
Constraint-Based Design by
Cost Function Optimization

TR91-025

May, 1991

Eric Grant

The University of North Carolina at Cha·pel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Affirmative Action Institution.

Constraint-Based Design by
Cost Function Optimization

by

Eric Grant

A dissertation submitted to the faculty of The University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill

1991

Approved by:

·~fljb
Advisor: Turner Whitted

ins

13e8der: Hiroyuki Watanabe

© 1991
Eric Douglas Grant

ALL RIGHTS RESERVED

ii

ERIC DOUGLAS GRANT.
Constraint-Based Design by Cost Function Optimization
(Under the direction of Turner Whitted).

Abstract

Constraint-based design is the process of selecting among alternatives to best satisfy a set
of potentially conflicting goals. A key problem in constraint-based design is finding
globally optimal solutions to problems without limiting the complexity of constraints.

In this work, constraints are encoded as cost functions that express how well the
constraints are satisfied. A geometric modeling problem is defined by specifying a
collection of constraints on the desired model. A composite cost function representing all
constraints is formed by combining the component cost functions.

The optimal solution to a constraint problem can be found by minimizing the value of the
composite cost function. A standard probabilistic optimization technique, simulated
annealing, is used to seek the global minimum value and the corresponding optimal
solution. In practice, global optima cannot be guaranteed, but often near-globally optimal
results are satisfactory.

The cost function representation for design problems is not new; VLSI researchers have
used annealing-based optimization methods to minimize chip area and wire length. The
cost functions for general constraint-based modeling problems are not as well defmed as
the simple VLSI cost functions. A contribution of this research is a systematic method of
encoding different classes of constraints as cost functions.

The validity of this approach is demonstrated by applying the methodology to two
problems: product design (specifically, opaque projector design), and site planning.

iii

Acknowledgements

I thank my advisor, Turner Whitted, for his guidance of this research. I admire his broad
knowledge of computer science and engineering.

I thank Frederick P. Brooks, Jr., James M. Coggins, Henry Fuchs, and Hiroyuki
Watanabe for serving on my committee and providing advice and encouragement
throughout my studies at UNC.

I thank David Chapin and Ken Pittman of North Carolina State University for providing
excellent test applications for this research, and for informative discussions about desigu.

I thank my fellow students at UNC, and colleagues elsewhere, for their assistance with
this work. Their comments, reviews, and discussions have contributed considerably to the
dissertation.

I thank Schlumberger-Doll Research and Apple Computer for grants supporting this work.

Finally, I thank my family for support and encouragement throughout my graduate career.
I dedicate this dissertation to my mother and father.

iv

Table of Contents

Chapter

I. Introduction 0

1.1. What is a constraint? o

1.20 How does this work differ from other work?
1.3. Description of problem representation
1.4. Optimizing cost functions 0 •

1.5. Building cost functions . . .
1.60 Characteristics of applications
1.7. Chapter overview
1.8. Summary 0 . . 0 0 . 0 0

II. Constraint Satisfaction Techniques 0

201. Constraint-based modeling . o o
2ol.l. Problem complexity o o
201.2. Modeling vs. rendering 0

2020 Taxonomy of techniques .
2.30 Analytical techniques

2o3ol. Constraint graphs
2.3020 Local propagation
2.3030 Propagation of degrees of freedom
2.3.4. Graph transformation I term rewriting
2.3o5o Equation solving o o o o . o 0

2.4. Modeling systems using analytical techniques
204.1. VanWyk (1980)
2.4.2. Gosling (1983) o
2o4.3o Briiderlin (1986)
2.4.4. Rossignac (1986)
2o4.5. Leier (1987) . o
2.4.60 Wolfram (1988)
2.4.70 Ervin (1990) 0 .

205. Summary of analytical techniques
2.6. Optimization methods . 0 o o •

2.601. Linear programming . .
2.6.2. Nonlinear programming

2.70 Summary of optimization methods

v

Page

1
2
3
4
7
8
9

11

11

13
13
13
14
15
15
16
16
17
18
18
19
19
20
20
20
21
21
21
22
23
23
23
24

2.8. Heuristic search
2.8.1. Pfefferkorn (1971)
2.8.2. McDermott (1982) .
2.8.3. Brown (1986) . .

2.9. Summary of heuristic search
2.10. Improvement procedures

2.1 0.1. Variation with selective retention .
2.10.2. Greatest improvement
2.10.3. Numerical methods

2.11. Systems using improvement procedures
2.11.1. Sutherland (1963)
2.11.2. Weinzapfel and Handel (1975)

2.11.2.1. Automated constraint satisfaction .
2.11.2.2. Interactive constraint satisfaction

2.11.3. Cinar (1975)
2.11.4. Boming (1979)
2.11.5. Nelson (1985)
2.11.6. VLSI Layout: Kravitz (1986), Pincus (1986), etc.
2.11.7. Witkin, Fleischer, Barr (1987)
2.11.8. Barzel and Barr (1988)

2.12. Summary of improvement procedures
2.13. Generate-and-test

2.13.1. Exhaustive generate-and-test
2.13.2. Random generate-and-test .

2.14. Summary of generate-and-test
2.15. Applicability of constraint satisfaction techniques

24
25
25
25
25
26
26
27
27
28
28
28
29
29
29
30
30
31
31
32
32
32
33
33
34
34

III. Constraint-based Design 35
3.1. The role of the computer 35
3.2. Why are design problems difficult? 37
3.3. Specific objectives of this research 37

3.3.1. Geometric and non-geometric constraints 38
3.3.2. Arbitrarily complex constraints 38
3.3.3. Separation of specification from solution . 39
3.3.4. Dealing with overconstrained and underconstrained systems 39
3.3.5. Suitability as a design aid 39

3.4. Exploration of solution methods
3.5. The cost function representation
3.6. Characteristics of applications .

vi

39
42
43

3.6.1. Near-optimal solutions acceptable .
3.6.2. Many optimal solutions
3.6.3. Non-intuitive solutions
3.6.4. Randomness acceptable of desirable

3.7. Summary

IV. Function Optimization
4.1. Formulation as an optimization problem . .
4.2. Characterization of the optimization problem
4.3. The limitations of simple hill-climbing techniques
4.4. Description of probabilistic optimization techniques .

4.4. 1. Probabilistic hill-climbing heuristics . .
4.4.2. Simulated annealing

4.5. Applying annealing to constraint-based modeling
4.5.1. Solution representation
4.5.2. Objective function . .
4.5.3. Perturbation function .
4.5.4. Acceptance function .
4.5.5. Annealing schedule .

4.5.5.1. Simple schedule .
4.5.5.2. Sophisticated schedule

4.5.6. Evaluating the solution
4.6. Summary

V. Cost Functions
5.1. Examples of constraints

5.1.1. Geometric constraints
5.1.1.1. Position constraints
5.1.1.2. Distance constraints
5.1.1.3. Orientation constraints
5.1.1.4. Size constraints . . .
5.1.1.5. Intersection constraints

5.1.2. Indirectly geometric constraints .
5.1.3. Non-geometric constraints

5.2. Theory and use of cost functions
5.3. General cost function guidelines

5.3.1. Units of measure for cost functions

43
44
44
45
45

46
46
46
48
49
49
50
53
54
54
54
56
56
57
58
60
61

62
62
63
63
63
64
64
64
64
65
65
66
66

5.3.1.1. Choose a single unit of measure 66
5.3.1.2. Choose dollars as the unit of measure in product design 66
5.3.1.3. Select a standard range of values 67

vii

5.3.2. Shape guidelines for cost functions 0 o o o
5o3.2.1. Define the cost of compromise configurations
5.3.2.2. Shape should be accurate and easy to specify
5.3o2o3. Attempt to separate representation from specification

5.3.3. Constructing functions to aid the optimization process
5.3.301. Functions should encourage hill-climbing .
5.3.3.20 Always reward movement toward the goal

5.3.3.3. Functions should be easy to evaluate .
5.4. Cost functions for objective constraints

5.4.1. Selecting the controlling parameter
5.4.2. The six basic constraint types

504.2.1. Equal to . 0
5.4.2.2. Not equal to

5.4o2.3o Less than
5.4o2.4o Greater than
5.4.2.5. Minimize

5.4.2.5.1. Unbounded minimize
5.4.2.5.20 Bounded minimize .

5.4.2.6. Maximize o 0 . o o . . o
5.4.2.6.1. Unbounded maximize o
5.4.2.6.2. Bounded maximize .

5.4.30 Qualities of cost functions . 0 0 0
5.4.301. Areas of interest o . 0 . 0 .
5.4.3.2. Bound on function range . .

5.3.3.3. Monotonically increasing or decreasing cost
5.3.3.4. User control over shape

5.4.40 Examination of candidate cost functions for =, #, <, >
2 2

5.4.401. Gaussian: f(x) = e ·x f2a

5.4.4.2. f(x) = e -nx
b

3 2 5.4.4.3. Piecewise cubic: f(x) = ax + bx + ex + d

1 5.4.4.40 f(x) = b
nx +1

5.4.4.5. Abstraction of user control . . .

5.4.4.6. Cost functions: =, #, <, >, bounded min. and max ..
5.4.5. Cost functions for unbounded minimize and maximize o

5.4.5.1. The minimize cost function

5.4o5o2. The maximize cost function 0 o

viii

67
67
69
69
69
69
71

71
71
72
74
75
75
76
76
77
77
77
78

78
78

79
79
80
80
81
81

82

83

84

88
89
90
91
92
93

5.4.6. Summary of cost function design for objective constraints 94
5.4.7. Analysis of cost functions of objective constraints 95

5.4.7.1. Functions should be easy to evaluate 95
5.4.7.2. Shape should be accurate: theoretical considerations 96
5.4.7.3. Shape should be accurate: practical considerations 96
5.4.7.4. Shape should be easy to specify 97
5.4. 7 .5. Specification should be separate from representation . 97
5.4. 7 .6. Functions should encourage hill-climbing 98
5.4.7.7. Summary of analysis of cost functions 99

5.5. Cost functions for subjective constraints 100
5.5.1. Divide and conquer to refine the problem . . . 100
5.5.2. Base judgements on a simple scale 101
5.5.3. Match empirical data if constraints cannot be quantified 101

5.6. Cost functions for search constraints 102
5.7. Operations on constraints 103

5.7.1. A and B 103
5.7.2. A orB 103
5.7.3. Not A 104

5.8. Summary . . .

··vi. Opaque Projector Project
6.1. Problem overview

6.1.1. Constraint conflicts
6.1.2. Projector classes

6.2. Parts inventory
6.3. Constraint implementation

6.3.1. Image brightness
6.3.2. Component cost
6.3.3. Light escaping .
6.3.4. Sound escaping .
6.3.5. Cord length
6.3.6. Energy use
6.3. 7. Image focus
6.3.8. Projector geometry
6.3.9. Projector height . .
6.3.10. Temperature constraints
6.3.11. Chassis cost
6.3.12. Ergonomics .
6.3.13. Weight ...

ix

•. 104

106
106
108
108
109
111
112
112
112
112
113
113
113
114
115
115
116
116
117

6.3.14. Durability
6.3.15. Full view .

6.4. Results . .
6.5. Evaluation .
6.6. Summary .

VII. Site Planning Project
7.1. Problem overview

7.1.1. Objects .
7.1.2. Constraints
7 .1.3. Constraint conflicts

7.2. Constraint implementation
7.2.1. Object non-intersection
7 .2.2. Road setbacks . . .
7.2.3. Place buildings away from roads
7 .2.4. Interbuilding spacing
7.2.5. Place buildings near parking lots
7 .2.6. Place buildings on hills
7 .2. 7. A void unpleasant views from buildings
7.2.9. Discussion of cost function weighting factors

7 .3. Results . .
7.4. Statistics
7 .5. Evaluation
7 .6. Convergence to final solution
7.7. Summary

VIII. Discussion .
8.1. Comparisons with other systems

8.1.1. ThingLab
8.1.2. Ideal
8.1.3. Briiderlin's system
8.1.4. Brown's system
8.1.5. Barzel and Barr's system
8.1.6. CONTEST

8.2. Contributions
8.2.1. Specific contributions .
8.2.2. Advancement of the state-of-the-art

8.3. Implementation .
8.4. Summary

X

117
117
118
126
130

131
131
131
134
135
135
135
136
136
137
137
137
138
138
138
157
159
160
165

166
166
166
167
167
167
167
167
174
174
175
176
177

IX. Conclusions I Future work I Summary .
9.1. Conclusions
9 .2. Future work

9.2.1. Shape grammars . • • • •
9.2.2. Combining grammars aud cost functions

9.3. Summary

References

xi

178
178
179
180
180
181

182

List of Figures

Figure 1.1: black box function evaluation
Figure 1.2: improvement search technique
Figure 1.3: functions with single maximum and multiple local optima
Figure 2.1: constraint-based layout . . .
Figure 2.2: a simple constraint graph . .
Figure 2.3: a constraint graph with a cycle
Figure 2.4: graph transformation
Figure 2.5: variation with selective retention
Figure 2.6: greatest improvement procedures
Figure 2. 7: generate-and-test
Figure 3.1: semi-automatic design of a single model
Figure 3.2: progression of investigation
Figure 3.3: global vs. local optima in a packing problem .
Figure 4.1: black box function evaluation
Figure 5.1: a simplistic cost function . . .
Figure 5.2: a more useful cost function
Figure 5.3: a wider region of accepted values
Figure 5.4: guiding search to optimal value .
Figure 5.5: constraints and associated parameters
Figure 5.6: equal to . .
Figure 5. 7: not equal to
Figure 5.8: less than . .
Figure 5.9: greater than
Figure 5.10: minimize .
Figure 5.11: lower bounded minimize
Figure 5.12: upper bounded minimize
Figure 5.13: maximize
Figure 5.14: lower bounded maximize .
Figure 5.15: upper bounded maximize .
Figure 5.16: cost functions with different tolerances
Figure 5.17: user shape specification
Figure 5.18: piecewise construction
Figure 5.19: piecewise function with finite extent
Figure 5.20: f(x)
Figure 5.21: g(x) = f(x-v)
Figure 5.22: general form of g(x) given f(x)

xii

5
6
7

14
16
17

18
26
27'
33
36
41
44
47
68
68
70
70
73
75
75
76
76
77
77
77
78
78
78
79
81
84
85
86
86
90

Figure 5.23: restricted vs. unrestricted hill-climbing
Figure 5o24: divide-and-conquer approach
Figure 6.1: opaque projector operation
Figure 6o2: thin lens imaging model o
Figure 603: standard projector
Figure 6.4: budget projector 0

Figure 6.5: deluxe projector 0

Figure 606: quiet projector .
Figure 6. 7: bright projector .
Figure 6. 8: portable projector
Figure 6.9: comparison of projector attributes .
Figure 6.10: comparison of projector weights .
Figure 7.1: road network with road widths 0 •

Figure 7 02: terrain elevation 0 . 0 0 0 0 0 0
Figure 7.3: road setbacks and building non-intersection constraints
Figure 7o4: add maximization of road/building distance
Figure 7 o5: add interbuilding spacing 0 0 0 . 0
Figure 7.6: add parking lots o 0 0 o o . . 0 o
Figure 7.7: minimize parking lot/building distance
Figure 7.8: place buildings on hilltops 0

Figure 7.9: add trees as obstacles 0 0 •

Figure 7010: match roof heights locally
Figure 7.11: final site plan 0 0 0 0 0
Figure 7.12: site plans at high temperature
Figure 7.13: site plans as the system begins to-cool .
Figure 7.14: site plans after further cooling 0 0
Figure 7.15: site plans at final stages of cooling
Figure 8.1: structure ofThingLab
Figure 8.2: structure of Ideal 0 • • 0 •

Figure 8.3: structure of Briiderlin's system
Figure 8.4: structure of Brown's system 0

Figure 8.5: structure ofBarzel&Barr's system
Figure 8o6: structure of CONTEST 0 o .
Figure 8.7: implementation of CONTEST 0 •

xiii

98
101
108
114
120
121
122
123
124
125
127
128
132
133
139
141
143
145
147
149
151
153
155
161
162
163
164
168
169
170
171
172
173
176

List of Tables

Table 5.1: summary of cost function analysis
Table 6.1: cost function weights for projector instances
Table 6.2: comparison of part and parameter selection .
Table 6.3: CPU times for opaque projector problems .
Table 7.1: constraint statistics for site planning application
Table 7.2: CPU times for site planning problems

xiv

99
119
126
129
157
158

Chapter 1

Introduction

The research presented in this dissertation began with the following goal: to devise an
automatic design method capable of applying diverse constraints to many different types of
geometric objects.

Specifically, the question we sought to answer was: can a design problem involving
diverse geometric and non-geometric constraints be expressed in such a way that the

problem may be solved automatically by a computer? This dissertation will show that the

answer to this question is yes -design problems can be represented by a single scalar cost
function in which minimum function values occur when optimal design parameters are
presented as input to the function. Scalar functions can be minimized by probabilistic
optimization techniques, such as simulated annealing, to yield near-optimal solutions. This
research combines a systematic way of encoding constraints as cost functions with standard
annealing-based optimization techniques to form a flexible constraint-based modeling
system.

CONTEST (a CONstraint TESTbed) is a software testbed built to explore constraint-based
modeling problems. The style of design promoted by this work is called result-oriented
design. In result-oriented design, models are created automatically from a set of properties
that define the model, rather than by manually specifying data points, or by describing a
series of steps for constructing the model from its parts. A difference between this research
and other work is that rather than attempting to always solve a small set of predefmed
constraint types (e.g., only constraints expressible as linear equations), a variety of
potentially conflicting constraints may be presented. While the user is responsible for
specifying the importance of each constraint, the system is responsible for finding a
solution that best satisfies the set of constraints as a whole. The design methodology is
geared toward solving design problems, rather than using constraints solely as a means of
communicating a preconceived design.

Although the original purpose of this research was to explore constraint -based three­
dimensional geometric modeling problems, the techniques developed are applicable to other
fields, such as VLSI design. The generic tenn configuration is used to refer to potential
solutions to a problenL A configuration is a collection of parameters that defines a model.

A key aspect of design problems is that they involve the evaluation of tradeoffs. Thus the
cost function which encodes a constraint must not only be able to identify configurations
which satisfy the constraint, but must also define the relative quality of any other
configurations, so that an optimum compromise may be determined should constraints
conflict. The heart of this research is a systematic method for defining cost functions to
properly represent costs over all configurations.

This chapter provides an introduction to the remainder of the dissertation. First, the term
constraint is defined, and an explanation of how this research differs from related work is
presented. The problem representation used by CONlEST is then described: constraints
are encoded as cost functions which specify how well the constraint is satisfied. Next,
techniques for finding the optimal solution to the cost functions are introduced.
Construction of cost functions is then discussed, followed by a description of the types of
applications well-suited to CONlEST. The chapter concludes with an overview of
remaining chapters and a summary.

1.1. What is a constraint?

Since the term constraint-based modeling encompasses such a large body of work, it is
important to distingnish the goals of this research from related work. We begin by
examining the various interpretations of the term constraint, and define its meaning in this
research.

In its simplest form, a constraint is simply a relation that must hold in the object we are
designing. Many applications use constraints in this way as an efficient expression of a
design. The designer creates an object by selecting a set of constraints that completely
describes the object. When used in this manner, the user demands that all constraints be
completely satisfied by the constraint-satisfaction system.

For example, to defme a square, we can define the length of any side, constrain the other
sides to be of equal length, and constrain any angle to be 90 degrees. In this style of
design, we usually know exactly what our desired object should look like (e.g., we might
be creating a figure for a paper). Thus the issue is not one of fmding the best (or at least an
acceptable) solution from among many possibilities, but rather of fmding the correct
solution.

2

Because the types of constraints in such applications are generally quite simple, and
because of the rigorous definition of what constitutes an acceptable solution, algorithmic
techniques are commonly used to find the solution. Moreover, given a proper problem
formulation, these algorithmic techniques are often guaranteed to find the solution.

In other modeling problems the constraints are more complex. In addition, we may specify
a problem for which it is impossible to satisfy all constraints. For example, an architect
might specify that parking spaces for a building must not be visible from offices in the
building. On the other hand, local building codes might require handicapped parking
access within 50 yards of the building. In this case, we should expect the building code to
override the aesthetic constraint.

Artificial intelligence researchers have dealt with such problems by distinguishing between
satisfying strong constraints and satisfying weak constraints. Strong constraints are
constraints that must be satisfied for the problem to be solved. Weak constraints specify
guidelines for an acceptable solution, but it is not mandatory that they be satisfied. In the
example above, the constraint that offices should not look out on a parking lot is a weak
constraint. The constraint that handicapped parking access should be provided is a strong
constraint.

In addition to constraints which theoretically can be satisfied, it may be useful to specify
goal constraints which can never be satisfied. For example, an automobile designer usually
wishes to minimize the drag coefficient in a car design. Such a desire constrains the
design, but there is no situation where this constraint can be considered completely
satisfied, since it impossible to have a drag coefficient of zero. This type of unsatisfiable
constraint is called a goal constraint, or simply a goal.

In CONTEST, a constraint is any expressed guideline that influences a design. Because of
the problem formulation, it is not necessary to distinguish weak vs. strong constraints, or
regular vs. goal constraints. All of these constraints are represented in the same manner,
and the term constraint will henceforth be used to refer to any type of design guideline.

1.2. How does this work differ from other work?

CONTEST differs from other geometric modeling systems in that it provides greater
flexibility in constraint specification. It removes the following limitations of other systems:

3

• limitations in constraint complexity (e.g., only linear or quadratic equations)
•limitations in constraint type (e.g., only geometric constraints)
• the need for human problem solving knowledge (e.g., expert systems)
• limitations in the ability of the constraint solver to handle new constraints without

changes to the constraint solver

Consider a constraint to minimize the drag of an aircraft wing. Many systems (e.g., those

which represent constraints as linear equations) cannot represent a minimization constraint
Other approaches (e.g., expert systems) require an understanding of what determines drag
and rules for minimizing it CONTEST requires only that one be able to measure drag
given a particular model. The solution method is automatic given this measurement.

The problem of solving systems of sophisticated constraints is, of course, extremely
difficult To attack this problem, CONTEST takes a step back from the goal of finding the

best solution to a set of constraints, and instead seeks to find near-optimal solutions using
a simpler solution method. The basic strategy is to recast the constraint-based modeling

problem as a function optimization problem. Constraints are represented using scalar cost
(or error) functions, which return a measure of how badly a particular data set violates the
given constraint The goal of the optimization is to minimize the sum of the error

functions. This representation is described in the following section.

1.3. Description of problem representation

Choosing a proper problem representation is an important aspect of solving a problem. A
concise problem statement can often suggest promising solution techniques. Other times,

successful solution methods for related problems can lead to the problem formulation. In

this research, the idea of representing constraints using scalar cost functions was examined
and initially rejected, because of the lack of a suitable optimization method. Later, when
results in pther fields demonstrated successful global function optimization techniques, the

idea of combining constraints into a single function was reexamined and forms the basis of
this work.

The basic problem is to find the best solution to a collection of constraints. In other words,
we seek the set of design variables which best satisfy some evaluation measure for the

constraints. The design variables are the parameters that define a geometric model. These
parameters usually will be geometric variables (coordinates of points, radii of spheres,
etc.), though other non-geometric parameters (e.g., color) may be used as design variables.

4

The usual means of defining a problem is to specify a collection of constraints that should
be considered simultaneously. This composition (anding) of constraints can be

represented by summing individual cost functions so that each contributes to the total cost
function. Section 5.7 shows that other logical operations (such as or) can be used to
combine constraints. In all problems encountered thus far, additional operations have not
been required, so the summation of individual cost functions is presented here as a
simplification of the formation of the total cost function.

Each cost function, ci, returns a real number which expresses how well that constraint is
satisfied by a particular configuration. The cost functions for most constraints have the
following form:

• zero, if the constraint is met
• a measure of how well the constraint is satisfied, otherwise
(larger costs indicate poorer satisfaction)

Moreover, for each cost function, there exists a weighting factor, wi, that specifies the
importance of the constraint relative to other constraints.

In other words,

and

c; = fl design parameters),
wi = weighting coefficient for constraint i,
Ctotal = Iwi ci = ftotaidesign parameters).

The cost or quality of any design is determined by supplying the input (design parameters)
toftotal> and observing the output, Ctotal· By expressing quality as a scalar value, the
constraint satisfaction process is converted to an optimization problem. The goal is to find
the design parameters which minimize c total·

~:... ---~::l ___ ft-olal __ l---1•• ctolal

Figure 1.1: black box function evaluation

5

There are many strategies that might be applied in the search for an acceptable solution.
One obvious solution is to generate and test all potential solutions. Unfortunately, this is
infeasible because of the tremendous growth of the search space as the number of
dimensions increases. Another alternative is to use a priori information about the function
to concentrate the search in promising regions of the space. The difficulty with this
approach is that the solution method must be adjusted as new constraints are added.

Instead, CONTEST treats the total cost function as a black box. With the black box
assumption, information about the function must be learned by formulating inputs and
observing the resulting costs. New potential solutions are created by modifying previous
candidate solutions. Figure 1.2 shows the search method used in CONTEST.

no

generate initial
solution

no

after current
solution

yes

yes

Figure 1.2: Improvement search technique

6

output
solution

update
current
solution

1.4. Optimizing cost functions

The main difficulty in perfonning a black box optimization is finding a global, rather than
local, optimum. Local optima are easy to find: simply choose a starting point and perform
hill-climbing toward the goall. Hill-climbing is suitable for unimodal functions, but
unsuitable for functions with many peaks and valleys. Figure l.3a shows a simple
unimodal function which can be optimized with hill-climbing. Figure 1.3b shows a
function with multiple local optima. These are simple one-dimensional functions. The total
cost functions that CONTEST seeks to optimize are, of course, of much higher dimension.
Chapter seven, for example, presents an application where cost is a function of 100
variables (x and y coordinates for fifty buildings).

(a)

(b)

Figure 1.3: functions with single maximum and multiple local optima

Simulated annealing is an alternate search technique for finding global optima. As with
simple hill-climbing, simulated annealing generates new configurations by modifying the
current configuration. It differs from simple hill-climbing in that it sometimes accepts new
configurations which are worse than the current configuration. The acceptance of these bad
configurations is necessary to explore the entire search space rather than getting stuck in
local optima. Both the choice of a new configuration and whether to accept a bad

1 The term hill-climbing will be used although CONTEST seeks to minimize the
total cost function. The minimum of a function can be found by maximizing its
negative.

7

one of six categories: constraining a parameter to be equal to a value, constraining a
parameter to be TUJt equal to a value, constraining a parameter to be less than a value,
constraining a parameter to be greater than a value, minimize a parameter, and maximize
a parameter.

A subjective constraint is a constraint involving a value judgement. Since these are not
usually expressed in a computable form, such constraints must be broken down into
simpler constraints that a computer can evaluate. A divide-and-conquer approach can be
used to reduce value judgements to a series of objective evaluations, composed of numeric
(e.g., 0.0 to 1.0) rankings, yes/no questions, and standard objective constraints.

A search constraint guides the constraint satisfaction search by providing levels of
confidence to initial positions, or in general by imposing penalties for undesirable
configurations. While all constraints penalize undesirable configurations, search
constraints do so at the explicit direction of the user. For example, a designer can assign
varying levels of confidence to the positions of model parts. When the constraint system is
solved, the objects whose positions are assigned lower confidence values will be
repositioned to satisfy the constraints, whereas other objects will tend to remain near their
initial positions. The confidence level defines the freedom of the variable to solve the
constraints, where low confidence implies high freedom.

1.6. Characteristics of applications

The benefits and limitations of the cost function formulation and simulated annealing
optimization procedure define the class of problems for which CONTEST can be a useful
tool. These benefits and limitations are introduced in this section and are discussed in
greater detail in chapter three.

The cost function approach has several advantages. It can handle straightforward
geometric constraints (e.g., distance between two objects), non-geometric constraints
(e.g., constraints on color), and constraints which are indirectly specified as a function of
geometry (e.g., drag coefficient of a car). These constraints can be arbitrarily complex; the
only requirement is that the cost function must be capable of evaluating any potential
solution. Underconstrained, exactly constrained, and overconstrained problems are all
properly represented by the total cost function. The optimization technique used by
CONTEST is independent of the problem specification. The constraint designer is
therefore responsible only for constructing a cost function that measures constraint
satisfaction; he is not responsible for devising a solution method for the constraints. The
user can thus explore design problems even when he has little intuition about possible

9

solutions.

The cost function approach used by CONTEST also has several limitations. First, it cannot
guarantee that an optimal solution will be found. In fact, CONTEST cannot even determine
whether a potential solution is optimal. Second, the solution technique is compute
intensive because it involves iterative search of a high-dimensional space. Third, the
probabilistic nature of the solution technique results in random positioning of
underconstrained components (this can also be considered a feature). Finally, the process
of devising cost functions can be time-consuming for new applications.

CONTEST is therefore well-suited for the following types of problems:

• applications with diverse, complex constraints
• applications with conflicting constraints
• applications where near-optimal solutions are acceptable
• applications with many optimal solutions
• applications with non-intuitive solutions
• applications where the human design process is not understood
• applications where some randomness is desirable or acceptable
• problems in which algorithmic methods are infeasible

Applications with some of these properties include computer-aided product design,
modeling of natural phenomena, building layout, and architectural site planning.

Two problem areas, product design (a family of opaque projectors) and site planning, were
explored as sample applications for the techniques developed in this dissertation.
Satisfactory results were achieved in both of these diverse cases, suggesting a broad
applicability of the techniques.

10

1. 7. Chapter overview

Chapter two summarizes previous work in constraint-based graphics. A taxonomy of
constraint satisfaction techniques exhibits the wide range of solution techniques used in
constraint-based modeling. Chapter three describes constraint-based design issues relative
to CONTEST. It details the features and limitations of the problem representation in this
research. Chapter four discusses function optimization, presents the general form of
probabilistic optimization techniques, and shows how constraint-based modeling can be
performed by simulated annealing. Chapter five provides guidelines for creating cost
functions for objective, subjective, and search constraints. Chapters six and seven
demonstrate the usefulness of the technique. In chapter six, product design constraints are
used to build an application for exploring opaque projector designs. In chapter seven,
constraints for architectural site planning are encoded to generate designs for campus-like
site plans. Chapter eight compares CON1EST with several systems using alternative
solution techniques. Chapter nine summatizes the dissertation and provides conclusions
and directions for future research .

