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TAISOOK HAN. A New Class of Recursive Routing Algorithms on Mesh­

connected Computers. (Under the direction of Donald F. Stanat.) 

Abstract 

We describe a class of deterministic routing algorithms called "move and 

smooth" algorithms for one-to-one and one-to-many message routing prob­

lems on meshes. Initially, each processor contains at most one message, and 

each message has one or more designated destinations. No processor is the 

destination of more than one message. 

Move and smooth algorithms are recursive. Initially, the entire mesh is 

considered a single region. At each recursive stage, 

• Each region is partitioned into contiguous subregions; 

• A copy of each message is moved to each of the regions that contains 

one of its destinations (the move phase); 

• Messages within each region are re-distributed so that each processor 

contains at most one message (the smooth phase). 

The recursion continues until each region contains a single row or column 

of processors, at which time each message has arrived at or can be moved 

directly to its destination. 

We examine two representative move and smooth algorithms in detail. 

On a square n by n mesh, one of the algorithms requires 5.5n parallel com­

munication steps and five buffers per processor; the other requires 9n parallel 

communication steps and three buffers per processor. We show that under 

appropriate assumptions, these costs are not changed for one-to-many rout­

ing problems. The number of buffers is independent of the size of the mesh. 

The costs of our move and smooth algorithms are higher than those of 

some one-to-one routing algorithms, but move and smooth algorithms are 

suited for a wider variety of problems including one-to-many problems. These 

algorithms do not rely on sorting. We describe other move and smooth 

algorithms, and generalizations to higher dimensions. 
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Chapter 1 

Introduction 

This dissertation describes a class of routing algorithms for a mesh-connected 
processor system. In Section 1.1, we describe the reasons behind the wide­
spread use of the mesh topology and the role of routing algorithms in parallel 
processing systems. We state characteristics of an algorithm of special in­
terest to us and give a brief description of a class of routing algorithms 
introduced in this dissertation. In Section 1.2, we summarize the chapters 
of this dissertation. In Section 1.3, we define the terms to be used through­
out this dissertation and describe the network model to elaborate our algo­
rithms. We also characterize routing problems that our algorithm will solve. 
In Section 1.4, we summarize the research literature on routing and sorting 
algorithms on a mesh. 

1.1 The Problem 

In recent years, much research has explored the potential of parallelism for 
various problems. The design of many parallel algorithms is based on a 
computational model with a sufficient number of processors and with conflict­
free shared memory. The PRAM (Parallel Random Access Machine) model 
is one of the typical idealized parallel computers. It has a common global 
random access memory that is shared by many processors. Each processor 
can read and write any part of the memory for a uniform cost. Data exchange 
among processors is done through the shared memory. Analysis of many 
algorithms is based on such a theoretical computational model. 

But with current technology, a multiprocessor with global memory and 
uniform access cost is not realizable. Memories are either shared by proces­
sors or local to processors. In both cases, processors access memories through 



interconnection networks which connect either processors themselves or pro­
cessors and memory modules. As a consequence, the communication cost 
between processors and memory modules cannot be considered uniform. So, 
data movement among processors is an important factor in the performance 
of multiprocessor systems. 

Because of the limited communication bandwidth among processors, re­
arranging data is costly; data exchange among processors can be a major 
time factor in the implementation of practical parallel algorithms. To facil­
itate data exchange among processors, several interconnection schemes for 
multiprocessor systems have been proposed and used, including binary tree, 
hypercube, butterfly, and mesh networks. Implementations differ in chan­
nel bandwidth, channels per node, and connection distance between nodes. 
Some multistage interconnection networks have also been investigated, such 
as the omega, baseline, indirect binary n-cube, and delta networks. Each 
of these uses several stages of switching elements to connect processors to 
processors or processors to memories. 

A multiprocessor system with an interconnection network uses a routing 
algorithm to support fast data exchange among processors. In general, such 
an algorithm must be able to handle diverse patterns of routing requests. 
Some problems such as FFT and matrix multiplication require highly regu­
lar patterns of data exchanges among processors, but many problems, such as 
simulating a PRAM model, require infrequent and irregular processor com­
munication. An efficient routing method capable of handling diverse routing 
requests can improve the performance of a multiprocessor system. 

Routing efficiency is profoundly affected by the architecture and intercon­
nection topology of networks. For example, a good routing method for the 
hypercube connection may not work well for a mesh, because a hypercube 
connection has more links per node and a smaller network diameter than a 
mesh connection with the same number of processors; a routing method on 
a hypercube connection can utilize the many outgoing edges of a node and 
the small network diameter for fast transit of messages. The nature of ap­
plications is also an important factor in choosing a routing method, because 
the application determines the regularity of data communication patterns as 
well as the frequency, and size of the data objects. 

Routing efficiency is also affected by whether communication is syn­
chronous, and whether it is globally controlled. Synchronous communication 
is generally faster than asynchronous, because no handshaking is necessary 
among processors. If a network is controlled by a single global controller, al­
gorithms that use global information can sometimes determine shorter routes, 
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resulting in faster performance than other algorithms that lack such infor­
mation. 

This dissertation is concerned with routing algorithms for a two dimen­
sional rectangular mesh. The two dimensional mesh interconnection scheme 
has long been of interest because of its simplicity and the regularity of its 
interconnection pattern [1]. Although the maximum distance between pro­
cessors is large compared to other interconnection patterns', a mesh is wire­
efficient when implemented in VLSI, making possible wide buses among pro­
cessors for increased communication efficiency [5]. The locality of communi­
cation is another strength of the mesh for programming; in a two dimensional 
mesh, a processor can communicate with only four neighbors. Finally, meshes 
can be scaled up to larger systems. 

This dissertation considers a class of routing algorithms for one-to-one 
communication patterns and one-to-many communication patterns. In one­
to-one communication, a processor in a mesh has a single message that will 
be delivered to another processor, and no processor in the mesh will receive 
more than one message. In one-to-many communication, a processor has a 
single message that will be delivered to one or many processor(s), but no 
processor will receive more than one message. We are especially interested 
in such one-to-many communication. 

The purpose of this dissertation is to construct routing algorithms for 
moving packets among processors on a mesh. Our routing algorithms as­
sume packet switching. The processors have their own program memories 
and request data exchange synchronously, based on a global clock. This dis­
sertation describes a class of move and smooth algorithms which have the 
following properties: 

• The algorithms are deterministic. 

• The algorithms can handle one-to-one and one-to-many message rout­
ing problems without any adjustment; the cost of executing each rout­
ing algorithm is the same over all problems. 

• The algorithms are distributed; that is, each processor operates inde­
pendently on the basis of messages in its buffers and its state. 

• The number of buffers in each processor is the same, and a constant 
regardless of the size of mesh. 

1 For an N processor system, the maximum distance between processors in a hypercube 
is log N, whereas in a mesh the maximum distance is Vii. 
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• All processors work in lock-step; no handshaking between processors is 
necessary. 

1.2 Dissertation Organization 

In Section 1.3, we introduce the terms to be used throughout this dissertation, 
and describe our network modeL In Section 1.4, we briefly summarize the 
literature on routing and sorting algorithms for meshes, emphasizing work 
on deterministic routing algorithms. 

The core of this dissertation is contained in Chapters 2 and 3. In Chap­
ter 2, we describe the general notion of move and smooth algorithms and 
analyze the requirements of the message movements in a one dimensional ar­
ray of processors. The results developed in Chapter 2 are repeatedly cited to 
analyze algorithms described in this dissertation. In Chapter 3, we describe 
Algorithm Q, a typical move and smooth algorithm on a square mesh. The 
procedures described are easily applicable to a rectangular mesh and to other 
algorithms of this class. 

In Chapter 4, we describe Algorithm H, another example of a move and 
smooth algorithm. We also extend Algorithm H to another partitioning 
method, multi-strip partitioning, and to multi-dimensional meshes, and we 
analyze the time complexity and buffer requirements of the extensions. In 
Chapter 5, we summarize the results of our research and suggest possibilities 
for further research. 

1.3 Definition of Terms 

Much research has been performed on mesh connected computer systems, 
but the meaning of terms sometimes varies from one report to another. In 
this section, we introduce the terms to be used throughout this dissertation. 
First, we describe network models in terms of Feng's classification [6]. Next, 
we describe the mesh network and the characteristics of processors in our net­
work modeL Finally; we define the set of routing problems for our algorithms 
and the evaluation criteria. 

1.3.1 Network Classifications 

To describe interconnection networks from a practical design viewpoint, Feng 
[6] suggests four design decisions: operation mode, control mode, switching 
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method, and network topology. The operation mode of an interconnection 
network may be synchronous, asynchronous, or a combination of the two. 
In synchronous communication, communication paths are specified and mes­
sages are sent in lockstep over the entire network, with the aid of a global 
clock. Asynchronous communication allows communication paths to be es­
tablished and messages sent as required; one set of processors may be ex­
changing messages concurrently with another set establishing a communica­
tion path. There may or may not be a global clock. In a combined mode, 
both synchronous and asynchronous processing are supported. 

The control mode specifies how the switching elements and links are con­
trolled. Control is classified as either centralized (global) or distributed (lo­
cal). A network with centralized, or global, control is a network in which 
the individual processors execute instructions specified at each time step by 
a global controller program which has global information and control. In a 
network with global control, the global controller specifies what messages will 
be sent by each processor at every time step. A network with distributed, 
or local, control is a network in which processors execute individual (but 
usually identical) programs independently. The central processor may pro­
vide a global clock for synchronization, but each processor executes its own 
program, and the execution path of a program may depend on any part of a 
processor's state, including the value of time. In a network with distributed 
control, each processor determines what messages it will send at each time 
step. 

The switching method determines what kinds of paths are established 
between source and destination processors. In circuit switching, a physical 
path is actually established between a source and a destination, and messages 
are sent, uninterrupted, along the path. In packet switching, data is put in a 
packet and routed through the interconnection network from one processor 
to another without establishing a physical connection path. In integrated 
switching, both packet switching and circuit switching are used. 

The network topology describes how the network is depicted by a graph in 
which nodes represent processors and edges represent communication links. 
Examples of network topologies include trees, rings, stars, meshes, and hy­
percubes as shown in Figure 1.1. The cross product of the set of categories 
in each design decision-{ operation mode} x {control mode} x {switching 
method} x {network topology }-represents the space of interconnection net­
works. 

This research will focus on communication in mesh-connected proces­
sors which communicate synchronously using packet switching under 
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Ring Star Tree 

Mesh Cube 

Figure 1.1: Examples of network topologies 

distributed control. 

1.3.2 Mesh Networks 

A two dimensional mesh-connected computer system consists of N processors 
connected as an n by n grid2 , where N is n 2• Processors are on the cross 
points of the grid, and each processor that is not on the boundary is connected 
to four neighbors, called its north, south, west, and east neighbors. 

The processors in a mesh are always assigned addresses, but addressing 
schemes vary. Most commonly, a processor Pi,j on row i and column j is 
addressed by a pair of row and column indices (i,j), where 0 ~ i ~ n- 1 
and 0 ~ j ~ n - 1. While a pair of row and column indices is sufficient to 
specify the location of any processor, a linear ordering of the processors is 
necessary for some problems such as sorting, storing vector elements, and 

2Meshes, of course, need not be square, but the square configuration is the one most 
often implemented and investigated. This thesis includes extensions of two algorithms to 
non-square meshes in Section 3.6.4 and Section 4.6.5. 
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row-major snake-like row-major shuffied row-major 

Figure 1.2: Indexing schemes 

computing a prefix sum. An indexing scheme makes it possible to address 
each processor with a single index AI(i,j) where I is a one-to-one mapping 
from {0, 1,2, ... , n-1} x {0, 1,2, ... , n-1} to {0, 1,2, ... , n2 -1}. Among the 
many indexing schemes described in the literature, row-major indexing and 
snake-like row-major indexing are used most commonly. Figure 1.2 shows 
some common indexing schemes for a four by four array. 

In row-major indexing, processors are indexed from left to right and from 
top to bottom. With this indexing scheme, the index Ai,j of a processor 
P;,j is equal to i x n + j. In snake-like row-major indexing, processors are 
indexed from left to right on even-numbered rows, and right to left on odd­
numbered rows, from top to bottom. The index A;,j of processor P;,j is given 
by i x n + (-1)i X j + Hn- 1 + (-1)i+1(n- 1)}. In shuffled row-major 
indexing [45], the index Ai,j of processor Pi,j is given by shuffling the binary 
representation of the row-major index. For example, shuffling bits of row­
major index 5 (0101) gives bit string 0011 which is 3. In blocked snake-like 
row-major indexing [25], the n x n mesh is divided into nt X nt blocks of 
n~ X n~ processors. Blocks are ordered by the snake-like row-major indexing 
scheme, and any processor in a lower indexed block has a smaller address 
than any processor in a higher indexed block. ·within a block, processors are 
ordered by some commonly used indexing scheme. 

1.3.3 Properties of Processors 

In synchronous packet switching mesh models, processors may execute in­
structions from a central controller or from their own program memories, 
but in either case, all processors communicate in lock-step, that is, they 
all send and receive messages at the same time. All processors rely on the 
global clock to synchronize communication. Processors also count clock ticks 
to determine when each phase of an algorithm terminates. A processor can 
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send at most one message to each immediate neighbor at each time step; a 
receiving processor receives each message in the same time step that it was 
transmitted. 

Two neighboring processors are connected by a link, which provides bidi­
rectional communication between the processors; messages can be sent in 
either direction over a link. Each link is divided into one or two channels. 
The capacity of a channel is one message per unit time. If each link has 
one channel, it is called half-duplex. In a half-duplex model, a processor may 
send or receive a message (but not both) over each link at each time step. 
If each link has two channels, it is called full-duplex; in this case, adjacent 
processors can exchange messages in a single time step, because a processor 
can send and receive messages simultaneously. 

A buffer is a memory location used to keep messages in a processor; each 
buffer can store one message. Routing methods vary in the number of buffers 
required to implement them. 

The model used in this dissertation relies·on local control, so each pro­
cessor has its own program memory. Communication between processors 
is by packet exchange, synchronized by a global clock. Each processor has 
four links, each with two channels which can be active simultaneously, so a 
processor may send and receiveup to four messages in one time step. Each 
processor has only a small number of buffers to store transient messages. 

1.3.4 Problem Definition 

We will consider several classes of communication problems on a mesh. The 
initial state, or initial configuration, of each problem has at most one message 
stored in each processor of the mesh. A communication problem requires 
moving each message to other processors in the mesh. Each final state also 
has at most one message stored in each processor. 

Communication problems can be classified as sorting problems or routing 
problems. A sorting problem begins with a collection of messages in an 
initial configuration, and ends with those messages in some specified subpart 
of the net, arranged according to a specified linear order. Most commonly, 
each processor has a message initially, and therefore sorting permutes the 
messages in the mesh. In a sorting problem, the destination of a message is 
implicit because the proper destination of each message is determined both 
by its value and the values of the other messages in the mesh. 

In a routing problem, each message is associated with (one or more) 
destination addresses; a copy of each message must be moved to all of its 
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source destination source destination source destination 

1 • 1 1 • 1 1 

X 
1 

2 2 2 • 2 2 2 

3 3 3 • 3 3 3 • 
4 • 4 4 • 4 4 4 

full permutation permutation broadcasting 

Figure 1.3: Mapping from source to destination 

destination addresses. Routing on meshes is important for solving problems 
such as matrix multiplication and FFT. We will consider several subclasses 
of routing problems. A full permutation problem will be one in which each 
of N processors has a single message initially and finally, and each message 
is sent to exactly one processor; thus, a full permutation effects a one to one 
map of initial messages onto processors. A full permutation problem can be 
solved by a sorting algorithm, since the messages can be sorted according 
to their destination addresses. A (partial) permutation is a routing problem 
in which each processor begins and ends with at most one message, and 
each message is sent to exactly one processor. In a (partial) permutation, a 
processor may initially have a message but not receive one, or vice versa. A 
restricted broadcasting problem is a routing problem in which each processor 
initially and finally has at most one message, but some messages are sent to 
more than one destination processor. We will refer to restricted broadcasting 
simply as "broadcasting." Figure 1.3 illustrates the various types of routing 
problems. 

An important subclass of full permutation problems are known as bit­
permute-complement (BPC) permutations because the binary representation 
of each destination index can be obtained by permuting and complement­
ing the bits of the index of the processor that initially holds the message. 
BPC permutations include a perfect shuffle and a transpose, which suffice 
for solving a variety of practical routing problems. 

Our model specifies that in the initial configuration, each message resides 
in a single processor, and no processor contains more than one message. 
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Movement (that is, communication) begins simultaneously over the net, and 
continues in a synchronous, lock-step fashion, until all messages have reached 
(all) their destination processors. In the final configuration, each processor 
has at most one message. 

This dissertation will examine a class of routing methods for full per­
mutations, (partial) permutations, and broadcasting. We will only consider 
routing methods that can be implemented with distributed control in which 
each processor runs a copy of a single program and makes routing decisions 
based on local information. In our discussion of previous work, however, 
we will also consider sorting methods, since these can be used to solve full 
permutation problems. 

1.3.5 Evaluation Criteria 

Routing methods, or algorithms, can be evaluated in a number of ways, in­
cluding their time complexity, the number of buffers required during routing, 
and the class of mappings they can handle. 

Time Complexity There are two classes of operations performed in a 
mesh; one is inter-processor and the other is intra-processor. We assume 
that intra-processor operations are very fast compared to inter-processor op­
erations; hence, all our measures of time complexity are based on the number 
of routing steps required to send all messages (perhaps of various types) to 
their destinations. The cost of a routing method is taken to be the maxi­
mum cost, over all problem instances, of the cost of solving each instance. 
All processors start communication at the same time and stop when the last 
message is guaranteed to have been delivered to its destination. 

Number of Buffers The number of buffers required by a routing method is 
defined to be the maximum number of messages that can occupy a processor 
at any time during execution of the algorithm. 

Class of Mappings The class of mappings is the class of routing problems 
that a routing method can handle without any modification. 
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1.4 Related Work 

This section describes work reported in the literature about routing and 
sorting on a two dimensional mesh. Principal results are discussed, along 
with descriptions of the models on which the results are based. Table 1.1 
summarizes the results. Although some of the work described here assumes 
a global clock and global control, all the complexity results are relevant to 
our model, which is based on a global clock and distributed control. 

1.4.1 Principal Network Models 

The mesh-connected network models described in the references differ in the 
control scheme of the processors, the details of the connection topology, and 
the active links per processor. There are three principal models, with minor 
variations occurring within the models. 

The ILLIAC IV was one of the earliest SIMD parallel computers. It 
had 64 processors connected in an eight by eight mesh. Much of the litera­
ture uses the ILLIAC IV as the model underlying their methods for routing 
and sorting. We will use the term ILLIAC model3 to denote a subclass of 
mesh-connected processors with a centralized controller. All instructions are 
broadcast from the controller; depending on the value of a mask bit in the 
processor, a processor does or does not execute a given broadcast instruc­
tion. The controller can address a group of processors by specifying a bit 
pattern of processor addresses [42]. Communication is the result of the ex­
ecution of instructions that specify the direction of packet movement. The 
SIMD control of the ILLIAC IV requires that all active processors send their 
messages in the same direction (north, south, east, or west); the direction 
is specified in any communication instruction. This restriction on message 
direction is incorporated in our ILLIAC model. A "compare-and-exchange" 
operation between two processors requires two routing steps, since messages 
must be sent in the same direction in each step and two messages need to 
be compared in the same processor. (The ILLIAC model is clearly not a 
distributed control model, but all the algorithms we will discuss can be im­
plemented with distributed control.) A common variation on this model has 
wrap-around connections. 

3 In much of the literature, the ILLIAC model is called a SIMD model, because pro­
cessors are controlled by single broadcast instruction from a controller. This is a network 
with centralized control in Feng's classification. 
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Table 1.1: Models and problems in literature 

routing model problem set complexity remark 

Orcutt(31] ILLIAC ps,bitr 4n -4 wrap-around 

Nassimi & Sahni(30] ILLIAC BPC 4n-4 
Flanders(8] ILLIAC BPC DAP machine 

Raghavendra(36] ILLIAC perm 3n- 3 wrap-around 

N assimi & Sahni(29] ILLIAC broad,partial O(n) 
Algorithm Q dist-ctl broad,partial 5.5n in Chapter 3 

Krizanc et al.(14] dist-ctl perm,partial 2n + o(n) random 

Kunde(lS] dist-ctl perm,partial 2n + o(n) UB 

Leighton et al.(23] dist-ctl perm, partial 2n- 2 constant buffer 

Valiant & Brebner(48] dist-ctl perm,partial 3n + o(n) random,UB 

sorting model indexing complexity remark 

Orcutt(31] ILLIAC row O(nlogn) wrap-around 

Thompson & Kung(45] ILLIAC snake 6n + o(n) 
N assimi & Sahni(28] ILLIAC row 14n + o(n) 
Kumar & Hirschberg[15] ILLIAC row lln+o(n) wrap-around 

Lang et a!. [20] dist-ctl snake 7n 

Schnorr & Shamir(41] dist-ctl snake 3n + o(n) 
Scherson & Sen(40] dist-ctl BSLRM 3n + o(n) 

Sado & Igarashi(39] dist-ctl snake 5.5n+ o(n) 
Ma et a!. (25] ex-ILLIAC BSLRM 8n+o(n) ' buffer n• 

legend: ILLIAC: ILLIAC model 
dist-ctl: distributed control model 
bitr: bit reverse permutation 
perm: permutation 

ex-ILLIAC: extended-ILLIAC model 
ps: perfect shuffle 

broad: broadcasting 
snake: snake-like indexing 
random: randomized algorithm 

BPC: bit-permute-complement permutation 
partial: pa.rtia.l permutation 
row: row-major indexing 
BSLRM: blocked 8nake-like row-major indexing 
UB: unlimited buffer ~ize 
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The ILLIA C model requires all processors to send messages in the same 
direction at any time. Ma [25] suggests an extended model of ILLIAC IV, 
which we will hereafter call the extended-ILLIAC model. Like the ILLIAC 
model, his model requires processors in the mesh to send messages either 
along rows or along columns (and not both at the same time). Processors 
in the same row (or column) must send messages in the same direction if 
the mesh is doing row-wise (column-wise) communication. His model differs, 
however, in that different rows can send messages in different directions, and 
likewise for columns. Thus, his model also uses single instruction-multiple 
data mode of operation, but it has a more flexible communication facility. 

Lang [20] suggests a model that is still more powerful, widely accepted and 
which will be the model used for the work in this thesis. He uses a distributed 
control mode/4, which is a network of mesh-connected processors, each with 
its own program memory. Each processor executes instructions from its own 
memory, but communication is synchronized by a global clock. A processor 
on the mesh can communicate with any subset of its four neighbors in a 
single time step. It can receive up to four messages from its four neighbors 
and send up to four messages, one to each neighbor, in one routing step. This 
makes it possible for any pair of adjacent processors to perform a compare­
and-exchange operation in one step. This model is sometimes extended with 
wrap-around connections. 

1.4.2 Routing Algorithms 

This section first reviews routing algorithms for the ILLIAC model. Deter­
ministic routing algorithms on distributed control models are reviewed next; 
they are the main interest of my research. Some randomized routing algo­
rithms are also reviewed and compared with deterministic algorithms. 

Algorithms for the ILLIAC Model 

Because in the ILLIAC model the messages can be sent only in the same 
direction, the lower bound in the worst-case performance occurs when any 
message must travel from one corner processor to the one in the opposite 
corner, while another message must travel from the processor in the opposite 
corner to the one in the first corner. This requires 4n- 4 routing steps, since 
two messages must travel completely in the opposite directions and these 

4 In many references, this model is called a MIMD model in contrast to the (ILLIAC) 
SIMD model. 
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messages cannot travel at the same time due to the limited communication 
control. 

The earliest work addressed routing algorithms on an ILLIAC model [31]. 
Even though the work was based on a centralized control model in which a 
controller could have complete information about routing requests in the 
processor elements, research addressed only algorithms for limited kinds of 
permutations such as perfect shuffle, bit reversal, p-ordered vector [44], and 
some permutations which can be represented by mathematical formulas. For 
an arbitrary (irregular or random pattern) permutation on an ILLIAC model, 
researchers suggested using sorting algorithms. 

Orcutt [31] describes routing algorithms that perform perfect shuffle and 
bit reversal in O(n) steps on the ILLIAC model with wrap-around. His 
algorithm can perform a perfect shuffle with 4n - 4 unit routing step using 
two buffers per processor. 

Nassimi and Sahni [30] suggest a more general algorithm for data routing 
of BPC permutations on the ILLIAC model. Their algorithm takes at most 
4n - 4 unit routing steps for any BPC permutation using three buffers per 
processor. They also describe an algorithm to prepare the control sequence of 
the SIMD controller for any BPC permutation in O(log2 N) computing time. 
Note that their algorithm does not use wrap-around connections, which were 
assumed in Orcutt's algorithm [31]. Moreover, their algorithm performs a 
perfect shuffle in only 2n - 2 steps. 

The model of Flanders [8] is almost the same as the ILLIAC model except 
that each processor's memory is one bit wide. BPC permutations, which can 
be described by "bit mapping vectors", are performed by a method similar 
to Nassimi and Sahni [30] on the ICL Distributed Array Processor (DAP). 

Raghavendra and Kumar [36] describe a three phase algorithm for arbi­
trary permutations on the ILLIAC model with wrap-around in 3(n-1) steps. 
In the first phase, all data are shuffled along the rows in such a way that no 
two messages in the same column have the same destination row address. 
Then, in the second and third phases, one can route data along a column 
and a row without piling up more than two messages in a processor, and 
routing of any permutation can be done in (2n- 2) steps for the second and 
third phases. So the first ( n -1) steps are used to shuffle around data in such 
a way that at most two messages in a processor exist during the next phases. 
The way to shuffle data in the first phase is shown for BPC permutations. 
But they do not show clearly how to find a control sequence of the central 
controller for an arbitrary permutation. Their algorithm is actually simulat­
ing a ( .JN, .JN, .JN) Clos network [24]. (For an arbitrary permutation, it is 
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not clear how to simulate a Clos network with distributed control.) 
In Nassirni's study [29], broadcasting on the ILLIAC model is done by 

sorting destination addresses and distributing them with data. A partial 
permutation is treated as a special case of broadcasting. The messages are 
first packed in the processors with smaller row major index and sorted by 
the destination addresses and then distributed over the mesh. The time 
complexity of broadcasting is 0( n) routing steps, which include a sorting 
phase and a distributing phase that takes at least 4n steps. 

In networks with a global control, the controller can use global informa­
tion to prepare a routing sequence. But access to global information does 
not in itself make it easy to find an efficient routing sequence. 

Buffer requirements of routing algorithms for the ILLIAC model are very 
small; the number of buffers needed is typically three. Most routing algo­
rithms for the ILLIAC model are restricted to special classes of permutations 
and take advantage of information about the pattern of permutations to pre­
calculate the control sequence. If a permutation does not belong to a "nice" 
regular pattern, it may be difficult to find control sequences for routing that 
are shorter than those for sorting. Thus, sorting (based on destination ad­
dresses) seems the best way to handle arbitrary permutations as well as 
partial permutations and broadcasting. 

Algorithms for the Distributed Control Model 

The distributed control model allows simultaneous exchanges between any 
adjacent pair of processors; each processor may send and receive up to four 
messages at each step. The worst-case performance lower bound clearly 
occurs when some message must travel from one corner processor to the op­
posite corner; this requires at least 2n- 2 routing steps. This bound is easily 
achieved if there is sufficient storage space in the processors. 

