do occasionally miss potentially visible polygons.

Just as a radiosity solution can be accelerated with graphics workstation hardware
[Baum90], the ability to generate environment samples quickly can be used to accelerate a
sampling-based approach. For radiosity, the environment samples are not colored pixels,
but polygon identifiers. In the case of radiosity, the polygon identifiers and the pixel
location are used to construct form factors. In this case, after rendering the view from a
sample point on the portal, any polygon whose identifier appears in the frame buffer is
added to the PVS under construction. Note that reading the sample values, the polygon
identifiers, back from the frame buffer must be efficient also; low bandwidth here can
defeat this idea.

1.3 Results

I have run this algorithm on a few databases and compiled statistics to document the
speedup results. The databases include

• A 7125-polygon model of Sitterson Hall, Sittersonl. Walls are represented by single
polygons with separate colors for the front-facing and back-facing sides. AutoCAD was
not used for this model. (Modelled by Dana Smith from plans by Phil Freelon of O'Brien
and Atkins)

• A second model of Sitterson Hall was constructed with AutoCAD, Sitterson2. This
model consists of over 22,000 polygons. It consists mostly of polygons that are designed
to be seen from only one side. The walls have thickness and are modelled with a pair of
polygons. The lobby portion of this model, lobby2, appears in a Siggraph '89 video
[Airey89b]. Lobby2 has 3949 polygons. (Modelled by Penny Rheingans.)

• The Orange United Methodist Church Fellowship Building. An early version with 7812
polygons is called Churchl. (Model by Penny Rheingans from plans by Wesley McClure
and Craig Leonard of McClure NBBJ.)

1 0

• A later version of the Church consists of over 12,000 model polygons. Since the radiosity
process increases the number of shading patches that must be stored in display memory by
about an order of magnitude, a 6037 -polygon subset was used because of display memory
limitations. This subset, called C hurc h2, consists of the main meeting hall and a few
adjoining rooms, including a fully furnished kitchen.

• This dataset was later re-enlarged to 6974 polygons by adding part of the basement. This
version of the church is called Church3. (John Alspaugh helped model and manage later
church databases). The Church3 database is featured as a demo for the SGI Iris 4D VGX
series machines.

Table 1.1. summarizes the results of the model-subdivision algorithm on these
datasets.

The best results, as one would expect, comes from the two complete models,
Sitters on] and Church], buildings with many rooms, easily detected pockets of PVS
coherence. These have the highest depth complexity. Sittersonl was subdivided into 269
cells. The cell with the largest potentially visible set had 2195 polygons to display. The
average number of polygons to display was a little more than 230. The speedup was 3.25
in the worst case and 30 in the average case.

Data polys cells
polys/cell speedup
avg. max. avg. min.

Sittersonl 7125 269 230 2195 30.98 3.25
Lobby2 3949 54 466 2550 8.47 1.55
Church! 7812 108 291 2055 26.85 3.80
Church2 6037 16 1887 3477 3.20 1.74
Church3 6974 106 767 3768 9.09 1.85

Table 1.1. Summary of Model Subdivision speedup results.

The additional display memory required to store the data structure generated by the
visibility pre-computation is reasonable, about 20%. The main requirement is the need to
store potentially visible sets for each cell. Since several cells may see each polygon, there is
a potential for large display memory use unless polygon descriptions are shared among
cells. The polygons need be represented only once; the PVS for each cell is composed of
references to the polygons. From the numbers in Table 1.1 for the Sitterson model, one can
see that, on average, about ten cells can see each polygon. This means one needs about 10
more words per polygon to store the pointers. Since the storage required for a color­
interpolated quadrilateral is about 200 bytes, the total display file size is increased by about
20%. The storage requirement for the other databases is less.

1.4 Speedup Methods Used by Other Interactive 3D Systems

Most interactive 3D applications can be implemented with some general-purpose
technology. All use some form of the well-known image generation pipeline [Molnar89].

11

In general, however, it is possible and usually desirable to capitalize on certain properties
of a given application to increase performance. Specialized hardware may be built to
capitalize on application specifics if economics allow it. A less drastic solution is to build
specialized software.

When a software approach is used, the strategy of pre-computation is common. Some
classes of applications and the methods they use to achieve usable speed follow.

1 . Vehicle simulations, such as flight simulators, large ship simulators for harbor pilots,
or automobile simulations [Schachter83],[Deyo88].

2. Object simulation for the visual appearance of mechanical parts or anatomical
structures.

3 a. Man-made indoor environment simulations for buildings or ships, (UNC's Building
Walkthrough is in this category).

b. Man-made outdoor environment simulations for parks, planned communities, etc.

1.4.1 Vehicle simulations

Vehicle simulations, such as flight simulators, can attain 60 Hz update rates with
textured, anti-aliased images including atmospheric effects such as haze and fog. To help
achieve such high performance, designers often assume constraints on the models.
Grossly-accurate, mostly-static databases composed of relatively few, large, textured
polygons are typical oflandscapes used in flight simulators [Schachter83],[Abram87].

Because the emphasis is on the simulation experience and not the model, it is
reasonable to spend a large amount of time hand-tooling a model that fits the constraints of
the system. Since the model will be used over and over again, modeling expense is
amortized over many simulations.

Limited depth complexity and large polygons make hard-wired, image-order, or scan­
line algorithms, and priority graph approaches very effective[Sutherland74]. The bottleneck
in the most general pmpose graphics workstations [Akeley89], which typically use the Z­
buffer method for hidden surface elimination, is the limited bandwidth to the frame buffer
and Z buffer. Image-order algorithms that work on databases with low depth complexity
can avoid this bottleneck because visibility is determined before information is written to
the frame buffer [Molnar89].

The lighting models used in flight simulators may be relatively simple because direct
sunlight is responsible for most of the shading effects seen on the landscape. Surface
interreflections, which are responsible for much of the expense in other lighting models,
such as ray tracing or radiosity, can be disregarded [Hall88].

1.4.2 Object display applications

Graphics workstations suitable for computer aided engineering (medical and
mechanical) have been available for several years. They have taken advantage of the
application specifics to achieve the needs of the users with minimal cost. The displayed data
is typically not an environment. It is a tie-rod or distributor cap or kidney some other object
than can be conveniently viewed through the computer window. An object may be
comprised of many small polygons derived from a higher order surface description. Since
the object typically is inspected individually and is mostly convex, expensive lighting

12

models that account for surface interreflections are usually unnecessary.

Graphics workstations from Silicon Graphics, Stardent, Hewlett-Packard, Evans and
Sutherland and others provide enough computational power to transform and shade over
100,000 polygons a second [Akeley89]. On the other hand, at this date they provide frame
buffer bandwidth for about 40 million pixels a second. This directly implies an average
polygon size with a dimension of about 20 pixels on a side. If the polygons are large, say
256 pixels on a side, the frame buffer bandwidth bottleneck will prevent the display of
more than about 600 polygons a second [Molnar89]. Furthermore, they often cannot
generate more than 30 frames a second for any model. For example, the Stellar GSlOOO
graphics supercomputer renders into virtual pixel maps in main memory and then must
copy them into video memory. While they can render a large number of polygons, this
prevents them from achieving the 30-60 updates per second that is necessary for out-the­
window simulation.

Of course, workstation vendors are continually working to improve their machines, so
these limitations may be overcome in the near future.

1.4.3 Environment simulations

Simulations of man-made environments such as buildings and ships have a different
emphasis than either of the above applications. The accuracy of the model being displayed
is more important than the simulation experience. Environment simulators cannot move
building walls and ship bulkheads to simplify visibility priority calculations as features on a
landscape can be moved to help vehicle simulation image generation. Furthermore, they
cannot justify spending many man-hours hand-tooling the database and preparing it for
display because the database will not be used for many hours of lucrative simulation, but
only long enough to find potential problems or advantages of the design.

Poorer image quality (aliasing effects) and slightly slower update rates may be
tolerated because of the emphasis on the model more than the kinetic experience. On the
other hand, a building or ship is primarily designed to house human beings and cannot be
evaluated in the same manner in which one evaluates the effectiveness of an engine
crankshaft. It must be experienced somehow. The structure is most easily examined within
a simulation environment similar to the vehicle simulations, but without a vehicle. A
balance between model realism and kinetic fidelity must be achieved. Something
approaching real-time, say greater than six updates per second, is necessary.

As an aside, the Walkthrough team has noticed that fewer updates are necessary for the
individual operating the interactive controls than for observers. The operator appears to be
doing some type of interpolation between frames because he knows where he wants to go.
He has some idea what the next frame will look like and can use the rime between frames to
mentally smooth the transition. The observers are less sure what the next image will look
like. Did the operator turn left, right, up or down, stop, speed up, etc?. Thus he cannot
interpolate to the next image, he must wait for it to appear. It is likely that the observer is
doing some type of extrapolation, i.e., if the last few images were from a straight line path
then the observer will expect the next image will be also. When the next image turns out to
be a hard left turn, he may be disoriented, whereas the operator will not.

The shading requirements of architectural simulations are also different from those of
vehicle simulations. Surface interreflections are very important to the architectural
evaluation. The radiosity lighting model, which models diffusue interreflection, is

1 3

substantially more effective than Phong and Gourand lighting models which model local
reflections.

Since the penalty for a poorly-designed building is usually only dissatisfaction and not
a threat to life, as poor flying is for a pilot, the economic forces have not been sufficiently
strong to push development of specialized commercial systems for architectural
visualization.

1.4.4 Other Pre-Computation-based Speedup Schemes

Several researchers have devised software approaches that use pre-computation to take
advantage of some aspect of a certain class of applications so as to increase performance.

Baum, Winget and Garlick use a spatial subdivision based on an octtree to accelerate
clipping operations in a large architectural structure [Garlick90]. They note that the number
of polygons actually in the viewing frustum is often a small fraction of the total number of
polygons in the model. Their clipper first considers the root volume. If it does not intersect
the viewing frustum, then it does not need to be displayed. If it is completely contained
within the viewing frustum, then all the polygons in the volume must be rendered. If the
volume intersects the viewing frustum but is not contained completely within the frustum,
the volume is split and the above operations are applied recursively to its children.

Hubschman and Zucker introduced the idea of using frame-to-frame coherence in
animations to decrease the time required for hidden-line removal [Hubschman81]. Their
method is restricted to convex non-intersecting polyhedra.

The Binary Space Partition tree (BSP-tree) has been used to display rigid polyhedral
scenes in near real-time by automatically pre-computing a structure which gives relative
depth-ordering for faces in the model [Naylor81]. The display of a single frame from some
viewpoint with hidden-surfaces removed involves traversing the BSP-tree to generate a list
of polygons in back-to-front order. This allows polygons painted later to overwrite those
painted earlier. Each frame is generated by a separate and complete traversal of the BSP­
tree structure. The BSP-tree approach requires drawing all of the polygons in the model for
each frame. There is a potential for the number of polygons to increase up to the cube of the
original number of polygons due to splitting, but there is much experimental evidence to
suggest that the number is increased by a only a single digit multiple in practice [Fuchs83].

Shelley and Greenberg used frame-to-frame coherence for the generation of an
animation sequence corresponding to a smooth viewpath through a 3D environment
[Shelley82]. A smooth, interactively defined viewpath is represented as a B-spline, and
exploited to reduce the expense of the sorting and culling operations for visible line/surface
computation. Although the viewpath was specified interactively, the computation of the
appearance of the scene along the viewpath was done off-line.

Denber and Turner describes a differential compiler for computer animation
[Denber86]. This is designed to playback pre-computed raster images at animation rates.
The differential compiler performs temporal domain image data compression using frame
replenishment coding on successive frames of animation stored in memory as bitmaps and
saves only the differences. A small run-time interpreter then retrieves and displays the
differences in real-time to create the animated effect.

Plantinga, Seales and Dyer present a complicated algorithm to pre-compute the visible
portion of an object with respect to sets of viewpoints. This work is based on theoretical

14

computer vision work on aspect graphs [Plantinga89]. They demonstrate their algorithm on
two small databases, 416 and 384 polygons. They have implemented wire-frame rendering
with orthographic projections and viewpoints limited to great circles on a view sphere. The
algorithm may be extended to arbitrary viewpaths with true hidden surface removal
although perspective projection makes this very difficult. This algorithm cannot be used
with existing hidden surface removal algorithms. It remains to be seen whether the storage
required to store the ASP (aspect graph) structure will be manageable for large databases.

1.5 Guide to the Chapters.

The Chapters in this dissertation are arranged in a very straightforward fashion. This
chapter provided an overview of the methods and results. The pre-processing method is
naturally divided into two phases, model space subdivision and PVS computation. A
chapter is devoted to each phase. Prior work and projected future work is discussed
integrally with each chapter.

One problem that is only briefly mentioned in the overview is the computation of the
geometric definitions of a cell's portals. This requires sophisticated methods akin to solid
modelling methods. A large part of Chapter 2 is dedicated to an algorithm to solve this
problem and similar problems with set operations on co-planar polygons. Techniques from
the theoretically oriented computational geometry literature are adapted to real-world data.

Chapter 3 is devoted to techniques for computing the PVS for a cell. Two different
approaches are explored.

Chapter 4 discusses the Walkthrough implementation of the radiosity lighting model
and the issues involved in integrating it into our system.

Chapter 5 reviews contributions of this work to visual simulation and recommends
future research directions.

1 5

Chapter II

Model-Space Subdivision -
searching for PVS coherence

Chapter I noted some properties of architectural databases. This chapter concentrates
on the following property:

Property 2.1 The set of polygons that contributes to each view changes slowly as the
viewpoint moves, except when going through walls and floors or crossing portals.

Our goal is, during a pre-processing phase before display,

1. to construct cells of viewpoints that have coherent PVSs.

2. to identify the potentially visible subset (PVS) of the model polygons for each cell.

If the PVS for each cell is significantly smaller than the entire model, then during
display, we generate images faster by only processing the PVS for the cell that contains the
current viewpoint. Since the update rate is generally a function of the size of the model, the
update rate increases in proportion to the difference in size between the current PVS and the
model. This technique improves update rate by a ratio that increases with the size of the
model.

We are essentially searching for pockets of PVS coherence. Coherence of data is a
property that graphics researchers have exploited for many years. Spatial coherence is the
tendency for the characteristics of a scene to be locally constant across space. Scan-line
algorithms, for example, take advantage of spatial coherence. Temporal coherence is
defmed similarly.

2.1 The Partitioning Machinery

An overview of the partitioning process is presented in Section 1.3.1. It explains what
the algorithm does, but many important details were omitted. This section discusses the
subdivision process in more detail. The two Objectives and two Restrictions from Section
2.2.1 that guide the partitioning machinery are repeated here.

Objective 1.

Objective 2.

Restriction 1.

Restriction 2.

Minimize the size of the potentially visible sets.

Minimize the number of cells; subdivide a cell only if the child
PVSs are significantly smaller

It must be easy to find the cell that contains the current viewpoint.

The partitioning process must be automatic.

16

Restriction 1 implies the use of some type of data structure suitable for range
searching. I chose recursive binary partitioning planes. An initial volume is split with a
plane yielding two child volumes. The process is applied recursively to each of the child
volumes. If most polygons are axial, normal to one of the coordinate axes, it is usually
sufficient to restrict splitting plane orientation to axial planes. The result of this process is a
binary tree data structure. Splitting planes are represented with interior nodes. The exterior
tree nodes, or leaves, are volumes. This data structure allows the cell containing the current
viewpoint to be found quickly. Starting from the root, one descends down the tree structure
and evaluates the equation of the splitting plane at the viewpoint. Note that in the case of
axial planes, this simply a comparison. The choice of which branch to take at each step is
based on this comparision. The leaf that is reached in this manner represents the volume
containing the viewpoint. The average number of comparisions used to find the cell
containing a viewpoint is the same as the average depth of the tree which is proportional to
the logarithm of the number of cells, assuming the tree is reasonably balanced.

To satisfy Objective I and Restriction 2, I devised a heuristic function to choose the
splitting planes used in the recursive binary subdivision scheme. Since one wants a
splitting plane that is a natural PVS coherence boundary, we look for a splitting plane that
is largely opaque. It is sufficient to limit the choice of splitting planes to those that contain
polygons. The function evaluates each plane containing a polygon for its suitability as a
separating plane. There are three separate characteristics involved in the choice of a splitting
plane:

• How well does the plane hide the two sides from each other: the occlusion factor of the
split. A floor hides much better than a wall with a door in it. The occlusion factor can be
computed by summing the area of polygons in the plane, clipped to the dimensions of the
cell, and dividing by the corresponding cross sectional area of the cell. (This assumes no
overlapping polygons).

• How evenly does the plane separate the model: the balance of the split. Balance is
important because one wants the subdivision tree to be reasonably balanced. One cannot
afford searching through a linear list of subdivisions to find the cell containing the current
viewpoint. The balance factor can be computed by counting the number of polygons on
either side of the proposed split and dividing the smaller number into the greater number.

• How little does the plane split individual polygons: the split factor. Polygons that are
split will have to be put in the potentially visible sets of both partitions. If every polygon is
split, the PVS size will not decrease. The split factor can be computed by counting the
fraction of polygons that crosses the proposed splitting plane.

The metrics used quantify each criterion between 0 and 1. A linear combination of
these values, with the occlusion factor weighted most heavily, has proven successful, e.g.,

partition priority= .5*occlusion + .3*balance + .2*split.

This heuristic function was derived by experience. One of the first things I tried as a
graduate research assistant on the Walkthrough project in the fall of 1986 was splitting up a
model of Sitterson Hall by hand. Using natural human experience and very little deliberate
study, it was clear that splitting up the building by floors was the first thing to do. An early
W alktbrough implementation, on the Ikonas display, used a manual partitioning scheme. A
value was stored in every polygon description. The user could set a mask that would be
compared against the value stored with every polygon as it was being rendered. If the

1 7

logical-and of the mask and the value was zero, further processing on the polygon was
aborted.

It is difficult to choose the best partitions beyond the floors. I devoted some thought to
what made floors good splitting partitions, quantitatively, and tried to extend that idea to
walls. I wrote some simple software that computed balance, split and occlusion statistics
for each plane in the model. The floors were indeed rated highest using these statistics, so
there was some reason to believe that this idea could be used successfully to choose further
partitions. I tried to use this information and more concentrated study to pick the partitions
by hand. It took a long time to subdivide the model with these few simple programs. There
was no code written to compute the potentially visible polygons outside the cells. Only the
polygons inside the current cell were displayed.

The partitioning scheme that exists now is simply an automation of that effort. It was
refined on 2D floorplans that allowed me to see the entire subdivision at a glance. It is
certainly conceivable that another good PVS coherence search algorithm exists. For
example, one could compute the polygons visible in a 360 degree field of view from
uniformly spaced viewpoints throughout the building. If adjacent viewpoints had
significantly differing PVSs, a new sample viewpoint halfway between those points could
be computed. The process could continue adaptively, until neighboring viewpoints had
PVSs that agreed within some tolerance. Likewise, neighboring viewpoints that had similar
PVSs could be merged. The cells could be reconstructed from these viewpoints with an
octtree.

To satisfy Objective 2, the PVS coherence searching process stops subdividing when
any of several user-defined limits is exceeded. This list is not meant to be complete.

• If no partitioning plane has a partition priority exceeding a user-defined threshold, the cell
is not split. This will happen when the cell is a single room and there is nothing that will
effectively hide one half from the other.

• If the volume of the cell is below a certain value, the cell is not split. This can be used to
prevent excessive subdivision if the size of an average room is known.

• If predefined limits on the depth of the subdivision tree are exceeded, no further splitting
of that branch is allowed. This allows a hard limit to be placed on the number of cycles
used to identify the cell containing the current viewpoint.

• If the number of polygons inside the cell is less than a specified value the cell is not split.
If one knows how many polygons the system can display safely within some time limit,
this can be used to prevent unnecessary subdivision.

Now we examine the operating details of the partitioning machinery and split selection
functions. There are several points that have not been revealed.

For example, implementing the partition priority function naively is expensive. The
balance and split criteria each involve looking at all the other faces for each of the candidate
planes. This would be quadratic in the number of faces. I use an approximation that takes
linear time. Note that databases with 10,000 faces imply that a linear time algorithm can run
10,000 times faster than a quadratic algorithm, assuming the constant factors are similar.

Optimizing the speed of partitioning is important because although the partitioning step

1 8

takes much less time than identifying the PVSs for each of the resultant cells, it is largely
sequential in nature. The PVSs for all the cells can be computed independently of each
other. This makes it relatively easy to parallelize, assuming the existence of tools for
distributed computing that allow available computers to be assigned to different cells. In
such a distributed computing environment, it is important to accelerate the sequential parts
of the algorithm.

2.1.1 Partition.c: C code to compute interior node splitting planes and
exterior node cell volumes.

The source code reveals the details. Highest level source code is in appendix A. The
supporting code can be found in appendix C.

2.1.1.1 partition()

First we will examine the highest level function, partition ().Following this we will
examine the function that selects the splitting planes, select_split2 o, and see how a
linear approximation can replace the naive quadratic algorithm for choosing the best splitter.

Figure 2.1 provides a graphical overview of the operation of partition () .

I 9

2. partition() takes a cell off
the cells_to_split stack,
splits it with split_ cell(),
and uses select_split2() to
find splitters for the children.

intial, or root,
cell

1. partition() starts by finding a
splitter for the root cell and pushing
it on the cells_to_split stack.

bestsplit X=5.2

cells_to_split stack

bestsplit X= 7. 1

3. If splitters are found, the IL_n_o_s.;.p_lit_te_r _ ___.rr------ .---------,
children are pushed onto the no splitter
cells_to_split stack and
the splitting plane is written
to the partition file. Else,
they are placed on the
cells to write stack.

cell file 1 cell file 2 0 0

cells_to_write stack

4. when the cells_to_split stack is
empty,the cells_to_write stack is
emptied by computing portals for each
cell and writing the cells to separate
files for subsequent PVS processing.

0 I cell file n

Figure 2.1 A graphical overview of the operation of partition (). Two
stacks of cells are used. Both start empty. partition() pushes the root
cell on the cells-to-split stack and begins to split cells. The results of the
split are two new child cells. If splitting planes can be found for the child
cells they are pushed on the cells-to-split stack. Otherwise, they are pushed
on the cells-to-write stack. The splitting plane is written out to the partition
file. The cells-to-write stack is processed after the cells-to-split stack
empties.

The function partition (fp, rootname, topinst) is the highest level function called
by the subdivision program. It takes a file pointer and a geometry description of the model.
It generates a description of the splitting planes in the interior nodes of the subdivision tree

20

and calls functions to compute the portals for each of the cells at the exterior nodes of the
partition tree.

The first thing partition () does is establish the orthogonal extents of the database as
the root cell. The function initialize_first_cell () handles this task along with other
housekeeping chores. The computed extent serves to define the initial volume of space to
be subdivided. If we expect to view the database from the exterior, we can increase the
extents of the database by some fixed amount. Note that this does not necessarily limit the
user to travel within this extended volume. For practical purposes, there is some fixed
distance, dependent upon the building, at which the PVS for the cell does not change
appreciably as the viewer retreats. I have simply tripled the dimensions of the original
geometric extent of the building volume to get the new extent.

The function index build () constructs a table of indices that help
select_ spli t2 () choose good splitting planes.

The section of code that computes the splitting planes is a stack-based operation. The
initial cell, which contains the entire model, is processed by select_split2 ().If the
routine select_ spli t2 () can find a suitable splitting plane, the cell is pushed on the cells­
to-split stack. If select_split2 () fails to find a suitable splitting plane, the cell will be
pushed on the output cell stack.

Assuming that select_ spli t2 () does find a splitting plane for the initial cell , or tree
root, there will be a cell on the stack. The while loop pops a cell off the stack and proceeds
to use the splitting plane found by select_ spli t2 () , and stored with the cell, to split the
cell with the routine split cell (t, t->ng, t->nl). The variable tis a pointer to a tree
node. The ng and nl fields point to the child cells that are "not greater" and "not less" than
the splitting plane field, respectively. Admittedly, names such as le and ge for less-than­
or-equal and greater-than-or-equal may have been wiser. The term equal, however, was
tied up in my mind with the meaning of lying in a plane.

The splitting plane is written to the partition file with write_ node_ ascii ().

The select_split2 o function is then applied to the two child nodes. If a splitting
plane is found, they are pushed on the cells-to-split stack. Otherwise, they are placed on the
output cell stack. When the stack is empty, the partition file is closed.

The second w hi 1 e loop processes the cells-to-write stack. It calls
compute _portals () for each of the six boundary cell faces and writes each cell and its
portals to its own file. The function compute _portals () is quite complicated and involves
thousands of lines of source code. Section 2.2 is devoted to explaining the algorithm used
by that function.

2.1.1.2 select_split2()

The select_split2 (t) routine determines the best subdivision plane for a cell. It
takes a pointer to a tree node, which includes the current cell description. If it finds a
suitable splitting plane, it stores that information in the cell and returns a true value.

Select_split2 () uses data structures built by index_build () to choose the best
splitting plane (figure 2.2). These data structures are also important for other algorithms
that process successive parallel planes containing polygons. This is a fundamental

21

operation that we use in ray-polygon intersection computation and occlusion testing. Stored
with each plane in the data structure built by index _build () is a count of the polygons
that lie on each side of the plane and a count of the polygons that are split by the plane.

r•:::::::::::::::'

Figure 2.2 Index build() constructs three sorted lists of parallel planes.
Each plane is composed of a list of polygons that lie in it, counts of
polygons on each side of the plane and a count of the polygons split by the
plane.

The occlusion criterion can be computed in constant time per plane, since it merely
involves summing the area of the polygons in the current plane and dividing by the cross
section of area in the current cell. Thus only linear time is required to evaluate the occlusion
factor for all the planes in a cell.

The balance and split criteria however, require that we compute the relationship of each
plane to all the polygons in the current cell. This takes at least linear time for each plane,
resulting in quadratic time to compute the value for each plane. To reduce the requirement
to constant time per plane we use the values that have been pre-computed and stored in the
coord_index data structures. For each plane, we have pre-computed a count of all the
polygons that are less than or equal (called not greater or "ng" here) and greater than or
equal ("nl") to the splitting plane, respectively. A count of polygons split by the current
plane is also pre-computed and stored. select split2 () uses these extra statistics for
each plane to evaluate the balance and split values for each plane without comparing every
polygon against each plane every time it looks for a splitter. Each plane is compared against
every polygon only once.

To get a count of the number of polygons to the "left" and "right" of a plane we

22

compute the difference between the count of polygons to the left of the plane and the count
· of polygons to the left of the left boundary of the cell. For the right side we compute the
difference of the count of polygons to the right of the right boundary of the cell and the
count of polygons to the right of the plane. It would be sufficient to use a count for only
one side.

