
, 

, AD-A242 070 
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

~loDE: An Object-Oriented Cser 
Interface Development Environment 

Based on the Concept of ).lode 

OTIC 

SELECTt. D 
, OCT 2 41991 - . 

D 

!
. TL;s dGClJTT:<'nt ha:; been appr0ved 

• 

kr p·!!->lic !•. 1•.''1 ;e end 3alc; its 
di.cr•iD•Jtiw' i~ unlirnit,.?d. 

-----

TR90-028a 

July, 1990 

Yen-Ping Shan 

91-13529 
llll!il \1!1\ \\11: !lllllllli lll!l \\1\lll\! \ll\ 

The University of North Carolina at Chapel Hill 
Department of Computer Science 
CB#3175, Sitterson Hall 
Chapel Hill, NC 27599-3175 

A TextLab Report 
UNC is an Equal Opportunity/ Affirmative Action Institution. 

{\o~ i' .. 



' 

l'vioDE: An Object-Oriented User Interface Developtnent 
Environtnent Based on the Concept of l\lode 

by 

}'en-Ping Shan 

A Dissertation submitted to the faculty of the University of ~orth Carolina at Chapel 

Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy 

in the Department of Computer Science . 

. 

' .· . -.' ~ . ~ '· . 
----

..... '0< . 
.,:) I ~ 

l s ·.c -,- ,_ 
I._:' ,.} ! II '(,~. 