Consider the following two phase routing method to solve a permutation 
problem on an n by n mesh. The destination of a message is represented by 
a row-column address pair. In the first phase, all messages move along the 
rows to their destination columns, where they are stored in the appropriate 
processor. In the second phase, messages move along columns to their des­
tination rows (and their destination addresses). This algorithm requires at 
most 2n - 2 steps for messages to reach their destinations if there is no con­
tention for links among messages. In addition, in the first phase, as messages 
move along rows, no contention can arise because there is initially only one 
message per processor and they are pipelined.along each row. 

When messages reach their destination column, however, they may share 
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the processor with up to n - 1 other messages and contend with up to n - 2 
messages for a link along the column. Thus, during the second phase, a 
message could be delayed up to n - 2 steps; a permutation may therefore 
require up to 3n - 3 steps if the message that has the farthest to travel is 
delayed the most. However, by giving higher priority to messages that have 
farther to go in the second phase, each message is guaranteed to reach its 
destination row within n - 1 steps after the. second phase begins [14]. In 
summary, a message will reach its column destination in at most n - 1 steps 
in the first phase and its row destination in at most n- 1 steps in the second 
phase, giving a total of 2n - 2 steps. 

This routing method has a simple control structure and is classified as 
oblivious because the path of each message is determined entirely by the 
source and destination addresses and is not affected by the paths of other 
messages. Moreover, the number of steps required is optimal. But the num­
ber of buffers required is n; this bound is attained when all messages in a 
row must travel to the same column. Overcoming this storage requirement 
without drastically increasing the time required is the goal of most of the 
work on routing algorithms for meshes. 

To reduce storage requirements, Kunde [18] sorts subblocks of the mesh 
before the actual routing phase. He divides the n by n mesh into E by E 
submeshes of nj E by n/ E processors. For each block of nj E by nj E proces­
sors, he sorts messages in column-major order according to each message's 
destination column address. This spreads out vertically those messages in 
each block which have the same destination column. Then he applies the 
same routing method as described in previous paragraphs, first moving mes­
sages along rows and then along columns. The number of buffers required 
by each processor is reduced to 2c. Permutations require 2n + O(n/E) steps 
if the sorting algorithm used for the blocks is linear in the input size; it takes 
O(n/E) steps to sort njE by njE meshes and 2n- 2 steps to move messages 
along rows and columns. 

Typical values for E are log n, n114, or a constant. Smaller values of E 
decrease the number of buffers required, but increase the number of steps for 
sorting the submeshes, making the total number of routing steps larger. If a 
constant is chosen for E, the asymptotic time bound for this routing algorithm 
is no longer 2n, because the overhead of sorting is linear in n. For example, if 
each processor has 8 buffers, then E is 4, and the algorithm begins by sorting 
n/4 by n/4 sub blocks. If a sorting algorithm is used which takes 3n+O(n314 ) 

steps for ann by n mesh, Kunde's algorithm takes 2.75n + O(n314 ) steps for 
routing on n by n mesh. If each processor has only four buffers, it will take 
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A 100 by 100 mesh is divided into 16 
subblocks. (< = 4.) The hatched ar­
eas represent nnessages to the sanae 
column after sorting. The hatched 
area of the first, second and the 
fourth blocks have a single message. 
The third block has 97 messages in 
four columns. Therefore, after the 
first phase, a processor in the des­
tination column must hold at least 
seven messages destined for its row, 
plus a transient message during row 
movement. 

Figure 1.4: Buffer requirements of Kunde's algorithm 

3.5n+O(n314 ) steps. For a practical value of n (say, 500), a sorting algorithm 
of 3n + O(n314 ) steps takes much more than 3n steps due to the lower order 
term [41, 39]. If we apply a sorting algorithm that requires 7n- 7 steps [20], 
Kunde's algorithm will take 3. 75n steps with eight buffers, or 5.5n steps with 
four buffers. 

Kunde's algorithm has two properties that are important to our results. 
First, to keep the time bound 2n + o( n), as the size of the mesh increases, his 
routing algorithm requires the number of buffers per processor to increase 
without bound. Second, it is not clear that his algorithm can be extended 
to handle broadcasting (one-to-many) problems. 

Leighton eta!. [23] improves Kunde's 2n + O(n/c) steps to 2n- 2 steps 
by treating specially messages that travel from an m by m corner of the mesh 
to the corresponding area in the opposite corner. (He calls these messages 
"critical" messages.) He points out that critical messages must move up 
to 2n - 2 steps while other ("ordinary") messages must move no more than 
2n-2-m steps if the size of the corner ism by m. Leighton's algorithm moves 
the critical messages without sorting. The ordinary messages are sorted, but 
since the total time required is the maximal distance to be moved plus the 
time required for sorting, if m is greater than the number of steps required 
to sort submeshes, then it takes at most 2n - 2 steps for ordinary messages 
to reach their destination if they are not held up by the critical messages. 
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Leighton shows that the movement of the critical and ordinary messages can 
occur without contention by moving ordinary messages horizontally while 
critical messages are moving vertically, and vice versa. Moreover, by choosing 
E to be a small fraction of n, the buffer requirement can be reduced to a 
constant and the number of steps needed to sort subblocks to less than m, 
the size of the corner containing the critical messages. Thus, the O(n/E) 
sorting time for sorting the submeshes is absorbed into the 2n - 2 distance 
bound of the critical messages. 

The improvement of Leighton's algorithm comes from increased utiliza­
tion of channel capacity by moving one group of messages vertically while 
another group moves horizontally. His algorithm is optimal in routing time 
and needs only a constant number of buffers per processor for a sufficiently 
large mesh. But the result does not seem to apply for mesh sizes that are 
now practical, since apparently the number of buffers will be in the hundreds. 
Moreover, the control structure of the algorithm is fairly complicated, and 
for large meshes the algorithm must be recursively applied to the m by m 
submeshes of critical messages. 

Kunde [19] described a variant of his previous algorithm [18] which is 
appropriate when the time to transmit a message between processors is pro­
portional to the length of the message. The variant splits each message into 
two smaller ones, one belonging to a 'first group,' and the other to a 'second 
group.' Thus, each processor will have two messages, and the set of messages 
is divided into two groups. In Kunde's previous routing algorithm, only links 
along one axis (horizontal or vertical) are active at a given step. The variant 
algorithm speeds up communication by using the two sets of links concur­
rently; while routing one group of messages through vertical(horizontal) links, 
the processors route the other group of messages through horizontal( vertical) 
links. Since we are assuming that the time to transmit a message is propor­
tional to its length, the time for each routing step is half what it would be if 
the messages were not split, and overall performance is improved by a factor 
of two. Storage requirements remain the same because the variant requires 
that each processor store twice as many messages of half the size. 

Randomized Algorithms for the Distributed Control Model 

The space-efficient distributed control model deterministic algorithms we 
have described are based on sorting. Because of the sorting phase, they 
are not oblivious; that is, the paths of messages are determined not only by 
source and destination addresses but also by the paths of other messages. 
Although the channel capacity is often largely wasted, congestion can arise 
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because many packets try to go through a small portion of the mesh. This 
could be alleviated by an algorithm that would initially scatter messages 
evenly in the mesh so that no big congestion would occur in any particular 
area. The following randomized routing algorithms depend upon this idea. 
Some approaches using randomization are briefly reviewed. 

Valiant and Brebner (48] describe a distributed control routing strategy 
on parallel processors with a small number of connections. To reduce the 
conflicts on links and the buffer requirement in a network, data in a proces­
sor are sent to randomly selected intermediate processors, and then routed 
through deterministic paths determined by destination and current position. 
Each data path is determined only by its source and destination addresses, 
even though its path is selected randomly from several candidates. With 
this algorithm, an arbitrary permutation takes 3n + O(n314 ) steps with high 
probability, and O(log n) buffers are necessary due to the congestion on links. 

Rajasekaran and Tsantilas [37] found a 2n + O(log n) randomized algo­
rithm similar to Valiant's algorithm [48] by changing the queuing discipline in 
the processors. The maximum buffer requirement is O(log n ). The improve­
ment comes from giving higher priority to the messages which will travel far­
ther, and treating messages which travel from one corner area to the opposite 
corner in a special way. Krizanc et al. [14] improve the randomized algo­
rithm of Rajasekaran and Tsantilas [37]. Their improved randomized (non­
oblivious) routing algorithm realizes any permutation within 2n + O(log n) 
routing steps and with a large enough constant number of buffers. 

Randomized routing algorithms are fully implementable in distributed 
manner because the decision of a processor depends only on the messages 
in it and a random variable. The time complexities of randomized routing 
algorithms are 2n + O(log n ). But the number of buffers required is either 
monotonic with the size of mesh or a large constant (in a sense that it is not 
specified exactly with a small number). 

1.4.3 Sorting Algorithms 

Our interest in this thesis is routing algorithms for full permutations, partial 
permutations and broadcasting, but the topic of sorting on a mesh is related. 
Recall that we define a sorting problem as a problem that initially has one 
message in each processor; sorting will permute the set of messages according 
to keys rather than a given destination address. A permutation problem 
inherently has more information initially than a sorting problem, since each 
message of a permutation problem has a specified destination. Orcutt [31] 
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pointed out that a sorting algorithm can use these destination addresses 
to perform a full permutation. A sorting algorithm, however, must direct 
each message to a destination that is determined by the other messages in 
the mesh. Thus, although a sorting algorithm can solve a full permutation 
problem, a permutation algorithm will not generally suffice to solve a sorting 
problem. One consequence is that any upper bound on sorting is also an 
upper bound on permutations. 

Sorting can also be used in peripheral ways for routing problems. For 
one class of broadcasting problems on the ILLIAC model, sorting is used to 
rearrange messages so that no congestion can arise during the distribution 
phase in the routing algorithm. 

Storage requirements for all the sorting algorithms described in this sec­
tion (unless we note otherwise) are three buffers per processor on the ILLIA C 
model and two buffers5 per processor for the distributed control model. 

Sorting on the ILLIAC model 

Orcutt [31] describes an O(nlog n) bitonic sorting algorithm in row-major 
order on the ILLIAC model with wrap-around. Thompson [45] gives an "s 2-

way merge sort" without wrap-around, which takes 6n + 0( n ~log n) routing 
steps to sort n2 items into snake-like row-major order. He shows that bitonic 
sorting can be done in 14n routing steps with a shuffled row-major indexing 
scheme. 

Nassimi [28] gives a bitonic sorting algorithm on the ILLIAC model with­
out wrap-around. His algorithm takes 14n routing steps to merge subblocks 
of a bitonic sequence into row-major order recursively. By modifying com­
parison directions, it can sort an n by n mesh array in snake-like row-major 
order with the same number of steps. Note that 14n is the same number 
of steps as Thompson's bitonic sorting algorithm which sorts into shuffled 
row-major order. 

Kumar [15] uses Batcher's odd-even merge sort algorithm as the basis of 
his sorting method on the ILLIAC model with wrap-around. His algorithm 
takes lln + O(log2 n) routing steps to sort n2 elements in row-major order. 
Its control structure is recursive merging by doubling the size of subblocks. 
He shows that the wrap-around connections can be eliminated with some 
extra buffers in the last row. 

5Each processor needs two buffers to do a compare-and-exchange operation between 
two processors in a single communication step 
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Sorting on the Extended-ILLIAC model 

Ma [25] shows that an n by n array can be sorted into blocked snake-like 
row-major order with 4n + O(nt log n) routing step on the extended-ILLIAC 
model with n 114 buffers in each processor to accommodate transient messages. 
He also describes a recursive sorting algorithm based on dividing a square 
mesh into four quarters, sorting them in snake-like row major order and 
merging the results. The algorithm requires 8n steps and the same number 
of buffers, but it has a simpler control structure. 

Sorting on the Distributed Control Model 

Lang's sorting algorithm [20] merges four sorted sub blocks (arranged as a two 
by two array of submeshes) in snake-like row-major order using 7n compare­
and-exchange steps6. Its control structure is relatively simple, so it can be 
implemented on systolic arrays. 

Schnorr's algorithm [41] takes 3n + O(n314 ) compare-and-exchange steps 
to sort an n by n mesh in snake-like row-major order. Subblocks are sorted 
in sublinear time and merged in 3n + o(n) compare-and-exchange steps. He 
shows his algorithm is asymptotically optimal, but the low order terms of 
complexity are too big for meshes of practical size, and the control structure 
is complicated. 

Sado [38], on the other hand, describes a "pseudo-merge" sorting algo­
rithm which takes 6.5n + O(log n) compare-and-exchange steps to sort n2 

items in snake-like row-major order. Its complexity has small low order terms 
and its control structure is relatively simple. He also describes an algorithm 
with a relatively complex control structure that takes 5.5n + 0( vn log n) 
compare-and-exchange steps. 

Scherson [40] describes a "sheer-sort" algorithm which sorts an n by n 
mesh in snake-like row-major order by alternating row sort and column sort. 
It has a very simple control structure but has time complexity of O(nlogn). 
Based on the sheer sort algorithm, he proposes a recursive sorting algorithm 
which takes 6n compare-and-exchange steps to merge four sorted sub blocks 
(arranged as a two by two array) into snake-like row-major order. This is 
very similar to Sado's algorithm [38]. By sacrificing simplicity of control 
structure, he constructs a 3n + 0( n hog n) sorting algorithm in a blocked 
snake-like row-major ordering scheme. 

For the distributed control model, Kunde pointed out that the best way 

6 A single compare-and-exchange step takes two routing steps on the ILLIAC model. 
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to solve routing problems when only a small constant number of buffers are 
available (one or two) is the 3n+o(n) sorting algorithm for a full permutation 
[18]. 

For the distributed control model, lower bounds for sorting have been 
shown to be 3n-3- r ~ -1/21 [16, 41 ]. Some sorting algorithms approach 
these bounds asymptotically: Schnorr's algorithm takes 3n + O(n314 ) steps, 
and Scherson's algorithm takes 3n + 0( n314 log n) steps. But in all these 
results, sublinear terms dominate the complexity for meshes of practical size. 
Moreover, the control structure of the algorithms is complicated, making 
them impractical for a mesh with processors too small to hold a substantial 
program. 
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Chapter 2 

Move and Smooth Algorithms 

This chapter describes a new class of routing algorithms on a mesh, which 
we call move and smooth algorithms. The chapter consists of two sections. 

Section 2.1 describes this class of algorithms. Although we will only 
treat a few of these algorithms in detail, the form makes the design of other 
algorithms straightforward. 

The formal problem treated in Section 2.2 is finding the time complexity 
of message movement in a one dimensional array. This result is crucial to 
the analysis of the time complexity of all the move and smooth algorithms; 
the result obtained in Section 2.2 will be referenced repeatedly in subsequent 
chapters. 

2.1 Class of Move and Smooth Algorithms 

Although move and smooth algorithms can be applied to k-dimensional rect­
angular meshes, for this initial description of the algorithms, we will assume 
that the processor array is a square mesh in two dimensions. 

Move and smooth algorithms are recursive, with each recursive stage con­
sisting of two steps. Initially, each message is in a processor, with no more 
than one message per processor. Each message knows the address of its desti­
nation processor. The mesh is partitioned into a collection of disjoint regions 
R 1 , R 2 , • • • Rb. The move step moves each message in the array to the region 
Ri that contains its destination. The move step may, however, put more 
than one message into some processors. The smooth step redistributes the 
set of messages in each region R; so that each processor once again contains 
at most a single message. 

Move and smooth algorithms partition the mesh into b disjoint contigu-



ous regions. Although the regions are not necessarily the same in size and 
shape, move and smooth algorithms are most elegant when the regions are 
congruent, and we will direct most of our attention to cases in which our 
algorithms partition the mesh into b disjoint congruent regions. Thus, for 
this overview, if a partitioning divides a mesh (or submesh) into b disjoint 
regions R1 , R2 , • • • Rb, then for all i, j, 1 ::::; i, j ::::; b, R; and Rj have the same 
size and shape. During the move step, each message moves from its current 
region to its target region (that is, the region that contains its destination) 
along a path that is assured to be conflict free. Moreover, if the number of 
regions in the partition is b, our algorithms guarantee that no processor will 
hold more that b + 1 messages during the move step, or more than b mes­
sages at the end of the move step. However, in order to apply the algorithm 
recursively, the precondition of 'at most one message per processor' must be 
re-established. 

We will be most concerned with two specific algorithms which we call H 
(for 'halves') and Q (for 'quarters'). The move steps of the algorithm Q can 
be described as follows: 

Algorithm Q begins with a partitioning of the n by n square 
array of processors into four quadrants of equal size. If a message 
is initially in the correct quadrant (that is, the quadrant that 
contains its destination address), it does not move during the 
move step. Otherwise, the move step takes each message from 
its current location to the processor which has the same relative 
position in the correct quadrant. This movement is accomplished 
by moving 0 or n/2 steps along a column of the mesh, and then 0 
or n/2 steps along a row. All messages start moving at the same 
time and stop as soon as they reach the correct position in the 
destination quadrant. During the move step, a processor may 
contain up to five messages, including one that did not move, 
and four transients. At the end of the move step, a processor 
contains at most four messages, these being three messages from 
other regions and one message of its own. 

The purpose of the smooth step of each recursive stage is to distribute 
the messages of each region so that each processor contains at most one 
message without violating the constraint that each message is in the region 
that contains its destination. Completion of the smooth step re-establishes 
the precondition of the recursive algorithm that each message is in its target 
region, and that each processor contains at most one message. Then the 
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algorithm recurs; each region is partitioned into disjoint subregions and each 
message is sent to the proper subregion (and generally closer to its destina­
tion). The algorithm terminates when each region has only one processor. 

A requirement of each algorithm is that every processor know its row­
column indices for the current region to which the algorithm is being applied. 
These values can easily be computed by each processor from a knowledge of 
its row and column index in the mesh and the current level of recursion. 
Wrap-around connections are not used by any of the algorithms. 

2.2 Message Movement in Linear Array 

Each of the algorithms we discuss is based on a· partitioning into b rectangular 
regions. Each move step on a two-dimensional mesh transforms the original 
problem into a set of subproblems that must be smoothed. Each smoothing 
problem consists of a rectangular region with r rows (indexed 0, ... r - 1) 
and c columns (indexed 0, ... c- 1) such that 

initially, the region contains no more than rc messages, and 
each processor contains no more than b messages. 

Smoothing is accomplished in two phases. First, a counting (preprocess­
ing) phase informs each processor of the initial configuration of messages. 
This information enables each processor to determine its roll in achieving 
the final configuration. The second distribution phase entails the movement 
of messages. Distribution is accomplished by first moving messages along 
rows, and then along columns. Row movement rearranges messages within 
each row so that no column of the region contains more than r messages. 
Column movement moves messages within each column so that no processor 
contains more than one message. Both row movement and column move­
ment are accomplished without requiring that any processor hold more than 
b messages at any time. . 

It is not necessary to understand the details of one dimensional row and 
column movement described in this section to understand the behavior of 
the algorithms described in Chapters 3 and 4. However, the results of this 
section are used to analyze the complexities of algorithms in later chapters. 

2.2.1 Row Movement 

Consider a one dimensional array with c processors indexed from 0 to c- 1 
from left to right. Each processor has b message buffers and is connected 
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to adjacent processors only by unidirectional channels with the capacity of 
a single message. Adjacent processors are connected with two channels, one 
from left to right and the other from right to left. Although the two channels 
between adjacent processors can be used concurrently, we will see that they 
are not used concurrently in row movement. 

Each row movement problem is of the following form: Initially, there are 
N messages in the array where 1 ::; N ::; be, and each processor contains no 
more than b messages. The initial arrangement of messages in the array is 
called the initial configuration. Messages are to be moved among processors 
in the array to a specified final configuration, where a final configuration will 
have the following properties: 

o each processor has at least lN/cJ and at most rN/cl messages, and 

• the processors with r N I c 1 messages will be contiguous. (For the pur­
poses of row movement, the leftmost processor and rightmost processor 
are considered to be contiguous.) 

An initial-final configuration pair specifies a row movement problem. Note 
that for row (and column) movement, messages are indistinguishable; there 
is no requirement that specific messages go to specific processors. 

Prior to actual movement of messages among processors in row movement, 
there is a preprocessing phase that enables each processor to determine 

1. how many messages it contains initially, 

2. the total number of messages contained in processors to its left and 
the total number of messages contained in processors to its right in the 
initial configuration, 

3. how many messages it will contain finally, and 

4. the total number of messages contained in processors to its left and 
the total number of messages contained in processors to its right in the 
final configuration. 

Because messages are indistinguishable, there is never a need for adja­
cent processors to exchange messages, simultaneously or otherwise, during 
row movement; an exchange of messages accoii)plishes nothing toward achiev­
ing a final configuration. Thus, at most one channel between two adjacent 
processors will be used to solve any row movement problem. A link in which 
only the right channel has nonzero flow will be said to have a right flow, and 
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a link in which only the left channel has nonzero flow will be said to have 
a left flow. (Some links may have neither right nor left flow.) Thus the net 
action of any processor during row movement can be characterized as sending 
or receiving some number of messages from its left neighbor and sending or 
receiving some number of messages to its right neighbor. (The net action of 
an end processor can be characterized the same way, except that the number 
of messages sent to or received from the non-existent neighbor is zero.) 

On the basis of its initial information, each processor can determine how 
many messages it must send to or receive from its left neighbor and how 
many messages it must send to or receive from its right neighbor. Let the 
flow number of a channel be the total number of messages to flow through the 
channel between two adjacent processors during row movement. By compar­
ing the number of messages to its left in the initial and final configurations, 
each processor can compute flow numbers for the channels of the links to its 
neighbors before messages begin to move, as illustrated by Figure 2.1 . 

For any row movement problem, the set of flow values, taken together, 
constitutes a solution. This solution is unique, since it represents a net 
flow of messages, but its implementation is not, since messages could be 
sent back and forth across the same link between adjacent processors. The 
simplest implementation is for each processor to send messages as soon as 
possible to satisfy the flow calculated for each of its outgoing channels. (Note 
that the flow over a channel may be interrupted if a processor exhausts 
its messages before the outgoing flow has been satisfied. In this case, the 
flow is interrupted until the processor receives additional messages from its 
neighbor.) We will use this mechanism to solve row movement problems, and 
refer to the resulting movement of messages as row movement. We wish to 
characterize the worst case time complexity of the row movement problem, 
that is, the maximum number of time steps required to implement a solution 
by moving messages among processors. We will do so by first showing that 
row movement (as defined above) is an optimal solution to any row movement 
problem and then exhibiting and analyzing configurations that maximize the 
number of steps of row movement. 

We first make the following observations about movement of messages 
along an array. 

1. The movement of messages along an array during row movement can 
be viewed as a collection of right flow segments, where each segment is 
a series of contiguous processors connected by links with nonzero right 
flows, left flow segments, where each segment is a series of contiguous 
processors connected by links with nonzero left flows, and zero flow 
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Cal 

(b) 

Four examples, each showing initial and final configurations of an array with 8 proces­
sors. Processors are represented with squares index~d 0 ... 7; indices appear above the 
squares. Channels between processors are represented with arrows, and the direction of 
arrows represents the direction of channels. The number of messages initially contained in 
each processor is shown in the square as an integer above the diagonal; the tuple of all these 
integers specifies the initial configuration. The number of messages to be contained in each 
processor after row movement is shown as an integer in the square below the diagonal; this 
set of integers specifies the final configuration. Integers on arrows are the flow numbers 
represented by the corresponding channel; no integer indicates a flow of zero. Note that 
at most one arrow between adjacent processors has a non-zero flow. In the array of Fig­
ure 2.l.a, there are 19 messages initially. The final number of messages in each processor 
is either 2 (l19/8J) or 3 ([19/91) and the processors 3, 4 and 5, which contain 3 messages 
each, are contiguous in the final configuration. In Figure 2.l.a, the processors 0 and 1 
form a maximal right flow segment, as do processors 2, 3, and 4. Processors 4, 5, 6, and 
7 make up a maximal left flow segment. Note that processor 4 belongs to both a left flow 
segment and a right flow segment that are separated by processor 4 itself. In Figure 2.l.b, 
there are only 5 messages in the array, and the four rightmost and one leftmost processors 
will receive a message in the final configuration. The whole array is a right flow segment. 
The time required to change from the initial to final configuration is 6 steps; note that the 
maximum value of flow in the array is 4. 

Figure 2.1: Examples of row movement problems 
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segments. (A processor with flows in different directions on its left 
and right links belongs to two segments which are separated at that 
processor.) A segment is called a maximal left (right, zero) flow segment 
if it is not a proper subset of another left (right, zero) flow segment. 

2. Messages moving in different maximal segments do not interfere with 
or affect one another. 

Because maximal segments are independent problems, the time required 
for row movement in an array is the longest time required for message move­
ment within some segment of the array. Thus the worst case problems will 
be ones whose solution consists of a single segment. 

The time required for row movement is affected by two factors, distance 
and contention. A distance constraint results from the necessity of some 
message travelling from one processor to another in the array. A contention 
constraint results from the inability of a channel to carry more than one mes­
sage at a time. In Figure 2.l.c, the time complexity is determined by distance; 
there is no contention for channels, while in Figure 2.l.d, the complexity is 
determined by contention. Figure 2.l.b exhibits a complexity determined 
by distance; although there is contention, the complexity of the problem 
would not be reduced if the channels could carry more than a single message 
concurrently. 

Because the worst case behavior for row movement will occur when the 
solution consists of a single segment, in the following, we will consider only 
solutions in which the flow over all links is nonzero and to the right. The 
following lemma characterizes worst case performance for a class of problems 
in which the distance to be travelled is the limiting factor. 

Definition 1 We define the function T(N, b, c) as the maximum time re­
quired (to implement a solution) for a row movement when an array of c 
processors, each of which has b buffers, contains N messages. 

Our first row movement lemma places a time bound on row movement for 
the case when the number of messages is less than the number of processors. 

Lemma 2.1 If 0 < N < c, then T(N, b, c) :5_ c- 1. 

Proof: Since N, the number of messages in an array, is less than c, the 
number of processors in the array, any final configuration will have a single 
message in N processors and no messages in the remaining c- N processors. 
Recall that the set of final configurations considers processor 0 to be adjacent 
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to processor c -1 (although there is no wrap-around connection). Moreover, 
our restriction to those solutions in which all flow is nonzero and to the 
right implies that in the final configuration, the rightmost k :::; N contiguous 
processors of the array will contain messages, as will the leftmost N - k 
contiguous processors. (The number k should be greater than 0, but N - k 
may be 0. Thus the very rightmost processor of the array will contain a 
message; the leftmost processors may or may not contain messages.) Worst 
case performance will occur when the initial configuration has all N messages 
packed into the leftmost r Nfbl processors. The number of time steps required 
for row movement in this case is c-l Njb J, which is equal to the distance that 
the rightmost message in the initial configuration travels to the rightmost 
processor of the array. The maximum value of c-lN/bJ occurs when N:::; b, 
which gives the value c- 1. D 

We now turn to the case when N ~ c. The following lemma establishes 
that in this case, every solution has a busy channel in the sense that, if the 
solution requires t time steps, then t messages will be sent over the busy 
channel. 

