
A New Class of Recursive Routing
Algorithms on Mesh-connected Computers

TR90-044

December, 1 990

TaisookHan

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.

A New Class of Recursive Routing
Algorithms on Mesh-connected Computers

by

Taisook Han

A dissertation subrnitt.ed to the faculty of the
University of North Carolina at Chapel Hill in partial

fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill, 1990

@1990
Taisook Han

ALL RIGHTS RESERVED

II

TAISOOK HAN. A New Class of Recursive Routing Algorithms on Mesh­

connected Computers. (Under the direction of Donald F. Stanat.)

Abstract

We describe a class of deterministic routing algorithms called "move and

smooth" algorithms for one-to-one and one-to-many message routing prob­

lems on meshes. Initially, each processor contains at most one message, and

each message has one or more designated destinations. No processor is the

destination of more than one message.

Move and smooth algorithms are recursive. Initially, the entire mesh is

considered a single region. At each recursive stage,

• Each region is partitioned into contiguous subregions;

• A copy of each message is moved to each of the regions that contains

one of its destinations (the move phase);

• Messages within each region are re-distributed so that each processor

contains at most one message (the smooth phase).

The recursion continues until each region contains a single row or column

of processors, at which time each message has arrived at or can be moved

directly to its destination.

We examine two representative move and smooth algorithms in detail.

On a square n by n mesh, one of the algorithms requires 5.5n parallel com­

munication steps and five buffers per processor; the other requires 9n parallel

communication steps and three buffers per processor. We show that under

appropriate assumptions, these costs are not changed for one-to-many rout­

ing problems. The number of buffers is independent of the size of the mesh.

The costs of our move and smooth algorithms are higher than those of

some one-to-one routing algorithms, but move and smooth algorithms are

suited for a wider variety of problems including one-to-many problems. These

algorithms do not rely on sorting. We describe other move and smooth

algorithms, and generalizations to higher dimensions.

Ill

Acknowledgments

My advisor, Dr. Donald F. Stanat, deserves my sincere gratitude and ap­
preciation. He continuously gave me sparkling ideas and encouraged me.
His enthusiastic guidance and support make it possible to accomplish my
research in time.

I am also indebted to Dr. Gyula A. Mag6 for his advice and review of
the work. He suggested the dissertation topic and listened patiently to my
questions. His comments and careful reading were essential to this disserta­
tion.

I would like to thank the other members of my committee, Dr. David
Plaisted and Dr. Akhilesh Tyagi for their suggestions of ideas and improve­
ments, and especially Dr. Jennifer Welch who reviewed my draft and made
constructive comments.

Finally, I would like to thank to my family for their support and en­
durance. My research would not have been possible without love from my
wife and daughter.

IV

Contents

1 Introduction
1.1 The Problem
1.2 Dissertation Organization
1.3 Definition of Terms

1.3.1 Network Classifications
1.3.2 Mesh Networks
1.3.3 Properties of Processors
1.3.4 Problem Definition .
1.3.5 Evaluation Criteria . . .

1.4 Related Work
1.4.1 Principal Network Models
1.4.2 Routing Algorithms
1.4.3 Sorting Algorithms . .

2 Move and Smooth Algorithms
2.1 Class of Move and Smooth Algorithms
2.2 Message Movement in Linear Array .

2.2.1 Row Movement ..
2.2.2 Column Movement

3 Algorithm Q
3.1 Overview
3.2 Move Step of Algorithm Q . .
3.3 Smooth Step of Algorithm Q

3.3.1 Counting
3.3.2 Distribution

3.4 Time Complexity and Buffer Requirement
3.5 Restricted Broadcasting with Algorithm Q .
3.6 Extensions of Algorithm Q

v

1
1
4
4
4
6
7
8

10
11
11
13
19

23
23
25
25
35

39
39
42
46
47
50
61
64
68

3.6.1
3.6.2
3.6.3
3.6.4

Extended Algorithm Q for k2 Partitioning
Extended Algorithm Q to a K Dimensional Mesh .
Algorithm Q on an Arbitrary Square Mesh
Algorithm Q on a Rectangular Mesh

4 Algorithm H
4.1 Overview
4.2 Move Steps of Algorithm H .
4.3 Smooth Steps of Algorithm H

4.3.1 First Smooth Step . .
4.3.2 Second Smooth Step .

4.4 Time Complexity and Buffer Requirement
4.5 Restricted Broadcasting with Algorithm H .
4.6 Extensions of Algorithm H

4.6.1 Extension to a Three Dimensional Mesh
4.6.2 Extension to a K Dimensional Mesh . .
4.6.3 The k-strip Algorithm H
4.6.4 Algorithm Honan Arbitrary.Square Mesh
4.6.5 Algorithm H on a Rectangular Mesh

5 Conclusion
5.1 Summary
5.2 Suggestions for Further Work

Bibliography

VI

69
72
74
84

87
87
88
90
91
94
95
97

101
101
107
111
114
116

118
118
122

124

List of Tables

1.1 Models and problems in literature 12

5.1 Time complexities and buffer requirements of Algorithm Q 119
5.2 Time complexities and buffer requirements of Algorithm H 120
5.3 Comparison of deterministic routing algorithms 121

Vll

List of Figures

1.1 Examples of network topologies ...
1.2 Indexing schemes
1.3 Mapping from source to destination
1.4 Buffer requirements of Kunde's algorithm

2.1 Examples of row movement problems .
2.2 The array in the proof of Lemma 2.2 .

6
7
9

17

28
31

3.1 The first recursive stage of Algorithm Q 41
3.2 The move step in Algorithm Q 43
3.3 Buffer requirements during the move step 45
3.4 Counting in the upper half of an 8 by 8 mesh. . 51
3.5 Layout of extra messages after row movement . 52
3.6 Row movement in the upper half of an 8 by 8 mesh. 54
3. 7 Message traffic across channels during row movement . 57
3.8 Message distribution after row movement 58
3.9 Column movement in an 8 by 8 mesh. 60
3.10 Message layout for the lower bound of smoothing 63
3.11 Move and smooth steps for broadcasting 67
3.12 Worst case move step of extended Algorithm Q 70
3.13 Partition of a square mesh with odd size 75
3.14 Alternatives for special regions 76
3.15 Targets of messages to Submesh IV of the first mapping 77
3.16 Targets of messages to Submesh IV of the second mapping . 79
3.17 Targets of messages to submeshes I and III of the second map-

pmg . 79
3.18 Targets of messages to Submesh I of the third mapping 81
3.19 Targets of messages to Submesh IV of the third mapping 82

4.1 Broadcasting with Algorithm H . . . 99
4.2 Partitions of a cube in Algorithm H 104

Vlll

4.3 Partitions of a square mesh for the k-strip Algorithm H 112
4.4 Partitions of an odd-sized mesh by Algorithm H 115

IX

Chapter 1

Introduction

This dissertation describes a class of routing algorithms for a mesh-connected
processor system. In Section 1.1, we describe the reasons behind the wide­
spread use of the mesh topology and the role of routing algorithms in parallel
processing systems. We state characteristics of an algorithm of special in­
terest to us and give a brief description of a class of routing algorithms
introduced in this dissertation. In Section 1.2, we summarize the chapters
of this dissertation. In Section 1.3, we define the terms to be used through­
out this dissertation and describe the network model to elaborate our algo­
rithms. We also characterize routing problems that our algorithm will solve.
In Section 1.4, we summarize the research literature on routing and sorting
algorithms on a mesh.

1.1 The Problem

In recent years, much research has explored the potential of parallelism for
various problems. The design of many parallel algorithms is based on a
computational model with a sufficient number of processors and with conflict­
free shared memory. The PRAM (Parallel Random Access Machine) model
is one of the typical idealized parallel computers. It has a common global
random access memory that is shared by many processors. Each processor
can read and write any part of the memory for a uniform cost. Data exchange
among processors is done through the shared memory. Analysis of many
algorithms is based on such a theoretical computational model.

But with current technology, a multiprocessor with global memory and
uniform access cost is not realizable. Memories are either shared by proces­
sors or local to processors. In both cases, processors access memories through

interconnection networks which connect either processors themselves or pro­
cessors and memory modules. As a consequence, the communication cost
between processors and memory modules cannot be considered uniform. So,
data movement among processors is an important factor in the performance
of multiprocessor systems.

Because of the limited communication bandwidth among processors, re­
arranging data is costly; data exchange among processors can be a major
time factor in the implementation of practical parallel algorithms. To facil­
itate data exchange among processors, several interconnection schemes for
multiprocessor systems have been proposed and used, including binary tree,
hypercube, butterfly, and mesh networks. Implementations differ in chan­
nel bandwidth, channels per node, and connection distance between nodes.
Some multistage interconnection networks have also been investigated, such
as the omega, baseline, indirect binary n-cube, and delta networks. Each
of these uses several stages of switching elements to connect processors to
processors or processors to memories.

A multiprocessor system with an interconnection network uses a routing
algorithm to support fast data exchange among processors. In general, such
an algorithm must be able to handle diverse patterns of routing requests.
Some problems such as FFT and matrix multiplication require highly regu­
lar patterns of data exchanges among processors, but many problems, such as
simulating a PRAM model, require infrequent and irregular processor com­
munication. An efficient routing method capable of handling diverse routing
requests can improve the performance of a multiprocessor system.

Routing efficiency is profoundly affected by the architecture and intercon­
nection topology of networks. For example, a good routing method for the
hypercube connection may not work well for a mesh, because a hypercube
connection has more links per node and a smaller network diameter than a
mesh connection with the same number of processors; a routing method on
a hypercube connection can utilize the many outgoing edges of a node and
the small network diameter for fast transit of messages. The nature of ap­
plications is also an important factor in choosing a routing method, because
the application determines the regularity of data communication patterns as
well as the frequency, and size of the data objects.

Routing efficiency is also affected by whether communication is syn­
chronous, and whether it is globally controlled. Synchronous communication
is generally faster than asynchronous, because no handshaking is necessary
among processors. If a network is controlled by a single global controller, al­
gorithms that use global information can sometimes determine shorter routes,

2

resulting in faster performance than other algorithms that lack such infor­
mation.

This dissertation is concerned with routing algorithms for a two dimen­
sional rectangular mesh. The two dimensional mesh interconnection scheme
has long been of interest because of its simplicity and the regularity of its
interconnection pattern [1]. Although the maximum distance between pro­
cessors is large compared to other interconnection patterns', a mesh is wire­
efficient when implemented in VLSI, making possible wide buses among pro­
cessors for increased communication efficiency [5]. The locality of communi­
cation is another strength of the mesh for programming; in a two dimensional
mesh, a processor can communicate with only four neighbors. Finally, meshes
can be scaled up to larger systems.

This dissertation considers a class of routing algorithms for one-to-one
communication patterns and one-to-many communication patterns. In one­
to-one communication, a processor in a mesh has a single message that will
be delivered to another processor, and no processor in the mesh will receive
more than one message. In one-to-many communication, a processor has a
single message that will be delivered to one or many processor(s), but no
processor will receive more than one message. We are especially interested
in such one-to-many communication.

The purpose of this dissertation is to construct routing algorithms for
moving packets among processors on a mesh. Our routing algorithms as­
sume packet switching. The processors have their own program memories
and request data exchange synchronously, based on a global clock. This dis­
sertation describes a class of move and smooth algorithms which have the
following properties:

• The algorithms are deterministic.

• The algorithms can handle one-to-one and one-to-many message rout­
ing problems without any adjustment; the cost of executing each rout­
ing algorithm is the same over all problems.

• The algorithms are distributed; that is, each processor operates inde­
pendently on the basis of messages in its buffers and its state.

• The number of buffers in each processor is the same, and a constant
regardless of the size of mesh.

1 For an N processor system, the maximum distance between processors in a hypercube
is log N, whereas in a mesh the maximum distance is Vii.

3

• All processors work in lock-step; no handshaking between processors is
necessary.

1.2 Dissertation Organization

In Section 1.3, we introduce the terms to be used throughout this dissertation,
and describe our network modeL In Section 1.4, we briefly summarize the
literature on routing and sorting algorithms for meshes, emphasizing work
on deterministic routing algorithms.

The core of this dissertation is contained in Chapters 2 and 3. In Chap­
ter 2, we describe the general notion of move and smooth algorithms and
analyze the requirements of the message movements in a one dimensional ar­
ray of processors. The results developed in Chapter 2 are repeatedly cited to
analyze algorithms described in this dissertation. In Chapter 3, we describe
Algorithm Q, a typical move and smooth algorithm on a square mesh. The
procedures described are easily applicable to a rectangular mesh and to other
algorithms of this class.

In Chapter 4, we describe Algorithm H, another example of a move and
smooth algorithm. We also extend Algorithm H to another partitioning
method, multi-strip partitioning, and to multi-dimensional meshes, and we
analyze the time complexity and buffer requirements of the extensions. In
Chapter 5, we summarize the results of our research and suggest possibilities
for further research.

1.3 Definition of Terms

Much research has been performed on mesh connected computer systems,
but the meaning of terms sometimes varies from one report to another. In
this section, we introduce the terms to be used throughout this dissertation.
First, we describe network models in terms of Feng's classification [6]. Next,
we describe the mesh network and the characteristics of processors in our net­
work modeL Finally; we define the set of routing problems for our algorithms
and the evaluation criteria.

1.3.1 Network Classifications

To describe interconnection networks from a practical design viewpoint, Feng
[6] suggests four design decisions: operation mode, control mode, switching

4

method, and network topology. The operation mode of an interconnection
network may be synchronous, asynchronous, or a combination of the two.
In synchronous communication, communication paths are specified and mes­
sages are sent in lockstep over the entire network, with the aid of a global
clock. Asynchronous communication allows communication paths to be es­
tablished and messages sent as required; one set of processors may be ex­
changing messages concurrently with another set establishing a communica­
tion path. There may or may not be a global clock. In a combined mode,
both synchronous and asynchronous processing are supported.

The control mode specifies how the switching elements and links are con­
trolled. Control is classified as either centralized (global) or distributed (lo­
cal). A network with centralized, or global, control is a network in which
the individual processors execute instructions specified at each time step by
a global controller program which has global information and control. In a
network with global control, the global controller specifies what messages will
be sent by each processor at every time step. A network with distributed,
or local, control is a network in which processors execute individual (but
usually identical) programs independently. The central processor may pro­
vide a global clock for synchronization, but each processor executes its own
program, and the execution path of a program may depend on any part of a
processor's state, including the value of time. In a network with distributed
control, each processor determines what messages it will send at each time
step.

The switching method determines what kinds of paths are established
between source and destination processors. In circuit switching, a physical
path is actually established between a source and a destination, and messages
are sent, uninterrupted, along the path. In packet switching, data is put in a
packet and routed through the interconnection network from one processor
to another without establishing a physical connection path. In integrated
switching, both packet switching and circuit switching are used.

The network topology describes how the network is depicted by a graph in
which nodes represent processors and edges represent communication links.
Examples of network topologies include trees, rings, stars, meshes, and hy­
percubes as shown in Figure 1.1. The cross product of the set of categories
in each design decision-{ operation mode} x {control mode} x {switching
method} x {network topology }-represents the space of interconnection net­
works.

This research will focus on communication in mesh-connected proces­
sors which communicate synchronously using packet switching under

5

Ring Star Tree

Mesh Cube

Figure 1.1: Examples of network topologies

distributed control.

1.3.2 Mesh Networks

A two dimensional mesh-connected computer system consists of N processors
connected as an n by n grid2 , where N is n 2• Processors are on the cross
points of the grid, and each processor that is not on the boundary is connected
to four neighbors, called its north, south, west, and east neighbors.

The processors in a mesh are always assigned addresses, but addressing
schemes vary. Most commonly, a processor Pi,j on row i and column j is
addressed by a pair of row and column indices (i,j), where 0 ~ i ~ n- 1
and 0 ~ j ~ n - 1. While a pair of row and column indices is sufficient to
specify the location of any processor, a linear ordering of the processors is
necessary for some problems such as sorting, storing vector elements, and

2Meshes, of course, need not be square, but the square configuration is the one most
often implemented and investigated. This thesis includes extensions of two algorithms to
non-square meshes in Section 3.6.4 and Section 4.6.5.

6

0 1 2 3 0 1 2 3 0 1 4 5
4 5 6 7 7 6 5 4 2 3 6 7
8 9 10 11 8 9 10 11 8 9 12 13
12 13 14 15 15 14 13 12 10 11 14 15

row-major snake-like row-major shuffied row-major

Figure 1.2: Indexing schemes

computing a prefix sum. An indexing scheme makes it possible to address
each processor with a single index AI(i,j) where I is a one-to-one mapping
from {0, 1,2, ... , n-1} x {0, 1,2, ... , n-1} to {0, 1,2, ... , n2 -1}. Among the
many indexing schemes described in the literature, row-major indexing and
snake-like row-major indexing are used most commonly. Figure 1.2 shows
some common indexing schemes for a four by four array.

In row-major indexing, processors are indexed from left to right and from
top to bottom. With this indexing scheme, the index Ai,j of a processor
P;,j is equal to i x n + j. In snake-like row-major indexing, processors are
indexed from left to right on even-numbered rows, and right to left on odd­
numbered rows, from top to bottom. The index A;,j of processor P;,j is given
by i x n + (-1)i X j + Hn- 1 + (-1)i+1(n- 1)}. In shuffled row-major
indexing [45], the index Ai,j of processor Pi,j is given by shuffling the binary
representation of the row-major index. For example, shuffling bits of row­
major index 5 (0101) gives bit string 0011 which is 3. In blocked snake-like
row-major indexing [25], the n x n mesh is divided into nt X nt blocks of
n~ X n~ processors. Blocks are ordered by the snake-like row-major indexing
scheme, and any processor in a lower indexed block has a smaller address
than any processor in a higher indexed block. ·within a block, processors are
ordered by some commonly used indexing scheme.

1.3.3 Properties of Processors

In synchronous packet switching mesh models, processors may execute in­
structions from a central controller or from their own program memories,
but in either case, all processors communicate in lock-step, that is, they
all send and receive messages at the same time. All processors rely on the
global clock to synchronize communication. Processors also count clock ticks
to determine when each phase of an algorithm terminates. A processor can

7

send at most one message to each immediate neighbor at each time step; a
receiving processor receives each message in the same time step that it was
transmitted.

Two neighboring processors are connected by a link, which provides bidi­
rectional communication between the processors; messages can be sent in
either direction over a link. Each link is divided into one or two channels.
The capacity of a channel is one message per unit time. If each link has
one channel, it is called half-duplex. In a half-duplex model, a processor may
send or receive a message (but not both) over each link at each time step.
If each link has two channels, it is called full-duplex; in this case, adjacent
processors can exchange messages in a single time step, because a processor
can send and receive messages simultaneously.

A buffer is a memory location used to keep messages in a processor; each
buffer can store one message. Routing methods vary in the number of buffers
required to implement them.

The model used in this dissertation relies·on local control, so each pro­
cessor has its own program memory. Communication between processors
is by packet exchange, synchronized by a global clock. Each processor has
four links, each with two channels which can be active simultaneously, so a
processor may send and receiveup to four messages in one time step. Each
processor has only a small number of buffers to store transient messages.

1.3.4 Problem Definition

We will consider several classes of communication problems on a mesh. The
initial state, or initial configuration, of each problem has at most one message
stored in each processor of the mesh. A communication problem requires
moving each message to other processors in the mesh. Each final state also
has at most one message stored in each processor.

Communication problems can be classified as sorting problems or routing
problems. A sorting problem begins with a collection of messages in an
initial configuration, and ends with those messages in some specified subpart
of the net, arranged according to a specified linear order. Most commonly,
each processor has a message initially, and therefore sorting permutes the
messages in the mesh. In a sorting problem, the destination of a message is
implicit because the proper destination of each message is determined both
by its value and the values of the other messages in the mesh.

In a routing problem, each message is associated with (one or more)
destination addresses; a copy of each message must be moved to all of its

8

source destination source destination source destination

1 • 1 1 • 1 1

X
1

2 2 2 • 2 2 2

3 3 3 • 3 3 3 •
4 • 4 4 • 4 4 4

full permutation permutation broadcasting

Figure 1.3: Mapping from source to destination

destination addresses. Routing on meshes is important for solving problems
such as matrix multiplication and FFT. We will consider several subclasses
of routing problems. A full permutation problem will be one in which each
of N processors has a single message initially and finally, and each message
is sent to exactly one processor; thus, a full permutation effects a one to one
map of initial messages onto processors. A full permutation problem can be
solved by a sorting algorithm, since the messages can be sorted according
to their destination addresses. A (partial) permutation is a routing problem
in which each processor begins and ends with at most one message, and
each message is sent to exactly one processor. In a (partial) permutation, a
processor may initially have a message but not receive one, or vice versa. A
restricted broadcasting problem is a routing problem in which each processor
initially and finally has at most one message, but some messages are sent to
more than one destination processor. We will refer to restricted broadcasting
simply as "broadcasting." Figure 1.3 illustrates the various types of routing
problems.

An important subclass of full permutation problems are known as bit­
permute-complement (BPC) permutations because the binary representation
of each destination index can be obtained by permuting and complement­
ing the bits of the index of the processor that initially holds the message.
BPC permutations include a perfect shuffle and a transpose, which suffice
for solving a variety of practical routing problems.

Our model specifies that in the initial configuration, each message resides
in a single processor, and no processor contains more than one message.

9

Movement (that is, communication) begins simultaneously over the net, and
continues in a synchronous, lock-step fashion, until all messages have reached
(all) their destination processors. In the final configuration, each processor
has at most one message.

This dissertation will examine a class of routing methods for full per­
mutations, (partial) permutations, and broadcasting. We will only consider
routing methods that can be implemented with distributed control in which
each processor runs a copy of a single program and makes routing decisions
based on local information. In our discussion of previous work, however,
we will also consider sorting methods, since these can be used to solve full
permutation problems.

1.3.5 Evaluation Criteria

Routing methods, or algorithms, can be evaluated in a number of ways, in­
cluding their time complexity, the number of buffers required during routing,
and the class of mappings they can handle.

Time Complexity There are two classes of operations performed in a
mesh; one is inter-processor and the other is intra-processor. We assume
that intra-processor operations are very fast compared to inter-processor op­
erations; hence, all our measures of time complexity are based on the number
of routing steps required to send all messages (perhaps of various types) to
their destinations. The cost of a routing method is taken to be the maxi­
mum cost, over all problem instances, of the cost of solving each instance.
All processors start communication at the same time and stop when the last
message is guaranteed to have been delivered to its destination.

Number of Buffers The number of buffers required by a routing method is
defined to be the maximum number of messages that can occupy a processor
at any time during execution of the algorithm.

Class of Mappings The class of mappings is the class of routing problems
that a routing method can handle without any modification.

10

1.4 Related Work

This section describes work reported in the literature about routing and
sorting on a two dimensional mesh. Principal results are discussed, along
with descriptions of the models on which the results are based. Table 1.1
summarizes the results. Although some of the work described here assumes
a global clock and global control, all the complexity results are relevant to
our model, which is based on a global clock and distributed control.

1.4.1 Principal Network Models

The mesh-connected network models described in the references differ in the
control scheme of the processors, the details of the connection topology, and
the active links per processor. There are three principal models, with minor
variations occurring within the models.

The ILLIAC IV was one of the earliest SIMD parallel computers. It
had 64 processors connected in an eight by eight mesh. Much of the litera­
ture uses the ILLIAC IV as the model underlying their methods for routing
and sorting. We will use the term ILLIAC model3 to denote a subclass of
mesh-connected processors with a centralized controller. All instructions are
broadcast from the controller; depending on the value of a mask bit in the
processor, a processor does or does not execute a given broadcast instruc­
tion. The controller can address a group of processors by specifying a bit
pattern of processor addresses [42]. Communication is the result of the ex­
ecution of instructions that specify the direction of packet movement. The
SIMD control of the ILLIAC IV requires that all active processors send their
messages in the same direction (north, south, east, or west); the direction
is specified in any communication instruction. This restriction on message
direction is incorporated in our ILLIAC model. A "compare-and-exchange"
operation between two processors requires two routing steps, since messages
must be sent in the same direction in each step and two messages need to
be compared in the same processor. (The ILLIAC model is clearly not a
distributed control model, but all the algorithms we will discuss can be im­
plemented with distributed control.) A common variation on this model has
wrap-around connections.

3 In much of the literature, the ILLIAC model is called a SIMD model, because pro­
cessors are controlled by single broadcast instruction from a controller. This is a network
with centralized control in Feng's classification.

11

Table 1.1: Models and problems in literature

routing model problem set complexity remark

Orcutt(31] ILLIAC ps,bitr 4n -4 wrap-around

Nassimi & Sahni(30] ILLIAC BPC 4n-4
Flanders(8] ILLIAC BPC DAP machine

Raghavendra(36] ILLIAC perm 3n- 3 wrap-around

N assimi & Sahni(29] ILLIAC broad,partial O(n)
Algorithm Q dist-ctl broad,partial 5.5n in Chapter 3

Krizanc et al.(14] dist-ctl perm,partial 2n + o(n) random

Kunde(lS] dist-ctl perm,partial 2n + o(n) UB

Leighton et al.(23] dist-ctl perm, partial 2n- 2 constant buffer

Valiant & Brebner(48] dist-ctl perm,partial 3n + o(n) random,UB

sorting model indexing complexity remark

Orcutt(31] ILLIAC row O(nlogn) wrap-around

Thompson & Kung(45] ILLIAC snake 6n + o(n)
N assimi & Sahni(28] ILLIAC row 14n + o(n)
Kumar & Hirschberg[15] ILLIAC row lln+o(n) wrap-around

Lang et a!. [20] dist-ctl snake 7n

Schnorr & Shamir(41] dist-ctl snake 3n + o(n)
Scherson & Sen(40] dist-ctl BSLRM 3n + o(n)

Sado & Igarashi(39] dist-ctl snake 5.5n+ o(n)
Ma et a!. (25] ex-ILLIAC BSLRM 8n+o(n) ' buffer n•

legend: ILLIAC: ILLIAC model
dist-ctl: distributed control model
bitr: bit reverse permutation
perm: permutation

ex-ILLIAC: extended-ILLIAC model
ps: perfect shuffle

broad: broadcasting
snake: snake-like indexing
random: randomized algorithm

BPC: bit-permute-complement permutation
partial: pa.rtia.l permutation
row: row-major indexing
BSLRM: blocked 8nake-like row-major indexing
UB: unlimited buffer ~ize

12

The ILLIA C model requires all processors to send messages in the same
direction at any time. Ma [25] suggests an extended model of ILLIAC IV,
which we will hereafter call the extended-ILLIAC model. Like the ILLIAC
model, his model requires processors in the mesh to send messages either
along rows or along columns (and not both at the same time). Processors
in the same row (or column) must send messages in the same direction if
the mesh is doing row-wise (column-wise) communication. His model differs,
however, in that different rows can send messages in different directions, and
likewise for columns. Thus, his model also uses single instruction-multiple
data mode of operation, but it has a more flexible communication facility.

Lang [20] suggests a model that is still more powerful, widely accepted and
which will be the model used for the work in this thesis. He uses a distributed
control mode/4, which is a network of mesh-connected processors, each with
its own program memory. Each processor executes instructions from its own
memory, but communication is synchronized by a global clock. A processor
on the mesh can communicate with any subset of its four neighbors in a
single time step. It can receive up to four messages from its four neighbors
and send up to four messages, one to each neighbor, in one routing step. This
makes it possible for any pair of adjacent processors to perform a compare­
and-exchange operation in one step. This model is sometimes extended with
wrap-around connections.

1.4.2 Routing Algorithms

This section first reviews routing algorithms for the ILLIAC model. Deter­
ministic routing algorithms on distributed control models are reviewed next;
they are the main interest of my research. Some randomized routing algo­
rithms are also reviewed and compared with deterministic algorithms.

Algorithms for the ILLIAC Model

Because in the ILLIAC model the messages can be sent only in the same
direction, the lower bound in the worst-case performance occurs when any
message must travel from one corner processor to the one in the opposite
corner, while another message must travel from the processor in the opposite
corner to the one in the first corner. This requires 4n- 4 routing steps, since
two messages must travel completely in the opposite directions and these

4 In many references, this model is called a MIMD model in contrast to the (ILLIAC)
SIMD model.

13

messages cannot travel at the same time due to the limited communication
control.