• ·1.8. Summary

The central thesis of this dissertation is the following:

Design problems involving diverse, complex geometric and non­
geometric constraints can be solved by converting the problem
formulation into a scalar cost function.

The cost function expresses how well the constraint is satisfied by a particular model
configuration. Typically, if the constraint is satisfied, the cost function is zero. If the
constraint is not satisfied, then the value of the cost function is non-zero, and increases in
magnitude as constraint violation increases.

A composite cost function, called the total cost function, is usually formed by taking a
weighted sum of all individual cost functions. The total cost function expresses how well a
particular model satisfies all constraints. The inputs to the cost function are the vatiables
that define the model. The optimal configuration (the best solution to the constraints) is the
configuration that yields the minimum total cost.

A probabilistic optimization technique, simulated annealing, is used to search for the
optimal configuration. In theory, simulated annealing can find the global optimum of any
function. In practice, limited computing budgets prevent the optimum from always being

11

found. Fortunately, near-optimal solutions are often suitable in many applications.

Constraints have been categorized into three classes, based on the methods for constructing
their corresponding cost functions. Objective constraints use a simple evaluation of a
model property as input to a function which reflects the shape of six basic constraint types:
less than, greater than, equal to, not equal to, minimize, and maximize. Subjective

constraints require a divide-and-conquer approach to break subjective issues into a
collection of objective questions. Search constraints help to concentrate the search in user­
specified portions of the search space.

The solution technique is not applicable to all modeling problems. Because it cannot

guarantee optimal results or tell when an optimal solution has been reached, it is best suited
to applications in which near-optimal solutions are acceptable. The technique can easily
handle underconstrained and overconstrained problems. Since the solution technique is

totally automated, CON1EST is able to tackle problems where no human solution methods
are known, or where an expert is unavailable.

12

Chapter 2

Constraint Satisfaction Techniques

This chapter describes previous constraint-based systems, and the constraint-satisfaction
techniques they use. The systems described are drawn from various fields and organized
in a taxonomy. The chapter concludes with a discussion of the applicability of these
techniques to this research.

2.1. Constraint-based modeling

Constraints have been used in a variety of computer graphics applications, beginning with
Sutherland's Sketchpad system [Sutherland, 1963]. Constraint-based modeling techniques
have also been used in other fields, such as architecture, mechanical, electrical, and civil
engineering.

In fact, the previous research most relevant to this dissertation comes from the engineering
fields. Few references to constraint-based modeling systems in other disciplines can be
found in the computer graphics literature. Two reasons for this oversight exist: the first
deals with problem complexity and the second with an artificial requirement of rendering
techniques in computer graphics.

2.1.1. Problem complexity

One reason for the lack of references to constraint•based modeling systems from other
fields in computer graphics is the difference in complexity of design problems in different
fields. Constraints have been used in computer graphics to make it easier for a designer to
describe a shape to the computer. For example, constraints may be applied to a rough
sketch of a design to yield precise geometry. The design is already in the designer's mind;
the problem is to communicate the design to the computer. For instance, to simplify the
task of drawing an equilateral pentagon, the user might first sketch a rough five-sided
polygon, and then apply constraints to adjust the geometry, as depicted by figure 2.1.

apply
cmstraints

Figura 2.1: constraint-based layout

Engineering problems, however, are more complex than these computer graphics
problems. The diversity and number of constraints on a particular model can make it
difficult for a human to fmd the optimal solution to a design problem. For example, the
design of an airplane wing might be dependent on many factors: lift constraints, stress
constraints, material cost, safety considerations, and so on. Computer-based constraint­
satisfaction techniques have been forced to explore large search spaces, often without a
good initial approximation to the final solution. The computing time necessary to apply
these constraint -satisfaction techniques has made them unsuitable for interactive graphics
applications.

As geometric models for computer graphics continue to become more intricate, techniques
for automating the design process must become more sophisticated. For many applications
it is no longer reasonable to expect interactive constraint satisfaction. Thus it is wise to
examine not only previous work in interactive computer graphics but also the literature on
constraint-based engineering design for possible insights to constraint-based geometric
modeling.

2.1.2. Modeling vs. rendering

A second reason for the lack of references to the engineering work in the computer graphics
literature is that many of the constraint-based architectural and engineering systems did not
produce images on a display device. Instead, output consisted of tables of numeric data.
The emphasis of the work was on the creation of models and not on computer-based
rendering.

In contrast, most previous research in computer graphics has concentrated on drawing
models rather than creating them. In recent years, however, interest in the modeling
problem has increased, and computer scientists have turned to other fields for insight At
the same time, architects and engineers have increasingly adopted computer graphics
techniques for visualizing their models. The distinction between what is computer graphics

14

and what is engineering has become blurred as researchers from both fields share and
expand upon their knowledge.

This dissertation does not distinguish between computer graphics modeling applications
and engineering modeling applications. A modeling system will be considered a system
that generates geometric descriptions of objects, regardless of whether images of these
objects are rendered.

2.2. Taxonomy of techniques

The complexity of any constraint-satisfaction problem depends on several factors: the
existence and accuracy of an initial guess, the size of the search space, and the complexity
and number of constraints. The simplest problems have constraints that are directly
satisfiable using analytical techniques. The most complex problems may require exhaustive
exploration of all potential solutions. Between these two extremes are a variety of solution
techniques tailored to the specifics of individual problems. The remainder of this chapter
discusses previous work based on a taxonomy developed by Mitchell [Mitchell, 1977].

Solution methods can be categorized as being either strong or weak. Strong methods
require specific information or impose requirements on the problem being solved. In
exchange for these limitations, they can generate solutions very quickly. Weak methods
place few restrictions on the problem formulation, and thus can be applied to a larger class
of problems. Weak methods, of course, tend to be time consuming compared to strong
methods.

The solution categories below are organized roughly in order from strongest to weakest.
The categories discussed are: analytical techniques, optimization methods, heuristic search,
improvement procedures, and generate-and-test. These categories provide only an
approximate organization; many techniques could be classified in multiple categories, and
many applications combine techniques from two or more categories.

2.3. Analytical techniques

Analytical techniques directly and efficiently solve constraint-satisfaction problems to yield
optimal results. While most complex design problems cannot be solved analytically, such
procedures can be used to find solutions to trivial problems or restricted versions of more
general problems. A particular representation of constraint problems, the constraint graph,
is useful in explaining analytical solution methods. It is described below, followed by a
discussion of four analytical techniques: local propagation, propagation of degrees of

15

freedom, graph transformation, and equation solving.

2.3.1. Constraint graphs

Constraint problems may be represented using graphs. Nodes in the graph represent
objects and operators, while arcs represent bidirectional data flow paths. The operators

defme the relationships (constraints) between objects. The goal is to find values for

undefined objects (variables). Constraint graphs are frequently used to represent
constraints based on simple algebra; all constraints are implemented using the operators

sum, product, and equality.

For example, the constraint graph below expresses the relationship between x andy
coordinates of points on the line: y=4x+3.

y

Figura 2.2: a simple constraint graph

Since information flow is bidirectional, a constraint solver can compute the value of x
given y, or the value of y given x.

2.3.2. Local propagation

Local propagation, or propagation of known states, is a very simple technique for solving

constraint systems. Because the technique is so simple (and fast), it should be used

whenever applicable.

The basic strategy is to deduce locally any values that are computable, and propagate this

information along the arcs of the graph so that additional values may be computed. This is
equivalent to finding an ordering for the solution of individual constraints.

16

When an operator node has enough information to deduce unknown values, it can fire,
and thus propagate computed values along its arcs. In the example above, suppose it is
known that y=ll. The addition node (+) can then fire since it knows the values of two of
its arcs. The value 8 would then be propagated to the multiplication node (*), which
would then fire to yieldx=2.

This technique cannot solve for all values if cycles exist in the graph. Note that local
propagation is insufficient to solve for x in the simple relation: x+x=8.

X

Figure 2.3: a constraint graph with a cycle

The problem is that the addition node (+) can never fire since it needs values from two arcs
to produce output on a third. Local propagation can solve the equation: 2*x=8, but local
propagation alone is not smart enough to recognize that the two equations are equivalent.

2.3.3. Propagation of degrees of freedom

A similar technique, propagation of degrees of freedom, examines the constraint graph for
a variable with enough degrees of freedom so that it can be set to satisfy its constraints.
When such a variable is identified (e.g. if the variable is controlled by a single constraint),
the variable and the constraints associated with it may be removed from the constraint graph
and saved for later evaluation.

When the remaining variables in the constraint graph are solved, the values of the saved
variables may be deduced. This technique is efficient and can be used to reduce the size of
the constraint graph should more complex techniques (e.g., relaxation [Sutherland, 1963])
be required to resolve cycles._

17

2.3.4. Graph transformation I term rewriting

As shown above, local propagation and propagation of degrees of freedom cannot solve all
constraint systems represented by graphs. These techniques cannot break cycles in the
graph because they examine only the arcs local to a node in deciding whether to propagate
infonnation from that node.

Graph transfonnation techniques attempt to solve constraint problems by examining
regions of the graph and reducing these regions to simpler but equivalent graphs. One
could define a rule to convert equations of the fonnx+x=y to 2*x=y. Such a rule would
transform the example above, x+x=B, into a graph that is solvable using local propagation:
2*x=B.

X

Figura 2.4: graph transformation

Although graph transformation techniques can break simple cycles in constraint graphs,
complex graphs require even more powerful techniques, such as equation solving.

2.3.5. Equation solving

Constraints define equations relating the variables of the constraint system. If the
constraints cannot be solved serially.(because cycles in the constraint graph cannot be
broken), then the problem can be treated as fmding the solution to a set of simultaneous
equations.

18

The general problem of solving sets of simultaneous equations is complex. Iterative
numerical techniques (described in a later section) and symbolic techniques (e.g.
Mathematica [Wolfram, 1988]) can be used but are time-consuming and therefore have not
been used where interaction is a concern. When interaction has been a concern, the
approach has been to restrict problem complexity by allowing only simple constraints.

For instance, one alternative is to impose the restriction that constraints must be linear. If
constraints are linear then efficient equation solving techniques may be applied [Derman,
1984]. Derman's technique is similar to Gaussian elimination, though it can be extended to
solve a combination of linear and nonlinear equations if the nonlinear equations reduce to
linear equations after substitnting variables computed by solving the original linear
equations.

2.4. Modeling systems using analytical techniques

Sketchpad [Sutherland, 1963], Thinglab [Boming, 1979], and Magritte [Gosling, 1983]
use local propagation and/or propagation of degrees of freedom in combination with
slower, more powerful techniques. Ideal [VanWyk, 1980] uses equation solving
exclusively. Briiderlin [Briiderlin, 1986] uses a hybrid symbolic/numerical approach.
Rossignac [Rossignac86] implements a user-defined constraint ordering to derive an
analytical constraint solution. Bertrand [Leier, 1987] uses augmented term rewriting in a
general purpose constraint language builder. Mathematica [Wolfram, 1988] is, among
other things, a very general equation solving system. CBD [Ervin, 1990] is a knowledge­
based approach similar to Briiderlin's system. Sketchpad and Thinglab are discussed in a
later section.

2.4.1. Van Wyk (1980)

Ideal is a language for defining graphical layouts. Ideal permits hierarchical object
definitions, with simple constraints defining the relations of parts of the objects. When an
object is instantiated, the caller must provide enough information to solve the constraints in
the object definition.

Constraints in Ideal must be reducible to linear equations. Ideal uses a fast equation solver
to solve the constraints, although it was not designed for interactive use.

19

2.4.2. Gosling (1983)

Magritte is an interactive graphical layout system, Magritte uses local propagation in
combination with graph transformation techniques to solve constraint graphs. Gosling
notes that while these techniques are sufficient in Magritte, a more general system might
still have to resort to relaxation to resolve cycles. Magritte is not as general as Thinglab
(see below), but it is more efficient at solving problems in its limited domain.

2.4.3. Bruderlin (1986)

Briiderlin describes an approach in which constraints are solved using a hybrid of
declarative and procedural techniques. Constraints are first solved symbolically in a
portion of the system written in Prolog and then evaluated numerically in another portion of
the system written in Modula-2. The system contains a set of geometric rules which are
used to generate a symbolic solution for the object being evaluated.

Prolog permits backtracking, hence Briiderlin's system has some characteristics of a
heuristic search procedure. The rules, however, are not general rules of thumb, but are
instead carefully derived rules proven to terminate with a correct solution given proper
input Briiderlin's system is similar to term rewriting because rules are applied to
transform the list of supplied predicates into a solution numerically solvable in Modula-2.

2.4.4. Rossignac (1986)

Rossignac's CSG system allows the user to describe models in terms of unevaluated
constraints. A model is constructed by evaluating constraints sequentially in a user­
specified order. A constraint is evaluated by performing a rigid body motion (i.e.,
translation or rotation) on an object so that an adjacency relationship between two objects is
met.

Rossignac's system is not a problem-solving .system that considers simultaneous
constraints to reach a solution; instead, it uses constraints to simplify the description of a
model. The disadvantages of the system are that the user is partly responsible for
constraint-satisfaction and that cyclic constraints may not be specified or solved. In
exchange for these limitations, the constraints may be solved algorithmically.

20

2.4.5. Leier (1987)

Leier's Bertrand is a language that can be used to build constraint satisfaction systems.
Leier uses augmented term rewriting to solve constraint programs in Bertrand. Augmented
term rewriting extends term rewriting by allowing binding of values to variables and the
capability of defining abstract data types. He shows that augmented term rewriting can be
used to implement an extended version of an equation solver similar to the one used in Ideal
[Derman, 1984]. The extended equation solver can handle nonlinear equations if
transformation rules (e.g. cross-multiplication) are provided for transforming the nonlinear
equations to solvable linear equations.

Leier's augmented term rewriting approach has several advantages over other constraint
languages. Bertrand allows new data types and constraints to be implemented. Bertrand
can handle underconstrained systems by generating an expression for further processing by
a human or computer. Bertrand can be used to implement both 2-D and 3-D graphical
constraint languages. Finally, Bertrand is simple and efficient Its performance makes it
suitable for interactive applications.

2.4.6. Wolfram (1988)

The Mathematica system is a sophisticated tool that can be used to represent and solve
constraint problems. Mathematica is many things: an equation solver, a programming
language, and a knowledge representation system. Mathematica has an extensive collection
of built-in transformation rules that can be used to solve equations, including systems of
simultaneous equations. In addition to these built-in rules, the user may define additional
rules that specify how equations may be transformed. Once these rules are defined,
collections of equations representing constraints may be entered. The built-in and user
defined rules are then used to fmd solutions to arbitrary variables. Results are expressed
either numerically or symbolically. Complicated nonlinear relations between variables may
be specified, although the solution method cannot always fmd a solution for one variable in
terms of the others.

2.4.7. Ervin (1990)

CBD (Constraint Based Diagrammer) is a system that was built to explore ideas about
designing with constraints and diagrams. The system consists of a rule base expressed in
LISP, and a graphics module for drawing shapes. The system solves design problems by
using the rule base to convert relations expressed in LISP into a graphical representation.
This approach is similar to the approach used by Briiderlin.

21

2.5. Summary of analytical techniques

Analytical techniques can be used to solve simple constraint problems efficiently. Local
propagation is a basic technique for solving constraint systems without cycles.
Propagation of degrees of freedom is another technique for ordering constraint evaluation;
it can be used to reduce the size of a constraint graph containing cycles. Graph
transformation can eliminate simple cycles, but is not powerful enough to eliminate all
cycles. Equation solving is a general technique for handling arbitrary cycles, such as those
defmed by sets of simultaneous equations. Leier [Leier, 1987] describes these analytical
techniques in greater detail than presented here.

The simplest techniques are efficient because they solve constraints locally. Local
propagation, for example, looks at only one constraint at a time during the constraint
satisfaction process. Once the constraint is solved, the resulting values may be used to
solve other constraints. This serial solution method is efficient in any case, but is
particularly efficient when incremental changes are made to a system, since the effects of a
change need be computed only for the part of the system affected.

If at all possible, a constraint graph should be reduced to a form solvable by local
propagation. Propagation of degrees of freedom reduces the graph by removing sub graphs
that are known to be solvable once its inputs are known. Graph transformations convert an
unsolvable subgraph into an equivalent, solvable graph.

If a constraint graph representing a problem cannot be solved serially, even after reductions
and transformations have been applied, then the constraints need to be solved using global
solution techniques .. Such techniques consider all variables and all constraints when
computing a solution, and thus are more complex than local techniques, which only
consider one constraint at a time. Since constraints can be expressed as equations, the
global constraint satisfaction procedure requires fmding the solution to a set of
simultaneous equations.

If the equations in the system of constraints are linear, then known algorithmic techniques
such as Gaussian elimination may be applied. If some constraints are not linear, then there
are two alternatives. If the nonlinear constraints fall into a certain class of equations, then
one approach is to extend the analytic constraint solver to handle this class in addition to
linear constraints. The second alternative is to resort to weaker but more general techniques
(e.g., heuristic search, improvement procedures, and generate-and-test) as described later
in this chapter.

22

Analytical techniques described in this section have been used extensively in 2-D layout
problems. Unfortunately, many other design problems involve constraints which are more
complex than the simple constraints in 2-D layout If the constraint system cannot be
solved by the strong methods described in this section, then weaker, but more general,
techniques must be used. The following sections describe some of the alternatives.

2.6. Optimization methods

The term optimization methods is potentially confusing, since many constraint satisfaction
methods treat the constraint satisfaction problem as an optimization problem. The usual
approach is to express constraints in terms of scalar error functions. The goal of the
optimization is then to minimize the sum of these error functions. Iterative techniques are
frequently used; in general these techniques do not guarantee an optimum, but usually they
yield near-optimal results.

This section discusses two particular optimization methods which very efficiently and
. reliably yield optimal or near optimal results: linear and nonlinear programming. These
methods are stronger than improvement methods, to be discussed later, but they can only

. be applied to a restricted class of problems .

.. 2.6.1. Linear programming

Linear programming techniques can be used when the constraint problem can be expressed
as the minimization (or maximization) of a linear objective function subject to linear
constraints on the variables. These conditions are very restrictive; even a simple two­
dimensional area constraint, such as width*height<50, cannot be handled by linear
programming techniques. Consequently, linear programming is poorly suited for
geometric modeling problems.

2.6.2. Nonlinear programming

Nonlinear programming methods have been used by several architectural floorplan layout
systems (e.g., [Mitchell, 1975], [McGovern, 1976]). The main problem with nonlinear
progtarmning methods is that they cannot solve arbitrary nonlinear constraints. Suppose an
algorithm can solve systems of equations consisting of linear equations and equations with
terms involving the product of two variables. If an application has equations with terms
involving the cube of a variable, then the solution method cannot be used, even though the
constraint solver can handle some nonlinear equations.

23

2.7. Summary of optimization methods

Linear and nonlinear programming methods solve a narrow class of problems. Some of

these techniques are analytic (e.g., the simplex method for linear programming), while
others (e.g., Newton's method for nonlinear programming) are iterative numerical

techniques. As a class these optimization methods can still be considered strong methods,
although they may not be as efficient as the analytic techniques mentioned in the previous

section. They yield excellent solutions for problems involving simple constraints and
objectives. Because these techniques are reliable and efficient, it can be worthwhile to

convert constraint problems by approximating more complex constraints with simpler
constraints when possible.

In the search for a solution method, one should consider optimization techniques as the

next alternative if simple analytic techniques cannot be found. If optimization techniques
are not applicable, then weaker methods may be examined. The constraints involved in
three-dimensional geometric modeling, however, are sufficiently complex that neither

simple analytic techniques nor optimization techniques can solve all problems of interest.
On the other hand, heuristic search, improvement methods, and generate-and-test schemes
are capable of finding solutions to some problems that are not solvable analytically. These

categories are explored below.

2.8. Heuristic search

Heuristic search procedures use knowledge about the design problem to guide the search

for an acceptable solution. Heuristics are applicable when the problem solving process can

be viewed as a tree (or graph) of states. The terminal nodes in the tree are potential
solutions; internal nodes represent intermediate states leading to a solution. The goal is to

find a path in the tree (a series of actions) that leads to the best solution.

The simplest forms of heuristic search rules are the general guidelines on how to search the
tree (e.g., depth-frrst or breadth-first search). More sophisticated systems encode detailed

domain-specific problem-solving techniques. Many expert systems for solving design
problems have been developed, including the three representative systems discussed
below.

24

2.8.1. Pfefferkorn (1971)

The Design Problem Solver (DPS) [Pfefferkorn, 1971] solved architectural floor plan

layout problems incrementally. The system entered new components into a room serially.

If a new element could not be entered without violating constraints, a special procedure was
called to resolve the conflict. If the conflict could not be resolved, the system incorporated
backtrack to restart the design at an earlier stage. Optimal solutions were not guaranteed,
but the system had the flexibility to explore a range of design alternatives.

2.8.2. McDermott (1982)

The XCON/Rl expert system [McDermott, 1982] automatically generates VAX computer

configurations. It uses a rule-based approach without backtracking. The constraints in Rl
are highly domain dependent. The system is very powerful, but not well-suited to
exploring a range of designs. The large number of specialized constraints in R 1 makes it

more difficult to maintain than DPS.

2.8.3. Brown (1986)

Brown [Brown, 1986] describes an expert system that closely matches human design
problem solving techniques. Rather than using a single rule base and inference engine,
Brown uses a collection of communicating design specialists. Brown organizes the

specialists into a design hierarchy. Specialists at the top of the hierarchy call lower-level
specialists to make detailed design decisions. When a subproblem is solved, the

information is passed back to the higher levels. Each specialist maintains local design
knowledge. The purpose of this information passing is to reach a globally optimal design
while using specialists capable of solving local problems.

2.9. Summary of heuristic search

Heuristic search techniques can be very successful at simulating the human problem

solving process, and can do so efficiently. Unfortunately, knowledge-based systems tend
to be domain dependent and difficult to develop and maintain. Moreover, human design

expertise is not available for solving all classes of problems.

If no analytic techniques are capable of solving a constraint system, and heuristic search

methods are not applicable, then one may have to accept weaker techniques for fmding a

solution to the problem. Two classes of weak solution procedures, improvement
procedures and generate-and-test, are discussed below.

25

2.1 0. Improvement procedures

Improvement procedures generate new potential solutions from previous configurations,
Whereas heuristic methods use knowledge about the problem in seeking a solution,
improvement methods typically require no specialized knowledge about the problem being
solved, and thus can be applied to a wide variety of problems. Three categories of
improvement procedures are discussed below: variation with selective retention, greatest
improvement, and numerical methods.

2.10.1. Variation with selective retention

Variation with selective retention requires the ability to compare two configurations and
detennine which better meets the design criteria. New configurations are generated from
existing configurations, and a decision is made regarding whether the new configuration
should be retained. Traditionally the better configuration is retained (simple hill-climbing),
but more sophisticated retention algorithms (e.g., simulated annealing) have been
developed to prevent the method from getting trapped in local optima.

, ..

no

ahrcurrent
oolutlon

, ..

yea -local optimum

Figure 2.5: variation with selective retention

26

2.1 0.2. Greatest Improvement

Greatest improvement procedures have been used to speed convergence to a solution. The
strategy is to alter the configuration in a way that yields the greatest advance towards the
objective. This can be achieved by analytically computing the direction of greatest
improvement, or by evaluating several possible perturbations and choosing the one which
yields the greatest improvement in the objective function.

, ..

••

take a step In cannot in-prove v local cptlroom
L----1 dlrecHon of greatel.t l------­

llfl)!OifetTiel11

yoo

,.

;enerate several
derallons of solution

Figure 2.6: greatest Improvement procedures

2.1 0.3. Numerical methods

, ..

no o local optimum reached

This category encompasses a variety of numerical techniques that iteratively approach a
final solution to a constraint system. Relaxation is one such technique used by several
constraint solvers. Relaxation methods compute an estimate of the cost of making specific
assignments to variables. The value of variables for the next iteration are chosen so as to
minimize the total cost of the system. The iterative process continues until the rate of
change in cost falls below some threshold. Several techniques, such as Newton's method
and its variations, can be considered optimization techniques as well as numerical methods.

27

Since these techniques tend to be weaker than analytic optimization techniques, the systems
using these methods are described below rather than in the optimization section above.

2.11. Systems using improvement procedures

Sketchpad [Sutherland, 1963] and ThingLab [Borning, 1979] use relaxation to solve
constraint graphs involving cycles. Weinzapfel and Handel [Weinzapfel, 1975] use
iterative methods in an architectural layout system. Cinar [Cinar, 1975] uses a form of
greatest improvement in a building planning system. Nelson [Nelson, 1985] uses
Newton-Raphson iteration in. a 2-D imaging system. Many applications (e.g., [Kravitz,
1986], [Pincus, 1986], [Romeo, 1985], [Sechen, 1986], [Wong, 1986]) use simulated
annealing to search for optimal VLSI layouts. Witkin, Fleischer, and Barr [Witkin, 1987]
use iterative techniques to solve constraints expressed as energy functions. Barzel and Barr
[Barzel, 1988] invoke forces on objects to satisfy constraints.

2.11.1. Sutherland (1963)

Sketchpad was an interactive 2-D system in which the user defined pictures by combining
various graphic primitives (e.g., points, lines, and circles). The user sketched a rough
version of a drawing to which constraints were applied. Sketchpad also provided support
for instancing copies of a previously defined object.

Sketchpad used two techniques to solve constraints. It frrst attempted to apply propagation
of degrees of freedom (see analytical techniques). If propagation failed, Sketchpad
resorted to relaxation.

In Sketchpad's relaxation method, every constraint generated an error expression. At each
iteration, the variables in the system were adjusted to reduce the total error. Relaxation
terminated when all constraints were satisfied (zero error), or when further iterations could
not reduce the error. The starting point for the relaxation procedure was a rough sketch
entered by the user.

2.11.2. Weinzapfel and Handel (1975)

IMAGE is an assistant for architectural layout. It was designed to aid architects in site
planning and floorplan layout problems. Image allows the architect to specify a variety of
objectives including distance, area, adjacency, position, ratio, and visual access
constraints. IMAGE has two methods for solving constraints: an automated constraint
satisfaction procedure, and a user-guided exploration procedure.

28

2" 11.2. 1. Automated constraint satisfaction

The automated procedure starts with an initial configuration provided by the architect. It
proceeds by modifying one object at a time. For each object that it is modifying, it
determines which constraints are being violated, and what changes should be made to

satisfy that particular constraint Since the changes suggested by a particular constraint
may conflict with those suggested by another, a least mean squares fit is applied to find the
compromise that will generate the least error atnang all violated constraints.

After a particular object has been modified, the remaining objects are considered in
succession" When all objects have been modified, the system returns to the first object and
continues the improvement procedure. The procedure terminates when no funher
improvement can be made.

This procedure is strongly influenced by the initial configuration of objects. It performs
local optimization based on the supplied configuration; it cannot search out a global
optimum without a close initial guess. The procedure is also influenced "by the order in
·which objects are moved. The architect can choose to move objects either in the order they
·were entered or in an order based on how seriously the objects violate constraints. Despite
'the somewhat ad hoc nature of the solution procedure, th~ system has been used to fmd
near-optimal solutions to problems involving over 50 objects.

:2. 11.2.2. Interactive constraint satisfaction

IMAGE was designed to be an assistant to (rather than a replacement of) the architect.
Consequently, the system allows the human to modify computer generated layouts. The
architect can steer the satisfaction procedure toward an anticipated solution. In addition,
IMAGE can be instructed to evaluate a library of prototype solutions to a problem. This
combination of user interaction and automated evaluation allows the architect to explore a
variety of potential designs.

2" 11.3. Cinar (1975)

CRAFI'-3D is a system for facilities planning in multi-story buildings. It attempts to
minimize the transportation costs of generated facility layouts. The cost of any
configuration is based on the distance between facilities and the expected flows between
each pair of facilities.

29

CRAFT-3D uses a simple form of greatest improvement. At each stage of iteration, the
system evaluates the result of all possible component swappings of two or three facilities.

The swap that results in the greatest reduction in layout cost is accepted. The iteration
terminates when no further reduction in cost can be found. In general, this heuristic
generates suboptimal results. Moreover, it is impossible to tell how close one is to the

optimal solution. Nevertheless, the CRAFI'-30 system appears to be useful because of the
lack of an analytical solution to the layout problem it addresses.

2.11.4. Borning (1979)

ThingLab applied and extended some of Sketchpad's ideas to a more general environment.
Whereas Sketchpad was designed for the creation of 2-D geometric figures, ThingLab is
designed as a simulation laboratory. Constraints can be defined involving both geometric
and non-geometric objects, making ThingLab suitable for diverse applications such as

simulation of electrical circuits and mechanical stress.

ThingLab uses local propagation and propagation of degrees of" freedom when possible;

relaxation is used to deal with cycles. ThingLab is implemented in Smalltalk, and provides
the capability of defining new constraints and new object types using Small talk classes.

When defining a new constraint, the user can specify explicit procedures which, when
executed, will satisfy the constraint.

ThingLab continues to be enhanced by Boming and his colleagues. Recent enhancements
include interactive constraint graph editing [Boming, 1985]. Duisberg [Duisberg, 1986]
extended ThingLab to handle constraints involving time.

2.11.5. Nelson {1985)

Juno is a constraint-based system for image creation. Images are defined using a language
that allows the user to specify constraints on points. Only four primitive constraints are

allowed, but these are general enough to implement more complex constraints. The
primitive constraints are: parallelism of pairs of lines, horizontal lines, vertical lines, and

pairs of lines constrained to be of equal length. The user can modify a Juno program either

implicitly by manipulating objects on the display screen, or explicitly by editing the
underlying text.

30

Juno uses Newton-Raphson iteration to solve the systems of equations defined by Juno
programs. Nelson reports that although Newton-Raphson iteration is faster than
relaxation, a powerful workstation is necessary for acceptable performance. The
computational demands on the system can be lessened by defining objects hierarchically
and by providing close initial guesses to the final solution. An additional justification for
providing a close guess is that the nonlinear equation solver may behave unpredictably
without a good initial configuration.

2.11.6. VLSI Layout: Kravitz (1986), Pincus (1986), etc.

Many applications in VLSI layout (e.g., [Kravitz, 1986], [Pincus, 1986], [Romeo, 1985],
[Sechen, 1986], [Wong, 1986]) have used simulated annealing, a form of iterative
improvement. Constraints on a problem are represented by summing error functions so that
a single scalar expresses the quality of any solution. Simulated annealing works by
perturbing object parameters (usually position) to minimize the objective function.