Recall that we are considering only right flow segments, that is, only 
solutions in which only the channels carrying messages from left to right are 
utilized. We assume that the solution is for an array of c processors indexed 
from 0 to c- 1. We begin by indexing the channels (carrying messages from 
left to right) from 1 to c - 1; thus the channel between processor k - 1 and 
processor k has index k. 

Lemma 2.2 Consider an array which has N ~ c messages. If the maximum 
flow over a single channel of a solution of a row movement problem is equal 
to t, then row movement requires exactly t time steps. 

Proof: Without loss of generality, we assume that the solution of a row 
movement problem is a single right flow segment, and channel k carries t 
messages. The time required for row movement cannot be less than t, because 
the flow across channel k is t and only one message can flow across a channel 
at each step. 

Suppose, as an assumption to be proved false, that the row movement 
takes t' time steps where t' > t. Then there is a channel x which carries a 
message at time t'. Let the flow number of link x be f. Then f :::; t, because 
t is the maximum flow across any channel of the solution. Therefore f < t', 
from which it follows that channel x is idle at some time. Then we determine 
two times, 11 :::; t2 < t' such that f 1 < f messages flow through channel x 
during time 0 through 11 , no messages flow through channel x during time 
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channel w 

Figure 2.2: The array in the proof of Lemma 2.2 

t 1 + 1 through t 2 , and f-A messages flow through channel x during time 
t2 + 1 through t' and t' - t 2 = f - f 1 . Note that t 1 may equal 0, or channel 
x may have idle times during the first t1 time steps. But t 2 - t1 > 0 (and no 
messages flow over channel x during that interval), and channel x is never 
idle during the interval t' - t2 • 

Let channel w < x be the leftmost channel such that the processors from 
w through x -1 contain exactly f 1 messages initially. (See Figure 2.2.) Note 
that such a channel must exist because there is a gap of length t 2 - t 1 in 
the flow of messages after the first f 1 messages and such a gap can occur 
only if there is a sequence of processors that initially are empty. Thus, the 
processors indexed from w to w + (t 2 - t 1 ) must initially be empty. 

Now consider the flow over the channel w. The processor w - 1 initially 
contains messages, since w was required to be the leftmost channel such that 
the processors from w to x - 1 contain exactly f 1 messages. Let C F be the 
number of messages in processors w through x- 1 in the final configuration. 
Our specification of w requires that the processors from w to x - 1 contain 
exactly f1 messages. Therefore, the following relations hold: 

That is, the final contents of the processors w through x - 1 is equal to the 
initial contents plus the flow in minus the flow out. Additionally, t 1 and t 2 

were chosen so that · 

t'- t2 = f- ft 
From our specification of t 2 , f 1 messages flow through channel x during time 
0 through t 1 , no messages flow through channel x during time t 1 + 1 through 
t 2 , and a message flows through channel x at t 2 + 1. Hence the processor 
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that holds the message that reaches x at time t 2 + 1 must be w- 1; that is, 

Finally, since N ~ c, it follows that the final configuration will have at least 
one message in each processor, that is, 

CF ~ x -w 

We rearrange the first equation, getting 

and substitute from the others, giving 

fw > X -w-A + f 
fw > i2+t'-t2=i' 

which contradicts our specification that the largest flow number was t, where 
t' > t, and establishes the theorem. 0 

Corollary 2.1 The time required for row mo.vement is optimal. 

Proof: By definition, no solution requires that fewer messages be passed 
between processors. Since the time required is exactly the number of mes­
sages passed by the processor passing the most messages, no solution can be 
implemented in less time. 0 

We now wish to find a time bound for row movement. We will use the 
preceding lemma to define a worst-case configuration and then find the time 
bound for that configuration. 

Lemma 2.3 If e :::; N :::; be and b is even, then 

b(b + 2)e 
T(N,b,e):::; 4(b+ 1) 

If e :::; N :::; be and b > 1 is odd, then 
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Proof: We showed in the proof of Lemma 2.2 that for any row movement 
problem, in which N 2: c, there is a channel which is busy all the time during 
row movement. Assume that channel k is one of the busiest channels for such 
a problem; that is, channel k carries t messages in a solution that requires t 
time steps. As before, we restrict our consideration to solutions (row move­
ments) that consist of a single right flow segment. To maximize the flow over 
channel k, the initial configuration must have as few messages as possible 
to the right of channel k, and the final configuration must have as many as 
possible to the right of channel k. The form of the initial configuration is 
not constrained, but the final configuration is required to have the messages 
evenly distributed among the processors, with the number of messages in 
two processors differing by no more than one. Thus the maximum flow of 
messages through any channel k can be achieved as follows: 

Initially, all processors to the left of k are filled and all processors 
to the right of k are empty. (Thus each processor to the left of 
channel k contains b messages initially, and there is a total of bk 
messages to the left of channel k). 

In the final configuration, each processor to the right of channel k 
contains f + 1 messages, and each processor to the left of channel k 
contains f messages. (Thus each processor to the right of channel 
k contains one more message than any processor to the left of 
channel k.) 

The flow over channel k is then 

F(k) = (! + l)(c- k) (2.1) 

We can now find the time bound for row movement problems by finding the 
maximum value of F(k). 

Because the total number of messages in the final configuration is the same 
as the number of messages to the left of channel kin the initial configuration, 
the following holds: 

bk=fk+(f+l)(c-k) (2.2) 

Then the maximum value F(k) for some value k is the maximum time bound 
imposed by the contention on channel k, because one message takes one step 
and messages will flow continuously. 
From Eq. 2.2, we get 

k= (f+l)c 
b+l 
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By substituting Eq. 2.3 to Eq. 2.1, we get 

F(k) = (f+1)(c- (/+1)c) 
b+1 

-c 
2 

c(b-1) cb 
b+11 + b+1 l+b+1 

Recall that I is an integer, where 1 ::; I < b. If b is even, F(k) has the 
maximum value 

b(b + 2)c 

4(b + 1) when I= b/2 or b/2- 1 

The values of k that maximize F(k) are 

k - 2(b+l) w en -
{ 

(b+2)c h I - b/2 

- 2d~l) when I =.b/2- 1 

(Note that these values are approximately equal to c/2, which means that 
the time bound is largest when channel k is located approximately in the 
middle of the array. This is intuitively reasonable, since when kjc is small, 
there cannot be enough messages to the left of the channel k to cause a large 
flow over the channel, and when kjc is near 1, there is not enough space to 
the right of channel k to accommodate a large flow.) 

The above values of k used to maximize F( k) may not be integers, al­
though k must be a. processor index. But for any integer values of b and c, 
the maximum value of F(k) occurs either a.t k = r<{~~lcl or k = l <{~~lcj 
whether I = b/2 or I = b/2 - 1. Thus, ~~::{) is the upper bound of the 
number of steps required for row movement when b is even, although the 
value may not be an integer. Therefore, whenever this value is referenced as 
the number of steps for routing, we will use it as a.n upper bound. 

If b is odd, F(k) has the maximum value 

(b+ 1)c 
when I= (b -1)/2 and k = c/2 

4 

0 

Theorem 2.1 When b is even, 

T(N, b, c) ::; max(c- 1, 
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When b > 1 is odd, 

T(N,b,c):::; (b: 1)c 

Proof: Lemma 1 and Lemma 3 give the theorem immediately. D 

Row movement requires at most c- 1 time steps for an array of c processors 
with two buffers, and at most 1.2c time steps when each processor has four 
buffers. 

We now consider the number of buffers required during row movements. 
The following theorem assures us that no extra buffer is necessary during 
row movement. 

Theorem 2.2 During row movement, the maximum number of messages 
stored in any processor is no greater than the maximum number stored in 
some processor for the initial and final configurations. 

Proof: During row movement, the array is divided into maximal segments, 
and movement of messages in different maximal segments is independent. In 
each segment, the flow of messages is unidirectional. The number of messages 
in a processor will only increase when it receives a message over one channel 
and does not send out a message over the other. Because flows are satisfied 
as soon as messages are available, it follows that the number of messages in 
a processor will only increase when either the processor is empty or the flow 
out of the processor is complete. Thus, whenever the number of messages in a 
processor increases because there is no outflow, that number will never exceed 
the number of messages the processor must hold in the final configuration. 
D 

If processors have b buffers, then the initial and final configurations are 
constrained so that no processor holds more than b messages. The preced­
ing theorem establishes that the implementation of row movement does not 
increase the buffer requirements of the processors. 

2.2.2 Column Movement 

We will show in Section 3.3.2 (on page 52) how the first step in smoothing, 
row movement, rearranges messages within each row so that each column 
of r processors contains no more than r messages, with at most b messages 
in any single processor. After row movement is complete, the second step, 
column movement, rearranges the messages in each column of r processors so 
that each processor contains at most a single message. These steps together 
establish the precondition for the move and smooth algorithm, that 

35 



each message be in the appropriate region of a partition, and that 
no processor contain more than one message. 

Consider a one dimensional array with r processors indexed from 0 to 
r - 1 from top to bottom. We assume that r is even and refer to the top 
and bottom halves of the column. Each processor has b message buffers and 
is connected to each adjacent processor by two unidirectional channels with 
the capacity of a single message. (As with row movement, only one channel 
of each link is used at any time during column movement.) 

We consider the following problem: 

Initially, there are N messages in a column array where 1 ::; N ::; 
r, and each processor contains no more than b messages. We want 
to rearrange messages among processors in the array so that each 
processor has at most one message. 

As in a row movement, messages are indistinguishable. Based on the prepro­
cessing phase completed prior to row movement, each processor can deter­
mine, prior to column movement, 

o the number of messages contained in processors above it, if it IS a 
processor in the top half of the array, and 

o the number of messages contained in processors below it, if it IS a 
processor in the bottom half of the array. 

Processors rearrange messages by first assigning an index to each message 
and then moving the messages among the processors. Indexing is done as 
follows: 

1. If P is a processor in the top half of the array, and there are u messages 
in processors above P, and P contains k messages, then the messages 
in P are assigned indices u, u + 1, ... u + k- 1. 

2. If P is a processor in the bottom half of the array, and there are v 
messages in processors below P, and P contains k messages, then the 
messages in P are assigned indices r - v- 1, r - v - 2, ... , r- v- k. 

Message movement is done using the assigned indices as target addresses 
within the column. When two messages compete for the same channel, pri­
ority is given to the message with the longest distance to travel. Note that 
there can be no overlap of indices assigned by processors in the top and bot­
tom halves of the array since the total number of messages in the array does 
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not exceed r. Thus, each assigned index will be between 0 and r- 1, and 
will be unique. 

We now characterize the maximum number of time steps required to 
rearrange messages among the r processors for any initial configuration. The 
individual processors follow the same strategy as with row movement, that 
is, each processor sends out messages as soon as possible until the proper 
number of messages are above (or below) it. 

We observe the following facts: 

1. The index (or target address) of any message in processor i is less than 
the index of any message in processor j, if i < j. 

2. As with row movement, the processors of the array can be divided 
naturally into segments, where, within a segment, all messages move 
in the same direction. As before, some processors may belong to two 
segments, and some processors may not belong to any segment, because 
there is no traffic from, through, or to those processors. 

We will compute the worst case time steps for column movement in an ar­
ray by exhibiting an initial configuration which takes the maximum number 
of time steps. Without loss of generality, we consider only initial configura­
tions of the top half of an array; the same time complexity results apply to 
the bottom half. 

When the top half of an array contains no more than r /2 messages, the 
targets of all the messages will be processors in the top half of the array. 
Because a message with the farthest target will go first, the maximum number 
of time steps required to move messages in the top half is r /2 -1. This worst 
case occurs when the processor with index r /2 - 1 contains a single message 
and all other processors in the top half are empty. (Thus, the message must 
travel from processor r /2 - 1 to processor 0.) 

Suppose the top half of an array contains N messages where r /2 < N ::; r. 
The N-th message in the top half is assigned the target address N - 1. For 
the purpose of exhibiting the worst case, we can assume that the messages 
in the entire colunm all move in the same direction and that all processors 
are part of a single flow segment. 

Recall that messages are indexed and given target addresses prior to mov­
ing. Denote by M( i --> j) a message originating from processor i with target 
address j. Suppose it takes t steps for message M(i -+ j) to travel from 
processor i to processor j. Two cases are possible; either M( i -+ j) travels 
without any delay, in which case t = j- i, or M(i-+ j) is delayed by other 
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messages. Suppose M(i-> j) is delayed by other messages. Then, because 
of the way the messages are indexed for column movement, M( i -> j) will be 
delayed by M( i' ...., j + 1), where i' 2: i, and M( i'...., j + 1) will travel one step 
ahead of M(i...., j) from the time they meet in a processor to the time they 
reach their target processors. As a result, M(i...., j) and M(i'...., j + 1) will 
reach their targets at the same time, and since they started at the same time, 
we can conclude they will take the same number of steps. By induction, it 
follows that for any message M(i-> j) that is delayed and takes t time steps 
to reach its destination, there is a message M( i'...., j') which travels without 
any delay and also takes t time steps to reach its target. 

From the above it follows that the worst case time will be required of some 
message that travels from its initial position to its final position without delay. 
A message M( i -> j) that travels downward without delay requires j- i steps 
to reach its target. The value j - i is maximized when i is smallest and j 
is largest. Since indexing of messages begins with 0, the origin of M(i-> j) 
(that is, processor i) cannot be above processor ljlbJ because there must be 
j messages above M( i -> j), and no processor initially contains more than 
b messages. It follows that M ( i -; j) takes at most j - lj I b J steps to reach 
processor j. The value of j - lj lb J is maximized by substituting N - 1 for 
j, giving N - 1 - l ( N - 1) I b J . If we consider a downward flow segment of 
length N in a column array with r processors, the worst case number of steps 
to distribute messages is r- 1-l(r -1)/bJ because the maximum value of 
N is r. If r is a multiple of b, this simplifies to (b- 1)rlb. This establishes 
the following: 

Theorem 2.3 Consider a one-dimensional array ofr processors, where each 
processor has b buffers. Initially, each processor has at most b messages, and 
there are no more than r messages in the array. If one message can be moved 
between any two adjacent processors in one time step, then the messages can 
be rearranged among the processors so that each processor has at most one 
message in at most r -1-l(r -1)lbJ time steps. Ifr is a multiple ofb, the 
number of time steps is (b-1)rlb. 
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Chapter 3 

Algorithm Q 

The algorithm to be described in this chapter is called Q because it divides 
square meshes into quarters, which we refer to as quadrants. We provide 
details of this algorithm in Sections 3.2 and 3.3 and calculate the time com­
plexity and buffer requirement in Section 3.4. We describe how Algorithm Q 
can handle broadcasting problems without additional routing costs in Sec­
tion 3.5. In Section 3.6, we investigate the extension of Algorithm Q to 
k2 -partitioning of a two dimensional mesh and discuss the difficulties in ap­
plication to multi-dimensional meshes. 

3.1 Overview 

The differences among move and smooth algorithms depend on the number 
and shape of the regions into which a mesh is partitioned. A natural partition 
of a square mesh would be to divide the mesh into four quadrants, each one 
a smaller square mesh. Even though Algorithm Q can be generalized to a 
rectangular mesh, we describe the algorithm for the special case of a mesh 
of size n by n, where n = 2P. 

Algorithm Q is based on successive partitioning of the mesh into four 
disjoint regions. It involves a move step followed by a smooth step and then 
recurs on the four regions simultaneously. The move step begins with a 
partitioning of the square array of processors into four quadrants of equal 
size. Initially, each processor has at most one message. If a message is 
initially in the correct quadrant (that is, the quadrant that contains the 
message's destination address), the message does not travel during the move 
step. Otherwise, a message travels from its current location to the processor 
which has the same relative position in the correct quadrant. This movement 



is accomplished by moving 0 or n/2 steps along a column of the mesh, and 
then 0 or n/2 steps along a row. Thus, a message may remain in place, or 
it may travel n/2 steps along a row or a column, or it may travel n/2 steps 
along a column followed by n/2 steps along a row. In any case, when the 
first move step is finished, each message will be in the quadrant that contains 
its destination processor. All messages start moving at the same time, and 
they stop as soon as they reach the target position in the correct quadrant. 
During the move step, a processor may contain up to five messages; one that 
did not move, and four transients. All messages move concurrently, and since 
there is no contention for links, the time for the first move step is n. 

At the end of a move step, a processor may contain up to four messages: 
one from before the move step, and three that have been moved there from 
corresponding processors in the other three quadrants. However, the number 
of messages in a quadrant does not exceed the number of processors in the 
quadrant, because each processor is the destination of at most one message. 
In order to recur, however, we must re-establish the precondition that each 
processor contains at most one message. (Otherwise, the number of messages 
in a processor could grow exponentially with the number of recursive steps.) 
So, the smooth step follows. 

The smooth step distributes the messages among the processors. It has 
two phases, counting and distribution. The details of the smoothing algo­
rithm will be described in Section 3.3. For now, we simply note that smooth­
ing requires less than 1.75n steps for an n/2 by n/2 mesh. This second step 
ends the first stage of the recursive algorithm, which leaves each message 
in the quadrant that contains its destination, with at most one message per 
processor. (Figure 3.1 shows an example of Algorithm Q on an eight by eight 
mesh.) 

The algorithm terminates when each quadrant contains a single processor. 
Because the move step takes n steps and the smooth step takes 1. 75n steps, 
the complexity of the algorithm is given by the following system: 

T(l) 
T(n) < 

0 

T(n/2) + 2.75n (for n = 2P) 

which has the solution T( n) ::; 5.5n. In the next sections, we will derive this 
value and refine the time complexity. 
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Processors in the 8 by 8 array are addressed 
Destination Table 

Message 
by row-column index pairs. Then messages, Destination 
labelled A through K, have destinations as 

Message 
specified in the Destination Table atthe right. Destination 

In the first phase of Algorithm Q, each message 
travels to the correct quadrant of the mesh. The 
figure at the right shows the original position of 
the messages and the paths followed by them dur­
ing the first move step. Note that since message 
A is already in the correct quadrant, it does not 
change position. Because all messages begin trav­
elling simultaneously, there is no contention for 
links. At the end of the first move step, processor 
(0,1) contains four messages. 
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The result of the first move step, ready for the 
smooth step, which begins with counting. Each 
processor receives sufficient information to deter­
mine the message flow of the row and column 
movements during the distribution phase. The 
row movement spreads messages almost evenly in 
each row of a quadrant so that the number of mes­
sages is almost even in each column. The messages 
A,B,C,D and K are spread in row 0 of the top left 
quadrant. 

The array after the distribution phase of the first 
smooth step. The positions of messages A,B,C 
and D could be permuted, since they occupied the 
same processor prior to smoothing and messages 
are indistinguishable during smoothing. The po­
sitions of other messages are determined by the 
smoothing algorithm. Messages in the upper half 
are packed in low-indexed processors and messages 
in the lower half are packed in high-indexed pro­
cessors. The algorithm will now recur, breaking 
each 4 by 4 quadrant into four 2 by 2 quadrants 
and doing another move and smooth. 
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Figure 3.1: The first recursive stage of Algorithm Q 
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3.2 Move Step of Algorithm Q 
Algorithm Q divides the n by n mesh into four disjoint submeshes at every 
recursive step. This section will describe the move step of the first recursive 
stage on an s by s submesh. Each processor in the mesh knows its relative 
row and column addresses in the s by s submesh. 

The move step begins with the partitioning of the s by s mesh into four 
disjoint s/2 by s/2 submeshes, or quadrants. We index the quarters as I, 
II, III, and IV, beginning in the top right quadrant and moving counter 
clockwise. Each processor in the mesh can determine which quadrant it 
belongs to. Initially, each processor has at most one message. A processor 
having a message can determine whether the destination of its message is 
in the same quadrant where the processor belongs. By examining the most 
significant bits of column and row addresses of the destination, a processor 
can determine the quadrant that contains the destination processor of the 
message. The objective of the move step is to rearrange the messages in 
the mesh so that each message is located in the quadrant which contains its 
destination processor. We call this the target quadrant of the message. 

If a message initially is not in its target quadrant, it is sufficient to move 
it to any processor in that quadrant to satisfy the objective of the move 
step. Because there are many messages that must travel from one quadrant 
to another, and processors don't have global information about the messages 
moving among quadrants, a processor cannot select an arbitrary processor 
in the target quadrant. If a message were sent to an arbitrary processor 
in the target quadrant, two problems could arise. First, some processors 
might receive many messages, exceeding the buffer capacity of the processor. 
Second, the time required to send all messages to their target processors 
would be unpredictable since there may be contention for links. Algorithm 
Q avoids contention and ensures that the maximum number of messages per 
processor during and after the move is predictable. 

When a processor has a message which is not in its target quadrant, 
the processor sends it to the target processor which is at the same relative 
position in the correct quadrant. In an s by s mesh, the target processor is 
s /2 steps away along the row, or s /2 steps away along the column, or s /2 
steps along the row and s/2 steps along the column away (on the diagonal). 
After the target address of each message has been determined, the movement 
of messages begins simultaneously in all processors. If the target processor 
of a message is on the same row as the current processor, the message is sent 
along the row. If the target processor of a message is on the same column, 

42 



no 2345671 

0 
Msg I D T 

A c 
B 

A (0,1) (0,5) (0,5) E 

B (0,5) (1,3) (0,1) 
2 c (0,6) (0,1) (0,2) 

D G 

D (2,1) (5,6) (6,5) 3 
E (1,2) (7,2) (5,2) 
F (6,1) (4,4) (6,5) 4 

G (2,5) (7,5) (6,5) 5 
H (6,5) (4,7) (6,5) 

J 

J (5,3) (1,4) (1,7) 6 F H 

7 

III IV 

Figure 3.2: The move step in Algorithm Q 

the message is sent along the column. Otherwise, the processor sends the 
message first along the column until the message reaches the row of the target 
processor; then the message is sent along that row until it reaches the target 
processor. 

Since links are bidirectional and a processor can receive and send mes­
sages at the same time, contention for links arise only when messages change 
direction. There is no contention if each message moves along a row or a 
column. Hence, there is no contention among messages in a processor during 
the move step. At the beginning of movement, there is at most one message 
in a processor which must travel to another quadrant. During the first s/2 
steps, each message either remains in place, moves s /2 steps along a col­
umn, or moves s/2 steps along a row. No message changes direction, so this 
part of the movement is contention-free. After s /2 time steps, the messages 
which were s /2 steps away from their destination have reached their target 
processor and stop moving. Only those messages whose destination was on 
a diagonal need to travel s/2 steps further along a row. These messages 
all change direction at the same time, and no processor contains more than 
one such message. Hence there is no contention when the messages change 
direction, and there is no contention during the next s /2 time steps because 
all messages move only along rows in the mesh. 

Figure 3.2 shows an example of the move step for an 8 by 8 mesh. On the 
left of the figure, initial position (I), destination address (D), and computed 
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target address (T) of each message are listed. For example, message A in 
quadrant II has its destination in quadrant I. Its target address is (0, 5), which 
is at the same relative position in quadrant I as processor (0,1) in quadrant II. 
Note that the destination and the target address of message A coincidentally 
happen to be same. For another example, message D in quadrant II has its 
destination address in quadrant IV, so the target address is (6, 5), which is 
the same relative position in quadrant IV as (2, 1) in quadrant II. Message 
D is four steps along the row and four steps along the column away from its 
target processor. Since message H has its destination address in the same 
quadrant as its current position, the target address of message H is the same 
as its current position, even though its destination address is not same as its 
current position. Compare the target addresses and destination addresses of 
other messages. During the move step, messages A, B, C and F are sent 
along their rows to their targets that are four steps away. Messages E and 
G travel along their columns, because their targets are on the same column. 
Messages D and J will move along the column first even though their target 
processors are on the diagonal. (Recall that if a message has to travel along 
a row and a column, it travels along the column first.) Note that there is no 
contention among messages B and C because they are pipelined along the 
row. Message H does not move. After four time steps, messages A, B, C, E, 
F, G, and H have arrived at their target processors. But messages D and 
J are still four steps away from their target processors and will move along 
their rows, completing the move step for our example. 

The time required to rearrange messages in the move step in an s by s 
mesh is s steps, because there is no contention among messages, and the far­
thest target is s steps away for messages which must travel to the diagonally­
opposite quadrant. (For example, messages moving from quadrant I to III, 
or from quadrant II to IV, will takes time steps.) 

During the move step, no processor will contain more than five messages 
at any time. During the first s /2 time steps of the move step, some messages 
are moving along rows, others are moving along columns, and others remain 
at their initial processors. A processor which contains a message initially in 
the correct quadrant may receive four transient messages, one across each 
link, that are travelling through the processor. Note, however, that there 
is no contention, so all four transient messages can be sent out at the next 
step. This is the only case in which a processor may contain five messages 
during the first s/2 time steps. In Figure 3.3, for example, processor (2, 2) 
contains message E which is in the correct quadrant, quadrant II. Message 
A is travelling from processor (0, 2) of quadrant II to processor ( 4, 6) of 
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Figure 3.3: Buffer requirements during the move step 

quadrant IV. MessageD is travelling from processor ( 4, 2) to processor (0, 2). 
Message B is travelling from processor (2, 0) to processor (2, 4). Message C 
is travelling from processor (2,4) to processor (2, 0). So, after two time 
steps, processor (2, 2) happens to have five messages, one that did not move 
(message E), and four transient messages (messages A, B, C, and D). 

During the first s/2 time steps of the move step, each message travelled 
along a row or along a column. During the next s/2 time steps, each message 
will travel only along a row, since the messages whose targets were on the 
diagonal have moved to the target row and only those messages will move 
to the target column. So, there will be at most five messages in a processor 
during next s/2 times steps at any time, one message that did not move 
during the entire move step, at most two messages that were delivered during 
the first s /2 time steps and that will stay till the end of the move step, and 
at most two transient messages that are moving along the row. In figure 3.3, 
for example, processor (7, 3) contains three messages after four time steps; 
message J that did not move, message K that was sent along the column 
and message H that was sent along the row. After another three time steps, 
messages G and H pass through processor (7, 3) (that is, messages G and H 
are transient messages), and messages J, Hand K stay until the end of the 
move step. So processor (7, 3) happens to contain five messages after seven 
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time steps, but it will contain only three messages after the move step. Note 
that all message movement during the second s /2 steps stops at the same 
time, because all messages that move travel exactly the same distance. 

After the move step, however, no processor will contain more than four 
messages. Initially, there is at most one message per processor. During the 
move step, a processor may keep the message that it contains initially. Since 
there is only one processor at the same relative position in each quadrant, 
and only those processors can send a message to each other, a processor may 
receive messages from at most three other processors in other quadrants. So 
after the move step a processor can contain up to four messages, one that 
was there initially and three more that are sent from processors in other 
quadrants. In Figure 3.2, for example, processor (6, 5) will contain four 
messages: D, F, and G from other quadrants and H from itself. 

This section can be summarized in the following theorem. 

Theorem 3.1 The move step of the first recursive stage on an s by s mesh 
will take s time steps, and no processor will contain more than five messages 
at any time. After the move step, no processor contains more than four 
messages. 

3.3 Smooth Step of Algorithm Q 

At the end of a move step, a processor may contain up to four messages. 
However, the number of messages in each quadrant does not exceed the 
number of processors in a quadrant. In order to recur, the precondition of 
Algorithm Q (at most one message per processor) must be restored to avoid 
exponential growth of the number of messages in a processor. The objective 
of the smooth step of each recursive stage is to rearrange the messages in each 
quadrant so that each processor contains only one message without moving 
any message out of the correct quadrant. 