The earliest work addressed routing algorithms on an ILLIAC model [31].
Even though the work was based on a centralized control model in which a
controller could have complete information about routing requests in the
processor elements, research addressed only algorithms for limited kinds of
permutations such as perfect shuffle, bit reversal, p-ordered vector [44], and
some permutations which can be represented by mathematical formulas. For
an arbitrary (irregular or random pattern) permutation on an ILLIAC model,
researchers suggested using sorting algorithms.

Orcutt [31] describes routing algorithms that perform perfect shuffle and
bit reversal in O(n) steps on the ILLIAC model with wrap-around. His
algorithm can perform a perfect shuffle with 4n - 4 unit routing step using
two buffers per processor.

Nassimi and Sahni [30] suggest a more general algorithm for data routing
of BPC permutations on the ILLIAC model. Their algorithm takes at most
4n - 4 unit routing steps for any BPC permutation using three buffers per
processor. They also describe an algorithm to prepare the control sequence of
the SIMD controller for any BPC permutation in O(log2 N) computing time.
Note that their algorithm does not use wrap-around connections, which were
assumed in Orcutt's algorithm [31]. Moreover, their algorithm performs a
perfect shuffle in only 2n - 2 steps.

The model of Flanders [8] is almost the same as the ILLIAC model except
that each processor's memory is one bit wide. BPC permutations, which can
be described by "bit mapping vectors", are performed by a method similar
to Nassimi and Sahni [30] on the ICL Distributed Array Processor (DAP).

Raghavendra and Kumar [36] describe a three phase algorithm for arbi­
trary permutations on the ILLIAC model with wrap-around in 3(n-1) steps.
In the first phase, all data are shuffled along the rows in such a way that no
two messages in the same column have the same destination row address.
Then, in the second and third phases, one can route data along a column
and a row without piling up more than two messages in a processor, and
routing of any permutation can be done in (2n- 2) steps for the second and
third phases. So the first (n -1) steps are used to shuffle around data in such
a way that at most two messages in a processor exist during the next phases.
The way to shuffle data in the first phase is shown for BPC permutations.
But they do not show clearly how to find a control sequence of the central
controller for an arbitrary permutation. Their algorithm is actually simulat­
ing a (.JN, .JN, .JN) Clos network [24]. (For an arbitrary permutation, it is

14

not clear how to simulate a Clos network with distributed control.)
In Nassirni's study [29], broadcasting on the ILLIAC model is done by

sorting destination addresses and distributing them with data. A partial
permutation is treated as a special case of broadcasting. The messages are
first packed in the processors with smaller row major index and sorted by
the destination addresses and then distributed over the mesh. The time
complexity of broadcasting is 0(n) routing steps, which include a sorting
phase and a distributing phase that takes at least 4n steps.

In networks with a global control, the controller can use global informa­
tion to prepare a routing sequence. But access to global information does
not in itself make it easy to find an efficient routing sequence.

Buffer requirements of routing algorithms for the ILLIAC model are very
small; the number of buffers needed is typically three. Most routing algo­
rithms for the ILLIAC model are restricted to special classes of permutations
and take advantage of information about the pattern of permutations to pre­
calculate the control sequence. If a permutation does not belong to a "nice"
regular pattern, it may be difficult to find control sequences for routing that
are shorter than those for sorting. Thus, sorting (based on destination ad­
dresses) seems the best way to handle arbitrary permutations as well as
partial permutations and broadcasting.

Algorithms for the Distributed Control Model

The distributed control model allows simultaneous exchanges between any
adjacent pair of processors; each processor may send and receive up to four
messages at each step. The worst-case performance lower bound clearly
occurs when some message must travel from one corner processor to the op­
posite corner; this requires at least 2n- 2 routing steps. This bound is easily
achieved if there is sufficient storage space in the processors.

Consider the following two phase routing method to solve a permutation
problem on an n by n mesh. The destination of a message is represented by
a row-column address pair. In the first phase, all messages move along the
rows to their destination columns, where they are stored in the appropriate
processor. In the second phase, messages move along columns to their des­
tination rows (and their destination addresses). This algorithm requires at
most 2n - 2 steps for messages to reach their destinations if there is no con­
tention for links among messages. In addition, in the first phase, as messages
move along rows, no contention can arise because there is initially only one
message per processor and they are pipelined.along each row.

When messages reach their destination column, however, they may share

15

the processor with up to n - 1 other messages and contend with up to n - 2
messages for a link along the column. Thus, during the second phase, a
message could be delayed up to n - 2 steps; a permutation may therefore
require up to 3n - 3 steps if the message that has the farthest to travel is
delayed the most. However, by giving higher priority to messages that have
farther to go in the second phase, each message is guaranteed to reach its
destination row within n - 1 steps after the. second phase begins [14]. In
summary, a message will reach its column destination in at most n - 1 steps
in the first phase and its row destination in at most n- 1 steps in the second
phase, giving a total of 2n - 2 steps.

This routing method has a simple control structure and is classified as
oblivious because the path of each message is determined entirely by the
source and destination addresses and is not affected by the paths of other
messages. Moreover, the number of steps required is optimal. But the num­
ber of buffers required is n; this bound is attained when all messages in a
row must travel to the same column. Overcoming this storage requirement
without drastically increasing the time required is the goal of most of the
work on routing algorithms for meshes.

To reduce storage requirements, Kunde [18] sorts subblocks of the mesh
before the actual routing phase. He divides the n by n mesh into E by E
submeshes of nj E by n/ E processors. For each block of nj E by nj E proces­
sors, he sorts messages in column-major order according to each message's
destination column address. This spreads out vertically those messages in
each block which have the same destination column. Then he applies the
same routing method as described in previous paragraphs, first moving mes­
sages along rows and then along columns. The number of buffers required
by each processor is reduced to 2c. Permutations require 2n + O(n/E) steps
if the sorting algorithm used for the blocks is linear in the input size; it takes
O(n/E) steps to sort njE by njE meshes and 2n- 2 steps to move messages
along rows and columns.

Typical values for E are log n, n114, or a constant. Smaller values of E
decrease the number of buffers required, but increase the number of steps for
sorting the submeshes, making the total number of routing steps larger. If a
constant is chosen for E, the asymptotic time bound for this routing algorithm
is no longer 2n, because the overhead of sorting is linear in n. For example, if
each processor has 8 buffers, then E is 4, and the algorithm begins by sorting
n/4 by n/4 sub blocks. If a sorting algorithm is used which takes 3n+O(n314)

steps for ann by n mesh, Kunde's algorithm takes 2.75n + O(n314) steps for
routing on n by n mesh. If each processor has only four buffers, it will take

16

A 100 by 100 mesh is divided into 16
subblocks. (< = 4.) The hatched ar­
eas represent nnessages to the sanae
column after sorting. The hatched
area of the first, second and the
fourth blocks have a single message.
The third block has 97 messages in
four columns. Therefore, after the
first phase, a processor in the des­
tination column must hold at least
seven messages destined for its row,
plus a transient message during row
movement.

Figure 1.4: Buffer requirements of Kunde's algorithm

3.5n+O(n314) steps. For a practical value of n (say, 500), a sorting algorithm
of 3n + O(n314) steps takes much more than 3n steps due to the lower order
term [41, 39]. If we apply a sorting algorithm that requires 7n- 7 steps [20],
Kunde's algorithm will take 3. 75n steps with eight buffers, or 5.5n steps with
four buffers.

Kunde's algorithm has two properties that are important to our results.
First, to keep the time bound 2n + o(n), as the size of the mesh increases, his
routing algorithm requires the number of buffers per processor to increase
without bound. Second, it is not clear that his algorithm can be extended
to handle broadcasting (one-to-many) problems.

Leighton eta!. [23] improves Kunde's 2n + O(n/c) steps to 2n- 2 steps
by treating specially messages that travel from an m by m corner of the mesh
to the corresponding area in the opposite corner. (He calls these messages
"critical" messages.) He points out that critical messages must move up
to 2n - 2 steps while other ("ordinary") messages must move no more than
2n-2-m steps if the size of the corner ism by m. Leighton's algorithm moves
the critical messages without sorting. The ordinary messages are sorted, but
since the total time required is the maximal distance to be moved plus the
time required for sorting, if m is greater than the number of steps required
to sort submeshes, then it takes at most 2n - 2 steps for ordinary messages
to reach their destination if they are not held up by the critical messages.

17

Leighton shows that the movement of the critical and ordinary messages can
occur without contention by moving ordinary messages horizontally while
critical messages are moving vertically, and vice versa. Moreover, by choosing
E to be a small fraction of n, the buffer requirement can be reduced to a
constant and the number of steps needed to sort subblocks to less than m,
the size of the corner containing the critical messages. Thus, the O(n/E)
sorting time for sorting the submeshes is absorbed into the 2n - 2 distance
bound of the critical messages.

The improvement of Leighton's algorithm comes from increased utiliza­
tion of channel capacity by moving one group of messages vertically while
another group moves horizontally. His algorithm is optimal in routing time
and needs only a constant number of buffers per processor for a sufficiently
large mesh. But the result does not seem to apply for mesh sizes that are
now practical, since apparently the number of buffers will be in the hundreds.
Moreover, the control structure of the algorithm is fairly complicated, and
for large meshes the algorithm must be recursively applied to the m by m
submeshes of critical messages.

Kunde [19] described a variant of his previous algorithm [18] which is
appropriate when the time to transmit a message between processors is pro­
portional to the length of the message. The variant splits each message into
two smaller ones, one belonging to a 'first group,' and the other to a 'second
group.' Thus, each processor will have two messages, and the set of messages
is divided into two groups. In Kunde's previous routing algorithm, only links
along one axis (horizontal or vertical) are active at a given step. The variant
algorithm speeds up communication by using the two sets of links concur­
rently; while routing one group of messages through vertical(horizontal) links,
the processors route the other group of messages through horizontal(vertical)
links. Since we are assuming that the time to transmit a message is propor­
tional to its length, the time for each routing step is half what it would be if
the messages were not split, and overall performance is improved by a factor
of two. Storage requirements remain the same because the variant requires
that each processor store twice as many messages of half the size.

Randomized Algorithms for the Distributed Control Model

The space-efficient distributed control model deterministic algorithms we
have described are based on sorting. Because of the sorting phase, they
are not oblivious; that is, the paths of messages are determined not only by
source and destination addresses but also by the paths of other messages.
Although the channel capacity is often largely wasted, congestion can arise

18

because many packets try to go through a small portion of the mesh. This
could be alleviated by an algorithm that would initially scatter messages
evenly in the mesh so that no big congestion would occur in any particular
area. The following randomized routing algorithms depend upon this idea.
Some approaches using randomization are briefly reviewed.

Valiant and Brebner (48] describe a distributed control routing strategy
on parallel processors with a small number of connections. To reduce the
conflicts on links and the buffer requirement in a network, data in a proces­
sor are sent to randomly selected intermediate processors, and then routed
through deterministic paths determined by destination and current position.
Each data path is determined only by its source and destination addresses,
even though its path is selected randomly from several candidates. With
this algorithm, an arbitrary permutation takes 3n + O(n314) steps with high
probability, and O(log n) buffers are necessary due to the congestion on links.

Rajasekaran and Tsantilas [37] found a 2n + O(log n) randomized algo­
rithm similar to Valiant's algorithm [48] by changing the queuing discipline in
the processors. The maximum buffer requirement is O(log n). The improve­
ment comes from giving higher priority to the messages which will travel far­
ther, and treating messages which travel from one corner area to the opposite
corner in a special way. Krizanc et al. [14] improve the randomized algo­
rithm of Rajasekaran and Tsantilas [37]. Their improved randomized (non­
oblivious) routing algorithm realizes any permutation within 2n + O(log n)
routing steps and with a large enough constant number of buffers.

Randomized routing algorithms are fully implementable in distributed
manner because the decision of a processor depends only on the messages
in it and a random variable. The time complexities of randomized routing
algorithms are 2n + O(log n). But the number of buffers required is either
monotonic with the size of mesh or a large constant (in a sense that it is not
specified exactly with a small number).

1.4.3 Sorting Algorithms

Our interest in this thesis is routing algorithms for full permutations, partial
permutations and broadcasting, but the topic of sorting on a mesh is related.
Recall that we define a sorting problem as a problem that initially has one
message in each processor; sorting will permute the set of messages according
to keys rather than a given destination address. A permutation problem
inherently has more information initially than a sorting problem, since each
message of a permutation problem has a specified destination. Orcutt [31]

19

pointed out that a sorting algorithm can use these destination addresses
to perform a full permutation. A sorting algorithm, however, must direct
each message to a destination that is determined by the other messages in
the mesh. Thus, although a sorting algorithm can solve a full permutation
problem, a permutation algorithm will not generally suffice to solve a sorting
problem. One consequence is that any upper bound on sorting is also an
upper bound on permutations.

Sorting can also be used in peripheral ways for routing problems. For
one class of broadcasting problems on the ILLIAC model, sorting is used to
rearrange messages so that no congestion can arise during the distribution
phase in the routing algorithm.

Storage requirements for all the sorting algorithms described in this sec­
tion (unless we note otherwise) are three buffers per processor on the ILLIA C
model and two buffers5 per processor for the distributed control model.

Sorting on the ILLIAC model

Orcutt [31] describes an O(nlog n) bitonic sorting algorithm in row-major
order on the ILLIAC model with wrap-around. Thompson [45] gives an "s 2-

way merge sort" without wrap-around, which takes 6n + 0(n ~log n) routing
steps to sort n2 items into snake-like row-major order. He shows that bitonic
sorting can be done in 14n routing steps with a shuffled row-major indexing
scheme.

Nassimi [28] gives a bitonic sorting algorithm on the ILLIAC model with­
out wrap-around. His algorithm takes 14n routing steps to merge subblocks
of a bitonic sequence into row-major order recursively. By modifying com­
parison directions, it can sort an n by n mesh array in snake-like row-major
order with the same number of steps. Note that 14n is the same number
of steps as Thompson's bitonic sorting algorithm which sorts into shuffled
row-major order.

Kumar [15] uses Batcher's odd-even merge sort algorithm as the basis of
his sorting method on the ILLIAC model with wrap-around. His algorithm
takes lln + O(log2 n) routing steps to sort n2 elements in row-major order.
Its control structure is recursive merging by doubling the size of subblocks.
He shows that the wrap-around connections can be eliminated with some
extra buffers in the last row.

5Each processor needs two buffers to do a compare-and-exchange operation between
two processors in a single communication step

20

Sorting on the Extended-ILLIAC model

Ma [25] shows that an n by n array can be sorted into blocked snake-like
row-major order with 4n + O(nt log n) routing step on the extended-ILLIAC
model with n 114 buffers in each processor to accommodate transient messages.
He also describes a recursive sorting algorithm based on dividing a square
mesh into four quarters, sorting them in snake-like row major order and
merging the results. The algorithm requires 8n steps and the same number
of buffers, but it has a simpler control structure.

Sorting on the Distributed Control Model

Lang's sorting algorithm [20] merges four sorted sub blocks (arranged as a two
by two array of submeshes) in snake-like row-major order using 7n compare­
and-exchange steps6. Its control structure is relatively simple, so it can be
implemented on systolic arrays.

Schnorr's algorithm [41] takes 3n + O(n314) compare-and-exchange steps
to sort an n by n mesh in snake-like row-major order. Subblocks are sorted
in sublinear time and merged in 3n + o(n) compare-and-exchange steps. He
shows his algorithm is asymptotically optimal, but the low order terms of
complexity are too big for meshes of practical size, and the control structure
is complicated.

Sado [38], on the other hand, describes a "pseudo-merge" sorting algo­
rithm which takes 6.5n + O(log n) compare-and-exchange steps to sort n2

items in snake-like row-major order. Its complexity has small low order terms
and its control structure is relatively simple. He also describes an algorithm
with a relatively complex control structure that takes 5.5n + 0(vn log n)
compare-and-exchange steps.

Scherson [40] describes a "sheer-sort" algorithm which sorts an n by n
mesh in snake-like row-major order by alternating row sort and column sort.
It has a very simple control structure but has time complexity of O(nlogn).
Based on the sheer sort algorithm, he proposes a recursive sorting algorithm
which takes 6n compare-and-exchange steps to merge four sorted sub blocks
(arranged as a two by two array) into snake-like row-major order. This is
very similar to Sado's algorithm [38]. By sacrificing simplicity of control
structure, he constructs a 3n + 0(n hog n) sorting algorithm in a blocked
snake-like row-major ordering scheme.

For the distributed control model, Kunde pointed out that the best way

6 A single compare-and-exchange step takes two routing steps on the ILLIAC model.

21

to solve routing problems when only a small constant number of buffers are
available (one or two) is the 3n+o(n) sorting algorithm for a full permutation
[18].

For the distributed control model, lower bounds for sorting have been
shown to be 3n-3- r ~ -1/21 [16, 41]. Some sorting algorithms approach
these bounds asymptotically: Schnorr's algorithm takes 3n + O(n314) steps,
and Scherson's algorithm takes 3n + 0(n314 log n) steps. But in all these
results, sublinear terms dominate the complexity for meshes of practical size.
Moreover, the control structure of the algorithms is complicated, making
them impractical for a mesh with processors too small to hold a substantial
program.

22

Chapter 2

Move and Smooth Algorithms

This chapter describes a new class of routing algorithms on a mesh, which
we call move and smooth algorithms. The chapter consists of two sections.

Section 2.1 describes this class of algorithms. Although we will only
treat a few of these algorithms in detail, the form makes the design of other
algorithms straightforward.

The formal problem treated in Section 2.2 is finding the time complexity
of message movement in a one dimensional array. This result is crucial to
the analysis of the time complexity of all the move and smooth algorithms;
the result obtained in Section 2.2 will be referenced repeatedly in subsequent
chapters.

2.1 Class of Move and Smooth Algorithms

Although move and smooth algorithms can be applied to k-dimensional rect­
angular meshes, for this initial description of the algorithms, we will assume
that the processor array is a square mesh in two dimensions.

Move and smooth algorithms are recursive, with each recursive stage con­
sisting of two steps. Initially, each message is in a processor, with no more
than one message per processor. Each message knows the address of its desti­
nation processor. The mesh is partitioned into a collection of disjoint regions
R 1 , R 2 , • • • Rb. The move step moves each message in the array to the region
Ri that contains its destination. The move step may, however, put more
than one message into some processors. The smooth step redistributes the
set of messages in each region R; so that each processor once again contains
at most a single message.

Move and smooth algorithms partition the mesh into b disjoint contigu-

ous regions. Although the regions are not necessarily the same in size and
shape, move and smooth algorithms are most elegant when the regions are
congruent, and we will direct most of our attention to cases in which our
algorithms partition the mesh into b disjoint congruent regions. Thus, for
this overview, if a partitioning divides a mesh (or submesh) into b disjoint
regions R1 , R2 , • • • Rb, then for all i, j, 1 ::::; i, j ::::; b, R; and Rj have the same
size and shape. During the move step, each message moves from its current
region to its target region (that is, the region that contains its destination)
along a path that is assured to be conflict free. Moreover, if the number of
regions in the partition is b, our algorithms guarantee that no processor will
hold more that b + 1 messages during the move step, or more than b mes­
sages at the end of the move step. However, in order to apply the algorithm
recursively, the precondition of 'at most one message per processor' must be
re-established.

We will be most concerned with two specific algorithms which we call H
(for 'halves') and Q (for 'quarters'). The move steps of the algorithm Q can
be described as follows:

Algorithm Q begins with a partitioning of the n by n square
array of processors into four quadrants of equal size. If a message
is initially in the correct quadrant (that is, the quadrant that
contains its destination address), it does not move during the
move step. Otherwise, the move step takes each message from
its current location to the processor which has the same relative
position in the correct quadrant. This movement is accomplished
by moving 0 or n/2 steps along a column of the mesh, and then 0
or n/2 steps along a row. All messages start moving at the same
time and stop as soon as they reach the correct position in the
destination quadrant. During the move step, a processor may
contain up to five messages, including one that did not move,
and four transients. At the end of the move step, a processor
contains at most four messages, these being three messages from
other regions and one message of its own.

The purpose of the smooth step of each recursive stage is to distribute
the messages of each region so that each processor contains at most one
message without violating the constraint that each message is in the region
that contains its destination. Completion of the smooth step re-establishes
the precondition of the recursive algorithm that each message is in its target
region, and that each processor contains at most one message. Then the

24

algorithm recurs; each region is partitioned into disjoint subregions and each
message is sent to the proper subregion (and generally closer to its destina­
tion). The algorithm terminates when each region has only one processor.

A requirement of each algorithm is that every processor know its row­
column indices for the current region to which the algorithm is being applied.
These values can easily be computed by each processor from a knowledge of
its row and column index in the mesh and the current level of recursion.
Wrap-around connections are not used by any of the algorithms.

2.2 Message Movement in Linear Array

Each of the algorithms we discuss is based on a· partitioning into b rectangular
regions. Each move step on a two-dimensional mesh transforms the original
problem into a set of subproblems that must be smoothed. Each smoothing
problem consists of a rectangular region with r rows (indexed 0, ... r - 1)
and c columns (indexed 0, ... c- 1) such that

initially, the region contains no more than rc messages, and
each processor contains no more than b messages.

Smoothing is accomplished in two phases. First, a counting (preprocess­
ing) phase informs each processor of the initial configuration of messages.
This information enables each processor to determine its roll in achieving
the final configuration. The second distribution phase entails the movement
of messages. Distribution is accomplished by first moving messages along
rows, and then along columns. Row movement rearranges messages within
each row so that no column of the region contains more than r messages.
Column movement moves messages within each column so that no processor
contains more than one message. Both row movement and column move­
ment are accomplished without requiring that any processor hold more than
b messages at any time. .

It is not necessary to understand the details of one dimensional row and
column movement described in this section to understand the behavior of
the algorithms described in Chapters 3 and 4. However, the results of this
section are used to analyze the complexities of algorithms in later chapters.

2.2.1 Row Movement

Consider a one dimensional array with c processors indexed from 0 to c- 1
from left to right. Each processor has b message buffers and is connected

25

to adjacent processors only by unidirectional channels with the capacity of
a single message. Adjacent processors are connected with two channels, one
from left to right and the other from right to left. Although the two channels
between adjacent processors can be used concurrently, we will see that they
are not used concurrently in row movement.

Each row movement problem is of the following form: Initially, there are
N messages in the array where 1 ::; N ::; be, and each processor contains no
more than b messages. The initial arrangement of messages in the array is
called the initial configuration. Messages are to be moved among processors
in the array to a specified final configuration, where a final configuration will
have the following properties:

o each processor has at least lN/cJ and at most rN/cl messages, and

• the processors with r N I c 1 messages will be contiguous. (For the pur­
poses of row movement, the leftmost processor and rightmost processor
are considered to be contiguous.)

An initial-final configuration pair specifies a row movement problem. Note
that for row (and column) movement, messages are indistinguishable; there
is no requirement that specific messages go to specific processors.

Prior to actual movement of messages among processors in row movement,
there is a preprocessing phase that enables each processor to determine

1. how many messages it contains initially,

2. the total number of messages contained in processors to its left and
the total number of messages contained in processors to its right in the
initial configuration,

3. how many messages it will contain finally, and

4. the total number of messages contained in processors to its left and
the total number of messages contained in processors to its right in the
final configuration.

Because messages are indistinguishable, there is never a need for adja­
cent processors to exchange messages, simultaneously or otherwise, during
row movement; an exchange of messages accoii)plishes nothing toward achiev­
ing a final configuration. Thus, at most one channel between two adjacent
processors will be used to solve any row movement problem. A link in which
only the right channel has nonzero flow will be said to have a right flow, and

26

a link in which only the left channel has nonzero flow will be said to have
a left flow. (Some links may have neither right nor left flow.) Thus the net
action of any processor during row movement can be characterized as sending
or receiving some number of messages from its left neighbor and sending or
receiving some number of messages to its right neighbor. (The net action of
an end processor can be characterized the same way, except that the number
of messages sent to or received from the non-existent neighbor is zero.)

On the basis of its initial information, each processor can determine how
many messages it must send to or receive from its left neighbor and how
many messages it must send to or receive from its right neighbor. Let the
flow number of a channel be the total number of messages to flow through the
channel between two adjacent processors during row movement. By compar­
ing the number of messages to its left in the initial and final configurations,
each processor can compute flow numbers for the channels of the links to its
neighbors before messages begin to move, as illustrated by Figure 2.1 .

For any row movement problem, the set of flow values, taken together,
constitutes a solution. This solution is unique, since it represents a net
flow of messages, but its implementation is not, since messages could be
sent back and forth across the same link between adjacent processors. The
simplest implementation is for each processor to send messages as soon as
possible to satisfy the flow calculated for each of its outgoing channels. (Note
that the flow over a channel may be interrupted if a processor exhausts
its messages before the outgoing flow has been satisfied. In this case, the
flow is interrupted until the processor receives additional messages from its
neighbor.) We will use this mechanism to solve row movement problems, and
refer to the resulting movement of messages as row movement. We wish to
characterize the worst case time complexity of the row movement problem,
that is, the maximum number of time steps required to implement a solution
by moving messages among processors. We will do so by first showing that
row movement (as defined above) is an optimal solution to any row movement
problem and then exhibiting and analyzing configurations that maximize the
number of steps of row movement.

We first make the following observations about movement of messages
along an array.

1. The movement of messages along an array during row movement can
be viewed as a collection of right flow segments, where each segment is
a series of contiguous processors connected by links with nonzero right
flows, left flow segments, where each segment is a series of contiguous
processors connected by links with nonzero left flows, and zero flow

27

Cal

(b)

Four examples, each showing initial and final configurations of an array with 8 proces­
sors. Processors are represented with squares index~d 0 ... 7; indices appear above the
squares. Channels between processors are represented with arrows, and the direction of
arrows represents the direction of channels. The number of messages initially contained in
each processor is shown in the square as an integer above the diagonal; the tuple of all these
integers specifies the initial configuration. The number of messages to be contained in each
processor after row movement is shown as an integer in the square below the diagonal; this
set of integers specifies the final configuration. Integers on arrows are the flow numbers
represented by the corresponding channel; no integer indicates a flow of zero. Note that
at most one arrow between adjacent processors has a non-zero flow. In the array of Fig­
ure 2.l.a, there are 19 messages initially. The final number of messages in each processor
is either 2 (l19/8J) or 3 ([19/91) and the processors 3, 4 and 5, which contain 3 messages
each, are contiguous in the final configuration. In Figure 2.l.a, the processors 0 and 1
form a maximal right flow segment, as do processors 2, 3, and 4. Processors 4, 5, 6, and
7 make up a maximal left flow segment. Note that processor 4 belongs to both a left flow
segment and a right flow segment that are separated by processor 4 itself. In Figure 2.l.b,
there are only 5 messages in the array, and the four rightmost and one leftmost processors
will receive a message in the final configuration. The whole array is a right flow segment.
The time required to change from the initial to final configuration is 6 steps; note that the
maximum value of flow in the array is 4.

Figure 2.1: Examples of row movement problems

28

segments. (A processor with flows in different directions on its left
and right links belongs to two segments which are separated at that
processor.) A segment is called a maximal left (right, zero) flow segment
if it is not a proper subset of another left (right, zero) flow segment.

2. Messages moving in different maximal segments do not interfere with
or affect one another.

Because maximal segments are independent problems, the time required
for row movement in an array is the longest time required for message move­
ment within some segment of the array. Thus the worst case problems will
be ones whose solution consists of a single segment.

The time required for row movement is affected by two factors, distance
and contention. A distance constraint results from the necessity of some
message travelling from one processor to another in the array. A contention
constraint results from the inability of a channel to carry more than one mes­
sage at a time. In Figure 2.l.c, the time complexity is determined by distance;
there is no contention for channels, while in Figure 2.l.d, the complexity is
determined by contention. Figure 2.l.b exhibits a complexity determined
by distance; although there is contention, the complexity of the problem
would not be reduced if the channels could carry more than a single message
concurrently.

Because the worst case behavior for row movement will occur when the
solution consists of a single segment, in the following, we will consider only
solutions in which the flow over all links is nonzero and to the right. The
following lemma characterizes worst case performance for a class of problems
in which the distance to be travelled is the limiting factor.

Definition 1 We define the function T(N, b, c) as the maximum time re­
quired (to implement a solution) for a row movement when an array of c
processors, each of which has b buffers, contains N messages.

Our first row movement lemma places a time bound on row movement for
the case when the number of messages is less than the number of processors.

Lemma 2.1 If 0 < N < c, then T(N, b, c) :5_ c- 1.

