
Applications of Unskolemization

TR91-027

June, 1991

Ritu Chadha

,:;;;~

I!
::

I

I
i,

The University of North Carolina at Chapel Hill ·I! ' li

Department of Computer Science I' i I
I

' CB#3175, Sitterson Hall I .as.
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Aflirmative Action Institution.

Applications of Unskolemization

by

Ritu Chadha

A Dissertation submitted to the faculty of The University of North Carolina at

Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in the Department of Computer Science.

Chapel Hill

1991

Approved by:

Advisor : David A. Plaisted

Reader : .Tan F. Prins

Reader : Jennifer L. Welch

@1991

Ritu Chadha

ALL RIGHTS RESERVED

11

RITU CHADHA. Applications of Unskolemization

(Under the direction of David A. Plaisted)

ABSTRACT

This dissertation describes a novel method for deriving logical consequences of

first-order formulas using resolution and unskolemization. A complete unskolem

ization algorithm is given and its properties analyzed. This method is then applied

to a number of different fields, namely program verification, machine learning, and

mathematical induction.

The foremost problem in automating program verification is the difficulty of

mechanizing the generation of inductive assertions for loops in a program. We show

that this problem can be viewed as one of generating logical consequences of the

conditions which are true at the entry to a loop. A complete and sound algorithm for

generating loop invariants in first-order logic is described. All previous techniques

given in the literature for deriving loop invariants are heuristic in nature and are

not complete in any sense.

There are a number of problems associated with machine learning, such as

the diversity of representation languages used and the complexity of learning. We

present a graph-based polynomial-time algorithm for learning from examples which

makes use of the method for generating logical consequences. The representation

language used is first-order logic, which enables the algorithm to be applied in a

large number of fields where first-order logic is the language of choice. The algorithm

is shown to compare favorably with others in the literature, and applications of the

algorithm in a number of fields are demonstrated.

The difficulty of mechanizing mathematical induction in existing theorem pro

vers is due to the inexpressibility of the principle of induction in first-order logic. In

order to handle mathematical induction within the framework of first-order logic, it

is necessary to find an induction schema for each theorem. We describe two methods

for tackling this problem, one of which makes use of our method for generating

logical consequences. Most existing methods for mechanizing induction can only

handle equational theorems. Our approach is more general and is applicable to

equational as well as non-equational theorems.

111

ACKNOWLEDGEMENTS

At the outset, I would like to express my profound gratitude to Professor David

Plaisted for his guidance, suggestions and help throughout the duration of this

research. In spite of his busy schedule, he always found time to discuss my problems

and ideas and was an inexhaustible source of advice and interesting suggestions. I

consider myself very lucky to have had the opportunity to work with him.

I would also like to thank the other members of my committee; Professor Jen

nifer Welch, for going through my thesis so painstakingly and for spending so much

time with me; Professor Don Stanat, for his words of praise and encouragement

and all his valuable advice, which I will cherish; Professor Alan Biermann, for the

trouble he took to travel to Chapel Hill from Duke University each time I scheduled

a committee meeting, and for his advice and encouragement; and Professor Jan

Prins, for his critical appraisal of the program verification work and for his sugges

tions. Thanks are also due to fellow graduate students Heng Chu, Geoff Alexander,

Suresh Rajgopal and Yong-Mi Kim for taking the time to help me with my final
presentation; to Katrina Coble, who always had all the answers to my questions

about the innumerable hurdles and stumbling blocks on the long road to gradua

tion; and to everyone in the department of Computer Science for making the three

years which I spent here so enjoyable.

I am grateful to the National Science Foundation for providing support for this
work under Grant CCR-8802282.

Finally, I would like to thank my parents and sisters for their love and support

and their unfailing confidence in me; and my husband Arindam Datta for being a

constant source of cheer, support, advice, and encouragement, and for his willingness

to endure a long-distance relationship during my stay at Chapel Hill.

iv

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

1.1 A brief introduction to first-order logic

1.1.1 Preliminaries

1.1.2 Syntax

1.1.3 Semantics

1.1.4 Normal forms and related definitions

1.1.5 Proof procedures

1.1.6 Theories

1.2 Outline of this dissertation

II. FINDING LOGICAL CONSEQUENCES USING

UNSKOLEMIZATION . .

2.1 Objective and motivation

2.2 The unskolemization process

2.2.1 Preliminaries

2.2.2 The unskolemization algorithm

2.3 Analysis of the unskolemization algorithm

2.4 Summary

Page

1

2

2

3

5

7

11

14

15

17

17

18

18

22

24

. 45

III. MECHANICAL GENERATION OF LOOP INVARIANTS FOR
PROGRAM VERIFICATION

3.1 Past work

3.2 Floyd's inductive assertions method

3.3 Overview of the method

3.4 Some observations about the programming language model

3.5 Description of algorithm for generating loop invariants

3.6 The iteration algorithm

3.7 The function GET-APPROX

3.8 Proof of completeness of the iteration algorithm

3.9 Proof of soundness of the iteration algorithm

3.10 A refinement

3.11 Some examples

v

. 46

46

57

59

61

62

64

65

70

74

75

76

IV. LEARNING FROM EXAMPLES IN FIRST-ORDER LOGIC 93

4.1 Introduction 93

4.2 Motivation 101

4.3 Role of bias in learning 103

4.4 A method for learning from examples 105
4.4.1 Definitions, notation and examples 105
4.4.2 The learning algorithm 115

4.5 Soundness and complexity 120
4.5.1 Soundness 121
4.5.2 Complexity 121

4.6 Application to program verification 122
4.6.1 Applying the learning algorithm 122

4.6.2 Derivation of loop invariants 123

4. 7 Comparison with other methods 128
4.7.1 Representation language and learning methodology 128
4.7.2 Performance comparison

V. MECHANIZING MATHEMATICAL INDUCTION

5.1 Introduction

5.2 Related work

5.3 Description of the first method

5.3.1 Discovering a well-founded ordering

5.3.2 Using the induction principle

5.3.3 Finding one induction hypothesis

5.3.4 Finding more than one induction hypothesis

5.4 Description of the second method

5.5 Comparison with other methods

VI. CONCLUSION

6.1 Summary

6.2 Extensions

6.2.1 Automatic generation of loop invariants

6.2.2 Learning from examples

6.2.3 Mechanizing mathematical induction

Appendix

References

Vl

131

136

136

137

140
141
142

143
145

145

149

151

151
152
152

153
154

155

179

LIST OF FIGURES

Figure 3.1: Calculating the quotient and remainder of two numbers 52

Figure 3.2: Calculating the g.c.d. of two numbers 77

Figure 3.3: Multiplying two numbers by repeated addition 84

Figure 4.1: Blocks for Example 4.1 106

Figure 4.2: Blocks for Example 4.2 107

Figure 4.3: Clause graph for Example 4.2 109

Figure 4.4: Argument graph for Example 4.2 110

Figure 4.5: Subgraph of clause graph for Example 4.2 112

Figure 4.6: Clause graph for Example 4.3 113

Figure 4.7: Argument graph for Example 4.3 114

Figure 4.8: Flowchart program for Example 4.5 124

Figure 4.9: Flowchart program for Example 4.6 126

Figure 4.10: Three blocks examples 129

Figure A.1: Clause graph for E 1 and E 2 160

Figure A.2: Argument graph for E1 and E2 161

Figure A.3: Subgraph of clause graph for E 1 and E2 162

Figure A.4: Clause graph for E 3 and EX 163

Figure A.5: Argument graph for E 3 and EX 164

Figure A.6: Subgraph of clause graph for E 3 and EX 165

Vll

1. Introduction

This dissertation is concerned with the development of a novel unskolemization

technique and its application to three different fields, namely program verification,

machine learning, and mathematical induction. Unskolemization can be loosely

defined as the process of replacing terms consisting of function constants by exis

tentially quantified variables. An unskolemization algorithm is developed for the

purpose of deriving logical consequences of first-order formulas. It is then shown

how such an algorithm can be put to use in these three areas.

One of the foremost problems in automating program verification is the need

for deriving loop invariants for loops in programs. None of the existing program ver

ifiers can automatically generate loop invariants for program loops, although some

of them do provide limited support in deriving these invariants. Thus automatic

program verification shifts the sometimes onerous task of finding loop invariants

to the user. We describe an algorithm based on the unskolemization algorithm

mentioned above for automatically generating loop invariants. This algorithm is

complete in the sense that if a loop invariant exists for a particular program loop in

a given first-order language relative to a given finite set of first-order axioms, then

the algorithm can find it. Of course, not all theories of interest can be expressed by

a finite collection of first-order axioms.

At present, to make a computer perform a task, one has to write a complete
and correct algorithm for that task, and program the algorithm into the computer.

These activities involve a tedious and time-consuming effort by specially trained

personnel. Current computer systems cannot improve significantly on the basis of

past mistakes, nor can they acquire new abilities by observing and imitating experts.

Machine learning research strives to open the possibility of instructing computers ·

in such new ways. We have developed an algorithm, based on our unskolemization

algorithm, for learning from examples expressed in first-order logic. The algorithm

can be used to make the derivation of loop invariants more efficient, as well as

in other traditional fields like the blocks world, where it can produce common
descriptions of several situations.

The principle of mathematical induction cannot be expressed in first-order

logic; it belongs to the realm of second-order logic, as it involves quantification

over predicates. However, unlike first-order logic, no complete proof systems exist

for second-order logic. To handle mathematical induction within the framework of

first-order logic, it is necessary to find an induction schema for each theorem to

be proved by induction. The scenario becomes more complicated when a theorem

to be proved by induction in turn depends on some other theorem which is to be

proved by induction. We examine these problems and describe solutions, including

one using our unskolemization algorithm.

In the next section, a brief introduction to the subject of first-order logic is

given to equip readers unfamiliar with the subject with sufficient knowledge to read

this dissertation. An outline of the organization of this dissertation is given at the

end of this chapter.

1.1 A brief introduction to first-order logic

1.1.1 Preliminaries

The purpose of this section is to familiarize the reader with some of the con

cepts of first-order logic which are necessary for understanding the remainder of the

material in this document. Many of these definitions are taken from [Manna 74]

and [Chang and Lee 73].

First-order logic is a formal language whose purpose is to symbolize logical

arguments in mathematics. The sentences in this language are called well-formed

formulas (wffs). By giving a meaning to, or "interpreting", the symbols in a wff

we obtain a statement which is either true or false. We can associate many dif

ferent interpretations with the same wff and therefore obtain a class of statements

where each statement is either true or false. We are interested mainly in two very

restricted subclasses of the wffs, those that yield a true statement for every possible

interpretation, and those that yield a false statement for every possible interpreta
tion.

There are some symbols in first-order logic which have fixed meaning :

1. (.3x)A stands for "there exists some x such that A is true".

2. (\fx)A stands for "for every element x, A is true".

3. P II Q stands for "P and Q are true".

4. P V Q stands for "P or Q is true".

5. ~ P stands for "P is not true".

6. P -+ Q stands for "if P is true, then Q IS true"; here P IS called the
antecedent and Q the consequent.

2

For example, the wff

(\fx)((P(x) V Q(x)) 1\ (\fy)(:lz)(G(z, y)))

has the following meaning : for every x, either P(x) or Q(x) (or both) are true,

and for every y, there exists z such that G(z, y) is true.

An interpretation of this wff is given by specifying a non-empty set D and

then assigning a unary predicate (mapping D into {true,false}) toP, a unary

predicate to Q, and a binary predicate (mapping D x D into { true,false}) to G.
For example, if we choose D to be the set N of all natural numbers and we let P(x)
be the predicate "xis even", Q(x) be the predicate "xis odd", and G(x,y) be the

predicate "x > y", then the above wff becomes :

For all x, xis either even or odd, and for every y, there exists z such that z > y.

This statement is easily seen to be true, since all natural numbers are either odd or

even, and the set of natural numbers has no upper bound in the natural numbers.

We say that x, y, and z are quantified in the above wff, since they are preceded

by the quantifiers ":I" or "If".
We now formally define the syntax and semantics of first-order logic.

1.1.2 Syntax

The five different kinds of symbols from which our sentences are constructed
are listed below.

1. Truth symbols: T and F (true and false)

2. Connectives : 1\ (and), V (or), = (equivalence), ~ (not), --> (implica
tion).

3. Quantifiers : If (universal quantifier) and :3 (existential quantifier)
4. Constants :

(a) n-ary predicate constants Pt (i 2: 1, n 2: 0); PP is called a
propositional constant

(b) n-ary function constants ft (i 2: l,n 2: 0); ·f? is called an
individual constant. and is also denoted by a;

5. Variables : individual variables Xi

Using these symbols we recursively define three classes of expressions : terms,
atoms, and well-formed formulas (wffs).