Smoothing of a quadrant is done in two phases. The counting phase 
informs each processor about the initial and final configurations of messages 
in each quadrant that contains the processor. After the counting phase, each 
processor knows the number of messages it will receive from and send to its 
neighbors to accomplish smoothing in a quadrant. The distribution phase 
moves each message in the mesh to achieve the final configuration of the 
smooth step. During the distribution phase, processors first transmit and 
receive messages along rows and then transmit and receive messages along 
columns. (Messages are moving either along rows or along columns at any 
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time during smoothing, but not along both.) After the distribution phase, 
each processor will have at most one message. 

After the move step is applied to an s by s mesh, smoothing is done in 
the four s /2 by s /2 quadrants simultaneously and independently. Because no 
message or information is exchanged between processors in different quad­
rants, we describe smoothing on a single q by q square mesh. The counting 
and distribution phases are described in Sections 3.3.1 and 3.3.2 respectively. 

3.3.1 Counting 

Algorithm Q relies on smoothing, which takes a square submesh having sev­
eral messages in a processor and distributes the messages so that no processor 
contains more than one message. Each quadrant that undergoes smoothing 
IS 

a square mesh with q2 processors arranged in q rows and q columns; 
initially, no processor contains more than four messages; and the 
total number of messages in the quadrant is no greater than q2 . 

We'll assume that q is an even integer. As well, we will use the row-major 
index of each processor in the mesh as its address. Thus, for a q by q mesh, 
the address of the processor at (r, c) is given by rq + c where 0 :S r, c < q. 

To speed up the process of smoothing, we divide the square mesh into 
halves (top and bottom), and we perform counting and distribution on the 
two halves simultaneously and independently. If there are u messages in the 
top half before smoothing, and v messages in the bottom half, then u + v :S q2 • 

After the smooth step, each processor with index 0 through u - 1 and each 
processor with index q2- v through q2 -1 will contain a single message, while 
remaining processors will not contain any message. Note that u or v may be 
greater than the number of processors in the half. If the number of messages 
in the upper half is greater than the number of processors in the upper half, 
the excess messages spread into the lower half of the mesh. The same is true 
when there are excess messages in the lower half. In the rest of this section, 
we describe only the part of the algorithm for counting the upper half of the 
square mesh. The part of the algorithm for counting the lower half of the 
square mesh can be constructed by a simple transformation on the processor 
indices. 

We denote by C(r, c) the number of messages in the processor (r, c) before 
the counting phase; 0 :S C(r, c) :S 4 for all 0 :S r, c < q. The algorithm we will 
describe provides each processor in the mesh with the following information, 
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which will be used to determine the final configuration of each row and the 
flow of messages through the links during distribution: 

For a processor (r, c) in the upper half of the mesh, where 0 ::; r < q/2 
and 0::; c < q, 

1. the total number of messages in row r, that is, I:;;;;~ C(r, i), and 

2. the number of messages to the left of processor (r, c) in row r (that is, 
I:~;;;~ C(r, i) ), and 

3. the number of messages above the current row r, that is, the total 
number of messages in all the processors of rows 0 through r - 1 (that 
is, I:;;;;~ L:j;;~ C(i,j)). 

For the processor (r, c) in the lower half of the mesh, where q/2 ::; r < q 
and 0 ::; c < q, 

1. the total number of messages in row r, and 

2. the number of messages to the right of processor (r, c) in row r, and 

3. the number of messages below row r, that is, the total number of mes­
sages in the processors of row r + 1 through q - 1. 

We will describe the algorithm that counts the messages in the upper 
half of a mesh. If a mesh contains a single processor, there is no need to 
count, because the processor already has all information about the mesh. If 
a mesh contains more than one column (q > 1), the following procedure is 
used. (Recall that we treat only the upper half of the mesh.) 

In the following, we represent count information from eastern, western 
and northern neighbors byE, W, and N respectively. The number of mes­
sages contained in a processor is denoted by Z. Input from a nonexistent 
neighbor (at the edge of the network) or a neighbor that is not part of the 
mesh (of the current region) is 0. 

1. In parallel, for each row, a cumulative count of messages flows from 
the left end of each row to the right of the row (from west to east), 
with each processor sending to its eastern neighbor the value Z + W. 
The flow begins with the leftmost processor of each row sending to 
its eastern neighbor the value Z (since the leftmost processor has no 
western neighbor in the submesh and hence W is 0 by convention). 
This message wave continues for q - 1 steps. The value of the input 
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value W to each processor is equal to the number of messages to the 
left of the processor in the current row. Similarly and concurrently, 
the processors in the rows each send the value E + Z to their western 
neighbor. The flow begins with the rightmost processor of each row 
sending its western neighbor the value Z (since the rightmost processor 
has no eastern neighbor in the submesh and hence E is 0 by convention). 
This message wave continues for q - 1 steps. The value of the input 
value E to each processor is equal to the number of messages to the 
right in the current row. As soon as a processor receives the value E 
from its eastern neighbor and the value W from its western neighbor, 
it can compute the total number of messages in the current row, which 
is the value E + Z + W. Since this is done in parallel for each row, 
this part of the counting phase requires q - 1 steps. Note that the 
information passed in counting consists simply of an integer with no 
more than log2 4q bits. Because this may be substantially smaller than 
the size of a message being routed through the mesh, we refer to these 
as integer messages, and say that the first part of counting requires 
q - 1 integer message steps. 

2. As soon as a processor receives the values E and W, it can compute 
the value E + W + Z, the number of messages in the entire row and 
pass this information to the processor in· the row below it. Information 
thus passes along each column from the top row to the bottom row 
(of the upper half), informing each processor how many messages are 
contained in processors with smaller row indices. By convention, each 
processor in the top row receives the input N = 0 from its northern 
neighbor, and thus the value passed south by each processor is N + 
E + W + Z. Since counting is done in the upper and lower halves of a 
region independently, this requires q/2- 1 integer message steps, each 
with log2 q2 bits. Note that the value N provided to each processor by 
its northern neighbor is the total number of messages in the processors 
above the current row. Because processors in the middle of a row are 
the first to receive both E and W, the columnar information flow begins 
in the middle columns first, and gradually spreads to outer columns. 
The counting phase continues until the last processors on the outermost 
columns receive the information from their northern neighbors. 

Figure 3.4 shows an example of the counting phase on the upper half 
of an eight by eight mesh. Processors are represented by the squares; the 
row and column indices appear above each column and to the left of each 
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row. The number of messages in a processor is shown in the square. The 
arrows represent the information flow between processors. The direction of 
arrows is the direction of information flow, and the integer above or below 
the arrows is the value of the information. For example, as soon as processor 
(0, 3) receives the value 3 from its western neighbor and the value 7 from 
its eastern neighbor, it knows that there are 12 messages in row 0, since it 
has 2 messages. As soon as processor (0, 3) computes the value 12, the total 
number of messages in row 0, it passes the value to the southern neighbor. 
For another example, processor (1, 2) receives the value 7, 11, and 12 from 
its western, eastern, and northern neighbors respectively. Now the processor 
(1, 2) knows that there are 21 messages in row 1, since Z is 3, W is 7, and E 
is 11. It knows also that there are 12 messages in row 0, since N is 12. Now 
it passes the value 33 to its southern neighbor. 

Lemma 3.1 Counting a q by q square mesh requires 3q /2-2 integer message 
steps. 

Proof: Recall that the counting is performed on the upper and lower halves 
simultaneously. Step 1 of the procedure above is executed in parallel on 
each row. Since the information flow along columns begins last along the 
outermost columns, Step 2 begins on the outermost columns after q - 1 
integer message steps. Then, Step 2 will take q/2 - 1 integer message steps 
because the information flows involve only the upper or the lower half of the 
mesh. D 

3.3.2 Distribution 

After the counting phase is complete, distribution of the messages occurs in 
two phases, row movement and column movement. Row movement redis­
tributes the messages in each row so that no column of the mesh contains 
more than q messages. Roughly speaking, row movement spreads messages 
as evenly as possible within each row. Column movement redistributes mes­
sages in each column so that no processor has more than one message. If 
these phases do not overlap in time (that is, movement along rows is com­
pleted before movement along columns begins), no more than four buffers are 
needed. Contention for communication links can arise during both phases, 
but only of a restricted type since no message changes direction during either 
phase. 

Since processors initially have up to four messages, and each link can 
handle only one message at a time, messages compete for the links. During 
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Figure 3.4: Counting in the upper half of an 8 by 8 mesh. 

row movement, messages are treated as indistinguishable, so priorities are 
not used. During column movement, each messages is assigned a target and 
contention is resolved according to priorities based on the distance to be 
travelled: the message that must travel the farthest has the highest priority. 
The distance to be travelled is based on the target address which is assigned 
prior to the column movement. 

We first describe the row movement in a q by q submesh. The purpose 
of row movement is to distribute the messages in the submesh as evenly as 
possible across the columns of the submesh. This can be approximated by 
distributing the messages of each row as evenly as possible across the proces­
sors of each row. The only difficulty is making sure that, when the number 
of messages in a row is not evenly divisible by the number of processors, the 
'extra' messages of different rows are not placed in the same columns. Row 
movement handles this problem by making sure that the 'extra' messages of 
successive rows are placed in successive columns. Thus, if row 0 has k0 extra 
messages (that is, the number of messages mod q = k0 ), then processors in 
columns 0 through k0 - 1 each have one more message after row movement 
than the other processors of that row. And if row 1 has k1 extra messages, 
then these messages are placed in columns k0 through (k0 + k1 - 1) mod q. 
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For each row, only extra messages are 
shown. The set of extra messages com­
prises those that cannot be evenly dis­
tributed among the processors of a row. 
If a row has c processors, the number of 
extra messages is between 0 and c- 1. 
Extra messages in each row are dis­
tributed evenly through the columns. 
Note that wrap-around of the extra mes­
sages occurs in row 2. Columns 0 
through 4 each has three extra messages, 
while columns 5 through 7 have two ex­
tra messages. 
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Figure 3.5: Layout of extra messages after row movement 

Thus, the submesh row movement distributes the extra messages of each row 
evenly through the columns. Figure 3.5 illustrates how extra messages are 
arranged by row movement. 

We now describe how row movement rearranges each row in a q by q 
mesh. Since there is no interaction between rows and counting is done on 
two halves of the square separately, we will describe how the processors in 
the upper half perform row movement. 

Initially, each processor in the upper half of the square mesh has at most 
four messages. Messages are to be moved among processors in each row of the 
upper half to reach a specified final configuration, where a final configuration 
will have the following property: 

Final Configuration Property: For any submesh consisting of the first 
r rows, 0 ::; r < q/2, either the total number of messages in each column is 
the same, or there exists some k, such that the total number of messages in 
any column c < k is greater by one than the total number of messages in any 
column c' :::0: k. 

Note that the Final Configuration Property is an assertion about all sub­
meshes consisting of the first i rows, 1 ::; i ::; q/2. This implies, for example, 
that fori = 1, the messages must be distributed approximately evenly in the 
processors. More generally, it is easy to show by induction that the Final 
Configuration Property implies the following property: 
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Post Row Movement Property: For each row, the numbers 
of messages in any two processors either are equal, or differ only 
by one. Furthermore, if we consider the leftmost processor to be 
contiguous to the rightmost processor in a row, then the processors 
with an extra message are contiguous. 

Figure 3.6 shows an example of initial and final configurations for the 
upper half of an eight by eight square mesh. Processors are represented by 
squares; the row and column indices appear above each column and to the 
left of each row. The messages are shown with shaded circles. 

In the final configuration of Figure 3.6.b, the numbers of messages in 
two processors of any row differ by at most one. The Final Configuration 
Property is illustrated by considering the submesh consisting of the first three 
rows, rows 0, 1, and 2. Each of columns 0 through 4 contains five messages 
in this submesh, while each of columns 5 through 7 contains four messages. 
Moreover, in each row the processors with an extra message are positioned 
as described by the Post Row Movement Property; for example, processor 
(0, 3) contains two messages and processor (0, 4) contains one message in row 
0, while processor (1, 4) contains one more message than processor (1, 3) in 
row 1. 

We will now describe how each processor first computes the number of 
messages that it will contain in the final configuration and then determines 
the number of messages to send out and receive from its neighbors during 
row movement. From the counting phase, processor (r, c) in the upper half 
knows the following: 

• the total number of messages in row r, which we denote by N" and 

• the number of messages to the left of processor (r, c) in row r, which 
we denote by Lr," and 

• the total number of messages in rows 0 through r- 1, which we denote 

by sr-1· 

We define S_1 = 0, and note that Sr = Sr_1 + Nr for r 2: 0. 
We denote by Ir,c the number of messages contained in processor (r, c) 

initially, and we denote by Fr c the number of messages contained in processor , . 
(r, c) in the final configuration. We define Ur,c by the following equations: 

Ur,c - rsrfql 
Ur,c lSrfqj 

if 0 :::: c < ( sr mod q) 

if (Sr mod q) ::0: c < q 
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Figure 3.6: Row movement in the upper half of an 8 by 8 mesh. 
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Then U,,c is the total number of messages in column c of the submesh con­
sisting of the first r rows in the final configuration. 

Each processor ( r, c) determines F,,c by the following equation: 

(3.1) 

Lemma 3.2 The collection of Fr,c for 0 :':: r < q/2 and 0 :':: c < q, which are 
defined by Equation 3.1, satisfies the Final Configuration Property. That is, 
for each processor (r, c), F,,c is the number of messages in the final configu­
ration. 

Proof: By Equation 3.1, L~=o Fi,c = U,,c for 0 :':: c < q. For r 2 0, we do a 
case analysis: 

(Case 1) When S, mod q = 0: 
Since U,,c = lS,jqj for 0 :':: c < q, the number of messages in each 
column is the same. 

(Case 2) When S, mod q = k, where k i= 0: 
By definition of U,,c, 

for 0 :::; c < k, 
for k :':: c < q, 

U,,c = rs,fql = lS,/qJ + 1, and 
U,,c = lS,/qJ. 

This satisfies the Final Configuration Property. D 

For any row r, (N, mod q) processors contain rN,fql messages and are 
located in contiguous columns starting at S,_1 mod q through ( S, -1) mod q, 
while the rest of processors in that row contain lN,/qJ messages. Figure 3.6 
shows an example. In row 1, there are 21 messages, that is, N1 = 21. Since 
S0 mod 8 = 4, and S1 mod 8 = 1, each processor at columns 4, 5, 6, 7 and 0 
contains 3 U N1/8l) messages, and the rest contains 2 ( lNt/8 J) messages. In 
row 1 the column index of the last processor with an extra message is 0, and 
in row 2 the first position of the processor with an extra message is 1, since 
sl mod 8 is 1, where sl is 33 (the number of messages in rows 0 and 1). 

The information required to determine the shape of a row in the final 
configuration is common to all processors within a row; this information 
consists of the number of messages in the current row and the total number 
of messages in all previous rows. This means that, for the final configuration, 
each processor can determine the number of messages that will be in its row 
to its left in the final configuration. 

55 



After counting, each processor ( r, c) in the upper half can compute the 
following: 

1. the number of messages initially contained in the processor, that 1s, 

Jr,c' 

2. the number of messages to be contained in the processor after row 
movement, that is, Fr,c , 

3. the number of messages in row r to the left of the processor initially, 
that is, Lr,c , and 

4. the number of messages in row r to the left of the processor after row 
movement (that is, in final configuration), which we denote by L' . r,c 

Using these numbers, each processor can determine the number of mes­
sages it will send to or receive from its neighbors. For processor (r, c), 
the number of messages which will travel through the left link is given by 
the value (Lr,c- L~.J If this value is positive, processor (r, c) will receive 
( Lr c- L' ) messages from its left neighbor during row movement to achieve 

' r,c 
the final configuration. If the value is negative, processor (r, c) will send 
( L' - Lr c) messages to its left neighbor during row movement. The number 

r,c ' 
of messages which will travel through the right link is given by the value 
(Lr c + Ir c - L' - Fr c)· If this value is positive, processor (r, c) will send • • r,c , 

(Lrc+Irc-L' -Frc) messages to its right neighbor during row movement. ' ' r,c , . 
If the value is negative, processor (r, c) will receive (L~,c + Fr,c- Lr,c- Ir,c) 
messages from its right neighbor during row movement. 

Figure 3. 7 shows an example of flow calculation for the upper half of 
an eight by eight square mesh. Processors are represented by squares; the 
row and column indices appear above each column and to the left of each 
row. The number of messages initially contained in a processor is shown in 
the square as an integer above the diagonal, while the number of messages 
contained in the processor after row movement is shown as an integer below 
the diagonal. Arrows represent the channels between processors, and the 
arrows represent their direction. Integers on the arrows are the number of 
messages which flow through the channel. An arrow with no integer indicates 
that no message will flow through the channel. For processor (1, 3), there 
are 10 messages in the processors to its left initially and 7 messages in the 
final configuration, which means that 3 messages will be received from the 
left neighbor. 
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Figure 3. 7: Message traffic across channels during row movement 

We have described the algorithm for the upper half of the square mesh. 
For the lower half of the mesh, the same algorithm is applied, but the index 
needs to be transformed; that is, processor (i,j) in the lower half corresponds 
to processor ( q- 1- i, q- 1- j) in the upper half, where 0 :S: i,j < q. 

Once a processor in the mesh determines the number of messages that 
will travel through its channels, it sends messages to its neighbors as soon 
as those messages are available. Completion by all processors establishes the 
final configuration for row movement. 

The following lemma summarizes the effect of row movement. 

Lemma 3.3 After row movement in the mesh, there are at most q messages 
in any column of the mesh. 

Proof: Assume that there are xq + y messages in a mesh, where x and 
y are integers such that 0 :S: x :S: q and 0 :S: y < q. If there are uq + v 
messages in the upper half and lq + m messages in the lower half, where 
u, v, l and m are integers such that 0 :S: u, l :S: q and 0 :S: v, m < q, then 
xq+y= (u+l)q+ v+m, and 0 :S: v+m < 2q. 

(Case 1) When y = v = m = 0: 
Since v = m = 0, there are u + l messages in each column, that is, there 
are x :S: q messages in each column. 

(Case 2) When y = 0 and v + m = q: 
Note that v, m > 0. By the Final Configuration Property, in the upper 

57 



(a) (b) 

'\ 
u 

Figure 3.8: Message distribution after row movement 

half, there are u + 1 messages in each of columns 0 through v- 1, and 
u messages in the rest. Likewise, in the lower half, there are l messages 
in each of columns 0 through q- m -1, and l + 1 messages in the rest. 
Since v- 1 = q- m- 1, there are u +I+ 1 messages in each column. 
Hence, there are x ~ q messages in each column. 

(Case 3) When 0 < y = v + m < q: 
By the Final Configuration Property, there are u + l + 1 messages in 
each of columns 0 through v - 1 and q - m through q - 1. There are 
u + l messages in the rest. (See Figure 3.8.a.) So, u + l + 1 = x + 1 ~ q, 
since y > 0. 

(Case 4) When 0 < y = v + m -1 < q: 

D 

By the Final Configuration Property, there are u + l + 2 messages in 
each of columns q - m through v - 1, and u + l + 1 messages in the 
rest. (See Figure 3.8.b.) Since x = u + l + 1 and x < q, u + l + 2 ~ q. 

Lemma 3.4 Consider a q by q square mesh with at most four messages in 
each processor, and no more than 4q messages in each row. Row movement 
of the smooth step on this mesh takes at most 1.2q data message steps. 

Proof: From the counting phase, in the current row each processor knows 
the number of messages to its left and the number of messages to its right. 
By the Final Configuration Property, for the final configuration each pro­
cessor can compute the number of messages it will contain and the number 
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of messages to its left. Therefore, Theorem 2.1 of Chapter 2 applies, since 
the message movement in each row is independent and messages travel only 
along the current row. The lemma follows immediately by substituting b = 4 
and c = q. o 

After row movement, there are at most q messages in any column of the 
mesh. Moreover, each processor in the upper half of the mesh can determine 
the number of messages in the column currently above it, since the Final Con­
figuration Property holds for all processors in the upper half. For processor 
(r, c), Ur-I,c is the number of messages in rows 0 through r - 1 of column 
c. Likewise, each processor in the lower half of the mesh can determine the 
number of messages in the column currently below that processor. 

Since the movement of messages in each column is independent and the 
number of messages in the rows above (below) the processor is known to 
each processor in the upper (lower) half, the column movement of the square 
mesh is reduced to the one dimensional column movement problem discussed 
in Section 2.2.2. As described in Chapter 2, after column movement each 
processor in the mesh contains at most one message. 

Note that target addresses must be assigned for column movement, since 
messages may travel from the top half of an array into the bottom half or 
vice versa. It is not possible for all the processors of a column to calculate 
the flow that will occur during column movement as was done for row move­
ment. Figure 3.9 shows an example of column movement in an eight by eight 
square mesh. Each processor knows the target address of its messages. The 
arrows in Figure 3.9.a show the target of messages computed prior to column 
movement. 

The following lemma describes the time steps required for column move­
ment. 

Lemma 3.5 Assuming that q is a multiple of four, the column movement 
takes at most 3q /4 data message steps on a q by q square mesh in which each 
processor contains at most four messages. 

Proof: Immediate from Theorem 2.3 in Section 2.2.2. 0 

The following theorem summarizes the cost of the distribution phase. 

Theorem 3,2 The distribution phase in a q by q square mesh takes at most 
1.95q data message steps. During the distribution phase, no processor con­
tains more than four messages. 

Proof: The number of routing steps required follows immediately from 
Lemma 3.4 and Lemma 3.5. The buffer requirement follows immediately 
from Theorem 2.2 of Section 2.2. 0 
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Figure 3.9: Column movement in an 8 by 8 mesh. 
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3.4 Time Complexity and Buffer Requirement 

Algorithm Q is a recursive algorithm, in which recursion stages are applied 
to each subproblem simultaneously. In this section, we describe the time 
complexity of Algorithm Q. When the algorithm is applied to an n by n 
square mesh, it takes at most 5.5n message steps. At any time, Algorithm 
Q requires no more than five buffers per processor, regardless of the mesh 
size. Even though Algorithm Q is applicable to any rectangular mesh, for 
simplicity's sake, we will discuss the time complexity in the context of an n 
by n mesh, where n is a power of two. 

Evaluation of the time complexity of Algorithm Q is based on the follow­
ing assumptions: 

1. The computation in a processor is considerably faster than the packet 
transmission from one processor to another. Therefore, we equate the 
time needed to execute a routing algorithm with the time required for 
passing messages between processors. 

2. There are two kinds of messages: data messages and integer messages. 
A data message is a message with a destination address, flags, and data. 
An integer message is a message with only one integer field, which is 
used during the counting phase of the smooth step. 

3. Throughout this dissertation, tM denotes the cost of sending a data 
message packet from one processor to another, and tm denotes the cost 
of sending an integer message packet from one processor to another. 
Typically, tM > tm. 

Algorithm Q is based on successive partitionings of the mesh into four 
submeshes with the same size and shape and recursive applications of each 
recursive stage on submeshes simultaneously. Each recursive stage of Al­
gorithm Q consists of two steps, the move step and the smooth step. As 
mentioned before, a smooth step consists of two consecutive phases, count­
ing and distribution. 

To establish a recurrence equation for Algorithm Q, we measure the size 
of the problem by the length of a side of the square mesh, that is, by the 
number of processors in one side of the mesh. We let TQ(n) represent the cost 
of solving a routing problem with Algorithm Q on an n by n square mesh. 
The first recursive stage on an n by n mesh begins with partitioning the mesh 
into four quadrants. Next, the move step is performed on the n by n mesh. 
Then the smooth step is applied to four n/2 by n/2 quadrants simultaneously. 
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Since the destination address of each message is contained in the quadrant 
containing the current processor of the message after the first recursive stage, 
the second recursive stage can handle four quadrants as independent half­
size subproblems simultaneously. (That is, there is no message passing among 
quadrants.) This argument yields the following recurrence equation: 

T Q ( n) :S (cost of the move step on an n by n mesh) 

+(cost of the smooth step on four n/2 by n/2 quadrants) 
n 

+TQ(2) 

The cost of the move step on an n by n mesh is n data message steps 
by Theorem 3.1; that is, ntM. The smooth step consists of two phases, 
counting and distribution. The cost of counting on an n/2 by n/2 quadrant 
is (3n/4- 2) integer message steps by Lemma3.1; that is, (3n/4- 2)tm. The 
cost of distribution on a n/2 by n/2 quadrant is 0.975n data message steps 
by Theorem 3.2; that is, 0.975n tM. 

This gives the following recurrence equations: 

n 3n 
< TQ(2) +ntM + (4 -2)tm +0.975ntM 

n 3n 
< TQ( 2) + l.975n tM + 4tm 

Solving the equations, we get 

TQ(n) < 3.95ntM+l.5ntm 

< 4n tM + l.5n tm 

By Theorem 3.1, no processor contains more than five messages at any 
time during the move steps of Algorithm Q. By Theorem 3.2, no processor 
contains more than four messages at any time during the smooth steps. Both 
these bounds are independent of the mesh size. Therefore, Algorithm Q 
requires only five buffers in a processor. 

Theorem 3.3 Algorithm Q on an n by n army of processors requires five 
buffers, 4n data message steps and l.5n integer message steps. 

Proof: Immediate from the argument above. D 

62 



The size of the mesh is n/2 by n/2. Each 
processor in the hatched triangle contains 
four messages, and the total number of 
messages is n2 /4. After smoothing, each 
processor will receive a single message. So 
will the processor in the upper right cor­
ner. The nearest message is (1 - ,0)n 
steps away from the corner, which gives 
the lower bound of smoothing. 

Figure 3.10: Message layout for the lower bound of smoothing 

If each processor in a mesh has enough buffers ( n buffers for an n by n 
mesh), we can solve routing problems using an algorithm similar to Algo­
rithm Q, but without smoothing. If we apply Algorithm Q without smooth 
steps to an n by n mesh, messages can be delivered to their destination pro­
cessors in 2n tM. From this point, Algorithm Q pays 1.5n tm + 2n tM as the 
cost of having only a small constant number of buffers in a processor. 

The cost of move and smooth algorithms consists of the costs of moving 
and smoothing. In an n by n mesh, the lower bound for the move steps of 
Algorithm Q is 2n- 2 routing steps, which is determined by the distance be­
tween two processors on the opposite corners. The lower bound of smoothing 
on an n/2 by n/2 submesh is (1 -

2
./z)n; the bound is determined by the 

distance between the processor on the upper right corner and the nearest 
processor that has messages when n2 /4 messages are packed in the triangle 
on the lower left corner of the mesh. (See Figure 3.10.) Since smoothing has 
to be performed every recursive stage, the total cost of smoothing is at least 
(2- V'I/2) routing steps. Therefore, the total cost of Algorithm Q is at least 
3.3n routing steps for an n by n mesh if the move and smooth steps are not 
overlapped. Our algorithm described in this chapter has 4n data messages 
steps, which is close to the lower bound, 3.3n routing steps. But there is 
additional cost for counting, which requires 1.5n integer message steps. 

If a data message is much bigger than an integer message (therefore, 
tM ~ tm holds), Algorithm Q costs 4n tM to solve a routing problem. But, 
in practice, the setup cost of communication is not negligible compared to 
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actual transmission cost, so it may be more realistic not to ignore the cost of 
integer message, in which case Algorithm Q costs 5.5n routing steps. These 
costs are based on the assumption that the computation cost is negligible 
compared to the communication cost. In real machines, the computation 
cost in a processor is not free. Nevertheless, Algorithm Q can perform ad­
dress calculations by comparing a single bit in each of the row and column 
addresses of the destination processor with the corresponding bits of the 
current processor. Because the address computation can be done by two 
simple bit-wise logical operations, the computation cost will indeed be small 
compared to the communication cost. 