I ~.· . ..;, ', f, "I . ,. 

~~~~~ 

~·~·· 
1 v,_, , . 

I rl \ . 

Oist ~ 
1 

1\-\ 

j 

STATEMENT A PER TELECON 
RALPH {JACHTER ONRICODE 1133 
ARLINGTON, VA 22 217 

Nt·Jl-J 1 0 I 2 3 I 9 1 

Chapel Hill 

1990 

:\ ppro\·ed by: 

Ad\·isor: John B. Smith 

/':· )' 
/J;. ~ ( ,/ . ' 
/.;:. / ; 1'~-.; \'- '-

0 I 
Reader: Stephen Weiss 

Reader: H ichard Snodgra:o;s 



@1990 

Yen-Ping Shan 

ALL RIGHTS RESERVED 



\ 

YEN-PING SHAN 

.lVIoDE: An Object-Oriented User Interface Development 

Environment Based on the Concept of Mode 

(Under the direction of John B. Smith) 

Abstract 

This thesis explores a particular concept of mode that can provide a unified 

conceptual framework for user interfaces and can lead to an effective implementation 

environment for developing a rich variety of user interfaces. 

This research has addressed several important limitations faced by most user 

interface management systems (CIMSs). These include: 

• Lack of generality. 

• Little support for creating and managing the connections between tt.ser interfaces 

and their underlying applications. 

• Lack of support beyond the coding phase. 

The major results of the research are the following: 

A new user interface development environment, called the .\1ode Derelopr:ztnf 

Environment (,V!oDE), was developed. :\loDE accommodates an orthogonal design 

that decouples the user interface components from each other. thereby increasing 

their reusability and overall system generality. 

A new connection model was developed that allows strong separation between 

the user interface and the application without limiting the communication between 

them. MoDE supports the creation and management of both components and con

nections through direct manipulation. 

New concepts and UIMS capabilities were developed to provide support beyond 

the coding stage. To support design, a particular concept of mode was developed to 

help decompose >!"·~ i.;1terface into components. To support testing and maintenan•·e. 

\loDE •·nahles the user to run an interfacP. suspend it at any point. and in~p•'•·t .til•i 

change it. 



Acknowledgements 

I am deeply grateful to my advisor, Professor John B. Smith. for his guidance. 

support and encouragement throughout my years as a graduate student. He made 

me believe I could finish, and helped me do it. I also want to thank the other mem

bers of my thesis committee, Professor Frederick Brooks, Professor Jame:; Coggins. 

Professor Rick Snodgrass, and Professor Stephen Weiss for their valuable comments 

and suggestions. 

The members of the textlab research group at uNC were all helpful. Particular 

thanks to Murray Anderegg, ~Iatt Barkley, Gordon Ferguson, Barry Elledge. Rick 

Hawkes, Jieh-Shan Lin, and Don Stone. 

I gratefully acknowledge the financial support provided by the :\"a tiona! Sci

ence Foundation (Grant #IRI-85-19517) and the Army Research Institute (Contract 

#MD A903-86- C-0345). 

I would like to thank my parents who let me know all my life that I could 

achieve anything that I aspired to. Finally, I thank my wife Ke-.Jen for her patience. 

understanding, and hard work to ensure that I had the time I needed to complete 

this work. 



' 

Contents 

1 Introduction 1 

1.1 Problems and Solutions :2 

1.2 Major Results . 

1.3 MoDE in Use . 

1.4 Organization of the Thesis . -
I 

1.5 A Note to the Reader .......................... . -
I 

2 Background 8 

2.1 Window :\lanagement Systems 

2.2 Object-Oriented Programming ....... . 9 

2.3 User Interface :\lanagement Systems (lT'viS) 10 

2.3.1 Interactive Technique Builders 10 

2.3.2 ·'Glue'' Support .. 11 

2.3.3 Graphical Layout . 

2.3..! Application Semantics First 1 :) 

2.-! Problems with CL\ISs ..... 1--l 

v 



/ 

2..!.1 Strong Separation . . . . . . . . . . . . . . . . . . . . . . 1-l 

2.-!.2 Poor Support for Linking Cser Interface and Application 1.5 

2..!.3 Limited Capability ...... . 1.3 

2..!.4 Little Support Beyond Coding 1.5 

') -__ ;) Research Goals . . . . . . . . . . . . . 16 

3 Concepts 17 

3.1 MVC and Its Problems . 11 

3.2 The Concept of a .Mode-Based User Interface l~ 

3.2.1 What is a :Ylode? . . . . . . . . . . . . 19 

3.2.2 Direct-manipulation Interfaces are .Modal 20 

3.3 The .Mode User Interface Framework ...... . 21 

3.4 A User Interface Component Space and Its Axes 

Connection :\lode] ............... . 

3.5.1 A Historical View of Connection .\Iodels 

3.5.2 The .\loDE Connection .\lode! 26 

3.6 Summary .................................. :30 

4 MoDE: Kernel 31 

-!.1 The .\loDE Event-Driven :\Iechanism 

~ ·> Basic Classe~ 

-L2.l .\{ode :n 

VI 



' 

4.2.2 ~-!Controller ... 

-!.2.3 SemanticObject . 

·L2.-1 .\1 DisplayO b ject 

4.2.5 Interactions Among the Four Kernel Classes . 

4.2.6 Designin~ An Interface with .\loDE . -H 

4.3 A Comparison to .\lVC framework -H 

4.4 Summary -±-5 

5 l'vloDE: Mode Composer 46 

.5.1 .\lode Composer in Action -16 

.j.2 Mode Editing . . . . -52 

-5.3 Connection Editing . -5:3 

.5.-1 Library .\lanagement 5-1 

.) .j Discussion . . . . . . .j-1 

.s. ~ .1 Self-CrPation ........... . .j-1 

- - ., .).J._ Classes Do ~ ot .\lake Good Types .j.j 

-3.6 Summary .jt) 

6 Experience With MoDE 57 

6.1 Generality ........ . ·J I 

6.1.1 What .\IoD E Ca.n Create ) ' 

6.1.2 \Yhat :\loDE Can Be Extended To CreatP 

Vll 

-------- -·-·-------------------' 



6.1.3 Inappropriate Applications 

6.2 

6.3 

6.4 

Productivity .. 

6.2.1 

6.2.2 

6.2.3 

6.2.4 

Subjects 

The Assignment 

Results .. 

Discussion . 

Performance . 

Summary .. 

7 Conclusion 

7.1 Summary 

7.2 Future Research 

A An Event-Driven Mechanism for lV1oDE 

A .1 Background . . . . . 

A.2 Why Event-Driven? 

A.3 An Event-Driven .Mechanism 

A.3.1 Event Generator 

A.3.2 Event Queue . . 

A.3.3 Event Dispatching and the \IVC framework . 

.-\.-! Compatibility ....... . 

AA.l Definition of the Problem . 

\/]]] 

60 

60 

60 

61 

62 

6-± 

64 

66 

67 

61 

68 

81 

83 



' 

A.-!.2 When to Switch 

A.-!.3 Sandwiching 

A..!.-! How to Switch: Case EH P 

A.-±.5 How to Switch: Case PH E 

A.5 Discussion . . . . . . . 

B Description of the Kernel Classes 

B.l :\!lode Class ..... . 

B.l.l 

B.l.2 

B.l.3 

B.l.-! 

B.l.5 

B.l.6 

B.l.7 

B.l.S 

displayO b ject 

displaying . 

drag support 

scroll support 

sub~Iode access 

super~Iode access 

layer manipulation . 

layering ..... 

B.l.9 initialize-release 

B .1.1 0 display box access 

B.l.ll controller access 

8.1.12 event handling . 

B.l.ll s11b\Iode ins~''rt/dekt.e 

!X 

S6 

56 

Sl 

S9 

90 

9:3 

9-5 

96 

96 

97 

')7 

99 

]till 

[!Jtl 



B.l.l5 visibility . 101 

B.l.l6 bordering . [I) 1 

8 .1.17 buffering . 

B.l.18 ..;haredStyle-highlight l 0:3 

B.l.l9 indicating . 1():3 

B .1. 20 s1zmg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1-

B.l.21 semObj access 

B.l. 22 copymg 

B.l.23 class methods for: initialization 

B.l.24 class methods for: instance creation 

8.2 :\!Controller Class 

B.2.1 access ..... 

B.2.2 event handling 

sharedBehavior-resize 

sharedBehavior-move 

B.2.3 

B.2.4 

B.2.5 

B.2.6 

8.2.7 

sharedBehavior-indicating 

share? . .dehavior-link . 

· haredBehavior-menu 

8.2.8 Interrupt handling . 

8.:?.9 copymg 

B.2.10 class ffif'thods for: in:-tance creation 

X 

10.5 

10.5 

10.5 

10.5 

10.) 

106 

10-;-

l\)7 

109 

110 

110 

1 11 

Ill 

ll~ 



B.2.ll class methods for: access .. 1 L! 

B.~.l~ class methods for: initialize. I l·J 
• L-

B.3 :\lDisplayObject Class ll:.: 

B.3.1 transformmg . 

B.3.2 initialize- release 11:3 

R3.:3 accessmg . . . . . . . . . . . . . . . . . . . . . 

B.3..! mverswn ll-t 

B.3.5 displaying ll.j 

B.3.6 buffering ll.j 

B.3.7 testing . 

B.3.8 display box access ; l ti 

B.3.9 copymg ............... . llti 

B.3.10 class methods for: instance creation 116 

B.-I: SemanticObject Class L 16 

B..!.l access ..... . 111 

B.-!.2 initialize- release l L I 

B..t.3 mode attaching lll 

B.-1:.-l: drag support .. ll .;:: 

B.-! .. 5 :\fode-ini tializations 

B. Lfi ropymg .......... . 

B..t. 7 connection model support l l ~ l 

Xl 



B.4.8 attribute editor .......... . ll ~J 

B.-!.9 class methods for: instance creation l l ~) 

C Videotape 120 

C.l Sample Interfaces Built with :\-IoDE ]•1() 
.__\.,) 

C.2 :\-loDE in l'se ............ . 1·11 
- L 

Xll 



List of Figures 

1.1 Using ~loDE ......... . 

1.2 Interactive technique librar:·. .) 

1.3 Sample user interfaces created with ~loDE. . . . . . . . . . . . . . . . 6 

3.1 The Model- View-Controller framework. lS 

3.2 A dialogue box can be v;ewed as a mode with two submodes. . .... · ~1 

3.3 The structure of a mode. . . . . . . . . . . . . . . . . . . . . . . . . . . ·)·) 

3.4 The three space for mode types. Two sample points are shown. On•J 

for the "'yes'' button. the other for the .. no'· button. They share the 

same interaction attribute ..... . 

3 .. j The button example ............ . 

3.6 Possible inheritance structures for the button example ........ . 

3.7 Reusing the components in a three-dimensional design. as in \loDE. 

:3.8 Derivations of connection model. .. 

1.9 :\ decentralized connection model. 

L I Correspondence between the axes and thr implPment<ttlon. 

XIII 

:.!t) 

:n 



/ 

-1.2 Clipping capability is essential to the interaction m a mode that 1s 

partially obscured by other modes . 

-!.3 . \ simple eventResponses table. . ...... . 

The relationships among the four kernel classes. 

.t.5 A simple example. . . . . . . . . . . . . . . . . .tO 

-1.6 The responsibilities are partitioned differently in the :Vlode framework 

than in the MVC framework. . . . . . . . . . . . . . . . . . . . . . . . -!-! 

5.1 Editing the appf'arance of a mode. . . . . . . . . . . 

. 5.2 Showing the semantic object for the display window . 

.5.3 System requests permission to create new instance variable for the 

connection. . . . . . . . . . 

5.4 Inspect the semantic object. -!9 

5.5 The default action message is buttonPushed: . 

. 5.6 The system shows a list of the messages understood by the semantic 

object of the display window. . . . . . . . . . . . . . . . . . . . . . -!!) 

5. 7 The interface and the application are fully connected. jQ 

5.8 The binary desk calculator is promoted into the interaction technique 

library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)1 

.5.9 The calculator is put into a window. .j l 

.5.10 The :Vlode Composer is used to edit itself. .).') 

6.1 The three axes span the space of mode-t:·pes. -,, 

6.2 A picture of the window to be built. 

X:IV 



i.l ~lake ~loDE a production system. . ..... . 6') 

:\.1 An EHP sandwich. 

:\.2 Loop merging ... S8 

XV 



Chapter 1 

Introduction 

Creating a good user interface for a system is a difficult task. Cser interface Sl)ftware 
is often large, complex, and difficult to debug anrl modify. It often represents a 
significant fraction of the code, frequently ranging from -10 to 60 percent [FolSS~. 

Good interfaces that are easy to use frequently require several cycles of designing. 
development, testing, and refining. Consequently, better tools are needed for all 
aspects of user interface development. ranging from support of complex. programs to 
rapid prototyping. 

This thesis explores a particular concept of mode that can provide a unified 
conceptual framework for user interfaces and can lead to an effective implementation 
environment for developing a rich variety of user interfaces. In this sect ion. t h~, 

concept of mode is introduced: it will be defined rigorously and discussed in Jt>tdil in 
Chapter :3. 

Interfaces customarily have states that govern the interpretation of user <1(

tions. These are commonly called modes. Some user interface developers ha \·e .1 r

tributed user confusion to the very presence of modes in interfaces and have defined 
the ideal interface as one which has no modes [SIKV82, Tes8l]. This dissertation 
undertakes to show that modeless interfaces are not desirable and may be impossible. 

If one embraces and for~alizes the concept of mode. it serves as a unifying. 
general. and powerful concept with which to define interfaces. In this dissertation. a 
mode is still a state. It is the building block of user interfaces. A mode is defined by 
its three attributes: appearance. interaction, and semantics. It is distinguished by an 
area on the screen in which at least one of its attributes is different from those of tlw 
modes in its surrounding areas . .\lodes can bP composPd to form more compli··:~;,.,: 
modes. 



From this perspective, everything on the screen is a mode. Thus. mode is the 
only building block necessary for building a user interface. The task of designing and 

implementing an interface is simplified into identifying the modes in the interface and 
composing them together. 

To demonstrate that this concept of mode can be used as the conceptual basis 
for an effective user interface management system (CI:\IS). the .\lode Der·tlopmtnt 

Environment (MoDE) was developed. In addition to this demonstration. :\loDE abu 
addresses several limitations found in most CL\ISs. In the section that follows, these 
limitations are discussed briefly and \loDE's attempt to address them outlined. 

1.1 Problems and Solutions 

MoDE addresses several important problems faced by most user interface management 
systems ( UI::VISs ). These include: 

• generality, 

• the connection between user interface and application. 

• and support for development activities beyond coding. 

Generality 
:\lany CI::viSs are limited m the look and feel of the interfaces thev can be used tu 

create. It is very hard to generate user interfaces not in the style provided. There 

are two major reasons for this. First, many l'I::viSs have a fixed library of interfa.ct.> 
romponents. The interfaces that can be built with these systems are limited to those 
that can be composed from components in the fixed library. Second, most CL\ISs are 
not orthogonal in design with respect to components: some components can be used 
with other components from the library while others cannot be combined ( discusseJ 
in Section 3.-!). 

To address the first limitation, :\loDE makes no distinction between system· 
provided components and user-created components. Consequently, new interface com

ponents can easily be included into the library. To address the second lm11tation. 
:\loDE provides orthogonality with respect to interface components. Since :\l"DF 
separates appearance. interaction. and the semantics of a comp\mt•nt intn thr···· ::1· 

dependent objerts. new interface components can easily he created hy cun~t r~I<·t ::1!.! 

new combinations of these objects. Thus. the number of possiblt> compl!tterJt,. r h.t! 



can be built is greatly increased. Experience with .\loDE suggests that it is this or
thogonal design that contributes most to reuse of interface components. rather than 
object-oriented inheritance alone. 

Connection between user interface and application 
Separating the user interface from the application produces a cleaner and more modu
lar system architecture. Current methods of separation often limit the communication 
between the two and, as a consequence, do not support direct-manipulation interfaces 
very well. 

.\loDE provides an intermediate layer of semantic objects that connects the user 
interface and the application. Each interface component is connected to a semantic 
object which, in tern, can be connected to the application or t0 other semantic objects. 
Objects in this domain have knowledge of both the user interface and the application. 
They form a layer that insulates the effects of changes from both sides. 

Support beyond coding 
.\lost GI.MSs only focus on the implementation phase of user interface development 
and provide very few, if any, tools that can be used in other phases. such as design. 
testing and maintenance (discussed in Sections 4:.2.6 and .5.2). 

The mode concept provides an informal framework in which the user inter
face developer can specify the interface conceptually from the end user·s point of 
view. This framework also provides guidelines to help decompose an interface into 
components during the design phase. 

During debugging and maintenance. the .\loDE user can interrupt a running 

interface at any point and inspect it. This capability together with the i<:~ulari:y 
enforced by the mode concept make it easy for an interface system maintainer to 
understand the interface and to locate a specific component for modification. 

1.2 Major Results 

.\loDE can be used to produce a wide variety of interfaces. ~loDE was used to generate 
test interfaces that simulate the major components of the interactions implemented 

in .\lacintosh. NeXT. and Sun View (discussed in SectJOn 6.1.1). ~loDE was also used 
to generated its own interface. Because of its self-creating nature. the ~loDE interfan' 
can be edited with itself. Thus. it provides high degree of freedom to u~er intt>rLl<'t' 

(kvelopers . 

.\loDE can be used by interface designers, system programmers. and q·-,-tt,m 

3 



0 1 T Llbruy 

D E=:J 
Taxt Burton 

Ji, van•ll• Mooe 

~ 
~a.ne Winao-

EJ jE-1 l Fixed Size Label 

Ao•m Box 

Figure 1.1: Using .\loDE. 

maintainers. Interface designers can use it to rapidly create interfaces and to test 
the designs against end users to collect feedback. System programmers can use its 
programming interface to develop applications that support various user interfaces 
and to connect them together. System maintainers can use MoDE to understand 
a system and to navigate through the relevant portions of the interface and the 
application. Sections 5.2 and .j.3 provide more details. 

An informal experiment suggests that :\loDE increases the productivity of its 
users. Two groups of subjects were asked to produce the same interface. On group 
;.;.vcd ).iuDE exclusively while the other group used whatever tools they liked except 
:\loDE. The group using :\loDE completed the assignment significantly faster than 
the other group. Section 6.2 reports this experimP.nt. 

1.3 MoDE in Use 

Since the UI:\IS issues examined by this research were addressed in the proof-of
concept system, ,\loDE, this section gives a taste of how .:VloDE is used and the kinds 
of interfaces it can be used to create1• It is included here to provide an intuitive frame 
of reference for the more general discussion of issues that follows. 

The user of ,\foDE begins the process of building an interfact> L,· .!r;\!.!_\l.lll~ 

:A more complete example is shown m the vtdeotape appendix. 



D 1 T Ut:lrary 

D r=J 
Te:tt Button 

V&nlll& MOdO 

~ 
Plane Window Rename 

Remove 

t:=J I• I Fix•d Siu Label 

Roam Box 

r ----~-~-t-

Figure 1.:2: Interactive technique library. 

objects out of the interactive technique library (the right-hand window of Figure l.l) 

d.uJ pasting them together. Interface oo jects are then connected to their res peer i ·;c 

semantic objects. Semantic object are then connected to application objects that 
provide functional support for the selected interface object or operation. Semantic 

objects can also be connected to one another to provide feedback or response \\'it hour. 

engaging the application, such as highlighting an object when touched by the moust:>

controlled cursor. 

Visual representation of interface, semantic, and application objects can all be 

created and manipulated directly. In Figure 1.1, the user has finished the layout and 

connection of the interface (which is an upside-down window labeled My window 1 and 

is asking the system to create a subclass of the a Background semantic object. Since <1ll 

interfaces created with :\loDE are immediately testable at any stage of de\·eloprnent. 
there is no need for a sep;uatP tPst state. 

After the interfacP is created and tested. it can be promoted into thP library 

for future use. or it can be reused as a component in a more complex construction. In 

Figure 1.2. the My window interface has been promoted into the interactive technique 

library and is represented by an icon. The user can then store it in a file and sharP 

it with other user interface developers. 

Figure 1.3 shows several sample interfaces created with ~loDE that illustrate 
some of its more unusual capabilities. The scroll bar in the top left \\'indO\\' (Roam 

demo) scrolls the picture continuously. The top right window (Menu demo) has three 

types of menus: title-bar menu. tear-off menu. and pop-up menu (not cbplayed '· 

.\Ienu items can be text. foreign characters. bitmap or animated pictmPs. Tlw t•>\\t'r 

]Pft window (For Barry) dF?monstrates thf' system's capability to incorporat.· ,,·,lnTI•'•! 

images and text editors. The largest window (0drl5hape Window) (V!lt,lill" T\\" ,q!,. 

windows; both allo>v the nsPr to create networks of nodes . 

. ) 



Netwon:. Winaow 

OdaSnape Window 

[J 
Enter Leave 

Text Editor. 

Althougn I am a 

polling edito,. the 
event-dn<van 

ef'l'fironm8nt ha' 

been treat1n9 me 
really nu::-e 

.· ~ 
-------------,81ii1lOW2 

. I 

Figure 1.3: Sample user interfaces created with .MoDE. 

6 



One particularly unusual feature of \loDE is its capability of supporting arbi
trarily shaped objects. The oddly shaped subwindow has three nodes in it. The user 

is dragging one of the nodes o\·er the trash icon in another window (Level of DM !. 

The trash icon opens to provide semantic feedback. Rubber-band lines are drawn 
from the dragged node to both node Oddl and node Odd3 to show the connection. 

:\otice. also. that the oddly shaped subwindow has a hole in it through which the 

user can see and work with objects (for example. the node Below!) underneath the 
window. \loDE also supports semi-transparent windows as shown in the right-half 

of the oddly shaped subwindow, through which node Below.J is visible. 

Thus, \'loDE provides an effective environment for user interface de·elopment. 
It addresses the issues of generality, the connection between user interface and appli
cation, and support for development activities beyond coding. 

1.4 Organization of the Thesis 

The next chapter reviews research relevant to this thesis and identifies problems cur
rently found in GI1-1S research. Chapter 3 describes the mode concept. Chapter -! 

describes the realization of the ~loDE system and discusses the orthogonality ex

hibited in its design. Chapter .S discusses the use of \loDE as an interface building 
tool. Chapter 6 evaluates the generality and productivity of ~loDE. Conclusions. 
contributions and future directions for research are discussed in Chapter 7. 

1.5 A Note to the Reader 

The videotape discussed in the Appendix C is an integral part of this d1ssertatiun. 

The reader is encouraged to view the tape before reading further. 

-
I 



Chapter 2 

Background 

Cser interface development is currently a very active area of research. \Vork rele\·ant 
to the project described here include the following: 

• window management systems, 

• object-oriented programming, 

• and user interface management systems. 

2.1 Window Management Systems 

Window management systems (or \Vindow )..fanagers) provide the bases on which 

modern user interfaces are built [Fol86]. They allocate regions of display to client 
programs and confine the clients' output to the allocated regions. They also allo

cate input devices (e.g., keyboard, mouse) to clients and route input events to the 
appropriate client program. While different systems address different programming 
probiems and provide varying capabilities, they all provide an indispensable layer 
bf'tween user interface software and their hardware platforms. This section provide~ 
a historical perspective of window management systems. 

Serious research interest in window management systems began with the \Iodel
View-Controller (\{VC) paradigm [KP88] for Smalltalk [GRS3. TeiS6]. The \1\'C 
paradigm divides a user interface into three parts. The moriel provide~ t lw "~'!ll<mt j,·~ 
of the underlying application. the L"IOL' is responsible for the \·isllal aspect.~. ;111d t l1•' 
controller interacts with the user. In the Smalltalk implementation. \'ie\\. pr()\·idc.; 

many of the characteristics of a window. Sy·stems like Sun View [Sun86] and \licrusoft 

8 



Windows [:Vlic85] provide a variety of useful abstractions (windows, menus. scroll bars) 

in the graphical domain. The .\ndrew system [.\ISC+S6] introduced an asynchronous 

communication protocol to support distributed environments. The X \Vindow Sys

tem [SGS6] addresses the need for network transparency and high portability and 

is becoming the most popular window system. :\ot only is X supported by most of 

the hardware vendors, it is also accessible from many programming languages. For 

example, CLCE [KOSS] provides a connection between X and the Lisp world. X is 

also accessible from C, Ada, Fortran. and C++. 

Instead of a set of procedures. ~eWS [Sun87] provides a programming language 

(PostScript) that serves as an interface between client programs and servers. ( lients 

of )re\VS can send PostScript programs to the servers and ask the servers to execute 

the programs. This improves the flexibility of the system and removes the need for 

high volume communication between server and clients. With PostScript. :\eWS also 

discards the concept of pixel by using a mathematical model to describe displayable 

objects. :Vlany believe that .NeWS is technically superior to X [RSD+S7]. 

Although diverse, window management systems provide a firm foundation for 

user interface development. :VIore and more user interfaces will be built on top of 

specific window management systems and will rely on them to provide portability to 

different hardware platforms. 

:Vlany window management systems are accompanied by toolkits that prO\·ide 

libraries of interaction techniques. (For example. the X Toolkit [.\L\SS] of the X 

Window System.) A programmer uses an interface toolkit by writing code to in\·oke 

and organize the interaction techniques. The disadvantages of using toolkits are that 

they provide limited interaction styles and are often expensi\·e to create and difficult 

to use. 

2.2 Object-Oriented Programming 

Object oriented programming is import2.nt for interface developing since it prO\·ides a 

paradigm that helps control the complexity of software through encapsulation. It not 

only supports ·'data-type independent algorithms'' [Sch88b] but also promotes reuse 

of existing softv.tare by inheritance [~fey87]. 

Objects provide the user interface developer with a natural unit with which to 

organize and manage the display. The ability to modify and reuse existing component:-; 

provickd by object-oriented programming makt>s it possible to gcncratf' pr.)r,-,ryp•'" 

to Pvaluate 11ser interface rksigns without extcnsi\·c programming; ~fr•·'-:-:. \Ltil\ 

nser interface toolkits/environments have been built using object oriented techniqtit>. 



Some of the more important ones include GROW [Bar86], GARDEN [Rei87], CLA.\-1 
[CC~l87], Glazier [Ale87], TICS [GE87], ThmkerToy [Gut87], Coral [Sf.188], ET ++ 
[\VC~ISS], and InterViews [LVC89]. 

Due to inheritance, these systems all have higher reusability than traditional 
non-object-oriented systems. Still, with the orthogonality concept introduced in Sec
tion 3.4, reusability can be increased further. 

2.3 User Interface Management Systems (UIMS) 

Built on top of window management systems and programming facilities (such as 
object-oriented programming languages), user interface management systems [OBE+S..J:] 
provide support beyond the graphics domain to further facilitate user interface de
velopment. 

UEv1Ss have been characterized as analogous to database management systems 
(DB~1S) [Kas82]. Database management systems abstract away the low level details 

of physical I/0 and present a uniform abstract programming interface to data man
agement facilities. In the same way, GI~1Ss abstract away the low level details of the 

user interface and provide a uniform pr0gramming interface to them. In doing so, 
they also provide consistency in the resulting user interfaces. 

Because of the large amount of work being done in UI:\1Ss, this comparative 
discussion is divided into the four sections. Section 2.3.1 describes UIMSs for building 
interactive techniques. In Section 2.3.2. VI:\ISs that .. glue" the interactive techniques 

together are discussed. Section 2.:3.:3 provide'; an overview of CL\1Ss that use visual 
representations for input. Section 2.3.4 introducPs a. new approach to CI~lS that 
builds the interface from the semantics of the application. 

2.3.1 Interactive Technique Builders 

An interaction technique is a way of using a physical input device (such as mouse. 
keyboard. tablet, or rotary knob) to input a value (such as a command, number. loca

tion, or name) and, subsequently, to provide some form of feedback to the user. Sev
eral CD.·ISs have been built to help developers create interaction techniques. Squeak 

[CPS.1]. a textual lang11age for programming mouse interfaces. exploits concurrent in
put from different input d•·vices. Panther [Ht'l87] supports menus. forms and sliders 
through tabular spPcif),ation. Peridot [\lye8S]lets the designer directly manipulate 

primitives (rectangles. ~-irdes. text. and lines) to construct menus. scroll bars. sliders 

10 



(graphical potentiometers), and buttons. It also infers parameterized procedures from 
the designer's actior.s to provide run-time behaviors of the interaction technique. 

2.3.2 "Glue" Support 

\lost UL\ISs concentrate on combining and sequencing interactive techniques after 
they have been created: this is called "gluing." However, they differ widely in how they 
approach the task. Green originally identified three principal approaches: transition 
networks, context-free grammars, and event languages [Gre86]. More recently, four 
additional methods have been suggested. They are object-oriented languages, special 
purpose languages, data flow models, and constraint based systems. Distinguishing 
characteristics of each of these seven groups are discussed below. 

Transition networks (Also called finite state machines) The transitiOn network 
model is based on transition diagrams A transition diagram consists of a set of 
states and a set of arcs. The states represent the states in the dialogue between 
the user and the computer system. Th . a.t· ., in Llw diagram determine how the 
dialogue moves from one stat" t, · dnother. The dialogue will move from state :\ 

to state B if there is ar Me between the two states labeled by the action the user 
performed. Different forms of transition networks, including recursive transition 
networks (RTN) and augmented trc~.!lsidon networks ( ATN), have been used or 
proposed as bases for dialogue control [EdmSl, KP83, SBK85, Was85, YHS5, 
Jac86, MVS88, Wel89, LIBYS9]. EDGE [KCSS] and State Trees [Rum88] both 
use tree-like structures, rather than general graphs, to manage the complexity 
of the state diagram. 

Systems that support menu hierarchies and networks [Kas82, A~IYSi, ConS/] 
