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RITU CHADHA. Applications of Unskolemization 

(Under the direction of David A. Plaisted) 

ABSTRACT 

This dissertation describes a novel method for deriving logical consequences of 

first-order formulas using resolution and unskolemization. A complete unskolem­

ization algorithm is given and its properties analyzed. This method is then applied 

to a number of different fields, namely program verification, machine learning, and 

mathematical induction. 

The foremost problem in automating program verification is the difficulty of 

mechanizing the generation of inductive assertions for loops in a program. We show 

that this problem can be viewed as one of generating logical consequences of the 

conditions which are true at the entry to a loop. A complete and sound algorithm for 

generating loop invariants in first-order logic is described. All previous techniques 

given in the literature for deriving loop invariants are heuristic in nature and are 

not complete in any sense. 

There are a number of problems associated with machine learning, such as 

the diversity of representation languages used and the complexity of learning. We 

present a graph-based polynomial-time algorithm for learning from examples which 

makes use of the method for generating logical consequences. The representation 

language used is first-order logic, which enables the algorithm to be applied in a 

large number of fields where first-order logic is the language of choice. The algorithm 

is shown to compare favorably with others in the literature, and applications of the 

algorithm in a number of fields are demonstrated. 

The difficulty of mechanizing mathematical induction in existing theorem pro­

vers is due to the inexpressibility of the principle of induction in first-order logic. In 

order to handle mathematical induction within the framework of first-order logic, it 

is necessary to find an induction schema for each theorem. We describe two methods 

for tackling this problem, one of which makes use of our method for generating 

logical consequences. Most existing methods for mechanizing induction can only 

handle equational theorems. Our approach is more general and is applicable to 

equational as well as non-equational theorems. 
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1. Introduction 

This dissertation is concerned with the development of a novel unskolemization 

technique and its application to three different fields, namely program verification, 

machine learning, and mathematical induction. Unskolemization can be loosely 

defined as the process of replacing terms consisting of function constants by exis­

tentially quantified variables. An unskolemization algorithm is developed for the 

purpose of deriving logical consequences of first-order formulas. It is then shown 

how such an algorithm can be put to use in these three areas. 

One of the foremost problems in automating program verification is the need 

for deriving loop invariants for loops in programs. None of the existing program ver­

ifiers can automatically generate loop invariants for program loops, although some 

of them do provide limited support in deriving these invariants. Thus automatic 

program verification shifts the sometimes onerous task of finding loop invariants 

to the user. We describe an algorithm based on the unskolemization algorithm 

mentioned above for automatically generating loop invariants. This algorithm is 

complete in the sense that if a loop invariant exists for a particular program loop in 

a given first-order language relative to a given finite set of first-order axioms, then 

the algorithm can find it. Of course, not all theories of interest can be expressed by 

a finite collection of first-order axioms. 

At present, to make a computer perform a task, one has to write a complete 
and correct algorithm for that task, and program the algorithm into the computer. 

These activities involve a tedious and time-consuming effort by specially trained 

personnel. Current computer systems cannot improve significantly on the basis of 

past mistakes, nor can they acquire new abilities by observing and imitating experts. 

Machine learning research strives to open the possibility of instructing computers · 

in such new ways. We have developed an algorithm, based on our unskolemization 

algorithm, for learning from examples expressed in first-order logic. The algorithm 

can be used to make the derivation of loop invariants more efficient, as well as 

in other traditional fields like the blocks world, where it can produce common 
descriptions of several situations. 

The principle of mathematical induction cannot be expressed in first-order 



logic; it belongs to the realm of second-order logic, as it involves quantification 

over predicates. However, unlike first-order logic, no complete proof systems exist 

for second-order logic. To handle mathematical induction within the framework of 

first-order logic, it is necessary to find an induction schema for each theorem to 

be proved by induction. The scenario becomes more complicated when a theorem 

to be proved by induction in turn depends on some other theorem which is to be 

proved by induction. We examine these problems and describe solutions, including 

one using our unskolemization algorithm. 

In the next section, a brief introduction to the subject of first-order logic is 

given to equip readers unfamiliar with the subject with sufficient knowledge to read 

this dissertation. An outline of the organization of this dissertation is given at the 

end of this chapter. 

1.1 A brief introduction to first-order logic 

1.1.1 Preliminaries 

The purpose of this section is to familiarize the reader with some of the con­

cepts of first-order logic which are necessary for understanding the remainder of the 

material in this document. Many of these definitions are taken from [Manna 74] 

and [Chang and Lee 73]. 

First-order logic is a formal language whose purpose is to symbolize logical 

arguments in mathematics. The sentences in this language are called well-formed 

formulas (wffs). By giving a meaning to, or "interpreting", the symbols in a wff 

we obtain a statement which is either true or false. We can associate many dif­

ferent interpretations with the same wff and therefore obtain a class of statements 

where each statement is either true or false. We are interested mainly in two very 

restricted subclasses of the wffs, those that yield a true statement for every possible 

interpretation, and those that yield a false statement for every possible interpreta­
tion. 

There are some symbols in first-order logic which have fixed meaning : 

1. (.3x )A stands for "there exists some x such that A is true". 

2. (\fx )A stands for "for every element x, A is true". 

3. P II Q stands for "P and Q are true". 

4. P V Q stands for "P or Q is true". 

5. ~ P stands for "P is not true". 

6. P -+ Q stands for "if P is true, then Q IS true"; here P IS called the 
antecedent and Q the consequent. 
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For example, the wff 

(\fx)((P(x) V Q(x)) 1\ (\fy)(:lz)(G(z, y))) 

has the following meaning : for every x, either P( x) or Q( x) (or both) are true, 

and for every y, there exists z such that G(z, y) is true. 

An interpretation of this wff is given by specifying a non-empty set D and 

then assigning a unary predicate (mapping D into {true,false}) toP, a unary 

predicate to Q, and a binary predicate (mapping D x D into { true,false}) to G. 
For example, if we choose D to be the set N of all natural numbers and we let P( x) 
be the predicate "xis even", Q(x) be the predicate "xis odd", and G(x,y) be the 

predicate "x > y", then the above wff becomes : 

For all x, xis either even or odd, and for every y, there exists z such that z > y. 

This statement is easily seen to be true, since all natural numbers are either odd or 

even, and the set of natural numbers has no upper bound in the natural numbers. 

We say that x, y, and z are quantified in the above wff, since they are preceded 

by the quantifiers ":I" or "If". 
We now formally define the syntax and semantics of first-order logic. 

1.1.2 Syntax 

The five different kinds of symbols from which our sentences are constructed 
are listed below. 

1. Truth symbols: T and F (true and false) 

2. Connectives : 1\ (and), V (or), = (equivalence), ~ (not), --> (implica­
tion). 

3. Quantifiers : If (universal quantifier) and :3 (existential quantifier) 
4. Constants : 

(a) n-ary predicate constants Pt (i 2: 1, n 2: 0); PP is called a 
propositional constant 

(b) n-ary function constants ft (i 2: l,n 2: 0); ·f? is called an 
individual constant. and is also denoted by a; 

5. Variables : individual variables Xi 

Using these symbols we recursively define three classes of expressions : terms, 
atoms, and well-formed formulas (wffs). 

1. Terms: 

(a) Each individual constant a; and each individual variable Xi is 
a term. 
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(b) If t 1 , t2, ... , tn (n 2:: 1) are terms, then so is f?(tr, t2, ... , tn)· 

2. Atoms: 

(a) T and Fare atoms. 

(b) Each propositional constant PP is an atom. 

(c) If t 1 , t2, ... , tn (n 2:: 1) are terms, then Pt(tr, t2, ... , tn) IS an 

atom. 

3. Well-formed formulas (wffs) : 

(a) Each atom is a wff. 

(b) If A, Band Care wffs, then so are (~A), (A--> B), (A II B), 
(A VB), and (A= B). 

(c) If x; is a variable and A is a wff, then ((lfx;)A) and ((3x;)A) 

are wffs. 

In what follows, several straightforward abbreviations are used. Since the su­

perscripts in f?, Pr are used only to indicate the number of arguments, they are 

always omitted. The subscripts are also omitted whenever their omission can cause 

no confusion. For simplicity we usually use additional symbols : a, b, c, ... for in­
dividual constants; f, g, h, ... for function constants; capital letters for predicate 

constants (also called predicates); and u, v, w, x, ... for individual variables. Also we 
usually omit parentheses whenever their omission can cause no confusion; in partic­

ular, we usually write (3x) and (Vx) as 3x and lfx without parentheses. Sometimes 

we use brackets [ ] or braces { } rather than parentheses ( ) for clarity. We assume 

that (3x ), (lfx ), and ~ bind tighter than any other connective, i.e. they are always 

applied to the smallest possible scope (atom or parenthesized expression). 

For a wff of the form (lfx )A, we say that the occurrence of the variable x in 
(lfx) is universally quantified, A is the scope of (lfx ), and every occurrence of x in 

A is bound by (lfx ). Similarly, for (3x )A, we say that the occurrence of the variable 

x in (3x) is existentially quantified, A is the scope of (3x ), and every occurrence 

of x in A is bound by (3x ). Every occurrence of a variable in a wff which is not 

quantified or bound is said to be a free occurrence. A variable x is said to be a free 

variable of a wff if there are free occurrences of x in the wff. ·A wff with no free 
variables is said to be closed. 

The class of wffs described here are the wffs of first-order logic. One subclass of 
these wffs, consisting of the propositional calculus formulas is of special interest and 

is obtained by restricting the set of constant symbols to be propositional constants 

and the set of variables to be empty. A class of wffs containing first-order logic 

wffs, consisting of second-order logic formulas, is obtained by allowing function and 

predicate variables in addition to individual variables in wffs. 

4 



1.1.3 Semantics 

We can assign a meaning to each wff by "interpreting" the constant symbols 

and free variables in it. By associating different interpretations with a given wff, we 

obtain different statements, where each statement is either true or false. In this 

section we shall discuss the notion of an interpretation of a wff and the statement 

generated by it. 

Let D be any nonempty set; then Dn (n ;:::: 1) represents the set of all ordered 

n-tuples of elements of D. An n-ary function over D (n ;:::: 1) is a total function 

mapping Dn into D. An n-ary predicate over D (n;:::: 1) is a total function mapping 

Dn into {true, false}. In the case where n = 0, a 0-ary function over D denotes a 

fixed element of D, while a 0-ary predicate over D denotes a fixed truth value (true 

or false). 

An interpretation I of a wff A is a triple (D, Ic, Iv) where 

1. D is a nonempty set which is called the domain of the interpretation. 

2. Ic indicates the assignments to the constants of A : 

(a) We assign an n-ary function over D to each function constant 

ft ( n ;:::: 0) which occurs in A. In particular (case n = 0), each 

individual constant a; is assigned some element of D. 

(b) We assign an n-ary predicate over D to each predicate constant 

Pt (n;:::: 0) which occurs in A. In particular (case n = 0), each 

propositional constant is assigned the truth value true or false. 

3. Iv indicates the assignments to the free variables of A : each free variable 

x in A is assigned some element of D. 

For a given interpretation I of a wff A, the pair (A, I) indicates a statement 

(sometimes called an interpreted wff) which has a truth value true or false. We 

obtain this truth value by first applying the assignments of Ic to all the constant 

symbols in A and the assignments of Iv to all free occurrences of variable symbols 

in A, and then using the meaning (semantics) of the truth symbols, connectives, 

operators, and quantifiers as explained below. 

1. The meaning of the truth symbols : 

The meaning ofT is true and ofF is false. 

2. The meaning of connectives : 

(a) The connective ~ (not) stands for a unary function mapping {true, false} 

into {true, false} as follows : 

•true is false 

•false is true. 

(b) The connectives -t (implication, 1\ (and), V (or), and= (equivalence) stand 
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for binary functions mapping {true, false} x {true, false} into {true, false} as 

follows : 

true -+ false is false 

true -+true, false -+ true, and false -+ false are true 

true II true is true 

true II false, false II true, and false II false are false 

false V false is false 

true V true, true V false, and false V true are true 

true =true and false= false are true 

true = false and false =true are false 

3. The meaning of the quantifiers : 

We consider wffs of the form (V'x )A and (:lx )A. Since such a wff might have 

some free occurrences of variables, we have to consider its value for some fixed 

assignment of values to those free occurrences. 

(a) The quantifier V' (universal quantifier) in the wff (V'x )A stands for 

the words "for all x, A is true". The value of (V'x)A is true, if for all 

elements a of D, the value of A (with a assigned to all occurrences of x) 

is true; otherwise, the value of (Vx )A is false. 

(b) The quantifier :3 (existential quantifier) in the wff (:lx )A stands for 

the words "there exists x such that A is true". The value of (:lx )A is 

true if there exists an element a of D such that the value of A (with a 

assigned to all occurrences of x) is true; otherwise, the value of (:lx )A is 

false. 

A wff may yield the value true for some interpretations and the value false for 

some other interpretations. We are interested mainly in two types of wffs : those 

that yield the value true for every possible interpretation, called valid wffs, and 

those that yield the value false for every possible interpretation, called unsatisfiable 

wffs. In other words : 

Definition. A wff A is said to be valid if it yields the value true for every 

interpretation. Thus, a wff is non valid if and only if there exists some interpretation 

for which A yields the value false; such an interpretation is called a countermodel 

for A. A wff A is said to be unsatisfiable if it yields the value false for every 

interpretation. A wff is satisfiable if and only if there exists some interpretation 

for which A yields the value true; such an interpretation is called a model for A. 

There is one important relation between the two notions : a wff A is valid if 

and only if ~A is unsatisfiable. 

Example 1.1 The wff P V ~P is valid. This is because, in an interpretation of 

this wff, the propositional constant P must be assigned either the value true or the 
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value false. If P is assigned the value true, then since P is true, ~P is false, and 

therefore by our definition of V, P V ~P is true. On the other hand, if P is assigned 

the value false, then ~P is true and therefore P V ~P is again true. Thus the wff 

is true in any interpretation and therefore it is valid. • 

Example 1.2 The wff P II ~P is unsatisfiable. This is because, in an interpretation 

of this wff, the propositional constant P must be assigned either the value true or 

the value false. If P is assigned the value true, then since P is true, ~P is false, 

and therefore by our definition of II, P II ~P is false. On the other hand, if P 

is assigned the value false, then ~P is true and therefore P II ~P is again false. 
Thus the wff is false in any interpretation and therefore it is unsatisfiable. • 

Definition. Given two wffs A and B, we say A f= B (read "A satisfies B") if and 

only if every model for A is a model for B. Clearly, A f= B if and only if A-> B is 

valid. 

1.1.4 Normal forms and related definitions 

In this section, we describe some normal forms of wffs. These forms are called 

normal because every wff can be transformed into an equivalent wff having any one 

of these forms. The reason for these transformations is to simplify proof procedures, 

which will be discussed later. 

Definition. A literal is an atom or the negation of an atom. The sign of a literal L 

is said to be positive if L is an atom and negative if L is the negation of an atom. 

Definition. A conjunction of literals is a wff of the form L1 II L 2 II ... II Ln, where 

each L;, 1 ::::; i ::::; n, is a literal. 

Definition. A disjunction of literals is a wff of the form L1 V L 2 V ... V Ln, where 

each L;, 1 ::::; i ::::; n, is a literal. 

Definition. A wff F in the first-order logic is said to be in prenex normal form if 

and only if the formula F is in the form 

( Q1x1 ) ... ( Qnxn)(M) 

where every (Q;x;), 1 ::::; i ::::; n is either (\fx;) or (3x;), and M is a wff containing 

no quantifiers. (Q!x!) ... (Qnxn) is called the prefix and Miscalled the matrix of 
the formula F. 

Some examples of wffs in prenex normal form are : 

(\fx)(\fy)(P(x,y) II Q(y)), 

(\fx)(\fy)( ~P(x, y)-> Q(y)), 

(\fx)(\fy)(3z)(Q(x,y)-> R(z)). 
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We present the following theorem without proof : 

Theorem 1.1 Every wff can be transformed into an equivalent wff in prenex 

normal form. (For proof see [Chang and Lee 73].) 

Definition. A wff F in first-order logic is said to be in prenex conjunctive normal 

form if and only if F is in prenex normal form, and the matrix M of F has the form 

H II F2 11 ... II Fn, n 2:: 1, where each of F1, F2, ... , Fn is a disjunction of literals. 

Definition. A wff F in first-order logic is said to be in prenex disjunctive normal 

form if and only ifF is in prenex normal form, and the matrix M ofF has the form 

F1 V F2 V ... V Fn, n 2:: 1, where each of F1, F2, ... , Fn is a conjunction of literals. 

Every wff can be transformed into an equivalent wff in prenex conjunctive 

or prenex disjunctive normal form. Procedures for transforming wffs into prenex 

conjunctive and disjunctive normal forms can be found in [Chang and Lee 73]. 

Skolem standard form 

We now describe how to transform a wff into a standard form known as the 

Skolem standard form. Briefly, the objective of this transformation is to eliminate 

the existential quantifiers and existentially quantified variables from a wff, thus 

making the wff more readily amenable to mechanical manipulation. Existentially 

quantified variables are replaced by new functions (called Skolem functions) in such 

a way that the unsatisfiabi!ity of the formula is preserved; in other words, if a wff 

F is unsatisfiable, then the Skolem form of F is also unsatisfiable and vice-versa. 

The process does not preserve validity, however. 

The procedure for transforming a wff into Skolem standard form is given below. 

Suppose a wff F is given. 

1. Transform F into prenex conjunctive normal form. 

2. Eliminate existential quantifiers from the prefix of F as follows : suppose the 

prefix ofF is (Q1x1) (Q2x2) ... (Qnxn)· Suppose Qr is an existential quantifier 

in this prefix, 1 ::; r ::; n. If no universal quantifier appears before Qr, choose 

a new constant c different from other constants occurring in M (where M is the 

matrix of F), replace all Xr appearing in M by c, and delete ( Qrxr) from the 

prefix. If Qr1 , Qr2 , ••• , Qrm are all the universal quantifiers appearing before Qr, 

1 ::; TJ < r2 < ... Tm < r, choose a new m-ary function symbol f different from other 

function symbols, replace all Xr in lvf by f( Xr, Xr, ... , Xrm ), and delete ( QrXr) 

from the prefix. The intuitive reason for performing this step is that since Xr is an 

existentially quantified variable whose value depends on Xr,, Xr 2 , ••• , Xrm, it can be 

regarded as a function of the variables x r, , x r, ... , Xrm. After the above process is 

applied to all the existential quantifiers in the prefix, the last formula obtained is a 

Skolem standard form of the wff F. The constants and functions used to replace the 
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existential variables are called Skolem functionJ or Skolem JymbolB, and the process 

of transforming a wff into Skolem standard form is called Skolemization. If we are 

given a wff F, then its Skolem standard form is denoted by Sk(F). 

Example 1.3 We demonstrate how a formula in prenex conjunctive normal form 

is transformed into Skolem standard form. Let 

F = (3x)(Vy)(3z)((~P(x,y) V R(x,y,z)) II (Q(x,z) V R(x,y,z))). 
Here (3x) is not preceded by any universal quantifier in the prefix of F, there­

fore we replace x everywhere by a new constant c; and (3z) is preceded by (l;ly), 
therefore we replace z everywhere by a new unary function f(y), obtaining the 

Skolem standard form : 

Sk(F) = (Vy)((~P(c,y) V R(c,y,J(y))) II (Q(c,J(y)) V R(c,y,J(y)))). • 

Definition. A clause is a disjunction of zero or more literals. 

Henceforth, we shall regard a set of literals as synonymous with a clause. For 

example, P V Q V ~R = {P, Q, ~R}. This notation is consistent with set-theoretical 

notation, due to the fact that disjunction is idempotent (i.e. P V P = P), com­

mutative, and associative. A clause containing one literal is called a unit clause; 

when a clause contains no literals, it is called the empty clause. Since the empty 

clause has no literal that can be satisfied by an interpretation, the empty clause 

is always false. A set of clauses S is regarded as the conjunction of all clauses in 

S, where every variable in S is regarded as universally quantified. The formula 

"1;1 F", where F is a wff without quantifiers, denotes the wff F with all variables in 

F universally quantified. Under this interpretation, a set of clauses is unsatisfiable, 

valid, or satisfiable according as the wff obtained by forming the conjunction of all 

the clauses in the set is unsatisfiable, valid, or satisfiable. By the above convention, 

the Skolem standard form of a formula can be represented by a set of clauses. For 

example, the Skolem standard form obtained in the last example can be written in 

clause form as the set 

{ { ~P( c, y ), R( c, y,J(y ))}, { Q( c,J(y )), R( c, y,J(y ))} } . 
The motivation for transforming a formula into Skolem standard form is made 

clear by the following theorem : 

Theorem 1.2 Let S be a set of clauses that represents a Skolem standard form 

of a wff F. Then F is unsatisfiable if and only if S is unsatisfiable. (For proof see 

[Chang and Lee 73].) 

In the next section we shall see how the Skolem standard form of a wff is used 

in proof procedures. Before doing so, we need a few more definitions. 

Definition. A term is called a ground term if it contains no variables. 

Definition. A substitution is a finite set of the form {tJ/vt, ... , tn/vn}, where 
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every Vi is a variable, every ti is a term different from Vi, and all the ViS are distinct. 

When t 1 , ••• , tn are ground terms, the substitution is called a ground substitution. 

The substitution that consists of no elements is called the empty substitution and 

is denoted by e. We shall use lower case Greek letters to represent substitutions. 

Example 1.4 The following sets are substitutions : 

{f( a)/ x, z jy, w / z }, {f(z )/ x, g(z )/y, g( a)/ z }. • 

Definition. Let 8 = {tl/v1, ... ,tn/vn} be a substitution and E be an expression. 

Then E8 is an expression obtained from E by simultaneously replacing each occur­

rence of the variable v;, 1 ::; i ::; n, in E by the term t;. E8 is called an instance of 

E. 

Example 1.5 Let 8 = {g(a)/x, bfy,f( c)/ z} and E = P(x, y, z). Then E8 = P(g(a), 

b, f(c)). • 

Definition. Let 8 = {tt/xJ, ... ,tn/xn} and (j = {si/yJ, ... ,sm/Ym} be two sub­
stitutions. Then the composition of 8 and (j is the substitution, denoted by 8 o (T, 

that is obtained from the set 

{ t1(T / XJ, ... , tn(T / Xn, sl/yJ, ... , Sm/Ym} 

by deleting any element ti(j/Xj for which tj(j = Xj, and any element s;/y; such that 

Yi is among {x1,x2, ... , Xn }. 

Example 1.6 Let 8 = {w/x,f(u)/y,f(c)/z} and (j = {xjw,bju,a/z}. 

Then Wij = x,!( u )(j = f(b ),j( c )(j = f( c). 

Therefore 8 o (j = {f(b )/y ,!(c)/ z, x /w, b/u }. 

Note that the elements W(T/x (i.e. x/x) and a/z were deleted from the above 

set, according to the definition of composition given above. 

Definition. Given two wffs A and B, A and B are variants of each other if and 

only if there exist substitutions 8, (j such that A8 = B and A = B(j. 

Clearly, if wffs A and B are variants, then they are equivalent to each other. 

In what follows, we shall often have to unify, or match, two or more expressions. 

That is, we have to find a substitution that can make several expressions identical. 

Therefore, we now consider the unification of expressions. 

Definition. A substitution (j is called a unifier for a set of expressions {E1 , E 2 , 

... , Ek} if and only if E11j = E 2(j = ... = Ek(j· The set {E1,E2 , ••• ,Ek} is said to 

be unifiable if there is a unifier for it. 

Example 1.7 The set { ~Q(f( a), g(y) ), ~Q( x, g(b ))} is unifiable since the substitu­

tion 8 = {f(a)/x, b/y} is a unifier for the set. • 

Definition. A unifier (j for a set of expressions {E1 , E 2 , ••• , Ek} is a most general 

unifier if and only if for each unifier (J for the set there is a substitution.\ such that 

8=(To.\. 
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A large number of algorithms for finding the most general unifier of a set of 

expressions have been developed in the past. We will not present any unification 

algorithms here but instead refer the interested reader to the literature. Any intro­

ductory theorem-proving text such as [Chang and Lee 73] or [Loveland 78] contains 

some elementary unification algorithms. 

1.1.5 Proof procedures 

In this section we shall discuss proof procedures for wffs of first-order logic. 

Leibniz (1646-1716) was the first to search for a general decision procedure for 

verifying the validity or unsatisfiability of a formula. Peano and Hilbert continued 

this search, and finally Church and Turing were able to prove independently in 

1936 that there is no general decision procedure to verify the validity of formulas of 
the first-order logic. However, there are proof procedures which can verify that a 

formula is valid if it is indeed valid. For invalid formulas, these procedures cannot 

be guaranteed to terminate. Given the result of Church and Turing, this is the best 

that we can hope to achieve. 

A very important approach to mechanical theorem proving was given by Her­

brand in 1930. Recall that by definition, a valid wff is a wff that is true under all 

interpretations. Her brand developed an algorithm to find an interpretation that can 

falsify a given wff. However, if the given wff is indeed valid, no such interpretation 

can exist and his algorithm will halt after a finite number of trials. Herbrand's 

theorem is the basis for many modern theorem-proving procedures, including reso­

lution. A complete discussion and proof of Her brand's theorem is beyond the scope 

of this work; we will only state the theorem and refer the reader to [Chang and Lee 

73] for a proof. 

Definition. Let S be a set of clauses, and let Ho be the set of function constants 

appearing in S. If no constant appears in S, then H0 is to consist of a single 

constant, say Ho ={a}. Fori= 0, 1, 2, ... ,let Hi+ I be the union of H; and the set 

of all terms of the form fn(t 1 , tz, ... , tn) for all n-ary functions fn occurring in S, 

where tj, 1 :5 j :5 n, are members of the set H;. Then each H; is called the i-level 

constant set of S, and Hocn or lim;-00H;, is called the Herbrand universe of S. 

Definition. A ground instance of a clause C of a set S of clauses is a clause obtained 

by replacing all variables in C by members of the Herbrand universe of S. A clause 

which does not contain any variables is called a ground clause. 

Her brand's Theorem. A set S of clauses is unsatisfiable if and only if there is 

a finite unsatisfiable subset S' of ground instances of clauses of S. (For proof see 

[Chang and Lee 73].) 
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We will now describe the resolution principle for proving the unsatisfiability of 

a set of clauses. The method was discovered in 1965 by Robinson (Robinson 65] 

and is a landmark in the history of theorem-proving. The resolution principle is 

an inference rule that generates resolvents from a set of clauses (defined below). 

It is more efficient than earlier proof procedures such as the Davis and Putnam 

procedure. The resolution principle is really a refutation procedure, in that it is 

used for proving that a wff is unsatisfiable, rather than proving that a wff is valid. 

However, as stated earlier, a wff F is valid if and only if -,F is unsatisfiable. Thus 

a refutation procedure can be used as a validity-proving procedure. 

Suppose therefore that we are given a wff F which must be shown to be valid. 

We first negate F; we must now show that -,F is unsatisfiable. -,F is then converted 

into Skolem standard form and written as a set of clauses S. Recall that this 

conversion preserves unsatisfiability, i.e. -,F is unsatisfiable if and only if its Skolem 

standard form S is unsatisfiable. S is then shown to be unsatisfiable using the 

resolution procedure, which is described below. 

Definition. If two or more literals of a clause C have a most general unifier a, 

then Ca is called a factor of C. 

Definition. Let C1 and C2 be two clauses (called parent clauses) with no variables 

in common. Let L1 and L2 be two literals in C1 and C2 respectively. If L1 and -,£2 

have a most general unifier a, then the clause 

( Cw- { LJ}a) U ( Cza - { Lz}a) 
is called a binary resolvent of C1 and C2 • The literals L 1 and L2 are called the 

literals resolved upon. 

Example 1.8 Let C1 = {P(f(x)),Q(x)}, Cz = {-,P(j(a)),R(y)}. Choose L1 = 
P(f(x)) and Lz = -,P(f(a)). Since -,£2 = P(f(a)), L 1 and L 2 have the most 

general unifier a = {a/ x} (this can easily be seen to be the only unifier of L 1 and 

Lz). Therefore, 

( C1 a - L1 a) u ( Cza - Lza) 

= ( { P(f( a)), Q( a)} - { P(f( a))}) U ({ -,p(f( a)), R(y)} - { -,p(f( a))}) 

= {Q(a)} U {R(y)} 

= {Q(a),R(y)}. 

Thus {Q(a),R(y)} is a binary resolvent of C1 and C2 • P(f(x)) and -,P(f(a)) 
are the literals resolved upon. • 

Definition. A resolvent of (parent) clauses C1 and C2 is one of the following 

binary resolvents : 

1. a binary resolvent of C1 and C2 , 

2. a binary resolvent of C1 and a factor of C 2 , 
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3. a binary resolvent of a factor of C1 and Cz, 
4. a binary resolvent of a factor of C1 and a factor of Cz. 

Resolution is used for proving that a given set S of clauses is unsatisfiable. 

The resolution procedure consists of generating resolvents of a set S of clauses, 

then generating resolvents of S and these resolvents, and so on, until the empty 

clause is generated. A clause C is said to be generated by resolution from S if and 

only if it can be generated by a sequence of resolutions from S; in this case, we 

writeS 1- C (read "S derives C"). The set of all clauses which can be generated by 

resolution from S is denoted by Res( S). 

Definition. A wff B is said to be a logical consequence of a wff A if and only if 

A --> B is valid; or in other words, B is a logical consequence of a wff A if and only 

if every model for A is a model for B. 

Theorem 1.3 A resolvent R of two clauses C1 and C2 is a logical consequence of 

C1 and C2 • (For proof see [Chang and Lee 73].) In other words, (C1 II C2 1- R)--> 
(C1II Cz f= R). 

This theorem establishes the soundness of the resolution principle. To see this, 

note that if the empty clause can be derived from a set S of clauses by resolution, 

then by the previous theorem the empty clause is a logical consequence of S. How­

ever, the empty clause represents the value false (since it cannot be satisfied by 

any interpretation). This means that S --> false is valid for all interpretations of 

S, which in turn means that Sis unsatisfiable under all interpretations. 

Apart from the soundness of resolution, we also have the following result : 

Theorem 1.4 Resolution is complete; in other words, a set S of clauses is un­

satisfiable only if there is a deduction of the empty clause from S. (For proof see 

[Chang and Lee 73].) In other words, (Sf= { }) --> (S 1- { }). 
This establishes that resolution is a sound and complete refutation procedure, 

or in other words, if S is a set of clauses, then ( S f= { } ) = ( S 1- { } ). 

Example 1.9 Let S = {{P, Q}, { ~P, Q}, {P, ~Q}, { ~P, ~Q}}. We show that Sis 

unsatisfiable by generating the empty clause from S by resolution as follows : 

1. {Q} 
2. {~Q} 

3. {} 

from clauses { P, Q}, { ~P, Q} 
from clauses {P,~Q}, {~P,~Q} 

from clauses 1 and 2. 

Clause 3 is the empty clause, which establishes that the set S is unsatisfiable. • 

Thus we have seen that the empty clause can be generated from an unsatisfiable 

set of clauses by resolution. We now introduce paramodulation, which is essentially 

an inference rule for equality. In the case where a set of clauses includes the equality 
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relation under the usual interpretation of equality, paramodulation and resolution 

will always generate the empty clause from a set of clauses which are unsatisfiable 

under the usual equality axioms. The formal definition of paramodulation and the 

equality axioms are given below. 

Equality axioms : Let S be a set of clauses. Then the set of equality axioms for 

S contains the following clauses : 

1. Vx(x = x) 

2. VxVy( x i= y V y = x) 
3. VxVyVz(xj=yVyj=zVx=z) 
4. Xj i= Xo v~P(x1, ... , Xj, ... , Xn)V P(x1, ... , xo, ... , Xn) for j = 1, ... , n, for every 

n-ary predicate symbol P occurring in the given set of clauses S 

5. Xj i= Xo V~j(XJ, ... ,Xj, ... ,xn) V j(xJ, ... ,xo, ... ,xn) for j = 1, ... ,n, for every 
n-ary function symbol f occurring in the given set of clauses S. 

Definition. Let C1 and C2 be two clauses (called parent clauses) with no variables 

in common. If C1 is L[t] V c;, and C2 is r = s V q, where L[t] is a literal containing 

the term t and c; and c~ are clauses, and if t and r have a most general unifier a, 

then the clause 

La[sa] U Cfa U qa, 
where La[ sa] denotes the result obtained by replacing one single occurrence of ta 
in La by sa, is called a binary paramod·ulant of C1 and C2 • 

Definition. A paramodulant of clauses C1 and C2 is one of the following binary 

paramodulants : 

1. a binary paramodulant of C 1 and C2 , 

2. a binary paramodulant of cl and a factor of c2, 
3. a binary paramodulant of a factor of cl and c2, 
4. a binary paramodulant of a factor of cl and a factor of c2. 

1.1.6 Theories 

We have so far been discussing wffs of first-order logic and methods of deter­

mining their validity. We are often interested in wffs which are valid in some specific 

theory, such as number theory or group theory. We make these concepts precise 

below: 

Definition. A non-empty set T of wffs of first-order logic is called a theory if and 

only if 

(i) There exists at least one model for T 
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(ii) All logical consequences ofT are already in T. 

The above definition provides a convenient way of creating a theory : take a 

set of wffs with a model and form the closure under logical consequence. 

Theorem 1.5 For every interpretation I, the set Th(I) of all wffs valid in I is a 

theory. 

Proof: We need to show that conditions (i) and (ii) of the above definition are 

satisfied by Th(I). Condition (i) is trivially satisfied, since the interpretation I is a 

model for Th(I). Now consider any logical consequence L of Th(I). Every model 

of Th(I) is a model for L, by definition; therefore in particular, I is a model for L. 
Hence Lis valid in I, and therefore L belongs to Th(I), by definition of Th(I); this 

proves condition (ii ). • 

Definition. A theory T is said to be axiomatizable if there exists a decidable set 

D <;;; T such that T is exactly the set of all wffs implied by D. The wffs of D are 

called the axioms of the theory T. 

Note. Henceforth we will use the term "formula" to mean "well-formed formula", 

unless otherwise indicated. 

1.2 Outline of this dissertation 

In the next chapter, we show how logical consequences of first-order formulas 

can be derived by resolution and unskolemization. An unskolemization algorithm 

for replacing Skolem and sometimes non-Skolem functions by existentially quantified 

variables is presented and its properties analyzed. A number of examples are given 

to illustrate the working of the algorithm. 

Chapter 3 introduces the topic of program verification and shows how the 

unskolemization algorithm of Chapter 2 can be used in conjunction with an iterative 

algorithm to mechanically generate loop invariants for the purpose of verifying the 

partial correctness of a program. A detailed synopsis of past work in the area of 

program verification is included in this chapter. 

In Chapter 4, we survey some of the past work in the field of machine learning, 

and show how the theory developed in Chapter 2 can be applied to the subject 

of machine learning from positive examples in first-order logic. A learning algo­

rithm is given which makes use of the unskolemization algorithm of Chapter 2. We 

demonstrate how the learning algorithm can be used to make the generation of loop 

invariants in Chapter 3 more efficient. The algorithm is analyzed and compared 

with other work in the same field. 
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Finally, in Chapter 5, we demonstrate the application of our method for gen­

erating logical consequences of first-order formulas to the mechanization of math­

ematical induction. vVe examine different ways of automatically generating the 

inductive hypotheses for proving theorems by induction. We describe two complete 

methods for generating the inductive hypotheses for certain types of theorems. The 

first is based on our resolution and unskolemization method. The second method is 

based on the fact that the proof of a theorem which requires inductive hypotheses 

for its proof can be deduced by examining proofs of different ground instances of 

the theorem. 

Chapter 6 concludes this dissertation and discusses the relevance of this re­

search, as well as directions for future work. 
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2. Finding logical consequences using unskolem­
ization 

2.1 Objective and motivation 

In this chapter, we will develop a method for finding logical consequences of 

first-order formulas. The method is based on resolution and on an unskolemization 

algorithm. Suppose we are given a first-order formula H, and we want to find a 

certain consequence W of H, which is unknown. It may not be possible to derive 

W from H by resolution, without using tautologies and unskolemization, as will 

be shown in Section 2.2.1. Since the use of tautologies is undesirable (due to the 

enormous increase in search space that it creates), we will not attempt to derive W 

from H, but instead will try to derive a formula F with the property that 

H-> F-> W. 
However, if this is the only constraint on F, then why not take F = H? 

One obvious reason is that H may be infinite. Also, we want F to be as "close" as 

possible toW, in a certain sense. To define the concept of "closeness", we will define 

a relation "more general than" on first-order formulas and will derive a formula F 
from H such that H -> F-> W and such that F is "more general than" W. The 

relation "more general than" is defined in such a way that the number of first-order 

formulas F which satisfy a given syntactic condition and are more general than a 

given first-order formula W is finite up to variants. Thus we can only derive a finite 
number of formulas F satisfying both the following conditions : 

(i) H-> F-> W 
(ii) F is more general than W. 

Of course, if H is more general than W, then we could get F =H. We will 

show that this method is complete, i.e. that for any two formulas H and W, it is 

possible to derive F from H by our method such that (i) and (ii) above hold. The 

algorithms given will involve some nondeterminism. 

Let H, W be first-order formulas such that H -> W. In Section 2.2 we will 

present an algorithm for unskolemizing a set of clauses 'D derived from Sk(H). The 

properties of the unskolemization algorithm will be discussed in Section 2.3. 



Throughout this section, we will keep illustrating the concepts introduced with 

the help of an example, which will be taken through the section to demonstrate the 

working of the theory. The formulas used in the example will be : 

H = Vx'Vy'Vz'Vw((Q(y) V L(b, y)) II ~Q(g(a)) II L(g(a), a) II (R(x, g(a)) V ~P(x, 

g(a))) II(~R(w,z) V ~D(w,z)) 

W = 3u'Vv(L(b, u) II L(u, a) II ( ~P(v, u) V ~D(v, u) V M(a))). 

It can be proved that H-+ W. Now, W is given here only to show that we will 

ultimately be able to derive a formula F such that H -+ F -+ W and such that F 
is more general than W if we make the correct choices whenever nondeterminism is 

involved. In actual practice, W will be unknown, and the choices which we will make 

in the examples based on properties of W will have to be made nondeterministically. 

2.2 The unskolemization process 

2.2.1 Preliminaries 

Unskolemization has been defined by some authors as the process of eliminating 

Skolem functions from a formula without quantifiers, replacing them with new ex­

istentially quantified variables, and transforming the resulting formula into a closed 

formula with quantifiers. Some unskolemization algorithms have been developed 

in the past. McCune [McCune 88] presents an algorithm to solve the following 

problem : given a set S of clauses and a set F of constant and function symbols 

that occur in the clauses of S, obtain a fully quantified (closed) formula S' from 

S by replacing expressions starting with symbols in F with existentially quanti­

fied variables. S' is unsatisfiable if and only if S is unsatisfiable. The algorithm 

which is presented is sound but not complete. The following approach is used by 

McCune for handling the case in which a function symbol to be eliminated has a 

non-variable argument or more than one occurrence of an argument. Rewrite the 

clause, replacing the non-variable argument, say t, with a new variable, say x; then 

append a new literal x # t to the clause. For the unskolemization to be successful, 

every occurrence of a Skolem symbol to be eliminated must have the same sequence 

of arguments. Also, for m :::; n, if f is an m-ary function symbol and g is an n-ary 

function symbol, the arguments off must be a subset of the arguments of g. Thus 

the unskolemization algorithm is not complete since it fails on any set of clauses 

not satisfying the above criteria. 

Cox and Pietrzykowski [Cox and Pietrzykowski 84] present an algorithm for 

unskolemization, but their algorithm is applicable only to literals, and their goal 
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is to produce a set of quantified atomic formulas, each of which conflicts with the 

given literal. 

Before plunging into the details of the unskolemization process, we should re­

mark that the term "unskolemization" is used rather loosely here. As mentioned 

above, other authors ([Cox and Pietrzykowski 84], [McCune 88]) regard unskolem­

ization as the process of eliminating Skolem functions from a formula without quan­

tifiers, replacing them with new existentially quantified variables, and transforming 

the resulting formula into a closed formula with quantifiers. We will expand the 

meaning of unskolemization slightly. In our definition, ordinary function symbols 

can also be "unskolemized" by treating them as if they were Skolem functions. Thus 

a function symbol may be replaced by an existentially quantified variable during 

the unskolemization process. To illustrate this, suppose we want to unskolemize the 

formula 

P(f(x)) V Q(g(a),x) 
where f and a are (non-Skolem) function symbols, and suppose we want to treat f 
and a as if they were Skolem functions. The resulting formula would be 

:lzVx:ly(P(y) V Q(g(z),x)). 

Note that if we Skolemize :lzVx:ly(P(y) V Q(g(z),x)), we will get back the 

original formula (up to names of Skolem functions). In practice, the situation may 

be a little more complicated as the formula being unskolemized may not be the 

Skolemized form of any formula. The given algorithm shows how to cope with such 

situations. 

Also, unskolemization as presented here does not necessarily preserve unsatis­

fiability. For example, the formula 

:lx(succ(x) = 0) 

is false under the usual interpretation of "succ'' as the successor function over nat­

ural numbers; however, if we unskolemize this function we get the formula 

:ly(y = 0) 

which is true. The properties of our unskolemization algorithm will be detailed in 

Section 2.3. 

We motivate the development of the unskolemization algorithm by the following 

simple example. Let A be a formula which implies some formula B, which is un­

known. Since A ---> B, A II ~B is unsatisfiable; therefore S k( A II ~B) is unsatisfiable 

(since Skolemization preserves unsatisfiability ), i.e. S k( A) IISk( ~B) is unsatisfiable. 

Thus some set of clauses 'D can be derived from A such that 'D IISk( ~B) is unsatis­

fiable. It may happen that some literals in 'Dare instances of some literals in B. For 

example, suppose that B = :lxP(x), and suppose A= P(a), where a is a ground 
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term. Clearly A-+ B. Now, in order to derive B from the formula A= P(a), the 

ground term a has to be "unskolemized" by replacing a by an existential quantifier. 

If this is done for P(a), the resulting formula will be 3xP(x). 
The above example is very simple and straightforward; in actual practice, there 

may be many function symbols in A, some of which we may need to replace by 

existential quantifiers and some which should not be thus replaced. This, then, 

explains why our unskolemization algorithm is nondeterministic. 

Consider an unknown formula B and some formula A which implies B. As 

explained above, Sk(A) 1\ Sk( ~B) is unsatisfiable. Therefore by the completeness 

of resolution, we can derive the empty clause from Sk(A) 1\ Sk( ~B). Now, B is 

unknown, and we want to derive it from Sk(A). It may not be possible to derive 

B from Sk(A) without using tautologies or unskolemization, as is demonstrated by 

the two following examples : 

(i) Suppose A= P, B = P V Q V R. 
Clearly A-+ B. 

But the only way to derive B from A by resolution is by resolving A with the 

tautology { ~P, P, Q, R}. However, the need for resolving with tautologies would 

increase the size of the search space tremendously, since there exist an infinite 

number of such tautologies. Thus the use of tautologies is best avoided. 

(ii) Suppose A= P(a), B = 3xP(x). Then B (or even Sk(B)) cannot be derived 

from A by resolution. Obtaining B from A requires replacing "a" by an existentially 

quantified variable, as was just shown above. 

In conclusion, although B can be derived by resolution and unskolemization 

from Sk(A) (by the completeness of the resolution principle), such a derivation 

entails the use of tautologies during the resolution process. Also, it is unclear how 

to handle the unskolemization without a formal algorithm for doing so. This is best 

illustrated by an example : 

Suppose A= lfxlfzP(x,f(a,x),z,g(z)), B = lfx3ylfz3wP(x,y,z,w). 

Clearly A -+ B. To obtain B from A, we need to replace the terms f( a, x) and 

g(z) in A by existentially quantified variables. Suppose J(a,x) and g(z) are replaced 

by existentially quantified variables x 1 and z1 respectively. The question remains 

about where to place the existential quantifiers 3x1 and 3z1 in the quantifier string 

for A. Since f(a,x) was replaced by x1, 3x1 should come after lfx (since a is a 

ground term, its presence as an argument of f is inconsequential); similarly, since 

g( z) was replaced by z1, 3z1 should come after If z. There are thus two choices for 

the unskolemized version of A, namely 

lfx3xllfz3zlP(x,x1 ,z,z1 ), and 
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Vz3z1 \;lx3x1P(x, x 1, z, z1 ), 

of which the former is the correct choice in this case. 

In order to address the above issues formally, we present an unskolemization 

algorithm. Suppose we have a formula H which implies W, where W is an unknown 

formula that we want to find. We shall show how to unskolemize a set of clauses 

V to give a family of formulas IC. Briefly, the objective of unskolemizing V is to 

replace function symbols of V which do not occur in W by existentially quantified 

variables, where V is a set of clauses derived from S k( H) by resolution. That is, if 

for some literal Djk in V, an argument d; of Djk is a function symbol which does 

not appear in W, then we will unskolemize the function symbol of d; during the 

unskolemization of the set of clauses V to get a family of new formulas IC. Thus any 

F E IC will contain a new existentially quantified variable in place of d;. Since W 
is unknown, this procedure will have to be carried out nondeterministically. This 

process will make the unskolemized formula "more general" than W (this term will 

be defined later). 

We will unskolemize V according to an algorithm given in the next section and 

obtain a family of formulas £. For each formula F E IC, where JC is a subset of C 
to be defined later, we will show that F is "more general" than W according to a 

definition given later. Also, we show that there exists F E IC such that F -+ W. We 

also show that H-+ F for all FE £;hence H-+ F -+ W. Finally, we will define a 

relation "::S" and show that F ::S W, and that { F I F ::S W} is finite up to variants 

under certain syntactic constraints. 

Note. The following algorithm makes use of the guarded command for conditional 

statements [Gries 81]. Briefly, the general form of a conditional statement is 

if B1 _, s1 

[] B2 _, s2 

where n :0:: 0 and each B; --+ S; is a guarded command. Each S; can be any 

statement. _The command is executed as follows. First, if any guard B; is not 

well-defined in the state in which execution begins, abortion may occur. Second, if 
none of the guards is true, then abortion occurs; and finally, if at least one guard 

is true, then one guarded command B; -+ S; with true guard B; is chosen and 

S; executed. Note that if more than one guard is true, then one of the guarded 

commands B; -+ S; with true guard B; is chosen arbitrarily and S; is executed. 

Thus the execution of such a statement can be nondeterministic. Notice that in 
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steps 2 and 3 of the following algorithm, two of the guards are identical. This 

serves as a convenient way of representing nondeterminism; the meaning here is 
that if the two identical guards are true in one of the steps, then one of the actions 

specified will be performed and this action will be picked arbitrarily from the two 

available actions. 

2.2.2 The unskolemization algorithm 

INPUT :A set "CLAUSES" of clauses to be unskolemized. 

Step 1. Make ik copies of every clause Ck of CLAUSES, where ik is some in-
teger (chosen nondeterministically ), and rename variables in all clauses so that 

no two clauses have any variable in common. Call the resulting set of clauses 

MULTIPLE_CLAUSES. 
Comment : In actual practice, for each k, we can try setting ik to 1, then to 2, 
then to 3, and so on. Eventually ik will become large enough. This is because it 

is possible to bound ik by the number of resolutions performed when deriving the 

empty clause from Sk(H A ~W). The reason for this is demonstrated in the proof 

of Theorem 2.1. 

Step 2. For every literal Lin every clause of NIULTIPLE_CLAUSES, process 

the arguments of Las follows. Suppose L = ±P(d1 ,d2, ... ,d8 ) (where± designates 

the sign of the literal L ). For i = 1 to s do 

if (d; is a term beginning with a Skolem function symbol)--> 

replace d; by X <- d;, for some variable X not occurring anywhere 

else in any other clause; 

[] ( d; is a term beginning with a non-Skolem function symbol) --> 

replace d; by X <- d;, for some variable X not occurring anywhere 

else in any other clause; 

[] ( d; is a term beginning with a non-Skolem function symbol) --> 

skip; 

[] ( d; is a term which begins with l).either a Skolem function symbol nor a 

non-Skolem function symbol) --> 

skip 

fi 

Call the resulting formula MARK. 

Step 3. For every pair of marked arguments "X <-- a", "Y <-- (3" in }.;[ARK do 

if a, f3 are unifiable --+ 

replace all occurrences of X and Y by a new variable Z; 
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[] a, f3 are unifiable --> 

skip; 

[] a, f3 are not unifiable --> 

skip 

fi 

If any two clauses become identical, drop one of them. 

Step 4. For every argument of the form "X <-- f(vb vz, ... , vr)" in MARK (where 

r?:1)do 

replace "X<-- f(vl,vz, ... ,vr)" by "X<-- f(yl,Yz, ... ,yn)", where Yb···,Yn are 

all the distinct variables occurring in v1, vz, ... , Vr. 

Comment : Note that we are not changing the arity of function symbols here. 

Dropping arguments is done purely for computational purposes and has no bearing 

on the arity of the function. 

Step 5. Add universal quantifiers for all the free variables at the head of the 

formula. 

Step 6. Unskolemize the remaining marked arguments of the formula as follows. 

Let A and C be two sets which are initially empty. Collect together all marked 

arguments with the same variable on the left-hand side of the "<--" sign. Suppose 

these are 

X+-- G't, X f- 0:'2, ... , X+- G:'n• 

Let Yl,yz, ... ,yr be all the variables occurring in a1,az, ... ,an. Then replace 

"x <-- a;", for 1 ~ i ~ n, everywhere by a new variable, say z, and add the r ordered 

pairs (y;, z) to C. If r = 0, then add z to the set A. 

Comment : C is the set of constraints on the ordering of new existential quantifiers, 

relative to universal quantifiers which were introduced in Step 5. The presence of an 

ordered pair (y;, z) inC signifies that ":lz" must come after "Vy;" in the quantifier 

string of the unskolemized formula. A is the set of existentially quantified variables 

which do not depend on any other variables and whose existential quantifiers can 

precede all the universal quantifiers of the unskolemized formula. 

Step 7. Complete the quantifier string of the unskolemized formula. From Step 5, 

we already have a partially constructed quantifier string. We complete this string 

using the sets A and C as follows : 

(i) Add ":lx" at the head of the partially completed quantifier string for every 

x E A (in any order). 

(ii) Gather all ordered pairs which have the same second component into groups 

and process each group as follows. Suppose the r ordered pairs (y;, z), 1 ~ i ~ r 

occur in one of these groups. Then add ":lz" to the quantifier string so that ":lz" 
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comes after "Vy;" for every i, 1 :::; i :::; r, rearranging the string as specified below if 

necessary. 
While performing the above steps, it is allowed to rearrange the order of any 

string of consecutive universal quantifiers and of any string of consecutive existential 

quantifiers, if desired. We will rearrange this order so that the resulting formula is 

as strong as possible. Rearrange these so that the constraints are satisfied optimally. 

By "optimally" we mean that iffor example the r ordered pairs (y;, z), 1 :::; i:::; rare 

all the ordered pairs which have the same second component z in C, then ":lz" is 

added to the quantifier string so that ":lz" comes after "Vy;" for every i, 1 :::; i :::; r; 
in addition, ":lz" must come after as few other universal quantifiers as possible. In 

other words, ":lz" must be placed as much to the front of the quantifier string as 

possible without violating the constraints of C. In case there is a choice involved, 

e.g. if C = { ( x, y), ( z, w)}, then there are two possible "optimal" quantifier strings, 

viz. "Vx3yVz:lw" and "Vz:lwVx:ly". In other words, there may be more than one 

way of rearranging the quantifiers optimally. • 

Notes 

1. Since the ordered pairs of C can be processed in any order, it is possible 

to obtain many different quantifier strings by using the above method. However, 

the relative order of the universal and existential quantifiers obtained at each step 

cannot be altered. 

2. The set C imposes a partial order on the existential and universal quantifiers 

of the formula; however, any first-order formula must have a total ordering on its 
existential and universal quantifiers. Many total orders may be constructed which 

satisfy the partial order imposed by the set C. We choose the orders which will 

make the resulting formula as strong as possible. 

It is thus possible to obtain many different formulas when unskolemizing a 

given set of clauses; in other words, given a set of clauses A, unsk( A) obtained by 

using this algorithm is not necessarily a singleton, where unsk( A) denotes the set 

of formulas obtained by unskolemizing A. We will however choose one such formula 

F such that H --> F --> W. The proof that F exists is given in the next section. 