Proof: Since N, the number of messages in an array, is less than c, the
number of processors in the array, any final configuration will have a single
message in N processors and no messages in the remaining c- N processors.
Recall that the set of final configurations considers processor 0 to be adjacent

29

to processor c -1 (although there is no wrap-around connection). Moreover,
our restriction to those solutions in which all flow is nonzero and to the
right implies that in the final configuration, the rightmost k :::; N contiguous
processors of the array will contain messages, as will the leftmost N - k
contiguous processors. (The number k should be greater than 0, but N - k
may be 0. Thus the very rightmost processor of the array will contain a
message; the leftmost processors may or may not contain messages.) Worst
case performance will occur when the initial configuration has all N messages
packed into the leftmost r Nfbl processors. The number of time steps required
for row movement in this case is c-l Njb J, which is equal to the distance that
the rightmost message in the initial configuration travels to the rightmost
processor of the array. The maximum value of c-lN/bJ occurs when N:::; b,
which gives the value c- 1. D

We now turn to the case when N ~ c. The following lemma establishes
that in this case, every solution has a busy channel in the sense that, if the
solution requires t time steps, then t messages will be sent over the busy
channel.

Recall that we are considering only right flow segments, that is, only
solutions in which only the channels carrying messages from left to right are
utilized. We assume that the solution is for an array of c processors indexed
from 0 to c- 1. We begin by indexing the channels (carrying messages from
left to right) from 1 to c - 1; thus the channel between processor k - 1 and
processor k has index k.

Lemma 2.2 Consider an array which has N ~ c messages. If the maximum
flow over a single channel of a solution of a row movement problem is equal
to t, then row movement requires exactly t time steps.

Proof: Without loss of generality, we assume that the solution of a row
movement problem is a single right flow segment, and channel k carries t
messages. The time required for row movement cannot be less than t, because
the flow across channel k is t and only one message can flow across a channel
at each step.

Suppose, as an assumption to be proved false, that the row movement
takes t' time steps where t' > t. Then there is a channel x which carries a
message at time t'. Let the flow number of link x be f. Then f :::; t, because
t is the maximum flow across any channel of the solution. Therefore f < t',
from which it follows that channel x is idle at some time. Then we determine
two times, 11 :::; t2 < t' such that f 1 < f messages flow through channel x
during time 0 through 11 , no messages flow through channel x during time

30

w processors x-w processors

~ .-- ----.
o w-1 w w • I x-1 x

f

channel w

Figure 2.2: The array in the proof of Lemma 2.2

t 1 + 1 through t 2 , and f-A messages flow through channel x during time
t2 + 1 through t' and t' - t 2 = f - f 1 . Note that t 1 may equal 0, or channel
x may have idle times during the first t1 time steps. But t 2 - t1 > 0 (and no
messages flow over channel x during that interval), and channel x is never
idle during the interval t' - t2 •

Let channel w < x be the leftmost channel such that the processors from
w through x -1 contain exactly f 1 messages initially. (See Figure 2.2.) Note
that such a channel must exist because there is a gap of length t 2 - t 1 in
the flow of messages after the first f 1 messages and such a gap can occur
only if there is a sequence of processors that initially are empty. Thus, the
processors indexed from w to w + (t 2 - t 1) must initially be empty.

Now consider the flow over the channel w. The processor w - 1 initially
contains messages, since w was required to be the leftmost channel such that
the processors from w to x - 1 contain exactly f 1 messages. Let C F be the
number of messages in processors w through x- 1 in the final configuration.
Our specification of w requires that the processors from w to x - 1 contain
exactly f1 messages. Therefore, the following relations hold:

That is, the final contents of the processors w through x - 1 is equal to the
initial contents plus the flow in minus the flow out. Additionally, t 1 and t 2

were chosen so that ·

t'- t2 = f- ft
From our specification of t 2 , f 1 messages flow through channel x during time
0 through t 1 , no messages flow through channel x during time t 1 + 1 through
t 2 , and a message flows through channel x at t 2 + 1. Hence the processor

31

that holds the message that reaches x at time t 2 + 1 must be w- 1; that is,

Finally, since N ~ c, it follows that the final configuration will have at least
one message in each processor, that is,

CF ~ x -w

We rearrange the first equation, getting

and substitute from the others, giving

fw > X -w-A + f
fw > i2+t'-t2=i'

which contradicts our specification that the largest flow number was t, where
t' > t, and establishes the theorem. 0

Corollary 2.1 The time required for row mo.vement is optimal.

Proof: By definition, no solution requires that fewer messages be passed
between processors. Since the time required is exactly the number of mes­
sages passed by the processor passing the most messages, no solution can be
implemented in less time. 0

We now wish to find a time bound for row movement. We will use the
preceding lemma to define a worst-case configuration and then find the time
bound for that configuration.

Lemma 2.3 If e :::; N :::; be and b is even, then

b(b + 2)e
T(N,b,e):::; 4(b+ 1)

If e :::; N :::; be and b > 1 is odd, then

32

Proof: We showed in the proof of Lemma 2.2 that for any row movement
problem, in which N 2: c, there is a channel which is busy all the time during
row movement. Assume that channel k is one of the busiest channels for such
a problem; that is, channel k carries t messages in a solution that requires t
time steps. As before, we restrict our consideration to solutions (row move­
ments) that consist of a single right flow segment. To maximize the flow over
channel k, the initial configuration must have as few messages as possible
to the right of channel k, and the final configuration must have as many as
possible to the right of channel k. The form of the initial configuration is
not constrained, but the final configuration is required to have the messages
evenly distributed among the processors, with the number of messages in
two processors differing by no more than one. Thus the maximum flow of
messages through any channel k can be achieved as follows:

Initially, all processors to the left of k are filled and all processors
to the right of k are empty. (Thus each processor to the left of
channel k contains b messages initially, and there is a total of bk
messages to the left of channel k).

In the final configuration, each processor to the right of channel k
contains f + 1 messages, and each processor to the left of channel k
contains f messages. (Thus each processor to the right of channel
k contains one more message than any processor to the left of
channel k.)

The flow over channel k is then

F(k) = (! + l)(c- k) (2.1)

We can now find the time bound for row movement problems by finding the
maximum value of F(k).

Because the total number of messages in the final configuration is the same
as the number of messages to the left of channel kin the initial configuration,
the following holds:

bk=fk+(f+l)(c-k) (2.2)

Then the maximum value F(k) for some value k is the maximum time bound
imposed by the contention on channel k, because one message takes one step
and messages will flow continuously.
From Eq. 2.2, we get

k= (f+l)c
b+l

33

(2.3)

By substituting Eq. 2.3 to Eq. 2.1, we get

F(k) = (f+1)(c- (/+1)c)
b+1

-c
2

c(b-1) cb
b+11 + b+1 l+b+1

Recall that I is an integer, where 1 ::; I < b. If b is even, F(k) has the
maximum value

b(b + 2)c

4(b + 1) when I= b/2 or b/2- 1

The values of k that maximize F(k) are

k - 2(b+l) w en -
{

(b+2)c h I - b/2

- 2d~l) when I =.b/2- 1

(Note that these values are approximately equal to c/2, which means that
the time bound is largest when channel k is located approximately in the
middle of the array. This is intuitively reasonable, since when kjc is small,
there cannot be enough messages to the left of the channel k to cause a large
flow over the channel, and when kjc is near 1, there is not enough space to
the right of channel k to accommodate a large flow.)

The above values of k used to maximize F(k) may not be integers, al­
though k must be a. processor index. But for any integer values of b and c,
the maximum value of F(k) occurs either a.t k = r<{~~lcl or k = l <{~~lcj
whether I = b/2 or I = b/2 - 1. Thus, ~~::{) is the upper bound of the
number of steps required for row movement when b is even, although the
value may not be an integer. Therefore, whenever this value is referenced as
the number of steps for routing, we will use it as a.n upper bound.

If b is odd, F(k) has the maximum value

(b+ 1)c
when I= (b -1)/2 and k = c/2

4

0

Theorem 2.1 When b is even,

T(N, b, c) ::; max(c- 1,

34

b(b+ 2)c)
4(b+ 1)

When b > 1 is odd,

T(N,b,c):::; (b: 1)c

Proof: Lemma 1 and Lemma 3 give the theorem immediately. D

Row movement requires at most c- 1 time steps for an array of c processors
with two buffers, and at most 1.2c time steps when each processor has four
buffers.

We now consider the number of buffers required during row movements.
The following theorem assures us that no extra buffer is necessary during
row movement.

Theorem 2.2 During row movement, the maximum number of messages
stored in any processor is no greater than the maximum number stored in
some processor for the initial and final configurations.

Proof: During row movement, the array is divided into maximal segments,
and movement of messages in different maximal segments is independent. In
each segment, the flow of messages is unidirectional. The number of messages
in a processor will only increase when it receives a message over one channel
and does not send out a message over the other. Because flows are satisfied
as soon as messages are available, it follows that the number of messages in
a processor will only increase when either the processor is empty or the flow
out of the processor is complete. Thus, whenever the number of messages in a
processor increases because there is no outflow, that number will never exceed
the number of messages the processor must hold in the final configuration.
D

If processors have b buffers, then the initial and final configurations are
constrained so that no processor holds more than b messages. The preced­
ing theorem establishes that the implementation of row movement does not
increase the buffer requirements of the processors.

2.2.2 Column Movement

We will show in Section 3.3.2 (on page 52) how the first step in smoothing,
row movement, rearranges messages within each row so that each column
of r processors contains no more than r messages, with at most b messages
in any single processor. After row movement is complete, the second step,
column movement, rearranges the messages in each column of r processors so
that each processor contains at most a single message. These steps together
establish the precondition for the move and smooth algorithm, that

35

each message be in the appropriate region of a partition, and that
no processor contain more than one message.

Consider a one dimensional array with r processors indexed from 0 to
r - 1 from top to bottom. We assume that r is even and refer to the top
and bottom halves of the column. Each processor has b message buffers and
is connected to each adjacent processor by two unidirectional channels with
the capacity of a single message. (As with row movement, only one channel
of each link is used at any time during column movement.)

We consider the following problem:

Initially, there are N messages in a column array where 1 ::; N ::;
r, and each processor contains no more than b messages. We want
to rearrange messages among processors in the array so that each
processor has at most one message.

As in a row movement, messages are indistinguishable. Based on the prepro­
cessing phase completed prior to row movement, each processor can deter­
mine, prior to column movement,

o the number of messages contained in processors above it, if it IS a
processor in the top half of the array, and

o the number of messages contained in processors below it, if it IS a
processor in the bottom half of the array.

Processors rearrange messages by first assigning an index to each message
and then moving the messages among the processors. Indexing is done as
follows:

1. If P is a processor in the top half of the array, and there are u messages
in processors above P, and P contains k messages, then the messages
in P are assigned indices u, u + 1, ... u + k- 1.

2. If P is a processor in the bottom half of the array, and there are v
messages in processors below P, and P contains k messages, then the
messages in P are assigned indices r - v- 1, r - v - 2, ... , r- v- k.

Message movement is done using the assigned indices as target addresses
within the column. When two messages compete for the same channel, pri­
ority is given to the message with the longest distance to travel. Note that
there can be no overlap of indices assigned by processors in the top and bot­
tom halves of the array since the total number of messages in the array does

36

not exceed r. Thus, each assigned index will be between 0 and r- 1, and
will be unique.

We now characterize the maximum number of time steps required to
rearrange messages among the r processors for any initial configuration. The
individual processors follow the same strategy as with row movement, that
is, each processor sends out messages as soon as possible until the proper
number of messages are above (or below) it.

We observe the following facts:

1. The index (or target address) of any message in processor i is less than
the index of any message in processor j, if i < j.

2. As with row movement, the processors of the array can be divided
naturally into segments, where, within a segment, all messages move
in the same direction. As before, some processors may belong to two
segments, and some processors may not belong to any segment, because
there is no traffic from, through, or to those processors.

We will compute the worst case time steps for column movement in an ar­
ray by exhibiting an initial configuration which takes the maximum number
of time steps. Without loss of generality, we consider only initial configura­
tions of the top half of an array; the same time complexity results apply to
the bottom half.

When the top half of an array contains no more than r /2 messages, the
targets of all the messages will be processors in the top half of the array.
Because a message with the farthest target will go first, the maximum number
of time steps required to move messages in the top half is r /2 -1. This worst
case occurs when the processor with index r /2 - 1 contains a single message
and all other processors in the top half are empty. (Thus, the message must
travel from processor r /2 - 1 to processor 0.)

Suppose the top half of an array contains N messages where r /2 < N ::; r.
The N-th message in the top half is assigned the target address N - 1. For
the purpose of exhibiting the worst case, we can assume that the messages
in the entire colunm all move in the same direction and that all processors
are part of a single flow segment.

Recall that messages are indexed and given target addresses prior to mov­
ing. Denote by M(i --> j) a message originating from processor i with target
address j. Suppose it takes t steps for message M(i -+ j) to travel from
processor i to processor j. Two cases are possible; either M(i -+ j) travels
without any delay, in which case t = j- i, or M(i-+ j) is delayed by other

37

messages. Suppose M(i-> j) is delayed by other messages. Then, because
of the way the messages are indexed for column movement, M(i -> j) will be
delayed by M(i', j + 1), where i' 2: i, and M(i'...., j + 1) will travel one step
ahead of M(i...., j) from the time they meet in a processor to the time they
reach their target processors. As a result, M(i...., j) and M(i'...., j + 1) will
reach their targets at the same time, and since they started at the same time,
we can conclude they will take the same number of steps. By induction, it
follows that for any message M(i-> j) that is delayed and takes t time steps
to reach its destination, there is a message M(i'...., j') which travels without
any delay and also takes t time steps to reach its target.

From the above it follows that the worst case time will be required of some
message that travels from its initial position to its final position without delay.
A message M(i -> j) that travels downward without delay requires j- i steps
to reach its target. The value j - i is maximized when i is smallest and j
is largest. Since indexing of messages begins with 0, the origin of M(i-> j)
(that is, processor i) cannot be above processor ljlbJ because there must be
j messages above M(i -> j), and no processor initially contains more than
b messages. It follows that M (i -; j) takes at most j - lj I b J steps to reach
processor j. The value of j - lj lb J is maximized by substituting N - 1 for
j, giving N - 1 - l (N - 1) I b J . If we consider a downward flow segment of
length N in a column array with r processors, the worst case number of steps
to distribute messages is r- 1-l(r -1)/bJ because the maximum value of
N is r. If r is a multiple of b, this simplifies to (b- 1)rlb. This establishes
the following:

Theorem 2.3 Consider a one-dimensional array ofr processors, where each
processor has b buffers. Initially, each processor has at most b messages, and
there are no more than r messages in the array. If one message can be moved
between any two adjacent processors in one time step, then the messages can
be rearranged among the processors so that each processor has at most one
message in at most r -1-l(r -1)lbJ time steps. Ifr is a multiple ofb, the
number of time steps is (b-1)rlb.

38

Chapter 3

Algorithm Q

The algorithm to be described in this chapter is called Q because it divides
square meshes into quarters, which we refer to as quadrants. We provide
details of this algorithm in Sections 3.2 and 3.3 and calculate the time com­
plexity and buffer requirement in Section 3.4. We describe how Algorithm Q
can handle broadcasting problems without additional routing costs in Sec­
tion 3.5. In Section 3.6, we investigate the extension of Algorithm Q to
k2 -partitioning of a two dimensional mesh and discuss the difficulties in ap­
plication to multi-dimensional meshes.

3.1 Overview

The differences among move and smooth algorithms depend on the number
and shape of the regions into which a mesh is partitioned. A natural partition
of a square mesh would be to divide the mesh into four quadrants, each one
a smaller square mesh. Even though Algorithm Q can be generalized to a
rectangular mesh, we describe the algorithm for the special case of a mesh
of size n by n, where n = 2P.

Algorithm Q is based on successive partitioning of the mesh into four
disjoint regions. It involves a move step followed by a smooth step and then
recurs on the four regions simultaneously. The move step begins with a
partitioning of the square array of processors into four quadrants of equal
size. Initially, each processor has at most one message. If a message is
initially in the correct quadrant (that is, the quadrant that contains the
message's destination address), the message does not travel during the move
step. Otherwise, a message travels from its current location to the processor
which has the same relative position in the correct quadrant. This movement

is accomplished by moving 0 or n/2 steps along a column of the mesh, and
then 0 or n/2 steps along a row. Thus, a message may remain in place, or
it may travel n/2 steps along a row or a column, or it may travel n/2 steps
along a column followed by n/2 steps along a row. In any case, when the
first move step is finished, each message will be in the quadrant that contains
its destination processor. All messages start moving at the same time, and
they stop as soon as they reach the target position in the correct quadrant.
During the move step, a processor may contain up to five messages; one that
did not move, and four transients. All messages move concurrently, and since
there is no contention for links, the time for the first move step is n.

At the end of a move step, a processor may contain up to four messages:
one from before the move step, and three that have been moved there from
corresponding processors in the other three quadrants. However, the number
of messages in a quadrant does not exceed the number of processors in the
quadrant, because each processor is the destination of at most one message.
In order to recur, however, we must re-establish the precondition that each
processor contains at most one message. (Otherwise, the number of messages
in a processor could grow exponentially with the number of recursive steps.)
So, the smooth step follows.

The smooth step distributes the messages among the processors. It has
two phases, counting and distribution. The details of the smoothing algo­
rithm will be described in Section 3.3. For now, we simply note that smooth­
ing requires less than 1.75n steps for an n/2 by n/2 mesh. This second step
ends the first stage of the recursive algorithm, which leaves each message
in the quadrant that contains its destination, with at most one message per
processor. (Figure 3.1 shows an example of Algorithm Q on an eight by eight
mesh.)

The algorithm terminates when each quadrant contains a single processor.
Because the move step takes n steps and the smooth step takes 1. 75n steps,
the complexity of the algorithm is given by the following system:

T(l)
T(n) <

0

T(n/2) + 2.75n (for n = 2P)

which has the solution T(n) ::; 5.5n. In the next sections, we will derive this
value and refine the time complexity.

40

Processors in the 8 by 8 array are addressed
Destination Table

Message
by row-column index pairs. Then messages, Destination
labelled A through K, have destinations as

Message
specified in the Destination Table atthe right. Destination

In the first phase of Algorithm Q, each message
travels to the correct quadrant of the mesh. The
figure at the right shows the original position of
the messages and the paths followed by them dur­
ing the first move step. Note that since message
A is already in the correct quadrant, it does not
change position. Because all messages begin trav­
elling simultaneously, there is no contention for
links. At the end of the first move step, processor
(0,1) contains four messages.

0

2

3

4

5

6

7

0

A

B

A B c
2,0 2,1 2,2
F G H

0,1 0,2 0,6

2 3 4 5

0

E

c

F

D
2,3
J

3,0

6 7

K

J

G

H

0 234567

The result of the first move step, ready for the
smooth step, which begins with counting. Each
processor receives sufficient information to deter­
mine the message flow of the row and column
movements during the distribution phase. The
row movement spreads messages almost evenly in
each row of a quadrant so that the number of mes­
sages is almost even in each column. The messages
A,B,C,D and K are spread in row 0 of the top left
quadrant.

The array after the distribution phase of the first
smooth step. The positions of messages A,B,C
and D could be permuted, since they occupied the
same processor prior to smoothing and messages
are indistinguishable during smoothing. The po­
sitions of other messages are determined by the
smoothing algorithm. Messages in the upper half
are packed in low-indexed processors and messages
in the lower half are packed in high-indexed pro­
cessors. The algorithm will now recur, breaking
each 4 by 4 quadrant into four 2 by 2 quadrants
and doing another move and smooth.

0

2

3

4

5

6

7

0

2

3

4

5

6

7

AB
co

0

A 0

c J

K

J

G H

F

E

234567

B K

G F H

E

.

Figure 3.1: The first recursive stage of Algorithm Q

41

E
6,7
K

3,1

3.2 Move Step of Algorithm Q
Algorithm Q divides the n by n mesh into four disjoint submeshes at every
recursive step. This section will describe the move step of the first recursive
stage on an s by s submesh. Each processor in the mesh knows its relative
row and column addresses in the s by s submesh.

The move step begins with the partitioning of the s by s mesh into four
disjoint s/2 by s/2 submeshes, or quadrants. We index the quarters as I,
II, III, and IV, beginning in the top right quadrant and moving counter
clockwise. Each processor in the mesh can determine which quadrant it
belongs to. Initially, each processor has at most one message. A processor
having a message can determine whether the destination of its message is
in the same quadrant where the processor belongs. By examining the most
significant bits of column and row addresses of the destination, a processor
can determine the quadrant that contains the destination processor of the
message. The objective of the move step is to rearrange the messages in
the mesh so that each message is located in the quadrant which contains its
destination processor. We call this the target quadrant of the message.

If a message initially is not in its target quadrant, it is sufficient to move
it to any processor in that quadrant to satisfy the objective of the move
step. Because there are many messages that must travel from one quadrant
to another, and processors don't have global information about the messages
moving among quadrants, a processor cannot select an arbitrary processor
in the target quadrant. If a message were sent to an arbitrary processor
in the target quadrant, two problems could arise. First, some processors
might receive many messages, exceeding the buffer capacity of the processor.
Second, the time required to send all messages to their target processors
would be unpredictable since there may be contention for links. Algorithm
Q avoids contention and ensures that the maximum number of messages per
processor during and after the move is predictable.

When a processor has a message which is not in its target quadrant,
the processor sends it to the target processor which is at the same relative
position in the correct quadrant. In an s by s mesh, the target processor is
s /2 steps away along the row, or s /2 steps away along the column, or s /2
steps along the row and s/2 steps along the column away (on the diagonal).
After the target address of each message has been determined, the movement
of messages begins simultaneously in all processors. If the target processor
of a message is on the same row as the current processor, the message is sent
along the row. If the target processor of a message is on the same column,

42

no 2345671

0
Msg I D T

A c
B

A (0,1) (0,5) (0,5) E

B (0,5) (1,3) (0,1)
2 c (0,6) (0,1) (0,2)

D G

D (2,1) (5,6) (6,5) 3
E (1,2) (7,2) (5,2)
F (6,1) (4,4) (6,5) 4

G (2,5) (7,5) (6,5) 5
H (6,5) (4,7) (6,5)

J

J (5,3) (1,4) (1,7) 6 F H

7

III IV

Figure 3.2: The move step in Algorithm Q

the message is sent along the column. Otherwise, the processor sends the
message first along the column until the message reaches the row of the target
processor; then the message is sent along that row until it reaches the target
processor.

Since links are bidirectional and a processor can receive and send mes­
sages at the same time, contention for links arise only when messages change
direction. There is no contention if each message moves along a row or a
column. Hence, there is no contention among messages in a processor during
the move step. At the beginning of movement, there is at most one message
in a processor which must travel to another quadrant. During the first s/2
steps, each message either remains in place, moves s /2 steps along a col­
umn, or moves s/2 steps along a row. No message changes direction, so this
part of the movement is contention-free. After s /2 time steps, the messages
which were s /2 steps away from their destination have reached their target
processor and stop moving. Only those messages whose destination was on
a diagonal need to travel s/2 steps further along a row. These messages
all change direction at the same time, and no processor contains more than
one such message. Hence there is no contention when the messages change
direction, and there is no contention during the next s /2 time steps because
all messages move only along rows in the mesh.

Figure 3.2 shows an example of the move step for an 8 by 8 mesh. On the
left of the figure, initial position (I), destination address (D), and computed

43

target address (T) of each message are listed. For example, message A in
quadrant II has its destination in quadrant I. Its target address is (0, 5), which
is at the same relative position in quadrant I as processor (0,1) in quadrant II.
Note that the destination and the target address of message A coincidentally
happen to be same. For another example, message D in quadrant II has its
destination address in quadrant IV, so the target address is (6, 5), which is
the same relative position in quadrant IV as (2, 1) in quadrant II. Message
D is four steps along the row and four steps along the column away from its
target processor. Since message H has its destination address in the same
quadrant as its current position, the target address of message H is the same
as its current position, even though its destination address is not same as its
current position. Compare the target addresses and destination addresses of
other messages. During the move step, messages A, B, C and F are sent
along their rows to their targets that are four steps away. Messages E and
G travel along their columns, because their targets are on the same column.
Messages D and J will move along the column first even though their target
processors are on the diagonal. (Recall that if a message has to travel along
a row and a column, it travels along the column first.) Note that there is no
contention among messages B and C because they are pipelined along the
row. Message H does not move. After four time steps, messages A, B, C, E,
F, G, and H have arrived at their target processors. But messages D and
J are still four steps away from their target processors and will move along
their rows, completing the move step for our example.

The time required to rearrange messages in the move step in an s by s
mesh is s steps, because there is no contention among messages, and the far­
thest target is s steps away for messages which must travel to the diagonally­
opposite quadrant. (For example, messages moving from quadrant I to III,
or from quadrant II to IV, will takes time steps.)

During the move step, no processor will contain more than five messages
at any time. During the first s /2 time steps of the move step, some messages
are moving along rows, others are moving along columns, and others remain
at their initial processors. A processor which contains a message initially in
the correct quadrant may receive four transient messages, one across each
link, that are travelling through the processor. Note, however, that there
is no contention, so all four transient messages can be sent out at the next
step. This is the only case in which a processor may contain five messages
during the first s/2 time steps. In Figure 3.3, for example, processor (2, 2)
contains message E which is in the correct quadrant, quadrant II. Message
A is travelling from processor (0, 2) of quadrant II to processor (4, 6) of

44

II

0

2

3

4

5

6

7

Ill

0

B

G

2 3 4 5 6 7

A

E
c

K F

D

H

IV

Figure 3.3: Buffer requirements during the move step

quadrant IV. MessageD is travelling from processor (4, 2) to processor (0, 2).
Message B is travelling from processor (2, 0) to processor (2, 4). Message C
is travelling from processor (2,4) to processor (2, 0). So, after two time
steps, processor (2, 2) happens to have five messages, one that did not move
(message E), and four transient messages (messages A, B, C, and D).

During the first s/2 time steps of the move step, each message travelled
along a row or along a column. During the next s/2 time steps, each message
will travel only along a row, since the messages whose targets were on the
diagonal have moved to the target row and only those messages will move
to the target column. So, there will be at most five messages in a processor
during next s/2 times steps at any time, one message that did not move
during the entire move step, at most two messages that were delivered during
the first s /2 time steps and that will stay till the end of the move step, and
at most two transient messages that are moving along the row. In figure 3.3,
for example, processor (7, 3) contains three messages after four time steps;
message J that did not move, message K that was sent along the column
and message H that was sent along the row. After another three time steps,
messages G and H pass through processor (7, 3) (that is, messages G and H
are transient messages), and messages J, Hand K stay until the end of the
move step. So processor (7, 3) happens to contain five messages after seven

45

time steps, but it will contain only three messages after the move step. Note
that all message movement during the second s /2 steps stops at the same
time, because all messages that move travel exactly the same distance.

After the move step, however, no processor will contain more than four
messages. Initially, there is at most one message per processor. During the
move step, a processor may keep the message that it contains initially. Since
there is only one processor at the same relative position in each quadrant,
and only those processors can send a message to each other, a processor may
receive messages from at most three other processors in other quadrants. So
after the move step a processor can contain up to four messages, one that
was there initially and three more that are sent from processors in other
quadrants. In Figure 3.2, for example, processor (6, 5) will contain four
messages: D, F, and G from other quadrants and H from itself.

This section can be summarized in the following theorem.

Theorem 3.1 The move step of the first recursive stage on an s by s mesh
will take s time steps, and no processor will contain more than five messages
at any time. After the move step, no processor contains more than four
messages.

3.3 Smooth Step of Algorithm Q

At the end of a move step, a processor may contain up to four messages.
However, the number of messages in each quadrant does not exceed the
number of processors in a quadrant. In order to recur, the precondition of
Algorithm Q (at most one message per processor) must be restored to avoid
exponential growth of the number of messages in a processor. The objective
of the smooth step of each recursive stage is to rearrange the messages in each
quadrant so that each processor contains only one message without moving
any message out of the correct quadrant.

Smoothing of a quadrant is done in two phases. The counting phase
informs each processor about the initial and final configurations of messages
in each quadrant that contains the processor. After the counting phase, each
processor knows the number of messages it will receive from and send to its
neighbors to accomplish smoothing in a quadrant. The distribution phase
moves each message in the mesh to achieve the final configuration of the
smooth step. During the distribution phase, processors first transmit and
receive messages along rows and then transmit and receive messages along
columns. (Messages are moving either along rows or along columns at any

46

time during smoothing, but not along both.) After the distribution phase,
each processor will have at most one message.