can also be thought as a form of the transition networks, where each menu is 
a state and the selection of a menu item moves the system to the next state 
(another menu). 

Context free grammars The motivation for this model is the view that human
computer interaction is a dialogue, as in human-human communication. In 
the case of natural languages, a grammar describes the language used by the 
participants in the dialogue. The natural extension of this idea is to use a 
grammar to describe the dialogue between the user and the computer. Systems 
that have used context-free grammars include Syngraph [OD83J and Dialogue 
Cells [tDS.S]. As :..ryers has noted, grammar-based systems are good for textual 
command languag•~s. but are generally inadequate for graphics-ba::;ed direct ma
nipulation interfaces [\1ye89a]. 

11 



Event languages In this model, input devices are viewed as sources of events. Each 
input device generates one or more events when the user interacts with it. The 
events are placed on a queue when they are generated. Event handlers remove 
the events one at a time from the queue and process the event by generating 
as output other events, by changing the state of the dialogue component, or by 
calling the application's semantic routines. One of the main advantages of the 
event model is its capability to describe multithreaded dialogu~s in which the 
user can be involVf~d in several separate or communicating dialogues at the same 
time, such as, editing two files. The user is free to switch from one dialogue to 
another at any point in the interaction. Several UIMSs have been built that 
exploit this approach [Gre85, Hil86, TaMSWS6, FB87]. 

Object-oriented languages Systems based on object-oriented languages can han
dle highly interactive, direct-manipulation interfaces because there is a com
putational link (via message sending) between the input and the output that 
the application can modify to provide semantic processing. GWUI:\IS [SHB86], 
MacApp [Sch86b, Sch86a], the NeXT Application Kit [NeXSS], and ICpak 201 

[Ste88] are typical systems. Various forms of object dependency can also provide 
consistency among different views of the same data in the interface. 

Special purpose languages Several systems have developed new special-purpose 
languages for dialogue specification [Apo88, HSL85, Kas85, KLR89, ABB89. 
Bin88, Gia88, SH89, Ols89, WR82]. Since they are intended for user interface 
construction and do not have the additional complexity required for general 
purpose programming languages, they are somewhat easier to use. On the 
other hand, they require the interface developers to learn a new programming 
language. Also. their textual nature is not convenient for describing graphical 
user interfaces. Several of them have developed graphical aids on top of their 
textural languages to cope with this problem. 

Data flow Several visual programming systems based on the concept of data flow 
[Smi88, IWC+SS] have been useJ to develop user interfaces. The data flow 
model is also used to connect the user interface with the application [DLSS9]. 
Thus, constructing a data flow diagram is equivalent to constructing a user 
interface program. Since the data flow diagram is a two-dimensional graphical 
notation, it is well-suited for visual programming. 

Constraint based Constraints can be used to map between application objects and 
graphical objects. They can also maintain the consistency among multiple view 
of data. SystPms likP- ThingLabii [:\1BFBS9], Coral [S~l88], CvVS [ELSS], and 
the Filter Drowser [E~fB87] use various forms of constraints. 

The systems introdured in the above seven categories provide a wide variety of 
methods to combine software components into user interfaces. The following section 

12 



discusses systems that are specifically graphics-oriented. 

2.3.3 Graphical Layout 

Graphical layout UHviSs can also be classified as "glue" systems. They are discussed 
separately because they allow interaction techniques to be specified directly using a 
mouse. This special feature makes them easy to use. However, some properties of 
an interface are not easily specified by visual representations. The limited expressive 
capability of the mouse either places a serious restriction on the function of these 
systems or requires further programming. 

~Ienulay [BLSS83] allows the designer to place text, graphical potentiometers, 
iconic pictures, light buttons, etc. on the screen and see exactly what the user will 
see when the application is run. Trillium [HC86] supports the design of user interface 

panels for copier machines. BLOX (Rub82], D~IS (HH86], GRE,J'S [ODRS.S], GUIDE 
(Gra86], and LUIS [MB\V89] provide graphical editors for specifying the layout of 
the interface components. Prototyper (Sme87] allows rapid design, prototyping, and 
testing of interfaces specifically for the ~lacintosh. Cardelli's UH.IS uses direct ma
nipulation [HH~86, Shn83] to specify geometric constraints among screen objects 
[Car88]. The NeXT Interface Builder [NeXSS] combines the power of object-oriented 
programming and an easy-to-use direct-manipulation front-end to provide fast cre
ation of direct-manipulation user interfaces. 

2.3.4 Application Semantics First 

lJ nlike most other CnlSs which start the construction of the user interface by spec
ifying the user interface, the l7IMSs described in this section attempt to generate 
the user interface from the application's semantics. Recognizing that the data model 
underlying an interactive system is important in shaping the overall system [A Y~ISS]. 
these systems create a prototype interface by transforming a specification uf t.h.: u.ppli
cation 's semantics. The designer then can modify the prototype interface to improve 
it. A common difficulty with this approach is that the UI~IS used to generate the pro
totype often has no knowledge about the modification. Once the prototype interface 
is modified, the UI:'v1S can no longer be used to work on the interface. 

For Pxample, the Control-Panel Interface [F.JSi] creates graphi('al interfaces for 
control panels and ima~c-proccssing applications based upon procedure's parameter 
types. The sarnc approach is adopted by Peridot [\lye:','-']. \lii\E [OlsS6]. \Iickey 
[OlsSfJ] and CoL-\ [SGS~J] generate a prototype user interface front the definition of 

13 



the semantic commands that the interaction supports. The presentation of the pro
totype interface is then refined using interface editors. Foley (Fol89] developed a 
knowledge-based UI.\lS that accepts description of the interface in terms of objects. 
actions, attributes, and pre- and post-conditions associated with the actions. The sys
tem performs consistency and completeness checks. and suggests alternative design 
strategies. It also provides a number of transformations to the interface specification 
in order to create new user interface designs which have the same function as the 
original design, but which provide a different view of the function for different groups 
of users. Higgens [Hud86] generates support for direct manipulation and Undo/Redo 
by having the developer define the application data in a special semantic data model 

(attributed graphs). 

2.4 Problems with UIMSs 

Although UIMSs provide substantial help for building user interfaces, none provides 
all of the features that developers need or want. This section discusses some of the 
more important limitations. 

2.4.1 Strong Separation 

:\lost UIMSs are based on the assumption that the user interface can be strongly 
separated from the application. This separation is both physical (separate code files) 
and logical (knowledge one component has of another). Separation is attractive since 
it promises a cleaner and more modular architecture. the possibility of a single user 
interface for multiple applications (or vice-versa), and faster interaction with the user. 

Unfortunately, these promises have not been kept in practice. Consider the following 
dilemma: in direct-manipulation interfaces, semantic information is used extensively 
for controlling feedback, generating default values, checking errors, and recovering. 
For example, in the Apple Macintosh user interface, an icon may be dragged with the 
mouse. When it is dragged over other icons that can contain it, such as a file folder. 
tl--,ose icons are displayed in reverse video. This requires semantic feedback from the 
application ( deriveJ frc:n the types of the icons) while the mouse is tracking. Full 
separation results in: 

• the duplication of large parts of the application code in the user interface. or 

• ad hoc programming to provide the necessary communication between the ap
plication and the user interface. thus, paradoxically eliminating the separation. 

14 



Both alternatives are undesirable since they reduce program modularity [:\.lil88]. 
Thus, new approachs are needed to achieve valid separation. 

2.4.2 Poor Support for Linking User Interface and Applica
tion 

Conventional UI:\.1Ss provide little support for linking the generated user interface 
with the application. .\lost either provide a procedural interface and leave all the 
responsibility to the programmer (as in most of the interface technique builders) or. 
slightly better, provide callback mechanisms (as in the Xll toolkit and the NeXT 
Interface Builder). For the latter, a typical callback mechanism allows the program

mer to associate callback routines. which the L'I:\.IS calls in response to user actions. 
with the user interface objects. This approach can be viewed as a way of storing 
knowledge about the application (the routines) in the interface. However, callback 
mechanisms do not provide a satisfactory solution to the problem of separation since 
they require the application to determine which user interface object is generating 
the calls. This imposes a large surface area1 at the callback point which not only 
blurs the module boundary of the system but also makes it expensive to support fine 
grain control [MyeS7a]. 

2.4.3 Lin1ited Capability 

UI.\!Ss are li1nited in the type of the interfaces they can create [.\fye8ib] . .\[ost l"I.\fSs 
promote one specific style of interaction. It is very hard using them to generate user 
interfaces that are not in the style provided. For example, with .\IacApp it is almost 
impossible to implement an interface that uses pop-up menus. 

2.4.4 Little Support Beyond Coding 

\Vhen one builds a good interface, one doesn't just build an interface - one first de
termines how the user will think about and interact with the application domain. 

Thus, the semantics of the application strongly affect the design of the user inter
face. Similarly. the kinds of information and operations needed to snpport the user's 
interaction with the system strongly affect the implenwntation of the system . .\I~)St 

1 Su.rfrJce tlrea is dell Bed :t.~ the numb•·r of things th:1.t must be understood and prop••rly de:1.lt 
with for one programmer's code to funct,Gr1 rnrrectly 1n combination w1th another's [Cox86]. 

1 ,') 



UI:\1Ss only focus on the implementation phase of user interface development and 
provide few, if any, tools that can be used in other phases (specification, design and 
maintenance). As ~Iiller pointed out, the important problems of interface design and 
development can only be solved with tools and working styles that address the whole 
interface problem, from initial task analysis and design through system maintenance 
[Mil88]. And, they must do so in an integrated way. 

2.5 Research Goals 

While the research project described here does not address all of these issues, it 
addresses many of them. The overall approach was to develop a new proof-of-concept 
UIMS that includes: 

• A decentralized connection model that provides both sufficient communication 
between the user interface and the application as well as low complexity for the 
developer. 

• Direct manipulation specification and control for the interface developer for 
most operations. 

• An open system architecture which allows new styles of interaction to be created 
easily and incorporated into the system for reuse. 

• A coherent conceptual model of the user interface that facilitates specification. 
de~ign, maintenance phases, as well as implementation. 

These issues will be discussed throughout the remaining chapters in relation to 
the conceptual basis of the Mode Development Environment (~loDE) and its design 
and use. 

16 



Chapter 3 

Concepts 

In order to achieve the research goals listed at the end of Chapter 2, ~foDE employs 
several new concepts. This chapter introduces these concepts. The next chapter 
describes how these concepts were realized in ~loDE. 

Since ~loDE is based on the ~lVC paradigm, Section 3.1 gives a brief overview 
of the ~lVC paradigm and problems associated with it. Section 3.2 provides a novel 
perspective on direct-manipulation interfaces and explains the concept of ''mode" 
that is central to ~loDE. Section 3.3 extends the concepts introduced in Section 3.2 
and describes the general framework on which MoDE i!:i based. Major components of 
a mode and their inter-relationship are also discussed. In Section 3.4, a type-space for 
modes is introduced and the orthogonal properties of mode components are discussed. 
Section 3 .. j describes the ~loDE connection model, extending the concept of semantic 
object introduced earlier. 

3.1 MVC and Its Problems 

The \lode!- View-Controller ( \lVC) [Ada88, KPSS] paradigm was developed by the 
people who implemented the Smalltalk user interface in order to isolate functional 
units in the user interface. It divides the responsibility for a user interface into three 
types of objects. 

Model: The model represents the data structure of the application. It contains or 
has access to information to be displayed in its views. 

View: Tlw \·iew handlt's all graphical tasks: it requests data from the model and 
displays the data .. -\ \"if'w can contain subviews and be contained within super-

17 



Display output 

Implicit links 

Figure 3.1: The Model-View-Controller framework. 

views. The superview j subview hierarchy provides windowing behavior such as 
clipping and transformations. 

Controller: The controller provides the interface between its associated model/view 
and the user input. The controller also schedules interactions with other con
trollers. 

These three parts of a user interface are interconnected as shown in Figure 3.1. 
The standard interaction cycle is this: 

1. The user performs some input action and the active controller responds by 
invoking the appropriate action in the model. 

2. The model carries out the prescribed operation. possibly changing its state, and 
broadcasts to all its dependent views (through the implicit links) that it has 
changed. 

3. Each view can then query the model for its new state and update its display, if 
necessary. 

~lany user interface systems are based on or influenced by the Small talk ~Iodei
View-Controller paradigm [Aie87, Bin88, KPSS, Har89, Ste88, vd~189]. Although the 
MVC concept provides a convenient object-oriented division at the abstract level, 
the division is rather hard to implement. ~1ost implementations of the ~IVC con
cept have view and controller pairs associated with models. In Smalltalk. the \1\T 
framework is impkmt>ntcd a:-; thrN' abstract supt>rclasses (namely .\!odd ~ ·lfw. and 
Controller). :\'umerous subclasses of thf' three abstract superclasses implement the 
interaction techniques 11scd in Smalltalk. Almost every model has a special view and 

18 



controller pair associated with it. For example, the Fillln The Blank model has the 
Fillln TheBlank View and the Fillln TheBlankController. When this is done. the use 
of a controller. for instance, is limited to the particular view and modei with which 
it is associated. Assigning a differ~nt controller to a view does not change the inter
action but often breaks the code. From the implementer's point of view, it makes 
little sense to separate the view and controller into two modules. Consequently. some 
implementations lump the two parts together. As explained in Section 3.4, this often 
often hinders the reuse of software components and produces awkward inheritance 

structures. 

Although the ~lVC concept has its problems, its principle uf dividing user 
interface components into three parts can still be used to guide the design of orthogo
nal interface components. \Vhile object-oriented inheritance alone does not guarantee 
good reuse of user interface components, an orthogonal design of those components, 
along with inheritance, can facilitate reusability. In addition, orthogonality results 
in a more general and versatile system for buildin~ user interfaces. The following 
sections will explain why and introduce an orthogonal design adopted by ~loDE. 

3.2 The Concept of a Mode-Based User Interface 

() ser interfaces that include more than one mode are generally considered less desirable 
than modeless ones[Tes81]. This section provides a different pomt of view and explains 
why the term mode was chosen to express our central concept. 

3.2.1 What IS a ]\Jade? 

The campaign to eliminate modes from interfaces \Vas started in 1973 by Larry Tesler. 
He defines a mode as follows: 

A mode of an interactive computer system is a state of the user interface 
that lasts for a period of time, is not associated with any particular object 1 , 

and has no role other than to place an interpretation on operator input. 
[SIKV82] 

Tesler describes two major types of mode: preemptive mode and command 
mode [Tes81]. Running a program pnts the user into a preemptive mode during 

1The author disagrees. Even though a tf'xt <'ditor is op<'n<'d on an empty file. its modes are still 
a.5sociated with the empty file object. 



which the facilities of other programs are unavailable to him. This limitation has 
been eliminated in multi-window systems that allow several programs (running in 
different windows) to be active at the same time. The user can switch back and 
forth between windows to obtain services from different programs. Thus, advances 
in Jisplay technology have eliminated the problems with preemptive modes; however. 

the same is not true for command modes. 

Command modes interpret the same user input differently depending on the 
state of the system. User interfaces that include several command modes have been 
criticized because they make it hard for the user to determine: 

• which mode he is in, 

• how he got into the mode, 

• what operations are allowed in the mode, 

• and how to get out of the mode. 

Since the interpretation of key strokes and other user input depends on the mode or 

state of the system, unexpected results can be generated when the user loses track of 
the current mode. 

3.2.2 Direct-manipulation Interfaces are Modal 

~lost of the above problems were caused not by the command mode design, itself, but 

by its realization in text-based interfaces. ~lore recently, many dired-manipulation 
interfaces have actually used command mode designs without causing problems and. 
possibly, without their designers realizing it. 

In a direct-manipulation interface. moving the cursor to point to a different 
object is, in effect. a command to change mode, because once the cursor is moved, 
the range of acceptable inputs is reduced and the meaning of each of those inputs is 
determined [Jac86]. Thus, direct-manipulation interfaces actually divide the screen 
into modes, although they appear to be modeless since these modes are always visible 
and their contexts are entered and left by moving the cursor. Users are frequently 
unaware that they are in a difff'rent mode since all operations allowed in a mode are 
presented by menus and dialoguf' boxes that can he im·oked with simple. consistent 
actions (for example. a button click). Thus. all four disadvantages of modal interfaces 

stated above (pott>ntially) disappear in icon-based direct-manipulation interfaces. 

:?0 



Do you really want to remove this file? 

Yes No 

Figure 3.2: A dialogue box can be viewed as a mode with two submodes. 

3.3 The Mode User Interface Framework 

In this section, we define the concept of mode as it is used in this research and the 
framework in which modes are embedded. The working hypothesis of this research 
is that this particular concept of mode can provide a unified conceptual framework 
that can be used tr. c.~velop a wide variety of user interfaces. The MoDE system was 
built to test t:u,· ,1ypothesis. 

In earlier discussions of modes, the emphasis was on the different interpreta
tion" --f user's actions with respect to the particular contexts for those actions. In our 
di..,~ussion of mode, we place equal emphasis on appearance, semantics, and interac
"ion. More specifically, the basic building block of user interfaces in our approach is a 
mode. A mode is a composite defined by its three attributes: appearance, interaction, 

and semantir.s. It is distinguished by an area on the screen in which most likely 
at least one of its attributes is different from those of other modes in surrounJing 
areas. The Mode framework includes the definition of modes and provides rules of 
composition. Thus, a user interface might be composed of a group of hierarchically 
structured modes. A mode in such a structured interface could contain other modes 
as submodes. Any given mode, however, would be a submode of only one mode- its 
''supermode." The set of modes in a structured interface forms a hierarchy. 

To illustrate, the dialogue box shown in Figure :3.2 can be thought of as a mode 
with two submodes: a "yes" submode and a "no" submode. The yes and no buttons 
(modes) highlight themselves when the left mouse button is pressed within them, and 
they dehighlight therr,selves when the cursor moves away or the left mouse button is 
released. Their behavior is different from that of their super-mode (the containing 
dialogue box) which does not respond to a left mouse button press. The text in the 
dialogue box is not a mode. It affects the appearance of the dialogue box. but it does 
not form an area that provides a diffe:-ent interprdation of the user's input. 

As mentioned above. each indi\·idual mode is defined by its appearance. its 

21 



input 

from user 

I A mode objocl 

connect to 

the application 

or other 

semantic object 

output to screen 

Figure 3.3: The structure of a mode. 

semantics, and the form of interaction it provides. For example, the "'yes" submode 
has the following definition: 

Appearance: White background with black border of width one and a piece of 
text ("yes") centered. The highlighted appearance is the inverse of the normal 
appearance. 

Semantics: Confirm to remove the file. 

Interaction: Highlight when the left mouse button is pressed inside the mode: de
highlight when the cursor leaves or the button is released. \-Vhen the button is 
released. triggers the semantic operation. 

Notice that the "no'' submode shares exactly the same interaction part \Vith 

the "yes" submode. The differences between them come from the appearance and 
semantics parts. 

In an object-oriented design. a mode is an object. The appearance. semantic. 
and interaction components are objects, as well. They can be owned by mode ob
jects, as shown in Figure 3.3. The mode object defines an internal protocol so that 
the component objects can communicate with each other in a standard way. The 
appearance component, called the display object, maintains the mode's appearance 

and can display itself upon request. The intera.ction component, c::alled the controller. 

responds to the input from the user to interact with the user and triggers the semantic 
actions. The semantic component. called the semantic object. snpplies the semantics 
of a mode. The term "<;upply" is used instead of "generate" because in ~[oDE. the 
actual semantics are "generated" by the application but they are "supplied" to the 

interface by the semantic object. Semantic objects can also connect to each other. 



Because the mode object provides a structure in which the three component 
objects can be plugged and unplugged, a mode's appearance, interaction, and ::;e
mantics can be changed by replacing these component objects. tvr example, a mode 
that highlights can be implemented to have two different display objects: one for 
normal state, the other for highlighted state. When the mode highlights, it replaces 

the normal display object with the highlight display object. When it dehighlights. 
the normal display object is switched back. 

The standard interaction cycle of a mode is similar to that of the .\lVC 
paradigm. The controller detects the user's input and tries to process it locally 

(for example, to highlight the mode). When the user's action indicates a semantic 
command, the semantic object is activated by the controller to process the command. 
The semantic object may pass control to the application or to other semantic objects 
to which it is connected, change the appearance and interaction of the mode, or sim
ply update its own state. Notice that while a view in the MVC paradigm queries 
the model and updates the display, a mode in the .Ylode framework provides only the 
structure within which its three components collaborate to perform the interaction. 

The :\'loDE framework can also be related to the finite state machine (FS.\[) 
approach, as discussed in Section 2.3.2, used for many years in describing and imple
menting user interfaces. At the input level, a user interface created with .\loDE can 
be modeled with a FS.\1 in which each mode on the screen corresponds to a state in 
the FS.\1. Moving the cursor into a mode is equivalent to entering a state. Different 
states (modes) interpret the user's actions differently. MoDE goes beyond the FSM 
approach, however, by separating each mode into three orthogonal component objects 
and by providing a connection model based on the semantic objects. 

3.4 A User Interface Component Space and Its Axes 

In the above design, a mode is defined by its three attributes: appearance, interac
tion. and semantics. By assigning an axis to each attribute, we can define a three
dimensional type-space for modes, as shown in Figure 3.4. Each point in the space 
represents a different mode type. The ''yes'' and ·'no'' submodes of the dialogue box 
example are shown as two points in the space. They have the same interactive be

havior but different appearance and semantics. This is reflected in their sharing the 
same value on the "Interaction" axis. 

Orthogonality of the Axes 

Axes that span a space are orthogonal if changing the value on one axis does not atft'Ct 

the values on the other axes. That is to say. the axes are independent of one-another. 



Interaction 

i "No" submode 

"Yes" s bmode 

u~ ~~:.~~~1~~~~~--~:.-.:::·[ 
~ I ; ; 

" : : ~:---
r . 1 : : 

; I ; ; . . . . . . 
~ 

I ,t ~ • •• •• 
I -' ; .• 

...... l .... l ............• • 

Appearance 

I ~ 

I ~" _____ _.., 

Semantics 

Figure 3.-!: The three space for mode types. Two sample points are shown. One for 
the "yes" button, the other for the ·'no" button. They share the same interaction 
attribute. 

Onhogonal design axes, such as those for ~loDE, have several important implications 

that can be seen when compared with one-dimensional designs. 

It is possible to represent the same mode-types with just one ax1s in which 

each type occupies a value on this single axis; huwever, this approach is less desirable 

since creating a new point on the axis defines only one new type. In the case of a 

three-space, described above, creating a new point on one of the axes defines a plane 

of new types. In user interface constructior1, the one-dimensional approach would 

represent, conceptually, lumping all three attributes of a mode together in a single 

object. (Keeping them in three separate but closely coupled objects that can not 

be reused individually, like what has been done in ~1VC framework, is essentially 

the same.) In such an architecture, an attribute can only be reused when the whole 

object can be reused. In the three-dimensional case, three attributes of a mode are 

three independent objects, each of which can be reused independently of the other 

two. The number of opportunities for each one of them to be reused are increased. 

For example. assume an interaction technique library that contains two but

tons. Button A is square-shaped and responds to a left mouse button click to perform 

operation Op 1. Button B is round and responds to a middle mouse button click to 

perform operation Op~. \\"hat one would likf' to have is button (' which is square

shaped and responds to a middle mo11se button dick to perform operation Opl. as 

shown in Figure :3 .. ). 



Appearance Interaction Semantics 

Exist: r---------------------------------------, 

A 

1 I 

1 

[ > p ., leftBullonClick Op 1 
1 

1---------------------------------------J 
B 

r---------------------------------------· 
l ~ middleBullOnClick Op2 l 
~ ' ~----------------------------------------

Wanted: 

c 
~---------------------------------------. 

; I (I middleButlOnC!ick Op 1 

1 

~---------------------------------------~ 

Figure 3.5: The button example. 

BullOn A Button B BullOn A Button B BullOn A Bullon B 

\ / \I 
Button C Button C Button C 

Figure 3.6: Possible inheritance structures for the button example. 

In a single-dimensional design (such as that of the MVC framework), since 

buttons A and B must be reused as a whole, one must create a new class for button 
C and mherit from both A and B. Figure 3.6 illustrates three possible inheritance 
structures. Starting from left to right, making C a subclass of A requires duplicating 

the interaction portion of B in class C. :\laking C a subclass of B requires duplicating 
the appearance and semantics portions of.-\. On the right, using multiple inheritance 
requires one to disambiguate what should and should not be inherited from classes :\ 
and B. None of these approaches is satisfactory. 

On the other hand, since a three-dimensional orthogonal design allows the 
attributes of the buttons to be reused individually, button C can be obtained simply 
by reusing the appearance and semantics parts of button A and the interaction part of 

button B, as illustrated in Figure 3.7. No new class is needed. In fact, by permuting 
the three components, one can produceS different buttons without creating any new 
classes. 

This is a good example of how inheritance, alone, does not guarantee effective 
reuse whereas an orthogonal design does. Notice that the three-dimensional orthogo
nal desigr, is different from parameterizing the aprwarance and interaction of a single 

object. When a new appearance is inw·nted (say a triangularly shaped display ohject). 
the three-dimensional approach immediately gives fom (i.e .. a plane of) additional 

2,5 



Appearance 

mode A 

I nte rae cion 

""t---~ leftButt.onClick modeC 

.----.;~ middleButtonClic........,.;..---

modeB 

Semantics 

Figure 3.7: Reusing the components in a three-dimensional design. as in ~loDE. 