3.5 Restricted Broadcasting with Algorithm Q 

Algorithm Q can solve (restricted) broadcasting problems1 without addi­
tional buffers and routing cost because messages are duplicated appropri­
ately during the move steps and the new copies introduce no contention. 
This section describes the method by which a processor duplicates messages 
with multiple destinations during the move steps and the effect that message 
duplication has on the smooth steps of Algorithm Q. 

In broadcasting problems, initially each processor has at most one mes­
sage, but a message may have multiple destination addresses. The total 
number of destination addresses for all messages is no greater than the num­
ber of processors. After communication is complete, no processor will contain 
more than one message. To represent multiple destination addresses, we need 
to refine the destination address field of a message, since a simple binary rep­
resentation of a single address will not work anymore. Multiple destination 
addresses can be represented either as a list of processor addresses or by a 
mapping function that produces multiple destination addresses. 

The actual representation of multiple addresses for a message is not im­
portant for Algorithm Q, so long as a processor can examine the collection of 
destination addresses at each move step. We assume the representation cho­
sen meets this requirement. However, representation of multiple addresses 
may result in performance degradation of a routing algorithm since multiple 
addresses may require a longer message format. A longer message format 
could require a larger buffer for each message and more time (a slower clock) 
to send messages between processors. In this section, we do not consider the 
additional costs incurred by longer messages, and assume that these effects 

1 Defined in Section 1.3.4. 
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have been accommodated by adjusting the unit data message travelling time 
(that is, tM) and the buffer size. 

For each recursive stage Algorithm Q is modified as follows. At the be­
ginning of each move step, each processor examines the destination addresses 
of the message it contains and determines which quadrants contain destina­
tions of the message. A single copy of the message is sent to the processor 
at the same relative position in each quadrant that contains a destination 
address. Although a message may have multiple destination addresses in a 
single quadrant, only one copy of the message is sent to that quadrant. If 
the destination addresses of a message are contained in more than one quad­
rant, the processor makes an appropriate number of copies of the message 
and sends one copy to each of the quadrants. If one of the destination ad­
dresses is contained in the current quadrant, the processor keeps a copy of 
the message. 

Recall that a message with a single destination address is sent along the 
column first and along the row next when its target processor is located in 
the quadrant on the diagonal. For broadcasting, only a single copy of the 
message is sent along the column, even when destination addresses of the 
message are contained by the quadrants both above (or below) and on the 
diagonal. Thus, if a copy sent along the column from a bottom quadrant has 
destination addresses in both upper quadrants, a copy is made by the target 
processor as soon as the message finishes its movement along the column; 
the new copy is then sent along the row to the processor on the diagonal. 

In summary, a processor examines the message with multiple destination 
addresses and makes the proper number of copies, which may be two for the 
originating processor, but is no more than one for any other. Each copy of 
the message is sent to the corresponding processor in the correct quadrant 
as if there were no other copies. Specifically, in an s by s mesh, during the 
first s/2 steps, messages travel along the column and along the row. During 
the next s /2 steps, messages which need to travel another s /2 steps will 
travel along the row. Before the second s/2 step movement along the row, a 
message may be duplicated. 

Despite the need to duplicate messages, there is no contention for links 
during the move step. Even though two messages begin to travel from the 
same processor, they are moving in different directions, one along a row and 
the other along a column. By delaying copying messages until additional 
copies are needed, contention for a link along a column is avoided. 

At any time during the move steps, Algorithm Q requires no more than 
five buffers to handle broadcast problems. At the beginning of a move step, 
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the message in a processor may be made into three copies; one copy stays, 
and the others travel along the row and along the column. During the first 
half of the move step, a processor contains up to five messages, one that 
did not move and four transients. After the first half of the move step, a 
processor contains up to three messages: one that did not move, another 
from the row, and the third from the column. One of the three copies, the 
one sent along the column, may be copied again, and a copy is sent along 
the row in the second half of the move step. During the second half of the 
move step, a processor contains up to five messages, three that stay and two 
transients moving along the row. After the move step, no processor contains 
more than four messages; four messages would include one that did not move 
and three from processors in other quadrants. 

Figure 3.11 shows an example of the first recursive stage of Algorithm Q 
which solves a broadcasting problem on an eight by eight mesh. The des­
tination addresses are shown in the table; each message is associated with 
a list of destination addresses; some have a single address, and others have 
several addresses across the mesh. Figure 3.1l.b shows the original position 
of the messages and the paths they follow during the move step. Message A 
has two destination addresses, one in the current quadrant and one in the 
quadrant below. One copy of message A remains at processor (0, 1) and the 
other copy travels along the column. Message E has six destination addresses 
which cover four quadrants. Three copies exist during the first part of the 
move step; one remains at the current position, another travels along the 
row, and the other travels along the column. Another copy of message E is 
created by processor (1, 2) as soon as message E arrives at that processor, 
and a copy of message E travels along the row to processor (1, 6). Both mes­
sage J and a copy of message E are delivered to processor (1, 6) along the 
same path, but there is no contention because they travel during different 
time intervals. Figure 3.1l.c shows the result of the move step. No processor 
contains more than four messages. Although several copies of a message may 
co-exist in the mesh, each copy is in a different quadrant. 

The smooth step is not affected by the multiple destination addresses, 
because it is applied to each quadrant independently and is unaffected by 
destination addresses. After the move step, the number of messages in a 
quadrant does not exceed the number of processors in the quadrant, and no 
processor contains more than four messages. Since messages are treated as 
indistinguishable by the smooth step, the smooth step can be used for broad­
casting problems without modification by treating each copy of a message in 
the same way. 
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(a) Destination Table 
Message Destinations 

A (2,0) (5,3) 
B (2,1) (6,6) (7,3) 
c (2,2) 
D (2,3) 
E (0,1) (6,7) (3,4) 

(3,5) (5,0) (5,1) 
F (1,0) 
G (0,2) (6,3) 
H (0,6) (1,6) (2,6) 
J (1,7) 

(c) 
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Figure 3.11: Move and smooth steps for broadcasting 
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If we assume the time required to examine destination addresses, deter­
mine what copies are necessary, and make copies of messages is negligible 
compared to routing costs, the time complexity and buffer requirement of 
broadcasting are the same as those for routing. 

This section is summarized by the following theorem. 

Theorem 3.4 On an n by n mesh, Algorithm Q can solve a broadcast prob­
lem with five buffers per processor in 5.5n message steps if routing costs are 
the dominant expense. 

3.6 Extensions of Algorithm Q 
Algorithm Q partitions a mesh into four square submeshes at each recursive 
stage. It can be extended in two ways; one extension is to partition a two­
dimensional mesh into k2 square submeshes of the same shape and size, and 
the other is to partition a K-dimensional hypercube into 2K hypercubes with 
the same shape and size. We will describe both extensions of Algorithm Q 
and examine the effects and difficulties of these extensions. 

In Section 3.6.1, we explain the extension of Algorithm Q by partitioning 
a two dimensional mesh into k2 square submeshes. In this case, the move step 
of each recursive phase is no longer free from contention. That is, messages 
are delayed by contentions for links during move steps, because more than 
one message needs to travel over the same channel. The smooth step of each 
recursive step can be performed at the cost of additional time steps, because 
there are initially up to k2 messages in a processor. 

In Section 3.6.2, we will describe the extension to a K-dimensional mesh. 
Algorithm Q partitions a K-dimensional hypercube into 2K sub-hypercubes 
by dividing the cube into two sections along every axis of the cube. Move 
steps are not contention-free anymore, because the messages which will travel 
along the same axis may arrive. at their target processors through channels 
along several axes at the same time. Smooth steps can be done with K - 1 
row movements followed by a column movement. The counting phase of a 
smooth step must handle the K -dimensionality of the mesh. 

In Section 3.6.3, we will describe a method to apply Algorithm Q to 
an arbitrary square mesh. Since the size of mesh is not a power of two, the 
submesh size is not an even number at some recursive stage. We will describe 
methods to partition an odd size mesh and to determine target addresses. 
We will then examine modifications of move step and the costs of unbalanced 
quadrants. 
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3.6.1 Extended Algorithm Q for k2 Partitioning 

As a move and smooth algorithm begins routing operations by partitioning 
an n by n mesh into b congruent regions, Algorithm Q can be extended to 
partition a mesh into k2 square submeshes, each of which contains n/ k by njk 
processors, instead of four square submeshes. (Throughout this section, we 
assume that the size of mesh n is a power of k.) The extended Algorithm Q 
begins by partitioning the mesh into k2 square submeshes. It performs a move 
step followed by a smooth step and then recurs on the k2 submeshes, each of 
which is one k-th the size of the original. Like Algorithm Q, each processor in 
a mesh determines the submesh which contains the destination address of the 
messages that the processor contains. If a message is in the correct submesh 
(that is, the submesh that contains the destination address of the message), 
it does not travel during the move step. Otherwise, a message travels from 
its current position to the processor which has the same relative position in 
the correct submesh. Unlike the move step of Algorithm Q, the move step of 
the extended algorithm is not contention-free, in the sense that contention is 
possible because all messages cannot arrive at their target processors within 
the time bound imposed by the distance between the originating and target 
processors. Since up to k2 messages may move to any given processor and 
since the processor in a corner submesh may be unable to receive more than 
two messages per n/k time steps, it can take up to kn/2 time steps for the 
processor to receive k2 messages from the processors at the same relative 
position of other submeshes. See Figure 3.12 for a worst case example. Even 
though it is very unlikely that the worst case pattern occurs in more than 
one recursive stage, we cannot exclude the possibility when examining the 
time complexity. Note that fork ::0: 4, kn/2 is greater than 2(k -l)njk, the 
distance between the farthest pair of processors in the same relative position 
of submeshes. 

Unfortunately, it is difficult to find a strategy which accomplishes the 
move step in kn/2 time steps during the first recursive phase for an n by n 
mesh. To accomplish such a move step, a strategy has to make the messages 
heading to a processor come into the processor evenly through each link 
of the processor. That is, the number of messages over each channel to 
the processor has to be even for all channels. Since we are considering the 
extension of Algorithm Q, we will adapt the similar moving strategy to that 
of Algorithm Q during the move step. The rule is as follows: 

1. Each processor determines the correct quadrant for the message that 
the processor contains. Each processor contains at most one message 
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Targets of the messages in the hatched 
rows and columns belong to the lOwer 
left corner. Since the messages in the 
same subblock move in the same direc­
tion during each nfk step interval, only 
two out of the k 2 messages on the black 
spots will arrive at the target processor 
in the lower left corner subblock every 
nfk step interval. In this example, k 
is 4. 

Figure 3.12: Worst case move step of extended Algorithm Q 

initially. The target processor of each message is the processor at the 
same relative position in the correct square submesh. The messages 
begin to move simultaneously. Once a message starts moving, it has 
a higher priority than any message whkh is waiting for a channel or 
any message which is changing its direction of movement. If there 
is contention among moving messages, the message which is moving 
straight has priority; there can be only one message which is moving 
straight over a channel in the processor. The others are stored in the 
buffers and wait for the channel. If there is contention among messages 
which are in the buffers or which change direction, the message that 
will travel farthest has priority. 

2. If the target processor is in the same row but in another column, the 
message travels along the row until it arrives at the target column. This 
movement is accomplished by moving 0, nfk, 2n/k, ..... , or (k- l)n/k 
steps along the row. These messages will never suffer from any delay, 
because they begin to move immediately and march straight to their 
target processors. These messages will arrive at their target processors 
after at most (k- l)n/k time steps. 

3. If the target is in the same column but in another row, the message 
travels along the column until it arrives at the target row. This move­
ment is accomplished by moving 0, n/k; 2nfk, ..... , or (k -l)n/k steps 
along the column. These messages will never suffer from any delay, 
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because they begin to move immediately and march straight to their 
target processors. These messages will arrive at their target processors 
after at most (k- 1)n/k time steps. 

4. If the target is in another column and in another row, the message 
travels along the current column until it reaches the target row. Then 
it changes direction and travels to the target column along the row 
until it arrives at the target processor. The first movement along the 
column is accomplished by moving 0, n/k, 2n/k, ..... , or (k-1)n/k steps 
along the current column, and will be never delayed, because these 
messages begin to move immediately and march straight to the target 
row. But when the message is changing its direction of movement, it 
will suffer from delays because of contentions with messages moving 
straight ahead, messages waiting for a channel in the buffers, or other 
messages that arrived simultaneously on other channels which are also 
changing their direction of movement. 

Our strategy for a move step makes the channel utilization of a processor in 
the corner submesh very poor; up to k - 1 messages may come through a 
column channel, and up to k(k- 1) messages come through a row channel. 
With the movement strategy described above, the move step of the first phase 
for an n by n mesh requires ( k - 1 )n time steps to move all messages to the 
correct submeshes. 

During a move step, a processor may contain up to k2 + 2 messages. For 
the first (k- 1)n/k steps, there are at most (k2 - 4) messages that did not 
move and four transients. After (k- 1)n/k steps, no message travels along 
the column; that is, only two transient messages travel along the row. During 
the rest of the move step, a processor may contain up to k2 messages that 
did not move and two transient messages. 

At the end of the move step, a processor may contain up to k2 mes­
sages; one is from before the move step, and k2 - 1 have moved there from 
the corresponding processors in the other submeshes. However, the number 
of messages in the submesh does not exceed the number of processors in 
a submesh, because each message has a distinct destination address in the 
submesh. The smooth step follows the move step to re-establish the pre­
condition that each processor contains at most one message. The smooth 
step has two phases: counting and distribution. The details of the smooth 
step are the same as those of Algorithm Q except that there are up to k2 
messages in a processor; during the first recursive stage, the smooth step is 
applied to k2 submeshes of n/k by n/k size simultaneously. In keeping with 
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the theorems in Chapter 2, the smooth step of the first recursive stage for an 
n by n mesh requires l.5n/ k integer message steps and !~t(t~~~)n data mes­
sage steps, when k 2': 4 is even; the counting phase requires at most l.5njk 
integer message steps, the row movement of the distribution phase requires 
!f~~!~l n data message steps, and the column movement of the distribution 

phase requires k:;-1 n data message steps. When n = kP for some integer p 
and even integer k 2': 4, the complexity of the extended algorithm is given by 
the following system: 

T(1) - 0 

T(n) 
l.5n k(k2 + 2) k2- 1 

< T(n/k) + (k -1)ntM + -k-tm + 4(P + 1) ntM + k3 ntM 

which has the solution 

T( n) :S 
5k + 3 1.5 
-

4
-ntM + -k -_-

1 
ntm (when k 2': 4 is even) 

The number of time steps required for the extended Algorithm Q is lin­
early proportional to k, the number of submeshes along one side of the square. 
The extended Algorithm Q has the best performance when k = 4; that is, 
T(n) = 5.75n tM+0.5n tm. It takes 6.25n routing steps when dividing a mesh 
into 16 submeshes, compared to 5.5n routing steps in case of partition into 
four submeshes. Moreover, the buffer requirement increases as k increases. 
The cost of the counting phase decreases as k increases, but the costs of 
move step and distribution phase increase linearly with the value k. The 
performance of the extended Algorithm Q becomes worse with an increasing 
number of submeshes, because the algorithm utilizes only channels either 
along a row or along a column at certain times of each recursive stage, but 
the number of messages in a processor is increased quadratically. 

3.6.2 Extended Algorithm Q to a K Dimensional Mesh 

A K-dimensional mesh is a J( dimensional hypercube of processors, each of 
which is connected to two neighbors along each axis. So, each processor has 
21{ neighbors with which it can communicate in a single step. Algorithm 
Q can be extended by dividing a K dimensional mesh in the same way as 
that Algorithm Q divides a two dimensional mesh. Algorithm Q divides a 
K dimensional mesh into 2K identical hypercubes of half size along every 
axis; that is, Algorithm Q divides the mesh into two halves for every axis 
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by the plane which is perpendicular to that axis. For example, for a three 
dimensional n by n by n mesh, Algorithm Q will divide the mesh into eight 
cubes of size n/2 by n/2 by nj2, using three planes which are perpendicular 
to the x axis, the y axis and the z axis. In this section, we will briefly 
show that the move steps are no longer free from contention and that the 
number of message steps required in smoothing increases exponentially with 
the dimension, K. 

Consider a K dimensional hypercube which consists of nK processors. 
The size of the mesh is n for each side of the hypercube. Algorithm Q begins 
by dividing the K dimensional mesh into 2K identical sub-hypercubes, each 
with (n/2)K processors. During the move step of the first recursive stage, 
a processor may receive 2K - 1 messages from the corresponding processors 
of each sub-hypercube. The corresponding processor in the farthest sub­
hypercube is K n/2 steps away, so the move step requires at least K n/2 data 
message steps. But, unlike Algorithm Q in a two dimensional mesh, there is 
contention in the case of the K dimensional hypercube. 

A processor can receive up to K messages every n/2 steps from its K 
corresponding neighbors which are n/2 steps away. Since the corresponding 
processors in each of 2K sub-hypercubes may send a message to the same 
processor, the processor may receive up to 2K messages, one from each sub­
hypercube. In this case, the move step will take at least 2Knj2K steps. But 
this bound is too optimistic, since we assume that a processor receives K 
messages every n/2 steps. This assumption is unfair because there are K 
messages n/2 steps away, K(K -1)/2 messages n steps away, K(K -1)(K-
2)/3! messages 3n/2 steps away and so on. 

After the move step of the first recursive stage, processors may contain 
up to 2K messages. In order to recur, the smooth step rearranges messages 
so that each processor has at most one message. The smooth step operates 
on each sub-hypercube of size (n/2)I<. The details of the smooth step on 
a K dimensional mesh will be explained in Chapter 4. But now we briefly 
examine the time complexity of the smooth step. The smooth step consists of 
the counting phase and the distribution phase. The counting phase on a sub­
hypercube of size (n/2)K requires (2!(- 1)n/4 integer message steps. The 
distribution phase consists first of ( K - 1) row movements on the arrays of 
n/2 processors containing up to 2K messages, and consists of a single column 
movement on the array of n/2 processors containing up to 2K messages, 
two procedures which were explained in Chapter 2. If we assume that n is 

2K(2K+2) • 
2P, each row movement requires 4 (2K+J) ~ data message steps, wh1le each 

colunm movement requires 2~~1 ~ data message steps. 
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TQK(n) represents the optimistic cost required to solve a routing problem 
on a K dimensional hypercube mesh consisting of nK processors. By opti­
mistic, we mean that the cost of the move steps includes only the minimum 
cost imposed by the channel capacity without considering unbalanced traffic. 
We can construct the following recursive equations, where n = 2P: 

0 

By solving the above equations, we get 

2K 1 (K-1)2K(2K+2) 2K-l 
< KntM+(K-2)ntm+{ 4(2K+l) + 2K }ntM 

"" O(K2Kn tM) 

Using the above equation, we find that the cost increases linearly with 
the size of mesh. However, the cost increases exponentially in relation to 
the dimension of mesh. The dimension of the mesh, K, affects the cost in 
two ways; one is a K factor, which is linear, and the other is a 2K factor, 
which is exponential. The exponential increment of the cost comes mainly 
from the fact that the maximum number of a processor's messages during 
the smooth step increases exponentially in relation to the dimension of mesh, 
while channels along only a single axis are utilized in turn at any time during 
smoothing. We can conclude that Algorithm Q is inefficient for the higher 
dimensional mesh, since the cost increases exponentially. 

3.6.3 Algorithm Q on an Arbitrary Square Mesh 

When the size of a two-dimensional square mesh is an odd integer, the first 
recursive stage of Algorithm Q cannot partition the mesh into submeshes of 
the same size and shape. Instead, it is necessary to divide the mesh into 
submeshes of nearly the same size. In this section, we describe four methods 
to overcome difficulties caused by unbalanced quadrants and assess the costs 
incurred by uneven quadrants. We will show that Algorithm Q can be applied 
to an odd-sized mesh at the cost of additional routing steps, an additional 
buffer, or more complicated control structure. 
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Figure 3.13: Partition of a square mesh with odd size 

When the size of a square mesh is even, Algorithm Q divides the mesh 
into four identical quadrants; messages are sent to the same relative position 
of the correct quadrant during the move step. When the size of mesh is 
odd, Algorithm Q partitions the mesh into four quadrants, which may differ 
in size by one column or row or both. Because the quadrants are not the 
same size and shape, some processors in one quadrant do not correspond 
to any processor in a quadrant with a smaller size or different shape. Thus 
the move step must be modified in order to make it possible for messages 
to move to the target quadrant without conflict or with a few predictable 
conflicts. A modification of the move step will affect Algorithm Q in three 
ways. First, a processor may be required to perform additional computation 
to determine the target address of its message prior to the move step. Second, 
a processor may be required to execute a longer procedure to route messages 
to their target processors during the move step. Third, additional costs may 
be incurred from an increase in buffer requirements and the time complexity 
of the move and smooth steps. We will describe the target mappings and 
paths of messages from a bigger quadrant to a smaller quadrant and then 
discuss the buffer requirements and the time complexity. 

When the size of the mesh is odd, that is, 2s + 1 by 2s + 1, Algorithm Q 
partitions the mesh into quadrants of four different sizes: s + 1 by s + 1, s + 1 
by s, s by s + 1 and s by s. We index the submeshes as I, II, III, and IV, 
beginning from the top right and moving counter clockwise, as illustrated in 
Figure 3.13. We denote by processor (i,j) the processor at the i-th row and 
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(a) (b) 

Figure 3.14: Alternatives for special regions 

the j-th column of a submesh. 
Since the submeshes do not have the same size, we can partition each of 

the bigger submeshes into two regions; the first is the region which has the 
same size and shape as the smallest submesh, and the second is the rest of 
the submesh, which is to be treated specially. 

Figure 3.14 shows two ways of designating which parts of a mesh are to be 
special regions. The first way, illustrated in Figure 3.14.a, specifies that each 
processor in the middle row and column of the mesh will be part of a special 
region of submesh I, II or III. The second way, illustrated in Figure 3.14.b, 
specifies that each processor in the first row and column of the mesh will be 
part of a special region. The three methods of message movement we discuss 
all treat the subregions that are of the same size and shape as the smallest 
submesh in the usual way during the move step; that is, each message in 
these subregions is sent to the corresponding processor in the correct region. 
The methods differ only in which way they designate special regions, and in 
how the messages in the special regions are treated. 

The first mapping method treats the top row and the leftmost column 
of a mesh as special regions, as illustrated in Figure 3.14.b. The target of a 
message originating from an ordinary region is s steps away along a column, 
a row or both. A message in the upper ]eft-hand corner travels to the upper 
left hand corner of its target quadrant. Each other message originating in 
the leftmost column must travel s + 1 steps along a row if its target is in 
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The target of special region rows is the top 
row of the target quadrant. The target 
of special region columns is the leftmost 
column of the target quadrant. The gray 
area of submesh IV is also the target of 
messages from the ordinary region of each 
submesh. Therefore, the top (gray) row 
of submesh IV is the target of up to six 
messages. 

Figure 3.15: Targets of messages to Submesh IV of the first mapping 

a rightmost quadrant, and s steps along a column if it must travel along a 
column. Each message originating from the top row must travel s + 1 steps 
along a column if its target is in a lower quadrant, and s steps along a row 
if it must travel along a row. Figure 3.15 shows targets of messages destined 
to submesh IV. 

During the move steps of the first mapping scheme, messages except those 
in the top row of the mesh travel first to their target row and then travel 
to their target processors. In the top row of the mesh, messages travel to 
target column first if necessary, and then travel along a column. Therefore, 
the control procedure during the move step is simple. After the move step, 
the top leftmost processor of submesh IV may contain up to nine messages; 
four from the ordinary region of each submesh, one from the top leftmost 
processor of submesh I, one from the top leftmost processor of submesh III, 
and three from processors on the upper left corner of the special region in 
submesh II. The longest path length is 2s + 2· steps, that is, n + 1 steps. 

After the move step, processors in the top row of submesh IV may contain 
six messages except the leftmost processor, which may contain nine messages. 
Analysis shows that the presence of up to nine messages in the leftmost 
processor increases the (worst case) cost of smoothing by two steps. The total 
additional cost of smoothing is about 0.52n routing steps, because processors 
may contain up to six messages instead offour messages, and by Theorem 2.1, 
these additional messages requires about 0.26n more routing steps for row 
movement in the first recursive stage. 

In summary, this mapping method allows simple computation of target 
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addresses. The additional costs are four more buffers per processor (that 
is, nine buffers are required in a processor,) and 0.52n +log n routing steps, 
which include about 0.52n additional smoothing steps and log n additional 
move steps. 

The second mapping method requires a more complicated computation 
of target addresses than the previous method, but it allows a simple control 
procedure during the move step. The additional costs of the method are one 
more buffer per processor and O(log n) routing steps. 

In this mapping, we divide each submesh into two regions. The first is an 
ordinary region which has the same shape and size as the smallest submesh. 
The second is a special region which includes the middle row and column of 
the mesh, as illustrated in Figure 3.14.a. The target of messages originating 
from an ordinary region is the same relative position of the ordinary region of 
another submesh. Now, we describe how to determine the target of messages 
from the special region of a bigger submesh to a smaller submesh. 

We start with the target of messages to the smallest submesh IV. For 
0 :S: j < s, the target of a message from processor ( s, j) in submesh I is 
processor (s -1- j, 0) in submesh IV. For 0 ::;· j < s, the target of a message 
from processor (s,j) in submesh II is processor (j,s- 3) in submesh IV, 
as shown in Figure 3.16.a. For 0 ::; i < s, the target of a message from 
processpr (i, s) in submesh II is processor ( i, s- 2) in submesh IV. The target 
of a message from processor ( s, s) in sub mesh II is processor ( s - 1, s - 1) 
in submesh IV. For 0 ::; i < s, the target of message from processor ( i, s) 
in submesh III is processor ( i, s - 1) in submesh IV. These mappings from 
special regions to submesh IV are illustrated in Figure 3.16.b. 

The targets of messages heading to submesh I are determined as follows: 
For 0 ::; i ::; s, the target of a message from processor ( i, s) in submesh II is 
processor (i,s -1) in submesh I. For 0::; j < s, the target of a message from 
processor (s,j) in submesh II is processor (s,j) in submesh I. For 0::; i < s, 
the target of a message from processor (i,s) in submesh III is processor 
(i, s- 2) in submesh I. These are illustrated in Figure 3.17.a. 

The targets of messages heading to submesh III are determined as follows: 
For 0::; i < s, the target of a message from processor (i,s) in submesh II 
is processor ( i, s) in submesh III. For 0 :S: j < s, the target of a message 
from processor (s,j) in submesh II is processor (j,s -1) in submesh III. The 
target of a message from processor ( s, s) in submesh II is processor ( s - 1, s) 
in submesh III. For 0::; j < s, the target of messages from processor (s,j) 
in submesh I is processor (s- 1- j, 0) in submesh III. These are illustrated 
in Figure 3.17.b. 
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(a) (b) 

Figure 3.16: Targets of messages to Submesh IV of the second mapping 

(a) (b) 

Figure 3.17: Targets of messages to submeshes I and III of the second map­
pmg 
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During the move step, a message travels to its target processor along a 
column (if necessary) and then to the target processor along a row. There­
fore, each processor must check the target address of its messages and send 
them through appropriate channels. Most messages travel to their targets 
without conflict, but there may be static conflicts in the rightmost column 
of subregion III during the second half of the move step. Specifically, each 
processor ( i, s ), 0 ::; i < s, may have two messages that compete for the 
channel to the eastern neighbor. If there is contention, a processor will re­
solve it by giving priority to the message with the greater distance to travel. 
This contention is of little consequence, since there are at most two messages 
competing for any channel at any time during the move step. 