Simulated annealing has been very successful in generating near-optimal results. It is well­
suited for problems where there is not much insight into solution techniques. A
disadvantage of simulated annealing is that it can be time consuming because it uses
stochastic variations which may not provide much improvement at each iteration.
Simulated annealing is described in greater detail in chapter four.

,, 2.11.7. Witkin, Fleischer, Barr (1987)

Witkin, Fleischer, and Barr describe a constraint-based modeling and animation system.
Constraints are defined using non-negative energy functions, which evaluate to zero when
the constraint is satisfied. The system attempts to minimize the sum of the individual
energy constraints.

Numerical techniques are used to follow the energy gradient to a stable configuration. In

addition to rigid body motions, objects can vary internal parameters to meet constraints.
Thus an object might stretch or twist itself to satisfy a constraint A disadvantage of the
system is that the energy minimization procedure may get trapped in local optima. If this
occurs, user intervention is necessary to recognize the problem and bump parts of the
model out of the local minimum.

31

2.11.8. Barzel and Barr (1988)

Barzel and Barr have pioneered research in the area of physically-based modeling.
Physically-based models respond to forces and torques in accordance with the rules of
Newtonian physics. Their method, called dynamic con.strainJs, converts constraints into
forces which act upon objects in the model, cansing the objects to move into positions
which satisfy the constraints on the assembly. The problem of finding the forces necessary
to satisfy constraints is known as an inverse dynamics problem.

Their system solves the inverse dynamics problem iteratively. At each iteration, the forces
necessary to solve a constraint are computed. This series of iterations can be rendered to
form an animation of the constraint satisfaction process. Where possible, constraint forces
maintain previous constraint satisfaction as new constraints or forces are applied to an
existing model. For example, a pair of objects with a connectivity constraint will remain
connected even as external forces are applied.

2.12. Summary of improvement procedures

Improvement procedures have been used extensively in constraint-based modeling
systems. While these techniques can· be time-consuming, they are more efficient than
generate-and-test methods (see next section). Many improvement methods suffer from the
problem of getting stuck in local optima. This is not a drawback in situations where good
approximations to the final solution are provided. In applications where global or near­
global optima have been desired, simulated annealing has provided satisfactory results.

Improvement procedures are so general that they can be applied to many problems. One
limitation of such methods, however, is that it may be difficult to control what portions of
the solution space are examined, resulting in unsatisfactory local optima. An orderly
exploration of the solution space is assured by generate-and-test methods, described in the
following section.

2.13. Generate-and-test.

Generate-and-test procedures attempt to solve a problem by generating and testing potential
solutions until a satisfactory solution is discovered. The methods described in this section
are the weakest methods presented in this chapter, but are generally applicable, and, given
enough time, can yield globally optimal results. Two common forms of this method are
exhaustive generate-and-test and random generate-and-test

32

no

generate a
potential solution

yeo

Figure 2.7: generate-and-test

2. 13.1. Exhaustive generate-and-test

Exhaustive generate-and-test simply enumerates and tests all potential solutions to a
problem. This technique can be used when the solution space is very small, or when there
are many feasible solutions to the problem and the solutions are evenly spaced throughout
the search space. It is not frequently used for design problems because of the large number
of potential configurations in a typical problem. It has been used for some simple
architectural floor plan problems [Mitchell, 1976].

2. 13.2. Random generate-and-test

Random generate-and-test proceeds by sampling potential solutions from the solution
space. It can be efficient when there are many feasible solutions, or when near-optimal
results are acceptable. The ALDEP architectural floor plan layout system [Seehof, 1967]
generated random layouts using simple rules; layouts that met most design constraints were
selected for further processing by an improvement procedure.

33

2.14. Summary of generate-and-test

Both exhaustive and random generate-and-test procedures are weak but general methods
for finding solutions that meet design constraints. These bmte force techniques may be

applicable in specialized problems where the design space is smalL Generate-and-test does
not appear to be well suited for 3-D (as opposed to 2-D) design involving many variables
because the inclusion of the third dimension increases the size of the search space

dramatically.

2.15. Applicability of constraint satisfaction techniques

This research is concerned with constraint-based three-dimensional modeling. The
constraint solver must deal with diverse and complex constraints. Analytical techniques

cannot be applied exclusively because the problem formulation is too complex; no analytical
solutions are known. The constraints are not linear, nor do they fall into the class of
nonlinear constraints solvable by nonlinear progrnmming. Conventional optimization
methods therefore are not applicable. Generate-and-test methods are infeasible because of

the tremendously large solution spaces involved. This leaves two candidate solution

categories: improvement procedures and heuristic search.

Both of these categories are worthy of investigation. This dissertation describes my
research into improvement procedures; a fellow Ph.D. student [Amburn, 1991] is
investigating the application of expert systems to geometric modeling. It is likely that

future modeling systems will combine aspects of several approaches. For example, a
reasonable strategy would be to solve trivial tasks analytically, then use human problem

solving heuristics to further simplify the problem, and finally use improvement procedures

to complete the constraint satisfaction problem.

34

Chapter 3

Constraint-Based Design

Design is the process of selecting among alternatives so as to best satisfy a set of

potentially conflicting goals. Constraint-based modeling involves constmcting geometric
descriptions with the aid of constraints; constraints are used as an efficient means of
expressing a human's preconceived model. Constraint-based design, however, involves

more than just using constraints as a communication tool. It involves using constraints to

specify unsolved design problems-problems which the human designer may not be able
to solve.

Traditionally, the assumption has been that the human (as the design expert) should be

responsible for solving hard design problems, and that constraints should be used to help
solve trivial problems so the human may concentrate on the important issues and hence
make productive use of his time. In other words, people have been responsible for making

global modeling decisions, and constraints have allowed local decisions to be solved
automatically.

This research expands the role of the computer by using it to make global modeling
decisions. The goal is not to replace the human, but rather to automate more of the design

problem. This chapter begins by expanding upon the role of the computer in this work.
Second, an explanation of what makes design problems hard is presented. Third, the
specific objectives of this work are presented to distinguish it from other constraint-based

systems. Next, the solution methods explored in the course of this research are presented.

The logical progression of this investigation toward the cost function method is described.
The cost function approach is then detailed. The chapter concludes with characteristics of

applications with which CONTEST is compatible.

3.1. The role of the computer

Although our objective is to enable the computer to make global modeling decisions, the
purpose of this work is not to replace the human designer. The years of training a designer

receives define thousands of constraints, opinions, prejudices, and objectives that
contribute to the decision-making process. Quantifying these constraints is theoretically
possible but impractical. While objective constraints are readily quantifiable, subjective
constraints are by definition more open to interpretation and therefore difficult to quantify.

Even in problems that can be completely described by quantifiable constraints, the designer
may still need to be involved in the design process. Design is a learning process, and
constraints may need to be modified as a designer learns of their effect The computer is
thus best viewed as a design aid.

human defines
constraint.

co~erfinds
solution to
constraint.

yes, finished

no

human
modifies

constraints

Figure 3.1: Hml-autoiNitlc dealgn of a single model

The computer can be used as a design aid in three main ways. First, designs generated by
the computer can be used to stimulate the designer's imagination. He can· examine
computer-generated solutions as starting points for non-intuitive solutions. Second, the

36

computer can evaluate human-generated designs in addition to computer-generated designs.
One can thus compare computer-generated designs with manual designs, or make changes
to a model and see how constraint satisfaction is affected. Third, and most frequently, the
designer can use the modeling system to refine a problem specification. By examining the
effect of different constraints and weights on generated designs, the designer can gain
insight to the problem. He still participates in the design process by creating and tuning
new constraints, and subjectively evaluating resulting solutions. This is not totally
automatic design because the designer is involved in the evaluation portion of the design
loop. This style of design is called semi-automatic design. For completely automatic
design, one would have to specify all subjective constraints as cost functions and permit the
computer to perform all design evaluation.

3.2. Why are design problems difficult?

Design problems present both practical and theoretical challenges. For humans, it is
difficult to evaluate properly the interaction of variables. Since constraints can involve
more than one design variable, in general it is not possible to find the optimal value for
parameters sequentially. Instead, a large system of constrained variables must be
considered as a whole. Patrick Winston [Winston, 1984] describes the optimization
problem using a television set analogy. The goal is to maximize overall picture quality. If
a single parameter (e.g., the tuner) controls the picture, then we can usually fmd the best
picture. However, if multiple parameters (e.g., tint, color, brightness, tuning, contrast)
define picture quality then, as Winston points out, there is likely to be more cursing than
entertainment.

One solution to complex interactions of variables is to avoid understanding these
interactions at all, and simply enumerate all solutions. The tedium of generating and testing
solutions makes it impractical for people to use this technique for problems involving more
than two or three variables. Even with the use of a computer, the exponential growth in
number of configurations makes it difficult to enumerate solutions in problems of more
than four or five dimensions. Thus, for both humans and computers, design problems are
difficult because they involve large solution spaces.

Finally, at a theoretical level, many optimization problems are NP-complete. No
polynomial-time algorithms exist for such problems, and no transformation of the problem
representation will yield such an algorithm.

3.3. Specific objectives of this research

The main objective of this research was to devise a semi-automatic method of design that

37

allows human modelers to describe assemblies using a diverse set of constraints. The
primary task is to take a collection of model parameters, along with a set of constraints on
their values, and use this information to construct a model satisfying the constraints.
CONTEST differs from other geometric modeling systems in that it provides greater
flexibility in constraint specification. The system was designed to fulfill the following
requirements:

• definition of geometric and non-geometric constraints
• definition of arbitrarily complex constraints
• separation of problem specification and problem solution
• capability of handling underconstrained and overconstrained problems
• suitable for use as a design aid

These requirements affect the class of problems that may be specified and the potential
solution techniques that may be applied.

3.3.1. Geometric and non-geometric constraints

Most constraint-based modeling systems deal exclusively with geometric constraints. In
contrast, CONTEST can also handle constraints that relate only indirectly to geometry, as
well as completely non-geometric constraints.

A constraint on the distance between two objects is a simple geometric constraint. A
· constraint to minimize the internal operating temperature of a part influences the shape of
that part, yet is indirectly specified in terms of geometry. Finally, a constraint on the color
of an object is strictly non-geometric.

3.3.2. Arbitrarily complex constraints

As noted in chapter two, some systems place restrictions on the complexity of constraints
that may be specified. For instance, a system might require that design variables meet
simple linear relationships. CONTEST does not place such restrictions on constraints; any
constraint that may be evaluated by a procedure call can be used.

A system without restrictions on constraint complexity can be used to solve a wide variety
of modeling problems, assuming an appropriate solution method exists. Unfortunately,
permitting arbitrary constraints limits the range and success of potential solution
techniques. It becomes trivial to define optimization problems that are NP-complete. The
traveling salesman problem, for example, is a geometric problem involving a simple goal.

38

3.3.3. Separation of specification from solution

If the solution method is dependent on details of the particular constraints being used, then
extending the system to incorporate new constraints also may require that the solution
method be revised. The constraint specification method in CONlEST is independent from
the solution method. Thus, the user may define new constraints without worrying about
the way they are solved. Moreover, the solution method can be improved without affecting
constraint representation.

3.3.4. Dealing with overconstralned and underconstrained systems

Some systems require that a constraint problem be exactly constrained. CONlEST allows
both overconstrained and underconstrained problems. If a problem is overconstrained,
CONlEST seeks the best compromise to satisfy conflicting constraints. If a problem is
underconstrained, CONlEST simply picks a plausible solution that meets the given
constraints. Most design problems include overconstrained design variables; the difficulty
in a design problem is finding a design that best satisfies a set of conflicting criteria. Note
that some design variables in a problem may be overconstrained, while others are
underconstrained (and still others may be exactly constrained).

3.3.5. Suitability as a design aid

As explained above, CONlEST was not constructed to replace the human designer, though
in some cases designs may be generated completely automatically from an initial problem
specification. In many other cases, however, design will remain an iterative process, with
the computer and human interacting to explore the design space. CONlEST allows a
designer to add and modify constraints to evaluate prototype designs.

3.4. Exploration of solution methods

When we began this project, we had some vague ideas of how we might solve problems
involving collections of complex constraints. We examined four approaches that were in
some way unsatisfactory. One of our early ideas was to build intelligent objects, each of
which was capable of determining its correct position and shape, given the list of
constraints imposed on it. The problem with this approach was that each object needed to
know about other objects and needed to know about the constraints on themselves. In
essence a separate constraint solver was needed by each object. Apart from the obvious
problem of implementing constraint solvers for each object, the approach suffered from the
additional problem of solutions being local in nature. I.e., while each object could attempt

39

to solve the constraints on itself locally, it did not have information about all constraints on
other objects, and hence could not in general reach a globally optimal solution to the
constraints.

Despite these limitations, we implemented a system which solved mumal constraints by
allowing communication between neighboring objects [Amburn, 1986]. This ad hoc
approach was successful in a special purpose terrain modeling application, but broke down
in the general case because it required a global constraint solver, which we did not have and
were trying avoid in the first place.

The second idea was to find a way to reduce the problem to a simpler problem solvable
using analytical techniques. We tried to find a small set of geometric constraints that could
be used to implement many complex constraints. We hoped that a large class of geometric
constraints could be expressed using simple constraints involving distances and
orientations between points, lines, and polygons. Barzel and Barr [Barzel, 1988] and
Briiderlin [Briiderlin, 1987] have shown that sophisticated modeling problems can be
solved using small sets of such constraints, but our goal was not to see what could be done
with a given set of constraints, but to see whether arbitrary constraints could be converted
into simpler constraints. This approach was rejected because no general solvable set of
primitive constraints could be found. While many constraints could be expressed as a
collection of simpler constraints, the resulting set of simpler constraints still was not
solvable using analytical techniques.

A third approach considered was approximating all constraints by simpler constraints
solvable using analytical techniques. If all constraints could be approximated by linear
functions, for example, then a technique such as linear programming could be applied.
This approach was rejected because basic three-dimensional properties such as area,
volume, and distance are non-linear in terms of the defining coordinates. We may have
proceeded if only a small number of exceptions needed to be approximated, but it did not
seem wise to proceed with such a distinct clash between problem definition and potential
solution methods.

A fourth idea was to evaluate constraints using a scalar quality measure. This was
eventually adopted, though it was temporarily rejected because there seemed to be no
practical way to use the information to find a solution. The feasibility of this approach was
reconsidered after examining constraint-based specification in a related field, VLSI design.

40

.-to salve
diverse constraints

problem: global constraint solver
too complex, look at alternatives
declsion: lnvestlgata lntslllgent objects,
local cons1ralnt satisfaction

J reported In [Ambum86J

problem: special purpose techniques,
local/limited knowledge leads to locally
optimal solution; general case raquires many
fuU-blown global constraint salvers
declsicn: Investigate global schemes

-complex cons1ralnts /
- scphistlcated solution method ~ -simple cons1raints

decision: rule-based
approach

I
Symbolic reasoning/
Amburn investigation
[Ambum91J

decision: convert complex
constraints to simpler form

- simple equations

reject: cannot
convert all types
of constraints

problem: need to optimize
arbitrary functions

annealing/ \ btuta
force

reported reject,
here impractical

Figure 3.2: progression of Investigation

41

3.5. The cost function representation

The problem representation used by CONTEST was chosen after noting the success of
constraint-based VLSI systems. VLSI designers must constantly deal with constrllints:
basic constraints defining the function of the circuit, design rule constraints imposed by the
manufacturing process, and cost and speed constrllints involving wire length and chip area.
One of the fundamental problems in VLSI design is floorplan layout; the goal is to place a
number of cells so as to minimize chip area. By explicitly casting the problem in terms of
optimizing the area function, VLSI designers were able to apply iterative improvement
techniques to generate near-optimal floorplans (e.g., [Wong, 1986]). The design variables
were the positions of the cells, and the objective function was chosen to minimize the area
of the resulting floorplan, while also meeting design rules.

CONTEST uses a similar approach in which the design variables are the geometric
parameters that define a model. Constrllints are expressed using cost or error functions that
measure how well the constraints are satisfied. Normally, if a constraint is completely
satisfied, the value of its cost function is zero. Otherwise, the cost function returus a value
that indicates how severely the constraint is violated

For example, suppose we wish to constrain two objects to be five units apart from one
another. If the objects in a given model are indeed five units apart, then the cost function
should returu a value of zero. If not, then the cost function should returu a non-zero value,
with the magnitude of the value increasing with the difference between the desired distance
(five) and the actual distance. One cost function to accomplish this is:

cost = abs(5 -distance(object] ,object2))

This function provides a cost that increases with distance from the goal. In chapter 5, we
will see that there are additional guidelines to cost function design which make this function
a starting point for a more sophisticated cost function. In addition, for each cost function,
Cj, the modeler may specify a weighting factor, Wj, to reflect the relative importance of the
constraint The weighted cost values are then summed to yield a total cost function that
expresses how well an entire model matches all constraints.

42

Formally,
ci =/,{designparameters)
wi = weighting coefficient for constraint i

Crotal = I Wj Cj = f 101aJ(design parameters)

As was discussed in chapter one, this summation representation represents the composition
of constraints corresponding to the and operation. A more complex expression is
necessary to represent additional operations, such as or. The simplified form is used here
since it corresponds to the current implementation, and support for additional operations
has not been needed.

The cost of any particular design can be determined by supplying the inputs (design
parameters) tof.otab and examining the output, Ctotal· The optimization process involves
developing and testing different inputs in search of an acceptable solution.

This approach quantifies constraints to yield a single scalar value which reflects the quality
of any particular design. The optimal design is the configuration which minimizes the cost
fu~ction. This problem formulation has therefore transformed the constraint satisfaction
problem into an optimization problem.

3;p. Characteristics of applications
"

The problem representation used by CONTEST allows flexibility in constraint
specification, but because of this flexibility, CONTEST cannot guarantee optimal results.
In addition, the solution method uses probabilistic techniques; this further affects the class
of problems to which CONTEST it well-suited. In general, CONTEST will perform well
on constraint applications with the following characteristics:

• applications where near-optimal solutions are acceptable
• applications with many optimal solutions
• applications with non-intuitive solutions or where the design process is unknown
• applications where some randomness is acceptable or desirable

3.6.1. Near-optimal solutions acceptable

CONTEST cannot guarantee that it will find the optimal solution to a constraint problem.
Even when the system reaches an optimal solution, it cannot detect that the solution is
optimal. CONTEST is therefore suited to applications that require good solutions, rather

43

than the best solution. When CON1EST does not fmd an optimal solution, the solution it
returns will tend to be a local optimum. The resulting model will thus appear reasonable in
that no small changes can be made to better satisfy the constraints.

D

a) global optimum b) local optimum c) not locally optimal

figure 3.3: global vs. local optima In a packing problem

Suppose we use CON1EST to pack objects together so that the area of their bounding box
is minimized. Figure 3.3a shows a global optimum. Figure 3.3b shows a local optimum
that might be acceptable. Figure 3.3c shows a solution that is not locally optimal.

3.6.2. M~ny optimal solutions

CON1EST explores the space of all possible solutions when searching for an optimal
solution. The probability of fmding an optimal solution is greater if there are many optimal
solutions as opposed to a single configuration.

3.6.3. Non-intuitive solutions

CON1EST requires no initial approximation to the fmal solution. Its solution method does
not attempt to emulate the human design process. Consequently, it explores potential
solutions that are non-intuitive and might not be found by a rule-based approach. It is
suited to solving problems where a systematic human design process does not exist, or
where design experts are unavailable.

44

3.6.4. Randomness acceptable or desirable

CONTEST searches for a solution to a design problem by making random perturbations to
the design variables. As a result, underconstrained variables can be set to unpredictable
values. In some cases this is undesirable; in other cases it can add complexity and
naturalness to models that otherwise would appear computer-generated. By generating
several potential solutions, the designer can evaluate different near-optimal solutions and
potentially gain insight to the problem.

3.7. Summary

Geometric design is a complex process involving many thousands of rules and guidelines
learned through experience. Totally automating the design process is nearly impossible for
several reasons. The enormous task of both acquiring and encoding design knowledge is a
limiting factor. Subjective constraints are particularly difficult to quantify. In addition,
design is usually an evolutionary process in which the problem specification is modified as
the designer explores the problem. Entirely automated design requires a complete
understanding of the problem at specification time.

Despite these limitations, non-trivial design tasks can be solved with the aid of a computer.
Many constraints are easily quantified, and when a problem can be properly encoded the
computer can be used to find and evaluate solutions. An objective of this work is to
expand the role of the computer from solving only trivial local constraints to solving very
general global constraints. The designer can then better utilize his time in achieving a final
design.

CONTEST pursues this objective by using a very broad definition of the term constraint.
Essentially, any design guideline that can be quantified by a single scalar cost function can
be used. This representation can gracefully represent underconstrained and
overconstrained systems. Individual cost functions are summed to yield a total cost
function which is then optimized using black box optimization techniques.

Because of the black box formulation, it is impossible to tell when an optimal solution has
been attained. Moreover, because of the computational complexity of many optimization
problems, it may be infeasible to expect an optimal solution from this or any method in a
reasonable amount of time. Therefore CONTEST is best suited to problems where near­
optimal results are satisfactory. The optimization method used by CONTEST is described
in the following chapter.

45

Chapter 4

Function Optimization

This chapter discusses optimization of the global cost function. It begins by describing the
goal of optimization problems in general, and characterizes the optimization problem for the
geometric modeling application. The limitations of simple hill-climbing techniques are
examined, and the need for more sophisticated search techniques is justified. Probabilistic
optimization techniques are introduced as a way of finding global, rather than local, optima.
The chapter concludes with an explanation of how a particular probabilistic optimization
technique, simulated annealing, can be applied to the constraint-based modeling problem.

4.1. Formulation as an optimization problem

The goal of an optimization problem is to find the configuration that minimizes or
maximizes the value of an objective function. The objective function in tbis case is the
global cost function which incorporates the costs of all constraints. The design variables
(the function input) are usually geometric variables (lengths, positions, etc.), though other
model parameters (e.g., color) can be used as design variables. Parameters whose value
cannot change are not design variables; instead, they are simply data that help to define the
model.

Although the design variables are free to take on any values, in practice most variables have
a restricted range. If we are placing furniture in a room, for instance, the set of feasible
bookshelf positions should be determined by the bounds of the room. Such a restriction
can be encoded as a constraint, but because it is such a hard constraint, and because cost
function design is simplified by advance knowledge of such restrictions, range information
is made available to the optimization procedure.

4.2. Characterization of the optimization problem

This section discusses some of the issues that led to the decision to use simulated annealing
techniques for solving the optimization problem in geometric model design.

CONTEST was designed to be capable of solving a wide variety of modeling problems.
Each of these modeling problems is defmed by the particular constraints chosen or defmed
by the human modeler; The modeler should not be responsible for devising a solution
method. Instead, a method capable of solving any specified optimization problem is
needed.

Without restrictions on the form of the constraints, it is not possible to devise a general
purpose analytic solution to the constraint satisfaction problem short of trying all possible
solutions. Any analytic solution method would be computationally intractable since many
simple optimization problems are known to be NP-complete (e.g., the traveling salesman
problem).

Not only do we not have an analytic solution to the general constraint satisfaction problem,
but we also have little insight about efficient problem-specific heuristics that could be used
to reach a near-optimal solution. Again this is because of the arbitrary way that constraints
are specified, and because the problem is subject to interactive change: the modeler may
continually add new constraints or refine existing constraints. In addition, the constraints
may be arbitrarily complex (e.g. non-linear in terms of the variables, with costs oscillating
as a design variable is swept through its range of values) .

design
parameters

•
objective
function

•

Figure 4.1: black box function evaluation

cost

Instead of using information about the form of the function to be optimized, the solution
method treats the function as a black box. In other words, it has no information about the
function at the start of the optimization procedure, and all information is gained by
supplying inputs to the black box and examining the resulting output

Any such problem formulation requires some heuristics to efficiently explore the solution
space. Although the process of solving a black box optimization problem requires heuristic
search, the heuristics must be generally applicable to all functions, rather than custom-

47

tailored based on assumptions about the form of the function. Only then can the solution
method be built entirely separate from the constraint specification.

Treating this problem as a black box optimization has several important implications. Since
the solution method has no knowledge of the constraints (and their associated cost
functions), it cannot determine the minimum value it seeks. Even if it finds the optimal
configuration, it has no way of knowing that it has done so. The search method cannot
guarantee finding the optimal solution in any finite amount of time.

Fortunately, in many applications the global optimum is not needed. Instead, local optima
near the global optimum may be satisfactory. This work is geared toward those
applications. Thus, while the optimization method seeks the absolute minimum, the overall
problem is to fmd a satisfactory solution.

4.3. The limitations of simple hill-climbing techniques

Although we seek the minimum of the function, this discussion refers to hill climbing, a
maximization technique. To find the minimum of a function we need only find the
maximum of its negative.

The black box problem formulation assumes that we have no information about the
function. At times, however, the system designer does have some information about the
general form of the function and can use this information to select an appropriate search
procedure. In particular, if the function is unimodal, then a simple hill-climbing strategy
can be used to find the optimum. Unfortunately, any sophisticated constraint-based design
problem will generally yield a multimodal cost function.

Simple hill climbing works as follows: we start at some initial point (random or user
chosen) on the function, and examine configurations in the neighborhood of the current
configuration. If a configuration gives a higher function value than the current
configuration, we accept that move and hence climb the function towards its maximum.
When we reach the maximum, all moves lead downward, and the search or climb is
complete.

This technique assumes that the function is unimodal: i.e., there exists a single extremum in
the function. It is not successful at finding optima of multimodal functions, where each
function can have many local minima and maxima. Imagine standing halfway up a foothill
near a large mountain. Your goal is to reach the peak of the mountain, but with the
restriction that you can only climb upwards. Unfortunately, the best that you can do in that
situation is to reach the top of the foothill. To reach a global optimum, one must sometimes

48

climb downward before resuming the ascent toward the maximum. This is the goal of

probabilistic optimization techniques; they allow steps away from direction of interest in the

hope of finding a path to the global optimum.

4.4. Description of probabilistic optimization techniques

This section describes the general form of a class of probabilistic optimization heuristics.

The specific subclass of simulated annealing techniques is then described. The terminology

and pseudo-code for these techniques is adapted from [Nahar, 1986].

4.4.1. Probabilistic hill-climbing heuristics

The general form of an adaptive probabilistic heuristic to minimize the value of an objective

functionft) is presented below. This heuristic is called adaptive because the parameters of

the heuristic may be changed as the procedure is executed.

procedure ProbabilisticHillClimbinq;

s :== s0 ;

Initialize heuristic parameters;

repeat

repeat

Snew := perturb(S);

if accept(Snew•S,heuristic parameters) then S := Snew;

until "time to adapt parameters 11
v

Adapt parameters;

until ntermination criteria 111
;

end;

s: The current solution to the problem. S0 is usually a random solution, though

it may be a generated approximation believed to be near the optimal solution.

perturb: A function that generates a new solution from the current solution.

sne.; A perturbed version of S. I.e., a version of S with the values of one or

more of the design variables changed.

49

accept: A boolean function that determines whether the perturbed solution s new

should be accepted as the current solution. This function has the form:

accept := f(Snewl<f(S) or

random<g(f(S),f(Snewl,heuristic parameters)

where:

random is a random number in the range [0,1].

g(cost] ,cost2 ,heuristic parameters) is a function that determines the
probability of accepting a perturbation that increases the cost function.

Adapt parameters:

a procedure that updates any parameters that are used anywhere in the
heuristic.

This heuristic is called probabilistic because of the form of the accept function.
Conventional heuristics accept a perturbation only if it decreases the value of the objective
function/(). The probabilistic acceptance function above always accepts a perturbation
that decreases the value of the objective function; however, it also may accept a perturbation
that increases the value of the objective function. These "bad" perturbations are accepted to
prevent the heuristic from always converging to a local, rather than global, optimum. In

general, the probability of accepting a bad perturbation is set highest during initial
iterations, and is decreased (possibly reaching zero) as the algorithm proceeds. In intuitive
terms, the heuristic initially searches the solution space to find the optimal bill, and then
climbs that bill in later stages of the optimization process.

4.4.2. Simulated annealing

A particular probabilistic hill-climbing technique, simulated annealing, has been
successfully applied to a variety of engineering problems, especially VLSI optimization
problems [Kravitz, 1986], [Pincus, 1986], [Romeo, 1985], [Sechen, 1986], [Wong,
1986]. Simulated annealing is based on an analogy between minimizing the cost of a
function and the careful cooling of a solid so that it reaches its minimum energy state
[Kirkpatrick, 1983].

In physics, annealing is a process for reaching low energy states in a solid. The solid is
heated until it melts, and then slowly cooled until the particles of the solid are arranged into
their minimum energy (ground) state. When heated to a high temperature, the particles in

50

the liquid are arranged randomly, and the liquid has an equal probability of being in each
possible configuration. If properly cooled, however, the particles of the solid are carefully
structured into the minimum energy configuration with probability one.

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [Metropolis, 1953] devised an
algorithm for simulating the annealing process. In the algorithm, each configuration has an
associated energy. The algorithm starts with a random initial state and high temperature,
and generates new states by making small perturbations to the current state. Let the energy
of the current state i be Ei and the new state j be Ei. If Ei is less than E;, then the new
state is accepted as the current state. If Ei is greater thanE;, however, then state j is
accepted as the new state with probability

(4.1)

where k0 is a physical constant called the Boltzmann constant, and t is the temperature of
the system. If the cooling of the system is perfonned slowly, then the system is able to
reach therrruzl equilibriwn at each temperature. When the system is in thermal equilibrium,
the probability of it being in state i with energy E; is

exp (-E;)
qi(t)= kn t

(-E-)
I.i exp kn

1
t

(4.2)

This is known as the Boltzmann distribution, and is important because it defines probability
distributions which must be maintained by any simulated cooling if optimal results are to be
achieved. We use q(t) to refer to this distribution for all states.