new buttons. This is in contrast to the parameterized single dimension approach 
where editing the code and recompiling are necessary to incorporate a new shape. 

Generality 
The generality of the user interface framework depends heavily on the choice of the 
axes. The more axes a framework has and the more orthogonal these axes are, the 
more mode-types it can span and the more general it is. In reality, it is difficult to 
define fully orthogonal axes. One can only strive for axes that are as orthogonal as 
possible. The .\lode framework is an attempt to find one-such set of orthogonal axes 

as a demonstration of the concept. An implementation of this framework is described 
in the next section. New axes will evolve as new interaction techniques (for instance. 
sound-discussed in Section 7.2) emerge. 

3.5 Connection Model 

The \loDE connection model provides solutions to problems of both stror.g .~eparation 
and poor support for linking the user interface and the application. discussed in 
Sections 2..!.1 and 2.4.2. respectively. 

:26 



User 
Interface 

User 
Interface 

User 

Interface Application 

(a) No separation 

Application 

(b) Strong separation 

Application 

(c) Callbacks 

Figure :3.8: Derivations of cvnnection model. 



3.5.1 A Historical View of Connection Models 

Figure 3.8 depicts the evolution of user interface connection models. In the early sys
tems, there was no separation, as shown in (a). Systems were difficult to create and 
maintain because the user interface and the application were closely coupled. Each 
new application required writing a new user interface. The strong separation model. 
as shown in (b), was developed to provide modularity. Communication between the 
user interface and the application was achieved by "token passing," where predefined 
high level tokens (mostly at the semantic level) were sent across the link between 
the two. A typical example would be a database and its front-end linked by a query 
language. With strong separation, the interface and the application communicate 
rarely and the kinds of information (i.e., the number of different types of semantic 
tokens) communicated are few and stable. This is denoted by a thia line in the dia
gram. Strong separation worked fine until direct-manipulation interfaces came along; 
in these this approach provided inadequate support for the frequent communication 
between the interface and the application. In direct-manipulation interfaces, the ap
plication and interface need to communicate frequently (up to 30 times a second), for 
example, to determine legal positions for an object being dragged with the mouse. 
Also, the types of information communicated are more diverse. 

Callback mechanisms were developed to support the communication needs (in
dicated by a thicker channel in the diagram) of direct-manipulation user interfaces 
and to maintain the-physical separation between the user interface and the applica
tion, as shown in (c). A callback mechanism allows the application to register a set 
of routines with the user interface. At run-time, when an interesting event happens. 
the interface calls the corresponding routine to· inform the application for semantic 
processing. This is basically a way of storing information about the application in the 
user interface. However, the callback mechanism is not ideal becarse it introduces a 
complicated procedural interface (often consists of hundreds of ca'lback routines for 
a non-trivial system) at the connection point, which is difficult to comprehend and 
maintain. 

The MoDE connection model described in the next section supports the com
munication required by direct-manipulation user interfaces while reducing the com
plexity at the connection point. 

3.5.2 The MoDE Connection l\1odel 

Hartson suggests two approaches to "connect'' the user interface and the application 
with sufficient communication [HarSQ]. One is to build more semantic power into 

28 

: 



L A domain fo< connection 

Figure 3.9: A decentralized connection model. 

the user interface; thP other is to establish closer communication between the two. 

The ~loDE communication model tries to do both. The goal is to support strong 

connection with minimum complexity. Unlike GREASE [Hurley 89] which provides a 

single c:entralized "VI-application interface," MoDE provides a domain for connection 

where the semantic components of modes reside, as shown in Figure 3.9. 

Since this domain has knowledge of the application, it can be used to build 

more semantic power into the user interface. For example, a direct-manipulation 

interface might cache some information of the application in this domain to help it 

reduce the number of queries to the application (by using the information directly or 

by using the information to compute more intelligent queries). Furthermore, this do

main becomes a layer that insulates the effects of change from both the user interface 

and the application. 

An advantage the .\loDE connection model has over the callback mechanism 

is the capability of storing knowledge of the user interface in this middle layer. This 

allows the application to remain unchanged when changes are made in the user inter

face. For example, with callback mechanisms, an application that calls the drawing 

routines in the user interface often has to be modified when a new drawing library 

is installed. This is because the knowledge of the interface (how to use the drawing 

library) is stored in the application. With the _\,loDE connection model, the same 

knowledge can be stored in the connection domain. When a new drawing library 

comes, only this middle layer is adjusted and Lhe application can remain unchanged. 

Within the domain, the semantic components serve as the basic unit for con

nection. They and their connections form a directed graph. The nodes in the graph 

are the semantic components and the arcs denote the paths over which messages are 

sent. This graph defines a decentralized interface between the user interface and the 

application. 

\\"ith this distributed connection model. interfaa objects no longer deal with 



a single large application interface. Instead, an interface object sees, through its se
mantic component residing in the connection domain, a small piece of the application 
that implements its semantics. The large application interface, which is hard to re
duce without limiting the communicatiof\, is thus divided into small, independent. 
and manageable pieces maintained by the system. Since communication is provided 
through general object-oriented message passing (instead of callbacks), the applica
tion no longer has to determine which user interface object is gt:"1erating the call. 

With a graphical editor to help the developer to make the connections and to 
locate the objects that implement the semantics of a mode, the complexity perceived 
by a user is even further reduced. This will be illustrated in more detail in Chapter .j. 

3.6 Summary 

This chapter introduced the conceptual background of :VfoDE. It included the concept 
of mode, the :Vlode framework, the type-space for modes, the orthogonal properties 
of mode components, and the :\loDE connection model. The next chapter describes 
a realization of the concepts developed in this chapter. 

30 



Chapter 4 

MoDE: Kernel 

This chapter introduces the ~loDE kernel which realizes the concepts discussed in 
the previous chapter. The ~lode framework is general within the object-oriented 
programming paradigm and could be implemented in a number of object-oriented 
languages. Ho•vever, since the proof-of-concept system was built using Smalltalk 
and because Smalltalk terms have been widely used as a vocabulary in which to 
discuss object-oriented concepts. architectural details are dis, 1ssed using Smalltalk 

terminology. 

Most object-oriented systems use an event-driven control mechanism, rather 
than the polling control-passing protocol used by Smalltalk. Consequently, to make 
the prod-of-concept system more consistent with those systems and to provide better 

performance,. an event-driven mechanism was built to replace the Smalltalk polling 
control-passing protocol. It is discussed briefly in Section -L 1. and in more detail in 

Appendix :\. Built on top of this event-driven mechanism are four basic classes that 
realize the \lode framework. They are described in Section -l.2. Section 4.3 compares 
the classes introduced in Section 4.2 with the Smalltalk \lVC classes to illustrate how 

the orthogonality of \loDE is achieved and how it increases component reusability. 

~loDE has a rather small kernel. currently consisting of about 3,600 lines of 
code. However, this small kernel is capable of creating a wide variety of applications 
including its own direct-manipulation user interface- the \lode Composer. The next 
chapter will discuss this important application and component of :\loDE. Section 1.2 
includes a discussion on how the approach of \loDE can be applied to production 
user interface needs. 

:31 



4.1 The MoDE Event-Driven Mechanism 

This section provides an overview of the :\loDE event-driven mechanism. It is de

scribed in detail in Appendix A. This mechanism not only solves the performance 

problem associated with a polling protocol but also allows interface objects built 
under both polling and event-driven mechanisms to be used by each other with no 
modification and no performance penalty. 

The event-driven mechanism consists of three components: 

Event generator that generates events according to user's actions. Currently, the 
event types generated include: cursor~Iove. [leftjmiddlejright] Button 

(UpjDownJClickJDoubleClick], and keyboardEvents. New event types can be 
added by the user. 

Event queue that buffers the events generated by the event generator and allows 
different applications running on different processes to have sequential access to 
the events. 

Event dispatching mechanism that delivers the events to the right modes. The 
design of this mechanism is vital for the compatibility between the polling and 
event-driven interface objects. Appendix A includes a full description of the 
mechanism. 

As mentioned in Section 3.3, a user interface might be composed of a group 
of hierarchically structured modes. The one mode at the top of the hierarchy is 

called the ··root:\lode .. , It is an instance of Root.\fode class where the event-fetching 
loop is defined. A typical application would have a single Root.\fode and a hierarchy 
of modes. To allow multiple active applications, a built-in mechanism is provided in 

RootJ!ode to guarantee that no two Root.\! odes will attempt to access the event queue 
at the same time. 

4.2 Basic Classes 

Thts section introduces the four basic classes that make up the \lode framework. 

They are .\lode .. \!Controller .. \fDzsplayObject. and SemanticObject. The .\[ode class 
is responsible for event dispatching and window management. The other three classes 
corrf'spond to the three orthogonal axes discussed in Section :3.-t. Figure -l.l shows the 

correspondf'nce between the thrPe classes and the three axes . .-\s mentioned before. it 

.32 



Interaction 

(MController) 

Appearance 

(MDisplayObject) 

Semantics 

(SemanticObject) 

Figure 4.1: Correspondence bet ween the axes and the implementation. 

is very hard to define orthogonal axes in reality. The design presented in this section 
is the author's attempt to create a design with maximum orthogonality. 

4.2.1 lYlode 

The Jlode class implements the basic structure of a mode discussed in Section 3.3. 

In the current implementation, each Mode has a MController, a A-fDisp/ayObject and 

a SemanticOb;ect .. Uode coordinates the activities of these three objects to perform 
the interaction. 

4.2.1.1 Event Handling 

A major responsibility of .Hode is to handle event dispatching. Two methods provide 

this function. The interestedin: method takes an event as an argument and returns 

true when the .\lode is active (an inactive mode does not interact with the user) and 

the event happened in the area controlled by the .\lode. The processEvent: method 
asks the controller to process the event when interestedin: returns true. 

4.2.1.2 \Vindowing 

.\!odr provide~ window mana~enwnt funrtions. Each in~tance of .\loth ran lw acti\·e 

or inartive. \\"hen a .\lodr i:' actin·. it can interact with tlw u,;cr h.\· rccci\·ing the 

input e\·ents and re~poncLng to them .. -\n inactive .\lnrh does not ren'in• any t'\"('nts. 

:n 



Figure 4.2: Clipping capability is essential to the interaction in a mode that is partially 
obscured by other modes. 

and therefore can not interact with the user. Each .\lode has its own local coordinate 
system and a transformation (both translation and scaling) that maps between ti:e 
local coordinates and the screen coordinates. 

A simple constraint system provides a convenient way to specify the position 
and size of a mode when its super.\lode changes its position and size. An example 
of this would be to specify a vertical scroll bar in a window. When the window is 
resized, the constraints can be used to stretch the scroll bar vertically so that the 
top and the bottom touch the border of the window while maintaining its width as a 
constant. 

Several methods are provided to support operations that manage the sub/super 
mode hierarchy. These operations include adding and removing submodes and re
ordering the order of the submodes (like bring t.o top. send to bottom, etc.). 

4.2.1.3 Displaying 

A Mode displays itself by first asking its display object to display its background 
and then asking all contained submodes to display themselves. The built-in clipping 
algorithm draws only the portions of the mode that are unobscured. This capability 
makes it possible for a partially obscured mode to interact with the user. For example, 
in Figure 4.2. the mode containing an ''A" is partially obscured by the gray mode. 
\Vithout clipping, one could not highlight the mode without either bringing it and 
its snpPr\lodes to the t;-..p or rPdisplaying part of the gray mode. With the clipping 
algorithm. the mode can display only the portion that is unobscured and avoid the 
above problems. 

: 



EVENT TYPE MESSA Lie 

enter Mode highlight 

I~veMode deHighlight 

leftB uttonDown action: 

Figure 4.3: A simple eventResponses table. 

4.2.2 MController 

The J!Cflntroller class realizes the interaction component of a mode. 

4.2.2.1 The eventResponses Table 

The MController performs interactions by sending out messages according to the type 
of events it receives. The instance variable eventResponses of this class holds a table 
that stores the mapping between interested event types and messages 1 • Figure 4.3 
shows a simple eventResponses table. The keys of the table ( enterMode, leaveMode. 

and leftButtonDown) are the event types and the values (highlight, deHighlight, 
and action:) are message selectors. \Vhen a .\!Controller is asked by its mode to 
process an event, it checks whether the event type· matches any of the keys in the 

eventResponses table. If there is no match, a false is returned immediately and 
the event is sent to the next mode for processing. If there is a match, the value 
(a message selector) of that key is examined. If the selector ends with a colon (for 

example action:), a message is sent to the semantic object using the selector with 
that event as the argument. Otherwise, the message is sent to the controller itself and 
is handled by the shared-behavior mechanism described below. Since the controller 
has access to the event, it does not need the ~vent as a message argument. This is 
why the message selectors (for example, highlight and deHighlight) intended for 
the controller do not end with a colon. 

In Smalltalk syntax, a message selector ending with a colon requires an argu
ment. A .\!Controller can query a message selector at run-time to decide whether it 
ends with a colon or not. In a more conventionallan!!'li1~e that does not support thi~ 

1 Th1:. tablt> IS implemented as a Small talk dictionary. 

3.5 



querying capability, such as C++, one can associate tags with function pointers to 
implement this feature. 

4.2.2.2 Shared Behaviors 

The AJController class and its subclasses implement a set of shared behaviors as 
instance methods. They include common behaviors such as menu invocation, rubber
band lines and boxes, mode dragging, mode highlighting, and mode resizing. These 
behaviors are sharecl since any instance of the class or the subclass can invoke them. 
A shared behavior is invoked by placing the name of its corresponding method into 
the controller's eventResponses table as a value. 

Local behaviors are promoted into the set of shared behaviors if they are used 
frequently and do not require semantic information. That is, it can be handled by 
the controller and the mode. 

4.2.2.3 Inheritance of Controllers 

The sharing of interactive behaviors cannot be supported by a single inheritance 
scheme, such as that provided by Smalltalk or Objective-C. For example, suppose 
controller A highlights the mode when the cursor moves into its area, and controller 
B allows the user to drag the mode with the mouse. If one would like to have a 
controller C which behaves like a combination of A and B (both highlight and drag). 
what would the inheritance structure be? If C were made a subclass of A, the behavior 
of B (dragging) would not be inherited and would have to be duplicated in class C. 
.\faking C a subclass of B requires the behavior of A (highlighting) to be duplicated. 
Neither solution is satisfactory. 

This kind of problem is not unique to user interface construction- many object 
oriented applications have the same problem - but the situation here is particularly 
severe. In other application areas. one may be able to treat the problem as a special 
case and work around it with ad hoc solutions. Here, it is very common to have 
controllers that would like to inherit from two, three, or even more controllers. In
stead of maintaining a general multiple inheritance mechanism just for this need, 
:\loDE provides a specific mechanism - the eventResponses table - to solve the 
problem. Rather than having a lot of controller classes, all controllers are instances 
of the JfController class. Inheriting from a controller is achieved by copying the con
tents of !ts eventResponses table . .\1 ultiple inheritance is simulated by copying the 
C"ontents from multiple eventResponses table. C sing a table instead of an actual 
multiple inLeritance mechanism also provides the extra run-time flexibility essential 

36 

: 



for interactive construction and editing of user interfaces. 

Under this scheme, creating a class for a controller is used mainly for grouping 
the code of the shared behaviors and limiting assess to them. In some cases, a 

frequently used controller can be made a class for ease of reference. 

4.2.3 SemanticObject 

Semantic objects are programmable in the Mode framework. If an interaction tech

nique is created by coding (instead of using the :\lode Composer introduced in Sec
tion 1.1 ), it will have its own class, which is a subcl~s of the SemanticObject class. 
Instances of this interaction technique are created by sending creation messages to 
its class. The SemanticObject class defines a set of initialization methods to set 
up the parts in the ~lode framework. They are setUpMode, setUpController, and 
setUpAppearance. Whenever a subclass of SemanticObject is sent a creation mes
sage, these three methods are invoked automatically to create and initialize the parts 
of a mode and to connect them to one another. 

Subclasses of SemanticObject implement a "controller-msg" protocol to sup
port the messages sent from the controller. Recall that, in the eventResponses 
table, message selectors that end with a colon are sent to the semantic object. The 
"controller-msg" protocol implements those messages. 

The subclasses of SemanticObject that use menus to interact with the end 
user follow the convention described below. Each class implements two protocols. 
The ·':-.lenu Access'' pro"::><:ol contains methods that return menus. For example, the 
middleButtonMenu method returns the menu for the middle button of the mouse. 
The "'~lenu Support" protocol contains methods that support the menu options. 

SemanticObject dPfines a default instance variable - target! - to store the 

connection to other objects. :"l'ew instance variables are defined in the subclasses 
of SemanticObject as more connections are needed. The connection aspects of the 
semantic object will be discussed in more detail in Chapter.). 

4.2.4 MDisplayObject 

Instances of the .\!DisplayObject class control the "background" of modes. The ·'back

ground" includes the inside color. the border. and zero or more displayable ohjccts. 
The instance variable contents holds a table that keeps these clisplayable objects. 



All objects that understand the protocols defined in the Display0bject2 class can be 
put into this collection. They can be text, drawings, forms, and animated pictures. 

The display method accepts two arguments from ;;~ ..... ~•.::.de-a display box a!":C 

a collect:on of visible rectangles. The display box defines the size and positior .. n; the 
mode. The visible rectangles define the visible portion of the mode rc'"puted by the 
clipping algorithm. 

The AfDisplayObject has the capability to buffer its output as a bitmap. This 
speeds up the display of complex objects. 

4.2.5 Interactions Among the Four Kernel Classes 

This section discus:::es how the four classes described above relate to one another. 
Figure -±.4 illustrates the message-sending relationships among the four kernel classes. 
Each class is represented by a box with its important instance variables listed in the 
box. An arrow at the end of a line indicates the direction of messages. Message 
arguments are omitted; only the message names are shown. The number of colons in 
a message name corresponds to the number of arguments. Descriptions of message 
groups are in Times-Roman. 

The Mode class is responsible for event dispatching. When the user performs 
an action that generates an event, the modes on the screen cooperate to find the 
receiving mode and send the event to it. (See Section A.3.3 in the Appendix for more 
details on how this is done.) The receiving mode then asks its controller to process 
the event b~· sending the processEvent: message with the event as an argument. 

Upon receiving the message, an .\!Controller checks the event type against the 
keys in its eventResponses table. If the value of the key that matches the event 
type is a message selector that does not end with a colon, the event is processed 
by local methods defined in the controller. These methods, in turn, use methods 
defined in the Jfode class to perform the interactions. The erase method erases 
the mode before it is moved, and the display method displays it after it is moved. 
The highlight method switches the mode's dispObj and highlightDispObj and 
redisplays it. The deHighl ight method does the reverse. The unclippedDispBox 
method returns the display box of the mode without being clipped by the the display 
box of the supermode. The unclipped display box is used to draw the indication box 
when a mode is moved with its frame. The image method returns the image of the 
mode that can be us~d to move the mode v-:ith its actual image .. -\11 operations that 

"D~.~play0b]ect ts ;> Srnalltalk cla.'is It ddines tht> lwhavior of all displayable obJects. Instances 
·)f th1s cla.'is know how to display themst>lves given;> medtum and a location on the medium. 

:38 



MCoruroller 

mode 

semObj 

eventResponses 

erase 

display 

~ighligh~/deHighlight 

~nc!1ppedD1sp8ox 

~!"age 

setUnccippedDispBox: 

processEven~: 

Mode 

control~er 

dispObj 

highligh~DispCbj 

displayOn:wi~hUnclippedDis.Bcx:vis~bleRec~s: 

coloned hessages in the 

eventR~ ponses table 

SemamicObject 

mode 

target: 

i . 
messages to other semanuc 

objects or the application 

message: to reflect 
the sema 1tic action MDisplayObject 

con~ents 

insideCo~or 

borderColor 

borderWidt!i 

Figure 4.4: The relat;onships among the four kernel classes. 

change the mode's position use the setUnclippedDispBox: method to set it to its 
final position. 

If the message selector ends with a colon, the event is processed by the semantic 
object. A subclass of the SemanticObject class should be created to implement the 

method corresponding to the message. This method, in turn, may send messages to 
the mode to reflect the semantic action. 

No specific messages are used by the SemanticObject class, but the subclasses 
of the SemanticObject class may use all the public messages of the Mode class. An 
instance of the subclass of the SemanticObject may use those messages to alter the ap
pearance of the mode, switch the mode's controller, or activate/inactivate tbe mode. 
The semantic object may also send messages to other semantic objects or the under
lying application to further propagate the semantic action. 

The MDisplayObject does not send messages to other objects. It merely main

tains the appearance of the mode (inside color, border color, border width, and the dis
playable objects in its contents <::ollection) and displays itself upon request. The full 

message sent from the mode is displayOn: aMediurn wi thUnclippedDispBox: aBox 
visibleRects: aRectCl tn. aMediurn can he the screen or a bitmap. The latter is 
tor buffering the output to spef'd up the displaying. The aBox and aRectCltn are 

;.ccessary for the display object to follow the clipping algorithm and to display itself 



highlight 

Figure 4.5: A simple example. 

efficiently. 

The following is a simple example to illustrate how the four classes described 
above interact with one another. A more complex example will be shown in Chapter.). 

Figure 4.5 shows the example interface. It has two modes: Master and Slave 
(represented by the gray boxes). When the user pushes the left mouse button in 
the Master mode, the Slave mode is highlighted. To accomplish this interaction, the 
following sequence of actions takes place. 

• After the user pushes the button, the event generation mechanism that underlies 
MoDE generates a leftButtonDown event. 

• The event dispatching mechanism. implemented in the Aiode class, delivers the 
event to the Master mode. 

• The Master mode asks its controller ( Controller-M) to process the event. 

• Controller-M matches the event type against the keys in its eventResponses 
table (not shown in the figure) and finds that there is a match. The value of the 
matched key (a message selector highlight Slave:) ends with a colon. This 
indicates that the message should be sent to the semantic object (SemObj-M) 
with the ~vent as an argument. 

• SemObj-M in turn, sends an highlight message to SemObj-5 (the semantic 
object of the Slave mode). 

• The highlight method defined in SemObj-S highlights the Slave mode hy asking 
the mode's display object ( DispObj-5) to display the inverse of itself. This 
completes the interaction. 

40 



', 

This example shows the basic internal interactions among the kernel objects. 
The next section discusses how these objects are used in designing and constructing 
an interface. 

4.2.6 Designing An Interface with MoDE 

The mode concept provides a unified architecture for interfaces. An interface is com
posed of nothing but modes. Given a specification of a user interface, a developer 
using MoDE first identifies the areas on the screen that should have different ap
pearance, interaction, and semantics relative to the surrounding contexts. Each of 
these areas becomes a mode in the Mode framework. This approach decomposes the 
interface into modes that can be refined individually. For each mode, the developer 
reuses or creates display objects to define the mode's appearance. Often, an existing 
controller can be used to define the interactions of a mode. If no controller provides 
exactly the interaction wanted, a new controller can be created by editing a copy 
of the eventResponses table from an existing controller. The semantic object of a 
mode is then programmed to handle the messages from both the controller and the 
underlying application. The .\!lode Composer, described in Chapter 5, supports the 
above activities as well as the creation and management of the connections among the 
semantic objects and between the semantic objects and the underlying application. 

4.3 A Comparison to MVC framework 

The MController, J!DisplayObject, and SemanticObject classes define user interface 
components that are largely orthogonal to one another. As a consequence, these parts 
are more likely to be reused. 

Many systems, such as X Toolkit [~1A88], come with a set of interaction tech
niques (widgets); however they do not separate the interaction, appearance, and 
semantics components into objects. Consequently, it is impossible to reuse individual 
component objects since they do not exist. ICpak 201 [Ste88] does incorporate the 
concept of a separate interaction component, but the appearance of an interaction 
technique is hard-wired. The NeXT Application Kit (NeX88J allows parameterized 
appearJ.nce (subject to the limitations discussed in Section 3.4) but does not have a 
separate interaction object3 . 

3 Graphical user interface specifications. such as Opt>nLook and .\lotif. ar<' not discussed since 
they are independent to the internal architecture of the user interfaces that conform to the specir1ed 
styles. 

41 



The Smalltalk MVC framework comes close to the ideal of orthogonality since 
it separates the model, view, and controller into three different objects. Unfortu
nately, these three objects are closely coupled, resulting in what is, essentially, a 
one-dimensional type-space, as discussed in Section 3.4. 

MoDE carries the concept of orthogonality further than existing systems. To 
examine some of the implications of this design, this section compares the ~Iode 
framework with the MVC framework, the most flexible alternative paradigm. Al
though the comparison is made only between two specific frameworks, many of the 
points are applicable to object-oriented design in general. 

Controllers 
In the MVC framework, in addition to their defined role as interface objects, con
trollers are often involved in processing the semantics, as well. For example, many 
controllers are responsible for creating menus, invoking them, and executing the se
lected operations. Many subclasses of Controller are created just to provide different 
menus. For example, the IconController and the ProjectlconController are identical 
except for their menus. In MoDE, controllers are not involved in semantic processing. 
They invoke menus to interact with the user but leave the creation of menus and the 
execution of their operations to the semantic objects. Since the controller does not 
have deep knowledge of the menus, it is less tightly coupled to the semantics of the 