Also, if some set of clauses A is unskolemized, then Sk( unsk(A)) is not necessarily 

equal to A. 

2.3 Analysis of the unskolemization algorithm 

In this section, a number of theorems are proved and certain concepts are 

defined. The theorems will serve to characterize the properties of formulas obtained 
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by unskolemizing a set of clauses using the unskolemization algorithm of the previous 

section. They will also be used to prove the soundness and completeness of an 

algorithm for deriving loop invariants in Chapter 3 and the soundness of a learning 

algorithm in Chapter 4. 

Lemma 2.1 Let H, vV be two first-order formulas such that H _, W. Then there 

exists a set T' of ground instances of clauses ofT= Sk( ~W), and there exists a set 

of clauses 1) derivable by resolution from S = Sk(H) such that for each clause D; 

of ~T', there exists a clause n: of 1) such that n: subsumes D; (i.e. there exists a 

substitution B; such that n:e, ~ D;). 

Proof : Let S = Sk(H), T = Sk(~W). Since H -> W, we know that S II T 

is unsatisfiable. Therefore by Herbrand's theorem, there exists a set T' of clauses 

which are ground instances of clauses of T such that S II T' is unsatisfiable; hence 

H -> ~T'. Express ~T' in conjunctive normal form as 

~T' = D1 II D2 II ... II Dn, say, where each D; is a disjunction of literals. 

Since H-> D1 II D2 II ... II Dn, we have 

H -> D; for all i, 1 ::0 i ::0 n. 

Here, D; is a ground clause and H -> D;, therefore S II ~D; is unsatisfiable 

and the empty clause can be derived by resolution from S II ~D;. Now, ~D; is 

a set of unit clauses. First perform any required resolutions among clauses of S. 
Then use the clauses from ~D;. Eacli resolution using a clause from ~D; has for 

effect the removal of a literal from some clause from Res(S), along with a possible 

instantiation. Therefore clearly we need to resolve the unit clauses of ~D; only 

against one clause from Res(S). But then this clause must subsumeD;. Therefore 

for each D;, there exists n: E Res( S), where Res( S) is the set of all possible 

resolvents of S, such that n: subsumes D; (i.e. there exists a substitution B; such 

that n:e; ~ D;). • 

Lemma 2.2 Using the notation of Lemma 2.1, (D~ II D~ II ... II D~) II T 1s 
unsatisfiable. 

Proof: Let 1) = D~ II D~ II ... II D~, ~T' = D 1 II D2 II ... II Dn. From Lemma 2.1, 

there exist substitutions 81,82, ... , Bn such that 

n:e; ~ D; for each i. 

Therefore 

n:e; -+ D; for all i (regarding free variables as universally quantified). 

Hence 

(D~ 81 II D~B2 II ... II D~Bn)-+ D1 II D2 II ... II Dn. 
Therefore 

(D~ 81 II D~B2 II ... II D~f1n) II ~(D! II Dz II ... II Dn) is unsatisfiable, therefore 
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(D~ 1\ D~ 1\ ••• 1\ D~) 1\ ..., (Dr 1\ D2 1\ .•. 1\ Dn) is also unsatisfiable (since the 

D;e;'s are instances of the D;'s ). 
i.e. (D~ 1\ D~ 1\ ••. 1\ D~) 1\ T' is unsatisfiable. 

Therefore (D~ 1\ D~ 1\ ... 1\ D~) 1\ Tis unsatisfiable (since T implies T') 
i.e. 1) 1\ T is unsatisfiable. • 

Example 2.1 Using the formulas H and W given at the end of Section 2.1, we 

have 

Sk(H) = {{Q(y),L(b,y)},{...,Q(g(a))},{L(g(a),a)},{R(x,g(a)),...,P(x,g(a))}, {..., 
R(w,z), ...,D(w,z)}} 
...,W = '<iu3v((...,L(b,u) V -,L(u,a) V P(v,u)) 1\ (...,L(b,u) V ...,L(u,a) V D(v,u)) 1\ 

(...,L(b,u) V ...,L(u,a) V ...,M(a))) 
T = Sk(...,W) = {{...,L(b,u),...,L(u,a),P(f(u),u)}, {...,L(b,u),...,L(u,a),D(f(u),u)}, 
{ ...,L(b, u), ...,L( u, a), ...,M(a)}}. 

In S k(..., W), f is a Skolem function replacing the existentially quantified vari­

able "v" of..., W. A set T' of clauses which are ground instances of clauses ofT such 

that S 1\ T' is unsatisfiable is : 

T' = {{...,L(b,g(a)),...,L(g(a),a),P(f(g(a)),g(a))}, 
{ ...,L(b, g( a)), ...,L(g( a), a), D(f(g( a)), g( a))}}. 

Therefore ...,T' = { {L(b,g(a))}, {L(g(a),a)}, {...,P(f(g(a)),g(a)), ...,D(f(g(a)), 
g(a))} }. 
Write 

Dr = L(b,g(a)), 
D2 = L(g(a),a), 
D3 = ...,P(f(g(a)),g(a)) V ...,D(!(g(a)),g(a)); 

then ...,T' =Dr 1\ D2 1\ D3. Also, 

H-+ Dr,H-+ D2,H-+ D3. 

The five clauses of Sk(H) are listed below : 

1. {Q(y),L(b,y)} 
2. { ...,Q(g( a))} 
3. {L(g(a),a)} 
4. {R(x,g(a)), ...,P(x,g(a))} 
5. {...,R(w,z),...,D(w,z)} 

Perform the following resolutions among these clauses to get the following 
clauses : 

6. {L(b,g(a))} 
7. {...,P(x,g(a)), ...,D(x,g(a))} 

from clauses 1 and 2 

from clauses 4 and 5. 
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The clauses DL n;, D~ E Res( S k( H)) which subsume D 1 , D2, and D 3 respectively 

are: 

Di = {L(b,g(a))} 
n; = {L(g(a),a)} 

D~ = {~P(x,g(a)),~D(x,g(a))} 

(clause 6 above), 

(clause 3 above), 

(clause 7 above). 

Here D 1 = Di, D2 = D;, D3 = D~83 , where 83 = {x <-- f(g(a))}. 

Note : 'D = Di II D~ II D~. Also note that 'D II Tis unsatisfiable. • 

Lemma 2.3 Using the same notation as in Lemmas 2.1 and 2.2, for any literal L 

of 'D, where L = ±P(d1 ,d2, ... , d,), say(± denotes the sign of L), there exists a 

literal M of W such that M = ±P(bl,b2,···,bs) (M has the same sign as L) and 
such that for each i, 1 :$ i :$ s, the following holds : 

(i) If d; is a Skolem function (with zero or more arguments), then b; is a 

variable which is existentially quantified in W. 

(ii) If d; is a non-Skolem function (with zero or more arguments), then one 

of the following holds : 

Proof: Let 

(a) b; is the same function symbol with the same number of arguments, 

and (i) and (ii) here hold recursively for each corresponding argument 

of d; and b;. 

(b) b; is an existentially quantified variable and the function symbol 

of d; (with the same arity as d;) appears in W. 

(c) b; is an existentially quantified variable in W and the function 
symbol of d; does not appear anywhere in W. 

'D = Di II D~ II ... II D~, where the n; 's are clauses, 

Dj = Dj1 V Dj2 V ... V D}i; for all 1 :$ j :$ n, where the Djk 's are literals, 

W = Qw (l!i.ll V2ll ... II Vm), where W is expressed in conjunctive normal form, 

the Vi's are disjunctions of literals, and Qw is the quantifier string of W; hence 

~w = (~Qw)(~Vi V ~V2 V ... V ~Vm)· Write 

(~Vi V ~ V2 V ... V ~ Vm) in conjunctive normal form; suppose 

(~Vl V ~V2 V ... V ~Vm) : (W{ II W~ II ... II W~). Let !7 be the substitution 

which replaces existentially quantified variables of ~ W by Skolem symbols to get 

Sk(~W), i.e. 

(~Vi v ~V2 v ... V ~Vm)!7 

= (W{ II W~ II ... II W~)!7 

= Sk(~W). 

Therefore S k( ~ W) = W{ !7 II W~ !7 II ... II W~ !7. 

Suppose W~ = W~1 V W~2 V ... V W~i•, 'i 1 :$ k :$ p. Then 
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W = Qw(V1 II Vz II ... II Vm) 

= Qw(~W{ v ~w~ v ... v ~w;) 
= Qw((~W{1 11 ~W{z 11 ... 11 W{j,) v (~W~1 11 ~W~2 11 ... 11 ~WL,) V ... V (~W;111 

~w;2 11 ... 11 ~w;jp)). 

Now, T' is a set of ground instances of clauses of S k( ~ W) (using the same 

notation as in the previous two lemmas), therefore 

T' = Wk, O"a! II wk,<7a2 II ... II WL O"am, where 1 ::; kj ::; p for each j such that 

1 ::; j ::; m, and where each a i instantiates the corresponding Wk
1 

o- into a ground 

clause. Therefore 

~T' = ~ W{, o-a1 V ~ Wk, o-a2 V ... V ~ Wk= o-am 

I<:;:?:ik· (~Wk1 O"a! V ~Wk' a o-a2 V ... V ~Wk' a O"am), 
- - • 1 a1 2 2 m. m 
1 :S;(:; m 

where each ki is such that 1 $ ki $ p. 

But recall that in Lemma 2.1, we had written 

~T' = D1 II D2 II ... II Dn, 

and had obtained the result that for each l such that 1 $ l $ n, there exists Bt 

such that n;et <;;: Dt. Hence 

l~·~~i., (~wk,., o-a1 V ~wk,a,o-a2 V ... V ~vVL.= o-am) = D1ll D2 11 ... 11 Dn. 
I<i<m 

Th~r~fore for each l such that 1 $ l $ n, there exists a clause ( ~ Wk, "' o-a1 V 

~wk,a,o-a2 V ... V ~wk=•= o-am), where 1 $ ai $ ikn 1 $ ki ::; p, 1 $ i $ m such 
that 

n;e1 <;;: Dt 

= {--, Wtat O"G'J'.., W£2a2 O'O:z, ... , .,Wkl71am O"Qm }. 

Therefore given any D;, there exists a substitution Bt such that n;et <;;: Dt, and 

this Dt can be written as a disjunction of some instances of literals of W. Now, 

Dj = {Dj1,Dj2, ... ,Dji
1 

}; therefore 

D}Bi = {Dj 1 Bj,Dj2 Bj, ... ,DjijBJ} ~ {..,Wk
1

a
1
aal,....,WLa

2
aaz, ... ,....,W~m.ama 

am}· 
This means that for each literal Djk of Dj, there exists a literal ~W£,., of W 

such that 

Djkei = ~w{,.,o-at 
where o- is the substitution which replaces existentially quantified variables of~ W 
by Skolem symbols to get Sk(~W) (i.e. ~Wo- = Sk(~W)), and a 1 is a substitution 

which makes ~W£,.,o-at a ground literal. Note that Wk,a,o- is basically nothing 

other than the literal against which the literal Djk is resolved during the derivation 

of the empty clause from 'D IISk( ~ W). Also note that since o- replaces all universally 
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quantified variables in W by new Skolem symbols, all the variables of ~wk,a,o- are 

existentially quantified in W. 

Now suppose Djk = ±P(d1 , d2 , ••• , d,) for some predicate P, where ± is the 

sign of the literal Djk; then 

~wk,a, = ±P(bl,bz, ... ,b,) and ~wk,.,o- = ±P(cl,cz, ... ,c,), say, for some 
arguments b;, c;, 1 :::; i :::; s, and the sign of these literals is the same as the sign of 

Djk. For any i such that 1 :::; i:::; s, if d; is a variable, b; could be anything. If d; is 

not a variable, then either of the following could hold : 

Case (i) : If d; is a Skolem symbol (with zero or more arguments), then (since b; 

cannot contain the same Skolem symbol) b; must be a variable. If this variable were 

universally quantified in W, then c; would be a new Skolem symbol and therefore 

could not unify with d;; hence b; must be an existentially quantified variable in W. 

Case (ii) : If d; is a function symbol (with zero or more arguments), then one of 

the following are possible : 

(a) b; is the same function symbol (with the same number of arguments). 

(b) b; is a variable and the function symbol of d; (with the same arity as d;) 

appears in W. By the same argument as in (i) above, b; must be existentially 

quantified in W. 
(c) b; is a variable and the function symbol of d; (with the same arity as d;) 

does not appear anywhere in JiV. By the same argument as in (i) above, b; must be 

existentially quantified in W. 
For Case (ii) (a), if the function symbol which is common to d; and b; has more 

than zero arguments, repeat the above analysis recursively for all these arguments 

(this analysis must eventually terminate since Djk and ~wk,a, are of finite length). 

Since every literal of D can be written as Djk for some 1 :::; j :::; n, 1 :::; k:::; ij, 

and since the corresponding ~ Wt "' is a literal of JiV (corresponding to !vi in the 

statement of the lemma), the lemma follows. • 

Example 2.2 Continuing with the results in Example 2.1, and using the notation 

of the previous lemmas, we illustrate the results in this section. We have, 

n; = {L(b,g(a))} = {D;d, 
D~ = {L(g(a),a)} = {D~1 }, 

n; = {~P(x,g(a)),~D(x,g(a))} = {D; 1 ,Db}. 

Now, ~W = 'v'u3v(( ~L(b, u) V ~L( u, a) V P( v, u)) /1 ( ~L(b, u) V ~L(u, a) V D( v, u)) /1 

(~L(b,u) v~L(u,a) V ~M(a))). a- replaced the existentially quantified variable v 
in ~w by f(u); therefore a-= {v <-- f(u)}. We write 

~ w = 'v'u3v(w; /1 w~ /1 wn 
= 'v'u3v((W{ 1 V W{ 2 V W{ 3 ) II (W~1 V W~2 V W~3 ) II (W~1 V W~2 V W~3 )), where 
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W{1 = ~L(b,u) 

W{ 2 = ~L(u,a) 

W{ 3 = P(v,u) 

W~1 = ~L(b,u) 
W~2 = ~L(u,a) 
W~3 = D(v,u) 

w;1 = ~L(b,u) 
w;2 = ~L(u,a) 
W; 3 = ~M(a) 

and Sk( ~W) = (W{1 o- V W{2 o- V W{3a) II (W~ 1 o- V W~2 o- V W~3 o-) II (W;1 o- V W;2o- V 

w;3a). 

Recall that 

T' = {{~L(b,g(a)),~L(g(a),a),P(f(g(a)),g(a))}, 

{ ~L(b, g( a)), ~L(g( a), a), D(f(g( a)), g( a))}} 
= W{ o-a1 II Wka1 

where a 1 is the substitution { u <--- g( a)} which transforms clauses of T into ground 

clauses in T'. Therefore 

~T' = ~W{aa1 v ~w~o-a1 
= (~W{1 o-al II ~W{2o-al II ~W{3o-a1) V (~W~1 o-al II ~W~2o-a1 II ~W~3o-a!) 

= (~W{1 o-al v~W~1 o-ai)II(~W{1 o-ai v~W~2 o-ai)II(~W{ 1 o-al v~W~3 o-a!)ll 
(~W{2o-a1 V ~w~1 o-a1) II (~W{2o-al V ~W~2o-ai) II (~W{2 o-al V ~W~3o-a!)ll 
( ~ W{3o-a1 V ~W~1 o-a1) II ( ~ W{3o-a1 V ~ W~2o-a!) II ( ~ W{3o-a1 V ~ W~3o-a1) 

= L(b,g(a)) II L(g(a),a) II (~P(f(g(a)),g(a)) V ~D(f(g(a)),g(a))) 

(which is what we had obtained before for ~T'). Also, 

~T' = D~ II D2 II n;e3. 
So we have, 

D~ 1 = ~ W{1 o-a1 

n;l = ~ W{zO"Uj 
n;1e3 = ~W{3 o-a1; D'32 B3 = ~w~3 o-a1. 

We now perform the case analysis as in Lemma 2.3 for eac!J literal of D : 

•D~ 1 = L(b,g(a)) = ~W{1 o-a1 
~W{1 = L(b,u). 

For the first argument of D~ 1 , which is "b", case (ii) (a) applies. 

For the second argument of D~ 1 , which is "g(a)", case (ii) (c) applies. 

•Db = L(g(a),a) = ~W{2o-a 1 
~W{2 = L(u,a). 

For the first argument of D21 , which is "g( a)", case (ii) (c) applies. 

For the second argument of D21 , which is "a", case (ii) (a) applies. 

eD;1e3 = ~P(x,g(a))B3 = ~W{3 o-al 
~W{3 = ~P(v,u). 

For the first argument of n; 1 , which is "x", neither case (i) nor case (ii) applies, 

since x is a variable. 
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For the second argument of D;u which is "g( a)", case (ii) (c) applies. 

•D;2 e3 = ~D(x,g(a))BJ = ~Wi3 o-a1 
~Wi3 = ~D(v,u). 

For the first argument of D;2 , which is "x", neither case (i) nor case (ii) applies, 

since x is a variable. 

For the second argument of D;2 , which is "g(a)", case (ii) (c) applies. 

This concludes the case analysis for the formula 'D. • 

The following theorem shows that by unskolemizing the set of clauses 'D men­

tioned in Lemma 2.3, and Skolemizing any formula F obtained by this unskolem­

ization, we can prove that the case analysis of Lemma 2.3 holds, with the difference 

that case (ii) (c) will never arise. 

Theorem 2.1 Using the same notation as in the previous lemmas, given the set 

of clauses 'D, the unskolemization algorithm can yield a family of formulas K. such 

that for any F E K., if we Skolemize F, then for any literal L of Sk(F), where 

L = ±P(d1 , d2 , •.• ,d.), say(± denotes the sign of L), there exists a literal M of W 
such that M = ±P( br, b2, ... , b,) ( M has the same sign as L) and such that for each 

i, 1 ::; i ::; s, the following holds : 

(i) If d; is a Skolem function (with zero or more arguments), then b; is a 

variable which is existentially quantified in W. 

(ii) If d; is a non-Skolem function (with zero or more arguments), then 

one of the following holds : 

(a) b; is the same function symbol with the same number of arguments, 

and (i) and (ii) here hold recursively for each corresponding argument 

of d; and b;. 

(b) b; is an existentially quantified variable and the function symbol 

of d; (with the same arity as d;) appears in W. 

Proof: We prove this theorem by showing that by making some of the nondeter­

ministic choices in the unskolemization algorithm judiciously, a family of formulas 

K. can be produced by the unskolemization algorithm such that for every F E K., 
the statement of the theorem is true. 

Using the same notation as before, we have, 'D = D; II D~ II ... II D~. As 

before, for 1::; j::; n, we write Dj = {Dj 10 Dj2 , ... , Dj;)- Now, 'D IISk(~W) is 

unsatisfiable, and in Lemma 2.3, we discussed the relationship between any literal 

Djk in 'D and the corresponding literal ~wt., in W which has the property that 

DjkBi = ~Wt.,<mt. 
We also remarked that Wt.,o- is the literal in Sk(~W) against which Djk is 

resolved in the derivation of the empty clause from 'D IISk( ~ W). 
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We now show that there is a way of making the nondeterministic choices in 

Steps 1, 2, and 3 of the unskolemization algorithm such that the properties described 

in the statement of the theorem will hold. Now, for any clause C in D, multiple 

instances of C could be used during the derivation of the empty clause from D 
ASk(~ W). If k instances of C are used, then we make k copies of the clause C in 

Step 1. It is clear that if the number of resolutions performed to derive the empty 

clause from Sk(H A ~W) is r, then not more than r copies of any one clause are 

required. After this is done for all clauses of D, the variables in every clause are 

renamed so that no two clauses have any variable in common, as specified in Step 

1. 

Now, for every literal Djk of every clause of D we do the following : as in 

Lemma 2.3, suppose Djk = ±P( d1 , d2 , ••• ,d.); we find the corresponding literal 

~w£,., in W such that ~wt., = ±P(b1 , b2, ... ,b.) (~W£,., has the same sign as 

Djk) and Dj/Ji = ~w£,.,aal as we described in Lemma 2.3. 

Note that any clause can be used only once for a resolution, since if a clause is 

needed for k resolutions, then k copies of it were made as described above. 

For every i such that 1 :S: i :S: s, consider d; and b;. If either case (i) of Lemma 

2.3 holds (i.e. if d; is a Skolem symbol) or if case (ii)( c) holds, (i.e. if d; is a non­

Skolem function symbol not occurring in W and b; is a variable), then in Step 2 

of the algorithm, we replace the argument d; by the argument b; +- d; and we say 

that this argument of Djk has been marked. If d; is a variable, then we replace 

the argument d; by the argument "b; '--+ d;'' and call this argument marked too. 

(Note that this symbol "'--+" has nothing to do with the implication sign "-->".) The 

marking symbol "<--t" has been introduced here to guide Step 3 of the algorithm. 

After this process has been completed, we have obtained a new formula MARK 

= D~ ADg A ... AD~, where D;' is the same as D; except that zero or more arguments 

of literals of n: are mar ked in n:'. 
We now describe how Step 3 is performed. Consider in groups all marked 

arguments of the form "a; '--+ x", each group containing all such marked arguments 

with the same variable x on the right-hand side of the "'--+" sign. Suppose a 1 '--t x, 

"'2 <---> x, ... , an '--+ x are all the marked arguments with x on the right-hand side 

of the "'--+" sign. Consider the set B = { a1, a2, ... , an}· This set contains terms 

which, during the resolution process, unify with x or with whatever x has been 

instantiated to so far, and any two terms in this set can be unified with each other. 

B can contain variables and function/Skolem symbols. Let B = VAR U FUNC, 

where VAR is the set of variables in B, and FUN C is B- VAR. First we choose one 

element of VAR, say YI (if VAR is non-empty), and replace all the other variables 

of VAR by YI everywhere in the formula MARK. Now consider FUNC. From our 
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remarks above, since any two elements of FUNC are unifiable, every element of 

FUNC must be the same function or Skolem symbol/, say, with the same number, 

say k, of arguments, for some k :::: 0. Let 
ARG; = {ith argument of z I z E FUNC }, for 1::; i::; k. 

Repeat the above process (which was performed for the set B) for each of the k sets 

ARG1,ARG2 , ••• , ARGk. 

Note that this is not really unification, since variables are not being replaced by 

the terms with which they unify. We are just unifying all the variables by replacing 

them by the same variable name. 

After this has been done for all the marked arguments of this form, drop the 

"<->" signs from the modified formula MARK as well as the elements on the left­

hand side of the "<->" signs. If any two clauses of MARK are now identical, one of 

them can be dropped. This shows how we can choose which variables to unify in 

marked arguments in Step 3 of the algorithm. 

Now perform Steps 4, 5, 6, 7 of the algorithm, and let the set of formulas 

obtained be K. For every F belonging to the set of formulas K, consider the set of 

clauses Sk(F). Sk(F) is a set of clauses which is the same as T!, except that : 

(1) Some arguments of literals of clauses ofT! have been replaced by Skolem 

functions (this is true if and only if the corresponding argument in T! was 

a "marked" function symbol during Step 2), and 

(2) There may be more than one copy of certain clauses ofT! (since multiple 

copies of some clauses ofT! were made during Step 1), each of which is 

possibly altered as mentioned in ( 1) above. 

Now, by Lemma 2.3, for any literal LofT!, where L = ±P(d1,d2, ... ,d.), say(± 

denotes the sign of L), there exists a literal M of W such that M = ±P(b!, bz, ... ,b.) 
( M has the same sign as L) and such that for each i, 1 ::; i ::; s, the following holds : 

(i) If d; is a Skolem function (with zero or more arguments), then b; is a 

variable which is existentially quantified in W. 
(ii) If d; is a non-Skolem function (with zero or more arguments), then 

one of the following holds : 

(a) b; is the same function symbol with the same number of arguments, 

and (i) and (ii) here hold recursively for each corresponding argument 

of d; and b;. 

(b) b; is an existentially quantified variable and the function symbol 

of d; (with the same arity as d;) appears in W. 

(c) b; is an existentially quantified variable and the function symbol 

of d; does not appear anywhere in W. 

But note that during the marking process described for Steps 1 and 2, we 
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marked for unskolemization all arguments which fall under category (ii)(c) above. 

Therefore in F, all such arguments became existentially quantified variables; and 

therefore in Sk(F), these variables became new Skolem functions, which fall under 

category (i) above. Hence in Sk(F), no argument d; can belong to category (ii)(c), 

since all arguments of 'D falling in category (ii)( c) were unskolemized. Hence all 

arguments of Sk(F) belong to categories (i), (ii)(a) or (ii)(b) of Lemma 2.3, and 

our theorem is proved. • 

Motivated by the result of Theorem 2.1, we now introduce two definitions. 

Definition. A formula F is more general than a formula W if the following condi­

tions are satisfied. Suppose we write F and W in prenex-conjunctive normal form 

so that 

F = QF ((Fn V F12 V ... V FJ;,)A(Fn V F22 V ... V Fz;,)A ... A(Fnl V Fnz V ... V Fn;.)) 

and 

W = Qw ((Wn V W12 V ... V Wlu,) A (W21 V Wzz V ... V Wzu,) A ... A (Wml V 

Wm2 V ··· V Wmu=)), 
where QF, Q w are the quantifier strings of the formulas F and W respectively. 

Then for every disjunction ( Fp1 V Fp2 V ... V Fp;,) of F, where 1 $ p $ n, there is a 

set of literals {Wj,k, Wj,k, ... , vVj1k.} of W, where 1 ::; j; ::; m, 1 ::; k; ::; Uj., such 

that given 1 ::; r ::; ip, there exists 1 ::; s $ l such that the following relationship 

holds between Fpr and Wj, k, : 

Suppose Fpr = ±P(a1,az, ... ,a,), where± denotes the sign of Fpr· Then 

Wj,k, = ±P(bJ,bz, ... ,bt) (Wj,k, has the same sign as Fpr), and for every k such 
that 1 ::; k ::; t, 

(i) If ak is an existentially quantified variable, then so is bk. 

(ii) If ak is a function symbol with u arguments e1, ez, ... , eu, then either 

(a) bk is the same function symbol with the same number of arguments, 

say /J,fz, ... ,Ju, and conditions (i) and (ii) hold for every pair of argu­

ments e; and /;, 1 ::; i $ u, or 

(b) bk is an existentially quantified variable and ak is a function symbol 
which occurs in W. 

The above definition may seem confusing at first; the following discussion may 

help to explain intuitively why the term "more general than" has been defined in 

this way. As we shall see in Theorem 2.5, the number of formulas more general than 

a given formula is finite under certain elementary syntactic constraints. The reason 

we want this to be true is the following. Recall that the problem being solved is 

that we are given a formula H which implies some (unknown) formula W, and we 

are trying to derive a logical consequence F of H such that 
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H __,. F __,. W. 

Now, some additional constraint must be placed on F, since otherwise we could 

simply take F = H. We want F to be "close" to W, in some sense. One way 

to ensure this is to define some constraint on F so that only a finite number of 

formulas satisfy this constraint. Thus only a finite number of formulas F satisfying 

this constraint and such that H --> F --> W can be derived. This is the reason for 

defining the "more general then" term above. 

The definition itself can be explained by the following simple example. Suppose 

we have H; = P(a;) and W = 3xP(x). Clearly H; --> W for all values of i. Thus 

there are an infinite number of H;'s which imply W. Now suppose we require that 

any function symbol appearing in F, where F satisfies H --> F --> W, also appear 

in W. Then clearly we cannot have F = H; for any i (since none of the a;'s 

appear in W); also, there will exist only a finite number of such F's if we do not 

allow unnecessary redundancy in F (the exact nature of this redundancy is stated 

in Theorem 2.5). The way F will be obtained from H;, then, is by unskolemizing 

the (non-Skolem) function symbol a;, and replacing it by an existentially quantified 

variable, yielding F = 3xP(x). The definition of "more general than" given above 

does not allow function symbols which do not appear in W to appear in F if F is 

more general than W. 

Definition. Let F, W be two first-order formulas. We say that F ~ W if and only 

if 

(i) F is more general than W 

(ii) F __,. W. 

Corollary to Theorem 2.1 For every F E JC, F is more general than W. 

Proof : Let us write F and W in conjunctive normal form as 

F = QF ((Fu V Fr2 V ... V H;,)i\ (Fn V F22 V ... V F2;,) t\ ... t\ (Fnr V Fn2 V ... V Fn;.)) 
and 

W = Qw((Wu V W12 V ... V Wrj,) t\ (W2r V Wn V ... V W2j,) t\ ... t\ (Wmr V 

Wm2 V ••• V Wmjm)), 

where QF, Q w are the quantifier strings of the formulas F and W respectively. 

Let p be a substitution which replaces existentially quantified variables of F 

by Skolem functions to obtain Sk(F). Then Sk(F) consists of the following set of 
clauses : 

Sk(F) ={ {Fup, Fr2p, ... , Fli,P }, {F21P, F22p, ... F2;,p }, ... , {FnrP, Fn2P, ... Fn;.p} }. 
Consider any disjunction Fp1 V Fp2 V ... V Fp;p of F, and consider the cor-

responding clause {Fprp,Fp2P, ... , Fp;Pp } of Sk(F). Take any literal FprP = 
±P(dr, d2, ... , d,), say, of this clause(± denotes the sign of FprP); then by Theorem 
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2.1, there exists a literal M of W such that M = ±P(b!, b2, ... , bt) (M has the same 

sign as FprP) and such that for all i, 1 ::; i ::; t, the following holds : 

(i) If d; is a Skolem function (with zero or more arguments), then b; is a 

variable which is existentially quantified in W. 
(ii) If d; is a non-Skolem function (with zero or more arguments), then 

one of the following holds : 

(a) b; is the same function symbol with the same number of arguments, 

and (i) and (ii) here hold recursively for each corresponding argument 

of d; and b;. 
(b) b; is an existentially quantified variable and the function symbol 

of d; (with the same arity as d;) appears in W. 

Now suppose Fpr = ±P(a!, a2, ... , at) (Fpr obviously has the same sign as Fprp). 
If case (i) above holds ford;, then a; must be an existentially quantified variable in 

F. 
Since the above is true for every literal of the disjunction Fp 1 V Fp2 V ... V Fpip ofF, 

we can obtain a setS of literals of W such that conditions (i) and (ii) in the definition 

of "more general than" hold for corresponding literals of (Fp1 V Fp2 V ... V Fp;p) and 

S; thus by definition, F is more general than W. • 

Example 2.3 We continue working where we had left off in Example 2.2. The 

formula D which we obtained will now be unskolemized according to the algorithm 
just presented. 

Let us reiterate that the formula W is not normally available to us when we 

are unskolemizing D. The choices which we make here based on properties of W 
will have to be made nondeterministically by the algorithm. We are using W here 

to show that there exist choices which will result in the derivation of a formula F 
with the desired properties. 

We list the clauses of D below. Note that two of the clauses of Dare repeated 

twice. This is because each of these clauses is required to be used twice during the 

resolution which follows. 

1. {L(b,g(a))} 
2. { L(b, g( a))} 
3. {L(g(a), a)} 
4. {L(g(a), a)} 
5. {~P(x,g(a)), ~D(x,g(a))}. 

The clauses of Sk( ~ W) are given below. The variables have been renamed so 

that the two clauses do not share variables. 

6. {~L(b,u),~L(u,a),P(f(u),u)} 
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7. {~L(b,w),~L(w,a),D(f(w),w)} 
8. {~L(b,z),~L(z,a),~M(a)} 

The derivation of the empty clause from 1J 1\ Sk( ~ W) proceeds as follows : 

9. {~L(g(a),a),D(f(g(a)),g(a))} 

10. {~L(g(a),a),P(f(g(a)),g(a))} 

11. {D(f(g(a)),g(a))} 

12. {P(f(g(a)),g(a))} 

13. { ~P(f(g( a)), g( a))} 
14. { } 

from clauses 1 and 7 

from clauses 2 and 6 

from clauses 3 and 9 

from clauses 4 and 10 

from clauses 5 and 11 

from clauses 12 and 13. 

From the above resolutions, following the marking method sketched in the 

proof of Theorem 2.1, we can write the marked formula MARK as consisting of the 

following five clauses (refer to the case analysis performed in Example 2.2) : 

1'. {L(b,w <-- g(a))} 

2'. {L(b,u <-- g(a))} 
3'. {L(w <-- g(a),a)} 

4'. {L(u <-- g(a),a)} 

5'. {~P(f(u) '--> x,u <-- g(a)),~D(f(w) '--> x,w <-- g(a))}. 

We now perform the unskolemization algorithm step by step. 

INPUT : The set of three clauses listed below : 

1. {L(b,g(a))} 

2. {L(g(a), a)} 

3. {~P(x,g(a)),~D(x,g(a))}. 

Step 1 : Make two copies of the clause {L(b, g(a))}; make two copies of the clause 

{L(g(a), a)}; and make one copy of the clause { ~P(x, g(a)), ~D(x, g(a))}. We now 

have the set of clauses MU LTIP LE_CLA.U SES consisting of the following five 

clauses : 

1. {L(b,g(a))} 

2. {L(b,g(a))} 

3. {L(g(a),a)} 

4. {L(g(a),a)} 

5. {~P(x,g(a)),~D(x,g(a))}. 

Step 2: Mark certain arguments of MULTIPLE_CLAUSES as follows and get 

a new set of clauses MARK : 

1'. {L(b,w1 <-- g(a))} 
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2'. {L(b,u1 <-- g(a))} 
3'. {L(wz <-- g(a),a)} 
4'. {L(uz <- g(a),a)} 
5'. {~P(x,u3 <- g(a)),..,D(x,w3 <-- g(a))}. 

Step 3 : Replace the six variables u1 , Uz, u3, w1 , Wz and W3 by the new variable Z. 

MARK now consists of the five clauses : 

1'. {L(b, Z <-- g(a))} 
2'. {L(b, Z +- g(a))} 
3'. {L(Z <-- g(a),a)} 
4'. {L(Z <-- g(a),a)} 
5'. { ~P(x, Z <-- g( a)), ~D(x, Z <-- g(a))}. 

Since the clauses 1' and 2' are identical, and so are the clauses 3' and 4', we 

can drop clauses 2' and 4'. MARK now consists of the three clauses : 

1'. {L(b,Z <-- g(a))} 
3'. {L(Z +- g(a),a)} 
5'. {..,P(x,Z <-- g(a)),-,D(x,Z <-- g(a))}. 

Step 4 : The function "g" in MARK has one argument "a" and no variable argu­

ments, therefore we drop the argument "a" and write MARK as : 

1'. {L(b, Z <--g)} 
3'. {L(Z <-- g,a)} 
5'. {..,P(x,Z <-- g),..,D(x,Z <--g)}. 

Step 5 : We add a universal quantifier for the variable x and get 

MARK= Vx(L(b, Z <--g) II L(Z <-- g, a) II (..,P(x, Z <--g) V ..,D(x, Z <-g))). 

Step 6 : We have to replace the marked argument "Z <-- g" by a new existentially 
quantified variable, say y. The function g has zero arguments, therefore we add y 

to the set A. We get, 

MARK= Vx(L(b,y) II L(y,a) II (..,P(x,y) V ..,D(x,y))). 
and A= {y}. 

Step 7 : We complete the quantifier string of the formula. Since C = 0 and A = 

{y}, there is only one way of completing the quantifier string of the formula. We 
call the resulting unskolemized formula F; 

F = 3yVx(L(b,y) II L(y,a) II (~P(x,y) V ..,D(x,y))). 

It can easily be verified that F is more general than W and that H --+ F --+ W, 
hence F ::S W. • 

Discussion. Recall that for the above example, 
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H = VxVyVzVw((Q(y) V L(b,y)) II ~Q(g(a)) II L(b,g(a)) II (R(x,g(a)) V ~P(x, 

g(a))) II(~R(w,z) V ~D(w,z)), and 

W = 3uVv(L(b, u) /1 L(u, a) /1 ( ~P(v, u) V ~D(v, u) V M(a))) 

and we obtained F = 3yVx(L(b, y) /1 L(y, a) /1 ( ~P(x, y) V ~D(x, y))) by resolution 

from Sk(H) and then unskolemization. W and F are almost identical (up to vari­

ants) except that the last disjunction of liV has one more literal (viz. M( a)). It 
is not possible to get a formula F by resolution and unskolemization from Sk(H) 
which is identical to W up to variants without using tautologies. This is because 

the predicate symbol "M" does not even occur in H, and therefore to introduce it 

into a clause derived from Sk(H) by resolution, the use of a tautology containing 

the predicate symbol "M" and its negation would be required. 

Also note that without the use of our unskolemization algorithm, it would not 

have been possible to introduce the existential quantifier "3y" above in F. 

Thus we see that it is not always possible to obtain W from H by resolu­

tion without the use of tautologies and without unskolemization. Since the use of 

tautologies in resolution is undesirable (due to the tremendous increase in search 

space which it would entail), we do not try to derive W from H, but instead settle 

for a formula F derived from H by resolution and unskolemization, which has the 

property that 

F:j W. 

The theorems in this section serve to show that our unskolemization can indeed 

produce such a formula. 

Theorem 2.2 For every FE C, Ti -> F, where free variables inTi are regarded as 

universally quantified and where C is the family of formulas obtained by unskolem­

izing the set of clauses Ti according to the unskolemization algorithm. 

Proof : Let M be a model for Ti with domain D (regarding free variables as 

universally quantified in D), and let FE C. We show that M is also a model for F. 

Now, 'D and F differ in that all Skolem functions which are arguments of pred­

icates inTi are replaced by existentially quantified variables in F, and in that some 

functions which are arguments of predicates in Ti and which are marked during the 

marking process of Step 2 are replaced by existentially quantified variables in F. 

Also, F may contain several copies of some clauses of Ti. Suppose f(v1 , v2 , ... , vm) 

is a function in 'D which is marked as "z <- f(v 1 , v2 , ... , vm) in Step 2 of the algo­

rithm and is replaced by the existentially quantified variable z in F, and suppose 

Xr,x2, ... ,xn are all the (distinct) variables which occur in v1 ,v2, ... ,vm. Then, by 

the unskolemization process we used, "3z" comes after "Vx1", "Vx2", ... , "Vxn" in 

the quantifier string of F. 
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Now, the modellvf assigns an element d of the domain D of M to the function 

f(v1 , v2 , ••• , vm)· This element d depends on the mapping assigned to fin M, and 

on the values of the arguments Vt. Vz, ... , vm, which in turn depend on the variables 

x 1 , x2 , ... , Xn and on the constant and function symbols occurring in Vt, v2, ... , Vm. 

Thus, given the values for variables x 1 , x 2 , .•• , Xn, there exists an element d of the 

domain D such that when dis used in place of f(v1, v2, ... , vm) in the formula D, the 

formula Dis true. But then this means that if we do the above for all such functions 

in D which are replaced by existentially quantified variables in F, these elements 

"d:' can be used in place of the corresponding existentially quantified variables "z" 
in F and will result in the formula F being true under interpretation M (since 

each such existentially quantified variable z depends on the universally quantified 

variables x1 ,xz, ... ,Xn in F, and possibly some others). Hence M is also a model 

for F, and therefore D-> F. • 

Corollary to Theorem 2.2 For every F E C, H ->F. 

Proof: Recall that Dis a set of clauses derived by resolution from Sk(H); therefore 

Sk(H) -> D (where free variables are regarded as universally quantified), 

hence 

hence 
Sk(H) -> F (since D-> F from Theorem 2.2), 

H-> unsk(F) = F; and so 
H-.F. 

This is true for any F E C, and therefore the corollary is proved. • 

Theorem 2.3 For any formula A, there is a way of marking Sk(A) so that the 

formula produced by the unskolemization algorithm will be A. 

Proof: Consider the set of clauses Sk(A). We mark the terms of Sk(A) as follows: 

replace all occurrences of a Skolem function f by "x f +- f", x f being a new variable 

not occurring elsewhere in Sk(A). This is done for all Skolem functions f. Then 

unskolemize this marked set of clauses using the unskolemization algorithm. The 

algorithm will produce A (or a formula equivalent to A) as its only output, since 

there is only one optimal way of ordering the quantifiers of the resulting formula. • 

The following theorem shows that using our unskolemization algorithm as de­

scribed, the algorithm will produce at least one formula F such that F-. W. 

Theorem 2.4 There exists F E IC such that F -> W, where IC is the family of 

formulas defined in Theorem 2.1. 

Proof: Let FE /C; we write Fin prenex-conjunctive normal form so that 

F = QF(Af II A2 II ... II A::,) (here QF is the quantifier string of F). 
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Recall that 

V = D~ II D~ II ... II D~, 

where 

Dj = { Dj1 , Dj2 , ••• , D};; } for each j such that 1 ~ j ~ n. 

Let Aj = Aj1 V Aj2 V ... V Aj;; for each j such that 1 ~ j ~ m. 

Let p be the substitution which replaces existentially quantified variables of F 

by Skolem functions to get Sk(F); i.e. Fp = Sk(F), and letting 

Sk(F) =((Au VA12 V ... VAii,)!I(An VA22 V ... VA2;,)11 ... /I(Amt VAm2 V ... VAm;m)), 
we have 

Ajk = AjkP for all j, k such that 1 ~ j ~ m, 1 ~ k ~ ij. 

Now, V /1 Tis unsatisfiable (recall that T = Sk(~W)), and in Lemma 2.1 we 

found a set of ground clauses T' such that V II T' is unsatisfiable. Then we looked 

at every literal Djk in V and found the corresponding literal, say L, in Sk(~W) 

against which Djk was resolved during the derivation of the empty clause from D 

/1 T (see proof of Lemma 2.3). Then for every argument which was a function 

symbol in the literal Djk and did not occur in W, and which was unified with a 

variable in the literal L, we "marked" this function argument, and unskolemized it 

so that every formula F inK (the family of unskolemized formulas resulting from 

D) had an existentially quantified variable in that position (see proof of Theorem 

2.1). 

For any F E K, V and F are formulas which are identical in structure; the 

only difference is that some functions and all Skolem functions of D are replaced 

by existentially quantified variables in F, and that F may contain several copies of 

some clauses of D. Two functions were replaced by the same existentially quantified 

variable if and only if the two functions unified with the same variable during the 

derivation of the empty clause from D !IS k( ~ W), or if the functions unified with 

two variables which unified with each other during the course of the derivation of 

the empty clause from D II T. 

Therefore the only difference between D and Sk(F) is that all Skolem functions 

of V are replaced by Skolem functions in Sk(F) with possibly different arguments; 

and those functions of D which are resolved against variables in literals of S k( ~ W) 
and which do not occur in Ware replaced by Skolem functions in Sk(F). Since any 

n functions in D which resolved against the same variable in T, or which resolved 

against some variables in T which unified with each other during the course of the 

resolution, were replaced by the same existentially quantified variable in F, the 

Skolem function replacing that variable in S k( F) will be the same for all n of these 

argument positions, and therefore they can all still be resolved against the same 

variables in T against which they were resolved during the course of the derivation 
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of the empty clause from 1) II T. 
So all we need to do here is to show that there exists some F E K such that the 

empty clause can be derived from Sk(F) II T by using exactly the same sequence of 

resolutions which was used to derive the empty clause from 1J II T. We do this by 

showing that there is a certain order in which we can process the set of constraints 

C for 1) (which is done in Step 7 of the unskolemization algorithm) which will give 

the resulting formula F the property that Sk(F) II Tis unsatisfiable. 

In Lemma 2.3, for every literal Djk of 1) we had found a literal ~W£,., of W 
such that 

DjkBi = ~w;,,.,aat. 
Let the corresponding literal in Sk(F) be Ajk· 

Let Djk = P( d1, d2, ... , d.), 

~w;,,., =P(b1,b2, ... ,b,), 

Ajk = P(a1 ,a2, ... ,a,) (without loss of generality we have assumed that all 

three literals here are positive; the same result can easily be seen to hold if all three 

literals are negative). 

Consider any constraint (y, z) in C, where z is a variable in F which was 

replaced by a Skolem function, say a;, in Ajk· We will show that this constraint 

must also hold in W for the arguments with which y and z unify in Sk( ~ W), if 

these arguments are universally and existentially quantified respectively in W; in 

other words, the existential quantifier for the variable in W unifying with z must 

come after the universal quantifier for the variable in W unifying withy. Now, a; 

is a function containing y as an argument, say a; = g(y, other arguments). Either 

y appears elsewhere in Ajk, or it doesn't. If it doesn't, then we don't need to worry 

about the constraint (y, z) since it is not relevant for this particular literal. If it 

does, then suppose aj contains y. Now consider b; and bj. Since a; is a Skolem 

function, b; must be an existentially quantified variable, say b; = v, in W. Since 

aj contains y, bj contains a term, say u, which unifies with y; u could either be 

a universally quantified variable, an existentially quantified variable, or a function 

symbol. If one of the latter two is true, we need not worry about it; if the first of 

these is true, i.e. if u is a universally quantified variable, then we must show that 

the constraint that Vu must precede 3v in the quantifier string of W holds for W. 

Suppose it doesn't. Then in ~w, "3u" comes after "Vv" in the quantifier string 

for ~w. Therefore a assigns a Skolem function, say fJ, to u which contains v as an 

argument (recall that ~Wa = Sk(~W)); say the assignment is: u <- fJ(v, other 

arguments). The substitution a leaves v unchanged, since v is universally quantified 
in ~w. 

Now, DjkBi = ~w1,k,aat. 
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Therefore yBj = (3(v, other arguments) az 

and g(y, other arguments) Bj = vaz. 

But this means that y unifies with (3( v, other arguments) and v unifies with g(y, 

other arguments). From this we see that y gets unified with a term containing y, 

which is a contradiction since such a unification cannot succeed due to occur check. 

Hence our assumption must be wrong, i.e. the quantifier "Vu" must precede 

"3v" in the quantifier string for W. 
We have shown that any constraint (y, z) in C must hold for the corresponding 

arguments in W, if the arguments u and v (say) corresponding to y and z are 

universally and existentially quantified respectively. 

Now, we have the freedom to process the members of the constraints set C 

in any order we wish. Process them in the order which will make the order and 

position of the newly inserted existential quantifiers in the quantifier string ofF the 

same as in the quantifier string of W, relative to the universal quantifiers which are 

already present in the partially completed quantifier string of F. Name the formula 

constructed in this way "F"; then F -+ W. • 

Corollary to Theorem 2.4: There exists F E JC such that F ::5 W. 

Proof: From the Corollary to Theorem 2.1, Theorem 2.4, and the definition of 

::5 .• 

Theorem 2.5 {F I F ::5 W} is finite up to variants, assuming that ifF is written 

in conjunctive normal form, then no two disjunctions of F are identical, and no 

disjunction of F contains more than one occurrence of the same literal. 

Proof : We show that the set {F I F is more general than W} is finite up to 

variants subject to the above condition, namely that ifF is written in conjunctive 

normal form, then no two disjunctions of F are identical, and no disjunction of F 

contains more than one occurrence of the same literal. Suppose a formula W is 

given, and suppose F is a formula which is more general than W. Let both Wand 

F be given in prenex-conjunctive normal form as : 

F = QF ((Fn V F12 V ... V Fh, )11(F21 V F22 V ... V F2;,)/\ ... /\(Fnt V Fn2 V ... V Fn;J) 
and 

W = Qw((Wn V W12 V ... V Wti,) 1\ (W21 V Wn V ... V W2h) 1\ ... /\ (Wmt V 

Wm2 V ... V Wmj=)) 

where QF, Q w are the quantifier strings of the formulas F and vV respectively. Since 

F is more general than W, by definition for every disjunction (Fpl V Fp2 V ... V Fp;P) of 

F, there is a set of literals {Wj,k, vVj,k, ... , Wj,k,} of W such that given 1 :S; r :S; ip, 

there exists 1 :'0: s :'0: I such that the following relationship holds between Fpr and 

Wiska : 
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Suppose Fpr = ±P(al,a2, ... ,a,), where± denotes the sign of Fpr· Then 

Wj, k, = ±P(b1, b2, ... , b,) (Wj, k, has the same sign as Fpr ), and for every k such 

that 1 :'0 k :'0 t, 

(i) If h is an existentially quantified variable, then ak is either an existentially 

quantified variable, a universally quantified variable, or a function symbol which 

occurs in W. 
(ii) If bk is a universally quantified variable, then so is ak. 

(iii) If bk is a function symbol with u arguments e1, e2, ... , eu, then ak is either: 

(a) the same function symbol with the same number of arguments, say 

!J, /2, ... ,/u, and conditions (i), (ii) and (iii) hold for every pair of arguments e; 

and/;, 1 ::; i::; u, or 

(b) ak is a universally quantified variable. 

From the above analysis, it can be seen that only a finite number of distinct 

literals Fpr (up to variants) can be constructed which satisfy these conditions. But 

then there exist only a finite number of formulas F made up of conjunctions of 

disjunctions of such literals, provided no two such disjunctions are identical, and no 

disjunction of F contains more than one occurrence of the same literal. 

Hence the number of formulas which are more general than W is finite up to 

variants, subject to the conditions in the statement of the theorem; this means that 

{ F / F ::::; W} is also finite up to variants subject to the same conditions. • 

Theorem 2.6 If F1, F2 and W are three formulas such that 

F1::::; W, F2::::; W, 
then 

(H II F2)::::; W, (F1 V F2) ::::; W. 

Proof : Since F1 ::::; W, F2 ::::; W, therefore we know that 

F1 _., W, F2 -> W 
and therefore 

(F1 1\ F2)-> W, (F1 V F2)-> W. 
Also, since each of F1 and F2 are more general than W, from the definition of 

"more general than" it can be seen that both F1 1\ F 2 and F1 V F 2 are more general 

than W. Hence 

by definition. • 
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2.4 Summary 

We have seen that given formulas Hand W such that H----> W, we can derive 

a Skolemized formula 1) by resolution from Sk(H) which can be unskolemized in 

such a way that the resulting formula F has the following properties : 

(i) H ----> F ----> W 
(ii) F :; W . 
We also saw that { F I F :; W} is finite up to variants, subject to the restriction 

that if F is expressed in conjunctive normal form, then no two disjunctions of F 

are identical, and no disjunction of F contains more than one occurrence of the 

same literal. Note that this method of deriving F does not require using tautologies 

during the resolution process. 

However, it will happen that we know H and do not know W. In such a case, 

we will have to derive all possible formulas 1) by resolution from Sk(H), mark 1) 

in all possible ways, and apply the unskolemization algorithm to all such marked 

formulas. The unskolemization algorithm will produce a family of formulas K, out 

of which (at least) one formula F will have the properties described above. 
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3. Mechanical generation of loop invariants for 
program verification 

In this chapter, we will develop a method for mechanically deriving loop in­

variants for a flowchart program. No complete method can exist for automatically 

deriving loop invariants for all possible programs, since by Cook's completeness 

result (Cook 78], there exist program loops for which no suitable loop invariants 

exist, unless the language being used is "expressive" in some sense (see (Loeckx and 

Sieber 87] for a detailed coverage of this topic). Any calculus based on attaching 

first-order formulas to arcs of flowchart programs may be incomplete because the 

set of possible values on an arc of the flowchart may not be first-order definable 

(Wand 78]. Most of the attempts made at developing methods for automatically 

generating loop invariants have been in the nature of heuristics so far, and thus 

none of these methods has been complete in any sense. In contrast, we can make 

the following completeness claim about our method : given any program loop, if a 
loop invariant exists for that loop in a given first-order language relative to a given 

finite set of first-order axioms, then our method can produce a valid loop invariant 

for that loop. Of course, not all theories of interest can be expressed by a finite 

collection of first-order axioms. 

In what follows, we first describe in detail past work in the area of program 

verification. We then explain how to apply the theory developed in Chapter 2 for 

mechanically generating loop invariants. 