1. Terms:

(a) Each individual constant a; and each individual variable Xi is
a term.

3

(b) If t 1 , t2, ... , tn (n 2:: 1) are terms, then so is f?(tr, t2, ... , tn)·

2. Atoms:

(a) T and Fare atoms.

(b) Each propositional constant PP is an atom.

(c) If t 1 , t2, ... , tn (n 2:: 1) are terms, then Pt(tr, t2, ... , tn) IS an

atom.

3. Well-formed formulas (wffs) :

(a) Each atom is a wff.

(b) If A, Band Care wffs, then so are (~A), (A--> B), (A II B),
(A VB), and (A= B).

(c) If x; is a variable and A is a wff, then ((lfx;)A) and ((3x;)A)

are wffs.

In what follows, several straightforward abbreviations are used. Since the su

perscripts in f?, Pr are used only to indicate the number of arguments, they are

always omitted. The subscripts are also omitted whenever their omission can cause

no confusion. For simplicity we usually use additional symbols : a, b, c, ... for in
dividual constants; f, g, h, ... for function constants; capital letters for predicate

constants (also called predicates); and u, v, w, x, ... for individual variables. Also we
usually omit parentheses whenever their omission can cause no confusion; in partic

ular, we usually write (3x) and (Vx) as 3x and lfx without parentheses. Sometimes

we use brackets [] or braces { } rather than parentheses () for clarity. We assume

that (3x), (lfx), and ~ bind tighter than any other connective, i.e. they are always

applied to the smallest possible scope (atom or parenthesized expression).

For a wff of the form (lfx)A, we say that the occurrence of the variable x in
(lfx) is universally quantified, A is the scope of (lfx), and every occurrence of x in

A is bound by (lfx). Similarly, for (3x)A, we say that the occurrence of the variable

x in (3x) is existentially quantified, A is the scope of (3x), and every occurrence

of x in A is bound by (3x). Every occurrence of a variable in a wff which is not

quantified or bound is said to be a free occurrence. A variable x is said to be a free

variable of a wff if there are free occurrences of x in the wff. ·A wff with no free
variables is said to be closed.

The class of wffs described here are the wffs of first-order logic. One subclass of
these wffs, consisting of the propositional calculus formulas is of special interest and

is obtained by restricting the set of constant symbols to be propositional constants

and the set of variables to be empty. A class of wffs containing first-order logic

wffs, consisting of second-order logic formulas, is obtained by allowing function and

predicate variables in addition to individual variables in wffs.

4

1.1.3 Semantics

We can assign a meaning to each wff by "interpreting" the constant symbols

and free variables in it. By associating different interpretations with a given wff, we

obtain different statements, where each statement is either true or false. In this

section we shall discuss the notion of an interpretation of a wff and the statement

generated by it.

Let D be any nonempty set; then Dn (n ;:::: 1) represents the set of all ordered

n-tuples of elements of D. An n-ary function over D (n ;:::: 1) is a total function

mapping Dn into D. An n-ary predicate over D (n;:::: 1) is a total function mapping

Dn into {true, false}. In the case where n = 0, a 0-ary function over D denotes a

fixed element of D, while a 0-ary predicate over D denotes a fixed truth value (true

or false).

An interpretation I of a wff A is a triple (D, Ic, Iv) where

1. D is a nonempty set which is called the domain of the interpretation.

2. Ic indicates the assignments to the constants of A :

(a) We assign an n-ary function over D to each function constant

ft (n ;:::: 0) which occurs in A. In particular (case n = 0), each

individual constant a; is assigned some element of D.

(b) We assign an n-ary predicate over D to each predicate constant

Pt (n;:::: 0) which occurs in A. In particular (case n = 0), each

propositional constant is assigned the truth value true or false.

3. Iv indicates the assignments to the free variables of A : each free variable

x in A is assigned some element of D.

For a given interpretation I of a wff A, the pair (A, I) indicates a statement

(sometimes called an interpreted wff) which has a truth value true or false. We

obtain this truth value by first applying the assignments of Ic to all the constant

symbols in A and the assignments of Iv to all free occurrences of variable symbols

in A, and then using the meaning (semantics) of the truth symbols, connectives,

operators, and quantifiers as explained below.

1. The meaning of the truth symbols :

The meaning ofT is true and ofF is false.

2. The meaning of connectives :

(a) The connective ~ (not) stands for a unary function mapping {true, false}

into {true, false} as follows :

•true is false

•false is true.

(b) The connectives -t (implication, 1\ (and), V (or), and= (equivalence) stand

5

for binary functions mapping {true, false} x {true, false} into {true, false} as

follows :

true -+ false is false

true -+true, false -+ true, and false -+ false are true

true II true is true

true II false, false II true, and false II false are false

false V false is false

true V true, true V false, and false V true are true

true =true and false= false are true

true = false and false =true are false

3. The meaning of the quantifiers :

We consider wffs of the form (V'x)A and (:lx)A. Since such a wff might have

some free occurrences of variables, we have to consider its value for some fixed

assignment of values to those free occurrences.

(a) The quantifier V' (universal quantifier) in the wff (V'x)A stands for

the words "for all x, A is true". The value of (V'x)A is true, if for all

elements a of D, the value of A (with a assigned to all occurrences of x)

is true; otherwise, the value of (Vx)A is false.

(b) The quantifier :3 (existential quantifier) in the wff (:lx)A stands for

the words "there exists x such that A is true". The value of (:lx)A is

true if there exists an element a of D such that the value of A (with a

assigned to all occurrences of x) is true; otherwise, the value of (:lx)A is

false.

A wff may yield the value true for some interpretations and the value false for

some other interpretations. We are interested mainly in two types of wffs : those

that yield the value true for every possible interpretation, called valid wffs, and

those that yield the value false for every possible interpretation, called unsatisfiable

wffs. In other words :

Definition. A wff A is said to be valid if it yields the value true for every

interpretation. Thus, a wff is non valid if and only if there exists some interpretation

for which A yields the value false; such an interpretation is called a countermodel

for A. A wff A is said to be unsatisfiable if it yields the value false for every

interpretation. A wff is satisfiable if and only if there exists some interpretation

for which A yields the value true; such an interpretation is called a model for A.

There is one important relation between the two notions : a wff A is valid if

and only if ~A is unsatisfiable.

Example 1.1 The wff P V ~P is valid. This is because, in an interpretation of

this wff, the propositional constant P must be assigned either the value true or the

6

value false. If P is assigned the value true, then since P is true, ~P is false, and

therefore by our definition of V, P V ~P is true. On the other hand, if P is assigned

the value false, then ~P is true and therefore P V ~P is again true. Thus the wff

is true in any interpretation and therefore it is valid. •

Example 1.2 The wff P II ~P is unsatisfiable. This is because, in an interpretation

of this wff, the propositional constant P must be assigned either the value true or

the value false. If P is assigned the value true, then since P is true, ~P is false,

and therefore by our definition of II, P II ~P is false. On the other hand, if P

is assigned the value false, then ~P is true and therefore P II ~P is again false.
Thus the wff is false in any interpretation and therefore it is unsatisfiable. •

Definition. Given two wffs A and B, we say A f= B (read "A satisfies B") if and

only if every model for A is a model for B. Clearly, A f= B if and only if A-> B is

valid.

1.1.4 Normal forms and related definitions

In this section, we describe some normal forms of wffs. These forms are called

normal because every wff can be transformed into an equivalent wff having any one

of these forms. The reason for these transformations is to simplify proof procedures,

which will be discussed later.

Definition. A literal is an atom or the negation of an atom. The sign of a literal L

is said to be positive if L is an atom and negative if L is the negation of an atom.

Definition. A conjunction of literals is a wff of the form L1 II L 2 II ... II Ln, where

each L;, 1 ::::; i ::::; n, is a literal.

Definition. A disjunction of literals is a wff of the form L1 V L 2 V ... V Ln, where

each L;, 1 ::::; i ::::; n, is a literal.

Definition. A wff F in the first-order logic is said to be in prenex normal form if

and only if the formula F is in the form

(Q1x1) ... (Qnxn)(M)

where every (Q;x;), 1 ::::; i ::::; n is either (\fx;) or (3x;), and M is a wff containing

no quantifiers. (Q!x!) ... (Qnxn) is called the prefix and Miscalled the matrix of
the formula F.

Some examples of wffs in prenex normal form are :

(\fx)(\fy)(P(x,y) II Q(y)),

(\fx)(\fy)(~P(x, y)-> Q(y)),

(\fx)(\fy)(3z)(Q(x,y)-> R(z)).

7

We present the following theorem without proof :

Theorem 1.1 Every wff can be transformed into an equivalent wff in prenex

normal form. (For proof see [Chang and Lee 73].)

Definition. A wff F in first-order logic is said to be in prenex conjunctive normal

form if and only if F is in prenex normal form, and the matrix M of F has the form

H II F2 11 ... II Fn, n 2:: 1, where each of F1, F2, ... , Fn is a disjunction of literals.

Definition. A wff F in first-order logic is said to be in prenex disjunctive normal

form if and only ifF is in prenex normal form, and the matrix M ofF has the form

F1 V F2 V ... V Fn, n 2:: 1, where each of F1, F2, ... , Fn is a conjunction of literals.

Every wff can be transformed into an equivalent wff in prenex conjunctive

or prenex disjunctive normal form. Procedures for transforming wffs into prenex

conjunctive and disjunctive normal forms can be found in [Chang and Lee 73].

Skolem standard form

We now describe how to transform a wff into a standard form known as the

Skolem standard form. Briefly, the objective of this transformation is to eliminate

the existential quantifiers and existentially quantified variables from a wff, thus

making the wff more readily amenable to mechanical manipulation. Existentially

quantified variables are replaced by new functions (called Skolem functions) in such

a way that the unsatisfiabi!ity of the formula is preserved; in other words, if a wff

F is unsatisfiable, then the Skolem form of F is also unsatisfiable and vice-versa.

The process does not preserve validity, however.

The procedure for transforming a wff into Skolem standard form is given below.

Suppose a wff F is given.

1. Transform F into prenex conjunctive normal form.

2. Eliminate existential quantifiers from the prefix of F as follows : suppose the

prefix ofF is (Q1x1) (Q2x2) ... (Qnxn)· Suppose Qr is an existential quantifier

in this prefix, 1 ::; r ::; n. If no universal quantifier appears before Qr, choose

a new constant c different from other constants occurring in M (where M is the

matrix of F), replace all Xr appearing in M by c, and delete (Qrxr) from the

prefix. If Qr1 , Qr2 , ••• , Qrm are all the universal quantifiers appearing before Qr,

1 ::; TJ < r2 < ... Tm < r, choose a new m-ary function symbol f different from other

function symbols, replace all Xr in lvf by f(Xr, Xr, ... , Xrm), and delete (QrXr)

from the prefix. The intuitive reason for performing this step is that since Xr is an

existentially quantified variable whose value depends on Xr,, Xr 2 , ••• , Xrm, it can be

regarded as a function of the variables x r, , x r, ... , Xrm. After the above process is

applied to all the existential quantifiers in the prefix, the last formula obtained is a

Skolem standard form of the wff F. The constants and functions used to replace the

8

existential variables are called Skolem functionJ or Skolem JymbolB, and the process

of transforming a wff into Skolem standard form is called Skolemization. If we are

given a wff F, then its Skolem standard form is denoted by Sk(F).

Example 1.3 We demonstrate how a formula in prenex conjunctive normal form

is transformed into Skolem standard form. Let

F = (3x)(Vy)(3z)((~P(x,y) V R(x,y,z)) II (Q(x,z) V R(x,y,z))).
Here (3x) is not preceded by any universal quantifier in the prefix of F, there

fore we replace x everywhere by a new constant c; and (3z) is preceded by (l;ly),
therefore we replace z everywhere by a new unary function f(y), obtaining the

Skolem standard form :

Sk(F) = (Vy)((~P(c,y) V R(c,y,J(y))) II (Q(c,J(y)) V R(c,y,J(y)))). •

Definition. A clause is a disjunction of zero or more literals.