system. This reduces the number of controller dasses needed while making the exist
ing controllers more reusable. For example, a single controller in MoDE can handle 
the cases of both lconController and ProjectlconController in the MVC framework. 

In the YIVC framework, some controllers ( BinaryChoiceController, for exam
ple) query the state of their models to determine what kind of interaction to perform. 
This couples the controllers with their models. In MoDE, when the state of a se
mantic object changes and requires a different interaction, a different controller is 
assigned to the mode. No controller has to query the state of its semantic object. 
This approach is actually used in MoDE to provide semantic feedback for dragging. 
When a mode is dragged by the user, all other modes on the screen switch to their 
drag-handling controllers. For example, the trash mode switches to a controller that 
highlights the mode when the dragged object is on top of it and responds to the 
mouse button release event to discard the dragged mode. The trash mode switches 
back to its normal controller after the drag action is finished. 

Another limitation on ~IVC controllers which impedes orthogonality is their 
polling protocol. The ~IVC controllers must constantly query their views for the 
information necessary to decide when and where to pass control. The event-driven 
mechanism of :\loDE takes charge of the control passing. This frees the controller 
from querying the mode and makes the t\vo less dependent on each other. 



Views 
Some .Y1VC views also overstep their authority by incorporating semantic informa
tion. These views often keep information and code that could be decomposed and 
distributed more appropriately among semantic objects and subviews. For example. 
the SelectionlnList View keeps the list of items, remembers which one of them is se
lected, and highlights or dehighlights the items. The SelectionlnList View has to do 
all this because it is at the bottom of the view hierarchy (it has no subviews). The 
list items are not subviews. 

With the Mode framework, on the other hand, each list item is a mode and 
knows how to highlight and dehighlight itself. The instance variables and the code 
to handle the selection are moved to their semantic objects. This arrangement not 
only simplifies the interface but also makes it more flexible. For example, one can 
use bitmaps, drawings, and animated pictures in the display object of the list item 
modes to create a nontext list. One can also freely select the highlight styles for each 
individual list item (as opposed to having a single fixed inverse highlight for all of 
them). This is very useful for nontext list since inversing a nontext item may not 
be the proper way of highlighting it. For example, the trash icon in Section 1 of the 
videotape can convey more semantics when it is highlighted with its lid open. 

Smalltalk menus, which were not built with the MVC framework, provide a 
related example. A Smalltalk menu is a single complicated object. In MoDE, menus 
are built with modes: each menu item is a mode; this makes the menus more flexible. 
Item modes can also share components with the list mode. 

Models 
In the MVC framework, models do not have direct access to their views and con
trollers. \Vhen a model changes, a message is broadcast to notify all of its views 
and controllers. The views and the rontrollers then query the model and upd:lte 
themselves to reflect the change. This has several disadvantages. First, the model 
may be a widely shared data object that has a large number of views. Having all the 
views query it whenever there is a change is costly. Also, the broadcast mechanism 
usually requires smart user interfaces that know how to query the models and update 
themselves. The code that supports this intelligence goes to either the view class or 
the controller class. Thus, knowledge of the application (model) is inserted into the 
user interface. Once this is done, the modeL view, and controller are, in fact. coupled. 

The Mode framework solves this problem by abstracting this intelligence into 
the semantic object. This frees the other objects from the need to be coupled with 
each other. Figure 4.6 shows the partition of responsibilities in the :\lode framework 
and in the :\IVC framework. The circles indicate the objects in the :\lode framework. 
The dashed lines show the corr1'spouding :\1\"C objects (their names are in italics). 



View 

separates responsibilities among MVC framework objects 

separates responsibilities among Mode framework objects 

separates responsibilities between the user interface and the application 

I : 
I ; 

-- ----------

' Model ... ... ... 
--- --------

Controller 

User Interface ~ Application 

Figure 4.6: The responsibilities are partitioned differently In the Mode framework 
than in the .\IVC framework. 

: 



4.4 Summary 

This chapter discusst>d the implementation of ~loDE. An event-driven mechanism was 
introduced to provide better utilization of the CP[ and a solution to the compatibility 

problem between polling and event-driven user interfaces. The four basic classes of 
\loDE were also discussed. A comparison between the \lVC framework and \lode 
framework explained how orthogonality among user interface components is achieved. 

-1.5 



Chapter 5 

MoDE: Mode Composer 

The Mode Composer is the direct-manipulation user interface of MoDE. It allows 
the user to create an interface, edit it, and connect the interface to the application 
through direct manipulation. It also illustrates some of the capabilities of the MoDE 

approach to user interface design. 

5.1 Mode Composer in Action 

The Mode Composer is described, first, in relation to a concrete example. This section 
illustrates the use of the ~lode Composer to create an interface for a simple binary 
desk calculator with one display \vindow and three push buttons-·'O," ··I." and ··C"' 
(the clear button). Space limitations require that some details be left out, but further 
explanations of the process appear in subsequent sections. To gain a true sense of the 
look and feel of the Mode Composer, the reader should view the videotape included 

in Appendix C. 

With the ~lode Composer, interfaces are created by dragging objects (modes) 
out of the interaction technique library (the right-hand window in Figure 5.1) and 
pasting; them together. In Figure .5.1. the user has created a Vanilla Mode, shown in 
the left of the figure, that will be used as the background of the calculator, a.nd is 
now editing its appearance. 

Next. the user creates the three buttons and the display window for the desk 
calculator and pastes them onto the backgr<Jt!Dd. This process is similar to drawing 
a picture with a drawing tool. Tlw result is shown in Figure .3.'2. 

The Application Creator shown in the lower right corner of Figure .).2 is us('d to 

: 



0 ij I T Library" 

D Text Button 

Snow SamObj 
Vanilla Mode 

fdit MS Attributu 

1ns1d1 Color 
fl21t Controller Border Color 

Inspect Width 0 

'DtitleJ 
Aemove Hignlignt Style Pt&ne Window 
Back to Normal Plasize Constraints 

1--'< 

EJ 
f'ixea Size LaDet 

Ao&m Box 

Figure 5.1: Editing the appearance of a mode. 

(Ciit MS Attnbut 

rTI Edit Appearance 
~ Edit Control1er 

Jollnspect 
L:...J Aemove 

· .... ·u Sack to Normal 

l@aoa>kCalj 

Figure .5.2: Showing the semantic object for the display window. 

-ti' 



Figure 5.3: System requests permission to create new instance variable for the con
nection. 

create the the computing component of the desk calculator and its visual represen
tative. The computing component is not a visible user interface object, it has to be 
represented as an icon so that it can bt: displayed and manipulated directly. Here, the 
user decides to create the computing component from scratch. A new class, named 
Desk(al, is defined and an instance of the class is created. The visual representative of 
this instance (with the text Ap-aDesk(al) is shown. Recall that the semantic objects 
are the points of connection. To establish the connection between the user interface 
and the computing component, the semantic objects must be present. In Figure 5.2 
the user is requesting the system to show the representative of the semantic object of 
the display window. 

Figure 5.3 shows the semantic objects (represented by diamond shaped icons 
containing an "S") for the display window and the 1 button. The user has created a 
link from the semantic object of the 1 button to the computing component, and would 
like to create another link from the computing component to the semantic object of 
the display window. His plan is for the semantic object of the 1 button to send a 
message to the computing component •vhenever the button is pushed. The computing 

component, in response, updates its states and requests the display window to display 
the digit 1 by sending a message to the sem.:tntic object. Since the DeskCal class is 
a new class, it does not have an instance variable in which to store the connection. 
The system infers that a new instance variable is needed and suggests to create one, 
as shown by the button (USE NEW inst Var) in Figure 5.3. Once the user clicks 
on the button, the :Y1ode Composer will prompt the user for the name of the new 
instance variable, change the class definition of the DeskCal to insert this new instance 
variable, and update all the existing instances of the class. 

~ext. the user selects the Inspect option in the menu associated with the seman
tic object to inspect the 1 button (Figure 5...!). The inspector. shown in Figure .S .. S. 
indicates that the default action message for the h11tton is buttonPushed: The colon 
at the end indicates that there is one argument for this message. By default it is the 
text string of the button. 

: 



!;,, •. ,,.,, 

;,;;,· ,·.;·!•·······r 

.:.\.·'•1':,: 
·····" . ' 

& Ter:tLabel 

Subclass 
[dlt 

Browse Hlerarehy 

Figure 5.4: Inspect the semantic object. 

detJendenu 
mode 
datagar:a 
target 1 
tl~t 

thedSize 

_____ "' ____ _ 

luttonPusned: 

Figure .5 .. 5: The default action message Js buttonPushed:. 

cntckS•z• 
di,DI&yTexr: 

edltAttnbute 
fhtCISizt 
thedSiza: 

Figure .5.6: The system shows a list of the messages understood bv the semantic 
object of the display window. 



Figure 5. 7: The interface and the application are fully connected. 

Since the computing component is created from scratch and does not under
stand the buttonPushed: message, the user selects the Add Message option in the 
menu associated with the link. The system will open a code editor in which the user 
can define the buttonPushed: method in the DeskCal class. 

In the process of defining the method, the user needs to know what message 
can be sent to the display window to display the result of a computation. The system 
can help by displaying the messages understood by the semantic object of the display 
window. In Figure 5.6, the list of understood messages is shown and the user finds 
that the displayText: method is the one he needs. 

The other two buttons can be connected in the same manner. Figure 5. 7 
shows the fully connected desk calculator. Since all interfaces created with MoDE 
are immediately testable, there is no need to switch to a test state. Further, the 
user can test the partially implemented interface at any point in its development. 
In Figure 5. i, for example, the but ton 1 was pushed and the display wi-ndow of the 
calculator shows the correct result. 

To complete the example, the user must define the functions of the clear but
ton. Two approachs suggest themselves. The first one is to keep the default message 
(buttonPushed: ). Whenever the button is pushed, the message buttonPushed: will 
be sent to the computing component with the string Cas an argument. The comput
ing component then interpret the argument Cas a special command. An alternative is 
to use a different r:tessage selector (for example clear) and define the corresponding 
method in the DeshCal class. Both approachs are valid. The ~·lode Composer allows 
the user to choose whichever he prefers. 

After the user finishes developing the interface, he hides all the connections 
and promotes the calculator into the interaction technique library by dragging the 
d~sk calculator into the library. The library automatically prepares an icon for tht' 
calculator. as shown in Figure .5.S. 

50 

: 



J ~,~a 1 1 I· 
. ,:.<'·.:.:::::· ::: [2:] 

''· ··:: :::•·,,: ' .. l(j""" 
<'· ,.;,, o•'f; '': :·:.,. • I .;;1 .L.:...l 

... ;,,.,,.,,,,,,.,,' ... ·C:l 

0 

D 
VaniU& Mode 

~ 
P"a.n• Window 

EJ 
Flxec:l Size L&bel 

Text Button 

Aoa.m Box 0 

~ 
O•sk CaltuJa tor 

Figure 5.8: The binary desk calculator IS promoted into the interaction technique 
library. 

D 
DC 

Cl ~ 
EJ 
u 

Figure .5.9: The calculator is put into a window. 

,jl 



Finally, to make the desk calculator a better "citizen" of the windowing envi
ronment, the user drags a window out of the interaction technique library and places 
the calculator in the window, as shown in Figure 5.9. ~ow the desk calculator can 
be moved around and closed into an icon just like other applications. 

This example has demonstrated the basic rhythm of use for the Mode Com
poser. In the sections that follow, additional details are discussed. 

5.2 Mode Editing 

A mode can be edited not only in the ~lode Composer but also when it is in use. 
Editing capability is built into every mode and can be turned on and off. When it is on, 
all modes respond to a special meta key (Control-E in the current implementation). 
When a mode receives the meta key, it stops its normal execution and place itself 
into an editable state where various editors can be invoked. This state is indicated 
by eight small resize boxes surrounding the mode (see Figure 5.1). From this state, 
all parts of the mode can be accessed and modified. 

The capability to interrupt a running interface at any point is essential to 
providing better support for testing and maintenance. Traditionally, people set break 
points in the programs to test and debug them. Often, the most difficult part of 
using break points is deciding where to set them. An interface developer often has to 
read through and understand many pages of code and make several trials before he 
finds a good location for a break point. By allowing its user to interrupt a running 
interface at any point, the Mode Composer can help the user to find the locations 
for inserting break points quickly. In most cases, a user of the Mode Composer can 
rapidly go to the point where he can access the testing and debugging information he 
needs without even setting any break points. 

The meta-key mechanism is built with MoDE also. When a controller of a 
mode receives the meta key event, it instructs the mode to enter the editable state. 
The mode does so by putting up a transparent mode that covers the entire screen 
to block all existing modes (including itself) from receiving events during the editing 
period. On top of the transparent mode, the eight small resize boxes (each one is a 
mode) and a transparent proxy mode that covers exactly the area of the edited mode 
are attached. The proxy mode provides the edit menu and allows the user to drag 
the edited mode. When the user finishes the editing, the big mode (as >veil as the 
nine submodes of it) is removed and the interface goes back to the normal execution 
state. 

Since in the ~lode framework, everything is a mode. the above arrangement 

: 



·. 

allows all interface objects to be editable. The regularity of the Mode framework 
removes the neeJ for special case editors. Since all modes have the same structure, 

they can be edited with a single editor. The orthogonal design also helps. Since 
the components of a mode are orthogonal to one another, individual editors can be 

designed for each one of them without worrying about the dependencies among them. 

Finally, since the meta-key mechanism is built with ~loDF, it can be edited by the 
~lode Composer. This makes its design, development, testing, and maintenance easy. 

The capabiiity of ~loDE to mix its event-driven interfaces with the original 
Smalltalk polling interfaces reduces the effort in creating editors for different parts of a 

mode. For example, the Smalltalk dictionary inspector is used to edit the controller's 
e'lentResponses table. The Sm~lltalk ~lVC inspector can be used to inspect the 

mode, the controller, and the semanti-: object at once. 

5. 3 Connection Editing 

Connections in MoDE are implemented as object pointers. There are two purposes for 
having a pointer to an object: to send messages to the object or to manipulate it as a 

whole (for instance, to assign it to a variable or to pass it around). :\-loDE assumes that 
a connection is primarily intended for message sending. Although most of the support 

frcm MoDE is for message sending, the connections can still be used to manipulate 
objects as a whole. In order for an object to send a message to another object. it 

must have the objest pointer of the receiving object. Usually this is done by storing 

the object pointer in one of the sending object's instance variables. All semantic 

objects have a default instance variable, target 1. for this purpose. \Vhen more than 

one connection are necessary, new instance variables are created automatically by the 

system. Object pointers can also be stored in a collection to avoid creating many 
instance variables. Only one instance variable is needed to keep the collection. 

The semantic object of a mode can be shown when the mode is in the editable 

state. (Actually, it is the visual representative of the semantic object that is shown 

since the semantic object is invisible.) The "Show Connection'' command shows 

the connections to and from a semantic object. ConnPctions can be one wav or 

hidirectional. They arc added and removed with direct manipulation . 

. -\fter a connection has been established. messages sent across the connect ion 

can he a~sociated with it. If a message is entered that is not understood by the 

receiving object. tfw :-;ystem will al!lomatic;dly invoke a program editor for the u:-;n 

to crPatc the corresponding method. The 11ser can code the method or simply put 

cmmwnts thf'rc. The \at tf'r provides a way to spt>cify a skeleton of a system without 



coding. All messages associated with a connection are managed by the system and 
can be inspected and modified by invoking program editors through menu selection. 

Often in programming a semantic object one would like to create a subclass 
and put all the changes there to avoid affecting other semantic objects from the 
base class. This requires replacing the original semantic object with a new instance 
of the subclass, with all values in the instance variables preserved and all existing 
connections, in and out. maintained. The Mode Composer provides this service au
tomatically when the user selects the ''Subclass" option in the menu associated with 
the semantic object. 

5.4 Library Management 

The MoDE library stores the interaction techniques as "prototypes" [Lie86] (live 
objects with values in the instance variables retained). Each library object represents 
a "prototype," as opposed to the class, of an interaction technique. As a consequence, 
when promoting an interaction technique, only a live copy of the technique must be 
created and registered; there is no need to recompile the library. Furthermore, once 
an interaction technique is promoted into the library, it can be reused immediately 
by making copies of it. The above properties allow the library to be dynamically 
expanded. Interactive techniques stored in the library can also be written to files. 
These files can be read by other interface developers' libraries to share interaction 
techniques. 

Besides the orthogonal design of the mode framework, the capability to intro
rl.uce new objects to the library easily is also essential to the generality of the system. 
If an interface builder were to have a fixed set of library objects, the kind of interfaces 
that it could create would be limited. Since the user of ~loDE can freely promote new 
objects into the interaction technique library, MoDE is not limited in this respect. 

5. 5 Discussion 

5.5.1 Self-Creation 

\ot only is the \lodP Composer an important component of \loDE. it is also an 
import;wt application of \loDE. To JPmonstrate the generality of \foDF. the user 
interface of \loDE was created using itself. Consequently . .\loDE can be used to edit 
itself. For example. in Figure .5.10. \loDF is heing used to examine the connection 

.)4 

: 



·. 

D Tezt Button 
vantlla Mode 

~ 
Pt4ne Window 

Roam Boz 

Figure .5.1 0: The ~lode Composer is used to edit itself. 

between the ShrinkBox and the Window of the interaction technique library. The 

user has also made several changes to MoDE. The two scroll bars of the interaction 
technique library were removed, and a Roam Box (a two-dimensional scrolling device) 

has been attached. 

Since it is easy for users to customize the user interface of ~loDE, other users' 

interfaces ma.y look and feel differently than the author's presented here. 

5.5.2 Classes Do Not Make Good Types 

Recently, there has been a debate in the object-oriented community on whether classes 

make good types. l\lany argued that classes are merely for implementation purposes 
since they do not characterize the ''behavior" (type) of objects properly. The inter

action technique library provides an interesting example that supports the argument. 

Observation of the use of the ~lode Composer shows that its users naturally treat 

each object in the library as a type. For example. a user might drag a button out 

of the library, change its border width, and promote the changed button back to the 

library. From then on. he would think he has two types of buttons instead of one. 

The same thing happened to changes made to the controller and the semantic object. 

Cven though the two buttons are composed of parts from the same classes, they are 
treated as different types. Classes are not sufficient to differentiate these types. In 

the interaction technique library the differenres come more from the values of the 
instance \·ariables of tlw objects than the classes to which they lwlnng. This supports 

dw •:hoice of u:c;ing prot.ntype:-; which prescrn· the values of the insta.nce variables. 

instPad of classes. to represent objects in the interaction technique library. 



5.6 Summary 

The ~lode Composer provides a direct-manipulation user interface to the users of 
~loDE. It supports the editing of modes and their connections as well as the man
agement of the interaction technique library. 

: 



Chapter 6 

Experience "W.,.ith MoDE 

6.1 Generality 

It is very difficult to discuss formally the range of user interfaces that MoDE can create 

because there are no comprehensive taxonomies of existing interaction techniques. 

Additionally, new techniques are being created all the time. In fact, one of ~loDE's 

goals is to facilitate the creation of new techniques. Furthermore, since ~loDE is 

integrated with the Smalltalk programming environment, the user can always escape 

from MoDE to Smalltalk and code any portion of an interface that MoDE does not 

support. This further complicates an analysis of MoDE's generality. Consequently. 

this section will discuss the range of applications l\loDE can produce ·with the help 

of examples. 

6.1.1 vVhat :NioDE Can Create 

In Section 3.4, three axes were described that span the space of mode-types, as shown 

in Figure 6.1. The greater the number of mode-types a framework can span the more 

general it is. Theoretically, almost any direct-manipulation interface (with a pointer 

as an input device and bitmap display as output device) could be built •"ith the ~lode 

framework. However, the current implementation of the three classes that realize its 

three axes and the .Uodc class that realizes the event dispatching mechanism limit 

the possible interfaces. This section discusses the generality of the .\lode framework 

with respect to the ranges of these four classes. 

\IDisplayObject The .\f!)zsplor;Objtcl cla~s fHO\·idc~ ways to define the appt'aranc<' 

of a mode. All objects that understand the Smalltalk DzsplayObjerf protocol 

·11 



Interaction 

(MController) 

Appearance 

(MDisplayObject) 

Semantics 

(SemanticObject) 

Figure 6.1: The three axes span the space of mode-types. 

can be used in a AfDisplayObject to define an appearance. This incmdes text. 

drawings, bitmaps, and animated pictures. 

MController An 1VfController performs the interaction by sending out messages 
according to the types of input events received. The event types currently 
supported by the system are: cursor move, enter/leave mode, button down/up, 
button dick, button double click, and various keyboard events. This set of 
event types is sufficient for the implementation of most interactive techniques 
(menus, dialogue boxes, buttons, etc.). 

The set of shared behaviors defined in J!Controller currently contains support 
for dragging, resizing, linking, and menu processing. New behaviors may be 
added into this set in the future. 

SemanticObject Subclasses of the SemanticObJect class are fully programmable by 
the user. A user can program whatever Smalltalk function he wants in these 
subclasses. 

Mode The Mode class defines the event dispatching mechanism. Currently. it sup
ports two event dispatching policies: the "hot cursor" policy that delivers events 
to the front-most mode containing the cursor, and the "focused mode" policy 
that delivers all events to a. specific foc:.~sed mode designated by the user. 

With the above implementation, ~loDE has been used to generate its own 
interface and to generate test interfaces that simulate major components of the in
teractions implemented in :\Iacintosh. \eXT. and Sun\'if'w. For the test interfaces. 
no underlying data structure nor functions were implemented. The following is a list 
of the style features simulated. 

.)8 

: 



'. 

• Drag screen objects with frame (:\lac. Sun View), drag screen objects with actual 

image ();eXT) 

• Feedback (by highlighting) when a screen object is dragged over another one 

(:\lac. :-\eXT) 

• Hierarchical menus that can be in the form of: pull-down menu(::\lac), pop-up 

menu (SunView), or tear-off menu ();eXT) 

• Inverse highlight (:\lac). animation highlight (~eXT black-hole), change ap

pearance highlight (~eXT folder) 

• Screen objects that look :3-D (:.ieXT) 

• Invoke menus from the border of a window (Sun View) 

• \Vindowing behaviors such as open and close windows with rubber-band effects. 

and resize the windows (::\lac, ~eXT, Sun View) 

• Titie bars for wmdows (:\lac. :'-!eXT, SunView) 

Section 1 of the videotape in the appendix shows other sample interfaces cre

a~.ed with :\loDE. These resources could be used to generate many other interfaces 

· sing combination and variant form of the components described .. By adding new 

(Omponents, in the manner described, the range of possible interfaces could still be 

·urther extended. 

·~.1.2 \Vhat lYioDE Can Be Extended To Create 

fhis section discusses interfaces that can not be built with the current implementation 

,f :\loDE but could be handled by an extended :\loDE. Again. the basic classes are 

1sed to structure the discu~sion. 

'.1Display0bject The .\!Displn.yObject ha::: been designed for color display and has 

variables reserved ior color handling. The only reason that :\loDE does not 

run in full color is because the current version of Smalltalk does not support 

colors. Once Smalltalk supports color or :\loDE is ported to a platform that 

does support colors. color images can be created immediately. Video images 

ran also be incorporatrd so long as the output can be clipped by the display 
h•)X •>f ;1 mod". 

\!Controller \f'W e\·cnt t_qw~ can lw added to incl11dt' rww inp11t de\·ice~ ~uch as 

juyst ick ;wd control dials. Programming is !lt'Cf'~sary to dd1rw new en'nt types. 



l\llode Event dispatching policies, such as a ""priority list" policy where events are 
sent to the modes according to their priorities, can be implemented by modifying 
the event dispatching method defined in the .\[ode class. 

With some additional work, ~loDE could also be extended to handle 3-D inter
action and audio interaction. These possible extensions are discussed in Section 7.2. 
In prir.ciple, the concept of mode could be used to organize and create user interaction 
in 3-D virtual realities in which modes are associated with locations in 3-D volumes 
and have shapes and semantics that affect the 3-0 virtual world. 

6.1.3 Inappropriate Applications 

There are some interfaces for which :VIoDE does not seem appropriate. They include 
interfaces that do not use a bitmap display as their output device (such as force 
feedback systems) and interfaces that do not use a pointer as the major input devices 
(such as treadmill-input systems). 

Since ~loDE assumes an event-driven input mechanism, it is inappropriate for 
user interfaces that use polling mechanisms .. Finally, :VloDE is intended for direct
manipulation interfaces. Although it is possible to create text-based interfaces with 
MoDE, the concept of mode would not provide much help. 

6.2 Productivity 

An informal experiment was conducted to study the productivity gain produced b\· 
~loDE. This section describes the experiment and its :-esults. 

6.2.1 Subjects 

Four subjects were divided into two groups. Group A was composed of experienced 
Small talk users (with five years and one-and-a-half years experience. respectively). 

Both had extensive ~xperience programming user interfaces in Smalltalk. Group B 
consisted of two first year graduate students who started learning Smalltalk three 
months before the experiment . 

.\11 subjects wen' a;-;kcd to implcnwnt the ~anw interface under Smalltalk. Tlw 

s11bjects in group .~ (the more expPriPnced Smalltalk programmers) cho~c whatn·er 

60 

: 



·. 

tools (except .\loDE) they wished to use to implement the interface. The subjects in 
group B (the less experienced Smalltalk programmers) were required to use .\loDE 

exclusively. 

Both groups were given three hours in which to build the interface described 

below. 

6.2.2 The Assignment 

The following text is a verbatim listing of the assignment given to the subjects. 

6.2.2.1 Rules 

• You are to build the interface illustrated 1n Figure 6.2 and described Ill more 
detail below. 

• (For group A) t; se whatever tools you wish to help you. 

(For group B) Dse .\loDE exclusively. 

• You have up to 3 hours to build as much of the interface as you can. The time 
you spend in completing the task will be recorded and is important. 

• :"Jo comments. optimization, or documentation are required. 

6.2.2.2 Description of the Interface to Be Built 

The interface to be built is the window shown in Figure 6.2. The parts of the window 
are described below. 

Title bar: The title bar (at the bottom of the window) has a title text in it. \Vhen 