After the move step is applied to an s by s mesh, smoothing is done in
the four s /2 by s /2 quadrants simultaneously and independently. Because no
message or information is exchanged between processors in different quad­
rants, we describe smoothing on a single q by q square mesh. The counting
and distribution phases are described in Sections 3.3.1 and 3.3.2 respectively.

3.3.1 Counting

Algorithm Q relies on smoothing, which takes a square submesh having sev­
eral messages in a processor and distributes the messages so that no processor
contains more than one message. Each quadrant that undergoes smoothing
IS

a square mesh with q2 processors arranged in q rows and q columns;
initially, no processor contains more than four messages; and the
total number of messages in the quadrant is no greater than q2 .

We'll assume that q is an even integer. As well, we will use the row-major
index of each processor in the mesh as its address. Thus, for a q by q mesh,
the address of the processor at (r, c) is given by rq + c where 0 :S r, c < q.

To speed up the process of smoothing, we divide the square mesh into
halves (top and bottom), and we perform counting and distribution on the
two halves simultaneously and independently. If there are u messages in the
top half before smoothing, and v messages in the bottom half, then u + v :S q2 •

After the smooth step, each processor with index 0 through u - 1 and each
processor with index q2- v through q2 -1 will contain a single message, while
remaining processors will not contain any message. Note that u or v may be
greater than the number of processors in the half. If the number of messages
in the upper half is greater than the number of processors in the upper half,
the excess messages spread into the lower half of the mesh. The same is true
when there are excess messages in the lower half. In the rest of this section,
we describe only the part of the algorithm for counting the upper half of the
square mesh. The part of the algorithm for counting the lower half of the
square mesh can be constructed by a simple transformation on the processor
indices.

We denote by C(r, c) the number of messages in the processor (r, c) before
the counting phase; 0 :S C(r, c) :S 4 for all 0 :S r, c < q. The algorithm we will
describe provides each processor in the mesh with the following information,

47

which will be used to determine the final configuration of each row and the
flow of messages through the links during distribution:

For a processor (r, c) in the upper half of the mesh, where 0 ::; r < q/2
and 0::; c < q,

1. the total number of messages in row r, that is, I:;;;;~ C(r, i), and

2. the number of messages to the left of processor (r, c) in row r (that is,
I:~;;;~ C(r, i)), and

3. the number of messages above the current row r, that is, the total
number of messages in all the processors of rows 0 through r - 1 (that
is, I:;;;;~ L:j;;~ C(i,j)).

For the processor (r, c) in the lower half of the mesh, where q/2 ::; r < q
and 0 ::; c < q,

1. the total number of messages in row r, and

2. the number of messages to the right of processor (r, c) in row r, and

3. the number of messages below row r, that is, the total number of mes­
sages in the processors of row r + 1 through q - 1.

We will describe the algorithm that counts the messages in the upper
half of a mesh. If a mesh contains a single processor, there is no need to
count, because the processor already has all information about the mesh. If
a mesh contains more than one column (q > 1), the following procedure is
used. (Recall that we treat only the upper half of the mesh.)

In the following, we represent count information from eastern, western
and northern neighbors byE, W, and N respectively. The number of mes­
sages contained in a processor is denoted by Z. Input from a nonexistent
neighbor (at the edge of the network) or a neighbor that is not part of the
mesh (of the current region) is 0.

1. In parallel, for each row, a cumulative count of messages flows from
the left end of each row to the right of the row (from west to east),
with each processor sending to its eastern neighbor the value Z + W.
The flow begins with the leftmost processor of each row sending to
its eastern neighbor the value Z (since the leftmost processor has no
western neighbor in the submesh and hence W is 0 by convention).
This message wave continues for q - 1 steps. The value of the input

48

value W to each processor is equal to the number of messages to the
left of the processor in the current row. Similarly and concurrently,
the processors in the rows each send the value E + Z to their western
neighbor. The flow begins with the rightmost processor of each row
sending its western neighbor the value Z (since the rightmost processor
has no eastern neighbor in the submesh and hence E is 0 by convention).
This message wave continues for q - 1 steps. The value of the input
value E to each processor is equal to the number of messages to the
right in the current row. As soon as a processor receives the value E
from its eastern neighbor and the value W from its western neighbor,
it can compute the total number of messages in the current row, which
is the value E + Z + W. Since this is done in parallel for each row,
this part of the counting phase requires q - 1 steps. Note that the
information passed in counting consists simply of an integer with no
more than log2 4q bits. Because this may be substantially smaller than
the size of a message being routed through the mesh, we refer to these
as integer messages, and say that the first part of counting requires
q - 1 integer message steps.

2. As soon as a processor receives the values E and W, it can compute
the value E + W + Z, the number of messages in the entire row and
pass this information to the processor in· the row below it. Information
thus passes along each column from the top row to the bottom row
(of the upper half), informing each processor how many messages are
contained in processors with smaller row indices. By convention, each
processor in the top row receives the input N = 0 from its northern
neighbor, and thus the value passed south by each processor is N +
E + W + Z. Since counting is done in the upper and lower halves of a
region independently, this requires q/2- 1 integer message steps, each
with log2 q2 bits. Note that the value N provided to each processor by
its northern neighbor is the total number of messages in the processors
above the current row. Because processors in the middle of a row are
the first to receive both E and W, the columnar information flow begins
in the middle columns first, and gradually spreads to outer columns.
The counting phase continues until the last processors on the outermost
columns receive the information from their northern neighbors.

Figure 3.4 shows an example of the counting phase on the upper half
of an eight by eight mesh. Processors are represented by the squares; the
row and column indices appear above each column and to the left of each

49

row. The number of messages in a processor is shown in the square. The
arrows represent the information flow between processors. The direction of
arrows is the direction of information flow, and the integer above or below
the arrows is the value of the information. For example, as soon as processor
(0, 3) receives the value 3 from its western neighbor and the value 7 from
its eastern neighbor, it knows that there are 12 messages in row 0, since it
has 2 messages. As soon as processor (0, 3) computes the value 12, the total
number of messages in row 0, it passes the value to the southern neighbor.
For another example, processor (1, 2) receives the value 7, 11, and 12 from
its western, eastern, and northern neighbors respectively. Now the processor
(1, 2) knows that there are 21 messages in row 1, since Z is 3, W is 7, and E
is 11. It knows also that there are 12 messages in row 0, since N is 12. Now
it passes the value 33 to its southern neighbor.

Lemma 3.1 Counting a q by q square mesh requires 3q /2-2 integer message
steps.

Proof: Recall that the counting is performed on the upper and lower halves
simultaneously. Step 1 of the procedure above is executed in parallel on
each row. Since the information flow along columns begins last along the
outermost columns, Step 2 begins on the outermost columns after q - 1
integer message steps. Then, Step 2 will take q/2 - 1 integer message steps
because the information flows involve only the upper or the lower half of the
mesh. D

3.3.2 Distribution

After the counting phase is complete, distribution of the messages occurs in
two phases, row movement and column movement. Row movement redis­
tributes the messages in each row so that no column of the mesh contains
more than q messages. Roughly speaking, row movement spreads messages
as evenly as possible within each row. Column movement redistributes mes­
sages in each column so that no processor has more than one message. If
these phases do not overlap in time (that is, movement along rows is com­
pleted before movement along columns begins), no more than four buffers are
needed. Contention for communication links can arise during both phases,
but only of a restricted type since no message changes direction during either
phase.

Since processors initially have up to four messages, and each link can
handle only one message at a time, messages compete for the links. During

50

0 2 3 4 5 6 7

0

2

3

Except for incoming values of 0 for boundary elements, all E, W and N values are
shown as labels on arrows.

Figure 3.4: Counting in the upper half of an 8 by 8 mesh.

row movement, messages are treated as indistinguishable, so priorities are
not used. During column movement, each messages is assigned a target and
contention is resolved according to priorities based on the distance to be
travelled: the message that must travel the farthest has the highest priority.
The distance to be travelled is based on the target address which is assigned
prior to the column movement.

We first describe the row movement in a q by q submesh. The purpose
of row movement is to distribute the messages in the submesh as evenly as
possible across the columns of the submesh. This can be approximated by
distributing the messages of each row as evenly as possible across the proces­
sors of each row. The only difficulty is making sure that, when the number
of messages in a row is not evenly divisible by the number of processors, the
'extra' messages of different rows are not placed in the same columns. Row
movement handles this problem by making sure that the 'extra' messages of
successive rows are placed in successive columns. Thus, if row 0 has k0 extra
messages (that is, the number of messages mod q = k0), then processors in
columns 0 through k0 - 1 each have one more message after row movement
than the other processors of that row. And if row 1 has k1 extra messages,
then these messages are placed in columns k0 through (k0 + k1 - 1) mod q.

51

For each row, only extra messages are
shown. The set of extra messages com­
prises those that cannot be evenly dis­
tributed among the processors of a row.
If a row has c processors, the number of
extra messages is between 0 and c- 1.
Extra messages in each row are dis­
tributed evenly through the columns.
Note that wrap-around of the extra mes­
sages occurs in row 2. Columns 0
through 4 each has three extra messages,
while columns 5 through 7 have two ex­
tra messages.

0

I

2

3

4

5

6

7

0

•

•

•

•

•

•

234567

•
• • •

• •
• • • •

• •
• • •

Figure 3.5: Layout of extra messages after row movement

Thus, the submesh row movement distributes the extra messages of each row
evenly through the columns. Figure 3.5 illustrates how extra messages are
arranged by row movement.

We now describe how row movement rearranges each row in a q by q
mesh. Since there is no interaction between rows and counting is done on
two halves of the square separately, we will describe how the processors in
the upper half perform row movement.

Initially, each processor in the upper half of the square mesh has at most
four messages. Messages are to be moved among processors in each row of the
upper half to reach a specified final configuration, where a final configuration
will have the following property:

Final Configuration Property: For any submesh consisting of the first
r rows, 0 ::; r < q/2, either the total number of messages in each column is
the same, or there exists some k, such that the total number of messages in
any column c < k is greater by one than the total number of messages in any
column c' :::0: k.

Note that the Final Configuration Property is an assertion about all sub­
meshes consisting of the first i rows, 1 ::; i ::; q/2. This implies, for example,
that fori = 1, the messages must be distributed approximately evenly in the
processors. More generally, it is easy to show by induction that the Final
Configuration Property implies the following property:

52

Post Row Movement Property: For each row, the numbers
of messages in any two processors either are equal, or differ only
by one. Furthermore, if we consider the leftmost processor to be
contiguous to the rightmost processor in a row, then the processors
with an extra message are contiguous.

Figure 3.6 shows an example of initial and final configurations for the
upper half of an eight by eight square mesh. Processors are represented by
squares; the row and column indices appear above each column and to the
left of each row. The messages are shown with shaded circles.

In the final configuration of Figure 3.6.b, the numbers of messages in
two processors of any row differ by at most one. The Final Configuration
Property is illustrated by considering the submesh consisting of the first three
rows, rows 0, 1, and 2. Each of columns 0 through 4 contains five messages
in this submesh, while each of columns 5 through 7 contains four messages.
Moreover, in each row the processors with an extra message are positioned
as described by the Post Row Movement Property; for example, processor
(0, 3) contains two messages and processor (0, 4) contains one message in row
0, while processor (1, 4) contains one more message than processor (1, 3) in
row 1.

We will now describe how each processor first computes the number of
messages that it will contain in the final configuration and then determines
the number of messages to send out and receive from its neighbors during
row movement. From the counting phase, processor (r, c) in the upper half
knows the following:

• the total number of messages in row r, which we denote by N" and

• the number of messages to the left of processor (r, c) in row r, which
we denote by Lr," and

• the total number of messages in rows 0 through r- 1, which we denote

by sr-1·

We define S_1 = 0, and note that Sr = Sr_1 + Nr for r 2: 0.
We denote by Ir,c the number of messages contained in processor (r, c)

initially, and we denote by Fr c the number of messages contained in processor , .
(r, c) in the final configuration. We define Ur,c by the following equations:

Ur,c - rsrfql
Ur,c lSrfqj

if 0 :::: c < (sr mod q)

if (Sr mod q) ::0: c < q

53

(a) Before row movement

0 2 3 4 5 6 7

0
®

®
e e

@ ®®
e ® e ee

@® 0® 00 0 0@ @@

0 0@ @ ® @@
0 0@

®
® ®

®
2

Q ® e
® e 0 0 0 ® 3

(b) After row movement

0 1 2 3 4 5 6 7

e @ e @ @ e @ ®
0 e @ e @

@ G @ @
® @ @ @ @ ® G @

~ 0 G G @· @ @ 0

2 e ® @ ®

Q ® ®
0 0 0 ® ® 0 3

Figure 3.6: Row movement in the upper half of an 8 by 8 mesh.

54

Then U,,c is the total number of messages in column c of the submesh con­
sisting of the first r rows in the final configuration.

Each processor (r, c) determines F,,c by the following equation:

(3.1)

Lemma 3.2 The collection of Fr,c for 0 :':: r < q/2 and 0 :':: c < q, which are
defined by Equation 3.1, satisfies the Final Configuration Property. That is,
for each processor (r, c), F,,c is the number of messages in the final configu­
ration.

Proof: By Equation 3.1, L~=o Fi,c = U,,c for 0 :':: c < q. For r 2 0, we do a
case analysis:

(Case 1) When S, mod q = 0:
Since U,,c = lS,jqj for 0 :':: c < q, the number of messages in each
column is the same.

(Case 2) When S, mod q = k, where k i= 0:
By definition of U,,c,

for 0 :::; c < k,
for k :':: c < q,

U,,c = rs,fql = lS,/qJ + 1, and
U,,c = lS,/qJ.

This satisfies the Final Configuration Property. D

For any row r, (N, mod q) processors contain rN,fql messages and are
located in contiguous columns starting at S,_1 mod q through (S, -1) mod q,
while the rest of processors in that row contain lN,/qJ messages. Figure 3.6
shows an example. In row 1, there are 21 messages, that is, N1 = 21. Since
S0 mod 8 = 4, and S1 mod 8 = 1, each processor at columns 4, 5, 6, 7 and 0
contains 3 U N1/8l) messages, and the rest contains 2 (lNt/8 J) messages. In
row 1 the column index of the last processor with an extra message is 0, and
in row 2 the first position of the processor with an extra message is 1, since
sl mod 8 is 1, where sl is 33 (the number of messages in rows 0 and 1).

The information required to determine the shape of a row in the final
configuration is common to all processors within a row; this information
consists of the number of messages in the current row and the total number
of messages in all previous rows. This means that, for the final configuration,
each processor can determine the number of messages that will be in its row
to its left in the final configuration.

55

After counting, each processor (r, c) in the upper half can compute the
following:

1. the number of messages initially contained in the processor, that 1s,

Jr,c'

2. the number of messages to be contained in the processor after row
movement, that is, Fr,c ,

3. the number of messages in row r to the left of the processor initially,
that is, Lr,c , and

4. the number of messages in row r to the left of the processor after row
movement (that is, in final configuration), which we denote by L' . r,c

Using these numbers, each processor can determine the number of mes­
sages it will send to or receive from its neighbors. For processor (r, c),
the number of messages which will travel through the left link is given by
the value (Lr,c- L~.J If this value is positive, processor (r, c) will receive
(Lr c- L') messages from its left neighbor during row movement to achieve

' r,c
the final configuration. If the value is negative, processor (r, c) will send
(L' - Lr c) messages to its left neighbor during row movement. The number

r,c '
of messages which will travel through the right link is given by the value
(Lr c + Ir c - L' - Fr c)· If this value is positive, processor (r, c) will send • • r,c ,

(Lrc+Irc-L' -Frc) messages to its right neighbor during row movement. ' ' r,c , .
If the value is negative, processor (r, c) will receive (L~,c + Fr,c- Lr,c- Ir,c)
messages from its right neighbor during row movement.

Figure 3. 7 shows an example of flow calculation for the upper half of
an eight by eight square mesh. Processors are represented by squares; the
row and column indices appear above each column and to the left of each
row. The number of messages initially contained in a processor is shown in
the square as an integer above the diagonal, while the number of messages
contained in the processor after row movement is shown as an integer below
the diagonal. Arrows represent the channels between processors, and the
arrows represent their direction. Integers on the arrows are the number of
messages which flow through the channel. An arrow with no integer indicates
that no message will flow through the channel. For processor (1, 3), there
are 10 messages in the processors to its left initially and 7 messages in the
final configuration, which means that 3 messages will be received from the
left neighbor.

56

0

2

3

Figure 3. 7: Message traffic across channels during row movement

We have described the algorithm for the upper half of the square mesh.
For the lower half of the mesh, the same algorithm is applied, but the index
needs to be transformed; that is, processor (i,j) in the lower half corresponds
to processor (q- 1- i, q- 1- j) in the upper half, where 0 :S: i,j < q.

Once a processor in the mesh determines the number of messages that
will travel through its channels, it sends messages to its neighbors as soon
as those messages are available. Completion by all processors establishes the
final configuration for row movement.

The following lemma summarizes the effect of row movement.

Lemma 3.3 After row movement in the mesh, there are at most q messages
in any column of the mesh.

Proof: Assume that there are xq + y messages in a mesh, where x and
y are integers such that 0 :S: x :S: q and 0 :S: y < q. If there are uq + v
messages in the upper half and lq + m messages in the lower half, where
u, v, l and m are integers such that 0 :S: u, l :S: q and 0 :S: v, m < q, then
xq+y= (u+l)q+ v+m, and 0 :S: v+m < 2q.

(Case 1) When y = v = m = 0:
Since v = m = 0, there are u + l messages in each column, that is, there
are x :S: q messages in each column.

(Case 2) When y = 0 and v + m = q:
Note that v, m > 0. By the Final Configuration Property, in the upper

57

(a) (b)

'\
u

Figure 3.8: Message distribution after row movement

half, there are u + 1 messages in each of columns 0 through v- 1, and
u messages in the rest. Likewise, in the lower half, there are l messages
in each of columns 0 through q- m -1, and l + 1 messages in the rest.
Since v- 1 = q- m- 1, there are u +I+ 1 messages in each column.
Hence, there are x ~ q messages in each column.

(Case 3) When 0 < y = v + m < q:
By the Final Configuration Property, there are u + l + 1 messages in
each of columns 0 through v - 1 and q - m through q - 1. There are
u + l messages in the rest. (See Figure 3.8.a.) So, u + l + 1 = x + 1 ~ q,
since y > 0.

(Case 4) When 0 < y = v + m -1 < q:

D

By the Final Configuration Property, there are u + l + 2 messages in
each of columns q - m through v - 1, and u + l + 1 messages in the
rest. (See Figure 3.8.b.) Since x = u + l + 1 and x < q, u + l + 2 ~ q.

Lemma 3.4 Consider a q by q square mesh with at most four messages in
each processor, and no more than 4q messages in each row. Row movement
of the smooth step on this mesh takes at most 1.2q data message steps.

Proof: From the counting phase, in the current row each processor knows
the number of messages to its left and the number of messages to its right.
By the Final Configuration Property, for the final configuration each pro­
cessor can compute the number of messages it will contain and the number

58

of messages to its left. Therefore, Theorem 2.1 of Chapter 2 applies, since
the message movement in each row is independent and messages travel only
along the current row. The lemma follows immediately by substituting b = 4
and c = q. o

After row movement, there are at most q messages in any column of the
mesh. Moreover, each processor in the upper half of the mesh can determine
the number of messages in the column currently above it, since the Final Con­
figuration Property holds for all processors in the upper half. For processor
(r, c), Ur-I,c is the number of messages in rows 0 through r - 1 of column
c. Likewise, each processor in the lower half of the mesh can determine the
number of messages in the column currently below that processor.

Since the movement of messages in each column is independent and the
number of messages in the rows above (below) the processor is known to
each processor in the upper (lower) half, the column movement of the square
mesh is reduced to the one dimensional column movement problem discussed
in Section 2.2.2. As described in Chapter 2, after column movement each
processor in the mesh contains at most one message.

Note that target addresses must be assigned for column movement, since
messages may travel from the top half of an array into the bottom half or
vice versa. It is not possible for all the processors of a column to calculate
the flow that will occur during column movement as was done for row move­
ment. Figure 3.9 shows an example of column movement in an eight by eight
square mesh. Each processor knows the target address of its messages. The
arrows in Figure 3.9.a show the target of messages computed prior to column
movement.

The following lemma describes the time steps required for column move­
ment.

Lemma 3.5 Assuming that q is a multiple of four, the column movement
takes at most 3q /4 data message steps on a q by q square mesh in which each
processor contains at most four messages.

Proof: Immediate from Theorem 2.3 in Section 2.2.2. 0

The following theorem summarizes the cost of the distribution phase.

Theorem 3,2 The distribution phase in a q by q square mesh takes at most
1.95q data message steps. During the distribution phase, no processor con­
tains more than four messages.

Proof: The number of routing steps required follows immediately from
Lemma 3.4 and Lemma 3.5. The buffer requirement follows immediately
from Theorem 2.2 of Section 2.2. 0

59

(b) Before column movement
0 I 2 3 4 5 6 7

0 •• ·, •• ·, ® ® ® ®

~ 1! ~ ,; ~ -. 0E~ @~ ~~ roC
• • (-~ .<:! rei ·~

2

4

5

(b) After column movement
0 I 2 3 4 5 6 7

0 ® @ @ @ ® @ @ @

® ® ® ® @ @ @ @

2 ® ® ® ® ® ® ® @

3 @ ® ® ® @ ® @ ®

4 ® ® ® ® ® @ ® @

5 @ ® @ @ @ @ ~ ~

6 ~ ~ ~ ~ ~ ~ ~ ®

7 @ ® ~ ~ ~ ~ ® ~

Figure 3.9: Column movement in an 8 by 8 mesh.

60

3.4 Time Complexity and Buffer Requirement

Algorithm Q is a recursive algorithm, in which recursion stages are applied
to each subproblem simultaneously. In this section, we describe the time
complexity of Algorithm Q. When the algorithm is applied to an n by n
square mesh, it takes at most 5.5n message steps. At any time, Algorithm
Q requires no more than five buffers per processor, regardless of the mesh
size. Even though Algorithm Q is applicable to any rectangular mesh, for
simplicity's sake, we will discuss the time complexity in the context of an n
by n mesh, where n is a power of two.

Evaluation of the time complexity of Algorithm Q is based on the follow­
ing assumptions:

1. The computation in a processor is considerably faster than the packet
transmission from one processor to another. Therefore, we equate the
time needed to execute a routing algorithm with the time required for
passing messages between processors.

2. There are two kinds of messages: data messages and integer messages.
A data message is a message with a destination address, flags, and data.
An integer message is a message with only one integer field, which is
used during the counting phase of the smooth step.

3. Throughout this dissertation, tM denotes the cost of sending a data
message packet from one processor to another, and tm denotes the cost
of sending an integer message packet from one processor to another.
Typically, tM > tm.

Algorithm Q is based on successive partitionings of the mesh into four
submeshes with the same size and shape and recursive applications of each
recursive stage on submeshes simultaneously. Each recursive stage of Al­
gorithm Q consists of two steps, the move step and the smooth step. As
mentioned before, a smooth step consists of two consecutive phases, count­
ing and distribution.

To establish a recurrence equation for Algorithm Q, we measure the size
of the problem by the length of a side of the square mesh, that is, by the
number of processors in one side of the mesh. We let TQ(n) represent the cost
of solving a routing problem with Algorithm Q on an n by n square mesh.
The first recursive stage on an n by n mesh begins with partitioning the mesh
into four quadrants. Next, the move step is performed on the n by n mesh.
Then the smooth step is applied to four n/2 by n/2 quadrants simultaneously.

61

Since the destination address of each message is contained in the quadrant
containing the current processor of the message after the first recursive stage,
the second recursive stage can handle four quadrants as independent half­
size subproblems simultaneously. (That is, there is no message passing among
quadrants.) This argument yields the following recurrence equation:

T Q (n) :S (cost of the move step on an n by n mesh)

+(cost of the smooth step on four n/2 by n/2 quadrants)
n

+TQ(2)

The cost of the move step on an n by n mesh is n data message steps
by Theorem 3.1; that is, ntM. The smooth step consists of two phases,
counting and distribution. The cost of counting on an n/2 by n/2 quadrant
is (3n/4- 2) integer message steps by Lemma3.1; that is, (3n/4- 2)tm. The
cost of distribution on a n/2 by n/2 quadrant is 0.975n data message steps
by Theorem 3.2; that is, 0.975n tM.

This gives the following recurrence equations:

n 3n
< TQ(2) +ntM + (4 -2)tm +0.975ntM

n 3n
< TQ(2) + l.975n tM + 4tm

Solving the equations, we get

TQ(n) < 3.95ntM+l.5ntm

< 4n tM + l.5n tm

By Theorem 3.1, no processor contains more than five messages at any
time during the move steps of Algorithm Q. By Theorem 3.2, no processor
contains more than four messages at any time during the smooth steps. Both
these bounds are independent of the mesh size. Therefore, Algorithm Q
requires only five buffers in a processor.

Theorem 3.3 Algorithm Q on an n by n army of processors requires five
buffers, 4n data message steps and l.5n integer message steps.

Proof: Immediate from the argument above. D

62

The size of the mesh is n/2 by n/2. Each
processor in the hatched triangle contains
four messages, and the total number of
messages is n2 /4. After smoothing, each
processor will receive a single message. So
will the processor in the upper right cor­
ner. The nearest message is (1 - ,0)n
steps away from the corner, which gives
the lower bound of smoothing.

Figure 3.10: Message layout for the lower bound of smoothing

If each processor in a mesh has enough buffers (n buffers for an n by n
mesh), we can solve routing problems using an algorithm similar to Algo­
rithm Q, but without smoothing. If we apply Algorithm Q without smooth
steps to an n by n mesh, messages can be delivered to their destination pro­
cessors in 2n tM. From this point, Algorithm Q pays 1.5n tm + 2n tM as the
cost of having only a small constant number of buffers in a processor.

The cost of move and smooth algorithms consists of the costs of moving
and smoothing. In an n by n mesh, the lower bound for the move steps of
Algorithm Q is 2n- 2 routing steps, which is determined by the distance be­
tween two processors on the opposite corners. The lower bound of smoothing
on an n/2 by n/2 submesh is (1 -

2
./z)n; the bound is determined by the

distance between the processor on the upper right corner and the nearest
processor that has messages when n2 /4 messages are packed in the triangle
on the lower left corner of the mesh. (See Figure 3.10.) Since smoothing has
to be performed every recursive stage, the total cost of smoothing is at least
(2- V'I/2) routing steps. Therefore, the total cost of Algorithm Q is at least
3.3n routing steps for an n by n mesh if the move and smooth steps are not
overlapped. Our algorithm described in this chapter has 4n data messages
steps, which is close to the lower bound, 3.3n routing steps. But there is
additional cost for counting, which requires 1.5n integer message steps.

If a data message is much bigger than an integer message (therefore,
tM ~ tm holds), Algorithm Q costs 4n tM to solve a routing problem. But,
in practice, the setup cost of communication is not negligible compared to

63

actual transmission cost, so it may be more realistic not to ignore the cost of
integer message, in which case Algorithm Q costs 5.5n routing steps. These
costs are based on the assumption that the computation cost is negligible
compared to the communication cost. In real machines, the computation
cost in a processor is not free. Nevertheless, Algorithm Q can perform ad­
dress calculations by comparing a single bit in each of the row and column
addresses of the destination processor with the corresponding bits of the
current processor. Because the address computation can be done by two
simple bit-wise logical operations, the computation cost will indeed be small
compared to the communication cost.

3.5 Restricted Broadcasting with Algorithm Q

Algorithm Q can solve (restricted) broadcasting problems1 without addi­
tional buffers and routing cost because messages are duplicated appropri­
ately during the move steps and the new copies introduce no contention.
This section describes the method by which a processor duplicates messages
with multiple destinations during the move steps and the effect that message
duplication has on the smooth steps of Algorithm Q.

In broadcasting problems, initially each processor has at most one mes­
sage, but a message may have multiple destination addresses. The total
number of destination addresses for all messages is no greater than the num­
ber of processors. After communication is complete, no processor will contain
more than one message. To represent multiple destination addresses, we need
to refine the destination address field of a message, since a simple binary rep­
resentation of a single address will not work anymore. Multiple destination
addresses can be represented either as a list of processor addresses or by a
mapping function that produces multiple destination addresses.