Henceforth, we shall regard a set of literals as synonymous with a clause. For

example, P V Q V ~R = {P, Q, ~R}. This notation is consistent with set-theoretical

notation, due to the fact that disjunction is idempotent (i.e. P V P = P), com

mutative, and associative. A clause containing one literal is called a unit clause;

when a clause contains no literals, it is called the empty clause. Since the empty

clause has no literal that can be satisfied by an interpretation, the empty clause

is always false. A set of clauses S is regarded as the conjunction of all clauses in

S, where every variable in S is regarded as universally quantified. The formula

"1;1 F", where F is a wff without quantifiers, denotes the wff F with all variables in

F universally quantified. Under this interpretation, a set of clauses is unsatisfiable,

valid, or satisfiable according as the wff obtained by forming the conjunction of all

the clauses in the set is unsatisfiable, valid, or satisfiable. By the above convention,

the Skolem standard form of a formula can be represented by a set of clauses. For

example, the Skolem standard form obtained in the last example can be written in

clause form as the set

{ { ~P(c, y), R(c, y,J(y))}, { Q(c,J(y)), R(c, y,J(y))} } .
The motivation for transforming a formula into Skolem standard form is made

clear by the following theorem :

Theorem 1.2 Let S be a set of clauses that represents a Skolem standard form

of a wff F. Then F is unsatisfiable if and only if S is unsatisfiable. (For proof see

[Chang and Lee 73].)

In the next section we shall see how the Skolem standard form of a wff is used

in proof procedures. Before doing so, we need a few more definitions.

Definition. A term is called a ground term if it contains no variables.

Definition. A substitution is a finite set of the form {tJ/vt, ... , tn/vn}, where

9

every Vi is a variable, every ti is a term different from Vi, and all the ViS are distinct.

When t 1 , ••• , tn are ground terms, the substitution is called a ground substitution.

The substitution that consists of no elements is called the empty substitution and

is denoted by e. We shall use lower case Greek letters to represent substitutions.

Example 1.4 The following sets are substitutions :

{f(a)/ x, z jy, w / z }, {f(z)/ x, g(z)/y, g(a)/ z }. •

Definition. Let 8 = {tl/v1, ... ,tn/vn} be a substitution and E be an expression.

Then E8 is an expression obtained from E by simultaneously replacing each occur

rence of the variable v;, 1 ::; i ::; n, in E by the term t;. E8 is called an instance of

E.

Example 1.5 Let 8 = {g(a)/x, bfy,f(c)/ z} and E = P(x, y, z). Then E8 = P(g(a),

b, f(c)). •

Definition. Let 8 = {tt/xJ, ... ,tn/xn} and (j = {si/yJ, ... ,sm/Ym} be two sub
stitutions. Then the composition of 8 and (j is the substitution, denoted by 8 o (T,

that is obtained from the set

{ t1(T / XJ, ... , tn(T / Xn, sl/yJ, ... , Sm/Ym}

by deleting any element ti(j/Xj for which tj(j = Xj, and any element s;/y; such that

Yi is among {x1,x2, ... , Xn }.

Example 1.6 Let 8 = {w/x,f(u)/y,f(c)/z} and (j = {xjw,bju,a/z}.

Then Wij = x,!(u)(j = f(b),j(c)(j = f(c).

Therefore 8 o (j = {f(b)/y ,!(c)/ z, x /w, b/u }.

Note that the elements W(T/x (i.e. x/x) and a/z were deleted from the above

set, according to the definition of composition given above.

Definition. Given two wffs A and B, A and B are variants of each other if and

only if there exist substitutions 8, (j such that A8 = B and A = B(j.

Clearly, if wffs A and B are variants, then they are equivalent to each other.

In what follows, we shall often have to unify, or match, two or more expressions.

That is, we have to find a substitution that can make several expressions identical.

Therefore, we now consider the unification of expressions.

Definition. A substitution (j is called a unifier for a set of expressions {E1 , E 2 ,

... , Ek} if and only if E11j = E 2(j = ... = Ek(j· The set {E1,E2 , ••• ,Ek} is said to

be unifiable if there is a unifier for it.

Example 1.7 The set { ~Q(f(a), g(y)), ~Q(x, g(b))} is unifiable since the substitu

tion 8 = {f(a)/x, b/y} is a unifier for the set. •

Definition. A unifier (j for a set of expressions {E1 , E 2 , ••• , Ek} is a most general

unifier if and only if for each unifier (J for the set there is a substitution.\ such that

8=(To.\.

10

A large number of algorithms for finding the most general unifier of a set of

expressions have been developed in the past. We will not present any unification

algorithms here but instead refer the interested reader to the literature. Any intro

ductory theorem-proving text such as [Chang and Lee 73] or [Loveland 78] contains

some elementary unification algorithms.

1.1.5 Proof procedures

In this section we shall discuss proof procedures for wffs of first-order logic.

Leibniz (1646-1716) was the first to search for a general decision procedure for

verifying the validity or unsatisfiability of a formula. Peano and Hilbert continued

this search, and finally Church and Turing were able to prove independently in

1936 that there is no general decision procedure to verify the validity of formulas of
the first-order logic. However, there are proof procedures which can verify that a

formula is valid if it is indeed valid. For invalid formulas, these procedures cannot

be guaranteed to terminate. Given the result of Church and Turing, this is the best

that we can hope to achieve.

A very important approach to mechanical theorem proving was given by Her

brand in 1930. Recall that by definition, a valid wff is a wff that is true under all

interpretations. Her brand developed an algorithm to find an interpretation that can

falsify a given wff. However, if the given wff is indeed valid, no such interpretation

can exist and his algorithm will halt after a finite number of trials. Herbrand's

theorem is the basis for many modern theorem-proving procedures, including reso

lution. A complete discussion and proof of Her brand's theorem is beyond the scope

of this work; we will only state the theorem and refer the reader to [Chang and Lee

73] for a proof.

Definition. Let S be a set of clauses, and let Ho be the set of function constants

appearing in S. If no constant appears in S, then H0 is to consist of a single

constant, say Ho ={a}. Fori= 0, 1, 2, ... ,let Hi+ I be the union of H; and the set

of all terms of the form fn(t 1 , tz, ... , tn) for all n-ary functions fn occurring in S,

where tj, 1 :5 j :5 n, are members of the set H;. Then each H; is called the i-level

constant set of S, and Hocn or lim;-00H;, is called the Herbrand universe of S.

Definition. A ground instance of a clause C of a set S of clauses is a clause obtained

by replacing all variables in C by members of the Herbrand universe of S. A clause

which does not contain any variables is called a ground clause.

Her brand's Theorem. A set S of clauses is unsatisfiable if and only if there is

a finite unsatisfiable subset S' of ground instances of clauses of S. (For proof see

[Chang and Lee 73].)

11

We will now describe the resolution principle for proving the unsatisfiability of

a set of clauses. The method was discovered in 1965 by Robinson (Robinson 65]

and is a landmark in the history of theorem-proving. The resolution principle is

an inference rule that generates resolvents from a set of clauses (defined below).

It is more efficient than earlier proof procedures such as the Davis and Putnam

procedure. The resolution principle is really a refutation procedure, in that it is

used for proving that a wff is unsatisfiable, rather than proving that a wff is valid.

However, as stated earlier, a wff F is valid if and only if -,F is unsatisfiable. Thus

a refutation procedure can be used as a validity-proving procedure.

Suppose therefore that we are given a wff F which must be shown to be valid.

We first negate F; we must now show that -,F is unsatisfiable. -,F is then converted

into Skolem standard form and written as a set of clauses S. Recall that this

conversion preserves unsatisfiability, i.e. -,F is unsatisfiable if and only if its Skolem

standard form S is unsatisfiable. S is then shown to be unsatisfiable using the

resolution procedure, which is described below.

Definition. If two or more literals of a clause C have a most general unifier a,

then Ca is called a factor of C.

Definition. Let C1 and C2 be two clauses (called parent clauses) with no variables

in common. Let L1 and L2 be two literals in C1 and C2 respectively. If L1 and -,£2

have a most general unifier a, then the clause

(Cw- { LJ}a) U (Cza - { Lz}a)
is called a binary resolvent of C1 and C2 • The literals L 1 and L2 are called the

literals resolved upon.

Example 1.8 Let C1 = {P(f(x)),Q(x)}, Cz = {-,P(j(a)),R(y)}. Choose L1 =
P(f(x)) and Lz = -,P(f(a)). Since -,£2 = P(f(a)), L 1 and L 2 have the most

general unifier a = {a/ x} (this can easily be seen to be the only unifier of L 1 and

Lz). Therefore,

(C1 a - L1 a) u (Cza - Lza)

= ({ P(f(a)), Q(a)} - { P(f(a))}) U ({ -,p(f(a)), R(y)} - { -,p(f(a))})

= {Q(a)} U {R(y)}

= {Q(a),R(y)}.

Thus {Q(a),R(y)} is a binary resolvent of C1 and C2 • P(f(x)) and -,P(f(a))
are the literals resolved upon. •

Definition. A resolvent of (parent) clauses C1 and C2 is one of the following

binary resolvents :

1. a binary resolvent of C1 and C2 ,

2. a binary resolvent of C1 and a factor of C 2 ,

12

3. a binary resolvent of a factor of C1 and Cz,
4. a binary resolvent of a factor of C1 and a factor of Cz.

Resolution is used for proving that a given set S of clauses is unsatisfiable.

The resolution procedure consists of generating resolvents of a set S of clauses,

then generating resolvents of S and these resolvents, and so on, until the empty

clause is generated. A clause C is said to be generated by resolution from S if and

only if it can be generated by a sequence of resolutions from S; in this case, we

writeS 1- C (read "S derives C"). The set of all clauses which can be generated by

resolution from S is denoted by Res(S).

Definition. A wff B is said to be a logical consequence of a wff A if and only if

A --> B is valid; or in other words, B is a logical consequence of a wff A if and only

if every model for A is a model for B.

Theorem 1.3 A resolvent R of two clauses C1 and C2 is a logical consequence of

C1 and C2 • (For proof see [Chang and Lee 73].) In other words, (C1 II C2 1- R)-->
(C1II Cz f= R).

This theorem establishes the soundness of the resolution principle. To see this,

note that if the empty clause can be derived from a set S of clauses by resolution,

then by the previous theorem the empty clause is a logical consequence of S. How

ever, the empty clause represents the value false (since it cannot be satisfied by

any interpretation). This means that S --> false is valid for all interpretations of

S, which in turn means that Sis unsatisfiable under all interpretations.

Apart from the soundness of resolution, we also have the following result :

Theorem 1.4 Resolution is complete; in other words, a set S of clauses is un

satisfiable only if there is a deduction of the empty clause from S. (For proof see

[Chang and Lee 73].) In other words, (Sf= { }) --> (S 1- { }).
This establishes that resolution is a sound and complete refutation procedure,

or in other words, if S is a set of clauses, then (S f= { }) = (S 1- { }).

Example 1.9 Let S = {{P, Q}, { ~P, Q}, {P, ~Q}, { ~P, ~Q}}. We show that Sis

unsatisfiable by generating the empty clause from S by resolution as follows :

1. {Q}
2. {~Q}

3. {}

from clauses { P, Q}, { ~P, Q}
from clauses {P,~Q}, {~P,~Q}

from clauses 1 and 2.

Clause 3 is the empty clause, which establishes that the set S is unsatisfiable. •

Thus we have seen that the empty clause can be generated from an unsatisfiable

set of clauses by resolution. We now introduce paramodulation, which is essentially

an inference rule for equality. In the case where a set of clauses includes the equality

13

relation under the usual interpretation of equality, paramodulation and resolution

will always generate the empty clause from a set of clauses which are unsatisfiable

under the usual equality axioms. The formal definition of paramodulation and the

equality axioms are given below.

Equality axioms : Let S be a set of clauses. Then the set of equality axioms for

S contains the following clauses :

1. Vx(x = x)

2. VxVy(x i= y V y = x)
3. VxVyVz(xj=yVyj=zVx=z)
4. Xj i= Xo v~P(x1, ... , Xj, ... , Xn)V P(x1, ... , xo, ... , Xn) for j = 1, ... , n, for every

n-ary predicate symbol P occurring in the given set of clauses S

5. Xj i= Xo V~j(XJ, ... ,Xj, ... ,xn) V j(xJ, ... ,xo, ... ,xn) for j = 1, ... ,n, for every
n-ary function symbol f occurring in the given set of clauses S.