the user presses the left mouse button in the title bar and drags, the whole 

window moves with ~he mouse. 

Contents: three boxes within a field larger than the window that can be used to 
demonstrate the function of the scroll bar. 

Scroll bar: used to scroll the rontents of thf' window verticalh-. 

Resize corner: \\.hen the 11ser prf'sses t lw ldt mo1Jse h11tton on top of the resize 

cornPr (at the 1ippf'r right corner of the window). a rubber band outline of the 

61 



D 

Figure 6.2: A picture of the window to be built. 

window is shown, and the upper right corner of the outline moves with the 
cursor. When the user releases the button, the size of the window matches the 
rubber band outline. 

When the window is resized, the following :>roperties should be maintained: 

Title bar: height fixed, title text centered, the white background of the title 
text remains the same size. 

Resize corner: height and width fixed, sticks to the upper right corner of the 
window. 

Contents: height and width fixed. 

Scroll bar: width fixed. 

During the experiment, you will also have access to a running implementation 
of the interface that you are about to build. It comprises the definitive specification 
for the interface. 

6.2.3 Ftesults 

Both subjects in group B completed the assignment with all features implemented. 
Subject Bl used .Si minutes, 82 used 2 hours and 3 minutes. The instability of the 
version of \loDE used in the experiment accounts for much of this difference. During 
the two hour period for the experiment. subject 82 crashed the system twice and was 
thrown ont of Smalltalk (not jnst \[oDE). Berause intermediate results were stort'd 
in main memory and could not be rccow·rcd after the crashes. 8'2 had to start from 
scratch after both crashes. 

: 



Neither subject in group A completed the assignment in the three hour time 
limit for the experiment. They completed some features, partially completed others, 
and some were not attempted. The following is a summary of their results. 

SUBJECT Al 

Title bar: partially completed. (title text not centered; the background under the 
window is not restored; scroll bar does not redisplay after move) 

Contents: completed. 

Scroll bar: partially completed. (looks different; has two unnecessary boxes at the 
top and the bottom) 

Resize corner: completed. 

Maintaining proper appearance when the window is resized: 

• Title bar: partially completea(title text not centered) 

• Resize corner: completed. 

• Contents: partially completed (height and width scaled incorrectly) 

• Scroll bar: completed. 

SUBJECT A2 

Title bar: partially completed (no title text: the background along the moving path 
is erased by the moving window) 

Contents: completed. 

Scroll bar: partially completed (looks different; has more function than needed. 
basically a standard Small talk scroll bar.) 

Resize corner: not attempted. 

:\laintaining proper appearance when the window is resized: 

• Title bar: not attempted. 

• Resize corner: not attempted. 

• Contents: not attempted. 

• Scroll h<.r: not attempted. 

63 



After the experiment, subjects in Group A were asked to estimate the amount 
of additional time they would need to finish the assignment. Al indicated 4 to 8 hours, 
minimum, with ·'proper support." (Another two days would be needed to improve his 
tool-set to provide the "'proper support.") A2 estimated 4 to 8 hours, additional, for 
him to complete the assignment. 

6.2.4 Discussion 

The design of the experiment was purposely biased against MoDE. Group A could use 
whatever tools they chose, but group B could use only ~loDE. Group A consisted of 
experienced Smalltalk programmers, while group B consisted of inexperienced MoDE 
programmers. Furthermore, Bl and B2 had completed only two small assignments 
using MoDE prior to the experiment, and they were unfamiliar with the resize func
tions of MoDE. This is reflected in the large proportion of time both spent on the 
resizing features of the problem interface. (For example, Bl finished everything else 
in about 15 minutes and spent 40 minutes with the resize features.) The instability 
of the version of MoDE used in the experiment also worked against MoDE. It is esti
mated that B2 spent at least half an hour recovering from two crashes. If subjects in 
group B had had more experience with MoDE and the implementation of MoDE had 
been more stable, even greater differences 1n performance would have been expected1 . 

The intention of the experiment was to demonstrate informally the productiv
ity gain provided by MoDE. Since Group A did not finish the assignment, only the 
estimated numbers are available for comparison. Nevertheless, this informal experi
ment suggests a substantial gain in productivity could be achieved for programmers 
with modest experience using a stable ~1oD E system. 

6.3 Performance 

Performance is an important consideration for any system. However, it must be 
placed in context and considered in relation to other criteria and objectives for a 
system. ~loDE wa;, built as a proof-of-concept system and, hence, emphasis v•as 
placed on the generality of its architecture. Since ~1oDE is intended as a prototyping 
tool, flexibility (in addition to generality) is more important than raw speed. 

In the current interpretive implementation. :\loDE may be considered ''slow."' 

lThe author. an I'Xpert ~1oDE user. took 15 minutes to build the running implementation used 
as the definitive specification in the exp<'riment. Approximately ..J hours were needed by th<' author 
to build the same interface without ~loDE 

6-t 

: 



but its slowness is relative and, in practice, has not detracted from its usefulness. 
Several measures of performance will be discussed briefly below, but to get the look 
and feel of ~loDE in actual use, the reader is referred to the videotape in Appendix C. 
This videotape was shot in real-time. It demonstrates the efficiency of the interfaces 
built with MoDE. The sample interfaces includes windows that move smoothly with 
their actual imag,.,s instead of indication boxes, a star that rotates when dragged, a 
scroll bar that scrolls the contents of a window continuously, and a screen object that 
clips against its surrounding environment while tracking the cursor. 

On a Sun3/i5, moving an icon in a MoDE-generated interface has a iO to 100 
ms gap between the time the user pushes the button and the time the icon starts to 
move. If the same operation is programmed with a C++ graphics library that has 
direct access to the low level Sun View routines, the gap decreases to about lms. Al
though these numbers indicate two orders of magnitude difference in performance, the 
human user can hardly notice the difference. vVith faster machines, the performance 
difference becomes even less noticeable. 

MoDE has been used to proG.uce functional interfaces for actual applications; 
they include the interface for MoDE itself and the interface for a hypertext software 
development system currently being built. In most cases, the interfaces created with 
MoDE actually ran faster than interfaces created with original Smalltalk tools because 
of the caching capability inherited by all modes. For example, the interface for a 
hypertext application built with MoDE can refresh a directed graph with 100 nodes 
and 150 links 3 to 4 times faster than the same interface implemented directly with 
Smalltalk tools. 

The major factors affecting ~loDE's performance are consequences of its im
plementation in Smalltalk, rather than the architecture of the system. Smalltalk 
drawing routines used by .\loDE are implemented with non-optimized algorithms. 
They run much slower than ordinary drawing routines such as those of Sun Vie\v 
and X. Second, Smalltalk is an interpreted language2 ; Smalltalk programs, includ
ing r..loDE. execute an order of magnitude slower than compiled programs [JGZSS]. 
The overhead required to achieve the generality of MoDE is not a significant factor. 
By partitioning the interface components orthogonally, MoDE incurs only a constant 
ov~>rhead cost for its generality. This fixed cost is the constant number of additional 
messages nPeded to support the indirection that, in turn, supports the orthogonal 
partitioning. 

The fixed overhead incurred between the time au c''~>nt is generated and the 
time it is fully processed typically includes the following: 

2 Th••re are ~malltalk impkrnentations that art> compil··d .1.nd providt• hett,•r p••rforntanc<' [.\tki'G. 
J(~Z88]. Cnfortunately thetr compilers strip away much of the run-t.trn•' flextbdity of the mterpr<'t,·d 
Smalltalk. which is essential for the implementation of \!oDE 

65 



• One message sent from the mode to controller to process the event. 

• The cost of the controller eventResponses table look-up. 

• One message for the controller to inform the semantic object. 

• Two messages that go back and forth between the semantic object and the 
application. 

• One message sent from the semantic object to the mode to reflect the semantic 
action. 

• One message from the mode to its display object to display the difference. 

The profile data collected from a session similar to that shown in section 1 of the 
videotape indicates that these overhead events consumed less than 2% of the overall 
CPU time. This suggests that further optimization on this portion of the system 
could provide very little gain. 

Since MoDE is general with respect to object-oriented programming, the sys
tem can readily be ported to a non-interpreted object-oriented language that can 
interact with a faster drawing library. Such a port would eliminate the two major 
performance liabilities mentioned above. Section 7.2 outlines a possible approach for 
making such a port. 

Thus, while interfaces produced by .\-loDE are measurably slower than inter
faces implemented using conventional tools, their differences are insignificant from 
the point o; view of the user. The .\-loDE architecture achieves its flexibility and gen
erality at a small. constant overhead cost. Thus, when }.faDE is ported to production 
platforms, such as Objective-C and X Window System, the interfaces it produces 
should be as efficient as those produced using other user interface building tools. 

6.4 Summary 

MoDE is sufficiently general to produce a wide variety of interfaces including the 
interface styles in Sun View, NeXT, .Ylacintosh, and those in the section 1 of the 
videotape. The Mode framework is currently limited by the implementation rather 
than the con epts that it is based upon. and can be extended to provide further 
generality. :\n informal experiment suggests that \loDE is capable of increasing the 
pro<ill(·tivity of its usPrs. \[oDF. also gf'nerates interfaces tilat provide rE'asonahle 

performance ;;nitablt' for actual applications. 

66 

: 



Chapter 7 

Conclusion 

7.1 Summary 

The .\loDE research contributes to the state of the art of user interface development 

by achieving the following goals. 

Generality 
The orthogonal design of the 0.1ode framework not only allows the user interface 
components created with \loDE to be highly reusable but also allows the axes to span 

more mode types, which results in a more general system. \Vit.n an open architecture. 

the .\loDE interaction technique library allows new styles of interaction to be created 

and incorporated into the system easily. 

Connection between user interface and application 
The decentralized connection model allows a strong separation of the user interf<tce 

and the application without limiting th-: communication between them (which is 

essential for providing rich semantic feedback). 

Support beyond coding 
The mode concept provides an informal framework in which the user interface devel
oper can specify the interface conceptually from the end user's point of view. This 

fr?mework also provides guidelines to help decompose an interface into components 

during the design phase. The structure regularity imposed by the .\lode framework 

1.cross all interfaces and the interrupt-i'.nd·inspection capability .\!oDE supports helps 
tbP df'·:elopf'r in both debugging and maintenance. 

Integration bf'tween event-driven and polling interface::; 

To the best oi the author's knowledge, tlw \loDE event-driven mechani~'l1 is the first 

67 



such mechanism to allow polling and event-driven user interfaces running together 
without any performance loss and without" altering them. Appendix A.4 discusses 

this in details. 

7.2 Future Research 

The work reported ht ~e can be extended in many ways. 

Expand the Type-space of Modes 
The type-space of modes defined in Section 3.4 can be expanded by creating new 
values on the three axes. For example, \-loDE currently does not support video on 
the appearance axis. Defining a new subclass of .vfDlsplayObject .hat displays video 
images would allow the type-space to expand and cover more usc:r mterfaces. 

Direct-l\!Ianipulation Support for Dynamic Interfaces 
The ~lode Composer currently provides little direct-manipulation support for the cre
ation of dynamic interfaces. A dynamic interface (for example, a drawing tool that 
allows the user to create lines and boxes) changes its configuration at run-time. The 
difficulty in creating such interfaces is not in their implementation but rather in their 
specification. New input techniques would be needed in order for the interface devel
oper to specify the dynamic behavior of the interface through direct manipulation. 

Make MoDE a Production System 
.\loDE r:an be made into a ''real'' system intended for industrial use. The "rear' 
.\loDE should be able to generate user interfaces that run on the X \Vindow System . 
. -\ viable approach would be to Implement the basic classes of .\loDE in a C-based 
object-oriented language (such as C++ or Objective-C) to interact with the X server. 
The Mode Composer would have to be modified to generate code that uses the four 
basic classes coded in :3malltalk. This would allow interface developers to prototype 
and test their interfaces using the Smalltalk Mode Composer. Once they <1re satisfied 
with the prototype interface, they could then ask the system to generate code in 

the production languagP (for example C++) for the real version of the interface that 
would provide better performance and portability. 

Figure i 1 depicts a strategy for porting ~loDE to C++ running on top of X 
Window System. The basic classes would be reimplemented in C++ to use the X 
Window System. 

Each instance of .\lodr would br associated with an X window. 

The .Uodr: class \Votdd implement calls to the X server for ew·nt dispatching 

68 

: 



ApplicaLion coJe 
Application code 

(in C++) 

Basic classes Basic ;;lasses 
(in Smallralk) (in C++) 

Smalltalk X Window System 

Figure 7.1: Make ~loDE a production system. 

and window management. The underlying event-driven mP.chanism of .'vloDE is very 

similar to the event-driven mechanism of X. In fact, since mar:y specific functions -

such as clipping, event dispatching, etc. - are handled directly in X, those methods 

would not havt> to be ported. Thus, the size of the Mode class in C++ would be much 

smaller than the one in Smalltalk. 

The MDisplayObject class would be implemented with the display functions of 

X. Since the version of Smalltalk (ParcPlace 2.5) in which .'v1oDE is implemented has 

been ported to the X Window System (on DEC3100 machines) successfully, the X dis

play functions are sufficient to implement all display functions of the .\IDisplayObject 
plus additional ones that might be added in the future. 

The MController class would be modified to handle X event types. As men

tioned in Section 4.2.2.1, the eventResponses table would need to be implemented 

by associating tags with function pointers. Also, an JfEuent class will be needed to 

wrap X events with an object-oriented layer to provide an object-oriented interface to 

the JfController. However. since the event-dri\·en system of :\loDE and X are quite 

similar, the tasks would be straight forward. 

The SemanticObject is independent of the underlying windowing system: con
sequently. no special treatment is needed for porting it. 

After the basic classes have been ported, :\loDE could be used to develop 

pr0totvpt> intMf:->ces as an application of the basic classes. Once the interfaces became 

satisfactory and fully debugged, the application code can be hand translated into C++ 
and linked with t:,e basic classes ported to C++ previously. If the target language is 

Objective-C instead of C++, a Smalltalk to Objective-C translator, called '"Producer'' 

[CSS7]. could be invoked from the :\lode Composer to automatically translate the 
application code to Objective-C. 

Support 3-D interaction 

\\"ith some programming. \loDE co11ld lw used to create simple :3-0 interfaces. The 

:3-0 ,!!arne shown at the end of the section 1 of the videotape contained in the ap-

69 



pendixes is an example. A set of objects could be added to the library to facilitate 
the creation of this kind of user interface. The two-dimensional definition of mode 
could be extended to cover true three dimensional interaction. In a two-dimensional 
interface. a mode is an area on the screen that interacts with the user differently than 
its surrounding area. In a three-dimensional interface, one could define a mode as 
the "volume" (or surface) that interacts with the user differently than its surrounding 
volume (or surface). Research on 3-D input devices and how to represent and process 
the events generated by these devices is also needed. 

Tracking Mechanism 
With its event-driven mechanism, ~loDE could be used to create interfaces that can 
record the user's interaction (basically as a sequence of events) into a file and later 
replay the interaction from the file. This could be used to provide insights into the 

usability of the user interfaces created with MoDE. 

It would be desirable to build this tracking mechanism at a system level so 
that all application would inherit this capability. The development of the tracking 
mechanism could also help in creating shared workspaces. If replay is done on a 
different machine at the same time when the interaction is being tracked. the tracking 
site and the replay site could share the same visual workspace. 

Audio Interaction 
To support audio interaction the system would need to accept audio input and gener

ate audio output. Methods to package audio input and output as events would needed 
to be developed. Also, the event dispatching mechanism would need to be extended 
to include the priority list policy so that the audio input can be independent to the 
cursor position. (\Vith a priority list, an event is first sent to the mode at the top of 
the list, then the second. and so on.) 

iO 

: 



'. 

Bibliography 

[ABB89] 

[AdaSS] 

(Ale87] 

[A:v1YS7] 

[ApoSS] 

[.-\tk86] 

[A Y\188] 

[Bar86] 

[Bin88] 

rnr S"':':·1: ~ [) J._ ~. ·) J 

Gideon Avrahami, Kenneth P. Brooks, and :\1arc H. Brown. A Two

View Approach to Constructing Cser Interfaces. In Computer Graphics: 

SIGGRAPH'89. volume 23, :3, pages 137-1~6, July 1989. 

Sam S. Adams. :\1eta~1ethods: The :\1VC Paradigm. HOOPLA!, 1( ~). 

July 1988. 

J. H. Alexander. Painless Panes for Smalltalk Windows. In OOPSLA. '87: 

Object Grunted Programming, Systems and Applications, pages 287-

294, October 1987. 

R. Akscyn, D. \IcCracken. and E. Yoder. K:\1S: A Distri?uted Hyperme
dia System for \1anaging Knowledge in Organizations. In Hypertext '87. 

pages 1-20. University of North Carolina. Chapel Hill, NC, );ovember 

1987. 

Apollo Computer, Inc. Open Dialogue, 1988. 

Robert G. Atkinson. Hurricane: .-\n Optimizing Compiler for Smalltalk. 

In OOPSLA '86: Object Oriented Programming. Systems and Applica

tions. pages 1.51-1.58. October 1986. 

R .. -\kscyn. E. Yoder. and D. :\lcCracken. The Data :\lode! is the Heart of 

Interface Design. In SIGCH/'88: Human Factors in Computing Systems. 

pages 11.5-120. April 1988. 

P. S. Barth. An Object-Oriented Approach to Graphical Interfaces. 

AC.l! Transactzons on Graphzcs, .5(2): 142-172. April 1986. 

Carl Binding. The Architecture of a [ser Interface Toolkit. Ir. CIST 

'88: AC.\1 SIGGRAPH Symposium on Cser Interface Software. pages 

-56-6.), October 1988. 

\\'.Buxton. \1. R. Lamb. D. Sherman. and K. C. Smith. Towards a Com

prehensive \ 'ser Intcrfau· \lanagerncnt System. In Complllrr Graphu· . .;: 

SlGGRAPH'8:J. volume 1 i. pages :3.5-42 . .July 198:3. 

71 



[Car88] 

[CCi\£87] 

[Con87] 

[Cox86] 

[CP85] 

[CS87] 

[DLS89] 

[Edm81] 

[EL88] 

[E~1B87] 

[FB87] 

Luca Cardelli. Building User Interfaces by Direct Manipulation. In UIST 
'88: ACM SIGGRAPH Symposium on User Interface Software, pages 
152-166, October 1988. 

L. A. Call, D. L. Cohrs, and B. P. ~{iller. CLAM-an Open System for 
Graphical F ser Interfaces. In OOPS LA '87: Object Oriented Program

mzng, Systems and Applicutions, volume 17, pages 227-286, October 
1987. 

J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer. 

19:17-41, September 1987. 

B. J. Cox. Object-Oriented Programming: An Evolutionary Approach. 
Addison Wesley, 1986. 

L. Cardelli and R. Pike. Squeak: A Language for Communicating with 
.Mice. In Computer Graphics: SIGGRAPH'8.5, volume 19, pages 199-
204, July 1980. 

Brad J. Cox and Kurt J. Schmucker. Producer: A Tool for Translating 
Smalltalk-80 to Objective-C. OOPSLA '87: Object Oriented Program

ming, Systems and Applications, pages 423_-429, October 1987. 

John F. DeSoi, William ~I. Lively, and Sallie V. Sheppard. Graphical 
specification of user interfaces with behavior abstraction. In SIGCHI'89: 
Human Factors in Computing Systems, pages 139-1-!4, ~lay 1989. 

E. A. Edmonds. Adaptive man-computer interfaces. In .\1. J. Ccombs 
and J. L. Alty, editors. Computing Skills and the User Interface. Aca
demic Press, London, 1981. 

Danny Epstein and \Vilf R. LaLonde. A Smalltalk \Vindow System 

Based On Constraints. In OOPSLA '88: Object Oriented Programming. 

Systems and Applications, pages 83-94, September 1988. 

Raimund K. Ege, David ~laier, and Alan Borning. The Filter Browser 
Defining Interfaces Graphically. In Europian Conference on Object Ori
ented ProgrJ.mming, pages 155-165, 1987. 

~[. A. Flecchia and R. D. Bergeron. Specifying complex dialogs in AL
GAE. In SIGCH/'87: Human Factors in Computing Systems. pages 
229-23-t April 1987. 

G. L. Fisher and K. I. .Joy. Control-Panel Interface for Graphics and 
Image-Processing .-\pplications. In SIGCHI'87: Human Factors in Com

puting Systems. pages 28.5-290. April 1987. 



[Fol86] 

[FolSS] 

[Fol89] 

[Fre87] 

[GE87] 

[Gia88] 

[GR83] 

[GraSG] 

[Gre8.5] 

[Gre86] 

[Har89] 

J.D. Foley. Guest Editor's Introduction: Special Issue on User Interface 

Software. AC.\1 Transactions on Graphic, .5(2):7.5-78, April 1986. 

J. D. Foley. Software Tools for Designing and Implementing Cser

Computer Interfaces. In Lecture notes for User Interface Strategies '88. 

University of \[aryland, Professional Development Center. College Park. 

~vlaryland. October 1988. 

J. D. Foley. Defining Interfaces at a High Level of Abstraction. IEEE 

Software, pages 25-:32, January 1989. 

K. Freburger. RAPID: Prototyping Control Panel Interfaces. In 

OOPSLA '87.· Object Oriented Programming, Systems and Applications. 

pages 416-422. October 1987. 

M. Grossman and R. K. Ege. Logical Composition of Object-Oriented 

Interfaces. In OOPSLA '81: Object Oriented Programming, Systems and 

Applications, pages 29.5-306, October 1987. 

Alessandro Giacalone. XY-WINS :\n Integrated Environment for De

veloping Graphical Cser Interfaces. In UIST '88: ACJf SIGGRAPH 

Symposium on Cser Interface Software, pages 129-143. October 1988. 

A. Goldberg and D. Robson. Smalltalk-80: the Language and Its Imple

mentation. Addison- Wesley, 198:3. 

F. E. Cranor. Cser /r!.terface Management Systems Generator. PhD 

thesis, Department of Computer and Information Science, l 7niversity of 

Pennsylvania. Philadelphia. P.-\, \lay 1986. 

\1. Green. The C niversity of Alberta C ser Interface \[anagement Sys

tem. In Computer Graphic: S!GGRAPH'85. volume 19. pages ~0-5-~1:3. 

July 198.5. 

\1. Green. :\ Survey of Three Dialogue \lodels. AC.\1 Transactzons on 

Graphics . . 5(3):2-14-275. July 1986. 

S. H. Gutfreund. \lanipllcons in ThinkerToy. In OOPSLA '87: Ob

Ject Oriented Programming. :Jystems and Applications. pages :307-:31 I. 
October 1987. 

R. Hartson. Cser-Interface \1anagement Control and Communication. 
fEE£ Softu:are. pages 62-70. January l%9. 

D.:\ . .Jr. Handerson and S. K. Card. Rooms: The t'st' of \lultiple \'irtnal 

\\'orkspaces to Reduce Space Contellt ion in a \\.indow- Based Craphical 

t'ser Interface. AC.\1 Transactions on Gmphics . . 5(:3):211-243 .. July 1986. 

73 



[Hel87] 

[HH86] 

[HH~86] 

(Hil86] 

[HSL85] 

J. Helfman. A Tabular User- Interface Specification System. In 
SIGCHI '87: Humari Factors in Computing Systems, pages 279-284. 
April 1987. 

D. Hix and H. R. Hartson. An interactive environment for dialogue 
development: Its design, use, and evaluation. In SIGCHI'86: Human 

Factors in Computing Systems, pages 228-234, April 1986. 

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation 
interfaces. In D. A. Norman and S. W. Draper, editors, User Centered 

System Design, pages 87-124. Lawrence Erlbaum Associates, Hillsdale. 
NJ, 1986. 

R. D. Hill. Supporting Concurrency, Communication, and Synchroniza
tion in Human-Computer Interaction-The Sassafras Ue..IS. A CJI Trans

actions on Graphics, 5(3):179-210, July 1986. 

P. J. Hayes, P. A. Szelely, and R. A. Lerner. Design Alternatives for 
User-Interface ~Ianagement Systems Based on Experience with Cousin. 
In SIGCHI'85: Human Factors in Computing Systems, pages 169-175, 
April 198.5. 

[Hud86] S. E. Hudson. A User Interface Management System wich Supports 

Direct Manipulation. PhD thesis, Department of Computer Science, 
Uni"ersity of Colorado. Boulder, Colorado, 1986. 

[IWC+SS] Dan Ingalls, Scott \Vallace, Yu- Ying Chow, Frank Ludolph. and Ken 
Doyle. Fabrik-A Visual Programming Environment. In OOPSLA '88: 

Object Oriented Progrrzmmmg. Systems and Applications. pages 176-
190, September 1988. 

[Jac86] R. J. K. Jacob. A Specification Language for direct :\Ianipulation Cser 
interfaces. ACJf Transactions on Graphics, 5(4):283-317, October 1986. 

[JGZSSJ Ralph E. Johnson, Justin 0. c~aver, and Lawrence \V. Zurawski. TS: 

[Kas82] 

[KasS.')j 

An Optimizing Compiler for Smalltalk. In OOPSLA '88: Object Oriented 

Programmzng, Systems and Applications, pages 18-26. October 1988. 

D. J. Kasik. Cser Interface .\[anagement System. Computer Graphic.<:.· 

SIGGRAPH'S:!. pages 99-106. July 1982. 

David .J. Kasik .-\n arrhitecture for graphics application dt>velopment. 
In Proceeding8 of IEEE lntanational Confaence on Robot1cs and Au

tomation, pages :16.)-37 l. .\larch 198.). 

74 



·. 

[KC88] 

[KLR89] 

[KOSS] 

[KPS3] 

[KPS8] 

[LIBYS9] 

[Lie86] 

[LVCS9] 

Michael F. Kleyn and Indranil Chakravarty. EDGE - A Graph Based 
Tool for Specifying Interaction. In UIST '88: AC.Vl SIGGRAPH Sym

posium on User Interface Software, pages 1-14, October 1988. 

David J. Kasik, :\lichelle A. Lund, and Henry W. Ramsey. Reflections on 
Using a UI:.IS for Complex Applications. IEEE Software, pages .54-61, 
January 1989. 

Kerry Kimbrough and La:\lott Oren. CLUE: A Common Lisp Cser 
Interface Environment. In UIST '88: ACJl SIGGRAPH Symposium on 

User Interface Software, pages 8.5-94, October 1988. 

D. Kieras and P. G. Polson. A generalized transition network repre
sentation for interactive systems. In SIGCH/'83: Human Factors in 

Computing Systems, pages 103-106, December 1983. 

G. E. Krasner and S. T. Pope. A Cookbook for Using the :\Iodel-View
Controller Cser Interface Paradigm in Smalltalk-80. Journal of Object

Oriented Programming, 1{3):26-49, August/September 1988. 

T. G. Lewis. Fred Handloser IlL Sharada Bose, and Sherry Yang. Pro
totypes_ from Standard C ser Interface :\Ianagement System. Communi

cations of the Association of Computing J[achinery, 22(5):51-60, may 
1989. 

Henry Lieb~rman. Csing Prototypical Objects to Implement Shared Be
havior in Object Oriented Systems. OOPSLA '86: Object Oriented Pro

gramming. Systems and Applications, pages 214-22:3. September 1986. 

:\1. A. Linton . .J. :\1. Vlissides, and P.R. Calder. Composing Cser Inter
faces with Inter\"iews. IEEE Computer, pages 8-22. February 1989. 

[.\lASS] Joel .\IcCormack and Paul Asente. An Overview of the X Toolkit. CIST 

'88: A C.\f SIGGRAPII Symposium on L'ser Interface Software, pages 
46-.5.5, October 1988. 

[.\1BFBS9] John .\laloney, Alan Borning, and Bjorn Freeman-Bensor.. Constraint 

Technology for l"ser-Interface Construction in ThingLab II. In OOP

SLA '89: Object Oriented Programming, Systems and Applications. 

pages 381-388. October 1989. 

[.\lB\VS9] .Jerry .\1. .\lanheimer. Rodney C. Burnett, and Jo .-\nn \Vallers .. -\ case 
study of usE'r interface managerrwnt sy~tf'm df'\·clopment and applica· 
tion. In SIGC'f[f'89: Human Factors in Computing Sysfrms. pagE's 1:.?7-
1:32 . .\lay 1989. 

/.5 



.------------------------------------- -

[.\1ey87] 

[:\lic85] 

[.\1il88] 

B. Meyer. Reusability: The Case for Object-Oriented Design. IEEE 
Software, pages 50-64, .\larch 1987. 

:\Iicrosoft Corp., Redmond, Wash. Microsoft Windows: Programmer':5 

Guide, 198.5. 

J . .\1iller. UI1-1Ss: Threat or .\Ienace? In SIGCH/'88: Human Factors 
in Computing Systems, pages 199-200, April 1988. 

[~IRKS89] Hans :VIuller, John Rose, James Kempf, and Tayloe Stansbury. The Use 
of :vlultimethods and Method Combination in a CLOS Based Window 
Interface. In OOPSLA '89: Object Oriented Programming, Systems and 

Applications, pages 239-253, October 1989. 

[MSC+86] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H. 

[MTS8] 

[MVS88] 

[:\lyeSia] 

[:\Iye87b] 

[:\lye88] 

[.\1ye89a] 

[:\lyeS~)bj 

rv X"'] l·"e, :-s~ 

Rosenthal, and D. F. Smith. Andrew: A distributed personal com
puting environment. Communications of the Association of Computing 
Machmery, 29(3):184-201, :\larch 1986. 

Jeff .\IcAffer and Dave Thomas. Eva: An Event Driven Framework for 
Building User Interfaces in Smalltalk. In Graphics Interface '88, pages 
168-175. June 1988. 

James E. McDonald, Paul D. J. Vandenberg, and Melissa J. Smartt. The 
MIRAGE Rapid Interface Prototyping System. In UIST '88: ACM SIC

GRAPH Symposium on User Interface Software, pages 77-84. October 
1988. 

B. A. :\lyers. Creating dynamic interaction techniques by demonstration. 
In SICCHI'87: Human Factors zn Computzng Systems. pages 271-278. 
April 1987. 

B. A. Myers. Gaining General Acceptance for Ull\ISs. In ACJ! SIC

GRAPH ~Vorkshop on Software Tools for User Interface Development, 

volume 21, pages 130-134, April 1987. 

B. :\ . .\Iyers. Creating User Interfaces by Demonstration. Academic 
Press, Boston. 1988. 

B. :\. :\1yers. l:ser-Interface Tools: Introduction and Survey. IEEE 
Software, pages l.S-23, January 1989. 

Brad .-\. \lyers. Encapsulating Interactive Behaviors. In SIGCIIJ'89: 