The counts are exact only for planes in cells where the corresponding cell dimension is
the same size as the initial cell. The counts become less and less accurate as the cell is split
into successively smaller and smaller cells. For this reason, select split <) attenuates
the weight of these two criteria by the depth of the cell. -

See Appendix A.l for the C source code.

2.2 Computing Portals

To compute the portal geometry from a set of polygons and the cell, an axially aligned
box, we form the difference of the each of the rectangular sides of a cell and the polygons
that lie in the same plane (Figure 2.3).

Cell Wall

Figure 2.3 Portal computation. The rectangular cell wall is depicted by the
bold rectangle. Polygons lying in the same plane as the cell wall are shown
with thinner boundary lines. The portals are the set difference between the
cell wall and the two polygons lying in the same plane as the cell wall.

The process of computing the difference between the cell walls and the polygons lying
in the plane of the cell wall can be accomplished with algorithms that perform set operations
on coplanar polygons [Ottman85], [Weiler81], [Airey89c]. Such algorithms are quite
complicated. Since we are always dealing with a rectangular cell wall and always perform a
difference operation, it is possible that some restricted algorithm could do the job faster and
with less coding effort. The S utherland-Hodgman clipping algorithms appear to be the
basis upon which a simple algorithm could be developed [Sutherland74b]. This family of

23

algorithms provides a simple way to clip polygons to a convex polygon.

Unfortunately, we are, in essence, clipping the window to the exterior of the other
polygons. This is equivalent to clipping to a concave polygon. This is a fatal stumbling
block, and it appears to prevent any simple modification of the Sutherland-Hodgman
algorithm to an algorithm that will perform the difference operation.

No small modification of a simple algorithm would do the job, so I looked at the
literature for polygon comparison. The most well-known paper in the practical literature is
Weiler's polygon comparison algorithm. It definitely can perform the job, but it involves
elaborate data structures that did not fit well with my own elaborate data structures.
Secondly, the most demanding part of any polygon comparison job is finding all edge
intersections efficiently. Weiler's paper did not really address that problem, but rather
concentrated on the comparison job, assuming some other algorithm could be used to
determine the intersections

I looked to the theoretical literature, in particular [Nievergelt82] and [Mehlhorn84].
These algorithms both use the plane-sweep paradigm, which is simply a rigorous
abstraction of the scan-line algorithms used to compute visible surfaces, such as
[Sequin85] and all its predecessors. (There seem to be very few cross references between
papers in the two fields which suggests parallel and independent development of this idea.)

The theoretical literature usually ignores the harsh reality that floating point number
representation is ill-suited for geometric computing. Geometric computing must often
compare two very similar numbers. Relative values are the important thing. Traditional
floating point was developed to handle absolute values over a large range. Unfortunately,
there are also very few satisfactory answers to this problem in the practical literature.

Theoretical literature assumes restrictions in the input which ease exposition of the
algorithm. Unfortunately, the generalizations necessary to transform a theoretically
advanced algorithm into a practical tool are o~en non-trivial.

Technology transfer from computational geometry to computer graphics has been
slow. The published algorithms are efficient and can be proven correct, but the programmer
attempting to implement these algorithms faces many obstacles. The focus of the
computational geometry literature is primarily theoretical and secondarily pragmatic
whereas the emphasis is reversed for most graphics programmers. The main difficulty
faced by the practicing programmer is the restrictive assumptions made by many algorithms
about the input. In particular, published geometric algorithms often assume that the input is
in general position, i.e., that no two input vertices coincide, that no two vertices have the
same x-coordinate or that edges intersect only at end points, etc. This makes the analysis of
the algorithm much simpler but makes the task of implementation much harder. Input that is
not in general position is termed degenerate even though it may occur more often in
practice than input in general position. Secondary difficulties are those of data
representation. The universal unit of information for computer graphics is the oriented
convex polygon represented by a list of vertices. Algorithms in the literature may assume
some other representation for input or output, such as a doubly-connected edge list (DCEL)
which requires translation of data structures.

I have attempted to develop an algorithmically advanced solution to the polygon
comparison problem which handles input that appears in practice. Once the algorithm was
implemented and fairly stable, many other applications became evident. For that reason, the
algorithm is presented in a general setting. The original purpose of the algorithm, to

24

compute portal geometry, is now just one of the many uses of this code.

We have developed an algorithm that handles degenerate input while maintaining good
performance. Simply stated, it computes the set operations, union, intersection and
difference on polygons. The input may consist of such normally troublesome entities as
concave polygons with holes. The output is a triangular subdivision of the plane over
which the set operation is true. Although this appears to be rather abstract, many problems
encountered by graphics programmers can be cast as set operations on polygons. We list
some applications here briefly and discuss them in greater detail in Section 2.2.6.

1) Many graphics algorithms demand convex polygons. Concave polygons, possibly
with holes, must be decomposed into convex parts. Obviously, triangles are convex, so
triangulation yields a convex decomposition. This is the simplest application of our
algorithm but may be the most useful. In section 2.2.2 we discuss less obvious advantages
of the triangular subdivision.

2) Generalized clipping operations appear often in graphics applications. For example,
Constructive Solid Geometry (CSG) algorithms which operate on boundary representation
data need to deal with coincident coplanar faces. If two cubes are abutted and one takes the
union of the cubes, it is necessary to remove the portions of the faces that touch since those
portions are no longer boundaries; they are inside the union of the cubes. Computing the
exclusive-or of those faces solves the problem. The problem of computing portal geometry
falls into this category. Another example is simply detecting and counting overlapping
polygons (without computing their exact overlap). A wall in a building should not be
modelled with overlapping polygons because this can cause rendering errors. Detecting
regions where two polygons overlap can be formulated as a modified set expression
problem. The algorithm can also be modified to count overlaps.

3) In·other applications, it is necessary to cover a curved surface with polygons so that
T -junctions do not occur. This structure is known in computational geometry as a planar
subdivision. If a simpler tiling, which allows T-junctions, is used, cracks may appear.
Analogously, if a flat surface is shaded we can think of the intensity values as a curved
surface. With a tiling, the cracks in the intensity surface appear as shading discontinuities.
Since the algorithm can transform a tiling into a triangular subdivision with a union
operation, it can be used to eliminate cracks and shading discontinuities; this is important
for radiosity applications. See section 2.2.5.3 and figure 2.9 for details.

The portal algorithm is a generalization of a O(n logn) plane sweep algorithm to
triangulate a simple polygon [Mehlhorn84]. Plane sweep algorithms without the
triangulation feature have been used by the VLSI community to analyse circuits through
boolean combinations (set operations) on mask artwork [Syzmanski85], [Ottman85],
[Nievergelt82]. The plane sweep paradigm offers several advantages which make it
possible to run the algorithm on huge VLSI circuit designs with only a moderately-sized
machine. It is iterative rather than recursive, so external devices may be used for very large
input sets. Furthermore, the algorithm sweeps a line across the plane and needs memory
only for the data along the current sweep line, so the amount of primary memory required
at any one time is usually about the square root of input size.

However, VLSI applications can make assumptions about the input such as restricting
edges to lie horizontally or vertically. Our presentation is the first we know of which

25

addresses the difficult problems raised by the unrestricted input encountered in graphics
applications. We offer a new interpretation of the local geometry of the transition vertex
which eliminates the extensive enumeration of cases that would otherwise be necessary to
handle real-world input.

We begin with a short note on representation of data in section 2.2.1. Then we present
a simple triangulation algorithm in section 2.2.2 and extend it in section 2.2.3 to get the
main algorithm. In Section 2.2.4 we discuss implementation issues. Section 2.2.5 presents
applications we have implemented ourselves and applications which might interest others.

2.2.1 Why Triangulation?

Although there are many ways to represent polygonal regions of the plane, such as the
DCEL (doubly connected edge list) representation of a planar graph [Preperata85], or
boolean (union, intersection and difference) combinations of halfspaces [Dobkin88], we
chose to represent regions of the plane with a triangular subdivision. Fortunately, it is
known that any polygonal region may be triangulated and in fact many different
triangulations may exist for the same polygonal region. We represent a triangular
subdivision simply by listing the triangles. The triangles are represented by listing the three
vertices in counterclockwise order. The coordinate data of the edges is thus represented
indirectly. We represent the connectedness information of the edges with a pointer to the
three neighboring triangles. Thus a triangle is a list of three coordinate vectors, the vertices,
and a list of three pointers to the triangles that share its edges.

The primary reason we have developed our algorithm to output triangles is that many
display devices and rendering algorithms require this representation of a surface.
However, a triangular subdivision has many other desirable attributes. For example, the
number of triangles is proportional to the number of vertices. This means that any operation
that was originally implemented in time proportional to the number of vertices, such as
computing the area of the region or testing point inclusion can be implemented with the
same order of performance by operating on the triangles. If it is of great importance to
reduce the number of convex components of a region, we can join some of the triangles in
time proportional to the number of vertices to get a good convex decomposition This is
fortunate because computing the optimal convex decomposition takes cubic time! Many
other problems in computational geometry are trivial given a triangular subdivision
[O'Rourke87], [Mehlhorn84]. These include path-planning and two-dimensional visibility
calculations both of which are useful to robotics. ·

We do not require that the input be a triangular subdivision. The input unit is the
directed line segment. By convention, the region the line segment bounds lies to the left as
we travel from the first vertex to the next. This allows concave polygons with holes to be
used in the input. It does, however, preclude self-intersecting polygons such as figure-S's
since, in that case, the orientation of some edges are not defined.

2.2.2. A Plane-Sweep Algorithm For Triangulation.

Before we consider the triangulation of an arbitrary region of the plane defined by a set
operation on polygons we review a plane-sweep algorithm [Mehlhorn84] to compute a
triangulation of a non-self-intersecting, or simple, polygon, P.

26

The plane sweep algorithm puts the vertices of P into a priority queue, which we call
the Xqueue, with the vertices ordered lexicographically from left to right and then from top
to bottom. A vertex is tagged as a start, bend or end vertex depending upon whether its
neighbors in P both follow it in the Xqueue, one follows and one precedes, or both
precede, respectively. A typical procedural interface to such a data structure is:

xq_init ();
xq_delete_min(vertex);
xq_insert(vertex);

xq_term();

/* initializes the priority queue for use */
/* returns the vertex with min x coord */
I* inserts the passed vertex in the Xqueue*/

/* frees any memory used by the Xqueue */

The Xqueue should be implemented with something that guarantees O(log n)
performance for xq_ insert() and xq_delete_min () , such as a heap [Sedgewick88].

The algorithm sweeps a vertical line across the plane from left to right, stepping from
vertex to vertex using xq_ delete_ min () . At any point in time, the sweep line defines a
vertical ordering on the edges of P that it intersects. Between the edges are regions. The
regions will be either inside or outside P and furthermore, the sweep line will intersect
these in and out regions alternately. The edges and regions currently intersected by the
sweep line and their vertical order are represented by a data structure which we call the
Ytable. A typical procedural interface to such a module is:

ytbl ini t () ; I* initializes the data structure for use *I
ytbl_insert(edge); I* inserts the edge into the Ytable *I
ytbl delete(edge); I* deletes the edge from the Ytable *I
ytbl_ findabove(vertex); I* returns the edge (above) the vertex* I
ytbl_ findbelow(vertex); I* returns the edge (below) the vertex*/
ytbl_pred(edge); I* returns the edge above the passed edge *I
ytbl_succ(edge); I* returns the edge below the passed edge *I
ytbl_term(); I* frees any memory used by the Ytable *I

Ideally, the Ytable should be implemented with a balanced tree such as a red-black
implementation of top-down 2-3-4 trees [Guibas78] to ensure O(log n) cost for each of the
above operations, excluding ytbl_init () and ytbl_term 0.

The position of the sweep line is advanced by taking a vertex from the Xqueue using
xq_delete_min () and the Ytable is updated by deleting edges that end at the current
vertex and inserting edges that start at the current vertex. This reflects the changes in
intersection order of edges of P with the sweep line. This maintenance of the Y table is
common to the invariant of all plane sweep algorithms. An invariant is a condition that is
maintained throughout the loop of a program. Algorithm proof techniques proposed by
Edsger Dijkstra and David Gries depend heavily upon the idea of a loop invariant
[Gries81]. Algorithms can be characterized by their invariants and the amount of work that
must be done to maintain the invariant during' each loop iteration.

The skeleton of any plane sweep algorithm takes the form:

sweep()

27

vertex v;

xq_init(list of input polygons);
ytbl_init();
while ((v ~ xq_delete_min()) is not null)

transition (v);
xq_term();
ytbl_term();

transition(v)
vertex v;

1. maintain the Ytable ordering invariant by deleting
edges that end at v and inserting edges that start at v.

2. maintain the invariant particular to this plane sweep algorithm.

Generally a plane sweep algorithm will have some other processing at each transition.
In this plane sweep algorithm we associate with every in region a chain of vertices,
vI, ... , v k where vI and v k are endpoints of the boundary edges of the region in the
Ytable and edges (vi,Vi+I) will become edges of the triangulation. The invariant
maintained at each transition that is specific to the triangulation plane sweep is that no
triangle can be constructed from any chain. Basically, the chain must be concave or have
less than three vertices, i.e. if we closed the chain with an edge from vI to Vk we would
get either a polygon that is oriented clockwise or a simple line segment.

The important property of this processing step is that if we are given a chain satisfying
the invariant, and a new point is added at either end of the chain, it is sufficient to check for
a possible output triangle with the new point and its two closest neighbors in the chain. If
no counterclockwise triangle can be constructed, then no triangle can be constructed
anywhere in the chain. If a triangle can be constructed, the chain is reduced by one vertex
and the process may be repeated on the reduced chain. This means that if k triangles can be
constructed, O(k) steps will find them and construct them. This action of triangulating up
or down a chain when given a chain and a new point is the action that maintains the
invariant and produces the triangles.

The maintenance of this second invariant is depicted below (figure 2.4). The left hand
side shows a chain of five vertices associated with an in region and a new vertex, vnew,
which has been added to the top of the chain. Since vnew,vi,v2 form a triangle, vi is
removed from the chain and the triangle is output. The process is repeated twice more with
vnew, v2, v3 and vnew, v3, v4. This leaves the reduced chain seen on the right.

28

out
vnew

v1mr----------,-----~-­
ytable i

in

3

ytable i+1

out

out
vnew

ytable i

in

ytable i+1

out

Figure 2.4 Maintenance of the second invariant. Before on the left. After
on the right. When a new point, vnew, is added to the chain, we attempt to
form a counter-clockwise triangle with the new point and its neighbors.
Tbe process continues until no more triangles can be constructed.

The algorithm must be designed to maintain this invariant and the Ytable invariant on
each transition point. There are three main transition cases to consider depending upon
whether the transition vertex has been tagged as a start, bend or end vertex. We consider
the action of the algorithm on an example. The progress of a sweep line and the resulting
triangles is depicted in figure 2.5. The interior triangulation edges are the same thickness as
the polygon if they are part of a chain and are thinner if they have been output. The sweep
line appears bent in some instances because vertices with equal x-coordinate values are
processed from top to bottom.

a a a

f f f

figure 2.5 continued next page

29

b c "'"-_....,

f

c

a

a

c

a a

f f

a a

b
Ill

I I I

I I I I

I

f f

Figure 2.5 An example. The sweep line is depicted crossing a polygon in
nine stages, one per vertex. The resulting triangles are drawn with dashed
lines. The chains for the current sweep line are drawn with heavy lines.

There are two possibilities for a start vertex. It can appear in an out region in which
case the action is especially simple. The two edges that emanate from the vertex are inserted
into the Ytable. They form a new in region and their chain is simply the new vertex. The
transition on vertex c is an example of this case. If the point appears in an in region, the
action is slightly more complex. The transition on vertex h is an example of this case. The
chain that "surrounds" the transition vertex is broken into two chains and the transition
vertex is appended to the end of the upper chain and the head of the lower chain. The old
chain is broken at its right most point Any triangles that can be constructed from these
new chains are output In this case the old chain a,f becomes a,h and h, a,f The latter
chain yields one triangle and is reduced to h,f

If the vertex is a bend vertex, we add the new vertex to the appropriate end of the chain
and then output triangles if the new addition allows us to do so. Vertex a is an example of

30

this type of transition. The chain b,dj becomes a,b,dj and the triangles abd and adf are
output and the chain becomes simply aj. The entry in the Ytable which ended in a is
replaced by the edge that starts at a.

As with the start vertex, there are two possibilities for an end vertex. The transition on
vertex d illustrates the first possibility where the vertex appears in an out region. The two
chains, b,c and e, are triangulated with the new vertex and then they are joined. The two
edges that bounded the out region are deleted from the Ytable and the neighboring regions
become one region. In this case one triangle was produced when the chain b,c,d was
reduced to b,d. The chains b,d and d,e are then joined to become chain b,d,e. The
second possibility, that the vertex appears in an in region is illustrated by vertex i. The
chain becomes closed and is entirely reduced to triangles. In this case there is only one
triangle produced. The edges that ended in vertex i, ia and hi, are deleted from the Ytable
and the neighboring out regions are merged into one out region.

The correctness of any part of the triangulation rests upon the idea that the chains are
kept "concave" and that maintaining the invariant does not result in overlapping triangles.
The only questionable case is when an end point appears in an out region. Mehlhorn
provides a rigorous proof of correctness for this case. All plane sweep algorithms have the
property that maintaining the Ytable and getting the next value from the Xqueue can be
performed in O(log n) time. Since there are n vertices, the result is an O(n log n)
algorithm. Maintaining the chain invariant can also be done within this bound. This follows
from the fact that the number of triangles is proportional to the number of vertices and only

· a constant amount of work was done for each triangle.

2.2.3. Generalizing the Simple Triangulation Algorithm

We now present the extensions and generalizations of the plane-sweep triangulation
algorithm necessary to triangulate a region of the plane defined by union, intersection and
difference operations on sets of polygons rather than simply the interior of one polygon. In
figure 2.3 we need to triangulate the region defined by the difference of the cell wall and the
union of the two grey polygons.

First, we will need some mechanism to handle transition vertices formed by the
intersection of polygon edges. We will also need some technique to determine what regions
of the plane satisfy the set operation. We cannot rely on alternating in and out regions as
in the simple triangulation algorithm.

The last problem is the most difficult to handle in practice. If the input is not in general
position, we also must expect vertices to coincide with other vertices and edges. A difficult
consequence is that a transition vertex may have any number of edges entering it from
behind the sweep line and any number of edges exiting it ahead of the sweep line. This
means that each transition vertex cannot be neatly characterized as a start, bend or end
vertex. Trying to process vertices that coincide as independent events is not sufficient.

A programmer could methodically transform the explanation of what to do in each of
the transition configurations in the simple polygon triangulation algorithm with one case for
each of the start, bend and end transitions described in the simple triangulation algorithm
above. However, now the number of configurations is no longer finite and cannot be

31

handled with such a taxonomic approach. We propose a new interpretation for these
complicated transitions which allows them to be processed without special cases.

2.2.3.1 Handling Transitions Introduced by Edge Intersections

Intersections of polygon edges in the input must be detected so that they may be treated
as transition points in the same sense as vertices of the input polygons. As each vertex is
processed, newly adjacent edges are checked for intersections. Each time an edge is
inserted into the Ytable we check whether it intersects the edges that are adjacent in the
Ytable. Similarly, when an edge is deleted from the Ytable we check whether the edges that
are now adjacent intersect. When an intersection is processed, the intersecting edges are
exchanged in the Ytable and checked against their new neighbors. This catches all
intersections (figure 2.6). When an intersection is detected and it is ahead of the sweep line
it is inserted into the Xqueue using the xq_insert () routine. This will not change the
O(logn) complexity of operations done at each transition but it may increase the number of
transitions. In the worst case the number of intersections could be O(n2) but in practice it is
much less than n.

When the dark edge is
inserted into the Ytable,
it is checked against the edge
above and below for an
intersection ---+---

When the dark edge is
deleted from the Ytable, the
edges above and below are
checked for an intersection

Figure 2.6 Catching transition vertices created by edge intersections. Left:
when an edge is added to the Ytable, it is checked against the edges in the
Ytable above and below it. Right: when an edge is deleted from the Ytable,
the edges above and below it become adjacent and are checked for
intersections. Intersections that are to the right of the sweep line are
entered into the Xqueue for subsequent processing.

2.2.3.2 Determining which Regions Satisfy the Set Operation

In the triangulation algorithm above we kept track of whether a region was an in
region or an out region. The regions alternated and were bounded on either side by
neighbors in the Ytable. This implies that each edge in the Ytable could be treated as a
transition from an in region to an out region. Now we will keep track of whether a region
between two edges in the Ytable is in or out with respect to our desired set operation. It is
no longer true that regions will alternate so our interpretation of edges in the Ytable as
transitions from in regions to out regions or vice versa will have to be augmented by the
concept of a non-transition edge. If two neighboring regions are in regions, or out
regions, the edge between them is a non-transition edge.

32

To determine whether a region satisfies the set operation it necessary to know whether
any polygons from a particular set cover the region. This is done by counting the number
of polygons from each input set which cover each region. This array of counts can be
evaluated to determine whether the region is in or out, i.e, whether it satisfies the set
operation. When an edge from a set of polygons is inserted into the Ytable, the count for
that set in the Y table region bounded by the edge is incremented. Similarly, an edge
deletion requires decrementing the appropriate counter.

2.2.3.3 Processing Complex Transitions Caused by Degenerate Input

If we assumed that the input was in general position, the extensions outlined in
sections 4.1 and 4.2 would be sufficient. The algorithm will run in time O((n+s)(v+logn))
where n is the number of vertices in the input, s is the number of vertices created by edge
intersections and vis the number of distinct sets in the set operation expression. Typically
v will be a small integer so that the complexity can be simplified to O((n+s)(logn)).

However, if the program is to be useful it must be modified to handle degenerate
input. When many vertices in the input coincide with other vertices or with other edges, the
transition vertex may have any number of edges entering it from behind the sweep line and
any number of edges exiting after the sweep line. The following diagram (figure 2. 7) gives
an example of such a situation.

33

Sets are g1={a}
g2={b,c,d}

Expression is
g1 difference g2

Figure 2.7. An stylized example of many edges converging on one
transition vertex. The scan-line is drawn vertically as a thick line. The
transition vertex is the circle. The entries in the Ytable that intersect the
transition vertex before and after the transition are shown as polygon edges
while the entries in the Ytable above and below the transition vertex are
shown as horizontal thick lines. The regions between edges are labeled
with either a 1 or 0 depending upon whether the evaluation of the set
operation DIFFERENCE(gl,g2) is true or false. The labeling of the edges
indicates whether the edge extends through the vertex or ends or starts at
the vertex. For example, edges al and a2 are sequential edges in polygon
a and they both end at the transition vertex. Edges bl and dl intersect at
the transition vertex and have been drawn over the the transition vertex to
emphasize that they do not end or start at the vertex. The numbering of the
edges reflects the counterclockwise orientation of the polygons. Possible
global connections of these edges are suggested by the thin lines
connecting edges from a common polygon.

We now show the geometric interpretation of the transition vertex that allows it to be
processed without special cases for degenerate situations. Our algorithm will consider each
of the edges in counterclockwise order around the transition vertex. If an edge is a
transition from a 0-region to a !-region we will call it a R(ising) edge and if it is a transition
from a !-region to a 0-region we will call it a a F(alling) edge. Other edges are C(onstant)
edges. In our example, bl is an R edge to the right of the scan-line and dl is an F edge to
the right of the scan-line. All other edges are C edges. We will look for pairs of Rand F
edges as we travel counterclockwise around the transition vertex. Clearly, two R edges
separated by zero or more C edges cannot occur, similarly for two F edges. This implies
that R and F edges separated by zero or more C edges will occur in pairs. This is the
necessary abstraction; we consider pairs of R and F edges instead of simply pairs of edges.

34

Each R-F pair may be treated just as the pair of edges bounding the in region were
treated in the simple polygon triangulation algorithm. We need a mildly complicated loop
structure to detect the R-F pairs but once they are found they may be handled with a simple
case structure:

1. The R and F pair are to the left of the scan-line.
Depending upon which edge was encountered first, this corresponds to one or
the other of the end cases described in the triangulation algorithm.

2. The R edge is on one side of the scan-line, the F edge is on the other.
This is equivalent to the bend case in the triangulation algorithm.

3. The R and F pair are to the right of the scan-line.
Depending upon which edge was encountered first, this corresponds to one or the
other of the start cases described in the triangulation algorithm.

We may now consider the details of the loop used to detect the R, F pairs of edges in
the order described. The Ytable will provide the counterclockwise ordering if we find
Ytable[i] using ytbl findabove () and use ytbl succ () to traverse the Ytable from al
down to cl, and then traverse the Ytable from bY back to dl using ytbl_pred ().Any
edges that ended at the transition vertex are deleted during the downward traversal. Any
edges that begin at the transition vertex are inserted after the downward traversal. Edges
that extend through the vertex do not need to be deleted and re-inserted, they can have their
order in the Ytable reversed before beginning the upward traversal.

It is necessary to associate with each vertex entered into the Xqueue the edges that
emanate from that vertex so that they can be inserted into the Ytable. It is no longer
necessary or even possible to associate a bend, start or end type as was done in the
simple polygon triangulation algorithm. After the vertex has been processed the edges
closest to the edges above and below the transition vertex are checked for intersections and
if an intersection is found it is entered into the Xqueue.

Another detail facing the programmer during the transition operation is the problem of
correctly maintaining the set count arrays associated with the new regions. Although the
edges entering the transition vertex were deleted in top to bottom order, the order in which
exiting edges are inserted into the Ytable is arbitrary. It depends upon the order in which
the exiting edges associated with the transition vertex were inserted into the Ytable. Until
the last edge is inserted, the Ytable is in a state that may not correspond to any possible
physical configuration and hence it is impossible to update any of the set count arrays until
the last edge is inserted. After the last edge is inserted, and the upwards traversal begins,
the set count arrays can be updated as each is encountered. We copy the set count array
from the previous edge and then increment or decrement the entries that correspond to the
sets that the current edge bounds.

2.2.3.4 Handling Edges that Inhabit the Same Line

Edges may exist on the same line and intersect along line segments rather than at single
points. This degenerate condition gives rise to dangling edges and polygons with no area.

35

The generalized transition algorithm is not changed appreciably by the steps taken to handle
this problem. We let the entries in the Ytable be characterized by a line equation and append
a list of the edges that share that line equation. This makes checking for intersections
between new neighbors in the Ytable slightly more complicated, because we have to
ascertain that an intersection of two parent lines is contained by at least one edge lying on
each line. Deletions and insertions are also complicated somewhat, because we cannot
delete an entry from the Ytable until all the edges on the line are deleted. Similarly, we have
to check to see whether an edge we are inserting already has a parent line in the YTable.