The simulated annealing algorithm may be applied to general optimization problems by
drawing the following analogies:

Physics
State

Particles
Energy

Ground state

Function optimization
Configuration/solution: S

Variables

Value offunction:f(S)

Optimal solution

For general optimization problems, the k0t expression can be replaced by a general control
parameter T, which acts as a temperature but has no physical meaning outside the solution

51

method. The general form of the simulated annealing heuristic (again adapted from
[Nahar, 1986]) is as follows:

where:

procedure SimulatedAnnealing;

S ~- S0 ; k := 0;

T := T0 ; iterations := i 0 ;

repeat

repeat

Snew := perturb(SFT);

if accept(Snew•S,T) then S :- Snew;

until inner loop has been repeated iterations times;

k :~ k + 1;

decrease(T); increase(iterations);

until fiter.mination criteria";

end;

decrease(T) decreases the temperature,
increase(iterations) increases the number ofloop iterations,

and the acceptance function has the form:

(
f(Snewl - f(S))

accept := if f (S,...) < f (S) or random < exp T "

The values T0 and iO> and the procedures decrease() and increase(), define the annealing
schedule for the simulated cooling of the system There are many possible annealing
schedules" In the following section, two possible schedules are discussed"

A number of tennination criteria are possible" The simplest is to stop when the system has
cooled to a certain temperature" Another possibility is to terminate when the marginal
improvement in the objective function is so small that it appears that the process has
converged to an optimum A third possibility is to display intermediate results and quit
based on user intervention"

Simulated annealing is of interest as an optimization technique because theoretical results
exist which specify sufficient conditions for convergence to the optimum (e"g", [Geman,
1984], [Gidas, 1985], [Aarts, 1989])" The conditions for convergence require either
infinitely slow cooling or an infinite number of iterations at each step" In practice this is not

52

possible, so simulated annealing cannot be used to guarantee an optimal solution.
However, these results provide a stronger foundation for the success of simulated
annealing compared to ad hoc probabilistic optimization techniques.

Consider a method that randomly chooses a finite number of starting points and performs
simple hill-climbing on those points. Even with infinitely small hill-climbing steps, such a
method is not guaranteed to find the optimum. With simulated annealing, however, if a
particular annealing schedule converges to a non-optimum solution, we know that there
exists a more careful annealing schedule that will perform better.

The simulated annealing procedure is simple and very general. The specifics of the
problem are not essential to the execution of the algorithm. It may be possible to use
problem-specific information to adjust the heuristic parameters or make intelligent
perturbations, but the improvements would tend to be in execution time rather than in
optimality of the solution. The tradeoff for this simplicity and generality is computational
expense. Many hundreds of thousands of iterations may be needed before termination
criteria are met.

This section presented the general form of the simulated annealing procedure. The
following section describes how this general structure may be applied to constraint-based
modeling.

4.5. Applying annealing to constraint~based modeling

This section discusses design and implementation issues of the following components of
the annealing method:

• solution representation
• cost (objective) function
• perturbation functions
• acceptance function
• annealing schedule

The form of some of these components (e.g., perturbation function) is dependent on this
application, while the form of other components (e.g., the acceptance function) does not
differ from previous simulated annealing applications. All components are described here
for completeness.

53

4.5.1. Solution representation

A solution is the body of information that defines a model. It may include:

• passive geometric data

• procedurnl geometric models and their parameters
• any other parameters associated the model (e.g. color and other reflectivity

information) or parameters that control the construction of the model (e.g.
light source position, camera position, other viewing parameters)

Any of the above information may be treated as design variables (i.e., variables that may be
changed during the annealing process), though care must be taken that reasonable
perturbation functions are associated with these variables. In keeping with an object­
oriented design philosophy, the particular effect of changing any given design variable is
hidden from the annealing algorithm. Thus a procedural geometric model is responsible for
making the necessary changes to its geometry in response to the perturbation of one of its
parameters.

4.5.2. Objective function

The objective function is simply the sum of the cost functions for each of the constraints.
These individual cost functions are adjusted by weighting factors that reflect their strength
relative to the other constraints. Cost function design is covered extensively in chapter 5.

4.5.3. Perturbation function

The perturbation function transforms the current configuration into a neighboring
configuration. For example, if the object has three degrees of freedom, the perturbation
might be a random translation in x, y, or z. If rotation is permitted, the perturbation could
be either a translation in x, y, or z, or a rotation (relative to the center of the object) about
the x, y, or z axes. Similarly, scaling, stretching, squashing, or other arbitrary
transformations may be applied as perturbation functions. The only requirement is that the
transformation be reversible, either by an inverse transformation on the perturbed object, or
simply by saving a copy of the original object.

The standard geometric object implementation in CONTEST supports the following
transformations: rotate x, rotate y, rotate z, translate x, translate y, translate z. At object
initialization time, an initial range for each of these parameters is define<i For translation,

54

this range is nonnally related to the world size, so that an arbitrary translation within that
range can place the object randomly within the world. The initial rotation range is usually
chosen to be greater than or equal to 360 degrees, so that initially, a rotation perturbation
will result in a random orientation.

CONTEST implements the perturbation function by maintlining a range parameter,
rangeFactor, which specifies the percentage of the initial range that should be used in
determining a perturbation. At the start of the annealing process, when the temperature is
high, rangeFactor=l.O, so perturbations yield essentially random positions and
orientations. For each successive temperature decrease k, rangeF actor is decreased based
on an adjustment factor. In addition, a minimum range is chosen so that even after the
system has cooled to a temperature near zero, reasonably large hill-climbing steps will still
be performed (for fast convergence to a local optimum). Thus,

rangeFactork+! =max (rangeFactor~c · rangeAdjust, rangeMin) (4.3)

· The perturbation function for geometric objects can be summarized as follows:

1. select an object from list of perturbable objects
2. select a transformation from the list of available transformations for that object
3. compute the range of the transformation by multiplying rangeFactor by the

maximum range for that transformation
4. select a random perturbation in that range
5. perform the transformation

All objects are responsible for providing a perturbation function. Geometric objects are
able to share the common function described above, whereas non-geometric objects require
separate perturbation functions (which may or may not be shared among classes of non­
geometric objects).

The randomness of the perturbation function may at first seem needlessly inefficient, since
it may be possible to make more intelligent perturbations, such as evaluating the gradient
and taking a step in that direction, or perhaps trying a predefined sequence of perturbations
(e.g., always try to move down first, then try translation in other directions, then try
various rotations, etc.).

55

The difficulty in designing intelligent perturbation functions is that while such functions can
increase the speed of convergence to an optimum, they also increase the probability of that
optimum being local rather than global. Care must be taken to ensure that the perturbation
function samples a range of configurations in the solution space. Provable convergence
depends on the randomness of the perturbations.

4.5.4. Acceptance function

CONTEST uses the standard simulated annealing acceptance function: always accept a
good perturbation, and accept a bad perturbation with a probability that decreases as the
system cools:

Pr. (accepting Snew) = {
1, iff(Snew) !:,ftS)

exp (.f(S)-:Snew)} iff(Snew) > f(S)

(4.4)

4.5.5. Annealing schedule

The annealing schedule consists of the definition of initial temperature, initial number of
iterations in the iuner loop, and functions that update the temperature and number of inner
loop iterations during each execution of the outer loop. These parameters are difficult to
define because the notions of temperature and cooling are attificial for this application.
This section presents two structures for annealing schedules. The first is a simple schedule
proposed by Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick, 1983]. The second, developed
by A arts and Van Laarhoven [Aarts, 1985], is more sophisticated and is described in detail
in [Aarts, 1989].

Forms of both of these schedules were implemented in CON1EST. The first schedule was
initially implemented. The non-intuitiveness of parameter selection forced the
implementation of the second schedule, which automates more of the parameter selection.

In the discussion below, let z(T) represent the percentage of total transitions that are
accepted at temperature T.

56

4.5.5. 1. Simple schedule

This section describes the annealing schedule developed by Kirkpatrick, Gelatt, and
Vecchio

Initial temperature: The initial temperature should be high enough that almost all
perturbations are accepted. It can be set by starting at a low temperature and rapidly heating

the system (increasing the temperature) until the acceptance ratio XfT) is near one. This
heating can take place in large increments, since overheating a system has no detremental
effect other than increasing the time of the cooling process.

Initial inner loop iterations: At each temperature, we seek to reestablish thermal
equilibrium. Exact thermal equilibrium can be maintained at all times by cooling the system
infinitely slowly, or by performing an infinite number of iterations at each temperature.
Since we are approximating the cooling with a finite number of steps, we can only get close
to thermal equilibrium, as expressed by:

II a(iterations,T)- q(T)II < e, (4.5)

where a(iterations,T) represents the probability distribution after a fixed number of
iterations at temperature T, and q(T) represents the equilibrium distribution. In practice,
the initial number of iterations depends on the size of the problem, and is chosen so that a
substantial percentage of neighbors of the original state are examined. A typical initial
number of iterations for a small problem involving ten variables is fifty iterations, but this
is provided only as a rule-of-thumb, since the actual number required depends on the
complexity of the problem and the rate at which the temperature is decreased. A more
complex problem requires more iterations, while slower cooling steps permit fewer
iterations.

Decrease of temperature: In the simple schedule, the temperature is updated by a

constant scaling factor a, so that:

T k+l =a· T k, 0.0 <a< 1.0.

A typical value for a is .95.

57

(4.6)

Increase of inner loop iterations: At each temperature, quasi equilibrium is achieved
after acceptance of some finite number of transitions. Since the acceptance rate decreases
with temperature, it follows that the number of iterations at each temperature should

increase. This is achieved by a multiplying by a scaling factor /3, so that:

iterations k+l = f3 · iterations k' f3 ~ 1.0.

A typical value for f3 is 1.01. An upper bound can be used to keep the number of
iterations from approaching infmity as the temperature approaches zero.

(4.7)

Termination: A simple termination method is to quit when there is no change in final cost
after a fixed number of decreasing temperatures.

4.5.5.2. Sophisticated schedule

This section describes the annealing schedule developed by Aarts and Van Laarhoven.

Initial temperature: The goal is to set the initial temperature so that the acceptance ratio,

z(T0), is equal to a predetermined value close to one. Aarts and Van Laarhoven noted that
a sequence of trials can be used to compute T0• Suppose we run a series of mo trials,
with the result that m 1 transitions decrease the cost of the function, and m2 transitions
increase the cost of the function, where m0 = m1 + m2• The acceptance ratio can then be
approximated by:

where 11/ represents the average increase in cost for the m2 transitions. From this
equation we can derive:

(4.8)

(4.9)

To compute T0, we set z(T) equal to the desired ratio Xa. and use equation 4.9 to
compute successive values ofT after each trial. Experience indicates that the value of T
converges to T0 rapidly.

58

Initial inner loop iterations: The number of iterations of the inner loop depends on the

size of the problem and should be chosen so that a fraction of the neighboring
configurations of the initial configuration is examined For example, a configuration
consisting of objects with (x,y) positions should evaluate at least two or three increases and
decreases of both x andy.

Decrement of temperature: We assume that quasi equilibrium is attained at T0, since
we have chosen this initial temperature. To maintain quasi equilibrium, we want the

difference in probability distributions for successive temperatures to be close enough so
that, for the new temperature, quasi equilibrium can be restored after a fixed number of

iterations. We can define close as meaning that for each possible configuration i,

(4.10)

where 8expresses how close we need to be. In [Aarts, 1989], Aarts and Korst argue that

for a given 8, the restrictions of equation 4. 9 can be satisfied by choosing new
temperatures as follows:

k=O,l, ... (4.11)

where C1 (T) represents the standard deviation of the function at a given temperature. The

standard deviation can be approximated by saving and evaluating the standard deviation of

the costs for the previous inner loop.

Increase of inner loop iterations: In this schedule, quasi equilibrium is maintained by
adapting the temperature decrements to the statistical properties of the previous sequence of
inner loop iterations. The number of inner loop iterations does not change.

Termination: We make the decision to terminate based on an approximation of nearness

to the optimum. If we let (f) T represent the expected cost of the function at temperature

T, then we can define Ll(f) T , the expected distance from the function optimum, as:

(4.12)

59

We can terminate if this distance is small compared to the initial expected cost, (f)r, =(f)_.

For small temperatures, i!(f}r may be approximated by:

We can terminate if, at some k,

i!(f}r.
(!}_

This can be expressed as:

expected change in cost
- initial cost

T• o(f}r I --- < e (!)_ 'iJT r~r. stop

< Estop

The expected cost at each outer loop iteration, k, can be approximated by saving and
evaluating the average of the costs for the previous inner loop.

4.5.6. Evaluating the Solution

(4.13)

(4.14)

(4.15)

Convergence to a solution is affected by many components of the annealing process: the
cost functions, the perturbation functions, the acceptance function, and the annealing
schedule. The evaluation of whether a particular configuration is acceptable may be
determined using one of the following criteria:

• all constraints are satisfied: this has been the traditional method for
determining whether a solution is satisfactory. This criterion is unsuitable
for overconstrained problems, or problems with goal constraints.

• comparison with previous designs: many design applications involve
redesign of existing products. In these cases, there exists a basis for
comparison. The new solution is acceptable if it is better than the
previous version according to the defmed cost functions.

• user evaluation: as a last resort, the user of the modeling system must
subjectively decide whether the solution is acceptable. He or she may do
this by examining the model and the values of the cost functions for the
model.

If the solution has converged to an unsatisfactory local optimum, the user can explore

60

several alternatives:

• rerun the simulation: the stochastic nature of the annealing process may
yield a different solution

• modifY the parameters in the annealing schedule
• add search constraints to guide the solution process

The first alternative is simplest but may fail frequently. The second alternative is relatively
simple and is likely to succeed. The final alternative may be successful if the user has
intuition about the general form of the final solution.

4.6. Summary

This chapter discussed several issues relating to cost function optimization. The decision
was made to treat the cost function as a black box optimization problem, where knowledge
about the function can only be gained by evaluating it Probabilistic optimization
techniques were discussed, and simulated annealing, a particular probabilistic technique,
was selected as a method applicable to this research. Details of adapting the method to
constraint-based modeling were provided. One key issue, the form of the objective
function, was only briefly discussed, and is presented in detail in the following chapter.

61

Chapter 5

Cost Functions

A cost function for a constraint is a function that, when evaluated on a configuration,
returns a measure of how well that constraint is satisfied. This measure is a scalar value
that expresses the amount of constraint violation. When we compare two designs and say
that one design is better than the other, we are weighing various factors to reach a
judgement. The development of cost functions is an attempt to quantify these assessments.

In one sense, all cost functions are equivalent because they return a single real number; no
distinction is made between classes of constraints as they are combined to form the total
cost function, or as the total cost function is optimized by the solution procedure. On the
other hand, for instructional purposes, three categories of constraints can be identified:
objective constraints, subjective constraints, and search constraints. Objective constraints
are constraints that can be objectively evaluated because they deal with material properties
rather than aesthetic concepts. Subjective constraints involve an individual's value
judgements. Quantifying subjective constraints is more difficult, but cost functions can be
constructed by breaking down subjective constraints into a series of simpler, objective
evaluations. Search constraints provide a way for the designer to direct the constraint
satisfaction search to a portion of the solution space.

This chapter discusses cost function design for geometric modeling applications. It begins
by presenting examples of different constraints. The theory behind cost functions and the
context of their use is then discussed. Next, general guidelines for cost function
construction are presented. Individual guidelines for objective, subjective, and search
constraints are then described, and cost function templates are derived based on these
guidelines. The chapter concludes with a brief discussion of operations on constraints.

5.1. Examples of constraints

Constraints may be applied to all types of geometric objects -- from a single coordinate of a
vertex to entire assemblies consisting of thousands of primitive objects. Within this

spectrum lie many object types:

• vertices • line segments
• spheres • cylinders
• bicubic patches • polygons
• plane equations • polyhedral solids
• mesh surfaces • etc.

Later in this chapter, constraints are described as falling into three categories, based on
construction of their corresponding cost functions: objective constraints, subjective
constraints, and search constraints. In this section, however, a different classification is
used. Constraints can be considered geometric, indirectly geometric, or non-geometric.
These categories distinguish between constraints that have traditionally been used in
modeling systems (geometric) and constraints that have not traditionally been available but
which are supported by CONTEST (indirectly geometric and non-geometric).

5.1.1. Geometric constraints

Geometric constraints typically involve one or two simple object types. A geometric
constraint might restrict the range of a particular value (e.g., "make X less than 20.0"), or
specify a relation between two objects (e.g., "object A should be above object B"). Several
subcategories of geometric constraints follow. These are only examples and do not form
an exhaustive list.

5.1.1.1. Position constraints

• minimize the y coordinate of a point
• set z coordinate to 20.0
• maximize the height of a sphere

5.1.1.2. Distance constraints

• place two objects so they are at least 10.0 units apart
• make two objects be adjacent to one another
• maximize the distance between two objects

63

5.1.1.3. Orientation constraints

• make a particular side of a cube face toward a point (e.g., a light source)
• set the angle between two adjoining line segments to 45 degrees
• ensure that the base of a cylinder is flush with a particular plane

5.1. 1.4. Size constraints

• minimize the surface area of a container
• maximize the volume of a cylinder
• ensure that object A can enclose object B

5.1.1.5. Intersection constraints

• ensure that two objects do not intersect
. • set the volume of intersection of two spheres to 15.0
• ensure that object A is contained within object B

5.1.2. Indirectly geometric constraints

The constraints in this category ultimately affect geometry, yet are usually specified
indirectly in terms of some property that is a complicated function of the geometry.
Evaluation of the constraints may involve a series of cumputations, which makes it difficult
to solve the constraints analytically. Examples of such constraints include:

• ensure object A is visible to object B
• ensure that a garden plot receives sufficient sunlight for plant growth
• minimize the drag of an airplane wing
• minimize the operating temperature of a machine
• ensure that a part meets federal safety requirements
• maximize the area of the shadow cast by object x

64

5.1.3. Non-geometric constraints

While the primary product of a modeling system is a geometric description, models may
also have non-geometric parameters associated with model parts. Color, age, and
reflectivity parameters are a few examples of parameters than can greatly influence design.
Examples of constraints involving these parameters include:

• select an object color so that it matches its environment
• all else being equal, select newer parts when a choice is available
• set an object's perceived intensity from a particular viewpoint

5.2. Theory and use of cost functions

The purpose of cost function design is to provide a way to compare two or more models.
Many cost functions return a value of zero if their constraints are completely satisfied, and a
value greater than zero if the constraint is not satisfied. Functions can return negative
values, however. For example, a property (e.g., surface area) can be maximized by
defining a cost function equal to the negative of that property (though CONTEST does not
use this representation). Since cost functions can take on any range of values, the value
returned by a cost function has little meaning by itself. Instead, its meaning lies in the
process of comparing costs between different models.

CONTEST provides a library of cost functions for use in constructing a model. The library
consists of functions for objective and search constraints. Subjective constraints tend to
deal with application dependent interpretation of geometty and must therefore be
constructed by the designer. A typical application will apply library constraints and may or
may not apply additional user-defined constraints.

A user of CONTEST can define new models in two ways. One way is to supply new
constraints and geometric objects at each session. This is the method of design for a
person creating a series of distinct models. The site planning examples in chapter seven are
examples of models in this category. A problem defining the layout of a university campus
requires a different set of constraints than the plan for a suburban neighborhood.

The second design method is to first build a single application capable of generating many
instances of designs from a single class. The user then specifies a particular design by
providing data or weights to constraints. The opaque projector application in chapter six
demonstrates this style of design. In that example, a single set of constraints defmes a
class of projectors. Individual projectors are selected by setting parameters to constraints,

65

rather than creating new constraints.

5.3. General cost function guidelines

Cost function design is guided by three concerns: choosing a unit of measure for the cost
function, specifying a satisfactory shape which reflects design tradeoffs, and selecting a

function which helps the annealing or optimization process. This section suggests some
general guidelines for cost function design based on these concerns.

5.3.1. Units of measure for cost functions

5.3.1.1. Choose a single unit of measure

Recall the form of the global cost function for concatenated constraints:

Ctotal = I: Wi Ci, (5.1)

' where Wi is the weighting factor for constraint i, and Ci is the cost function.

"." Suppose each constraint, Cj, has its own unit of measure. The designer must then choose

· each weighting factor, Wj, to reflect both a conversion to the units in which Ctotal is
expressed as well as an expression of the relative importance of Ci in these units. Even if

" the designer does not explicitly state these individual components, the fact remains that he
has convened from Ci units to Ctotal units for each constraint i. In other words, he has

effectively defined a single unit of measure for each constraint Thus, if the user does not
choose a single unit of measure at cost function definition time, he will end up choosing
one each time a global cost function is defined. The former choice is usually preferred.

5.3.1.2. Choose dollars as the unit of measure in product design

For any type of product design, constraints involving pan costs will most naturally be

expressed in real dollar values. Since this unit of measure will already exist for some
·constraints, it may simplify things to choose dollars as the global unit of measure. This can
lead to uncomfortable decisions (e.g., putting a dollar value on items such as safety),

however these decisions must be made regardless of unit of measure and choosing an
artificial measure only clouds the issue.

For other applications, one can choose an arbitrary unit of measure for the first constraint,
and base new constraints on their importance relative to existing constraints. The problem

66

with this is that reuse of constraints (e.g., from libraries) requires either a common basis or
a rescaling of each constraint. This issue is further explored in the next guideline.

5.3.1.3. Select a standard range of values

From an optimization standpoint, the magnitude of cost function values is not as important
as the range of values the function assumes. This is because at the end of the optimization
procedure, we are only interested in the input (i.e., modeling parameters) that yielded the

minimal cost, and not the cost itself.

What are the implications of this? First, it means that any cost function can be adjusted
upward or downward by any constant value and still behave equivalently. Second, it
means that the value of the total cost function is meaningless in measuring quality. As
mentioned above, only by comparing configurations can quality be determined. In

particular, this means that unless a standard range is defined, a cost function with a value of
zero does not necessarily indicate that all constraints are satisfied.

From the designer's standpoint, however, comparison and evaluation of cost functions
becomes difficult if each constraint assumes a different range of values. Thus, a standard

range of functions values can simplify the comparison and evaluation process. CONTEST
uses an arbitrary standard of 0.0 representing maximum satisfaction and values greater than
zero representing increasing constraint violation.

5.3.2. Shape guidelines for cost functions

5.3.2.1. Define the cost of compromise configurations

Consider a constraint that a sphere should have a volume of 20 units. One can simply

determine whether the constraint is satisfied by computing the volume of the sphere. A

possible cost function for this constraint is shown in figure 5.1. Problems with this cost
function are that it is difficult to find the single acceptable point when performing a black
box optimization, and no distinction is made between unsatisfactory solutions; a volume of
1.5 is considered no worse than a volume of 19.5.

67

1.2

1.0

0.8 -• 8 0.6

0.4

0.2

0.0
0 20

Volume

Figure 5.1: a simplistic cost function

Figure 5.2 shows a cost function in which function values gradually approach the
minimum value of zero as the volume approaches the desired value of twenty. There are
twb reasons why cost functions should be designed with broad slopes to the optimum
value. First, such a slope allows the search procedure to determine the direction of the
optimum by comparing neighboring configurations, even far from the optimum value.
Second, in an overconstrained problem, the cost function defines which compromise
configurations are closest to the optimum.

1.2

1.0

0.8

§ 0.6

0.4

0.2

0.0 +----...--.....:::....,.~--....------.

0 20
Volume

Figura 5.2: a mora useful cost function

68

5.3.2.2. Shape should be accurate and easy to specify

A designer may specify hundreds of constraints in defining a model. To ease this
constraint definition task, a minimal number of parameters should be required to specify the
shape of a cost function. Modifying the shape of the function should only require changing

the values of one or more of these parameters.

There is, of course, a tradeoff between ease of definition and accuracy of representation.
CON'IEST takes the approach of identifying the most common classes of cost functions,

and allowing the user to shape standard cost function templates for each of these classes.
This provides simple and accurate cost function representation.

5.3.2.3. Attempt to separate representation from specification

Ideally, a designer should not have to understand the way constraints are implemented and
solved. Instead, the designer should be able to describe constraints in general terms.

Consider the volume example depicted by figure 5.2. The designer should be able to
express the cost dropoff in terms of general properties, such as "a broad tolerance for

values close to 20.0", rather than in specific terms such as "the cost of a volume of 25.0 is
0.2". Unfortunately, terms such as broad and close to axe not precise, so there is a

tradeoff between precision and abstraction when specifying constraint properties.

5.3.3. Constructing functions to aid the optimization process

5.3.3.1. Functions should encourage hill-climbing

The simplistic cost function depicted in figure 5.1 is undesirable from a design point of

view because it does not distinguish between unacceptable solutions. However, it is also
undesirable based on the characteristics of the optimization process. Any black box

optimization technique will have zero probability of fmding a single point if the domain of

function parameters is infinite, and the probability is near-zero even with a finite domain.
Thus the cost function in figure 5.1 is incompatible with the annealing procedure.

69

1.2

1.0

0.8-

• s 0.6 •

0.4-

0.2-

0.0 • • • "
Parameter

Figure 5.3: a wider region of accepted values

An alternative is to widen the range of accepted values, as shown in figure 5.3. The
problem with this approach is that it accepts many values as being equally acceptable as the
desired value. We can narrow the region of acceptable values to prevent this, but as the
width of the accepted region approaches zero, the probability of finding that region also
approaches zero. There is a tradeoff between accepting undesirable values and finding any
parameter near the target.

1.2

1.0

0.8

'lrl
cS 0.6

0.4

0.2

Parameter

Figure 5.4: guiding search to optimal value

A third possibility is to shape the function so that the direction of the desired value can be
determined throughout the parameter domain. Sloping the function as in figure 5.4
accomplishes this goal. The guidance provided by such a function shape is particularly
imporant during the last stages of annealing. As the system cools, annealing reduces to

70

hill-climbing toward a local optimum. Note that these annealing-related guidelines are

compatible with the design tradeoff guidelines of section 5.3.2.

5.3.3.2. Always reward movement toward the goal

This guideline is best demonstrated by example. A possible cost function for non­

intersection of solids is the volume of their intersection. Now consider a constraint that

says a small sphere should not intersect a large cube. The simplistic cost function will
return the same value for any configuration with the sphere entirely within the cube. A
smarter cost function will reward the sphere for being closer to the edges of the cube and

thus closer to a correct solution. The general principle is that cost functions should
distinguish between acceptable solutions whenever possible.

5.3.3.3. Functions should be easy to evaluate

Annealing is a time-consuming process. Much of the computation time is dedicated to

reevaluating cost functions after each perturbation. By selecting functions which are easy
to evaluate, the total run-time to solve a problem can be reduced.

5.4. Cost functions for objective constraints

It is simple to tell when an objective constraint has been satisfied, because objective
constraints deal with concrete geometric properties such as distance, volume, intersection,
and area. There can be no argument as to whether two objects intersect, or whether the

volume of a cylinder is more than 50 milliliters. Cost functions for objective constraints are

not trivial to define, however. In addition to determining when a constraint has been
satisfied, the cost function must also defme the cost of compromise configurations in

problems with conflicting constraints. The two main difficulties in building cost functions
are: 1) defining the shape of each function, and 2) determining the importance of each cost
function relative to other cost functions.

This section attacks these problems in concert Constraints are categorized into six basic
constraint types: equal(=), not equal (.o), less than(<), greater than(>), minimize, and

maximize. Standard cost function templates are defined for each of these types. The
particular parameters that shape the cost function are defined by the user in a natural manner
and converted to the appropriate function coefficients and exponents. The balancing

problem is addressed by ensuring that the functions return cost values within a bounded

range.

71

5.4.1. Selecting the controlling parameter

The first step in defining a cost function is selecting a parameter which represents the
property being constrained. For some constraints, this selection is trivial. For a constraint
minimizing the distance between two points, the obvious parameter to use is the distance
between the points. Similarly, for a constraint minimizing the area of a surface, the
obvious parameter is the area.

For other constraints the parameter is not so obvious. With these constraints, the constraint
designer must determine a parameter that provides a good representation of the constraint
Consider a constraint that two spheres not intersect One possible parameter for measuring
constraint violation is the volume of their intersection. On the other hand, the spheres will
intersect only if the distance of their center points is less than the sum of their radii. Thus
an alternate parameter is simply the difference between the distance of the centers and the
sum of the radii. In the first case, the constraint is converted into a volume minimization
constraint. In the second case, the constraint is converted into an inequality constraint. It
is the responsibility of the constraint designer to determine which parameter can best be
used to measure constraint satisfaction.

In general, constraints which are already expressed in terms of one of the six basic
constraint types (see below) implicitly define a parameter. The parameters of other
constraints, such as the sphere intersection constraint above, can be found readily once the
constraint is transformed to one of the basic types.

72

Constraint ... Parameter

• minimize the y coordinate of a point • the y coordinate of the point

• set z coordinate to 20.0 • the z coordinate

• maximize the height of a sphere • the z coordinate of center of sphere

• place two objects so they are at least • the distance between the objects
10.0 units apart

• maximize the distance between two • the distance between the objects
objects

• make a particular side of a cube lace • the angle between the vector to the light
a point (e.g., a light source) source and the surface nonnal

• set the angle b~tween two adjoining • the angle between the line segments
line segments to 45 degrees

• ensure that the base of a cylinder is • the angle between the base and the plane
flush with a particular plane plus the distance between them

• minimize the surface area of a • the surface area of the container
container

• maximize the volume of a cylinder • the volume of the cylinder

• ensure that object A can enclose • the volume of B which cannot be
object B enclosed by A

• ensure that two objects do not • the volume of their intersection
intersect

• set the volume of intersection of two • the volume of their intersection
spheres to 15.0

• ensure that object A is contained • the volume of the portion of A outside B
within object B

Figure 5.5: constraints and associated parameters

Figure 5.5 gives example parameters for the geometric constraints presented in section
5.1.1. Once the parameter is chosen, the next step is to shape the cost function as a
function of the parameter. The following section describes the various constraint types and
the shape of their associated cost functions.

73

5.4.2. The six basic constraint types

In the course of this research, objective constraints have tended to fall into one of six basic
categories, or be constructed of simpler constraints that fall into these categories. No claim
is made that all constraints fall into these categories. On the contrary, it is easy to define an
arbitrary constraint (and associated cost function) that has no relation to any of the basic
categories. Nevertheless, these six categories have been sufficient for nearly all constraints
encountered in the example problems described in later chapters.

The functions presented below are templates for the six categories, constructed about a
target parameter, with function values chosen to range from 0.0 to 1.0. In practice, the
target value is chosen by the cost function designer, a scaling factor may be applied to each
function, and the shape of the function (within certain bounds) may be controlled by the
designer. In a constraint such as "set area to 5.0", the parameter is the area, and the target
is 5.0. Here, a function value of 0.0 represents complete satisfaction, and 1.0 indicates
maximal constraint violation. Specific information about shaping these templates is
provided later in the chapter.