The actual representation of multiple addresses for a message is not im­
portant for Algorithm Q, so long as a processor can examine the collection of
destination addresses at each move step. We assume the representation cho­
sen meets this requirement. However, representation of multiple addresses
may result in performance degradation of a routing algorithm since multiple
addresses may require a longer message format. A longer message format
could require a larger buffer for each message and more time (a slower clock)
to send messages between processors. In this section, we do not consider the
additional costs incurred by longer messages, and assume that these effects

1 Defined in Section 1.3.4.

64

have been accommodated by adjusting the unit data message travelling time
(that is, tM) and the buffer size.

For each recursive stage Algorithm Q is modified as follows. At the be­
ginning of each move step, each processor examines the destination addresses
of the message it contains and determines which quadrants contain destina­
tions of the message. A single copy of the message is sent to the processor
at the same relative position in each quadrant that contains a destination
address. Although a message may have multiple destination addresses in a
single quadrant, only one copy of the message is sent to that quadrant. If
the destination addresses of a message are contained in more than one quad­
rant, the processor makes an appropriate number of copies of the message
and sends one copy to each of the quadrants. If one of the destination ad­
dresses is contained in the current quadrant, the processor keeps a copy of
the message.

Recall that a message with a single destination address is sent along the
column first and along the row next when its target processor is located in
the quadrant on the diagonal. For broadcasting, only a single copy of the
message is sent along the column, even when destination addresses of the
message are contained by the quadrants both above (or below) and on the
diagonal. Thus, if a copy sent along the column from a bottom quadrant has
destination addresses in both upper quadrants, a copy is made by the target
processor as soon as the message finishes its movement along the column;
the new copy is then sent along the row to the processor on the diagonal.

In summary, a processor examines the message with multiple destination
addresses and makes the proper number of copies, which may be two for the
originating processor, but is no more than one for any other. Each copy of
the message is sent to the corresponding processor in the correct quadrant
as if there were no other copies. Specifically, in an s by s mesh, during the
first s/2 steps, messages travel along the column and along the row. During
the next s /2 steps, messages which need to travel another s /2 steps will
travel along the row. Before the second s/2 step movement along the row, a
message may be duplicated.

Despite the need to duplicate messages, there is no contention for links
during the move step. Even though two messages begin to travel from the
same processor, they are moving in different directions, one along a row and
the other along a column. By delaying copying messages until additional
copies are needed, contention for a link along a column is avoided.

At any time during the move steps, Algorithm Q requires no more than
five buffers to handle broadcast problems. At the beginning of a move step,

65

the message in a processor may be made into three copies; one copy stays,
and the others travel along the row and along the column. During the first
half of the move step, a processor contains up to five messages, one that
did not move and four transients. After the first half of the move step, a
processor contains up to three messages: one that did not move, another
from the row, and the third from the column. One of the three copies, the
one sent along the column, may be copied again, and a copy is sent along
the row in the second half of the move step. During the second half of the
move step, a processor contains up to five messages, three that stay and two
transients moving along the row. After the move step, no processor contains
more than four messages; four messages would include one that did not move
and three from processors in other quadrants.

Figure 3.11 shows an example of the first recursive stage of Algorithm Q
which solves a broadcasting problem on an eight by eight mesh. The des­
tination addresses are shown in the table; each message is associated with
a list of destination addresses; some have a single address, and others have
several addresses across the mesh. Figure 3.1l.b shows the original position
of the messages and the paths they follow during the move step. Message A
has two destination addresses, one in the current quadrant and one in the
quadrant below. One copy of message A remains at processor (0, 1) and the
other copy travels along the column. Message E has six destination addresses
which cover four quadrants. Three copies exist during the first part of the
move step; one remains at the current position, another travels along the
row, and the other travels along the column. Another copy of message E is
created by processor (1, 2) as soon as message E arrives at that processor,
and a copy of message E travels along the row to processor (1, 6). Both mes­
sage J and a copy of message E are delivered to processor (1, 6) along the
same path, but there is no contention because they travel during different
time intervals. Figure 3.1l.c shows the result of the move step. No processor
contains more than four messages. Although several copies of a message may
co-exist in the mesh, each copy is in a different quadrant.

The smooth step is not affected by the multiple destination addresses,
because it is applied to each quadrant independently and is unaffected by
destination addresses. After the move step, the number of messages in a
quadrant does not exceed the number of processors in the quadrant, and no
processor contains more than four messages. Since messages are treated as
indistinguishable by the smooth step, the smooth step can be used for broad­
casting problems without modification by treating each copy of a message in
the same way.

66

(a) Destination Table
Message Destinations

A (2,0) (5,3)
B (2,1) (6,6) (7,3)
c (2,2)
D (2,3)
E (0,1) (6,7) (3,4)

(3,5) (5,0) (5,1)
F (1,0)
G (0,2) (6,3)
H (0,6) (1,6) (2,6)
J (1,7)

(c)

II 0 2 3 4 5 6 7

0

2

3

4

5

6

7

Ill

AB
CD

A
B

E JE

G

F H

B

E E

G

IV

(b)

II o

0

2

3

4

5

6

7

Ill

(d)

II 0

0

2

3

4

5

6

7

Ill

A

E

A

A

B

c

B

2 3 4 5 6 7

D

J

c

E

G

F H

2 3 4 5 6 7

B D E J

G F H

E B E

G

Figure 3.11: Move and smooth steps for broadcasting

67

IV

IV

If we assume the time required to examine destination addresses, deter­
mine what copies are necessary, and make copies of messages is negligible
compared to routing costs, the time complexity and buffer requirement of
broadcasting are the same as those for routing.

This section is summarized by the following theorem.

Theorem 3.4 On an n by n mesh, Algorithm Q can solve a broadcast prob­
lem with five buffers per processor in 5.5n message steps if routing costs are
the dominant expense.

3.6 Extensions of Algorithm Q
Algorithm Q partitions a mesh into four square submeshes at each recursive
stage. It can be extended in two ways; one extension is to partition a two­
dimensional mesh into k2 square submeshes of the same shape and size, and
the other is to partition a K-dimensional hypercube into 2K hypercubes with
the same shape and size. We will describe both extensions of Algorithm Q
and examine the effects and difficulties of these extensions.

In Section 3.6.1, we explain the extension of Algorithm Q by partitioning
a two dimensional mesh into k2 square submeshes. In this case, the move step
of each recursive phase is no longer free from contention. That is, messages
are delayed by contentions for links during move steps, because more than
one message needs to travel over the same channel. The smooth step of each
recursive step can be performed at the cost of additional time steps, because
there are initially up to k2 messages in a processor.

In Section 3.6.2, we will describe the extension to a K-dimensional mesh.
Algorithm Q partitions a K-dimensional hypercube into 2K sub-hypercubes
by dividing the cube into two sections along every axis of the cube. Move
steps are not contention-free anymore, because the messages which will travel
along the same axis may arrive. at their target processors through channels
along several axes at the same time. Smooth steps can be done with K - 1
row movements followed by a column movement. The counting phase of a
smooth step must handle the K -dimensionality of the mesh.

In Section 3.6.3, we will describe a method to apply Algorithm Q to
an arbitrary square mesh. Since the size of mesh is not a power of two, the
submesh size is not an even number at some recursive stage. We will describe
methods to partition an odd size mesh and to determine target addresses.
We will then examine modifications of move step and the costs of unbalanced
quadrants.

68

3.6.1 Extended Algorithm Q for k2 Partitioning

As a move and smooth algorithm begins routing operations by partitioning
an n by n mesh into b congruent regions, Algorithm Q can be extended to
partition a mesh into k2 square submeshes, each of which contains n/ k by njk
processors, instead of four square submeshes. (Throughout this section, we
assume that the size of mesh n is a power of k.) The extended Algorithm Q
begins by partitioning the mesh into k2 square submeshes. It performs a move
step followed by a smooth step and then recurs on the k2 submeshes, each of
which is one k-th the size of the original. Like Algorithm Q, each processor in
a mesh determines the submesh which contains the destination address of the
messages that the processor contains. If a message is in the correct submesh
(that is, the submesh that contains the destination address of the message),
it does not travel during the move step. Otherwise, a message travels from
its current position to the processor which has the same relative position in
the correct submesh. Unlike the move step of Algorithm Q, the move step of
the extended algorithm is not contention-free, in the sense that contention is
possible because all messages cannot arrive at their target processors within
the time bound imposed by the distance between the originating and target
processors. Since up to k2 messages may move to any given processor and
since the processor in a corner submesh may be unable to receive more than
two messages per n/k time steps, it can take up to kn/2 time steps for the
processor to receive k2 messages from the processors at the same relative
position of other submeshes. See Figure 3.12 for a worst case example. Even
though it is very unlikely that the worst case pattern occurs in more than
one recursive stage, we cannot exclude the possibility when examining the
time complexity. Note that fork ::0: 4, kn/2 is greater than 2(k -l)njk, the
distance between the farthest pair of processors in the same relative position
of submeshes.

Unfortunately, it is difficult to find a strategy which accomplishes the
move step in kn/2 time steps during the first recursive phase for an n by n
mesh. To accomplish such a move step, a strategy has to make the messages
heading to a processor come into the processor evenly through each link
of the processor. That is, the number of messages over each channel to
the processor has to be even for all channels. Since we are considering the
extension of Algorithm Q, we will adapt the similar moving strategy to that
of Algorithm Q during the move step. The rule is as follows:

1. Each processor determines the correct quadrant for the message that
the processor contains. Each processor contains at most one message

69

Targets of the messages in the hatched
rows and columns belong to the lOwer
left corner. Since the messages in the
same subblock move in the same direc­
tion during each nfk step interval, only
two out of the k 2 messages on the black
spots will arrive at the target processor
in the lower left corner subblock every
nfk step interval. In this example, k
is 4.

Figure 3.12: Worst case move step of extended Algorithm Q

initially. The target processor of each message is the processor at the
same relative position in the correct square submesh. The messages
begin to move simultaneously. Once a message starts moving, it has
a higher priority than any message whkh is waiting for a channel or
any message which is changing its direction of movement. If there
is contention among moving messages, the message which is moving
straight has priority; there can be only one message which is moving
straight over a channel in the processor. The others are stored in the
buffers and wait for the channel. If there is contention among messages
which are in the buffers or which change direction, the message that
will travel farthest has priority.

2. If the target processor is in the same row but in another column, the
message travels along the row until it arrives at the target column. This
movement is accomplished by moving 0, nfk, 2n/k, , or (k- l)n/k
steps along the row. These messages will never suffer from any delay,
because they begin to move immediately and march straight to their
target processors. These messages will arrive at their target processors
after at most (k- l)n/k time steps.

3. If the target is in the same column but in another row, the message
travels along the column until it arrives at the target row. This move­
ment is accomplished by moving 0, n/k; 2nfk, , or (k -l)n/k steps
along the column. These messages will never suffer from any delay,

70

because they begin to move immediately and march straight to their
target processors. These messages will arrive at their target processors
after at most (k- 1)n/k time steps.

4. If the target is in another column and in another row, the message
travels along the current column until it reaches the target row. Then
it changes direction and travels to the target column along the row
until it arrives at the target processor. The first movement along the
column is accomplished by moving 0, n/k, 2n/k, , or (k-1)n/k steps
along the current column, and will be never delayed, because these
messages begin to move immediately and march straight to the target
row. But when the message is changing its direction of movement, it
will suffer from delays because of contentions with messages moving
straight ahead, messages waiting for a channel in the buffers, or other
messages that arrived simultaneously on other channels which are also
changing their direction of movement.

Our strategy for a move step makes the channel utilization of a processor in
the corner submesh very poor; up to k - 1 messages may come through a
column channel, and up to k(k- 1) messages come through a row channel.
With the movement strategy described above, the move step of the first phase
for an n by n mesh requires (k - 1)n time steps to move all messages to the
correct submeshes.

During a move step, a processor may contain up to k2 + 2 messages. For
the first (k- 1)n/k steps, there are at most (k2 - 4) messages that did not
move and four transients. After (k- 1)n/k steps, no message travels along
the column; that is, only two transient messages travel along the row. During
the rest of the move step, a processor may contain up to k2 messages that
did not move and two transient messages.

At the end of the move step, a processor may contain up to k2 mes­
sages; one is from before the move step, and k2 - 1 have moved there from
the corresponding processors in the other submeshes. However, the number
of messages in the submesh does not exceed the number of processors in
a submesh, because each message has a distinct destination address in the
submesh. The smooth step follows the move step to re-establish the pre­
condition that each processor contains at most one message. The smooth
step has two phases: counting and distribution. The details of the smooth
step are the same as those of Algorithm Q except that there are up to k2
messages in a processor; during the first recursive stage, the smooth step is
applied to k2 submeshes of n/k by n/k size simultaneously. In keeping with

71

the theorems in Chapter 2, the smooth step of the first recursive stage for an
n by n mesh requires l.5n/ k integer message steps and !~t(t~~~)n data mes­
sage steps, when k 2': 4 is even; the counting phase requires at most l.5njk
integer message steps, the row movement of the distribution phase requires
!f~~!~l n data message steps, and the column movement of the distribution

phase requires k:;-1 n data message steps. When n = kP for some integer p
and even integer k 2': 4, the complexity of the extended algorithm is given by
the following system:

T(1) - 0

T(n)
l.5n k(k2 + 2) k2- 1

< T(n/k) + (k -1)ntM + -k-tm + 4(P + 1) ntM + k3 ntM

which has the solution

T(n) :S
5k + 3 1.5
-

4
-ntM + -k -_-

1
ntm (when k 2': 4 is even)

The number of time steps required for the extended Algorithm Q is lin­
early proportional to k, the number of submeshes along one side of the square.
The extended Algorithm Q has the best performance when k = 4; that is,
T(n) = 5.75n tM+0.5n tm. It takes 6.25n routing steps when dividing a mesh
into 16 submeshes, compared to 5.5n routing steps in case of partition into
four submeshes. Moreover, the buffer requirement increases as k increases.
The cost of the counting phase decreases as k increases, but the costs of
move step and distribution phase increase linearly with the value k. The
performance of the extended Algorithm Q becomes worse with an increasing
number of submeshes, because the algorithm utilizes only channels either
along a row or along a column at certain times of each recursive stage, but
the number of messages in a processor is increased quadratically.

3.6.2 Extended Algorithm Q to a K Dimensional Mesh

A K-dimensional mesh is a J(dimensional hypercube of processors, each of
which is connected to two neighbors along each axis. So, each processor has
21{ neighbors with which it can communicate in a single step. Algorithm
Q can be extended by dividing a K dimensional mesh in the same way as
that Algorithm Q divides a two dimensional mesh. Algorithm Q divides a
K dimensional mesh into 2K identical hypercubes of half size along every
axis; that is, Algorithm Q divides the mesh into two halves for every axis

72

by the plane which is perpendicular to that axis. For example, for a three
dimensional n by n by n mesh, Algorithm Q will divide the mesh into eight
cubes of size n/2 by n/2 by nj2, using three planes which are perpendicular
to the x axis, the y axis and the z axis. In this section, we will briefly
show that the move steps are no longer free from contention and that the
number of message steps required in smoothing increases exponentially with
the dimension, K.

Consider a K dimensional hypercube which consists of nK processors.
The size of the mesh is n for each side of the hypercube. Algorithm Q begins
by dividing the K dimensional mesh into 2K identical sub-hypercubes, each
with (n/2)K processors. During the move step of the first recursive stage,
a processor may receive 2K - 1 messages from the corresponding processors
of each sub-hypercube. The corresponding processor in the farthest sub­
hypercube is K n/2 steps away, so the move step requires at least K n/2 data
message steps. But, unlike Algorithm Q in a two dimensional mesh, there is
contention in the case of the K dimensional hypercube.

A processor can receive up to K messages every n/2 steps from its K
corresponding neighbors which are n/2 steps away. Since the corresponding
processors in each of 2K sub-hypercubes may send a message to the same
processor, the processor may receive up to 2K messages, one from each sub­
hypercube. In this case, the move step will take at least 2Knj2K steps. But
this bound is too optimistic, since we assume that a processor receives K
messages every n/2 steps. This assumption is unfair because there are K
messages n/2 steps away, K(K -1)/2 messages n steps away, K(K -1)(K-
2)/3! messages 3n/2 steps away and so on.

After the move step of the first recursive stage, processors may contain
up to 2K messages. In order to recur, the smooth step rearranges messages
so that each processor has at most one message. The smooth step operates
on each sub-hypercube of size (n/2)I<. The details of the smooth step on
a K dimensional mesh will be explained in Chapter 4. But now we briefly
examine the time complexity of the smooth step. The smooth step consists of
the counting phase and the distribution phase. The counting phase on a sub­
hypercube of size (n/2)K requires (2!(- 1)n/4 integer message steps. The
distribution phase consists first of (K - 1) row movements on the arrays of
n/2 processors containing up to 2K messages, and consists of a single column
movement on the array of n/2 processors containing up to 2K messages,
two procedures which were explained in Chapter 2. If we assume that n is

2K(2K+2) •
2P, each row movement requires 4 (2K+J) ~ data message steps, wh1le each

colunm movement requires 2~~1 ~ data message steps.

73

TQK(n) represents the optimistic cost required to solve a routing problem
on a K dimensional hypercube mesh consisting of nK processors. By opti­
mistic, we mean that the cost of the move steps includes only the minimum
cost imposed by the channel capacity without considering unbalanced traffic.
We can construct the following recursive equations, where n = 2P:

0

By solving the above equations, we get

2K 1 (K-1)2K(2K+2) 2K-l
< KntM+(K-2)ntm+{ 4(2K+l) + 2K }ntM

"" O(K2Kn tM)

Using the above equation, we find that the cost increases linearly with
the size of mesh. However, the cost increases exponentially in relation to
the dimension of mesh. The dimension of the mesh, K, affects the cost in
two ways; one is a K factor, which is linear, and the other is a 2K factor,
which is exponential. The exponential increment of the cost comes mainly
from the fact that the maximum number of a processor's messages during
the smooth step increases exponentially in relation to the dimension of mesh,
while channels along only a single axis are utilized in turn at any time during
smoothing. We can conclude that Algorithm Q is inefficient for the higher
dimensional mesh, since the cost increases exponentially.

3.6.3 Algorithm Q on an Arbitrary Square Mesh

When the size of a two-dimensional square mesh is an odd integer, the first
recursive stage of Algorithm Q cannot partition the mesh into submeshes of
the same size and shape. Instead, it is necessary to divide the mesh into
submeshes of nearly the same size. In this section, we describe four methods
to overcome difficulties caused by unbalanced quadrants and assess the costs
incurred by uneven quadrants. We will show that Algorithm Q can be applied
to an odd-sized mesh at the cost of additional routing steps, an additional
buffer, or more complicated control structure.

74

Figure 3.13: Partition of a square mesh with odd size

When the size of a square mesh is even, Algorithm Q divides the mesh
into four identical quadrants; messages are sent to the same relative position
of the correct quadrant during the move step. When the size of mesh is
odd, Algorithm Q partitions the mesh into four quadrants, which may differ
in size by one column or row or both. Because the quadrants are not the
same size and shape, some processors in one quadrant do not correspond
to any processor in a quadrant with a smaller size or different shape. Thus
the move step must be modified in order to make it possible for messages
to move to the target quadrant without conflict or with a few predictable
conflicts. A modification of the move step will affect Algorithm Q in three
ways. First, a processor may be required to perform additional computation
to determine the target address of its message prior to the move step. Second,
a processor may be required to execute a longer procedure to route messages
to their target processors during the move step. Third, additional costs may
be incurred from an increase in buffer requirements and the time complexity
of the move and smooth steps. We will describe the target mappings and
paths of messages from a bigger quadrant to a smaller quadrant and then
discuss the buffer requirements and the time complexity.

When the size of the mesh is odd, that is, 2s + 1 by 2s + 1, Algorithm Q
partitions the mesh into quadrants of four different sizes: s + 1 by s + 1, s + 1
by s, s by s + 1 and s by s. We index the submeshes as I, II, III, and IV,
beginning from the top right and moving counter clockwise, as illustrated in
Figure 3.13. We denote by processor (i,j) the processor at the i-th row and

75

(a) (b)

Figure 3.14: Alternatives for special regions

the j-th column of a submesh.
Since the submeshes do not have the same size, we can partition each of

the bigger submeshes into two regions; the first is the region which has the
same size and shape as the smallest submesh, and the second is the rest of
the submesh, which is to be treated specially.

Figure 3.14 shows two ways of designating which parts of a mesh are to be
special regions. The first way, illustrated in Figure 3.14.a, specifies that each
processor in the middle row and column of the mesh will be part of a special
region of submesh I, II or III. The second way, illustrated in Figure 3.14.b,
specifies that each processor in the first row and column of the mesh will be
part of a special region. The three methods of message movement we discuss
all treat the subregions that are of the same size and shape as the smallest
submesh in the usual way during the move step; that is, each message in
these subregions is sent to the corresponding processor in the correct region.
The methods differ only in which way they designate special regions, and in
how the messages in the special regions are treated.

The first mapping method treats the top row and the leftmost column
of a mesh as special regions, as illustrated in Figure 3.14.b. The target of a
message originating from an ordinary region is s steps away along a column,
a row or both. A message in the upper]eft-hand corner travels to the upper
left hand corner of its target quadrant. Each other message originating in
the leftmost column must travel s + 1 steps along a row if its target is in

76

The target of special region rows is the top
row of the target quadrant. The target
of special region columns is the leftmost
column of the target quadrant. The gray
area of submesh IV is also the target of
messages from the ordinary region of each
submesh. Therefore, the top (gray) row
of submesh IV is the target of up to six
messages.

Figure 3.15: Targets of messages to Submesh IV of the first mapping

a rightmost quadrant, and s steps along a column if it must travel along a
column. Each message originating from the top row must travel s + 1 steps
along a column if its target is in a lower quadrant, and s steps along a row
if it must travel along a row. Figure 3.15 shows targets of messages destined
to submesh IV.

During the move steps of the first mapping scheme, messages except those
in the top row of the mesh travel first to their target row and then travel
to their target processors. In the top row of the mesh, messages travel to
target column first if necessary, and then travel along a column. Therefore,
the control procedure during the move step is simple. After the move step,
the top leftmost processor of submesh IV may contain up to nine messages;
four from the ordinary region of each submesh, one from the top leftmost
processor of submesh I, one from the top leftmost processor of submesh III,
and three from processors on the upper left corner of the special region in
submesh II. The longest path length is 2s + 2· steps, that is, n + 1 steps.

After the move step, processors in the top row of submesh IV may contain
six messages except the leftmost processor, which may contain nine messages.
Analysis shows that the presence of up to nine messages in the leftmost
processor increases the (worst case) cost of smoothing by two steps. The total
additional cost of smoothing is about 0.52n routing steps, because processors
may contain up to six messages instead offour messages, and by Theorem 2.1,
these additional messages requires about 0.26n more routing steps for row
movement in the first recursive stage.

In summary, this mapping method allows simple computation of target

77

addresses. The additional costs are four more buffers per processor (that
is, nine buffers are required in a processor,) and 0.52n +log n routing steps,
which include about 0.52n additional smoothing steps and log n additional
move steps.

The second mapping method requires a more complicated computation
of target addresses than the previous method, but it allows a simple control
procedure during the move step. The additional costs of the method are one
more buffer per processor and O(log n) routing steps.

In this mapping, we divide each submesh into two regions. The first is an
ordinary region which has the same shape and size as the smallest submesh.
The second is a special region which includes the middle row and column of
the mesh, as illustrated in Figure 3.14.a. The target of messages originating
from an ordinary region is the same relative position of the ordinary region of
another submesh. Now, we describe how to determine the target of messages
from the special region of a bigger submesh to a smaller submesh.

We start with the target of messages to the smallest submesh IV. For
0 :S: j < s, the target of a message from processor (s, j) in submesh I is
processor (s -1- j, 0) in submesh IV. For 0 ::;· j < s, the target of a message
from processor (s,j) in submesh II is processor (j,s- 3) in submesh IV,
as shown in Figure 3.16.a. For 0 ::; i < s, the target of a message from
processpr (i, s) in submesh II is processor (i, s- 2) in submesh IV. The target
of a message from processor (s, s) in sub mesh II is processor (s - 1, s - 1)
in submesh IV. For 0 ::; i < s, the target of message from processor (i, s)
in submesh III is processor (i, s - 1) in submesh IV. These mappings from
special regions to submesh IV are illustrated in Figure 3.16.b.

The targets of messages heading to submesh I are determined as follows:
For 0 ::; i ::; s, the target of a message from processor (i, s) in submesh II is
processor (i,s -1) in submesh I. For 0::; j < s, the target of a message from
processor (s,j) in submesh II is processor (s,j) in submesh I. For 0::; i < s,
the target of a message from processor (i,s) in submesh III is processor
(i, s- 2) in submesh I. These are illustrated in Figure 3.17.a.

The targets of messages heading to submesh III are determined as follows:
For 0::; i < s, the target of a message from processor (i,s) in submesh II
is processor (i, s) in submesh III. For 0 :S: j < s, the target of a message
from processor (s,j) in submesh II is processor (j,s -1) in submesh III. The
target of a message from processor (s, s) in submesh II is processor (s - 1, s)
in submesh III. For 0::; j < s, the target of messages from processor (s,j)
in submesh I is processor (s- 1- j, 0) in submesh III. These are illustrated
in Figure 3.17.b.

78

(a) (b)

Figure 3.16: Targets of messages to Submesh IV of the second mapping

(a) (b)

Figure 3.17: Targets of messages to submeshes I and III of the second map­
pmg

79

During the move step, a message travels to its target processor along a
column (if necessary) and then to the target processor along a row. There­
fore, each processor must check the target address of its messages and send
them through appropriate channels. Most messages travel to their targets
without conflict, but there may be static conflicts in the rightmost column
of subregion III during the second half of the move step. Specifically, each
processor (i, s), 0 ::; i < s, may have two messages that compete for the
channel to the eastern neighbor. If there is contention, a processor will re­
solve it by giving priority to the message with the greater distance to travel.
This contention is of little consequence, since there are at most two messages
competing for any channel at any time during the move step.

A message which travels the longest path from processor (0, 0) in submesh
II to processor (0, 0) in submesh IV will be delayed one step at processor (0, s)
in submesh III. This message requires 2s + 3 routing steps to reach its target.
Therefore, since n = 2s + 1, the move step requires two more routing steps
than that of Algorithm Q on an even size mesh. Analysis shows that the
cost of smoothing will increase by at most two routing steps, since after the
move step most processors will contain up to four messages except processors
which are the targets of messages from special regions. The target processor
of messages from special regions may contain up to five messages, and in any
row of submeshes, there are at most four such processors.

Since the additional costs of move and smooth steps are four routing
steps, the total additional cost of move and smooth steps is 4log n routing
steps. Moreover, this mapping method requires six buffers per processor,
since in processors (i, s-1) of submesh III and processors (i, 0) of submesh IV,
0 ::; i < s, there may be four messages that stay and two transients during
the second half of the move step. In summary, this mapping method allows
almost conflict-free move steps and requires only one additional buffer and
4log n additional routing steps, but the computation of target addresses is
more complicated.

The third mapping scheme is more complicated in determining target
addresses than the previous mapping schemes. It requires 0.3n additional
routing steps and no additional buffers. The control procedure during the
move step is almost same as the previous mapping schemes, but needs a small
modification. We describe how to determine the target of a message moving
from one submesh to another. There is no difficulty in mapping messages
from a smaller submesh to a bigger submesh, and we will only discuss the
troublesome cases.

We first treat messages moving to submesh I, shown in Figure 3.18. When

80

For a message from the gray area of sub­
mesh II, its target in submesh I is a pro­
cessor on the same row of the gray area
of submesh I. For a message from the
hatched area of sub mesh III, its target in
submesh I is a processor in the hatched
area of submesh I. Submesh I and the
white area of submesh II are congruent.
The white area of sub mesh III is mapped
to a proper subset of submesh I.

Figure 3.18: Targets of messages to Submesh I of the third mapping

a processor (i, j) in submesh II has a message to send to submesh I, the target
processor is processor (i,j) in submesh I for 0 :::; i < s + 1 and 0 :::; j < s.
The target for any message from a processor (i, s), 0 :S: i < s + 1, is processor
(i, s-1) in submesh I. Note that processor (i, s-1) in submesh I, 0 :S: i < s+1,
is the target of two processors, (i,s- 1) and (i,s), in submesh II. Thus
the processors in the rightmost column of submesh I will contain up to five
messages after the move step.