2.2.4. Implementation

The generalized algorithm has been implemented in a just under two thousand lines of
C. A streamlined implementation suitable for one particular application could no doubt be
implemented in much less. Our implementation is augmented to optionally animate its
progress and compute certain other information associated with the input. We implemented
the Xqueue on top of an implementation oftop-down 2-3-4 red-black trees, a balanced tree
algorithm [Sedgewick88]. Originally a heap was used but because a heap is only a partially
ordered data structure, it can not combine identical vertices until they are removed together.
Since coincident vertices are the norm rather than the exception in our applications, the
balanced tree implementation has performed as we]! as the heap.

Because our applications have typically involved thousands of vertices and not
millions we have gotten away with implementing the Ytable with an array. In practice one
can often achieve good performance simply by making sure that the Xqueue is implemented
efficiently due to the fact that the Ytable is usually far below worst case capacity at any
given time. Intuitively, if the region being swept is roughly square and edges are
distributed evenly over the region, any vertical line will intersect roughly the square root of
the total number of edges. Thus, the Ytable will be filled to the square root of maximum
capacity on average. These intuitive ideas are made precise and confirmed by Bentley,
Haken and Hon [Bentley80].

The implementation was coded so that a pointer to the function that evaluates the set
operation could be passed as an argument to the transition routine. This was a good
decision, because it allows experimentation with new applications without the duplication
of code for the transition routine, which is fairly complex.

Our biggest single implementation problem has been tuning the algorithm to allow for
floating point errors. Since all decisions in the algorithm are local, it really only cares about
the relative ordering of values and not about their absolute value. Unfortunately, this is
exactly what floating point is not designed to do. The optimal data type to use for vertices
and other geometric values would be rational numbers represented with a big integer for
numerator and denominator since that would allow exact calculations but this is not
possible in our version of C, since we are limited to 32 bit integers. Double precision
floating point, 64 bit IEEE format, was used for the coefficients of edges in the Ytable but
even then epsilon values were necessary to prevent edges being inserted into the Ytable
incorrectly.

High level code for the algorithm appears in Appendix A.2. There is a small
modification to the algorithm that has not yet been discussed. Some applications, such as
radiosity re-tilings, need to keep all edges between polygons that are considered to be in
the same set (figure 2.8). The modification treats non transition edges that normally would

36

be ignored, the interior edges, as a Falling and Rising pair of edges rather than as a
Constant edge. Since the function passed in as an argument determines whether an edge is
a Rising, Falling or Constant edge, this change is fully backward compatible with the
implementation as described above. See Appendix A.2 and A.3 for C code for sweep ()
and transition() .

/

8

A

two ways to compute the union of A and B
as a triangular subdivision, .-----::::o~

depending upon whether one
wishes to retain
original edges.

Figure 2.8 Modification: allow all edges present in the original input to be
retained in the triangular subdivision output.

2.2.5. Applications

We list here three applications that we have implemented using the decomposition
algorithm. We also describe how the algorithm might be employed to solve the hidden
surface problem. The key to applying the algorithm is to recognize that a problem can be
viewed as a set operation (boolean expression). This is not always obvious.

2.2.5.1. Arbitrary Region Clipping

Clearly, the polygon clipping operation is a set operation. It is the intersection (boolean
AND) of the clipping window and each of the rest of the polygons which may be grouped
into one set. While we do not recommend implementing clipping an environment to a single
rectangular window with this algorithm, there are other clipping applications that crop up in
computer graphics research that may need the power of this algorithm.

Computing polygonal definitions of portals is an arbitrary region clipping example.
Subtracting the polygons inhabiting the plane of the cell boundary from the rectangular
boundary of the cell gives us the portals. The subtraction operation is the AND-NOT

37

operation. Conversely, a programmer could place doors and windows in the boundary of a
rectangular volume and subtract them away from the boundary to model a room. This type
of coplanar CSG operation can be troublesome for CSG algorithms that operate on
boundary representation data.

Another example of an unusual clipping application is the occlusion operation that
appears in chapter 4. We are given an odd shaped region known to be the window in a
plane through which two polygons on opposite sides of the plane must look to "see" each
other. Determining that the window was completely covered allows us to deduce that those
two polygons could not see each other. We used the difference operation to subtract
polygons known to inhabit the plane of the given window from the window. If anything
remains after the operation, the polygons can see each other.

2.2.5.2 Detecting Coincident Polygons

Two physical objects should not be modelled so that inhabit the same area in space,
however, many CAD programs do not support operations to catch this problem. A wall can
be mistakenly overlapped with a window frame. If the two objects have different colors,
the result of rendering these objects is undefined.

The algorithm can be used to detect coplanar polygons in a model. Each polygon is a
member of a distinct set. The set operation is the union of any two or more polygons.
Because our implementation maintains an array with one entry for each set in each element
of the Ytable this is not very efficient. However in this case it works efficiently enough. An
implementation which used linked lists instead of the array or hard wired the set operation
in some way could be used if efficiency became of utmost concern. It is also possible to
use something more than a true set operation to determine the region of the plane to
triangulate. For example a count of the number of polygons covering a region might be
used.

2.2.5.3 Transforming a Planar Tiling into a Triangular Planar Subdivision

We define a tiling of a planar region as a decomposition of the region into polygons
such that the region is covered at every point by one and only one polygon. A tiling in
which edges intersect other edges only at vertices is a planar subdivision. The advantage
of a planar subdivision over a tiling becomes clear when the tiling is laid over a curved
surface. The tiling of a curved surface may have cracks in it while the planar subdivision
avoids this problem. Von Herzen notes this problem in approximating curved surfaces with
restricted quadtrees [Von Herzen87].

Even if the surface tiled is actually flat, such as the wall of a building, radiosity
shading calculations produce a variation in intensity over the surface that can be perceived
as a curved surface. Here the cracks will appear as shading discontinuities. Transforming
the tiling to a planar subdivision will remove the shading discontinuities (figure 2.9).

38

Figure 2.9 Left, a tiling allows cracks to appear between polygons when
laid over a curved surface. The planar subdivision on the right has no
cracks. Shading intensities can be interpreted as curved surfaces. The
cracks in the tilings will appear as shading discontinuities.

39

Chapter III

Potentially Visible Set (PVS) Calculation

This chapter addresses the problem of determining the set of polygons that are visible
to an observer allowed free range in a cell, an axially aligned box of viewpoints. The set
of polygons is called the cell's potentially visible set (PVS).

If the contents of the cell are assumed visible, then the problem reduces to identifying
the polygons visible to viewpoints constrained to lie on the non-opaque boundary, or
portals, of the cell. This is evident because any line of sight from a viewpoint in the
interior of the cell must intersect the portal. Thus, that line of sight can be replaced by one
which starts at the intersection point. We can further constrain our attention to the non­
opaque portions of the cell boundary. Section 2.2 presented an algorithm to compute a
triangular subdivision of the portals. Thus, the problem is to compute the set of polygons
that can be seen by all the viewpoints lying on a convex polygon (figure 3.1).

~
4tl

Figure 3.1 The PVS Problem: Identify any polygons that the observer can
see through the cell portal.

An equivalent problem is determining the set of polygons illuminated by an area light
source. Note that this is not the same as estimating the illumination on each point of a
surface due to an area light source, which is the usual form of the problem for shading
purposes.

There are also several related two-dimensional problems which have appeared in the
theoretical computational geometry literature.

Avis, Gum and Toussaint describe a linear-time algorithm for determining visibility
between two edges in a polygon [Avis86]. They defme four nested types of edge visibility:

40

complete, strong, weak and partial (figure 3.2). Similar definitions can be made for
polygons embedded in ~, although, as the authors note in their last sentence, " ... all the
problems in three dimensions corresponding to those discussed in this paper are open."

v

complete visibility y strong visibility

v

X

y X

weak visibility partial visibility

Figure 3.2 Four types of visibility. [Avis86]
1) Edge u v is said to be completely visible from edge xy if for all points
z on edge xy and all points w on edge uv, w and z are visible.
2) Edge u v is said to be strongly visible from edge xy if there exists a
point z on edge xy such that for all points w on edge uv, w and z are
visible.
3) Edge u v is said to be weakly visible from edge xy if for each w on
edge uv, there exists a point z on edge xy such that w and z are visible.
4) Edge u v is said to be partially visible from edge xy if there exists a
point w on edge u v and a point z on edge xy such that w and z are
visible.

O'Rourke and Suri's algorithm, O(n4) in the number of line segments (which is worst
case optimal!), for computing the boundary of the visible region from an edge in a general
two-dimensional environment of line segments shows that generalizing problems even
within two dimensions can lead to significant difficulties [0'Rourke87].

Another concept that appears in O'Rourke's monograph is the concept of a visibility
graph. Given a collection of geometric objects embedded in space, we can define a graph
with the objects as nodes. An arc between two nodes represents visibility of some type
between the two objects represented by the nodes. This allows graph theory and
terminology to be applied to these visibility problems. For example, one can represent the
solution to the problem of computing polygon-to-cell visibility as a bipartite graph. One

41

type of node represents cells, the other, polygons. The density of the ideal solution graph
indicates the potential speedup. The methods presented in this dissertation are appropriate
for sparse graphs, corresponding to scenes with high average depth complexity.

3.1 Over-Estimating Visibility vs. Under-Estimating Visibility

Computing an exact answer to the portal-polygon visibility problem appears to be very
difficult. For this reason, I have implemented approximation algorithms. If we use graph
terminology and think of the portal-polygon problem as the problem of computing a
bipartite visibility graph, there are a couple of obvious ways to proceed. The first is to start
with a graph with no edges and add edges whenever we can establish visibility between a
portal and a polygon. The second is to start with a complete graph, and delete edges
whenever we can establish occlusion between a portal and a polygon.

The edge addition approach will be familiar to those in the computer graphics
community. Essentially, one samples lines of sight between a portal and a polygon. If any
of the lines of sight are unobstructed, then the polygon is visible.

Most solutions to the area light source problem involve point sampling. In one
approach the environment is sampled from the point of view of the light source, usually
with a fixed sampling pattern. An alternative is to sample the light source from selected
points within the environment [Wallace89]. I call these sampling methods environment­
independent sampling and environment-dependent sampling, respectively. A better pair of
terms might be fixed and targeted sampling, respectively, because in one case a fixed
pattern of samples is fired into the environment and in the other case the samples are aimed
at interesting things in the environment. As with any pair of algorithms for one problem,
the possibility of hybrids arises.

Although point sampling may be accomplished by any number of techniques, e.g.,
object-order z-buffer or scan-line algorithms [Rogers85], we have based our experiments
upon a ray-casting sampling method. Although slower than many other sampling methods,
it is simple and flexible.

The fixed sampling approach fires a predetermined pattern of sample rays into the
environment from regularly spaced source points on the portals. The number of rays fired
and the spacing of the source points on the portals are fixed at run time. There are many
different ways to choose the sample patterns. Section 3.2.1 covers these choices.

The second approach is to target the rays at the polygons. We then have to choose how
many rays should be fired at each polygon and how to distribute those rays. Section 3.2.2
covers the details involved in implementing this approach.

One advantage of sampling methods is their simplicity. This leads to efficient, flexible,
and easy-to-maintain programs. Furthermore, one may adjust the grain of the sampling to
match the available computation power and time constraints. Note that if a sampling
algorithm, such as the Z-buffer algorithm used by most commercial workstations, is used
for display, the grain of visibility sampling can be matched to the grain of display sampling
because the same hardware is being used for both purposes.

A disadvantage of point sampling methods is that they underestimate the PVS. Unless
the sampling frequency is high, some polygons will be missed. There are two aspects of
sampling. Firing rays into the environment means one will miss some directions.

42

Furthermore, the rays are fired from sample source points on the portal. This means one
may miss some weakly visible polygons, even if we could sample all directions from the
source points. Any edge-addition methods, whether point-sampling or not, approach the
true value from below, so they in general are subject to under-estimating.

The penalty for missing polygons is severe. The illusion of reality can be damaged if
parts of the model are missing. Thus, I also examine algorithms that attempt to compute the
exact PVS, but if they err, do so by overestimating the PVS. Using the area light source
analogy again, we want to identify the polygons that lie in complete shadow, i.e., the
umbra cast by occluding objects. Section 3.3 details algorithms to compute this type of
solution as well as ideas for computing the exact solution.

3.2 Sampling Algorithms

This section covers sampling algorithms. First, the ray-polygon intersection algorithm
that was used is discussed. The subject of ray-polygon intersection algorithms has been
extensively researched [Hanrahan89]. Most approaches use some type of hierarchical
subdivision of the environment in an attempt to get O(logN) performance for computing the
intersection of a single ray. I could have written my ray-polygon intersection code to use
the model subdivision developed in chapter 3, as that provides a suitable hierarchical
subdivision of the model.

Instead, I used another data structure I already had, the parallel plane sorted index list,
which I had originally developed to allow me to choose partitions efficiently. This approach
appears to a new way to compute ray-polygon intersections efficiently. See figure 2.2.

The algorithm takes advantage of characteristics such as the large proportion of axial
rectangles. The basic idea can be easily described in two dimensions. Consider the problem
of computing the closest intersection of the ray and line segments depicted in figure 3.3.