3.1 Past work 

In an age where more and more reliance is being placed upon computer software 

in all spheres of life, there is bound to be some concern about the correctness of 

programs being written and used. According to Elspas et a!. (Elspas et a!. 72], 

when we compare programs written in the 1970s to those written in the 1960s, 

the number of errors per line of debugged code is undoubtedly lower than before; 

however, since the size of programs written in the 1970s is much larger than in 

1960, the number of errors per program is more or less unchanged. The traditional 



manner of assuring program correctness is to run a program on "representative" 

data sets and verify that the results obtained are indeed what is expected. This 

method, however, cannot provide anything more than some degree of confidence 

that the program will always fulfill its objective, and is by no means a guarantee 

of the program's correctness. Moreover, with this method, design flaws often are 

detected only after a large investment has been made to develop the system to a 

point where it can be run. The rebuilding that is caused by the late detection 

of these flaws contributes significantly to the high cost of software construction 

and maintenance [Good 85]. For this reason, computer scientists started turning 

their attention to formal mathematical methods for rigorously proving program 

correctness. The inductive assertions method for program verification was developed 

by Floyd in 1967 [Floyd 67] and is now the basis for a large number of automated 

program verification systems. This method requires that the user annotate the 

loops of the program with inductive assertions (also called loop invariants) which 

are invariants of the loops. However, specifying inductive assertions for program 

loops is a redundant, tedious and error-prone task for the programmer [German and 

Wegbreit 75]. Therefore an area of research which is of great interest and potentially 

of great use to the the community is the automatic derivation of inductive assertions 

for program loops. This chapter describes an iteration method for automatically 

deriving loop invariants for flowchart programs. 

Dijkstra [Dijkstra 89] made a strong case for the indispensability of formal 

program verification, arguing that software bugs are programming errors which 

can be eliminated by formally verifying programs. His article evoked a heated 

response from many members of the community, some of them arguing that since 

there is always a human element involved, be it in programming or in program 

verification, and since human beings are imperfect, error-free programs are virtually 

an unattainable dream. Others have even questioned the desirability of formal 

program verification [De Millo et al. 79]. The existence of such diametrically 

opposed viewpoints indicates that this issue will not resolved in the near future. 

The following is a review of some program verification systems which have 

been built in the past. These can be divided, for our purposes, into two broad 

categories : those in which the user has to supply the loop invariants for the loops 

in the program, and those in which the program verifier provides assistance to the 

user in deriving the loop invariants for the program being verified. 

In his pioneer system, King [King 69] describes a program verifier which he 

wrote and implemented for his Ph.D. dissertation. He regards his system as a 

first step toward developing a "verifying compiler", which not only performs the 

translation of a program to machine executable form, but also attempts to prove 
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that the program is "correct". The system is written in assembly language running 

on an IBM 360 and operates on programs written in a simple programming language 

for integer arithmetic. The model of computation he uses is also described in [King 

71]. In this model, programs can consist of three types of statements : assignment 

statements, tests, and the "halt" statement. The method described is essentially 

the inductive assertions method of Floyd [Floyd 67]. The inductive assertions for 

the loops of the program to be verified have to be provided by the programmer. 

The formal analysis of the program produces verification conditions that must be 

proved to be theorems over integers. These theorems are proved by powerful formula 

simplification routines and specialized techniques for integer expressions. King lists 

nine examples which he used to test his system. The verification of the ninth 

example was unsuccessful. Deutsch [Deutsch 73] and others later found that the 

inductive assertion for the loop of this program was not strong enough and that the 

program could not be proved correct if that inductive assertion was used. 

Deutsch describes an interactive program verifier called PIVOT (Programmer's 

Interactive Verification and Organizational Tool) in his Ph.D. dissertation [Deutsch 

73]. This work is very similar to that of King [King 69] in certain areas such as 

representation and simplification of arithmetic expressions. The verifier is based 

on Floyd's inductive assertions method. An algebraic, statement-oriented language 

is used for the programs to be analyzed. Deutsch added an interactive facility to 

his verifier to cope with the inability of his system to generate inductive proofs 

automatically; the user can thus guide the proof procedure if necessary. 

Another program verification system in which the user provides the inductive 

assertions for the program being proved correct is one described by Cooper [Cooper 

71]. He describes a system aimed at building routines to be used in mechanical and 

mechanically-aided proofs about the correctness and convergence of programs. His 

system contains an arithmetic simplifier which can reduce arithmetic expressions 

to a more standard form and also performs conversion to conjunctive or disjunc­

tive normal form. Another component of the system is an implementation of a 

modified version of the Pres burger arithmetic algorithm (a formula is said to be 

a formula of Pres burger arithmetic if it is formed from algebraic expressions, only 

allowing variables, constants, addition and subtraction, the arithmetic relations < 
and =, the propositional calculus logical connectives, and universal or existential 

quantification). Programs are regarded as being made up of blocks, and relations 

describing the properties of the blocks are attached to the blocks, much in the same 

fashion as attaching predicates to a point in a program as described by Floyd [Floyd 

67]. However, in contrast to the Floyd approach, the equations for a loop block are 

inherently second-order. These can be changed to first-order equations if all the 
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loop predicates are specified by the programmer. Cooper goes on to say that iter­

ating a loop a few times soon gives the programmer a good idea of what a suitable 

invariant might be; however, he has not come up with a program which could do 

this automatically. 

Good et al. [Good et al. 75] report the development of an interactive pro­

gram verification system for verifying Pascal programs. In their system, the user 

is primarily responsible for correctness proofs for programs. All loop invariants 
must be provided by the programmer. The verification condition generator is an 

implementation of the axioms and rules of inference which constitute the axiomatic 

definition of Pascal. The theorem prover used is based on natural deduction, which 

facilitates computer-user interaction, since the theorems being proved are expressed 

in a form more intuitively comprehensible to the user. The prover is interactive and 

is based on the premise that if it can construct a proof automatically, it will do so 

fairly quickly; if a theorem has not been proved within some specified time limit, 

the prover stops and waits for interactive direction. A sorting program taken from 

[King 69] is given as an example illustrating the working of the verifier. 

Suzuki [Suzuki 75] describes methods for verifying programs written in a sub­

set of Pascal, which may contain data structures such as array, pointer, and record, 

and control structures such as while, repeat, for, procedure, function, and coroutine. 

According to Suzuki, the two major hurdles in automatic program verification are 

the following. First, the language used to express assertions is usually first-order 

predicate logic, which he claims is unnatural. Secondly, general-purpose theorem 

provers are usually inadequate for proving the verification conditions generated from 

a given program. His system allows users to introduce new symbols by documenta­

tion in the form of three simple kinds of statements which are used by the prover 

as rewriting rules to expand new symbols, reduction strategies which state that 

some expressions are reduced to others under specified conditions, and goal-subgoal 

strategies which state that certain well-formed formulas are true if certain others 

are true. The basis of the deduction mechanism used is a Gentzen-type formal 

system. Suzuki illustrates the working of his verifier by demonstrating correctness 

proofs for Floyd's Treesort and Hoare's FIND programs. The loop invariants for 

programs verified by this method have to be supplied by the user. 

Polak [Polak 81] describes the design, implementation and verification of a 

compiler for a Pascal-like language. The Stanford Verifier [Stanford 79] is used to 

give a complete formal machine-checked verification of the compiler. The author 

regards the verification as an integral part of program development. The verification 

system used is based on Hoare's calculus [Hoare 69]. Loop invariants must be 

supplied by the programmer. 
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The IOTA project [Nakajima and Yuasa 83] was motivated by a need to de­

velop a mechanizable verification method for programming with modules. This led 
to the design of a programming and specification language IOTA for modular pro­

gramming and then to the development of a total programming system. The system 

provides an integrated environment to enhance the goal of modular programming 

and consists of five major subsystems : developer, debugger, verifier, prover, and 

executor. The program verifier is based on Hoare's system and the loop invariants 

are provided by the programmer. 

Good [Good 85] describes the Gypsy verification environment, which is a large, 

interactive computer program that supports the construction of formal, mathemat­

ical proofs about the behavior of software systems. It contains tools for supporting 

the normal software development process as well as tools for constructing formal 

proofs. The environment is based on the Gypsy language [Good et al. 78]. The 

external environment consists of data objects, each of which has a name and value, 

which are changed as a result of implementing a program. Internal data objects 

can be created and used by an implementation of a program to accomplish its ef­

fect. Gypsy provides a means of stating both internal and external specifications 

of a program, which define constraints of its implementation. From these specifica­

tions, the verification conditions for a program can be built and the program can 

be verified by Floyd's inductive assertions method. These verification conditions 

are then proved with an interactive proof checker, which relies heavily on user guid­

ance. Some examples illustrating the use of the system are given. A measure of the 

efficiency of the system is given for two examples in terms of the number of proved 

executable Gypsy lines per work-day per CPU-hour. 

German and Wegbreit [German and Wegbreit 75] describe a system which pro­

vides assistance to the user in synthesizing correct inductive assertions. The system 

is called VISTA and it uses four principal methods to obtain inductive assertions : 

1) symbolic evaluation in a weak interpretation, 2) combining output assertions with 

loop exit information to obtain trial loop assertions, and generalizing these where 

necessary, 3) propagating valid assertions forward through the program, modifying 

them as required by the program transformations, and 4) extracting information 

from proofs that fail in order to determine how assertions should be strengthened. 

None of these methods are complete, but when coupled together they can help in 

automatically deriving inductive assertions in a number of cases. The authors be­

lieve that the language for specifying assertions should be improved to facilitate 

specification of assertions by the programmer. Also, the theorem prover which is 

used by the program verifier should have the capability of efficiently checking the 

validity ofa formula and a number of slightly varied formulas. They have succeeded 
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in generating inductive assertions for the first seven examples in [King 69] and in ex­

tending the incomplete inductive assertion in (Example 9, King 69] to the complete 

inductive assertion. The theorem prover used is PIVOT, described in (Deutsch 73]. 

An interactive approach to program verification for Pascal programs is de­

scribed by von Henke and Luckham (von Henke and Luckham 75]. They are of the 

view that a program verifier is a tool which can sometimes enable a programmer to 

gain a degree of certainty about his or other people's programs. Thus the program 

verifier aids the user in situations where documentation is incomplete, the program 

is unfinished or badly written, or the data structures are non-standard. The veri­

fication system is the same as that described in (Suzuki 75]. An example is given 

where a programmer writes a partially incomplete program for performing unifica­

tion; the program also contains errors. The verification system used interactively 

participates in locating errors and omissions in the program. The methodology 

given is not complete, and neither is it intended to be; many of the problems which 

arise during a verification involve the user in making choices and decisions. This 

verifier is intended for use in conjunction with other programming facilities. 

Some work has been done in the past on the subject of deriving inductive asser­

tions mechanically. Wegbreit (Wegbreit 73] describes heuristic methods for mechan­

ically deriving loop invariants from their boundary conditions and for mechanically 

completing partially specified loop predicates. The method uses the output predi­

cate to derive suitable loop predicates by dragging the output predicate backwards 

through the program and modifying it suitably when passing through the statements 

of the program. Another alternative he gives is to take a programmer-supplied in­

ductive assertion, which contains the "essential idea" of a loop, and mechanically fill 

in the details to obtain a complete and correct loop predicate. Wegbreit described 

some domain-dependent and some domain-independent heuristics for deriving loop 

predicates. He starts by using the weakest possible loop invariant for a particular 

loop which will satisfy one of the verification conditions, and tries to strengthen 

this loop invariant using a number of heuristics. The heuristics include strengthen­

ing the current loop invariant by dropping some disjuncts, propagating predicates 

backwards through the program, adding expressions which are equal to zero to one 

side of an equality, multiplying one side of an equality by an expression which is 

equal to one, eliminating variables from inequalities using transitivity, etc. These 

heuristics are illustrated with the help of several examples, all involving simple loop 

programs or nested loop programs. A short example illustrating this approach is 

the following: the flowchart of Figure 3.1 computes the quotient Q and the remain­

der R of integer X divided by integer Y. Here the input predicate ¢ is given by 

X 2: ·o II Y > 0, and the output predicate 1/J = (X = QY + R II 0 s; R II R < Y). 
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Figur7 3.1 Calculating the quotient and remainder of two numbers 

This implies that at arc A 0 , the predicate Po =(X;::: 01\ Y > 01\ Q = 0 1\ R =X) 
holds. To verify the flowchart, it suffices to find a loop predicate P 1 at arc A1 such 
that 

(E1) Po-+ P1 

(E2) P1 1\ 8(1, 2, 3, 1) -+ P{, where 8(1, 2, 3, 1) is the transformation due to the 
flowchart path AI> A2, Aa, A1 in that order, and P{ is predicate P1 with the values 
of the variables altered by going through path A1>A2, Aa, A1 once. 

(E3) P1 /\6(1,4)-+ ,P', where 8(1,4) is the transformation due to the flowchart 
path A1, A4 in that order, and ,P' is predicate ,P with the values of the variables 
altered by going through path A1 , A4 once. 

The standard means for generating a loop predicate is to use (E3) and start 
with trial choice of P 1 = (6(1,4) -+ ,P'). Here, this gives P1 = (R < Y -+ (X = 

QY + R 1\ 0 ::; R 1\ R < Y)). Converting to disjunctive form and simplifying, 
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P1 = (R :2: YV(X = QY +RAO::; R)). To verify the flowchart, it suffices to prove 

that with this choice of P 1 , (E1) and (E2) are each valid. (E1) is 

(X :2: 0 A Y > 0 A Q = 0 A R =X)-+ (R :2: Y V (X= QY + R A 0 :S R)) 

which is valid. However, (E2) is 

(R :2: Y V (X = QY + R A 0 :S R)) A R :2: Y A R' = R- Y A Q' = Q + 1 --+ 

(R' :2: Y V (X = Q'Y + R' A 0::; R')) 

· which, while satisfiable, is not valid. This suggests that the trial choice for P1 should 

be replaced by a stronger one. Dropping a disjunct is a possible strengthening 

transformation; plausibility arguments suggest that the disjunct to drop is the one 

arising from 8(1,4). Hence consider the next trial choice P1 =(X= QY + R A 0::; 

R). (E1) remains valid; (E2) becomes 

(X = QY + R A 0 ::; R) A R :2: Y A R' - R- Y A Q' - Q + 1 -+ (X 
Q'Y + R' A 0 ::; R') 

which is also valid. Hence, this choice of P 1 is said to validate (E1) and (E2), and 

the flowchart is verified. 

It appears that the method would not be as easy to apply to programs with 

arbitrary loop structures. Wegbreit mentions that such programs could be handled 

by obtaining an approximation to one loop predicate by a finite expansion to some 

depth i, and using this approximation to obtain another loop predicate, and so on. 

This heuristic is not illustrated in any example. These methods were the result 

of hand simulations and were not actually implemented. Wegbreit mentions that 

a breadth-first search capability would be required in the implementation of this 

system. He believes that this method would be successful when applied to programs 

which have their loops tagged with assertions of varying degrees of completeness : 

some complete, some partial, and some untagged. 

The efforts of Katz and Manna [Katz and Manna 73] are also directed towards 

automatically deriving loop invariants. They describe two general approaches for 

doing so; the first is the top-down approach, in which the loop invariant is obtained 

by analyzing the predicates which are known to be true at the entrances and exits 

of the loop, and the second is the bottom-up approach, in which the loop invariant 

is generated directly from the statements in the loop. The top-down approach is 

similar to that described by Wegbreit in [Wegbreit 73]. The bottom-up approach 

tries to find general expressions for the values of the program variables after n 

loop iterations and then eliminate n from these expressions. As a brief example, 

suppose that program variables Yl and Y2 are changed only in the assignments 

(Y1, Y2) <-- (Yl + xya, Y2 + 5ya) inside a loop; then 
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n n 

(n) (0) + ""' (i-1) (n) (o) + 5 ""' (i-1) 
Y1 = Y1 x ~ Y3 , Yz = Yz ~ Y3 

i=l i=l 

where y< i) denotes the value of y after the ;th loop iteration. Therefore 

(n) (0) n (n) (0) 
Y1 - Y1 ""' (i-1) Yz - Yz = ~Y3 = 

X ~1 5 

Assuming we know that the initial values of Y1 and Y2 upon first entering the 

loop are Yio) = 1 and y~o) = 0, we obtain the invariant 5(y1 -1) = xyz. 

All the given heuristics apply to loops without branches. A different set of 

heuristics is given for programs with arrays; underlying these heuristics is the 

assumption that arrays are used to treat a large number of variables in a uni­

form manner and not as a collection of unrelated variables. Assertions about 

arrays are assumed to be of the form Vj [< j- index >-->< j -array >] or 

3j [< j- index> II< j- array>], where< j- index> is a claim on the indices 

of the array and < j- array > is the claim which is made about the array elements 

themselves. The rules given in this paper do not comprise a general system for 

finding inductive assertions; rather, they just provide some useful guidelines which 

could help in finding some inductive assertions which commonly occur in practice. 

Others have done research on methods for automatically deriving inductive 

assertions for specific types of programs. Caplain [Caplain 75] describes a technique 

applicable to numerical programs, which is based on expressing the transformation 

of the n variables in a loop by an x n matrix; i.e. if X is a vector of n variables, then 
express the transformation effected upon X in the loop by writing Xtranaformed = 
[A]X + 6, where [A] is a n x n matrix and 6 is a constant vector. If [A] is 

diagonalizable, i.e. if [A] can be expressed as [A] = [P]-1 [D][P], where [D] is a 

diagonal matrix, then a set of "basic invariants" can be exhibited which has the 

property that every invariant expression can be expressed as a function of the basic 

invariants, and that no basic invariant can be expressed as a function of the others. 

Thus this basis of invariant expressions is minimal and sufficient for the purpose of 

any proof, because it subsumes any other invariant. For non-linear transformations, 

he suggests finding a change of variables which will linearize the transformation and 

make it diagonalizable. Various rules are given for dealing with loops with branches. 

The rules given are not complete and require a rather sophisticated mechanization 

which would probably succeed only with interactive intervention of the user. The 

application of a similar approach for non-numerical programs would require an 

elaborate axiomatization of the domain type, making the outcome of such research 

uncertain. 
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Some work has also been done in program verification involving higher order 

logics. Manna [Manna 70] shows that it is possible to formalize all properties 

regularly observed in deterministic and non-deterministic algorithms in second-order 

predicate calculus. He also shows that for any algorithm, it suffices to know how to 

formalize its partial correctness by a second-order formula in order to formalize all 

other properties by second-order formulas. 

An oft-repeated complaint against general-purpose theorem provers is that they 

are incapable of efficiently handling the proofs which arise during program verifi­

cation. In the opinion of Elspas et a!. [Elspas et a!. 72], special-purpose theorem 

provers need to be built for program verification, e.g. King's system [King 70] or 

that of Rulifson et al. [Rulifson et a!. 71]. They do not think that it is feasible for 

a machine to generate loop invariants without human intervention at some stage. 

Theorem provers have in general been most successful when applied to proofs of 

theorems in relatively small axiomatic domains like group theory and lattice theory 

and have been less successful on problems in fields such as number theory. One rea­

son for this is the necessity of including mathematical induction among the axioms 

of the theory, which cannot be done in first-order logic. A way around this is to 

introduce an induction axiom for each predicate that might conceivably be needed 

in a certain proof. 

Some special-purpose theorem provers have been built for program verifiers. 

King [King 70] describes an interpretation-oriented theorem prover over integers 

built as part of a program verifier (described more fully in [King 69]). The task of 

the theorem prover is to prove theorems in which the functions are the arithmetic 

operators+, -, *• div, f, mod, and abs, and the predicates are>, <, ::::, :5, =,and 

io- Since these functions and predicates have a fixed interpretation, it is possible to 

use highly specialized and domain-specific procedures in the theorem prover. Note 

that in general, it is theoretically impossible to construct a program which can 

decide the validity of any expression in this general class of expressions (see [Davis 

et al. 61 ]). The theorem prover consists of two parts : the formula simplifying 

system and the linear prover. The formula simplifying system maintains expressions 

in a certain "normal" form. Several simplifying procedures are applied to eliminate 

subsumed clauses and to reduce sets of equalities and inequalities into smaller sets. 

The theorem to be proved is then negated and an attempt is made to derive a 

contradiction. The next stage is to eliminate any variable globally defined by an 

equality, eliminate special functions such as abs, mod, and div, break the problem 

into subproblems, and call the linear prover. The linear prover deals with linear 

systems of inequalities and tries to find a contradiction or at least narrow down the 

range of values of the variables. These results are then applied to the remaining (if 
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any) non-linear relations in an attempt to derive a contradiction. King reports that 

the time taken for the simpli:tfcation of most theorems took about 10 seconds per 

theorem, the only complicated part of his system being the linear prover. 

Another decision procedure designed specifically for proving theorems in a pro­

gram verifier is described by Nelson and Oppen [Nelson and Oppen 79]. They 

describe how to combine decision procedures for four different quantifier-free theo­

ries : the theory of real numbers under+ and ::;, the theory of arrays under store 

and select, the theory of list structure with car, cdr, cons and atom, and the 

theory of equality with uninterpreted function symbols. Each theory is character­

ized by its set of nonlogical symbols and nonlogical axioms. These four theories 

are combined by propagating any equalities entailed in each theory to the decision 

procedures of the other theories. An algorithm is described for the equality prop­

agation procedure and a proof of its correctness is given. The resulting decision 

procedure is NP-complete. A shortcoming of this decision procedure is the fact 
that only multiplication by constants can be handled (e.g. 2 * x can be written as 

x + x ). This system is a part of the Stanford Pascal Verifier, an interactive system 

for reasoning about Pascal programs. 

A suggestion regarding a method of building a special-purpose theorem prover 

for verifying programs has been put forward in [Sarkar and De Sarkar 89a]. Accord­

ing to the authors, it is counter-intuitive to use resolution-based theorem provers 

for proving verification conditions arising during the verification of programs over 

integers, since this requires translating the conditions to be proved into predicate 

calculus, while for program verification it is more natural for the user to provide as­

sertions in algebraic notation. They present a new inference rule, called implication­

resolution, which is a generalization of resolution. This and other inference rules can 

be applied directly to the formulas of integer arithmetic. Every term is expressed 

in a normal form (this is the same normal form as described in [King 69]), and then 
the various inference rules are applied. In a related paper [Sarkar and De Sarkar 

89b], Sarkar and De Sarkar describe a set of inference rules for handling quantified 

formulas and arrays in verifying integer programs. The integer axioms are built 

into the inference rules rather than being provided as premises. A normal form is 
described for quantified formulas. This paper does not treat existentially quantified 

formulas. The rules described in the above two papers have been implemented in a 

theorem prover for proving the verification conditions arising in iterative programs 

over integers [Sarkar and De Sarkar 89c]. The prover is written in Pascal and imple­

mented on a HP 9000 minicomputer. An assessment of the efficiency of the prover 

is given based on the efficiency of proof construction and the memory space used. 

Spitzen and Wegbreit [Spitzen and Wegbreit 75] have done some work on the 
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unification and synthesis of data structures. They discuss how data structures can 

be precisely specified and give examples using data structures like stacks, buffers, 

and queues. They present an axiomatization of a programming language suitable 

for automatic verification, and show how programs which realize these data struc­

tures may be proved correct. Spitzen and Wegbreit believe that whereas mechanical 

verification is within the reach of current verification systems, mechanical synthe­

sis is substantially harder since it seems to be inherently a second-order process 

requiring some form of induction. 

3.2 Floyd's inductive assertions method 

In [Floyd 67], Floyd describes a method for verifying flowchart programs. (This 

description is taken from [Manna 74].) Suppose we are given a flowchart program 

with a description of its behavior, i.e. a characteristic predicate 'if; (called an output 

predicate), which describes the relationships among the program variables that must 

be satisfied at the completion of the program execution. We are also given an input 

predicate </>, which defines the input restrictions that must be satisfied to make 

execution of the program meaningful. Our task is to guarantee that for all program 

executions with inputs satisfying the input predicate, the program terminates, and 

that at the completion of execution the output predicate is satisfied. 

We distinguish among three types of variables, written as three vectors : 

(i) an input vector x = (x 1,x2, ... ,xn), which consists of the given input values 

and therefore never changes during computation; 

(ii) a program vector y = (yt,y2 , ... ,ym), which is used as temporary storage 

during computation; and 

(iii) an output vector z = (zt,Z2, ... ,zl), which yields the output values when 

computation terminates. 

We say that a program is partially correct with respect to </> and 'if; if for every 

input ~ such that </>( ~) is true and the computation of the program terminates, 'if; is 

true for the values of the program variables at the completion of execution. Thus 

in partial correctness we don't care about termination. 

Suppose we are given a flowchart program P, an input predicate </>, and an 

output predicate 'if;. To prove that P is partially correct with respect to </> and 'if; 
we proceed as follows : 

1. Cutpoints. The first step is to cut the loops of the program by choosing on 

the arcs of the flowchart a finite set of points, called cut points, such that every loop 

includes at least one such cutpoint. 
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2. Inductive assertions. The next step is to associate with each cutpoint i of 

the program a predicate p;(x, y), called the inductive assertion (or loop invariant), 

which characterizes the relation among the variables at that cutpoint. In other 

words, whenever control reaches point i, p;(x, tJ) must be true for the current values 

of x and tJ at this point. The input predicate <f>(x) is attached to the START point, 

and the output predicate ,P(x, z) is attached to the HALT points. 

3. Verification conditions. The third step is to construct for every path a 

leading from cutpoint i to cutpoint j the verification condition 

'v'x'v'y(p;(x, y) 1\ Ra(x, tl)--+ Pi(x, ra(x, y))] 

where Ra(x, y) indicates the condition for path a to be traversed, and ra(x, tJ) 
describes the transformation of the values of y effected while path a is traversed. A 

backward-substitution technique for obtaining Ra and r <> is as follows. Let a be a 

path leading from cutpoint ito j. Initially, R(x, y) is set to true and r(x, y) is set to 

y, and both are attached to cutpoint j; then in each step, the old Rand rare used 

to construct the new R and r, moving backward toward cutpoint i. The final R 
and r obtained at cut point i are the desired Ra and r <>. The rules for constructing 

the new Rand r in each step are given below, according to the statement occurring 

just before the old Rand r. 

1. Statement : t1 <- f(x) 
New values for Rand r: R(x,j(x)), r(x,J(x)). 

2. Statement : tJ <- g(x, y) 
New values for Rand r: R(x,g(x,y)), r(x,g(x,tJ)). 

3. Statement : t(x, y) (test condition, where the old R and r are on the "true" 
branch leading out of the condition) 

New values for Rand r: t(x,y) 1\ R(x,y), r(x,y). 
4. Statement: t(x,y) (test condition, where the old Rand rare on the "false" 

branch leading out of the condition) 

New values for Rand r: ~t(x, y) 1\ R(x, tJ), r(x, y). 

4. Proving the verification conditions. The fourth and final step is to prove 

that all these verification conditions for our choice of inductive assertions are true. 

Proving the verification conditions implies that each predicate attached to a cut­

point has the property that whenever control reaches the point, the predicate is 

true for the current values of the variables; in particular, whenever control reaches 

a HALT point, ,P(x,z) is true for the current values of x and z. In other words, 

proving the verification conditions shows that the given program is partially correct 

with respect to </> and '¢. 

All of these steps are rather mechanical except for Step 2. Discovering the 
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proper loop invariants to attach to cutpoints is a non-trivial matter and requires a 

thorough understanding of the program. 

3.3 Overview of the method 

In this section we give an overview of an iteration method to derive loop invari­

ants for programs for the purpose of program verification. Suppose we are given a 

program. Perform the following steps : 

1. Draw a flowchart for the program, cut the loops, and attach loop invariants 

(these are unknown) and input and output assertions where appropriate. Note that 

we are assuming that loop invariants exist for all loops; if they do not, then this 

method is not applicable. A symbol is attached at every loop cutpoint; this symbol 

represents an unknown loop invariant. 

2. Generate the verification conditions for the program as explained in the 

previous section. 

3. Apply the iteration method to the formulas of the verification conditions to 

obtain the loop invariants. 

Step 3 needs to be described in detail. We give below a brief overview of the 

method we will use. The detailed algorithm is given in Section 3.6. 

Note that a "known" formula is one which does not contain any loop invariant. 

In the following, W, W1 and Wz denote loop invariants, and H, H 1 and Hz denote 

known formulas. Any verification condition involving a loop invariant is of one of 

the following three forms. 

(i) H--+ W 

(ii) H A W1 --+ Wz 

(iii) H 1 A W--> Hz. 
To see that this is true, recall that there is one cutpoint for every loop in the 

program, one cutpoint at the entry of the program, and one cutpoint at every exit 

of the program. Therefore a path in the program could be of one of the following 

four types : 

(1) A path from the entry cutpoint to a loop cutpoint 

(2) A path from a loop cutpoint to a loop cutpoint 

(3) A path from a loop cutpoint to an exit cutpoint 

( 4) A path from the entry cutpoint to an exit cutpoint 

Of these four types, a verification condition for a path of type 4 does not 

involve any loop invariants and will therefore not be considered here. A verification 

condition for a path of type 1 will be of the form H --> W (where H is a known 
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formula and W is the loop invariant at the cutpoint at the end of the path), since 

the conditions which hold at the beginning of the path and during the path traversal 

are known, and W is the loop invariant of the cutpoint at the end of the path. A 

verification condition for a path of type 2 will be of the form H 1\ W1 --> W2 (where 
H is a known formula and W1, W2 are the loop invariants of the cutpoints at the 

beginning and end of the path respectively), since the condition which holds at the 

beginning of the path is wl' the conditions which hold during the path traversal 

are known, and W2 is the loop invariant of the cutpoint at the end of the path. 

A verification condition for a path of type 3 will be of the form H 1 1\ W --> H 2 
(where H 1, H 2 are known formulas and W is the loop invariant of the cutpoint at 

the beginning of the path), since the condition which holds at the beginning of the 

path is W, the conditions which hold during the path traversal are known, and the 

output condition which holds at the end of the path is known. 

We will obtain successively more accurate approximations to the loop invari­

ants. For this purpose, we will define the function GET-APPROX in Section 3.7 to 

be a binary function which takes as arguments a formula H and a symbol W and 

returns a formula F such that H--> F which is an approximation for W. Note that 

H must be a known formula; W is the name of an unknown loop invariant. 

Initially, only the input and output assertions are given. We initially approx­

imate all the loop invariants by setting them to "false". We will represent the ith 

approximation to W by W;; the initial approximation to W is W0 • Informally, the 

method we will use is the following : suppose W is some (unknown) loop invari­

ant in the program. Consider all the verification conditions in which W appears 

on the right-hand side of the implication sign. We replace all occurrences of loop 

invariants in these verification conditions with their current approximations. Sup­

pose that the last approximation calculated for W was W;. Suppose the resulting 
verification conditions are : 

H1--> W; 

H2-. W; 

H3--> W; 

Hn--> W; 

(where i gives the number of the current iteration). Note that loop invariants may 

occur in the formulas H1, H2, ... , Hn above; all such occurrences are replaced by the 

current approximations for these loop invariants. For all the Hj's, 1 ~ j ~ n, check 

whether Hj --> W; is true or not. Let T be the set of all Hj's such that Hj -. W; 
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is not true. If Tis empty, then set Wi+ 1 = W;; if Tis not empty, then set W;+l = 
GET-APPROX(W; V R, W), where R = V{Hj I Hj E T}. Note that for all j such 

that 1 $ j $ n, Hj --+ W;+1 and W; --+ vV;+l· This is because the new formula W;+1 

generated by the function GET-APPROX is a logical consequence of the disjunction 

of W; and all the formulas in the set T; thus it is a logical consequence of each of 

these formulas. 

We then look for another loop invariant and find the next approximation to it 

exactly as described for W; (this time using vVi+l as an approximation for W), and 

so on. Recall that all the verification conditions in which W appears on the right­

hand side of the implication sign are H1 --+ W, H2 --+ W, H3 --+ W, ... , Hn --+ W. If 

we have W;+l = W; (this happens when the set Tis empty), then since Hj --+ W;+1 

for all j such that 1 $ j $ n, and since vV;+l = W;, we have Hj --+ W; for all j 

such that 1 :::;; j :::;; n. When this happens for all the inductive assertions, then we 

are done. 

3.4 Some observations about the programming language 
model 

A program is partially correct if all the verification conditions derived from 

the program after assigning appropriate loop invariants are valid in a model M of 

the data structures and primitive operations of the language. For instance, most 

programming languages contain the arithmetic operators + and -; hence a model 

M of such a programming language would reflect the semantics of these operations. 

In other words, we would like to prove 

M f= vc 

for all the verification conditions "vc" of the program being verified. 

Now the question of whether there exists an axiomatization of the model M 
arises. (A theory Tis said to be axiomatizable if there exists a decidable set W <;::; T 

such that T is exactly the set of all formulas derivable from W in the predicate cal­

culus.) Some examples of axiomatizable theories are the set of all logically valid 

first-order formulas, the theory of natural numbers with successor function, and 

Presburger arithmetic (Presburger arithmetic consists of addition and the predi­

cate "<",over the natural numbers). Peano arithmetic (addition and multiplica­

tion along with the predicate "<" over the natural numbers) is not axiomatizable; 

however, the well-known Peano axioms along with the principle of induction over 

the natural numbers characterize all properties of the natural numbers, including 

those of the Peano arithmetic, i.e. those which may be expressed as formulas of 
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first-order logic. This is not in contradiction to the fact that Peano arithmetic is not 

axiomatizable, because the principle of induction cannot be expressed in first-order 

logic, as it involves quantification over predicates [Loeckx and Sieber 87]. 

Assuming that there exists an axiomatization A of a model M (A is a set of 

axioms such that A is decidable and such that the set of all formulas true under 

M is exactly the set of all formulas which are derivable from A in the predicate 

calculus), the verification problem reduces to a proof of the form 

A f- vc 

for all verification conditions "vc" of the program being verified. Now, any verifi­

cation condition is of the form L _,. M (see Section 3.2), for first-order formulas L 
and M. Therefore the above can be written as 

A f- (L _,. M) 

which is equivalent to 

f- ((A 1\ L) _,. M) 

Henceforth we will assume that the models of the programming languages under 

consideration are axiomatizable, and that an axiomatization A of the language is 

provided when the verification conditions are being proved; in other words, the 

formulas in A are taken to be axioms and can be used for any proof. This may seem 

like a very restrictive assumption, since we know that even Peano arithmetic is not 

axiomatizable; however, in many cases, we circumvent this problem by providing 

suitable instances of the principle of induction as required, or by providing the 

system with enough facts to be able to derive the desired formulas from these facts. 

The reader should nevertheless be aware of this restriction on the power of our 

system. 

3.5 Description of algorithm for generating loop invariants 

The notation described in Section 3.3 is used throughout this algorithm. VVe 

first briefly describe the algorithm step by step. We assume that W 1 , W 2 , ... , wn 
are the loop invariants of the program. As mentioned previously, we let the initial 

approximations of all verification conditions be "false", and denote the initial ap­

proximation of each W; by W~. The j'h approximation for W; will be denoted by 

Wj for every i, 1 :S: i :S: n. If the last approximation which has been calculated 

for a loop invariant Wi is the k'h approximation, then "index(Wi)" is set to "k". 
Initially, index(Wi) = 0 for every i, 1 :S: i :S: n. These initializations are performed 

in step 1. 
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In step 2, we construct a list called "list", containing all the loop invariants' 

names (i.e. W 1 , W 2 , ... , wn) in a particular order. The order is decided as follows. 

First, all loop invariants which figure on right-hand sides of implications of verifica­

tion conditions of the form H ---> Wi are appended to the list (in any order). Note 

that no duplicate elements are ever permitted in the list; if some loop invariant is 

already in the list, it is not added to the list again. We then start examining the 

list, starting at the head of the list, and keep adding new elements at the tail of the 

list depending on what the element of the list being examined is. This is done as 

follows. Suppose the element at the head of the list is Wk. Then we look for all 

verification conditions which contain Wk on the left-hand side of their implication 

sign, and which contain some loop invariant w• on the right-hand side of their 

implication sign, and for every such verification condition, if Wi is not already a 

member of the list, it is added at the tail of the list. This process is then repeated 

for the second element of the list, the third, and so on, until every loop invariant 

has been added to the list. 

The list built in step 2 is used in step 3 to provide the order in which the 

iteration will proceed. Starting with the first loop invariant in this list, and repeating 

the same process for each element of the list in order, we do the following. Initialize 

the set T to be an empty set. Suppose that the first element in list is the loop 

invariant W. We go through the list of all the verification conditions, and for every 

verification condition which has W on the right-hand side of its implication sign, we 

do the following. Suppose this verification condition is J--+ W. J could either be of 

the form J = H, for some known formula H, or J could be of the form J = H 1\ Wi, 
for some loop invariant Wi. Note that JiVl could be equal to W. If J is of the latter 

form, then Wi is replaced by liVfndex(Wi) in J. Call the transformed formula "J"'. 
We then check whether J' --+ liV;ndex(W) is true or not. If it isn't, we add J' to the 

set T. This process is repeated for all the verificatio!llconditions. We then obtain 

the next approximation for W as follows. First, index(W) is incremented by 1. If 

the set Tis empty, then the current approximation for W is retained, and "fiag(W)" 

is set to "true" to mark this fact. If the set T is not empty, then we obtain the next 

approximation Windex(W) for W by calling the routine "GET-APPROX" to return 

a formula Windex(W) such that 

Windex(W)-1 V R--+ W;ndex(W)> 

where R is the disjunction of all the elements ofT. The fact that T was non-empty 

is marked by setting flag(W) to "false". 

This whole process is repeated until all the flags for all the loop invariants are 

set to "true" at the same time. This indicates that the current approximations for 

the loop invariants satisfy all the verification conditions and can therefore be used 
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as valid loop invariants. Step 4 sets vV~pprox to be the last approximation obtained 
for Wi, which is a valid loop invariant for every i such that 1 ::; i ::; n. 

The algorithm is given below in Pascal-like pseudo-code. 

3.6 The iteration algorithm 

{ COMMENT : Let V be the set of verification conditions for the program; suppose 

v = {vcj,VC2,···· vcm}· Let all the (unknown) loop invariants be WI, W 2, ... , wn. 
We denote the formula on the left-hand side of the implication sign in a verification 

condition "vc" by "lhs(vc)", and similarly we denote the formula on the right-hand 

side of the implication sign in a verification condition "vc" by "rhs( vc )".} 

1. For i := 1 to n do 

{index(W;) := 0; 

Wj :=false 
} 

2. list := empty; 

ptr := 1; 

for i := 1 to m do 
if (vc; is of the form H--+ Wi) and not(member(list,Wi)) then 

append(list, Wi); 

while length( list) < n do 
{current := ptr1h element in list; 

for every vc E V such that (lhs(vc) contains current) and (rhs(vc) = W; 
for some i) and (not(member(list,Wi))) do 

append(list, Wi); 

ptr := ptr + 1 

} 

3. repeat 

for i := 1 to n do 

{W := ;th element in list; 

T:=0; 
for j := 1 to m do 

{ ifrhs(vcj) = W then 

}; 

if • (lhs(vcj) implies Windex(W)) then 
T := T U { lhs(vcj)} 
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index(W) := index(W) + 1; 

if T #- 0 then 

else 

{ flag(W) :=false; 

W;ndex(W) := GET-APPROX(Windex(W)-1 V 

(Vj{H/H E T}), W) (see Note after algorithm) 

} 

{ flag(W) := true; 

Windex(W) := Windex(W)-1 

} 
} 

until/\7=1 flag(Wi); 

4. fori := 1 ton do 
W; ·- Wi 

approx ·- index(W) 

5. Halt. 

Note. Each time GET-APPROX is called, any occurrence of an unknown loop 
invariant WJ in the first argument of GET-APPROX is replaced by its current 

approximation, which is Wfndex(Wi)" 

We now describe the function GET-APPROX. We will then prove that this 

iteration algorithm is sound and complete. 

3.7 The function GET-APPROX 

The function GET-APPROX takes two arguments H and W, where His a 

known formula and W is the name of a loop invariant for which GET-APPROX 

will return an approximation. Note that the value of W is unknown. We will see 

that GET-APPROX can return a formula F such that H-+ F-+ Wand such that 

F :S W. In Chapter 2, we saw that such a formula can be derived by resolution 
from Sk(H) and unskolemization. 

The derivation ofF can be made more efficient by noting that the problem at 

hand is really simpler than just deriving logical consequences of one formula. To 
see this, note that the argument H is a disjunction 

H = W; V H 1 V H 2 V ... V Hk 

where W; is the previous approximation obtained for W, and each Hj (1 S: j S: k) 
is the left-hand side of a verification condition for which the right-hand side is W, 
and which is not valid with the current approximations for loop invariants (see the 

iteration algorithm). Note that k" could be zero here. 
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Our goal is to generate a formula S which is a logical consequence of H, i.e. 

such that 

W; V H1 V H2 V .•• V Hk --> S. 

The above implication is equivalent to the k + 1 implications 
W;......, S 
H1--> S 

Hk--> S. 

We therefore need to generate a formula S which is a logical consequence of 

each of W;, H1, ... , Hk. We have k + 1 formulas, each of which imply S, and we 

are trying to derive S from these. We can generate a logical consequence for each 

of W;, H 1 , ••. , Hk by the resolution and unskolemization method of Chapter 2. 

Suppose a logical consequence F of one of these formulas has been generated by 

resolution and then unskolemization. We then check if F is implied by all of the 

formulas W;, H 1 , .•• , Hk (it is obviously implied by at least one of them, since F is 

a logical consequence of one of these formulas). Such a formula F is obtained for 

each of the formulas W;, H1 , .•. , Hk. We then collect together the F's which are 

implied by all of the formulas W;, H1 , ••• , Hk (i.e. W;--> F, H 1 --> F, H2 --> F, ... , 

Hk -->F) and let S be their conjunction. Sis then returned by GET-APPROX as 

the i + 1 th approximation for W. Clearly, H --> S, since each F in the conjunction 

S was implied by all of the formulas W;, H1 , ••. , Hk. 

If after a number "b" of trials, we are not able to obtain any F which is derived 

from one of W;, H 1 , ••• , H k and is implied by all of them, then we take S to be the 

disjunction of all the k + 1 formulas each of which was a logical consequence of one 

of W;, Hr, ... , Hk. Here too, H--> S. In the algorithm, "b" is a bound input by the 

user. 

The approach is slightly different when an approximation is being generated for 

a loop invariant W for which there exists at least one verification condition of the 

form H' 1\ W --> H", where H' and H" are known formulas (i.e. W appears on the 

left-hand side of a verification condition whose right-hand side is a known formula). 

In this case, we adopt an approach which guides the search for a loop invariant more 

effectively than that described above. Here, before generating logical consequences 

of W;, Hr, ... , Hk, we first check whether H' 1\ H--> H" is valid for all verification 

conditions of the form H' 1\ W -+ H" (if this is not the case, we backtrack). If 
H' 1\ H --> H" is valid for all verification conditions of the form H' 1\ W --> H", this 

means that 
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H' 1\ (W; v HI v ... v Hk)-+ H" 

is valid for all such verification conditions. Therefore 

H' 1\ W; -+ H" 
H' 1\ H1 -+ H" 

H' 1\ Hk -+ H" 

are all valid. 
Recall that in the preceding paragraphs, we generated logical consequences of 

each of W;, HI, Hz, ... , Hk in our search for an approximation for W. In this case, 

however, we have one more piece of information about W, namely: 

H' 1\ W-+ H". 

Therefore, an approximation F for W must satisfy the above formula when substi­

tuted for W, i.e. we must have 

H' 1\ F-+ H". 

We therefore proceed as follows. Let Bj be any one of W;, HI, ... , Hk, and 

suppose that H' 1\ W-+ H" is a verification condition. Since H' 1\Bj -+ H" is valid, 

H' 1\ B i 1\ ~H" is unsatisfiable in the model of the programming language being used. 

Therefore there exists a resolution proof of the unsatisfiability of H' 1\ Bj 1\ ~H" 

in this model (by the completeness of resolution). Recall that from the discussion 

in Section 3.4, a set AXIOMS of axioms which characterize the programming 

language model are to be used in this resolution proof. Consider some derivation of 

the empty clause from Sk(AXIOMS 1\H' 1\Bj 1\ ~H"). We can perform as many of 

the resolutions in this derivation as possible between Sk(Bj 1\ AXIOMS) first, and 

then perform resolutions with the resulting clauses and S k( H' 1\ ~H" ). Consider the 

set of clauses (called PROOFS, say) thus derived from Sk(Bj 1\ AXIOMS). From 

the above, PROOFS 1\Sk(H' 1\ ~H") is unsatisfiable. We therefore unskolemize 

some subset of PROOFS to obtain a formula F. After such an F is obtained for 

each of W;, HI, ... , Hk, we proceed as explained earlier and obtain a formula S 

as before. Note that Sis a logical consequence of each of Wi, HI, Hz, ... , Hk, 

and hence of H. We then check whether H' 1\ S -+ H" is valid for all verification 

conditions of the form H' 1\ W -+ H" (if this is not the case, we backtrack). As 

noted earlier, this is a necessary condition for S to be a valid approximation for W. 
The method described above restricts the search for an approximation S for W 

to all possible sets "PROOFS" generated as explained above, rather than the set 

of all possible logical consequences of H. The following discussion shows that it is 

sufficient to do so. We know that a valid approximation F for W can be generated 
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as a logical consequence of Bj, i.e. Sk(F) can be generated by resolution from 

Sk(Bj II AXIOMS). Suppose such an approximation F has been generated. Since 

F is a valid approximation for W, it must satisfy 

H' II F--+ H". 

Hence we can obtain a resolution proof of the unsatisfiability of Sk(AX IOMS) 
IISk(H') II Sk(F) II Sk(~H"). However, Sk(F) was obtained by resolution from 

Sk(Bj II AXIOMS). Therefore it is possible to obtain Sk(F) by resolution from 

Sk(Bj II AXIOMS) in a resolution proof of the unsatisfiability of 

Sk(AX !OMS) II Sk(Bj) II Sk(H') II Sk( ~H"), 

since such a resolution proof can be obtained by : 

1. Deriving Sk(F) from Sk(Bi II AXIOMS) 
2. Deriving the empty clause from AXIOMS II Sk(F) II Sk(H') II Sk(~H"). 

This method of generating F helps to restrict the search for a loop invariant, 
since the known formulas H" on the right-hand sides of verification conditions of 

the form H' II W--+ H" help to direct the search for F. This will be more clearly 

demonstrated in the examples in Section 3.11. 

Note. W; may itself be a disjunction of formulas, i.e. we may have 

W; = A1 V Az V 000 V Am. 
In this case, H = A 1 V oo• V Am V H1 V oo• V H k; thus we will have k + m formulas 

for which logical consequences have to be generated (unlike the above-described 

situation where we had k + 1 such formulas). 

The algorithm for the function GET-APPROX and two procedures which it 

calls are given below. 

function GET-APPROX(H, W); 

begin 

input( b); 
if there is one or more verification condition of the form H 1 11 W --+ H 2 then 

S := DIRECTED...SEARCH(H, W) 

else S := CONSEQUENCE(H, W); 

return(S) 

end. 

function CONSEQUENCE(H, W); 

begin 

S :=true; 

numiterations := 0; 
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end. 

Suppose H = B1 V B2 V ... V Br; 
while (S =true) and (numiterations <b) do 

{numiterations := numiterations + 1; 

for i := 1 to r do 

generate a formulaS; E unsk(Res(B; 1\ AX !OMS)); 

for i := 1 to r do 

} 

if Bk --+ S; for all k such that 1 :=::; k :=::; r then 

S := S 1\ S; 

if (S =true) then let S = S1 v S2 v ... V Sr; 
return(S) 

function DIRECTED...SEARCH(H, W); 

begin 

end. 

check if H1 1\ H --+ H2 for all verification conditions of the form H1 1\ W--+ 
H 2; if not, then BACKTRACK; 

numiterations := 0; 

S :=true; 

Suppose H = B1 V B2 V ... V Br; 

while (S =true) and (numiterations <b) do 

{numiterations := numiterations + 1; 

for i := 1 to r do 

{PROOFS := set of all clauses generated from B; 1\ 

AXIOMS by resolution during some proof of H1 1\ B;--+ 
H2; (see Note 1 below) 

chooseS; E unsk(SUB) for some subset SUB of PROOFS 

} 
for i := 1 to r do 

} 

if Bk -> S; for all k such that 1 :=::; k :=::; r then 

S := S 1\ S; 

if (S =true) then letS= S1 V S2 v ... v Sr; 
check if H1/\S-> H 2 for all verification conditions of the form H1/\ W-> H2 ; 

if not, then BACKTRACK; 

return(S) 

69 



Note 1. Since H 1 II H --> H 2 is valid for all verification conditions of the form 

H 1 II W--> H2 , and since H = B1 V ... V Br, clearly for every i such that 1 :::; i :::; 

r, H1 11 B; --> H2 . Consider a proof of unsatisfiability of Sk(AXIOMS II H1 II 

B;) 11 Sk(~H2 ) by resolution, for one such verification condition H1 II W --> H2. 

These resolutions can be rearranged so that any resolutions among clauses of B; 
and clauses of AXIOMS are performed first. Let the set of clauses from B; and 

AXIOMS and the clauses generated by these resolutions be the set PROOFS. 

3.8 Proof of completeness of the iteration algorithm 

We now prove the completeness of this algorithm, i.e. we show that if there 

exists a valid loop invariant for a given loop, the algorithm can derive it. The proof 

of completeness is based on the following five facts : 

(i) The first time that GET-APPROX(H, W) is called, H--> W is valid. 

(ii) If H ___. W, then GET-APPROX(H, W) can returnS such that S:::: W. 

(iii) If GET-APPROX(H, W) has returned S such that S =::: W all the n 

times it has been called, then when it is called for the n + 1 th time, H will 

imply W. 
(iv) GET-APPROX(H, W) can always return S such that S =::: W. 
(v) If GET-APPROX always returns a formula such that S =::: W, where W 

is its second argument, then the algorithm terminates and returns a valid 

loop invariant. 

We prove these statements one by one. 

Proof of (i) : Suppose GET-APPROX has not yet been called. Then the ap­

proximations for all loop invariants are currently set to "false". Consider the first 

argument H of GET-APPROX. If the second argument of GET-APPROX is W, 

then His a disjunction of W0 and the left-hand sides of verification conditions which 

have W on their right-hand sides and which are not valid with W set to "false". 
However, it can be seen that none of these left-hand sides can contain an occurrence 

of any loop invariant; the reason for this is that since all the current approximations 

for all loop invariants are "false", any left-hand side containing an occurrence of 

a loop invariant would have the value "false" (since false II H' = false for all 

H'). And since false -->X is valid no matter what the value of X is, a verification 

condition containing a loop invariant in its left-hand side would be valid. Thus all 

the left-hand sides of verification conditions which are included as disjunctions in H 
must be known formulas without any occurrences of loop invariants, and the right­

hand sides of these verification conditions are all W. Hence each of these left-hand 

sides must imply W. Since W 0 --> W (because W0 =false), clearly here H--> W. 
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Proof of (ii) : Suppose GET-APPROX(H, W) is called, and suppose H -+ W. 
GET-APPROX in turn calls either CONSEQUENCE or DIRECTED..SEARCH. 

Case (1). Suppose CONSEQUENCE(H, W) gets called by GET-APPROX. We 

have H = B 1 V Bz V ... V Br, where some of the B;'s constitute the previous approx­

imation for W, and the remaining Bj's are left-hand sides of verification conditions 
whose right-hand sides are W. Now, since H-+ W, we have 

Br V Bz V ... V Br -+ W 

Therefore for any i, 

B;-+ (Br V B2 V ... V Br)-+ W 
i.e. (B; -+ W) is valid for all 1 :S: i :S: r. 

Since for each i, an S; can be found in unsk(Res(B; II AX !OMS)) with the 

property that S; ~ W (because B; -+ W; thus we can use the results from Chapter 

2), it is possible to obtain the S;'s above so that S; ~ W for all 1 :S: i :S: r. It may 
happen that S; is implied by some of the other Bk's; if it is implied by all the Bk 's, 
then S; is added as a conjunct in formulaS. After this is done for each i such that 

1 :S: i :S: r, Swill be a conjunction of S;'s such that S; ~ W for all i. But then by 

Theorem 2.6, S ~ W. 
If not even one formula S; can be derived from B; such that S; is implied by 

all the other Bj's (for any i such that 1 :S: i :S: r) in a number b of trials, then S is 
taken to be the disjunction of the last set of S;'s which were obtained in the WHILE 

loop; since each of these S;'s had the property that S; ~ W, by Theorem 2.6, we 

haveS~ W. 
Hence we see that it is possible for the function CONSEQUENCE to return a 

formula S which has the property that S ~ W. Since GET-APPROX also returns 

S, this case is proved. 

Case (2). Suppose DIRECTED..SEARCH(H, W) gets called by GET-APPROX. 

We have H = Br V B2 V ... V Bro where some of the B; 's constitute the previous 
approximation for W, and the remaining Bj's are !eft-hand sides of verification 
conditions whose right-hand sides are W. As in Case (1), since H-+ W, we get 

B; -+ W for all i such that 1 :S: i :S: r. 