Definition. Let C1 and C2 be two clauses (called parent clauses) with no variables

in common. If C1 is L[t] V c;, and C2 is r = s V q, where L[t] is a literal containing

the term t and c; and c~ are clauses, and if t and r have a most general unifier a,

then the clause

La[sa] U Cfa U qa,
where La[sa] denotes the result obtained by replacing one single occurrence of ta
in La by sa, is called a binary paramod·ulant of C1 and C2 •

Definition. A paramodulant of clauses C1 and C2 is one of the following binary

paramodulants :

1. a binary paramodulant of C 1 and C2 ,

2. a binary paramodulant of cl and a factor of c2,
3. a binary paramodulant of a factor of cl and c2,
4. a binary paramodulant of a factor of cl and a factor of c2.

1.1.6 Theories

We have so far been discussing wffs of first-order logic and methods of deter

mining their validity. We are often interested in wffs which are valid in some specific

theory, such as number theory or group theory. We make these concepts precise

below:

Definition. A non-empty set T of wffs of first-order logic is called a theory if and

only if

(i) There exists at least one model for T

14

(ii) All logical consequences ofT are already in T.

The above definition provides a convenient way of creating a theory : take a

set of wffs with a model and form the closure under logical consequence.

Theorem 1.5 For every interpretation I, the set Th(I) of all wffs valid in I is a

theory.

Proof: We need to show that conditions (i) and (ii) of the above definition are

satisfied by Th(I). Condition (i) is trivially satisfied, since the interpretation I is a

model for Th(I). Now consider any logical consequence L of Th(I). Every model

of Th(I) is a model for L, by definition; therefore in particular, I is a model for L.
Hence Lis valid in I, and therefore L belongs to Th(I), by definition of Th(I); this

proves condition (ii). •

Definition. A theory T is said to be axiomatizable if there exists a decidable set

D <;;; T such that T is exactly the set of all wffs implied by D. The wffs of D are

called the axioms of the theory T.

Note. Henceforth we will use the term "formula" to mean "well-formed formula",

unless otherwise indicated.

1.2 Outline of this dissertation

In the next chapter, we show how logical consequences of first-order formulas

can be derived by resolution and unskolemization. An unskolemization algorithm

for replacing Skolem and sometimes non-Skolem functions by existentially quantified

variables is presented and its properties analyzed. A number of examples are given

to illustrate the working of the algorithm.

Chapter 3 introduces the topic of program verification and shows how the

unskolemization algorithm of Chapter 2 can be used in conjunction with an iterative

algorithm to mechanically generate loop invariants for the purpose of verifying the

partial correctness of a program. A detailed synopsis of past work in the area of

program verification is included in this chapter.

In Chapter 4, we survey some of the past work in the field of machine learning,

and show how the theory developed in Chapter 2 can be applied to the subject

of machine learning from positive examples in first-order logic. A learning algo

rithm is given which makes use of the unskolemization algorithm of Chapter 2. We

demonstrate how the learning algorithm can be used to make the generation of loop

invariants in Chapter 3 more efficient. The algorithm is analyzed and compared

with other work in the same field.

15

Finally, in Chapter 5, we demonstrate the application of our method for gen

erating logical consequences of first-order formulas to the mechanization of math

ematical induction. vVe examine different ways of automatically generating the

inductive hypotheses for proving theorems by induction. We describe two complete

methods for generating the inductive hypotheses for certain types of theorems. The

first is based on our resolution and unskolemization method. The second method is

based on the fact that the proof of a theorem which requires inductive hypotheses

for its proof can be deduced by examining proofs of different ground instances of

the theorem.

Chapter 6 concludes this dissertation and discusses the relevance of this re

search, as well as directions for future work.

16

2. Finding logical consequences using unskolem
ization

2.1 Objective and motivation

In this chapter, we will develop a method for finding logical consequences of

first-order formulas. The method is based on resolution and on an unskolemization

algorithm. Suppose we are given a first-order formula H, and we want to find a

certain consequence W of H, which is unknown. It may not be possible to derive

W from H by resolution, without using tautologies and unskolemization, as will

be shown in Section 2.2.1. Since the use of tautologies is undesirable (due to the

enormous increase in search space that it creates), we will not attempt to derive W

from H, but instead will try to derive a formula F with the property that

H-> F-> W.
However, if this is the only constraint on F, then why not take F = H?

One obvious reason is that H may be infinite. Also, we want F to be as "close" as

possible toW, in a certain sense. To define the concept of "closeness", we will define

a relation "more general than" on first-order formulas and will derive a formula F
from H such that H -> F-> W and such that F is "more general than" W. The

relation "more general than" is defined in such a way that the number of first-order

formulas F which satisfy a given syntactic condition and are more general than a

given first-order formula W is finite up to variants. Thus we can only derive a finite
number of formulas F satisfying both the following conditions :

(i) H-> F-> W
(ii) F is more general than W.

Of course, if H is more general than W, then we could get F =H. We will

show that this method is complete, i.e. that for any two formulas H and W, it is

possible to derive F from H by our method such that (i) and (ii) above hold. The

algorithms given will involve some nondeterminism.

Let H, W be first-order formulas such that H -> W. In Section 2.2 we will

present an algorithm for unskolemizing a set of clauses 'D derived from Sk(H). The

properties of the unskolemization algorithm will be discussed in Section 2.3.

Throughout this section, we will keep illustrating the concepts introduced with

the help of an example, which will be taken through the section to demonstrate the

working of the theory. The formulas used in the example will be :

H = Vx'Vy'Vz'Vw((Q(y) V L(b, y)) II ~Q(g(a)) II L(g(a), a) II (R(x, g(a)) V ~P(x,

g(a))) II(~R(w,z) V ~D(w,z))

W = 3u'Vv(L(b, u) II L(u, a) II (~P(v, u) V ~D(v, u) V M(a))).

It can be proved that H-+ W. Now, W is given here only to show that we will

ultimately be able to derive a formula F such that H -+ F -+ W and such that F
is more general than W if we make the correct choices whenever nondeterminism is

involved. In actual practice, W will be unknown, and the choices which we will make

in the examples based on properties of W will have to be made nondeterministically.

2.2 The unskolemization process

2.2.1 Preliminaries

Unskolemization has been defined by some authors as the process of eliminating

Skolem functions from a formula without quantifiers, replacing them with new ex

istentially quantified variables, and transforming the resulting formula into a closed

formula with quantifiers. Some unskolemization algorithms have been developed

in the past. McCune [McCune 88] presents an algorithm to solve the following

problem : given a set S of clauses and a set F of constant and function symbols

that occur in the clauses of S, obtain a fully quantified (closed) formula S' from

S by replacing expressions starting with symbols in F with existentially quanti

fied variables. S' is unsatisfiable if and only if S is unsatisfiable. The algorithm

which is presented is sound but not complete. The following approach is used by

McCune for handling the case in which a function symbol to be eliminated has a

non-variable argument or more than one occurrence of an argument. Rewrite the

clause, replacing the non-variable argument, say t, with a new variable, say x; then

append a new literal x # t to the clause. For the unskolemization to be successful,

every occurrence of a Skolem symbol to be eliminated must have the same sequence

of arguments. Also, for m :::; n, if f is an m-ary function symbol and g is an n-ary

function symbol, the arguments off must be a subset of the arguments of g. Thus

the unskolemization algorithm is not complete since it fails on any set of clauses

not satisfying the above criteria.

Cox and Pietrzykowski [Cox and Pietrzykowski 84] present an algorithm for

unskolemization, but their algorithm is applicable only to literals, and their goal

18

is to produce a set of quantified atomic formulas, each of which conflicts with the

given literal.

Before plunging into the details of the unskolemization process, we should re

mark that the term "unskolemization" is used rather loosely here. As mentioned

above, other authors ([Cox and Pietrzykowski 84], [McCune 88]) regard unskolem

ization as the process of eliminating Skolem functions from a formula without quan

tifiers, replacing them with new existentially quantified variables, and transforming

the resulting formula into a closed formula with quantifiers. We will expand the

meaning of unskolemization slightly. In our definition, ordinary function symbols

can also be "unskolemized" by treating them as if they were Skolem functions. Thus

a function symbol may be replaced by an existentially quantified variable during

the unskolemization process. To illustrate this, suppose we want to unskolemize the

formula

P(f(x)) V Q(g(a),x)
where f and a are (non-Skolem) function symbols, and suppose we want to treat f
and a as if they were Skolem functions. The resulting formula would be

:lzVx:ly(P(y) V Q(g(z),x)).

Note that if we Skolemize :lzVx:ly(P(y) V Q(g(z),x)), we will get back the

original formula (up to names of Skolem functions). In practice, the situation may

be a little more complicated as the formula being unskolemized may not be the

Skolemized form of any formula. The given algorithm shows how to cope with such

situations.

Also, unskolemization as presented here does not necessarily preserve unsatis

fiability. For example, the formula

:lx(succ(x) = 0)

is false under the usual interpretation of "succ'' as the successor function over nat

ural numbers; however, if we unskolemize this function we get the formula

:ly(y = 0)

which is true. The properties of our unskolemization algorithm will be detailed in

Section 2.3.

We motivate the development of the unskolemization algorithm by the following

simple example. Let A be a formula which implies some formula B, which is un

known. Since A ---> B, A II ~B is unsatisfiable; therefore S k(A II ~B) is unsatisfiable

(since Skolemization preserves unsatisfiability), i.e. S k(A) IISk(~B) is unsatisfiable.

Thus some set of clauses 'D can be derived from A such that 'D IISk(~B) is unsatis

fiable. It may happen that some literals in 'Dare instances of some literals in B. For

example, suppose that B = :lxP(x), and suppose A= P(a), where a is a ground

19

term. Clearly A-+ B. Now, in order to derive B from the formula A= P(a), the

ground term a has to be "unskolemized" by replacing a by an existential quantifier.

If this is done for P(a), the resulting formula will be 3xP(x).
The above example is very simple and straightforward; in actual practice, there

may be many function symbols in A, some of which we may need to replace by

existential quantifiers and some which should not be thus replaced. This, then,

explains why our unskolemization algorithm is nondeterministic.

Consider an unknown formula B and some formula A which implies B. As

explained above, Sk(A) 1\ Sk(~B) is unsatisfiable. Therefore by the completeness

of resolution, we can derive the empty clause from Sk(A) 1\ Sk(~B). Now, B is

unknown, and we want to derive it from Sk(A). It may not be possible to derive

B from Sk(A) without using tautologies or unskolemization, as is demonstrated by

the two following examples :

(i) Suppose A= P, B = P V Q V R.
Clearly A-+ B.

But the only way to derive B from A by resolution is by resolving A with the

tautology { ~P, P, Q, R}. However, the need for resolving with tautologies would

increase the size of the search space tremendously, since there exist an infinite

number of such tautologies. Thus the use of tautologies is best avoided.

(ii) Suppose A= P(a), B = 3xP(x). Then B (or even Sk(B)) cannot be derived

from A by resolution. Obtaining B from A requires replacing "a" by an existentially

quantified variable, as was just shown above.

In conclusion, although B can be derived by resolution and unskolemization

from Sk(A) (by the completeness of the resolution principle), such a derivation

entails the use of tautologies during the resolution process. Also, it is unclear how

to handle the unskolemization without a formal algorithm for doing so. This is best

illustrated by an example :

Suppose A= lfxlfzP(x,f(a,x),z,g(z)), B = lfx3ylfz3wP(x,y,z,w).

Clearly A -+ B. To obtain B from A, we need to replace the terms f(a, x) and

g(z) in A by existentially quantified variables. Suppose J(a,x) and g(z) are replaced

by existentially quantified variables x 1 and z1 respectively. The question remains

about where to place the existential quantifiers 3x1 and 3z1 in the quantifier string

for A. Since f(a,x) was replaced by x1, 3x1 should come after lfx (since a is a

ground term, its presence as an argument of f is inconsequential); similarly, since

g(z) was replaced by z1, 3z1 should come after If z. There are thus two choices for

the unskolemized version of A, namely

lfx3xllfz3zlP(x,x1 ,z,z1), and

20

Vz3z1 \;lx3x1P(x, x 1, z, z1),

of which the former is the correct choice in this case.

In order to address the above issues formally, we present an unskolemization

algorithm. Suppose we have a formula H which implies W, where W is an unknown

formula that we want to find. We shall show how to unskolemize a set of clauses

V to give a family of formulas IC. Briefly, the objective of unskolemizing V is to

replace function symbols of V which do not occur in W by existentially quantified

variables, where V is a set of clauses derived from S k(H) by resolution. That is, if

for some literal Djk in V, an argument d; of Djk is a function symbol which does

not appear in W, then we will unskolemize the function symbol of d; during the

unskolemization of the set of clauses V to get a family of new formulas IC. Thus any

F E IC will contain a new existentially quantified variable in place of d;. Since W
is unknown, this procedure will have to be carried out nondeterministically. This

process will make the unskolemized formula "more general" than W (this term will

be defined later).