LJ L
y-c

~~~ 
x=a I x=b I x=c I x=d 

Figure 3.3. Ray-Line Segment Intersection. 

The ray shown intersects the lines containing segments parallel to the x-axis, in order 
from bottom to top. Similarly, the ray intersects the lines containing segments parallel to the 

43 



y-axis, in order, from right to left. 

This suggests a data structure which groups line segments lying in the same line 
together. Each set of parallel lines is sorted along their normal direction. This data structure 
is pre-computed. 

To compute the intersections in order, we check the intersection parameter for the 
closest line in each of the two sorted lists. In our example, the line y=a is closer to the 
initial point of the ray than the line x=d. When we check the segments lying in the line y=a, 
we halt and report the intersection. 

If we had not found an intersection, we _would have computed the intersection 
parameter for the next line in the x-parallellist, y=b, and compared it with the intersection 
parameter for the line x=d. We continue to effectively merge the two lists until we find an 
intersection. A priority queue data structure can be used to maintain the order of the lists 
that are being merged [Sedgewick88]. The priority of each list is simply the closest element 
in each list that has not yet been processed. If the number of lists is only two the 
implementation is trivial. The implementation with three is simple, but may not be 
immediately obvious to someone reading the C code. The C code that appears later in this 
section uses some tables to define the start and end points of the list. If the ray start point is 
in the middle of the model, we don't want to waste time running through planes that are 
behind the ray. A binary search is used to find the planes that are closest to the start point of 
the ray, then the sign of each component of the ray tells us whether we should move 
backwards or forwards through each list. All this information is encoded into several 
tables. 

The small percentage of non-axial polygons in our models are stored in a standard 
ESP tree. After an intersection is found for the axial polygons, the ESP tree is searched 
from front to back until we find an intersection or exceed the intersection parameter found 
for the axial polygons. 

The technique is very effective for bare buildings without a great deal of detail. For 
example, it runs very efficiently on the basement of the church, which is a fairly standard 
layout of unfurnished small rooms with a minimum of detail. It performs poorly on the 
upper portion of the church which consists of one large and irregular room, the fellowship 
hall, and one very detailed and polygon-rich kitchen. 

To run efficiently on the upper portion of the church, the algorithm would have to be 
extended. Currently, it computes an intersection for an entire plane's worth of polygons, 
but then searches naively through the list of polygons for that plane to see if any of those 
polygons contain the intersection point. Some type of 2-D organization, such as a grid or 
quadtree, could be induced on that simple list of polygons to accelerate this operation. 

3.2.1 Environment-Independent, or Fixed, Sampling 

The advantages of fixed sampling methods are as follows: 

• The number of samples can be easily controlled. This can be used to predict the running 
time. 

• The sampling density is known in advance. This can be used to help predict the accuracy 
of the result. 

44 



• The sampling pattern is known in advance. This allows one to design sampling 
algorithms to take advantage of the coherence of the pattern, such as scan-line methods 
based on regularly spaced scan-line samples, or to design hardware based on the sampling 
pattern, such as the Pixel-Planes 5 computing surface or SGI Iris 4D Geometry Pipeline 
[Baum90], [Akeley89]. 

The main disadvantage is: 

• If we cannot characterize the distribution of polygons in the environment at the time the 
pattern is determined, a lot of samples may be fired at the same polygon, a lot more may be 
fired at nothing, and some polygons may be missed. 

3.2.1.1 Hemi-cube sample pattern 

The first sample pattern tried was based on the hemi-cube pattern used in the early 
radiosity papers[Cohen85]. The hemi-cube was used as an approximation to a hemisphere 
because it allowed standard hidden surface techniques, such as the Z-buffer method, to be 
used to compute the samples (figure 3.4). Esssentially, the polygons are projected onto the 
hemi-cube faces as if they were viewing screens. 

Figure 3.4 The hemi-cube sampling pattern. Sample rays are shown 
extending through the sample areas. The sample rays start at the center of 
the base of the hemi-cube. This allows the (hardware) algorithm to take 
advantage of the regular pattern of samples and use iterative methods. 

These papers note the importance of rotating the hemi-cube to reduce sampling 
artifacts. Architectural models are usually axially aligned. An aligned sampling grid will hit 
many polygons many times and completely miss many others (figure 3.5). 

45 



• • 

'"" 
.. 

·vv 0 

0 
0 /. . p 1\ 0 

0 

.. 
0 0 

0 0 0 .. • 
~ • 0 

0 . 

0 II • 
• • 

0 • 
• .. 

'," /• • 
0 / 0 

v 0 
• 

0 ·' 

0 

0 .. 
a 

Figure 3.5 Two stylized views down a hallway. The sample points are 
represented with dots. Note that the axially aligned pattern on the left hits 
many polygons several times and others not at all. The rotated sampling 
grid on the right hits many more polygons with the same number of total 
samples. The missed polygons are shaded. 

An alternative to random rotation of the sample grid is to jitter each sample point 
(figure 3.6) 

The probability of hitting a tall thin rectangle with an axially aligned regular hemi-cube 
sampling pattern is just the ratio of the width of the rectangle to the width between samples. 
The chance of hitting the polygon is independent of its total area; it can be infinitely tall and 
still get missed. If the rectangle is rotated slightly, or equivalently, the sampling grid is 
rotated, the expression for the probability of hitting the polygon becomes more complex 
and appears to be unrepresentable in closed form except for certain special cases. However, 
it is evident that the chance of hitting the polygon increases. In the case of axially aligned 
jittered sampling, it is clear that the height of the polygon plays a role in the hit probability. 
The probability of missing a tall rectangle is the product of the probability that each pixel 
will miss the rectangle. Thus the chance that the polygon will escape detection with a 
jittered grid is very slight if the polygon is tall. 

I did not use random rotation of the hemi-cube or sample jittering in this early 
implementation. As might be expected, the performance of this method was poor. The 
implementation was intimately connected with the research into the use of radiosity lighting 
models in the Walkthrough project. I wrote software so that it could be used for either 
purpose. At that time, I rewrote the radiosity software to use a hemisphere based sample 
distribution pattern and at the same time replaced the hemi-cube visibility point-sampling 
code with a hemisphere point-sampling method. 

46 



Figure 3.6 The jittered hemi-cube sampling pattern. Sample rays are shown 
extending through the sample areas. The sample rays start at the center of 
the base of the hemi-cube. This pattern transforms signal aliasing due to 
the coherence of the samples into (less objectionable) noise. 

3.2.1.2 Cosine weighted hemisphere sample pattern 

To partition the surface of the hemisphere into sample regions, I used a mapping from 
planar polar coordinates to the surface of the hemisphere that was convenient for radiosity 
calculations. For radiosity calculations it was important that each sample area on the 
hemisphere have equal area when projected orthogonally down onto the base disk (figure 
3.7). This hemisphere partition mimics the distribution of energy emitted or reflected from 
a purely diffuse material. 

The mapping is generated by taking equal radial subdivisions and angular subdivisions 
and then taking the square root of the radial division to adjust for the fact that area on the 
disk is a function of the square of the radius. Given the radius and theta coordinates of a 
point on the disk, the cartesian coordinates of a point on the hemisphere in the sample ray 
direction are 

x = radius*cos(theta), 
y = radius*sin(theta), 
z = sqrt(l-radius*radius). 

The hemisphere sampling pattern does not suffer the same magnitude of sampling 
problems that the axially aligned hemi-cube pattern does. It is prone to similar problems in 
polar coordinates, but most building models are aligned along cartesian coordinates. I 
further jittered the hemisphere samples to avoid polar coordinate coherence effects. To 

47 



generate the correct radius for point samples that are in the center of the sample areas I 
simply generated twice the number of radius divisions and took every other value. Note 
that one cannot simply take the average of the radial limits of the sample area. Doing so will 
not give the radial center of the sample area. The average must be done before the square 
root is computed. No such problem exists when generating the angular center of a sample 
patch. Because the Unix system random number generator, random () , only returns 
uniforruly distributed samples, I only jittered angularly (figure 3.7 and figure 3.8). 

Figure 3.7 The angularly-jittered cosine-weighted-hemisphere sampling 
pattern. Sample rays are shown extending through the sample areas. The 
sample rays start at the center of the base of the hemisphere. This pattern 
has the property that each sample area has equal area when projected 
orthogonally down onto the base disk. 

48 



Figure 3.8 The angularly-jittered cosine-weighted hemisphere sampling 
pattern (top view). The sqrt (radius) progression is clear in this view. 

This sample pattern worked better than the hemi-cube method, but I still wanted to 
improve performance with a small number of samples. The main problem is due to tbe 
spaces between samples at the top of the hemisphere. The area of this space gets larger as 
the radius of the hemisphere increases. In the case of the view down the hallway, the 
perspective transformation results in nearby polygons appearing as large polygons at the 
edge of tbe image and far away polygons appearing as small polygons in tbe center of tbe 
image. Thus there was a tendency for the cosine-weighted hemisphere sampling pattern to 
miss polygons down at the very end of long hallways. To combat this annoying problem, I 
looked for a simple modification that would bunch the rays closer to the top of tbe 
hemisphere. 

3.2.1.3 Linear radius hemisphere sample pattern 

The obvious trick is to take out the area-correcting square root of the radius 
subdivisions. This bunches the samples closer to the top of the hemisphere (figure 3.9). 

49 



Figure 3.9 Linear radius-subdivision angularly-jittered sample pattern, off­
axis and top views. 

50 



3.2.1.4 Other sample patterns 

The linear radius hemisphere modification helps the "end of the hallway" problem, but 
it will not magically allow one to find all visible polygons with only a few samples. The 
patterns I have proposed here will make the difference between finding most of the visible 
polygons with the hemi-cube and almost all the polygons with the jittered patterns. 

However there are those among us for whom "almost all the polygons", is not good 
enough. In the end, if one wants to get all polygons above pixel size, a whole lot of 
samples must be used. So while playing with sample patterns is interesting, time may be 
better spent finding (or building!) a faster sampling engine. 

Several people have suggested interesting ideas for improving the effectiveness of 
sampling. Jan Prins suggested an adaptive method which uses knowledge of portals. The 
idea is that portals in neighboring cells can be interpreted as regions of increased image 
complexity. It is likely that many polygons will be visible through a portal. Thus, one 
could fire rays at portals of neighboring cells after firing a fixed set of rays into the 
environment. 

3.2.2 Environment-Dependent, or Targeted, Sampling 

The advantages of targeted sampling; 

• The sampling is concentrated in the area where it is believed that it will do the most good. 

The disadvantages; 

• The number of samples depends upon the complexity of the environment. It is possible 
for many samples to go in the same direction if there are a number of polygons, one behind 
the other, in the same direction. 

• One cannot pipeline the algorithm by capitalizing on the coherence of sampling pattern. 
On the other hand, a lack of coherence can enable the use of massive non-pipelined 
parallelism, as in parallel ray-tracing algorithms [Delaney88]. 

The main variables in applying targeted sampling are the choice of how many samples 
to target at each polygon and how to distribute the samples. I simply used a run time 
constant to determine how many rays to fire at each polygon and a run time specification of 
how to space the sample viewpoints on the portal. This was very effective on the real­
world models I was dealing with, which had on the order of 7,000 polygons. I typically 
fired a small number (1 to 7) of rays at each polygon. It might have been worthwhile to 
weight the number of samples based on the apparent size of the polygon, but the success of 
the initial attempt neutralized motivation to try many alternatives. 

To generate sample target points on the polygons I generated a random number for 
each vertex and normalized them so that their sum was one. Then I used these as weights to 
get a point on the polygon. This will tend to weight the samples towards the center, but the 
effect is not excessive (figure 3.10). The alternatives require more coding effort. Greg Turk 
has published a note which describes how to generate uniformly distributed values on a 
polygon [Glassner90]. Either this method or a method using a jittered grid would probably 
be preferable to the one used. See Appendix A.4 for C code to implement sampling 
methods. 

51 



• 
• 

• 
• 

• 
• 

•J- I • ........ 
• • • • •• . . ~~· . . ~ . ' .. . '.· . . . . . . . ' . . : . . . 
• ,.... rl.. • . . ~ ... ,... . ,· ~ 
._ -. • • !IIIII ,Sill I 
11 ii •••• --. ........... • 

• • - .,... • .... ..J •.. t'"= _ ........ ~·...-· . . . ;.-.. .., ..... •-: . .. . . .. . . ._ . ~-·· . 
• • -. • • I • • • • • _. • •.- • I • • • • • • ~ • ' ~. c· •. ••• . .. • . . . .. . . --.. 

• • I I •• ·-~~--·I I I .. . . ~ .,... . . 
I .. I II I I II I 

• • 
• . . .. ~ .... ·~ ::.· . . .. . .... ·· . ~-.. 

I I I I 11 I Ill - II ,_ .... 

• • •••• 
• ... 
• . . . .. -, .... 

• 

• • • 
• • • •• • • • 

• 

• 

• • 

Figure 3.10 Random points generated on a polygon by generating random 
values for each vertex, normalizing them so they sum to one, and using 
them as vertex weights to get an interior point. 

3.3 Over-Estimation Methods 

It is likely that any practical application will use some type of sampling algorithm. A 
sampling algorithm can be matched to the available compute power, and many graphics 
workstations, such as the Silicon Graphics Iris 4D Power Series, have hardware that can 
be used to generate environment samples very efficiently. The rendering pipeline can be 
used to scan convert polygon identifiers instead of color values into the frame buffer 
[Baum90]. However, the development of an analytical, or closed form solution, which 
computes the exact solution or over-estimates the solution, is also important. 

This section discusses the ideas involved in trying to compute an analytic solution. 
Most analytical algorithms are similar to analytic algorithms for computing shadowing 
effects from an area light source. Existing analytic shadow algorithms and their limitations 
to individual convex shadow casters are discussed. The limitations are illustrated by 
dropping down a dimension. An algorithm to compute the solution in two dimensions 
without any limitations is outlined, followed by a rough sketch of its extension to three 
dimensions. Several other ideas for computing the exact solution in three dimensions are 
briefly mentioned. This section finishes with a description of the algorithm I implemented. 

52 



Crow introduced the idea of shadow volumes for a point or directional light source, a 
source with zero area [Crow77]. Simply stated, the shadow volume for a polygon from a 
point source is the cone defined by the point light source and the polygon. Call these 
shadow cones, (figure 3.11) 

Figure 3.11 A Shadow Cone. All surfaces within the shadow cone 
receive no direct illumination from the point light source. 

Nishita and Nakarnae published an analytical solution for computations with area light 
sources [Nishita83]. This description covers the shadowing effect of one convex polygon 
or polyhedron. The complex interactions of many polygons are not addressed. 

Nishita and Nakamae extended the idea of a shadow cone to shadow volumes formed 
by a convex polygon or polyhedron and a convex light source. Essentially, the shadow 
umbra is the intersection of the shadow cones computed from each vertex of the area light 
source. The shadow penumbra is the convex hull of the shadow cones, (figure 3.12). Note 
that the extra faces defined by the convex hull are actually constructed from the vertices of 
the shadow caster and an edge of the light source. The faces of the shadow cones, on the 
other hand are constructed from vertices of the light source and edges of the shadow caster. 

53 



shadow cast from 
right endpoint 

linear light source 

Figure 3.12 A Shadow Volume. The surfaces within the umbra receive 
no direct illumination from the area source. Surfaces within the penumbra 
but outside the umbra receive some fraction of the direct illumination of the 
linear source. 

3.3.1 Concave Shadow Casters 

The restriction to convex shadow casters in Nishita's and Nakamae's algorithm is 
important. It is easy to construct an example using concave shadow casters and a linear 
light source where the intersection of the shadow cones formed with the line source 
endpoints is larger than the true umbra, (figure 3.13). Note that in this figure we have only 
drawn the shadows, so the reader might imagine a light and the shadow caster above the 
page. 

54 



Figure 3.13. Shadows cast by a concave polygon from a linear light 
source. (Only the shadows are shown). By definition, the umbra is inside 
the shadow cast from all interior points of the linear light source. Here the 
shadow cast by some interior point is drawn in bold. Some of the computed 
umbra falls outside it. 

To correctly compute the umbra for a concave polygon, we need to consider the 
difference between the convex hull of the polygon and polygon itself, i.e. the parts that 
would "fill in" the polygon and make it convex. These extra portions may be thought of as 
windows, and the cones formed with them and the light source vertices are visibility cones. 
Taking the convex hull of the visibility cones yields everything that can be seen through the 
windows. Thus, for concave polygons, we must subtract the hull of visibility volumes 
from the intersection of the shadow cones to get the true umbra volume, (figure 3.14). 

Concave poly and convex hull 
difference polygon 

True umbra is umbra minus the convex hull 
of visibility cones. 

Figure 3.14. Shadows cast by a concave polygon from a linear light 
source. (Only the shadows are shown). The true umbra is determined by 
computing the convex hull of the visibility cones and subtracting it from 
the intersection of the shadow cones. 

This solution for a single concave shadow caster could be computed by extending 

55 



Chin's SVBSP trees with Thibault's 3D CSG algorithms [Thibault87], [Chin89]. 

3.3.2 Multiple Shadow Casters (possibly concave) 

Generalizing the analytic computation to the shadowing effects of several disjoint non­
coplanar polygons is more difficult than generalizing to concave shadow casters. The 
umbrae cannot be simply computed independently and then combined. The obvious 
counter-example to this proposal can be constructed by simply dividing one original 
polygon into two polygons. The union of the umbrae cast by each half is less than the 
original umbra. These problems can be explained best by dropping down a dimension and 
dealing with line segments in the plane (figure 3.15). 

/ 

/ 

shadow caster 
treated as one 
segment 

-umbra 

""'"''-'-"'ttl"""'-"'-';.,r, shadow caster 

I 
I; 

k' 

I \ 
\ 

\ I 

i 

treated as two 
segments 

linear light source linear light source 
Figure 3.15 Umbras cannot be computed for each shadow caster 

independently. This example shows that dividing a shadow caster in two 
parts and computing the umbra yields a much smaller total umbra than that 
obtained by treating the two line segments as one segment. 

It is also possible to construct examples where the two segments appear as one 
segment to one endpoint of the light source and as two to the other. Even in this case, 
treating the shadow casters independently leads to a computed umbra that is smaller than 
the true umbra, (figure 3.16). 

56 



umbra computed when 
segments are considered 
independently. 

I 
II 

~ 

\ 

I 

true umbra 

I 
I 

L 

,, 
\\ I 
~I 

\j_ 

linear light source linear light source 

Figure 3.16 Even in the case where the segments appear as one segment 
to one vertex, we cannot simply union the umbrae of the two shadowing 
segments. 

In general, given two line segments in the plane (disjoint, non-collinear), there are a 
pair of lines, called linear separators. The linear separators divide the plane into two regions 
where the two segments will appear as one unbroken unit and two regions where the 
segments will appear as two separate parts (figure 3.17). The light source can be 
subdivided according to these regions and the pieces can be processed accordingly. 

In figure 3.16, one of the linear separators is the vertical line that intersected the light 
source at its midpoint. The correct umbra is formed by identifying the point on the light 
source at which the two shadow casters appear as two segments. Then we process the two 
halves of the light source independently. The intersection of the umbrae for each of the 
halves is the true umbra, (figure 3.18). 

-
treat segments 
separately 

-
treat segments 
as one unit 

\ 

\

treat segn;tents 
as one umt 

\ -
I -

\ 

-
treat segments 
separately 

Figure 3.17 Two linear separators exist for a pair of segments. These 
lines separate regions of the plane where the silhouette of the segments 
appears as one segment from regions where the silhouette appears as two 
segments. 

57 



' 
true umbra equals left umbra intersect right umbra 

\ \ 

I \\ I \ I \\ 
I \\ I I \ I ,, 

I I \\I 1/ \ I \\I 

L • i L Ill .. i 
linear light source left half of right half of 

linear light source linear light source 

Figure 3.18 The correct umbra is computed by partitioning the light 
source into a subsegment that can treat the two shadow casters as one 
segment and a subsegment that must treat them as two separate segments. 
Intersecting the umbrae computed for each light source subsegment gives 
the true umbra for the entire light source segment. 

3.3.3 A Naive Algorithm to Analytically Compute 2D Shadow 
Relationships 

This leads to a naive algorithm for computing shadow relationships between N line 
segments with respect to a linear light source. 

1. Compute linear separators for all pairs of line segments and subdivide the light source as 
necessary. 

2. For each light source segment, 
2.1 Classify the shadow casting segments into subsets according to whether they can 

be treated as one unit or not. Note that this subset structure is an equivalence relation. For 
each light source subsegment, the subsets of occluding segments will have no intersection 
with each other and their union will exhaust all the segments. 

2.2. Compute the umbra regions for each of the subsets 

3. Intersect umbra regions. 

4. Any segment that is in some umbra for each of the light subsegments cannot be seen. 

Note that actually computing the umbra regions is more than we need. We really only want 
to know whether any segments fall in the umbra regions. We can replace steps 2.2 and 3. 
with the following idea. 

For each endpoint of the current light source subsegment, project the segments onto a 
line beyond all the segments, and keep track of the depth ordering of the segments. Thus 

58 



we have a series of depth lists associated with each section of the projection line. The 
sublists are soned by depth (figure 3.19). 

linear 
light 
source 

/ 
/ 

linear 
light 
source 

/ 
/ 

/ 1 
/ 

/ 

/ 
/ 

.... -

/ 
/ 

/ 
/ 

/ 

.... ~ 

--

.... 
=== 

-

...... 
..._ ..._ 

...... ..._ 
...... 

...... 
...... 

...... 

.... - -== -

1,2 

3,1 

3 

3,4 
3,4,5 
4,5 

4 

.... 
.... .... 

- -

..._ 

--.... 
1 

- 1,2 

2 

..._ ..._ 

3 
...... 

3,5 

3,4,5 

3,4 

\ 4 

Figure 3.19. Projections of shadow casting line segments onto a 
segment beyond the shadow casters. 

In this case we can see that segment 2 is covered by segment 1 in the projections from 
each of the light source endpoints. Thus segment 2 is in the umbra of segment 1. The 
situation of segment 5 is more complicated. Segments 3 and 4 cover segment 5. Since the 

59 



light source lies in the quadrant of space defined by the linear separators of 3 and 4 that 
allow them to be treated as one unit, we can classify segment 5 as lying in the combined 
umbra of segments 3 and 4. 

3.3.4 O'Rourke's worst case n4 example 

O'Rourke and Suri present an algorithm to compute the boundary of the region visible 
to a segment. The algorithm is different from the one I presented in many ways. They are 
constructing the boundary of the visible region. My algorithm sketch constructs the 
boundary of the hidden regions in the first variant, and identifies hidden segments in the 
second variant. The interesting thing about their (more rigorous) presentation is that they 
provide a construction that shows that the visible region can have n( n4

) vertices on its 
boundary. This places a lower bound on any algorithm that explicitly constructs its 
boundary. Since my second variant does not explicitly construct the boundary ofthe umbra 
regions, it may escape this worst case performance. The analysis of that variant is an open 
problem. 

The main idea of their example is to let the light segment be horizontal. Place n closely 
spaced line segments immediately above and parallel to the light segment. The gaps 
between these segments permit 8( n) cones of light to emerge above them. Place a second 

row of segments above the first, again parallel to the light segment. e( n2
) beams of light 

escape above this second row. These beams intersect e(n4
) times above the second row, 

creating a visibility region with e( n4
) vertices and edges (figure 3.20). 

Y=2 

Y=1 

Y=O 
0 1 2 3 4 

Figure 3.20 Five gaps on two parallel lines (y = 1 and y = 2) above the 
light segment (y = 0) produce 29 distinct intersections above the top line; 

in general, n gaps produce 8(n4
) intersections. (taken from [O'Rourke87]) 

60 



3.3.5 Extending the Analytic Algorithm to Three Dimensions 

With no small effort, the two-dimensional algorithm can be extended to three 
dimensions. I can offer only a rough outline as to how this should be accomplished. 

The notion of linear separator in three dimensions is more complicated than in two 
dimensions. Consider two triangles and the planes defined by a vertex of one triangle and 
an edge of the other (figure 3.21). Not all such planes formed will be separator planes. 

Figure 3.21 Define separators for two triangles embedded in 3D space 