Now, since DIRECTED..SEARCH has been called, there exist verification con­

ditions of the form H 1 II W -+ H2 , where vV is the second argument of DI­
RECTED..SEARCH and where Hr, Hz are known formulas. Note that since H-+ 

W, we have Hrll H-+ H 1 11 W-+ H2, i.e. H 1 11 H-+ H 2 is valid and therefore the 

condition to be checked at the entry to the function holds. Let H1 II W -+ Hz be 

one such verification condition. 

Since B; -+ W for all i such that 1 :S: i :S: r, we have Hrll B; -+ H1 11 W-+ Hz, 

i.e. Hr II B; -+ Hz. For any i, consider the set of clauses Sk(B; II AX IOJi,f S II H1 ) II 
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Sk( ~Hz) (1 :<::: i :<::: r ). This set of clauses is unsatisfiable and therefore there exist 

derivations of the empty clause from these clauses. Now, it is possible to derive a 
set of clauses 'D; from Sk(B; II AXIOMS) and to unskolemize 'D; to give a formula 

S; such that 
B;--> S;--> WandS; j W (from the theorems in Chapter 2). 
Then, since S;--> W, therefore H 1 11 S; -->Hz is valid; hence since by Theorem 

2.2, (V'D;)--> S; is valid, therefore H1 II (V'D;)--> H1 II S; -->Hz, i.e. H1 II (V'D;)--> 
Hz is valid; therefore there exists a derivation of the empty clause from Sk(H1 II 

AX IOMS)II'D; II Sk( ~Hz). 

Thus we see that there exists a derivation of the empty clause from Sk(B; II 

AXIOMS) II Sk(H1 ) II Sk(~Hz) such that a set 'D; of clauses is produced by 
resolution from Sk(B; II AXIOMS) during this derivation of the empty clause such 

that 'D; has the above-mentioned properties (namely that 'D; can be unskolemized 

to give S; such that S; j W). 

Therefore if we let PROOFS be defined as in Note 1 at the end of the function 

DIRECTED..SEARCH, for such a derivation of the empty clause, it is possible 

to pick a set of clauses 'D; from PROOFS such that for some S; E unsk(TJ;), 

S; j W. As noted in Section 3.7, this method directs the search for W. This will 

be demonstrated in examples to follow. Thus for each i, it is possible to choose the 

S;'s above so that S; j W for all 1 :<::: i :<::: k. It may happen that S; is implied 

by some of the other Bk 's; if it is implied by all the Bk 's, then S; is added as a 

conjunct in formula S. After this is done for all i such that 1 :<::: i :<::: r, S will be a 

conjunction of S;'s such that S; j W for all i. But then by Theorem 2.6, S j W. 
If no such formulas S;, such that S; is implied by all the Bk's, can be derived 

from the B; 's in a number b of trials, then S is taken to be the disjunction of the 
last set of S;'s which were obtained in the WHILE loop; since each of these S;'s had 
the property that S; j W, by Theorem 2.6 S j W. 

Hence we see that it is possible for the function DIRECTED ..SEARCH to return 
a formulaS which has the property that S j W. 

Finally, since S j W, therefore by definitionS--> W, and hence 

(HI II S)--> (HI II W) --> H2, 
i.e. H1 II S--> H2 

and thus the last condition for exit from the function is satisfied; therefore GET­

APPROX can returnS such that S j W, and the proof is complete. 

Proof of (iii) : Suppose GET-APPROX(H, W) has returned S such that S j W 

all the n times it has been called, and suppose GET-APPROX is called for the 
n + 1 th time, with first and second arguments H and W respectively. We know that 

H = B 1 V B 2 V ... V Br, 
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where some of the B;'s constitute the previous approximation for W, and the re­

maining Bj's are left-hand sides of verification conditions whose right-hand sides 
are W. For the B;'s which constitute the previous approximation for W, we know 

that each of these B;'s imply W (since GET-APPROX returned S such that S :::5 W 
all the n times it has been called so far, therefore any approximationS for W re­

turned by GET-APPROX had the property that S -; W). For the Bj's which 

are left-hand sides of verification conditions with Won their right-hand sides, Bj 
can either be written as H 1 or as H 1 II Wk, for some known formula Hr and some 

approximation Wk to a loop invariant W' (W' could be equal to W). If Bj can 
be written as Hr, then H 1 -; W is valid (since it is a verification condition); if 

Bj = H 1 II Wk, then since H 1 II W' -; W is a verification condition, and since 

GET-APPROX returned S such that S :::5 W all the n times it has been called so 

far, therefore the approximation W£ for W' implies W', therefore we know that 

H 1 II W£ --> H 1 II W' 
->W 

I.e. Hr II W£ -; W is also valid. Hence each Bj implies W. 

Therefore H --> W (since H = B 1 V ... V Brand since Bk -; W for all1 :S; k :S; r ). 

Proof of (iv) : We prove that GET-APPROX can always return a formulaS such 

that S :::5 W by induction on the number of times GET-APPROX has been called. 

Base case : If GET-APPROX has never been called, and it is being called for 

the first time with first and second arguments H and W respectively, then by (i), 
H.....; W. Therefore by (ii), GET-APPROX can returnS such that S :::5 W. 

Inductive hypothesis : Suppose that for all the n times that GET-APPROX has 

been called, it has returned formulas S such that S :::5 W, where W was the second 
argument of GET-APPROX in that call. 

Inductive step: Suppose GET-APPROX(H, W) is called, this being then+ 1 th call 

of GET-APPROX. By the inductive hypothesis, GET-APPROX returned formulas 

S such that S :::5 W all the n times that GET-APPROX was called (W being the 

second argument of GET-APPROX in each case). Therefore by (iii), H-; W; and 

therefore by (ii), GET-APPROX can returnS such that S :::5 Win this n + 1 th call 

of GET-APPROX too, and the proof is complete by induction. 

Proof of (v) : We saw from (iv) that for each loop invariant Wi, it is possible to 

derive approximations Wj (by calling GET-APPROX) such that each Wj derived 
has the property that 

Wj :::5 Wi Vk. 
And since {F I F :::5 Wi} is finite up to variants for any Wi (provided that in 

the conjunctive normal form ofF, no two disjunctions ofF are identical, and no 
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disjunction contains more than one occurrence of any literal) from Theorem 2.5, 

only a finite number of distinct Wj's exist. But then this means that at some 

point during the execution of the algorithm, the Wj's derived will start repeating 

themselves. 
Thus there exists some integer .A such that 

j ?: .A -> (3k < .A such that WJ = Wi) for every i, 1 ::; i ::0 n. 

Recall that Wj -> Wj+l for every j ?: 0. We have to show that there will be 

a time when /\7=! flag(Wi) will be true. We first show that Wi = WL1 for all i, 
1 ::; i ::; n. 

We know from the above that there exists k < .A such that 

W ; -Wi >.- k· 

Therefore W{ = w~ -> w~+l -> w~+2 -> ..• -> WLI -> Wi 
. Wi Wi Wi Wi I.e. A-> A-1' A-1-> A" 

Therefore W{_1 = Wi. 
This is true for every i, 1 ::; i::; n. Therefore flag(Wi) will be set to "true" after 

W{ has been calculated. Since this is true for every i, 1 ::; i ::; n, 1\7=! flag(Wi) will 

be true after W{ has been calculated for every i, 1 ::; i ::; n, and then the algorithm 

halts. 

Note. This claim of completeness does not say that no matter which formulas GET­

APPROX generates, the algorithm will terminate with the correct answer. Since the 

loop invariants W are unknown, there is no way of verifying that an approximation 

S generated by GET-APPROX indeed satisfies S ::; W; and a potentially infinite 

number of formulas can be generated by GET-APPROX, only a finite number of 

whicli satisfy this condition. However, it does say that if a loop invariant exists, 

there is a way of deriving it using this algorithm. In the same way, the completeness 

of resolution does not guarantee that no matter which clauses are cliosen to be used 

in resolution steps, the proof will terminate; rather, it says that there is a way of 

obtaining a proof, if one exists, if the proper clauses are chosen for resolution. • 

3.9 Proof of soundness of the iteration algorithm 

To show that this algorithm is sound, all we need to do is to show that the final 

approximations for the loop invariants which are generated are valid loop invariants. 

This can be done by showing that all the verification conditions still hold when the 

generated loop invariants are substituted for the actual loop invariants. Now, when 

the algorithm terminates, all the flags (for every loop invariant) are set to true. This 

means that every verification condition with a loop invariant on the right-hand side 

of the implication sign is true if w~pprox is substituted for the loop invariant in all 
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such verification conditions. Therefore the only verification conditions which need 

to be checked are those which do not have a loop invariant on the right-hand side 

of the implication sign, i.e. those of type (iii) : 

H1 II Wi -+Hz. 

However, note that for any loop invariant Wi for which a verification condition 

of the above form exists, the function DIRECTED..SEARCH returns an approxi­

mationS for the loop invariant Wi such that H 1 II S-+ Hz, since this condition is 

specifically checked for at the end of the function. Thus the function GET -APPROX 

also returns an approximation S for the loop invariant W; such that H1 II S -+ Hz. 

This means that every approximation Wj for Wi satisfies the formula 

H1ll Wj-+ Hz. 

Therefore in particular, 

H1 II W~pprox -+ Hz 
and the soundness of the algorithm is proved. • 

3.10 A refinement 

In this section, we describe a refinement which can improve the efficiency of 

generating loop invariants. The refinement arises from the fact that assertions which 

do not mention the program variables need not be included in loop invariants, since 

they can be generated from the axioms of the programming language operations. 

More formally, suppose the cut points in a program are numbered 0, 1, 2, ... , n, 

where cutpoints 0 and n are the cutpoints to which the input and output assertions 

are attached, respectively. Let the inductive assertion attached to cutpoint i be 

denoted by 

A; II B; 

where A; consists of formulas which mention the program variables and B; consists 

of formulas which do not mention the program variables. Using the notation from 

Section 3.2, recall that the verification condition for a path a leading from cutpoint 

i to cut point j is given by : 

\!Xiiy(A;(x, Y) II B; II R,(x, Y) -+ Aj(r,(x, y)) II Bj) 

(since B; and Bj do not mention variables from x andy). This is equivalent to 

\!Xiiy(A;(x, y) II B; II R,(x, y)-+ Aj(r,(x, y))) II 
\!Xiiy(A;(x,Y) II B; II R,(x,y)-+ Bj) 

Since Bj does not mention the program variables, 

\!Xiiy( A;(x, Y) II B; II R,(x, Y) -+ Bj) 
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is equivalent to 

lfXVy(A;(x, Y) 1\ E;--. Ej) 

We assume that this verification condition can be proved from the set of axioms 

"AXIOMS" for the programming language operations; thus we have 

lfXVy(AXIOMS 1\ A;(x,y) 1\ E;--. Ej)-

This is equivalent to 

AXIOMS 1\ (3x3y)(A;(x,Y)) 1\ E;--> Ej) 

(since none of x, y occur free in E; and Ej)- It is reasonable to assume that 

AXIOMS--. (3x3y)(A;(x,y)). 

Thus we have 

AXIOMS 1\ E;--. Ej. 

Now, clearly AXIOMS --> Eo (recall that Ao 1\ Eo is the input assertion). 

Also, from the above, AXIOMS 1\ Eo --> Ej is valid for all j such that the cutpoint 

j is reachable from the cutpoint 0 by a path without intervening assertions. Thus 

AXIOMS--> Ej for all such j. But then by the connectedness of the program, we 

can inductively extend this argument to show that AXIOMS--> Ej for all j such 

that 0 :::; j :::; n. Thus all the Ej 's can be dropped from the inductive assertions. 

The above result makes the task of generating loop invariants more efficient, 

since any formula which is generated by the function GET-APPROX and which 

does not contain program variables can be immediately discarded. This greatly 

reduces the search space for a valid loop invariant. 

3.11 Some examples 

Example 3.1 The program over the integers shown in Figure 3.2 computes z = 
gcd(x1ox2) for every pair of positive integers XI and x2; that is, z is the greatest 

common divisor of XI and x2. The computation method is based on the fact that 

If YI > Y2, then gcd(yr, Y2) = gcd(yr - Y2, Y2) 

Ifyr < y2, thengcd(yi,Y2) =gcd(yi,Y2 -yi) 

If YI = y2, then gcd(yi, Y2) = YI = Y2· 
The program is to be proved partially correct with respect to the input predi­

cate <f;(x): x 1 > O/\x2 > 0 and the output predicate ,P(x,z): z = gcd(xi,x2). The 

two loops of the program have been cut at point E and an unknown loop invari­

ant WI attached to this point. We will use the iteration algorithm to derive this 

invariant. 
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L.--ljl(5i, z): z = gcd(x 1 , x2 ) 

Figure 3.2 Calculating the g.c.d. of two numbers 

Since the domain of the given program is the set of integers, and the operations 
of the language include arithmetic operations, comparison and equality, we must in­
clude the necessary axioms for arithmetic operations, comparison and equality when 
performing resolutions. Also, we must provide the definition of the gcd function, 
since the function is mentioned in the output assertion '1/J. The axioms listed above 
are used to define the gcd function. Let the set of all these axioms be AXIOMS. 

We perform the iteration algorithm step by step. There is only one loop in­
variant here, therefore n = 1. There are four paths leading from one cutpoint to 
another, since two different paths exist in the program loop, depending on which 
branch is taken after the test y1 > y2 • We denote old values for the variables YI 

and Y2 by y; and y~ respectively. 

There are four verification conditions for the program, which are 

vc1:: (x1 > 0) II (x2 > 0) II (x 1 = yi) II (x2 = Y2)--> W 1(x,yi>Y2) 
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vc2 = :Jy;(W1(x,yf,y2)i\(yl = y; -y2)i\(y; # y2)i\(y; > Y2)-. W 1 (X",yt,Y2)) 

vca =: 3y~(W1 (x,yt,Y~)i\(y2 = y~-yt)i\(YI # y~)i\(Yt :S:: y~)---> W 1 (X",yt,Y2)) 
vc4 = W 1(x,yt,Y2) 1\ (Yt = Y2)---> (Yt = gcd(xt,x2)). 

Step 1. index(W1) = 0, W0
1 =false 

Step 2. list= [W1
]. 

Step 3. First iteration : 

W=W1 

T = {lhs(vc1)} 

index(W1) = 1 
flag(W 1) = false 

Wl =GET-APPROX(WJ V lhs(vct), W 1
) 

= GET-APPROX(false v lhs(vc1), W 1 ) 

= GET-APPROX(lhs(vct), W 1
) 

= GET-APPROX(xl > 01\ X2 > 0 i\ XJ = Yl i\ X2 = Y2, W 1 
). 

Call GET-APPROX(H, W 1 ), where 

H = XJ > 0 i\ X2 > 0 i\ XJ = Yl i\ X2 = Y2 
input b to be some large number 

S := DIRECTED...SEARCH(H, W1 ) 

Call DIRECTED...SEARCH(H, W 1
) 

check if AXIOMS 1\ Hi\ (y1 = Y2)---> (Yl = gcd(x1,x2)); since this is valid, 
continue; 

S :=true; 

H=Bt; 

WHILE LOOP: 

(r = 1) 
numiterations := 1 

First FOR loop : 

PROOFS := set of all clauses generated from B 1 i\ AXIOMS by 

resolution during some proof of AXIOMS i\ Hi\ (Yl = Y2)---> (Yt = 
gcd(x1, x 2 )). 

A proof of AXIOMS i\ Hi\ (y1 = Y2)---> (y1 = gcd(x1, x2)) is given 
at the end of this example; thus we have 

PROOFS := { {xt > 0}, {x2 > 0}, {xt = yt}, {x2 = Y2}, {YI # 
Y2,Yl = gcd(yt,Y2)}, {Yt # Y2,Yl = gcd(xt,Y2)}, {Y # Z,Y = 
gcd(Y,Z)}, {Yt # Y2,y1 = gcd(x1,x2)} }; 

From this set, choose S1 =all clauses in PROOFS, leaving out axioms 

= XJ > 0 i\ x2 > 0 1\ Xt = Yt i\ x2 = Y2 i\ (Yt # Y2 V YI = gcd(yt, Y2)) i\ 

(Yt oF Y2 V Yt = gcd(xt,Y2)) i\ (Yt oF Y2 Vy1 = gcd(x1,x2)); 
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Second FOR loop : 

Since B1 --+ S1 , therefore S := (true 1\ Sr) = 

(xr >01\xz >01\xr =yr/\xz =yz/\(yr f=yzVYr =gcd(yr,Yz))/\(yr f= 

YzVYr =gcd(xr,yz))/\(yr f=yzVYr =gcd(xl,xz)). 

Clearly AXIOMS 1\ S 1\ (Yr = yz) --+ (Yr = gcd(xr,xz)) is valid, therefore 
DIRECTED...SEARCH and GET-APPROX return (x1 > 0 1\ x2 > 0 1\ x1 = 

Yr/\xz = yz/\(yr f= YzVYr = gcd(yi,Yz))ll(yl f= yzVYI = gcd(x1,yz))ll(y1 f= 
Yz Vy1 = gcd(xr,xz)). 

Hence we obtained, after calling the function GET-APPROX, 

Wl = (x1 > 01\xz > 01\xr = Y1/\xz = Yz/\(yl f= YzVYI = gcd(yr,yz))/\(yr f= 
Yz Vy1 = gcd(xi,Yz)) 1\ (Yr f= Yz V Yr = gcd(xr,xz)). 

Second iteration of Step 3 : 

W=W1 

T = {lhs(vc2 ), lhs(vc3)} 

index(W1 ) = 2 

flag(W 1 ) =false 

W,i =GET-APPROX(Wl V lhs(vc2 ) V lhs(vc3), W 1
) 

Call GET-APPROX(H, W 1), where 

H = (x1 > 01\xz > O/\x1 = Yr 1\xz = Yz 1\(yl f= Yz Vyr = gcd(yl,yz))/\(yl f= 

Yz Vyr =gcd(xr,Yz))/\(yl f=yz Vy1 =gcd(xl,xz))V 

(x1 >01\xz >OIIx1 =yi/\xz =yz/\(yl =y; -yz)ll(y; f=yz)/\y; >yz)V 

(xr > 01\ xz > 01\ x1 = Y1 1\ xz = y~ 1\ (yz = y~- Yl) 1\ (y~ f= Yl) 1\ YI ::; y~) 
= B 1 V Bz V B3. 

input b to be some large number 

S := DIRECTED...SEARCH(H, W 1 ) 

Call DIRECTED...SEARCH(H, W 1 ) 

check if AXIOMS 1\ H 1\ (YI = Yz)--+ (Yr = gcd(x1,xz)); since this is valid, 
continue; 

S :=true; 

H =B1 V Bz V B 3 

First execution of WHILE loop : 

(r = 3) 

numJterations := 1 

First execution of first FOR loop : i = 1 : 

PROOFS := set of all clauses generated from B 1 1\ AXIOMS by 
resolution during some proof of AXIOMS 1\ B1 1\ (YI = yz)--+ (y1 = 

gcd(xr,xz)). 
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A proof of AXIOMS 1\ BI 1\ (YI = Y2)-+ (YI = gcd(xi,x2)) is given 
at the end of this example; thus we have 

PROOFS := {{xi > 0}, {x2 > 0}, {xt = yt}, {x2 = Y2}, {Y # 
Z,Y = gcd(Y,Z)}, {YI # Y2,YI = gcd(y1,y2)}, {Yt # Y2,YI = 
gcd(xi, Y2)}, {YI # Y2, YI = gcd(xi, x2)} }; 
From this set, choose SI =all clauses in PROOFS, leaving out axioms 

=XI >OI\x2 >01\xi =yii\x2=Y21\(yi =jy2VY1 =gcd(yi,Y2))1\ 

(YI # Y2 V YI = gcd(xi, Y2)) 1\ (YI # Y2 V YI = gcd(xi, x2)); 
Second execution of first FOR loop : i = 2 : 

PROOFS := set of all clauses generated from B2 1\ AXIOMS by 

resolution during some proof of AXIOMS 1\ B2 1\ (YI = Y2)-+ (YI = 

gcd(xi, x2)). 

A proof of AXIOMS 1\ B21\ (YI = Y2)-+ (YI = gcd(xi,x2)) is given 
at the end of this example; thus we have 

PROOFS := {{ ~(Y > Z), gcd(Y, Z) = gcd(Y- Z, Z)}, {Y # Z, Y = 

gcd(Y, Z)}, {xi > 0}, {x2 > 0}, {yi > y2}, {xi = yi}, {x2 = Y2}, 

{Yt = Yi- y2}, {x1 > Y2}, {x1 > x2}, {gcd(xt,xz) = gcd(x1-

x2,x2)}, {Yt = Xt- Y2}, {YI = Xt- x2}, {gcd(xi,x2) = gcd(y1,x2)}, 

{gcd( x1, x2) = gcd(yl, Y2)}}; 
From this set, choose S2 = all clauses generated from B 2 1\ AX I01'vf S 
in PROOFS, leaving out axioms 

= (xi > 0 1\ xz > 0 1\ Yi > Yz 1\ Xt = Yi 1\ xz = Yz 1\ Y1 = Yi - Y2 1\ XI > 
Yz 1\ xi > Xz 1\ (gcd(xi, xz) = gcd(xi- xz, xz)) 1\ Yt =xi- Yz 1\ YI = 

XI - Xz 1\ (gcd(xi, x2) = gcd(yi, xz)) 1\ gcd( Xt, Xz) = gcd(yi, Y2 )). 

Third execution of first FOR loop : i = 3 : 

PROOFS:= set of all clauses generated from B3 1\ AXIOMS by 

resolution during some proof of AXIOMS 1\ B3 1\ (YI = yz) -+ (y1 = 

gcd(xi, x 2 )). 

A proof of AXIOMS 1\ B3 1\ (YI = Yz)-+ (Yt = gcd(xi,xz)) is given 
at the end of this example; thus we have 

PROOFS := {{ ~(Y < Z), gcd(Y, Z) = gcd(Y, Z- Y)}, {Y # Z, Y = 

gcd(Y,Z)}, {xi> 0}, {x2 > 0}, {YI < y~,YI = y~}, {xz = y~}, {xi= 

yt}, {yz = Y~- yt}, {y~ # yt}, {YI < y~}, {YI < xz}, {xi < xz}, 

{gcd(x1,x2) = gcd(x1,x2- XI)}, {yz = Xz- yt}, {yz = x2- xt}, 

{gcd( Xt, Xz) = gcd( Xt, Y2)}, {gcd( Xt, Xz) = gcd(yl, Y2)}} j 

From this set, choose S3 = all clauses generated from B 3 1\ AX IO Nf S 
in PROOFS, leaving out axioms 

= (xl > 0 1\ X2 > 0 1\ (Yt < Y~ V Yl = Y~) 1\ X2 = Y~ 1\ Xt = YI 1\ Y2 = 
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y~ - YI A y~ # Yl A YI < y~ A YI < X2 A XI < X2 A (gcd( XI, X2) -

gcd(xi,X2- xi)) A Y2 = Xz- YI A Y2 = X2- XI A(gcd(xi,x2) -

gcd(xi, Yz)) A gcd(xi, x2) = gcd(yi, Y2)). 

Second FOR loop : 

i = 1: 

We find that 

BI ..... SI is valid; 

B2 ..... S1 is not valid; 

Ba --> SI is not valid. 

i = 2: 
We find that 

BI --> Sz is not valid; 

B2 ..... S 2 is valid; 

Ba --> S2 is not valid. 

i = 3: 

We find that 

BI --> Sa is not valid; 

B2 --> Sa is not valid; 

Ba --> Sa is valid. 

Since S =true, the WHILE loop must be repeated again. 

The WHILE loop is now repeated several times, with S; chosen to be a different 

subset of PROOFS each time (fori= 1, 2, 3). After a number of iterations, we finally 

choose 

Sz =xi> OAxz >0Agcd(xi,x2) =gcd(yi,Yz), 

which satisfies 

Thus S is set to be 

BI ->Sz 

B2 ->Sz 

Ba--> Sz. 

S = XI > 0 A Xz > 0 A gcd( XI, X2) = gcd(yi, Y2 ). 

Clearly AXIOMS AS A (Yl = Y2)--> (YI = gcd(xi,xz)) is valid, therefore 
DIRECTED ...SEARCH and GET-APPROXreturn (xi > 0 A x2 > 0 A gcd(xi,x2) = 
gcd(yl, Y2)) 

Hence we obtained, after calling the function GET-APPROX, 

Wi =(xi > 0 A Xz > 0 A gcd(xi,xz) = gcd(yi, Y2)) 

Third iteration of Step 3 : 
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W=W 1 

T = 0 (it can be verified that all the verification conditions are valid with Wi 
substituted for W 1 everywhere) 

index(W1
) = 3 

flag(W1
) = true 

Wl-wl 
3 - 2 

Since flag(W 1 ) is true, Step 3 terminates. 

4. WJpprox = ( XJ > 0 /1 Xz > 0 /1 gcd( XJ, Xz) = gcd(yl, Yz)) 

5. Halt. 
The loop invariant derived is 

W 1 = (x1 > 0/1 x2 > 0/1 gcd(xi>xz) = gcd(yi,Yz)). 

The proofs used in this example were : 

Proof of AXIOMS /1 x1 > 0/1 Xz > 0/1 x1 = YI /1 Xz = Y2 /1 (YI = Yz)-+ (YI = 
gcd(x1 ,x2)): 

(The same proof can be used to show that AXIOMS /1 x1 > 0/1 x 2 > 0/1 x1 = 

Y1 II Xz = Y2 II (YI oF Y2 V Yl = gcd(y!, Yz)) II (YI oF Y2 V Y1 = gcd(xl> Yz)) II (YI oF 
Y2 Vy1 = gcd(xJ,xz)) /1 (YI = Yz)-+ (YI = gcd(xi,xz))) 

1. x1 > 0 Given 

2. Xz > 0 Given 

3. x1 = y1 Given 

4. Xz = Y2 Given 

5. Y i' Z V Y = gcd(Y, Z) Axiom 

6. (YI = Yz) Given 

7. (YI i'gcd(xi,xz)) Given 

8. YI i' Yz V Y1 = gcd(yJ, Y2) Instance of 5 

9. YI i' Yz V Yl = gcd( x1, Yz) Paramodulate 3,8 

10. Yl i' Yz V YI = gcd(xJ,Xz) Paramodulate 4,9 

11. YI = gcd(xJ,xz) Resolve 6,10 
12. empty clause Resolve 7,11. 

Proof of AXIOMS /1 (x1 > 0/1 Xz > 0/1 XJ = yj /1 Xz = Yz /1 (YI = yj- yz) /1 (yj i' 
Yz) II yj > Y2 /1 (YI = Yz)-+ (YI = gcd(xJ, xz)) : 

1. ~(Y > Z) V gcd(Y, Z) = gcd(Y - Z, Z) Axiom 

2. Y i' Z V Y = gcd(Y, Z) Axiom 

3. yj > Yz Given 

4. XJ = yj Given 

5. Xz = Yz Given 

6. YJ = yj - Yz Given 
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7. Yr = Yz Given 

8. YI =F gcd(xr, xz) Given 

9. xr > yz Paramodulate 3,4 

10. x1 > x2 Paramodulate 5,9 
11. gcd(x1,x2 ) = gcd(x 1 - x 2 ,x2 ) Resolve 1,10 

12. y1 = xr - Yz Paramodulate 6,4 
13. y1 = xr - Xz Paramodulate 5,12 
14. gcd(xl>xz) = gcd(yr,xz) Paramodulate 11,13 

15. gcd(x 1 ,x2 ) = gcd(Yl>YZ) Paramodulate 5,14 

16. Yr = gcd(y1, yz) Resolve 2,7 
17. gcd(x1,x2) = y1 Paramodulate 15,16 

18. empty clause Resolve 8,17 

Proof of AXIOMS II (x1 > 0 II xz > 0 II xr = Y1ll xz = y~ II (Yz = Y~- YI) II (y~ # 
YI) II Y1 ::0 Y~ II (Yr = Yz)--> (YI = gcd(x1,xz)): 

1. ~(Y < Z) V gcd(Y, Z) = gcd(Y, Z- Y) Axiom 

2. Y # Z V Y = gcd(Y, Z) Axiom 

3. Yl < y~ V Yl = y~ Given 

4. Xz = y~ Given 

5. x 1 = YI Given 

6. Yz = y~ - Yl Given 

7. y~ =F Yl Given 

8. Y1 = Yz Given 

9. Y1 # gcd( XI, Xz) Given 

10. Y1 < y~ Resolve 3,7 

11. Yl < Xz Paramodulate 4,10 
12. XI < Xz Paramodulate 5,11 
13. gcd(x1,xz) = gcd(xi,XZ -xi) Resolve 1,12 

14. Yz = Xz - YI Paramodulate 6,4 
15. yz = Xz -XI Paramodulate 5,14 
16. gcd(xr,xz) = gcd(xi,yz) Paramodulate 13,15 

17. gcd(x1 ,x2) = gcd(yi,yz) Paramodulate 5,16 

18. YI = gcd(yi, yz) Resolve 2,8 
19. gcd(x1 , x2 ) = Yl Paramodulate 17,18 
20. empty clause Resolve 9,19 • 

Example 3.2 This example illustrates the working of the iteration algorithm when 

unskolemization is used to derive the loop invariant. The flowchart program in 

Figure 3.3 multiplies two numbers by repeated addition of one number to a variable. 
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START 

X<>- 0 
y- b 

B 
w 

Figure 3.3 Multiplying two numbers by repeated addition 

The program is to be proved partially correct with respect to the input predicate 
tj>(x, y): b 2: 0 and the output predicate ,P(x): x =a* b. The loop of the program 
has been cut at point B and an unknown loop invariant W attached to this point. 
We will use the iteration algorithm to derive this invariant. 

Since the domain of the given program is the set of integers, and the operations 
of the language include arithmetic operations and equality, we must include the nec­
essary axioms for arithmetic operations and equality when performing resolutions. 
Let the set of all theseaxioms be AXIOMS. 

We perform the iteration algorithm step by step. There is only one loop in­

variant here, therefore n = 1. There are three paths leading from one cutpoint to 
another. We denote old values for the variables x and y by x' and y' respectively. 
As in the previous example, proofs of unsatisfiability obtained in the function DI­
RECTED ..SEARCH can be found at the end of this example. The three verification 
conditions for this program are : 

1. (y =b) A (b 2: 0) A (x = 0)-> W(x, y) 

2. 3x'3y'(W(x',y') A y' of 0 A (x = x' +a) A (y = y'- 1)-> W(x, y)) 

3. W(x,y)l\(y=O)->(x=a*b). 

Tracing the iteration algorithm, we get 
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1. index(W) = 0 

2. list= [W] 

3. First iteration of Step 3 : 
Wo =false 
T = {lhs(vcl)} 
flag(W) = false 

W1 =GET-APPROX(Wo V lhs(vc1 ), W) 
= GET-APPROX(!alse V ((y =b) II (b ~ 0) II (x = 0)), W) 
= GET-APPROX(((y =b) II (b ~ 0) II (x = 0)), W) 

H = B1 = ((y =b) II (b ~ 0) II (x = 0)) 
call DIRECTED..SEARCH(((y =b) II (b ~ 0) II (x = 0)), W) 

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} }; 
Choose S1 = all clauses in PROOFS except axioms 

= ((y =b) II (x = 0) II (b ~ 0)); 
returnS= ((y =b) II (b ~ 0) II (x = 0)) 

Second iteration of Step 3 : 

W1 = ((y =b) II (b ~ 0) II (x = 0)) 
T = {lhs(vc2)} 
flag(W) = false 

W2 =GET-APPROX(W1 V lhs(vc2), W) 

= GET-APPROX(((y =b) II (b ~ 0) II (x = 0)) 
V((y' =b) II (b ~ 0) II (x' = 0) II y' -=1 0 II (x = x' +a) II (y = y'- 1)), W) 

H = B1 V B2 = ((y =b) II (b ~ 0) II (x = 0)) 
V((y' =b) II (b ~ 0) II (x' = 0) II y' "=I 0 II (x = x' +a) II (y = y'- 1)) 
call DIRECTED..SEARCH(B1 V Bz, W) 

First execution of first FOR loop : 

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} }; 
Choose S1 = all clauses in PROOFS except axioms 
= ((y =b) II (x = 0) II (b ~ 0)); 

Second execution of first FOR loop : 
PROOFS = {{x = a}, {y = b- 1}, {b ~ 0}, {y' = b}, {y = y'-

1},{x' = O},{x = x' + a},{x = 0 + a},{x =a+ O},{Y * Z = 
Z*Y},{Z* 1 = Z},{X- Y -=I Z,X = Y + Z},{Z = Z +0}}; 
Choose S2 =all clauses in PROOFS except axioms 
= ((y = b- 1) II (x =a) II (b ~ 0) II (y' = b) II (y = y'- 1) II (x' = 
0) II (x = x' +a) II (x = 0 +a) II (x =a+ 0)); 

Second FOR loop: 
i = 1; we find that 
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B1 --> S1 is valid; 

B2 --> S1 is not valid; 

i = 2; we find that 

B1 --> S2 is not valid; 

B2 --> S2 is valid; 

Since S = true, the WHILE loop must be repeated again. After 

several repetitions, however, no formula is derived such that B 1 and 

B2 both imply it. Thus we exit from the WHILE loop. 

We get S = S1 V S2 

= ((y =b) 1\ (x = 0) 1\ (b :2: O))V 
((y = b- 1) 1\ (x =a) 1\ (b;:::: 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' = 

0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x =a+ 0)); 
returnS= ((y = b)l\(x = 0)1\(b :2: D))V((y = b-1)1\(x = a)l\(b;:::: 
0) 1\(y' = b)l\(y = y' -1) 1\ (x' = 0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x = 

a+ 0)) 

Third iteration of Step 3 : 

W2 = ((y =b) 1\ (b :2: 0) II (x = 0)) V ((y = b -1) 1\ (x =a) II (b :2: 0) II (y' = 

b) 1\ (y = y'- 1) 1\ (x' = 0) 1\ (x = x' +a) 1\ (x = 0 +a) II (x =a+ 0)) 
T = { lhs( vc2)} 

flag(W) =false 
W3 =GET-APPROX(W2 V lhs(vc2), W) 

= GET-APPROX(((y =b) 1\ (b :2: 0) II (x =D)) 
v((y = b -1) 1\ (x =a) 1\ (b;:::: 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' = 0) 1\ (x = 

x' + a) 1\ ( x = 0 + a) 1\ ( x = a + 0)) 

V((y' =/= 0) II (y = y'- 1) 1\ (x = x' +a)/\ 
(((y' =b) 1\ (b :2: 0) II (x' = 0)) V ((y' = b- 1) 1\ (x' =a) 1\ (b;:::: 0) 1\ (y" = 

b) 1\ (y' = y"- 1) II (x" = 0) 1\ (x' = x" +a) 1\ (x' = 0 +a) 1\ (x' =a+ 0))), W) 
H = ((y =b) II (b :2: 0) II (x = 0)) 

V((y = b -1) II (x =a) II (b :2: 0) 1\ (y' =b) II (y = y' -1) II (x' = 0) 1\ (x = 
x' + a) 1\ ( x = 0 + a) II ( x = a + 0)) 

V((y' =/= 0) II (y = y' -1) 1\ (x = x' +a) 1\ (y' =b) 1\ (b;:::: 0) 1\ (x' = 0)) 
V((y' =/= 0) 1\ (y = y'- 1) II (x = x' +a) 1\ (y' = b- 1) 1\ (x' = a) 1\ (b;:::: 

0) 1\ (y" = b) 1\ (y' = y" - 1) 1\ ( x" = 0) 1\ ( x' = x" +a) 1\ ( x' = 0 +a) 1\ ( x' = a+ 0)) 
= ((y =b) 1\ (b :2: 0) 1\ (x = 0)) 

V((y' =/= 0) 1\ (y = y'- 1) 1\ (x = x' +a) 1\ (y' =b) 1\ (b :2: 0) 1\ (x' = 0)) 

V((y' =/= 0) II (y = y'- 1) 1\ (x = x' +a) 1\ (y' = b- 1) 1\ (x' = a) 1\ (b ;:::: 
0) 1\ (y" =b) II (y' = y11 -1) II (x" = 0) 1\ (x' = x" +a) 1\ (x' = 0 +a) 1\ (x' =a+ 0)) 

= B1 V B2 V B3 
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call DIRECTED..SEARCH(B1 V B 2 V B 3 , W) 

First execution of first FOR loop : 

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} }; 
Choose 5 1 = all clauses in PROOFS except axioms 

= ((y =b) 1\ (x = 0) 1\ (b ~ 0)); 
Second execution of first FOR loop : 

PROOFS= {{x = a},{y = b-1},{b ~ O},{y' = b},{y = y'-

1},{x' = O},{x = x'+a},{x = O+a},{x = a+O},{Y*Z­

Z * Y}, {Z * 1 = Z}, {X- Y ~ Z,X = Y + Z}, {Z + 0 = Z} }; 
Choose 5z = all clauses in PROOFS except axioms 

= ((y = b- 1) 1\ (x =a) 1\ (b ~ 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' = 
0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x =a+ 0)); 

Third execution of first FOR loop : 

PROOFS= {{x = a*2},{y = b-2},{b ~ O},{y' = b-1},{x' = 
a}, { y = y' - 1}, { x = x' + a}, { y = b - 1 - 1}, { x = a + a}, { Z * 2 = 
Z+Z}, {-1-1 = -2}, {X-Y ~ Z,X = Y +Z}, {Z = Z+O}, {Y*Z = 

z * Y}}; 
Choose 53 = unsk(a!l clauses in PROOFS except axioms) 

= unsk((x = a*2)1\(y = b-2)1\(b ~ 0)1\(y' = b-1)1\(x' = 
a) 1\ (y = y'- 1) 1\ (x = x' +a) 1\ (y = b- 1- 1) 1\ (x =a+ a)); 

= 3z((y = b- z) 1\ (x = a* z) 1\ (b ~ 0) 1\ (y' = b- 1) 1\ (x' =a) 1\ (y = 
y' - 1) 1\ ( x = x' + a) 1\ ( y = b - 1 - 1) 1\ ( x = a + a)) ; 
(obtained by unskolemizing the symbol "2" and replacing it by the 
existentially quantified variable z) 

Second FOR loop: 

i = 1 : 

We find that 

Bt --+ 5t is valid; 

Bz --+ 5t is not valid; 

B3 --+ 51 is not valid. 
i = 2: 

We find that 

Bt --+ 5z is not valid; 

Bz --+ 5z is valid; 

B3 --> 5z is not valid. 

i = 3: 
We find that 

Bt -+ 53 is not valid; 
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B2 -+ S3 is not valid; 

B3 -+ S3 is valid. 

Since S = true, the WHILE loop must be repeated again. 

The WHILE loop is now repeated several times, with S; chosen to be a different 

subset of PROOFS each time (fori= 1, 2, 3). After a number of iterations, we finally 

choose 

S3 = :iz((y = b- z) II (x =au) II (b <': 0)), 

which satisfies 

Thus S is set to be 

B1 _, s2 

Bz-> Sz 
Ba-+ Sz. 

S = :iz((y = b- z) II (x =au) II (b <': 0)) 

returnS= :lz((y = b- z) II (x =a* z) II (b <': 0)) 

Fourth iteration of Step 3 : 

T = 0 (it can be verified that all the verification conditions are valid with W3 
substituted for W everywhere) 

flag(W) = true 

w4 =W3 
Since flag(W) is true, Step 3 terminates. 

4. Wapprox = :lz( X = a * z II y = b - z) II b <': 0 

5. Halt. 

The proofs used in this example were : 

Proof of AX I 0 M S II x = 0 II y = b II y = 0 -> x = a * b : 
1. x = 0 Given 

2. y = b Given 

3. Z * 0 = 0 Axiom 

4. y = 0 Given 

5. x oft a* b 
6. 0 oft a* b 

7. 0 oft a* Y 

8. 0 oft a* 0 

Given 

Paramodulate 1,5 

Paramodulate 2,6 

Paramodulate 4, 7 

9. empty clause Resolve 3,8. 

Proof of AX I 0 ]Yf S II y' = b II b <': 0 II x' = 0 II y' oft 0 II x = x' + a II y = y' - 111 y = 
0->x=a*b: 

1. y' = b Given 
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2. x' = 0 Given 

3. x = x' + a Given 

4. y = y' - 1 Given 

5. Z * 1 = Z Axiom 
6. X - Y f= Z, X = Y + Z Axiom 

7. Z = Z + 0 Axiom 

8. Y * Z = Z * Y Axiom 
9. y = 0 Given 

10. x f= a* b Given 
11. y = b- 1 Paramodulate 1,4 

12. x = 0 + a Paramodulate 2,3 

13. x =a+ 0 Paramodulate 8,12 

14. 0 = b- 1 Paramodulate 9,11 

15. b = 1 + 0 Resolve 6,14 

16. b = 1 Paramodulate 7,15 

17. x f= a* 1 Paramodulate 10,16 

18. x f= a Paramodulate 5,17 

19. x =a Paramodulate 7,13 

20. empty clause Resolve 18,19. 

Proof of AXIOMS II (y' f= 0) II (y = y' -1) II (x = x' +a) II (y' = b- 1) II (x' = 
a)ll (b?: 0) II (y" = b) II (y' = y" -1) II (x" = 0) II (x' = x 11 +a) II (x' = 0+ a) II (x' = 

a+ 0) II y = 0 ---> x = a* b : 

1. y1 = b - 1 Given 

2. y = y1 
- 1 Given 

3. x' = a Given 

4. x = x' + a Given 

5. X - Y f= Z, X = Y + Z Axiom 

6. Z * 2 = Z + Z Axiom 
7. -1- 1 = -2 Axiom 

8. Z = Z + 0 Axiom 

9. Y * Z = Z * Y Axiom 
10. y = 0 Given 

11. x f= a* b Given 

12. y = b -1- 1 Paramodulate 1,2 

13. x = a + a Paramodulate 3,4 

14. x =a* 2 Paramodulate 6,13 

15. y = b- 2 Paramodulate 7,12 

16. 0 = b- 2 Paramodulate 10,15 
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17. b = 2 + 0 Resolve 5,16 

18. b = 2 Paramodulate 8,17 

19. x =Fa* 2 Paramodulate 11,18 

20. empty clause Resolve 14,19. 

Comments : The unskolemization which was performed for the symbol "2" in the 

third iteration of Step 3 could have been performed for the symbols "0" or "1" in 

the first and second iterations of Step 3 respectively, but this would have required 

some rewriting; the clause { x = 0} would have had to be rewritten as { x = a* 0} in 

the first case, and the clause { x = a} would have had to be rewritten as { x = a* 1} 

in the second case. It is not easy to "guess" how this rewriting should be done. 

However, in the third iteration of Step 3, the replacement of the symbol "2" by 

an existentially quantified variable was more straightforward, since no imaginative 

rewriting was required (the rewriting of a+ a to a* 2 and of b- 1 - 1 to b- 2 

was performed during the last proof shown above since the theorem to be refuted 

required this rewriting). 

Example 3.3 In this example, a loop invariant for the flowchart program shown 

in Figure 3.1 is derived. In Section 3.1, we showed how a loop invariant for this 

program was derived using Wegbreit's top-down approach. The same program was 

also verified by King [King 69]. The program calculates the quotient and remainder 

of numbers x and y and is to be proved partially correct with respect to the input 

predicate <f>(x, y): x 2 01\ y > 0 and the output predicate ,P(x): x = q * y + r 1\0 :<::: 

r 1\ r < y. An unknown loop invariant W for the program loop is to be generated. 

Since the domain of the given program is the set of integers, and the operations 

of the language include arithmetic operations and equality, we must include the nec­

essary axioms for arithmetic operations and equality when performing resolutions. 

Let the set of all these axioms be AXIOMS. 
We perform the iteration algorithm step by step. There is only one loop in­

variant here, therefore n = 1. There are three paths leading from one cutpoint to 

another. We denote new values for the variables q and r by q1 and r 1 respectively. 

As in the previous example, proofs of unsatisfiability obtained in the function DI­

RECTED ..SEARCH can be found at the end of this example. The three verification 

conditions for this program are : 

1. x 2 01\ y > 01\ q = 01\ r = x--> W(q, r) 
2. :lq':lr'(W(q, r) 1\ r 2 y 1\ q' = q + 1 1\ r' = r- y-; W(q', r')) 
3. W(q, r) 1\ r < y--> x = q * y + r 1\0 :": r 1\ r < y. 

Tracing the iteration algorithm, we get 
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1. index(W) = 0 

2. list= [W] 
3. First iteration of Step 3 : 

Wo =false 

T = {lhs(vq)} 
flag(W) = false 

W1 =GET-APPROX(Wo V lhs(vc1), W) 

= GET-APPROX(false V (x :2: OAy > OA q =OAr= x), W) 

= GET-APPROX((x :2: 0 A y > 0 A q = 0 A r = x), W) 
H = B1 = x :2: 0 A y > 0 A q = 0 A r = x 

call DIRECTED...SEARCH(x :2: 0 A y > 0 A q = 0 A r = x, W) 
Prove that ( x :2: 0 A y > 0 A q = 0 A r = x) A r < y -+ x = q * y + r A 0 :::; 

rAr < y 

PROOFS= { {x :2: O},{q = O},{r = x},{O*Z = Z}, {q*Z = O},{X # 
Y,Z +X= Z +Y},{Z +r = Z +x},{q*y+r = q*y+x},{q*y+r = 

0 + x }, {0 + Z = Z}, { q * y + r = x }, {r :2: 0}} 
Choose S1 to be the last two clauses in the set PROOFS listed above; 

I.e. 

S1 = r :2: 0 A q * y + r = x 

return S = r :2: 0 A q * y + r = x. 

Second iteration of Step 3 : 
T = 0 (it can be verified that all the verification conditions are valid with 

wl substituted for w everywhere) 

flag(W) = true 

W2=W1 

4. Wapprox = r :2: 0 A q * y + r = X. 

5. Halt. 

The proof used in this example was : 

Proof of AXIOMS Ax :2: 0 A y > 0 A q = 0 A r = x A r < y-+ x = q * y + r A r :2: 
0Ar<y: 

1. x :2: 0 Given 
2. q = 0 Given 

3. r = x Given 

4. r < y Given 

5. x # q * y + r V ~(r :2: 0) V r :2: y Given 

6. 0 * Z = 0 Axiom 

7. q * Z = 0 Paramodulate 2,6 
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8. X o1 Y V Z + X = Z + Y Axiom 
9. Z + r = Z + x Resolve 3,8 

10. q * y + r = q * y + x factor of 9 
11. q * y + r = 0 + x Paramodulate 7,10 

12. 0 + Z = Z Axiom 

13. q * y + r = x Paramodulate 11,12 
14. r 2:: 0 Paramodulate 1,3 

15 . ...,(r 2:: 0) V r 2:: y Resolve 5, 13 

16. r 2:: y Resolve 14,15 
17 . ...,(Y 2:: Z), ...,(Y < Z) Axiom 
18 . ...,(r 2:: y) Resolve 4, 17 

19. empty clause Resolve 16, 18. 
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4. Learning from examples in first-order logic 

4.1 Introduction 

An excellent introduction to the subject of machine learning can be found 

in [Michalski et a!. 86]. According to Michalski, learned knowledge is inherently 

conjectural, i.e. any knowledge created by generalization from specific observations 

or by analogy to known facts cannot in principle be proven correct, although it may 

be disproved. He claims that all scientific human information processing activities 

are oriented toward determining adequate and simple descriptions or explanations 

of surrounding environment and phenomena [Michalski 74]. The ability to create 

the simplest descriptions, using only the "most significant" concepts, and disregard 

the "irrelevant details", is highly regarded and considered evidence of intelligence. 

One of the important potential applications of inductive learning programs, 

according to Michalski [Michalski 77], is in knowledge-based systems, which have a 

potential for wide application. Due to the error-prone and tedious nature of pro­

gramming knowledge by hand into the computer, there is a need for developing new 

efficient ways of introducing knowledge into machines. Inductive programs could 

determine production rules from specific examples of decisions or transformations, 

optimize a given body of rules (by joining a few specific rules into one more general 

rule or by detecting unnecessary conditions), create "rule models" which compactly 

describe a given body of rules (and can be useful for identifying missing informa­

tion or errors in new rules), automatically correct rules in view of new contradictive 

information, etc. He also believes that inductive programs could be used to help 

specialists working in applied sciences, e.g. biology, plant pathology, physiology, 

medicine, etc., in formulating hypotheses explaining data, detecting data patterns 

in complex numerical data, selecting the most relevant variables describing data, 

etc. 

At present, to make a computer perform a task, one has to write a complete 

and correct algorithm for that task, and program the algorithm into the computer. 

These activities involve a tedious and time-consuming effort by specially trained 

personnel. Current computer systems cannot improve significantly on the basis of 



past mistakes, nor can they acquire new abilities by observing and imitating experts. 

Machine learning research strives to open the possibility of instructing computers 

in such new ways. 

For a comprehensive survey of inductive inference theory, see [Angluin and 

Smith 83]. They distinguish between inductive inference and learning as follows : 

to learn is to "gain knowledge, understanding, or skill by study, instruction or 

experience". In contrast, induction is defined as "the act, process, or result of an 

instance of reasoning from a part to a whole, from particulars to general, or from 

the individual to the universal". 

In what follows, we describe some of the past work in different areas of machine 

learning. A number of different definitions of learning are outlined, to give the reader 

a feel for some of the different approaches to learning taken by researchers in the 

field. 

Valiant [Valiant 84] views learning as the process of deducing a program for 

performing a task, from information that does not provide an explicit description of 

such a program. The description language used is propositional calculus. A concept 

is said to be "learned" if a program for recognizing it has been deduced (by means 

other than the acquisition from the outside of the explicit program). The deduction 

procedure will output an expression that approximates the expression to be learned 

with high likelihood. He shows that it is possible to design learning machines that 

have all of the following three properties : 

1) The machines can provably learn whole classes of concepts and these classes 

can be characterized. 

2) The classes of concepts are appropriate and non-trivial for general-purpose 

knowledge. 

3) The computational process by which the machines deduce the desired pro­

grams requires a feasible (i.e. polynomial) number of steps. 

The learner is assumed to have access to a supply of positive examples which 
have a probabilistic distribution determined arbitrarily by nature. Valiant demon­

strates that the following three classes of Boolean expressions are learnable in poly­

nomial time : (1) conjunctive normal form expressions with a bounded number of 

literals in each clause; (2) monotone disjunctive normal form expressions, and (3) 

arbitrary expressions in which each variable occurs just once. The main techni­

cal discovery in this paper is that with this probabilistic notion of learning, highly 

convergent learning is possible for whole classes of Boolean functions. This distin­

guishes this approach from more traditional ones where learning is seen as a process 

of "inducing" some general rule from information that is insufficient for a reliable 

deduction to be made. However, the conjectured existence of some good cryp-
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tographic functions that are easy to compute implies that some easy-to-compute 

functions are not learnable. 

In his landmark paper, Gold [Gold 67] defines a language learnability model as 

the following triple : 

1. A definition of learnability 

2. A method of information presentation 

3. A naming relation which assigns names to languages. 

Only one definition of learnability, called identifiability in the limit, is consid­

ered in Gold's paper. A class of languages is said to be identifiable in the limit with 

respect to a given language learnability model if there is an algorithm which makes 

a guess at each time instant about the identity of the language being learned, and 

after some finite time the guesses are all the same and are a name of the language 

being learned. Note that the learner does not necessarily know when its guess is 

correct, and must go on processing information forever because there is always the 

possibility that information will appear which will force it to change its guess. Two 

basic methods of information presentation are considered by Gold, namely "text" 

and "informant". A text for a language L is a sequence of strings from L such that 

every string of L occurs at least once in the text. On the other hand, an informant 
for L can tell the learner whether any string is an element of L, and does so for 

every possible string over the given alphabet. Two naming relations are considered, 

namely "tester" and "generator". In both cases the name of a language, i.e. a gram­

mar, is a Turing machine : a tester for L is a Turing machine which is a decision 
procedure for L, and a generator for Lis a Turing machine which generates L. Note 

that a tester for L exists if and only if L is recursive, and a generator for L exists if 

and only if L is recursively enumerable. Gold classifies classes of languages on the 

basis of whether they are learnable in particular learning models. He shows that 

the class of context-sensitive languages is learnable from an informant, but that not 

even the class of regular languages is learnable from a text. 