We will unskolemize V according to an algorithm given in the next section and

obtain a family of formulas £. For each formula F E IC, where JC is a subset of C
to be defined later, we will show that F is "more general" than W according to a

definition given later. Also, we show that there exists F E IC such that F -+ W. We

also show that H-+ F for all FE £;hence H-+ F -+ W. Finally, we will define a

relation "::S" and show that F ::S W, and that { F I F ::S W} is finite up to variants

under certain syntactic constraints.

Note. The following algorithm makes use of the guarded command for conditional

statements [Gries 81]. Briefly, the general form of a conditional statement is

if B1 _, s1

[] B2 _, s2

where n :0:: 0 and each B; --+ S; is a guarded command. Each S; can be any

statement. _The command is executed as follows. First, if any guard B; is not

well-defined in the state in which execution begins, abortion may occur. Second, if
none of the guards is true, then abortion occurs; and finally, if at least one guard

is true, then one guarded command B; -+ S; with true guard B; is chosen and

S; executed. Note that if more than one guard is true, then one of the guarded

commands B; -+ S; with true guard B; is chosen arbitrarily and S; is executed.

Thus the execution of such a statement can be nondeterministic. Notice that in

21

steps 2 and 3 of the following algorithm, two of the guards are identical. This

serves as a convenient way of representing nondeterminism; the meaning here is
that if the two identical guards are true in one of the steps, then one of the actions

specified will be performed and this action will be picked arbitrarily from the two

available actions.

2.2.2 The unskolemization algorithm

INPUT :A set "CLAUSES" of clauses to be unskolemized.

Step 1. Make ik copies of every clause Ck of CLAUSES, where ik is some in-
teger (chosen nondeterministically), and rename variables in all clauses so that

no two clauses have any variable in common. Call the resulting set of clauses

MULTIPLE_CLAUSES.
Comment : In actual practice, for each k, we can try setting ik to 1, then to 2,
then to 3, and so on. Eventually ik will become large enough. This is because it

is possible to bound ik by the number of resolutions performed when deriving the

empty clause from Sk(H A ~W). The reason for this is demonstrated in the proof

of Theorem 2.1.

Step 2. For every literal Lin every clause of NIULTIPLE_CLAUSES, process

the arguments of Las follows. Suppose L = ±P(d1 ,d2, ... ,d8) (where± designates

the sign of the literal L). For i = 1 to s do

if (d; is a term beginning with a Skolem function symbol)-->

replace d; by X <- d;, for some variable X not occurring anywhere

else in any other clause;

[] (d; is a term beginning with a non-Skolem function symbol) -->

replace d; by X <- d;, for some variable X not occurring anywhere

else in any other clause;

[] (d; is a term beginning with a non-Skolem function symbol) -->

skip;

[] (d; is a term which begins with l).either a Skolem function symbol nor a

non-Skolem function symbol) -->

skip

fi

Call the resulting formula MARK.

Step 3. For every pair of marked arguments "X <-- a", "Y <-- (3" in }.;[ARK do

if a, f3 are unifiable --+

replace all occurrences of X and Y by a new variable Z;

22

[] a, f3 are unifiable -->

skip;

[] a, f3 are not unifiable -->

skip

fi

If any two clauses become identical, drop one of them.

Step 4. For every argument of the form "X <-- f(vb vz, ... , vr)" in MARK (where

r?:1)do

replace "X<-- f(vl,vz, ... ,vr)" by "X<-- f(yl,Yz, ... ,yn)", where Yb···,Yn are

all the distinct variables occurring in v1, vz, ... , Vr.

Comment : Note that we are not changing the arity of function symbols here.

Dropping arguments is done purely for computational purposes and has no bearing

on the arity of the function.

Step 5. Add universal quantifiers for all the free variables at the head of the

formula.

Step 6. Unskolemize the remaining marked arguments of the formula as follows.

Let A and C be two sets which are initially empty. Collect together all marked

arguments with the same variable on the left-hand side of the "<--" sign. Suppose

these are

X+-- G't, X f- 0:'2, ... , X+- G:'n•

Let Yl,yz, ... ,yr be all the variables occurring in a1,az, ... ,an. Then replace

"x <-- a;", for 1 ~ i ~ n, everywhere by a new variable, say z, and add the r ordered

pairs (y;, z) to C. If r = 0, then add z to the set A.

Comment : C is the set of constraints on the ordering of new existential quantifiers,

relative to universal quantifiers which were introduced in Step 5. The presence of an

ordered pair (y;, z) inC signifies that ":lz" must come after "Vy;" in the quantifier

string of the unskolemized formula. A is the set of existentially quantified variables

which do not depend on any other variables and whose existential quantifiers can

precede all the universal quantifiers of the unskolemized formula.

Step 7. Complete the quantifier string of the unskolemized formula. From Step 5,

we already have a partially constructed quantifier string. We complete this string

using the sets A and C as follows :

(i) Add ":lx" at the head of the partially completed quantifier string for every

x E A (in any order).

(ii) Gather all ordered pairs which have the same second component into groups

and process each group as follows. Suppose the r ordered pairs (y;, z), 1 ~ i ~ r

occur in one of these groups. Then add ":lz" to the quantifier string so that ":lz"

23

comes after "Vy;" for every i, 1 :::; i :::; r, rearranging the string as specified below if

necessary.
While performing the above steps, it is allowed to rearrange the order of any

string of consecutive universal quantifiers and of any string of consecutive existential

quantifiers, if desired. We will rearrange this order so that the resulting formula is

as strong as possible. Rearrange these so that the constraints are satisfied optimally.

By "optimally" we mean that iffor example the r ordered pairs (y;, z), 1 :::; i:::; rare

all the ordered pairs which have the same second component z in C, then ":lz" is

added to the quantifier string so that ":lz" comes after "Vy;" for every i, 1 :::; i :::; r;
in addition, ":lz" must come after as few other universal quantifiers as possible. In

other words, ":lz" must be placed as much to the front of the quantifier string as

possible without violating the constraints of C. In case there is a choice involved,

e.g. if C = { (x, y), (z, w)}, then there are two possible "optimal" quantifier strings,

viz. "Vx3yVz:lw" and "Vz:lwVx:ly". In other words, there may be more than one

way of rearranging the quantifiers optimally. •

Notes

1. Since the ordered pairs of C can be processed in any order, it is possible

to obtain many different quantifier strings by using the above method. However,

the relative order of the universal and existential quantifiers obtained at each step

cannot be altered.

2. The set C imposes a partial order on the existential and universal quantifiers

of the formula; however, any first-order formula must have a total ordering on its
existential and universal quantifiers. Many total orders may be constructed which

satisfy the partial order imposed by the set C. We choose the orders which will

make the resulting formula as strong as possible.

It is thus possible to obtain many different formulas when unskolemizing a

given set of clauses; in other words, given a set of clauses A, unsk(A) obtained by

using this algorithm is not necessarily a singleton, where unsk(A) denotes the set

of formulas obtained by unskolemizing A. We will however choose one such formula

F such that H --> F --> W. The proof that F exists is given in the next section.

Also, if some set of clauses A is unskolemized, then Sk(unsk(A)) is not necessarily

equal to A.

2.3 Analysis of the unskolemization algorithm

In this section, a number of theorems are proved and certain concepts are

defined. The theorems will serve to characterize the properties of formulas obtained

24

by unskolemizing a set of clauses using the unskolemization algorithm of the previous

section. They will also be used to prove the soundness and completeness of an

algorithm for deriving loop invariants in Chapter 3 and the soundness of a learning

algorithm in Chapter 4.

Lemma 2.1 Let H, vV be two first-order formulas such that H _, W. Then there

exists a set T' of ground instances of clauses ofT= Sk(~W), and there exists a set

of clauses 1) derivable by resolution from S = Sk(H) such that for each clause D;

of ~T', there exists a clause n: of 1) such that n: subsumes D; (i.e. there exists a

substitution B; such that n:e, ~ D;).

Proof : Let S = Sk(H), T = Sk(~W). Since H -> W, we know that S II T

is unsatisfiable. Therefore by Herbrand's theorem, there exists a set T' of clauses

which are ground instances of clauses of T such that S II T' is unsatisfiable; hence

H -> ~T'. Express ~T' in conjunctive normal form as

~T' = D1 II D2 II ... II Dn, say, where each D; is a disjunction of literals.

Since H-> D1 II D2 II ... II Dn, we have

H -> D; for all i, 1 ::0 i ::0 n.

Here, D; is a ground clause and H -> D;, therefore S II ~D; is unsatisfiable

and the empty clause can be derived by resolution from S II ~D;. Now, ~D; is

a set of unit clauses. First perform any required resolutions among clauses of S.
Then use the clauses from ~D;. Eacli resolution using a clause from ~D; has for

effect the removal of a literal from some clause from Res(S), along with a possible

instantiation. Therefore clearly we need to resolve the unit clauses of ~D; only

against one clause from Res(S). But then this clause must subsumeD;. Therefore

for each D;, there exists n: E Res(S), where Res(S) is the set of all possible

resolvents of S, such that n: subsumes D; (i.e. there exists a substitution B; such

that n:e; ~ D;). •

Lemma 2.2 Using the notation of Lemma 2.1, (D~ II D~ II ... II D~) II T 1s
unsatisfiable.

Proof: Let 1) = D~ II D~ II ... II D~, ~T' = D 1 II D2 II ... II Dn. From Lemma 2.1,

there exist substitutions 81,82, ... , Bn such that

n:e; ~ D; for each i.

Therefore

n:e; -+ D; for all i (regarding free variables as universally quantified).

Hence

(D~ 81 II D~B2 II ... II D~Bn)-+ D1 II D2 II ... II Dn.
Therefore

(D~ 81 II D~B2 II ... II D~f1n) II ~(D! II Dz II ... II Dn) is unsatisfiable, therefore

25

(D~ 1\ D~ 1\ ••• 1\ D~) 1\ ..., (Dr 1\ D2 1\ .•. 1\ Dn) is also unsatisfiable (since the

D;e;'s are instances of the D;'s).
i.e. (D~ 1\ D~ 1\ ••. 1\ D~) 1\ T' is unsatisfiable.

Therefore (D~ 1\ D~ 1\ ... 1\ D~) 1\ Tis unsatisfiable (since T implies T')
i.e. 1) 1\ T is unsatisfiable. •

Example 2.1 Using the formulas H and W given at the end of Section 2.1, we

have

Sk(H) = {{Q(y),L(b,y)},{...,Q(g(a))},{L(g(a),a)},{R(x,g(a)),...,P(x,g(a))}, {...,
R(w,z), ...,D(w,z)}}
...,W = '<iu3v((...,L(b,u) V -,L(u,a) V P(v,u)) 1\ (...,L(b,u) V ...,L(u,a) V D(v,u)) 1\

(...,L(b,u) V ...,L(u,a) V ...,M(a)))
T = Sk(...,W) = {{...,L(b,u),...,L(u,a),P(f(u),u)}, {...,L(b,u),...,L(u,a),D(f(u),u)},
{ ...,L(b, u), ...,L(u, a), ...,M(a)}}.

In S k(..., W), f is a Skolem function replacing the existentially quantified vari

able "v" of..., W. A set T' of clauses which are ground instances of clauses ofT such

that S 1\ T' is unsatisfiable is :

T' = {{...,L(b,g(a)),...,L(g(a),a),P(f(g(a)),g(a))},
{ ...,L(b, g(a)), ...,L(g(a), a), D(f(g(a)), g(a))}}.

Therefore ...,T' = { {L(b,g(a))}, {L(g(a),a)}, {...,P(f(g(a)),g(a)), ...,D(f(g(a)),
g(a))} }.
Write

Dr = L(b,g(a)),
D2 = L(g(a),a),
D3 = ...,P(f(g(a)),g(a)) V ...,D(!(g(a)),g(a));

then ...,T' =Dr 1\ D2 1\ D3. Also,

H-+ Dr,H-+ D2,H-+ D3.

The five clauses of Sk(H) are listed below :

1. {Q(y),L(b,y)}
2. { ...,Q(g(a))}
3. {L(g(a),a)}
4. {R(x,g(a)), ...,P(x,g(a))}
5. {...,R(w,z),...,D(w,z)}

Perform the following resolutions among these clauses to get the following
clauses :

6. {L(b,g(a))}
7. {...,P(x,g(a)), ...,D(x,g(a))}

from clauses 1 and 2

from clauses 4 and 5.