The minimize and maximize constraints contain subcategories, resulting in the following
classification:

• equal to
• not equal to
•less than
• greater than
$minimize

• unbounded minimize
•lower. bounded minimize
• upper bounded minimize

•maximize
• unbounded maximize
• lower bounded maximize
• upper bounded maximize

74

1.2

1.0

0.8

1i 8 0.6

0.4

0.2

5.4.2.1. Equal to (=)

target
Parameter

Figura 5.6: equal to

The equal to function has a value of zero when the parameter equals the target The cost
increases smoothly based on the distance from the target. As the distance from the target

approaches inlmity, the cost approaches the maximum value of one.

1.2

1.0

0.8 -• 0.6 0
(J

0.4

0.2

0.0

5.4.2.2. Not equal to (¢)

target
Parameter

Figure 5.7: not equal to

The IWt equal to function has a maximum value of one when the parameter equals the

target The cost decreases smoothly based on the distance from the target. As the distance

from the target approaches infmity, the cost approaches the minimum value of zero.

75

1.2

1.0

0.8

~ 0.6

0.4

0.2

o.o+---..,..--..,....::...~--.----.
target

p.....,. ...

figure 5.8: leu than

5.4.2.3. Less than (<)

The less than constraint is completely satisfied when the parameter is less than the target,
and consequently has a cost of rero for that range. For values greater than the target, the
cost increases smoothly based on the distance from the target. As the distance from the
target approaches infmity, the cost approaches the maximum value of one.

5.4.2.4. Greater than (>)

target
Parameter

Figure 5.9: greater than

The greater than constraint is completely satisfied when the parameter is greater than the
target, and consequently has a cost of rero for that range. For values less than the target,
the cost increases smoothly based on the distance from the target. As the distance from the
target approaches infmity, the cost approaches the maximum value of one.

76

12

1.0

0.8

s 0.6

0.4

02

0.0 .J-1ill!:::;::=;::::::...-.....,,_,..-..--,
tarqet

Figure 5.10: minimize

5.4.2.5. Minimize
5.4.2.5.1. Unbounded minimize

The minimization constraint can never be satisfied completely. It approaches a minimum
value of zero as the parameter approaches negative infinity, and approaches a maximum
value of one as the parameter approaches infinity. The target for this class of constraint is
not the expected value of the parameter, but rather a specification of where to center the
steepest portion of the curve.

1.2

bcund

Parameter

Figure 5.11: lower bounded minimize

5.4.2.5.2. Bounded minimize

8
u

1.2

1.0

0.8

0.6

0.4

0.2

0.0
boond

Parameter

Figura 5.12: upper .bounded minimize

There may exist lower or upper bounds on values of the parameter being minimized. For
instance, a volume parameter might have a lower bound of zero, since a negative volume is
meaningless. Upper bounds are less common, but can be derived from limits in the object
definition or firm restrictions imposed by the world holding the object

77

, ..
1.•,....:----
0.8

~ 0.8

•••
0.2

o.o-1----...r--~-.--..::::::;==i.ll:.,
tarqet.

p....,.....,.

Figure 5.13: maximize

5.4.2.6. Maximize
5.4.2.6.1. Unbounded maximize

Like the minimization constraint, the maximization constraint can never be satisfied
completely. It approaches a minimum value of zero as the parameter approaches infmity,

and approaches a maximum value of one as the parameter approaches negative infinity. As
with the minimization constraint, the target for this class of constraint is not the expected
value of the parameter, but rather a specification of where to center the steepest portion of
the curve.

12

bound

Plllll!lleter

Figure 5.14: lower bounded maximize

5.4.2.6.2. Bounded maximize

12

1.0

0.8

! 0.6 u

0.4

02

bound

Parameter

Figure 5.15: upper bounded maximize

As with the minimization constraint, lower and upper bounds may exist on a parameter
being maximized. The lower bounded maximum has a value of one at the lower bound,
and asymptotically approaches zero as the parameter increases. The upper bound
maximum has a value of zero at the upper bound, and asymptotically approaches one as the
parameter decreases.

78

5.4.3. Qualities of cost functions

This section discusses the properties of cost functions for objective constraints. These
properties implicitly specify which classes of functions can be used as cost functions. A
later section will show how additional properties can be used to explicitly select functions
within those classes.

5.4.3.1. Areas of Interest

Cost functions should have a broad extent as previously described and illustrated in figure
5.2. A broad extent implies a small slope, which implies little difference in cost between
neighboring solutions. On the other hand, the goal of the cost function is to distinguish
between various alternatives, and this can be accomplished most effectively if the slope is
large. These conflicting goals can both be addressed by varying the slope so that it is large
(in magnimde) in areas of interest and small in other areas.

1.2 1.2

1.0 1.0

0.8 0.8

§ 0.6 § 0.6

0.4 0.4

0.2 0.2

0.0 0.0
large! largo!

Panunet• ParaiMter

(a) (b)

Figure 5.16: cost functions with different tolerances

Figure 5.16a shows a cost function in which primary importance is placed on
distinguishing between alternatives near the target value. Because the slope is large near
the target, even small deviations from the target can result in a large cost Beyond a cenain
point, however, the cost tends to level out. Little distinction is made between parameters
that are far from the target value. Such a function emphasizes the importance of reaching
the target value exactly, and hence is appropriate in an application desiring precise
specification of parameter values. An engineering problem where the parameter can affect
the operation or cost of an assembly is one example of such a task. If we need a piston to
be exactly two millimeters in diameter smaller than a corresponding cylinder, then any
deviation is likely to result in an inefficient or non-functioning engine.

79

Figure 5.16b shows a cost function with a different emphasis. The slope is small near the
target, so parameters near the target value have very low cost. Beyond a small
neighborhood the slope increases and results in much greater costs for similar parameter
increments. Eventually another threshold is reached, however, and the slope once again
decreases, with a corresponding decline is cost differential. This function says, in effect,
that close enough is okay. No hann is done by missing the target by a small amount, but
missing by a large amount can be very costly. This function is suitable for constraints
which are guidelines rather than hard-and-fast rules. A landscape guideline on placement
of shrubbery is a good example. If we say that we want a bush placed 5.0 feet from a
building, then it may be entirely satisfactory if it is 4.8 feet or 5.2 feet away, but entirely
unsatisfactory if it is one foot away (where it might block a window), or ten feet away
(where it might block a walkway).

5.4.3.2. Bound on function range

The difference between the minimum and maximum costs of a function defines the
importance of the function relative to other functions. The true minimum and maximum
costs are determined by the values assumed during the constraint satisfaction process. If
variables are restricted (apart from constraint specification) to lie in a certain range, then the
cost function range may be restricted as well. The cost functions described later in this
chapter range from zero to one, providing a cap on the importance of each constraint and a
standard range prior to the assigmnent of weighting factors.

A function with no upper bound does not present a particular problem because the goal is to
minimize the cost function, and the unbounded region of the function will be eliminated
from further consideration at early stages in the constraint minimization search. On the
other hand, a cost function with no lower bound presents a problem. Because the search
procedure will concentrate on finding the global minimum, it will attempt to satisfy this
unbounded minimum cost function to the exclusion of all other constraints.

5.4.3.3. Monotonically increasing or decreasing cost

Though not a requirement for cost functions in general, this property holds for the six basic
categories of constraints. The cost must be monotonically increaSing or decreasing as the
parameter moves away from the target. For example, given a constraint to minimize the
area of a surface, a surface with area 2x will always have a greater cost than a surface with
area x. This rules out oscillating functions which might otherwise satisfy all guidelines.

80

5.4.3.4. User control over shape

The user must have intuitive control over the shape of the function. This can be
accomplished by explicitly setting coefficients of a simple function, or by setting more
natural parameters which are converted to function coefficients.

5.4.4. Examination of candidate cost functions for =· "'• <, >

The goal of this section is to find cost functions meeting the properties presented in the
previous section. For the purpose of this discussion, only one of the basic constraint
categories (not equal to) will be examined. The remaining categories (equal to, less than,

greater than) are all based on simple reflections of the not equal to function.

The previous section introduced the notions of area of interest and natural user control of
shape. The area of interest can be roughly specified by indicating a center point and width
of the area. A logical center point is where the cost is halfway between the minimum and
maximum cost. The width of the area of interest (i.e., how quickly the transition between
low cost and high cost occurs) can be provided by specifying the slope at the center point.

1.2

1.0

0.8

- 0.6 ..
0

(,)

0.4

0.2

0.0
0

slope ~ s, parameter = v
at this point

v
Parameter

Figure 5.17: user shape specification

Figure 5.17 illustrates the user specification of shape. Let us call the center of the area of
interest v, and the slope at that points. The rules governing the shape of the cost function
can then be summarized as follows:

81

l.f(v) = 112
2.j'(v) = s

3./(0.0) = 1.0

4. ,/~- f(x) = 0.0

2 2

The four candidate function categories examined were: f(x) =e-x tza, f(x) = e·nxb,

piecewise cubics, andft x) = 11 (rrxb + 1). The first function, a Gaussian, was examined
based on its ability to represent functions with the general shape of figure 5.16b. When it
was found to be too specific to meet the four rules above, a more general form of the

function,f(x) = e·nxb, was examined and found suitable. Piecewise cubics can be used to
approximate many functions, so they were also examined, and a form suitable for cost
function representation was derived. The final function c!ass,f(x) = l!(rrxh+l), was
examined because it is capable of providing a steep slope near x=O, which is necessary for
cost functions with a low tolerance. It also was found suitable. The analysis is presented
below.

5.4.4.1. Gaussian: f(x) = e
• • ·X 12<>

The function illustrated in figure 5.16b exhibits the characteristics of an inverted normal
curve. Consequently, functions of the following form were examined:

2 •
·% l2a

f(x)=e • . (5.2)

Since the a term has no meaning here other than as a constant, we can replace 112 CJ 2 by
the constant n, yielding

f(x) "'e·n:i'.

The goal is to find n, given any sand v, such that

and

f(v) = e-nv' = 1.
2

f'(v) = (-2nv) e·nv' = s.

The problem is that either s or v is sufficient to define n. For instance, if we solve
equation 5.4 for n, we get

n=hl.
v2

82

(5.3)

(5.4)

(5.5)

(5.6)

This value of n completely defines the slope of the function, hence we cannot sets and v

independently. This function class is unsuitable for cost function representation. A more
general function is needed to allow control of both slope and value.

5.4.4.2. t(x) = e-nxb

This function class is a generalization of the Gaussian class. The goal now is to fmd n and
b, given any sand v, so that

and

f(v) = e-nvb = !.
2

f'(v) = e·nvb(-bnvb-1)= s.

We can solve for n in the first equation, yielding

Furthermore,

so

Substituting for n, we get

Solving forb gives

n = hl.
vb

f'(v) = f(v)(-bnvb-1) = s,

s = }(-bnvb-1).

s=·bln2 vb-1,
2vb

b = -2vs
ln2'

and substituting b in equation 5.9 gives

n= ln2
v -2vs/ln2

Since we can express nand bin terms of sand v, this class of functions is a suitable

candidate for cost function representation.

83

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

5.4.4.3. Piecewise cubic: f(x) = ax3+ bx 2+ ex+ d

Rather than seeking a single function to match some criteria, we can use portions of two or
more simpler functions. For example, the curve presented in figure 5. 17 can be split into
two pans, with the following constraints defining each part:

-..
cS

Part 1

1./(0.0) = 1.0

2./'(0.0) = p

3.f(v) =OS

4.f'(v) = s

1.2

1.0

0.8

0.6

OA

0.2

0.0
0

Part1

v
Parameter

Lf(v) =OS

2.f'(v) = s

3. ,/~- f(x) = 0.0

lim f'() 4. x-.~ X = 0.0

Figure 5.18: piecewise construction

The four constraints of part one defme a cubic polynomial. Constraints three and four of
part two define a curve which asymptotically approachesf(x)=O.O. Unfortunately, a cubic
polynomial cannot represent such a curve. The solution is to use another function for part
two, or to settle for a function without an infmite extent Since the alternate functions for
part two would be similar to the functions considered elsewhere in this section, we will
only examine the latter case. As an alternative to the function asymptotically approaching
f(x)=O.O, we can choose a value kat whichf(k)=O.O, and a slope mat the same point as
shown in figure 5.19.

84

12
slope= p

Ul

0.8

• 0.6 8
0.4

0.2
slope= m

0.0
0 v k

Parameter

Figure 5.19: piecewise function with finite extent

The modified sets of constraints for this alternative piecewise polynomial are:

Pan 1

1./(0.0) = 1.0
2./'(0.0) = p
3.f(v) = 05
4.f'(v) = s

Lf(v) = 05
2.f'(v) = s
3.f(k) = 0.0
4./'(k) = m

Sincefl'x) = ax3 + bx2 + ex+ d, andf'(x) = 3ax2 + 2bx + c, these sets of constraints
defme the following sets of equations:

Pan 1

Ld,J.O

2.c=p
3. av3+bv2+cv+d = 05
4. 3av2+2bv+c = s

85

L av3+bv2+cv+d = 05
2. 3av2+2bv+c = s
3. ak.3+bk2+ck+d = 0.0
4. 3ak?+2bk+c = m

The equations of part 1 are easily solved to yield the following values for a, b, c, and d:

This gives

a = (I +sv+pv)!v3
b = (-15-sv-2pv)lv2
c=p
d= 1.0

I () _ (l+sv+pv) 3 (-1.5-sv-2pv) 2 + 1 0 partiX- x+ x+px ..
v3 v2

(5.15)

The equations of part 2 are conceptually easy to solve, but application of a solution method
such as Gaussian elimination results in extremely complex terms. An equivalent approach
to solving these constraints is to find the coefficients for a translation of the function and
then convert from these coefficients to the original equation. In this case, we can solve for
g(x) = f(x-v), as shown in figures 5.20 and 5.21. As a further notational simplification,
let z=k-v.

1.2

1.0

0.8

11 0.6
ll

0.4

0.2

0.0
0 v

PanunMcw

Figura 5.20: l(x)

1.2

1.0

0.8

~ 0.6

0.4

0.2

0.0
k 0 Z=k-v

Parameter

Figure 5.21: g(x) = f(x-v)

We now wish to findA,B, C, andD, where:

and
g(x) = Ax1 + Bx2 + Cx + D
g'(x) = JAx2 + 2Bx + C.

86

The constraints for this polynomial are:

1. g(O.O) = 05
2. g'(O.O) = s
3. g(z) "' 0.0
4. g'(z) = m.

This set of constraints defines the following set of equations:

l.D = 05
2. C=s
3. Az3 + Bz2 + Cz + D = 0.0
4. 3Az2 + 2Bz + C = m.

Solving for A, B, C, and D, we find:

A = (1 +sz+zm)!z3
B = (-1.5-2sz-zm)!z2
C=s
D = 0.5.

Fromf(x) = g(x-v), we get:

So,

f(x) "'A(x-vf + B(x-v)2 + C(x-v) + D
= A(x3 - 3vx2 + Jv2x -v3) + B(x2 - 2vx + v2) + C(x-v) + D
=x3A +x2(-3Av +B) +x(3Av2 -2Bv +C)+ (-Av3 +Bv2- Cv +D).

a=A 1+sz+zm
z3

b = -3Av + B = -3 (1 +sz+zm) v + -1.5-2sz-zm
z3 z2

87

Finally, we can substitute (k-v) for z, giving:

1 + (s+m)(k-v)
a

(k-v)3

b = _3 (1+(s+m)(k-v)) v + -l.5+(-2s-m)(k-v)
(k-v)3 (k-v)2

c= v- v+s 3 (
1 +(s+m)(k-v)) 2 2 (-1.5+(-2s-m)(k-v))

(k-v)3 (k-v)2

d = _ (1+(s+m)(k-v)) v3 + (-1.5+(-2s-m)(k-v)) v2 _ sv + 0_5 .
(k-v)3 (k-v)2

Thus, /partlfX) = ax3 + bx2 + ex+ d, where a, b, c, and dare listed above. This
piecewise function does not have infinite extent, but it is snitable for cost function
representation because the user has significant control over its shape. Although these terms

are complex, the coefficients a, b, c, and d need only be computed once for each cost
function.

5.4.4.4. f(x) = !
nx +1

This function class can be used in situations where error tolerance is low, since it can
provide a steep slope near x = 0, and approach a slope of zero as x approaches oo. It was

informally derived by starting with a simple function,f(x) = 1/x, with the desired slope
properties, and generalizing so that other constraints,f(O.O)=l.O,J(v)=05, andf'(v)=s,

could be satisfied. The goal is still to find nand b, given any s and v, so that

f(v) = 1 = L
nvb+J 2

and

! '() _ -bnvb-1 _ v - - s.
(nvb+1f

From equation 5.16, we note that nyh=1, yielding

n=...L.
vb

88

(5.16)

(5.17)

(5.18)

Substituting, we get

or
-b'

S = IV •

(l+If

Solving forb gives
b = -4vs.

Substituting forb in equation 5.18 gives

n = _1_= y4vs.
y-4vs

(5.19)

(5.20)

(5.21)

(5.22)

Once again we can express n and b in terms of s and v, so this class of functions is also
a suitable candidate for cost function representation. This function class is depicted by
figure 5.16a.

5.4.4.5. Abstraction of user control

With the exception of the simple Gaussian, each of the above functions can be used to
represent cost functions. Rather than dealing with non-intuitive function parameters, the
above analysis demonstrates that intuitive properties may be converted to function
parameters.

The general exponential, f(x) = e-n:x:b, and inverse polynomial, f(x) = 1/(nxb+ 1), provide
simple control through only two parameters, slope and value, at the point where
f(x)=05. While these parameters provide a certain level of abstraction, they still refer to
the function explicitly, which assumes some knowledge of the problem representation.
Fortunately, these parameters can be abstracted into two parameters, sensitivity and
tolerance, which require no knowledge of the underlying representation.

The sensitivity parameter controls how rapidly the transition is made from high cost values
to low cost values, which conveniently is the property controlled by the slope parameter.
Sensitivity ranked on a scale from 0 to 10 can easily be converted to slope from 0 to

89

infinity. Similarly, the tolerance parameter indicates the distance (from the target) at which
the cost is halfway between the maximum and minimum costs. If we express toletance in
these tenns, details of the underlying function are hidden from the designer, while
providing intuitively meaningful parameters for manipulation by the user.

Of the three suitable candidates, the piecewise cubic representation provides the greatest
control over the shape of the function. In addition to slope and value atf(x)=05, the
designer also has control over the value at whichf(x)=O.O, and the slope atx=target and
f(x)=O.O. For this representation, a graphical function representation is probably simpler
to comprehend than a list of abstract properties.

5.4.4.6. Cost functions: =, ¢, <, >, bounded minimize and maximize

The candidate cost functions were defined above for the half-plane parameter>O with the
assumption that the target parameter was zero. These base functions must be defmed for
parameters less than zero, and provision must be made to center the function about an
arbitrary target. For parameter<target, we wantf(parameter)=f(-parameter). Given a
functionf(x), the translation and reflection can be accomplished by:

g(x) = /(!x-targetl) (5.23)

1.2 1.2

1.0 1.0

0.8 0.8

~ 0.6 ~ 0.6

0.4 0.4

0.2 0.2

0.0 .p..=;::::::::::..,...-...---.-........ -.-.:::::;::::."r
target

o.o-r;;;...,.-.,.--.--..--.--r-..,..;=.
target

Pl!mmetfif Parameter

g(x), wherej(x) = lt(nxf'+l) g(x), where f(x) = e·nxb

figure 5.22: general form of g(x) given f(x)

The form of g(x) for the bounded minimize and maximize functions is identical with the
exception that the target is replaced by the bound:

g(x) = /(!x-bound!} (5.24)

90

Moreover, given g(x), we can express the cost functions for each category as follows:

"x = target": cost(x) = -g(x)+ 1

"x "#target": cost(x) = g(x)

"x <target": cost(;c) = {
0, iifx<target

-g(x)+ 1, otherwise

"x > target": cost():) = { 0• if x>target.
-g(x)+ I, otherwzse

" · · · > b d" t() { undefined, if x<bound mznzmzzex,x _ oun :cos x = ()+I •h · -g x , o •. erw 1se

" · · · < b d" t() { undefined, if x>bound m zmm1ze x, x _ oun :cos x "' () h . g x ,ot erwzse

" · · > b d"· () _ {undefined, ifx<bound
max1mzze x, x _ oun . cost x - g(x), otherwise

" · · < b d" () { undefined, if x>bound max!m!zex,x-oun:costx= ()l h · -g x + ,ot erwzse

Note that cost(x) returns values between 0.0 and 1.0, and is based on the assumption
thatf(O.O)=l.O, withf(x) decreasing as x increases.

5.4.5. Cost functions for unbounded minimize and maximize

The constraints equal to, not equal to, less than, and greater than, as well as the

bounded versions of minimize and maximize, can each be completely satisfied. This is
not the case for the unbounded minimize and maximize constraints. For example, the
unbounded minimize constraint can never be satisfied, because for any parameter value

there is always another lesser value, with a corresponding smaller-cost. Similarly, greater
values must have greater costs.

The goal of designing suitable cost functions for unbounded minimize and maximize is

complicated by the fact that although parameter values are infinite, the range of function
values should be bounded (to conform to the guideline of costs between 0.0 and 1.0). An

asymptotic approach to both the minimum and maximum values of the function is therefore

91

required

For the minimize and maximize cost functions to be of any use, they must be capable of
distinguishing between the actual values which occur during the constraint satisfaction

process. This is accomplished by having the majority of the transition fromj(x)=O.O to

f(x)=l.O occur in the region of interest. As with previous cost functions, the region of

interest may be centered about a point, with its width specified by the slope at that point

5.4.5.1. The minimize cost function

If we temporarily consider the function centered about x=O .0, the following constraints

definef(x):

I. ,/~- f'(x) = 0.0

""' ' 2. x -- f (X) = 0.0

3. f '(0.0) = s

4 lim f(x) = 1 0 . x~- .

r 5. "_::':- f (X) = 0.0

The slope, s, must be greater than zero. Constraints 1, 2, and 3 can be satisfied by a

function of the form:

f'(x) = 1 + h(x)

where h(O.O)=0.0 and h(x) increases with x. If we let h(x)=x, then

and

f'(x)=J_
l+x

Unfortunately, this function grows without bound as x approaches infinity, violating

constraint 4. However, if we let h(x)=x2, then

92

(5.25)

(5.26)

(5.27)

f(x) =f s dx =sarctan(x)+C.
1 +x2

Since arctan (x) ranges from -1fl2 to 1fl2, this function ranges from 0.0 to stt, when
C=rr/2. We want the function to range from 0.0 to 1.0. We cannot simply scale the
function by 1/str, since that would affect the value of the slope. However, because

f 2 2
dx =~arctan(fi}+C,

a +x

we can use a function with derivative form

2
f'(x) = sa

a2+x2

to meet all constraints. If we integrate, we get

f(x) = J sa2
dx=sa arctan (.I.)+ C.

a2 +x2 a

To provide the proper scaling, we need a=llstt, and C=05, so

f (x) = 1. arctan (snx) + 0.5.
tr:

This form centers the function about x=O.O. To center the function about an arbitrary
target, let

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

f (x) = 1. arctan (str: (x-target)) + 0.5.
tr:

(5.33)

If the cost function designer requires constraints that are not satisfied by this function, then
an alternate approach, such as a piecewise polynomial, may be used. This function class is
illustrated in figure 5.10.

93

5.4.5.2. The maximize cost function

The maximize function is very similar to the minimize cost function, with the exception that
the cost approaches the minimum cost as the parameter gets larger. The constraints
defining this function are:

1. ,/~- f'(x) = 0.0

lim •
2. x-.-- f (X) = 0.0

3. f'(O.O) = s

4. ,/~- f(x) = 0.0

I' 5. x->"':- f(x) = 1.0

The slope, s, must be negative. These constraints may be satisfied by f(x) as specified
for the minimize function. The reflection is accomplished by settings less than zero.

5.4.6. Summary of cost function design for objective constraints

The design procedure for objective functions can be viewed as a series of six steps:

Step 1: Most constraints will already be expressed as one of the six basic

constraint types:(=, if',<,>, minimize, and maximize). If the constraint is
· not in this form, it should be converted to this form.

Step 2: Select the main parameter which represents the property being
constrained.

Step 3: Choose the basic type of constraint being implemented.
CONTEST supports the six basic types, with both the unbounded and

bounded forms of minimize and maximize.

Step 4: Select a function template to be used to approximate the actual cost

function. CONTEST supports templates based on the the type of constraint

and the functionsj(x) = e·nxb andf(x) = 1/(nxb+l).

94

Step 5: Select the parameters which defme the shape of the particular
function. CON1EST suppons the specification based on the value where
cost=05 (v in the discussion above) and the slope at that point (sin the
discussion above).

Step 6: Choose a scaling factor for the constraint. The normal range of a
cost function is from 0.0 to 1.0. The user may select an arbitrary scaling

factor to conven to a range of 0.0 to scaleF actor.

These six steps result in a cost function which may be funher scaled and then summed with

other objective, subjective, and search constraints to yield the global cost function.

5.4.7. Analysis of cost functions of objective constraints

Section 53 presented several guidelines for cost function design. This section analyzes the

cost function templates,j(x) = e·nxb, f(x) = 1/(nxb+l), andf(x)=piecewise cubic (2

pieces), based on these guidelines. Only the guidelines which distinguish between these
templates are presented below; other guidelines are satisfied equally by each template. For
the first two templates, we consider the cases for which a value v and slope s are used to
specify function coefficients, in addition to the cases where sensitivity and tolerance are
used to specify these coefficients. We also consider the piecewise cubic made up of more
than two pieces. Such a piecewise cubic might be specified using an interactive graphics

program.

5A.7.1. Functions should be easy to evaluate

For the purpose of this analysis, we define an abstract model of computation with the
following costs: an arithmetic function (+, -, *, !) or comparison requires one time unit,

and an exponential evaluation requires a function call at an expense of 50 time units.
Funhermore, we assume a straightforward implemention of the function (no nested
evaluations for polynomials, no table lookups, etc.).

With this model of computation, the functionj(x) = e·nxb requires 101 time units per

evaluation (two exponentials and one multiplication). The functionf(x) = l!(nxh+l)
requires 53 time units per evaluation (one exponential, one multiply, one add, and one
divide). A piecewise cubic, for n pieces, requires log2n tests to determine the particular

cubic function to evaluate, followed by six multiplies and three additions to evaluate the

cubic, for a total of log2n + 9 time units. The piecewise cubic is the clear winner here,

95

based on the lack of a function call.

These estimates do not include the potentially expensive cost of recomputing the parameter
x for each iteration.

5.4.7.2. Shape should be accurate: theoretical considerations

In this section, we estimate the flexibility of the function template: i.e., the ability of the
template to match a variety of target functions. Note that this flexibility may not be
necessary if all desired functions closely match available templates, even if these templates
are inflexible.

All forms of the templates fix)= e-nxb andf(x) = ll(mh+l) have a low degree of
flexibility because the user has control over only two parameters: either slopes and value
v for the point at whichf(v)=05, or the sensitivity and tolerance parameters. The slope
and value and x=O.O and x=oo are predetermined.

: The two-piece cubics have a medium degree of flexibility because they also allow, in
addition the sand v parameters, the specification of the slope atx=O.O and atf(x)=O.O.

c Fmally, general piecewise cubics have a high degree of flexibility because they allow an
~:' arbitrarily close approximation to any function.

5.4.7.3. Shape should be accurate: practical considerations

In this section, we assume that a function template is suitable for estimating a particular
function, and we analyze the ease with which template parameters can be selected in order
to best match that function.

The slope and value versions of the templatesf(x) = e·nxb andf(x) = l!(mh+l) have a
medium degree of difficulty in matching: the slope and value provide a good starting point
for matching the target, but some tweaking may be necessary to fmd the best overall fit.
The sensitivity and tolerance versions of the same templates involve an intermediate stage to
convert to slope and value parameters. For a designer who understands the underlying
function representation, this intermediate stage presents an additional hurdle on the path to
accurate function approximation.

The two-piece cubic has a low degree of difficulty in matching. Three slopes and one value
from the target function provide an accurate characterization of the intended function. The

96

n-piece cubic has an even higher ability to match a particular function.

5.4.7.4. Shape should be easy to specify

This section examines the ease by which any particular approximation may be specified. It
does not address the issue of the accuracy of this approximation.

The slope and value versions of the templatesf(x) = e·nxb andf(x) = lt(nxb+l) have a
medium ease of specification: they require some mental or physical (pencil and paper)
sketching to estimate the proper parameters. The sensitivity and tolerance versions of the
same templates have a high ease of specification: they require only a general numeric
ranking of two parameters.

The two-piece cubic has a low ease of specification. Physical sketching is most likely
required to derive the parameters used to specify the function. The n-piece cubic has an
even lower ease of specification. Some computer assistance, such as an interactive
graphics program, is needed to quickly find the required parameters.

5.4. 7.5. Specification should be separate from representation

A specification method is defined as having a high degree of separation from the underlying
representation if knowledge of the representation is not necessary to define the function. A
method is defined as having a medium degree of separation from the underlying
representation if the method strongly suggests the underlying representation, but complete
understanding of that representation is not necessary to successfully specify the function.
A method is defined as having a low degree of separation from the underlying
representation if a thorough understanding of the representation is necessary to successfully
specify the function.

Based on these criteria, the slope and value versions of the templatesf(x) = e·nxb and

f(x) = ll(nxb+ 1) have a medium degree of separation from the underlying representation.
These versions require some information about a particular point (where f(v)=05), but a
complete understanding of the form of the function is not necessary.

The sensitivity and tolerance versions of the same templates have a high degree of
separation from the underlying representation. The cost function designer can specify these
parameters without any knowledge of the internal representation.

97

All fonns of piecewise cubics have a low degree of separation from the underlying
representation. Information about various boundary conditions requires that the user have
a firm grasp of the range of slopes and values throughout the entire cost function ..

5.4.7.6. Functions should encourage hill-climbing

The term hill-climbing is once again used here to refer to search movement only in the
direction of a local optimum (even though CONTEST seeks the minimum cost). Functions
without a gradual descent to the minimum value, such as the simplistic cost function in
figure 5.1, do not encourage hill-climbing.