A message which travels the longest path from processor (0, 0) in submesh 
II to processor (0, 0) in submesh IV will be delayed one step at processor (0, s) 
in submesh III. This message requires 2s + 3 routing steps to reach its target. 
Therefore, since n = 2s + 1, the move step requires two more routing steps 
than that of Algorithm Q on an even size mesh. Analysis shows that the 
cost of smoothing will increase by at most two routing steps, since after the 
move step most processors will contain up to four messages except processors 
which are the targets of messages from special regions. The target processor 
of messages from special regions may contain up to five messages, and in any 
row of submeshes, there are at most four such processors. 

Since the additional costs of move and smooth steps are four routing 
steps, the total additional cost of move and smooth steps is 4log n routing 
steps. Moreover, this mapping method requires six buffers per processor, 
since in processors ( i, s-1) of submesh III and processors ( i, 0) of submesh IV, 
0 ::; i < s, there may be four messages that stay and two transients during 
the second half of the move step. In summary, this mapping method allows 
almost conflict-free move steps and requires only one additional buffer and 
4log n additional routing steps, but the computation of target addresses is 
more complicated. 

The third mapping scheme is more complicated in determining target 
addresses than the previous mapping schemes. It requires 0.3n additional 
routing steps and no additional buffers. The control procedure during the 
move step is almost same as the previous mapping schemes, but needs a small 
modification. We describe how to determine the target of a message moving 
from one submesh to another. There is no difficulty in mapping messages 
from a smaller submesh to a bigger submesh, and we will only discuss the 
troublesome cases. 

We first treat messages moving to submesh I, shown in Figure 3.18. When 
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For a message from the gray area of sub­
mesh II, its target in submesh I is a pro­
cessor on the same row of the gray area 
of submesh I. For a message from the 
hatched area of sub mesh III, its target in 
submesh I is a processor in the hatched 
area of submesh I. Submesh I and the 
white area of submesh II are congruent. 
The white area of sub mesh III is mapped 
to a proper subset of submesh I. 

Figure 3.18: Targets of messages to Submesh I of the third mapping 

a processor ( i, j) in submesh II has a message to send to submesh I, the target 
processor is processor (i,j) in submesh I for 0 :::; i < s + 1 and 0 :::; j < s. 
The target for any message from a processor ( i, s ), 0 :S: i < s + 1, is processor 
(i, s-1) in submesh I. Note that processor (i, s-1) in submesh I, 0 :S: i < s+1, 
is the target of two processors, (i,s- 1) and (i,s), in submesh II. Thus 
the processors in the rightmost column of submesh I will contain up to five 
messages after the move step. 

When 0 :S: i < s and 1 :S: j < s + 1 and a processor ( i, j) in sub mesh III 
has a message to send to sub mesh I, the target processor is processor ( i, j -1) 
in submesh I. For 0 :S: i < s, the target processor of a message in processor 
(i,O) in submesh III is processor (i,O) in submesh I. (Figure 3.18 illustrates 
targets of messages destined for submesh I.) Therefore, each processor (i, 0) 
in submesh I, 0 :S: i < s, will contain up to five messages after the move step. 

The smallest submesh among the partitions is submesh IV. Figure 3.19 
illustrates the targets of messages destined for sub mesh IV. When a processor 
(i,j) in submesh III, 0:::; i,j < s, has a message to send to submesh IV, the 
target is processor (i,j). For each processor (i, s) in submesh III, 0:::; i < s, 
the target is processor (i, s - 1) in submesh IV. That is, each processor 
(i,s -1) in submesh IV is the target of both processors (i,s -1) and (i,s) 
in submesh III. When a processor (i,j) in submesh I, 0 :::; i,j < s, has a 
message to send to submesh IV, the target is almost always processor ( i, j) 
in submesh IV. There is one exception; the target of the message contained in 
processor ( s -1, s -1) in submesh I is processor (s- 2, s- 2) in submesh IV, 
rather than processor (s -1,s -1). For each processor (s,j) in submesh I, 
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Figure 3.19: Targets of messages to Submesh IV of the third mapping 

0:::; j < s, the target is processor (s -1,j) in submesh IV. Finally, messages 
from the biggest submesh II can be mapped to the processors of the smallest 
submesh IV as follows. When a processor (i,j) in submesh II contains a 
message destined for submesh IV, its target processor is processor ( i -1, j -1) 
for 1:::; i,j < s + 1. There are four exceptions; the target of processor (1, 1) 
in submesh II is processor (1, 1) in submesh .JV instead of processor (0, 0), 
the target of processor (2, 1) in submesh II is processor (2, 1) in submesh IV 
instead of processor (1, 0), the target of processor (s, 1) in submesh II is 
processor ( s - 2, 1) in submesh IV instead of processor ( s - 1, 0), and the 
target of processor (1,s) is processor (1,s- 2) in submesh IV instead of 
processor (0, s - 1). Each processor (O,j) in submesh II, 1 :::; j < s + 1, 
sends messages to processor (O,j -1) in submesh IV. Each processor (i, 0), 
2 :::; i < s + 1, sends messages to processor (i- 1,0) in submesh IV. For 
processor (0,0) in submesh II, the target is processor (0, 0) in submesh IV. 
For processor (1,0) in submesh II, the target is processor (1,0) in submesh IV. 
The above mapping provides each processor in submesh II with a target for 
any message that has a destination in submesh IV. Moreover, no processor 
in submesh IV will contain more than five messages after the move step. 

The mapping from originating processor to target processor for each mes­
sage allows almost conflict-free movement of messages during the move step. 
Each processor sends messages along columns first then along rows. The only 
restriction is that the messages are not allowed to travel south during the 
time interval from s + 1 through 2s. Thus, each message that has to travel 
only south stays at the current processor (one short of its target) until time 
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2s and each message that has to move both south and in another direction 
travels in the direction other than south first, and then takes its final step 
south. This movement avoids the congestion that would result from having 
messages from two rows in the bottom row of the mesh. 

Since the message from processor (0,0) in submesh II destined for sub­
mesh IV must travel 2s + 2 steps and will be delayed one step at processor 
( s, 0) in submesh I during the movement, the move step on the 2s + 1 by 
2s + 1 mesh requires 2s + 3 routing steps; that is, n + 2 data message steps. 
During the move step, no processor requires more than five buffers at any 
time. Since the additional cost of each move step is two routing steps regard­
less of the size of mesh, the effect on the overall routing cost is at most 2log n 
data message steps. Moreover, no processor needs an additional buffer even 
though some processors may contain up to five messages after the move step. 

Although the number of messages in some processors in a small submesh 
is five instead of four, the total number of messages in the submesh does not 
exceed the number of processors in the submesh. Therefore, the procedure 
of smoothing is not affected except that some additional routing steps are 
required to handle rows in which processors may contain five messages. That 
is, in the top and bottom rows of submeshes III and IV, processors may 
contain five messages instead of four after the move step. On an n by n 
mesh, row movement of the distribution phase of smoothing requires a total 
of 1.5n data message steps when n is not a power of two, compared to 1.2n 
data message steps when n is a power of two. Column movement does not 
incur additional costs since at most two processors per column may contain 
five messages; other processors will contain up to four messages. Therefore, 
the cost of column movement during the distribution phase does not increase. 

In summary, we can handle the move and smooth steps on an n by n 
mesh, where n is not a power of two, for a cost of 2log n + 0.3n additional 
data message steps. But the control structure of each recursive stage becomes 
more complicated, and the computation of target addresses during move steps 
becomes more complex. 

We have described three mapping methods to implement Algorithm Q 
on a square mesh with odd size, and discussed the additional costs of each 
method. Each method requires different additional costs incurred by the 
modification of move step. Other methods are easy to conceive, and in prac­
tice, the user of Algorithm Q can choose an appropriate method according 
to the constraints of his network configuration. 
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3.6.4 Algorithm Q on a Rectangular Mesh 

In this section, we describe modifications that will enable Algorithm Q to be 
applied to a rectangular mesh. We first sketch the move and smooth steps 
and examine the time complexity and the buffer requirement when each 
dimension is a power of two. Next, we describe how to apply Algorithm Q 
to a rectangular mesh with an arbitrary number of rows and columns. 

We describe Algorithm Q on a rectangular mesh with r rows and c 
columns, where both r and c are powers of 2 and r > c. Algorithm Q 
begins by partitioning a mesh into four congruent quadrants with size r 12 
by cl2. A message in the correct quadrant does not travel during the move 
step. Otherwise, a message travels from its current location to the processor 
which has the same relative position in the correct quadrant. This movement 
is accomplished by moving 0 or r 12 steps along a column of the mesh, and 
then 0 or cl2 steps along a row. Thus, a message may remain in place, or 
it may travel cl2 steps along a row, or it may travel r 12 steps along a col­
umn, or it may travel r 12 steps along a column followed by cl2 steps along 
a row. When messages that must travel along both columns and rows arrive 
at the target row, all messages that travelled only along a column or row 
have already arrived at their target. Consequently, there is no conflict dur­
ing the move step. During the move step, a processor may contain up to five 
messages. The move step requires (r + c)l2 data message steps. 

At the end of the move step, a processor may contain up to four messages; 
one from the current quadrant and three from the other three quadrants. 
The smooth step is applied to each of the four quadrants simultaneously 
and independently to restore the condition that each processor contains at 
most one message. The smooth step on a r 12 by cl2 rectangular mesh con­
sists of the same counting and distribution phases described in Section 3.3.1 
and Section 3.3.2 respectively. Counting on a r 12 by cl2 rectangle requires 
r I 4 + cl2 - 2 integer message steps. Distribution consists of row movement 
followed by column movement. Since b = 4, row movement in an array of cl2 
processors requires 0.6c data message steps (by Theorem 2.1), and column 
movement in an array of r 12 processors requires 3r 18 data message steps (by 
Theorem 2.3). This ends the first recursive stage. 

The recursion terminates when each quadrant contains a single column 
of processors. When a quadrant has a single column of rIc processors, the 
smoothing step can be skipped and each message can travel directly to its 
destination without conflict. The last move step requires r I c-1 data message 
steps, since a quadrant consists of rIc processors. 
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T(r, c) represents the cost of solving a routing problem with Algorithm Q 
on an r by c rectangular mesh. The complexity of Algorithm Q on an r by 
c rectangular mesh is bounded by the following recurrence equations, when 
r = 28

, c = 21, and s > t: 

T(r/c, 1) = r/c -1 
r + c r c 3r 

T(r,c) < T(r/2,c/2) + -
2
-tM + (4 + 2- 2)tm + (S +0.6c)tM 

Solving the above recurrence equations, we get 

r r r 
( r - - + c - 1 )t M + (- - - + c - 1 - 2log c )tm 

c 2 2c 
T(r, c) :C: 

3r 3r +(-- - + 1.2c- 1.2)tM 
4 4c 

Dropping negative terms strengthens the inequality to the following: 

T(r, c) 
r 3r 

< (r + c)tM + (2 + c)tm + ( 4 + 1.2c)tM 

r 
= (1.75r + 2.2c)tM + (~ + c)tm 

When either r or cis not a power of two, the number of columns or rows of 
a submesh is not an even number at some recursive stage. In Section 3.6.3, we 
showed how Algorithm Q can partition a mesh into submeshes of nearly the 
same size. Specifically, the algorithm can divide a mesh into regions whose 
numbers of row and columns differ by at most one. The same technique can 
be used when the number of rows or columns of a rectangular mesh is an odd 
number. The target address of each message can be determined by a mapping 
similar to that developed for a square mesh and described in Section 3.6.3. 

The move step can be modified according to the mapping. Using Algo­
rithm Q on a rectangular mesh of odd size requires more message routing 
steps during both the move step and row movement of the smooth step. The 
additional cost incurred during the smooth step is a total of 0.3c data mes­
sage steps; the cost of row movement of the smooth step at the first recursive 
stage increases from 0.6c to 0. 75c, since processors in some rows may contain 
five messages after the move step, which in the final solution gives a total of 
1.5c instead of 1.2c. The additional cost of the move step is a total of 2log c 
data message steps, since two more steps are necessary at each move step. 
We can conclude that Algorithm Q is applicable to a two dimensional mesh 
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of any size, with an additional cost of no more than 0.3c data message steps. 
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Chapter 4 

Algorithm H 

The second algorithm we treat, which we call H (for 'Halves'), has a somewhat 
worse time complexity than Algorithm Q, but it requires only three buffers 
in each processor. Sections 4.2 and 4.3 describe the move and smooth steps 
of Algorithm H, and Section 4.4 describes the time complexity and buffer 
requirements in detail. Section 4.5 shows that broadcasting problems do not 
change the time complexity of Algorithm H. Section 4.6 discusses extensions 
of Algorithm H. 

4.1 Overview 

Algorithm H can be applied to a rectangular mesh of arbitrary size. But 
for simplicity's sake, we will describe Algorithm H for an n by n square 
mesh where n = 2P. In the special case of a square mesh, Algorithm H first 
partitions the mesh into two rectangular regions, each of which is half the 
mesh. The move and smooth steps are then performed on these two non­
square regions, after which every message is in the correct half of the array, 
and every processor has at most one message. The algorithm then partitions 
each of these two non-square regions into two square regions and performs 
move and smooth steps on those regions. Tlien the algorithm recurs. Like 
Algorithm Q, each stage ofthis algorithm moves each message into the correct 
subquadrant of the current partition. This algorithm, however, requires two 
separate move and smooth steps for each recursive stage. The first move 
step will move a message either 0 or n/2 positions along its current row; 
the second move step will move each message either 0 or n/2 steps along 
its current column. Thus, the maximum distance moved by any message in 
stage one of this algorithm is n, the same as for Algorithm Q. 



Algorithm H differs from Algorithm Q in the complexity of its smoothing 
step. In Algorithm H, at the end of each move step, a processor may contain 
up to two messages, one from before the move step and the other a message 
that was moved from the corresponding processor in another region either 
along a column (during the first move step of each recursive stage) or along a 
row (during the second move step of each recursive stage). We will show that 
the first smoothing step of the first stage divides an n by n mesh into halves 
and requires 2n steps, while the second smoothing step of the first stage 
divides each of the halves into quarters of the original mesh and requires 1.5n 
steps. Thus, adding in the n steps required for the move, the complexity of 
the algorithm is given by 

T(l) - 0 
T(n) < T(n/2) + 4.5n (for n = 2P) 

giving a solution of T(n)::; 9n. 

4.2 Move Steps of Algorithm H 

Algorithm His based on the successive partitioning of a mesh into two disjoint 
regions; at each recursive step, it divides a square mesh into two rectangular 
halves of the mesh, and then divides each of the two halves into two square 
submeshes of half size. By two successive partitionings at each (recursive) 
stage, Algorithm H recurs on four half-size square meshes simultaneously. 
This section describes the two move steps of the first recursive stage on an s 
by s square mesh. 

Consider a square mesh with s rows and s columns, where s = 2P. Each 
processor in the mesh has at most one message which has a distinct desti­
nation address. (We are now considering permutation problems only. We 
will consider restricted broadcasting problems later in Section 4.5.) The first 
move step begins by partitioning the s by s mesh into left and right halves 
that are s by s/2 rectangular meshes. Each processor in the mesh can deter­
mine which half it belongs to and which half contains the destination address 
of its message. The objective of the first move step is to rearrange the mes­
sages so that all messages are contained in the correct half, which contains 
the destination address of each message. 

As in the move step of Algorithm Q, the messages that must travel should 
be moved in a way which prevents contention and in which the number of 
messages in a processor is predictable after the move step. When a processor 
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has a message which is not in the correct half, the processor sends the message 
to the corresponding processor which is at the same relative position in the 
correct half (that is, the other half of the mesh). The corresponding processor 
in the correct half is s /2 steps away along the current row. When, however, 
a processor has a message which is in the correct half, the processor keeps 
the message during the first move step. Once each processor determines 
the target processor of its message by examining the destination address, 
messages which are not in the correct half travel simultaneously along their 
current row by s/2 steps. During this movement, there is no contention 
among messages, because there was only at most one message in a processor 
initially, and messages begin to travel simultaneously along the current row 
and stop at the same time after s /2 steps. During the first move step, only 
links along rows are active. Links are bidirectional, so no contention occurs 
since messages travel in lock step in both directions. The time required for 
the first move step is s /2 data message steps. 

After the first move step, each message is contained in the half which 
contains the destination address of the message. No processor contains more 
than two messages. The first smoothing step restores the condition that each 
processor contains at most one message, so that no processor will contain 
more than two messages after the second move step. (Without smoothing, 
two messages may compete for a channel during the second move step, and 
up to four messages may be contained in a processor after the second move 
step. Therefore, except that the time bound of move step increases due to 
delays, Algorithm H would be nearly equivalent to Q.) The first smoothing 
step is performed on both of the rectangular halves simultaneously and will 
be explained in Section 4.3. 

The second move step begins by partitioning each half of the mesh into 
two square quarters, each of whose size is s/2 by s/2, a division that results 
in a total of four half-size (s/2 by s/2) square submeshes. The second move 
step is applied to the two halves simultaneously, and the movements in the 
two halves are independent. Because the second move step occurs in the 
same way in both halves of the mesh, we describe the second move step only 
for the left half of the mesh. 

During the second move step, each processor determines the quarter which 
contains the destination address of the message that the processor contains. 
If a processor contains the message which is in the correct quarter, that 
processor keeps the message during the second move step. If a processor 
contains a message which is not in the correct quarter, it sends the message 
to the processor at the same relative position in the other quarter. The 
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corresponding processor is s/2 steps away along the current column. Note 
that the destination of a message is either in the lower quarter of the left 
half or in the upper quarter of the left half. It never belongs to the quarter 
on the lower right or on the upper right. 

The movement of messages begins in all processors of the mesh simultane­
ously. The target address of each message is either the originating processor 
itself or the processor which is s/2 steps away along the current column. No 
contention occurs during the second move step, because each processor has 
at most one message initially and all messages travel in lock step along a 
column, either up or down, and stop moving at the same time. Thus, the 
second move step takes s /2 data message steps to rearrange messages so that 
each message is contained in the correct quarter. 

After the second move step, each message is contained in the quarter 
which contains its destination address. No processor contains more than two 
messages; the two possible messages consist of one that has stayed during 
the second move step and another that came from the other quarter in the 
same half. Now the second smoothing step follows; it will be explained in 
Section 4.3. 

During both move steps, no processor contains more than three messages 
at any time; one which stays there and two transients. During the first move 
step, a processor contains up to two transient messages, since messages are 
moving both left and right along rows. During the second move step, a 
processor contains up to two transient messages, since messages are moving 
both up and down along columns. 

The following theorem summarizes this section. 

Theorem 4.1 The move steps of the first recursive phase on an s by s mesh 
will take a total of s (data message) steps, and no processor will contain more 
than three messages at any time. Specifically, the first and second move steps 
take s/2 (data message) steps each. After each move step, a processor may 
contain up to two messages. 

4.3 Smooth Steps of Algorithm H 

Recall that each recursive stage of Algorithm H has two separate move and 
smooth steps, which are applied to the submeshes of different sizes. At 
the end of each move step, a processor may contain up to two messages, 
but the number of messages in each subregion does not exceed the number 
of processors in the subregion. We will describe the two smooth steps of 
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the first recursive stage on an s by s square mesh. After the first move 
step, the first smooth step is performed on two disjoint s by s /2 rectangular 
submeshes simultaneously. After the second move step, the second smooth 
step is performed on four disjoint s /2 by s /2 square meshes simultaneously. 
Both smooth steps use basically the same procedure as Algorithm Q, except 
that the maximum number of messages in a processor is at most four in 
Algorithm Q. 

4.3.1 First Smooth Step 

The first smooth step is performed on each half of an s by s mesh simultane­
ously to establish the precondition that each processor contains at most one 
message and that each message is in the correct region. Since the smooth­
ing operations on two halves are independent and simultaneous, we will only 
describe the first smooth step for the left half of the mesh. 

The first smooth step takes two rectangular halves which have s rows and 
s /2 columns and rearranges the messages in the two halves at the same time. 
Assuming that s is 2q, we rephrase the first smooth step as follows: 

In a rectangular mesh with 2q rows and q columns, a processor has 
at most two messages initially, and the total number of messages 
does not exceed 2q2 • The smooth step rearranges the messages 
in the mesh so that no processor contains more than one message 
after the movement. 

Like the smooth step of algorithm Q, smoothing on the rectangular mesh 
is done in two phases, the counting phase and the distribution phase. The 
counting phase informs each processor in the mesh about the number of mes­
sages that each processor will receive from and send to its neighbors during 
the distribution phase. The distribution phase rearranges the messages as 
specified by the counting phase. During the distribution, the messages travel 
along rows first, a movement which is called row movement, and then along 
columns, a movement which is called column movement. 

Counting is performed by the same procedure described in Section 3.3.1 
of Chapter 3. The only difference is that the number of rows in Algorithm 
H is twice as large as the number in Algorithm Q. We briefly summarize the 
procedure and evaluate the number of time steps required. 

To speed up the counting phase, we divide the rectangular mesh into the 
upper and lower square submeshes, each of ~hich consists of q rows and q 
columns. Counting is performed on two square submeshes simultaneously, 
and we only describe the procedure for the upper square submesh. 
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1. Simultaneously, for each row, information flows from the left end of 
each row to the right of the row. At the same time, corresponding 
information flows from the right end of each row to the left end of the 
row. These two information waves provide the basis for computing the 
total number of messages in each row and the number of messages to 
the left of each processor in its current row. These integer message 
waves require q - 1 steps, so the first part of the counting phase takes 
q - 1 integer message steps. 

2. A second wave of messages now occurs in each column, with each pro­
cessor sending its southern neighbor the total number of messages in all 
rows above the current row. This wave originates in the top row. Since 
counting occurs concurrently in the upper and lower square submeshes, 
this wave requires q - 1 integer message steps. 

Lemma 4.1 The counting phase on a 2q by q rectangular mesh requires 
2q - 2 integer message steps. 

Proof: The last wave of Step 2 starts in the two outermost columns q - 1 
steps after Step 1 begins. Because Step 2 requires q - 1 integer messages 
steps, the counting of the upper or lower half requires 2q- 2 integer message 
steps. Since counting is performed on the lower and upper square submeshes 
simultaneously, it requires the same number of time steps as the counting of 
the upper square mesh. D 

Once counting is completed on the 2q by q rectangular mesh, distribution 
occurs in two phases. In the first phase, which we call row movement, the 
messages in the mesh are rearranged along their current rows so that no col­
umn of the mesh contains more than 2q messages. In the second phase, which 
we call column movement, the messages travel along their current columns 
so that no processor has more than one message. Row movement and col­
umn movement are done as in Algorithm Q, described in Section 3.3.2. The 
only difference is that there are no more than two messages per processor in 
Algorithm H, while there are up to four messages per processor in Algorithm 
Q. 

We briefly summarize row movement and column movement on the 2q by 
q rectangular mesh in which each processor has no more than two messages 
initially. Before row movement, each processor has to compute the num­
ber of messages which will flow through its channels. The counting phase 
provides sufficient information for each processor to calculate the number of 
messages that must move over each channel. Each processor follows the pro­
cedure described in Section 3.3.2 to determine the final configuration for row 
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movement. Once the computation is complete in each processor, message 
movement begins. For each row, there are q processors, each of which has 
up to two messages initially. By Theorem 2.1 of Chapter 2, row movement 
in each row requires at most q - 1 data message steps. Since row move­
ment is performed simultaneously in each row, row movement of a 2q by q 
rectangular mesh takes q - 1 data message steps. 

After row movement, each column of the rectangular mesh has no more 
than 2q messages, and no processor has more than two messages. When each 
processor determines its role in row movement, it also determines where its 
messages will be sent after row movement. The details are exactly same to 
those of Algorithm Q in Section 3.3.2 except that in Algorithm Q, a processor 
may contain up to four messages. For each column, there are 2q processors, 
the total number of messages in a column is no more than 2q, and the target 
of each message is already known. By Theorem 2.3 of Chapter 2, column 
movement takes at most q data message steps. Since column movement in 
each column is independent and performed simultaneously, column move­
ment on the 2q by q rectangular mesh requires at most q data message steps. 

During row movement, no processor contains more than two messages 
by Theorem 2.2 of Chapter 2, and there are no more than two messages 
in a processor after row movement. During column movement no processor 
contains more than two messages, since the number of messages does not 
increase except when an empty processor receives a single message from its 
northern or southern neighbor. During the distribution phase, therefore, no 
processor contains more than two messages at any time. 

Lemma 4.2 The distribution phase takes 2q- 1 data messages steps on the 
2q by q rectangular mesh when each processor in the mesh contains at most 
two messages initially. Specifically, row movement takes q - 1 data message 
steps, and column movement takes q data message steps. During distribution, 
no processor holds more than two messages at any time. 

Proof: By Theorem 2.1, row movement takes q-1 data message steps since 
b = 2 and c = q. By Theorem 2.3, column movement takes q data message 
steps since b = 2 and r = 2q. The number of messages in a processor during 
the movements does not exceed the maximum number of messages in the 
processor initially. By Theorem 2.2, no processor contains more than two 
messages, since b = 2. D 

After column movement, a processor in the left rectangular submesh con­
tains at most one message. With the same smoothing operation, a processor 
in the right rectangular submesh contains at most one message. The smooth 
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step is performed on the two rectangular submeshes simultaneously. After 
the first smooth step, each processor in the mesh contains at most one mes­
sage, and each message is contained in the correct half of the mesh. The 
following theorem summarizes the time complexity of the first smooth step. 

Theorem 4.2 The smooth step on a 2q by q rectangular mesh takes 2q - 1 
integer message steps and 2q - 1 data message steps when each processor in 
the mesh contains at most two messages initially. Specifically, the counting 
phase takes 2q - 1 integer message steps and the distribution phase 2q - 1 
data message steps. At any time during the smooth step, no processor requires 
more than two buffers. 

4.3.2 Second Smooth Step 

The second move step began with partitioning each of two rectangular halves 
into two s /2 by s /2 square submeshes. After the second move step, each pro­
cessor may contain up to two messages. But each message is contained in the 
quarter which contains its destination address·. In order to recur, the second 
smooth step rearranges the messages in each of those four quarters so that no 
processor contains more than one message. The second smoothing operation 
is performed on each s /2 by s /2 quarter independently and simultaneously. 

Each configuration of the second smooth step of Algorithm H can occur in 
the smooth step of Algorithm Q. It follows that the same smoothing process 
is adequate, and it is, in fact, used without change. The only difference is 
that the maximum number of messages in a processor in Algorithm H is two 
rather than four. We will now briefly analyze the time complexity of the 
second smooth step of Algorithm H. 

The counting phase is exactly the same as that of Algorithm Q. Since the 
number of messages in a processor does not affect the counting procedure, 
the time complexity is the same; that is, by Lemma 3.1, the counting phase 
of the second smooth step in Algorithm H takes 3s /4 - 2 integer message 
steps. 