26

The clauses DL n;, D~ E Res(S k(H)) which subsume D 1 , D2, and D 3 respectively

are:

Di = {L(b,g(a))}
n; = {L(g(a),a)}

D~ = {~P(x,g(a)),~D(x,g(a))}

(clause 6 above),

(clause 3 above),

(clause 7 above).

Here D 1 = Di, D2 = D;, D3 = D~83 , where 83 = {x <-- f(g(a))}.

Note : 'D = Di II D~ II D~. Also note that 'D II Tis unsatisfiable. •

Lemma 2.3 Using the same notation as in Lemmas 2.1 and 2.2, for any literal L

of 'D, where L = ±P(d1 ,d2, ... , d,), say(± denotes the sign of L), there exists a

literal M of W such that M = ±P(bl,b2,···,bs) (M has the same sign as L) and
such that for each i, 1 :$ i :$ s, the following holds :

(i) If d; is a Skolem function (with zero or more arguments), then b; is a

variable which is existentially quantified in W.

(ii) If d; is a non-Skolem function (with zero or more arguments), then one

of the following holds :

Proof: Let

(a) b; is the same function symbol with the same number of arguments,

and (i) and (ii) here hold recursively for each corresponding argument

of d; and b;.

(b) b; is an existentially quantified variable and the function symbol

of d; (with the same arity as d;) appears in W.

(c) b; is an existentially quantified variable in W and the function
symbol of d; does not appear anywhere in W.

'D = Di II D~ II ... II D~, where the n; 's are clauses,

Dj = Dj1 V Dj2 V ... V D}i; for all 1 :$ j :$ n, where the Djk 's are literals,

W = Qw (l!i.ll V2ll ... II Vm), where W is expressed in conjunctive normal form,

the Vi's are disjunctions of literals, and Qw is the quantifier string of W; hence

~w = (~Qw)(~Vi V ~V2 V ... V ~Vm)· Write

(~Vi V ~ V2 V ... V ~ Vm) in conjunctive normal form; suppose

(~Vl V ~V2 V ... V ~Vm) : (W{ II W~ II ... II W~). Let !7 be the substitution

which replaces existentially quantified variables of ~ W by Skolem symbols to get

Sk(~W), i.e.

(~Vi v ~V2 v ... V ~Vm)!7

= (W{ II W~ II ... II W~)!7

= Sk(~W).

Therefore S k(~ W) = W{ !7 II W~ !7 II ... II W~ !7.

Suppose W~ = W~1 V W~2 V ... V W~i•, 'i 1 :$ k :$ p. Then

27

W = Qw(V1 II Vz II ... II Vm)

= Qw(~W{ v ~w~ v ... v ~w;)
= Qw((~W{1 11 ~W{z 11 ... 11 W{j,) v (~W~1 11 ~W~2 11 ... 11 ~WL,) V ... V (~W;111

~w;2 11 ... 11 ~w;jp)).

Now, T' is a set of ground instances of clauses of S k(~ W) (using the same

notation as in the previous two lemmas), therefore

T' = Wk, O"a! II wk,<7a2 II ... II WL O"am, where 1 ::; kj ::; p for each j such that

1 ::; j ::; m, and where each a i instantiates the corresponding Wk
1

o- into a ground

clause. Therefore

~T' = ~ W{, o-a1 V ~ Wk, o-a2 V ... V ~ Wk= o-am

I<:;:?:ik· (~Wk1 O"a! V ~Wk' a o-a2 V ... V ~Wk' a O"am),
- - • 1 a1 2 2 m. m
1 :S;(:; m

where each ki is such that 1 $ ki $ p.

But recall that in Lemma 2.1, we had written

~T' = D1 II D2 II ... II Dn,

and had obtained the result that for each l such that 1 $ l $ n, there exists Bt

such that n;et <;;: Dt. Hence

l~·~~i., (~wk,., o-a1 V ~wk,a,o-a2 V ... V ~vVL.= o-am) = D1ll D2 11 ... 11 Dn.
I<i<m

Th~r~fore for each l such that 1 $ l $ n, there exists a clause (~ Wk, "' o-a1 V

~wk,a,o-a2 V ... V ~wk=•= o-am), where 1 $ ai $ ikn 1 $ ki ::; p, 1 $ i $ m such
that

n;e1 <;;: Dt

= {--, Wtat O"G'J'.., W£2a2 O'O:z, ... , .,Wkl71am O"Qm }.

Therefore given any D;, there exists a substitution Bt such that n;et <;;: Dt, and

this Dt can be written as a disjunction of some instances of literals of W. Now,

Dj = {Dj1,Dj2, ... ,Dji
1

}; therefore

D}Bi = {Dj 1 Bj,Dj2 Bj, ... ,DjijBJ} ~ {..,Wk
1

a
1
aal,....,WLa

2
aaz, ... ,....,W~m.ama

am}·
This means that for each literal Djk of Dj, there exists a literal ~W£,., of W

such that

Djkei = ~w{,.,o-at
where o- is the substitution which replaces existentially quantified variables of~ W
by Skolem symbols to get Sk(~W) (i.e. ~Wo- = Sk(~W)), and a 1 is a substitution

which makes ~W£,.,o-at a ground literal. Note that Wk,a,o- is basically nothing

other than the literal against which the literal Djk is resolved during the derivation

of the empty clause from 'D IISk(~ W). Also note that since o- replaces all universally

28

quantified variables in W by new Skolem symbols, all the variables of ~wk,a,o- are

existentially quantified in W.

Now suppose Djk = ±P(d1 , d2 , ••• , d,) for some predicate P, where ± is the

sign of the literal Djk; then

~wk,a, = ±P(bl,bz, ... ,b,) and ~wk,.,o- = ±P(cl,cz, ... ,c,), say, for some
arguments b;, c;, 1 :::; i :::; s, and the sign of these literals is the same as the sign of

Djk. For any i such that 1 :::; i:::; s, if d; is a variable, b; could be anything. If d; is

not a variable, then either of the following could hold :

Case (i) : If d; is a Skolem symbol (with zero or more arguments), then (since b;

cannot contain the same Skolem symbol) b; must be a variable. If this variable were

universally quantified in W, then c; would be a new Skolem symbol and therefore

could not unify with d;; hence b; must be an existentially quantified variable in W.

Case (ii) : If d; is a function symbol (with zero or more arguments), then one of

the following are possible :

(a) b; is the same function symbol (with the same number of arguments).

(b) b; is a variable and the function symbol of d; (with the same arity as d;)

appears in W. By the same argument as in (i) above, b; must be existentially

quantified in W.
(c) b; is a variable and the function symbol of d; (with the same arity as d;)

does not appear anywhere in JiV. By the same argument as in (i) above, b; must be

existentially quantified in W.
For Case (ii) (a), if the function symbol which is common to d; and b; has more

than zero arguments, repeat the above analysis recursively for all these arguments

(this analysis must eventually terminate since Djk and ~wk,a, are of finite length).

Since every literal of D can be written as Djk for some 1 :::; j :::; n, 1 :::; k:::; ij,

and since the corresponding ~ Wt "' is a literal of JiV (corresponding to !vi in the

statement of the lemma), the lemma follows. •

Example 2.2 Continuing with the results in Example 2.1, and using the notation

of the previous lemmas, we illustrate the results in this section. We have,

n; = {L(b,g(a))} = {D;d,
D~ = {L(g(a),a)} = {D~1 },

n; = {~P(x,g(a)),~D(x,g(a))} = {D; 1 ,Db}.

Now, ~W = 'v'u3v((~L(b, u) V ~L(u, a) V P(v, u)) /1 (~L(b, u) V ~L(u, a) V D(v, u)) /1

(~L(b,u) v~L(u,a) V ~M(a))). a- replaced the existentially quantified variable v
in ~w by f(u); therefore a-= {v <-- f(u)}. We write

~ w = 'v'u3v(w; /1 w~ /1 wn
= 'v'u3v((W{ 1 V W{ 2 V W{ 3) II (W~1 V W~2 V W~3) II (W~1 V W~2 V W~3)), where

29

W{1 = ~L(b,u)

W{ 2 = ~L(u,a)

W{ 3 = P(v,u)

W~1 = ~L(b,u)
W~2 = ~L(u,a)
W~3 = D(v,u)

w;1 = ~L(b,u)
w;2 = ~L(u,a)
W; 3 = ~M(a)

and Sk(~W) = (W{1 o- V W{2 o- V W{3a) II (W~ 1 o- V W~2 o- V W~3 o-) II (W;1 o- V W;2o- V

w;3a).

Recall that

T' = {{~L(b,g(a)),~L(g(a),a),P(f(g(a)),g(a))},

{ ~L(b, g(a)), ~L(g(a), a), D(f(g(a)), g(a))}}
= W{ o-a1 II Wka1

where a 1 is the substitution { u <--- g(a)} which transforms clauses of T into ground

clauses in T'. Therefore

~T' = ~W{aa1 v ~w~o-a1
= (~W{1 o-al II ~W{2o-al II ~W{3o-a1) V (~W~1 o-al II ~W~2o-a1 II ~W~3o-a!)

= (~W{1 o-al v~W~1 o-ai)II(~W{1 o-ai v~W~2 o-ai)II(~W{ 1 o-al v~W~3 o-a!)ll
(~W{2o-a1 V ~w~1 o-a1) II (~W{2o-al V ~W~2o-ai) II (~W{2 o-al V ~W~3o-a!)ll
(~ W{3o-a1 V ~W~1 o-a1) II (~ W{3o-a1 V ~ W~2o-a!) II (~ W{3o-a1 V ~ W~3o-a1)

= L(b,g(a)) II L(g(a),a) II (~P(f(g(a)),g(a)) V ~D(f(g(a)),g(a)))

(which is what we had obtained before for ~T'). Also,

~T' = D~ II D2 II n;e3.
So we have,

D~ 1 = ~ W{1 o-a1

n;l = ~ W{zO"Uj
n;1e3 = ~W{3 o-a1; D'32 B3 = ~w~3 o-a1.

We now perform the case analysis as in Lemma 2.3 for eac!J literal of D :

•D~ 1 = L(b,g(a)) = ~W{1 o-a1
~W{1 = L(b,u).

For the first argument of D~ 1 , which is "b", case (ii) (a) applies.

For the second argument of D~ 1 , which is "g(a)", case (ii) (c) applies.

•Db = L(g(a),a) = ~W{2o-a 1
~W{2 = L(u,a).

For the first argument of D21 , which is "g(a)", case (ii) (c) applies.

For the second argument of D21 , which is "a", case (ii) (a) applies.

eD;1e3 = ~P(x,g(a))B3 = ~W{3 o-al
~W{3 = ~P(v,u).

For the first argument of n; 1 , which is "x", neither case (i) nor case (ii) applies,

since x is a variable.

30

For the second argument of D;u which is "g(a)", case (ii) (c) applies.

•D;2 e3 = ~D(x,g(a))BJ = ~Wi3 o-a1
~Wi3 = ~D(v,u).

For the first argument of D;2 , which is "x", neither case (i) nor case (ii) applies,

since x is a variable.

For the second argument of D;2 , which is "g(a)", case (ii) (c) applies.

This concludes the case analysis for the formula 'D. •

The following theorem shows that by unskolemizing the set of clauses 'D men

tioned in Lemma 2.3, and Skolemizing any formula F obtained by this unskolem

ization, we can prove that the case analysis of Lemma 2.3 holds, with the difference

that case (ii) (c) will never arise.

Theorem 2.1 Using the same notation as in the previous lemmas, given the set

of clauses 'D, the unskolemization algorithm can yield a family of formulas K. such

that for any F E K., if we Skolemize F, then for any literal L of Sk(F), where

L = ±P(d1 , d2 , •.• ,d.), say(± denotes the sign of L), there exists a literal M of W
such that M = ±P(br, b2, ... , b,) (M has the same sign as L) and such that for each

i, 1 ::; i ::; s, the following holds :

(i) If d; is a Skolem function (with zero or more arguments), then b; is a

variable which is existentially quantified in W.

(ii) If d; is a non-Skolem function (with zero or more arguments), then

one of the following holds :

(a) b; is the same function symbol with the same number of arguments,

and (i) and (ii) here hold recursively for each corresponding argument

of d; and b;.