1/uman Factors in Computing Systems. pages :319-32.!. \lay 1989. 

:'-:eXT. Inc .. Palo .\Ito, Calif. .V~XT System Reference .\lanual. 1988. 

76 

.· 



·. 

[NS79] W. ~1. Newman and R. F. Sproull. Principles of Interactive Computer 

Graphics . .\lcGraw-Hill, Inc., 1979. 

[OBE+84] D. R. Olsen, W. Buxton, R. Ehrich, D. Kasik, J. Rhyne, and J. Sibert. 
A Context for User Interface ~lanagement. IEEE Computer Graphics 
and Applications. 4( 12):33-42, December 1984. 

[OD83] D. R. Olsen and E. P. Dempsey. Syngraph: A Graphical User-Interface 
Generator. Computer Graphics: SIGGRAPH'83, pages 43-.50, July 
1983. 

(ODR85] 

[Ols86] 

[Ols87] 

[OlsSS] 

[Ols89] 

[Pfa8.5] 

D. R. Olsen, E. P. Dempsey, and R. Rogge. Input-Output Linkage in 
a User Interface ~lanagement System. In Computer Graphics: SIG

GRAPH'85, pages 225-234, July 1985. 

D. R. Jr. Olsen. MIKE: The Menu Interaction Kontrol Environment. 
ACJ! Transactions on Graphics, 5(4):318-:344, October 1986. 

D. R. Olsen. Larger Issues in User Interface ..\lanagement. In ACJ! SIC

GRAPH Workshop on Software Tools for User Interface Development, 

pages 134-137, April 1987. 

Dan R. Jr. Olsen. A Browse/Edit Model for User Interface ..\Ianagement. 
In Graphics Interface '88, pages 155-159, June 1988. 

Dan R. Jr. Olsen. A Programming Language Basis for User Interface. 
In SIGCHI'89: Human Factors in Computing Systems, pages 171-176 . 
..\lay 1989. 

G. E. Pfaff. Cser Interface .\lanagement Systems. Springer- Verlag. 
Berlin. 198.5. 

[ReiS7] S. P. Reiss. A Conceptual Programming Environment. In 9th Interna

tional Conference on Software Engineering, pages 225-23.5 . ..\larch 1987. 

[RSD+8i] W. Roberts . .\1. Slater. K. Drake .. A. Simmins. and A. Davison. First 
Impressions of ~e\VS. Technical Report -t1 7. Department of Computer 
Science and Statistics. Queen ..\Iary College, l'niversity of London. Lon
don. England, August 1987. 

[Rub82] A. Rubel. Graphic based applications-Tool<> to fill the software gap. 
Digital Design. pages 17-30, July 1982 . 

.James Rumbaugh. State Trees as Structured Finite State :\lachines for 
r ser Interfaces. In CIST '88: .-1 CH SIG'G'R.J. Pll Symposium on l·.,u 
Interface Softu·arF. pages 1.5-29, October 1988. 

I I 



[SBK85] 

[Sch86a] 

[Sch86b] 

[Sch88a] 

[Sch88b] 

[SG86] 

[SG89] 

[SH89] 

[Sha89] 

[Sha90a] 

[Sha90b] 

[SHB86] 

J. Sibert, R. Belliardi, and A. Kamran. Some thoughts on the interface 
between user interface management systems and application software. In 

G. E. Pfaff, editor, User Interface J'v[anagement Systems, pages 183-192. 

Springer-Verlag, Berlin, 1985. 

Kurt Schmucker. :\lacApp: An Application Framework. Byte, pages 

189-193, August 1986. 

Kurt Schmucker. Object Oriented Programming on the Macintosh, vol

ume 5. Apple Press, 1986. 

Allan M. Schiffman. Time-Sharing Citizenry for Smalltalk-80 under 

Unix. ParcPlace Newsletter, 1(2):9-10, 1988. 

Kurt Schmucker. Using Objects to Package User Interface Functionality. 

Journal of Object-Oriented Pro_qrammzng, 1(1):40-4.5, April/May 1988. 

R. W. ScheiRer and J. Gettys. The X Window System. ACJ! Transac

tions on Graphics, 5(2):79-109, April 1986. 

Gurminder Singh and Mark Green. A high-level user interface manage
ment system. In SIGCHI'89: Human Factors in Computing Systems, 

pages 133-138, May 1989. 

Antonio C. Siochi and H. Rex Hartson. Task-Oriented Representation 
of Asynchronous User Interfaces. In SIGCHI'89: Human Factors in 

Computing Systems, pages 183-188, :\lay 1989. 

'{en-Ping Shan. An Event-Driven ~[ode!- \/iew-Controller Framework for 

Smalltalk. In OOPSLA '89: Object Oriented Programming, Systems and 

Applications, pages 347-3.52, October 1989. 

Yen-Ping Shan. An Object-Oriented Framework for Direct-:\Ianipulation 

User Interfaces. In £urographies Workshop on Object Oriented Graphics. 

June 1990. 

Yen-Ping Shan. ~lode offers direct manipulation for Smalltalk. IEEE 
Software, 7(3):36, :\lay 1990. 

J. L. Sibert. W. D. Hurley, and T. W. Bleser. An Object-Oriented User

Interface Management System. Computer Graphics: SIGGRAPH'86. 
20(-1):2.59-268, August 1986. 

B. Shneiderman. Direct manip11lation: a step beyond programming lan

guages. IEEE Computer. 16(8):.51-69. 198:3. 

78 

•' 



' 

[SIKV82] 

[SMSS] 

[Sme87] 

[Smi88] 

[Ste88] 

[Sun86] 

[Sun87] 

[Sze89] 

D. C. Smith, C. Irby, R. Kimball, and B. Verplank. Designing the Star 
User Interface. Byte, pages 242-282, April 1982. 

P. A. Szekely and B. A. ~lyers. A User Interface Toolkit Based on 
Graphical Objects and Constraints. In OOPSLA '88: Object Oriented 

Programming, Systems and A.pplications, pages 36-4.5, September 1988. 

SmethersBarnes, P.O. Box 639, Portland, Ore. 97207. SmethersBarnes 

Prototyper User's Manual, 1987. 

David N. Smith. Building Interfaces Interactively. In UIST '88: ACJJ 

SIGGRAPH Symposium on User Interface Software, pages 14-1-1.51. Oc

tober 1988. 

Stepstone corp., Sandy Hook, Ct. ICpak 201 Reference }fanual, 1988. 

Sun ~licrosystems, ~fountain View, Calif. Sun View Programmer's 

Guide, 1986. 

Sun Microsystems. ~lountain View, Calif. NeWS Manual, 1987. 

Pedro Szekely. Standardizing the Interface Between Applications and 

UIMSs. UIST '89: ACM SIGGRAPH Symposium on User Interface 

Software, pages 3-1--12, November 1989. 

[TaMSW86] P. Tanner, S. a. MacKay, D. A. Stewart, and M. \Vein. A multitask
ing switchboard approach to user interface management. In Computer 
Graphics: SIGGRAPH '86, pages 241-248. July 1986. 

[tD85] 

[Tei86] 

[Tes81] 

[vd~l89] 

[\'LS9] 

P. J. \V. ten Hagen and J. Derksen. Parallel Input and Feedback inDia
logue Cells. In G. E. Pfaff. editor, User Interface .\fanagement Systems. 

pages 109-12 .. !. Spring- Verlag. Berlin, April 198.5. 

\V. Teitelman. Ten years of \vindow systems-A retrospective view. In 
F. R. A. Hopgood, D. Duce. V. C. Fielding, K. Robinson, and A. S. 
\Villiams, editors, Methodology of Window Management, pages 3.5-46. 
Springer- Verlag, New York, 1986. 

L. Tesler. The Smalltalk Environment. Byte, pages 90-1-17, August 
1981. 

Pieter S. van der Meulen. Development of an !:1teractive Simulator in 
Smalltalk . .lOOP. pages 28-.51, January/February 1989. 

John \I. Vlissides and \fark A. Linton. C nidraw: A Framework for 
Building Dornain-SpPrific Graphical Editors. CIST 'S9: AC.\f SIG
GRAP!l Symposwm on C.-.rr lnterfrzce Softu·rzrc, pages 1.58-167, :\"o\·ern
ber 1089. 

79 



[Was8.5] A. L Wasserman. Extending transition diagrams for the specification of 
human-computer interaction. IEEE Transactions on Software Engineer

zng, August 1985. 

[\VC~ISS] A. Weinand, E. Gamma, and R. ;\;larty. ET ++: An Object-Oriented 
Application Framework in C++. In OOPSLA '88: Object Oriented Pro

grammmg. Systems and Applications, pages 4:.5-57, September 1988. 

[Wel89] Pierre D. \Vellner. Statemaster: A UIMS based on Statecharts for Pro
totyping and Target Implementation. In SIGCHI'89: Human Factors in 

Computing Systems, pages 177-182, May 1989. 

[WRS2] 

[YH8.5] 

P. C. S. Wong and E. R. Reid. FLAIR-User interface dialog design tool. 
Computer Graphics: SIGGRAPH'82, 16(3):591-606, July 1982. 

T. Yunten and H. R. Hartson. A SUPERvisory Methodology and No

tation (SUPERJfAN) for human-computer system development . vol
ume 1, pages 243-281. Ablex, :.Iorwood, :-;.J., 198.5. 

~0 

, 



•, 

Appendix A 

An Event-Driven Mechanism for 
MoDE 

In the original Smalltalk MVC implementation, user interface objects interact with 
the end user by polling the states of the input devices and responding to the state 
changes. The polling loops must always be active in order not to miss any actions 
performed by the user. When one is developing systems with multiple processes, this 
becomes a serious problem. For example, an application with a polling user interface 
may fork an agent process to handle the transactions to a remote database and to 
manage the local cache. Since the user interface process must keep polling even when 
the user is not interacting with the system (for example, the user is waiting for a 
transaction to finish), it consumes the CPU cycles that could have been spent on 
the database agent process. Moreover, the existence of the database agent process 
could make the interface less responsive. The situation is aggravated if the database 
is running on the same machine as the user interface. 

This deterioration of performance can be avoided if the user interface is built 
on top of an event-driven mechanism that does not polP. However, one must be 
cautious in making such a fundamental change. While switching to an event-driven 
mechanism i:s beneftcial, it is impractical to consider discarding existing user interfaces 
and rebuilding them under a new mechanism. Since reusability is among the most im
portant features of object-oriented programming, if the new event-driven mechanism 
does not allow reuse of existing interfaces, it would be impractical. 

This section presents an event-driven interface framework that not only solves 
thP. rerformance problem but also allows: 

1 An alternative is to implement a Time-Sharing Citizenry [Sch88a] mechamsm within the 
Smalltalk itself 

81 

- ~------~~--------------------------------------------~~--~~-



• interfaces built with the polling mechanism to co-exist with ones that are built 
with the event-driven mechanism. (For example, an event-driven directory 
browser could co-exist with the standard Small talk system browsers.) 

• interface objects built with both mechanisms to be reused by each other. (For 
example, within a polling environment one could use an event-driven spread
sheet which in turn uses a polling menu.) 

Additionally, no modification of existing code is required and no loss in performance 
is obtained. 

The next section gives a brief overview of both the polling and event-driven 
mechanisms. In Section A.2, further motivation for having an event-driven mechanism 
is provided. Section A.3 describes the design and implementation of the event-driven 
mechanism. Section A.4 discusses the solution to the compatibility problem. 

A.l Background 

Polling 
A system that supports the polling mechanism often maintains a globally accessibl~ 
table of the states of the devices. In Smalltalk, this table is an instance of InputSensor 

and is accessible through a global variable called Sensor. A typical interface object 
will have loops that poll the relevant table entries. When a state change is sensed, the 
case statement in the loop invokes a routine to process the change. This routine can 
change the state of the underlying application, give feedback to the user, or transfer 
control to another loop to detect further state changes. For example, a Smalltalk 
PopUpJ!enu is often invoked by a loop that senses mouse button presses. Control 
is then passed to the Pop Up1vlenu polling loop which tracks the cursor position and 
highlights the proper portion of the menu when the user drags the cursor. 

The control structure of a polling interface is implemented by a tree of loops. 
Each loop in the tree keeps control while certain conditions are satisfied (for instance, 
the cursor stays within a rectangle area) and polls the children loops to see whether 
they want control. A child loop that wants control can grab it when its loop condition 
is met and later return control to its parent loop when its looping condition is no longer 
satisfied. 

Event-Driven 
A.n event-driven mechanism [:'\Si9] usually consists of three major components: a set 
of event generators, an event queue that bufTtl::i the events in sequence. anJ an e\·ent 
dispatching mechanism that removes the events one at a time from the queue and 

82 

, 



·-

sends them to the appropriate event handler. An event has a name or number that 
identifies the nature of the interaction plus several data values that characterize the 
interaction. 

A typical event-driven interface has a single event-fetching loop. The execution 
of the loop is suspended when the event-fetching statement in the loop tries to fetch 
from an empty event queue and is resumed when new events arrive, 

An event-driven interface program registers a number of event handlers with 
the event dispatching mechanism. For each handler, a list of interesting event types is 
specified. When an interesting event happens, the dispatching mechanism activates 
the corresponding handler to process it. 

A.2 Why Event-Driven? 

Besides better utilization of the CPU, the event-driven mechanism provides a better 
trace of input devices. With the polling mechanism, when a system is heavily loaded. 
it can miss a state change (for example, a button click) because the polling loop is 
not at the condition statement when the change happened. This problem does not 
happen with the event-driven model since all events are buffered. An application has 
the freedom to discard events when it cannot process them as fast as they come (this 
is seldom the case, though); it can also control when the events should be discarded 
and which one to discard. This is in contrast to the polling mechanism where state 
changes may be overlooked, depending on the system load and the execution timing 
of the statements in the polling loop. 

The event-driven mechanism also makes possible implementation of some ap
plications that could not be done within a polling paradigm. For instance. with the 
event-driven mechanism described in the next section, the author was able to de
velop a package that allows users running Smalltalk on different machines to share 
visual workspaces. The package is general in that a user can select any event-driven 
application and then share both control and the visual display with other users. 

A.3 An Event-Driven Mechanism 

This section describes the three major components for an event-drin'n mechanism -
the event genetat\Jr. the event queue, and the event dispatching mechanism. 

83 



A.3.1 Event Generator 

An event generator is responsible for generating events and placing them on the event 
queue. Beneath the Smalltalk virtual machine, the input devices are handled by an 
event-driven (more precisely interrupt-driven) mechanism; consequently, the problem 
of creating an event generator is reduced to identifying the place where Smalltalk 
changes its state table and in;:;erting code to generate the events. Smalltalk acquires 
the primitive input events from the virtual machine by calling the primi ti veinputWord 
method and updates its state table in the run method defined in the lnputState class. 
The event-driven mechanism. of MoDE modifies the run method to have it interpret 
the primitive input events into the events used by MoDE. 

Currently, the event types generated include: cursorMove, (leftjmiddlejrightJ 
Button (UpjDownjClickjDoubleClickJ, and keyboardEvents. New event types can be 
added by the user. 

A.3.2 Event Queue 

The implementation of the event queue is straightforward. The Small talk SharedQueue 
provides most of the function needed by the event queue, including suspending pro
cesses that try to fetch from an empty queue. The EventQueue, a subclass of 
SharedQueue, implements methods to control the queue and to handle queue overflow. 

A.3.3 Event Dispatching and the MVC framework 

The event dispatching mechanism is more subtle and the decisions made here affect 
compatibility. The goal is not just to produce a mechanism that delivers the events 
to the right event handlers, but also to ensure that event-driven interfaces built with 
this control mechanism are compatible with polling interfaces. 

The ""super View-sub View" relation in the Small talk View class provides the 
base for event dispatching. A View in a structured picture can contain other Views 

as sub-components. These sub-components are called "subViews." A View can be a 
subView of only one Vieur-its "superView." The set of Views in a structured picture 
forms a hierarchy. In the Mode framework, all screen objects inherit from a subclass of 
View called J1ode2 • \Vhen a .\Iode receives an event, it checks to make sure the event 
is intended for it (usually by comparing the coordinates of the event with its display 
box) and asks all of its "'submodes." starting from the topmost one, to process the 

2Section 4.2.1 discusses Mode in details. 

84 



'· 

event. (The "submodes" are stored in the instance variable subViews inherited from 
View.) If none of the sub modes are interested in the event, it then tries to process the 
event itself. If it is not interested in the event, it returns the event as un-processed 
to its "super:.Iode'' (stored in the instance variable superView, also inherited from 
View). A A/ode delegates responsibility for processing events to its event handler, 
which is stored in the instance variable controller, defined by the MYC paradigm. 

The one J!ode in the hierarchy that has no superMode is called the "'root
Mode." It is an instance of RootJ!ode class where the event-fetching loop is defined. 
A typical application would have a single RooLHode and a hierarchy of }[odes. To 
allow multiple active applications. a built-in mechanism is provided in Root.\;fode to 
guarantee that no two Rootl'vfodes will attempt to access the event queue at the same 
time. 

A.4 Compatibility 

The problem of compatibility comes from having two active mechanisms (event-driven 
and polling) present at the same time. This can be viewed as a control s•vitching 
problem. At any given time, one would like to make sure that the mechanism in 
control corresponds to the type of object that the user is interacting with and that 
there is no interference from the other mechanism. Knowing when and how to switch 
between the two mechanisms is the key to achieving compatibility. 

A.4.1 Definition of the Problem 

The problem can be described precisely. Let the letter P denotes an objer( ouilt with 
the polling mechanism, and the letter E denote an object built with t:b , <!Vent-driven 
mechanism. The string PE represents the situation of an event-driw·.1 object running 
under an environment that is controlled by a polling object. The string PEP would 
describe a polling interface object running under an event-driven environment which 
in turn is running under another polling environment. T~:e spread-sheet example 
used in the Introduction section is modeled by this strir1g. A string of PPEPEEPE 
represents a highly nested interface with event-driven a;1d polling objects inter-mixed. 

Although the compatibility problem may k•uk complicated at first glance. it is 
regular. \'otice that if the sub-problems PP. EE. PE. and EP can be soh·pd. all of the 
more complicated problems arc merely conr:tt.cnations of tlws<> four ba:-ic cases. Since 
the first two sub-problems are trivial. or :y the last two need fmther considcration. 

8.5 



A polling Application 

E 

An event-driven environment 

Figure A.l: An EHP sandwich. 

A.4.2 When to Switch 

For reasons of performance and preventing interference, one must avoid having two 
mechanisms running at the same time whenever possible. This precludes the use 
of a single mechanism as the master mechanism which determines when to switch 
to a slave mechanism. Th~ only choice left is to have the environment mechanism 
determine the switches. 

A.4.3 Sandwiching 

A technique, called "Sandwiching," inserts an invisible layer between a pair of objects 
built with different mechanisms; it provides solutions to both the EP and PE cases. 
After the invisible layer \named ham) is included in the representation, the structure 
becomes EHP or PHE. Figure A.l shows an EHP sandwich. The purpose of the ham 
is to make the environment object feel as if the contained object were built with the 
same mechanism as it is and vice versa. If the ham is well designed, no modification 
t.o either environment or contained objects is necessary in order to have both running 
together. Therefore, the problem of how to switch reduces to the problem of designing 
the ham. 

A.4.4 How to Switch: Case EHP 

The ham for this case is a Mode with a special event handler (controller) which 
suspends event generation and flushes thf' event queue when certain conditions (for 
example. an EnterMode event is rccei\·ed) indicate that the polling application P 
should be in action. The ham then brings itself. and therefore the P. to the front of 

86 

, 



•, 

the display (so that nobody obscures them) and passes control to P. When control is 
returned, it resumes event generation. 

The choice of making .llode a subclass of View shows another benefit besides 
reusing code. It makes the ham easy to use. Since the ham inherits the behavior 
of View, P can treat it as an ordinary polling View, and E can treat it as an event
driven .Hade. To construct the sandwich, one simply creates a ham, attaches to it the 
polling application as its only sub View, and then attaches the ham to che underlying 
event-driven environment. )io modification of either P or E is required. 

A.4.5 How to Switch: Case PHE 

There are two types of E, self-contained event-driven applications with their own 
event-fetching loops (with RooL\Iodes) and those that are without an event-fetching 
loop. For both types, the ham must provide the event-fetching loop. It may not 
be obvious why an event-fetching loop is needed for self-contained applications that 
already have one. The reason comes from an important distinction between event
driven and polling applications. While a polling application returns control to its 
parent when the condition for looping is not satisfied, an event-driven application 
does not. The only time an event-driven application breaks its event-fetching loop and 
returns is when it terminates. A simple-minded ham that would activate the event 
generation, pass control to the event-fetching loop of the event-driven application. 
and wait for it to return would not work because control will not come back until the 
event-driven application terminates. 

Certainly. one can modify the event-driven application so that it returns con
trol under certain condition (for example. a LeaveMode event is received). but this 
breaks the promise of no modification. Another alternative is to let the ham and the 
application run as two processes and have the ham suspend and resume the applica
tion process. This also is unsatisfactory since it introduces both the complexity of 
inter-process communication and the performance loss due to the looping nature of 
the ham process. 

A technique called "loop merging" is employed. The event-fetching loop in 
the application is merged with the polling loop in the ham, as shown in Figure .-\.2. 
This is done by copying the code in the event-fetching loop and inserting it into the 
ham polling loop. The merged loop. then. serves as the event-fetching loop. The 
real event-fetching loop of the application is never executed. The merged loop in the 
ham checks the device state changes interesting to the ham (for example. to see if thf' 
cursor is still there). fetches an P\·cnt from tlw ew'nt (jtwue. and asks the application tu 
process the event (by sending the event to the ··top\lode" of E). The ham enables the 

87 



.• 

other loops 

other loops 

H 

Figure :\.2: Loop merging 

88 



event generation before it enters the merged loop, and disables the event generation 
after it leaves the loop. 

The merged loop is suspended when there is no event in the queue. This im
proves the performance of other processes since no CPC cycles are wasted in unneeded 
polling in the ham. The merged loop also transfers control properly. \Vhen the user 
switches to another application (often by moving the cursor onto that application). 
there are always events generated by the user's action to wake up the merged loop 
and, then, for it to return the control to its parent (the P). The parent can, then. 
assign control to the newly selected application. 

One can also insert code into the merged loop to ensure the event-driven ap
plication conforms to the windowing behavior of the underlying polling environment. 
For example, the Small talk interface (a P) uses the blue button (the right mouse 
button) for window control (e.g., resize, move, collapse). The inserted statements in 
the merged loop, as shown in Figure :-\.2, can check the status of the blue button 
and activate the ScheduledBlueButtonMenu when the .button is pressed. The user 
can, then, manipulate the window of the event-driven application just as if it were a 

Smalltalk StandardSystem View. 

A.5 Discussion 

The event-driven :\IVC framework described above not only allows efficient user inter
faces to be built, but also provides necessary compatibility with the polling interfaces. 
Test interfaces built on top of it show better background process performance and 
cleaner program structure. Although no formal measurement has been done. the 
test interfaces can conserve over 30% of the CPC time for the background processes 
under the worst case ( \vhen the user is dragging a .\lode clipped against the .\lodes 
surrounding it). All of them are as responsive. if not more so, than those built with 
the polling mechanism. The "Sandwiching'' technique has been successfully applied 
to create interfaces that mix Smalltalk user interface objects (text editor. debugger. 
menu, binary choice, etc.) with event-driven interface objects. 

8~) 



Appendix B 

Description of the Kernel Classes 

This appendix provides a more detail description of the four kernel classes of the 
Mode framework. For each class, the following information is provided: 

• Class definition. (This includes class name, super class, instance variables, and 
class variables.) 

• Comments on the class. 

• All public methods of the class. (Private methods for internal implementation 
are not listed.) 

The .Vlode class has 122 public methods grouped in 24 protocols. The .\ICon

troller class has 48 public methods grouped in 12 protocols. The .\IDisplayObject 

class has 2.5 public methods grouped in 10 protocols. The SemanticObject class has 
25 public methods grouped in 9 protocols. The following is a list of the classes and 
their protocols. 

Mode 

1. display Object 

2. displaying 

~3. drag sur- ,JOrt 

·l. scroll s11pport 

.). sub\lode access 

90 

.• 



6. superMode access 

i. layer manipulation 

8. layering 

9. initialize-release 

10. display box access 

11. controller access 

12. event handling 

13. enter /lea veE vent- process 

14. subMode insert/delete 

1.5. visibility 

16. bordering 

17. buffering 

18. sharedSty le-highlight 

19. indicating 

20. sizing 

21. semObj access 

22. copymg 

23. (class protocol) initialization 

24. (class protocol) instance creation 

1\-1 Contro der 

1. access 

2. event handling 

3. sharedBehavior-resizc 

l. 'iha_redlkh<tvior-movP 

-J, ;;harPdBehavior-indicating 

')I 



6. sharedBehavior-l:nk 

i. sharedBehavior-menu 

8. Interf'lpt handling 

9. copymg 

10. (class protocol) instance creation 

11. (class protocol) access 

12. (class protuccl) initialize 

lVIDisplayObject 

1. transforming 

2. initialize- release 

3. accessmg 

-L 
. . 
tnverstnn 

v. displaying 

6. buffering 

7. testing 

8. display box access 

9. copying 

10. (class protocol) instance creation 



SemanticObject 

1. access 

2. initialize-release 

:3. mode attaching 

4. drag support 

.5. ~l~lS- ini tializations 

6. copymg 

I. connection model support 

8. attribute editor 

9. (class protocol) instance creation 

B.l Mode Class 

superclass: View 

instance Variables: 

• cursorln - A boolean indicating whether the cursor is in the mode. 

• obscuringRects - A collection of rectangles corresponding to the portion 
of mode obscured by other modes. 

• visible - A boolean indicating whether the mode is visible. 

• dispObj - The display object. 

• highlightDispObj -The display object used when highlighting the mode. 

• resizeStyle- A dictionary storing the constraints that control the size and 
position of mode when its environment is resized. 

• highlighted - .-\ boolean indicating whether the mode is highlighted. 

• savedSta.tes ~ .-\n object thilt stores the normal states when the mode i~ in 

a drag-state. 



A major responsibility of Afode is to handle event dispatching. Two methods 
provide this functionality. The "interestedin:" method takes an event as an argument 
and returns true when the Jfode is active (mapped) and the event happened in the area 
controlled by the Jlode. False is returned otherwise. The "processEvent:" method 
asks the controller to process the event when "'interestedin:" returns true. 

Mode implements the functions of a window. Each instance of ;\Jode can be 
"mapped" or "unmapped." When a Mode is mapped, it can interact with the user 
by receiving the input events and responding to them. An unmapped Mode does not 
receive any event, and therefore can not interact with the user. Each 1Vfode has its 
own local coordinate system and a transformation (both translation and scaling) that 
maps between the local coordinates and the screen coordinates. 

A Mode displays itself by first asking its display object to display its back
ground and then asking all contained submodes to display themselves. The built-in 
clipping algorithm draws oniy the portions of the mode that are unobscured. 

B.l.l displayObject 

displayO b ject 
Return the display object. 

displayObject: aDispObj 
Set the display object to aDispObj. 

resizeToFitDisplayObject 
Change the size of the mode to expos~ all contents in the display object. 

resizeToFitDisplayObjectBy: delta 
Chang~ the size of the mode to expose all contents in the display object with a 
margin of delta. "delta" can be an integer, a point (specifying the x and they 
offset), or a rectangle (specifying the offset for the origin and the corner). 

B.l.2 displaying 

display 
Display the mode on the screen. This includes its background and submodes. 

displayBackgroundln: aRect 
Display the background of the mode bounded by aRect. 

94 



displayBackgroundOn: aMedium in: aRect 
Display the background of the mode bounded by aRect on aMedium (can be 

the screen or a form). 

display Border 
This is a method used for highlighting the mode. Use with care. A line on top 
of the mode can be erased by the border. 

displayln: aRect 
Display the mode on the screen. The output is clipped to aRect. 

displayOn: aMedium in: aRect 
Display the mode on aMedium. The output is clipped to aRect. 

displaySubmodesln: aRect 
Display all the submodes of the receiver on the screen. Output is clipped to 
aRect. 

displaySubmodesOn: aMedium in: aRect 

erase 

Display all the submodes of the receiver on a.Medium. Output is clipped to 
aRect. 

Erase the mode. The mode is not remove from the hierarchy. 

B.1.3 drag support 

When a mode is dragged. all other modes on screen change their controllers to provide 
the semantic feedback. See Section 4.3 for more details on how dragging is handled 
in MoDE. ·'aSymbol" is a Smalltalk symbol that indicate the characteristics of the 
dragging. Modes can switch to different controllers according the "aSymbol'' they 
rece1ve. 

afterDrag: aSymbol 
This is sent right after the drag finishes to notify other modes to give them a 