The distribution phase is the same except that the number of messages 
in a processor is at most two rather than four as in the case of Algorithm 
Q. Since the number of messages initially in a processor affects the time 
complexity, we need to examine the number of time steps required for the 
row and column movements. 

In the case of Algorithm H, for each row, there are q processors, and each 
processor contains no more than two messages, so row movement takes at 
most q -1 data message steps by Theorem 2.1 of Chapter 2. After row move-
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ment, there are at most two messages in each processor. For each column, 
there are q processors, and each processor contains at most two messages 
before column movement begins. Column movement takes at most ql2 data 
message steps. (We assume that q is even for simplicity's sake.) During row 
and column movement, by Theorem 2.2 no processor contains more than two 
messages at any time, since the maximum number of messages in a processor 
prior to each movement is two. 

The following theorem summarizes the requirements during the second 
smooth step. 

Theorem 4.3 The second smooth step in Algorithm H for a q by q quarter 
takes 3ql2- 2 integer message steps and 3ql2 -1 data message steps, where 
q is even. At any time during the second move step, no processor contains 
more than two messages. 

Proof: Immediate from Theorems 2.1, 2.2, and 2.3. 
The following theorem concludes this section. 

Theorem 4.4 The two smooth steps on an s by s mesh take a total of7sl4-
4 integer message steps and 7sl4-2 data message steps, where sis a multiple 
of four. No more than two buffers are required at any time during the smooth 
steps. 

Proof: From Theorem 4.2, the first smooth step takes s- 2 integer message 
steps and s - 1 data message steps. From Theorem 4.3, the second smooth 
step takes 3s I 4 - 2 integer message steps and 3s I 4 - 1 data message steps. 
The theorem follows immediately. 

4.4 Time Complexity and Buffer Requirement 

In this section, we show that Algorithm H applied to an n by n square mesh 
requires 9n message steps, consisting of 5.5n data message steps and 3.5n 
integer message steps. At any time during routing, Algorithm H requires 
at most three buffers per processor regardless of the size of the mesh. In 
this section, we derive the requirements of Algorithm H on an n by n square 
mesh where n is a power of two. However, the results of this section can 
be generalized to obtain the complexity of Algorithm H for an arbitrary 
rectangular mesh. 

To compare the complexities of Algorithms Q and H, we will use the same 
assumptions as in Section 3.4 (stated in page 61). We denote by TH(n) the 
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cost of solving a routing problem with Algorithm H on an n by n square 
mesh. We will now establish a recurrence relation for TH(n). The first recur­
sive stage of Algorithm H on an n by n square mesh begins by partitioning 
the mesh into two rectangular halves, and the first move step follows. Then 
the first smooth step is performed on two n by n/2 halves simultaneously, 
which leaves two rectangular halves that constitute the independent routing 
problems. The algorithm then partitions each of those two rectangular re­
gions into two square meshes and performs the second move step on two n 
by n/2 meshes simultaneously. Then, the second smooth step ends the first 
recursive stage by rearranging messages in the four square meshes simultane­
ously. Algorithm H then recurs on four submeshes of half size simultaneously. 
Thus, the following recurrence equation holds if n is a power of two. 

T H( n) ::; (cost of the first move step on the n by n mesh) 

+(cost of the first smooth step on then by n/2 mesh) 

+(cost of the second move step on then by n/2 mesh) 

+(cost of the second smooth step on the n/2 by n/2 mesh) 

+TH(n/2) 

By Theorem 4.1, the cost of the first move step and the second move step 
is a total of n data message steps, that is, n tM. By Theorem 4.2, the first 
smooth step on the n by n/2 mesh takes n - 2 integer message steps and 
n -1 data message steps, that is, (n- 2)tm + (n -1)tM. By Theorem 4.3, the 
second smooth step on the n/2 by n/2 mesh takes 3n/4- 2 integer message 
steps and 3n/ 4- 1 data message steps, that is, (3n/4- 2)tm + (3n/4- 1 )tM. 
The following recurrence equations are obtained. 

TH(1) - 0 

TH(n) < TH(n/2)+ntM+(n..:.2)tm+(n-1)tM 

+(3n/4- 2)tm + (3n/4 -1)tM 
< TH(n/2)+2.75ntM+l.75ntm 

Solving the equations, we get 

During the move steps of Algorithm H, no processor contains more than 
three messages at any time, regardless of mesh size, by Theorem 4.1. During 
the smooth steps, no processor contains more than two messages at any time, 
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regardless of mesh size, by Theorems 4.2 and 4.3. So Algorithm H requires 
only three buffers in a processor, regardless of mesh size. 

Theorem 4.5 If n is a power of two, then Algorithm H on an n by n mesh 
requires three buffers, 5.5n data message steps and 3.5n integer message steps 
to route any permutation problem. 

Proof: Immediate from the argument above. 

4.5 Restricted Broadcasting with Algorithm H 

Algorithm H can solve broadcasting problems without additional buffers or 
routing costs because messages are duplicated appropriately during the move 
steps, and because new copies introduce no contention. Since each processor 
will receive at most one message in the final configuration, message copying 
does not introduce any change into the smooth steps. Even though the mes­
sages are duplicated during the move steps, the new copies do not violate 
the condition that the number of messages in a subregion is no greater than 
the number of processor in the subregion. In this section, we describe the 
method by which during the move steps, a processor makes copies of a mes­
sage with multiple destination addresses and then show that the new copies 
of messages do not alter the complexity of the smooth steps. 

Recall that for a broadcasting problem, each processor initially has at 
most one message with a single or several destination address( es ), and that 
each destination address of a message is distinct. Therefore, no processor 
will receive more than one message in the final configuration. As in Algo­
rithm Q, we assume that the destination address of a message is contained in 
the message packet and that each processor can examine all the destination 
addresses of a message without any additional costs. 

Prior to each move step, Algorithm H partitions a mesh into two regions 
with the same size and shape. Then, each processor examines the destination 
address of its message and determines whether the message will move to the 
other region of the mesh or will stay in the current processor. In a broadcast­
ing problem, a message has a list of one or more destination addresses. For 
each message in a processor, all destinations of the message are contained in 
the current region, or all entries are contained in the other region, or some 
entries are contained in the current region and the rest of the entries are 
contained in the other region. If all destination addresses are in the current 
region, the message stays in the current processor as if it had a single destina­
tion address contained in the current region. If all destination addresses are 
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contained in the other region, the message will move to the processor at the 
same relative position of the other region along the current row or column 
during the move step, as if it had a single destination address contained in 
the other region. If some destination addresses are contained in the current 
region and the rest are in the other region, the processor duplicates the mes­
sage, keeps one copy, and sends the other copy to the corresponding processor 
in the other region. In short, a processor examines destination addresses of 
each message and either treats the message as one with only a single destina­
tion address or duplicates the message, keeps one copy and sends the other 
copy as if each of them were a message with a single destination address. 

We now describe in detail how a processor copies and sends its message 
during the first recursive stage on an n by n square mesh. Recall that each 
processor has at most one message and that this condition is restored after 
each move step. The first move step begins with partitioning the mesh into 
left and right halves of rectangular shape. Each processor then examines the 
destination addresses of its message. If the destinations of the message are 
contained either only in the left half or only in the right half, the processor 
keeps the message or sends it to the other half. If the destinations of the 
message occur in both halves of the mesh, the processor duplicates the mes­
sage. Then, the current processor keeps one copy of the message during the 
first move step and sends another copy to the corresponding processor in the 
other half along a row, which takes n/2 data message steps. During the first 
move step, no contention occurs since all messages that travel begin to move 
and stop moving at the same time. Note that in each processor, there is at 
most one copy of a message which has to travel during the first move step. 

The second move step is similar to the first move step. Prior to the second 
move step, Algorithm H divides each of two rectangular halves into two 
square quarters. Each processor examines the destination addresses of each 
message and determines which quarters contain destinations of the message. 
If the destination addresses of a message span only a single quarter, the 
message is sent to the correct quarter. If the destination addresses span both 
quarters of the same half, the message is duplicated. One copy is sent to the 
other quarter in s /2 steps along a column while the other copy is kept in the 
current processor. It is clear that no contention occurs during the second 
move step for the same reason as in the first move step. 

An example is given in Figure 4.1. In Figure 4.1.b, messages B and 
E are duplicated, and one copy of each message is sent to the other half. 
Messages A, G and H are not duplicated since all the destination addresses 
are contained in the same half of the mesh. Messages A, F and H do not 
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(a) Destination Table 
Message A B c D E F G H J 
Desti- (2,0) (2,1) (2,2) (2,3) (0,1)(6,7) (1,0) (0,2) (0,6) (1,7) 
nations (5,3) (6,6) (3,4)(5,0) (6,3) (1,6) 

(7,3) (3,5)(5,1) (2,6) 

(b) 0 2 3 4 5 6 7 (C) 0 2 3 4 5 6 7 

0 A D 0 AD 

J J 

2 2 

3 3 

4 I® c 4 BC B 

5 lcv 5 E E 

6 G 6 G 

7 F H 7 F H 

(d) 0 2 3 4 5 6 7 (e) o 2 3 4 5 6 7 

0 '® D J 0 A D J 

2 2 B 

3 3 c E G F E H 

4 4 A 

5 5 

6 B 6 B 

7 c ® I® F B '© H 7 E G B E 

Figure 4.1: Broadcasting with Algorithm H 
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move since they are in the correct half. Messages C and J are not duplicated 
but travel to the processors on the right half. Message G travels to the 
left half as a single message even though it has two destination addresses. In 
Figure 4.l.d, messages A and G are duplicated, and one copy of each message 
is sent to the other quarter in the same half. Message H is not duplicated 
again, since all destination addresses are contained in the upper right quarter. 
Messages E in both halves are duplicated and sent to the proper quarters. 
But message B in the lower right quarter is not duplicated, while message 
B in the lower left quarter is duplicated and sent to the proper quarters. 
Messages D and J stay, and messages C and F are sent to the processors in 
the correct quarter. 

After the move steps, no processor will contain more than two messages, 
these being one which did not move and one which has come from the other 
region. Since all destination addresses of messages in the same region are 
distinct, the number of destination addresses of messages in a region does not 
exceed the number of processors, even though some messages have multiple 
destination addresses. 

Although messages must be copied during the move steps, no additional 
communication cost is incurred over that of partial permutation problems. 
There are no additional costs for the smooth steps. Hence, the time complex­
ity of Algorithm H is not changed for any broadcasting problem if we assume 
the costs of examining address lists and copying are negligible compared to 
the communication costs. The new copies of duplicated messages also do 
not require additional buffers, since only one copy travels between any two 
regions. In practice, ·however, the multiple destination addresses may require 
a longer message format. ·The longer message may require more communi­
cation time and bigger buffers. We did not consider these costs, since they 
can be accommodated by adjusting the data message travelling time and the 
buffer size. 

Theorem 4.6 Algorithm H can solve any restricted broadcasting problem. 
No additional buffers are required, although buffers may be larger since mes­
sage packets must contain a list of destination.addresses. No additional com­
munication steps are required, although steps may be larger to transmit the 
larger message packets. In addition, prior to each move step, a processor 
must examine the list of addresses of its message, and possibly make a copy. 
Thus, on an n by n mesh, Algorithm H can solve any restricted broadcasting 
problem with three buffers per processor in 5.5n data message steps and 3.5n 
integer message steps if routing costs are the dominant expense. 
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Theorem 4.6 can be generalized to a mesh with an arbitrary size. We 
will describe Algorithm H for an arbitrary size mesh later in Section 4.6.4. 
On any size or shape mesh, Algorithm H can solve restricted broadcasting 
problems with the same costs as solving (partial) permutation problems. 

4.6 Extensions of Algorithm H 

Algorithm H partitions a two-dimensional mesh into two submeshes succes­
sively at each recursive stage. It can be extended in three independent ways. 
First, the algorithm can be extended to dimensions higher than two. A sec­
ond extension is to partition a mesh into k strip submeshes of the same shape 
and size. Third, the algorithm can also be generalized to apply to dimensions 
that are not powers of two. In this section, we describe several illustrative 
extensions and analyze the complexity of each, although presentation of a 
completely general result is not included. 

In Section 4.6.1, we extend Algorithm H to a three dimensional mesh, 
and in Section 4.6.2, we generalize it to a K-dimensional mesh. We evaluate 
the costs of these extensions. These sections assume a hypercube mesh of 
size n, where n is a power of two. 

In Section 4.6.3, we explain an extension of Algorithm H which partitions 
a two dimensional mesh into k strip submeshes vertically and then horizon­
tally. This extended version requires fewer routing steps as k increases, but 
the buffer requirement increases. We assume that the mesh size n is a power 
of k. 

In Section 4.6.4, we describe a method to apply Algorithm H to an ar­
bitrary two dimensional square mesh. Since the size of the mesh is not a 
power of two, the submesh size is not an even number at some recursive 
stage. We will describe how to partition an odd size mesh and to determine 
target addresses and show that only minor modifications are necessary for 
the move and smooth steps and no additional cost is incurred by unbalanced 
partitions. 

4.6.1 Extension to a Three Dimensional Mesh 

In this section, we extend Algorithm H to a three dimensional mesh and 
examine time complexity and buffer requirements. We show that for an n 
by n by n three dimensional mesh, where n = 2P, the extended Algorithm H 
requires three buffers per processor and 22n message steps; specifically, it 
requires 12.5n data message steps and 9.5n integer message steps. 
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A three dimensional mesh is a cube of processors in which each interior 
processor is connected to six neighbors: two neighbors along the x axis, 
two neighbors along the y axis, and two neighbors along the z axis. The 
processors on the boundaries have no neighbors on one side of some axes. 
A three dimensional mesh of size n X n x n consists of N processors, where 
N = n3 • The address of each processor is the triple of three indices (x, y, z), 
which indicate the location of the processor along each axis. We will mean 
by an "x-row" a one dimensional array of processors whose y and z indices 
are specified by some constants. Any x-row is parallel to the x-axis. We 
will assign "y-row" and "z-row" similar meanings. The "x-row index", "y­
row index" and "z-row index" are given by the values yn + z, zn + x, and 
xn + y respectively. We will use the term "yz-plane" to represent a two 
dimensional mesh of processors whose x index is specified by some constant. 
The "yz-plane index" is given by the value x. We will also assign "xz-plane" 
and "xy-plane" similar meanings. Note that an x-row is perpendicular to a 
yz-plane. 

In a two dimensional mesh, each recursive stage of Algorithm H performs 
two separate move and smooth steps. The extension of Algorithm H to 
a three dimensional mesh performs three separate move and smooth steps 
at each recursive stage. The first stage of recursion begins by dividing a 
three dimensional mesh into two disjoint congruent regions along the z axis; 
that is, a cube of processors is divided into two identical halves by a plane 
perpendicular to the z axis. In the first move step, each message whose 
destination address is not contained in the current half is moved to the correct 
half along the z axis. Messages which are not in the correct half travel the 
same distance, and all movements are performed within z-rows; therefore, no 
contention occurs among messages. 

After the first move step, a processor may have up to two messages, but 
the total number of messages in each half of the cube does not exceed the 
total number of processors in that half. Then the smooth step follows to 
restore the condition that each processor have at most one message. During 
the smooth step (see detailed descriptions on page 104 in this section), the 
messages are rearranged three times, along each axis. That is, messages are 
first distributed within each z-row so that the number of messages contained 
in any xy-plane differs from that of any other xy-plane by at most one. 
Next, the messages are moved within each y-row so that no x-row has more 
messages than the number of processors in that x-row. Finally, the messages 
are moved within each x-row, so that each pro.cessor in the cube has at most 
one message. 
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The second move step begins by dividing each of two halves into two 
congruent quarters of the original cube. That is, both halves are divided 
by a plane perpendicular to the y axis. Like the second move and smooth 
steps in a two dimensional mesh, the extended Algorithm H moves messages 
between quarters and then smoothes each quarter of the three dimensional 
mesh independently. After the second move and smooth steps, a processor in 
each quarter has at most one message whose destination address is contained 
in that quarter. 

The third move and smooth steps divide each of the four quarters into 
two congruent cubes by a plane perpendicular to the x axis. The extended 
Algorithm H moves messages between the cubes and then smoothes the eight 
cubes simultaneously so that each processor in the three dimensional mesh 
has at most one message. Then the algorithm recurs on the half-size three 
dimensional subcubes of the original n by n by n cube. 

Move steps in each recursion stage of three dimensional Algorithm H are 
very similar to those in the two dimensional case. Let us assume that the 
size of the current cube is n x n x n. During the first move step, the three 
dimensional mesh is divided into two halves by a plane perpendicular to the 
z axis, and the messages move parallel to the z axis. (See Figure 4.2.) Each 
message may remain in the current processor or travel along the z axis to the 
other half's corresponding processor, which is n/2 steps away. There is no 
contention among messages during movement along the z axis, because every 
message is moving parallel to the z axis. Like the first move step, the second 
move step divides the mesh into four quarters with a plane perpendicular to 
the y axis, and the messages travel parallel to the y axis. Likewise, the third 
move step divides the mesh by a plane perpendicular to the x axis into eight 
identical cubes, and the messages travel parallel to the x axis. We can see 
that each of the second and third move steps also takes n/2 data message 
steps. 

Each smooth step on a three dimensional mesh consists of two phases, 
counting and distribution. We denote by C(x, y, z) the number of messages 
in processor ( x, y, z) before the counting phase. Then, the counting phase 
informs each processor (x, y, z) of three numbers: 

1. the total number of messages contained in the current z-row's proces­
sors with a smaller processor index than processor (x,y,z), that Is, 
L:Z:~ C(x, y, k), 

2. the total number of messages in the current yz-plane's z-rows with a 
smaller z-row index than processor (x, y, z ), that is, L:j:;;;~ 2:~:;;;~ C( x,j, k), 
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Figure 4.2: Partitions of a cube in Algorithm H 

and 

3. the total number of messages in yz-planes with a smaller yz-plane index 
than the current yz-plane, that is, I:~:~ :Lj:~ I:~;;;~ C(i,j, k). 

The distribution phase consists of three movements: the movement along 
z-rows, the movement along y-rows, and the movement along x-rows. Before 
and after each of the first two movements of the distribution phase, each 
processor contains at most two messages, and the first two movements are 
actually one-dimensional row movements, as described in Chapter 2. Before 
the third movement, each processor contains at most two messages. After the 
third movement, each processor contains at most one message. Therefore, 
the third movement of the distribution phase is actually a one-dimensional 
column movement, as described in Chapter 2. 

For each movement within rows during the ·distribution phase, the proces­
sors have to compute the target configurations prior to the actual movements. 
The target configurations can be determined with the numbers which are re­
ceived during the counting phase. For the purpose of computing the target 
configuration of the first z-row movement, the n x n x n three dimensional 
cube is mapped onto an n2 x n two dimensional mesh in such a manner 
that processor ( x, y, z) in the three dimensional mesh is mapped to processor 
( nx + y, z) in the two dimensional mesh. Then each processor can determine 
the proper target configuration of the current z-row as if that processor were 
in the two dimensional mesh and would determine the target configuration of 
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two dimensional row movement as described in Chapter 3. (Recall that the 
target configuration of row movement in the two dimensional mesh satisfies 
the Final Configuration Property, which implies the numbers of messages in 
any two columns either are the same or differ by one. Since each column in 
the n2 x n two dimensional mesh corresponds to an xy-plane of then x n x n 
three dimensional mesh, the Final Configuration Property implies that after 
z-row movement the numbers of messages in any pair of xycplanes either 
are same or differ by one.) For the second movement, which occurs within 
y-rows, each xy-plane of the cube is a two-dimensional mesh, and they-rows 
in the cube are the rows of the two-dimensional mesh, just as the x-rows in 
the cube are the columns of the two-dimensional mesh. 

For ann by n by n cube, the time complexity of the extended Algorithm H 
consists of the costs of the three move steps and the three smooth steps. 
The following two lemmas evaluate the time complexity of the extended 
Algorithm H. 

Lemma 4.3 For an n by n by n three dimensional mesh, there are three 
move steps in each recursive stage of extended Algorithm H. Each move step 
of the first recursive stage requires n/2 data message steps; the total cost of 
the move steps in the first recursive stage is 3n/2 data message steps. During 
the move steps, no processor holds more than three messages at any time. 

Proof: For the first stage of recursion, there are three move steps within 
each z-row, each y-row and each x-row. Prior to each move step, the cube 
is divided into two regions by a plane perpendicular to an axis. Each move 
step requires n/2 data message steps, since all messages that move travel the 
same distance of half the cube along an axis. During each move step, all 
message movement is parallel to a single axis. Therefore, a processor may 
contain up to two transients and a single message which stays in place during 
the move step. D 

The counting phase for a three dimensional mesh of size Sx x Sy x Sz 
can be done by a procedure similar to that of the one applied to the two 
dimensional mesh in Chapter 3. To explain the counting phase, we consider 
the three dimensional mesh as a stack of yz-planes, each of which are indexed 
by the x index of the processors in that plane. To speed up the counting 
phase, we divide the stack of yz-planes into two halves, the upper half, which 
contains yz-planes with indices 0 through Sx/2 -1, and the lower half, which 
contains yz-planes with indices Sx/2 through Sx - 1. We will describe the 
procedure for the upper half by the following: 

1. To count the number of messages in a z-row, information travels along 
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each z-row from the processors at each end to the processors at the other 
end. These two information waves enable each processor to determine 
the total number of messages in its z-row and the number of messages 
in its row in processors with a smaller zindex. 

2. As soon as each processor knows the total number of messages in its 
z-row, information waves flow along y-rows. The information waves 
begin from the processors at both ends of each y-row and flow to the 
opposite ends. The number of messages in each z-row accumulates 
in each processor so that each processor can determine two numbers: 
the total number of messages in processors located in the z-rows with 
smaller z-row indices, and the total number of messages in its yz-plane. 

3. As soon as each processor knows the number of messages in processors 
contained in its yz-plane, information waves begin along x-rows. Infor­
mation waves begin from the processor of the yz-plane with index 0 to 
the processor of the yz-plane with index Sx/2 - 1. When these waves 
end, each processor knows the total number of messages in processors 
located in the yz-planes with smaller yz-plane index than its yz-plane 
index. 

Lemma 4.4 A smooth step of the extended Algorithm H applied to an Sx by 
Sy by Sz three dimensional mesh requires (Sxf2+S.+Sz-3) integer message 
steps for the counting phase. The distribution phase requires (Sx/2 + Sy + 
Sz - 2) data message steps and two buffers per processor. 

Proof: The message steps for counting cease when the processors on the 
ends of x-rows with index Sx/2 - 1 receive the total number of messages in 
half the cube. Step 1 requires Sz - 1 integer message steps, step 2 requires 
Sy - 1 integer message steps, and step 3 requires Sx/2 - 1 integer message 
steps. Therefore, for a three dimensional mesh with size Sx by Sy by Sz, the 
counting phase requires Sz + Sy + Sx/2- 3 integer message steps. 

After the counting phase, each processor can determine its role in bringing 
about the smoothed configurations. The distribution phase of the smooth 
step for a three dilll,ensional mesh of size Sx by Sy by Sz consists of three 
movements: row movement along z-rows, row movement along y-rows, and 
column movement along x-rows. The distribution phase requires, therefore, 
Sx/2 + Sy + Sz - 2 data message steps according to Theorems 2.1 and 2.3, 
since b = 2. Before any row or column movement, each processor contains 
at most two messages. According to Theorem 2.2, no processor holds more 
than two messages at any time. D 
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There are three smooth steps at the first recursive stage of the extended 
Algorithm H for the n by n by n cube. The first smooth step operates on n 
by n by n/2 submeshes, and requires 2n- 3 integer message steps and 2n- 2 
data message steps. The second smooth step operates on n by n/2 by n/2 
submeshes, and requires 3n/2 - 3 integer message steps and 3n/2 - 2 data 
message steps. Finally, the third smooth step operates on n/2 by n/2 by n/2 
submeshes, and requires 5n/4- 3 integer message steps and 5n/4- 2 data 
message steps. 

If we denote by TH,(n) the cost of the extended Algorithm H to solve 
a routing problem on an n by n by n three dimensional mesh, we get the 
following recurrence relations: 

TH,(l) - 0 

TH,(n) < TH,(n/2) + 1.5ntM + (4.75n- 9)tm + (4.75n- 6)tM 

< TH3 (n/2)+6.25ntM+4.75ntm (wheren=2") 

We solve the equations and get 

(where n = 2P) 

The following theorem summarizes the cost of the extended Algorithm H 
on the cube. 

Theorem 4.7 For a three dimensional mesh of size n by n by n, where n = 
2P, the extended Algorithm H can solve any routing problem within 12.5n data 
message steps and 9.5n integer message steps. The extended Algorithm H 
requires only three buffers per processor. 

4.6.2 Extension to a K Dimensional Mesh 

In this section, we further extend Algorithm H to a J{ dimensional mesh and 
examine the time complexity and buffer requirement. We will only sketch 
the procedures needed to handle a I< dimensional mesh by generalizing from 
a three dimensional mesh rather than describing details of the algorithms. 

A I< dimensional mesh is a I< dimensional hypercube of nK processors, 
each of which is connected to two neighbors along each axis. We will call 
the axes the first axis, the second axis, ... , and the I<- th axis. Extended 
Algorithm H on a I< dimensional mesh consists of I< consecutive move and 
smooth steps for each recursive stage. We assume n = 2P. 

On a I< dimensional mesh of nK processors, the first move step of the 
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first recursive stage begins dividing the K dimensional hypercube into two 
disjoint congruent regions along the first axis; that is, a hypercube of pro­
cessors is divided into two identical halves by a hyperplane perpendicular to 
the first axis. Then each processor determines which half contains the desti­
nation of its message. If the destination is contained in the current half, the 
message stays. If the destination is contained in the other half, the message 
is sent to the corresponding processor, which is n/2 steps away along the first 
axis. All message movement occurs along the first axis; therefore, there is 
no contention among messages during the first move step. As a result of the 
first move step, each processor contains up to two messages, but the total 
number of messages in each half of the hypercube does not exceed the total 
number of processors in that half. The first smooth step of the first recursive 
stage performs smoothing simultaneously and independently on each half of 
the hypercube. 

The second move step begins by dividing each of two halves into two 
congruent quarters by a hyperplane perpendicular to the second axis. Like 
the first move step, the messages that must move travel n/2 steps along the 
second axis. As a result of the second move step, a processor contains up to 
two messages, so the second smooth step rearranges the messages in each of 
the four quarters simultaneously and independently so that each processor 
has at most one message. 

The procedure continues for progressively smaller congruent regions. Fi­
nally, using a hyperplane perpendicular to theK-th axis, the K-th move step 
divides each of 2K-l (K dimensional) submeshes into two sub-hypercubes 
with the half size in all axes of the original hypercube with nK processors. 
During the K-th move step, according to the location of its destination, each 
message either stays in its current processor or travels n/2 steps along the K­
th axis. The K-th smooth step takes 2K sub-hypercubes of (nj2)K processors 
simultaneously and independently and rearranges the messages so that the 
precondition of each recursive stage is restored; that is, each processor has 
at most one message, and each message is contained in the same region with 
its destination. Then the algorithm recurs on half-sized hypercubes which 
are K dimensional meshes with (nj2)K processors. 