All fonnsofthe templates fix)= e·nxb andf(x) = lt(nxb+l)encourage hill-climbing
throughout the entire parameter range. Piecewise cubics, on the other hand, cannot
represent an asymptotic approach to a function value. Instead, they define a descent toward
the optimum in a finite portion of the parameter range.

1.2

1.0

0.8

•• 0.6 o.·
()

0.4

0.2

0.0

cost-1.0 for
,V values outside lhese ~

bounding poiniS

• 8

target

Parameter

(a)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

cost asymptotically
approaches 1.0

target

Parameter

(b)

Figure 5.23: restricted va. unrestricted hill-climbing

Figure 5.23 illustrates functions with a finite and infinite transition to the minimum. Figure
5.23a represents a function that might be represented by piecewise cubics, while 5.23b

represents a function based onf(x) = e·nxb.

98

5.4.7.7. Summary of analysis of cost functions

f(x) = e-nx•
slope, value specification

f(x) = e-nx•
sensitivity, tolerance

specification

b
f(x) = 1/(nx + 1)

slope, value specification

b
f(x) = 1/(nx + 1)

sensitivity, toleillllce
specification

f(x) =piecewise cubic
(2 pieces)

f(x) = piecewise cubic
(n pieces)

high
(101)

high
(101)

medium
(53)

medium
(53)

low
(10)

low
(9+log n)

medium

high

medium

high

low

very
low

low medium

low low

low medium

low low

medium high

high high

high

high

high

high

medium

medium

Table 5.1: summary of cost function analysis

99

medium

high

medium

high

low

very
low

Table 5.1 summarizes the strengths and weaknesses of each of the cost function
representations. The overall goal is to approximate a cost function that exists in the

designer's mind. The slope and value versions of the templates f(x) = e-nxb and

f(x) = 1/(nxb+ 1) have been found satisfactory in practice. The sensitivity and tolerance
versions of the same templates have not been implemented because CON1EST is still an
experimental testbed, not an end-user product. The piecewise cubic form has not been
used because the extra precision it provides compared to the other templates has not been
necessary.

5.5. Cost functions for subjective constraints

Subjective constraints are the most difficult constraints to quantify because they involve
value judgements. Computers are good at making objective evaluations, so the basic idea
behind evaluating subjective constraints is to reduce them to a form that can be evaluated by
a computer.

Subjective constraints involve issues such as: safety, reliability, durability, craftsmanship,
simplicity of operation, ease of maintenance, and ease of manufacture. The guidelines for
construction of subjective constraints are:

1. Use a divide-and-conquer approach to refine the problem
2. Base judgements on a simple scale
3. Match empirical data if constraints cannot be quantified

5.5. 1. Divide and conquer to refine the problem

In a divide-and-conquer approach, problems are successively broken down into simpler
problems until only trivial problems remain. In this case, subjective constraints are
progressively expressed in terms of simpler constraints until the simpler constraints can be
objectively evaluated. If necessary, constraints can be reduced to yes/no evaluations. The
decisions on how to divide a constraint will of course be based on a particular set of values.
There can be controversy about whether the criteria properly represent the constraint, but
there can be no argument about the evaluation of the constraint once the criteria are
established.

The divide-and-conquer procedure defines a tree structure in which terminal nodes
represent basic evaluations, and internal nodes represent subjective constraints. An
evaluation of every node in the tree can be created by assigning weights to the arcs, and
having the terminal nodes return standard values (e.g. 0.0-1.0). Figure 5.24 provides an

100

example in which a subjective constraint, "suitable for children", is broken down into
simpler constraints. If each terminal node returns a value from 0.0 to 1.0, then the root
node returns a value in the same range.

rounded
edges?

is it suitable
lor children?

danger of swallowing
small parts?

glass
construction?

Figure 5.24: divide-and-conquer approach

5.5.2. Base judgements on a simple scale

For value judgements, a common scale helps to reduce confusion and provides a logical
way to compare pairs of constraints. Most people are familiar with ranking items on a scale
from zero to ten. On such a scale, zero represents perfect satisfaction and ten represents
complete failure. Any basic evaluation should be done on this scale. Its importance can
then be specified by the weighting factors associated with each constraint.

5.5.3. Match empirical data if constraints cannot be quantified

If a constraint is too complex to be quantified, it may still be possible to evaluate it by
comparing with various empirical data. For example, the designer of a ship hull may not
have a sophisticated model of drag, but he may have relevant data for a variety of
previously constructed designs. By comparing potential designs with these templates,
promising configurations may be identified.

101

Similarly, a design may be compared to a particular design style even if it is not understood
what makes that style successful. Koning and Eizenberg [Koning, 1981] were able to
describe the style of Frank Lloyd Wright's prairie houses by defming a shape grammar.
New prairie house designs can be parsed to see if they match the grammar. Design
frequently involves drawing on previous work without necessarily understanding all of the
tradeoffs involved in the previous work. Matching new designs with previous designs or
design styles is a way to encapsulate knowledge without having to reduce everything to the
most basic level.

5.6. Cost functions for search constraints

A search constraint guides the constraint satisfaction procedure toward certain
configurations. Search constraints can be used when the designer has confidence in the
position of some part, or when he wishes to avoid undesirable configurations.

In a paper discussing work related to this dissertation [Amburn, 1986], we introduced the
idea of a dominance parameter, which specified the objects prevailing when resolving
constraints. In that work, constraints were solved locally, based on object-to-object
comparisons, with the less dominant object adjusting its position to satisfy constraints.
Dominance was considered to be associated with pairs of objects, which allowed the
possibility of circular dominance, although we did not encounter this is our application.

In this system, dominance can be implemented by applying search constraints. Instead of
specifying pairwise dominance parameters, however, a general dominance parameter is
associated with each object This forces the designer to specify a global ranking of objects,
but avoids the problem of circular dominance and also provides consistency between
applications. Mter constraint satisfaction, the most dominant objects are held close to their
initial positions, while less dominant objects are freer to move about to satisfy the
constraints.

Search constraints differ from geometric constraints in that they are intended to provide
high-level guidance to the search procedure, rather than specifically dealing with the basic
constraint problem. Just as subjective constraints get reduced to objective constraints,
though, search constraints are also implemented in terms of objective evaluations. The
dominance constraint described above, for instance, can be implemented by defining a
geometric distance constraint that attempts to hold an object to its desired position. The
cost increases as the distance from the initial position increases, and the rate of that increase
can be controlled by the dominance parameter (e.g., it might be used as an exponent), so

that roughly cost = distancedominanc•.

102

5.7. Operations on constraints

This section discusses possible ways that cost functions may be combined. The first
method has already been introduced: cost functions are added together to represent that two
or more constraints should be satisfied. In addition, a simple expression for A orB

exists. Unfortunately, cost functions are not generally invertible by the not operation,
which prevents a straightforward derivation of expressions for additional logic operations.
Nevertheless, the section shows that constraints may be combined in ways other than by
simple addition of cost functions.

The theory of fuzzy logic [Klir, 1988] provides an additional source of information
regarding operations on cost functions, and is a possible source of techniques for shaping
functions based on subjective modifiers such as "very'' and "broad".

Operations on constraints can be implemented by using the following cost function
operations:

Constraint operation
AandB

A orB

notA

5.7.1. A and B

Cost function operation
cost(A) + cost(B)

min(cost(A),cost(B))

in limited cases: 1.0-cost(A)

The primary way of defining a constraint problem is to and together a collection of
constraints. Given the costs functions for two constraints, cost(A) and cost(B), the
combined cost function must represent the individual costs during minimization. This may
be accomplished by summing the individual costs: cost(A and B)=cost(A) + cost(B).

5.7.2. A orB

Given a choice of two constraints, a minimizing procedure should choose cost(A) if
cost(A)<cost(B), and cost(B) if cost(B)<cost(A). The cost function reflecting this is
cost(A or B)= min(cost(A),cost(B)). Such a combined cost function might be used to
implement a constraint such as "place the lamp near electrical outlet X" or "place the lamp
near electrical outlet Y".

103

5.7.3. Not A

Consider a constraint with a threshold parameter, such as the less than constraint (figure
5.8),parameter<5.0. When the constraint is satisfied, the cost is 0.0, but when the
constraint is not satisfied the cost varies based on constraint violation. If we attempt take
the complement of this constraint, then we still want the resulting cost to vary based on
constraint violation. However, this information must come from the region of the curve for
which cost is 0.0. Since this information cannot be derived from a region of constant
cost, such a function is not complementable.

On the other hand, consider a constraint with no threshold, such as the equal constraint
(figure 5.6), parameter=5.0. There is only one point at which the cost is zero; elsewhere,
the function returns a value which increases based on distance from the target parameter.
We can take the complement of this constraint, because the information that we need for the
new function (cost based on distance from the target) can be derived from the old function
throughout the entire parameter range.

In general, functions with a threshold are not complementable, while those without a
threshold may be. Among the six basic constraint types, equal to, not equal to,

minimize, and maximize are complementable, whereas less than and greater than are
not. The complement is achieved by negating the original function. If the previous
function ranges from 0.0 to 1.0, this function range can be maintained by adding 1.0, so
that cost(not A)=l.O·cost(A).

A possible way to create invertible versions of less than and greater than is to define the
quality of acceptable solutions. When the function is inverted, the portion of the curve that
distinguished between acceptable solutions distinguishes unacceptable solutions. The
problem with this approach is that the distinction between acceptable values is usually not
as large as the distinction between unacceptable values. An inverted less than would
therefore be shaped differently than an explicitly defined greater than function.

5.8. Summary

Cost functions provide a way of comparing two or more models to determine which best
satisfies some set of constraints. Cost functions return a single scalar value which specifies
the degree of constraint satisfaction. The magnitude of a cost function is not as important
as the range of values it can assume. This chapter has provided guidelines for constructing
cost functions for three types of constraints: objective, subjective, and search constraints.
In addition, rules for combining cost functions were defmed.

104

Six basic types of objective constraints were identified: equal to, not equal to, less than,
greater than, minimize, and maximize. Cost function templates for these constraints
were derived from their properties. While the application designer may use these templates
where appropriate, he is also free to design arbitrary functions for any constraint that
cannot be suitably represented. Subjective constraints involve value judgements and can be
difficult to quantify . One approach is to break them down into simpler objective
constraints which are easily evaluated. Search constraints allow the user to specify a
preference for the position or freedom of model parts.

105

Chapter 6

Opaque Projector Project

Opaque projector design was chosen as a test application area. This project was pursued in
collaboration with Prof. David Chapin of the NC State University School of Design, and
students in his senior product design studio. The term project for the course was to design

an opaque projector.

My version of this project differed from the students' version in two main ways. First,
while the assignment for each student was to design a single opaque projector, my goal
was to design a system capable of exploring opaque projector design alternatives.
Second, the students were more concerned with the form of the projector; less emphasis

was placed on engineering aspects such as ventilation and optics.

The distinction between our two projects becomes clearer if one looks at the output of each
of the projects. The students generated detailed specifications and mock-ups for the shape
of the projector. In most cases, however, they did not make specifications for major

components such as lenses, bulbs, and fans. In contrast, CONlEST generates potential
designs by choosing parts which best satisfy a set of constraints. CONlEST, however,
does not generate design specifications to the same level of detail as presented by the

students in the class. Issues such as where to drill holes and what type of screws to use are

left to the human designer.

6.1. Problem overview

The design of opaque projectors is interesting because their function is well-understood,

although the choice of parts to accomplish this function is non-trivial. The function of an

opaque projector is to project an enlarged image of an opaque object (such as a book or
photograph) onto a screen or other viewing surface.

Many performance requirements affect the design of opaque projectors. The following

constraints were encoded in this application:

• l11Ulge brightness: the projected image should be bright enough to read

without eye strain.

• Component cost: minimize part costs to achieve highest profits.

• Light escaping: the projector should not emit distracting light (e.g.,

through cooling vents).

• Sound escaping: the projector should not generate intrusive noise.

• Cord length: the projector should have a power cord long enough to

conveniently reach power outlets.

• Energy use: the projector should be economical to operate.

• l11Ulge focus: the projected image should be crisp rather than blurred.

• Projector geometry: the dimensions of the projector should conform

to ratios which ensure proper operation.

• Projector height: a small projector might be desirable to prevent

obstruction of view.

• Temperature constraints: the internal operating temperature should be

low enough to prevent part failure. Normally accessible parts should not

cause discomfort if touched.

• Chassis cost: the price of the chassis should be minimized to achieve

highest profits. The chassis was separated from other components to

provide greater flexibility in specification.

• Ergonomics: conveniences such as lens caps and carrying handles

should be included.

• Weight: the weight of the projector affects its portability and should be

minimized.

• Durability: the ability of the projector to withstand handling or abuse

107

should be maximized.

• Full view: the distance from the base of the projector to the the mirror
should be great enough to image the entire source.

6.1.1. Constraint conflicts

Unfortunately, it is not possible to completely satisfy all design goals. For example, the
internal operating temperature of the unit is affected by several parameters: the wattage of
the projection bulb, the airflow generated by a fan, and the number of cooling vents.
Increasing the bulb wattage increases the brightness of the image, but it also increases the
amount of heat generated. Using a larger fan increases airflow, but also increases cost and
might increase the amount of generated noise. Adding more cooling vents helps to lower
the temperature, but allows sound and ambient light to escape into the room. Designing an
opaque projector for a particular application involves choosing design parameters which
best satisfy the entire set of constraints.

6.1.2. Projector classes

This project assumes simple projector operation as shown in figure 6.1. The source
document is illuminated by a lamp; its image is reflected off a mirror, then passed through a
lens and projected on the screen. In addition to the optical components illustrated, a
projector may also contain a fan and air vents to promote cooling. Within this design
framework lie an infinite number of specific designs (i.e., designs where distances,
wattages, focal lengths, etc. are fully specified).

source

lens

Cl
/

Figure 6.1: opaque projector operation

108

The goal of this application is to use the defined constraints and relevant catalog data to
generate the specific design which best satisfies the constraints. If the weights of
constraints are varied, then a new design may be generated. The human designer is thus
free to explore various "what-if' design possibilities with minimal effort

6.2. Parts inventory

This section describes the inventory of parts available when designing a projector in this

application. Part attributes were estimated by consulting an Edmund Scientific catalog for
typical (in some cases exact) values.

The part choices and their attributes are:

• bulb: wattage, price, weight
• 200 watts, $2.50, 100 g

• 400 watts, $5.00, 200 g
• 600 watts, $6.00, 300 g
• 800 watts, $7.00, 400 g

• 1000 watts, $10.00, 500 g
• 1200 watts, $11.50, 600 g
• 1500 watts, $12.50, 750 g

• 2000 watts, $15.00, 1000 g

• fan: wattage, price, weight, airflow (cubic feet/minute)
• 0 watts (no fan), $0.00, 0 g, 0 cfm
• 20 watts, $2.00, 200 g, 25 cfm

• 25 watts, $4.00, 250 g, 40 cfm

• 30 watts, $6.00, 300 g, 55 cfm
• 35 watts, $8.00, 350 g, 70 cfm

• 40 watts, $10.00,400 g, 85 cfm

• 45 watts, $12.00,450 g, 100 cfm
• 50 watts, $14.00,500 g, 115 cfm

• 60 watts, $16.00, 600 g, 130 cfm

109

• lens: diameter, price, weight, focal length (sorted by focal length)
• 20.00 mm, $4.10, 40 g, 402 mm
• 8.00 mm, $3:65, 6.4 g, 406 mm
• 11.00 mm, $3.45, 12.1 g, 424 mm
• 164.00 mm, $50.05, 2689.6 g, 436 mm
• 8.00 mm, $3.25, 6.4 g, 460 mm
• 112.00 mm, $15.65, 1254.4 g, 476 mm
• 46.00 mm, $5.75, 211.6 g, 480 mm
• 98.00 mm, $20.75, 960.4 g, 500 mm
• 9.00 mm, $3.85, 8.1 g, 530 mm
• 42.00 mm, $6.55, 176.4 g, 534 mm
• 71.00 mm, $8.80, 504.1 g, 582 mm
• 7.80 mm, $4.15, 6.08 g, 600 mm
• 14.00 mm, $4.75, 19.6 g, 610 mm
• 38.00 mm, $4.45, 144.4 g, 616 mm
• 20.00 mm, $4.75, 40 g, 630 mm
• 38.00 mm, $6.20, 144.4 g, 666 mm
• 48.00 mm, $6.55, 23D.4 g, 694 mm
• 21.00 mm, $4.95, 44.1 g, 786 mm
• 20.50 mm, $5.15, 42.02 g, 830 mm
• 89.00 mm, $14.00, 792.1 g, 952 mm
• 103.00 mm, $19.30, 1060.9 g, 1010 mm
• 40.00 mm, $6.55, 160.0 g, 1334 mm
• 38.00 mm, $5.25, 144.4 g, 1360 mm
• 76.00 mm, $16.15, 577.6 g, 1370 mm
• 38.00 mm, $4.90, 144.4 g, 1600 mm
• 24.00 mm, $6.35, 57.6 g, 2400 mm
• 12.00 mm, $4.60, 14.4 g, 2540 mm

• vents: number, weight
• 0 to 8 vents
• each vent subtracts 50 g in weight

• cord: length, price, weight
•length between 1m and 10m
• price: $5.00 + $1.00 I m
• weight: 100 g +40 g/m

110

• chassis geometry:
• base-to-mirror distance: unrestricted
• mirror-to-lens distance: unrestricted
• external height, width, length: dependent on base-to-mirror
and mirror-to-lens distances

• chassis construction:
• type of metal: aluminum or steel
• steel:

• weight: 2.5 g /500 mm2

• cost: $1.00 I 50000 mm2

• aluminum:
• weight: 1 g /500 mm2

• cost: $1.00 !75000 mm2

• optional extras:
• carrying handle: $3.00, 100 g
• lens cap: $3.00, 50 g
• cart/stand: $20.00

A bulb, lens, cord, and chassis must be selected. Cooling vents, a fan, a carrying handle,
a lens cap, and a can are optional.

6.3. Constraint implementation

Recall the systematic design method outlined in section 5.4.6:

1. express the constraint as one of the six basic constraint types
2. determine the main parameter which represents the property being constrained
3. select the particular form of the constraint being implemented (determine whether

bounded or unbounded)

4. select the particular function template (e.g.,f(x) = e-nxb or f(x) = lt(nxb+ 1))

5. select the parameters of the template
6. choose a scaling factor

The sections which follow document the first three steps of this method for each constraint.
The final three steps involve selection of subjective parameters and hence are not
documented here.

111

6.3.1. Image brightness

The goal of this constraint is to maximize image brightness. I assume that the bulb
brightness is proportional to the wattage (since the bulb wattage is more readily available).
Furthermore, I assume that the amount of light directed toward the lens is approximately
the same for all projector configurations, and that the lens itself absorbs a negligible
percentage of the light passing through it . In other words, the only non-constant
parameters affecting intage brightness are the bulb wattage and the lens diameter. I further
assume that the amount of light gathered by the lens is proportional to the area of the lens.

constraint: maximize brightness
parameter: <bulb wattage> * <lens diameter>2
function: lower bounded maximize, bounded by 200 watt bulb, 8 mm lens

6.3.2. Component cost

The total part cost of the projector is simply the sum of the component prices. Because this
sum is already in the global unit of measure (dollars), no further shaping of the parameter is
required.

constraint: minimize part cost
parameter: sum of individual pan costs
function: no further shaping necessary

6.3.3. Light escaping

The amount of light escaping is dependent on the number of cooling vents and the
brightness of the bulb. I assume a fixed percentage of the bulb's luminance escapes from
each vent.

constraint: minimize light escaping
parameter: <bulb wattage> * <number of vents>
function: lower bounded minimize, bounded by 0

6.3.4. Sound escaping

Information was not available on the noise generated by various fans. Instead, fan wattage
was used as a rough estimate of the noise generated. I assume a fixed percentage of the
generated sound escapes from each vent.

112

constraint: minimize sound escaping
parameter: <fan wattage> * <number of vents>
function: lower bounded minimize, bounded by 0

6.3.5. Cord length

This constraint expresses the view that it is convenient to have as long a cord as possible
(up to the maximum cord length).

constraint: maximize cord length
parameter: cord length
function: lower bounded maximize, bounded by length of lm

6.3.6. Energy use

Since power usage is a cost incurred by the consumer rather than the producer of the
product, this constraint actually reflects an estimate of how various power consumption
levels will affect the consumer's purchase behavior.

constraint: minimize energy use
parameter: sum of individual part wattages
function: lower bounded minimum, bounded by 200 watt bulb

6.3.7. Image focus

This is the most important constraint in the design. The projector is useless if it cannot
present a focused image on the screen. We can apply the principles of thin lens theory to
evaluate optical configurations. In the situation where we have a lens projecting an image
onto a screen, the lensmaker's equation states that:

1 1 1 (6.1)
object-to-lens distance + lens-to-image distance focal length of lens

113

Equation 6.1 expresses the following imaging model:

L.. object I r-- to lens -••+-41-----­
distance

lens to
image

distance

Figure 6.2: thin lens Imaging model

In an opaque projector, the object-to-lens distance is the sum of the base-to-mirror distance
and the mirror-to-lens distance. The lens-to-image distance for the cases in this chapter
was set to a fixed distance of five meters. There is some flexibility in meeting this
constraint since the lens position is slightly adjustable (focus control). The cost function
uses the image and object distances to compute the focal length necessary to provide a
focused image. This focal length is then compared with the actual focal length of the lens.

constraint: equality between requiredfocallengthfor perfect focus and the
actual focal length of the lens

parameter: actual focal length of the lens
function: equality with required focal length

6.3.8. Projector geometry

This constraint provides guidance about the ratios of the base-to-mirror and mirror-to-lens
distances of typical opaque projectors. Its pmpose is to generate projectors that have the
ratios of figure 6.1, without explicitly having to encode why such a ratio is good (it leaves
room for the bulb and fan, it minimizes required desk space, etc.).

constraint: <base-to-mirror distance> equals twice <mirror-to-lens distance>
parameter: 2 * <mirror-to-lens. distance>
function: equality with <base-to-mirror distance>

114

6.3.9. Projector height

The main parameter affecting the height of the projector is the distance from the base to the
mirror. Thus to minimize the height, one needs to minimize this distance. One reason for
minimizing the height is to prevent obstruction of view.

constraint: minimize base-to-mirror distance
parameter: base-to-mirror distance
function: lower bounded minimize, bounded by 0

6.3.1 0. Temperature constraints

The internal temperature of the projector must be kept at a reasonable level to prevent part
failure and for safety considerations. Two internal components generate heat: the bulb and
the fan. A portion of the bulb's power usage is in the form of internal heat; the remainder
of the energy is in the form of light which leaves the projector. Similarly, only part of the
fan's power usage is used to create airflow outside the projector; the remainder generates
internal heat I have chosen percentages of the wattage of each part as an estimate of
internal heat generated.

The heat generated is dissipated to the surrounding environment by three means:
conduction, convection, and radiation. Conduction is the transfer of heat from direct
contact of the projector with other surfaces. For example, heat might be conducted through
the projector's feet to the table the projector is sitting on. Convection is the transfer of heat
by motion of a hot material (e.g., air or water). Heat transfer by fan-induced airflow falls
in this category, as does heat drawn away by rising currents of warm air. Radiation is the
transfer of energy by electromagnetic waves. If one's hand is placed near the side of a
warm projector, it absorbs radiant energy even though there is no airflow or contact with
the projector. Although some heat is dissipated by conduction and radiation in an opaque
projector, the vast majority occurs through convection.

A sophisticated convection model would consider many factors, including fan and vent
position, the temperature difference between the inside and outside of the projector, and the
shape of the chassis and vents. Rather than implementing a complex model of heat
transfer, I chose to base this constraint on a cooling potential, which I define as being
dependent on the the number of vents and the fan's airflow specifications. The cooling
achieved by additional vents when no fan is present is represented by defining a small
default airflow:

115

cooling potential= <number of vents>* <airflow> (6.2)

cooling requirements= a* <bulb wattage>+ P* <fan wattage> (6.3)

The cost function for the constraint is then expressed as:

constraint: cooling requirements less than cooling potential
parameter: cooling requirements
function: less than cooling potential

Note that there is a limit of eight on the number of cooling vents. When that limit is
reached, cooling potential can only be increased by using a more powerful fan.

6.3.11. Chassis cost

This constraint minimizes the cost of the metal required to build the chassis. Because this
parameter is already in the global unit of measure (dollars), no further shaping of the
parameter is required.

constraint: minimize chassis cost
parameter: chassis cost
function: no further shaping necessary

6.3.12. Ergonomics

This constraint reflects the added convenience of extras such as a carrying handle, a lens
cap, and a utility cart. Rather than having a penalty for the absence of these conveniences,
the cost function equivalently returns a negative bonus when the extras are included. Cost
is computed as follows:

• Start with an initial cost of 0.0.
• Does the projector have a handle? If so, subtract 12.0 from cost.
• Is there a lens cap for the lens? If so, subtract 4.0 from cost
• Is a cart included with the projector? If so, subtract 15.0 from cost

116

6.3.13. Weight

If the projector is to be shared by many people (e.g., by many instructors in a school), then
a low weight is desirable since it will aid portability.

constraint: minimize weight
pammeter: sum of individual component weights
function: lower bounded minimize, bounded by lightest bulb, lens, and chassis

6.3.14. Durability

The constraint reflects the desire to minimize repair or maintenance during the lifetime of
the product. Two parts are considered: the fan and the chassis. Steel is more durable than
aluminum, and a projector is considered more reliable if it does not include a fan, since a
fan can malfunction. Cost is computed as follows:

• Start with an initial cost of 0.0.
• Is the chassis made of steel? If so, subtract 40.0 from cost.
• Is the chassis made of aluminum? If so, subtract 2.0 from cost.
• Is there a fan? If not, subtract 2.0 from cost

6.3.15. Full view

If the distance from the base of the projector to the mirror is too small, the projector will not
be able to reproduce the entire area of the original. A distance of less than 250 mm is
considered dangerously close and is penalized with a cost of 20.0. Any distances greater
than 250 mm are rewarded by subtracting a bonus of 1.0 unit for every 50 mm. This
function would be better represented by a greater than function template, but this awkward
cost function was carried over from an early implementation.

117

6.4. Results

The particular weighting for each of the cost functions was chosen so as to specify a
generic projector achieving an overall compromise among all constraints. These
weightings were stored within each cost function, so that an external weight of 1.0 for any
cost function refers to the same weighting as used for the standard projector.

Variations on the standard projector were then defined as follows:

budget projector. set the weighting factor for the component cost and
chassis cost constraints to 5.0. This represents the situation where cost is
a primary concern.

deluxe projector. set the weighting factor for component cost to 0.2
and for chassis cost to 0.1. This represents a situation where cost is not
an issue, particularly for fixed parts such as the chassis, as opposed to
replaceable parts, such as the fan and bulb.

quiet projector. set the weighting factor for the sound escaping
constraint to 5.0. This represents the situation where the sound generated
by the projector is a concern, such as in a small conference room with poor
acoustics.

bright projector. set the weighting factor for the image brightness
constraint to 5.0. This represents the situation where maximum image
brightness is a concern, such as in a room with windows but no blinds or
drapes.

portable projector. set the weighting factor for the weight constraint to
5.0. This represents the situation where the projector will be moved
frequently, so a light projector is preferred over a heavy one.

118

Table 6.1 summarizes the weightings for each of the projector instances.

standard budget deluxe quiet bright portable

Image brightness 1.0 1.0 1.0 1.0 5.0 1.0

Component cost 1.0 5.0 0.2 1.0 1.0 1.0

Ught escaping 1.0 1.0 1.0 1.0 1.0 1.0

Sound escaping 1.0 1.0 1.0 !U! 1.0 1.0

Cord length 1.0 1.0 1.0 1.0 1.0 1.0

Energy use 1.0 1.0 1.0 1.0 1.0 1.0

Image focus 1.0 1.0 1.0 1.0 1.0 1.0

Projector geometry 1.0 1.0 1.0 1.0 1.0 1.0

Projector height 1.0 1.0 1.0 1.0 1.0 1.0

· Temp. constraints 1.0 1.0 1.0 1.0 1.0 1.0

Chassis cost 1.0 5.0 0.1 1.0 1.0 1.0

Ergonomics 1.0 1.0 1.0 1.0 1.0 1.0

Weight 1.0 1.0 1.0 1.0 1.0 5.0

Durability 1.0 1.0 1.0 1.0 1.0 1.0

Full view 1.0 1.0 1.0 1.0 1.0 1.0

Tabla 6.1: cost function weights for projector Instances

Figures 6.3 through 6.8 show the components and dimensions chosen to best satisfy each
of these constraint weightings. These designs were all generated automatically, although
the figures were prepared by band.

By using a program such as this, a manufacturer can easily develop a product line. If the
inventory or pricing of parts changes, one can simply rerun the program with the new parts
or new part costs. Almost all of the human time investment occurs during the initial cost
function encoding process.

119

Side View

438
351

sizes
lnmm

Top View

I

I

,.. 350---1

~<~~1•---350 ---1

Bulb

~
aoowatts

cost: $7.00
weight: 400g

Air Vents

4 vents
weight: ·200g

cost: $0.00

Fan

35watts
cost: $8.00

weight: 350g
airflow: 70 cfm

Cord length

length: 6.55m
cost: $11.55
weight: 361g

Material: steel
Chassis weight: 4.6 kg
Chassis cost: $18.67

Lens

diameter: 112mm
price: $15.65

focal length: 476mm
weight: 1254g

Extras

carrying
handle

Q)
lens cap

Figure 6.3: Standard Projector

120

T 300

1

389

Side View

311

Bulb

200watts
cost: $2.50

weight: 100g

Air Vents

5 vents
weight: ·250g

cost: $0.00

alzes
lnmm

Top View

I

I
I

,... 350~

Fan

Owatts
cost: $0.00
weight: Og

airflow: 0 cfm

Cord length

----ID=
length: 1.00m

cost: $5.00
weight: 140g

Material: steel
C::haas!s weight: 3.6 kg
Chassis cost: $14.48

Lens

diameter: 11 mm
price: $3.45

focal length: 424mm
weight: 12.1g

Extras

none

Figure 6.4: Budget Projector

121

T
300

1

Side View

399
319

slz&ll
lnmm

, ..