A number of researchers have investigated the problem of synthesizing logic 

programs from examples. Shapiro [Shapiro 81] describes an incremental inductive 

inference algorithm for solving model inference problems. The model inference 

problem is defined as follows : "Given the ability to test observational sentences 

for their truth in some unknown model M, find a finite set of hypotheses, true in 

M, that imply all true observational sentences." An example of an inductive infer­

ence problem is program synthesis from examples. The task is to infer a program 

inductively, given examples of its input/output behavior. Shapiro gives two algo­

rithms which derive Horn clause programs given a collection of facts. The first is 

an enumerative model inference algorithm which enumerates all finite sets of Horn 
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clauses over a certain language L and tests each of them one by one until a program 

is found which is neither too strong nor too weak with respect to the known facts. 

This enumeration approach is very powerful but also extremely inefficient. The sec­

ond algorithm (incremental model inference algorithm) begins with the conjecture 

"T=false" and incrementally refines or generalizes T until Tis neither too strong 

nor too weak with respect to the known facts. Shapiro defines a refinement operator 

for use in the algorithm, and describes a backtracing algorithm for removing refuted 

hypotheses from T if T is too strong. 

In [Sammut and Banerji 86], the authors explore two issues : the role that 

memory plays in acquiring new concepts, and the extent to which the learner can 

take an active part in acquiring these concepts. A program MARVIN which learns 

concepts from examples is described. MARVIN uses a description language very 

similar to Prolog; therefore for MARVIN, learning a concept is equivalent to syn­

thesizing a logic program. A concept is represented by a set of Horn clauses. Given 

an example of a concept, MARVIN generates a trial concept by generalizing the 

example. Then, in order to find out if the trial concept is consistent or not, MAR­

VIN shows the "trainer" (i.e. the user) instances of the concept. If the program 

can construct an object that does not belong to the target concept but does belong 

to the trial concept, then the trial concept is inconsistent and a new one must be 

found. MARVIN has no ability to invent existentially quantified variables other 

than those derived from the example, nor can it deal with universal quantification. 

The results obtained by MARVIN are similar to those obtained by Shapiro [Shapiro 

81] and Tinkham (Tinkham 90] in that MARVIN can be regarded as a synthesizer 

of Prolog programs. 

Vere [Vere 75] developed a method for inducing concepts which can be described 

by a conjunction of literals in the predicate calculus, with terms limited to constants 

and universally quantified variables. The method relies upon a graph representation 

of a conjunction of literals. An n-ary predicate is represented by a list of n + 1 

terms, the first of which represents the predicate but is otherwise undistinguished 

from the remaining n terms of the list, which are the arguments of the predicate. A 

generalization of a conjunction of literals is obtained by (a) dropping zero or more 

literals from the conjunction, and (b) replacing constants by variables. A maximal 

unifying generalization of two conjunctions of literals a and f3 is defined to be a 

conjunction of literals 'Y such that 'Y is more general than a and more general than 

(3, and such that there is no conjunction of literals 'Y' such that 'Y' is more general 

than both a and /3 and such that 'Y is more general than 'Y'· Vere's method works 

in a bottom-up fashion in which the input examples are processed one at a time to 

build the set of conjunctive generalizations. The algorithm for generalizing a pair 
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of events consists of the following four steps : 

1) The literals in each of the two events are matched in all possible ways to 

generate a set of matching pairs P. By definition, two literals match if they contain 
the same number of constants and they share at least one common term in the same 

position. 

2) All possible subsets of Pare selected such that no single literal of one event is 

paired with more than one literal in another event. Each of these subsets eventually 

forms a new generalization of the events. 

3) Each subset of matching pairs from Step 2 is extended by adding to the 

subset additional pairs of literals that did not previously match. A new pair is 
added to a subset S of P if each literal in that pair is related to some other pair in 

S by a common constant in a common position. 

4) Finally, the resulting set of pairs is converted into a new conjunction of 

literals by merging each pair to form a single literal. 

One problem with this method is the creation of "vacuous literals", such as (X 

Y Z), i.e. a literal where the predicate as well as all arguments are variables. Such a 

literal is obviously meaningless but can be generated by the algorithm, which makes 

it inefficient. Steps 2 and 3 compute a very large number of subsets and it is not 
clear if the method would be viable in practice. This method will be discussed in 

more detail in Section 4. 7. 

The above work is extended in [Vere 78] to learning operators from situation 

sequences and before-and-after pairs. A relational production has the form a-> /3, 
where a and j3 are conjunctions of literals, called the antecedent and the consequent 

respectively. The intersection of the sets of literals contained in the antecedent and 

the consequent is called the context of the production. For the purposes of general­
ization, a production is regarded as an ordered list of three conjunctions of literals : 
the context/, the antecedent a, and the consequent j3. Given two productions, their 

maximal common generalizations are computed by computing the maximal com­

mon generalizations of each of their three components using the method presented 
in [Vere 75] for computing the maximal common generalization of two conjunctions 

of literals. The process is generalized to a method for computing a minimal set 

of maximal common generalizations of an arbitrary number of productions. Vere 

presents four example problems run on the Thoth-p computer implementation of 
this production generalization theory. 

Mitchell [Mitchell 77] describes a method for learning rules from a set of posi­

tive and negative training instances with reference to the Meta-DENDRAL program 

[Buchanan and Mitchell 77]. They use a candidate elimination approach which 

maintains and modifies a representation of the space of all plausible rule versions. 
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Their algorithm is guaranteed to find all rule versions consistent with the observed 

training data, without any backtracking and independent of the order of presenta­

tion of the training instances. They define a partial order representing "generality" 

(or specificity) on rules; a rule Rl is said to be less general (or more specific) than 

a rule R2 if and only if it is applicable to a proper subset of the instances in which 

rule R2 will apply. Version spaces are then represented by sets G and S of max­

imally general versions and maximally specific versions respectively. Each time a 

new training instance is introduced, all the rules conflicting with that instance are 

eliminated from the version space. If the new training instance is a negative ex­

ample, then each element of G which matches the instance must be replaced by a 

minimally more specific version which does not match the instance. This is done 

by adding constraints taken from elements in the maximally specific version, and 

thus remaining consistent with the previous positive examples. The dual operation 

is performed for positive examples. The system described is not reliable in "noisy" 

domains as in such a case all rules will be eliminated from the version space. 

In (Dietterich and Michalski 83], the authors describe four criteria for evalu­

ating learning methods and apply them to five existing systems for learning from 

examples. The study focuses on the problem of learning structural descriptions from 

a set of positive training instances, or methods for finding the maximally-specific 

conjunctive generalization (MSC- generalization) that characterizes a given class 

of entities. A conjunctive generalization is defined as a description of a class of 

objects obtained by forming the conjunction of a group of primitive statements. A 

MSC-generalization is the most detailed (most specific) description that is true of 

all the known objects in the class. Since specific descriptions list many facts about 

the class, the MSC-generalization is the longest conjunctive generalization that still 

describes all of the training instances. The partially ordered space of descriptions 

of different levels of generality can be described by indicating what transformations 

are being applied to change less general descriptions into more general ones. A 

generalization rule is one which, when applied to a description S1 , produces a more 

general description Sz, i.e. S1 -> S 2 holds. The generalization rules considered are : 

1) Dropping condition rule 

2) Turning constants to variables 

3) Adding internal disjunctions 

4) Closing interval 

5) Climbing generalization tree 

6) Finding extrema of partial orders (constructive induction rule). 

Most existing systems have not implemented constructive induction rules in 

any general way. Instead, specific procedures are written to generate the new de-
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scriptors. Induction methods can be divided into bottom-up (data-driven), top­

down (model-driven) and mixed methods. Bottom-up methods process the input 

events one at a time, gradually generalizing the current set of descriptions until 

a final conjunctive generalization is computed. Top-down methods search for a 

small number of conjunctions that together cover all of the input events. First 

some initial hypotheses are chosen from the partially ordered set of all possible de­

scriptions. If these hypotheses satisfy certain criteria, the search halts. Otherwise 

the current hypotheses are modified by slightly generalizing or specializing them. 

Top-down methods have better noise-immunity than bottom-up methods and can 

easily be extended to cover disjunctions; however, the working hypotheses must be 

repeatedly checked to determine whether they subsume all of the input events. The 

selected methods of induction are evaluated in terms of the following four cri te­

ria : adequacy of the representation language, rules of generalization implemented, 

computational efficiency, and flexibility and extensibility. 

The problem of computing maximally-specific generalizations of relational de­

scriptions is also examined in [Watanabe and Rendell 90]. The authors describe a 

search program, called X-search, for finding MSC-generalizations of given structural 

descriptions. A one-sided approach to Mitchell's version space method [Mitchell 77] 

is adopted here; the authors compute only the set S of maximally-specific expres­

sions consistent with the given examples, and not the set G of all maximally general 

expressions consistent with the given examples. Since k-ary predicates can be repre­

sented using a combination of unary and binary predicates, the representation used 

only allows unary and binary predicates. Only existential quantifiers are permitted 

in their representation. The computation of generalizations is a search in a tree 

where nodes correspond to relational descriptions. 

In a recent paper, Vanlehn [Vanlehn 89] describes an algorithm for specializing 

overly general concepts. It may happen that in the process of inducing a concept 

from examples, it is necessary to make the concept less general because the concept 

matches a negative example. The representation he uses for concepts is a conjunc­

tion of positive literals, where all variables are represented existentially. Examples 

are represented by conjunctions of ground literals. Also, all variables are assumed 

to designate distinct objects. With this restriction, the set of all generalizations 

of a concept s corresponds to the set of all subsets of the literals of s. The spe­

cialization algorithm described makes use of a bit-vector representation that allows 

fast parallel bit-vector computation to be used and converts the problem into the 

set covering problem, which is known to be NP-complete. Despite this, Vanlehn 

reports that the algorithm seems to work reasonably well in practice. 

In [Kodratoff and Ganascia 86], the authors describe algorithms for generalizing 
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a set of examples. Their generalization algorithm discovers significant links in the 

examples and expresses them as variable bindings. The first step of generalization 

is to find for each member E of the learning set a formula E' such that E' can be 
rewritten as E using transformation rules such that all the E"s "structurally match" 

each other. Two formulas are said to "structurally match" if they are identical 

except for the constants and the variables that instantiate their predicates. The 
generalization rules used are : climbing the generalization tree and using rewrite 
rules. First some constant is chosen in each example and replaced by a common 

variable. Then the occurrence of these newly introduced variables is detected and 
the fact that these occurrences belong to all the examples is checked. If this is not the 

case, then an attempt is made to generate them using the provided generalization 

rules. In general, more than one generalization of two given examples may be 

obtained, due to the fact that structural matching does not always give a unique 
solution. The generalizations obtained may be incomparable (i.e. none of these 

generalizations is more general than any other). The second step of generalization is 

called the "generalization phase" and involves detecting the common links between 

variables in all the structurally matching formulas. The representation language is 

analogous to using literals and conjunction. There are no disjunctions or quantifiers 
in the examples. Thus the scope of this system is somewhat limited. 

In (Kodratoff et a!. 85], the same idea is pursued. The authors follow the prin­
ciple that variable links present in both examples and counterexamples are not very 

significant, whereas links producing a matching failure are very significant. They 

present a clustering algorithm based on a "syntactic distance" defined by consid­

ering the size and nature of the changes made to a description in order to put it 

into structural matching with the others. The parameters which are used to mea­
sure the syntactic distance between a pair of examples are : the predicates which 

have to be dropped when generalizing the two examples (using the dropping rules), 

the predicates which are common to the two examples, the predicates which are 
introduced by using theorems when generalizing the two examples, and the predi­

cates introduced by the use of idempotency when generalizing the two examples. A 

partial ordering is associated with each of these four measures and a hierarchy of 

concepts built based on the resulting partial order relation. The definition of the 

partial orders allows for the use of heuristics by the user to give a higher weight to 

some predicates than to others, etc .. The method seems rather complicated and its 
utility is not demonstrated in the paper. 

Mitchell [Mitchell 83] reviews some of the issues involved in learning from ex­

amples, in the context of a particular learning program called LEX. LEX illustrates 

how a program can learn useful heuristics for solving integral calculus problems. Its 
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design is based on four distinct modules, which are (i) the problem solver, which 

uses the available heuristics to attempt to solve a given problem within allocated 

time and resources; (ii) the critic, which analyzes the search tree generated by the 

problem solver, to produce a set of positive and negative training instances from 

which heuristics will be inferred; (iii) the generalizer, which proposes and refines 

general heuristics by generalizing from· the training instances provided by the critic; 

and (iv) the problem generator, which generates practice problems for the system. 

Alternative descriptions of a heuristic are called the version space of the heuristic. 

Although LEX has been able to improve its performance at solving integral calculus 

problems by a few orders of magnitude when practice problems were provided by 

hand, results have not been nearly so encouraging when LEX was provided with 

practice problems by the problem generator. 

From the above, it is clear that the approaches taken to learning by different 

researchers differ widely both in their methodology as well as in the representation 

language used. The subject of learning has been divided into a number of different 

fields, such as learning from examples, learning from observation, learning from in­

struction, and so on. We will study learning from examples. This topic itself can be 

subdivided into two categories : learning from positive examples and learning from 

positive and negative examples (we will deal with the former). Negative examples 

are also known as counterexamples. When learning from positive examples, a con­

cept must be found which describes all of the input examples. On the other hand, 

when counterexamples are also provided, the concept to be learned must not only 

describe all the input (positive) examples, but must also contradict all the input 

counterexamples or negative examples. In other words, we must find a concept 

which is a logical consequence of all the positive examples (called the completeness 

condition) and which is not a logical consequence of any of the negative examples 

(called the consistency condition). 

4.2 Motivation 

The specific learning problem which we will be addressing in this chapter is 

concerned with learning characteristic descriptions from examples. A characteristic 

description is a description of a collection of objects, situations or events which 

states facts that are true of all objects in the class. More formally, a statement S 
is a description of objects 0 1 , 02, 0 3 , ••. if 

01-; s, 
02-; s, 
03-; s, 
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and so on, where -> denotes logical implication. 

A critical issue in machine learning is the choice of a representation language, in 

which descriptions of situations and the situations themselves are represented. One 

of the impediments to the progress of research in the field of machine learning has 

been the diversity of representation languages used, making it laborious to compare 

and combine research efforts. There is a tradeoff to be made between the complex­

ities of the language chosen and the resulting complexity of the learning process. 

The complexity of learning descriptions expressed in a rich language is tremendously 

higher than that of learning descriptions expressed in a more restricted language. 

This is due to the larger space of possible descriptions in a richer description lan­

guage. For this reason, much of the previous work on learning from examples used 

specialized representation languages or subsets of first-order logic (such as conjunc­

tions of literals, ground formulas, formulas without existential quantifiers, etc.) or 

Boolean logic as representation language. So far, no methods have been proposed 

for learning from concepts expressed in full first-order logic, with quantifiers and 

functions. 

We present a learning methodology which uses first-order logic as representa­

tion language. We feel that using first-order logic to represent examples allows our 

method to have a much wider applicability due to the power of first-order predicate 

calculus and its widespread use in a number of different fields. We will show that 

due to the choice of first-order logic as a representation language, this method can 

be applied in a number of different fields where first-order logic is used. In partic­

ular, we will show that this algorithm can be used very effectively in conjunction 

with our method for deriving loop invariants for program verification. It can also 

be applied in traditional areas like the blocks world, where many similar algorithms 

in the field have been applied. We will then show that the performance of this 

algorithm compares favorably with others in the same field. 

Following the terminology used in [Dietterich and Michalski 83], our algorithm 

performs concept acquisition, i.e. given examples El and E2 in first-order logic 

notation, the algorithm attempts to discover a concept EX such that El -> EX 
and E2 -> EX, and such that EX captures all the features common to both the 

examples; the concepts and examples are expressed in first-order logic. This is a 

problem of discovering a logical consequence of two formulas in first-order logic, and 

will be achieved by using the resolution and unskolemization method of Chapter 2. 

In this chapter, we will explore in more detail how some of the non determinism of the 
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unskolemization algorithm can be done away with by looking for common features 

between El and E2. These common features are used to decide which functions will 

be unskolemized, i.e. which functions will be replaced by existentially quantified 

variables. Thus these common features will guide the marking of the clauses for 

unskolemization. Recall that this marking was performed nondeterministically in 

the unskolemization algorithm. 

Note that it may happen that more than two examples are available to us. In 

such a case, the algorithm can be applied first to two of the examples, then to the 

concept learned from these examples and the next example, and so on. 

4.3 Role of bias in learning 

The examples which are presented to a learning program are also called training 
instances. Given a collection of training instances, a bias is the set of all factors that 

collectively influence the selection of the concept learned [Utgoff 86]. Learning from 

concepts can be regarded as a function of two arguments : the training instances 

and the bias for concept selection. Thus the choice of a bias is crucial, since it 

guides the learning program to make a selection from the available concepts. 

Now, given a number of examples, there can be an infinite number of logical 

consequences of these examples. If we are also given counterexamples, then there is 

a natural way of limiting the candidate solutions, since an additional constraint is 

imposed on these solutions, namely the consistency condition. However, in the pres­

ence of only positive examples with no counterexamples, we must find some other 

way of imposing a limit on how general a description can be. In other words, a suit­

able bias must be decided upon. There have been a number of solutions suggested 

to this problem in the past. One solution is to require that the concept generated 

be the longest conjunctive statement satisfying the completeness condition [Vere 

75], [Hayes-Roth and McDermott 78]. Their representations did not allow disjunc­

tive concepts. Another way is to require that the description not exceed a given 

degree of generality, which can be measured in several ways. One such method, 

suggested in [Stepp 78], is to use the ratio of all distinct events which could poten­

tially satisfy the description to the number of positive examples. The bias we use 

for concept selection is to select a concept which is as specific as possible, subject to 

a number of different constraints. The motivation for these constraints is explained 

below. The meaning of "specific" here is similar to the meaning stated earlier for 

MSC-generalizations. 

Our method essentially uses a graphical representation of the clauses in each 

example, and tries to match pairs of clauses (taking one from each example) in such 
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a way that the two clauses contain at least one predicate in common. Then the 

arguments of the predicates of these clauses are matched and a "marking" for the 

two examples chosen (this "marking" designates which functions will be replaced 

by existential variables) using a maximum weight matching algorithm for bipartite 

graphs to determine the marking which will give a learned concept containing as 

much detail as possible. The unskolemization of the marked formulas then proceeds 

according to the unskolemization algorithm in Chapter 2. 

Let us try to motivate the above ideas. Suppose we are given two input ex­

amples. These two examples are compared, and we try to find pairs of clauses C1 

and C2 , one belonging to each example, such that the intersection of the sets of 

predicates in each clause is non-empty. The reason for this is that we are trying 

to find common features of the two examples. For example, if there is a red object 

named "a" in one example, and a red object named "b" in the other example, then 

the two examples would contain clauses : 

{red( a)} and {red( b)} respectively. 

We would like to discover this common feature and state that there exists a red 

object in both examples. In this particular case, the two clauses being compared 

contain the predicate "red" and no other. However, it may happen that we have 

the following clauses, one taken from each example : 

{red( a) V circle( a)} and {red(b)}. 

Then we would still like to be able to discover the following common feature 

between these two examples : 

3x(red(x) V circle(x)). 

This explains why we choose to impose the condition that the intersection of 

the sets of predicates in each clause should be non-empty if these two clauses are 

taken from different examples and are to be considered for generalization. 

The enquiring reader may ask : why impose any restrictions at all? Why 

not just try to generalize any pair of clauses, one taken from each example? For 

instance, given the following two clauses, one from each example : 

{red(a)} and {rectangle(b)}, 

we could generalize these by the statement 

3x(red(x) V rectangle(x)). 

It can easily be seen that this statement logically follows from both the given 

clauses. However, continuing this line of thought to its logical conclusion, why not 

just let the concept to be learned trivially be the logical disjunction of the two 

input examples? This disjunction is the most specific logical consequence of the 

two examples. But we want to do more than just take the logical disjunction of the 

two examples, because taking the logical disjunction of the two examples is trivial 
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and conveys no new or useful information about the common features of the two 

examples. We choose to search for the common features between the two examples 

as explained in the previous paragraphs. 

4.4 A method for learning from examples 

4.4.1 Definitions, notation and examples 

In what follows, we will use terms and concepts from graph theory. A good 
grasp of the basic tenets of graph theory can be obtained from [Bondy and Murty 

76]. All the definitions which will be needed for our purposes will be given in this 

section. 

Definition. A graph G is an ordered pair (V,E) consisting of a non-empty set V 

of vertices and a set E of edges which are unordered pairs of vertices. We say that 

an edge (a, b) has ends a and b. 

Definition. A bipartite graph is one whose vertex set can be partitioned into 

two subsets X andY, so that each edge has one end in X and one end in Y; such 

a partition (X, Y) is called a bipartition of the graph. 

Definition. Two edges (a, b) and ( c, d) of a graph G are said to be adjacent in G 

if and only if either a = c, a= d, b = c, or b = d. 

Definition. Let G = (V, E) be a graph. A subset M of E is called a matching in 

G if its elements are edges and no two are adjacent in G; the two ends of an edge 

in M are said to be matched under M. 

Definition. A graph G is said to be weighted if with each edge e of G there is 

associated a real number w( e), called its weight. 

Definition. The weight of a matching M of a weighted graph is the sum of all 
the weights of the edges in M. 

Definition. A maximum weight matching of a graph G is a matching M of G 

such that there is no matching 1\!f' of G such that the weight of M' is greater than 
that of M. 

Definition. Let C be a clause. Then pred( C) is the set of all the predicate symbols, 

along with their signs and arities, which occur in C. 

For example, if C = {-,P(x),Q(y,a)}, then pred(C) = {-,P1 ,Q2 }; here the 
superscripts on the predicate symbols are used to indicate their arities. 

Before plunging into the details of the algorithm, we give below a few examples 

to illustrate the issues involved in finding common features between examples and 

to motivate the algorithm. 
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a c 

b e 

El E2 

Figure 4.1 Blocks for Example 4.1 

Example-4.1 This example is a very simple one in which we are given two examples 
from the blocks world illustrated in Figure 4.1 (this example is taken from [Dietterich 
and Michalski 83], Figure 3-1, p. 51). We can represent the two examples El and 
E2 in first-order logic notation as follows : 

El =circle( a) 1\ square(b) II ontop(a,b), 
E2 = circle( c) 1\ circle( d) 1\ square( e) II ontop(c, e) 1\ inside( d, e), 

where the constants a through e are used to represent the various objects in the 
two examples. By comparing El and E2, we can immediately see that a common 
feature of the two examples is that both have a circle on top of a square. El contains 
the following literals : 

circle( a) 1\ square( b) II ontop(a, b), 

and E2 contains the corresponding literals : 

circle( c) II square( e) 1\ ontop( c, e). 
Therefore by matching a with c and b with e, we can get the following conse­

quence of Eland E2: 

3X3Y(circle(X) II square(Y) II ontop(X, Y)), 

which is a concept learned from El and E2. The informal meaning of "matching" 

two arguments is that we unskolemize them and replace them by the same existential 
variable. Thus here, a and c were "matched" together, and we replaced both of 
them by the same existential variable X; similarly b and e were "matched" together 
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d 

e 

El E2 

Figure 4.2 Blocks for Example 4.2 

and replaced by the same existential variable Y. The concept was obtained by 
finding some predicates which El and E2 have in common, and unskolemizing the 
conjunction of those predicates. • 

Example 4.2 This example is more detailed than the previous one. We have the 
following examples El and E2, again from the blocks world, shown in Figure 4.2 : 

El = diamond(a) II circle(b) II box(c) II blank(a) II shaded(b) II blank(c) II 
thickrim(b) II ontop(a, b) II ontop(b, c) II small( a) II small(b) /\large( c), 

E2 = circle(!) II circle(g) II square( d) II rectangle( e) II blank( d) II blank( e) II 
shaded(f)llblank(g )llthickrim(f)llontop( d, e )II inside(!, e)llinside(g, e )/\small( d) 
/\large( e) /\large(!) II small(g ). 

We also have the following axioms concerning geometric shapes : 

1. VX(diamond(X)-+ polygon(X)) 
2. VX(square(X) -+ polygon(X)) 

or, in clause form : 
1'. {-.diamond(X),polygon(X)} 
2'. { -.square(X),polygon(X)}. 

We now need to find similar features in El and E2. We note the following 
points: 

(i) a and d have three features in common: they are both small, blank objects 
and are both on top of some other object. Also, by resolution from the axioms, we 
can deduce that a and d are both polygons. 
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(ii) Both c and e are large, blank objects, on top of which some object has been 

placed. 
(iii) The circle b has features in common with both f and g : all three are 

circles, b and f are shaded objects with thick rims, and b and g are both small. 

Thus b has more features in common with f than with g. 

(iv) There are a great number of other features which El and E2 have in 

common; for example, a and g are both blank objects, c and dare also both blank 

objects, etc .. 

If we want to generate a concept containing as many common features as pos­

sible of the two examples, we can get, by pairing a with d, b with j, and c with e, 

the following concept : 

3X3Y3Z (polygon( X) II blank(X) II small( X) II ( ontop(X, Y) Vontop(X, Z)) II circle 

(Y) llthickrim(Y)IIshaded(Y)IIlarge(Z)IIblank(Z)II( ontop(X, Z)Vontop(Y, Z))). 

(Note : the exact procedure by which these results were obtained will be ex­

plained later. At the moment we are simply trying to illustrate the method we will 

be using.) • 

Recapitulating, we have exposed the following issues which arise when detecting 

common features between examples : 

(i) It may be possible to detect more common features between examples by 

performing resolutions between each example and the axioms given than by com­

paring the examples without performing any resolutions. 

(ii) Although there are many ways to match the arguments of literals before un­

skolemizing, some matches are "better" than others in the sense that more common 

features are detected with those matches. 

We now explain the method which will be used in the learning algorithm in 

order to find the "best" possible match between arguments of predicates in the two 

examples. We will use graphical representations of clauses and arguments and from 

these graphs we shall determine an optimum matching. We illustrate the method 

by using the same examples as in Example 4.2. 

First we build the clause graph Gc for these two examples. Gc is a bipartite 

graph with bipartition (Xc, Yc), where Xc is the set of clauses representing the 

example El, obtained by performing resolutions between El and the set of axioms, 

and Yc is the set of clauses representing the example E2, obtained by performing 

resolutions between E2 and the set of axioms. The edges Ec of the clause graph 

are obtained by introducing an edge ( Cr, C2) into Ec if and only if C1 is a clause 

in Xc, C2 is a clause in Y;,, and pred(C1 ) npred(C2) =J 0. The clause graph for E 1 

and E2 is shown in Figure 4.3. 
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{polygon(a)} {polygon(d)} 

{circle(b)} {rectangle(e)} 

{box(c)} {circle(f)} 

{blank( a)} {circle(g)} 

{shaded(b)} {blank( d)} 

{blank(c)} {blank( e)} 

{thickrim(b)} {shaded(f)} 

{ ontop(a,b)} {blank(g)} 

{ ontop(b,c)} {ontop(d,e)} 

{small(a)} {inside(f,e)} 

{small(b)} {inside(g ,e)} 

{large( c)} {thickrim(f)} 

{small( d)} 

{large( e)} 

{large(f)} 

{small(g)} 

Figure 4.3 Clause graph for Example 4.2 
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Figure 4.4 Argument graph for Example 4.2 

The edges between clauses in this graph indicate potential generalizations; e.g. 
here the edge between polygon( a) and polygon( d) tells us that we could unskolemize 
both these clauses to give the formula 3Xpolygon(X). Here the constants a and d 
would be unskolemized and replaced by the same existentially quantified variable 
X, i.e. a and d are being paired or matched together. We need to find a matching 
of the arguments in E1 and E2 which will give us a learned concept with as many 
of the common features of E 1 and E2 as possible. This is done by constructing the 
argument graph G. for E1 and E2. 

Here, G. is a weighted bipartite graph, with bipartitions X. andY •. For every 
edge (C1, C2) of Ec, we put the arguments of the literals ofC1 in X., the arguments 
of the literals of C2 in Y., and we add an edge of weight 1 between corresponding 
arguments of corresponding predicates (i.e. identical predicates) of these clauses. If 
an edge already exists between the two arguments, then its weight is incremented by 
1. The construction of these two graphs becomes more complicated if either of the 

two examples contain universally quantified variables or if arguments of predicates 
are functions of arity one or more. This will be explained later. The argument 
graph for our example is shown in Figure 4.4. 

Here there is an edge of weight 4 between a and d, because there are 4 edges 
in the clause graph between clauses containing literals which have a and d in 
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corresponding argument positions (these edges are ({polygon(a)}, {polygon(d)}), 

({blank(a)}, {blank(d)}), ({small(a)}, {small(d)}), ({ontop(a,b)}, {ontop(d,e)})). 
The other edges are similarly derived. The edges of the argument graph thus show 

which arguments can be paired, and the weights on these edges are in some sense 

proportional to the "goodness" of each pairing. Thus we could pair a with either 

d, e or g, but the pairing with d would be the best since a and d have four features 

in common (the weight of edge (a, d) is 4 ), whereas a and e have one feature in 

common (both are blank objects) and a and g have two features in common (both 

are blank and small objects). 

Thus we need to find a one-to-one mapping of a subset of Xa with a subset 

of Ya such that an argument a is mapped to an argument (3 only if (a,(3) E E., 
where Ea is the set of edges of the argument graph. We choose to have a one­

to-one mapping rather than a many-to-one or a many-to-many mapping because 

such generalizations usually do not contribute to the detail of the concept generated, 

they are sometimes meaningless, and their generation is computationally expensive. 

Also, this mapping should be such that the sum of the weights of the edges between 

the mapped elements is a maximum. But this is exactly the problem of finding 

a maximum weight matching Ma in the weighted bipartite graph G.. For our 

examples, this matching can be shown to be the set {(a,d),(b,J),(c,e)}. 

If we use this mapping, we need to unskolemize the clauses of the two examples 

which contain literals with the same predicate containing matched arguments in 

common argument positions. We do this as follows. From the clause graph, we 

form a new subgraph by keeping only those clauses C which have at least one edge 

e connecting them to another clause D, such that clauses C and D contain at least 

one predicate in common which has an argument a in the i'h position in C, and 

which has an argument f3 in the i'h position in D (for some positive integer i) such 

that (a, (3) E M •. We also keep all edges which satisfy the conditions satisfied by 

edge e above. This subgraph is shown in Figure 4.5. 

Let us mark the arguments to be unskolemized as follows. Since a and d are 

matched arguments, we will replace a and d by X <- a and X <- d respectively; 

similarly we replace b and f by Y <- b and Y <- f respectively; and finally we 

replace c and e by Z <- c and Z <- e respectively. The marking "X <- a" indicates 

that the argument "a" will eventually be replaced by the existentially quantified 

variable "X", and a similar meaning holds for the other marked arguments. The 

resulting marked formulas are : 

E1 = polygon(X <-a) 1\ blank( X<- a) 1\ small(X <-a) 1\ ontop(X <-a, Y <-­

b)/\circle(Y <- b)/\thickrim(Y <- b)/\shaded(Y <- b)/\blank(Z <- c)/\large(Z <­

c) 1\ ontop(Y <- b, Z <- c), 
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{polygon(B)) {polygon(d)) 

{biBnlc(B)) {biBnk(d)) 

{smBII(B)) {smBII(d)) 

{ontop(B,b)) {ontop(d,e)) 

{circle(b) {circle( f)) 

{thiclcrim(b) {thickrim(f)) 

{shBded(b)) {ShBded(f)} 

{biBnlc(c)) {biBnk(e)) 

{IBrge(c)) {IBrge(e)) 

{ontop(b,c)) 

Figure 4.5 Sub graph of clause graph for Example 4.2 

E 2 =polygon( X+-- d)/\ blank( X +--d)/\ small( X +--d)/\ ontop(X +- d, Z <­

e)/\circle(Y +-- f)/\thickrim(Y +-- f)/\shaded(Y +-- f)/\blank(Z +-- e)/\large(Z +­

e). 

Note that this method of marking E1 and E 2 corresponds to the marking 
which is performed in Step 2 of the unskolemization algorithm of Chapter 2. We 
now take the conjunction of the pairwise disjunctions of the clauses which have 
edges connecting them in Figure 4.5. We get the following formula : 

EX = (polygon(X +- a) V polygon( X +- d))/\ (blank(X +- a) V blank( X +­
d))/\ (small(X <- a) V small(X +- d))/\ (circle(Y +- b) V circle(Y +- f))/\. 
(thickrim(Y +- b) V thickrim(Y +- f)) /\ (shaded(Y +- b) V shaded(Y +- f))/\ 

(blank(Z +-c) V blank(Z +- e))/\ (large(Z +- c) V large(Z +- e)) II (ontop(X +­

a, Y <- b)Vontop(X <-- d, Z +-.e))A( ontop(Y +- b, Z <- c)Vontop(X <-- d, Z <-e)). 

Replacing arguments of the form" X +- a" by the existential variable X, we get 

EX= 3X3Y3Z(polygon(X) /\ blanl.:(X) /\small( X)/\ circle(Y) /\ thickrirn(Y) /\ 
shaded(Y) /\blank( Z) /\ large( Z) /\ ( ontop(X, Y) V ontop(X, Z)) /\ ( ontop(Y, Z) V 
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{P(f(c), f(f(c), g(e)))} {P(f(b), f(f(b), d))} 

{Q(a, h(f(a)))} {Q(W, h(f(W)))} 

Figure 4.6 Clause graph for Example 4.3 

ontop(X,Z))). 

EX is a concept learned from the two given examples. 
Note that the unskolemization process conforms to the unskolemization algo­

rithm of Chapter 2, except that the arguments of clauses are marked deterministi­
cally, by using the information gathered from the clause and argument graphs. 

We now describe a refinement to the above procedure when universal variables 
occur in at least one of the examples. The refinement will first be illustrated in the 
following example. 

Example 4.3 This is a short example to illustrate the process of matching argu­
ments when the arguments of some literals are functions of arity one or more and 
when some arguments which are being matched are universally quantified variables. 
Let Et and E2 be the following two examples : 

Et = P(f(c),J(f(c),g(e))) A Q(a,h(f(a))) 
E2 = VW(P(f(b), f(f(b), d)) A Q(W, h(f(W)))). 

There are no axioms for this example. The clause graph for these two examples 
is shown in Figure 4.6. To construct the argument graph, we need to look at 
corresponding arguments in clauses of Et and E2 which are connected by edges in 
the clause graph. First consider the corresponding arguments of tke predicate P. 
The first argument of P in E 1 is f(c) and the first argument of P in E2 is f(b). 
Instead of putting f(c) and f(b) in X. andY. respectively of the argument graph, we 
will put c in X. and bin Y., and add an edge between c and b. Similarly, the second 
argument of Pin E1 is f(f(c),g(e)) and the second argument of Pin E2 is f(f(b), d). 
We therefore increment the weight of the edge (c,b) in G. by 1, and we add an 
edge between g(e) and d. Continuing like this, we get the argument graph shown 
in Figure 4. 7. Finding a maximum weight matching for this argument graph is 
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Figure 4.7 Argument graph for Example 4.3 

straightforward: the maximum weight matching isM. = {(c, b), (g(e), d), (a, W)}. 
We mark the clauses of E1 and E2 for unskolemization as explained in Example 4.2 

as follows: 

E1 = P(f(X +- c),J(f(X +- c),Y +- g(e))) A Q(Z +- a,h(f(Z +-a))) 
E2 = P(f(X +- b),J(f(X +-b), Y +-d)) A Q(Z +- W, h(f(Z +- W))). 

Taking the conjunction of the pairwise disjunctions of the clauses which have 
edges connecting them in the clause graph, we get : 

EX = (P(f(X +- c),J(f(X +- c),Y +-- g(e))) V P(f(X +- b),j(f(X +­
b), Y +--d))) A (Q(Z +-a, h(f(Z +-a))) V Q(Z +- W, h(f(Z +-- W)))). 

Unskolemizing EX by performing Steps 4 through 7 of the unskolemization 
algorithm, we get : 

EX= 3X3Y3Z(P(f(X),J(f(X), Y)) A Q(Z,h(f(Z)))). 

However, there is a way to obtain a more specific concept here. Note that a and 
W were matched together here, and W is a universally quantified variable. W 
and a were unskolemized and replaced by the existential variable Z. However, W 
could have been instantiated to a, and the edge (a, W) of weight 2 would have been 
replaced by the edge (a, a) of weight 2. Then during unskolemization, the arguments 
"a" in each example could have remained unchanged, and using the same procedure 
as above, we would have obtained the following concept : 

EX'= 3X3Y(P(f(X),J(f(X), Y)) A Q(a, h(f(a)))) 

which is more specific than EX (note that EX' -> EX) since the arguments of the 
predicate Q are a and h(f(a)) instead of Z and h(f(Z)) for an existential variable 
z . • 
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The above example suggests a refinement to the previously described method 

for constructing argument and clause graphs. Whenever there is an edge in Ea 

(i.e. in the argument graph) connecting a universally quantified variable X and a 

function symbol f, the universally quantified variable should be instantiated to that 

function, and appropriate edges should be added to the argument graph. 

Another way of instantiating a universally quantified variable X is to instantiate 

X to a function b if there is an edge connecting X to some function a, and there is 

an edge connecting a to b. The utility of this is demonstrated as follows : suppose 

El = VX(P(X) II Q(b)), 
E2 = P(a) II Q(a). 

Here in the argument graph, there is an edge joining X and a, and another edge 

joining a and b; therefore we will instantiate X to b. Then the first example will 

contain the clauses 

{P(b)} and {Q(b)}, 
and the second example will contain the clauses 

{P(a)} and {Q(a)}, 

from which we can deduce 

:IY( P(Y) II Q(Y)) 
as part of the learned concept. This would not have been possible without instan­

tiating X to b. 

After all these instantiations are performed and appropriate edges between cor­

responding arguments of corresponding predicates in Gc are added to the argument 

graph Ga, the clause containing the universally quantified variable X being instan­

tiated in the clause graph should then be added to the clause graph, along with 

the corresponding edges. That is, if a universally quantified variable argument X 

occurring in clause C is instantiated to a in the argument graph, then the clause 

Ca will be added to the clause graph, where a is the substitution {X+- a}. Also 
for every edge e connecting C to a clause D in the clause graph, a new edge e' 

connecting C a to D will be added to the clause graph. 

4.4.2 The learning algorithm 

Let E1 and E2 be the two sets of clauses representing the two given exam­

ples, and let AXIOMS be a set of axioms for the given situation. The following 

algorithm will find a concept EX such that E 1 -t EX and E2 -t EX. 

Algorithm LEARN(E1 , E2 , AXIOMS) 

begin 
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end. 

Choose Xe E Res(E1 II AXIOMS); 

Choose Ye E Res(E2!1AXIOMS); 

{COMMENT : The above two steps are performed nondeterministically} 

Rename the variables in all the clauses of Xe and Yc so that no two clauses 
have any variable in common; 

build...clause...graph(Xe, Yc,, Ee); 

build..argument...graph(X., Y., E.); 

augment...graphs...X(Xa, Ea, Xe, Ee); 

augment...graphs_Y(Y., Ea, Ye, Ee)i 

maximum_weight..matclling(M.,X., Y., E.); 
{COMMENT: This procedure returns a maximum weight matching M. for 
the argument graph. The algorithm is not given here since suitable algorithms 

can be found in the literature (see for example (Galil 86])} 

Me := {(C1, C2) E Ee / the n'h argument an of some literal of C1 contains a 

as a subterm and the n'h argument f3n of some literal of C2 contains b as a 

sub term in the same position as a appears in an and (a, b) E Ma, for some 

positive integer n, where these two literals have the same predicate }; 

For every edge (a, b) E Ma do 

if (a and b are distinct) and (a and b are not both variables) then 

replace unmarked occurrences of a and b in Me by Z +- a and 

Z +-- b (respectively) (Z is a new variable); 

{COMMENT: Call these occurrences of a and b marked} 
if (a and b are both variables) then 

unify all occurrences of a and b in l'vfe; 

EX:= {C1 U C2I(C1, C2) E Me}; 

if EX = 0 then EX :=true; 

for every Skolem function a in EX do 

if a is not marked then 

replace all occurrences of a in all literals of EX by X +-- a, where 

X is a new variable not occurring elsewhere in any clause; 

Perform Steps 4 through 7 of the unskolemization algorithm for EX; 

The formula EX is the required "learned concept". 

procedure build_clause_graph(X0 Ye, Ee); 
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{COMMENT : The clause graph Gc is a bipartite graph with bipartition (Xc, Yc); 
thus each clause of Xc or Yc is a vertex of this graph. The set of edges Ec of this 

graph is formed as follows :} 

begin 

Ec .- 0, 
for every C1 E Xc, C2 E Yc do 

end. 

if (pred(C1 ) npred(C2 ) # 0) then 

Ec :=EcU(Ct,C2) 

procedure build_argument_graph(Xa, Ya, E.); 

{COMMENT : Let the bipartition of the argument graph be (Xa, Ya), with edge 

set E •. Let w be a positive integer weight function for this graph. Initially, X a, Ya 
and Ea are empty sets. The graph Ga is built as follows.} 

begin 

Xa .-0, 
Ya := 0; 
Ea :=0; 
For every pair of clauses C1, C2 such that (C1, C2) E Ec do 

{C~ := {L E C1 I pred(L) E C2}; 

{COMMENT : This set is non-empty since pred(C1 ) n pred(C2 ) # 0.} 
For every literal L in C~ do 

{Let K = {N I N E c2 and N, L have the same predicate with the 
same arity and sign}; 

fori:= 1 to arity of L do 

for every literal N inK do 

suppose the i'h argument of L is a; and the i'h argument 

of N is (3;; 

done := false; 

repeat 

Try to find terms t1, t2 which have the same place 

in a; and /3; respectively and such that 

((t1 # t2) and ((t1 and t2 begin with dif­

ferent function letters) or (at least one of 

them is a variable))) 

or ((it = t2) and (t1 and t2 are functions 

without any arguments or variables)); 

if there are no such t1, t2 then done := true 
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else 

until done 

} 
} 

end. 

{Xa := Xa U {tl}; 
Ya := Ya U {t2}; 
if (t1, t2) if_ Ea then 

else 

} 

{Ea := Ea U {(t1, t2)}; 
w((t1, t2)) := 1} 

procedure augment_graphs..X(X., Ea, Xc, Ec); 

begin 
{COMMENT : The following procedure adds instances of certain arguments 

of clauses to the set X a of the argument graph, and adds instances of certain 

clauses to X c. This is done as demonstrated in and following Example 4.3} 

for every variable Z in X aU Ya do 

I(Z) := 0; 
{COMMENT : I(Z) is a set corresponding to the variable Z which will 

contain all the functions to which Z will be instantiated during this 

procedure} 

for every variable Z E Xa do 

{for every edge (Z, a) E Ea where a is a function do 

{for every a such that (Z, a) E Ea do 

Ea := Ea U (a, a); 
Xa :=XaU{a} 
I(Z) := I(Z) U {a}; 
} 

for every pair of edges ( Z, a), ( b, a) E Ea where a, b are functions do 

{for every a such that ( Z, a) E Ea do 

Ea := Ea U {(b,a)}; 
I(Z) := I(Z) U {b}; 

} 
} 

{COMMENT: Now augment the clause graph as follows:} 
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end. 

for every clause C E Xc do 

for every a E I(Z) do 

Xc := Xc U C(Z <--a); 
{COMMENT : The clause C(Z <- a) is just the clause C with 

every occurrence of Z replaced by a.} 
for every edge (C,D) E Ec do 

for every a E I( Z) do 

Ec := Ec U {(C(Z <-a), D)}; 

procedure augment..graphs_Y(Ya, Ea, Yc, E 0 ); 

begin 

{COMMENT : The following procedure adds instances of certain arguments of 

clauses to the set Ya of the argument graph, and adds instances of certain clauses 

to Y0 • This is done as demonstrated in and following Example 4.3} 

end. 

for every variable Z E Ya do 

{for every edge (a, Z) E Ea where a is a function do 

{for every a such that (a,Z) E Ea do 

Ea := Ea U (a, a); 

Y.:=Y.u{a} 

I(Z) := I(Z) U {a}; 
} 

for every pair of edges (a, Z), (a, b) E Ea where a, b are functions do 

{for every a such that (a,Z) E Ea do 

Ea := Ea U {(a, b)}; 
I(Z) := J(Z) U {b}; 
} 

} 
{COMMENT: Now augment the clause graph as follows:} 

for every clause C E Yc do 

for every a E I( Z) do 

Yc := Yc u C(Z <-a); 

{COMMENT : The clause C(Z <- a) is just the clause C with 

every occurrence of Z replaced by a.} 

for every edge (D, C) E Ec do 

for every a E I(Z) do 

Ec := Ec U {(D, C(Z <-a))}; 
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We now illustrate the working of the algorithm with a simple example. 

Example 4.4 The following example illustrates the use of the unskolemization 

algorithm to learn a concept. Let the two given examples be : 

El = Vx1 Vx2 P(x1, /(xi), a, x2); 
E2 = Vyt'<iy2 P(y1, b, g(y2), Y2)· 

The clause graph consists of just one edge : 

Ec = {( { P(x1 ,J( x!), a, x2 )}, {P(y1, b, g(y2), Y2)})}, 

and the argument graph contains the following four edges, all of weight 1 : 

Ea = {(xi,Yl),(f(xi),b),(a,g(y2)),(x2,Y2)}. 

The maximum weight matching for this graph is straightforward to obtain and 

consists of all the edges in E •. We now perform the marking step of the learning 

algorithm and get the following marked set of clauses EX : 

EX= { {P(x1,w1 <-- j(x1),w2 <-- a,y2),P(x1,w1 <-- b,w2 <-- g(y2),y2)} }. 

Here w 1 , w 2 are new variables. We now perform the unskolemization algorithm : 

Add universal quantifiers Vx1 Vy2 to the front of EX and get : 

EX= Vx1 Vy2(P(x1, w1 <-- f(xi), w2 <-- a, Y2)V P(x1, w1 <-- b, w2 <-- g(y2), Y2)). 

We replace the marked arguments by existentially quantified variables and get : 

EX= Vx1Vy2P(xl,wl,w2,y2) 

where WJ and w2 are existentially quantified variables "dependent" on XI and Y2 

respectively. By "dependent" we mean that the choice of w 1 depends on x1 , and 

similarly for w2 and y2. Thus the universal quantifiers for x1 and y2 must precede 

the existential quantifiers for w1 and w2 respectively. There are two formulas which 

satisfy these constraints; these are 

EX1 = Vxt3wt'1y23w2P(xi,wl,w2,Y2) 

and EX2 = Vy23w2Vxt3wiP(xi, w1, w2, Y2)· 

These two formulas are the concepts learned from the given input examples El 

and E2. • 

4.5 Soundness and complexity 

In the previous sections, we gave a detailed description of a learning algorithm 

and illustrated its use with the help of a number of examples taken from the blocks 

world and general first-order logic. We will now prove the soundness of the algo­

rithm, i.e. we prove that if two first-order logic formulas E 1 and E2 are input to 

the learning algorithm, any formula EX output by the learning algorithm satisfies 
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E1 -> EX and E 2 -> EX 

I.e. EX is a valid concept learned from the two examples. 

We will also discuss the complexity of the algorithm. 

4.5.1 Soundness 

Theorem 4.1 Given two examples E1 and E2 as input, the learning algorithm 

produces a wff EX such that E1-> EX and Ez-> EX. 

Proof : First note that if no two clauses of E 1 and E 2 contain any predicates in 

common, then EX will just be the value true, which satisfies E1 ->EX, E 2 ->EX. 
Initially, we build clause and argument graphs and augment them by taking 

certain instances of variables. Every clause contained in Xc is true for the example 

E 1, and similarly every clause contained in Yc is true for the example Ez. The 

argument graph links corresponding arguments of certain clauses of Xc and Yc. 
In the next step, certain arguments of clauses of E1 and Ez are marked for un­

skolemization by marking functions "!" as "Z <-- !" or by unifying variables. This 

is done according to the unskolemization algorithm of Chapter 2. Following this, we 

take the pairwise union of selected clauses from E1 and Ez; we are performing the 

pairwise disjunction of these clauses. Finally, the resulting formula is unskolemized 

using the unskolemization algorithm of Chapter 2. 

The result is EX, where EX is the unskolemized form of a set of clauses D 
(say), where D is the conjunction of the pairwise disjunction of some clauses (or 

instances of clauses) from E 1 and E 2 respectively. From results in Chapter 2, 

E1 V Ez -> unsk(D) = EX; 
therefore E1 ->EX, Ez ->EX. • 

4.5.2 Complexity 

We now turn to the question of efficiency. It is not really possible to analyze 

the complexity of performing resolutions, since this is a nondeterministic process. 

The remainder of the algorithm, whim is the portion of the algorithm which builds 

graphs, performs maximum weight matchings, and unskoleinizes the resulting set 

of clauses, can be performed in polynomial time. A detailed analysis of the time 

complexity of the algorithm can be found in the appendix. The maximum weight 

matcliing step can be performed using the algorithm described in [Galil 86], in time 

O(mn logrmfn+Jln), where m and n are the number of edges and vertices in the 

argument graph respectively. 
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4.6 Application to program verification 

In the previous sections, we have seen how the learning algorithm can be applied 

to traditional areas like the blocks world. We now present an extension of the 

algorithm with a view to applying it to program verification. It will be demonstrated 

that the process of deriving loop invariants, as described in Chapter 3, can be aided 

by applying the learning algorithm. As mentioned earlier, the learning algorithm is 

used to remove the nondeterminism from the unskolemization process of Chapter 

2. 
Recall that we described the problem of generating loop invariants as one of 

generating logical consequences of an infinite number of first-order formulas. Very 

often, it happens that these formulas (or consequences thereof) have structural 

similarities which can be detected by our learning algorithm. Since our learning 

algorithm learns a concept implied by two examples expressed in first-order logic, 

it can be applied to the problem of deriving loop invariants. 

Let us point out here that the task of learning loop invariants is simpler than 

the blocks world problems which we have seen so far in the following respect : 

when approximations to loop invariants have been derived, there exists a semi­

decision procedure which can indicate whether suitable loop invariants have been 

derived. This semi-decision procedure consists of examining whether the verification 

conditions for the program are satisfied or not with the derived loop invariants 

substituted into the verification conditions. Since first-order logic is semi-decidable, 

so is the above process. 

4.6.1 Applying the learning algorithm 

The learning algorithm of Section 4.4.2 can be used for deriving loop invariants 

in the following manner. Recall that in Chapter 3, we characterized the problem 

of deriving loop invariants as one of deriving logical consequences of an infinite 

sequence of formulas Ar,A2 ,A3 , •••• The learning algorithm also generates logical 

consequences of two given formulas, by first performing resolutions between the 

axioms of the programming language and the two given formulas, and then by 

detecting common features between them. In other words, the procedure used will 

be: 

Given : formulas A;, Aj which hold at the entry to a loop; 

a set of axioms (called AX IO J..![ S) which characterizes the operations of the 

flowchart programming language; 

repeat 
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LEARN(A;, Aj, AXIOMS) 

until a suitable loop invariant has been derived. 

The only problem with this procedure is that there is no general decision proce­

dure which can tell us if a suitable loop invariant has been derived. This is because 

the only way to know if a suitable loop invariant has been derived is to prove that 

all the verification conditions for the program in question are valid for this value 

of the loop invariant. Validity being only semi-decidable for first-order formulas, 

we are only sure of getting a definite answer to this question if the loop invariant 

derived is suitable. 

This problem can be tackled by allowing a limited amount of time for proving 

that all the verification conditions are valid, and assuming that they are not if they 

cannot be proved to be valid within that time. Although this is not a foolproof 

solution, it works satisfactorily for a large number of cases. Also, some provers can 

show that a given set of clauses is not unsatisfiable by providing a model for the set 

of clauses, that is, a truth assignment which makes all the clauses in the set true 

(see for example [Lee 90]). 

4.6.2 Derivation of loop invariants 

The following examples show how the learning algorithm can be used to derive 

loop invariants. 

Example 4.5 The following example arises as a problem of deriving a loop invariant 

for the loop of the flowchart program shown in Figure 4.8. A loop invariant was 

derived for this program in Example 3.2 in the previous chapter. We now show 

how the same problem is tackled using the learning algorithm. The program loop 

contains variables x and y which change in value every time the loop is traversed. 