chance to switch back to their normal controllers. 

beforeDrag: aSymbol 
This is sent right before the drag starts. Modes should set up the controller for 
the dragging and propagate the message down mode hierarchy. 

prepareForDrag: aSymbol 
Switch the controller according to aSymbol. 

9.5 



recoverFromDrag: aSymbol 
Switch back to the normal controller. 

B.1.4 scroll support 

contentsBoundingBox 
Return a rectangle that bounds all the submodes. 

B.1.5 subMode access 

subModeContaining: aPoint 
Return the front-most direct submode that contains aPoint. 

firstModeAt: aPoint 
Return the front-most submode that contains aPoint. This is different than the 
"subModeContaining:" method in that it searches the whole mode hierarchy 
rooted by the receiver. 

firstModeAt: aPoint suchThat: aBlock 
Return the front-most submode that contains aPoint and satisfies the conditions 
defined in aBlock. 

firstModeAt: aPoint suchThat: aBlock cutOff: aCltnOfl\!Iode 
Return the front-most submode that contains aPoint and satisfies the conditions 
defined in aBlock. "aCltnOfMode" provides the root of the subtrees that should 
not be searched. 

firstModeCovering: aRect 
The top submode whose displayBox contains aRect. 

firstModeCovering: aRect suchThat: aBlock 
The top subMode with the disp\ayBox contains aRect and satisfies aB\ock. 

firstSubMode 
Return the front-most submode. 

lastSubMode 
Return the back-most submode. 

subModes 
Return an OrderedCollection of all the submodes. 

96 



B.1.6 superMode access 

isToprviode 
Return a boolean indicating whether the receiver is the root of the mode hier

archy. 

super Mode 
Return the supermode. 

toprvlode 
Return the root of the hierarchy of modes that the receiver belongs. 

B.1.7 layer manipulation 

The methods in this protocol enable and disable a mode and allow a mode to be 
moved in the hierarchy. 

map 
Make the receiver active. 

unMap 
Make a mode inactive. 

eraseAnd U nMap 
Erase and unmap the moJe. 

mapAndDisplay 
~lake the receiver active and display it. 

moveBy: aPoint 
~love the origin of mode by aPoint. 

moveRelativeTo: aPoint 
Move the origin of self to the point aPoint in supermode's coordinates. 

moveTo: aPoint 
Move the origin of self to the absolute point aPoint. 

move ToBack 
~lake the mode the back-most submode of its supermocle. 

move To Front 
~lake the mode the front-most submode of its supermode. 

9i 



to Back 
Make the mode the back-most submode of its supermode and display it. 

to Front 
~lake the mode the front-most submode of its supermode and display it. 

B.1.8 layering 

The methods in this protocol implement the clipping algorithm. 

computeLayering 
This is a recursive method to update the obscuringRects when the screen layout 
is changed. 

computeLayering: aRectCltn within: aRect 
Take a collection of displayBoxes that may obscure self to compute the obscur
ingRects. This method is recursive. 

computeSubLayering 
Compute the layering of submodes. 

computeSubLayeringBelow: aSubmode 
Tell the submodes that are behind aSubmode to compute their obscuringRects. 
When a submode moves, only submodes that lie underneath it need to recom
pute their obscuringRects. 

computeSubLayeringBelow: aSubmode within: aRect 
Tell the submodes that are behind aSubmode and within aRect to compute 
their obscuringRects. 

computeSubLayeringWithin: aRect 
Compute the layering of submodes that fall with in aRect. 

obscuringRects 
Return the collection of rectangles that obscure self. 

B.1.9 initialize-release 

initialize 
Initialize the mode. 

release 

Inform the semantic object to do the final clean up. 

!)8 



... 

B.l.lO display box access 

display Box 
The definition of displayBox is identical to that in .\lYC framework. This 
method is overridden because yfoDE has a different definition of insetDisplay
Box. As a consequence, the display Box computed here needs to be clipped with 
the insetDisplayDox of the supermode. 

insetDisplay Box 
Return the inset display box. 

recomputeDisplay Box 
This is for the mode to adjust its display box when things change. C sed by the 
'"highlight" methods defined in .\lode. 

setUnclippedDisplayBox: box 
Set the unclipped displayBox to box. 

setUnclippedDisplayBoxExtent: ext 
Set the extent of the unclipped displayBox to ext. 

set U ncli ppedDisplay BoxOrigin: aPoint 
Set the origin of the unclipped displayBox to aPoint. This is for moving the 
mode in absolute coordinates. 

unclippedDisplayBox 
Returns an display Box that is not clipped by the display Box of the supermode. 

B.l.ll controller access 

controller: aController 
Set the controller to aController. 

semanticObject: aSemObj controller: aController 
Set the semantic object to aSemObj and the controller to aController. 

B.1.12 event handling 

This is part of the event dispatching mechanism. 

interestedln: event 
Decides whether the mode should process an event. 

gg 



processEvent: event 
Take the event and ask the controller to process it. 

B.Ll3 enter /leave Event-process 

The methods in this protocol implement ~he enter/leave event generation algorithm. 
Basically simulate the X Window System's enter /leave window protocol. 

commonAncestor 
This will return the ancestor that contains both the current cursor point and 
the previous cursor point. This is optimized by using the following two facts. 
First, since the cursor Move event got here, all the ancestors of the mode contain 
the origin of the event. Second, the ancestor mode that contains the previous 
point must have the instance variable 'cursorln' set to true. 

cursor In 
Return whether the cursor is inside the mode. 

processEnterLeave: event 
Check to see if the mode need to generate enter/leave mode events and process 
them. The event is a cursor~love event. 

processEnter: enterEvent 
. Ask all the modes, start from self, entered by the cursor to process entedlode 

event. 

processLeave: leaveEvent 
Ask all the modes left by the cursor. starting from self. to process leave~Iode 
event. 

topSubModeEnteredFrom: offspring 
This is an optimization making use of the fact that the submode sought is also 
an ancestor mode of the offspring. 

topSubModeLeft 
This will return the first submode that the cursor left. This submode should 
has the cursorin instance variable set to true. 

B.l.14 subMode insert/delete 

addSubl\fode: al\Iode 
Add a~Iode as my front-most submode. 

100 

; 



addSubMode: aMode absAt: aPoint 
Add aMode as my front-most submode at aPoint in screen coordinates. 

addSubl'vlode: al\Iode absAt: aPoint extent: ext 
Add a~lode as my front-most submode at aPoint m screen coordinates and 
resize it to have the extent ext. 

addSubMode: al'vlode at: aPoint 
Add a'Mode as my front-most submode at aPoint in locd.l coordinates. 

addSubMode: aMode at: aPoint extent: ext 
Add aMode as my front-most submode at aPoint in local coordinates and resize 
it to have the extent ext. 

addTollackSubl\1ode: al\Iode 
Add aMode to be the back-most sub~[ode of self. 

addToBackSubl'viode: aMode at: aPoint 
Add a~Jode as my back-most submode at aPoint in local coordinates. 

addToBackSubMode: al'vlode at: aPoint extent: ext 
Add a~lode as my back-most submode at aPoint in local coordinates and resize 
it to have the extent ext. 

addToBackSubMode: aMode window: a Window viewport: a Viewport 
Add aMode as my back-most submode and set its window to aWindow and its 
viewport to a Viewport. 

removeFromSuperMode 
Remove self from supermode. 

removeSubl'vlode: al\Iode 
Remove aMode from the submode collection. 

B.1.15 visibility 

is Visible 
Return a boolean indicating whether the mode is visible. 

B.1.16 bordering 

Override the methods in View class so that the display object has control oi the 
border. 

101 



borderColor 
Return the border color. 

borderColor: aColor 
Set the border color to aColor. 

border'\Vidth 
Return the border width. 

borderWidth: aWidth 
Set the border width to a Width. 

insideColor 
Ret urn the background color. 

insideColor: aColor 
Set the background color to aColor. Changing the background color from nil 
(transparent) to something else makes the transparent window opaque. In that 
case, the layering must be recomputed. 

B.1.17 buffering 

The methods in this protocol buffer the appearance of a mode to improve the drawing 
speed. 

Image 

Returns a form that stores the appearance of me and my submodes. 

imageSize: ext 

Return a form of size ext that stores the appearance of the mode. 

imageSize: ext window: a Window 
Return a form of size ext that stores the appearance of the mode visible from 
a Window. When ext is nil, current unclippedDispBox extent is used as a default. 
When a Window is nil, current window is used. 

absoluteBufferSubmodes 
Ask each submode to buffer its appearance. 

smartBufferSubmodes 

Ask each submode to buffer its appearance if it has contents that take time to 
draw (e.g. curved !ines). 

102 



B.1.18 sharedS ty le-highlight 

The protocol defines a few commonly seen highlight styles. 

color Border Highlight 
Highlight by changing the border color. 

color Border Highlight N 
Dehighlight by changing the border color. 

inverse Highlight 
Highlight by inverting the appearance. 

inverseHighlightN 
Dehighlight by inverting the appearance. 

thickBorderHighlight 
Highlight by thickening the border. 

thickBorder HighlightN 
Dehighlight by reducing the border width. 

B.1.19 indicating 

Although a special case of changing the appearance, highlight is so common that a 
protocol is provided to support it. 

highlight 
The instance variable 'highlightDispObj' stores tw0 kinds of object. .\ DispObj 
indicates that it is the appearance of the mode when highlighted. A symbol 
means that a shared style of highlight (that is acce::;:;;ible to all modes) is used. 
Those shared styles are implemented in the this class. 

deHighlight 
Dehighlight the mode. 

highlightDispObj 
Return the highlight display object. 

highlightDispObj: dObj 
Set the highlight display object to dObj. 

highlighted 
Return a boolean indicating whether the mode is highlighted. 

103 



B.1.20 
. . 

SIZing 

Methods in this protocol handles everything that is relevant to the size and position 
of the mode. 

edit 
This will start an edit session discussed in Section .5.2. 

extent 
Return the extent of the mode. 

extent: extent 
Set the extent. 

height: h 
Set the height to h. 

width: w 
Set the width of mode to w. 

origin 
Return the origin of the mode. 

. . . . 
ongm: ortgm 

Set the origin. 

origin: origin extent: extent 
Set the origin and the extent of the mode. 

resizeStyle 
Return the resize constraints. 

resizeStyle: aStyle 
Set the resize constraints to aStyle. 

superModeWindowChangedFrom: oldW to: newW 
When the supermode notifies submodes that it has been resized, this method 
is executed by each suhmode to satisfy its resize constraints. 

windowChangedFrom: old\V to: new\V 

This is used by the mode to inform its submodes that it has been resized. 

104 



B.1.21 semObj access 

semanticObject 
Return the semantic object. 

semanticObject: aSemObj 
Set the semantic object to aSemObj. 

B.1.22 copying 

deepCopy 
Check self against the OccurrenceDictionary to avoid loops when making du
plicates. This method is also defined in the SemanticOb~ect, .\!Controller, and 
MDisplayObject classes. 

duplicate 
Make a duplicate of self and all objects accessible from self (except the super
mode). 

B.1.23 class methods for: initialization 

initialize 
Initialize the OccurrenceDictionary. 

B.1.24 class n1ethods for: instance creation 

extent: extent 
Creates a mode with extent set. 

origin: origin 
Create a mode with origin set. 

origin: origin extent: extent 
Create a mode with origin and extent set. 

B.2 MController Class 

superclass: Object 

lU.S 



instance Variables: 

• semObj - T:1e semantic object. 

• mode - The mode. 

• evf>nt - The current event. 

• eventResponses- The eventResponses dictionary stores the interPstea event 
types and the responses to them. 

class Variables: 

• MMSControllerlERD -The default event responses dictionary. 

Al:hough the JfController class has the name "Controller," it is not a subclass 
of tbe Smalltalk Controller class. In fact, the two classes bear little resemblance. 

The i'v!Controller performs interactions by sending out messages according to 
the type of events it receives. The instance variable "eventResponses" of this class 
holds a dictionary that stores the mapping between interested event types and mes
sages. The keys of the dictionary are the event types and the values are message 
selectors. 

The .'vi Controller class and its subclasses implement a set of shared behaviors as 
instance methods. They include common behaviors such as menu invocation, rubber
band lines and boxes, mode dragging, mode highlighting, and mode resizing. These 
behaviors are shared because a11y instance of the class or the subclass can invoke 
them. To invoke a shared behavior, one places its method name into the controller's 
''eventResponses" dictionary as a value. 

In the eventResponses dictionary there are two types of selectors: 

• Selectors that end with a colon imply that the message should be sent to the 
semantic object with the current event as the argument. 

• Selectors tb.t do not end with a colon have no argument, and they should be 
sent to the controller itself. 

B.2.1 access 

event 
Return the currf'nt event. 

106 



event Responses 
Return the event responses dictionary. 

eventResponses: newER 
Set the event responses dictionary to newER. 

semanticObject 
Return the semantic object. 

semanticObject: aSemObj 
Set the semantic object to aSemObj. 

B.2.2 event handling 

Methods in this protocol process the events. 

checkSpecialEvent 
Check whether a Control-E is received. This is to handle the user interrupt. 

defaultReturn Value 
This value distinguishes between an opaque controller which blocks all modes 

underneath it from receiving any events (by returning true as default) and a 

transparent controller which allows the events that are not processed to go 
through (by returning false as default). 

processEvent: anEvent 
Process the event. Return true when the event is processed. Otherwise. return 
false. 

B.2.3 shared Behavior- resize 

~lethod in this protocol defines the shared resize behavior. 

bottom Center Moved 
Interact with the user to resize the mode by matching the bottom center of the 
mode with the cursor position. 

bottomLeft:VIoved 
Interact with the ll:"er to resize tlw mode by matching the bottom left of the 
mode with the cursor posit ion. 

107 



bottomRightMoved 
Interact with the user to resize the mode by matching the bottom right of the 
mode with the cursor position. 

leftCenterl'vloved 
Interact with the user to resize the mode by matching the left center of the 
mode with the cursor position. 

resize: aSymbol outline: aBlock 
Resize the mode according to aSymbol (which can be either bottomCenter. bot
tomLeft, bottomRight, leftCenter, rightCenter, topCenter, topLeft, or topRight). 
"aBlock" computes the outline box during the resize action. 

resize: aSymbol outline: aBlock width: a Width halftone: aMask 
Resize the mode accordinll to aSymbol. "aBlock" computes the outline box 
during the resize action. "a Width" is the width of the outline and a~lask 
defines the color of the outline. 

right Center Moved 
Interact with the user to resize the mode by matching the right center of the 
mode with the cursor position. 

topCenter Moved 
Interact with the user to resize the mode by matching the top center of the 
mode with the cursor position. 

topLeftMoved 
Interact with the user to resize the mode by matching the top left of the mode 
with the cursor position. 

top Right Moved 
Interact with the user to resize the mode by matching the top right of the mode 
with the cursor position. 

B.2.4 shared Behavior-move 

Methods in this protocol support the moving of modes. 

moveClippedlmage 
Let the user move the mode with its Image. Clip to the display box of the 
modP's supermode. 

move Frame 
Let the user move the mode with an indication box. 

108 



moveFrameConstrained 
Let the user move the mode with an indication box. The range of move IS 

confined within the mode's supermode. 

moveFrame\Vithin: aRect 
Let the user move the mode with an indication box. The range of move is 
confined within aRect. 

move Frame \Vi thin: aRect linkTo: points 
Let the user move the mode with an indication box. The range of move is 
confined within aRect. Draw links originated from a set of points to the moved 
box. 

movelmage 
Let the user move the mode with a bitmap showing the image of the mode as 
opposed to moveFrame which uses a rubber band box to show the position of 
the mode. 

movelmageConstrained 
Let the user move the mode with its 1mage. The range of move is confined 
within the mode's supermode. 

movelmage \Vi thin: aRect 
Let the user move the mode with its 1mage. The range of move is confined 
within aRect. 

movelmage Within: aRect linkTo: points 
Let the user move the mode with its image. The range of move is confir.ed 
within aRect. Draw links originated from a set of points to the moved box. 

B.2.5 sharedBehavior-indicating 

:\1ethods in this protocol support highlight of the mode. 

highlight 
Highlight the mode. 

deHighlight 
Dehighlight the mode. 

dragDeHighlight 
Dehighlight when an object is dragged and left the mode. 

109 



dragDeHighlightOnTop 
Dehighlight when an object is dragged and left the mode. Put the mode back 
to the level before the highlight. 

dragHighlight 
Highlight when an object is dragged on top of the mode. 

dragHighlightOnTop 
Highlight when an object is dragged on top of the mode. Bring the mode to 
front (to make it unobscured) when the cursor is in my area. 

B.2.6 sharedBehavior-link 

Support rubber line feedback. 

rubberLineOriginCltn: pts within: aRect 
Display a set of rubber lines connecting the cursor and the collection of points 
while the user is dragging the cursor. The cursor is restricted within aRect. 
Return the final cursor position. 

rubberLineOriginCltn: pts within: aRect releaseSelectors: releaseSelectors 

Display a set of rubber lines connecting the cursor and the collection of points 
while the user is dragging the cursor. The cursor is restricted within aRect. 
Interaction terminates when an event with selector that matches one of the 
·'releaseSelectors" is received. Return the final cursor position. 

rubberLineOriginCltn: pts within: aRect releaseSelectors: rSels gridPoint: gpt 

Display a set of rubber lines connecting the cursor and the collection of points 
while the user is dragging the cursor. The cursor is restricted within aRect. 
Interaction terminates when an event with selector that matches one of the 
"releaseSelectors" is received. Return the final cursor position. The cursor can 
only land on positions defined by gridPoint. 

B.2.7 shared Behavior-menu 

Process the menu interaction. Assuming the semantic object would provide the menu. 

110 



expandLeftMenu 
Ask the semantic object for the left button menu and use it to interact with the 

user. 

expandMiddlelVIenu 
Ask the semantic object for the middle button menu and use it to interact with 
the user. 

expandRightl\:lenu 
Ask the semantic object for the right button menu and use it to interact with 

the user. 

expandMenu: menu 
Start up the menu to interact with the user. 

B.2.8 Interrupt handling 

The methods in this protocol handle the Control-E command, which is discussed in 
Section 5.2. 

processinterrupt 
Put the mode in the editable state. 

shouldProcessinterrupt 
This is the key to the Control-E mechanism. If this method returns false, the 
mechanism is switched off. This is useful when productizing an interface. If true 
is returned, the user can do multiple Control-E's and get to see the implemen
tation of how the modes for the interrupt mechanism is implemented. This is 
dangerous and is only useful for :\loDE kernel designer and maintainer. The de
fault behavior implemented here is to allow only one Control-E in any sequence 
(by returning true only for the first time). This allows the user to investigate 
the interface and from there, go to the application without the chance of mis
takingly getting into a strange state where he is viewing the implementation of 
the Control-E handling mechanism . 

B.2.9 
. 

copying 

deepCopy 
Check self against the OccurrenceDictionary to avoid loops when making dn
plicates. This method is also defined in the SemanticObject, :\lode. and :\lDi;;
playObject classes. 

111 



B.2.10 class methods for: instance creation 

new 
Return a new controller. 

view: aView 

Return a new controller with view set to a View. This is for the compatibility 
with MVC. 

B.2.11 class methods for: access 

eventResponsesDict 

Every class has a dictionary to record the events and their responses that are 
shared by all the instances of that class. This dictionary is initialized in the 
class initialize method. 

B.2.12 class methods for: initialize 

ERDinit 
Initialize the event responses dictionary. 

initAllERDict 

B.3 

This is called every time when a new session is started to allow changes to the 
event responses dictionary to propagate to subclasses. 

MDisplayO b ject Class 

superclass: DisplayObject 

instance Variables: 

• contents - A OrderedCollection that holds the displayable objects. 

• insideColor - Background color. 

• borderWidth - Border width of the mode. 

• borderColor - Border color. 

• form - A bitmap that butTers the appearance. 

• boundingBox - A rectangle that defines the boundary of the contents. 

112 



The .\!DzsplayObject class is a subclass of the Smalltalk DisplayObjectclass. In
stances of the .\!DisplayObjecl class control the "background" of modes. The ·'back
ground'' includes the ins1de color. the border. and zero or more displayable objects. 
The instance variable "contents" hold an OrderedCollection that keeps these dis
playable objects. All objects that understand the protocols defined in the Display
Object class can be put into this collection. They can be text, drawings. forms. and 
animated pictures. 

The display method accepts two arguments from the mode-a display box and 
a collection of visible rectangles. The display box defines the size and position of the 

mode. The visible rectangles define the visible portion of the mode computed by the 
clipping algorithm. 

The .\!DisplayObject has the capability to buffer its output as a bitmap. This 
speeds up the display of complex objects. 

When the "boundingBox'' is nil, a display object will not scale the contents 
when outputting. \Vhen the ·'boundingBox" is not nil, it will scale the output ac
cording to the difference of the ·'unclippedDispBox" from the mode and the "bound
ingBox . ., 

B.3.1 transforming 

translateBy: aPoint 
Translate all objects m the contents collection. Special treatment is needed 
because some DisplayObject (Path, for example) returns a new instance instead 
of changing their offsets when issued a translateBy: message. 

B.3.2 initialize-release 

initialize 
Initialize the contents to ar:: empty OrderedCollection. 

B.3.3 accessing 

absAdd: aDisplayObject 
Add the aDisplayObject (any Smalltalk DisplayObject) into the contents col· 
lection. Does not aDisplayObject by the amount of borderWidth. This method 
is for the majority of use; "relAdd:" is included for convenience. 

113 



relAdd: aDisplayObject 
Add aDisplayObject to the contents collection. Offset the input object by the 
borcier width so that it will not be obscured by the border. 

borderColor 
Return the color of the border. 

borderColor: aColor 
Set the border color to aColor. Disable the buffering since the appearance has 
been changed. This is not used in highlighting since rebuffering the image for 
every highlight and deHighlight is very slow. 

borderColorTemp: aColor 
Temporarily set the border color to aColor. This is used by highlights. By pass 
the buffering mechanism. 

border Width 
Return the border width. 

border Width: a \Vidth 
Set the border width to a Width. 

borderWidthTemp: aWidth 
Temporarily set the border width to aColor. This is used by highlights. By 
pass the buffering rnechanism. 

clear 
Remove all objects in the contents collection. 

contents 
Return the contents collection. 

insideColor 
Return the background color. 

B.3.4 inversion 

mverse 
Invert the display object. 

inverse: ext 
Invert the display object with bounding box extent set to ext. 

114 



.. 
• 

B.3.5 displaying 

border\Vith UnClippedDispBox: unclippedDispBox visibleRects: visibleRects 
Display the border only. 

displayContentsOn: alYiedium transformation: a Trans clippingBox: a Vis
ibleRect 

Display the objects in the contents collection on a :\ledium. 

displayOn: alYledium withUnClippedDispBox: unclippedDispBox visibleRects: 
visibleRects 

Take the unclipped displayBox and visible rectangles within the box of a 
mode, draw self on a:\ledium. This is the main method used by the mode. 

fastDisplayOn: aMedium withUnClippedDispBox: unclippedDispBox vis
ibleRects: visibleRects 

Use the buffered appearance to display. 

B.3.6 buffering 

.\lethods in this protocol buffer the output of the display object to speed up the 
displaying. 

buffer\VithExtent: ext 

Buffer the output in a form and use the form to draw faster. The .. ext" specifies 
the extent of the unclipped display box. It is needed to draw the border. 

makeAbsoluteFaster 

This one doesn't care what is in the contents collection or whether the back
ground color is nil. It just buffers. Cnder normal conditions, the ·•makeFaster .. 
method is recommended. 

make Faster 

Buffer only when the contents contain display objects other than Form and Text 
(both can be displayed fast without any buffering). 

unBuffer 
Throw away the buffer and stop butTering. 

11.5 



B.3.7 testing 

containsPoint: aPoint 

Test whether aPoint falls into my image area. This is used by mode to decide 
whether an event falls into its area. 

B.3.8 display box access 

boundingBox 
Return the bounding box. 

boundingBox: aBox 
Set the bounding box to aBox. 

computeBoundingBox 

Compute the bounding box from the bounding boxes of the objects Ill the 
contents collection . 

B.3.9 
. 

copying 

deep Copy 

Override the definition in the super class to avoid copying the '"contents" and 
the forms. 

B.3.10 class methods for: instance creation 

new 

Create a new instance. 

B.4 SemanticObject Class 

superclass: .\lode! 

instance Variables: 

• mode - The mode. 

• delegate - The visual representative of self. 

• target1 - Stores the connection to other objects. 

116 

• 

• 



' 

• 

Semantic objects are programmable in the Mode framework. If an interaction 
technique is created by coding (instead of using the !\lode Composer), it will have its 

own class which is a subclass of the SemanticObject class. Instances of this interaction 
technique are created by sending creation messages to its class. The SemanticObject 
class defines a set of initialization methods to set up the parts in the .\lode framework. 

They are ""setUp:\lode," ··setUpController," and "setUpAppearance." \Vhenever a 
subclass of SemanticObject is sent a creation message, these three methods are invoked 
automatically to create and initialize the components of a mode and to connect them 
together. 

B.4.1 access 

mode 
Return the mode. 

mode: aMode 
Set mode to aMode. 

target! 
Return the connection stored in target!. 

target!: aTargetObject 
Set the connection to aTargetObject. 

B.4.2 initialize-release 

initialize 
Initialize self, mode, and controller. 

release 

Release all references outward to facilitate the garbage collection. 

B.4.3 mode attaching 

Methods in this protocol are defined for the convenience of attaching the mode of a 
semantic object to another mode. 

attach-;\1odeTo: alVIode 

Attach my mode to a:\fode as a submode. 

11 i 



attachl\ilodeTo: aMode absAt: p 
Attach my mode to a:V[ode as a submode at screen coordinates p. 

attachi\tlodeTo: al\ilode absAt: p extent: e 
Attach my mode to a.\Iode as a submode at screen coordinates p and set the 
extent of mode to e. 

attachl\llodeTo: al\ilode at: p 
Attach my mode to aMode as a submode at a local coordinates p. 

attachModeTo: al'VIode at: p extent: e 
Attach my mode to a:Vlode as a submode at a local coordinates p and set the 
extent of mode to e. 

B.4.4 drag support 

dragControllerFor: aSymbol 
Return the default drag controller. When an object is dragged, all other objects 
on the screen switch to a different controller to perform the interaction. 

B.4.5 Mode-initializations 

Create the components of a mode and connect them together. 

defaultlVITVISControllerClass 

This method is used in set tJ pController. Returns the default class of the con
troller. 

defaultModeClass 
This method is used in setUpMode. Returns the default class of the mode. 

setUpAppearance 
The default is to do nothing. 

set U pController 
Create and connection the controller. 

set U pl\llode 

Create and connection the mode. 

118 

• 



• 

B.4.6 

deepCopy 
Override to prevent copying the delegate, which will loop back to root.\lode and 
copy a lot of unnecessary objects. 

duplicate 
Return a copy of my structure. 

deep Copy 
Check self against the OccurrenceDictionary to avoid loops when making du
plicates. This method is also defined in the .\lode, .\!Controller. and \!Display
Object class. 

B.4.7 connection model support 

These methods are used by the \lode Composer. 

clear All Connections 
Remove a:! connections to other objects. This is issued when a mode is abo11t 
to be removed. 

delegate 
Return the visual representative. This is used by the :\lode Composer. 

removeLink: aLink 
Remove the link alink. 

B.4.8 attribute editor 

editAttributes 
Allow the user to edit the attributes of a mode. For example, the text of a text 
label. Subclasses often override this method to provide different editors. 

B.4.9 class methods for: instance creation 

new 
Retllrrl a new instance of this class. 

110 



Appendix C 

Videotape 

Copies of this videotape may be ordered from the Textlab Research Group, Depart
ment of Computer Science, University of North Carolina, Chapel Hill, NC 2/.j99-31 /.j. 
Inquiries may be e-mailed to textlah@cs. unc.edu. 

The videotape consists of two sections described below. 

C.l Sample Interfaces Built with MoDE 

Purpose: To demonstrate some of the interfaces that can be created with \foDE. 

Length: ll minutes. :w seconds. 

Contents: 

• Network of hypertext nodes. 

• Oddly shaped window. 

• Enter/leave event test. 

• Different highlighting styles and levels of direct manipulation. 

• Two types of moving things. 

• Sca.nned images and polling text editor. 

• Roam box. 

• Three sLyles of menus. 

120 

' 



• 

C.2 MoDE in Use 

Purpose: To demonstrate how .\laDE can be used to create interfaces rapidly and 
easily. 

Length: 15 minutes, 30 seconds. 

Contents: 

• Binary desk calculator. 

• Self editing of .\loDE. 

• \Vindows in window. 

• Creating an oddly shaped window. 

121 