by forming the planes defined by a vertex from one triangle and an edge 
from the other. Only some of these planes will qualify as separators. Each 
triangle must lie completely on opposite sides of the plane for it to qualify 
as a separator. 

If the observer and one triangle are on the same side of all the separator planes then 
that triangle will overlay some part of the other triangle and those triangles may be treated 
as one concave polygon for purposes of the occlusion calculation. As in the two­
dimensional case, these separator planes are used to subdivide the viewing, or light 
polygon. 

61 



For each fragment of the viewing polygon, the set of occluding polygons is classified 
into subsets that are treated as one concave polygon for purposes of computing occlusion 
relationships. 

An analytical visible surface algorithm [McKenna87] computes a list of depth-sorted 
surfaces for every image fragment from each vertex of each subpolygon of the viewing 
polygon. 

The image data structures produced by the analytic visible surface algorithm from each 
vertex of the viewing subpolygon must then be analyzed. These contain the information 
that allows us to check if a concave polygon (or set of polygons that can be treated as one 
concave polygon) occludes another polygon. 

3.3.6 Other approaches 

This dissertation is one of the first to try to solve the 3D problem in a practical way. 
The problem admits many different solutions. Some ideas that have been proposed but not 
implemented are mentioned briefly here. 

3.3.6.1 BSP Shadow Volume Tree methods 

If the shadow volumes are convex, a standard Boundary Representation CSG 
modeller can be used to explicitly construct the intersection of the shadow volumes for each 
vertex to get the umbra [Mantyla83][Requicha85][Laidlaw86][Putnam86]. The operations 
can also be computed with BSP trees [Rohlf90][Thibault87][Chin89]. 

However this is more difficult when the shadow volumes for each vertex are concave. 
If the shadow volumes for each light vertex are generated by unions of the shadow 
volumes for individual convex polygons, the result is almost always concave. Although no 
solution to the general problem has been proposed, it is likely that this approach could 
succeed. 

3.3.6.2 Direct visibility-segment operations 

This approach has been suggested by several people. 

1. Construct the convex hull of two polygons . This represents the bundle of line segments 
joining points on the two polygons. 

2. Cut out parts of this volume with occluding polygons. It is not necessary to construct the 
true umbra cast by the occluding polygons from the two polygons. We only need to know 
when the containing volume becomes disconnected. However, counter examples may be 
constructed to this idea (figure 3.22). 

62 



Figure 3.22 A counter-example to the idea of "cutting out the invisible 
portion between two polygons that might see each other". In this case, the 
dotted line represents the only way the polygon at the top can see the 
polygon at the bottom. The shaded area represents parts of the space 
between the two polygons that would be cut out by the effects of the 
occluding polygons. Moving any of the segments slightly to cut off the 
only line of sight does not separate the two polygons at top and bottom. 

3.3.7 An Over-Estimation Implementation 

Implementing the algorithm outlined in 3.3.4 would not only be a formidable task, but 
even assuming we could implement it reliably, there is no question that it would run so 
slowly as to be purely a research curiosity. If an implementation is to be attempted, it 
should have some chance of running on today's machines in a manageable amount of time. 
I consider a month or so to be the limit of manageable, and that does not imply practical in 

63 



any sense. However, since what runs in a month on today's machines may run in hours or 
even seconds on future machines, I will present an algorithm that may take on the order of 
a month to run on a 7000 polygon, 269 cell model such as that of Sitterson Hall with a 10 
MIP workstation. 

Although the Sitterson Hall model has 7125 polygons, the number of distinct planes 
containing polygons is much smaller, 718 axial planes ( 338 normal to each of the X and Y 
axes and 42 normal to the Z axis) plus the planes defined by skew polygons (324 skew 
polygons in all). This is likely to be the case in most architectural models. Note that a factor 
of 10 in a N3 algorithm means a factor of 1000 in running time. 

We exploit this property. Restrict the set of occluding polygons to a set of polygons 
lying in an axial plane. The combination of a wall and a ceiling is not considered. The wall 
and the ceiling are considered independently. Thus some overestimation of the PVS will 
occur. Overestimation results in a time penalty because we render polygons that may not 
contribute to the image. However, we are guaranteed that the illusion of reality is not 
damaged by missing polygons. 

Now we must only determine whether a set of co-planar polygons occludes a polygon 
with respect to the view polygon. After reading the prequel, it is natural to expect that we 
will project the set of coplanar polygons onto the plane containing the possibly visible 
polygons and then use the method described for computing the shadow cast by a concave 
polygon to determine whether the polygon is occluded. However the projection operation is 
troublesome. Points may need to be projected to infinity on the plane of the possibly visible 
segment. However, since we are restricting the occluding polygons to lie in a plane, we can 
project the possibly visible polygon up on the the plane of the occluding polygons. This 
operation has no problems with points going to infinity, (figure 3.23) 

goes to infinity on plane of possibly 
visible segment 

viewing 
segment occluding segment 

Possibly visible segment 

viewing 
segment 

I projection of possibly visible 
I segment on plane of occluding 

never goes to infinity 

occluding segment 

I Possibly visible segment 

I 
I 

Figure 3.23 Projecting the possibly visible segment onto the plane of the 
occluding segment instead of projecting the occluding segment onto the 
plane of the possibly visible segment avoids the problem of projecting 
points to infinity. 

In this case we form the convex hull of the projections of the possibly visible polygon 
on the plane of the occluding polygons. This is essentially the window through which 
viewpoints must look to see the possibly visible segment. It is then a matter of determining 

64 



if this window is opaque, i.e., that the occluding polygons cover it up. I use the portal 
computation algorithm developed in section 3 .2 to compute the difference of the window 
and the occluding polygons. If the difference is null then the possibly visible polygon is 
occluded (figure 3.24) 

Portal, visualize as at ceiling height 

projections of C from 
the three verts of P and the resulting 
convex hull. Any projection from L' 
an interior point of P will be 'i 
inside the convex hull ' . 

Occluding planar set, 
visualize as at desk 

Candidate, visualize as at 
floor height 

Figure 3.24 The occlusion operation. The polygon begin tested is projected 
onto the occluding set of co-planar polygons from each vertex of the potal. 
The convex hull of the projections is computed. This is the window in the 
occluding plane through which the candidate can be seen. If the window is 
completely opaque then the candidate is occluded. 

Computing this operation once is not very expensive. The expense comes from the fact 
that we will want to compute this operation many times: 

for each portal 
for each polygon 

for each plane lying between the portal and polygon 
compute the projection, hull and difference operation. 
classify the polygon as visible or occluded, with respect to the portal. 

The third for loop runs through all planes lying between the portal and the polygon. 
This is essentially a three-dimensional range-search problem which typically requires a 
mildly sophisticated data structure and algorithm to solve efficiently. I store the axial planes 
in three sorted arrays, one array for each set of parallel planes. Thus the three-dimensional 
problem is decoupled into three one-dimensional problems which are much easier to solve. 

65 



It is clear that some method is needed to reduce the number of times the occlusion 
operation, the projection, convex hull and difference operations, is performed. This 
problem is ripe for any number of slick and incredibly complex data structures. However, 
since we are aiming for something that can be implemented, the following idea is the one I 
used. 

The principal idea is that if a volume is occluded then all the polygons inside the 
volume are also occluded. The occlusion operation can be performed on a possibly visible 
volume in the exact same manner as it is performed on a possibly visible polygon. 

Given a portal, a set of co-planar occluding polygons and a hierarchical spatial 
subdivision of the model, we can try the occlusion operation first on the top level volume. 
If that succeeds than we are done, and all polygons inside the model can be classified as 
occluded. If it fails, then we can try the occlusion level on the children volumes in a 
recursive manner. In any reasonable hierarchical model space subdivision, the number of 
volume nodes should be linearly proportional to the number of polygons. Thus in the very 
worst case the algorithm will go twice as slow. It is likely that in the average case on large 
buildings that this technique would accelerate the algorithm considerably. Note that the 
result of the hierarchical model space subdivision described in chapter 2 can be used for 
this phase of the algorithm. 

In my experiments on the Sitterson Hall model this technique did not appreciably 
speed the algorithm because no high level volumes were classified as occluded. If the 
number of polygons had been much larger, for example, if the model were fully furnished, 
I think the algorithm would be more successful. See Appendix A.5 for C code to 
implement an over-estimation method. 

3.4 Impressions and Comparisons of the Implemented Algorithms 

It is difficult to offer absolute conclusions for the preference of one method over 
another without specifying the limits on one's computational resources. In my situation, 
with several general purpose 10-20 MIPS networked workstations, model databases in the 
range of 10,000 polygons, and roughly 10,000 portals, the targeting methods are the clear 
practical choice. A description of the system in practice follows. 

To build a display file for a large model in this environment I first spend a few hours 
tweaking run time parameters on the partitioning phase of the computation to get a model 
subdivision with the desired number of cells. This number is picked based on how much 
time I think I have to process the cells. For example, if the deadline is tomorrow, I might 
only use 10 cells. If the deadline is five days away, I might use 50 cells. Then I distribute 
the cells among as many workstations as possible. After most machines finish their tasks, I 
kill any unfinished jobs and restart those remaining tasks with less demanding parameters, 
e.g., either a larger spacing between sample portal viewpoints or fewer sample rays fired at 
each polygon. Lastly, after interactively viewing the results, I might notice a few cells that 
have noticeably missing polygons. For these cells I use the edge-deletion or over­
estimation methods. Note that all this can be automated; it is simply the process of 
managing a generic large scale computation. 

On machines that possess hardware to accelerate the fixed-sampling-pattern methods, 
such as Pixel-Planes 5 or the SGI Iris 4D series of machines, the increase in speed would 
make the fixed pattern methods preferable. It is also worth noting that since the same 
hardware is used to generate images and pre-compute visible polygons, the sampling 

66 



density is, by default, the necessary sampling density. 

For a highly parallel SIMD machine such as Thinking Machines' Connection Machine 
or the MasPar, a ray-intersection algorithm might make the targeting approach superior 
[Delany88]. Such an algorithm processes many rays in parallel. No known coherence of 
the sample pattern is used, as in a pipelined implementation of a Z-buffer algorithm. Since 
one can generally get more useful information per ray from the targeted sampling than from 
fixed pattern sampling and targeted rays cost about the same as rays from a fixed sample 
pattern, targeted sampling is likely to be more effective in this case. 

For the 269-cell Sitterson display file, I used a combination of sampling methods and 
over-estimation methods. As a first pass, I used a low-sampling-rate fixed-pattern method 
on each cell. Later, if I encountered a cell that had noticeably missing polygons, I re­
processed only that cell with the edge deletion method, or used a higher sampling rate with 
a fixed-sampling-pattern on that cell. When the 269-cell Sitterson model was computed, I 
had not yet implemented the targeted sampling method. 

All the Orange Church display files, including the 106-cell display file which appears 
in the SGI demo suite for the VGX series machines, were initially computed using the 
targeted sampling methods. Depending upon the cell, three to seven rays were targeted at 
each polygon from 36 inch intervals on the portals. A few exterior cells had very large 
portals. These cells were processed using much larger intervals on the portals. One cell in 
the stairway was recomputed using a sample pattern. There are still a few cells with 
missing polygons, but they are rarely encountered. 

When I first developed the targeting method, I performed some timing experiments on 
a particularly troublesome cell, cell226 of an early church model. (litchurch.roundoff.poly 
7812 polygons). Cell226 is an entryway alcove in the fellowship hall of the church. The 
standard 2 foot portal, 392 rays-per-portal cosine-weighted angularly-jittered hemisphere 
sampling distribution worked poorly. Many small polygons were not hit by the rays fired 
from the portals. In particular, the small polygons around the circular windows at either 
end of the great hall were difficult to detect with a fixed sampling pattern. This lead to 
efforts to find some variant of the sampling method that would work for this cell. 

I had thought about implementing the targeted sampling idea earlier, but this particular 
case forced me to implement it. Since Pixel-Planes 4 could display about 32K 
quadrilaterals, (39K triangles)' per second, I hoped to achieve a partition where no cell 
would contain more than 2000 polygons, as this gave a guaranteed 16Hz frame rate. The 
over-estimation method was declaring about 3200 polygons visible for this particular cell. 
The initial attempt at using a fixed sample pattern method found 1000 visible polygons. It 
was my guess that about 2000 polygons were actually visible. So I tried varying the 
parameters of the fixed sampling methods. It was clear that many samples were required to 
find all visible polygons, so I implemented the targeted sampling method, which proved to 
be clearly superior for this particular case. 

Comparisons of different ways to compute the PVS for the entryway cell are 
documented below. The PVS for the cell was computed only a few ways since each 
computation took anywhere from 40 CPU minutes to 30 CPU hours to complete. Each trial 
is classified according to the general method used. The specific values of controlling 
parameters are also listed. The time in seconds to compute the PVS for the cell is given 
along with the size in polygons of the computed PVS. A relative time is also given, in 
terms of the fastest method. Finally, although I can not be sure of the exact PVS, I could 
not visually detect any missing polygons in the PVS computed by one of the targeted 

67 



sampling methods. That method computed 1587 polygons in the PVS. Each of the other 
methods has its PVS size listed relative to that result. Since only a few trials were 
computed, and some reasoning on the results of each trial was used to determine what to do 
next, comments on each trail appear with the data for each trial rather than in one large 
commentary after all the trial data. 

time in # visible time # visible 
seconds polygons relative polygons 

to fastest relative to 
method most correct 

method 

Fixed pattern sampling 

Cosine weighted 
392 rays at 24 inch 
portal viewpoint 
samples 2235.81 1026 1.637 0.647 

Comments: 
This initial attempt worked poorly. Only 65% of the visible polygons were detected. 

However, most of the missing polygons were quite small. 

Members of the Walkthrough team often used databases with every other polygon 
removed to double the update rate, which allowed them to test new interfaces, etc. It is 
suprisingly easy to navigate with only half the polygons present. The 65% of visible 
polygons detected here was probably greater than 95% visible polygon area so the 
computed PVS could have been acceptable under some circumstances. 

Linear radius, 450 
rays at 12 inch portal 
viewpoint samples 

Comments: 

7137.24 1259 5.225 0. 793 

This was a simple attempt at roughly doubling the sampling density. This got about 
79% of the polygons, a 14% improvement, at 3.2 times the cost. 

Linear radius, 5000 
rays at 12 inch portal 
viewpoint samples 

Comments: 

54909.91 1490 40.198 0.939 

The number of samples was increased greatly to see if a huge increase in the number 
of rays would get all the polygons. I also changed the pattern to the linear radius 
hemisphere pattern. 

A factor of eight in time hit another 15% of the polygons. The result gained here was 
actually pretty good. It took more than a casual glance to know that any polygons were 
missing, but the time cost was excessive. 

68 



seconds 

Targeted sampling 

1 targeted ray at each 
polygon, from the 
center of each 
portal. 1365.99 

Comments: 

polygons rei. time rei. polys 

1509 1.000 0.951 

This was the initial trial with the targeted sampling method. A single ray was targeted 
at each polygon from the center of each portal. The time used was just over half that of the 
simplest fixed sample pattern method, yet it found more visible polygons than the fixed 
sampling method which took forty times as long. 

It is worth noting that these figures are slightly misleading, because the polygons that 
the targeted sampling method missed were much larger than the polygons that the fixed 
sampling method missed. Floors in other rooms are only visible through doors. A sample 
targeted at the floor will often miss the door and hit the wall. This results in the floor being 
erroneously declared not visible. The fixed sampling method, on the other hand, only 
missed polygons because of their size. This suggests that the targeted sampling method 
should use apparent area to compute the number of targeted samples for each polygon, but 
I found later that simply using several rays, e.g. 5, made this event very rare. The flip side 
of this coin is that a few rays targeted at very small polygons could be used to augment a 
fixed sampling method. 

7 targeted rays at each 
polygon, from the center 
of each portal 7366.80 1531 5.393 0.965 

Comments: 
This was an unsuccessful attempt to get those remaining polygons. Only a 1.5% 

increase in the number of detected polygons for a factor of 5 increase in time. Part of the 
problem was that all rays were being fired from the center of the portal. It was possible for 
that position to be degenerate somehow, e.g. a column or other obstruction might be sitting 
directly in front of that point. The solution is to use more initial points on the portal. 

7 targeted rays at each 
polygon, from points 
spaced 24 inches apart 
on each portal 4 7,297.51 

Comments: 

1587 34.625 1. 0 

Many more initial points on the portal were used. The number of targeted rays per 
polygon was kept at seven, which is overkill. As far as I could determine, there were no 
missing polygons in this example, but the time was again excessive. When I computed 
display files for later models of the church, I typically used 3 targeted rays-per-polygon 
from points spaced 36 inches apart on the portals. 

69 



Over-estimation 
method: 

Comments: 

109,936.34 3211 80.481 2.023 

This trial missed no polygons, but classified many invisible polygons as visible. In 
tbis case those extra polygons bumped me over my self-imposed limit of 2000 polygons 
per cell, which corresponded to update rates of 16Hz on Pixel-Planes 4. The cost of this 
metbod is too high to allow it to be practical. 

Method PVS size relative PVS size relative time 

392 ray 
cosine-weighted 

1026 0.647 1.637 hemisphere. 
Source points 
spaced 24 inches. 

450ray 
linear-radius 

1259 0.793 5.225 hemisphere. 
Source points 
spaced 12 inches 

5000ray 
40.198 linear-radius 

1490 0.939 hemisphere. 
Source points 
spaced 12 inches 

1 targeted ray 
1509 0.951 1.0 per polgon. 

1 source point 
per portal 

7 targeted rays 1531 0.965 5.393 
per polygon. 
1 source point 
per portal 

7 targeted rays 1587 1.0 34.625 
per polygon. 
Source points 
spaced 24 inches 

Over-estimation 3211 2.023 80.481 

Table 3.1 Summary of timing comparisons 

70 



3.5 PVS computation taking account of viewing direction 

If the PVSs are computed and stored for each portal instead of each cell, then it should 
be possible to display the PVS only for the portals that fall in the viewing frustum. 
Compute the portals lying in the current view frustum and then render the PVS associated 
with each portal. The difficulty is in handling overlap in portal lists. Since the portal 
regions are triangulated, it is common to have many portals per cell. The 269 cell Sitterson 
model subdivision had an average of almost 30 portal triangles per cell. Many polygons 
would occur in the PVS of several portal triangles. Each polygon should be rendered only 
once. 

It may also be possible to subdivide the model based not only on viewer position, but 
also on view direction. This approach has been shown to accelerate ray-tracing [Arvo87]. 

71 



Chapter IV 

A Radiosity Implementation 

The radiosity lighting model has several properties that make it desirable for virtual 
building environments. 

• It accurately models tbe diffuse interreflections tbat dominate the interior of a building. 

• The lighting information may be pre-computed and stored as color values at polygon 
vertices. These values are linearly interpolated by hardware during display. This effectively 
eliminates any lighting calculations at display time, and yields rapid rendering. 

• The process is a linear system. Thus tbe contributions of several different light sources 
may be computed independently. A linear combination of tbese solutions may be computed 
during display, allowing the user to brighten and dim lights. This gives an added 
dimension of interactivity at little cost. 

For several years tbe best -known solution to the radiosity lighting model used time and 
space quadratic in the number of patches [Cohen85]. This made it prohibitive for use in 
practical systems with real building models. The shooting algorithm used in tbe progressive 
refmement solution to radiosity makes radiosity practical [Cohen88]. The algorithm runs in 
linear space, and usually only linear time is required to converge to an acceptable solution. 
It is no longer a research curiosity but a tool for virtual environments. 

The UNC Building Walkthrough Project uses tbe radiosity shading model. A brief 
description of our implementation follows. 

4.1 A Ray-Casting Approach 

We use a modified shooting approach to pre-compute the radiosity solution 
[Cohen88]. The sampling process uses an adaptive ray-casting based on a jittered 
hemispherical distribution [Airey89], the same used for the PVS calculation in the previous 
chapter. This differs from the Z-buffer based hemi-cube introduced by Cohen, et. al. The 
hemi-cube is an approximation to the illumination hemisphere. The hemi-cube has five 
faces, each subdivided into a regular grid. The Z-buffer algorithm capitalizes on the regular 
grid to accelerate the hidden-surface calculations necessary to compute energy transfer 
coefficients, known as form factors. The Z-buffer method computes samples faster than 
ray-casting, but requires tbe overhead of transforming the database first. The Z-buffer 
metbod is faster than the ray-casting technique when the number of samples taken 
outweighs the cost of transforming the database. 

Cohen et. al. developed a two-level patch and element structuring scheme to keep the 
number of samples shot from the same point high. Energy is shot from a coarse grid and 
collected by a finer grid. The two-level structuring scheme is unnecessary in the ray-casting 
method, since the cost of casting any ray is essentially the same, no matter what shooting 

72 



point is used. The energy may be shot from a fine grid at the same expense as shooting 
from a coarse grid. 

At each iteration step, we adapt the resolution of the hemispherical sampling 
distribution as a function of unshot radiosity to keep the radiosity-per-sample constant. 
Airey and Ouh-young observed, empirically, that the unshot radiosity at each step 
decreases as a negative exponential [ Airey89]. Thus, the number of samples needed at each 
step also decreases as a negative exponential. Once the number of samples taken at each 
step drops below a certain point, the ray-casting approach is faster than a Z-buffer method. 
The cross-over point and the number of iterations determines which method is faster. In 
our experiments, the ray-casting approach was slightly faster. Ming Ouh-young and I 
proposed a hybrid algorithm that used the Z-buffer method for early iterations and switched 
over to the ray-casting method at the cross-over point [Airey89]. 

An advantage of ray-casting sampling algorithms is flexibility. We have been able to 
experiment with light-emitter distributions other than true diffuse emission, such as 
spotlight-like distributions, with only small changes in our software. Wallace, eta!., use 
ray-casting to sample the light source from the model vertices to decrease solution errors 
due to limited sampling distributions [Wallace89]. They also note other advantages, such as 
the ability to use exact parametric descriptions of objects rather than polygonal 
approximations. The exact parametric descriptions allow accurate shadows and avoid 
polygonized silhouettes. 

4.2 Interactive Light Manipulation 

We have extended our radiosity program to compute the contributions of several 
different light circuits. For each patch we compute a vector of radiosities, one entry for 
each light circuit. Since a value for the red, green and blue channels must be stored for 
every patch for every independent set of lights, the storage requirement is large.On 
workstations used to compute the radiosity solution one may run the radiosity program 
several times, once for each light circuit, and combine the results as a post-process. 
However, the results must fit into display memory. We devised an approximation to save 
space. An average color is computed from the colors due to each light circuit, and an 8 bit 
intensity value is computed for each light circuit. 

The radiosity process computes an array of color values for each vertex, 

<r,g,b>k, with 0 <= r,g,b < 256, 

one for each of the k light circuits. We compute an average color, 

<R,G,B> = L (<r,g,b>k); 
max= MAX(MAX(R,G),B); 
<R,G,B> = <R/max,G/max,B/max>; 

Then we compute an eight bit intensity value for each of the k light circuits, 

<I>k = (rk!R + gk!G + bk/B)/3. 

The storage required is k+4 bytes rather than 4 *k bytes, assuming word boundary 
restrictions. The penalty for this savings is that the color of each surface stays constant, 