When 0 :S: i < s and 1 :S: j < s + 1 and a processor (i, j) in sub mesh III
has a message to send to sub mesh I, the target processor is processor (i, j -1)
in submesh I. For 0 :S: i < s, the target processor of a message in processor
(i,O) in submesh III is processor (i,O) in submesh I. (Figure 3.18 illustrates
targets of messages destined for submesh I.) Therefore, each processor (i, 0)
in submesh I, 0 :S: i < s, will contain up to five messages after the move step.

The smallest submesh among the partitions is submesh IV. Figure 3.19
illustrates the targets of messages destined for sub mesh IV. When a processor
(i,j) in submesh III, 0:::; i,j < s, has a message to send to submesh IV, the
target is processor (i,j). For each processor (i, s) in submesh III, 0:::; i < s,
the target is processor (i, s - 1) in submesh IV. That is, each processor
(i,s -1) in submesh IV is the target of both processors (i,s -1) and (i,s)
in submesh III. When a processor (i,j) in submesh I, 0 :::; i,j < s, has a
message to send to submesh IV, the target is almost always processor (i, j)
in submesh IV. There is one exception; the target of the message contained in
processor (s -1, s -1) in submesh I is processor (s- 2, s- 2) in submesh IV,
rather than processor (s -1,s -1). For each processor (s,j) in submesh I,

81

Figure 3.19: Targets of messages to Submesh IV of the third mapping

0:::; j < s, the target is processor (s -1,j) in submesh IV. Finally, messages
from the biggest submesh II can be mapped to the processors of the smallest
submesh IV as follows. When a processor (i,j) in submesh II contains a
message destined for submesh IV, its target processor is processor (i -1, j -1)
for 1:::; i,j < s + 1. There are four exceptions; the target of processor (1, 1)
in submesh II is processor (1, 1) in submesh .JV instead of processor (0, 0),
the target of processor (2, 1) in submesh II is processor (2, 1) in submesh IV
instead of processor (1, 0), the target of processor (s, 1) in submesh II is
processor (s - 2, 1) in submesh IV instead of processor (s - 1, 0), and the
target of processor (1,s) is processor (1,s- 2) in submesh IV instead of
processor (0, s - 1). Each processor (O,j) in submesh II, 1 :::; j < s + 1,
sends messages to processor (O,j -1) in submesh IV. Each processor (i, 0),
2 :::; i < s + 1, sends messages to processor (i- 1,0) in submesh IV. For
processor (0,0) in submesh II, the target is processor (0, 0) in submesh IV.
For processor (1,0) in submesh II, the target is processor (1,0) in submesh IV.
The above mapping provides each processor in submesh II with a target for
any message that has a destination in submesh IV. Moreover, no processor
in submesh IV will contain more than five messages after the move step.

The mapping from originating processor to target processor for each mes­
sage allows almost conflict-free movement of messages during the move step.
Each processor sends messages along columns first then along rows. The only
restriction is that the messages are not allowed to travel south during the
time interval from s + 1 through 2s. Thus, each message that has to travel
only south stays at the current processor (one short of its target) until time

82

2s and each message that has to move both south and in another direction
travels in the direction other than south first, and then takes its final step
south. This movement avoids the congestion that would result from having
messages from two rows in the bottom row of the mesh.

Since the message from processor (0,0) in submesh II destined for sub­
mesh IV must travel 2s + 2 steps and will be delayed one step at processor
(s, 0) in submesh I during the movement, the move step on the 2s + 1 by
2s + 1 mesh requires 2s + 3 routing steps; that is, n + 2 data message steps.
During the move step, no processor requires more than five buffers at any
time. Since the additional cost of each move step is two routing steps regard­
less of the size of mesh, the effect on the overall routing cost is at most 2log n
data message steps. Moreover, no processor needs an additional buffer even
though some processors may contain up to five messages after the move step.

Although the number of messages in some processors in a small submesh
is five instead of four, the total number of messages in the submesh does not
exceed the number of processors in the submesh. Therefore, the procedure
of smoothing is not affected except that some additional routing steps are
required to handle rows in which processors may contain five messages. That
is, in the top and bottom rows of submeshes III and IV, processors may
contain five messages instead of four after the move step. On an n by n
mesh, row movement of the distribution phase of smoothing requires a total
of 1.5n data message steps when n is not a power of two, compared to 1.2n
data message steps when n is a power of two. Column movement does not
incur additional costs since at most two processors per column may contain
five messages; other processors will contain up to four messages. Therefore,
the cost of column movement during the distribution phase does not increase.

In summary, we can handle the move and smooth steps on an n by n
mesh, where n is not a power of two, for a cost of 2log n + 0.3n additional
data message steps. But the control structure of each recursive stage becomes
more complicated, and the computation of target addresses during move steps
becomes more complex.

We have described three mapping methods to implement Algorithm Q
on a square mesh with odd size, and discussed the additional costs of each
method. Each method requires different additional costs incurred by the
modification of move step. Other methods are easy to conceive, and in prac­
tice, the user of Algorithm Q can choose an appropriate method according
to the constraints of his network configuration.

83

3.6.4 Algorithm Q on a Rectangular Mesh

In this section, we describe modifications that will enable Algorithm Q to be
applied to a rectangular mesh. We first sketch the move and smooth steps
and examine the time complexity and the buffer requirement when each
dimension is a power of two. Next, we describe how to apply Algorithm Q
to a rectangular mesh with an arbitrary number of rows and columns.

We describe Algorithm Q on a rectangular mesh with r rows and c
columns, where both r and c are powers of 2 and r > c. Algorithm Q
begins by partitioning a mesh into four congruent quadrants with size r 12
by cl2. A message in the correct quadrant does not travel during the move
step. Otherwise, a message travels from its current location to the processor
which has the same relative position in the correct quadrant. This movement
is accomplished by moving 0 or r 12 steps along a column of the mesh, and
then 0 or cl2 steps along a row. Thus, a message may remain in place, or
it may travel cl2 steps along a row, or it may travel r 12 steps along a col­
umn, or it may travel r 12 steps along a column followed by cl2 steps along
a row. When messages that must travel along both columns and rows arrive
at the target row, all messages that travelled only along a column or row
have already arrived at their target. Consequently, there is no conflict dur­
ing the move step. During the move step, a processor may contain up to five
messages. The move step requires (r + c)l2 data message steps.

At the end of the move step, a processor may contain up to four messages;
one from the current quadrant and three from the other three quadrants.
The smooth step is applied to each of the four quadrants simultaneously
and independently to restore the condition that each processor contains at
most one message. The smooth step on a r 12 by cl2 rectangular mesh con­
sists of the same counting and distribution phases described in Section 3.3.1
and Section 3.3.2 respectively. Counting on a r 12 by cl2 rectangle requires
r I 4 + cl2 - 2 integer message steps. Distribution consists of row movement
followed by column movement. Since b = 4, row movement in an array of cl2
processors requires 0.6c data message steps (by Theorem 2.1), and column
movement in an array of r 12 processors requires 3r 18 data message steps (by
Theorem 2.3). This ends the first recursive stage.

The recursion terminates when each quadrant contains a single column
of processors. When a quadrant has a single column of rIc processors, the
smoothing step can be skipped and each message can travel directly to its
destination without conflict. The last move step requires r I c-1 data message
steps, since a quadrant consists of rIc processors.

84

T(r, c) represents the cost of solving a routing problem with Algorithm Q
on an r by c rectangular mesh. The complexity of Algorithm Q on an r by
c rectangular mesh is bounded by the following recurrence equations, when
r = 28

, c = 21, and s > t:

T(r/c, 1) = r/c -1
r + c r c 3r

T(r,c) < T(r/2,c/2) + -
2
-tM + (4 + 2- 2)tm + (S +0.6c)tM

Solving the above recurrence equations, we get

r r r
(r - - + c - 1)t M + (- - - + c - 1 - 2log c)tm

c 2 2c
T(r, c) :C:

3r 3r +(-- - + 1.2c- 1.2)tM
4 4c

Dropping negative terms strengthens the inequality to the following:

T(r, c)
r 3r

< (r + c)tM + (2 + c)tm + (4 + 1.2c)tM

r
= (1.75r + 2.2c)tM + (~ + c)tm

When either r or cis not a power of two, the number of columns or rows of
a submesh is not an even number at some recursive stage. In Section 3.6.3, we
showed how Algorithm Q can partition a mesh into submeshes of nearly the
same size. Specifically, the algorithm can divide a mesh into regions whose
numbers of row and columns differ by at most one. The same technique can
be used when the number of rows or columns of a rectangular mesh is an odd
number. The target address of each message can be determined by a mapping
similar to that developed for a square mesh and described in Section 3.6.3.

The move step can be modified according to the mapping. Using Algo­
rithm Q on a rectangular mesh of odd size requires more message routing
steps during both the move step and row movement of the smooth step. The
additional cost incurred during the smooth step is a total of 0.3c data mes­
sage steps; the cost of row movement of the smooth step at the first recursive
stage increases from 0.6c to 0. 75c, since processors in some rows may contain
five messages after the move step, which in the final solution gives a total of
1.5c instead of 1.2c. The additional cost of the move step is a total of 2log c
data message steps, since two more steps are necessary at each move step.
We can conclude that Algorithm Q is applicable to a two dimensional mesh

85

of any size, with an additional cost of no more than 0.3c data message steps.

86

Chapter 4

Algorithm H

The second algorithm we treat, which we call H (for 'Halves'), has a somewhat
worse time complexity than Algorithm Q, but it requires only three buffers
in each processor. Sections 4.2 and 4.3 describe the move and smooth steps
of Algorithm H, and Section 4.4 describes the time complexity and buffer
requirements in detail. Section 4.5 shows that broadcasting problems do not
change the time complexity of Algorithm H. Section 4.6 discusses extensions
of Algorithm H.

4.1 Overview

Algorithm H can be applied to a rectangular mesh of arbitrary size. But
for simplicity's sake, we will describe Algorithm H for an n by n square
mesh where n = 2P. In the special case of a square mesh, Algorithm H first
partitions the mesh into two rectangular regions, each of which is half the
mesh. The move and smooth steps are then performed on these two non­
square regions, after which every message is in the correct half of the array,
and every processor has at most one message. The algorithm then partitions
each of these two non-square regions into two square regions and performs
move and smooth steps on those regions. Tlien the algorithm recurs. Like
Algorithm Q, each stage ofthis algorithm moves each message into the correct
subquadrant of the current partition. This algorithm, however, requires two
separate move and smooth steps for each recursive stage. The first move
step will move a message either 0 or n/2 positions along its current row;
the second move step will move each message either 0 or n/2 steps along
its current column. Thus, the maximum distance moved by any message in
stage one of this algorithm is n, the same as for Algorithm Q.

Algorithm H differs from Algorithm Q in the complexity of its smoothing
step. In Algorithm H, at the end of each move step, a processor may contain
up to two messages, one from before the move step and the other a message
that was moved from the corresponding processor in another region either
along a column (during the first move step of each recursive stage) or along a
row (during the second move step of each recursive stage). We will show that
the first smoothing step of the first stage divides an n by n mesh into halves
and requires 2n steps, while the second smoothing step of the first stage
divides each of the halves into quarters of the original mesh and requires 1.5n
steps. Thus, adding in the n steps required for the move, the complexity of
the algorithm is given by

T(l) - 0
T(n) < T(n/2) + 4.5n (for n = 2P)

giving a solution of T(n)::; 9n.

4.2 Move Steps of Algorithm H

Algorithm His based on the successive partitioning of a mesh into two disjoint
regions; at each recursive step, it divides a square mesh into two rectangular
halves of the mesh, and then divides each of the two halves into two square
submeshes of half size. By two successive partitionings at each (recursive)
stage, Algorithm H recurs on four half-size square meshes simultaneously.
This section describes the two move steps of the first recursive stage on an s
by s square mesh.

Consider a square mesh with s rows and s columns, where s = 2P. Each
processor in the mesh has at most one message which has a distinct desti­
nation address. (We are now considering permutation problems only. We
will consider restricted broadcasting problems later in Section 4.5.) The first
move step begins by partitioning the s by s mesh into left and right halves
that are s by s/2 rectangular meshes. Each processor in the mesh can deter­
mine which half it belongs to and which half contains the destination address
of its message. The objective of the first move step is to rearrange the mes­
sages so that all messages are contained in the correct half, which contains
the destination address of each message.

As in the move step of Algorithm Q, the messages that must travel should
be moved in a way which prevents contention and in which the number of
messages in a processor is predictable after the move step. When a processor

88

has a message which is not in the correct half, the processor sends the message
to the corresponding processor which is at the same relative position in the
correct half (that is, the other half of the mesh). The corresponding processor
in the correct half is s /2 steps away along the current row. When, however,
a processor has a message which is in the correct half, the processor keeps
the message during the first move step. Once each processor determines
the target processor of its message by examining the destination address,
messages which are not in the correct half travel simultaneously along their
current row by s/2 steps. During this movement, there is no contention
among messages, because there was only at most one message in a processor
initially, and messages begin to travel simultaneously along the current row
and stop at the same time after s /2 steps. During the first move step, only
links along rows are active. Links are bidirectional, so no contention occurs
since messages travel in lock step in both directions. The time required for
the first move step is s /2 data message steps.

After the first move step, each message is contained in the half which
contains the destination address of the message. No processor contains more
than two messages. The first smoothing step restores the condition that each
processor contains at most one message, so that no processor will contain
more than two messages after the second move step. (Without smoothing,
two messages may compete for a channel during the second move step, and
up to four messages may be contained in a processor after the second move
step. Therefore, except that the time bound of move step increases due to
delays, Algorithm H would be nearly equivalent to Q.) The first smoothing
step is performed on both of the rectangular halves simultaneously and will
be explained in Section 4.3.

The second move step begins by partitioning each half of the mesh into
two square quarters, each of whose size is s/2 by s/2, a division that results
in a total of four half-size (s/2 by s/2) square submeshes. The second move
step is applied to the two halves simultaneously, and the movements in the
two halves are independent. Because the second move step occurs in the
same way in both halves of the mesh, we describe the second move step only
for the left half of the mesh.

During the second move step, each processor determines the quarter which
contains the destination address of the message that the processor contains.
If a processor contains the message which is in the correct quarter, that
processor keeps the message during the second move step. If a processor
contains a message which is not in the correct quarter, it sends the message
to the processor at the same relative position in the other quarter. The

89

corresponding processor is s/2 steps away along the current column. Note
that the destination of a message is either in the lower quarter of the left
half or in the upper quarter of the left half. It never belongs to the quarter
on the lower right or on the upper right.

The movement of messages begins in all processors of the mesh simultane­
ously. The target address of each message is either the originating processor
itself or the processor which is s/2 steps away along the current column. No
contention occurs during the second move step, because each processor has
at most one message initially and all messages travel in lock step along a
column, either up or down, and stop moving at the same time. Thus, the
second move step takes s /2 data message steps to rearrange messages so that
each message is contained in the correct quarter.

After the second move step, each message is contained in the quarter
which contains its destination address. No processor contains more than two
messages; the two possible messages consist of one that has stayed during
the second move step and another that came from the other quarter in the
same half. Now the second smoothing step follows; it will be explained in
Section 4.3.

During both move steps, no processor contains more than three messages
at any time; one which stays there and two transients. During the first move
step, a processor contains up to two transient messages, since messages are
moving both left and right along rows. During the second move step, a
processor contains up to two transient messages, since messages are moving
both up and down along columns.

The following theorem summarizes this section.

Theorem 4.1 The move steps of the first recursive phase on an s by s mesh
will take a total of s (data message) steps, and no processor will contain more
than three messages at any time. Specifically, the first and second move steps
take s/2 (data message) steps each. After each move step, a processor may
contain up to two messages.

4.3 Smooth Steps of Algorithm H

Recall that each recursive stage of Algorithm H has two separate move and
smooth steps, which are applied to the submeshes of different sizes. At
the end of each move step, a processor may contain up to two messages,
but the number of messages in each subregion does not exceed the number
of processors in the subregion. We will describe the two smooth steps of

90

the first recursive stage on an s by s square mesh. After the first move
step, the first smooth step is performed on two disjoint s by s /2 rectangular
submeshes simultaneously. After the second move step, the second smooth
step is performed on four disjoint s /2 by s /2 square meshes simultaneously.
Both smooth steps use basically the same procedure as Algorithm Q, except
that the maximum number of messages in a processor is at most four in
Algorithm Q.

4.3.1 First Smooth Step

The first smooth step is performed on each half of an s by s mesh simultane­
ously to establish the precondition that each processor contains at most one
message and that each message is in the correct region. Since the smooth­
ing operations on two halves are independent and simultaneous, we will only
describe the first smooth step for the left half of the mesh.

The first smooth step takes two rectangular halves which have s rows and
s /2 columns and rearranges the messages in the two halves at the same time.
Assuming that s is 2q, we rephrase the first smooth step as follows:

In a rectangular mesh with 2q rows and q columns, a processor has
at most two messages initially, and the total number of messages
does not exceed 2q2 • The smooth step rearranges the messages
in the mesh so that no processor contains more than one message
after the movement.

Like the smooth step of algorithm Q, smoothing on the rectangular mesh
is done in two phases, the counting phase and the distribution phase. The
counting phase informs each processor in the mesh about the number of mes­
sages that each processor will receive from and send to its neighbors during
the distribution phase. The distribution phase rearranges the messages as
specified by the counting phase. During the distribution, the messages travel
along rows first, a movement which is called row movement, and then along
columns, a movement which is called column movement.

Counting is performed by the same procedure described in Section 3.3.1
of Chapter 3. The only difference is that the number of rows in Algorithm
H is twice as large as the number in Algorithm Q. We briefly summarize the
procedure and evaluate the number of time steps required.

To speed up the counting phase, we divide the rectangular mesh into the
upper and lower square submeshes, each of ~hich consists of q rows and q
columns. Counting is performed on two square submeshes simultaneously,
and we only describe the procedure for the upper square submesh.

91

1. Simultaneously, for each row, information flows from the left end of
each row to the right of the row. At the same time, corresponding
information flows from the right end of each row to the left end of the
row. These two information waves provide the basis for computing the
total number of messages in each row and the number of messages to
the left of each processor in its current row. These integer message
waves require q - 1 steps, so the first part of the counting phase takes
q - 1 integer message steps.

2. A second wave of messages now occurs in each column, with each pro­
cessor sending its southern neighbor the total number of messages in all
rows above the current row. This wave originates in the top row. Since
counting occurs concurrently in the upper and lower square submeshes,
this wave requires q - 1 integer message steps.

Lemma 4.1 The counting phase on a 2q by q rectangular mesh requires
2q - 2 integer message steps.

Proof: The last wave of Step 2 starts in the two outermost columns q - 1
steps after Step 1 begins. Because Step 2 requires q - 1 integer messages
steps, the counting of the upper or lower half requires 2q- 2 integer message
steps. Since counting is performed on the lower and upper square submeshes
simultaneously, it requires the same number of time steps as the counting of
the upper square mesh. D

Once counting is completed on the 2q by q rectangular mesh, distribution
occurs in two phases. In the first phase, which we call row movement, the
messages in the mesh are rearranged along their current rows so that no col­
umn of the mesh contains more than 2q messages. In the second phase, which
we call column movement, the messages travel along their current columns
so that no processor has more than one message. Row movement and col­
umn movement are done as in Algorithm Q, described in Section 3.3.2. The
only difference is that there are no more than two messages per processor in
Algorithm H, while there are up to four messages per processor in Algorithm
Q.

We briefly summarize row movement and column movement on the 2q by
q rectangular mesh in which each processor has no more than two messages
initially. Before row movement, each processor has to compute the num­
ber of messages which will flow through its channels. The counting phase
provides sufficient information for each processor to calculate the number of
messages that must move over each channel. Each processor follows the pro­
cedure described in Section 3.3.2 to determine the final configuration for row

92

movement. Once the computation is complete in each processor, message
movement begins. For each row, there are q processors, each of which has
up to two messages initially. By Theorem 2.1 of Chapter 2, row movement
in each row requires at most q - 1 data message steps. Since row move­
ment is performed simultaneously in each row, row movement of a 2q by q
rectangular mesh takes q - 1 data message steps.

After row movement, each column of the rectangular mesh has no more
than 2q messages, and no processor has more than two messages. When each
processor determines its role in row movement, it also determines where its
messages will be sent after row movement. The details are exactly same to
those of Algorithm Q in Section 3.3.2 except that in Algorithm Q, a processor
may contain up to four messages. For each column, there are 2q processors,
the total number of messages in a column is no more than 2q, and the target
of each message is already known. By Theorem 2.3 of Chapter 2, column
movement takes at most q data message steps. Since column movement in
each column is independent and performed simultaneously, column move­
ment on the 2q by q rectangular mesh requires at most q data message steps.

During row movement, no processor contains more than two messages
by Theorem 2.2 of Chapter 2, and there are no more than two messages
in a processor after row movement. During column movement no processor
contains more than two messages, since the number of messages does not
increase except when an empty processor receives a single message from its
northern or southern neighbor. During the distribution phase, therefore, no
processor contains more than two messages at any time.

Lemma 4.2 The distribution phase takes 2q- 1 data messages steps on the
2q by q rectangular mesh when each processor in the mesh contains at most
two messages initially. Specifically, row movement takes q - 1 data message
steps, and column movement takes q data message steps. During distribution,
no processor holds more than two messages at any time.

Proof: By Theorem 2.1, row movement takes q-1 data message steps since
b = 2 and c = q. By Theorem 2.3, column movement takes q data message
steps since b = 2 and r = 2q. The number of messages in a processor during
the movements does not exceed the maximum number of messages in the
processor initially. By Theorem 2.2, no processor contains more than two
messages, since b = 2. D

After column movement, a processor in the left rectangular submesh con­
tains at most one message. With the same smoothing operation, a processor
in the right rectangular submesh contains at most one message. The smooth

93

step is performed on the two rectangular submeshes simultaneously. After
the first smooth step, each processor in the mesh contains at most one mes­
sage, and each message is contained in the correct half of the mesh. The
following theorem summarizes the time complexity of the first smooth step.

Theorem 4.2 The smooth step on a 2q by q rectangular mesh takes 2q - 1
integer message steps and 2q - 1 data message steps when each processor in
the mesh contains at most two messages initially. Specifically, the counting
phase takes 2q - 1 integer message steps and the distribution phase 2q - 1
data message steps. At any time during the smooth step, no processor requires
more than two buffers.

4.3.2 Second Smooth Step

The second move step began with partitioning each of two rectangular halves
into two s /2 by s /2 square submeshes. After the second move step, each pro­
cessor may contain up to two messages. But each message is contained in the
quarter which contains its destination address·. In order to recur, the second
smooth step rearranges the messages in each of those four quarters so that no
processor contains more than one message. The second smoothing operation
is performed on each s /2 by s /2 quarter independently and simultaneously.

Each configuration of the second smooth step of Algorithm H can occur in
the smooth step of Algorithm Q. It follows that the same smoothing process
is adequate, and it is, in fact, used without change. The only difference is
that the maximum number of messages in a processor in Algorithm H is two
rather than four. We will now briefly analyze the time complexity of the
second smooth step of Algorithm H.

The counting phase is exactly the same as that of Algorithm Q. Since the
number of messages in a processor does not affect the counting procedure,
the time complexity is the same; that is, by Lemma 3.1, the counting phase
of the second smooth step in Algorithm H takes 3s /4 - 2 integer message
steps.

The distribution phase is the same except that the number of messages
in a processor is at most two rather than four as in the case of Algorithm
Q. Since the number of messages initially in a processor affects the time
complexity, we need to examine the number of time steps required for the
row and column movements.

In the case of Algorithm H, for each row, there are q processors, and each
processor contains no more than two messages, so row movement takes at
most q -1 data message steps by Theorem 2.1 of Chapter 2. After row move-

94

ment, there are at most two messages in each processor. For each column,
there are q processors, and each processor contains at most two messages
before column movement begins. Column movement takes at most ql2 data
message steps. (We assume that q is even for simplicity's sake.) During row
and column movement, by Theorem 2.2 no processor contains more than two
messages at any time, since the maximum number of messages in a processor
prior to each movement is two.

The following theorem summarizes the requirements during the second
smooth step.

Theorem 4.3 The second smooth step in Algorithm H for a q by q quarter
takes 3ql2- 2 integer message steps and 3ql2 -1 data message steps, where
q is even. At any time during the second move step, no processor contains
more than two messages.

Proof: Immediate from Theorems 2.1, 2.2, and 2.3.
The following theorem concludes this section.

Theorem 4.4 The two smooth steps on an s by s mesh take a total of7sl4-
4 integer message steps and 7sl4-2 data message steps, where sis a multiple
of four. No more than two buffers are required at any time during the smooth
steps.

Proof: From Theorem 4.2, the first smooth step takes s- 2 integer message
steps and s - 1 data message steps. From Theorem 4.3, the second smooth
step takes 3s I 4 - 2 integer message steps and 3s I 4 - 1 data message steps.
The theorem follows immediately.

4.4 Time Complexity and Buffer Requirement

In this section, we show that Algorithm H applied to an n by n square mesh
requires 9n message steps, consisting of 5.5n data message steps and 3.5n
integer message steps. At any time during routing, Algorithm H requires
at most three buffers per processor regardless of the size of the mesh. In
this section, we derive the requirements of Algorithm H on an n by n square
mesh where n is a power of two. However, the results of this section can
be generalized to obtain the complexity of Algorithm H for an arbitrary
rectangular mesh.

To compare the complexities of Algorithms Q and H, we will use the same
assumptions as in Section 3.4 (stated in page 61). We denote by TH(n) the

95

cost of solving a routing problem with Algorithm H on an n by n square
mesh. We will now establish a recurrence relation for TH(n). The first recur­
sive stage of Algorithm H on an n by n square mesh begins by partitioning
the mesh into two rectangular halves, and the first move step follows. Then
the first smooth step is performed on two n by n/2 halves simultaneously,
which leaves two rectangular halves that constitute the independent routing
problems. The algorithm then partitions each of those two rectangular re­
gions into two square meshes and performs the second move step on two n
by n/2 meshes simultaneously. Then, the second smooth step ends the first
recursive stage by rearranging messages in the four square meshes simultane­
ously. Algorithm H then recurs on four submeshes of half size simultaneously.
Thus, the following recurrence equation holds if n is a power of two.

T H(n) ::; (cost of the first move step on the n by n mesh)

+(cost of the first smooth step on then by n/2 mesh)

+(cost of the second move step on then by n/2 mesh)

+(cost of the second smooth step on the n/2 by n/2 mesh)

+TH(n/2)

By Theorem 4.1, the cost of the first move step and the second move step
is a total of n data message steps, that is, n tM. By Theorem 4.2, the first
smooth step on the n by n/2 mesh takes n - 2 integer message steps and
n -1 data message steps, that is, (n- 2)tm + (n -1)tM. By Theorem 4.3, the
second smooth step on the n/2 by n/2 mesh takes 3n/4- 2 integer message
steps and 3n/ 4- 1 data message steps, that is, (3n/4- 2)tm + (3n/4- 1)tM.
The following recurrence equations are obtained.

TH(1) - 0

TH(n) < TH(n/2)+ntM+(n..:.2)tm+(n-1)tM

+(3n/4- 2)tm + (3n/4 -1)tM
< TH(n/2)+2.75ntM+l.75ntm

Solving the equations, we get

During the move steps of Algorithm H, no processor contains more than
three messages at any time, regardless of mesh size, by Theorem 4.1. During
the smooth steps, no processor contains more than two messages at any time,

96

regardless of mesh size, by Theorems 4.2 and 4.3. So Algorithm H requires
only three buffers in a processor, regardless of mesh size.

Theorem 4.5 If n is a power of two, then Algorithm H on an n by n mesh
requires three buffers, 5.5n data message steps and 3.5n integer message steps
to route any permutation problem.

Proof: Immediate from the argument above.

4.5 Restricted Broadcasting with Algorithm H

Algorithm H can solve broadcasting problems without additional buffers or
routing costs because messages are duplicated appropriately during the move
steps, and because new copies introduce no contention. Since each processor
will receive at most one message in the final configuration, message copying
does not introduce any change into the smooth steps. Even though the mes­
sages are duplicated during the move steps, the new copies do not violate
the condition that the number of messages in a subregion is no greater than
the number of processor in the subregion. In this section, we describe the
method by which during the move steps, a processor makes copies of a mes­
sage with multiple destination addresses and then show that the new copies
of messages do not alter the complexity of the smooth steps.