Let A; be the condition which holds for these variables before the loop is entered 

for the i'h time. Then we have 

A1 = (x = 0 1\ y =b) 
A2 = (x =a 1\ y = b -1) 
A3 = (x = 2 *a 1\ y = b- 2) 
A4 = (x = 3 *a 1\ y = b- 3) 

and so on. Let us take the last two formulas and write them in predicate form. 

This example is also intended to illustrate the importance of choosing the predicate 

representation for examples carefully. We choose the following representation : 

A3 = x_equals( mult(2, a)) 1\ y_equals( minus(b, 2)) 
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X,._ 0 
y ..... b 

b >• 0 

x • a'(b - y) 

Figure 4.8 Flowchart program for Example 4.5 

A4 = z..equals(mult(3, a)) 1\ y..equals(minus(b, 3)). 

Then the clause graph contains the following two edges : 

Ec = {( {z.equals(mult(2, a))}, {z-equals(mult(3, a))}), 
( {y..equals(minus(b, 2))}, {y.equals(minus(b, 3))})} 

and the argument graph has the following three edges, with their weights indicated 
after each edge in brackets : 

Ea = {(a,a)(l),(b,b)(1),(2,3)(2)}. 

The maximum weight matching for this graph is straightforward to obtain and 
consists of all the edges in Ea. We.now perform the marking step of the learning 
algorithm and get the following marked set of clauses EX : 

EX= { {z..equals(mult(w +- 2, a)), x.equals(mult(w +- 3, a))}, 
{y..equals(minus(b, w +- 2))}, {y_equals(minus(b, w +- 3))}}. 

Here w is a new variable. We now perform the unskolemization. There are 
no universal quantifiers to be added; the marked arguments are replaced by an 

existentially quantified variable and we get : 
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EX= 3w(x_equals(mult(w,a)) 1\ y_equals(minus(b,w))) (I) 

which is the concept learned here. In arithmetic notation, 

EX = 3w( x = w * a 1\ y = b - w ). 
Note that EX is a valid loop invariant for this program loop. 

Now consider what results we would have obtained if we had chosen a different 

predicate representation for the above two examples. Suppose we had written : 

A3 = equal(x, mult(2, a)) 1\ equal(y, minus(b, 2)), 
A 4 = equal(x, mult(3, a)) 1\ equal(y, minus(b, 3)). 

We would have got the following four edges in the clause graph : 

Ec = { ( { equal(x, mult(2, a))}, { equal(x, mult(3, a))}), 
( { equal(y, minus(b, 2))}, { equal(y, minus(b, 3))} ), 

( { equal(x, mult(2, a))}, { equal(y, minus(b, 3))} ), 
( { equal(y, minus(b, 2)) }, {equal( x, mult(3, a))})} 

and the following seven edges in the argument graph, with their weights indicated 

after each edge in brackets : 

Ea = {(x, x )(1), (y, y)(1), (x, y )(1), (y, x )(1), (a, a)(1), (b, b )(1 ), (2, 3)(2) }. 

We now have two choices for a maximum weight matching for this graph. We 
will obviously choose the same three edges as before, viz. {(a, a), (b, b), (2, 3)}. Also 

we can either choose the two edges (x,x),(y,y) or the two edges (x,y),(y,x). If 
we choose (x,x) and (y,y), then we will obtain the same result as we did with the 

previous representation; however, if we choose the edges (x,y) and (y,x), then we 
will get the following concept : 

EX= 3wt3w23wa( equal(wr, mult( wa, a)) 1\ equal(w2, minus(b, wa))) 

which is not of much use to us! This illustrates the importance of choosing a suitable 

representation for a set of clauses. • 

Example 4.6 The program in Figure 4.9 computes the maximum value stored in 

an array C of n numbers. Suppose that we are trying to compute a loop invariant 

for the cutpoint B before the entry to the loop. Let Aj be the condition which 

holds before the loop is entered for the j'h time. Then we have 

Ar =(max= C(l) 1\ i = 1), 
A2 =(max= C(l) 1\ max;::: C(2) 1\ i = 2)V 

(max= C(2) 1\ max> C(l) 1\ i = 2), 

Aa =(max= C(l) 1\ max;::: C(2) 1\ max;::: C(3) 1\ i = 3)V 
(max= C(2) 1\ max > C(l) 1\ max ;::: C(3) 1\ i = 3)V 
(max= C(3) 1\ max> C(l) 1\ max> C(2) 1\ i = 3), 
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Figure 4.9 Flowchart program for Example 4.6 

and so on. Unlike the previous example, we need to further process these formulas 
before trying to generate a learned concept from them. This is done by performing 
resolutions between the axioms for the flowchart programming language and the 
conditions A2 and A3 • We choose examples A 2 and A3 here because the learning 
algorithm can handle only two input formulas at a time. We could equally well have 
chosen A1 and any one of A2 or Aa. After a number of resolutions, we get 

From A2 : Vk(max? C(k) V k < 1 V k > 2) A (i = 2); 

From A3 : Vj(max? C(j) V j < 1 V j > 3) A (i = 3); 
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(the resolutions performed can be found at the end of this example). We express 

these two formulas in predicate form as follows : 

From A2 : 'Vk(max_ge(C(k)) V lt(k, 1) V gt(k,2)) 1\ equals_i(2); 

From A3 : 'Vj(max_ge(C(j)) V lt(j, 1) V gt(j,3)) 1\ equals_i(3). 

The clause graph for these contains the following two edges : 

Ec = { ( { max_ge(C(k )), lt(k, 1), gt(k, 2)}, { max_ge( C(j)), lt(j, 1), gt(j, 3)}), 
( {equals_i(2)}, {equals_i(3)})} 

and the argument graph has the following three edges, with their weights indicated 

after each edge in brackets : 

Ea = {(k,j)(3), (1, 1)(1), (2, 3)(2)}. 

The maximum weight matching for this graph again consists of all the edges 

in Ea. We perform the matching step of the learning algorithm and obtain: 

EX= { {max_ge(C(X)), lt(X, 1), gt(X, Y <- 2), gt(X, Y <- 3)}, 
{ equals_i(Y <- 2), equals_i(Y <- 3)}} 

(Here X is a variable obtained by unifying the variables k and j, and Y is a new 

variable.) We perform the unskolemization algorithm as before, and get 

EX= 3Y'VX((max_ge(C(X)) V It( X, 1) V gt(X, Y)) 1\ equals_i(Y)); 

or, in arithmetic notation, 

EX= 3Y'VX((max :2: C(X)V X< 1 V X> Y) 1\i = Y). 

EX is a valid loop invariant for this program loop, at cutpoint B. 

Resolution proofs for this example : 

Derivation of'Vk((max_ge(C(k))V lt(k, 1)V gt(k, 2))/\(i = 3)) from A3 /\AXIOMS: 

1. max= C(1),max > C(1) 
2. ~(max> X), max :2: X 

3. max= C(1),max :2: C(1) 
4. ~(max= X), max :2: X 

5. max :2: C(1) 
6. X= 1,X > 1,X < 1 
7. max :2: (C(X)),X > 1,X < 1 

8. max= C(2), max > C(2), max :2: C(2) 
9. max = C(2), max :2: C(2) 
10. max :2: C(2) 
11. y = 2, y > 2, y < 2 

12. max :2: ( C(Y)), Y > 2, Y < 2 
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axwm 

resolve 1,2 
ax1om 

resolve 3,4 

axwm 

paramodulate 5,6 

given 

resolve 2,8 

resolve 4,9 

axwm 

paramodulate 10,11 



13. max = C(3), max 2: C(3) 
14. max 2: C(3) 
15. z = 3, z > 3, z < 3 
16. max 2: (C(Z)),Z > 3,Z < 3 
11. ~cw > I),~cw < 2) 
18. max 2: (C(X)),~(X < 2),X < 1 
19. max 2: (C(Y)), Y > 2, Y < 1 
20. ~cw > 2), ~cw < 3) 
21. max 2: (C(Y)),Y < l,~(Y < 3) 
22. max 2: (C(Z)),Z < l,Z > 3 
23. i = 3 

The last two clauses constitute the statement 

1 v z > 3) 1\ i = 3). 

given 

resolve 4,13 
ax1om 

paramodulate 14,15 

axwm 
resolve 7,17 
resolve 12,18 
ruoom 

resolve 19,20 
resolve 16,21 
given 
: \fZ((max 2: (C(Z)) V Z < 

The statement \fZ((max 2: (C(Z)) V Z < 1 V Z > 2) 1\ i = 2) can be similarly 

derived from A2 1\ AXIOMS. • 

4. 7 Comparison with other methods 

In this section, we compare the performance of our algorithm with that of sev­
eral similar algorithms in this field. We will point out the differences between our 

algorithm and those described below, and discuss the significance of these differ­

ences, with a view to explaining why our approach is worthy of study. 

The algorithms which we will be using for comparison are those of Winston 

[Winston 75], Vere [Vere 75], Hayes-Roth [Hayes-Roth 78], and Dietterich and 

Michalski [Dietterich and Michalski 83]. All of these algorithms attack the same 
problem as described here, namely that of finding characteristic descriptions of 

situations or objects. 
The following discussion compares the five algorithms on the basis of repre­

sentation language and algorithm used, and performance on a given blocks world 

problem (taken from [Dietterich and Michalski 83], Figure 3-2, p. 51). A similar 

comparison was performed by Dietterich and Michalski [Dietterich and Michalski 
83] using a number of different algorithms for comparison. 

4.7.1 Representation language and learning methodology 

In this section we give a brief description of the representation language and 

the learning methodology used by the authors listed above. 
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El E2 E3 

Figure 4.10 Three blocks examples 

a) Winston 

Winston uses a semantic network to represent examples and background knowl­
edge for the situation at hand. Nodes in the network are used to represent proper­
ties of objects, individual examples and links; links in the network represent binary 
relationships among the nodes. His learning algorithm first obtains a difference 
description by comparing two input examples and then generalizes this difference 
description to get one or more new concept descriptions. The difference descrip­
tion is obtained by graph-matching the representations of the two examples, and 
the generalization is accomplished by creating a network containing the links and 
nodes of the two examples which matched exactly. The program uses "near-miss" 
negative examples to find a description of the concept. 

Winston's method usually tends to develop most specific generalizations of the 
input examples, even though he does not precisely define the learning bias used in 
his algorithm. There is no mechanism for representing disjunctions in his semantic 
network. He also assumes that examples are chosen by an intelligent teacher who 
controls the kind of examples used and the order in which they are presented. 

b) Hayes-Roth 

Hayes-Roth uses parameterized structural representations to represent input 
events. The parameterized structural representation for the first example E 1 of 
Figure 4.10 is 

{{medium: a} {diamond: a} {blank :a} {on top: a, under: b} {medium: b} 
{circle: b} {shaded: b} {ontop: b,under: c} {large: c} {box: c} {blank: 

c}}. 
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An expression such as {medium: a} is called a case frame; medium is called a 

case label, and a is called a parameter. This representation can easily be translated 

into first-order logic by writing {medium: a} as medium( a), {ontop: a, under: b} 

as on top( a, b), and so on. This representation can only express conjunctions and 

does not allow disjunctions. 
The learning algorithm works by matching the case frames in the two examples 

in all possible ways to give a set A (two case frames match if all their case labels 

match). Then a breadth-first search is conducted to find a one-to-one binding for 

the parameters of one example with the parameters of the other example. Pairs of 

parameters are then replaced by variables to give a learned concept. The algorithm 

tries to find most specific generalizations of the two input examples. 

c) Vere 

Vere's representation consists of a conjunction of "literals" where a literal is a 

list of constants called "terms" enclosed in parentheses. Using this representation, 

the first example in Figure 4.10 is represented as follows : 

(medium a)( diamond a)(blank a)(ontop a b) (medium b)(circle b) (shaded b) 

(ontop b c) (large c) (box c)(blank c). 
Every term in a literal is treated uniformly (i.e. "medium" is not distinguished 

from "a", etc.). No disjunctions are allowed in this representation. 

The learning algorithm works as follows. The literals in the two examples are 

matched in all possible ways to generate a set of matching pairs. Two literals match 

if they have at least one common term in the same position and if they contain the 

same number of terms. After this is done, all possible subsets of this set of matching 

pairs are chosen so that no literal is paired with more than one literal in the other 

example. Following this, subsets of matching pairs are augmented by adding pairs 

p of literals such that each literal in p is related to some other pair q in the same 

subset by a common term in a common position. Finally, pairs are merged together 

in each subset to form a single literal by replacing corresponding terms which are 

not already identical by new variables. The goal of the algorithm is to discover 

most specific generalizations of the two input examples. 

The problem with -this representation is that all terms in a literal are treated 

uniformly, even though the first term of a literal is really a predicate symbol. This 

gives rise to the following problem : literals consisting only of variables (e.g. ( x y)) 
can be generated, which are meaningless. The generation of these literals makes the 

algorithm less efficient. The algorithm allows a many-to-one binding of variables, 

which is computationally expensive. 

d) Dietterich and Michalski 

130 



The representation language used here is called V L2 and is an extension of 

first-order logic. An example is represented as a conjunction of "selectors". Each 

selector contains a function or predicate descriptor (with variables as arguments) 

and a list of values that the descriptor can take. For example, the first example in 

Figure 4.10 is represented as : 

3x3y3z[size(x) = medium] [shape(x) = diamond] [texture(x) = blank] 

[ontop (x, y)] [size(y) =medium] [shape(y) =circle] [texture(y) =shaded] 

[ontop(y,z)] [size (z) =large] [shape(z) =box] [texture(z) =blank]. 

Descriptors are divided into two classes : unary or attribute descriptors, and 

non-unary or structure-specifying descriptors. The learning algorithm first searches 

the description space defined by the structure-specifying descriptors, and then 

searches the attribute descriptor space. The first search is conducted using a form of 

best-first search in which a set of best candidate descriptions is maintained during 

the search. The second search is then conducted using a technique similar to that 

used in the first search. Some heuristic criteria are used to evaluate the value of 

generalizations; some of these are : maximize the number of input events covered 

by a generalization, maximize the number of selectors in a generalization, and so 

on. 

The algorithm is specially designed for finding maximally specific generaliza­

tions, but it sometimes generates descriptions which are not maximally specific. 

This is because the search conducted in the structure-only space is allowed to pro­

duce less than maximally specific generalizations, because there may exist most 

specific generalizations in the complete space whose structure-only component is 

not maximally specific in the structure-only space. 

The language used allows internal disjunctions to be represented. An example 

of an internal disjunction is : 

[shape(x) =circle V rectangle], 

with the obvious meaning. 

4. 7.2 Performance comparison 

The objective of all the algorithms described so far is to generate a concept 

which is as specific as possible. We therefore compare the performance of these 

algorithms on the basis of the concepts learned by them from a set of three examples. 

The examples, named E1 , E2 and E3 respectively, are shown in Figure 4.10 and can 

be represented as follows in first-order logic : 

E1 = medium(a)Adiamond(a) II blank( a) A on top( a, b) II medium( b) A circle( b) 

Ashaded(b) A ontop(b, c) A large( c) A box( c) A blank( c), 
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E 2 =medium( d) II square( d) II blank( d) II ontop( d, e )II small(!) II circle(!) II 

shaded(!) II inside(!, e) II small(g) II circle(g) II shaded(g) II inside(g, e) Alarge( e) II 

rectangle( e) II blank( e), 

E 3 = medium(h)Mriangle( h )!lblank(h )!lontop( h, j)llmedium(j)fl rectangle 

(j) A shaded(j) II ontop(j, k) !\large( k) II ellipse( k) II blank( k ). 

The output of the five methods being compared here is given below. 

a) Winston 

Winston's algorithm is sensitive to the order in which examples are presented 

to it. It produces two different concepts for the given three examples of Figure 

4.10. The first is the result of presenting examples in the order Ea, E 1 , E2, and the 

concept generated can be expressed in first-order logic using the above notation as 

follows : 

3t3u3v3w3x3y3z(size(x,medium) II texture(x,blank) II shape(x,polygon) II 

ontop(x, y) II size(y, w) II texture(y, u) II size(z, v) II texture( z, t)), or, in English : 

There is a blank, medium polygon on top of another object that has a texture 

and size. There is also another object with texture and size. 

If the examples are presented in the order E1 , E 2 , E3 , then the concept learned 

IS : 

3x(size(x, large) II texture(x, blank)), or, in English: 

There is a large blank object. 

b) Hayes-Roth 

The algorithm given by Hayes-Roth learns three concepts from the three ex-

amples in Figure 4.10. These are given below in first-order logic notation : 

3x3y(medium(x) II blank(x) II ontop(x, y)), or, in English: 

There is a blank, medium object on top of another object. 

3x3y(medium(x) II blank(y) !llarge(y) II ontop(x, y)), or, in English: 

There is a medium object on top of a blank large object. 

3x3y3z( medium(x )!lblank(x )Alarge(y)!lblank(y )llshaded(z )), or, in English: 

There is a medium blank object, a large blank object, and a shaded object. 

c) Vere 

Vere's learning algorithm produces a large number of generalizations for the 

examples in Figure 4.10. This is due to the fact that many-to-one bindings of 

variables are permitted, which results in a large number of generalizations. Three 

of the most specific generalizations are given below : 
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3x3y3z3w(medium(x) 1\ ontop(x, y) 1\ large(y) 1\ blank(y) 1\ blank(z) 1\ shaded( 

w)), or, in English: 
There is a medium object on top of a large blank object, a blank object, and 

a shaded object. 

3x13x2 3x33x4 ( medium( x1 )I\ blank( X! )1\ontop( x1, X2) /\shaded( X3 )/\large( X4) 

/\blank(x4)), or, in English: 
There is a medium, blank object on top of some other object, there is a shaded 

object and a large blank object which are related in some way. 

3x1 3x2 3x33x4 (medium( x1) /\on top( X!, x2 )I\ large( x2) 1\ blank( x2 )/\shaded( X3) 

/\blank(x4)), or, in English: 

There is a medium object on top of a large blank object, a shaded object, and 

a blank object. 

d) Dietterich and Michalski 

As in the case of Vere's algorithm, Michalski's algorithm produces a large 

number of generalizations. Some of the more significant ones are : 

3x3y(ontop(x, y) 1\ size(x, medium) 1\ shape(x,polygon) 1\ texture(x, blank) 1\ 

( size(y, medium) Vsize(y, large)) 1\ (shape(y, rectangle) V shape(y, circle))), or, in 

English: 

There exists a medium blank polygon on top of a medium or large rectangle 

or circle. 

3x3y( ontop(x, y) 1\ size(x, medium) 1\ (shape(x, circle) V shape(x, rectangle) V 

shape( x, square)) 1\size(y, large )1\texture(y, blank) 1\ ( shape(y, rectangle) V shape( 

y, box) V shape(y, ellipse))), or, in English: 

There exists a medium circle or rectangle or square on top of a large blank 

rectangle or box or ellipse. 

3x3y(ontop(x,y) 1\ size(x,medium) 1\ shape(x,polygon) 1\ (size(y,medium) V 

size(y, large)) 1\(shape(y, rectangle) V shape(y, ellipse) V shape(y, circle))), or, in 
English: 

There exists a medium polygon on top of a medium or large rectangle or ellipse 

or circle. 

3x(( size( x, small) V size(x, medium))/\ (shape(x, circle )V shape( x, rectangle)) 
1\texture(x, shaded)), or, in English: 

There exists a small or medium shaded circle or rectangle. 

e) Our method 

We applied our method to all possible combinations of the order of presentation 

of the three examples (i.e. E1,E2,E3 ; E2,E3 ,E1; and E1,E3 ,E2). The same 
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formula was obtained in all three cases. The axioms used for performing resolutions 

were: 

Vx(diamond(x)--> polygon(x)) 

Vx( square( x) --> polygon( x)) 

Vx(triangle(x)--+ polygon(x)) 

Vx( rectangle( x) -->polygon( x)) 

Vx(box(x)--> polygon(x)). 
All possible resolutions were performed between these axioms and the three exam­

ples. 
The learned concept was : 

3x3y3z(medium(x) II polygon(x) II blank(x) II (ontop(x,y) V ontop(x,z)) II 

shaded(y) II (ontop(y,z) Vontop(x,z)) lllarge(z) II blank(z)), or, in English: 

There is a medium blank polygon x on top of one of two objects y or z; y is 

shaded, and z is a large blank object on top of which is either x or y. 

The working of the algorithm for the order of presentation E 1 , E 2 , E3 is given 

in the appendix. 

Discussion 

The concepts generated by the algorithms of Winston, Hayes-Roth, and Vere 

are less specific than the concept generated by our algorithm, as can be seen at a 

glance, since the latter contains more detail than the concepts generated by these 

three algorithms. Dietterich and Michalski's algorithm generates a number of very 

different descriptions. While these descriptions do not capture all the detail that 

our description does, they contain some information that our description does not. 

The concepts generated by Dietterich and Michalski's algorithm describe at most 

two objects, whereas ours describes three objects and detects relationships between 

these objects which none of the algorithms find. The difference in the concepts 

generated by these two algorithms is due in part to the differences in the description 

languages used by the two methods. 

The great advantage of our representation is that it allows disjunctions and 

quantifiers to be represented. This automatically makes the scope of application of 

our algorithm much wider than the first three algorithms studied. Dietterich and 

Michalski's algorithm does allow internal disjunctions and existential quantifiers, 

but not universal quantifiers. 

In conclusion, we see that our algorithm succeeds in learning a concept from 

the given three examples which cannot be learned by any of the four algorithms 

used for comparison in this section. Our algorithm performs better than the first 

three algorithms in that the concept it learns is more specific than those learned 
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by these three algorithms. Dietterich and Michalski's algorithm succeeds in find­

ing a number of concepts which are neither more specific nor less specific than the 
concept generated by our algorithm. However, our algorithm has much wider ap­
plicability than theirs, since it can handle arbitrary first-order formulas. Dietterich 

and Michalski's algorithm uses a special-purpose language, which greatly limits its 

usefulness in any other field. 
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5. Mechanizing mathematical induction 

5.1 Introduction 

Even though theorem provers today are able to prove a vast number of non­

trivial mathematical theorems, the proofs of theorems which require the use of 

mathematical induction present a special problem. A formal statement of the prin­

ciple of mathematical induction runs as follows : for every predicate P, if P( m) 

is true for all minimal elements m of a well-founded partial ordering <, and if for 

ally, P(x) being true for all elements x less than y implies that P(y) is true, then 

P( x) is true for all x. This statement cannot be expressed in first-order logic, since 

it involves quantification over predicates. However, second-order logic is not even 

semi-decidable, and there exists no complete deduction system for second-order 

logic. Recall that first-order logic is semi-decidable but not decidable. 

For this reason, due to the properties of second-order logic, many attempts have 

been made to prove inductive theorems using first-order logic. Given the limitations 

of first-order logic, it is necessary to provide a theorem prover with the necessary 

inductive hypotheses which it will need in order to prove a theorem. However, 

discovering these inductive hypotheses is a non-trivial task. Another problem is to 

discover a suitable well-founded ordering for the elements of the domain involved. 

This chapter is devoted to methods for mechanically generating such a well-founded 

ordering and inductive hypotheses for certain classes of theorems. 

Two approaches to generating inductive hypotheses are adopted here. The 

first relies on our method for deriving logical consequences. The second is based on 

the fact that there exists a certain class of theorems such that all ground instances 

of these theorems are provable by first-order methods. Moreover, such proofs can 

have a similar structure. Thus it is possible to detect which inductive hypotheses are 

required for a proof of the theorem by induction, by comparing proofs of different 

ground instances of the theorem. We describe a complete method for proving such 

theorems. Related work in the past has focused primarily on proving equational 

theorems using term rewriting techniques. The method described here is more 

general and is applicable to equational as well as non-equational theorems. 



5.2 Related work 

One of the hardest problems in discovering an inductive proof is discovering 

an appropriate application of the principle of induction. Boyer and Moore's prover 

[Boyer and Moore 79] is perhaps one of the best-known systems which can perform 

inductive proofs. Their prover uses the definition of a recursive function to suggest 

an induction scheme. When a recursive function is defined, a measure and a well­

founded relation must be provided along with the function definition such that 

in every recursive call the measure of the variables involved in the recursive call 

decreases. This guarantees that a function call will not result in an infinite sequence 

of invocations of the function. This measure and well-founded relation suggest an 

induction scheme for this function on the variables whose measure decreases with 

every function call. Boyer and Moore's prover has succeeded in finding inductive 

proofs of an impressive number of theorems including the unique prime factorization 

theorem and other number theoretical theorems. It has also been used to prove the 

correctness of non-trivial programs such as a simple optimizing expression compiler 

and a fast string searching algorithm. 

Another system which makes use of a function definition to generate an in­

duction scheme is described in [Zhang et a!. 88]. The idea is similar to that of 

Boyer and Moore's prover in that different induction schema are used for different 

functions determined by their definitions. The non-recursive equation( s) in a def­

inition suggests the basis step of an induction proof, while the recursive equation 

in the definition suggests the inductive step of a proof. The notion of a cover set is 

introduced, which is a finite set of terms covering all the elements of the constructor 

model; in other words, a cover set is a finite set of terms which "describes" every 

ground constructor term of that sort. One of the hardest problems in applying the 

cover set induction principle is to find a suitable cover set. As in [Boyer and Moore 

79], the function symbols in the conjecture and their definitions offer an insight into 
the problem. The method described is a generalized version of the structural induc­

tion principle and is as powerful as Boyer and Moore's induction method; however, 

the experiments performed with this system are still very limited as compared to 

the achievements of Boyer and Moore's prover. 

In a preliminary report, Biundo et a!. [Biundo et a!. 86] describe a system in 

which mathematical induction is being incorporated. Given a finite set of axioms 

and a formula ¢, their induction theorem prover first attempts to prove rp without 

using induction. If this attempt fails, an induction formula is generated from ¢, 

after simplifying¢, according to Aubin's method [Aubin 79a], [Aubin 79b]. It may 

happen that a given formula is not directly provable by induction, i.e. the induction 

formula obtained from the initial one provides an induction hypothesis which is too 
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weak to be usable in the induction step. In such cases it is necessary to find a 

more general formula which is sufficient for the initial one such that the induction 

hypothesis "carries" the induction. Several techniques for generalizing formulas are 

being studied for this purpose. 

A lot of work has been done in the field of "inductionless induction", which 

is basically proving theorems which would normally require inductive proofs by 

using term rewriting techniques. Musser [Musser 80] discovered the use of the 

Knuth-Bendix completion procedure [Knuth and Bendix 70] for proving equations 

by induction from an equational specification of data types. Since the classical 

induction principle is not explicitly invoked in this method, it has been called the 

inductionless induction method. The general idea is that an equation is valid in 

the initial algebra if and only if adding it to the set of axioms does not result in 

an inconsistency. The pioneering work of Musser led to the development of this 

method for proving inductive properties of data types. The equational axioms of an 

algebraic specification of a data type can often be formed into a convergent set of 

rewrite rules. If one adds a rewrite rule corresponding to a data type property whose 

proof requires induction, convergence may be destroyed, but often can be restored 

by using the Knuth-Bendix algorithm to generate additional rules. A convergent 

set of such rules can be used as a decision procedure for the equational theory for 

the axioms plus the property added. This fact, combined with a "full specification" 

property of axiomatizations, leads to a new method of proof of inductive properties, 

not requiring the explicit use of an inductive rule of inference. The significance of 

"full specification" lies primarily in that if one has a collection of types that has 

been shown to be fully specified, and one extends the collection with a new type 

specification so that the augmented collection is also fully specified, then the added 

specification does not introduce any new constants into the old types. Thus to 

attempt to prove that an equation a = /3 is in the inductive theory of the collection 

of types, one adds a new rewrite rule (either a -... /3 or /3 -+ a according to the finite 

termination criterion being used) and performs the Knuth-Bendix algorithm. There 

are three possible outcomes: (1) The algorithm terminates after generating a finite 

number of additional rules, none of which is true -+ false, with the convergence 

property affirmed. This means that a = /3 is a theorem; (2) The rule true -..false 

is generated, which means that a = /3 is not a theorem; or (3) The Knuth-Bendix 

algorithm does not terminate, in which case no definite information is gained about 

whether a = /3 is a theorem or not. The main limitation here is the difficulty of 

proving the finite termination property of the rules generated (finite termination 

of arbitrary sets of rewrite rules is undecidable ). Another issue is that of the 

practicality of meeting the requirement of "full specifications". 
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Goguen (Goguen 80] describes a more general approach to inductionless induc­
tion than Musser. He proves the correctness of algebraic methods for deciding the 
equivalence of expressions by applying rewrite rules, and for proving inductive equa­

tional hypotheses without using induction. He also shows that the equations true 

in the initial algebra are just those provable by structural induction. The results 

generalize and rigorize Musser's method for proving inductive hypotheses using the 
Knuth-Bendix algorithm, by showing that under certain conditions, an equation is 

true if and only if it is consistent. 

Toyama (Toyama 86] proposes a method for testing equivalence in a restricted 

domain of two given term rewriting systems. By using the Church-Rosser property 

and the reachability of term rewriting systems, the method can be used to prove 
equivalence of these systems without the explicit use of induction. The method 

proposed is an extension of inductionless induction methods developed in (Musser 

80], (Goguen 80], (Huet and Hullot 82], etc. and allows the extension of induction­
less induction not only to term rewriting systems with the termination property 

but also various reduction systems. Toyama proves certain theorems about ab­
stract reduction systems, which are then applied to term rewriting systems to prove 

equivalence in a restricted domain of two term rewriting systems. His method has 
a wider applicability than the inductionless induction methods proposed by Musser 

and others, since their method requires the strongly normalizing property to hold, 

which is very restrictive and not true of many term rewriting systems. 

McCarthy (McCarthy 70] describes a method called recursion induction for 
proving the equivalence of recursively defined functions. The method works as 

follows : suppose a function f is defined over a set A, and suppose g and h are two 

other functions with the same domain as f and which are defined for all elements 

of A. Suppose further that g and h satisfy the equation which defined f. Then 

the values of g and h agree for all elements of A. This method of proving functions 
g and h equivalent is called recursion induction. Some elementary results in the 

elementary theory of numbers and in the elementary theory of symbolic expressions 

are provable using recursion induction. In number theory one gets as far as the 

theorem that if a prime p divides ab, then it divides either a or b. However, to 
formulate the unique factorization theorem requires a notation for dealing with sets 

of integers. One of the most immediate problems in extending this theory is to 

develop better techniques for proving that a recursively defined function converges. 

The concept of structural induction can be explained as follows : to prove that 

some property holds for some inductively defined data structure, we show that it 

holds for the most elementary data, and that it will hold for data of any degree 

of complexity provided that it holds for all data of lesser complexity. We may 
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then deduce that it holds for all data (Burstall 69]. This is a special case of a more 

general rule termed Noetherian induction: "Let A be an ordered set with minimum 

condition and B a subset of A which contains any element a E A whenever it contains 

all the elements x EA such that x <a. Then B =A." (A set A satisfies the minimum 

condition if every non-empty subset of A has a minimal element.) The structural 

induction principle differs from the usual "course of values" induction in two ways : 

it allows for partial ordering, instead of total ordering, and it allows induction over 

the transfinite steps. Examples of some proofs by structural induction can be found 

in (Burstall 69]. 

In (Wegbreit and Spitzen 76], the authors introduce a method of proof called 

generator induction, used for proving properties of programs, which may be stated 

informally as follows : to prove that all instances of a class C have some property P, 

prove that (1) all instances have the property when they are first created, and (2) 

all operations F, which may change the value of a class instance, preserve the truth 

of P. This definition is similar to that of computation induction given in (Manna et 

a!. 73]. The generator induction principle is used to prove certain properties of a 

hashtable program in Simula. The most important property of generator induction, 

according to the authors, is that it partitions the program into loosely coupled 

parts, proves simple properties of the parts, and demonstrates that the parts are 

composed according to simple rules. This allows the decomposition of a proof into 

small, comprehensible units corresponding to the structure of the program. 

5.3 Description of the first method 

We give below a brief overview of the first approach we will be using for deriving 

proofs of theorems. Consider what is provable by induction, where all induction 

hypotheses are expressible in first-order logic and all orderings are known. This 

gives a precisely defined class of formulas. Given a theorem T to be proved, we first 

try to prove it without using induction, using a resolution theorem prover. If this 

attempt fails, we try to prove the theorem using induction. The first problem to be 

tackled is to find a suitable induction scheme, i.e. we must discover a suitable well­

founded ordering to be used in the application of the principle of induction. Once 

this has been done, an attempt is made to prove the theorem using this ordering 

and the induction principle. However, it may happen that this prooffails too, since 

this theorem may itself depend on another inductive hypothesis or lemma A. Then 
we have 

AXIOMS II A -+ T 

140 



where "AXIOMS" is the set of axioms required for the proof of this theorem. There­

fore 
AXIOMS 1\ ~T -+ ~A 

1.e. ~A is a logical consequence of AXIOMS 1\ ~T. We can therefore use our 
method for generating logical consequences and unskolemization to derive ~A from 

AXIOMS 1\ ~T. This is a support strategy and will not generate all possible induc­

tive theorems from the axioms, since it makes use of the negation of the theorem T 

as well as the set of axioms to generate inductive hypotheses. This method can be 

extended to theorems which depend on more than one inductive hypothesis. The 
remainder of this section elaborates the ideas outlined above. 

5.3.1 Discovering a well-founded ordering 

Recall that we have assumed that all well-founded orderings are known (these 

could be partial as well as total orderings). Now suppose that we are trying to 

prove the theorem 

'Vx A(x) 
where x ranges over some domain D. Consider the set of formulas of the form A( t), 

where tis a ground term belonging to D and A(t) is first-order provable. We prove 
some subset of these formulas one by one, noting the proof times for each formula. 

We denote the time taken to prove A(t) by PT(t). This suggests an ordering in that 

objects which are smaller in the ordering will probably have smaller proof times. 

We therefore pick an ordering ">-" such that 

(X >- Y) -+ (PT(X) > PT(Y)) 
(at least most of the time). 

Example 5.1 Consider the following theorem to be proved by induction : 

'VX(reverse(reverse(X)) =X), 
where "reverse" is the usual function which reverses lists, and where X ranges over 
the set of all lists. We first try to prove the theorem for some ground terms using 

the theorem prover OTTER, a resolution theorem prover developed at the Argonne 

National Laboratory [McCune 89]. We observe the following proof times for the 
ground terms given below : 

Theorems proved 

reverse(reverse([])) = [] 

reverse(reverse([1])) = [1] 

reverse(reverse([a])) =[a] 
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Time taken (seconds) 

0.26 

0.34 

0.34 



reverse(reverse([2, 1])) = [2, 1] 
reverse(reverse([a, b])) = [a, b] 
reverse(reverse([3, 2, 1])) = [3, 2, 1] 
reverse(reverse([5, 2, 9])) = [5, 2, 9] 

1.00 
1.00 
2.16 

2.16 

From the above proof times, the following observations can be drawn : 

1. The proof times increase as the length of the list being substituted for X 

increases; here we have 

PT([]) < PT([1]) = PT([a]) < PT([2,1]) = PT([a, b]) < PT([3,2,1]) ... 
2. The proof times are identical for different ground terms which are lists of the 

same length; here we have 

PT([1]) = PT([a]), PT([2,1]) = PT([a, b]), and so on. 
A well-founded ordering r which satisfies the condition 

X r Y -> PT(X) > PT(Y) 
is therefore the ordering which is defined as follows : for lists X andY, X r Y if 

and only if the length of list X is greater than the length of list Y; X = Y if and 

only if the length of list X is equal to the length of list Y; and X -< Y if and only 

if Y r X. The minimal element in this ordering is the empty list [ ]. • 

5.3.2 Using the induction principle 

Once a well-founded ordering W has been found using the method described 

in the previous section, we must now apply the principle of induction to prove the 

given theorem T = 'Vx A(x). This is done as follows: 

Base case : We prove 

A(m) 
for all minimal elements m of the ordering W by negating A( m ), adding it to the 

set of axioms, and using resolution to derive the empty clause. If this procedure 
fails, this means that some induction hypothesis (hypotheses) is (are) required to 

prove the base case. Sections 5.3.3 - 5.3.4 explain how this case is dealt with. 

When the proof of the base case is obtained, we proceed to the induction step. 

Induction step : Let pred(X) be the set of elements which precede X in the 
ordering W. Then we need to prove 

'VX( 1\ A(Y)-> A(X)). 
YEpred(X) 
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Again, this formula is negated, added to the set of axioms and resolution is 

used to try and derive the empty clause. If the empty clause cannot be thus derived, 

then as before, one or more induction hypotheses may be required to obtain the 

proof. This is dealt with in the next two sections. 

If a proof is obtained by resolution alone, then the theorem is proved by indue-

tion. 

Example 5.2 Consider the following theorem : 

WlfZ(reverse(append(Y, cons(Z, [ ]))) = cons(Z,reverse(Y))). 

The list notation used here is the same as that used in the programming lan­

guage LISP. In particular, if X is an element andY is a list, then cons( X, Y) is a 

list of length one more than the length of Y, and contains the element X followed 

by the list Y. [ ] or "nil" represents the empty list. 

Let us try to prove the theorem by induction on Y. Using the same method 

as in the previous section, we can establish that the same well-founded ordering as 

that of Example 5.1 can be used here (i.e. for lists X and Y, X >- Y if and only if 

the length of list X is greater than the length of list Y; X = Y if and only if the 

length of list X is equal to the length of list Y; and X -< Y if and only if Y >- X). 
The minimal element in this ordering is the empty list [ ] , therefore here the base 

case is : 

Base case : lfZ(reverse(append([ ], cons(Z, [ ]))) = cons(Z, reverse([]))). 

This was proved by OTTER in 0.28 seconds (see the appendix for proof). 

Induction step : An element preceding X in the given ordering could be any 

element of length one less than X. In particular, the list cdr(X), where cdr( X) 

represents the same list as X with the first element removed, is a list with one 

element less than X. Thus we now need to prove that 

VYVZ ((reverse( append( cdr(Y), cons( Z, [ ]))) = cons( Z, reverse( cdr(Y)))) -+ 

(reverse(append(Y, cons(Z, [ ]))) = cons(Z, reverse(Y)))). 

This was proved by OTTER in 1.86 seconds (see the appendix for proof).• 

5.3.3 Finding one induction hypothesis 

Sometimes it may happen that either the base case or the inductive step (or 

both) of the previous section cannot be proved by resolution alone, i.e. by first-order 

methods alone. This can occur, for example, if the proof depends on some other 

lemma which itself needs to be proved by induction before a proof for the actual 

theorem being proved can be found. Suppose that the proof depends on one lemma 

A, i.e. 
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AXIOMS A A -+ T 

where "AXIOMS" is the set of axioms for the theorem T being proved, and where 
T can be proved from AXIOMS A A using first-order reasoning. This implication 

can be rewritten as 
~AXIOMS V ~A V T 

which is the same as 
AXIOMS A ~T -+ ~A. 

~A can therefore be derived from (AXIOMS A ~T) using resolution. To do 

this, we need to Skolemize AXIOMS A ~T before performing resolutions among 

clauses thus obtained. The clauses which represent Sk( ~A) can thus be derived by 
resolution from Sk(AXIOMS II ~T). We then unskolemize and negate Sk( ~A) to 

obtain the lemma A, using our unskolemization algorithm. Lemma A can now be 
proved using the methods of Sections 5.3.1 - 5.3.2. Since lemma A has been shown 

to be valid, and since AXIOMS A A -+ T, the theorem Tis also valid, and a proof 
for T has thus been found. 

Example 5.3 We continue with the proof of the theorem of Example 5.1, which 

was 

VX(reverse(reverse(X)) =X). 

Recall that we found a well-founded ordering W for this theorem in Example 

5.1 whose minimal element was the empty list [ ]. The base step for the proof 
therefore consists of proving 

reverse( reverse([]))= [], 
which was already done in Example 5.1. 

Induction step : An element preceding X in the ordering W could be any element 

of length one less than X. In particular, the list cdr( X), where cdr( X) represents 

the same list as X with the first element removed, is a list with one element less 
than X. Thus we need to prove that 

VX((reverse(reverse(cdr(X))) =cdr( X))-+ (reverse(reverse(X)))). 

(Call this result T'.) We try to derive the empty clause from AXIOMS A ~T', 

but since T' cannot be proved by induction alone, this attempt fails. However, we 
succeed in deriving the following clause by resolution from AXIOMS A ~T' : 

VX(reverse(append(reverse(cdr(X)), cons( car( X), [ ]))) -:1 
cons( car( X), reverse( reverse( cdr( X))))). 

We unskolemize this clause by replacing reverse(cdr(X)) and car(X) by new 

existential variables Y and Z respectively. This yields the formula 

3Y3Z(reverse( append(Y, cons( Z, [ ]))) -:1 cons( Z, reverse(Y))). 

Negating, we obtain the following 
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Lemma A= 'VYVZ(reverse(append(Y, cons(Z, [ ]))) = cons(Z, reverse(Y))). 
Lemma A was proved by induction (without the use of any lemmas) in Example 

5.2, using the methods of Sections 5.3.1 - 5.3.2. Hence the proof of our theorem 

VX(reverse(reverse(X)) =X) 

is complete. • 

5.3.4 Finding more than one induction hypothesis 

It may happen that the proof of a theorem T depends on more than one in­

ductive lemma. For example, suppose that inductive lemmas A and B are needed 

to prove T; in other words, Tis first-order derivable from AXIOMS 1\ A 1\ B. Then 

as before, since 

AXIOMS 1\ A 1\ B --. T, 

we therefore have 
AXIOMS 1\ ~T --. ~A V ~B. 

Therefore from AXIOMS 1\ ~T, we can derive ~A V ~B by first-order reasoning. 

This can be done by resolution from Sk(AXIOMS 1\ ~T). The clauses obtained from 

these resolutions representing Sk( ~A V ~B) can then be unskolernized and negated 
(as we did in Section 5.3.3 for lemma A). We thus obtain A 1\ B, and each of 

lemma A and lemma B can be proved by induction using the methods of Sections 

5.3.1 - 5.3.2. This method can be extended to any number of inductive lemmas; 

however, the method rapidly becomes more and more complicated as the number of 
lemmas increases. For this reason, it may be preferable to use our second approach, 

described in the next section, for generating inductive hypotheses for such theorems. 

5.4 Description of the second method 

Suppose that we are trying to prove some theorem T, and suppose that we fail 

to find a proof of the theorem using standard first-order methods. This suggests 
that induction may be required to prove the theorem. 

If induction is to be used, the first problem is to find a well-founded ordering for 

the elements. This can be done by the methods described in Section 5.3.1 and this 

problem will not be further dwelt upon here. If the theorem can now be proved by 

induction using the well-founded ordering thus discovered, then we are done; if not, 

then the proof of the theorem may require one or more lemmas, which themselves 

need to be proved by induction. Our concern in this section is to discover what these 

lemmas are. If only one lemma is required, then the method of Section 5.3.3 may 
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prove useful in finding this lemma; however, the following method can be applied 

to any theorem whose proof requires one or more lemmas, each of which have to be 

proved by induction. By lemma we mean either some theorem which needs to be 

proved separately or some instance T(Y) of the theorem T(X), where Y <X; such 

lemmas are also called inductive hypotheses. 

Suppose the proof of a theorem T, for which a well-founded ordering P has 

been discovered, requires n lemmas A1, A2, ... ,An (these are all unknown). Suppose 

that T contains m variables (m ;::: 1), where the i'h variable is drawn from some 

domain D; for each i, 1 ~ i ~ m. Let X be an m-tuple consisting of these m 

variables. We write the theorem T as T(X). Then a proof of the theorem T(X) 
will proceed according to the following two steps : 

1. Proof of the base case : 

The theorem T( X) is proved to be true for the minimal elements of the ordering 

P. We will show below that T(m), for minimal elements m of the ordering P, is 

first-order provable for a certain class of theorems T. 

2. Inductive step : 

Now the inductive step of the theorem T(X) is proved. Using lemmas A1 

through An as axioms, a proof of T(X) can be obtained by resolution. 

This concludes a proof of T(X) by induction, using then lemmas A1 through 

An as axioms. 

Now consider the proof ofT(Y) for some ground el~ment Y E D1 xD2 x ... xDm. 
This proof can be performed by performing exactly the same steps as in 2 above, 

except that we now have none of the lemmas A1 through An. As a result of this, 

ground instances of these lemmas will have to be proved. We will show below that 

all these ground instances are first-order provable for a certain class of theorems. 

Thus in this proof of T(Y), we can find subproofs of lemmas A1 (Y) through An(Y) 
(A;(Y) denotes the lemma A; with variables in A; instantiated to the corresponding 

values in Y). 

Since this is true for all ground elements Y, the above can be repeated for 

ground elements Y1,Yz,Y3, ... ,and so on. In each proof of T(Y;), we can find 

subproofs of lemmas A1(Y;), Az(Y;), ... , An(Y;). 

Now we compare the proofs of T(Y) for different ground Y. These proofs will 

be similar in structure except that different instances of the lemmas A1 through 

An will appear in these proofs. By detecting these different instances, we should be 

able to reconstruct the n lemmas A1 through An· Once these lemmas are known, 

the theorem T(X) can be proved by induction using the well-founded ordering P. 

In the following theorem, we will show that this method is complete for the­

orems which can be proved using the usual induction principle, subject to the fol-
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lowing restriction. In order to show that this method is complete, we will need to 

be able to tell whether certain ground terms t which appear in proofs are less than 

a given ground term z or not. Since ground terms may contain Skolem functions 

or other functions, it may not always be possible to deduce whether t < z or not. 

Thus we will only allow those functions t, z for which it is possible to tell whether 

t < z is true or not. For example, if z = 3 and t = plus(l, 1) (where "plus" is the 

usual addition function for natural numbers), it is possible to deduce that t is less 

than z; however, if z = 3 and t = f(5) for some Skolem function f, then we cannot 

tell whether t < z or not. 

The feasibility of this method is established in the following theorem. 

Theorem 5.1 The method suggested above is complete for theorems that can be 

proved by first-order logic with the following induction principle: 

(Vx(Vy(y < x-> P(y))-> P(x))) 
where < is a well-founded ordering. Additionally, none of the clauses used 

should contain terms containing Skolem symbols or other functions for which the 

question of whether any of these is less than another term is undecidable. 

Proof: Suppose we want to prove P(z) for some ground z, where VxP(x) is a 

theorem which can be proved by first-order logic with the above induction principle. 

We know that (Vx(Vy(y < x-> P(y))-> P(x))) is true. Express this as 

(Vx(3y)[(y < x-> P(y))-> P(x)]). 
Substitute the ground term z for x to get 

(3y)[(y < z-> P(y))-> P(z)]. 
Then there are finitely many y; such that 

[(Yo< z-> P(yo))-> P(z)J V ... V [(Yn < z----> P(yn))----> P(z)] 
is true. To see this, note that if (3x)A(x) is valid for any first order formula A(x), 
we know there exist finitely many terms t; such that A( ti) V .•. V A( tn) is valid. 

We can show this by converting ~(3x )A( x) to clause form with a new predicate for 

A(x), and looking at the instances of this predicate used in the derivation of the 

empty clause by resolution. 

The above formula can be rewritten as 

HYo < Z-> P(yo)) V P(z)] V ... V HYn < z-> P(yn)) V P(z)] 
i.e. HYo < z-> P(yo)) V ... V ~(Yn < z -> P(yn))] V P(z) 
i.e. ~[(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z-> P(yn))] V P(z) 
i.e. [(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z----> P(yn))]-> P(z). 

Now consider any conjunct (y; < z ---> P(y;)) in the conjunction on the left 

side of the above implication. If y; < z is true, then this conjunct is equivalent to 
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P(y; ); if y; < z is false, then this conjunct is equivalent to true and can therefore 

be omitted from the above conjunction. We are therefore interested in knowing 

whether y; < z is true or false for every i, for 1 ::5 i ::5 n. From the assumption in 

the theorem statement, this question can be answered for ally;. 

LetT be the set of all Yk's in {yi,Y2,···,Yn} such that Yk < z. Then 

/\ P(y)-+ P(z) 
yET 

Thus P(z) is derivable from a finite conjunction P(yj,) 1\ ... 1\ P(yj,) by first­

order logic methods, where all the Yi; 's are ground elements less than z. 
Repeating the above argument for each of the elements of the set T, we will 

eventually get 

P(mi) 1\ ... 1\ P(m.)-+ P(z) 
where all the m;'s are minimal elements of the well-founded ordering < (this 

follows from the fact that < is a well-founded ordering). 

Now consider the proof of P(m;) for some minimal element m; (1 :::; i :::; s). 
Since m; is a minimal element, P(m;) is provable from the given axioms and given 

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction 

previously, then by a simple induction argument on the size of the proof, using the 

same method as above, we see that we will eventually obtain a first-order proof of 

P(m;) from the axioms. 

Thus we see that P(z) can be proved by first-order methods; also, this proof 

is made up of proofs of some P(y)'s for y < z, which in turn are made up of proofs 

of some P(w)'s for w < y, and so on. In other words, each of these proofs have a 

similar structure, and the theorem is proved. • 

A similar theorem can be proved for a slightly different version of the induc­

tion principle. In this theorem, no assumptions need to be made regarding the 

decidability of whether one term is less than another. 

Theorem 5.2 The method suggested above is complete for theorems that can be 

proved by first-order logic with the following induction principle: 

If< is a well-founded ordering, and if for all x, P(x) can be proved by first­

order logic from the infinite conjunction of P(y) for ally< x, then for all x, P(x) 
is true. 

Proof: Suppose we want to prove P(y) for some ground y, where VxP(x) is a 

theorem which can be proved by first-order logic with the above induction principle. 

From the assumption in the theorem statement, we know that P(y) can be 

proved by first-order logic methods from 
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P(y1) II P(y2) II ... II P(yn) II ... 

where y; < y Vi 2': 1, i.e. 1\~1 P(y;) -> P(y ). 
Therefore by the compactness principle, there exists a finite subset {Yit, Yh, 

... , Yim} of the y;'s such that 

P(yit) II P(yh) II ... 1\ P(Yim) -> P(y ). 
Repeating the above argument for each of P(yj,) through P(Yim) in place of 

P(y ), we will eventually get 

P(m1) 1\ •.. II P(mr)-> P(y) 
where all the m;'s are minimal elements of the well-founded ordering< (this follows 

from the fact that < is a well-founded ordering). As in the proof of Theorem 5.1, 
since m; is a minimal element, it is provable from the given axioms and given 

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction 

previously, then by a simple induction argument on the size of the proof, using the 

same method as above, we see that we will eventually obtain a first-order proof of 

P(m;) from the axioms. 
Therefore P(y) is also first-order provable. Also, the proof of P(y) can be 

constructed from the proofs of P(y it) through P( Yim), each of which in turn can be 

constructed from a finite conjunction of P(zk)'s, for Zk < Yi• (1 ::; k::; m), and so 
on. Thus each of these proofs have a similar structure, and the theorem is proved. • 

Limitations of this method 

1. The first point to note is that for any ground element y, not all proofs of P(y) 
will have a similar structure to P(y') for other ground elements y'. Potentially, 
there may exist a large number of different proofs of each ground instance. 

However, there does exist at least one such proof, as demonstrated in the 

preceding theorems. We will need to search through the proofs to find one 
such proof. 

2. Given proofs of ground instances of P( x), it is a non-trivial task to detect the 
similarity in structure between these proofs. 

Examples illustrating the use of this method can be found in the appendix. 

5.5 Comparison with other methods 

The first method given in this chapter uses a support strategy to generate in­

ductive hypotheses from the axioms; the second method is more general and makes 

use of structural similarities in the proofs of ground instances of the theorem being 

proved to discover suitable inductive hypotheses. Much of the work in the field 
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of mechanizing mathematical induction is concentrated in the field of inductionless 

induction, described in more detail in Section 5.2. As mentioned earlier, induction­
less induction applies term rewriting techniques for proving equational theorems. 

Our methods are more general than these since they can be applied to any theorem 

which can be proved using the principle of induction. Some more work needs to be 

done in order to improve the efficiency of our method. 
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6. Conclusion 

6.1 Summary 

In this dissertation, we have explored a number of different topics. We first 

saw how a class of logical consequences of first-order formulas can be derived using 

resolution and unskolemization. We extended the meaning of "unskolemization" to 

include replacement of some non-Skolem as well as Skolem functions by existen­

tially quantified variables. This allowed a larger class of logical consequences to be 

derived, since certain logical consequences of formulas cannot be derived without 

unskolemization. A detailed algorithm was given to perform this unskolemization, 

and the properties of formulas derived by applying the algorithm were described. 