regardless of the light circuit settings. Although many lights encountered in real models are 
not white (especially incandescent lamps), this approximation has been useful. 

73 



During display, the user may alter global settings for each of the k light groups, i.e,. 
turn some off, brighten others, etc. We scale the average <R,G,B> value stored at each 
vertex with the dot product of the global settings and the light group intensity values stored 
at each vertex. This takes roughly one extra frame time to compute. The result is then 
stored at the vertex until the user changes the global settings again. Thus, any combination 
of k lights can be interactively modified during display. In our system, k is 20. 

4.3 Using a Physically Based Lighting Model on Non-Physical Models 

A physically based rendering method requires physically based models. Although 
AutoCAD is a powerful modelling tool, it does not guarantee topological consistency of the 
models it produces. Several problems must be handled. 

• Most radiosity programs expect polygons to be oriented so that, for example, the vertices 
appear in counter-clockwise order when the viewer looks at the front of the polygons. This 
reduces the cost of the radiosity computations and allows back face culling to be used 
during display. It is difficult, if not impossible, to construct correctly oriented polygons 
from many modelling primitives provided by AutoCAD, such as extruded poly lines. We 
attempt to solve this problem with a radiosity program that can keep track of the radiosity 
for both sides of every polygon, and only allocates storage for a patch when it is hit by 
light. Display polygons can be generated for both sides of a patch if both sides received a 
certain amount of energy, or alternatively, the side which received the most light can be 
used as the front of the polygon. This idea requires only light-emitting polygons to be 
correctly oriented. 

• Z-buffer algorithms suffer problems caused by coincident co-planar surfaces. The plane­
sweep algorithm in Chapter 2 can be used to detect coincident co-planar surfaces. This 
allows the rnodeller to fix the problem before the radiosity program is run. To handle any 
remaining coincident surfaces, our radiosity program only transfers energy to one of the 
coincident patches, preventing the other from being generated. This avoids many display 
problems. 

• Improper edge adjacencies. See the discussion at the end of Chapter 2. The retesselation 
program described in Chapter 2 can transform polygonal surface tilings into planar 
subdivisions, a tesselation in which every edge joins two and only two polygons except at 
surface boundaries. This is necessary to prevent cracks in curved surfaces and shading 
discontinuities in planar surfaces. 

• There are other problems related to improper edge adjacencies. The largest problem is 
polygons that incorrectly abut other non-coplanar polygons, i.e., they do not share edges. 
For example, wall polygons may abut floor polygons without sharing edges. Thus one 
polygon spans the floor in two separate rooms. If the light is on in one room, but not in the 
other, the linear interpolation of vertex values allows light to leak under the wall. This 
problem can be solved by detecting the incorrect adjacency and cutting the floor polygon 
where it meets the wall polygon. 

4.4. Adaptive Refinement 

Pre-computation is a good strategy and should be applied to viewpoint-independent 
image features. Unfortunately, only a few tasks, such as visibility relations and diffuse 
shading in static environments, fall into this category. To deal with image features that 

74 



cannot be handled by pre-computation, and features that strain the limits of the display 
subsystem even with pre-computation, we tum to adaptive refinement. 

An object can be approximated at various levels of detail. We use the approximation 
that most closely fits the needed level of interactivity at the moment. This idea is well­
known and regarded as a common-sense notion among flight simulator developers. 
However, since our projected user, an architect, also constructs the model, we have 
concentrated on automatic applications of the principle 

The radiosity process dices model polygons into patches. In our experience, this 
increases the number of display polygons by a factor of four to ten. Since our display 
system, Pixel-Planes 4, takes a constant amount of time to render any color-interpolated 
quadrilateral, regardless of screen size, a radiosity shaded model takes four to ten times 
longer to display than the original model. (For commercial graphics workstations, which 
tend to be pixel-fill limited, this effect may be much less noticable.) 

The dicing due to radiosity can be used to produce levels of detail automatically. We 
have adopted hierarchical polygons as our display primitive (Figure 4.1). This is 
sometimes called a pyramidal representation. 

refine 

Figure 4.1. A Hierarchical Polygon. In the Actual Image the Patch Values 
are Stored at Vertices and Interpolated to Obtain Smooth Shading. 

Each polygon has an associated list of polygons that can be used to refine it. When the user 
stops, the image "sweetens." The resolution level of the hierarchical polygons displayed is 
increased; we display the patches. 

We smooth the transition from one quality level to the next with pixel-level blending to 
minimize user distraction. The blending takes advantage of the huge aggregate SIMD 
computing power of the Pixel-Planes 4 machine by computing the blending function at 

75 



every pixel simultaneously. The blending implementation uses fifty interpolation steps and 
occurs in a fraction of a second. 

The level of resolution refinement is fixed by the choice of patch size made during the 
radiosity pre-computation. We have developed secondary levels of refinement that are 
dependent upon the current view and light circuit settings. The secondary levels of 
improvement are slower since they involve computation during display, but they can 
markedly improve an image that suffers from coarse patch sampling. 

We approximate bilinear interpolation across a quadrilateral patch with two triangles so 
the shading can be expressed as a Pixel-Planes 4 linear expression [Fuchs85]. This can 
cause problems. Note that if the color values at the four comers of the quadrilateral are 
a,b,c,d, then the bilinearly-interpolated color at the center of the patch is (a+b+c+d)/4. 
Since a quadrilateral can be triangulated in two ways, the value at the center is either (a+c)/2 
or (b+d)/2, depending upon which diagonal is chosen. 

During the first adaptive refinement step, we choose the diagonal uniformly. As a 
secondary adaptive refinement step, we choose the diagonal that connects the two vertices 
that are more closely matched in color. This tends to make the diagonals run perpendicular 
to the shading gradient (Figure 4.2). 

uniform choice 
of quadrilateral 
diagonal 

choosing the diagonal 
to run along contour 
lines 

Figure 4.2 Uniform Choice of Quadrilateral Diagonal vs. Difference 
Directed Choice. In the Actual Image, the Colors are Transfered to Patch 
Vertices and Linear Interpolation Provides Smooth Shading. 

76 



Even after choosing the best diagonal, the approximation may be inaccurate. A patch 
can be subdivided into four patches. The color value at the new center vertex is computed 
with bilinear interpolation. The process is applied to each subpatch recursively. 

Following adaptive refinement of shading, the image is anti-aliased. We use an 
algorithm developed by Fuchs et al. that builds the anti-aliased image using supersampling 
[Fuchs85]. A new image is computed for each supersample and blended smoothly into an 
accumulated image using the supersample filter weights. 

77 



Chapter V 

Contributions and Future Work 
This dissertation has focused on improving update rates in a visual simulation system 

for buildings, UNC's Building Walkthrough. The contributions to visual simulation 
include: . 

• An implementation of a complete interactive visual simulation system for buildings. 

• A characterization of the properties of architectural databases that can be exploited to 
improve system performance. The most important property is the observation that 
potentially visible sets (PVSs) of features are similar across local regions of space called 
cells, which approximate rooms. Potentially visible sets change drastically on the 
boundaries of cells. Transparent portions of the cell boundary are called portals. Any 
algorithm that attempts to improve the display update rate through pre-computation is likely 
to use these concepts. 

• A cell's PVS is defined as the union of polygons interior to the cell and those exterior to 
cell which are visible from points on the portals. Thus, the problem of computing the PVS 
for a cell is reduced to the easy problem of identifying polygons inside a cell and the hard 
problem of computing weak visibility between portals and polygons. 

• A model-space subdivision algorithm to locate cells and their portals is described and 
implemented. Special attention is given to an algorithm to correctly compute the polygonal 
definitions of portals, which are typically defined only implicitly in the model. 

• Two different algorithms to compute visibility between two convex polygons are 
presented. The problem is similar to computing illumination from a polygonal area light 
source. One approach is an analytic algorithm which computes a conservative over­
estimation of the PVS. That algorithm is similar to analytic shadow computation. The 
second approach uses point sampling methods. This approach may under-estimate the 
PVS, but it is easy to trade cost for results and is easy to implement. This is the clear choice 
for practitioners. Note that if point sampling methods are used to estimate visibility, it is 
unnecessary to compute the polygonal definitions of the portals. It is only necessary to 
know whether a sample point on the boundary of the cell is transparent or opaque. 

5.1 Future work 

In any visual simulation system, the effectiveness of the whole and not the success of 
individual parts is the important thing. So while this dissertation demonstrates the 
quantitative success of increasing update rates with a pre-processing algorithm, its 
integration into the Walkthrough research project was at least as important. With that in 
mind, we cast a critical eye at the system and suggest improvements. 

78 



5.1.1 A better modelling system 

Without a doubt, modelling is the effort that consumes the most human resources. 
AutoCAD is not a successful commercial product without reason, but it is clear that it did 
not evolve with 3-D architectural modelling as the focus. Writing a modelling system is 
hard; one needs a critical mass of users to test and drive system development. For this 
reason, it is difficult for specialized modellers to develop and become accepted. However, 
the problem remains: we need better modelling systems. A good metric for modelling 
systems would be the time it takes to accurately model a structure of a certain square 
footage. 

Another related comment is that the modelling system could be written with 
anticipation of the display process that will follow. The creators of AutoCAD did not know 
that we would be attempting to interactively move through a model shaded with radiosity 
and created with their system. The modeller itself could use the notion of cell and portal to 
aid the subsequent display process. 

5.1.2 A better man-machine interface 

The graphics cluster in the computer science department at UNC at Chapel Hill has a 
history of experimentation with graphical interface devices that comes from the long 
standing GRIP molecular modelling project run by Dr. Brooks. Many physical input 
devices and often many more logical models for each device have been tried on many 
projects. The Walkthrough project itself has several different logical models for the box 
containing two three-degree of freedom joysticks and one slider. The sticks can control 
rotation and translation in many different ways. We have used a treadmill with bicycle 
handlebars to navigate through the simulated building. Work in this area is continuing. The 
head-mounted display project underway at UNC has already accomplished a lot and 
promises much more. 

There is also the aspect of interaction other than navigation. A limited example of this 
is our ability to turn on and turn offlights. One could imagine the ability to open and close 
doors and move furniture. Our system allows the user to pass through walls, ceilings and 
floors which is nice sometimes, but can allow a user to get lost inside interstitial spaces. 
Adding collision detection would be a noticeable improvement on the existing system, 
although Brice Tebbs has noted that if the simulation is very good, the users shouldn't 
bump into walls anymore than they do in the real buildings. 

5.1.3 Better update acceleration methods 

Although the system described in this dissertation succeeds at increasing the update 
rate, the large amounts of time needed for pre-processing make it impractical to make small 
changes in the model. The user feels compelled to make several changes at once so that less 
time is spent pre-processing the model for display. The pre-processing methods could be 
significantly accelerated with large scale parallelism. I have used parallelism on the scale of 
the number of cells in a model by distributing cells to individual workstations. This can cut 
the total time to compute the PVS for all the cells down to the time needed for the most 
difficult cell. However, it requires many independent machines. More efficient parallel 
methods using truly parallel machines could be developed. 

It is also quite possible that some other methods which require much less pre­
processing could be used. It may be possible to transfer some of the work back into the 
display time computation, although this can be difficult because time is at a premium there. 

79 



The open problem in theoretical hidden-surface algorithms is an output-size sensitive 
hidden surface algorithm, one that runs in polylog time in the number of visible surfaces. 
Practitioners need an output-size sensitive sampling algorithm. Several people have 
suggested variants on an algorithm that draws surfaces from front to back and stops when 
the image is sufficiently complete but before all surfaces have been processed. This 
requires some type of a priori knowledge about the database, but would require much less 
pre-processing than the methods proposed in this dissertation. 

5.2 Different algorithm paradigms- randomization and sampling. 

Many early hidden surface algorithms were analytical in nature or were easily adapted 
from taking point samples to producing analytical solutions. Scan-line algorithms are the 
best example. However, it is apparent that sampling algorithms are used for fast image 
generation as well as realistic image generation. Hardware Z-buffer hidden-surface 
implementations are used in most graphics workstations. Software Monte-Carlo integration 
methods, distributed ray-tracing and radiosity among them, produce very realistic images. 

Although I think analytical algorithms are important theoretically, I believe that 
sampling based algorithms, in particular those with an element of randomization will be 
superior for practical purposes. Analysis of randomized sampling algorithms is a relatively 
new field in algorithm design. That know ledge could be transferred to many algorithms in 
computer graphics. 

80 



References 

[Abram87] Abram, G. (1987) Parallel Image Generation with Anti-Aliasing and Texturing 
Ph.D Dissertation, The University of North Carolina at Chapel Hill 

[Airey89d] Airey, J. and F. P. Brooks Jr. (1989) Walkthrough- Exploring Virtual Worlds 
Second Annual Report University of North Carolina at Chapel Hill TR89-012 

[Airey89] Airey, J. and M. Ouh-young (1989) Two Adaptive Techniques Let Progressive 
Radiosity Outperform the Traditional Radiosity Algorithm Department of Computer Science 
University of North Carolina at Chapel Hill TR89-020 

[Airey89b] Airey, J., J. Rohlf and P. Rheingans 1989 The Virtual Lobby Video 
SIGGRAPH '89 Film and Video Show 

[Airey89c] Airey, J. M. (1989) Solving Computer Graphics Problems Through Boolean 
Combinations of Polygons University of North Carolina Department of Computer Science 
TR89-031 

[Airey90b] Airey, J. M., J, H. Rohlf and F. P. Brooks Jr. (1990). "Towards Image 
Realism with Interactive Update Rates in Complex Virtual Building Environments." ACM 
Computer Graphics (Proceedings 1990 Symposium on Interactive 3D Graphics). 24(2): 
41-50 

[Akeley89] Akeley, K. (1989). "The Silicon Graphics 4D/240GTX Superworkstation." 
IEEE CG & A. 9(4): 239-246. 

[Arvo87] Arvo, J. and D. Kirk. (1987). "Fast Ray Tracing by Ray Classification." ACM 
Computer Graphics (Proceedings SIGGRAPH '87). 21(4): 55-64. 

[Avis86] Avis, D., T. Gum and G. Toussaint. (1986). "Visibility between two edges of a 
simple polygon." The Visual Computer. 2(6): 342-357. 

[Baum89] Baum, D. R., H. E. Rushmeier and J. M. Winget. (1989). "Improving 
Radiosity Solutions Through the Use of Analytically Determined Form-Factors." ACM 
Computer Graphics, (Proceedings of SIGGRAPH '89). 23(3): 325-334. 

[Baum90] Baum, D. R. and J. M. Winget. (1990). "Real Time Radiosity Through Parallel 
Processing and Hardware Acceleration." ACM Computer Graphics (Proceedings 1990 
Symposium on Interactive 3D Graphics). 24(2): 67-76. 

[Bentley80] Bentley, J. L., D. Haken and R. W. hon (1980) Statistics on VLSI Designs 
Carnegie-Mellon University, Pittsburgh PA, 1980 CMU-CS-80-111 

[Brooks86] Brooks, F. P., Jr. (1986) Walkthrough- A Dynamic Graphics System for 
Simulating Virtual Buildings 1986 Workshop on Interactive Computer Graphics. 
University of North Carolina at Chapel Hill 

[Brooks88] Brooks, F. P. B., Jr. (1988) First Annual Technical Report Walkthrough 
Project University of North Carolina at Chapel Hill TR88-035 

81 



[Chin89] Chin, N. and S. Feiner. (1989). "Near Real-Time Shadow Generation Using 
BSP Trees." ACM Computer Graphics (Proceedings SIGGRAPH '89). 23(3): 99-106. 

[Cohen88] Cohen, M. F., S. E. Chen, J. R. Wallace and D. P. Greenberg. (1988). "A 
progressive Refinement Approach to Fast Radiosity Image Generation." Computer 
Graphics (Proceedings of SIGGRAPH '88). 22(4): 75-84. 

[Cohen85] Cohen, M. F. and D. P. Greenberg. (1985). "A Radiosity Solution for 
Complex Environments." Computer Graphics (Proceedings of SIGGRAPH '85). 19(3): 
31-40. 

[Crow77] Crow, F. C. (1977). "Shadow Algorithms for Computer Graphics." Computer 
Graphics (Proceedings of SIGGRAPH '77). 11(2): 242-248. 

[Delany88] Delany, H. C. (1988) Ray Tracing On A Connection Machine 1988 
International Conference on Supercomputing St. Malo, France, July 4-8, 1988 

[Denber86] Denber, M. and P. Turner. (1986). "A differential compiler for computer 
animation." ACM Computer Graphics (Proceedings of SIGGRAPH '86). 20(4): 21-27. 

[Deyo88] Deyo, R., J. A. Briggs and P. Doenges. (1988). "Getting Graphics in Gear: 
Graphics and Dynamics in Driving Simulation." ACM Computer Graphics (Proceedings 
SIGGRAPH '88). 22(4): 317-326. 

[Dobkin88] Dobkin, D., L. Guibas, J. Hershberger and J. Snoeyink. (1988). "An 
Efficient Algorithm for Finding the CSG Representation of a Simple Polygon." ACM 
Computer Graphics (Proceedings of SIGGRAPH '88). 22(4): 31-40. 

[Fuchs83] Fuchs, H., G. D. Abram and E. D. Grant. (1983). "Near Real-Time Shaded 
Display of Rigid Objects." ACM Computer Graphics, (Proceedings of SIGGRAPH '83). 
17(3): 65-69. 

[Fuchs85] Fuchs, H., J. Goldfeather, J. P. Hultquist, S. Spach, J. Austin, J. Brooks 
Frederick P. , J. Eyles and J. Poulton. (1985). "Fast Spheres, Textures, Transparencies, 
and Image Enhancements in Pixel-Planes." Computer Graphics (Proceedings of 
SIGGRAPH '85). 19(3): 111-120. 

[Garlick90] Garlick, B., D. Baum and J. Winget. (1990). "Interactive Viewing of Large 
Geometric Databases Using Multiprocessor Graphics Workstations." SIGGRAPH '90 
Course Notes on Parallel Algorithms and Architectures for 3D Image Generation (Course 
#28).: 

[Gharachorloo89] Gharachorloo, N., S. Gupta, R. F. Sproull and I. E. Sutherland. 
(1989). "A Characterization of Ten Rasterization Techniques." ACM Computer Graphics 
(Proceedings SIGGRAPH '89). 23(3): 355-368. 

[Glassner90] Glassner, A. (1990). Graphics Gems. 

[Goral84] Goral, C. M., K. E. Torrance and D. P. Greenberg. (1984). "Modeling the 
Interaction of Light Between Diffuse Surfaces." Computer Graphics (Proceedings of 
SIGGRAPH '84). 18(3): 213-222. 

82 



[GriesS!] Gries, D. (1981). The Science of Programming. Texts and Monographs in 
Computer Science. Springer-Verlag. 

[Guibas78] Guibas, L. J. and R. Sedgewick (1978) A Dichromatic Framework For 
Balanced Trees 19th Annual Symposium on Foundatins of Computer Science, IEEE, 1978 

[Hall88] Hall, R. (1988). Illumination and Color in Computer Generated Imagery. 
Monographs in Visual Communicatino. Springer-Verlag. 

[Hanrahan89] Hanrahan, P. (1989). Chapter 3. A survey of Ray-Surface Intersection 
Algorithms. An Introduction to Ray Tracing. Academic Press. 

[Hubschman81] Hubschman, H. and S. W. Zucker. (1981). "Frame-to-Frame Coherence 
and the Hidden Surface Computation: 
Constraints for a Convex World." Computer Graphics (Proceedings of SIGGRAPH '81). 
15(4): 45-54. 

[Laidlaw86] Laidlaw, D., B. Trumbore and J. F. Hughes. (1986). "Constructive Solid 
Geometry for Polyhedral Objects." ACM Computer Graphics (Proceedings SIGGRAPH 
'86). 20(4): 161-170. 

[Mantyla83] Mantyla, M. and M. Tamminen. (1983). "Localized Set Operations for Solid 
Modeling." CG&IP. 17(3): 279-288. 

[McKenna87] McKenna, M. (1987). "Worst -case optimal hidden surface removal." ACM 
Trans. on Graphics. 6(1): 19-28. 

[Mehlhorn84] Mehlhorn, K. (1984). Data Stmctures and Algorithms 3: Multi-dimensional 
Searching and Computational Geometry. EA TCS Monographs on Theoretical Computer 
Science. Springer-Verlag. 

[Molnar89] Molnar, S. and H. Fuchs. (1989). Chapter 18 Advanced Raster Graphics 
Architecture. Fundamentals of Computer Graphics. 

[Naylor81] Naylor, B. F. (1981) A Priori Based Techniques for Determining Visibility 
Priority for 3-D Scenes University of Texas at Dallas 

[Nievergelt82] Nievergelt, J. and F. P. Preparata. (1982). "Plane-Sweep Algorithms for 
Intersection Geometric Figures." CACM. 25(1 0): 

[Nishita83] Nishita, T. and E. Nakamae (1983) Half-Tone Representation of 3-D Objects 
Illuminated by Area Sources or Polyhedron Sources Proceedings of The IEEE Computer 
Society's International Computer Conference and Applications Conference (COMPSAC) 

[Nishita85] Nishita, T. and E. Nakamae. (1985). "Continous Tone Representation of 
Three-Dimensional Objects Taking Account of Shadows and Interreflection." Computer 
Graphics (Proceedings of SIGGRAPH '85).19(3): 23-30. 

[O'Rourke87] O'Rourke, J. (1987). Art Gallerv Theorems and Algorithms. International 
Series of Monographs on Computer Science. Oxford University Press. 

83 



[Ottman85] Ottman, T., P. Widmayer and D. Wood. (1985). "A Fast Algorithm for the 
Boolean Masking Problem." CVGIP. 30: 249-268. 

[Plantinga89] Plantinga, W. H., C. R. Dyer and W. B. Seales (1989) Real-time hidden­
line elimination for a rotating polyhedral scene using the aspect representation University of 
Pittsburgh, 89-3 

[Preperata85] Preparata, F. P. and M. I. Shamos. (1985). Computational Geometry. Texts 
and Monographs in Computer Science. Springer-Verlag. 

[Prins90] Prins, Jan. (1990). Personal communication. 

[Putnam86] Putnam, L. K. and P. A. Subrahmanyam. (1986). "Boolean Operations on n­
Dimensional Objects." IEEE CG&A.1986(June): 43-51. 

[Requicha85] Requicha, A. A. G. (1985). "Boolean Operations in Solid Modeling: 
Boundary Evaluation and Merging Algorithms." Proceedings of the IEEE. 73(1): 30-44. 

[Rogers85] Rogers, D. F. (1985). Procedural Elements for Computer Graphics. McGraw­
Hill. 

[Rohlf90] Rohlf, J. H. (1990). Personal communication. 

[Samet90] Samat, Hanan. (1990). Applications of Spatial Data Structures: Computer 
Graphics. Image Processing, and GIS. Addision-Wesley. 

[Schachter83] Schachter, B. J. (1983). Computer Image Generation. John Wiley & Sons. 

[Sedgewick88] Sedgewick, R. (1988). Algorithms. Computer Science. Addison-Wesley. 

[Sequin85] Sequin, C. H. and P.R. Wensley. (1985). "Visible Feature Return at Object 
Resolution." IEEE CG&A. 5(5): 37-50. 

[Shelley82] Shelley, K. L. and D.P. Greenberg. (1982). "Patch Specification and Path 
Coherence." Computer Graphics (Proceedings of SIGGRAPH '82). 16(4): 157-166. 

[Sutherland74b] Sutherland, I. E. and G. W. Hodgman. (1974). "Reentrant Polygon 
Clipping." CACM. 17(1): 32-42. 

[Sutherland74] Sutherland, I. E., R. F. Sproull and R. A. Schumacker. (1974). "A 
Characterization of Ten Hidden Surface Algorithms." ACM Computing Surveys. 6(1): I-
55. 

[Syzmanski85] Syzmanski, T. G. and C. J. V. Wyk. (1985). "GOALIE: A Space Efficient 
System for VLSI Artwork Analysis." IEEE Design and Test. 2(3): 64-72. 

[Thibault87] Thibault, W. C. and B. F. Naylor. (1987). "Set Operations on Polyhedra 
Using Binary Space Partitioning Trees." ACM Computer Graphics (Proceedings 
SIGGRAPH '87). 21(4): 153-162. 

[Tichy82] Tichy, Walter F. (1982). Design. Implementation. and Evaluation of a Revision 
Control System. IEEE 6th Conference on Software Engineering, Toyko, Japan. 

84 



[Van Dam88] Van Dam, Andries, ed. "PIDGS+ Functional Description Revision 3.0", 
Computer Graphics.22(3): 125-218. 

[Von Herzen87] Von Herzen, B. and A. H. Barr. (1987). "Accurate Triangulations of 
Deformed, Intersection Surfaces." ACM Computer Graphics (Proceedings of 
SIGGRAPH '87). 21(4): 103-110. 

[Wallace89] Wallace, J. R., K. A. Elmquist and E. A. Haines. (1989). "A Ray Tracing 
Algorithm for Progressive Radiosity." ACM Computer Graphics (Proceedings of 
SJGGRAPH '89). 23(4): 315-324. 

[Weiler81] Weiler, K. (1981). "Polygon Comparison using a Graph Representation." 
ACM Computer Graphics (Proceedings of SIGGRAPH '81). 15(4): 10-18. 

85 



Appendix A. Primary source code. 

Tips on reading this source code: 
No supporting source code appears here. That source code can be found in appendix C. 
I try to follow a few self-imposed conventions. Names in all capitals are simple string 
substitutions (macros) performed by the C pre-processor. Names with a leading capital 
letter are global variables. Function names and local variables are all lower case. 

The software is structured into a hierarchy of libraries. Each Walkthrough header (.h) file 
represents a software package. The header files from the lowest level packages are included 
first so that definitions from low level packages can be used in high level packages. 
Circular dependencies between the Walkthrough software packages do not exist. 

Appendix A.l partition() and select split2(). 

/* Copyright 1990, John M. Airey, UNC CS Dept. All Rights Reserved. */ 

/* usr include files */ 
#include <stdio.h> 
#include <math.h> 

/* walkthru include files representing separate software packages */ 
#include " .. / .. /include/error.h" 
#include " .. / .. /include/base type io.h" 
#include " .. I .. /include/mem.h" -
#include" .. / .. /include/georn data.h" 
#include " .. 1 .. /include/hash-:h" 
#include " .. I . . I include/hierarchy. h" 
#include" .. / .. /include/coord index.h 11 

#include " .. I .. /include/cell.h" 

/* library interface definition file */ 
#include "vgraph.h 11 

void 
partition(fp,rootname,topinst) 
FILE* fp; /* used for .partition file and cell files */ 
char* 
Instance* 

Node* 
Node* 
Node Link* 
NodeLink* 
char 
int 
Face* 
double 

root name; 
topinst; 

troot ~ alloc_tree_node((Node*) O,ROOT); 
t = treat; 
stack ~ (NodeLink*) 0; 
cell_list~ (NodeLink*) 0; 
filename[Bl]; 
i; 
facep; 
width, depth, height; 