Recall that for a broadcasting problem, each processor initially has at
most one message with a single or several destination address(es), and that
each destination address of a message is distinct. Therefore, no processor
will receive more than one message in the final configuration. As in Algo­
rithm Q, we assume that the destination address of a message is contained in
the message packet and that each processor can examine all the destination
addresses of a message without any additional costs.

Prior to each move step, Algorithm H partitions a mesh into two regions
with the same size and shape. Then, each processor examines the destination
address of its message and determines whether the message will move to the
other region of the mesh or will stay in the current processor. In a broadcast­
ing problem, a message has a list of one or more destination addresses. For
each message in a processor, all destinations of the message are contained in
the current region, or all entries are contained in the other region, or some
entries are contained in the current region and the rest of the entries are
contained in the other region. If all destination addresses are in the current
region, the message stays in the current processor as if it had a single destina­
tion address contained in the current region. If all destination addresses are

97

contained in the other region, the message will move to the processor at the
same relative position of the other region along the current row or column
during the move step, as if it had a single destination address contained in
the other region. If some destination addresses are contained in the current
region and the rest are in the other region, the processor duplicates the mes­
sage, keeps one copy, and sends the other copy to the corresponding processor
in the other region. In short, a processor examines destination addresses of
each message and either treats the message as one with only a single destina­
tion address or duplicates the message, keeps one copy and sends the other
copy as if each of them were a message with a single destination address.

We now describe in detail how a processor copies and sends its message
during the first recursive stage on an n by n square mesh. Recall that each
processor has at most one message and that this condition is restored after
each move step. The first move step begins with partitioning the mesh into
left and right halves of rectangular shape. Each processor then examines the
destination addresses of its message. If the destinations of the message are
contained either only in the left half or only in the right half, the processor
keeps the message or sends it to the other half. If the destinations of the
message occur in both halves of the mesh, the processor duplicates the mes­
sage. Then, the current processor keeps one copy of the message during the
first move step and sends another copy to the corresponding processor in the
other half along a row, which takes n/2 data message steps. During the first
move step, no contention occurs since all messages that travel begin to move
and stop moving at the same time. Note that in each processor, there is at
most one copy of a message which has to travel during the first move step.

The second move step is similar to the first move step. Prior to the second
move step, Algorithm H divides each of two rectangular halves into two
square quarters. Each processor examines the destination addresses of each
message and determines which quarters contain destinations of the message.
If the destination addresses of a message span only a single quarter, the
message is sent to the correct quarter. If the destination addresses span both
quarters of the same half, the message is duplicated. One copy is sent to the
other quarter in s /2 steps along a column while the other copy is kept in the
current processor. It is clear that no contention occurs during the second
move step for the same reason as in the first move step.

An example is given in Figure 4.1. In Figure 4.1.b, messages B and
E are duplicated, and one copy of each message is sent to the other half.
Messages A, G and H are not duplicated since all the destination addresses
are contained in the same half of the mesh. Messages A, F and H do not

98

(a) Destination Table
Message A B c D E F G H J
Desti- (2,0) (2,1) (2,2) (2,3) (0,1)(6,7) (1,0) (0,2) (0,6) (1,7)
nations (5,3) (6,6) (3,4)(5,0) (6,3) (1,6)

(7,3) (3,5)(5,1) (2,6)

(b) 0 2 3 4 5 6 7 (C) 0 2 3 4 5 6 7

0 A D 0 AD

J J

2 2

3 3

4 I® c 4 BC B

5 lcv 5 E E

6 G 6 G

7 F H 7 F H

(d) 0 2 3 4 5 6 7 (e) o 2 3 4 5 6 7

0 '® D J 0 A D J

2 2 B

3 3 c E G F E H

4 4 A

5 5

6 B 6 B

7 c ® I® F B '© H 7 E G B E

Figure 4.1: Broadcasting with Algorithm H

99

move since they are in the correct half. Messages C and J are not duplicated
but travel to the processors on the right half. Message G travels to the
left half as a single message even though it has two destination addresses. In
Figure 4.l.d, messages A and G are duplicated, and one copy of each message
is sent to the other quarter in the same half. Message H is not duplicated
again, since all destination addresses are contained in the upper right quarter.
Messages E in both halves are duplicated and sent to the proper quarters.
But message B in the lower right quarter is not duplicated, while message
B in the lower left quarter is duplicated and sent to the proper quarters.
Messages D and J stay, and messages C and F are sent to the processors in
the correct quarter.

After the move steps, no processor will contain more than two messages,
these being one which did not move and one which has come from the other
region. Since all destination addresses of messages in the same region are
distinct, the number of destination addresses of messages in a region does not
exceed the number of processors, even though some messages have multiple
destination addresses.

Although messages must be copied during the move steps, no additional
communication cost is incurred over that of partial permutation problems.
There are no additional costs for the smooth steps. Hence, the time complex­
ity of Algorithm H is not changed for any broadcasting problem if we assume
the costs of examining address lists and copying are negligible compared to
the communication costs. The new copies of duplicated messages also do
not require additional buffers, since only one copy travels between any two
regions. In practice, ·however, the multiple destination addresses may require
a longer message format. ·The longer message may require more communi­
cation time and bigger buffers. We did not consider these costs, since they
can be accommodated by adjusting the data message travelling time and the
buffer size.

Theorem 4.6 Algorithm H can solve any restricted broadcasting problem.
No additional buffers are required, although buffers may be larger since mes­
sage packets must contain a list of destination.addresses. No additional com­
munication steps are required, although steps may be larger to transmit the
larger message packets. In addition, prior to each move step, a processor
must examine the list of addresses of its message, and possibly make a copy.
Thus, on an n by n mesh, Algorithm H can solve any restricted broadcasting
problem with three buffers per processor in 5.5n data message steps and 3.5n
integer message steps if routing costs are the dominant expense.

100

Theorem 4.6 can be generalized to a mesh with an arbitrary size. We
will describe Algorithm H for an arbitrary size mesh later in Section 4.6.4.
On any size or shape mesh, Algorithm H can solve restricted broadcasting
problems with the same costs as solving (partial) permutation problems.

4.6 Extensions of Algorithm H

Algorithm H partitions a two-dimensional mesh into two submeshes succes­
sively at each recursive stage. It can be extended in three independent ways.
First, the algorithm can be extended to dimensions higher than two. A sec­
ond extension is to partition a mesh into k strip submeshes of the same shape
and size. Third, the algorithm can also be generalized to apply to dimensions
that are not powers of two. In this section, we describe several illustrative
extensions and analyze the complexity of each, although presentation of a
completely general result is not included.

In Section 4.6.1, we extend Algorithm H to a three dimensional mesh,
and in Section 4.6.2, we generalize it to a K-dimensional mesh. We evaluate
the costs of these extensions. These sections assume a hypercube mesh of
size n, where n is a power of two.

In Section 4.6.3, we explain an extension of Algorithm H which partitions
a two dimensional mesh into k strip submeshes vertically and then horizon­
tally. This extended version requires fewer routing steps as k increases, but
the buffer requirement increases. We assume that the mesh size n is a power
of k.

In Section 4.6.4, we describe a method to apply Algorithm H to an ar­
bitrary two dimensional square mesh. Since the size of the mesh is not a
power of two, the submesh size is not an even number at some recursive
stage. We will describe how to partition an odd size mesh and to determine
target addresses and show that only minor modifications are necessary for
the move and smooth steps and no additional cost is incurred by unbalanced
partitions.

4.6.1 Extension to a Three Dimensional Mesh

In this section, we extend Algorithm H to a three dimensional mesh and
examine time complexity and buffer requirements. We show that for an n
by n by n three dimensional mesh, where n = 2P, the extended Algorithm H
requires three buffers per processor and 22n message steps; specifically, it
requires 12.5n data message steps and 9.5n integer message steps.

101

A three dimensional mesh is a cube of processors in which each interior
processor is connected to six neighbors: two neighbors along the x axis,
two neighbors along the y axis, and two neighbors along the z axis. The
processors on the boundaries have no neighbors on one side of some axes.
A three dimensional mesh of size n X n x n consists of N processors, where
N = n3 • The address of each processor is the triple of three indices (x, y, z),
which indicate the location of the processor along each axis. We will mean
by an "x-row" a one dimensional array of processors whose y and z indices
are specified by some constants. Any x-row is parallel to the x-axis. We
will assign "y-row" and "z-row" similar meanings. The "x-row index", "y­
row index" and "z-row index" are given by the values yn + z, zn + x, and
xn + y respectively. We will use the term "yz-plane" to represent a two
dimensional mesh of processors whose x index is specified by some constant.
The "yz-plane index" is given by the value x. We will also assign "xz-plane"
and "xy-plane" similar meanings. Note that an x-row is perpendicular to a
yz-plane.

In a two dimensional mesh, each recursive stage of Algorithm H performs
two separate move and smooth steps. The extension of Algorithm H to
a three dimensional mesh performs three separate move and smooth steps
at each recursive stage. The first stage of recursion begins by dividing a
three dimensional mesh into two disjoint congruent regions along the z axis;
that is, a cube of processors is divided into two identical halves by a plane
perpendicular to the z axis. In the first move step, each message whose
destination address is not contained in the current half is moved to the correct
half along the z axis. Messages which are not in the correct half travel the
same distance, and all movements are performed within z-rows; therefore, no
contention occurs among messages.

After the first move step, a processor may have up to two messages, but
the total number of messages in each half of the cube does not exceed the
total number of processors in that half. Then the smooth step follows to
restore the condition that each processor have at most one message. During
the smooth step (see detailed descriptions on page 104 in this section), the
messages are rearranged three times, along each axis. That is, messages are
first distributed within each z-row so that the number of messages contained
in any xy-plane differs from that of any other xy-plane by at most one.
Next, the messages are moved within each y-row so that no x-row has more
messages than the number of processors in that x-row. Finally, the messages
are moved within each x-row, so that each pro.cessor in the cube has at most
one message.

102

The second move step begins by dividing each of two halves into two
congruent quarters of the original cube. That is, both halves are divided
by a plane perpendicular to the y axis. Like the second move and smooth
steps in a two dimensional mesh, the extended Algorithm H moves messages
between quarters and then smoothes each quarter of the three dimensional
mesh independently. After the second move and smooth steps, a processor in
each quarter has at most one message whose destination address is contained
in that quarter.

The third move and smooth steps divide each of the four quarters into
two congruent cubes by a plane perpendicular to the x axis. The extended
Algorithm H moves messages between the cubes and then smoothes the eight
cubes simultaneously so that each processor in the three dimensional mesh
has at most one message. Then the algorithm recurs on the half-size three
dimensional subcubes of the original n by n by n cube.

Move steps in each recursion stage of three dimensional Algorithm H are
very similar to those in the two dimensional case. Let us assume that the
size of the current cube is n x n x n. During the first move step, the three
dimensional mesh is divided into two halves by a plane perpendicular to the
z axis, and the messages move parallel to the z axis. (See Figure 4.2.) Each
message may remain in the current processor or travel along the z axis to the
other half's corresponding processor, which is n/2 steps away. There is no
contention among messages during movement along the z axis, because every
message is moving parallel to the z axis. Like the first move step, the second
move step divides the mesh into four quarters with a plane perpendicular to
the y axis, and the messages travel parallel to the y axis. Likewise, the third
move step divides the mesh by a plane perpendicular to the x axis into eight
identical cubes, and the messages travel parallel to the x axis. We can see
that each of the second and third move steps also takes n/2 data message
steps.

Each smooth step on a three dimensional mesh consists of two phases,
counting and distribution. We denote by C(x, y, z) the number of messages
in processor (x, y, z) before the counting phase. Then, the counting phase
informs each processor (x, y, z) of three numbers:

1. the total number of messages contained in the current z-row's proces­
sors with a smaller processor index than processor (x,y,z), that Is,
L:Z:~ C(x, y, k),

2. the total number of messages in the current yz-plane's z-rows with a
smaller z-row index than processor (x, y, z), that is, L:j:;;;~ 2:~:;;;~ C(x,j, k),

103

Figure 4.2: Partitions of a cube in Algorithm H

and

3. the total number of messages in yz-planes with a smaller yz-plane index
than the current yz-plane, that is, I:~:~ :Lj:~ I:~;;;~ C(i,j, k).

The distribution phase consists of three movements: the movement along
z-rows, the movement along y-rows, and the movement along x-rows. Before
and after each of the first two movements of the distribution phase, each
processor contains at most two messages, and the first two movements are
actually one-dimensional row movements, as described in Chapter 2. Before
the third movement, each processor contains at most two messages. After the
third movement, each processor contains at most one message. Therefore,
the third movement of the distribution phase is actually a one-dimensional
column movement, as described in Chapter 2.

For each movement within rows during the ·distribution phase, the proces­
sors have to compute the target configurations prior to the actual movements.
The target configurations can be determined with the numbers which are re­
ceived during the counting phase. For the purpose of computing the target
configuration of the first z-row movement, the n x n x n three dimensional
cube is mapped onto an n2 x n two dimensional mesh in such a manner
that processor (x, y, z) in the three dimensional mesh is mapped to processor
(nx + y, z) in the two dimensional mesh. Then each processor can determine
the proper target configuration of the current z-row as if that processor were
in the two dimensional mesh and would determine the target configuration of

104

two dimensional row movement as described in Chapter 3. (Recall that the
target configuration of row movement in the two dimensional mesh satisfies
the Final Configuration Property, which implies the numbers of messages in
any two columns either are the same or differ by one. Since each column in
the n2 x n two dimensional mesh corresponds to an xy-plane of then x n x n
three dimensional mesh, the Final Configuration Property implies that after
z-row movement the numbers of messages in any pair of xycplanes either
are same or differ by one.) For the second movement, which occurs within
y-rows, each xy-plane of the cube is a two-dimensional mesh, and they-rows
in the cube are the rows of the two-dimensional mesh, just as the x-rows in
the cube are the columns of the two-dimensional mesh.

For ann by n by n cube, the time complexity of the extended Algorithm H
consists of the costs of the three move steps and the three smooth steps.
The following two lemmas evaluate the time complexity of the extended
Algorithm H.

Lemma 4.3 For an n by n by n three dimensional mesh, there are three
move steps in each recursive stage of extended Algorithm H. Each move step
of the first recursive stage requires n/2 data message steps; the total cost of
the move steps in the first recursive stage is 3n/2 data message steps. During
the move steps, no processor holds more than three messages at any time.

Proof: For the first stage of recursion, there are three move steps within
each z-row, each y-row and each x-row. Prior to each move step, the cube
is divided into two regions by a plane perpendicular to an axis. Each move
step requires n/2 data message steps, since all messages that move travel the
same distance of half the cube along an axis. During each move step, all
message movement is parallel to a single axis. Therefore, a processor may
contain up to two transients and a single message which stays in place during
the move step. D

The counting phase for a three dimensional mesh of size Sx x Sy x Sz
can be done by a procedure similar to that of the one applied to the two
dimensional mesh in Chapter 3. To explain the counting phase, we consider
the three dimensional mesh as a stack of yz-planes, each of which are indexed
by the x index of the processors in that plane. To speed up the counting
phase, we divide the stack of yz-planes into two halves, the upper half, which
contains yz-planes with indices 0 through Sx/2 -1, and the lower half, which
contains yz-planes with indices Sx/2 through Sx - 1. We will describe the
procedure for the upper half by the following:

1. To count the number of messages in a z-row, information travels along

105

each z-row from the processors at each end to the processors at the other
end. These two information waves enable each processor to determine
the total number of messages in its z-row and the number of messages
in its row in processors with a smaller zindex.

2. As soon as each processor knows the total number of messages in its
z-row, information waves flow along y-rows. The information waves
begin from the processors at both ends of each y-row and flow to the
opposite ends. The number of messages in each z-row accumulates
in each processor so that each processor can determine two numbers:
the total number of messages in processors located in the z-rows with
smaller z-row indices, and the total number of messages in its yz-plane.

3. As soon as each processor knows the number of messages in processors
contained in its yz-plane, information waves begin along x-rows. Infor­
mation waves begin from the processor of the yz-plane with index 0 to
the processor of the yz-plane with index Sx/2 - 1. When these waves
end, each processor knows the total number of messages in processors
located in the yz-planes with smaller yz-plane index than its yz-plane
index.

Lemma 4.4 A smooth step of the extended Algorithm H applied to an Sx by
Sy by Sz three dimensional mesh requires (Sxf2+S.+Sz-3) integer message
steps for the counting phase. The distribution phase requires (Sx/2 + Sy +
Sz - 2) data message steps and two buffers per processor.

Proof: The message steps for counting cease when the processors on the
ends of x-rows with index Sx/2 - 1 receive the total number of messages in
half the cube. Step 1 requires Sz - 1 integer message steps, step 2 requires
Sy - 1 integer message steps, and step 3 requires Sx/2 - 1 integer message
steps. Therefore, for a three dimensional mesh with size Sx by Sy by Sz, the
counting phase requires Sz + Sy + Sx/2- 3 integer message steps.

After the counting phase, each processor can determine its role in bringing
about the smoothed configurations. The distribution phase of the smooth
step for a three dilll,ensional mesh of size Sx by Sy by Sz consists of three
movements: row movement along z-rows, row movement along y-rows, and
column movement along x-rows. The distribution phase requires, therefore,
Sx/2 + Sy + Sz - 2 data message steps according to Theorems 2.1 and 2.3,
since b = 2. Before any row or column movement, each processor contains
at most two messages. According to Theorem 2.2, no processor holds more
than two messages at any time. D

106

There are three smooth steps at the first recursive stage of the extended
Algorithm H for the n by n by n cube. The first smooth step operates on n
by n by n/2 submeshes, and requires 2n- 3 integer message steps and 2n- 2
data message steps. The second smooth step operates on n by n/2 by n/2
submeshes, and requires 3n/2 - 3 integer message steps and 3n/2 - 2 data
message steps. Finally, the third smooth step operates on n/2 by n/2 by n/2
submeshes, and requires 5n/4- 3 integer message steps and 5n/4- 2 data
message steps.

If we denote by TH,(n) the cost of the extended Algorithm H to solve
a routing problem on an n by n by n three dimensional mesh, we get the
following recurrence relations:

TH,(l) - 0

TH,(n) < TH,(n/2) + 1.5ntM + (4.75n- 9)tm + (4.75n- 6)tM

< TH3 (n/2)+6.25ntM+4.75ntm (wheren=2")

We solve the equations and get

(where n = 2P)

The following theorem summarizes the cost of the extended Algorithm H
on the cube.

Theorem 4.7 For a three dimensional mesh of size n by n by n, where n =
2P, the extended Algorithm H can solve any routing problem within 12.5n data
message steps and 9.5n integer message steps. The extended Algorithm H
requires only three buffers per processor.

4.6.2 Extension to a K Dimensional Mesh

In this section, we further extend Algorithm H to a J{ dimensional mesh and
examine the time complexity and buffer requirement. We will only sketch
the procedures needed to handle a I< dimensional mesh by generalizing from
a three dimensional mesh rather than describing details of the algorithms.

A I< dimensional mesh is a I< dimensional hypercube of nK processors,
each of which is connected to two neighbors along each axis. We will call
the axes the first axis, the second axis, ... , and the I<- th axis. Extended
Algorithm H on a I< dimensional mesh consists of I< consecutive move and
smooth steps for each recursive stage. We assume n = 2P.

On a I< dimensional mesh of nK processors, the first move step of the

107

first recursive stage begins dividing the K dimensional hypercube into two
disjoint congruent regions along the first axis; that is, a hypercube of pro­
cessors is divided into two identical halves by a hyperplane perpendicular to
the first axis. Then each processor determines which half contains the desti­
nation of its message. If the destination is contained in the current half, the
message stays. If the destination is contained in the other half, the message
is sent to the corresponding processor, which is n/2 steps away along the first
axis. All message movement occurs along the first axis; therefore, there is
no contention among messages during the first move step. As a result of the
first move step, each processor contains up to two messages, but the total
number of messages in each half of the hypercube does not exceed the total
number of processors in that half. The first smooth step of the first recursive
stage performs smoothing simultaneously and independently on each half of
the hypercube.

The second move step begins by dividing each of two halves into two
congruent quarters by a hyperplane perpendicular to the second axis. Like
the first move step, the messages that must move travel n/2 steps along the
second axis. As a result of the second move step, a processor contains up to
two messages, so the second smooth step rearranges the messages in each of
the four quarters simultaneously and independently so that each processor
has at most one message.

The procedure continues for progressively smaller congruent regions. Fi­
nally, using a hyperplane perpendicular to theK-th axis, the K-th move step
divides each of 2K-l (K dimensional) submeshes into two sub-hypercubes
with the half size in all axes of the original hypercube with nK processors.
During the K-th move step, according to the location of its destination, each
message either stays in its current processor or travels n/2 steps along the K­
th axis. The K-th smooth step takes 2K sub-hypercubes of (nj2)K processors
simultaneously and independently and rearranges the messages so that the
precondition of each recursive stage is restored; that is, each processor has
at most one message, and each message is contained in the same region with
its destination. Then the algorithm recurs on half-sized hypercubes which
are K dimensional meshes with (nj2)K processors.

Each move step of the first recursive stage requires n/2 data message steps
on a K dimensional mesh with nK processors; since the messages will either
stay or travel to a corresponding processor along the designated axis during
each move step. During each move step, there is no conflict, and up to three
messages may be contained in a processor, since at any time, messages are
moving parallel to a single axis. After each move step, a processor contains

108

up to two messages.
Each smooth step operates on submeshes of various size, but consists of

counting and distribution phases. The distribution phase of each smooth
step consists of K - 1 consecutive row movements and a column movement
along each axis. We briefly examine the time requirement of a smooth step
on a K dimensional mesh of size s1 by s2 by ... by s K.

The counting phase for each smooth step is performed on two halves
simultaneously and independently by dividing the mesh into two halves by
the hyperplane perpendicular to K-th axis. (The K-th axis is chosen because
it is the last one to be divided by a partition.) Counting information first
flows along the first axis and then flows along the second axis, and so on.
Finally, the counting information waves flow along the K-th axis, and the
counting phase is complete when the information waves from each end of
the rows along the K-th axis meet in the middle of the row. The time
requirement of counting phase is (S1 + S2 + · · · + SI<_1 + SI</2- K) integer
message steps.

The distribution phase consists of K - 1 row movements along the first
axis, then the second axis, ... , and finally along the (K- 1)-th axis, fol­
lowed by a column movement along the K-th axis. Row movements along
each axis are performed within each row along that axis simultaneously and
independently. In the beginning and end of row movement, each processor
contains up to two messages. The row along the i-th axis consists of Si
processors; therefore, row movement along i-th row requires Si -1 data mes­
sages steps. Column movement along the K-th axis will require SI< /2 data
message steps. Hence, the total time requirement of the distribution phase
is (S1 + S2 + · · · + SI<_ 1 + SI</2- K + 1) data message steps.

At the first recursive stage of extended Algorithm H on a K dimensional
mesh of ni< processors, the first smooth step is performed on each of two
halves of size n/2 X n X n X • · · x n. Hence the first smooth step requires
n/2 + (K - 2)n + n/2 - K integer message steps for counting and n/2 +
(K- 2)n + n/2- K + 1 data message steps for distribution. The second
smooth step is performed on each of quarters of size n/2 x n/2 X n x · · · x n.
Hence the second smooth step requires 2 x n/2 + (K- 3)n + n/2- K integer
message steps for counting and 2 x n/2 + (K- 3)n + n/2 - K + 1 data
message steps for distribution. In the same way, the i-th smooth step requires
i x n/2 + (K - 1 - i)n + n/2 - K integer message steps for counting and
ixn/2+(K -1-i)n+n/2-K +1 data message steps for distribution. Finally,
the K-th smooth step, which takes sub-hypercubes of (n/2)I< processors,
requires (K -1)n/2 + n/4- K integer message steps for counting and (K-

109

1)n/2+n/4-K +1 data message steps for distribution. Therefore, the total
cost of smooth steps at the first recursive stage on K dimensional mesh of
size nK processors is

K-1 n n n L {(2K- 1- i)-- K} + (K -1)- +-- K
i=1 2 2 4

integer message steps for counting and

K-1 n n n L {(2K -1- i)-- K + 1}+ (K -1)- +-- K + 1
i=1 2 2 4

data message steps for distribution. By simplifying above equations, we find
that the total cost of counting phases is (3K 2 - 3K + 1)n/4- K 2 integer
message steps, and that the total cost of distribution phases is (3K2 - 3K +
1)n/4- K 2 + K data message steps.

Using the fact that the total cost of K move steps at the first recursive
stage on a K dimensional mesh of size nK is Kn/2 data message steps,
we obtain the following recurrence equations for the time complexity of the
extended Algorithm H:

T(1) - 0

T(n) (
n) Kn {(3K2 -3K+1)n 2 } < T - + -tM + - K t 2 2 4 m

{
(3K2 -3K+1)n 2 } +

4
-K +K tM

By solving the equation and dropping small negative terms, we get

T(n) { (3K2 - 3K + 1)n} (3K2- 3K + 1)n
< K n +

2
tM +

2
tm

= O(K2n)tM + O(K2n)tm

For the extended Algorithm H to a K dimensional mesh, the total cost of
move steps is K n t M, which is equal to the bound imposed by the distance
between the farthest processors. The cost of the algorithm is dominated
by the cost of smoothing, which increases quadratically as the dimension of
the mesh increases, while the number of processors increases exponentially
with the dimension. Therefore, the quadratic increase of the cost may be
tolerable. The buffer requirements for the extended Algorithm H are still

110

three regardless of the number of dimensions.

4.6.3 The k-strip Algorithm H

Algorithm H divides a two dimensional mesh into two identical halves. In­
stead of dividing a mesh into two halves, Algorithm H can be extended to
divide a mesh into k identical strips prior to each move step. In this section,
we describe the k-strip Algorithm H on a two dimensional square mesh and
examine its time complexity.

We will consider a mesh with n rows and n columns where n is equal
to kP and k > 2 is even. Like Algorithm H, the k-strip Algorithm H con­
sists of two separate move and smooth steps. (Partitionings are illustrated
in Figure 4.3.) The first move step of the first recursive stage begins by
dividing the mesh into k identical strips having n rows and njk columns.
Each processor determines which strip contains the destination address of its
message. A message whose destination address is in the current strip stays at
the current processor. Each message whose destination address is contained
in another strip is moved to the processor at the same relative position of the
strip which contains its destination address. During the first move step, mes­
sages travel along rows and stop as soon as they reach the target processors.
There is no contention among messages since the links are bidirectional. As
in Algorithm H, after the first move step, the number of messages contained
in each strip is no greater than the number of processors in that strip. Each
processor, however, may contain up to k messages. The first smooth step
rearranges the messages in each strip so that each processor contains at most
one message.

The first smooth step is almost the same as the smooth step of Algo­
rithm H, but a processor may now contain up to k messages compared to
two messages in Algorithm H. That is, the first smooth step consists of the
counting phase and the distribution phase which are performed on an n by
njk rectangular mesh.

After the first smooth step, each message resides in the strip that contains
its destination. The second move step begins by dividing each strip into k
identical square meshes with njk rows and njk columns. Each processor
determines which square mesh contains the destination address of its message
and, if necessary, sends the message to the correct square mesh in the same
way as in the first move step. During the second move step, messages travel
along columns, and there is no contention. Again, after the second move step,
each processor may contain up to k messages. The number of messages in

111

..,

..,

.., I" I'

Figure 4.3: Partitions of a square mesh for the k-strip Algorithm H

each square mesh, however, does not exceed the number of processors in that
square, and each message resides in the square that contains its destination.
As usual the second smooth step follows to restore the precondition that each
processor contain at most one message. Then the algorithm recurs on each
of the square meshes simultaneously.

We denote by T H• (n) the cost of solving a routing problem with the k­
strip Algorithm H on an n by n two dimensional mesh. We will construct
the recurrence equations for T HJ n). T H• (n) consists of the cost of the first
recurrence stage and the cost of solving the problem of 1/k size meshes,
TH.(n/k).

The first move step requires (k -1)n/k data message steps along a row,
since the longest distance between the corresponding processors is from the
processor in the leftmost strip to the one in the rightmost strip. Like the
first move step, the second move step requires (k -1)n/k data message steps
along a column. Note that no processor contains more than k + 1 messages,
since prior to the last step of the move, there are at most k - 1 messages
which have reached the target processor and at most two transient messages.