1 ""'-----350 --4
Bulb

600watta
cost:$6.00

weight: 300g

Air Vents

2 vents
weight: ·100g
cost:$0.00

Fan

50 watts
eost: $14.00
weight: 500g

airflow: 115 cfm

Cord length

length: 7.49m
cost: $12.49
weight: 400g

Top View

I

I
I
I
I

350--i

Material: steel
Chassis weight: 3.9 kg
Chassis cost: $15.41

Lens

diameter: 164mm
price: $50.05

focal length: 436mm
weight: 2689.6g

Extras

H
cart

Q)
lens cap

carrying
handle

Figure 6.5: Deluxe Projector

122

T
300

1

399

Side View

319

sizes
Jnmm

1 --350 ---1
Bulb

400walts
cost: $5.00

weight: 200g

Fan

Cl watts
cost: $0.00
weight: Og

airflow: 0 cfm

Top View

I

I

1~ 350---1

Material: steel
Chassis weight: 3.9 kg
Chassis cost: $15.41

Lens

diameter: 164mm
price: $50.05

focal length: 436mm
weight: 2689.6g

Air Vents Cord length Extras

8 vents
weight: -400g

cost: $0.00

length: 6.55m
cost: $11.55
weight: 361 g

Figure 6.6: Quiet Projector

123

carrying
handle

Q)
lens cap

T
300

l

438

Side View

351

Bulb

2000watta
COllt: $15.00

weight: 1000g

Air Vents

7 vents
weight: -350g

cost: $0.00

sizes
lnmm

Top View

I

I

1~ 350--1

Fan

45watts
cOllt: $12.00
weight: 450g

airflow: 100 cfm

Cord length

length: 6.55m
cost: $11.55
weight: 362g

Material: steel
Chassis weight: 4.6 kg
Chassis cost: $18.67

Lens

diameter: 112mm
price: $15.65

focal length: 476mm
weight: 1254g

Extras

carrying
handle

Q)
lens cap

Figure 6.7: Bright Projector

124

T
300

1

Side View

438
350

1 ... ·-----350 4
Bulb

~
I!OOwatts

cost: $7.00
weight: 400g

Air Vents

7vents
weight: -350g

cost: $0.00

Fan

25 watts
cost: $4.00

weight: 250g
airflow: 40 cfm

Cord length

length: 6.27m
cost: $11.27
weight: 351g

Top View

I

I

,... 3504

Material: aluminum
Chassis weight: 1.8 kg
Chassis cost: $12.43

Lens

diameter: 112mm
price: $15.65

focal length: 476mm
weight: 1254g

Extras

carrying
handle

())
lens cap

Figure 6.8. Portable Projector

125

T
300

1

Table 6.2 summarizes the information presented in figures 6.3-6.8.

standard budget deluxe quiet bright portable

Bulb wattage 800 200 600 400 2000 800

Fan wattage 35 none 50 none 45 25

Lens diameter 112 11 164 164 112 112

Lens local length 476 424 436 436 476 476

Cord length 6.55 1.00 7.49 6.55 6.55 6.27

Cooling vents 4 5 2 8 7 7

Carrying handle yes no yes yes yes yes

lens cap yes no yes yes yes yes

Utility cart no no yes no no . no

Chassis material steel steel steel steel steel alum.

Chassis height 438 389 399 399 438 438

Chassis width 350 350 350 350 350 350

Chassis depth 300 300 300 300 300 300

Base-to-mirror 351 311 319 319 351 350

Mirror-to-lens 175 152 159 159 175 175

Table 6.2: comparison of part and parameter selection

6.5. Evaluation

The image focus constraint is satisfied in each of the six projectors generated, indicating
that each projector should be capable of functioning. The choice of lenses is greatly
dependent upon the distance of the lens to the screen, which was fixed at five meters. To
furthet evaluate the results, it is useful to examine both the generated design parameters
(table 6.2) as well as relevant attributes which are dependent on these parameters (figures
6.9 and 6.10).

126

Temperature Concerns Sound Escaping Through Vents

Standard Standard

Budget Budget

Deluxe Deluxe

Bright Bright

Quiet Quiet

Standard

Budget

Deluxe

Bright

Quiet

Portable

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Excess Heal Generated (normalized) Escaped Sound (normalized)

Light Escaping Through Vents Energy Use

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Escaped Light (normalized)

Standard

Budget

Deluxe

Bright

Quiet

Portable

0 1 000 2000 3000
Power Consumption (In watts)

Total Cost of Components and Chassis Image Brightness

Standard

Budget

Deluxe

Brig hi

Quiet

Portable

0 50 100
Part Cost (In dollars}

Standard

Budget

Deluxe

Bright

Quiet

Portable

150 0.0 0.2 0.4 0.6 0.8 1.0 1 .2
Emitted Light {normalized)

Figura 6.9: comparison of projector attributes

127

Standard

Budget

Deluxe

Bright

Quiet

Portable

Weight of Projector

0 2000 4000 6000 11000
Total Weight (In grams)

Figure 6.10: comparison of projector weights

The following is a brief evaluation of each projector design:

stu.ndard projector. This is the least interesting projector. All
component values tend to be near the middle of the spectrum of legal
choices.

budget projector. This is a barely functional projector. It contains only
a 200 watt bulb, and the lens diameter is too small to pass much light
Such a projector would be useful only to demonstrate design principles,
say for a course project

deluxe projector. I assumed the program would generate a design with
a higher wattage bulb than the standard projector, since the cost of the
more expensive bulb would not be much of a concern. Instead, the
program designed a projector with a lower wattage bulb. It does generate a
brighter image, but it accomplishes this by selecting a larger diameter lens.
A larger lens is a more reasonable alternative because it only costs extra
money, whereas a brighter bulb generates extra heat which in tum can
cause extra noise. The deluxe projector outperforms the standard projector
in all attributes of figure 6.9 except cost, yet weights only slightly more.

quiet projector. Since noise is such an overriding concern, the program
generates a design without a cooling fan. A projector without a fan is
susceptible to overheating. The choice of a low wattage bulb, a large
diameter lens, and the maximum number of cooling vents (eight) all

128

address this concern.

bright projector. This projector contains the highest wattage bulb (2000
watts) available. The bulb combines with a reasonable diameter lens (112
mm) to genetate the brightest image. To dissipate the heat genetated by
this bulb, the largest number of air vents of any projector with a fan is
chosen (seven). The result is a noisy, power hungry machine that
generates a very bright image. It also allows the greatest amount of light to
escape through the air vents, but this may not be a problem if the bright
image is necessary because the projector is already in an illuminated
environment.

portable projector. The portable projector is quite similar to the
standard projector, with two main exceptions. First, it has an aluminum
chassis, which is lighter than the steel chassis of the other projectors.
Second, it cools by using a smaller, lighter fan and more air vents. In
essence it allows extra noise and light to escape in exchange for a reduced
weight Figure 6.10 shows that it is light, but still heavier than the budget
projector. However, it vastly outperforms the budget projector: it has a
larger lens and a brighter bulb.

Projector CPU seconds (DEC 3100)
#of #of

constraints iterations

Standard 3341.2 (55 min, 4 i .2 sec) 15 2991000

Budget 3638.3 (1 hr, 0 min, 38.3 sec) 15 3301000

Deluxe 3304.4 (55 min, 4.4 sec) 15 2961000

Bright 3249.1 (54 min, 9.1 sec) 15 2931000

Quiet 3267.4 (54 min, 27.4 sec) 15 2941000

Portable 3398.9 (56 min, 38.9 sec) 15 3041000

Table 6.3: CPU times for opaque projector problems

Table 6.3 shows the amount of time used in solving each of the opaque projector problems.
Each simulation was run until the system cooled to a temperature threshold. Variations in
run time can be attributed to the adaptive nature of the annealing schedule. The cooling rate
is dependent upon the variance of cost values for a particular temperature, which in tum is
dependent on stochastic perturbation of function parameters. Variation in run time
therefore is to be expected.

129

6.6. Summary

This chapter has documented the use of CONTEST in opaque projector design. The
notable feature of the resulting application is that it is capable of generating a range of
projectors, rather than just a single design. Such an application can be used to design an
entire product line meeting the vatying needs of consumers.

To generate a new design reflecting modified importance of certain constraints, the designer
only needs to change the weighting factors of the cost function associated with those
constraints. Design tradeoffs can therefore be easily explored.

A straight-forward design method was followed in this application: 1) specification of the
problem, 2) identification of available parts and legal parameters, 3) encoding of
constraints, and 4) evaluation of results. The resulting projector designs properly reflect
the tradeoffs specified by the constraints and weighting factors. The systematic design
method described in chapter" five was shown to be suitable for encoding the geometric
(e.g., optics), indirectly geometric (temperature concerns), and non-geometric (e.g, power
consumption) constraints of this problem.

130

Chapter 7

Site Planning Project

Site planning was chosen as a second test application area. This project was pursued with
the assistance of Ken Pittman of the NC State University School of Design, and other
members of the Research Triangle Park Project Team. The goal was to implement a system
capable of automatically generating site plans that meet typical constraints of site plan
development

Some constraints were drawn from the manual, Guidelines for Site Development,
prepared by the Research Triangle Park Project Team [RTP Team, 1987]. The remaining
constraints were common-sense constraints (e.g., buildings should not overlap) that are
obvious to humans but not computers.

The objective of the site planning problem considered here is to place buildings, parking
lots, and access roads on a predefmed tract of land so as to best satisfy a set of constraints
on their location.

The relocatable objects and their attributes are:

• buildings: A building is represented as a rectilinear solid of fixed length
and width, randomly chosen for each building. Buildings are predefined
to be either three, five, or seven stories tall. To satisfy constraints, the
building may be repositioned to any {x,y) position. The base elevation is
determined by the elevation of the terrain at that point. Any number of
buildings may be created, but the simulations in this chapter were run with
fifty buildings.

• parking lots: Parking lots also have fixed length and width (randomly

chosen) and may be repositioned to any (x,y) position. Any number of

parking lots may be created, but the simulations in this chapter were run

with three parking lots.

• access roads: Access roads connect parking lots to main roadways.

Each parking lot has an associated access road which connects it to the

nearest roadway.

In addition to these relocatable objects, a few fixed objects affect the design problem. The

fixed objects and their attributes are:

• main roadways: A road network is predefined with roads of varying
widths. The main parkways are 200 feet wide, the collector roads are 100

feet wide, and the subcollectors are 75 feet. Figure 7.1 shows the road

network created for the examples presented in this chapter.

Jo r75
75

75 I
100

200 200

Figure 7.1: road network with road widths

132

• terrain: The tract of land is defined as a square area with hills. The
elevation at each point may not be adjusted Figure 7.2 shows the height
of the terrain (lighter shades indicate higher elevations).

Figura 7.2: terrain elevation

• trees: The trees are randomly sized and positioned and are considered to
be unmovable. I.e., man-made objects should be moved to avoid cutting

trees. Any number of trees may be created, but the simulations in this
chapter were run with fifty trees.

i33

7 .1.2. Constraints

The following constraints were encoded to guide the design of site plans:

• object non-intersection: This is a common-sense constraint that

buildings should not intersect other buildings, parking lots, roads, or
trees. In addition, parking lots should not intersect other parking lots,
roads, or trees. Finally, roads should not intersect trees.

• road setlxu:ks: This constraint defmes the minimum distance between
roads and any constructed facilities (buildings or parking lots), or
alternately between any constructed roads (access roads in this

application) and trees, buildings, or parking lots.

• place buildings away from main roads: This constraint reflects the
desire to maintain a pleasant, park-like setting. One way to accomplish
this is to place buildings as far away from roads and traffic as possible.

• interbuilding spacing: Certain minimum distances should be provided
between buildings to allow walkways and maintenance access, and to

provide less obstructed views from windows than might otherwise occur.

• place buildings near parking lots: The distance employees or

visitors must walk from their car to a building should be minimized,

• place buildings on hills: Placing buildings on hills provides a

pleasing external appearance, helps to manage drainage, and helps to

prevent visibility of rooftops.

• avoid unpleasant views from buildings: To avoid unpleasant

views of nearby rooftops, neighboring buildings should be approximately
the same height. ·

134

7.1.3. Constraint conflicts

As in the opaque projector project of the previous chapter, it is impossible to completely
satisfy all constraints. For example, the goal of maximizing building distance from main
roads conflicts with the constraint that buildings cannot overlap. In addition, placing
buildings on hills conflicts with both of these constraints, since hills do not always occur
away from main roads.

7.2. Constraint implementation

This application was implemented before all constraint library routines were completed, so
the exact shaping functions described in chapter 5 were not used. However, the cost
functions used were chosen to implement the six basic constraint types. This section
documents the constraint implementation based on these types, even though explicit calls to
library routines were not used.

7.2.1. Object non-intersection· (e.g., building-building)

The goal of this constraint is to keep objects from overlapping one another. The amount of
interference can be determined by the volume of the intersection of the objects. This
constraint was first implemented by approximating all objects by polyhedra and using a
general polyhedral intersection routine. This gave a precise measure of interference, but
was also exceedingly slow. To speed up evaluation, the general polyhedral intersection test
was replaced by a bounding box intersection test, which has performed satisfactorily with a
much lower computational expense.

constraint: minimize volume of intersection
parameter: volume of intersection of objects' bounding boxes
function: lower bounded minimize, bounded by zero

135

7.2.2. Road setbacks

The manual on site plan development states that building setbacks for the most common
road widths should be observed as follows:

Ri~t=of-way width

300feet
200feet
150feet
120feet
< 120feet

Minimum Setback ReQYired
175feet
150 feet
lOOfeet
100 feet
lOOfeet

To implement this constraint, the width of each road is examined and the appropriate
minimum setback is selected A greater than constraint using that distance is then
evaluated.

constraint: object distance greater than required setback distance
parameter: distance between road and object
function: greater than

7.2.3. Place buildings away from roads

The manual for site plan development states that one of the objectives is "the continuation
of a park-like character". A park-like character can be maintained by placing buildings
away from main roads.

constraint: maximize distance between building and nearest road
parameter: distance from building to nearest road
function: lower bounded maximize, bounded by zero

136

7.2.4. lnterbuilding spacing

Rather than implement a separate constraint for interbuilding spacing, the building non­
intersection constraint was generalized to include spacing. The bounding box used for
interference computations is extended on each side by an amount equal to half of the
desired spacing. The volume of the intersection of two bounding boxes is zero only if they
do not intersect and the objects meet the required interbuilding spacing.

constraint: minimize volume of intersection
parameter: volume of intersection of objects' extended bounding boxes
function: lower bounded minimize, bounded by zero

7.2.5. Place buildings near parking lots

This constraint is implemented by minimizing the distance of each building to the nearest
parking lot.

constraint: minimize distance to parking lot
parameter: distance from building to nearest parking lot
function: lower bounded minimize, bounded by zero

7.2.6. Place buildings on hills

The manual for site plan development states, "The location of buildings on most tracts can
occur on either: 1) flat sites on ridgetops or 2) sloping sites off ridges and adjacent to
natural drainageways." Since no identification is made of natural drainageways in this
application, the constraint is approximated by maximizing the elevation of the base of each
building.

constraint: maximize building elevation
parameter: building elevation (measured at base)
function: lower bounded maximize, bounded by lowest terrain elevation

137

7.2.7. Avoid unpleasant views from buildings

The manual for site plan development states that flat rooftops may not be overlooked by
other buildings" This can occur when a tall building is adjacent to a short building" This
constraint attempts to enforce this guideline by minimizing the height difference of
neighboring buildings" Two buildings are considered to be in the same neighborhood if
they are within 2000 feet of one another (terrain is 10000 by 10000).

constraint: minimize height difference of neighboring buildings
parameur: magnitude of difference in height ofroojline of neighboring buildings
function: lower bounded minimize, bounded lJy zero

7.2.8. Discussion of cost function weighting factors

In the opaque projector application of chapter 6, cost function weights played a crucial role
in creating individual products within a product line" In this application, the goal was to
generate a single site plan rather than multiple site plans" Constraint weights therefore are
not emphasized in this chapter, although they remain important and provide utility. For
example, a fundamental conflict occurs between the goal of placing buildings away from
roads, and placing buildings on hills" The goal of placing buildings away from roads is
largely an aesthetic constraint, while the goal of placing buildings on hills has a more
practical basis involving issues such as storm water management" By changing the
weightings of these two constraints, the balance between aesthetic and practical issues can
be exploredo

7.3. Results

This section presents the results of a site planning problem involving fifty buildings and
fifty trees. Intermediate results are presented as new constraints refine the problem While
these intermediate results might not be of interest to a site planner, they are presented here
to demonstrate the effect of adding each constraint.

Although the results are presented incrementally, the !\Qlution technique is not incremental"
Each new version of the problem was solved independently.

138

~ ~

~'

~

-

e

Figure 7.3 shows the solution to the problem with only road setback and building non­

intersection constraints. All constraints can be (and are) satisfied in this problem.

D D D D D D
D D

D D D
Do D D

Do
0

ODD D
0
D

D DoD
D

D D D D D 0 D
D D

D
D D 0

D

D 0 D Doo D

Figura 7.3a: road setbacks and building non-Intersection constraints

139

Figura 7.3b: road setbacks and building non-Intersection constraints

140

'
,~

Figure 7.4 shows the resulting of adding a constraint to maximize the distance of each
building from the main roads. This results in a packing problem.

I
I

-
- - =-

.1 ~ r
'--

r--r-

-
,... .-- r-

-
d=

...... L-

Ul
..__

Figure i'.4a: add maximization of road/building distance

141

Figure 7.4b: add maximization of road/building distance

142

Figure 7.5 shows the result of including interbuilding spacing, since no actual site plan
would have buildings as close together as in figure 7 .4.

DO

Figura 7.5a: add lnterbulldlng spacing

143

Figure 7.5b: add lnterbulldlng spacing

144

Figure 7.6 adds parking lots to the problem. These parking lots act like buildings: there is
no constraint yet added to minimize the distance to each parking lot

0 D D

Figure 7.6a: add parking lois

145

Figure 7.6b: add parking lots

146

,

Figure 7. 7 adds a constraint to minimize the distance from buildings to parking lots. The
distribution of one parking lot to each cluster occurs automatically.

DO

··~--------,------------r .. ,
·o~D
D...- oD

, I JDD
DoDooo

D

D~D- [
oD 0

D

Figure 7.7a: minimize parking lot/building distance

147

Figure 7.7b: minimize parking lot/building distance

148

Figure 7.8 adds a constraint to place buildings on hilltops. This pulls some buildings back

toward roads in order to place them on hills.

D
D

D DODD
oooo 0

D 0

Figura 7.8a: place buildings on hilltops

149

Figure 7.8b: place buildings on hilltops

150

;.~_

Figure 7.9 adds trees to the problem. The position of the trees are fixed, so the buildings

must be positioned to avoid the trees.

·:·:·

D
::::·

D D ====

:;:;. D DO ::::0

=·=·oo====·.·. ·.·.·

.·:·. ·.·

D DOD
::::: D =:=t·B D D
ooo D

·.·•· ·:·:

DDo
o===:·D
D .·. 0

=·=·e:ro
Do 0 :::; .::::·

·=·=·

Do oDo
DDoo D

o o :===· .·.·

.·:· . . ·.·
::::·

.·. :·:··

.·:·.·.· ·.·.·.·

Figure 7.9a: add ln>es as obstacles

151

Figure 7.9b: add trees as obstacles

152

· .•

Figure 7.10 temporarily removes the trees and shows the result of adding a constraint to
make rooflines of adjacent buildings be the same height.

·~---------r---------;
·.

}.

Figure 7.10a: match roof heights locally

153

Figure 7.10b: match roof heights locally

i54

Figure 7.11 again adds trees to show the final result of including all constraints and

obstacles.

oo 0 :::::
00Doo

·:·:·

D
Do

DO

D====o· D ========·

.·.• .·.·

::::

00°
0=:=:· D D

0::::· ::::
==== D ::::.

Dooooo =====

Do
oo ·=======

D

.·.· . . ·.·
::::-

Figure 7.11a: final site plan

155

Figure 7.11b: final site plan

156

7.4. Statistics

This section presents statistics about the constraints and run times for the site planning
problems described above.

Although section 7.2 described only seven main constraints, many instances of each of
these constraints are used to compose a problem definition. Table 7.1 details the number of
instances of each constraint that were used in the examples above. These are dependent on
the parameters used in this application: fifty buildings, fifty trees, and three parking lots.

Constraint #of pairwise
this type tests

Building/building non-intersection 1225 1225
Building/main road setbacks 50 250
Building/access road setbacks 150 150
Maximize distance: building/nearest road 50 250

.·• Building/tree non-intersection 2500 2500
··.· Building/parking lot non-intersection 150 150
•··· Place buildings on hills 50 50 .

Parking lot/parking lot non-intersection 3 3
.•. Maximize distance: parking lots/nearest road 3 3
C Parking lot/main road setbacks 3 15

Parking lot/access road setbacks 6 6
Parking lot/tree non-intersection 150 150
Access road/tree setbacks 150 150
Equalize building height in neighborhood 1 1225
Place parking lots near buildings 1 150
Total 4492 6277

Table 7.1: constraint statistics for site planning application

The first column of table 7.1 shows the type of constraint. The second column shows the
number of instances of constraint, as determined by explicit cost function calls within the
application. Some of the constraints were implemented as composite constraints, however.
For instance, the constraint to place buildings near parking lots was implemented as a
special purpose constraint and therefore was counted only once in column two. Each
evaluation of that constraint requires the evaluation of the distance between each parking lot

157

and each building, a total of 150 pairwise comparisons. Furthermore, the main roads are
represented internally as a single road network, and so each setback constraint requires
only one call even though there-ere five main road segments.

The third column shows the total number of pairwise constraints for each of the main
constraints. This provides a more accurate figure of the number low-level constraints being
considered. Even with the expanded constraint count, however, non-intersection
constraints comprise over half of the total count.

Problem CPU seconds (DEC 3100) #of #of

constraints iterations

Figure 7.3 235.1 (2 min, 55.1 sec) 1275 6800
Figure 7.4 5151.7 (1 hr, 25 min, 51.7 sec) 1325 150000

Figure 7.5 5035.0 (1 hr, 23 min, 55.0 sec) 1325 150000
Figure 7.6 6302.1 (1 hr, 45 min, 2.1 sec) 1640 150000
Figure 7.7 6765.9 (1 hr, 52 min, 45.9 sec) 1641 150000

Figure 7.8 6712.4 (1 hr, 51 min, 52.4 sec) 1691 150000

Figure 7.9 11374.6 (3 hr, 9 min, 34.6 sec) 4491 150500

Figure 7.10 19621.0 (5 hr, 27 min, 1 .0 sec) 1692 250400
Figure 7.11 78463.6 (21 hr, 47 min, 43.6 sec) 4492 724000

Tabla 7.2: CPU times for alta planning problems

Table 7.2 shows the amount of time used in solving each of the site plan problems. The
time is related of the number of constraints, complexity of constraints, number of iterations
evaluated, and the actual configurations evaluated. The program was set to terminate upon
reaching a particular temperature or a fixed number of iterations.

The results indicate that the solution method is not suitable for interactive use on this
particular platform. If we assume a five-hour run time for a typical site planning problem
using this implementation, a thousand-fold increase in processor speed is necessary to
reduce run time to a figure that might allow interactive use (eighteen seconds).

On the other hand, a five-hour run time is not much of an investment when one considers
the costs and time typically involved in designing a site plan.

158

7 .5. Evaluation

In general, the solutions presented above are non-optimal but are close to optimal. The
following is a brief evaluation of figures 7.3 through 7.11:

Figure 7.3: All constraints are satisfied in this problem, so it is an
optimal solution.

Figure 7.4: An optimal result would probably have the buildings packed
together with smaller gaps. The packing is dense, however, in that gaps
tend to be much smaller than buildings.

Figure 7.5: The interbuilding spacing resulted in two buildings being
separated in the lower left portion of the terrain. With an optimal packing,
it may have been possible to place these buildings further from the road (as
part of the two main clusters).

Figure 7.6: The addition of parking lots has little effect on the layout of
buildings. Parking lots are placed near the outside of the cluster to avoid
interference involving setback constraints on the access roads.

Figure 7.7: The requirement of having buildings near parking lots
forces clusters near each of the three parking lots. Buildings tend to

surround parking lots, as one would expect. The cluster in the lower left
portion of the terrain appears non-optimal, though relocation of a single
building would correct that.

Figure 7.8: The results again appear to be reasonable. Buildings are
placed on hilltops, yet still maintain proximity to parking lots.

Figure 7.9: There are no surprises here. The buildings are placed so as
to avoid the trees. The results are quite similar to figure 7.8 with the
exception of tree avoidance.

Figure 7.10: The goal to match building heights results in the building
in the lower right portion of the terrain being placed far away from a
parking lot. This is clearly a non-optimal position (though it is locally
optimal). All other buildings appear to be reasonably placed.

159

Figure 7"11: The final solution reflects the influences of all constraints
and has no obvious errors. All forms of non-intersection constraints are
satisfied. Goal constraints, such as placement of buildings on hills and
away from roads, are clearly reflected in the solution.

It would be interesting to compare these generated results with optimal solutions.
Unfortunately, there is no simple way of generating optimal solutions for comparison. The .
alternative is to examine the results for compatibility with the specified constraints. This
section has performed such an evaluation and has in general found the solutions to conform
to the desired constraints.

7.6. Convergence to final solution

Figures 7.12 through 7.15 show the convergence of the final site plan depicted by figure
7 .11. The progression shows the configuration at each of the following number of
iterations:

• 0 iterations
• 88,800 iterations
• 184,800 iterations
• 280,800 iterations
• 37 6,800 iterations
• 472,800 iterations
• 568,800 iterations
• 724,000 iterations

At high temperatures (figure 7.12), the configurations violate many constraints and no
structure is readily noticeable. As the system begins to cool (figure 7.13), the general
distribution of parking lots to clusters becomes noticeable, though buildings still appear
randomly distributed. Upon further cooling (figure 7.14), the organization of buildings
into clusters becomes apparent, though a few stray buildings remain far from any parking
lot. In the fmal stages of cooling (figure 7.15), the buildings settle into a packed
configuration"

160

cr .. •.

DO •

0 ,,,
• ,c'~·----1

~==

Cl

" ...
• o

0

D

Cl

... - - 1111!11 11111111

~ Cl
,, 0 0

Cl 0 " :;!;· • .. • 0 0 "' 0
"D X DO 0 " ~

D
::S!;l;. 0 Cl

0 ,. .. "
0 .. o 0,. "' oo b 0

D • 0 ~
0 .. =~~

·~ 0
" ... 0 o ...

0 0 :::cO ~::.

0*0 • ·~ D '"0
D ,. ~ EJo D .. HR -~ ..

*

Figure 7.12: site plans at high temperature

161

._ - ... IIIII 11111111

~~
~ 0
D., * [J':I

1J
,.

'"0 ~

D ~

$:! z D 0 " ~

0 0
::$:;» 0

<=· "
.. D 0 Do ~ 0 ~ 0

~

" ~~ ¥-:
~ 0 0 :: :;::

$

"' Do :~. D 0 0
" ~-~'*' 0 D

o.,_,
D D D 0 :~ =:::· 0

~
~. ~

" 0 0 D D
0

D ~ ~:) ~ '·
::!:-

.•.•

11111111 11!111! 111!1111 1111111 IIIIIIIJ

ii

"
cP

6
D-o 0 ,,.

0
~·

" X·
~

•
Do
0

" <> 0 1J 0
D

D •

D
::::

~
,.

;:::

'" D

0
D

0 'b

·;i;-_.,,
»

0

Figure 7.13: site plans as system begins to cool

162

·=~·

liD - ... 1111 IIIII

0<­
o,poo." o

''''oD
0 0 '•·
D '\

0

~ ;;•·---~

f::·
-~

::¥

D .,."'

liD - ... 1111 IIIII

''o

.. ,

ooo:

~ ;'"---~

0 oo
o., oo o .

D~oo£1~ '"
Do

0 0 .,,
,,, D ~-

Figure 7.14: site plans after further cooling

163

... - ._ IIIII 1111

:$-

DO

... - ... 1111 1111

0 '*0 ,,, 0 .l·

: ~-

:$:·

-~·.
-~ .. , DO

C08Pl983l595.20S t...,.~.280 r.,....0.018 Jt...~ot.lon.•72~

Figura 7.15: site plans at final stages of cooling

164

7.7. Summary

This chapter has documented the use of CONTEST in site planning. Unlike the opaque
projector application, which was created to generate a family of designs, the site planning
application was oriented toward the design of a single site plan.

In the opaque ptojector project, the part inventory was fixed and the variables were the
consumers preferences, reflected by constraint weightings. In site planning, constraints

tend to remain constant, while the variables are the size, number, and shape of the relevant

objects: terrain, roads, buildings, trees, and parking lots.

A constructive approach was used to reach the final solution. This approach was useful in
designing and presenting the constraints, because the effect of each constraint was
apparent. A site planner, however, would probably be interested in only the final solution,

assuming that the solution was satisfactory.

A straight-forward design method was followed in this application: 1) specification of the
problem, 2) identification of objects and their parameters, 3) encoding of constraints, and
4) evaluation of results. The resulting site plan ptoperly reflects the tradeoffs specified by

the constraints.

A wide variety of constraints were encoded as cost functions in this application. The
diversity of the constraints in both this application and the opaque projector application

demonstrates the versatility of the cost function approach.

165

Chapter 8

Discussion

This chapter compares CONTEST with several other systems that are representative of
particular constraint satisfaction techniques. This comparison is then used as an
introduction to the contributions of this research. Finally, the implementation of
CONTEST is described.

8.1. Comparisons with other systems

The systems compared are Boming's ThingLab [Boming, 1979], VanWyk's Ideal [Van
Wyk, 1990], Briiderlin's constraint system [Briiderlin, 1986], Brown's expert system
[Brown, 1986], Barzel and Ban's physically-based modeling system [Barzel, 1988], and
CONTEST. These systems were chosen for comparison because they each use a different
solution method for solving modeling problems.

These systems are analyzed based on the following criteria: 1) solution method, 2) whether
the system is capable of satisfying constraints globally or only locally, 3) restrictions on
constraint complexity, 4) restrictions on type of constraint, 5) user interaction method, and
6) accuracy of results.

8.1.1. Thinglab

· Thingl,ab uses multiple solvers: propagation of known states or degrees of freedom where
possible, and relaxation to solve remaining constraints (see figure 8.1). Relaxation fmds
only locally optimal solutions. Constraints in ThingLab may be arbitrarily complex, but if
relaxation is necessary the constraints are approximated by linear equations. ThingLab can
handle non-geometric constraints in addition to geometric constraints. ThingLab is an
interactive Smalltalk based environment, and produces accurate, repeatable results.