The remainder of this dissertation revolved around different applications for the 

above method for deriving logical consequences. We first used the method as part 

of an algorithm for the automatic generation of loop invariants. The method was 

applicable since a loop invariant is a logical consequence of the various conditions 

which are true each time the loop is traversed. We described methods of directing 

the search for a valid loop invariant and demonstrated their effectiveness with several 

examples. The algorithm for generating loop invariants in first-order logic was 

proved to be sound and complete. This is in contrast to all known methods so far, 

which are heuristics and are by no means complete. 

The next topic discussed was machine learning from examples. Given two 

examples El and E2, a concept learned from El and E2 is a logical consequence 

of El and E2. Thus we applied our resolution and unskolemization method for 

deriving logical consequences to this problem. A graph-based algorithm for learning 

by extracting common features from examples was described, and the properties of 

the concepts which can be thus learned were discussed. Applications of this learning 

algorithm to traditional areas such as the blocks world, as well as the mechanical 

derivation of loop invariants, were demonstrated. The performance and working of 

our algorithm was compared with those of four other algorithms from the literature, 

and it was shown that the performance of our algorithm compared favorably with 

the other four. This work is significant because none of the learning algorithms so 



· far have used full first-order logic as their representation language. This greatly 

widens the scope of applicability of our method. 

Finally, we described methods for discovering inductive hypotheses for theo­

rems to be proved by induction. Since the principle of mathematical induction is not 

expressible in first-order logic, in order to be able to prove theorems by induction 

using only first-order logic, we need to know which inductive hypotheses will be re­

quired for the proofs of the theorems. We saw that certain inductive hypotheses can 

be generated from the axioms and the negation of the theorem by using our method 

for generating logical consequences. Another method, which involved extracting in­

ductive hypotheses from proofs of ground instances of the theorem, was described. 

This method was based on the fact that proofs of ground instances of the theorem 

can have similar structures, and information about which inductive hypotheses are 

required can be deduced by comparing the structures of these proofs. The method 

was shown to be complete for certain classes of theorems. It is more general than 

a large number of existing methods, since it can be applied to equational as well 

as non-equational theorems. Much of the existing work on this subject deals only 

with equational theorems. 

6.2 Extensions 

6.2.1 Automatic generation of loop invariants 

We have developed a novel method of automatically deriving loop invariants 

for flowchart programs. The methods described in this dissertation have not been 

actually implemented, but have been manually applied to many examples. Many 

people have voiced the opinion that the goal of automating the derivation of loop 

invariants is unattainable (see for example [Dijkstra 85]). Of course, they can be 

proved wrong only if the method we have developed can be made "acceptably" 

efficient by the use of suitable strategies. Basically, the function GET-APPROX 

needs to be implemented with the use of strategies which will include rewriting 

terms to some normal form to improve the efficiency of the resolution procedure, 

detecting structural similarities among terms, and so on. The function, as it stands 

now, provides some guidance to the process of deriving the invariants. Its efficiency 

can probably be greatly improved with the use of some good heuristics. Owing to 

the existence of a large number of such heuristics in the literature, this aspect has 

not been explored in much detail here. However, even though heuristics will be 

able to improve the performance of our algorithm, the algorithm still stands out 

from the previous purely heuristic methods in the literature. This is because in our 
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method, heuristics can be embedded within the framework of a complete and sound 

algorithm. Thus even if all heuristics fail, our algorithm can still derive a correct 

loop invariant. This is in direct contrast to previously developed methods, which 

have not been complete in any sense. 

Another issue here is that if the given algorithm fails to return a loop invariant 

for a given program loop, this could be due to one of two reasons : either the 

invariant is not expressible given the theory axiomatized, or the program is not 

correct. These two cases cannot be distinguished at present. 

6.2.2 Learning from examples 

We propose some extensions and modifications to the learning algorithm pre­

sented in Chapter 4. 

Allowing many-to-many mappings 

The algorithm, as presented in Section 4.4.2, performs a one-to-one mapping 

of arguments from the two given examples. This corresponds to the notion that 

distinct objects in the two given examples are represented by distinct variables. 

However, in certain situations it may be desirable to allow different variables to 

represent the same object. In such a case, it is necessary to allow many-to-many 

mappings in the argument graph produced by the algorithm. The choice of whether 

to consider all possible mappings or a limited number of these can be left to the 

user. A very minor modification to the learning algorithm will allow this feature to 

be incorporated into the algorithm. 

Allowing a limited number of disjunctions 

The learning algorithm at present does not allow disjunctions of clauses to 

be performed if the clauses have no common predicates. If such disjunctions are 

necessary, they can be permitted, either without restriction or with a limit on 

the number of disjunctions allowed. This alteration can easily be built into the 

algorithm. 

Using the algorithm for descriptive generalization 

The given algorithm provides a method of deriving a formula EX from two 

given formulas El and E2 such that El -> EX, E2-> EX. However, note that 

we could also use the algorithm for deriving a formula EX such that EX -; El, 
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EX -+ E2. To see this, suppose that we are given formulas El and E2; then 
apply the algorithm to the formulas ~El and ~E2. The algorithm produces a 
formula E such that ~El -+ E and ~E2 -+ E; taking contrapositives, we get 

~E-+ El, ~E-+ E2. Setting EX= ~E, the result follows. In the terminology of 

Michalski [Michalski 83], this process is known as deBcriptive generalization and is 

concerned with establishing new concepts or theories characterizing given facts. In 

this case E 1 and E 2 are the given facts, and EX is the new concept or theory which 

is established. This method of inference is also known as abduction or abductive 

inference [Patterson 90]. 

6.2.3 Mechanizing mathematical induction 

The methods developed in Chapter 5 for generating inductive hypotheses are 
complete for certain classes of theorems; they need to be made more efficient by the 

use of suitable strategies. More research needs to be done into ways of detecting 

structural similarities among proofs of different ground instances of theorems. 
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Appendix 

Time complexity analysis of the learning algorithm 

We analyze the algorithm step by step. For convenience, the main body of the 

algorithm is listed below again, with the steps numbered : 

Algorithm LEARN(E1,E2,AXIOMS) 

begin 

1. Choose Xc E Res(E1 1\ AXIOMS); 
2. Choose Yc E Res(E2 1\ AXIOMS); 
3. Rename the variables in all the clauses of Xc and Ye so that no two clauses 

have any variable in common; 

4. build..clause..graph(Xc, Yc, Ec); 
5. build..argument..graph(X., Y., E.); 
6. augment..graphs...X(X., E., Xc, Ec); 
7. augment..graphs_Y(Y., E., Yc, Ec); 
8. maximum_weight...matching(M.,X., Y., E.); 
9. Me:= {(C~,C2) E Ee I the n'h argument an of some literal of C1 contains 

a as a subterm and the n'h argument f3n of some literal of C2 contains b as 

a subterm in the same position as a appears in an and (a, b) E M., for some 

positiveinteger n, where these two literals have the same predicate}; 

10. For every edge (a, b) E Ma do 

if (a and b are distinct) and (a and b are not both variables) then 

replace unmarked occurrences of a and b in Me by Z <-- a and Z <-- b 
(respectively) (Z is a new variable); 

if (a and b are both variables) then 

unify all occurrences of a and b in Me; 

11. EX:={CIUC2I(CI,C2)EMe}; 

12. if EX = 0 then EX := true; 
13. for every Skolem function a in EX do 

if a is not marked then 
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replace all occurrences of a in all literals of EX by X <-a, where X is 

a new variable not occurring elsewhere in any clause; 

14. Perform Steps 4 through 7 of the unskolemization algorithm for EX; 

end. 

We will not analyze the complexity of performing resolutions, since this is a 

nondeterministic process. The analysis of the algorithm thus begins with step 3 

above. The following symbols are used during this analysis : 

IXel : number of elements in the set Xe 
lYe I : number of elements in the set Ye 
IXal: number of elements in the set X a 
IYa I : number of elements in the set Ya 
ICrl : maximum cardinality of a clause in Xe 
ICzl : maximum cardinality of a clause in Ye 
arg : maximum length of an argument of a clause in Xe U Ye (i.e. maxi­

mum number of symbols in an argument; e.g. f(x,g(y)) has 4 symbols, viz. 

j,x,g,y) 
arity : maximum arity of a predicate in a clause in Xe U Ye 
!Eel : number of edges of the clause graph (bounded above by (IXel + IYel)2) 
lEal : number of edges of the argument graph (bounded above by (IXal + 
IY.I)2

) 

IMa I : size of a maximum weight matching of the argument graph (bounded 

above by max(IXal, IYal)) 
!Mel : cardinality of the set Me (bounded above by I Eel) 

The maximum number of operations required for each step is given below, 
within a constant factor. 

Step 3: IXel * ICrl * arity +lYe I* ICzl * arity 
Step 4: IXel * IYel * ICrl * ICzl 
Step 5 : !Eel* ICrl * arity * ICzl * arg 
Step 6: IX a I* IYal * IYal +(IX a I+ IYal) * (IXel +!Eel) 
Step 7: IYal * IXal * IXal + (IXal + IYal) *(lYe I+ !Eel) 
Step 8: lEal* (IXal + IYal) * logfiEai/(IX.I+IY.I)+Il(IXal + IYal) 
Step 9 : !Eel * IMa I * ICrl * ICzl * arity * arg 
Step 10: !Mal* !Mel* (ICrl + ICzl) * arity * arg 
Step 11 : !Mel 
Step 12 : constant 

Step 13: !Mel* arg * (ICrl + ICzl) * arity 
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Step 14 : Each of steps 4 through 7 of the unskolemization algorithm take time 

!Mel* (IC1I + IC2I) * arity, for the generation of one unskolemized formula. • 

Working of problem from Section 4. 7 using the algorithm LEARN 

We process the examples in the order E1, E2 and Ea. The examples are shown 
in Figure 4.10. The same result is obtained for other orders of presentation of the 

examples. 

First the examples E1 and E2 are taken and all possible resolutions are per­

formed between these two examples and the given axioms. The resulting sets of 

clauses obtained from E 1 and E 2 , called Xe and Ye respectively, are : 

Xe = medium(a)!lpolygon(a)!lblank(a)!lontop(a, b)/\ medium( b) 1\ circle(b)!l 

shaded(b) 1\ ontop(b, c) 1\ large( c) 1\ polygon( c) 1\ blank( c), 

Ye = medium( d) 1\ polygon( d) 1\ blank( d) 1\ ontop( d, e )II small(!) 1\ circle(!)/\ 

shaded(!) 1\ inside(!, e) 1\ small(g) 1\ circle(g) 1\ shaded(g) 1\ inside(g, e) 1\ large( e) 1\ 

polygon( e) 1\ blank( e). 

We build the clause and argument graphs for Xe and Ye; these graphs are shown 

in Figures A.1 and A.2 respectively. These graphs do not need to be augmented 

since neither Xe nor Ye contain any variables. There exists two maximum weight 

matchings for the argument graph; these are 

{(a, d)( 4), (b, !)(2), ( c, e)( 4)} and {(a, d)( 4), (b, g )(2), ( c, e)( 4)} 

(the weights for each edge are indicated after each edge in parentheses). However, 

it turns out that both these matchings give rise to the same concept. We therefore 

choose the first matching and get 

Ma ={(a, d), (b,J), ( c, e)}. 

The set Me contains the edges which are shown in Figure A.3. We then replace 

a and d by X <- a and X <- d respectively; we replace b and f by Y <- b and 

Y <- f respectively; and we replace c and e by Z <- c and Z <- e respectively in 
the edges of Me. We then get 

EX = {{medium( X <-a), medium( X <- d)}, {polygon( X <- a),polygon(X 

<- d)},{blank(X <- a),blank(X <- d)},{ontop(X <- a,Y <- b),ontop(X <- d,Z <­

e)}, { circle(Y <- b), circle(Y <-- /)}, { shaded(Y <- b), shaded(Y <- f)}, {on top( 

Y <- b, Z <-c), ontop(X <- d, Z <-e)}, {large(Z <-c), large(Z <-e)}, {blank(Z <­

c),blank(Z <-e)}, {polygon(Z <- c),polygon(Z <-e)}}. 
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We now unskolemize EX by replacing the marked arguments by existentially 

quantified variables and get 

EX = 3X3Y3Z (medium( X) /\polygon( X) 1\ blank(X) 1\ (on top( X, Y) V ontop 

(X, Z))llcircle(Y)/\shaded(Y)/\( ontop(Y, Z)Vontop(X, Z))/\large( Z)/\blank( Z)/\ 

polygon( Z)). 

This is the concept learned from E1 and E 2 • We will now apply the algorithm 

to E3 and the above formula EX. First we perform all possible resolutions between 

the axioms and these examples. EX remains unchanged; we get the following set 

of clauses from E3 : 

E 3 = { {medium( h)}, {polygon( h)}, {blank(h)}, {ontop(h,j)}, { medium(j)}, 

{polygon(j)}, { shaded(j) }, { ontop(j, k )}, { large(k )}, {ellipse( k )}, 

{blank(k)} }. 

We now need to express EX in clause form. After Skolemizing EX, we get the 

set of clauses 

{ {medium( s )}, {polygon( s )}, {blank( s)}, { ontop( s, t), on top( s, u )}, { circle(t) }, 

{ shaded(t)}, { ontop( t, u ), ontop( s, u )}, {large( u )}, {blank( u)}}, 

where s, t, u are Skolem functions replacing the existentially quantified variables 

X, Y, Z respectively. 

We build the clause and argument graphs for these two sets of clauses; these 

graphs are shown in Figures A.4 and A.5 respectively. These graphs do not need 

to be augmented since none of the clauses contain any variables. The maximum 

weight matching for the argument graph is : 

Ma = {(h,s)(5),(j,t)(3),(k,u)(5)} 

(the weights for each edge are indicated after each edge in parentheses). The set 

Me contains the edges which are shown in Figure A.6. We then replace h and s 

by X +- h and X +- s respectively; we replace j and t by Y +- j and Y +- t 

respectively; and we replace k and u by Z +- k and Z <-- u respectively in the edges 

of Me. We then get 

EX = {{medium( X <-- h), medium( X +- s)}, {polygon( X +- h),polygon(X 

<-- s)},{blank(X +- h),blank(X +- s)},{ontop(X +- h,Y +- j),ontop(X +­

s,Y +- t), ontop (X+- s,Z +- u)},{ontop(X +- h,Y +- j),ontop(Y +- t,Z +­

u),ontop(X <-- s,Z +- u)}, {shaded(Y +- j),shaded(Y +- t)}, {ontop(Y +- j,Z +­

k ), ontop(Y +- t, Z +- u), ontop(X +- s, Z +- u)}, {ontop(Y <-- j, Z +- k), ontop(X 

+- s,Y +- t),ontop(X +- s,Z +- u)},{large(Z +- k),large(Z +- u)},{blank(Z +­

k),blank(Z +- u)}}. 
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We now unskolemize EX by replacing the marked arguments by existentially 

quantified variables and get 

EX = 3X3Y3Z (medium( X) !\polygon( X) i\ blank( X) i\ ( ontop(X, Y) V ontop 

(X, Z)) i\ (ontop(X, Y) Vontop(Y, Z) V ontop(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V 

ontop(X, Z)) i\ large(Z) i\ blank(Z)). 

This is the concept learned from E1, E2 and E3. Note that one of the disjunc­

tions here is subsumed by two of the others, namely the disjunction (on top( X, Y) V 

ontop(Y, Z) V ontop(X, Z)); therefore it can be discarded. The resulting concept 

learned from the three given examples is 

EX= 3X3Y3Z (medium(X) !\polygon( X) i\ blank( X) i\ (ontop(X, Y) Von top 

(X, Z)) i\ shaded(Y) i\ ( ontop(Y, Z) V on top( X, Z)) i\ large( Z) i\ blank( Z)). • 
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{medium( d)} 

{polygon( d)} 

{medium(a)} {blank( d)} 

{polygon(a)} {ontop(d,e)} 

{blank( a)} {small(f)} 

{ ontop(a,b)} {circle(f)} 

{medium(b)} {shaded(f)} 

{circle(b)} {inside(f,e)} 

{shaded(b)} {small(g)} 

{ontop(b,c)} {circle(g)} 

{large(c)} {shaded(g)} 

{polygon(c)} {inside(g,e)} 

{blank(c)} {large( e)} 

{polygon( e)} 

{blank( e)} 

Figure A.l Clause graph for E1 and E2 
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{medium(a)} {medium(d)} 

{polygon(a)} {polygon( d)} 

{blank( a)} {blank( d)} 

{ ontop(a,b)} {ontop(d,e)} 

{circle(b)} {circle(f)} 

{shaded(b)} {shaded(f)} 

{ontop(b,c)} {large( e)} 

{large(.c)} {blank( e)} 

{blank( c)} {polygon( e)} 

{polygon(c)} 

Figure A.3 Subgraph of clause graph for E1 and E 2 
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Figure A.4 Clause graph for Ea and EX 
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t 

k u 

Figure A.5 Argument graph for E3 and EX 
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{medium(h)} {medium(s)} 

{polygon(h)} {polygon(s)} 

{blank(h)} {blank(s)} 

{ontop(h,j)} { ontop(s,t) ,ontop(s, u)} 

{shaded(j)} {shaded(t)} 

{ontop(j,k)} { ontop(t, u) ,ontop(s, u)} 

{large(k)} {large(u)} 

{blank(k)} {blank(u)} 

Figure A.6 Subgraph of clause graph for E3 and EX 
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Proofs for Example 5.2 

The following proofs were obtained for Example 5.2 using the theorem prover 

OTTER: 

Proof of base step from Example 5.2 : 

1 [] (X= X). 
2 [] (append(nil,Y) = Y). 
7 [] (reverse(append(nil,cons(y,nil))) != cons(y,reverse(nil))). 
8 [] (reverse( nil) = nil). 
11 [] (reverse( cons(X,nil)) = cons(X,nil)). 
12 [paraJnto,7,2,demod,11,8] (cons(y,nil) != cons(y,nil)). 

13 [binary,12,1] . 

Proof of induction step from Example 5.2 : 

1 [] (X =X). 
3 [] ( append(X,Y) = cons( car(X),append( cdr(X),Y))) I -listp(X). 
4 [] (reverse(X) = append(reverse(cdr(X)),cons(car(X),nil))) 1-listp(X). 
5 [] listp(cons(X,Y)). 
7 [] (reverse(append(cdr(x),cons(y,nil))) = cons(y,reverse(cdr(x)))). 
8 [] listp(x). 
9 [] (reverse(append(x,cons(y,nil))) != cons(y,reverse(x))). 
11 [] (car( cons(X, Y)) = X). 
12 [] (cdr( cons(X, Y)) = Y). 

14 [paraJnto,9,3J (reverse(cons(car(x), append(cdr(x), cons(y, nil))))!= cons(y, re­
verse(x) ) ) I -listp(x). 
17 [binary,14,8] (reverse(cons(car(x), append(cdr(x),cons(y, nil)))) != cons(y, re­
verse(x))). 
19 [paraJnto,l7,4,demod,12,11] (append( reverse( append( cdr(x), cons(y,nil))), cons( 
car(x), nil)) != cons(y, reverse(x))) I -listp(cons(car(x), append(cdr(x), cons(y, 
nil)))). 

54 [binary,19,5] (append(reverse(append(cdr(x), cons(y, nil))),cons(car(x), nil))!= 
cons(y, reverse(x))). 

56 [paraJnto,54,7] (append(cons(y, reverse(cdr(x))), cons(car(x), nil)) != cons(y, 
reverse( x) ) ) . 

61 [paraJnto,56,3,demod,11,12] ( cons(y, append( reverse( cdr(x)), cons( car(x), nil))) 
! =cons (y, reverse(x))) 1-listp(cons(y, reverse(cdr(x)))). 

63 [binary,61,5] (cons(y, append(reverse(cdr(x)), cons(car(x), nil))) != cons(y, re-
verse(x))). . 
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65 [paraJnto,63,4] (cons(y,reverse(x)) != cons(y,reverse(x))) [-listp(x). 

68 [binary,65,1]-listp(x). 
69 [binary,68,8]. e 

Working of examples for Section 5.4 

We give below three examples illustrating the technique outlined in Section 5.4 

for discovering inductive hypotheses. 

Example 5.4 To illustrate the discussion in Section 5.4, suppose that we are trying 

to prove the commutativity of addition, using the Peano axioms : 

1. 'v'x((x = 0) V (x =a+ 1)) where a is a Skolem symbol 

2. 'v'x'v'y((x # y + 1) V (x # 0)) 
3. 'v'x'v'y((x + 1 # y + 1) V (x = y)) 
4. 'v'x'v'y(-,(x < y + 1) V (x < y) V (x = y)) 
5. 'v'x'v'y(-,(x < y) V (x < y+ 1) 
6. 'v'x'v'y((x # y) V (x < y + 1)) 
7. 'v'x( -,( x < 0)) 
8. 'v'x'v'y((x < y) V (x = y) V (y < x)) 
9. 'v'x(x + 0 = x) 
10. 'v'x'v'y(x + (y + 1) = (x + y) + 1) 
11. 'v'x(x * 0 = 0) 

12. 'v'x'v'y(x * (y + 1) = x * y + x) 
13. 'v'x(x = x) 

The theorem to be proved is 

'v'x'v'y(x + y = y + x) 

An attempt to prove this theorem without induction, using only the above 

axioms and resolution, fails. We therefore start trying to prove ground instances of 
the theorem. Three ground proofs are shown below : 

1) Proof of (1+1) + (((1+1)+1)+1) = (((1+1)+1)+1) + (1+1). 
We use paramodulation as well as resolution as inference rules and obtain the 

following refutation proof of the negation of the theorem : 

Negation of theorem: {(1 + 1) + (((1 + 1) + 1) + 1) # (((1 + 1) + 1) + 1) + (1 + 1)} 

1. {((1 + 1) + ((1 + 1) + 1)) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

2. {(((1 + 1) + (1 + 1)) + 1) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)} 
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paramodulate with axiom 10 
3. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 

paramodulate with axiom 10 

4. {(((1 + 1) + 1) + (1 + 1)) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

5. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

6. {(((1 + 1) + 1) + 1) + (1 + 1) =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

7. {} resolve with axiom 13 

2) Proofof(1+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + (1+1). 
We use paramodulation as well as resolution as inference rules and obtain the 

following refutation proof of the negation of the theorem : 

Negation of theorem: {(1+1)+((((1+1)+1)+1)+1) =? ((((1+1)+1)+1)+1)+(1+1)} 

1. {(1 + 1) + ((((1 + 1) + 1) + 1) + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

2. {((1 + 1) + (((1 + 1) + 1) + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

3. {(((1 + 1) + ((1 + 1) + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

4. {((((1 + 1) + (1 + 1)) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

5. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

6. {((((1 + 1) + 1) + (1 + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

7. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

8. {((((1 + 1) + 1) + 1) + (1 + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

9. {((((1 + 1) + 1) + 1) + 1) + (1 + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

10. {} resolve with axiom 13. 

3) Proof of ((1+1)+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + 
((1+1) + 1). 

We use paramodulation as well as resolution as inference rules and obtain the 
following refutation proof of the negation of the theorem : 
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Negation of theorem: {((1 + 1) + 1) + ((((1 + 1) + 1) + 1) + 1) ¥ ((((1 + 1) + 1) + 

1)+ 1) +((1 +1)+1)} 
1. {(((1 + 1) + 1) + (((1 + 1) + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 

paramodulate with axiom 10 

2. {((((1+ 1) + 1)+ ((1+ 1) + 1)) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

3. {(((((1+ 1)+ 1)+ (1+ 1)) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

4. {((((( (1 + 1) + 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

5. {(((((1+ 1) + 1) + 1) +(1+ 1)) + 1) + 1 ¥ ((((1+ 1)+ 1) + 1)+ 1) + ((1+ 1) + 1)} 
paramodulate with axiom 10 

6. { ( ( ( (1 + 1) + 1) + 1) + ( (1 + 1) + 1)) + 1 ¥ ( ( ( (1 + 1) + 1) + 1) + 1) + ( (1 + 1) + 1)} 
paramodulate with axiom 10 

7.{(((((1 + 1) + 1) + 1) + (1 + 1)) + 1) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 
paramodulate with axiom 10 

8. {((((((1+ 1)+ 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1) + ((1+ 1) + 1)} 
paramodulate with axiom 10 

9. {(((((1 + 1) + 1) + 1) + 1) + (1 + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 
paramodulate with axiom 10 

10. {((((1+1)+1)+1)+1)+((1+1)+1) ¥ ((((1+1)+1)+1)+1)+((1+1)+1)} 
paramodulate with axiom 10 

11. {} resolve with axiom 13. 

It can be seen that each proof contains an instance of the proof of the lemma 

Vx'Vy((y- 1) + x) + 1 = ((y- 1) + 1) + x, 

namely in clauses 4, 8, and 6 for the three proofs respectively. 
This lemma can easily be proved by induction, using the well-founded order 

<. The given theorem can then be proved by induction, using this lemma as an 

axiom. • 

Example 5.5 Let us try to prove the theorem 

VxVy(X*Y=Y*X). 

An attempt to prove this theorem by first-order methods, using the Peano 
axioms given in Example 5.4, fails. We therefore try to prove ground instances 
of the theorem. We assume that the following simple theorem has already been 
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proved: \lx(O + x = x). Some proofs of ground instances of the theorem are given 

below: 

1) Proof of 1 *(1+1) = (1+1)*1. 
Negation of the theorem : 1 * (1 + 1) -1 (1 + 1) * 1. 

The proof proceeds as follows : 

1. {(h 1) + 1 "'(1+ 1) * 1} 
paramodulate with axiom 12 

2. {(h(0+1))+1"1(1+1)d} 
paramodulate with Theorem \lx(O + x = x) 

3. {((h0)+1)+1"1(1+1)*1} 
paramodulate with axiom 12 

4. {(0 + 1) + 1 "'(1 + 1) * 1} 
paramodulate with axiom 11 

5. {0 + (1 + 1) "'(1 + 1) d} 
paramodulate with axiom 10 

6. {((1 + 1) * 0) + (1 + 1) "'(1 + 1) * 1} 
paramodulate with axiom 11 

7. {(1+1)*(0+1)"1(1+1)d} 
paramodulate with axiom 12 

8. {(1 + 1) d "'(1 + 1) d} 
paramodulate with Theorem \lx(O + x = x) 

9. {} paramodulate with axiom 13. 

2) Proof of 1 *((1+1)+1) = ((1+1)+1)*1. 
Negation of the theorem: 1 * ((1 + 1) + 1) "I ((1 + 1) + 1) * 1. 

The proof proceeds as follows : 

1. { (1 * (1 + 1)) + 1 "' ( (1 + 1) + 1) * 1} 
paramodulate with axiom 12 

2. {((1 * 1) + 1) + 1"' ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

3. {((h(0+1))+1)+1-l((1+1)+1)d} 
paramodulate with Theorem \fx(O + x = x) 

4. {(((1 * 0) + 1) + 1) + 1 "'((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

5. {((0+1)+1)+1-1((1+1)+1)*1} 
paramodulate with axiom 11 

6. {(0 + (1 + 1)) + 1"' ((1 + 1) + 1) * 1} 
paramodulate with axiom 10 

7. {(((1 + 1) * 0) + (1 + 1)) + 1 "'((1 + 1) + 1) * 1} 
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paramodulate with axiom 11 
8. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1} 

paramodulate with axiom 12 

9. {((1 + 1) * 1) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

10. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

11. {(((1 + 1) * 0) + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

12. {(0 + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 11 

13. {0+((1+1)+1)-#((1+1)+1)*1} 
paramodulate with axiom 10 

14. {(((1 + 1) + 1) * 0) + ((1 + 1) + 1) =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 11 

15. {((1 + 1) + 1) * (0 + 1) =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

16. {((1 + 1) + 1) * 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

17. {} resolve with axiom 13 

3) Proof of (1+1)*((1+1)+1) = ((1+1)+1)*(1+1). 
Negation of the theorem: (1 + 1) * ((1 + 1) + 1) =F ((1 + 1) + 1) * (1 + 1). 
The proof proceeds as follows : 

1. {((1 + 1) * (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

2. { ( ( ( 1 + 1) * 1) + ( 1 + 1)) + ( 1 + 1) =F ( ( 1 + 1) + 1) * ( 1 + 1)} 
paramodulate with axiom 12 

3. {(((1 + 1) * (0 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem Vx(O + x = x) 

4. {((((1 + 1) * 0) + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

5. {((0 + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 11 

6. {(((1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem Vx(O + x = x) 

7. {(((1 + 1) + 1) + 1) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 10 

8. {(((1 + 1) + 1) + (1+ 1)) + 1 =F ((1 + 1) + 1) * (1+ 1)} 
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paramodulate with axiom 10 

9. {((1 + 1) + 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 10 

10. {(0 + ((1 + 1) + 1)) + ((1 + 1) + 1)) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem \fx(O + x = x) 

11. {((((1 + 1) + 1) * 0) + ((1 + 1) + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 11 

12. {(((1 + 1) + 1) * (0 + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

13. {(((1 + 1) + 1) * 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem \fx(O + x = x) 

14. {((1 + 1) + 1) * (1 + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

15. {} resolve with axiom 13. 

From the proofs of the three above ground instances, we see that each proof 

contains a subproof of the lemma 

\fx\fy((x + 1) * y = (x * y) + y), 

namely in clauses 1, 9, and 1 respectively of the three proofs. 

And this lemma can be proved by induction, using the well-founded order<. 

The given theorem can then be proved by induction, using this lemma as an axiom. • 

Example 5.6 In this example, we solve the same problem as that solved in Example 
5.3 in Chapter 5, i.e. we are trying to prove the theorem 

\fx(reverse(reverse(x)) = x) 

by induction, this time using the method described in this section. A well-founded 

ordering for this example was already discovered in Example 5.1 in Chapter 5. 

We prove the theorem for different values of ground x : 

Proof of reverse(reverse([a, b])) =[a, b] : 

The axioms used in this proof are (in clause form) : 

1. X=X 

2. append( nil, Y) = Y 

3. append( X, Y) =cons( car( X), append( cdr( X), Y)) V •listp(X) 

4. reverse( nil) = nil 

5. reverse( X) = append( reverse( cdr( X)), cons( car( X), nil)) V •listp(X) 

6. car( cons(X, Y)) =X 

7. cdr( cons(X, Y)) = Y 
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8. listp(cons(X, Y)) 

Negation of theorem : 

reverse(reverse([a, b])) f. [a, b] 

Using a set of support strategy, we get the following proof for the theorem : 

9. reverse( reverse([ a, b])) f. [a, b] 

negation of theorem 

10. reverse( append( reverse( cdr([a, b])), cons( car([a, b]), nil))) f. [a, b], 

~listp([a, b]) 

paramodulate 9,5 

11. reverse( append( reverse( cdr([ a, b]) ), cons( car([a, b]), nil))) f. [a, b] 

resolve 8,10 

12. reverse(append(reverse([b]), cons(car([a, b]), nil))) f. [a, b] 

paramodulate 7,11 

13. reverse(append(reverse([b]), [a])) f. [a, b] 
paramodulate 6,12 

14. reverse( append( append( reverse( cdr([b])), cons( car([b]), nil)), [a])) =f [a, b], 

~listp([b]) 

paramodulate 5,13 

15. reverse(append(append(reverse(cdr([b])), [b]), [a])) f. [a, b], ~listp([b]) 
paramodulate 6,14 

16. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b], ~listp([b]) 
paramodulate 7,15 

17. reverse( append( append( reverse( nil), [b]), [a])) f. [a, b] 

resolve 8,16 

18. reverse( append( append( nil, [b]), [a])) f. [a, b] 

paramodulate 4,17 

19. reverse(append([b], [a])) f. [a, b] 

paramodulate 2,18 

20. reverse( cons( car([b]), append( cdr( [b]), [a]))) f. [a, b], ~listp( [b]) 
paramodulate 3,19 

21. reverse( cons( car([b]), append( nil, [a]))) f. [a, b], ~listp([b]) 

paramodulate 7,20 

22. reverse( cons( car([b]), append( nil, [a]))) f. [a, b] 

resolve 8,21 

23. reverse( cons( car([b]), [a])) f. [a, b] 

paramodulate 2,22 

24. reverse([b, a]) f. [a, b] 
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paramodulate 6,23 
25. append( reverse( cdr([b, a])), cons( car( cons(b, [a])))) f. [a, b], ~listp([b]) 

paramodulate 5,24 
26. append(reverse([a]), cons( car([b, a]), nil)) f. [a, b], ~listp([b]) 

paramodulate 7,25 

27. append(reverse([a]), [b]) f. [a, b], ~listp([b]) 
paramodulate 6,26 

28. append(reverse([a]), [b]) f. [a, b] 
resolve 8,27 

29. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b], ~listp([a]) 
paramodulate 5,28 

30. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b] 
resolve 8,29 

31. append( append( reverse( nil), cons( cm·([a]), nil)), [b]) f. [a, b] 
paramodulate 7,30 

32. append(append(reverse(nil), [a]), [b]) f. [a, b] 
paramodulate 6,31 

33. append( append( nil, [a]), [b]) f. [a, b] 
paramodulate 4,32 

34. append([a], [b]) f. [a, b] 
paramodulate 2,33 

35. cons(car([a]), append(cdr([a]), [b])) f. [a, b], ~listp([a]) 
paramodulate 3,34 

36. cons( car([a]), append( cdr([a]), [b])) f. [a, b] 
resolve 8,35 

37. cons( a, append(cdr([a]), [b])) f. [a, b] 
paramodulate 6,36 

38. cons( a, append( nil, [b])) f. [a, b] 
paramodulate 7,37 

39. [a, b] f. [a, b] 
paramodulate 2,38 

40. empty clause 

resolve 1,39. 

Proof of reverse(reverse([a, b, c])) =[a, b, c] : 

Using a set of support strategy, and the same axioms (1 through 8 above), we 
get the following proof for the theorem : 

9. reverse(reverse([a, b, c])) f. [a, b, c] 
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negation of theorem 

10. reverse( append( reverse( cdr([ a, b, c])), cons( car([a, b, c]), nil))) =J [a, b, c], 
~listp([a, b, c]) 
paramodulate 5,9 

11. reverse( append(reverse([b, c]), cons( car([a, b, c]), nil))) =J [a, b, c], 

~listp([a, b, c]) 
paramodulate 7,10 

12. reverse( append(reverse([b, c]), [a])) =J [a, b, c], ~listp([a, b, c]) 
paramodulate 6,11 

13. reverse( append(reverse([b, c]), [a])) =J [a, b, c] 

resolve 8,12 

14. reverse( append( append( reverse( cdr([b, c])), cons( car([b, c]), nil)), [a])) =J 
[a, b, c], ~listp([b, c]) 
paramodulate 5,13 

15. reverse( append( append( reverse( cdr([b, c])), cons( car([b, c]), nil)), [a])) =J 
[a, b, c] 
resolve 8,14 

16. reverse( append( append(reverse([c]), cons( car([b, c]), nil)), [a])) =J [a, b, c] 

paramodulate 7,15 

17. reverse( append( append(reverse([c]), [bJ), [a])) =J [a, b, c] 

paramodulate 6,16 

18. reverse( append( append( append( reverse( cdr([c])), cons( car([c]), nil)), [b]), [a])) 
=J [a, b, c], ~listp([c]) 

paramodulate 5,17 

19. reverse( append( append( append( reverse( cdr([c])), [c]), [b)), [a])) =J [a, b, c], 

~listp([c]) 

paramodulate 6,18 

20. reverse( append( append( append( reverse( nil), [c)), [b]), [a])) =J [a, b, c], 

~listp([c]) 

paramodulate 7,19 

21. reverse(append(append(append(reverse(nil), [c]), [b]), [a])) =J [a, b, c] 

resolve 8,20 

22. reverse(append(append(append(nil, [c)), [b]), [a])) =J [a, b, c] 

paramodulate 4,21 

23. reverse( append( append([c], [b]), [a])) =J [a, b, c] 

paramodulate 2,22 

24. reverse( append( cons( car([c]), append( cdr([c]), [b))), [a])) =J [a, b, c], ~listp([c]) 

paramodulate 3,23 
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25. reverse(append(cons(car([c]), append(cdr([c]), [b])), [a])) of [a, b, c] 
resolve 8,24 

26. reverse( append( cons( c, append( cdr([c]), [b])), [a])) of [a, b, c] 
paramodulate 6,25 

27. reverse( append( cons( c, append( nil, [b])), [a])) of [a, b, c] 
paramodulate 7,26 

28. reverse(append([c, b], [a])) of [a, b, c] 
paramodulate 2,27 

29. reverse( cons( car([c, b]), append( cdr([c, b]), [a]))) of [a, b, c], ~listp([c, b]) 

paramodulate 3,28 

30. reverse(cons(car([c,b]),append(cdr([c,b]),[a]))) of [a,b,c] 

resolve 8,29 

31. reverse( cons( c, append( cdr([c, b]), [a]))) of [a, b, c] 

paramodulate 6,30 

32. reverse( cons( c, append([b], [a]))) of [a, b, c] 

paramodulate 7,31 

33. reverse( cons( c, cons( car([b]), append( cdr([b]), [a])))) of [a, b, c], ~listp([b]) 
paramodulate 3,32 

34. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c] 
resolve 8,33 

35. reverse(cons(c,cons(b,append(cdr([b]),[a])))) of [a,b,c] 

paramodulate 6,34 

36. reverse( cons( c, cons(b, append( nil, [a])))) of [a, b, c] 
paramodulate 7,35 

37. reverse([c, b, a]) of [a, b, c] 
paramodulate 2,36 

38. append( reverse( cdr([c, b, a])), cons( car([c, b, a]), nil)) of [a, b, c], ~listp([c, b, a]) 

paramodulate 5,37 

39. append( reverse( cdr([c, b, a])), cons( car([c, b, a]), nil)) of [a, b, c] 
resolve 8,38 

40. append(reverse([b,a]),cons(car([c,b,a]),nil)) of [a,b,c] 

paramodulate 7,39 

41. append(reverse([b, a]), [c]) of [a, b, c] 
paramodulate 6,40 

42. append( append( reverse( cdr([b, a])), cons( car([b, a]), nil)), [c]) of [a, b, c], 
~listp([b, a]) 

paramodulate 5,41 

43. append( append( reverse([a]), cons( car([b, a]), nil)), [c]) of [a, b, c], ~listp([b, a]) 
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paramodulate 7,42 

44. append(append(reverse([a]), [b]), [c]) f [a, b, c], ~listp([b, a]) 

paramodulate 6,43 

45. append( append(reverse([a]), [b]), [c]) f [a, b, c] 
resolve 8,44 

46. append( append( append( reverse( cdr([a])), cons( car([a]), nil)), [b]), [c]) 
f [a, b, c], ~listp([a]) 
paramodulate 5,45 

47. append( append( append(reverse(nil), cons( car([a]), nil)), [b]), [c]) f [a, b, c], 
~listp([a]) 

paramodulate 7,46 

48. append( append( append( reverse( nil), [a]), [b]), [c]) f [a, b, c], ~listp([a]) 

paramodulate 6,47 

49. append(append(append(nil, [a]), [b]), [c]) f [a, b, c], ~listp([a]) 

paramodulate 4,48 

50. append(append([a], [b]), [c]) f [a, b, c], ~listp([a]) 
paramodulate 2,49 

51. append( append([a], [b]), [c]) f [a, b, c] 
resolve 8,50 

52. append( cons( car([a]), append( cdr([a]), [b]) ), [c]) f [a, b, c], ~listp([a]) 
paramodulate 3,51 

53. append( cons( car([a]), append( cdr([ a]), [b])), [c]) f [a, b, c] 
resolve 8,52 

54. append( cons( a, append( cdr([a]), [b])), (c]) f [a, b, c] 

paramodulate 6,53 

55. append( cons( a, append( nil, [b])), [c]) f [a, b, c] 
paramodulate 7,54 

56. append([a, b], [c]) f [a, b, c] 
paramodulate 2,55 

57. cons( car([a, b]), append( cdr([a, b]), [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 3,56 

58. cons( a, append( cdr([ a, b]), [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 6,57 

59. cons( a, append([b], [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 7,58 

60. cons( a, append([b], [c])) f [a, b, c] 
resolve 8,59 

61. cons( a, cons( car([b]), append( cdr([b]), [c]))) f [a, b, c], ~listp([b]) 
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paramodulate 3,60 

62. cons( a, cons(b, append( cdr([b]), [c]))) o1 [a, b, c], ~listp([b]) 
paramodulate 6,61 

63. cons(a,cons(b,append(nil,[c]))) ol [a,b,c],~listp([b]) 
paramodulate 7,62 

64. cons(a,cons(b,append(nil,[c]))) ol [a,b,c] 
resolve 8,63 

65. [a, b, c] ol [a, b, c] 
paramodulate 2,64 

66. empty clause 

resolve 1,65. 

From the above two ground proofs, it can be seen that instances of the lemma 
lixliy(reverse( append(x, cons(y, nil))) = cons(y, reverse( x) )) 

were proved in both proofs. This is a lemma which needs to be proved by induction 

and was proved in Example 5.2 in Chapter 5 earlier. The given theorem can then 

be proved by induction, using this lemma as an axiom. • 
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then deduce that it holds for all data (Burstall 69]. This is a special case of a more 

general rule termed Noetherian induction: "Let A be an ordered set with minimum 

condition and B a subset of A which contains any element a E A whenever it contains 

all the elements x EA such that x <a. Then B =A." (A set A satisfies the minimum 

condition if every non-empty subset of A has a minimal element.) The structural 

induction principle differs from the usual "course of values" induction in two ways : 

it allows for partial ordering, instead of total ordering, and it allows induction over 

the transfinite steps. Examples of some proofs by structural induction can be found 

in (Burstall 69]. 

In (Wegbreit and Spitzen 76], the authors introduce a method of proof called 

generator induction, used for proving properties of programs, which may be stated 

informally as follows : to prove that all instances of a class C have some property P, 

prove that (1) all instances have the property when they are first created, and (2) 

all operations F, which may change the value of a class instance, preserve the truth 

of P. This definition is similar to that of computation induction given in (Manna et 

a!. 73]. The generator induction principle is used to prove certain properties of a 

hashtable program in Simula. The most important property of generator induction, 

according to the authors, is that it partitions the program into loosely coupled 

parts, proves simple properties of the parts, and demonstrates that the parts are 

composed according to simple rules. This allows the decomposition of a proof into 

small, comprehensible units corresponding to the structure of the program. 

5.3 Description of the first method 

We give below a brief overview of the first approach we will be using for deriving 

proofs of theorems. Consider what is provable by induction, where all induction 

hypotheses are expressible in first-order logic and all orderings are known. This 

gives a precisely defined class of formulas. Given a theorem T to be proved, we first 

try to prove it without using induction, using a resolution theorem prover. If this 

attempt fails, we try to prove the theorem using induction. The first problem to be 

tackled is to find a suitable induction scheme, i.e. we must discover a suitable well­

founded ordering to be used in the application of the principle of induction. Once 

this has been done, an attempt is made to prove the theorem using this ordering 

and the induction principle. However, it may happen that this prooffails too, since 

this theorem may itself depend on another inductive hypothesis or lemma A. Then 
we have 

AXIOMS II A -+ T 
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where "AXIOMS" is the set of axioms required for the proof of this theorem. There­

fore 
AXIOMS 1\ ~T -+ ~A 

1.e. ~A is a logical consequence of AXIOMS 1\ ~T. We can therefore use our 
method for generating logical consequences and unskolemization to derive ~A from 

AXIOMS 1\ ~T. This is a support strategy and will not generate all possible induc­

tive theorems from the axioms, since it makes use of the negation of the theorem T 

as well as the set of axioms to generate inductive hypotheses. This method can be 

extended to theorems which depend on more than one inductive hypothesis. The 
remainder of this section elaborates the ideas outlined above. 

5.3.1 Discovering a well-founded ordering 

Recall that we have assumed that all well-founded orderings are known (these 

could be partial as well as total orderings). Now suppose that we are trying to 

prove the theorem 

'Vx A(x) 
where x ranges over some domain D. Consider the set of formulas of the form A( t), 

where tis a ground term belonging to D and A(t) is first-order provable. We prove 
some subset of these formulas one by one, noting the proof times for each formula. 

We denote the time taken to prove A(t) by PT(t). This suggests an ordering in that 

objects which are smaller in the ordering will probably have smaller proof times. 

We therefore pick an ordering ">-" such that 

(X >- Y) -+ (PT(X) > PT(Y)) 
(at least most of the time). 

Example 5.1 Consider the following theorem to be proved by induction : 

'VX(reverse(reverse(X)) =X), 
where "reverse" is the usual function which reverses lists, and where X ranges over 
the set of all lists. We first try to prove the theorem for some ground terms using 

the theorem prover OTTER, a resolution theorem prover developed at the Argonne 

National Laboratory [McCune 89]. We observe the following proof times for the 
ground terms given below : 

Theorems proved 

reverse(reverse([])) = [] 

reverse(reverse([1])) = [1] 

reverse(reverse([a])) =[a] 
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Time taken (seconds) 

0.26 

0.34 

0.34 



reverse(reverse([2, 1])) = [2, 1] 
reverse(reverse([a, b])) = [a, b] 
reverse(reverse([3, 2, 1])) = [3, 2, 1] 
reverse(reverse([5, 2, 9])) = [5, 2, 9] 

1.00 
1.00 
2.16 

2.16 

From the above proof times, the following observations can be drawn : 

1. The proof times increase as the length of the list being substituted for X 

increases; here we have 

PT([]) < PT([1]) = PT([a]) < PT([2,1]) = PT([a, b]) < PT([3,2,1]) ... 
2. The proof times are identical for different ground terms which are lists of the 

same length; here we have 

PT([1]) = PT([a]), PT([2,1]) = PT([a, b]), and so on. 
A well-founded ordering r which satisfies the condition 

X r Y -> PT(X) > PT(Y) 
is therefore the ordering which is defined as follows : for lists X andY, X r Y if 

and only if the length of list X is greater than the length of list Y; X = Y if and 

only if the length of list X is equal to the length of list Y; and X -< Y if and only 

if Y r X. The minimal element in this ordering is the empty list [ ]. • 

5.3.2 Using the induction principle 

Once a well-founded ordering W has been found using the method described 

in the previous section, we must now apply the principle of induction to prove the 

given theorem T = 'Vx A(x). This is done as follows: 

Base case : We prove 

A(m) 
for all minimal elements m of the ordering W by negating A( m ), adding it to the 

set of axioms, and using resolution to derive the empty clause. If this procedure 
fails, this means that some induction hypothesis (hypotheses) is (are) required to 

prove the base case. Sections 5.3.3 - 5.3.4 explain how this case is dealt with. 

When the proof of the base case is obtained, we proceed to the induction step. 

Induction step : Let pred(X) be the set of elements which precede X in the 
ordering W. Then we need to prove 

'VX( 1\ A(Y)-> A(X)). 
YEpred(X) 
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Again, this formula is negated, added to the set of axioms and resolution is 

used to try and derive the empty clause. If the empty clause cannot be thus derived, 

then as before, one or more induction hypotheses may be required to obtain the 

proof. This is dealt with in the next two sections. 

If a proof is obtained by resolution alone, then the theorem is proved by indue-

tion. 

Example 5.2 Consider the following theorem : 

WlfZ(reverse(append(Y, cons(Z, [ ]))) = cons(Z,reverse(Y))). 

The list notation used here is the same as that used in the programming lan­

guage LISP. In particular, if X is an element andY is a list, then cons( X, Y) is a 

list of length one more than the length of Y, and contains the element X followed 

by the list Y. [ ] or "nil" represents the empty list. 

Let us try to prove the theorem by induction on Y. Using the same method 

as in the previous section, we can establish that the same well-founded ordering as 

that of Example 5.1 can be used here (i.e. for lists X and Y, X >- Y if and only if 

the length of list X is greater than the length of list Y; X = Y if and only if the 

length of list X is equal to the length of list Y; and X -< Y if and only if Y >- X). 
The minimal element in this ordering is the empty list [ ] , therefore here the base 

case is : 

Base case : lfZ(reverse(append([ ], cons(Z, [ ]))) = cons(Z, reverse([]))). 

This was proved by OTTER in 0.28 seconds (see the appendix for proof). 

Induction step : An element preceding X in the given ordering could be any 

element of length one less than X. In particular, the list cdr(X), where cdr( X) 

represents the same list as X with the first element removed, is a list with one 

element less than X. Thus we now need to prove that 

VYVZ ((reverse( append( cdr(Y), cons( Z, [ ]))) = cons( Z, reverse( cdr(Y)))) -+ 

(reverse(append(Y, cons(Z, [ ]))) = cons(Z, reverse(Y)))). 

This was proved by OTTER in 1.86 seconds (see the appendix for proof).• 

5.3.3 Finding one induction hypothesis 

Sometimes it may happen that either the base case or the inductive step (or 

both) of the previous section cannot be proved by resolution alone, i.e. by first-order 

methods alone. This can occur, for example, if the proof depends on some other 

lemma which itself needs to be proved by induction before a proof for the actual 

theorem being proved can be found. Suppose that the proof depends on one lemma 

A, i.e. 
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AXIOMS A A -+ T 

where "AXIOMS" is the set of axioms for the theorem T being proved, and where 
T can be proved from AXIOMS A A using first-order reasoning. This implication 

can be rewritten as 
~AXIOMS V ~A V T 

which is the same as 
AXIOMS A ~T -+ ~A. 

~A can therefore be derived from (AXIOMS A ~T) using resolution. To do 

this, we need to Skolemize AXIOMS A ~T before performing resolutions among 

clauses thus obtained. The clauses which represent Sk( ~A) can thus be derived by 
resolution from Sk(AXIOMS II ~T). We then unskolemize and negate Sk( ~A) to 

obtain the lemma A, using our unskolemization algorithm. Lemma A can now be 
proved using the methods of Sections 5.3.1 - 5.3.2. Since lemma A has been shown 

to be valid, and since AXIOMS A A -+ T, the theorem Tis also valid, and a proof 
for T has thus been found. 

Example 5.3 We continue with the proof of the theorem of Example 5.1, which 

was 

VX(reverse(reverse(X)) =X). 

Recall that we found a well-founded ordering W for this theorem in Example 

5.1 whose minimal element was the empty list [ ]. The base step for the proof 
therefore consists of proving 

reverse( reverse([]))= [], 
which was already done in Example 5.1. 

Induction step : An element preceding X in the ordering W could be any element 

of length one less than X. In particular, the list cdr( X), where cdr( X) represents 

the same list as X with the first element removed, is a list with one element less 
than X. Thus we need to prove that 

VX((reverse(reverse(cdr(X))) =cdr( X))-+ (reverse(reverse(X)))). 

(Call this result T'.) We try to derive the empty clause from AXIOMS A ~T', 

but since T' cannot be proved by induction alone, this attempt fails. However, we 
succeed in deriving the following clause by resolution from AXIOMS A ~T' : 

VX(reverse(append(reverse(cdr(X)), cons( car( X), [ ]))) -:1 
cons( car( X), reverse( reverse( cdr( X))))). 

We unskolemize this clause by replacing reverse(cdr(X)) and car(X) by new 

existential variables Y and Z respectively. This yields the formula 

3Y3Z(reverse( append(Y, cons( Z, [ ]))) -:1 cons( Z, reverse(Y))). 

Negating, we obtain the following 
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Lemma A= 'VYVZ(reverse(append(Y, cons(Z, [ ]))) = cons(Z, reverse(Y))). 
Lemma A was proved by induction (without the use of any lemmas) in Example 

5.2, using the methods of Sections 5.3.1 - 5.3.2. Hence the proof of our theorem 

VX(reverse(reverse(X)) =X) 

is complete. • 

5.3.4 Finding more than one induction hypothesis 

It may happen that the proof of a theorem T depends on more than one in­

ductive lemma. For example, suppose that inductive lemmas A and B are needed 

to prove T; in other words, Tis first-order derivable from AXIOMS 1\ A 1\ B. Then 

as before, since 

AXIOMS 1\ A 1\ B --. T, 

we therefore have 
AXIOMS 1\ ~T --. ~A V ~B. 

Therefore from AXIOMS 1\ ~T, we can derive ~A V ~B by first-order reasoning. 