flatten_template(topinst->template); 

initialize_first_cell(t->cell~ alloc_cell(topinst->template)); 

/**/ 
width t->cell->east - t->cell->west; 

86 



depth 
height 

t->cell->north - t->cell->south; 
t->cell->sky - t->cell->earth; 

t->cell->west width; 
t->cell->east += width; 
t->cell->south depth; 
t->cell->north += depth; 
t->cell->earth height; 
t->cell->sky += height; 

if (Params.MaxDepth) /* only do this if we have to */ 
index_build(topinst->template); 

if (select_split2(t)) push tnode(&stack,t); 
else push_tnode(&cell_list,t); 

while (t pop_tnode(&stack)) { 
t->ng alloc_tree_node(t,NGSIDE); 
t->nl alloc tree node(t,NLSIDE); 
split_cell(t,t->ng~t->nl); 

write_node_ascii(fp,t); 

if (select_split2(t->ng)) push tnode(&stack,t->ng); 
else push_tnode(&cell_list,t->ng); 

if (select split2(t->nl)) push_tnode(&stack,t->nl); 
else push_tnode(&cell_list,t->nl); 

if (fp) fclose(fp); 

while (t = pop_tnode(&cell_list)) { 

I* compute portals for cell */ 
t->cell->westpl =compute_portals(topinst->template->gd, 

t->cell,WEST,O); 
t->cell->eastpl =compute_portals(topinst->template->gd, 

t->cell,EAST,O); 
t->cell->southpl=compute_portals(topinst->template->gd, 

t->cell,SOUTH,O); 
t->cell->northpl=compute_portals(topinst->template->gd, 

t->cell,NORTH,O); 
t->cell->earthpl=compute_portals(topinst->template->gd, 

t->cell,EARTH,O); 
t->cell->skypl =compute_portals(topinst->template->gd, 

t->cell,SKY,O); 

if (! (fp=fopen(sprintf(filename,"%s.%05d.cell", 
rootname,t->id), "w"))) 

die("write_tree","could not open cell file",l); 
write_node_ascii(fp,t); 
write_cell_ascii(fp,t->cell,l); 
fclose(fp); 

87 



I* 
** split selection routine 
*I 
int 
select_split2(t) 
Node* t; 
{ 

int 
int 
int 
double 
double 
double 
double 

i, j,min,max; 
nl; /* the number not less than sfp */ 
ng; /* the number not greater than sfp */ 
sp; I* the number split by sfp *I 
extensionarea; /* if split covered whole cell */ 
eqarea; /* area of faces co-planar to split */ 
best criteria so far = Params.MinPriority; 

double criteria; 
IndexNode** index; 
double o,s,b,vb; 
double oc Params.OcclusionCoefficient; 
double be~ Params.BalanceCoefficientl(t->cell->depth+l); 
double sc ~ Params.SplitCoefficientl(t->cell->depth+l); 
FaceLink* eql; 
FaceCellRelation fer; 

/* check that we are within the limits 
before trying to find a splitter 

*I 
if (t->cell->depth >~ Params.MaxDepth I I 

t->cell->num in < Params.MinFaces I I 
volume_of_cell(t->cell) < Params.MinVolume) { 

return 0; 
} 

/* else within all limits so look for a splitter*/ 

normalize_split_coefficients(&oc,&bc,&sc,&vbc); 

for (j ~ X; j <~ Z; j++) { 

switch (j) { 
case X: 

index = IndexYZ; 
min= find_index(j,t->cell->west); 
if (index[min]->v <~ t->cell->west) min++; 
max~ find_index(j,t->cell->east); 
if (index[max]->v >~ t->cell->east) max--; 
break; 

case Y: 
index = IndexZX; 
min~ find index(j,t->cell->south); 
if (index[;in]->v <~ t->cell->south) min++; 
max= find index(j,t->cell->north); 
if (index[;ax]->v >~ t->cell->north) max--; 
break; 

case Z: 
index ~ IndexXY; 
min= find_index(j,t->cell->earth); 
if (index[min]->v <~ t->cell->earth) min++; 
max~ find_index(j,t->cell->sky); 

88 



if (index[max]->v >= t->cell->sky) max--; 
break,· 

extensionarea cell_dim_area(j,t->cell); 

for (i = min; i <= max; i++) { 
nl index[i]->nl - index[max]->nl; 
ng = index[i]->ng- index[min]->ng; 
sp = index[i]->sp; 
eqarea = 0; 
for (eql = index[i]->eq; eql; eql = eql->next) { 

fer= set_face_cell_relation(eql->f,t->cell); 
if (!(fer & TRIVIALLYOUTSIDE)) 

eqarea += clipped_area_of_face(t->cell->west, 
t->cell->east, 
t->cell->south, 
t->cell->north, 
t->cell->earth, 
t->cell->sky, 
eql->f); 

o = eqarea/extensionarea; 
if (ng nl) b 1.0; /* also catches denom 
else if (nl > ng) b = ((double) ng)/nl; 
else b = ((double) nl) /ng; 
s = 1.0 - sp/t->cell->template->num_f; 

criteria= (o == 0.0) ? 0.0 : oc*o +bc*b +sc*s; 
if (criteria > best_criteria_so_far) { 

best criteria_so far = criteria; 
t->si j; 
t->sv = index[i]->v; 

return (t->si != NC); 

Appendix A.2 sweep.h: the library header file 

0.0 *I 

/* Copyright 1988, John M. Airey, UNC CS Dept. All Rights Reserved. */ 

/********************** CPRE DEFINES ******************************/ 
/* left to right, top to bottom ordering. */ 
#define XQVERT LESS(a,b) 
\ -
((a) [XQx] < (b) [XQx] I I ((a) [XQx] (b) [XQx] && (a) [XQy] > (b) [XQy])) 

#define XQVERT GREATER(a,b) 
\ -
((a) [XQx] > (b) [XQx] I I ((a) [XQx] == (b) [XQx] && (a) [XQy] < (b) [XQy])) 

#define INFINITY 
#define MINUSINFINITY 

(&InfinityFace) 
(&MinusinfinityFace) 

89 



#define ENABLE 1 
#define DISABLE 0 

#define NEGNEG 1 
#define NEGPOS 2 
#define POSNEG 3 
#define POSPOS 4 

#define RADINFO 1 

#define MAXOWNERS 16 
/********************* END CPRE DEFINES ****************************/ 

/********************* 
I* type declarations *I 
typedef struct XQVert 
typedef struct XQOwnLink 

TYPES *********************************/ 

XQVert; 
XQOwnLink; 

typedef enum VertEdgeRelation 
typedef struct Yel 

VertEdgeRelation; 
Yel; 

typedef struct YOwnLink 

typedef struct YelSave 

I* definitions */ 
struct XQOwnLink { 

Face* own; 
VertPtr rv; 
int s; 
XQOwnLink* next; 

} ; 

I* 
I* 
I* 
I* 

YOwnLink; 

YelSave; 

pointer to owning face *I 
second vert of edge *I 
is edge in clockwise order *I 
other owners *I 

struct XQVert 
VertPtr 
XQOwnLink* 

v; /* pointer to vert in geom dbase */ 
owners; /* list of faces who have an edge strtng at v */ 

} ; 

enum VertEdgeRelation 

struct YOwnLink 
VertPtr vl; 
VertPtr v2; 
int 

array */ 
Face* 
YOwnLink* 

} ; 

struct Yel { 
YOwnLink* 
double 
int* 
int* 
Vert Link* 

VertLink* 

s; 

own; 
next; 

owners; 
a,b,c; 
avec; 
bvec; 
h; 

t; 

{ ABOVE, BELOW, ONTHELINE }; 

/* vl and v2 appear in opposite order in face 

I* b >= 0 for ABOVE, BELOW and ONTHELINE *I 
/* set counts for current above interval */ 
/* set counts for current below interval */ 
I* points to the head of a list 

if avec evaluates to 0 and bvec 
evaluates to 1 */ 

I* points to the tail of a list 

90 



Yel* 

Yel* 

) ; 

struct YelSave 

) ; 

Yel* 
Yel* 
Yel* 
Vert Link* 
Vert Link* 
int 
int 
int 

int 
Face* 

u; I* 

d; I* 

self; I* 
u; I* 
d; I* 
h; I* 
t; I* 
left; I* 
found; I* 
i; I* 

if avec evaluates to 1 and bvec 
evaluates to 0.*1 

the edge that points to the head of the 
list when we point to the tail. *I 

the edge that points to the tail of the 
list when we point to the head *I 

pointer to self *I 
edge on other side of region *I 
edge on other side of region *I 
header of vert list for region *I 
tail of vert list for region *I 
left side of sweep line? *I 
am I valid *I 
index counterclockwise 

around cur xqvert *I 
nown; I* number valid entries in owners array *I 
owners[MAXOWNERS]; 

I********************** END TYPES *******************************I 

I*********************** EXTERNS ****************************I 
I* functions *I 
extern void 
extern 
extern 
extern 

extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 
extern 

void 
XQVert* 
XQVert* 

void 
void 
Yel* 
void 
Yel* 
Yel* 
Yel* 
Yel* 
void 

extern VertEdgeRelation 
extern void 

extern void 
extern void 
extern void 

extern FaceLink* 
extern int 
extern VertLink* 
extern VertLink* 

extern XQVert XQCurV; 
·extern int XQx; 
extern int XQy; 
extern int XQz; 

xq_init (); 
xq_term(); 
xq_ insert () ; 
xq_min(); 

ytbl_init (); 
ytbl_term(); 
ytbl_ insert () ; 
ytbl_ delete () ; 
ytbl_ succ () ; 
ytbl _pred () ; 
ytbl_ f indabove () ; 
ytbl_ findbelow (); 
ytbl_ fixbvecs (); 
vert_edge_ relation () ; 
set_edge_coefficients(); 

ytbl _print () ; 
ytbl_check_order(); 
ytbl_consistency_check(); 

sweep() ; 
sweep_detect (); 
triangulate_counter(); 
triangulate_clockwise(); 

I* access to min of XQueue *I 
I* projection indices *I 

91 



extern double XQplaneq [ l ; 

extern int BitVecSize; 
extern int NumTransitions; 
extern Face InfinityFace; 
extern Face MinusinfinityFace; 
extern Yel** YTable; 
extern int MaxinYTable; 
extern int NuminYTable; 
extern int NumTransitions; 

I********************* END EXTERNS *************************I 
I* end sweep.h *I 

Appendix A.3 Sweep.c: sweep() and transition() 

I* Copyright 1988, John M. Airey, UNC CS Dept. All Rights Reserved. *I 

I* usr include files *I 
#include <stdio.h> 
#include <math.h> 

I* walkthru include files *I 
#include " .. I . . lincludelerror.h" 
#include " .. 1 . . lincludelhash.h" 
#include " .. I .. lincludelmem.h" 
#include" . . I . . lincludelgeom_data.h" 
#include " .. I .. lincludelhashedge.h" 
#include " .. I . . I includeiXlldisplay. h" 

I* library interface definition */ 
#include "sweep.h" 

int 
void 
int 
int 
static 

transition (); 
check_for_intersection(); 
construct_tri(); 
detect_tri (); 

HASHequip* Etable; 

I* 
*I 
FaceLink* 
sweep(pobj,fl,boolean_area_func,dbg) 
GeomData* pobj; I* where the results go *I 
FaceLink* fl; 
int 
int 

XQVert* 
Face Link* 
FaceLink* 
int 
int 
int 

Etable 

(*boolean_area_func) (); 
dbg; 

min; 
rfl ~ (FaceLink*) 0; 
cur; 
lastface ~ pobj->num_f; 
faces_so_far = lastface; 
i; 

hashedge_init(); 

92 



} 

I* 

if (!fl) return rfl; 

xq_init(fl,fl->f->o); 
ytbl_init (fl); 
while (min= xq_min()) 

NumTransitions++; 
(void) transition{pobj,rnin,boolean_area func,construct tri); 

xq_term(); 
ytbl_term(); 

hashedge term(Etable); 
Etable -(HASHequip*) 0; 

for (i lastface; i < pobj->num_f; i++) { 
ALLOCN·(cur,FaceLink, 1, "sweep"); 
cur->f = &pobj->f[i]; 
cur->next = rfl; 
rfl = cur; 

return rfl; 

This transition procedure is very similar to the transition procedure 
outlined in Kurt MelHorn's Multi-Dimensional Searching and 
Computational Geometry starting on page 160 except that it has 
been generalized in two ways. The first is that it triangulates 
the portion of the plane that satisfies some boolean combination of 
sets of polygons (Set operations on polygons). 
The second is that it has been written to deal 
with so called "degenerate input" or polygons that are not 
in "general position", i.e. vertices from one polygon are permitted 
to coincide with vertices or worse, edges, from another polygon. 

The first generalization is relatively simple. Each region has 
a count of the -number of polygons from each input set which cover the 
region. A function passed in as a parameter runs through this 
count and returns either true or false depending upon whether the 
region is "in" or "out" of the boolean set we are interested in. 

The second generalization is much harder from a prograrnrrUng 
standpoint. 
Theoretically it is not such a big deal, but it entails a formidable 
amount of detail as you will see if you try to understand the code. 

Given a particular vertex, we may have any combination of incoming 
and outgoing edges. Four bends, one end, an intersection, three 
starts,whatever. No simple case statement on the type of vertex as 
described in the Computational Geometry literature is possible. 

Here is an example of the type of difficulty encountered. 
The code in the published algorithms for the bend cases just 
specifies 
that we can simply '~replace" (not insert the old and delete the new) 
the entering edge with the exiting edge. 
However if we have two bends going through the vert, they can 
act topologically as either two bends, one above the other or 
as an intersection vert in which case the exiting edges have to 

93 



*I 

be exchanged. So just processing these two bends as two bends 
independently of each other could result in an incorrect Ytable. 

We need to generalize our view of the transition operation. 
I view the vertex as having three types of incident edges, those 
that end at the vertex, those that pass through the vertex and 
those that start at the vertex. We can classify the sectors 
surrounding 
the vert as to whether they satisfy the boolean function we are 
evaluating. If we move counterclockwise around the vertex we will 
move through alternating positive and negative sets of adjacent 
sectors. This function travels counterclockwise around the vertex 
performing the necessary operations on the YTable and 
processing the pairs of edges that bound a set of adjacent positive 
sectors. Depending upon whether the edges are to the left or right of 
the sweep line we either do processing equivalent to an end, 
one of the two bends or a start. 
That is the generalization in a nutshell. 

Some Details. 
One might ask how do we travel counterclockwise around the vert. 
One possibility is to let the XQueue code as·sociate a list of all 
edges that end at, extend through or begin at the vertex and 
keep them in a list sorted counterclockwise. This is sort of the 
natural way to go after reading a published description of 
a plane sweep algorithm since the description implies that we 
use information associated with the XQueue vertex to 
know which case transition should execute. 

However, there is a way to avoid this extra sorting. 
Since the ytable maintains the edges in sorted order we let it 
do the sorting for us. We can find the edge directly above the vert 
and use ytbl_succ to move down to the edge directly below the vert. 
As we move along, we delete 
from the YTable those edges who end at the vert. 
When we hit the edge below the vert, 
we reverse in the YTable all edges that extended through the vert 
and insert into the YTable all edges that begin at the vert. 
We then travel up from the lower edge to the edge above the vert 
using ytbl_pred. This is a counterclockwise traversal. 
Note that this means we are letting the YTable code determine what 
edges go through or end at vertex. The edges do not have to be known 
to the XQueue code. It still is unknown to me whether this invites 
floating point woes more than the first option does, but I have 
not experienced any problems. 

int /* return 1 if a triangle was detected */ 
transition(pobj,v,boolean_area_func,tri_func) 
GeornData* pobj; 
XQVert* v; 
int (*boolean_area func) (); 
int (*tri_func) (); 
{ 

Yel 
int 
YelSave 

*h,*l,*e,*succ,*prev_pos; 
done = 0; 
pos,neg,prevneg,nextpos; 

94 



YOwnLink* 
static YelSave 

yown; 
init={ (Yel*) 0, (Yel*) 0, (Yel*) 0, 

int 
(VertLink*) 0, (VertLink*) 0,0,0,0,0}; 

going_down = 1; 
int 
VertLink* 
VertLink* 
VertLink* 
VertLink* 
VertLink* 
VertLink* 
int 

tran; 
vll; 
vl2; 
tvl; 
tvlhold; 
uppermaxrightvl; 
lowerrnaxrightvl; 
rotindex = 0; 

int tri = 0; 
Face* cornmonowners[MAXOWNERS]; 
int ncomown; 
int i, j; 

nextpos = prevneg = pos neg init; 

h ytbl_findabove(v); 
1 ytbl_findbelow(v); 

e = h; 
succ = ytbl_succ(e); 
while (!done) ( 

/* check if pos found previously on POSPOS transition */ 
if (nextpos.found) ( 

pos = nextpos; 
nextpos = init; 

while (!pos.found && !done) ( 
if (going_down) e = succ; 
else e = ytbl_pred (e); 

if (e == l) 
insert_exiting_edges(v,l,h); 
going_ down = 0; 
check_for_intersection(pobj,h,ytbl_succ(h),v); 
check_for_intersection(pobj,ytbl_pred(l),l,v); 

else if (e == h) done = 1; 
else ( 

tran 
if 

(*boolean_area_func) (e); 
( (tran==NEGPOS && going_down) I I 

(tran==POSNEG && !going_down)) ( 
pos.self= e; 
pos.h e->h; 
pos.t e->t; 
pos.u e->u; 
pos.d e->d; 
pos.found = 1; 
pos.left = going_down; 
pos.i = rotindex++; 

else if ( (tran==POSNEG && going_down) II 

95 



(tran==NEGPOS && !going_down)) { 
if (prevneg.self) { 

ytbl_print(ErrFile); 
die("transition","NEG,NEG error",l); 

else { 
prevneg.self = e; 
prevneg.h e->h; 
prevneg.t e->t; 
prevneg.u e->u; 
prevneg.d e->d; 
prevneg.found = 1; 
prevneg.left = going_down; 
prevneg.i = rotindex++; 

else if (tran == POSPOS) { 

if (prevneg.self) { 
ytbl_print(ErrFile); 
die("transition","NEG,NEG error 2",1); 

else { 
prevneg.self = e; 
prevneg.h e->h; 
prevneg.t e->t; 
prevneg.u e->u; 
prevneg.d e->d; 
prevneg.found = 1; 
prevneg.left = going_down; 
prevneg.i = rotindex; 

pos.self= e; 
pos.h e->h; 
pos.t e->t; 
pes. u e->u; 
pos.d e->d; 
pos.found = 1; 
pos.left = going_down; 
pos.i = rotindex++; 

if (going_down) 
succ = ytbl_succ(e); 
ytbl delete (e); 

/* end while pes not found and not done */ 

while (!neg.found && !done) { 
if (going_down) e = succ; 
else e = ytbl_pred (e); 

if (e == l) 
insert exiting edges(v,l,h); 
going down = o; 
check_for_intersection(pobj,h,ytbl_succ(h),v); 
check_for_intersection(pobj,ytbl_pred(l),l,v); 

96 



else if (e == h) done = 1; 
else { 

(*boolean_area_func) (e); tran 
if ( (tran==NEGPOS && going_ down) I I 

(tran==POSNEG && !going_down)) { 
ytbl_print(ErrFile); 
die(''transition'',''POS,POS error",!); 

else if ( (tran==POSNEG && going_down) 1 I 
(tran==NEGPOS && !going_down)) { 

neg.self= e; 
neg .h e->h; 
neg. t e->t; 
neg.u e->u; 
neg.d e->d; 
neg. found = 1; 
neg.left = going_down; 
neg.i = rotindex++; 

else if (tran == POSPOS) { 

neg. self= e; 
neg. h e->h; 
neg.t e->t; 
neg.u e->u; 
neg .d e->d; 
neg. found = 1; 
neg.left = going_down; 
neg.i = rotindex; 

nextpos.self= e; 
nextpos.h e->h; 
nextpos.t e->t; 
nextpos.u e->u; 
nextpos.d e->d; 
nextpos.found = 1; 
nextpos.left = going_down; 
nextpos.i = rotindex++; 

if (going_down) 

) 

succ = ytbl_succ(e); 
ytbl_delete(e); 

I* end while neg not found and not done */ 

/* try to use the neg found while looking for first pos */ 
if (!neg.found && prevneg.found) 

neg= prevneg; /* structure copy */ 

I* make sure we have both a pes and a neg */ 
if ((!neg.found && pos.found) II (neg.found && !pos.found)) 

ytbl_print(ErrFile); 
die("transition","rnissing NEG or POS",l); 

97 



if (pos.found && neg.found) { 
/* now we have a pos and neg pair */ 

if (pos.left && neg.left) { 
I* do end processing */ 
if (pos.i < neg.i) { 

/* triangulate the whole vert link list and free mem. */ 
for (tvl ~ pos.h; tvl->next; tvl ~ tvlhold) { 

tvlhold ~ tvl->next; 
if ((*tri func) (pobj,v->v,tvl->v,tvl->next->v)) 

tri = l; 
freevl (tvl); 

freevl(tvl); 

else{ 
pos.d->u 
neg.u->d 

neg.u; 
pos. d; 

vll ~ allocvl(v->v); 

I* triangulate upwards from v */ 
if (neg.t->next) 

fprintf(ErrFile,"something is screwy\n"); 
vll->prev= triangulate_clockwise(pobj,neg.t, 

vll,tri_func,&tri); 
vll->prev->next = vll; 

/* triangulate downwards from v */ 
if (pos.h->prev) 

fprintf(ErrFile,"sornething is screwy2\n"); 
vll->next= triangulate_counter(pobj,pos.h, 

vll,tri_func,&tri); 
vll->next->prev = vll; 

else if (pos.left && 1neg.left) { 
/* do bend processing */ 
vll ~ allocvl(v->v); 

neg.self->d ~ pos.d; 
pos.d->u ~ neg.self; 
neg.self->h ~ vll; 

if {pos.h->prev) fprintf(ErrFile,"something is screwy3\n"); 
vll->next = 

triangulate_counter{pobj,pos.h,vll,tri_func,&tri); 
vll->next->prev = vll; 

else if (!pos.left && neg.left) { 
I* do bend processing */ 
vll ~ allocvl(v->v); 
pos.self->u = neg.u; 
neg.u->d = pos.self; 
pos.self->t ~ vll; 

98 



) 

if (neg.t->next) fprintf(ErrFile,"something is screwy4\n"); 
vll->prev = triangulate_clockwise(pobj,neg.t, 

vll,tri_func,&tri); 
vll->prev->next = vll; 

else/* if (!pos.left && !neg.left) */{ 
vl1 ~ allocvl(v->v); 

) 

/* do start processing */ 
if (neg.i > pos.i) { /* case 1.1 in Melhorn */ 

pos.self->t neg.self->h ~ vl1; 
pos.self->u neg.self; 
neg.self->d pos.self; 

) 

else{ /* 
vl2 

case 1.2 in Melhorn */ 
allocvl(v->v); 

for (prev_pos ~ ytbl_pred(pos.self); 
prev_pos->h ~~ (VertLink*) 0; 
I* (*boolean_area_func) (prev_pos) 1 ~ NEGPOS; */ 
prev_pos ~ ytbl_pred(prev_pos)) /*NOP*/; 

/* fix the other entry links and region links now */ 
neg.self->d ~ prev_pos->d; 
prev_pos->d->u = neg.self; 
pos.self->u prev_pos; 
prev_pos->d pos.self; 

pos.self->t 
neg.self->h 

vll; 
vl2; 

/* find right most vertlink */ 
lowermaxrightvl = prev_pos->h; 
for(tvl = prev_pos->h->next; tvl; tvl = tvl->next) 

if (XQVERT GREATER(tvl->v,lowermaxrightvl->v)) 
lowerma~rightvl = tvl; 

uppermaxrightvl = allocvl(lowermaxrightvl->v); 
uppermaxrightvl->prev = lowermaxrightvl->prev; 
if (lowermaxrightvl ~~ prev_pos->h) 

prev_pos->h = uppermaxrightvl; 
else{ 

lowermaxrightvl->prev->next = upperrnaxrightvl; 
uppermaxrightvl->prev = lowermaxrightvl->prev; 

/* now triangulate up from upperrnaxrightvl */ 
vll->prev = triangulate_clockwise(pobj,upperrnaxrightvl, 

vll,tri_func,&tri); 
vll->prev->next = vll; 

/* now triangulate down from lowerrnaxrightvl */ 
vl2->next =triangulate counter(pobj,lowerrnaxrightvl, 

- vl2,tri_func,&tri); 
vl2->next->prev = vl2; 

/* end start case */ 

99 



} /* end pos found and neg found*/ 
pos = neg = init; 

/* end while not done */ 
return tri; 

Appendix A.4 Visible.c: C code to implement sampling methods 
/* Copyright 1990, John M. Airey, UNC CS Dept. All Rights Reserved. */ 

I* usr include files */ 
#include <stdio.h> 
*include <math.h> 

/* included walkthru header files for lower level software libraries */ 
#include" .. / .. /include/error.h" 
#include 11 

•• / •• /include/mem.h 11 

*include " .. / .. /include/geom data.h" 
*include " .. / .. /include/hash-:-h" 
*include" .. / .. /include/hierarchy.h" 
*include " .. / .. /include/coord_index.h" 
*include " .. I .. /include/cell.h" 

I* library interface definition */ 
#include "vgraph.h" 

extern char* 
extern double 

sprintf(}; 
drand48 (); 

/* definition of declared 
double PortalPatchSize 
*I 

externs in vgraph.h */ 
96.; /* 2 foot sq. patches on 1/4 inch scale 

double NumPortalRays = 2700.; /*comparable to 30x30 hemi-cube*/ 
int RayDistribution; 
int HemisphereSample = 1; 
int RayTries = 7; 

I* 
This routine is passed a cell data structure. This contains information 
that allows access to all polygons in the database and all portals for 
the cell. 

For each of the six faces of the cell, it samples the visible polygons 
from the portals that comprise the open parts of that cell side. 

Lastly, it marks faces that intersect the boundary of the cell as 
visible. Whenever possible, simple tests are put at the beginning of 
logical or (I I) tests because C will not evaluate the remainder of the 
conditional expression if it is 
not necessary. Thus the FACEINSIDE macro is placed before the more 
expensive clip_face_to_box function call. 
*I 
void 
mark_visible faces(cell} 
Cell* cell; 

100 



FaceLink* 
int 
Vert 
Matrix 

I* rotation 
pmat [OJ [OJ 
pmat [1J [OJ 
pmat(2J [OJ 

fl; 
i; 
wb[MAXVERTSINFACEJ; 
pmat; 

matrix to transform 0,0,1 
0.0; pmat[OJ [1] 0.0; 
0.0; pmat[1J [1J 1.0; 

-1.0; pmat[2J [1J 0.0; 

to -1,0,0 */ 
pmat [OJ [2J 
pmat [1J (2J 
pmat[2J [2J 

for (fl = cell->westpl; fl; fl = fl->next) f 
fl->f->flags I= REVERSED; 
sample_portal_visibility(cell,fl->f,pmat); 

I* rotation matrix to transform 
pmat[OJ [OJ 0.0; pmat [OJ [1J 
pmat(1J [OJ 0.0; pmat[1J [1J 
pmat [2J [OJ 1. 0; pmat (2J (1] 

0,0,1 
1. 0; 
0. 0; 
0.0; 

to 1,0,0 */ 
pmat [OJ (2] 
pmat(1] [2J 
pmat(2J [2J 

for (fl = cell->eastpl; fl; fl = fl->next) [ 
sample_portal_visibility(cell,fl->f,pmat); 

I* rotation matrix to transform 
pmat[OJ [OJ 1.0; pmat[OJ (1J 
pmat(1J[OJ 0.0; pmat[1J[1J 
pmat(2J(OJ 0.0; pmat[2J[1J 

0,0,1 
0. 0; 
0.0; 

-1. 0; 

to 0,-1,0 *I 
pmat[OJ[2J 
pmat [1J (2J 
pmat [2J (2J 

for (fl = cell->southpl; fl; fl = fl->next) [ 
fl->f->flags I= REVERSED; 
sample_portal_visibility(cell,fl->f,pmat); 

I* rotation matrix to transform 
pmat[OJ [OJ 0.0; pmat[OJ [1J 
pmat[lJ(OJ 1.0; pmat[1J[1J 
pmat [2J [OJ 0. 0; pmat [2J [1J 

0 f 0, 1 
0.0; 
0.0; 
1. 0; 

to 0,1,0 */ 
pmat [OJ [2J 
pmat [1J [2J 
pmat [2J [2J 

for (fl = cell->northpl; fl; fl = fl->next) ( 
sample_portal_visibility(cell,fl->f,pmat); 

I* rotation matrix to transform 
pmat[OJ[OJ 0.0; pmat[OJ[1J 
pmat [1J [OJ 1. 0; pmat [1J [1J 
pmat[2J[OJ 0.0; pmat[2J[1J 

0,0,1 
1. 0; 
0.0; 
0. 0; 

to 0,0,-1 */ 
pmat[OJ [2J 
pmat [1] [2J 
pmat [2J [2J 

for (fl = cel1->earthpl; fl; fl = fl->next) ( 
fl->f->flags I= REVERSED; 
sample_portal_visibility(cell,fl->f,pmat); 

/* rotation matrix to transform 
pmat [OJ [OJ 1. 0; pmat [OJ [1J 
pmat [1J [OJ = 0. 0; pmat [1J [1J = 

101 

0 ( 0 f 1 
0.0; 
1. 0; 

to 0,0,1 */ 
pmat[OJ[2J 
pmat [1J (2J = 

1. 0; 
0. 0; 
0. 0; 

0. 0; 
1. 0; 
0. 0; 

0. 0; 
1. 0; 
0.0; 

1. 0; 
0.0; 
0. 0; 

0.0; 
0. 0; 

-1. 0; 

0. 0; 
0. 0; 



) 

/* 

pmat(2] [0] = 0.0; pmat(2] [1] 0.0; pmat(2] (2] 

for (fl = cell->skypl; fl; fl fl->next) f 
sample_portal_visibility(cell,fl->f,pmat); 

cell->num vis = 0; 
for (i = 0; i < cell->template->num f; i++) { 

if (i != cell->template->faces[iJ->id) 
die("mark visible faces","bad assumption",l); 

if (cell->fc~(i] & VISIBLE) cell->num_vis++; 
else if (FACEINSIDE(cell->fcr(i]) II 

1. 0; 

clip_face_to_box(cell->west,cell->east, 
cell->south,cell->north, 
cell->earth,cell->sky, 
cell->template->faces(i],wb)) f 

cell->fcr(i] I= VISIBLE; 
cell->num_vis++; 

This routine is passed a cell data structure which allows it to access 
all polygons in the database, a Face data structure which defines a 
portal, and a matrix which can be used to transform a canonical pattern 
of samples constructed for a portal lying in the x,y plane and facing 
upwards, to the actual orientation of the portal. 

The routine generates a grid of sample points on the face of the portal. 
The implementation uses a little index magic to allow the same code to 
work regardless of the orientation of the portal. 

Then the sample points on the portal are constructed. If the portal does 
not completely cover the sample square, the center of the fragment 
inside the square is used as an initial point instead of the center of 
the square. Depending upon the value of HemisphereSample, either 
hemisphere_sarnple or fire_rays_at faces is called to actually compute 
the samples. 
*I 
void 
sample_portal_visibility(cell,f,pmat) 
Cell* cell; 
Face* 
Matrix 
f 

f; 
prnat; 

int 
Extent 
double 
Vec3 
Vert 
int 
int 
double 

i,j,n; 
clipbox; 
area; 
center; 
wb(MAXVERTSINFACE]; 
xl,x2,x0; 
xldim,x2dirn; 
dxl,dx2; 

/* switch on the orientation of the face to set variables to 
constants so that the same code to generate a grid on the portal 
will work regardless of the portal orientation 

*I 

102 



/* 

switch (f->o) { 
case X: xl Y; x2 Z; xO X; break; 
case Y: xl Z; x2 X; xO Y; break; 
case z: xl X; x2 Y; xO Z; break; 
default: 

fprintf (ErrFile, "f->o = %d, f->planeq = %lg, %lg, %lg, %lg\n", 
f->o,f->planeq[A),f->planeq[B),f->planeq[C),f->planeq[D)); 

die("sample_portal_visibility","portal skew",l); 
) 
xldim~rint((f->ex[MAXEX(xl)) - f->ex[MINEX(xl)])/PortalPatchSize); 
x2dim~rint((f->ex[MAXEX(x2)) - f->ex[MINEX(x2)])/PortalPatchSize); 
if (!xldim) xldim ~ 1; 
if (! x2dim) x2dim ~ 1; 
dxl (f->ex[MAXEX(xl)) - f->ex[MINEX(xl)))/xldim; 
dx2 ~ (f->ex[MAXEX(x2)) - f->ex[MINEX(x2)))/x2dim; 

clipbox[MINEX(x0)) 
clipbox[MAXEX(xO)J 

f->ex[MINEX(x0)]; 
f->ex[MAXEX(x0)]; 

clipbox[MINEX(xl)] f->ex[MINEX(xl)); 
clipbox[MAXEX(xl)] clipbox[MINEX(xl)) + dxl; 
for (i ~ 0; i < xldim; i++) { 

clipbox[MINEX(x2)] ~ f->ex[MINEX(x2)]; 
clipbox[MAXEX(x2)) ~ clipbox[MINEX(x2)) + dx2; 
for (j ~ 0; j < x2dim; j++) { 

if ((n ~ clip_face_to_box(clipbox[MINX),clipbox[MAXX), 
clipbox[MINY),clipbox[MAXY), 
clipbox[MINZ),clipbox[MAXZ), 
f, wb) ) > 2) { 

area= center and_area(n,wb,xl,x2,1.,center); 
pmat [3) [0) center [0); 
pmat[3) [1) ~ center[l]; 
pmat[3] [2) ~ center[2); 
if (HemisphereSample) hemisphere_sample(cell,pmat); 
else fire_rays_at_faces(cell,pmat); 

clipbox[MINEX(x2)) +~ dx2; 
clipbox[MAXEX(x2)) +~ dx2; 

clipbox[MINEX(xl)) +~ dxl; 
clipbox[MAXEX(xl)) +~ dxl; 

Tables used by ray firing mechanism. The function 
init_ray_intersection_tables 
must be called once before visibility calculations begin. 
*I 

static IndexNode** Index[6]; 
stat.:j.c int End [ 6); 
static int Incr[6]; 
static int Xl [6); 
static int X2[6]; 
static double Rand[l7]; 

103 



I* 
*I 
void 
init_ray_intersection_tables() 
{ 

int i; 

Index[MINX] IndexYZ; Index [MAXX] 
Index[MINY] IndexZX; Index[MAXY] 
Index[MINZ] IndexXY; Index [MAXZ] 

Xl [MINX] Y; Xl [MAXX] Y; 
Xl[MINY] Z; Xl [MAXY] Z; 
Xl[MINZ] X; Xl [MAXZ] X; 

X2[MINX] Z; X2 [MAXX] Z; 
X2[MINY] X; X2 [MAXY] X; 
X2 [MINZ] Y; X2 [MAXZ] Y; 

End[MINX] -1; End[MAXX] NumYZ; 
End[MINY] -1; End[MAXY] NumZX; 
End [MINZ] -1; End [MAXZ] NurnXY; 

I ncr [MINX] -1; I ncr [MAXX] 1; 
I ncr [MINY] -1; I ncr [MAXY] 1; 