(b) b; is an existentially quantified variable and the function symbol

of d; (with the same arity as d;) appears in W.

Proof: We prove this theorem by showing that by making some of the nondeter

ministic choices in the unskolemization algorithm judiciously, a family of formulas

K. can be produced by the unskolemization algorithm such that for every F E K.,
the statement of the theorem is true.

Using the same notation as before, we have, 'D = D; II D~ II ... II D~. As

before, for 1::; j::; n, we write Dj = {Dj 10 Dj2 , ... , Dj;)- Now, 'D IISk(~W) is

unsatisfiable, and in Lemma 2.3, we discussed the relationship between any literal

Djk in 'D and the corresponding literal ~wt., in W which has the property that

DjkBi = ~Wt.,<mt.
We also remarked that Wt.,o- is the literal in Sk(~W) against which Djk is

resolved in the derivation of the empty clause from 'D IISk(~ W).

31

We now show that there is a way of making the nondeterministic choices in

Steps 1, 2, and 3 of the unskolemization algorithm such that the properties described

in the statement of the theorem will hold. Now, for any clause C in D, multiple

instances of C could be used during the derivation of the empty clause from D
ASk(~ W). If k instances of C are used, then we make k copies of the clause C in

Step 1. It is clear that if the number of resolutions performed to derive the empty

clause from Sk(H A ~W) is r, then not more than r copies of any one clause are

required. After this is done for all clauses of D, the variables in every clause are

renamed so that no two clauses have any variable in common, as specified in Step

1.

Now, for every literal Djk of every clause of D we do the following : as in

Lemma 2.3, suppose Djk = ±P(d1 , d2 , ••• ,d.); we find the corresponding literal

~w£,., in W such that ~wt., = ±P(b1 , b2, ... ,b.) (~W£,., has the same sign as

Djk) and Dj/Ji = ~w£,.,aal as we described in Lemma 2.3.

Note that any clause can be used only once for a resolution, since if a clause is

needed for k resolutions, then k copies of it were made as described above.

For every i such that 1 :S: i :S: s, consider d; and b;. If either case (i) of Lemma

2.3 holds (i.e. if d; is a Skolem symbol) or if case (ii)(c) holds, (i.e. if d; is a non

Skolem function symbol not occurring in W and b; is a variable), then in Step 2

of the algorithm, we replace the argument d; by the argument b; +- d; and we say

that this argument of Djk has been marked. If d; is a variable, then we replace

the argument d; by the argument "b; '--+ d;'' and call this argument marked too.

(Note that this symbol "'--+" has nothing to do with the implication sign "-->".) The

marking symbol "<--t" has been introduced here to guide Step 3 of the algorithm.

After this process has been completed, we have obtained a new formula MARK

= D~ ADg A ... AD~, where D;' is the same as D; except that zero or more arguments

of literals of n: are mar ked in n:'.
We now describe how Step 3 is performed. Consider in groups all marked

arguments of the form "a; '--+ x", each group containing all such marked arguments

with the same variable x on the right-hand side of the "'--+" sign. Suppose a 1 '--t x,

"'2 <---> x, ... , an '--+ x are all the marked arguments with x on the right-hand side

of the "'--+" sign. Consider the set B = { a1, a2, ... , an}· This set contains terms

which, during the resolution process, unify with x or with whatever x has been

instantiated to so far, and any two terms in this set can be unified with each other.

B can contain variables and function/Skolem symbols. Let B = VAR U FUNC,

where VAR is the set of variables in B, and FUN C is B- VAR. First we choose one

element of VAR, say YI (if VAR is non-empty), and replace all the other variables

of VAR by YI everywhere in the formula MARK. Now consider FUNC. From our

32

remarks above, since any two elements of FUNC are unifiable, every element of

FUNC must be the same function or Skolem symbol/, say, with the same number,

say k, of arguments, for some k :::: 0. Let
ARG; = {ith argument of z I z E FUNC }, for 1::; i::; k.

Repeat the above process (which was performed for the set B) for each of the k sets

ARG1,ARG2 , ••• , ARGk.

Note that this is not really unification, since variables are not being replaced by

the terms with which they unify. We are just unifying all the variables by replacing

them by the same variable name.

After this has been done for all the marked arguments of this form, drop the

"<->" signs from the modified formula MARK as well as the elements on the left

hand side of the "<->" signs. If any two clauses of MARK are now identical, one of

them can be dropped. This shows how we can choose which variables to unify in

marked arguments in Step 3 of the algorithm.

Now perform Steps 4, 5, 6, 7 of the algorithm, and let the set of formulas

obtained be K. For every F belonging to the set of formulas K, consider the set of

clauses Sk(F). Sk(F) is a set of clauses which is the same as T!, except that :

(1) Some arguments of literals of clauses ofT! have been replaced by Skolem

functions (this is true if and only if the corresponding argument in T! was

a "marked" function symbol during Step 2), and

(2) There may be more than one copy of certain clauses ofT! (since multiple

copies of some clauses ofT! were made during Step 1), each of which is

possibly altered as mentioned in (1) above.

Now, by Lemma 2.3, for any literal LofT!, where L = ±P(d1,d2, ... ,d.), say(±

denotes the sign of L), there exists a literal M of W such that M = ±P(b!, bz, ... ,b.)
(M has the same sign as L) and such that for each i, 1 ::; i ::; s, the following holds :

(i) If d; is a Skolem function (with zero or more arguments), then b; is a

variable which is existentially quantified in W.
(ii) If d; is a non-Skolem function (with zero or more arguments), then

one of the following holds :

(a) b; is the same function symbol with the same number of arguments,

and (i) and (ii) here hold recursively for each corresponding argument

of d; and b;.

(b) b; is an existentially quantified variable and the function symbol

of d; (with the same arity as d;) appears in W.

(c) b; is an existentially quantified variable and the function symbol

of d; does not appear anywhere in W.

But note that during the marking process described for Steps 1 and 2, we

33

marked for unskolemization all arguments which fall under category (ii)(c) above.

Therefore in F, all such arguments became existentially quantified variables; and

therefore in Sk(F), these variables became new Skolem functions, which fall under

category (i) above. Hence in Sk(F), no argument d; can belong to category (ii)(c),

since all arguments of 'D falling in category (ii)(c) were unskolemized. Hence all

arguments of Sk(F) belong to categories (i), (ii)(a) or (ii)(b) of Lemma 2.3, and

our theorem is proved. •

Motivated by the result of Theorem 2.1, we now introduce two definitions.

Definition. A formula F is more general than a formula W if the following condi

tions are satisfied. Suppose we write F and W in prenex-conjunctive normal form

so that

F = QF ((Fn V F12 V ... V FJ;,)A(Fn V F22 V ... V Fz;,)A ... A(Fnl V Fnz V ... V Fn;.))

and

W = Qw ((Wn V W12 V ... V Wlu,) A (W21 V Wzz V ... V Wzu,) A ... A (Wml V

Wm2 V ··· V Wmu=)),
where QF, Q w are the quantifier strings of the formulas F and W respectively.

Then for every disjunction (Fp1 V Fp2 V ... V Fp;,) of F, where 1 $ p $ n, there is a

set of literals {Wj,k, Wj,k, ... , vVj1k.} of W, where 1 ::; j; ::; m, 1 ::; k; ::; Uj., such

that given 1 ::; r ::; ip, there exists 1 ::; s $ l such that the following relationship

holds between Fpr and Wj, k, :

Suppose Fpr = ±P(a1,az, ... ,a,), where± denotes the sign of Fpr· Then

Wj,k, = ±P(bJ,bz, ... ,bt) (Wj,k, has the same sign as Fpr), and for every k such
that 1 ::; k ::; t,

(i) If ak is an existentially quantified variable, then so is bk.

(ii) If ak is a function symbol with u arguments e1, ez, ... , eu, then either

(a) bk is the same function symbol with the same number of arguments,

say /J,fz, ... ,Ju, and conditions (i) and (ii) hold for every pair of argu

ments e; and /;, 1 ::; i $ u, or

(b) bk is an existentially quantified variable and ak is a function symbol
which occurs in W.

The above definition may seem confusing at first; the following discussion may

help to explain intuitively why the term "more general than" has been defined in

this way. As we shall see in Theorem 2.5, the number of formulas more general than

a given formula is finite under certain elementary syntactic constraints. The reason

we want this to be true is the following. Recall that the problem being solved is

that we are given a formula H which implies some (unknown) formula W, and we

are trying to derive a logical consequence F of H such that

34

H __,. F __,. W.

Now, some additional constraint must be placed on F, since otherwise we could

simply take F = H. We want F to be "close" to W, in some sense. One way

to ensure this is to define some constraint on F so that only a finite number of

formulas satisfy this constraint. Thus only a finite number of formulas F satisfying

this constraint and such that H --> F --> W can be derived. This is the reason for

defining the "more general then" term above.

The definition itself can be explained by the following simple example. Suppose

we have H; = P(a;) and W = 3xP(x). Clearly H; --> W for all values of i. Thus

there are an infinite number of H;'s which imply W. Now suppose we require that

any function symbol appearing in F, where F satisfies H --> F --> W, also appear

in W. Then clearly we cannot have F = H; for any i (since none of the a;'s

appear in W); also, there will exist only a finite number of such F's if we do not

allow unnecessary redundancy in F (the exact nature of this redundancy is stated

in Theorem 2.5). The way F will be obtained from H;, then, is by unskolemizing

the (non-Skolem) function symbol a;, and replacing it by an existentially quantified

variable, yielding F = 3xP(x). The definition of "more general than" given above

does not allow function symbols which do not appear in W to appear in F if F is

more general than W.

Definition. Let F, W be two first-order formulas. We say that F ~ W if and only

if

(i) F is more general than W

(ii) F __,. W.

Corollary to Theorem 2.1 For every F E JC, F is more general than W.

Proof : Let us write F and W in conjunctive normal form as

F = QF ((Fu V Fr2 V ... V H;,)i\ (Fn V F22 V ... V F2;,) t\ ... t\ (Fnr V Fn2 V ... V Fn;.))
and

W = Qw((Wu V W12 V ... V Wrj,) t\ (W2r V Wn V ... V W2j,) t\ ... t\ (Wmr V

Wm2 V ••• V Wmjm)),

where QF, Q w are the quantifier strings of the formulas F and W respectively.

Let p be a substitution which replaces existentially quantified variables of F

by Skolem functions to obtain Sk(F). Then Sk(F) consists of the following set of
clauses :

Sk(F) ={ {Fup, Fr2p, ... , Fli,P }, {F21P, F22p, ... F2;,p }, ... , {FnrP, Fn2P, ... Fn;.p} }.
Consider any disjunction Fp1 V Fp2 V ... V Fp;p of F, and consider the cor-

responding clause {Fprp,Fp2P, ... , Fp;Pp } of Sk(F). Take any literal FprP =
±P(dr, d2, ... , d,), say, of this clause(± denotes the sign of FprP); then by Theorem

35

2.1, there exists a literal M of W such that M = ±P(b!, b2, ... , bt) (M has the same

sign as FprP) and such that for all i, 1 ::; i ::; t, the following holds :

(i) If d; is a Skolem function (with zero or more arguments), then b; is a

variable which is existentially quantified in W.
(ii) If d; is a non-Skolem function (with zero or more arguments), then

one of the following holds :

(a) b; is the same function symbol with the same number of arguments,

and (i) and (ii) here hold recursively for each corresponding argument

of d; and b;.
(b) b; is an existentially quantified variable and the function symbol

of d; (with the same arity as d;) appears in W.

Now suppose Fpr = ±P(a!, a2, ... , at) (Fpr obviously has the same sign as Fprp).
If case (i) above holds ford;, then a; must be an existentially quantified variable in

F.
Since the above is true for every literal of the disjunction Fp 1 V Fp2 V ... V Fpip ofF,

we can obtain a setS of literals of W such that conditions (i) and (ii) in the definition

of "more general than" hold for corresponding literals of (Fp1 V Fp2 V ... V Fp;p) and

S; thus by definition, F is more general than W. •

Example 2.3 We continue working where we had left off in Example 2.2. The

formula D which we obtained will now be unskolemized according to the algorithm
just presented.

Let us reiterate that the formula W is not normally available to us when we

are unskolemizing D. The choices which we make here based on properties of W
will have to be made nondeterministically by the algorithm. We are using W here

to show that there exist choices which will result in the derivation of a formula F
with the desired properties.

We list the clauses of D below. Note that two of the clauses of Dare repeated

twice. This is because each of these clauses is required to be used twice during the

resolution which follows.