Each move step of the first recursive stage requires n/2 data message steps 
on a K dimensional mesh with nK processors; since the messages will either 
stay or travel to a corresponding processor along the designated axis during 
each move step. During each move step, there is no conflict, and up to three 
messages may be contained in a processor, since at any time, messages are 
moving parallel to a single axis. After each move step, a processor contains 
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up to two messages. 
Each smooth step operates on submeshes of various size, but consists of 

counting and distribution phases. The distribution phase of each smooth 
step consists of K - 1 consecutive row movements and a column movement 
along each axis. We briefly examine the time requirement of a smooth step 
on a K dimensional mesh of size s1 by s2 by ... by s K. 

The counting phase for each smooth step is performed on two halves 
simultaneously and independently by dividing the mesh into two halves by 
the hyperplane perpendicular to K-th axis. (The K-th axis is chosen because 
it is the last one to be divided by a partition.) Counting information first 
flows along the first axis and then flows along the second axis, and so on. 
Finally, the counting information waves flow along the K-th axis, and the 
counting phase is complete when the information waves from each end of 
the rows along the K-th axis meet in the middle of the row. The time 
requirement of counting phase is (S1 + S2 + · · · + SI<_1 + SI</2- K) integer 
message steps. 

The distribution phase consists of K - 1 row movements along the first 
axis, then the second axis, ... , and finally along the (K- 1)-th axis, fol­
lowed by a column movement along the K-th axis. Row movements along 
each axis are performed within each row along that axis simultaneously and 
independently. In the beginning and end of row movement, each processor 
contains up to two messages. The row along the i-th axis consists of Si 
processors; therefore, row movement along i-th row requires Si -1 data mes­
sages steps. Column movement along the K-th axis will require SI< /2 data 
message steps. Hence, the total time requirement of the distribution phase 
is (S1 + S2 + · · · + SI<_ 1 + SI</2- K + 1) data message steps. 

At the first recursive stage of extended Algorithm H on a K dimensional 
mesh of ni< processors, the first smooth step is performed on each of two 
halves of size n/2 X n X n X • · · x n. Hence the first smooth step requires 
n/2 + (K - 2)n + n/2 - K integer message steps for counting and n/2 + 
(K- 2)n + n/2- K + 1 data message steps for distribution. The second 
smooth step is performed on each of quarters of size n/2 x n/2 X n x · · · x n. 
Hence the second smooth step requires 2 x n/2 + (K- 3)n + n/2- K integer 
message steps for counting and 2 x n/2 + (K- 3)n + n/2 - K + 1 data 
message steps for distribution. In the same way, the i-th smooth step requires 
i x n/2 + (K - 1 - i)n + n/2 - K integer message steps for counting and 
ixn/2+(K -1-i)n+n/2-K +1 data message steps for distribution. Finally, 
the K-th smooth step, which takes sub-hypercubes of (n/2)I< processors, 
requires (K -1)n/2 + n/4- K integer message steps for counting and (K-
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1)n/2+n/4-K +1 data message steps for distribution. Therefore, the total 
cost of smooth steps at the first recursive stage on K dimensional mesh of 
size nK processors is 

K-1 n n n L {(2K- 1- i)-- K} + (K -1)- +-- K 
i=1 2 2 4 

integer message steps for counting and 

K-1 n n n L {(2K -1- i)-- K + 1}+ (K -1)- +-- K + 1 
i=1 2 2 4 

data message steps for distribution. By simplifying above equations, we find 
that the total cost of counting phases is (3K 2 - 3K + 1)n/4- K 2 integer 
message steps, and that the total cost of distribution phases is (3K2 - 3K + 
1)n/4- K 2 + K data message steps. 

Using the fact that the total cost of K move steps at the first recursive 
stage on a K dimensional mesh of size nK is Kn/2 data message steps, 
we obtain the following recurrence equations for the time complexity of the 
extended Algorithm H: 

T(1) - 0 

T(n) (
n) Kn {(3K2 -3K+1)n 2 } < T - + -tM + - K t 2 2 4 m 

{
(3K2 -3K+1)n 2 } + 

4 
-K +K tM 

By solving the equation and dropping small negative terms, we get 

T(n) { (3K2 - 3K + 1)n} (3K2- 3K + 1)n 
< K n + 

2 
tM + 

2 
tm 

= O(K2n)tM + O(K2n)tm 

For the extended Algorithm H to a K dimensional mesh, the total cost of 
move steps is K n t M, which is equal to the bound imposed by the distance 
between the farthest processors. The cost of the algorithm is dominated 
by the cost of smoothing, which increases quadratically as the dimension of 
the mesh increases, while the number of processors increases exponentially 
with the dimension. Therefore, the quadratic increase of the cost may be 
tolerable. The buffer requirements for the extended Algorithm H are still 
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three regardless of the number of dimensions. 

4.6.3 The k-strip Algorithm H 

Algorithm H divides a two dimensional mesh into two identical halves. In­
stead of dividing a mesh into two halves, Algorithm H can be extended to 
divide a mesh into k identical strips prior to each move step. In this section, 
we describe the k-strip Algorithm H on a two dimensional square mesh and 
examine its time complexity. 

We will consider a mesh with n rows and n columns where n is equal 
to kP and k > 2 is even. Like Algorithm H, the k-strip Algorithm H con­
sists of two separate move and smooth steps. (Partitionings are illustrated 
in Figure 4.3.) The first move step of the first recursive stage begins by 
dividing the mesh into k identical strips having n rows and njk columns. 
Each processor determines which strip contains the destination address of its 
message. A message whose destination address is in the current strip stays at 
the current processor. Each message whose destination address is contained 
in another strip is moved to the processor at the same relative position of the 
strip which contains its destination address. During the first move step, mes­
sages travel along rows and stop as soon as they reach the target processors. 
There is no contention among messages since the links are bidirectional. As 
in Algorithm H, after the first move step, the number of messages contained 
in each strip is no greater than the number of processors in that strip. Each 
processor, however, may contain up to k messages. The first smooth step 
rearranges the messages in each strip so that each processor contains at most 
one message. 

The first smooth step is almost the same as the smooth step of Algo­
rithm H, but a processor may now contain up to k messages compared to 
two messages in Algorithm H. That is, the first smooth step consists of the 
counting phase and the distribution phase which are performed on an n by 
njk rectangular mesh. 

After the first smooth step, each message resides in the strip that contains 
its destination. The second move step begins by dividing each strip into k 
identical square meshes with njk rows and njk columns. Each processor 
determines which square mesh contains the destination address of its message 
and, if necessary, sends the message to the correct square mesh in the same 
way as in the first move step. During the second move step, messages travel 
along columns, and there is no contention. Again, after the second move step, 
each processor may contain up to k messages. The number of messages in 
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Figure 4.3: Partitions of a square mesh for the k-strip Algorithm H 

each square mesh, however, does not exceed the number of processors in that 
square, and each message resides in the square that contains its destination. 
As usual the second smooth step follows to restore the precondition that each 
processor contain at most one message. Then the algorithm recurs on each 
of the square meshes simultaneously. 

We denote by T H• ( n) the cost of solving a routing problem with the k­
strip Algorithm H on an n by n two dimensional mesh. We will construct 
the recurrence equations for T HJ n). T H• ( n) consists of the cost of the first 
recurrence stage and the cost of solving the problem of 1/k size meshes, 
TH.(n/k). 

The first move step requires (k -1)n/k data message steps along a row, 
since the longest distance between the corresponding processors is from the 
processor in the leftmost strip to the one in the rightmost strip. Like the 
first move step, the second move step requires (k -1)n/k data message steps 
along a column. Note that no processor contains more than k + 1 messages, 
since prior to the last step of the move, there are at most k - 1 messages 
which have reached the target processor and at most two transient messages. 

The first smooth step operates on k strips of an n by n/ k mesh simulta­
neously. The counting phase on ann by njk mesh requires (1/k + 1/2)n- 2 
integer message steps. The distribution phase consists first of row movement 
on rows of n/k processors having up to k messages and then of column move­
ment on columns of n processors having up to k messages. Assuming that 
k 2: 4 is even, row movement requires ~~kli) data message steps by applying 
Theorem 2.1, and column movement requires {k -1)n/k data message steps 
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by applying Theorem 2.3. 
Since the k vertical strips of size n by n/k are divided into k horizontal 

strips again, the second smooth step operates on k2 square meshes of size 
n/k by n/k simultaneously. The counting phase requires 3n/2k- 2 integer 
message steps. The distribution phase consists of row movement and col­
umn movement on the arrays of n/k processors having up to k messages. 

Row movement requires ~~I~l) data message steps by applying Theorem 2.1, 
and column movement requires (k -1)n/k2 data message steps by applying 
Theorem 2.3. 

The cost function, T H• ( n), has the following recurrence equations where 
k;::: 4 is even. 

0 

2(k-1)n (k+5)n 
< TH,(n/k) + k tM + 2k tm 

k+2 k-1 k-1 
+{2(k+1) +-k-+---p-}ntM 

Solving the equation where n = kv, we get 

( k+ 5)n k( k + 2) k + 1 
TH.(n) < 2ntM + 2(k _ 1) tm + {2(k _ 1)(k + 1) + -k-}ntM 

1 3 3 2k + 1 1 
< 2ntM + (2 + k _ 1 )n tm + { 2 + 2(k2 _ 1) + k}n tM 

< 4.05n tM + 1.5ntm (when k = 4) 

From the equation, we can see that for an ·n by n square mesh, the move 
steps take a total of 2n data message steps, and the cost of the move steps 
does not increase even though k increases. The cost of the smooth steps, 
however, decreases as we increase k, the number of strips. The smooth step 
is an additional step whose purpose is to keep the number of buffers as a 
small constant. Note that k + 1 buffers are required to implement the k-strip 
Algorithm H. 

Algorithm H requires 9n routing steps and three buffers. A four-strip 
Algorithm H requires 5.55n routing steps and five buffers. Algorithm Q 
requires 5.5n routing steps and five buffers. By comparing Algorithm H 
with a four-strip Algorithm H, we can see that two more buffers reduce 
the time requirement to about 60 percent. This improvement comes from 
the reduction of the smoothing cost, since the number of recursive stages 
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is reduced by half and the cost of smoothing in each recursive stage is not 
doubled. Doubling the number of strips of Algorithm H requires double the 
amount of buffers and more time for row movements, but cuts the number 
of recursive stages in half. Therefore, total routing costs decrease as the 
number of strips is increased (all other things being equal). Note that the 
total cost of move steps in any algorithm is always 2n data message steps, no 
matter what number of strips is selected. If each processor has five buffers 
available, Algorithm Q and four-strip Algorithm H have almost the same time 
requirements. Furthermore, the time requirement of k-strip Algorithm H 
decreases as the number of buffers per processor increases, which is not the 
case in Algorithm Q. 

Another form of the k-strip algorithm would divide a mesh into k vertical 
strips at each recursive stage instead of alternating horizontal and vertical 
divisions. This algorithm would require a total of 0( n log n) routing steps on 
an n by n mesh, because each counting phase and column movement would 
require at least n/2 routing steps at every recursive stage, and log n recursive 
stages would be necessary by the time of termination. 

4.6.4 Algorithm H on an Arbitrary Square Mesh 

When the size of a two dimensional square mesh is not a power of two, at the 
beginning of some recursive stage, the size of submeshes is not even. There­
fore, the submesh cannot be partitioned into two identical congruent regions. 
In this section, we sketch how the move and smooth steps of Algorithm H 
can be performed on a square mesh of odd size and examine how the time 
complexity and the buffer requirements are affected. 

When the size of a square mesh is odd, the mesh is divided into 2s + 1 
by s + 1 and 2s + 1 by s rectangular submeshes when the size of the square 
mesh is 2s + 1 by 2s + 1, as illustrated in Figure 4.4. Then, during the move 
step, the messages that must move from the smaller half to the larger half 
have no problem. On the other hand, some of the messages that must move 
from the larger half to the smaller half do have a problem because processors 
in the same relative position in the smaller lialf do not exist. That is, for 
0 :0::: i < 2s + 1, processor (i, s) has no corresponding processor in the smaller 
half, since the smaller one has one less column. If for 0 S:: i < 2s + 1, processor 
(i, s) in the larger half sends its message that must move to processor ( i, s-1) 
in the smaller half, then messages will travel to their target processors with 
s steps during the move step. Other messages that must move will travel to 
their target processor with s + 1 steps during the move step. 
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The white region of the left half is identi­
cal to the right half. Therefore, the target 
processor of each message that must move 
to the other half is the processor on the 
same relative position of that half. Mes­
sages in the hatched area are sent to the 
gray area in the right half, if necessary. As 
a result, processors in the gray area con­
tains up to three messages after the move 
step. 

Figure 4.4: Partitions of an odd-sized mesh by Algorithm H 

When each processor determines the target processor of its message that 
must move by the mapping described above, there is no contention among 
messages during the move step, since all messages travel along their rows by 
s + 1 steps except the messages in column s of the larger half. The messages 
from column s of the larger half moving to the column s - 1 of the smaller 
half cause no contention, either. Even though processors in column s- 1 of 
the smaller half will contain up to three messages after the move step, no 
processor needs more than three buffers at any moment in the move step. 
During the move step, processors of the inner columns may contain three 
messages, one that stays and two transients. Processors in column s - 1 of 
the smaller half may contain two messages during the move step and three 
messages after the move step. (Note that during the move step there are no 
transients at the outermost columns of the mesh.) 

After the move step, a processor contains up to two messages except those 
in column s - 1 of the smaller half, which contain up to three messages. 
But the number of messages in each half does not exceed the number of 
processors in that half. The smooth step rearranges the messages in each 
half simultaneously and independently so that each processor contains at 
most one message. 

The smooth step is performed in the same way as when the size of the 
mesh is even. Even though processors in column s - 1 of the smaller half 
may contain three messages, there is no difference in the counting phase. 
The row movement within each row of the smaller half is not affected by an 
extra message in the rightmost processor; that is, the time complexity of row 
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movement is not changed even though there are at most 2s + 1 messages in an 
array of s processo;rs. Column movements in the smaller half of the mesh are 
also not affected by an extra message in each row. The buffer requirement 
of the smoothing step is three, since there are at most three messages in a 
processor and the number of messages does not increase during the smooth 
step according to Theorem 2.2. 

In summary, when the size of a square mesh is not even, Algorithm H 
divides the n by n mesh into a larger half and a smaller half which differ by 
one in the column size. The messages that must move from the smaller half 
to the larger half will travel to the target processor which is r n/21 steps away 
along the current row. The messages that must move from the larger half to 
the smaller half will travel to the target processor in the same way, except 
for the messages in the last column of the larger half. The messages in the 
last column of the larger half will travel to the target processor which is in 
the last column of the smaller half by l n/2 J steps along the current row. The 
buffer requirement and the time complexity are not changed even though the 
control structure of the algorithm becomes somewhat more complicated. 

4.6.5 Algorithm H on a Rectangular Mesh 

We now show that Algorithm H can be applied to a rectangular mesh of any 
size. In this section, we describe Algorithm H with an r by c rectangular 
mesh where r = 28

, c = 2', and r > c. For a rectangular mesh, Algorithm H 
first partitions the mesh vertically into two rectangular regions of size r by 
c/2, each of which is half the mesh. The move and smooth steps are then 
performed on these two regions, after which every message is in the correct 
half of the array, and every processor has at most one message. The algorithm 
then partitions each of these two regions horizontally into two rectangular 
regions of size r /2 by c/2 and performs move and smooth steps on those 
regions. Then the algorithm recurs. The recursion terminates when each 
region has a column of r J c processors, at which point each message can travel 
to its destination without conflict, since each region is a one dimensional array 
of processors. 

This algorithm requires two separate move and smooth steps for each 
recursive stage. The first move step will move a message either 0 or c/2 steps 
along its current row; the second move step will move each message either 0 
or r /2 steps along its current column. Thus, the maximum distance moved 
by any message in stage one of this algorithm is (r + c)/2, the same as for 
Algorithm Q on a rectangular mesh. 
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The first smoothing step of the first stage is performed on two r by cl2 
submeshes simultaneously and independently and requires r 12 + cl2 - 2 in­
teger message steps for counting and r 12 + cl2 - 1 data message steps for 
distribution. (By Theorem 2.1, row movement on an array of cl2 processors 
with b = 2 requires cl2 - 1 data message steps.) The second smoothing step 
of the first stage is performed on each of r 12 by cl2 submeshes and requires 
r I 4 + cl2 - 2 integer message steps for counting and r I 4 + cl2 - 1 data 
message steps for distribution. Adding in the (r+c)l2 steps required for the 
move, when r = 2•, c = 2t, and r > c, the complexity of the algorithm is 
given by 

T(rlc, 1) - ric- 1 
r + c 3r 3r 

T(r,c) < T(rl2,cl2) + -
2
-tM+ (4 + c-4)tm + (4 +c- 2)tM 

Solving above recurrence equation, we get 

T(r, c) ::; 
r 3r "3r 

(r-- +c-1)tM + (--- +2c- 2 -4logc)tm 
c 2 2c 

3r 3r 
+(--- +2c- 2- 2logc)tM 

2 2c 

Dropping negative terms strengthens the inequality to the following: 

T(r, c) ::; (2.5r + 3c)tM + (l.5r + 2c)tm 

Note that T(r, c) gives the same time complexity as that on a square mesh 
when r = c. The buffer requirement of Algorithm H on a rectangular mesh 
does not change; it requires three buffers per processor. 

When the size of a rectangular mesh is not a power of two on either side, 
we can apply the same method of mapping described in Section 4.6.4 in order 
to determine target addresses. As shown in that section, the time complexity 
and the buffer requirements do not change for a mesh in which the number of 
rows or columns or both is odd. We conclude that Algorithm H is applicable 
to any size mesh with the complexity results stated above. 
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Chapter 5 

Conclusion 

5.1 Summary 

We have described several versions of "move and smooth" routing algorithms, 
a class of routing algorithms on mesh-connected computers. They can solve 
several classes of message routing problems: full permutation, (partial) per­
mutation, and restricted broadcasting. Each processor in a mesh initially 
contains either no message or a single message with one or more destina­
tions, and each processor is the destination of at most one message. 

Move and smooth algorithms are recursive. Initially, the entire mesh is 
considered a single region. At each recursive stage, 

• Each region is partitioned into subregions; 

• A copy of each message is moved to each of the regions that contains 
one of its destinations (the move step); 

• Messages within each region are re-distributed so that each processor 
contains at most one message (the smooth step). 

The recursion continues until each region contains a single row or column 
of processors, at which time each message has arrived at or can be moved 
directly to its destination. 

We first analyzed message movement within a one dimensional array of 
processors. We then described two representatives of move and smooth algo­
rithms; one called Q because it divides a mesh into four regions (Quarters) 
at each recursive stage, and the other called H because it divides a mesh into 
two regions (Halves). 



Number of 
Algorithms Time Complexity Buffers Note 

nxnmesh 
Algorithm Q 4n tM + 1.5n tm 5 where n = 2P 

n x n mesh, 
Q with k2 - n = 2P, 
partitioning 5kt3 n t + .l!i..n t k2 +2 4s;ks;y'n 4 M k-1 m 

Q on K nK mesh, 

dimensional mesh O(K2KntM) 2K + 1 K ::0::3, n = 2P 

Q on arbitrary n X n mesh 
square mesh ~ (4.3n tM + 1.5n tm) 5 where n of 2P 

r x c mesh, 
Q on rectangular (1.75r + 2.2c)tM r = 2S, c = 2t, 
mesh + (0.5r + c)tm 5 r>c 

Table 5.1: Time complexities and buffer requirements of Algorithm Q 

In Chapter 3, we investigated the details of Algorithm Q on a two dimen­
sional square mesh. We showed that Algorithm Q can solve full permutation 
and (partial) permutation problems in 5.5n routing steps with five buffers 
per processor on an n by n square mesh. We also showed that Algorithm Q 
can handle restricted broadcasting problems without additional routing costs 
if the cost of message copying is negligible compared to the cost of commu­
nication between processors. We considered the extension of Algorithm Q to 
a K dimensional mesh and found that it is difficult to perform move steps 
without conflicts, and that the cost of smooth steps increases exponentially 
with K. Another extension of Algorithm Q partitions a mesh into k2 regions 
instead of four. We showed that the cost of Algorithm Q with k2-partitioning 
increases linearly as the value k increases, leading us to conclude that the 
original Algorithm Q uses the most efficient partitioning of a square mesh 
in this class. In Section 3.6.3, we sketched a method to overcome the prob­
lem of unbalanced partitions when the size of a mesh is odd. We exhibited 
a mapping from bigger regions to smaller regions that allows conflict-free 
movement during move steps. In the last section of Chapter 3, we described 
Algorithm Q on an r by c rectangular mesh. Table 5.1 summarizes the time 
complexities and the buffer requirements of Algorithm Q and its extensions. 
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Number of 
Algorithms Time Complexity Buffers Note 

nxnmesh 
Algorithm H 5.5n tM + 3.5n tm 3 where n = 2P 

n x n mesh, 
:::; 4.05n tM + 1.5n tm n = 2P, k is 

H with k strip :2:: 3.5n tM + 0.5n tm kt1 even, 4:::; k < n 

(3K
2 K ) 

H on K dimen- - 2-- 2+ 1 ntM nK mesh, 

sional mesh + e~'- 3f + 1)ntm 3 n=2P,K:2:3 

H on arbitrary nxnmesh 
square mesh ""' (5.5n tM + 3.5n tm) 3 where n of= 2P 

r x c mesh, 
H on rectangular (2.5r + 3c)tM r = 2', c = 2', 
mesh + (1.5r + 2c)tm 3 r>c 

Table 5.2: Time complexities and buffer requirements of Algorithm H 

In Chapter 4, we described the details of Algorithm H. On an n by n 
square mesh where n = 2P, Algorithm H requires 9n routing steps and three 
buffers per processor. Algorithm H can handle restricted broadcasting prob­
lem with no additional cost. In Section 4.6.1, we described an extension of 
H to a three dimensional mesh and then generalized it to a K dimensional 
mesh. For a K dimensional mesh, Algorithm H requires (3K2 - 2K + 1 )n 
routing steps and three buffers per processor. Another extension of H, which 
divides a two dimensional mesh into k strips on successive move and smooth 
steps, was discussed in Section 4.6.3. We showed that the time complexity 
of the k-strip extension decreases as the value k increases, but the buffer re­
quirement increases. In Section 4.6.4, we described a method to implement 
the move step when the size of a two dimensional mesh is not a power of 
two and the regions are not congruent. Even though the control structure 
of the algorithm becomes more complicated,_ no additional routing cost is 
incurred by unbalanced partitions. In the last section of Chapter 4, we de­
scribed Algorithm H on a rectangular mesh. Table 5.2 summarizes the time 
complexities and the buffer requirements of Algorithm H and its extensions. 

Table 5.3 compares our algorithms with other deterministic routing algo­
rithms on a square mesh. Kunde's routing algorithm [18] makes substantial 
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Time Number of 
Algorithms Complexity Buffers Note 

full and partial permu-
tations, restricted broad-

Algorithm Q 5.5n 5 cast 

full and partial permu-
tations, restricted broad-

Algorithm H 9n 3 cast 

full and partial permuta-

Kunde's 3.5n ~ 5.5n 4 tions, sorting-based 

full and partial permuta-
tions, # of buffers > 500, 
optimal time, sorting-

Leighton et al. 2n- 2 constant based 
3 

3n + O(n<) ~ 
Sorting 7n 2 full permutations 

Table 5.3: Comparison of deterministic routing algorithms 

use of sorting as a method to reduce the buffer requirement. If Kunde's 
algorithm uses four buffers and a sorting algorithm with the time require­
ment of 3n + O(n~) [41], it can solve a (partial) permutation problem with 
3.5n + O(n~) data message steps on an n by n mesh. However, for practi­
cal values of n, asymptotically fast sorting algorithms are inferior to simpler 
parallel sorting algorithms such as the shear sort and the algorithm by Lang 
et al. [39]. If Kunde's routing algorithm uses four buffers and a sorting al­
gorithm with time complexity of 7n [20], it takes 5.5n data message steps to 
solve a (partial) permutation problem. It is not clear how to apply Kunde's 
algorithm to restricted broadcasting problems. 

The algorithm by Leighton et al. [23] is based on Kunde's algorithm. It 
requires a constant number of buffers and 2n- 2 data message steps, which is 
optimal for ann by n mesh. However, the buffer requirement is at least a few 
hundred; therefore, this algorithm is not practical for a small size mesh. It 
is not clear whether this algorithm can be applied to restricted broadcasting 
problems. 

Algorithm Q requires five buffers and 5.5n routing steps, of which 4n are 
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data message steps and 1.5n steps are integer passing steps. Moreover, our 
move and smooth algorithms can solve restricted broadcasting problems with 
the same time complexity as for permutations. 

We conclude the dissertation with the properties of move and smooth 
algorithms: 

• The algorithms are deterministic. 

• The algorithms can handle (full and partial) permutation and restricted 
broadcasting problems without modification; the cost of executing each 
routing algorithm is the same over all problems. 

• The algorithms are distributed. 

• The number of buffers required in a processor is constant regardless of 
the size of mesh. 

• The algorithms may be as fast as other known deterministic distributed 
routing algorithms that use a small number of buffers for meshes of 
practical size. 

5.2 Suggestions for Further Work 

Because our network model is one in which each processor communicates with 
its neighbors synchronously, and all processors can be viewed as executing 
the same program, our move and smooth algorithms can be implemented on 
a SIMD machine such as the ILLIAC model in Section 1.4. In our network 
model, a processor can send and receive up to four messages in a single 
routing step, while it takes four routing steps ·to do so in an ILLIAC model. 
Therefore, a straightforward application of our algorithms to an ILLIAC 
model requires four times more routing steps than our network model. But 
in fact our algorithms will require substantially fewer routing steps than 
four times that of the distributed model, because messages travel in a single 
direction along columns or rows during most phases of both move and smooth 
steps. A more precise analysis is necessary to determine the usefulness of 
move and smooth algorithms for SIMD machines. 

We believe we can improve the time bound of move and smooth algo­
rithms by overlapping the counting and distribution phases at the cost of a 
more complicated control structure and possibly an additional buffer. On a 
two dimensional mesh, for each recursive stage, the processors on the border 
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of each partitioned region can determine the number of messages in each row 
of the current submeshes as soon as the move step ends. These values can 
then be broadcast along each row and accumulated along the border column 
at the same time. As soon as a processor receives information about the 
initial configuration of the current row, it can begin a preliminary distribu­
tion phase assuming a standard :final configuration which positions "extra" 
messages in the middle of the row. The actual final configuration can be 
achieved after the information of the actual final configuration is received by 
all processors in the mesh. With this overlapping, we expect the cost of Algo­
rithm H to be reduced to 7.5n routing steps. (Specifically, 5.5n tM + 2n tm.) 
An analogous approach can reduce the cost of Algorithm Q to 5n routing 
steps ( 4n t M + n tm). Further investigation is necessary to determine the 
precise time complexity and the buffer requirements. 

It will be also interesting to examine whether our move and smooth al­
gorithms can handle many-to-many broadcasting problems. Under the as­
sumption that messages to the same destination are merged by an associative 
operator, many-to-many broadcasting problems may be solved under some 
restrictions. If a packet can carry k messages to different destinations and 
each processor will receive no more than k messages, the messages to the 
same processor will be merged at the target processors and finally delivered 
to their destinations. 

We can also examine meshes in which the connection topology is not a 
grid. For example, if neighboring processors are connected with diagonal con­
nections as well as row and column connections on a two dimensional mesh, 
our Algorithm Q is clearly applicable, but will exhibit a different behavior 
since the move step in the first recursive stage on an n x n mesh will require 
n/2 steps rather than n. 
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