The first smooth step operates on k strips of an n by n/ k mesh simulta­
neously. The counting phase on ann by njk mesh requires (1/k + 1/2)n- 2
integer message steps. The distribution phase consists first of row movement
on rows of n/k processors having up to k messages and then of column move­
ment on columns of n processors having up to k messages. Assuming that
k 2: 4 is even, row movement requires ~~kli) data message steps by applying
Theorem 2.1, and column movement requires {k -1)n/k data message steps

112

by applying Theorem 2.3.
Since the k vertical strips of size n by n/k are divided into k horizontal

strips again, the second smooth step operates on k2 square meshes of size
n/k by n/k simultaneously. The counting phase requires 3n/2k- 2 integer
message steps. The distribution phase consists of row movement and col­
umn movement on the arrays of n/k processors having up to k messages.

Row movement requires ~~I~l) data message steps by applying Theorem 2.1,
and column movement requires (k -1)n/k2 data message steps by applying
Theorem 2.3.

The cost function, T H• (n), has the following recurrence equations where
k;::: 4 is even.

0

2(k-1)n (k+5)n
< TH,(n/k) + k tM + 2k tm

k+2 k-1 k-1
+{2(k+1) +-k-+---p-}ntM

Solving the equation where n = kv, we get

(k+ 5)n k(k + 2) k + 1
TH.(n) < 2ntM + 2(k _ 1) tm + {2(k _ 1)(k + 1) + -k-}ntM

1 3 3 2k + 1 1
< 2ntM + (2 + k _ 1)n tm + { 2 + 2(k2 _ 1) + k}n tM

< 4.05n tM + 1.5ntm (when k = 4)

From the equation, we can see that for an ·n by n square mesh, the move
steps take a total of 2n data message steps, and the cost of the move steps
does not increase even though k increases. The cost of the smooth steps,
however, decreases as we increase k, the number of strips. The smooth step
is an additional step whose purpose is to keep the number of buffers as a
small constant. Note that k + 1 buffers are required to implement the k-strip
Algorithm H.

Algorithm H requires 9n routing steps and three buffers. A four-strip
Algorithm H requires 5.55n routing steps and five buffers. Algorithm Q
requires 5.5n routing steps and five buffers. By comparing Algorithm H
with a four-strip Algorithm H, we can see that two more buffers reduce
the time requirement to about 60 percent. This improvement comes from
the reduction of the smoothing cost, since the number of recursive stages

113

is reduced by half and the cost of smoothing in each recursive stage is not
doubled. Doubling the number of strips of Algorithm H requires double the
amount of buffers and more time for row movements, but cuts the number
of recursive stages in half. Therefore, total routing costs decrease as the
number of strips is increased (all other things being equal). Note that the
total cost of move steps in any algorithm is always 2n data message steps, no
matter what number of strips is selected. If each processor has five buffers
available, Algorithm Q and four-strip Algorithm H have almost the same time
requirements. Furthermore, the time requirement of k-strip Algorithm H
decreases as the number of buffers per processor increases, which is not the
case in Algorithm Q.

Another form of the k-strip algorithm would divide a mesh into k vertical
strips at each recursive stage instead of alternating horizontal and vertical
divisions. This algorithm would require a total of 0(n log n) routing steps on
an n by n mesh, because each counting phase and column movement would
require at least n/2 routing steps at every recursive stage, and log n recursive
stages would be necessary by the time of termination.

4.6.4 Algorithm H on an Arbitrary Square Mesh

When the size of a two dimensional square mesh is not a power of two, at the
beginning of some recursive stage, the size of submeshes is not even. There­
fore, the submesh cannot be partitioned into two identical congruent regions.
In this section, we sketch how the move and smooth steps of Algorithm H
can be performed on a square mesh of odd size and examine how the time
complexity and the buffer requirements are affected.

When the size of a square mesh is odd, the mesh is divided into 2s + 1
by s + 1 and 2s + 1 by s rectangular submeshes when the size of the square
mesh is 2s + 1 by 2s + 1, as illustrated in Figure 4.4. Then, during the move
step, the messages that must move from the smaller half to the larger half
have no problem. On the other hand, some of the messages that must move
from the larger half to the smaller half do have a problem because processors
in the same relative position in the smaller lialf do not exist. That is, for
0 :0::: i < 2s + 1, processor (i, s) has no corresponding processor in the smaller
half, since the smaller one has one less column. If for 0 S:: i < 2s + 1, processor
(i, s) in the larger half sends its message that must move to processor (i, s-1)
in the smaller half, then messages will travel to their target processors with
s steps during the move step. Other messages that must move will travel to
their target processor with s + 1 steps during the move step.

114

The white region of the left half is identi­
cal to the right half. Therefore, the target
processor of each message that must move
to the other half is the processor on the
same relative position of that half. Mes­
sages in the hatched area are sent to the
gray area in the right half, if necessary. As
a result, processors in the gray area con­
tains up to three messages after the move
step.

Figure 4.4: Partitions of an odd-sized mesh by Algorithm H

When each processor determines the target processor of its message that
must move by the mapping described above, there is no contention among
messages during the move step, since all messages travel along their rows by
s + 1 steps except the messages in column s of the larger half. The messages
from column s of the larger half moving to the column s - 1 of the smaller
half cause no contention, either. Even though processors in column s- 1 of
the smaller half will contain up to three messages after the move step, no
processor needs more than three buffers at any moment in the move step.
During the move step, processors of the inner columns may contain three
messages, one that stays and two transients. Processors in column s - 1 of
the smaller half may contain two messages during the move step and three
messages after the move step. (Note that during the move step there are no
transients at the outermost columns of the mesh.)

After the move step, a processor contains up to two messages except those
in column s - 1 of the smaller half, which contain up to three messages.
But the number of messages in each half does not exceed the number of
processors in that half. The smooth step rearranges the messages in each
half simultaneously and independently so that each processor contains at
most one message.

The smooth step is performed in the same way as when the size of the
mesh is even. Even though processors in column s - 1 of the smaller half
may contain three messages, there is no difference in the counting phase.
The row movement within each row of the smaller half is not affected by an
extra message in the rightmost processor; that is, the time complexity of row

115

movement is not changed even though there are at most 2s + 1 messages in an
array of s processo;rs. Column movements in the smaller half of the mesh are
also not affected by an extra message in each row. The buffer requirement
of the smoothing step is three, since there are at most three messages in a
processor and the number of messages does not increase during the smooth
step according to Theorem 2.2.

In summary, when the size of a square mesh is not even, Algorithm H
divides the n by n mesh into a larger half and a smaller half which differ by
one in the column size. The messages that must move from the smaller half
to the larger half will travel to the target processor which is r n/21 steps away
along the current row. The messages that must move from the larger half to
the smaller half will travel to the target processor in the same way, except
for the messages in the last column of the larger half. The messages in the
last column of the larger half will travel to the target processor which is in
the last column of the smaller half by l n/2 J steps along the current row. The
buffer requirement and the time complexity are not changed even though the
control structure of the algorithm becomes somewhat more complicated.

4.6.5 Algorithm H on a Rectangular Mesh

We now show that Algorithm H can be applied to a rectangular mesh of any
size. In this section, we describe Algorithm H with an r by c rectangular
mesh where r = 28

, c = 2', and r > c. For a rectangular mesh, Algorithm H
first partitions the mesh vertically into two rectangular regions of size r by
c/2, each of which is half the mesh. The move and smooth steps are then
performed on these two regions, after which every message is in the correct
half of the array, and every processor has at most one message. The algorithm
then partitions each of these two regions horizontally into two rectangular
regions of size r /2 by c/2 and performs move and smooth steps on those
regions. Then the algorithm recurs. The recursion terminates when each
region has a column of r J c processors, at which point each message can travel
to its destination without conflict, since each region is a one dimensional array
of processors.

This algorithm requires two separate move and smooth steps for each
recursive stage. The first move step will move a message either 0 or c/2 steps
along its current row; the second move step will move each message either 0
or r /2 steps along its current column. Thus, the maximum distance moved
by any message in stage one of this algorithm is (r + c)/2, the same as for
Algorithm Q on a rectangular mesh.

116

The first smoothing step of the first stage is performed on two r by cl2
submeshes simultaneously and independently and requires r 12 + cl2 - 2 in­
teger message steps for counting and r 12 + cl2 - 1 data message steps for
distribution. (By Theorem 2.1, row movement on an array of cl2 processors
with b = 2 requires cl2 - 1 data message steps.) The second smoothing step
of the first stage is performed on each of r 12 by cl2 submeshes and requires
r I 4 + cl2 - 2 integer message steps for counting and r I 4 + cl2 - 1 data
message steps for distribution. Adding in the (r+c)l2 steps required for the
move, when r = 2•, c = 2t, and r > c, the complexity of the algorithm is
given by

T(rlc, 1) - ric- 1
r + c 3r 3r

T(r,c) < T(rl2,cl2) + -
2
-tM+ (4 + c-4)tm + (4 +c- 2)tM

Solving above recurrence equation, we get

T(r, c) ::;
r 3r "3r

(r-- +c-1)tM + (--- +2c- 2 -4logc)tm
c 2 2c

3r 3r
+(--- +2c- 2- 2logc)tM

2 2c

Dropping negative terms strengthens the inequality to the following:

T(r, c) ::; (2.5r + 3c)tM + (l.5r + 2c)tm

Note that T(r, c) gives the same time complexity as that on a square mesh
when r = c. The buffer requirement of Algorithm H on a rectangular mesh
does not change; it requires three buffers per processor.

When the size of a rectangular mesh is not a power of two on either side,
we can apply the same method of mapping described in Section 4.6.4 in order
to determine target addresses. As shown in that section, the time complexity
and the buffer requirements do not change for a mesh in which the number of
rows or columns or both is odd. We conclude that Algorithm H is applicable
to any size mesh with the complexity results stated above.

117

Chapter 5

Conclusion

5.1 Summary

We have described several versions of "move and smooth" routing algorithms,
a class of routing algorithms on mesh-connected computers. They can solve
several classes of message routing problems: full permutation, (partial) per­
mutation, and restricted broadcasting. Each processor in a mesh initially
contains either no message or a single message with one or more destina­
tions, and each processor is the destination of at most one message.

Move and smooth algorithms are recursive. Initially, the entire mesh is
considered a single region. At each recursive stage,

• Each region is partitioned into subregions;

• A copy of each message is moved to each of the regions that contains
one of its destinations (the move step);

• Messages within each region are re-distributed so that each processor
contains at most one message (the smooth step).

The recursion continues until each region contains a single row or column
of processors, at which time each message has arrived at or can be moved
directly to its destination.

We first analyzed message movement within a one dimensional array of
processors. We then described two representatives of move and smooth algo­
rithms; one called Q because it divides a mesh into four regions (Quarters)
at each recursive stage, and the other called H because it divides a mesh into
two regions (Halves).

Number of
Algorithms Time Complexity Buffers Note

nxnmesh
Algorithm Q 4n tM + 1.5n tm 5 where n = 2P

n x n mesh,
Q with k2 - n = 2P,
partitioning 5kt3 n t + .l!i..n t k2 +2 4s;ks;y'n 4 M k-1 m

Q on K nK mesh,

dimensional mesh O(K2KntM) 2K + 1 K ::0::3, n = 2P

Q on arbitrary n X n mesh
square mesh ~ (4.3n tM + 1.5n tm) 5 where n of 2P

r x c mesh,
Q on rectangular (1.75r + 2.2c)tM r = 2S, c = 2t,
mesh + (0.5r + c)tm 5 r>c

Table 5.1: Time complexities and buffer requirements of Algorithm Q

In Chapter 3, we investigated the details of Algorithm Q on a two dimen­
sional square mesh. We showed that Algorithm Q can solve full permutation
and (partial) permutation problems in 5.5n routing steps with five buffers
per processor on an n by n square mesh. We also showed that Algorithm Q
can handle restricted broadcasting problems without additional routing costs
if the cost of message copying is negligible compared to the cost of commu­
nication between processors. We considered the extension of Algorithm Q to
a K dimensional mesh and found that it is difficult to perform move steps
without conflicts, and that the cost of smooth steps increases exponentially
with K. Another extension of Algorithm Q partitions a mesh into k2 regions
instead of four. We showed that the cost of Algorithm Q with k2-partitioning
increases linearly as the value k increases, leading us to conclude that the
original Algorithm Q uses the most efficient partitioning of a square mesh
in this class. In Section 3.6.3, we sketched a method to overcome the prob­
lem of unbalanced partitions when the size of a mesh is odd. We exhibited
a mapping from bigger regions to smaller regions that allows conflict-free
movement during move steps. In the last section of Chapter 3, we described
Algorithm Q on an r by c rectangular mesh. Table 5.1 summarizes the time
complexities and the buffer requirements of Algorithm Q and its extensions.

119

Number of
Algorithms Time Complexity Buffers Note

nxnmesh
Algorithm H 5.5n tM + 3.5n tm 3 where n = 2P

n x n mesh,
:::; 4.05n tM + 1.5n tm n = 2P, k is

H with k strip :2:: 3.5n tM + 0.5n tm kt1 even, 4:::; k < n

(3K
2 K)

H on K dimen- - 2-- 2+ 1 ntM nK mesh,

sional mesh + e~'- 3f + 1)ntm 3 n=2P,K:2:3

H on arbitrary nxnmesh
square mesh ""' (5.5n tM + 3.5n tm) 3 where n of= 2P

r x c mesh,
H on rectangular (2.5r + 3c)tM r = 2', c = 2',
mesh + (1.5r + 2c)tm 3 r>c

Table 5.2: Time complexities and buffer requirements of Algorithm H

In Chapter 4, we described the details of Algorithm H. On an n by n
square mesh where n = 2P, Algorithm H requires 9n routing steps and three
buffers per processor. Algorithm H can handle restricted broadcasting prob­
lem with no additional cost. In Section 4.6.1, we described an extension of
H to a three dimensional mesh and then generalized it to a K dimensional
mesh. For a K dimensional mesh, Algorithm H requires (3K2 - 2K + 1)n
routing steps and three buffers per processor. Another extension of H, which
divides a two dimensional mesh into k strips on successive move and smooth
steps, was discussed in Section 4.6.3. We showed that the time complexity
of the k-strip extension decreases as the value k increases, but the buffer re­
quirement increases. In Section 4.6.4, we described a method to implement
the move step when the size of a two dimensional mesh is not a power of
two and the regions are not congruent. Even though the control structure
of the algorithm becomes more complicated,_ no additional routing cost is
incurred by unbalanced partitions. In the last section of Chapter 4, we de­
scribed Algorithm H on a rectangular mesh. Table 5.2 summarizes the time
complexities and the buffer requirements of Algorithm H and its extensions.

Table 5.3 compares our algorithms with other deterministic routing algo­
rithms on a square mesh. Kunde's routing algorithm [18] makes substantial

120

Time Number of
Algorithms Complexity Buffers Note

full and partial permu-
tations, restricted broad-

Algorithm Q 5.5n 5 cast

full and partial permu-
tations, restricted broad-

Algorithm H 9n 3 cast

full and partial permuta-

Kunde's 3.5n ~ 5.5n 4 tions, sorting-based

full and partial permuta-
tions, # of buffers > 500,
optimal time, sorting-

Leighton et al. 2n- 2 constant based
3

3n + O(n<) ~
Sorting 7n 2 full permutations

Table 5.3: Comparison of deterministic routing algorithms

use of sorting as a method to reduce the buffer requirement. If Kunde's
algorithm uses four buffers and a sorting algorithm with the time require­
ment of 3n + O(n~) [41], it can solve a (partial) permutation problem with
3.5n + O(n~) data message steps on an n by n mesh. However, for practi­
cal values of n, asymptotically fast sorting algorithms are inferior to simpler
parallel sorting algorithms such as the shear sort and the algorithm by Lang
et al. [39]. If Kunde's routing algorithm uses four buffers and a sorting al­
gorithm with time complexity of 7n [20], it takes 5.5n data message steps to
solve a (partial) permutation problem. It is not clear how to apply Kunde's
algorithm to restricted broadcasting problems.

The algorithm by Leighton et al. [23] is based on Kunde's algorithm. It
requires a constant number of buffers and 2n- 2 data message steps, which is
optimal for ann by n mesh. However, the buffer requirement is at least a few
hundred; therefore, this algorithm is not practical for a small size mesh. It
is not clear whether this algorithm can be applied to restricted broadcasting
problems.

Algorithm Q requires five buffers and 5.5n routing steps, of which 4n are

121

data message steps and 1.5n steps are integer passing steps. Moreover, our
move and smooth algorithms can solve restricted broadcasting problems with
the same time complexity as for permutations.

We conclude the dissertation with the properties of move and smooth
algorithms:

• The algorithms are deterministic.

• The algorithms can handle (full and partial) permutation and restricted
broadcasting problems without modification; the cost of executing each
routing algorithm is the same over all problems.

• The algorithms are distributed.

• The number of buffers required in a processor is constant regardless of
the size of mesh.

• The algorithms may be as fast as other known deterministic distributed
routing algorithms that use a small number of buffers for meshes of
practical size.

5.2 Suggestions for Further Work

Because our network model is one in which each processor communicates with
its neighbors synchronously, and all processors can be viewed as executing
the same program, our move and smooth algorithms can be implemented on
a SIMD machine such as the ILLIAC model in Section 1.4. In our network
model, a processor can send and receive up to four messages in a single
routing step, while it takes four routing steps ·to do so in an ILLIAC model.
Therefore, a straightforward application of our algorithms to an ILLIAC
model requires four times more routing steps than our network model. But
in fact our algorithms will require substantially fewer routing steps than
four times that of the distributed model, because messages travel in a single
direction along columns or rows during most phases of both move and smooth
steps. A more precise analysis is necessary to determine the usefulness of
move and smooth algorithms for SIMD machines.

We believe we can improve the time bound of move and smooth algo­
rithms by overlapping the counting and distribution phases at the cost of a
more complicated control structure and possibly an additional buffer. On a
two dimensional mesh, for each recursive stage, the processors on the border

122

of each partitioned region can determine the number of messages in each row
of the current submeshes as soon as the move step ends. These values can
then be broadcast along each row and accumulated along the border column
at the same time. As soon as a processor receives information about the
initial configuration of the current row, it can begin a preliminary distribu­
tion phase assuming a standard :final configuration which positions "extra"
messages in the middle of the row. The actual final configuration can be
achieved after the information of the actual final configuration is received by
all processors in the mesh. With this overlapping, we expect the cost of Algo­
rithm H to be reduced to 7.5n routing steps. (Specifically, 5.5n tM + 2n tm.)
An analogous approach can reduce the cost of Algorithm Q to 5n routing
steps (4n t M + n tm). Further investigation is necessary to determine the
precise time complexity and the buffer requirements.

It will be also interesting to examine whether our move and smooth al­
gorithms can handle many-to-many broadcasting problems. Under the as­
sumption that messages to the same destination are merged by an associative
operator, many-to-many broadcasting problems may be solved under some
restrictions. If a packet can carry k messages to different destinations and
each processor will receive no more than k messages, the messages to the
same processor will be merged at the target processors and finally delivered
to their destinations.

We can also examine meshes in which the connection topology is not a
grid. For example, if neighboring processors are connected with diagonal con­
nections as well as row and column connections on a two dimensional mesh,
our Algorithm Q is clearly applicable, but will exhibit a different behavior
since the move step in the first recursive stage on an n x n mesh will require
n/2 steps rather than n.

123

Bibliography

[1] G. H. Barnes, R. M. Brown, M. Kato, D. 1. Slotnick, and R. A.
Stokes. The ILLIAC IV computer. IEEE Transactions on Computers,
C-17(8):746-757, August 1968.

[2] D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon. A taxonomy of
parallel sorting. ACM Computing Surveys, 16(3):287-318, September
1984.

[3] A. Borodin and J. E. Hopcroft. Routing, merging and sorting on parallel
models of computation. In Proceedings of the 14th ACM Symposium on
Theory of Computing, pages 338-344, San Francisco, CA, May 5-7, 1982.

[4] A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on paral­
lel models of computation. Journal of Computer and System Sciences,
30(1):130-145, February 1985.

[5] William J. Dally. Wire-efficient VLSI multiprocessor communication
networks. In Paul Losleben, editor, Advanced Research in VLSI: Pro­
ceedings of the 1987 Stanford Conference, pages 391-415, Cambridge,
Massachusetts, 1987. The MIT Press.

[6] Tse-yun Feng. A survey of interconnection networks. Computer,
14(12):12-27, December 1981.

[7] Charles M. Flaig. VLSI mesh routing system. Technical Report
5241:TR:87, Computer Science Department, California Institute of
Technology, 1987.

[8] Peter M. Flanders. A unified approach to a class of data movements on
an array processor. IEEE Transactions on Computers, C-31(9):809-819,
September 1982.

[9] M. J. Flynn. Very high-speed computing systems. Proceedings of IEEE,
54:1901-1909, 1966.

[10] D. Gannon and J. Van Rosendale. On the impact of communication
complexity in the design of parallel numerical algorithms. IEEE Trans­
actions on Computers, C-33(12):1180-1194, December 1984.

[11] Yijie Han and Yoshihide Igarashi. Time lower bounds for parallel sorting
on a mesh-connected processor array. In J. H. Rei£, editor, VLSI Algo­
rithms and Architectures: 3rd Aegean Workshop on Computing, A WOC
88, pages 434-443, Corfu, Greece, June 28-July 1, 1988. Springer-Verlag.

[12] C. R. Jesshope. Some results concerning data routing in array proces­
sors. IEEE Transactions on Computers, C-29(7):659-662, July 1980.

[13] Danny Krizanc. Integer sorting on a mesh-connected array of proces­
sors. Technical Report 332, Dept. of Computer Science, University of
Rochester, March 1990.

[14] Danny Krizanc, Sanguthevar Rajasekaran, and Thanasis Tsantilas. Op­
timal routing algorithms for mesh-connected processor arrays. In J. H.
Reif, editor, VLSI Algorithms and Architectures: 3rd Aegean Workshop
on Computing, AWOC 88, pages 411-422, Corfu, Greece, June 28-July
1, 1988. Springer-Verlag.

[15] M. Kumar and D. S. Hirschberg. An efficient implementation of
Batcher's odd-even merge algorithm and its application in parallel sort­
ing schemes. IEEE Transactions on Computers, C-32(3):254-264, March
1983.

[16] M. Kunde. Lower bounds for sorting on mesh-connected architectures.
Acta Informatica, 24(2):121-130, April1987.

[17] M. Kunde. Parallel routing on multi-dimensional grids of processors.
In CONPAR88: Conference on Algorithms and Hardware for Parallel
Processing, pages 687-694, UMIST, Manchester, UK, September 12-16,
1988. Cambridge University Press.

[18] Manfred Kunde. Routing and sorting on mesh-connected arrays. In J. H.
Rei£, editor, VLSI Algorithms and Architectures: 3rd Aegean Workshop
on Computing, AWOC 88, pages 423-433, Corfu, Greece, June 28-July
1, 1988. Springer-Verlag.

125

[19] Manfred Kunde and Thomas Tensi. Multi-packet-routing on mesh con­
nected arrays. In Proceedings of the 1989 ACM Symposium on Parallel
Algorithms and Architectures, pages 336-343, Santa Fe, New Mexico,
June 18-21, 1989.

[20] Hans-Werner Lang, Manfred Schimmler, Hartmut Schmeck, and Heiko
Schroder. Systolic sorting on a mesh-connected network. IEEE Trans­
actions on Computers, C-34(7):652-658, July 1985.

[21] T. Lang. Interconnections between processors and memory modules
using the shuffle-exchange network. IEEE Transactions on Computers,
C-25(5):496-503, May 1976.

[22] Tom Leighton, Bruce Maggs, and Satish Rao. Universal packet routing
algorithms. In Proceedings of the 29th A.nnual Symposium on Founda­
tions of Computer Science, pages 256-269. IEEE, Oct. 24-26, 1988.

[23] Tom Leighton, Fillia Makedon, and Ioannis Tallis. A 2n-2 step algorithm
for routing in an n x n array with constant size queues. In Proceedings
of the 1989 ACM Symposium on Parallel Algorithms and Architectures,
pages 328-335, Santa Fe, New Mexico, June 18-21, 1989.

[24] G. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for
routing in permutation networks. IEEE Transactions on Computers,
C-30(2):93-100, February 1981.

[25] Yiming Ma, Sandeep Sen, and Isaac D. Scherson. The distance bound
for sorting on mesh-connected processor arrays is tight. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science,
pages 255-263, October 27-29, 1986.

[26] Gyula A. Mago and Donald F. Stanat. The FFP machine. In Veljko M.
Milutinovic, editor, High Level Language Computer Architecture, chap­
ter 12. Computer Science Press, 1989.

[27] Fillia Makedon and Adonis Simvonis. Fast parallel communication on
mesh connected machines with low buffer requirements. In Proceedings
of 1990 IEEE International Conference on Computer Design: VLSI
in Computers f3 Processors, pages 78-81, Cambridge, Massachusetts,
September 17-19, 1990.

[28] D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel com­
puter. IEEE Transactions on Computers, C-28(1):2-7, January 1979.

126

[29] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers. IEEE
Transactions on Computers, C-30(2):101-107, February 1981.

(30] David N assimi and Sartaj Sahni. An optimal routing algorithm for
mesh-connected parallel computers. Journal of the ACM, 27(1):6-29,
January 1980.

(31] S. E. Orcutt. Implementation of permutation functions in Illiac IV­
type computers. IEEE Transactions on Computers, C-25(9):929-936,
September 1976.

(32] M. C. Pease. The indirect binary n-cube microprocessor array. IEEE
Transactions on Computers, C-26(5):458-473, May 1977.

[33] N. Pippenger. Parallel communication with limited buffers. In Pro­
ceedings of the 25th Annual Symposium on Foundations of Computer
Science, pages 127-136, October 24-26, 1984.

[34] David A. Plaisted. An architecture for fast data movement in the FFP
machine. In Proceedings of the 1985 Conference on Functional Pro­
gramming Languages and Computer Architecture, pages 147-163, Nancy,
France, September 16-19, 1985.

(35] Prabhakar Raghavan. Robust algorithms for packet routing in a mesh.
In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and
Architectures, pages 344-350, Santa Fe, New Mexico, June 18-21, 1989.

(36] C. S. Raghavendra and V. K. P. Kumar. Permutations on !Iliac IV­
type networks. IEEE Transactions on Computers, C-35(7):662-669, July
1986.

[37] S. Rajasekaran and Th. Tsantilas. An optimal randomized routing al­
gorithm for the mesh and a class of efficient mesh-like routing networks.
In 7th Conference on Foundations of Software Technology and Theo­
retical Computer Science, pages 226-241, Pune, India, December 1987.
Springer-Verlag. Lecture Notes in Computer Science 287.

[38] Kazuhiro Sado and Yoshihide Igarashi. A function for evaluating the
computing time of a bubbling system. Theoretical Computer Science,
54:315-324, 1987.

127

[39] Kazuhiro Sado and Yoshihide Igarashi. Fast parallel sorting on a mesh­
connected processor array. The Transactions of the Institute for Elec­
tronics and Information and Communication Engineering, E 71(4):422-
430, April1988.

[40] Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-dimensional
VLSI models of computation. IEEE Transactions on Computers,
38(2):238-249, February 1989.

[41] C. P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh
connected computers. In Proceedings of the 18th Annual ACM Sym­
posium on Theory of Computing, pages 255-263, Berkeley, CA, May
28-30, 1986. The ACM Special Interest Group for Automata and Com­
putability Theory.

[42] Howard Jay Siegel. Interconnection Networks and Masking Schemes
for Single Instruction Stream - Multiple Data Stream Machines. PhD
thesis, Dept. of Electrical Engineering and Computer Science, Princeton
University, May 1977.

[43] Howard Jay Siegel. Interconnection Networks for Large-Scale Parallel
Processing. Lexington Books, D.C. Heath and Company, Lexington,
Massachusetts, 1985.

[44] R. C. Swanson. Interconnections for parallel memories to unscramble
p-ordered vectors. IEEE Transactions on Computers, C-23(11):1105-
1115, November 1974.

[45] C.D. Thompson and H.T. Kung. Sorting on a mesh-connected parallel
computer. Communications of the ACM, 20(4):263-271, April1977.

[46] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal
on Computing, 11(2):350-361, May 1982.

[47] L. G. Valiant. Optimality of a two-phase strategy for routing in intercon­
nection networks. IEEE Transactions on Computers, C-32(9):861-863,
September 1983.

[48] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communi­
cation. In Proceedings of the 13th Annual ACM Symposium on Theory
of Computing, pages 263-277, Milwaukee, Wisconsin, May 11-13, 1981.

128