8.1.2. Ideal

Ideal uses a single constraint solver capable of solving only linear constraints (see figure
8,2), It finds exact, global solutions to properly formulated problems, It is designed for
dealing with geometric constraints, Ideal is not interactive; the user creates a data file
describing a picture and then presents this input to Ideal for processing,

8.1.3. Bruderlin's system

Briiderlin's system uses a fixed set of geometric constraints, and cannot be easily extended
to incorporate new basic constraints. The system runs as an interactive Macintosh
application. The user interacts with the system by selecting constraints from a menu and
providing the parameters to those constraints. The constraints are represented as Prolog
predicates, which are reduced symbolically to a numerically solvable form (see figure 8,3),
The system finds exact, globally optimal solutions to properly formulated problems,

8.1.4. Brown's system

Brown's expen system approach uses a hierarchy of cooperating agents to produce
globally optimal designs. Each low-level agent solves local tasks, while the higher-level
specialists direct these local agents to yield a global solution (see figure 8.4), The agents
model human problem solving procedures, so as long as the appropriate solution
knowledge is encoded in the expen system, constraints may be arbitrarily complex.
Constraints can geometric or non-geometric. The user creates a design by describing the
constraint problem in DSPL, a USP-like language. The success and accuracy of the
results is dependent upon the quality of the knowledge base.

8.1.5. Barzel and Barr's system

Barzel and Barr's system works by converting geometric constraints into forces which in
turn move objects to solve constraints (see figure 8.5). The constraint forces provide local
convergence to a solution. This system suppons constraints which are evaluated in terms
of positions and orientations of geometric objects. The user specifies a problem by
entering constraint definition commands in a USP environment

8.1.6. CONTEST

CONTEST represents constraints as cost functions which are then optimized (see figure
8.6). The optimization technique searches for a global optimum, though there exists no

167

guarantee that the optimum will be found. Constraints may be arbitrarily complex; the only
requirement is that the cost function for each constraint be capable of expressing the quality
of each configuration as a single scalar value. Constraints can deal with geometric or non­
geometric properties. The user specifies a design by writing a C++ program and using
custom constraints or constraints drawn from a library.

Berning's Thinglab

problem specification

constraint selection: user selects constraint
objects from library and/or builds new constraint
objects

selection method: user builds application program
(SmaiHalk environment)

constraints encoded as
Smalltalk objects with methods

solver 1:
propagation of
known states

constraint
planner

solver 2:
propagation of

degrees of
freedom

solution

Figure 8.1: structure of Th lnglab

168

solver 3:
relaxation

Van Wyk's Ideal

problem specification

constraint selection: user defines linear equations
specifying relationships of objects in drawing

selection method: specification in custom
constraint language

'
constraints encoded as
linear equations

linear equation
solver

solution

figure 8.2: structure of Ideal

169

Briiderlin's System

problem specification

'
cxmstraint selection: user selects constraint
objects from library using program menus

selection method: user runs application program
(Macintosh application)

constraints encoded as
Prolog predicates

symbolic
constraint solver

simplified predicates

numeric
constraint solver

solution

Figure 8.3: structure of Brlldarlln's system

170

Brown's System

problem specification

constraint selection: user selects constraint
objects from library and/or builds new constraint
objects

selection method: program in custom language
{DSPL, implemented in LISP)

constraints encoded as DSPL
objects with methods

design ~ ' / design

agent agent

design
manager

design v ~ design
agent agent

solution

'

Figure 8.4: structure of Brown's system

171

Barzei&Barr's System

problem specification

'
constraint selection: user selects constraint objects
from library and/or builds new constraint objects

selection method: user builds application program
(LISP environment)

constraints encoded as
constraint-force equations

linear equation
solver

forces

iterative
animation I
evaluation

solution

'
Figure 8.5: structure of Barzei&Barr's system

172

CONTEST

problem specification

constraint selection: user selects cost functions
from library and/or builds new cost functions

selection method: user builds application program
(C++ program)

constraints encoded as
cost functions

annealing
engine

'

solution

Figure 8.6: structure of CONTEST

173

8.2. Contributions

This section documents the contributions of this research. First, specific contributions are
identified. Next, the advancement of the state-of-the-art by CON1EST is presented.

8.2.1. Specific contributions

This is not a dissertation about simulated annealing. Simulated annealing is used as a
solution method and no new research in simulated annealing was necessary to apply the
technique to constraint-based design.

Moreover, the contribution of this research is not the recognition that simulated annealing
can be used to solve constraint problems. This was known prior to the start of this work.

The contribution of this research is the development of a methodology for converting
general constraint -based design problems to scalar cost functions which can be optimized
cby simulated annealing. This dissertation has identified the various categories of
constraints and described a method for converting these constraints into cost functions.

Three main contributions involve quantification of objective constraints. The first
contribution is an identification of the most commonly used types of constraints. Most
constraints can be expressed as a minimize, maximize, less than, greater than, not
equal to, or equal to constraint. The second contribution was the derivation or
identification of functions capable of representing the costs of these constraints. Several
alternative function representations were presented, and three of these were implemented:

the representations based onf(x) = e-nxb andf(x) = ll(nxb+l), as well as the arc tangent
form for unbounded minimization and maximization. The third contribution was the
development of a conversion from convenient user-specified slope and value parameters
to the non-intuitive n and b parameters of these functions.

Moreover, the following categorization of constraints was identified as being useful for
characterizing the cost function development procedure:

• objective constraints
• subjective constraints
• search constraints

The techniques developed for subjective and search constraints involve reducing and
converting them to easily evaluated objective constraints. Thus the techniques for

174

quantification of objective constraints also apply indirectly to all types of constraints.

The theory and development of these methods would be meaningless if they could not be
used to solve real constraint problems. The validity of the theory was demonstrated by
successful application of the methodology to two problems.

8.2.2. Advancement of the state-of-the-art

CONTEST differs from previous modeling systems by providing near-globally optimal
results to complex, composite constraint problems, without requiring that someone supply
problem solving heuristics.

The use of simulated annealing to solve design problems is not new; many VLSI systems
use annealing to minimize chip area or wire length. The difference between previous
systems and CONTEST is that in previous problems the objective function was well
defined (e.g., minimize chip area). In CONTEST, the objective function is not well
defmed, and a primary contribution is the methodology for creating a composite cost
function reflecting diverse constraints.

Among the systems described above, only the expert systems approach is capable of
providing global constraint solutions to arbitrarily complex constraints. The difference
between the expen systems approach and the cost function approach is that the expen
systems approach simulates human problem solving and therefore requires an
understanding of how to solve constraint problems. The cost function approach only
requires that one be able to evaluate a constraint; the solution method is automatic.

CONTEST removes one or more of the following limitations on the power of previous
modeling systems:

• limitations in constraint complexity (e.g., only linear or quadratic equations)
•limitations in constraint type (e.g., only geometric constraints)
• the need for human problem solving knowledge (e.g., expen systems)
• limitations in ability of the constraint solver to handle new constraints without

changes to the constraint solver

175

8.3. Implementation

CONTEST is implemented in C++, and contains class definitions for both geometric
objects and constraints. Constraint (cost function) objects request relevant information
from geometric objects to evaluate constraints.

The annealing engine operates on two container classes: a geometry list and a constraint
list. The geometry list is instructed to perturb or unperturb itself, while the constraint list is
instructed to return the cost of the current geometry list

Methods for
geometric
objects:

• return position

• return volume

• return distance
to another object

• return bounding
box

• etc.

geometric
object

geometric
object

geometric
object

geometry
list

perturb/
unperturb

Methods for
constraint
objects:

• lnitianze:
set objects,
parameters

• return cost

constraint
list

evaluate and
return cost

annealing engine

Figure 8.7: Implementation of CONTEST

176

The main program creates geometric objects and places them in the geometry list, and
creates constraints and places them in the constraint list. It then passes the constraint list
and geometry list to the annealing engine. After the annealing engine has completed,
control returns to the main program. The main program then tells the geometry list to dump
its geometric description. Additional information on the implementation is available in
[Grant, 1986] and [Grant, 1987].

8.4. Summary

This chapter has compared CON'IEST with several other systems that are representative of
particular constraint satisfaction techniques: ThingLab, Ideal, and systems by Briiderlin,
Barzel and Barr, and Brown. ThingLab was chosen to represent systems using multiple
constraint solvers. Ideal was chosen to represent systems using equation solving.
Briiderlin's system was chosen as an example of a system restricted by a fixed selection of
constraints. Barzel and Barr's system was chosen to represent physically-based modeling
systems. Brown's system was chosen as representative of expert systems. Each of these
systemg is limited in some way that CON'IEST is not similarly limited. As with most
advantages there are disadvantages: CON'IEST takes much longer to find a solution than
any of the described systems. Nevertheless, CON'IEST represents an advancement of the
state-of-the-art by providing capabilities not otherwise available.

This chapter has also identified the contribution of this research. The main contribution is a
methodology for quantifying constraints. Specific techniques for quantifying objective
constraints are combined with methods for converting subjective and search constraints to
objective constraints to yield a generally applicable method for all constraints. The opaque
projector and site planning problems demonstrated that the methodology may be
successfully applied to real problems.

Finally the implementation of CON'IEST was described. CONTEST is implemented in
C++, and uses class defmitions for geometric objects and constraints. The application of
an object-oriented methodology has helped to manage the complexity of the software
portion of the system.

Chapter 9

Conclusions I Future work I Summary

Previous chapters documented the development of a system for constraint-based modeling.
The system was applied to two problems, and the results were presented. Finally, the
system was compared with other modeling systems to identify the contributions of this
research.

This final chapter presents some fmal conclusions about this work, discusses directions for
future work, and summarizes the dissertation.

9.1. Conclusions

Design is an exploration process, even with automated constraint satisfaction tools. It is
easy to think of the constraint-based modeling process as two simple steps: 1) the designer
specifies the problem, and 2) the computer finds the solution. Unfortunately, it is not that
simple. Very rarely does a designer begin the design process with a complete
understanding of the problem to be solved. Design involves examining tradeoffs so as to

better understand the problem A more accurate model of design consists of four steps: 1)
problem definition, 2) the computer finds a solution, 3) the designer evaluates the solution,
4) the designer modifies the problem and returns to step two.

It is important to recognize this design process in light of the run times required for the
applications in chapters six and seven. A five hour turnaround for the design of a site plan
is not extensive if only one design is required. However, if the designer needs to iterate
toward a final design, he had better be very patient, as a one day task easily can expand to
several weeks. I would recommend this solution method for applications that generate
multiple designs and have a long lifetime after being created, but not for one-time design,
unless a very precise problem specification is given beforehand.

One can reduce the time budget for a particular problem to get faster turnaround at the

expense of the quality of the solution. While developing the opaque projector application, I
was able to get reasonable results with only a ten minute run time. The results were non­
optimal, but I could usually evaluate the results of the particular constraint or constraints I
was trying to tune or implement. On the other hand, while developing the site planning
project, there were times when I thought my cost functions were inaccurate when in fact the
only problem was that I was not allocating enough time to yield near-optimal results. Once
again, patience is required.

Despite the frustration of having to wait for these turnaround times, I actually consider
these results quite encouraging. These were complex design problems that could not be
quickly solved by a human. I did not have to use a supercomputer to get results. I look to
the evolution of ray tracing for encouragement. Early implementations required hours per
frame, but increased computer speed, parallelism, and algorithmic improvements have all
made its use commonplace for rendering complex scenes. Cost-function-based modeling
shares the same philosophy of power and generality at the expense of run time.

9.2. Future work

Since the computational expense of simulated annealing is a limiting factor in the
. applicability of this solution method, alternatives to the current implementation should be
considered. Two possible approaches are: 1) maintain the problem representation but
concentrate on reducing computation time, and 2) use a more efficient problem
representation.

Methods for the first approach are more obvious. Many possible speedups exist for
evaluating cost functions. Library calls to mathematical functions can be replaced by table
lookup, since the cost function itself is already an approximation. Language support by
C++ for inline functions can be used extensively to reduce the overhead of function calls.
Computations performed during one iteration can be saved and reused whenever possible.
Finally, much of the annealing procedure can be parallelized to take advantage of multiple
workstations or a parallel machine architecture.

While most of these approaches are just implementation details, the parallelization of
simulated annealing is a worthwhile research topic. Nevertheless, my research interests lie
in the search for a more efficient problem representation rather than in methods of speeding
up the current method.

The fundamental limitation of the current problem representation is that it leads to
tremendously large search spaces. All possible configurations are considered as potential
solutions, rather than only feasible solutions. For instance, the site planning application

179

considers many site plans that would not be reasonable for any actual problem instance:
plans with buildings intersecting one another, plans with trees growing through walls, and
plans with buildings and trees in roadways. A more efficient approach is to search for the
best configuration from the smaller set of legal configurations. One way to define this
smaller set of legal configurations is by using shape grammars.

9.2.1. Shape grammars

Shape grammars can be used to describe legal designs. A simple shape grammar for
campus layouts ruight have rules such as:

<campus layout> ~<dormitories> <academic buildings>

or ~<dormitories> <academic buildings> <stores>

<.dormitories> ~<rectangular dormitory cluster> or <high rise dormitory>

<rectangular dormitory cluster> ~<central courtyard design>

or ~ <packed building design>

_ Eventually these reduce to specific geometric objects through a rule such as:

<dormitory row> ~<building> <.building> <building> <building>

Architects have used shape grammars to describe styles of design. Koning and Eizenberg,
for example, defined a grammar to characterize the style of Frank Lloyd Wright's prairie
houses [Koning, 1981]. Mitchell [Mitchell, 1990] provides examples of several simple
grammars and the designs that can be enumerated by each grammar.

While the enumeration of all shapes is interesting, it is not particularly useful. The real
power of the shape grammar approach will be realized by using constraints to select the
best shape from these legal shapes. In other words, it is much more useful to select the
best campus layout based on the terrain, local building codes, and the needs of the
university, rather than simply generating ruillions of potential site plans: The following
section discusses how this may be implemented.

9.2.2. Combining grammars and cost functions

The cost function methodology presented in this dissertation is not tied to simulated
annealing. Cost functions may just as easily be used to evaluate shapes generated by a
grammar.

180

If the grammar generates a small set of shapes, then the cost function can exhaustively test
each shape and select the optimal design. Unfortunately, even simple grammars can still
generate more shapes than may be feasibly tested In this situation, one must search the set
of potential solutions, just as simulated annealing searches the larger set of all solutions.

A grammar describes a tree structme, where internal nodes represent partially expanded
designs, and leaf nodes represent possible solutions. The branches exiting a node
correspond to the productions that may be applied at that node. Viewed as such, this
reduces the problem to a tree search. The goal is to find the optimal solution without
exploring too many paths. Initially, I plan to tty standard techniques such as branch-and­
bound to search the tree. If standard techniques are unsatisfactory, I will explore special­
purpose search methods.

The combination of shape grammars and cost function evaluation is potentially very
powerful. Merging the two techniques can lead to a system capable of producing results
equal to (and perhaps better than) the results presented in this dissertation, but at a fraction
of the computational expense.

9.3. Summary

Constraint-based modeling problems may be expressed as scalar cost functions. To fmd
the optimal solution to a modeling problem, one minimizes the value of a composite cost
function representing all constraints. This research has focused on the problem of
encoding and combining diverse classes of constraints into a single cost function.

181

References

Aarts, Emile, and Jan Korst (1989), "Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing", Wiley,

New York.

Aarts, E.H.L., and P.J.M. Van Laarhoven (1985), "A new polynomial time cooling
schedule", In Proceedings of IEEE International Cor(erence on Computer-Aided
Design (pp. 206-208).

Ackley, David H. (1987), "Stochastic iterated genetic hillclimbing", Ph.D. Dissertation,

Carnegie Mellon University.

Amburn, Elton P. (1991), "Using Symbolic Reasoning to Provide Progressive Truth in

Geometric Modeling ~ystems", unpublished dissertation proposal draft, University
of North Carolina at Chapel Hill.

Amburn, Phil, Eric Grant, and Turner Whitted (1986), "Managing Geometric Complexity

with Enhanced Procedural Models", Computer Graphics, VoL 20, No. 4, 189-195.

,Barr, Alan H. (1986), "Dynamic Constraints for Modeling", In State of the Art in Image
Synthesis Tutorial Notes, SIGGRAPH '86, Dallas, Texas, ACM SIGGRAPH.

Barzel, Ronen, and Alan H. Barr (1988), "A Modeling System Based on Dynamic

Constraints", Computer Graphics, Vol. 22, No.4, 179-188.

Boming, Alan (1979), "ThingLab: A Constraint-Oriented Simulation Laboratory", Ph.D.

Dissertation, Stanford University.

Borning, A. (1985), "Defining Constraints Graphically" (Technical Report No. 85-09-06),

University of Washington, Department of Computer Science, September, 1985.

Braid, I.C. (1985), "The Configurable Product Modeller", In Proceedings of
Eurographics '85 (pp. 143-144).

Brown, D.C. (1985), "Capturing Mechanical Design Knowledge" (Technical Report), The

Ohio State University, Laboratory for Artificial Intelligence Research, August 1985.

182

Brown, David C., and B. Chandrasekaran (1986}, "Knowledge and Control for a

Mechanical Design Expert System", Computer, Vol. 19, No.7, 92-100.

Briiderlin, Beat (1986), "Constructing Three-Dimensional Geometric Objects Defined By

Constraints", In 1986 Workslwp on interactive 3D Graphics, Chapel Hill, North
Carolina, ACM SIGGRAPH.

Briiderlin, Beat D. (1988), "Rule-Based Geometric Modeling", Ph.D. Dissertation, Swiss
Federal Institute of Technology (ETH) ZUrich.

Cinar, U. (1975), ''Facilities Planning: A Systems Analysis and Space Allocation
Approach", In C.M. Eastman (Ed.), Spatial Synthesis in Computer-Aided Building
Design, Wiley, New York.

Coyne, R.D., M.A. Rosenman, A.D. Radford, M. Balachandran, and J.S. Gero (1990),

"Knowledge-~ased Design Systems", Addison-Wesley, Reading, Mass.

Cross, Nigel (1977), "The Automated Architect", Pion, London.

Derman, E., and C.J. VanWyk (1984), "A Simple Equation Solver and Its Application to
Financial Modeling", Software- Practice and Experience, Vol. 14, No. 12, 1169-

1181.

Duisberg, Robert A. (1986), "Constraint-Based Animation: Temporal Constraints in the

Animus System", Ph.D. Dissertation, University of Washington.

Eastman, Charles M. (Ed.) (1975), "Spatial Synthesis in Computer-Aided Building

Design", Wiley, New York.

Ervin, Stephen M (1990), "Designing with Diagrams: A Role for Computing in Design

Education and Exploration", In Malcolm McCullough, William J. Mitchell, and

Patrick Purcell (Eds.), The Electronic Design Studio: Architectural Knowledge and
Media in the Computer Era, MIT Press, Cambridge, Mass.

Flemming, Ulrich (1990), "Syntactic Structures in Architecture: Teaching Composition
with Computer Assistance", In Malcolm McCullough,William J. Mitchell, and

Patrick Purcell (Eds.), The Electronic Design Studio: Architectural Knowledge and
Media in the Computer Era, MIT Press, Cambridge, Mass.

183

Franklin, Wm. Randolph, Peter Y.F. Wu, Sumitro Samaddar, and Margaret Nichols
(1986), "Prolog and Geometry Projects", IEEE Computer Graphics and
Applications, Vol. 6, No. 11, 46-55.

Geman, S., and D. Geman (1984), "Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images", IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-6, 721-741.

Gero, JohnS. (Ed.) (1985), "Design Optimization", Academic Press, Orlando.

Gidas, B. (1985), "Nonstationary Markov Chains and Convergence of the Annealing
Algorithm",Journal of Statistical Physics, Vol. 39,73-131.

Gosling, James (1983), "Algebraic Constraints", Ph.D. Dissertation, Carnegie Mellon
University.

Grant, Eric (1987), "Class Design for a Modeling Testbed", In Object-Oriented Geometric
Modeling and Rendering Tutorial Notes, SIGGRAPH '87, Anaheim, ACM
SIGGRAPH.

Grant, Eric, Phil Amburn, and Turner Whitted (1986), "Exploiting Classes in Modeling
and Display Software", IEEE Computer Graphics and Applications, Vol. 6, No.
11, 13-20.

Gross, Mark, Stephen Ervin, James Anderson, and Aaron Fleisher (1988), "Constraints:
Knowledge Representation in Design", Design Studies, Vol. 9, No.3.

Gross, Mark D. (1985), "Design as the Exploration of Constraints", Ph.D. Dissertation,
MIT Department of Architecture.

Gross, Mark D., Stephen M. Ervin, James Anderson, and Aaron Fleischer (1987),
"Designing with Constraints", In Yehuda E. Kalay (Ed.), Computability of Design,
Wiley, New York.

Kalay, Yehuda (1987), "Computability of Design", Wiley, New York.

Kirk, Stephen J. (1988), "Creative Design Decisions: A Systematic Approach to Problem
Solving in Architecture", Van Nostrand Reinhold, New York.

184

Kirkpatrick, S., Jr. C.D. Gelatt, and M.P. Vecchi (1983), "Optimization by Simulated

Annealing", Science, Vol. 220, No. 4598, 671-679.

Klir, George J., and Tina A. Folger (1988), "Fuzzy Sets, Uncertainty, and Information",

Prentice Hall, Englewood Cliffs, N.J.

Koning H., and J. Eizenberg (1981), "The Language of the Prairie: Frank Lloyd Wright's
Prairie Houses", Environment and Planning B, Vol. 8, 295-323.

Kravitz, Saul A., and Rob A. Rutenbar (1986), "Multiprocessor-Based Placement by
Simulated Annealing", In Proceedings of the 23rd ACM!IEEE Design Automation
Conference (pp. 567-573), IEEE Computer Society Press.

Laarhoven, P. J. M. van (1988), "Theoretical and Computational Aspects of Simulated

Annealing'', Centrum voor Wiskunde en Informatica, Amsterdam.

Laarhoven, P.J.M. van, and E.H.L. Aarts (1987), "Simulated Annealing: Theory and

Applications", D. Reidel Publishing Company, Boston.

Lawson, Bryan (1983), "How Designers Think", Eastview Editions, Westfield, N.J.

Leier, William J. (1987), "Specification and Generation of Constraint Satisfaction Systems
Using Augmented Term Rewriting", Ph.D. Dissertation, University of North

Carolina at Chapel Hill.

Liggett, RobinS. (1985), "Optimal spatial arrangement as a quadratic assignment

problem", In John S. Gero (Ed.), Design Optimization, Academic Press, Orlando.

Ligthart, Michie! M., Emile H.L. Aarts, and Frans P.M. Beenker (1986), "Design-for­

testability ofPLA's using Statistical Cooling", In Proceedings of the 23rd
ACM/IEEE Design Automation Conference (pp. 339-345), IEEE Computer Society

Press.

Lin, V.C., D.C. Gossard, and R.A. Light (1981), "Variational Geometry in Computer­

Aided Design", Computer Graphics, Vol. 15, No.3, 171-177.

Marksjo, B.S. (1985), "Facility layout optimization using the Metropolis algorithm",

Environment and Planning B, Vol. 12, 443-453.

185

MathLab (1983), "MACSYMA Reference Manual" (User Manual), MIT, Laboratory for

Computer Science, January 1983.

McCullough, Malcolm, William J. Mitchell, and Patrick Purcell (Ed.) (1990), ''The
Electronic Design Studio: Architectural Knowledge and Media in the Computer Era",

MIT Press, Cambridge, Mass.

McDermott, J. (1982), "Rl-A Rule-Based Configurer of Computer Systems", Artificial
Intelligence, Vol. 19, No. 1, 39-88.

McGovern, I.E. (1976), "Non-Linear Optimization Theory Applied to Floor Plan Design",

M.Sc. Thesis, UCLA, Graduate School of Management.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), "Equation
of State Calculations by Fast Computing Machines", Journal of Chemical Physics,
Vol. 21, 1087-1092.

Mitchell, William J. (1975), "Automated Generation of Minimum Energy Cost Building
Designs", In B. Honikman (Ed.), Responding to Social Change, Halsted Press,
New York.

'Mitchell, William J. (1977), "Computer-Aided Architectural Design", Van Nostrand
Reinhold, New York.

Mitchell, William J. (1990), "The Logic of Architecture: Design, Computation, and
Cognition", MIT Press, Cambridge, Mass.

Mitchell, W.J., P. Steadman, and R.S. Liggett (1976), "Synthesis and Optimization of
Small Rectangular Floor Plans", Environment and Planning B, Vol. 3, No. 1, 37-

70.

Nahar, Surendra, Sartaj Sahni, and Eugene Shragowitz (1986), "Simulated Annealing and

Combinatorial Optimization", In Proceedings of the 23rd ACM!IEEE Design
Automation Conference (pp. 293-299), IEEE Computer Society Press.

Nelson, Greg (1985), "Juno, a constraint-based graphics system", Computer Graphics,
Vol. 19, No. 3, 235-243.

186

Osyczka, Andrzej (1984), "Multicriterion Optimization in Engineering (with FORTRAN
programs)", Ellis Horwood Limited, Chichester, England.

Otten, R. H. J. M., and L.P.P.P. van Ginneken (1989), "The Annealing Algorithm",
Kluwer Academic Publishers, Boston.

Penit, William (1987), "Problem Seeking: An Architectural Programming Primer'' (3rd
ed.), AlA Press, Washington.

Pfefferkorn, C.E. (1975), ''The Design Problem Solver: A System for Designing
Equipment or Furniture Layouts", In C.M. Eastman (Ed.), Spatial Synthesis in
Computer-Aided Building Design, Wiley, New York.

Pincus, Jonathan D., and Alvin M. Despain (1986), "Delay Reduction Using Simulated
Annealing", In Proceedings of the 23rd ACMIIEEE Design Automation Conference
(pp. 690-695), IEEE Computer Society Press.

Prusinkiewicz, Przemyslaw, and Dale Streibel (1986), "Constraint-Based Modeling of
Three-Dimensional Shapes", In Proceedings of Graphics Interface '86 (pp. 158-
163).

Radford, Antony (1987), "CADD Made Easy: A Comprehensive Guide for Architects and
Designers", McGraw-Hill, New York.

Radford, Antony D., and JohnS. Gero (1988), "Design by Optimization in Architecture,
Building, and Construction", Van Nostrand Reinhold, New York.

Romeo, Fabio, and Alberto Sangiovanni-Vincentelli (1985), "Probabilistic Hill Climbing
Algorithms: Properties and Applications", In Henry Fuchs (Ed.), 1985 Chapel Hill
Conference on Very Large Scale Integration (pp. 393-417), Computer Science
Press, Rockville, Md.

Rossignac, Jaroslaw R. (1986), "Constraints in Constructive Solid Geometry", In 1986
Workshop on Interactive 3D Graphics (pp. 93-110), Chapel Hill, North Carolina,
ACM SIGGRAPH.

R1P Project Team (1987), "Research Triangle Park: Guidelines for Site Development''
(Manual), North Carolina State University, School of Design, January 7, 1987.

187

Rychener, Michael D. (Ed.) (1988), "Expert Systems for Engineering Design", Academic

Press, Boston.

Sanoff, Henry (1977), "Methods of Architectural Programming", Hutchinson & Ross,

Stroudsburg, Pa.

Sechen, Carl, and Alberto Sangiovanni-Vincentelli (1986), ''TunberWolf3.2: A New

Standard Cell Placement and Global Routing Package", In Proceedings of the 23rd
ACMIIEEE Design Automation Coriference (pp. 432-439), IEEE Computer Society

Press.

Seehof, J.M., and W.O. Evans (1967), "Automated Layout Design Program", Journal of
Industrial Engineering, Vol. 18, No. 12, 690-695.

Shaviv, Edna (1987), "CAAD Tools for Spatial Allocation Problems", In Yehuda E. Kalay

(Ed.), Computability of Design, Wiley, New York.

Siddall, James M. (1982), "Optimal Engineering Design: Principles and Applications",
Marcel Dekker, New York.

Sriram, D., and R.A. Adley (Ed.) (1987), "Knowledge Based Expert Systems in

Engineering: Planning and Design", Computational Mechanics Publications, Boston.

Stiny, George (1975), "Pictorial and Formal Aspects of Shape and Shape Grammars",

Birkhauser, Basel.

Stiny, George (1990), "What Designers Do That Computers Should", In Malcolm

McCullough, William J. Mitchell, and Patrick Purcell (Eds.), The Electronic Design
Studio: Architectural Knowledge and Media in the Computer Era, MIT Press,

Cambridge, Mass.

Stiny, George, and James Gips (1978), "Algorithmic Aesthetics: Computer Models for
Criticism and Design in the Arts", University of California Press, Berkeley.

Stroustrup, Bjame (1986), "The C++ Programming Language", Addison-Wesley,

Reading, Mass.

Sutherland, Ivan E. (1963), "Sketchpad: A Man-Machine Graphical Interface System",
Ph.D. Dissertation, Massachusetts Institute of Technology.

188

Thompson, George (1985), ''Design Review: The Critical Analysis of the Design of
Production Facilities", Mechanical Engineering Publications, London.

VanWyk, C.J. (1980), "A Language for Typesetting Graphics", Ph.D. Dissertation,
Stanford University.

Weinzapfel, G.E., and S. Handel (1975), "IMAGE: Computer Assistant for Architectural
Design", In C.M Eastman (Ed.), Spatial Synthesis in Computer-Aided Design,
Wiley, New York.

Winston, Patrick Henry (1984), "Artificial Intelligence" (2nd eel.), Addison-Wesley,

Reading, Mass.

Witkin, Andrew, Kurt Fleischer, and Alan Barr (1987), "Energy Constraints on

Parameterized Models", Computer Graphics, Vol. 21, No.4, 225-232.

Wolfram, Stephen (1988), "Mathematica: A System for Doing Mathematics by Computer",

Addison-Wesley, Redwood City, Calif.

Wong, D.F., and C.L. Liu (1986), "A New Algorithm for Floorplan Design", In

Proceedings of the 23rdACM!lEEE Design Automation Col!ference (pp. 101-107),

IEEE Computer Society Press.

Zeltzer, David (1984), "Representation and Control of Three Dimensional Computer

Animated Figures", Ph.D. Dissertation, Ohio State University.

189