This can be done by resolution from Sk(AXIOMS 1\ ~T). The clauses obtained from 

these resolutions representing Sk( ~A V ~B) can then be unskolernized and negated 
(as we did in Section 5.3.3 for lemma A). We thus obtain A 1\ B, and each of 

lemma A and lemma B can be proved by induction using the methods of Sections 

5.3.1 - 5.3.2. This method can be extended to any number of inductive lemmas; 

however, the method rapidly becomes more and more complicated as the number of 
lemmas increases. For this reason, it may be preferable to use our second approach, 

described in the next section, for generating inductive hypotheses for such theorems. 

5.4 Description of the second method 

Suppose that we are trying to prove some theorem T, and suppose that we fail 

to find a proof of the theorem using standard first-order methods. This suggests 
that induction may be required to prove the theorem. 

If induction is to be used, the first problem is to find a well-founded ordering for 

the elements. This can be done by the methods described in Section 5.3.1 and this 

problem will not be further dwelt upon here. If the theorem can now be proved by 

induction using the well-founded ordering thus discovered, then we are done; if not, 

then the proof of the theorem may require one or more lemmas, which themselves 

need to be proved by induction. Our concern in this section is to discover what these 

lemmas are. If only one lemma is required, then the method of Section 5.3.3 may 
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prove useful in finding this lemma; however, the following method can be applied 

to any theorem whose proof requires one or more lemmas, each of which have to be 

proved by induction. By lemma we mean either some theorem which needs to be 

proved separately or some instance T(Y) of the theorem T(X), where Y <X; such 

lemmas are also called inductive hypotheses. 

Suppose the proof of a theorem T, for which a well-founded ordering P has 

been discovered, requires n lemmas A1, A2, ... ,An (these are all unknown). Suppose 

that T contains m variables (m ;::: 1), where the i'h variable is drawn from some 

domain D; for each i, 1 ~ i ~ m. Let X be an m-tuple consisting of these m 

variables. We write the theorem T as T(X). Then a proof of the theorem T(X) 
will proceed according to the following two steps : 

1. Proof of the base case : 

The theorem T( X) is proved to be true for the minimal elements of the ordering 

P. We will show below that T(m), for minimal elements m of the ordering P, is 

first-order provable for a certain class of theorems T. 

2. Inductive step : 

Now the inductive step of the theorem T(X) is proved. Using lemmas A1 

through An as axioms, a proof of T(X) can be obtained by resolution. 

This concludes a proof of T(X) by induction, using then lemmas A1 through 

An as axioms. 

Now consider the proof ofT(Y) for some ground el~ment Y E D1 xD2 x ... xDm. 
This proof can be performed by performing exactly the same steps as in 2 above, 

except that we now have none of the lemmas A1 through An. As a result of this, 

ground instances of these lemmas will have to be proved. We will show below that 

all these ground instances are first-order provable for a certain class of theorems. 

Thus in this proof of T(Y), we can find subproofs of lemmas A1 (Y) through An(Y) 
(A;(Y) denotes the lemma A; with variables in A; instantiated to the corresponding 

values in Y). 

Since this is true for all ground elements Y, the above can be repeated for 

ground elements Y1,Yz,Y3, ... ,and so on. In each proof of T(Y;), we can find 

subproofs of lemmas A1(Y;), Az(Y;), ... , An(Y;). 

Now we compare the proofs of T(Y) for different ground Y. These proofs will 

be similar in structure except that different instances of the lemmas A1 through 

An will appear in these proofs. By detecting these different instances, we should be 

able to reconstruct the n lemmas A1 through An· Once these lemmas are known, 

the theorem T(X) can be proved by induction using the well-founded ordering P. 

In the following theorem, we will show that this method is complete for the­

orems which can be proved using the usual induction principle, subject to the fol-
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lowing restriction. In order to show that this method is complete, we will need to 

be able to tell whether certain ground terms t which appear in proofs are less than 

a given ground term z or not. Since ground terms may contain Skolem functions 

or other functions, it may not always be possible to deduce whether t < z or not. 

Thus we will only allow those functions t, z for which it is possible to tell whether 

t < z is true or not. For example, if z = 3 and t = plus(l, 1) (where "plus" is the 

usual addition function for natural numbers), it is possible to deduce that t is less 

than z; however, if z = 3 and t = f(5) for some Skolem function f, then we cannot 

tell whether t < z or not. 

The feasibility of this method is established in the following theorem. 

Theorem 5.1 The method suggested above is complete for theorems that can be 

proved by first-order logic with the following induction principle: 

(Vx(Vy(y < x-> P(y))-> P(x))) 
where < is a well-founded ordering. Additionally, none of the clauses used 

should contain terms containing Skolem symbols or other functions for which the 

question of whether any of these is less than another term is undecidable. 

Proof: Suppose we want to prove P(z) for some ground z, where VxP(x) is a 

theorem which can be proved by first-order logic with the above induction principle. 

We know that (Vx(Vy(y < x-> P(y))-> P(x))) is true. Express this as 

(Vx(3y)[(y < x-> P(y))-> P(x)]). 
Substitute the ground term z for x to get 

(3y)[(y < z-> P(y))-> P(z)]. 
Then there are finitely many y; such that 

[(Yo< z-> P(yo))-> P(z)J V ... V [(Yn < z----> P(yn))----> P(z)] 
is true. To see this, note that if (3x)A(x) is valid for any first order formula A(x), 
we know there exist finitely many terms t; such that A( ti) V .•. V A( tn) is valid. 

We can show this by converting ~(3x )A( x) to clause form with a new predicate for 

A(x), and looking at the instances of this predicate used in the derivation of the 

empty clause by resolution. 

The above formula can be rewritten as 

HYo < Z-> P(yo)) V P(z)] V ... V HYn < z-> P(yn)) V P(z)] 
i.e. HYo < z-> P(yo)) V ... V ~(Yn < z -> P(yn))] V P(z) 
i.e. ~[(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z-> P(yn))] V P(z) 
i.e. [(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z----> P(yn))]-> P(z). 

Now consider any conjunct (y; < z ---> P(y;)) in the conjunction on the left 

side of the above implication. If y; < z is true, then this conjunct is equivalent to 
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P(y; ); if y; < z is false, then this conjunct is equivalent to true and can therefore 

be omitted from the above conjunction. We are therefore interested in knowing 

whether y; < z is true or false for every i, for 1 ::5 i ::5 n. From the assumption in 

the theorem statement, this question can be answered for ally;. 

LetT be the set of all Yk's in {yi,Y2,···,Yn} such that Yk < z. Then 

/\ P(y)-+ P(z) 
yET 

Thus P(z) is derivable from a finite conjunction P(yj,) 1\ ... 1\ P(yj,) by first­

order logic methods, where all the Yi; 's are ground elements less than z. 
Repeating the above argument for each of the elements of the set T, we will 

eventually get 

P(mi) 1\ ... 1\ P(m.)-+ P(z) 
where all the m;'s are minimal elements of the well-founded ordering < (this 

follows from the fact that < is a well-founded ordering). 

Now consider the proof of P(m;) for some minimal element m; (1 :::; i :::; s). 
Since m; is a minimal element, P(m;) is provable from the given axioms and given 

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction 

previously, then by a simple induction argument on the size of the proof, using the 

same method as above, we see that we will eventually obtain a first-order proof of 

P(m;) from the axioms. 

Thus we see that P(z) can be proved by first-order methods; also, this proof 

is made up of proofs of some P(y)'s for y < z, which in turn are made up of proofs 

of some P(w)'s for w < y, and so on. In other words, each of these proofs have a 

similar structure, and the theorem is proved. • 

A similar theorem can be proved for a slightly different version of the induc­

tion principle. In this theorem, no assumptions need to be made regarding the 

decidability of whether one term is less than another. 

Theorem 5.2 The method suggested above is complete for theorems that can be 

proved by first-order logic with the following induction principle: 

If< is a well-founded ordering, and if for all x, P(x) can be proved by first­

order logic from the infinite conjunction of P(y) for ally< x, then for all x, P(x) 
is true. 

Proof: Suppose we want to prove P(y) for some ground y, where VxP(x) is a 

theorem which can be proved by first-order logic with the above induction principle. 

From the assumption in the theorem statement, we know that P(y) can be 

proved by first-order logic methods from 
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P(y1) II P(y2) II ... II P(yn) II ... 

where y; < y Vi 2': 1, i.e. 1\~1 P(y;) -> P(y ). 
Therefore by the compactness principle, there exists a finite subset {Yit, Yh, 

... , Yim} of the y;'s such that 

P(yit) II P(yh) II ... 1\ P(Yim) -> P(y ). 
Repeating the above argument for each of P(yj,) through P(Yim) in place of 

P(y ), we will eventually get 

P(m1) 1\ •.. II P(mr)-> P(y) 
where all the m;'s are minimal elements of the well-founded ordering< (this follows 

from the fact that < is a well-founded ordering). As in the proof of Theorem 5.1, 
since m; is a minimal element, it is provable from the given axioms and given 

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction 

previously, then by a simple induction argument on the size of the proof, using the 

same method as above, we see that we will eventually obtain a first-order proof of 

P(m;) from the axioms. 
Therefore P(y) is also first-order provable. Also, the proof of P(y) can be 

constructed from the proofs of P(y it) through P( Yim), each of which in turn can be 

constructed from a finite conjunction of P(zk)'s, for Zk < Yi• (1 ::; k::; m), and so 
on. Thus each of these proofs have a similar structure, and the theorem is proved. • 

Limitations of this method 

1. The first point to note is that for any ground element y, not all proofs of P(y) 
will have a similar structure to P(y') for other ground elements y'. Potentially, 
there may exist a large number of different proofs of each ground instance. 

However, there does exist at least one such proof, as demonstrated in the 

preceding theorems. We will need to search through the proofs to find one 
such proof. 

2. Given proofs of ground instances of P( x), it is a non-trivial task to detect the 
similarity in structure between these proofs. 

Examples illustrating the use of this method can be found in the appendix. 

5.5 Comparison with other methods 

The first method given in this chapter uses a support strategy to generate in­

ductive hypotheses from the axioms; the second method is more general and makes 

use of structural similarities in the proofs of ground instances of the theorem being 

proved to discover suitable inductive hypotheses. Much of the work in the field 
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of mechanizing mathematical induction is concentrated in the field of inductionless 

induction, described in more detail in Section 5.2. As mentioned earlier, induction­
less induction applies term rewriting techniques for proving equational theorems. 

Our methods are more general than these since they can be applied to any theorem 

which can be proved using the principle of induction. Some more work needs to be 

done in order to improve the efficiency of our method. 
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6. Conclusion 

6.1 Summary 

In this dissertation, we have explored a number of different topics. We first 

saw how a class of logical consequences of first-order formulas can be derived using 

resolution and unskolemization. We extended the meaning of "unskolemization" to 

include replacement of some non-Skolem as well as Skolem functions by existen­

tially quantified variables. This allowed a larger class of logical consequences to be 

derived, since certain logical consequences of formulas cannot be derived without 

unskolemization. A detailed algorithm was given to perform this unskolemization, 

and the properties of formulas derived by applying the algorithm were described. 

The remainder of this dissertation revolved around different applications for the 

above method for deriving logical consequences. We first used the method as part 

of an algorithm for the automatic generation of loop invariants. The method was 

applicable since a loop invariant is a logical consequence of the various conditions 

which are true each time the loop is traversed. We described methods of directing 

the search for a valid loop invariant and demonstrated their effectiveness with several 

examples. The algorithm for generating loop invariants in first-order logic was 

proved to be sound and complete. This is in contrast to all known methods so far, 

which are heuristics and are by no means complete. 

The next topic discussed was machine learning from examples. Given two 

examples El and E2, a concept learned from El and E2 is a logical consequence 

of El and E2. Thus we applied our resolution and unskolemization method for 

deriving logical consequences to this problem. A graph-based algorithm for learning 

by extracting common features from examples was described, and the properties of 

the concepts which can be thus learned were discussed. Applications of this learning 

algorithm to traditional areas such as the blocks world, as well as the mechanical 

derivation of loop invariants, were demonstrated. The performance and working of 

our algorithm was compared with those of four other algorithms from the literature, 

and it was shown that the performance of our algorithm compared favorably with 

the other four. This work is significant because none of the learning algorithms so 



· far have used full first-order logic as their representation language. This greatly 

widens the scope of applicability of our method. 

Finally, we described methods for discovering inductive hypotheses for theo­

rems to be proved by induction. Since the principle of mathematical induction is not 

expressible in first-order logic, in order to be able to prove theorems by induction 

using only first-order logic, we need to know which inductive hypotheses will be re­

quired for the proofs of the theorems. We saw that certain inductive hypotheses can 

be generated from the axioms and the negation of the theorem by using our method 

for generating logical consequences. Another method, which involved extracting in­

ductive hypotheses from proofs of ground instances of the theorem, was described. 

This method was based on the fact that proofs of ground instances of the theorem 

can have similar structures, and information about which inductive hypotheses are 

required can be deduced by comparing the structures of these proofs. The method 

was shown to be complete for certain classes of theorems. It is more general than 

a large number of existing methods, since it can be applied to equational as well 

as non-equational theorems. Much of the existing work on this subject deals only 

with equational theorems. 

6.2 Extensions 

6.2.1 Automatic generation of loop invariants 

We have developed a novel method of automatically deriving loop invariants 

for flowchart programs. The methods described in this dissertation have not been 

actually implemented, but have been manually applied to many examples. Many 

people have voiced the opinion that the goal of automating the derivation of loop 

invariants is unattainable (see for example [Dijkstra 85]). Of course, they can be 

proved wrong only if the method we have developed can be made "acceptably" 

efficient by the use of suitable strategies. Basically, the function GET-APPROX 

needs to be implemented with the use of strategies which will include rewriting 

terms to some normal form to improve the efficiency of the resolution procedure, 

detecting structural similarities among terms, and so on. The function, as it stands 

now, provides some guidance to the process of deriving the invariants. Its efficiency 

can probably be greatly improved with the use of some good heuristics. Owing to 

the existence of a large number of such heuristics in the literature, this aspect has 

not been explored in much detail here. However, even though heuristics will be 

able to improve the performance of our algorithm, the algorithm still stands out 

from the previous purely heuristic methods in the literature. This is because in our 

152 



method, heuristics can be embedded within the framework of a complete and sound 

algorithm. Thus even if all heuristics fail, our algorithm can still derive a correct 

loop invariant. This is in direct contrast to previously developed methods, which 

have not been complete in any sense. 

Another issue here is that if the given algorithm fails to return a loop invariant 

for a given program loop, this could be due to one of two reasons : either the 

invariant is not expressible given the theory axiomatized, or the program is not 

correct. These two cases cannot be distinguished at present. 

6.2.2 Learning from examples 

We propose some extensions and modifications to the learning algorithm pre­

sented in Chapter 4. 

Allowing many-to-many mappings 

The algorithm, as presented in Section 4.4.2, performs a one-to-one mapping 

of arguments from the two given examples. This corresponds to the notion that 

distinct objects in the two given examples are represented by distinct variables. 

However, in certain situations it may be desirable to allow different variables to 

represent the same object. In such a case, it is necessary to allow many-to-many 

mappings in the argument graph produced by the algorithm. The choice of whether 

to consider all possible mappings or a limited number of these can be left to the 

user. A very minor modification to the learning algorithm will allow this feature to 

be incorporated into the algorithm. 

Allowing a limited number of disjunctions 

The learning algorithm at present does not allow disjunctions of clauses to 

be performed if the clauses have no common predicates. If such disjunctions are 

necessary, they can be permitted, either without restriction or with a limit on 

the number of disjunctions allowed. This alteration can easily be built into the 

algorithm. 

Using the algorithm for descriptive generalization 

The given algorithm provides a method of deriving a formula EX from two 

given formulas El and E2 such that El -> EX, E2-> EX. However, note that 

we could also use the algorithm for deriving a formula EX such that EX -; El, 
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EX -+ E2. To see this, suppose that we are given formulas El and E2; then 
apply the algorithm to the formulas ~El and ~E2. The algorithm produces a 
formula E such that ~El -+ E and ~E2 -+ E; taking contrapositives, we get 

~E-+ El, ~E-+ E2. Setting EX= ~E, the result follows. In the terminology of 

Michalski [Michalski 83], this process is known as deBcriptive generalization and is 

concerned with establishing new concepts or theories characterizing given facts. In 

this case E 1 and E 2 are the given facts, and EX is the new concept or theory which 

is established. This method of inference is also known as abduction or abductive 

inference [Patterson 90]. 

6.2.3 Mechanizing mathematical induction 

The methods developed in Chapter 5 for generating inductive hypotheses are 
complete for certain classes of theorems; they need to be made more efficient by the 

use of suitable strategies. More research needs to be done into ways of detecting 

structural similarities among proofs of different ground instances of theorems. 
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Appendix 

Time complexity analysis of the learning algorithm 

We analyze the algorithm step by step. For convenience, the main body of the 

algorithm is listed below again, with the steps numbered : 

Algorithm LEARN(E1,E2,AXIOMS) 

begin 

1. Choose Xc E Res(E1 1\ AXIOMS); 
2. Choose Yc E Res(E2 1\ AXIOMS); 
3. Rename the variables in all the clauses of Xc and Ye so that no two clauses 

have any variable in common; 

4. build..clause..graph(Xc, Yc, Ec); 
5. build..argument..graph(X., Y., E.); 
6. augment..graphs...X(X., E., Xc, Ec); 
7. augment..graphs_Y(Y., E., Yc, Ec); 
8. maximum_weight...matching(M.,X., Y., E.); 
9. Me:= {(C~,C2) E Ee I the n'h argument an of some literal of C1 contains 

a as a subterm and the n'h argument f3n of some literal of C2 contains b as 

a subterm in the same position as a appears in an and (a, b) E M., for some 

positiveinteger n, where these two literals have the same predicate}; 

10. For every edge (a, b) E Ma do 

if (a and b are distinct) and (a and b are not both variables) then 

replace unmarked occurrences of a and b in Me by Z <-- a and Z <-- b 
(respectively) (Z is a new variable); 

if (a and b are both variables) then 

unify all occurrences of a and b in Me; 

11. EX:={CIUC2I(CI,C2)EMe}; 

12. if EX = 0 then EX := true; 
13. for every Skolem function a in EX do 

if a is not marked then 
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replace all occurrences of a in all literals of EX by X <-a, where X is 

a new variable not occurring elsewhere in any clause; 

14. Perform Steps 4 through 7 of the unskolemization algorithm for EX; 

end. 

We will not analyze the complexity of performing resolutions, since this is a 

nondeterministic process. The analysis of the algorithm thus begins with step 3 

above. The following symbols are used during this analysis : 

IXel : number of elements in the set Xe 
lYe I : number of elements in the set Ye 
IXal: number of elements in the set X a 
IYa I : number of elements in the set Ya 
ICrl : maximum cardinality of a clause in Xe 
ICzl : maximum cardinality of a clause in Ye 
arg : maximum length of an argument of a clause in Xe U Ye (i.e. maxi­

mum number of symbols in an argument; e.g. f(x,g(y)) has 4 symbols, viz. 

j,x,g,y) 
arity : maximum arity of a predicate in a clause in Xe U Ye 
!Eel : number of edges of the clause graph (bounded above by (IXel + IYel)2) 
lEal : number of edges of the argument graph (bounded above by (IXal + 
IY.I)2

) 

IMa I : size of a maximum weight matching of the argument graph (bounded 

above by max(IXal, IYal)) 
!Mel : cardinality of the set Me (bounded above by I Eel) 

The maximum number of operations required for each step is given below, 
within a constant factor. 

Step 3: IXel * ICrl * arity +lYe I* ICzl * arity 
Step 4: IXel * IYel * ICrl * ICzl 
Step 5 : !Eel* ICrl * arity * ICzl * arg 
Step 6: IX a I* IYal * IYal +(IX a I+ IYal) * (IXel +!Eel) 
Step 7: IYal * IXal * IXal + (IXal + IYal) *(lYe I+ !Eel) 
Step 8: lEal* (IXal + IYal) * logfiEai/(IX.I+IY.I)+Il(IXal + IYal) 
Step 9 : !Eel * IMa I * ICrl * ICzl * arity * arg 
Step 10: !Mal* !Mel* (ICrl + ICzl) * arity * arg 
Step 11 : !Mel 
Step 12 : constant 

Step 13: !Mel* arg * (ICrl + ICzl) * arity 
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Step 14 : Each of steps 4 through 7 of the unskolemization algorithm take time 

!Mel* (IC1I + IC2I) * arity, for the generation of one unskolemized formula. • 

Working of problem from Section 4. 7 using the algorithm LEARN 

We process the examples in the order E1, E2 and Ea. The examples are shown 
in Figure 4.10. The same result is obtained for other orders of presentation of the 

examples. 

First the examples E1 and E2 are taken and all possible resolutions are per­

formed between these two examples and the given axioms. The resulting sets of 

clauses obtained from E 1 and E 2 , called Xe and Ye respectively, are : 

Xe = medium(a)!lpolygon(a)!lblank(a)!lontop(a, b)/\ medium( b) 1\ circle(b)!l 

shaded(b) 1\ ontop(b, c) 1\ large( c) 1\ polygon( c) 1\ blank( c), 

Ye = medium( d) 1\ polygon( d) 1\ blank( d) 1\ ontop( d, e )II small(!) 1\ circle(!)/\ 

shaded(!) 1\ inside(!, e) 1\ small(g) 1\ circle(g) 1\ shaded(g) 1\ inside(g, e) 1\ large( e) 1\ 

polygon( e) 1\ blank( e). 

We build the clause and argument graphs for Xe and Ye; these graphs are shown 

in Figures A.1 and A.2 respectively. These graphs do not need to be augmented 

since neither Xe nor Ye contain any variables. There exists two maximum weight 

matchings for the argument graph; these are 

{(a, d)( 4), (b, !)(2), ( c, e)( 4)} and {(a, d)( 4), (b, g )(2), ( c, e)( 4)} 

(the weights for each edge are indicated after each edge in parentheses). However, 

it turns out that both these matchings give rise to the same concept. We therefore 

choose the first matching and get 

Ma ={(a, d), (b,J), ( c, e)}. 

The set Me contains the edges which are shown in Figure A.3. We then replace 

a and d by X <- a and X <- d respectively; we replace b and f by Y <- b and 

Y <- f respectively; and we replace c and e by Z <- c and Z <- e respectively in 
the edges of Me. We then get 

EX = {{medium( X <-a), medium( X <- d)}, {polygon( X <- a),polygon(X 

<- d)},{blank(X <- a),blank(X <- d)},{ontop(X <- a,Y <- b),ontop(X <- d,Z <­

e)}, { circle(Y <- b), circle(Y <-- /)}, { shaded(Y <- b), shaded(Y <- f)}, {on top( 

Y <- b, Z <-c), ontop(X <- d, Z <-e)}, {large(Z <-c), large(Z <-e)}, {blank(Z <­

c),blank(Z <-e)}, {polygon(Z <- c),polygon(Z <-e)}}. 
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We now unskolemize EX by replacing the marked arguments by existentially 

quantified variables and get 

EX = 3X3Y3Z (medium( X) /\polygon( X) 1\ blank(X) 1\ (on top( X, Y) V ontop 

(X, Z))llcircle(Y)/\shaded(Y)/\( ontop(Y, Z)Vontop(X, Z))/\large( Z)/\blank( Z)/\ 

polygon( Z)). 

This is the concept learned from E1 and E 2 • We will now apply the algorithm 

to E3 and the above formula EX. First we perform all possible resolutions between 

the axioms and these examples. EX remains unchanged; we get the following set 

of clauses from E3 : 

E 3 = { {medium( h)}, {polygon( h)}, {blank(h)}, {ontop(h,j)}, { medium(j)}, 

{polygon(j)}, { shaded(j) }, { ontop(j, k )}, { large(k )}, {ellipse( k )}, 

{blank(k)} }. 

We now need to express EX in clause form. After Skolemizing EX, we get the 

set of clauses 

{ {medium( s )}, {polygon( s )}, {blank( s)}, { ontop( s, t), on top( s, u )}, { circle(t) }, 

{ shaded(t)}, { ontop( t, u ), ontop( s, u )}, {large( u )}, {blank( u)}}, 

where s, t, u are Skolem functions replacing the existentially quantified variables 

X, Y, Z respectively. 

We build the clause and argument graphs for these two sets of clauses; these 

graphs are shown in Figures A.4 and A.5 respectively. These graphs do not need 

to be augmented since none of the clauses contain any variables. The maximum 

weight matching for the argument graph is : 

Ma = {(h,s)(5),(j,t)(3),(k,u)(5)} 

(the weights for each edge are indicated after each edge in parentheses). The set 

Me contains the edges which are shown in Figure A.6. We then replace h and s 

by X +- h and X +- s respectively; we replace j and t by Y +- j and Y +- t 

respectively; and we replace k and u by Z +- k and Z <-- u respectively in the edges 

of Me. We then get 

EX = {{medium( X <-- h), medium( X +- s)}, {polygon( X +- h),polygon(X 

<-- s)},{blank(X +- h),blank(X +- s)},{ontop(X +- h,Y +- j),ontop(X +­

s,Y +- t), ontop (X+- s,Z +- u)},{ontop(X +- h,Y +- j),ontop(Y +- t,Z +­

u),ontop(X <-- s,Z +- u)}, {shaded(Y +- j),shaded(Y +- t)}, {ontop(Y +- j,Z +­

k ), ontop(Y +- t, Z +- u), ontop(X +- s, Z +- u)}, {ontop(Y <-- j, Z +- k), ontop(X 

+- s,Y +- t),ontop(X +- s,Z +- u)},{large(Z +- k),large(Z +- u)},{blank(Z +­

k),blank(Z +- u)}}. 
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We now unskolemize EX by replacing the marked arguments by existentially 

quantified variables and get 

EX = 3X3Y3Z (medium( X) !\polygon( X) i\ blank( X) i\ ( ontop(X, Y) V ontop 

(X, Z)) i\ (ontop(X, Y) Vontop(Y, Z) V ontop(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V 

ontop(X, Z)) i\ large(Z) i\ blank(Z)). 

This is the concept learned from E1, E2 and E3. Note that one of the disjunc­

tions here is subsumed by two of the others, namely the disjunction (on top( X, Y) V 

ontop(Y, Z) V ontop(X, Z)); therefore it can be discarded. The resulting concept 

learned from the three given examples is 

EX= 3X3Y3Z (medium(X) !\polygon( X) i\ blank( X) i\ (ontop(X, Y) Von top 

(X, Z)) i\ shaded(Y) i\ ( ontop(Y, Z) V on top( X, Z)) i\ large( Z) i\ blank( Z)). • 
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{medium( d)} 

{polygon( d)} 

{medium(a)} {blank( d)} 

{polygon(a)} {ontop(d,e)} 

{blank( a)} {small(f)} 

{ ontop(a,b)} {circle(f)} 

{medium(b)} {shaded(f)} 

{circle(b)} {inside(f,e)} 

{shaded(b)} {small(g)} 

{ontop(b,c)} {circle(g)} 

{large(c)} {shaded(g)} 

{polygon(c)} {inside(g,e)} 

{blank(c)} {large( e)} 

{polygon( e)} 

{blank( e)} 

Figure A.l Clause graph for E1 and E2 
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{medium(a)} {medium(d)} 

{polygon(a)} {polygon( d)} 

{blank( a)} {blank( d)} 

{ ontop(a,b)} {ontop(d,e)} 

{circle(b)} {circle(f)} 

{shaded(b)} {shaded(f)} 

{ontop(b,c)} {large( e)} 

{large(.c)} {blank( e)} 

{blank( c)} {polygon( e)} 

{polygon(c)} 

Figure A.3 Subgraph of clause graph for E1 and E 2 
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Figure A.4 Clause graph for Ea and EX 
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Figure A.5 Argument graph for E3 and EX 
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{medium(h)} {medium(s)} 

{polygon(h)} {polygon(s)} 

{blank(h)} {blank(s)} 

{ontop(h,j)} { ontop(s,t) ,ontop(s, u)} 

{shaded(j)} {shaded(t)} 

{ontop(j,k)} { ontop(t, u) ,ontop(s, u)} 

{large(k)} {large(u)} 

{blank(k)} {blank(u)} 

Figure A.6 Subgraph of clause graph for E3 and EX 
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Proofs for Example 5.2 

The following proofs were obtained for Example 5.2 using the theorem prover 

OTTER: 

Proof of base step from Example 5.2 : 

1 [] (X= X). 
2 [] (append(nil,Y) = Y). 
7 [] (reverse(append(nil,cons(y,nil))) != cons(y,reverse(nil))). 
8 [] (reverse( nil) = nil). 
11 [] (reverse( cons(X,nil)) = cons(X,nil)). 
12 [paraJnto,7,2,demod,11,8] (cons(y,nil) != cons(y,nil)). 

13 [binary,12,1] . 

Proof of induction step from Example 5.2 : 

1 [] (X =X). 
3 [] ( append(X,Y) = cons( car(X),append( cdr(X),Y))) I -listp(X). 
4 [] (reverse(X) = append(reverse(cdr(X)),cons(car(X),nil))) 1-listp(X). 
5 [] listp(cons(X,Y)). 
7 [] (reverse(append(cdr(x),cons(y,nil))) = cons(y,reverse(cdr(x)))). 
8 [] listp(x). 
9 [] (reverse(append(x,cons(y,nil))) != cons(y,reverse(x))). 
11 [] (car( cons(X, Y)) = X). 
12 [] (cdr( cons(X, Y)) = Y). 

14 [paraJnto,9,3J (reverse(cons(car(x), append(cdr(x), cons(y, nil))))!= cons(y, re­
verse(x) ) ) I -listp(x). 
17 [binary,14,8] (reverse(cons(car(x), append(cdr(x),cons(y, nil)))) != cons(y, re­
verse(x))). 
19 [paraJnto,l7,4,demod,12,11] (append( reverse( append( cdr(x), cons(y,nil))), cons( 
car(x), nil)) != cons(y, reverse(x))) I -listp(cons(car(x), append(cdr(x), cons(y, 
nil)))). 

54 [binary,19,5] (append(reverse(append(cdr(x), cons(y, nil))),cons(car(x), nil))!= 
cons(y, reverse(x))). 

56 [paraJnto,54,7] (append(cons(y, reverse(cdr(x))), cons(car(x), nil)) != cons(y, 
reverse( x) ) ) . 

61 [paraJnto,56,3,demod,11,12] ( cons(y, append( reverse( cdr(x)), cons( car(x), nil))) 
! =cons (y, reverse(x))) 1-listp(cons(y, reverse(cdr(x)))). 

63 [binary,61,5] (cons(y, append(reverse(cdr(x)), cons(car(x), nil))) != cons(y, re-
verse(x))). . 
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65 [paraJnto,63,4] (cons(y,reverse(x)) != cons(y,reverse(x))) [-listp(x). 

68 [binary,65,1]-listp(x). 
69 [binary,68,8]. e 

Working of examples for Section 5.4 

We give below three examples illustrating the technique outlined in Section 5.4 

for discovering inductive hypotheses. 

Example 5.4 To illustrate the discussion in Section 5.4, suppose that we are trying 

to prove the commutativity of addition, using the Peano axioms : 

1. 'v'x((x = 0) V (x =a+ 1)) where a is a Skolem symbol 

2. 'v'x'v'y((x # y + 1) V (x # 0)) 
3. 'v'x'v'y((x + 1 # y + 1) V (x = y)) 
4. 'v'x'v'y(-,(x < y + 1) V (x < y) V (x = y)) 
5. 'v'x'v'y(-,(x < y) V (x < y+ 1) 
6. 'v'x'v'y((x # y) V (x < y + 1)) 
7. 'v'x( -,( x < 0)) 
8. 'v'x'v'y((x < y) V (x = y) V (y < x)) 
9. 'v'x(x + 0 = x) 
10. 'v'x'v'y(x + (y + 1) = (x + y) + 1) 
11. 'v'x(x * 0 = 0) 

12. 'v'x'v'y(x * (y + 1) = x * y + x) 
13. 'v'x(x = x) 

The theorem to be proved is 

'v'x'v'y(x + y = y + x) 

An attempt to prove this theorem without induction, using only the above 

axioms and resolution, fails. We therefore start trying to prove ground instances of 
the theorem. Three ground proofs are shown below : 

1) Proof of (1+1) + (((1+1)+1)+1) = (((1+1)+1)+1) + (1+1). 
We use paramodulation as well as resolution as inference rules and obtain the 

following refutation proof of the negation of the theorem : 

Negation of theorem: {(1 + 1) + (((1 + 1) + 1) + 1) # (((1 + 1) + 1) + 1) + (1 + 1)} 

1. {((1 + 1) + ((1 + 1) + 1)) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

2. {(((1 + 1) + (1 + 1)) + 1) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)} 
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paramodulate with axiom 10 
3. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 

paramodulate with axiom 10 

4. {(((1 + 1) + 1) + (1 + 1)) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

5. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

6. {(((1 + 1) + 1) + 1) + (1 + 1) =? (((1 + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

7. {} resolve with axiom 13 

2) Proofof(1+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + (1+1). 
We use paramodulation as well as resolution as inference rules and obtain the 

following refutation proof of the negation of the theorem : 

Negation of theorem: {(1+1)+((((1+1)+1)+1)+1) =? ((((1+1)+1)+1)+1)+(1+1)} 

1. {(1 + 1) + ((((1 + 1) + 1) + 1) + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

2. {((1 + 1) + (((1 + 1) + 1) + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

3. {(((1 + 1) + ((1 + 1) + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

4. {((((1 + 1) + (1 + 1)) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

5. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

6. {((((1 + 1) + 1) + (1 + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

7. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

8. {((((1 + 1) + 1) + 1) + (1 + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

9. {((((1 + 1) + 1) + 1) + 1) + (1 + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)} 
paramodulate with axiom 10 

10. {} resolve with axiom 13. 

3) Proof of ((1+1)+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + 
((1+1) + 1). 

We use paramodulation as well as resolution as inference rules and obtain the 
following refutation proof of the negation of the theorem : 
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Negation of theorem: {((1 + 1) + 1) + ((((1 + 1) + 1) + 1) + 1) ¥ ((((1 + 1) + 1) + 

1)+ 1) +((1 +1)+1)} 
1. {(((1 + 1) + 1) + (((1 + 1) + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 

paramodulate with axiom 10 

2. {((((1+ 1) + 1)+ ((1+ 1) + 1)) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

3. {(((((1+ 1)+ 1)+ (1+ 1)) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

4. {((((( (1 + 1) + 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)} 
paramodulate with axiom 10 

5. {(((((1+ 1) + 1) + 1) +(1+ 1)) + 1) + 1 ¥ ((((1+ 1)+ 1) + 1)+ 1) + ((1+ 1) + 1)} 
paramodulate with axiom 10 

6. { ( ( ( (1 + 1) + 1) + 1) + ( (1 + 1) + 1)) + 1 ¥ ( ( ( (1 + 1) + 1) + 1) + 1) + ( (1 + 1) + 1)} 
paramodulate with axiom 10 

7.{(((((1 + 1) + 1) + 1) + (1 + 1)) + 1) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 
paramodulate with axiom 10 

8. {((((((1+ 1)+ 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1) + ((1+ 1) + 1)} 
paramodulate with axiom 10 

9. {(((((1 + 1) + 1) + 1) + 1) + (1 + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)} 
paramodulate with axiom 10 

10. {((((1+1)+1)+1)+1)+((1+1)+1) ¥ ((((1+1)+1)+1)+1)+((1+1)+1)} 
paramodulate with axiom 10 

11. {} resolve with axiom 13. 

It can be seen that each proof contains an instance of the proof of the lemma 

Vx'Vy((y- 1) + x) + 1 = ((y- 1) + 1) + x, 

namely in clauses 4, 8, and 6 for the three proofs respectively. 
This lemma can easily be proved by induction, using the well-founded order 

<. The given theorem can then be proved by induction, using this lemma as an 

axiom. • 

Example 5.5 Let us try to prove the theorem 

VxVy(X*Y=Y*X). 

An attempt to prove this theorem by first-order methods, using the Peano 
axioms given in Example 5.4, fails. We therefore try to prove ground instances 
of the theorem. We assume that the following simple theorem has already been 
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proved: \lx(O + x = x). Some proofs of ground instances of the theorem are given 

below: 

1) Proof of 1 *(1+1) = (1+1)*1. 
Negation of the theorem : 1 * (1 + 1) -1 (1 + 1) * 1. 

The proof proceeds as follows : 

1. {(h 1) + 1 "'(1+ 1) * 1} 
paramodulate with axiom 12 

2. {(h(0+1))+1"1(1+1)d} 
paramodulate with Theorem \lx(O + x = x) 

3. {((h0)+1)+1"1(1+1)*1} 
paramodulate with axiom 12 

4. {(0 + 1) + 1 "'(1 + 1) * 1} 
paramodulate with axiom 11 

5. {0 + (1 + 1) "'(1 + 1) d} 
paramodulate with axiom 10 

6. {((1 + 1) * 0) + (1 + 1) "'(1 + 1) * 1} 
paramodulate with axiom 11 

7. {(1+1)*(0+1)"1(1+1)d} 
paramodulate with axiom 12 

8. {(1 + 1) d "'(1 + 1) d} 
paramodulate with Theorem \lx(O + x = x) 

9. {} paramodulate with axiom 13. 

2) Proof of 1 *((1+1)+1) = ((1+1)+1)*1. 
Negation of the theorem: 1 * ((1 + 1) + 1) "I ((1 + 1) + 1) * 1. 

The proof proceeds as follows : 

1. { (1 * (1 + 1)) + 1 "' ( (1 + 1) + 1) * 1} 
paramodulate with axiom 12 

2. {((1 * 1) + 1) + 1"' ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

3. {((h(0+1))+1)+1-l((1+1)+1)d} 
paramodulate with Theorem \fx(O + x = x) 

4. {(((1 * 0) + 1) + 1) + 1 "'((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

5. {((0+1)+1)+1-1((1+1)+1)*1} 
paramodulate with axiom 11 

6. {(0 + (1 + 1)) + 1"' ((1 + 1) + 1) * 1} 
paramodulate with axiom 10 

7. {(((1 + 1) * 0) + (1 + 1)) + 1 "'((1 + 1) + 1) * 1} 
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paramodulate with axiom 11 
8. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1} 

paramodulate with axiom 12 

9. {((1 + 1) * 1) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

10. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

11. {(((1 + 1) * 0) + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

12. {(0 + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 11 

13. {0+((1+1)+1)-#((1+1)+1)*1} 
paramodulate with axiom 10 

14. {(((1 + 1) + 1) * 0) + ((1 + 1) + 1) =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 11 

15. {((1 + 1) + 1) * (0 + 1) =F ((1 + 1) + 1) * 1} 
paramodulate with axiom 12 

16. {((1 + 1) + 1) * 1 =F ((1 + 1) + 1) * 1} 
paramodulate with Theorem Vx(O + x = x) 

17. {} resolve with axiom 13 

3) Proof of (1+1)*((1+1)+1) = ((1+1)+1)*(1+1). 
Negation of the theorem: (1 + 1) * ((1 + 1) + 1) =F ((1 + 1) + 1) * (1 + 1). 
The proof proceeds as follows : 

1. {((1 + 1) * (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

2. { ( ( ( 1 + 1) * 1) + ( 1 + 1)) + ( 1 + 1) =F ( ( 1 + 1) + 1) * ( 1 + 1)} 
paramodulate with axiom 12 

3. {(((1 + 1) * (0 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem Vx(O + x = x) 

4. {((((1 + 1) * 0) + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

5. {((0 + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 11 

6. {(((1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem Vx(O + x = x) 

7. {(((1 + 1) + 1) + 1) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 10 

8. {(((1 + 1) + 1) + (1+ 1)) + 1 =F ((1 + 1) + 1) * (1+ 1)} 
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paramodulate with axiom 10 

9. {((1 + 1) + 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 10 

10. {(0 + ((1 + 1) + 1)) + ((1 + 1) + 1)) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem \fx(O + x = x) 

11. {((((1 + 1) + 1) * 0) + ((1 + 1) + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 11 

12. {(((1 + 1) + 1) * (0 + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

13. {(((1 + 1) + 1) * 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with Theorem \fx(O + x = x) 

14. {((1 + 1) + 1) * (1 + 1) # ((1 + 1) + 1) * (1 + 1)} 
paramodulate with axiom 12 

15. {} resolve with axiom 13. 

From the proofs of the three above ground instances, we see that each proof 

contains a subproof of the lemma 

\fx\fy((x + 1) * y = (x * y) + y), 

namely in clauses 1, 9, and 1 respectively of the three proofs. 

And this lemma can be proved by induction, using the well-founded order<. 

The given theorem can then be proved by induction, using this lemma as an axiom. • 

Example 5.6 In this example, we solve the same problem as that solved in Example 
5.3 in Chapter 5, i.e. we are trying to prove the theorem 

\fx(reverse(reverse(x)) = x) 

by induction, this time using the method described in this section. A well-founded 

ordering for this example was already discovered in Example 5.1 in Chapter 5. 

We prove the theorem for different values of ground x : 

Proof of reverse(reverse([a, b])) =[a, b] : 

The axioms used in this proof are (in clause form) : 

1. X=X 

2. append( nil, Y) = Y 

3. append( X, Y) =cons( car( X), append( cdr( X), Y)) V •listp(X) 

4. reverse( nil) = nil 

5. reverse( X) = append( reverse( cdr( X)), cons( car( X), nil)) V •listp(X) 

6. car( cons(X, Y)) =X 

7. cdr( cons(X, Y)) = Y 
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8. listp(cons(X, Y)) 

Negation of theorem : 

reverse(reverse([a, b])) f. [a, b] 

Using a set of support strategy, we get the following proof for the theorem : 

9. reverse( reverse([ a, b])) f. [a, b] 

negation of theorem 

10. reverse( append( reverse( cdr([a, b])), cons( car([a, b]), nil))) f. [a, b], 

~listp([a, b]) 

paramodulate 9,5 

11. reverse( append( reverse( cdr([ a, b]) ), cons( car([a, b]), nil))) f. [a, b] 

resolve 8,10 

12. reverse(append(reverse([b]), cons(car([a, b]), nil))) f. [a, b] 

paramodulate 7,11 

13. reverse(append(reverse([b]), [a])) f. [a, b] 
paramodulate 6,12 

14. reverse( append( append( reverse( cdr([b])), cons( car([b]), nil)), [a])) =f [a, b], 

~listp([b]) 

paramodulate 5,13 

15. reverse(append(append(reverse(cdr([b])), [b]), [a])) f. [a, b], ~listp([b]) 
paramodulate 6,14 

16. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b], ~listp([b]) 
paramodulate 7,15 

17. reverse( append( append( reverse( nil), [b]), [a])) f. [a, b] 

resolve 8,16 

18. reverse( append( append( nil, [b]), [a])) f. [a, b] 

paramodulate 4,17 

19. reverse(append([b], [a])) f. [a, b] 

paramodulate 2,18 

20. reverse( cons( car([b]), append( cdr( [b]), [a]))) f. [a, b], ~listp( [b]) 
paramodulate 3,19 

21. reverse( cons( car([b]), append( nil, [a]))) f. [a, b], ~listp([b]) 

paramodulate 7,20 

22. reverse( cons( car([b]), append( nil, [a]))) f. [a, b] 

resolve 8,21 

23. reverse( cons( car([b]), [a])) f. [a, b] 

paramodulate 2,22 

24. reverse([b, a]) f. [a, b] 
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paramodulate 6,23 
25. append( reverse( cdr([b, a])), cons( car( cons(b, [a])))) f. [a, b], ~listp([b]) 

paramodulate 5,24 
26. append(reverse([a]), cons( car([b, a]), nil)) f. [a, b], ~listp([b]) 

paramodulate 7,25 

27. append(reverse([a]), [b]) f. [a, b], ~listp([b]) 
paramodulate 6,26 

28. append(reverse([a]), [b]) f. [a, b] 
resolve 8,27 

29. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b], ~listp([a]) 
paramodulate 5,28 

30. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b] 
resolve 8,29 

31. append( append( reverse( nil), cons( cm·([a]), nil)), [b]) f. [a, b] 
paramodulate 7,30 

32. append(append(reverse(nil), [a]), [b]) f. [a, b] 
paramodulate 6,31 

33. append( append( nil, [a]), [b]) f. [a, b] 
paramodulate 4,32 

34. append([a], [b]) f. [a, b] 
paramodulate 2,33 

35. cons(car([a]), append(cdr([a]), [b])) f. [a, b], ~listp([a]) 
paramodulate 3,34 

36. cons( car([a]), append( cdr([a]), [b])) f. [a, b] 
resolve 8,35 

37. cons( a, append(cdr([a]), [b])) f. [a, b] 
paramodulate 6,36 

38. cons( a, append( nil, [b])) f. [a, b] 
paramodulate 7,37 

39. [a, b] f. [a, b] 
paramodulate 2,38 

40. empty clause 

resolve 1,39. 

Proof of reverse(reverse([a, b, c])) =[a, b, c] : 

Using a set of support strategy, and the same axioms (1 through 8 above), we 
get the following proof for the theorem : 

9. reverse(reverse([a, b, c])) f. [a, b, c] 
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negation of theorem 

10. reverse( append( reverse( cdr([ a, b, c])), cons( car([a, b, c]), nil))) =J [a, b, c], 
~listp([a, b, c]) 
paramodulate 5,9 

11. reverse( append(reverse([b, c]), cons( car([a, b, c]), nil))) =J [a, b, c], 

~listp([a, b, c]) 
paramodulate 7,10 

12. reverse( append(reverse([b, c]), [a])) =J [a, b, c], ~listp([a, b, c]) 
paramodulate 6,11 

13. reverse( append(reverse([b, c]), [a])) =J [a, b, c] 

resolve 8,12 

14. reverse( append( append( reverse( cdr([b, c])), cons( car([b, c]), nil)), [a])) =J 
[a, b, c], ~listp([b, c]) 
paramodulate 5,13 

15. reverse( append( append( reverse( cdr([b, c])), cons( car([b, c]), nil)), [a])) =J 
[a, b, c] 
resolve 8,14 

16. reverse( append( append(reverse([c]), cons( car([b, c]), nil)), [a])) =J [a, b, c] 

paramodulate 7,15 

17. reverse( append( append(reverse([c]), [bJ), [a])) =J [a, b, c] 

paramodulate 6,16 

18. reverse( append( append( append( reverse( cdr([c])), cons( car([c]), nil)), [b]), [a])) 
=J [a, b, c], ~listp([c]) 

paramodulate 5,17 

19. reverse( append( append( append( reverse( cdr([c])), [c]), [b)), [a])) =J [a, b, c], 

~listp([c]) 

paramodulate 6,18 

20. reverse( append( append( append( reverse( nil), [c)), [b]), [a])) =J [a, b, c], 

~listp([c]) 

paramodulate 7,19 

21. reverse(append(append(append(reverse(nil), [c]), [b]), [a])) =J [a, b, c] 

resolve 8,20 

22. reverse(append(append(append(nil, [c)), [b]), [a])) =J [a, b, c] 

paramodulate 4,21 

23. reverse( append( append([c], [b]), [a])) =J [a, b, c] 

paramodulate 2,22 

24. reverse( append( cons( car([c]), append( cdr([c]), [b))), [a])) =J [a, b, c], ~listp([c]) 

paramodulate 3,23 
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25. reverse(append(cons(car([c]), append(cdr([c]), [b])), [a])) of [a, b, c] 
resolve 8,24 

26. reverse( append( cons( c, append( cdr([c]), [b])), [a])) of [a, b, c] 
paramodulate 6,25 

27. reverse( append( cons( c, append( nil, [b])), [a])) of [a, b, c] 
paramodulate 7,26 

28. reverse(append([c, b], [a])) of [a, b, c] 
paramodulate 2,27 

29. reverse( cons( car([c, b]), append( cdr([c, b]), [a]))) of [a, b, c], ~listp([c, b]) 

paramodulate 3,28 

30. reverse(cons(car([c,b]),append(cdr([c,b]),[a]))) of [a,b,c] 

resolve 8,29 

31. reverse( cons( c, append( cdr([c, b]), [a]))) of [a, b, c] 

paramodulate 6,30 

32. reverse( cons( c, append([b], [a]))) of [a, b, c] 

paramodulate 7,31 

33. reverse( cons( c, cons( car([b]), append( cdr([b]), [a])))) of [a, b, c], ~listp([b]) 
paramodulate 3,32 

34. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c] 
resolve 8,33 

35. reverse(cons(c,cons(b,append(cdr([b]),[a])))) of [a,b,c] 

paramodulate 6,34 

36. reverse( cons( c, cons(b, append( nil, [a])))) of [a, b, c] 
paramodulate 7,35 

37. reverse([c, b, a]) of [a, b, c] 
paramodulate 2,36 

38. append( reverse( cdr([c, b, a])), cons( car([c, b, a]), nil)) of [a, b, c], ~listp([c, b, a]) 

paramodulate 5,37 

39. append( reverse( cdr([c, b, a])), cons( car([c, b, a]), nil)) of [a, b, c] 
resolve 8,38 

40. append(reverse([b,a]),cons(car([c,b,a]),nil)) of [a,b,c] 

paramodulate 7,39 

41. append(reverse([b, a]), [c]) of [a, b, c] 
paramodulate 6,40 

42. append( append( reverse( cdr([b, a])), cons( car([b, a]), nil)), [c]) of [a, b, c], 
~listp([b, a]) 

paramodulate 5,41 

43. append( append( reverse([a]), cons( car([b, a]), nil)), [c]) of [a, b, c], ~listp([b, a]) 
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paramodulate 7,42 

44. append(append(reverse([a]), [b]), [c]) f [a, b, c], ~listp([b, a]) 

paramodulate 6,43 

45. append( append(reverse([a]), [b]), [c]) f [a, b, c] 
resolve 8,44 

46. append( append( append( reverse( cdr([a])), cons( car([a]), nil)), [b]), [c]) 
f [a, b, c], ~listp([a]) 
paramodulate 5,45 

47. append( append( append(reverse(nil), cons( car([a]), nil)), [b]), [c]) f [a, b, c], 
~listp([a]) 

paramodulate 7,46 

48. append( append( append( reverse( nil), [a]), [b]), [c]) f [a, b, c], ~listp([a]) 

paramodulate 6,47 

49. append(append(append(nil, [a]), [b]), [c]) f [a, b, c], ~listp([a]) 

paramodulate 4,48 

50. append(append([a], [b]), [c]) f [a, b, c], ~listp([a]) 
paramodulate 2,49 

51. append( append([a], [b]), [c]) f [a, b, c] 
resolve 8,50 

52. append( cons( car([a]), append( cdr([a]), [b]) ), [c]) f [a, b, c], ~listp([a]) 
paramodulate 3,51 

53. append( cons( car([a]), append( cdr([ a]), [b])), [c]) f [a, b, c] 
resolve 8,52 

54. append( cons( a, append( cdr([a]), [b])), (c]) f [a, b, c] 

paramodulate 6,53 

55. append( cons( a, append( nil, [b])), [c]) f [a, b, c] 
paramodulate 7,54 

56. append([a, b], [c]) f [a, b, c] 
paramodulate 2,55 

57. cons( car([a, b]), append( cdr([a, b]), [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 3,56 

58. cons( a, append( cdr([ a, b]), [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 6,57 

59. cons( a, append([b], [c])) f [a, b, c], ~listp([a, b]) 

paramodulate 7,58 

60. cons( a, append([b], [c])) f [a, b, c] 
resolve 8,59 

61. cons( a, cons( car([b]), append( cdr([b]), [c]))) f [a, b, c], ~listp([b]) 
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paramodulate 3,60 

62. cons( a, cons(b, append( cdr([b]), [c]))) o1 [a, b, c], ~listp([b]) 
paramodulate 6,61 

63. cons(a,cons(b,append(nil,[c]))) ol [a,b,c],~listp([b]) 
paramodulate 7,62 

64. cons(a,cons(b,append(nil,[c]))) ol [a,b,c] 
resolve 8,63 

65. [a, b, c] ol [a, b, c] 
paramodulate 2,64 

66. empty clause 

resolve 1,65. 

From the above two ground proofs, it can be seen that instances of the lemma 
lixliy(reverse( append(x, cons(y, nil))) = cons(y, reverse( x) )) 

were proved in both proofs. This is a lemma which needs to be proved by induction 

and was proved in Example 5.2 in Chapter 5 earlier. The given theorem can then 

be proved by induction, using this lemma as an axiom. • 
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