Incr[MINZ] -1; I ncr [MAXZ] 1; 

IndexYZ; 
IndexZX; 
IndexXY; 

for {i~O; i< 17; i++) Rand[i] ~ drand48{); 
for (i~O; i< 17; i++) fprintf(ErrFile,"Rand[i] 

/* 

%g\n",Rand[i]); 

This routine receives a cell data structure wpich allows it to access 
all polygons in the model and a matrix which defines the position and 
orientation of the starting point of a hemisphere of rays. The routine 
generates a canonical distribution of rays for a portal centered at the 
origin in the x,y plane and facing upwards to the positive z axis. The 
portal_mat is used to transform this canonical distribution of rays to 
the actual position and orientation of the portal. 

A data structure which groups polygons that lie in the same axial plane 
together and sorts parallel planes is used to accelerate ray 
intersections with axial polygons. A ESP tree is used to do mop up work 
on the (hopefully) small number of skew polygons. The IndexXY,IndexYZ, 
and IndexZX arrays contain the sorted planes. Each entry is a structure 
which contains a few stats used for other purposes and a list of 
polygons which satisfy the plane equation of the entry. That list is 
accessed through the 'eq' field. 

The order of intersections for each of the three set of sorted parallel 
planes is evidently the sorted order of the list or the reverse sorted 
order. To compute the intersections in order for three three sets of 
axial planes, a merge is computed using a simple three element priority 
queue. A set of global index lists is used to help manage all the 
different combinations of positive, negative, x, y or z that arise in 
tracing the ray through the data structure. 

104 



Once a plane ray intersection point is determined. The list of polygons 
that lies in that plane is searched to see if any of them contain the 
hit point. Note that the feature of C whereby the remainder of a logical 
OR operation, (! !) is not evaluated if an early expression evaluates 
true is taken advantage of to increase efficiency. Faces (polygons) are 
tagged with a RECTANGLE bit. If the polygon is a rectangle (a common 
occurence in architectural databases), a simple point inclusion test is 
performed before a more involved function call is made for general 
convex polygons. 

Once the closest axial polygon is determined, the ESP tree is checked 
for a closer intersection. 

*I 
void 
hemisphere_sample(cell,portal mat) 
Cell* cell; /* cell owning portal */ 
Matrix portal mat; /* matrix defining center and orientation of 
portal */ -
{ 

fl; 
close face; 
skew_face; 

FaceLink* 
Face* 
Face* 
Vec3 
double 
int 

od,c,d,hit; 
numr,numt,r,t,radius,theta,offset; 
xl,x2; 

int 
double 
int 
int 

ql,q2,q3; /* micro priority queue (heap) indices */ 
parm[6); 
start [6); 
s [ 6) ; 

static int rand = 0; 

numr 
numt 

rint(sqrt(NumPortalRays/2.)); 
2*numr; 

c [X) 
c [Y) 
c [Z) 

portal_mat [3) [0]; 
portal_mat [3) [1); 
portal_mat[3) [2); 

start[MINX) = start[MAXX) = find_index(X,c[X]); 
if (start[MINX) != -1) ( 

if (IndexYZ[start[MINX])->v >= c[X)) start[MINX]--; 
if (IndexYZ[start[MAXX))->v <= c[X]) start[MAXX)++; 

else start[MAXX) = NumYZ; 
start[MINY) = start[MAXY) = find_index(Y,c[Y)); 
if (start [MINY) ! = -1) { 

if (IndexZX[start[MINY])->v >= c[Y)) start[MINY]--; 
if (IndexZX[start[MAXY))->v <= c[Y)) start[MAXY)++; 

else start[MAXY) = NumZX; 
start[MINZ) = start[MAXZ) = find_index(Z,c[Z)); 
if (start [MINZ) != -1) ( 

if (IndexXY[start[MINZ))->v >= c[Z)) start[MINZ]--; 
if (IndexXY[start[MAXZ))->v <= c[Z)) start[MAXZ]++; 

else start[MAXZ) = NuffiXY; 

105 



for (r = 0; r < numr; r++) { 

switch (RayDistribution) { 

) 

case 0: 
I* weight forward more heavily *I 
radius~ (2.*r+1.)1(2.*numr); 
break; 

case 1: 
radius 
break; 

default: 

sqrt ( (2. *r+1.) I (2. *numr)); 

die("hemisphere_sample","unknown ray distribution",l); 
break; 

I* radius~ sqrt((2.*r+1.)1(2.*numr)); *I 

offset~ Rand[rand]*(2.0*M_PI); I* random rot. of hemi-sphere *I 
rand~ (rand+1)%17; 

for (t 0; t < numt; t++) { 

theta Rand[rand] * t * (2.0*M PI) lnumt 
+ (1.0-Rand[rand])* (t+1.) * (2.0*M_PI)Inumt; 

rand~ (rand+1)%17; 

I* compute Original Direction from radius and theta *I 
od[X] radius*cos(theta+offset); 
od[Y] radius*sin(theta+offset); 
od[Z] sqrt(1.- radius*radius); 

I* transform direction to portal orientation */ 
d[X] ~ portal_mat [0] [0] *od[X] + 

portal_mat [1] [0] *od[Y] + 
portal_mat [2] [0] *od[Z]; 

d[Y] portal_mat [0] [1] *od[X] + 
portal_mat [1] [1] *od[Y] + 
portal_mat [2] [1]*od[Z]; 

d[Z] portal_mat [0] [2] *od[X] + 
portal_mat [1] [2] *od[Y] + 
portal_mat [2] [2] *od[Z]; 

I* set up three element priority queue */ 

if (d[X] < 0.) q1 =MINX; 
else q1 = MAXX; 
s[q1] = start[q1]; 
if (fabs(d[X]) < FEPS I I s[q1] == End[q1]) parm[q1] ~HUGE; 
else parm[q1] = (Index[q1] [s[q1]]->v- c[X]) I d[X]; 

if (d[Y] < 0.) q2 = MINY; 
else q2 = MAXY; 
s[q2] = start[q2]; 
if (fabs(d[Y]) < FEPS I I s[q2] == End[q2]) parm[q2] ~HUGE; 
else parm[q2] = (Index[q2][s[q2]]->v- c[Y]) I d[Y]; 

106 



I* insert element in micro priority q *I 
if (parm[q2] < parm[ql]) { int t ql; ql 

if (d[Z] < 0.) q3 ~ MINZ; 
else q3 ~ MAXZ; 
s[q3] ~ start[q3]; 

q2; q2 _t; 

if (fabs(d[Z]) < FEPS I I s[q3] ~~ End[q3]) parm[q3] ~HUGE; 
else parm[q3] ~ (Index[q3] [s[q3]]->v- c[Z]) I d[Z]; 

I* insert element in micro priority q *I 
if (parm[q3] < parm[ql]) int t ql; ql 

close face ~ (Face*) 0; 
while ( !close_face && s [ql] !~ End[ql]) { 

xl Xl[ql]; 
x2~X2[ql]; 

hit [X] 
hit[Y] 
hit[Z] 

c[X] + d[X]*parm[ql]; 
c[Y] + d[Y]*parm[ql]; 
c [Z] + d[Z] *parm[ql]; 

q3; q3 

for (fl ~ Index[ql] [s [ql]]->eq; fl; fl ~ fl->next) { 
if (((fl->f->flags&RECTANGLE) && 

hit[xl] >~ fl->f->ex[MINEX(xl)] && 
hit[xl] <~ fl->f->ex[MAXEX(xl)] 
&& 
hit[x2] >~ fl->f->ex[MINEX(x2)] && 
hit[x2] <~ fl->f->ex[MAXEX(x2)]) 

II 
(! (fl->f->flags&RECTANGLE) && 
point_in_face(hit, fl->f))) { 

close face = fl->f; 
break; 

if ( !close_face) { 
I* Increment Index *I 
s [ql] +~ Incr[ql]; 

I* reset parm value *I 
if (s[ql] !~ End[ql]) 

parm[ql] ~ (Index[ql] [s[ql]]->v- c[ql»l]) 
I 

else 
parm[ql] 

d[ql>>l]; 

HUGE; 

I* perform down heap */ 
if (parm[q2] < parm[q3]) [ 

_t; 

if (parm[q2] < parm[ql]) { int t~ ql; ql~ q2; q2~ t;) 

else { 
if (parm[q3] < parm[ql]) { int t~ ql; ql~ q3; q> t;) 

) 

I* end while */ 

107 



I* 

I* check skew faces for closer intersection *I 
I* 
if (skew_face ~ naive_intersect(SkewList,p,d,&near_t)) 

near_face = skew_face; 
*I 
if (skew_face skew_intersect(SkewTree, 

HUGE,POINTSON,c,d,&parrn[ql])) 
close_face skew face; 
hit[X] c[X] + d[X]*parrn[ql]; 
hit[Y] c[Y] + d[Y]*parrn[ql]; 
hit[Z] c[Z] + d[Z]*parrn[ql]; 

if (close_face) { 

if (d[X]*close_face->planeq[A] + 
d[Y]*close_face->planeq[B] + 
d[Z]*close_face->planeq[C] < 0.) { 

I* making a dangerous assumption for efficiency's sake: 
assuming the face id corresponds to the index in 
the face cell relation table for the cell. 
if a bug arises, make sure this is not the culprit. 

*I 
cell->fcr[close_face->id] 1~ VISIBLE; 

else{ I* hmrnm, backside of face is being hit *I 
l*fprintf(ErrFile,"hit backside of face %d\n", 

close_face->id);*l 
cell->fcr [close_face->id] I~ VISIBLE; 

else 
/* fprintf(ErrFile,''Rays in Space .... \n'')*l 

This routine is very similar to the previous routine, 
hemisphere_sample{). It differs primarily in the way in which rays are 
constructed. Here, up to RayTries rays are fired at every polygon. A 
random number is computed for each vertex, the random numbers are 
normalized so that they sum to one, and a linear combination of the 
vertices, using the random numbers as weights is used to compute a point 
on the polygon. Note there is some monkeying with a floating point 
epsilon, FEPS which I believe is defined as le-6, to avoid floating 
point error that would crash the program. 
*I 
void 
fire_rays_at_faces(cell,portal_mat) 
Cell* cell; I* cell owning portal *I 
Matrix portal mat; I* matrix defining center and orientation of 
portal *I -
{ 

FaceLink* 
Face* 

fl; 
close_face; 

108 



Face* 
Face* 
Vec3 
double 
int 

skew_face; 
f; 
c,d,hit,fc; 
mag; 
xl,x2; 

int 
int 
VertPtr 
double 
double 
int 

ql,q2,q3; /* micro priority queue (heap) indices */ 
i,j,k; 
v; 
parm[6]; 
rand[MAXVERTSINFACE]; 
start [ 6]; 

int 

c [X] 
c [Y] 
c[Z] 

s [ 6 J ; 

portal_mat [3] [0]; 
portal_mat [3] [1]; 
portal mat [3] [2]; 

start[MINX] ~ start[MAXX] ~ find_index(X,c[X]); 
if (start [MINX] !~ -1) { 

if (IndexYZ[start[MINX]]->v >~ c[X]) start(MINX]--; 
if (IndexYZ(start(MAXX]]->v <~ c(X]) start(MAXX]++; 

else start(MAXX] ~ NumYZ; 
start(MINY] ~ start(MAXY] ~ find_index(Y,c(Y]); 
if (start (MINY] !~ -1) { 

if (IndexZX[start(MINY]]->v >~ c(Y]) start(MINY]--; 
if (IndexZX[start(MAXY]]->v <~ c(Y]) start(MAXY]++; 

else start[MAXY] ~ NumZX; 
start(MINZ] ~ start(MAXZ] ~ find_index(Z,c(Z]); 
if (start (MINZ] !~ -1) { 

if (IndexXY(start(MINZ]]->v >~ c[Z]) start(MINZ]--; 
if (IndexXY(start(MAXZ]]->v <~ c(Z]) start(MAXZ]++; 

else start[MAXZ] ~ NurnxY; 

FOREACH_FACE_IN_TEMPLATE(cell->template,f,i) { 
if (cell->fcr(f->id]&VISIBLE) continue; 

/* To avoid being classed as visible at least RayTries rays to 
random points on f should be stopped by some other polygon */ 

close_face = (Face*) 0; 
for (k ~ 0; k < RayTries && f !~ close_face; k++) { 

close face (Face*) 0; 

rand(f->n] 0.0; 
FOREACH_VERT_IN_FACE(f,v,j) { 

rand(j] ~ drand48(); 
rand(f->n] +~ rand(j]; 

FOREACH VERT IN FACE(f,v,j) rand(j] /~ rand(f->n]; 
!* comp~te ranctOm point on t *I 
fc(X] ~ fc(Y] ~ fc[Z] ~ 0.0; 
FOREACH_VERT_IN_FACE(f,v,j) { 

fc[X] +~ rand[j]*v[X]; 
fc[Y] +~ rand[j]*v[Y]; 

109 



fc [Z] +~ rand[j] *v [Z]; 

d[X] ~ fc[X] - c[X]; d[Y] ~ fc[Y] - c[Y]; d[Z] ~ fc[Z] - c[Z]; 
if ((mag~ sqrt(d[X]*d[X] + d[Y]*d[Y] + d[Z]*d[Z])) > FEPS) { 

d[X] 1~ mag; d[Y] 1~ mag; d[Z] 1~ mag; 
) 

else d[X] ~ d[Y] ~ d[Z] 0.0; 

if (d[X]*portal_mat[2] [X] + 
d[Y]*portal_mat[2] [Y] + 
d[Z] *portal_mat [2] [Z] > FEPS) { 

/* now check if any other face lies between the two. */ 

/* set up three element priority queue */ 
if (d[X] < 0.) ql ~MINX; 
else ql ~ MAXX; 
s[ql] ~ start[ql]; 
if (fabs(d[X]) < FEPS I I s[ql] ~~ End[ql]) parm[ql] ~HUGE; 
else parm[ql] ~ (Index[ql] [s [ql] J->v - c [X]) I d[X]; 

if (d[Y] < 0.) q2 ~ MINY; 
else q2 = MAXY; 
s[q2] ~ start[q2]; 
if (fabs{d[Y]) < FEPS I I s[q2] ~~ End[q2]) parm[q2] ~HUGE; 
else parm[q2] ~ (Index[q2] [s[q2]]->v- c[Y]) I d[Y]; 

/* insert element in micro priority q */ 
if (parm[q2] < parm[ql]) { int t ql; ql 

if (d[Z] < 0.) q3 ~ MINZ; 
else q3 ~ MAXZ; 
s[q3] ~ start[q3]; 

q2; q2 _t; 

if (fabs(d[Z]) < FEPS I I s[q3] ~~ End[q3]) parm[q3] ~HUGE; 
else parm[q3] ~ (Index[q3] [s[q3]]->v- c[Z]) I d[Z]; 

/* insert element in micro priority q */ 
if (parm[q3] < parm[ql]) { int t ~ ql; ql 

while { 1close_face && s[ql] !~ End[ql]) { 
xl ~ Xl [ql]; 
x2 ~ X2 [ql]; 

hit [X] 
hit[Y] 
hit [Z] 

c[X] + d[X]*parm[ql]; 
c[Y] + d[Y]*parm[ql]; 
c[Z] + d[Z]*parm[ql]; 

q3; q3 

for (fl ~ Index[ql] [s[ql]]->eq; fl; fl ~ fl->next) { 
if (((fl->f->flags&RECTANGLE) && 

hit[xl] >~ fl->f->ex[MINEX(xl)] && 
hit[xl] <~ fl->f->ex[MAXEX{xl)] 
&& 
hit[x2] >~ fl->f->ex[MINEX(x2)] && 
hit[x2] <~ fl->f->ex[MAXEX(x2)]) 

II 
(! (fl->f->flags&RECTANGLE) && 
point_in_face(hit,fl->f))) { 

110 

_t; 



close face 
break; 

fl->f; 

if (!close_face) { 

) 

/* Increment Index */ 
s[ql] +~ Incr[ql]; 

/* reset parm value */ 
if (s[ql] !~ End[ql]) 

parm[ql] (Index[ql] [s[ql]]->v- c[ql»l]) 
I d[ql»ll; 

else 
parm[ql] HUGE; 

I* perform down heap *I 
if (parm[q2] < parm[q3]) ( 

if (parm[q2] < parm[ql]) ( 
int _t ~ ql; ql ~ q2; q2 _t; 

else 
if (parm[q3] < parm[ql]) ( 

int t ~ ql; ql ~ q3; q3 _t; 

I* end while *I 

/* check skew faces for closer intersection */ 
I* 
if (skew_face = naive_intersect(SkewList,p,d,&near_t)) 

near_face = skew_face; 
*I 
if (skew_face~skew_intersect(SkewTree,HUGE, 

POINTSON,c,d,&parm[ql])) { 
close_face = skew_face; 
hit[X] c[X] + d[X]*parm[ql]; 
hit[Y] c[Y] + d[Y]*parm[ql]; 
hit[Z] c[Z] + d[Z]*parm[ql]; 

/* if close face is f, then f is visible. */ 
if (close_face == f) { 

/*making a dangerous assumption for efficiency's sake: 
assuming the face id corresponds to the index in 
the face cell relation table for the cell. 
if a bug arises, make sure this is not the culprit. 

*I 
cell->fcr[close_face->id] 1~ VISIBLE; 

else if (!close_face) 
fprintf{ErrFile,"fire_rays at faces: no face hit\n"); 

else { 
I* if we hit somebody else, mark him visible */ 

111 



cell->fcr[close_face->id] 1~ VISIBLE; 

else{ 
/* we could break out of the for loop if we knew all of the 

polygon was behind the portal *I; 

Appendix A.S Occlusion.c: C code to implement an over-estimation method 

I* Copyright 1990, John M. Airey, UNC CS Dept. All Rights Reserved. *I 

/* usr include files */ 
#include <stdio.h> 
#include <math.h> 

I* walkthru include files *I 
#include " .. / .. /include/error.h" 
#include " .. / .. /include/base type io.h" 
#include " .. I .. /include/rnem.h" -
#include " .. I .. lincludelgeom_data. h" 
#include " .. l .. lincludelhash.h" 
#include " .. I .. lincludelhierarchy.h" 
#include " .. I .. lincludelcoord_index.h" 
#include " .. I .. lincludelcell.h" 

/* library interface definition file */ 
#include "vgraph.h" 

extern char* sprintf (); 

static OcclStackEl* 
static int 
static int 

I* 

OcclS ~ (OcclStackEl*) 0; 
OcclSNum 0; 
OcclSMaxNum ~ 0; 

The objective of this function is to identify all faces in obj that 
cannot be seen from any viewpoint inside the cell. Because any view from 
inside the cell must look through the boundary, it suffices to identify 
faces that cannot be seen from the "free" points on the boundary of the 
cell. A point on the boundary of the cell is free if it is not contained 
in some face. We call the regions on the boundary of the cell that are 
not occupied by faces the "portals". Since the portals are not 
represented directly in the model, we have to compute them. 

The portals are computed with a plane sweep boolean area algorithm. 

Basic Algorithm: 
Once the portals have been computed we consider each of the faces in the 
object in turn. If it has any portion inside the cell or on the boundary 
then it is immediately classified visible. 

112 



If it is definitely outside then we try to establish that some occluding 
set of faces exists for each portal. If such a set exists for each 
portal we classify the face as not visible. 

Enhanced Algorithm: 
Similar but rather than consider each of the faces of the object totally 
independently of each other we will consider groups of them at once. The 
tree of cells is a convenient structure to use for this. 

Essentially we initialize a stack with the root. 
We then pull an element of this stack and if it is a cell we run the 
occlusion operation on the cell itself. If it is classified as occluded, 
all the faces inside it are classified as occluded.If it is visible, it 
is split into its child cells and all faces that are SPLIT by that 
division. The child cells and the SPLIT faces are pushed onto the stack. 
If the cell is a leaf cell then all the faces inside it are put into the 
stack. 

The computation continues until the stack is empty. A count is kept of 
the number of faces that were classified occluded as members of a group 
and the number of faces classified as occluded individually. This can be 
used to assess the success of the enhanced algorithm. 
*I 
void 
mark_occluded_faces(pdata,cell,root) 
GeomData* pdata; /* the object that holds the portals */ 
Cell* cell; 
Node* 
{ 

root; 

OcclStackEl* 
Vert 
int 
FaceCellRelation 
Face* 

cell->num vis = 0; 

cand; 
wb[MAXVERTSINFACE];/* a Work Buffer */ 
i,num_individual_occ = O,num_group_occ 
fer; 
facep; 

occls_init(root,cell->template->num_f); 

while (cand = occls_pop()) { 

0; 

if (! ((num group ace+ num_individual_occ+cell->num_vis)%100) && 
num_grOup_oc;+num_individual_occ+cell->num_vis > 0) { 

fprintf(ErrFile,"num g occ= %d, nurn i occ = %d, num vis= %d\n", 
nu~group_occ,nuffi_Tndividual_ocC,Cell->num_vis)l 

fflush(ErrFile); 

if (candintersectcell(cand,cell,wb)) 
if (cand->face) { 

cell->fcr[cand->face->id] I= (VISIBLE I CHECKED); 
cell->num_vis++; 

else stack_children(cand->node,cell); 

else { 

113 



/* 

if (vis_from_boundary(pdata,cell,WEST, cell->westpl,cand,wb) I I 
vis from boundary(pdata,cell,EAST, cell->eastpl,cand,wb) J J 

vis=from=boundary(pdata,cell,SOUTH,cell->southpl,cand,wb) I I 
vis_from_boundary(pdata,cell,NORTH,cell->northpl,cand,wb) J I 
vis_from_boundary(pdata,cell,EARTH,cell->earthpl,cand,wb) I I 
vis_from_boundary(pdata,cell,SKY, cell->skypl, cand,wb)) { 

if (cand->face) { 
cell->fcr[cand->face->id] 1~ (VISIBLE I CHECKED); 
cell->num_vis++; 

else stack_children(cand->node,cell); 

else{ 
if (cand->face) { 

cell->fcr[cand->face->id] &~ -VISIBLE; 
cell->fcr[cand->face->id] 1~ CHECKED; 
num_individual_occ++; 

else{/*mark all faces definitely inside the cell as occ. */ 
FOREACH_FACE_IN_TEMPLATE(cell->template,facep,i) { 

occls_term(); 

fer= set_face_cell_relation(facep,cand->node->cell); 
if (FACEINSIDE{fcr)) { 

num group occ++; 
cell->fcr(i] &~ -VISIBLE; 
cell->fcr[i] 1~ CHECKED; 

fprintf(ErrFile,"f= %d, g_occ= %d, i_occ= %d, vis= %d\n", 
cell->template->nurn_f,nurn_group_occ, 
nurn_individual_occ,cell->nurn_vis); 

we need the CHECKED bit because faces can be in the boundary of two 
cells 
and thus FACEINSIDE could be true for 1 face and two cells. 
*I 
void 
stack_children(t,c) 
Node* t; /* stacking this nodes children */ 
Cell* c; /* computing occlusions for this cell *I 
{ 

int 
FaceCellRelation 
FaceCellRelation 

i,split; 
fer; 
fcrng; 

if (!t->ng /* && !t->nl*/) { /*leaf node*/ 
for (i 0; i < t->cell->template->num_f; i++) { 

fer= set_face_cell_relation(t->cell->template->faces[i], 
t->cell); 

if (FACEINSIDE(fcr) && ! {c->fcr[i] & CHECKED)) { 
c->fcr[i] 1~ CHECKED; 

114 



occls_push(t->cell->template->faces[i], (Node*) 0); 

else{ 

} 

/* 
*I 

occls_push ((Face*) 
occls_push ((Face*) 

switch(t->si) { 
case X: split 
case Y: split 
case Z: split 

0, t->ng); 
O,t->nl); 

EASTSP; break; 
NORTHSP; break; 
SKYSP; break; 

for (i 0; i < t->cell->template->num_f; i++) { 
fer set_face_cell_relation(t->cell->template->faces[i], 

t->cell); 
fcrng= set_face_cell_relation(t->cell->template->faces[i], 

t->ng->cell); 
if (FACEINSIDE(fcr) && 

(fcrng & split) && 
! (c->fcr[i] & CHECKED)) { 

c->fcr [i] I= CHECKED; 
occls_push(t->cell->template->faces[i], (Node*) 0); 

int 
candintersectcell(cand,cell,wb) 
OcclStackEl* cand; 
Cell* cell; 
Vert wb [MAXVERTSINFACE]; 
{ 

if (cand->face){ 
if ( 1 (cell->fcr[cand->face->id] & TRIVIALLYOUTSIDE) && 

( (FACEINSIDE (cell->fcr [cand->face->id]) I 1 
clip_face_to_box(cell->west,cell->east, 

cell->south,cell->north, 
cell->earth,cell->sky,cand->face,wb)))) 

return 1; 
else 

return 0; 

else{ 

} 

I* 
*I 
void 

if (cand->node->cell->east <= cell->west I I 
cand->node->cell->north <= cell->south I I 
cand->node->cell->sky 

return 0; 
else 

return 1; 

<= cell->earth) 

115 



occls_init(root,stacksize) 
Node* root; 
int stacksize; 

CALLOCN{OcclS,OcclStackEl,stacksize,"occl_init"); 
OcclS[O] .face (Face*) 0; 
OcclS[O] .node~ root; 
OcclSNum ~ 1; 
OcclSMaxNum = stacksize; 

1**1 
void occls_term() ( free((char*)OcclS); ) 

I* 
*I 
OcclStackEl* 
occls_pop () 
( 

if (OcclSNum > 0) 
return &OcclS[--OcclSNum]; 

else 
return (OcclStackEl*) 0; 

) 

I* 
*I 
void 
occls_push(face,node) 
Face* 
Node* node; 

face; 

if(OcclSNum < OcclSMaxNum) { 
OcclS[OcclSNum].face ~face; 
OcclS[OcclSNum++l .node~ node; 

else die ( "occls_push", "stack too small", 1); 

/* Foreach portal we want to establish the existence of a 
face (or (sub) set of faces (s)), occl, such that 
the convex hull of the projections of cand onto the plane of occl 
is contained by the occl face(s). 

*I 
int 
vis_from_boundary(pobj,cell,bid,pl,cand,wb) 
GeomData* pobj; 
Cell* cell; 
int 
FaceLink* 
OcclStackEl* 
Vert 
{ 

FaceLink* 
Vert 
int 
Extent 

bid; I* boundary id, SKY,EARTH etc *I 
pl; I* portal list *I 
cand; /* candidate face */ 
wb[MAXVERTSINFACE]; I* work buffer *I 

plp; 
ccv[MAXVERTSINFACE];I* cand clipped verts *I 
ccvn; 
cex; 

116 



int i,c; 
int be; 
double bv; 

/* cell boundary normal axis */ 
/* cell boundary plane value */ 

int split; 
int clip; 
int vis; 

int max,min; 
IndexNode** index; 

if (!pl) return 0; 

if (cand->face) { 
switch (bid) { 

case WEST: 
if (cell->fcr[cand->face->id] & (WESTNL I WESTEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & WESTSP); 
be = X; bv = cell->west; clip = 1; 
break; 

case EAST: 
if (cell->fcr[cand->face->id] & (EASTNG I EASTEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & EASTSP); 
be ~ X; bv ~ cell->east; clip ~ -1; 
break; -

case SOUTH: 
if (cell->fcr[cand->face->id]&(SOUTHNL I SOUTHEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & SOUTHSP); 
be = Y; bv = cell->south; clip = 1; 
break; 

case NORTH: 
if (cell->fcr[cand->face->id]&(NORTHNG I NORTHEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & NORTHSP); 
be ~ Y; bv ~ cell->north; clip ~ -1; 
break; 

case EARTH: 
if (cell->fcr[cand->face->id]&(EARTHNL I EARTHEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & EARTHSP); 
be ~ Z; bv ~ cell->earth; clip ~ 1; 
break; 

case SKY: 
if (cell->fcr[cand->face->id] & (SKYNG I SKYEQ)) return 0; 
split~ (cell->fcr[cand->face->id] & SKYSP); 
be ~ Z; bv ~ cell->sky; clip ~ -1; 
break; 

default: die("vis_from_boundary", "bad boundary id",l); break; 

cex[MINX] 
cex [MAXX] 
cex [MINY] 
cex[MAXY] 
cex [MINZ] 
cex [MAXZ] 

cand->face->ex[MINX]; 
cand->face->ex[MAXX]; 
cand->face->ex[MINY]; 
cand->face->ex[MAXY]; 
cand->face->ex[MINZ]; 
cand->face->ex[MAXZ]; 

/* clip cand->face to the correct side of the boundary */ 
if (split) { 

for (i~O; i < cand->face->n; i++) { 
wb [i] [X] cand->face->verts [i] [X]; 

117 



wb[i][Y] 
wb [i] [Z] 

cand->face->verts[i] [Y]; 
cand->face->verts[i] [Z]; 

ccvn = clip_to_ortho_plane(cand->face->n,wb,bc,bv,clip,ccv); 
if (clip== -1) cex[MINEX(bc)] bv; 
else cex[MAXEX(bc)] = bv; 

else{ 
/* cand is on correct side of cell boundary so just copy to ccv */ 

for (i=O; i < cand->face->n; i++) { 
ccv [i] [X] cand->face->verts [i] [X]; 
ccv[i] [Y] cand->face->verts[i] [Y]; 
ccv [i] [Z] cand->face->verts [i] [Z]; 

ccvn = cand->face->n; 

if (ccvn < 3) die("mark_occluded_faces","bad cand->face clip",l); 

else{ /* construct ccv from cell extent */ 
cex[MINX] cand->node->cell->west; 
cex[MAXX] cand->node->cell->east; 
cex[MINY] cand->node->cell->south; 
cex[MAXY] cand->node->cell->north; 
cex[MINZ] cand->node->cell->earth; 
cex[MAXZ] cand->node->cell->sky; 

switch (bid) { 
case WEST: 

if (cex [MINX] > cell->west) 
else if (cex [MAXX] > cell->west) 
break; 

case EAST: 
if (cex [MAXX] < cell->east) 
else if (cex [MINX] < cell->east) 
break; 

case SOUTH: 

return 0; 
cex[MAXX] 

return 0; 
cex[MINX] 

if (cex[MINY] > cell->south) return 0; 
else if (cex[MAXY] > cell->south) cex[MAXY] 
break; 

case NORTH: 
if (cex[MAXY] < cell->north) return 0; 
else if (cex[MINY] < cell->north) cex[MINY] 
break; 

case EARTH: 
if (cex[MINZ] > cell->earth) return 0; 
else if (cex[MAXZ] > cell->earth) cex[MAXZ] 
break; 

case SKY: 
if (cex[MAXZ] < cell->sky) return 0; 
else if (cex[MINZ] < cell->sky) cex[MINZ] 
break; 

cell->west,· 

cell->east; 

cell->south; 

cell->north; 

cell->earth; 

cell->sky; 

default: die("vis_from_boundary","bad boundary id",l); break; 

extent_to_box(cex,ccv); 

ccvn = 8; 

118 



I* now try to show no portal can see cand *I 
for (plp = pl; plp; plp = plp->next ) { 

vis = 1; 
for (c = Z; c >= X && vis; c--) { 

switch (c) { 
case Z: index 
case Y: index 
case X: index 

} 

IndexXY; break; 
IndexZX; break; 
IndexYZ; break; 

I* We only allow zero-area contact with an occluding plane. 
This is subtle so think about it for a bit. 

*I 

if (pl p->f->e x [MAXEX (c )] < cex (MINEX(c ) ] ) { 
if ((min= f i nd_ind ex (c , plp->f->ex (MAXEX(c )])) - 1 ) 

if (index [mi n ]->v < 
index (min ] ->v 

plp->f->ex[MAXEX(c)] I I 
plp->f->ex[MINEX(c)]) 

if ((max= find_index(c,cex(MINEX(c)])) == -1) 

continue; 

min++; 

continue; 

if ( (cand->node && index(max]->v >= cex[MINEX(c)]) I I 
(cand->face && (index[max]->v > cex[MINEX(c)] I I 

index[max]->v -- cex[MAXEX(c)]) ) max-- ; 

else if (plp- >f - >ex[MINEX(c)) > c ex[MAXEX(c))) { 
if ((min= find_index(c,cex(MAXEX(c)])) == -1) 

continue; 

if ( (cand->node && index[min]->v <= cex[MAXEX(c))) I I 
(cand- >face && (index[min]->v < cex[MAXEX(c) ] I I 

index[min]->v -- cex[MINEX(c) ] ) ) ) min++; 

if ( (max= f ind_i ndex(c , plp->f->ex(MINEX(c)] ) ) == -1 ) 
c ontinue; 

if (index[max ]->v > 
index [max]->v 

else continue; 

plp->f->ex (MINEX (c)) I I 
plp->f->ex[MAXEX(c))) 

for (i = min; i <= max && vis; i++) 

max-- ; 

vis= !occlusion_exists(pobj,plp,ccv,ccvn,c,index[i),wb); 
) 

I* if no occlusion exists for this portal, return a 1 *I 
if (vis) return 1; 

return 0; I* if this happens we are very happy *I 

I* check if some part of index[i) occludes cand: 
Reverse project cand onto the plane of 
index(i) by comput i ng the intersection of the segments defined by 
a vertex of the porta l and the vertices 

119 



*I 

of cand. If the convex hull of the reverse projections from all 
the vertices of the portal minus index[i]->eq is empty 
then cand is occluded for that portal. 

int 
occlusion_exists(pobj,p,ccv,n,c,indexnode,wb) 
GeomData* pobj; I* for sweep intersections etc *I 
FaceLink* p; I* portal in question *I 
Vert ccv[MAXVERTSINFACE]; /*verts of clipped cand */ 
int n; I* count of verts *I 
int c; I* orientation of indexnode plane 
*I 
IndexNode* 
faces*/ 
Vert 

indexnode; 

wb[MAXVERTSINFACE]; 

/* plane of hopefully occluding 

I* work buffer for projections *I 
{ 

int 
VertPtr 
double 
int 
int 
FaceLink 
FaceLink* 
static VertPtr 
static Face 
Face* 
Vert 
int 

switch (hface->o ~ c) 

i,j; 
v; 
t, numerator; 
x,y,z; 
hn; 
hflink; 
fl; 
vertps[MAXVERTSINFACE]; 
hfacedata; 
hface = &hfacedata; 
hull[MAXVERTSINFACE]; 
savenumv; 

case X: x Y; y Z; z = X; break; 
case Y: x = Z; y = X; z = Y; break; 
case Z: x = X; y = Y; z Z; break; 
default: die("occlusion_exists","c <X ! ! c > Z11 ,1); 

) 
I* compute the convex hull of the set of "reverse" projections of ccv 

onto the indexnode plane from the vertices of p. 
*I 
hn ~ 0; 
FOREACH_VERT_IN_FACE(p->f,v,j) { 

numerator= (indexnode->v- v[c]); 
for (i ~ 0; i < n && hn < MAXVERTSINFACE; 

t ~numerator/ (ccv[i] [c] - v[c]); 
i++) { 

if (t > 1. 0 && t < 1. 0 + FEPS) t 
else if (t < 0.0 && t > -FEPS) t 
if (t > 1. 0 I I t < 0. 0 l { 

1. 0; 
0.0; 

fprintf(ErrFile, "t = %g,ccv = %g %g %g indexnode->v=%g\n", 
t,ccv[i] [X],ccv[i] [Y],ccv[i] [Z],indexnode->v); 

die("occlusion_exists","bad t value",l); 

wb [hn] [x] 
wb [hn] [y] 
wb[hn][z] 

t*(ccv[i] [x] - v[x]) + v[x]; 
t*(ccv[i] [y] - v[y]) + v[y]; 
indexnode->v; 

I* limit the precision of the computed value to two digits *I 
wb [hn] [x] rint (wb [hn] [x] *le2) /le2; 
wb[hn] [y] ~ rint(wb[hn] [y]*le2)/le2; 

120 



/* if any points are outside the extent of indexnode, ret 0 */ 
if (wb[hn] [x] < indexnode->ex[MINEX(x)] I I 

wb[hn] [x] > indexnode->ex[MAXEX(x)] I I 
wb [hn] [y) < indexnode->ex [MINEX (y) ) I I 
wb[hn ) [y) > indexnode->ex[MAXEX(y))) re t urn 0; 

hn++; 

if (i != n && hn == MAXVERTSINFACE) 
die("occlusion_exists","hn > MAXVERTSINFACE",l); 

/* compute the d ifference of the hull and the faces in the index 
plane.if the result is 0 then ccv was occluded with respec t to t he 
portal 

*I 
if ( (hface->n convex_ hull(wb,hull,hn,c)) < 3) 

return 1; 
hface->set_ id 0; 
hface->flags = CONVEX; 
hface->verts = vertps; 
for (i = 0; i < hface->n; i++) hface->verts[i) 
hflink.f = hface; 

hflink.next = indexnode->eq; 

(VertPt r ) hul l[i ) ; 

for (fl = hflink . next; fl; fl fl->next) fl->f->set_ id = 1; 

/* the vertices in pobj c r e ated by intersect ions detected by sweep 
can be reused 

*I 
savenumv = pobj->num_v ; 
if (sweep_detect(pobj,&hflink,portal_ func,O)) 

pob j ->num_v = sav enumv ; 
return 0; 

else { 
pobj->num_ v 
return 1; 

sav enumv ; 

121 