1. {L(b,g(a))}
2. { L(b, g(a))}
3. {L(g(a), a)}
4. {L(g(a), a)}
5. {~P(x,g(a)), ~D(x,g(a))}.

The clauses of Sk(~ W) are given below. The variables have been renamed so

that the two clauses do not share variables.

6. {~L(b,u),~L(u,a),P(f(u),u)}

36

7. {~L(b,w),~L(w,a),D(f(w),w)}
8. {~L(b,z),~L(z,a),~M(a)}

The derivation of the empty clause from 1J 1\ Sk(~ W) proceeds as follows :

9. {~L(g(a),a),D(f(g(a)),g(a))}

10. {~L(g(a),a),P(f(g(a)),g(a))}

11. {D(f(g(a)),g(a))}

12. {P(f(g(a)),g(a))}

13. { ~P(f(g(a)), g(a))}
14. { }

from clauses 1 and 7

from clauses 2 and 6

from clauses 3 and 9

from clauses 4 and 10

from clauses 5 and 11

from clauses 12 and 13.

From the above resolutions, following the marking method sketched in the

proof of Theorem 2.1, we can write the marked formula MARK as consisting of the

following five clauses (refer to the case analysis performed in Example 2.2) :

1'. {L(b,w <-- g(a))}

2'. {L(b,u <-- g(a))}
3'. {L(w <-- g(a),a)}

4'. {L(u <-- g(a),a)}

5'. {~P(f(u) '--> x,u <-- g(a)),~D(f(w) '--> x,w <-- g(a))}.

We now perform the unskolemization algorithm step by step.

INPUT : The set of three clauses listed below :

1. {L(b,g(a))}

2. {L(g(a), a)}

3. {~P(x,g(a)),~D(x,g(a))}.

Step 1 : Make two copies of the clause {L(b, g(a))}; make two copies of the clause

{L(g(a), a)}; and make one copy of the clause { ~P(x, g(a)), ~D(x, g(a))}. We now

have the set of clauses MU LTIP LE_CLA.U SES consisting of the following five

clauses :

1. {L(b,g(a))}

2. {L(b,g(a))}

3. {L(g(a),a)}

4. {L(g(a),a)}

5. {~P(x,g(a)),~D(x,g(a))}.

Step 2: Mark certain arguments of MULTIPLE_CLAUSES as follows and get

a new set of clauses MARK :

1'. {L(b,w1 <-- g(a))}

37

2'. {L(b,u1 <-- g(a))}
3'. {L(wz <-- g(a),a)}
4'. {L(uz <- g(a),a)}
5'. {~P(x,u3 <- g(a)),..,D(x,w3 <-- g(a))}.

Step 3 : Replace the six variables u1 , Uz, u3, w1 , Wz and W3 by the new variable Z.

MARK now consists of the five clauses :

1'. {L(b, Z <-- g(a))}
2'. {L(b, Z +- g(a))}
3'. {L(Z <-- g(a),a)}
4'. {L(Z <-- g(a),a)}
5'. { ~P(x, Z <-- g(a)), ~D(x, Z <-- g(a))}.

Since the clauses 1' and 2' are identical, and so are the clauses 3' and 4', we

can drop clauses 2' and 4'. MARK now consists of the three clauses :

1'. {L(b,Z <-- g(a))}
3'. {L(Z +- g(a),a)}
5'. {..,P(x,Z <-- g(a)),-,D(x,Z <-- g(a))}.

Step 4 : The function "g" in MARK has one argument "a" and no variable argu

ments, therefore we drop the argument "a" and write MARK as :

1'. {L(b, Z <--g)}
3'. {L(Z <-- g,a)}
5'. {..,P(x,Z <-- g),..,D(x,Z <--g)}.

Step 5 : We add a universal quantifier for the variable x and get

MARK= Vx(L(b, Z <--g) II L(Z <-- g, a) II (..,P(x, Z <--g) V ..,D(x, Z <-g))).

Step 6 : We have to replace the marked argument "Z <-- g" by a new existentially
quantified variable, say y. The function g has zero arguments, therefore we add y

to the set A. We get,

MARK= Vx(L(b,y) II L(y,a) II (..,P(x,y) V ..,D(x,y))).
and A= {y}.

Step 7 : We complete the quantifier string of the formula. Since C = 0 and A =

{y}, there is only one way of completing the quantifier string of the formula. We
call the resulting unskolemized formula F;

F = 3yVx(L(b,y) II L(y,a) II (~P(x,y) V ..,D(x,y))).

It can easily be verified that F is more general than W and that H --+ F --+ W,
hence F ::S W. •

Discussion. Recall that for the above example,

38

H = VxVyVzVw((Q(y) V L(b,y)) II ~Q(g(a)) II L(b,g(a)) II (R(x,g(a)) V ~P(x,

g(a))) II(~R(w,z) V ~D(w,z)), and

W = 3uVv(L(b, u) /1 L(u, a) /1 (~P(v, u) V ~D(v, u) V M(a)))

and we obtained F = 3yVx(L(b, y) /1 L(y, a) /1 (~P(x, y) V ~D(x, y))) by resolution

from Sk(H) and then unskolemization. W and F are almost identical (up to vari

ants) except that the last disjunction of liV has one more literal (viz. M(a)). It
is not possible to get a formula F by resolution and unskolemization from Sk(H)
which is identical to W up to variants without using tautologies. This is because

the predicate symbol "M" does not even occur in H, and therefore to introduce it

into a clause derived from Sk(H) by resolution, the use of a tautology containing

the predicate symbol "M" and its negation would be required.

Also note that without the use of our unskolemization algorithm, it would not

have been possible to introduce the existential quantifier "3y" above in F.

Thus we see that it is not always possible to obtain W from H by resolu

tion without the use of tautologies and without unskolemization. Since the use of

tautologies in resolution is undesirable (due to the tremendous increase in search

space which it would entail), we do not try to derive W from H, but instead settle

for a formula F derived from H by resolution and unskolemization, which has the

property that

F:j W.

The theorems in this section serve to show that our unskolemization can indeed

produce such a formula.

Theorem 2.2 For every FE C, Ti -> F, where free variables inTi are regarded as

universally quantified and where C is the family of formulas obtained by unskolem

izing the set of clauses Ti according to the unskolemization algorithm.

Proof : Let M be a model for Ti with domain D (regarding free variables as

universally quantified in D), and let FE C. We show that M is also a model for F.

Now, 'D and F differ in that all Skolem functions which are arguments of pred

icates inTi are replaced by existentially quantified variables in F, and in that some

functions which are arguments of predicates in Ti and which are marked during the

marking process of Step 2 are replaced by existentially quantified variables in F.

Also, F may contain several copies of some clauses of Ti. Suppose f(v1 , v2 , ... , vm)

is a function in 'D which is marked as "z <- f(v 1 , v2 , ... , vm) in Step 2 of the algo

rithm and is replaced by the existentially quantified variable z in F, and suppose

Xr,x2, ... ,xn are all the (distinct) variables which occur in v1 ,v2, ... ,vm. Then, by

the unskolemization process we used, "3z" comes after "Vx1", "Vx2", ... , "Vxn" in

the quantifier string of F.

39

Now, the modellvf assigns an element d of the domain D of M to the function

f(v1 , v2 , ••• , vm)· This element d depends on the mapping assigned to fin M, and

on the values of the arguments Vt. Vz, ... , vm, which in turn depend on the variables

x 1 , x2 , ... , Xn and on the constant and function symbols occurring in Vt, v2, ... , Vm.

Thus, given the values for variables x 1 , x 2 , .•• , Xn, there exists an element d of the

domain D such that when dis used in place of f(v1, v2, ... , vm) in the formula D, the

formula Dis true. But then this means that if we do the above for all such functions

in D which are replaced by existentially quantified variables in F, these elements

"d:' can be used in place of the corresponding existentially quantified variables "z"
in F and will result in the formula F being true under interpretation M (since

each such existentially quantified variable z depends on the universally quantified

variables x1 ,xz, ... ,Xn in F, and possibly some others). Hence M is also a model

for F, and therefore D-> F. •

Corollary to Theorem 2.2 For every F E C, H ->F.

Proof: Recall that Dis a set of clauses derived by resolution from Sk(H); therefore

Sk(H) -> D (where free variables are regarded as universally quantified),

hence

hence
Sk(H) -> F (since D-> F from Theorem 2.2),

H-> unsk(F) = F; and so
H-.F.

This is true for any F E C, and therefore the corollary is proved. •

Theorem 2.3 For any formula A, there is a way of marking Sk(A) so that the

formula produced by the unskolemization algorithm will be A.

Proof: Consider the set of clauses Sk(A). We mark the terms of Sk(A) as follows:

replace all occurrences of a Skolem function f by "x f +- f", x f being a new variable

not occurring elsewhere in Sk(A). This is done for all Skolem functions f. Then

unskolemize this marked set of clauses using the unskolemization algorithm. The

algorithm will produce A (or a formula equivalent to A) as its only output, since

there is only one optimal way of ordering the quantifiers of the resulting formula. •

The following theorem shows that using our unskolemization algorithm as de

scribed, the algorithm will produce at least one formula F such that F-. W.

Theorem 2.4 There exists F E IC such that F -> W, where IC is the family of

formulas defined in Theorem 2.1.

Proof: Let FE /C; we write Fin prenex-conjunctive normal form so that

F = QF(Af II A2 II ... II A::,) (here QF is the quantifier string of F).

40

Recall that

V = D~ II D~ II ... II D~,

where

Dj = { Dj1 , Dj2 , ••• , D};; } for each j such that 1 ~ j ~ n.

Let Aj = Aj1 V Aj2 V ... V Aj;; for each j such that 1 ~ j ~ m.

Let p be the substitution which replaces existentially quantified variables of F

by Skolem functions to get Sk(F); i.e. Fp = Sk(F), and letting

Sk(F) =((Au VA12 V ... VAii,)!I(An VA22 V ... VA2;,)11 ... /I(Amt VAm2 V ... VAm;m)),
we have

Ajk = AjkP for all j, k such that 1 ~ j ~ m, 1 ~ k ~ ij.

Now, V /1 Tis unsatisfiable (recall that T = Sk(~W)), and in Lemma 2.1 we

found a set of ground clauses T' such that V II T' is unsatisfiable. Then we looked

at every literal Djk in V and found the corresponding literal, say L, in Sk(~W)

against which Djk was resolved during the derivation of the empty clause from D

/1 T (see proof of Lemma 2.3). Then for every argument which was a function

symbol in the literal Djk and did not occur in W, and which was unified with a

variable in the literal L, we "marked" this function argument, and unskolemized it

so that every formula F inK (the family of unskolemized formulas resulting from

D) had an existentially quantified variable in that position (see proof of Theorem

2.1).

For any F E K, V and F are formulas which are identical in structure; the

only difference is that some functions and all Skolem functions of D are replaced

by existentially quantified variables in F, and that F may contain several copies of

some clauses of D. Two functions were replaced by the same existentially quantified

variable if and only if the two functions unified with the same variable during the

derivation of the empty clause from D !IS k(~ W), or if the functions unified with

two variables which unified with each other during the course of the derivation of

the empty clause from D II T.

Therefore the only difference between D and Sk(F) is that all Skolem functions

of V are replaced by Skolem functions in Sk(F) with possibly different arguments;

and those functions of D which are resolved against variables in literals of S k(~ W)
and which do not occur in Ware replaced by Skolem functions in Sk(F). Since any

n functions in D which resolved against the same variable in T, or which resolved

against some variables in T which unified with each other during the course of the

resolution, were replaced by the same existentially quantified variable in F, the

Skolem function replacing that variable in S k(F) will be the same for all n of these

argument positions, and therefore they can all still be resolved against the same

variables in T against which they were resolved during the course of the derivation

41

of the empty clause from 1) II T.
So all we need to do here is to show that there exists some F E K such that the

empty clause can be derived from Sk(F) II T by using exactly the same sequence of

resolutions which was used to derive the empty clause from 1J II T. We do this by

showing that there is a certain order in which we can process the set of constraints

C for 1) (which is done in Step 7 of the unskolemization algorithm) which will give

the resulting formula F the property that Sk(F) II Tis unsatisfiable.

In Lemma 2.3, for every literal Djk of 1) we had found a literal ~W£,., of W
such that

DjkBi = ~w;,,.,aat.
Let the corresponding literal in Sk(F) be Ajk·

Let Djk = P(d1, d2, ... , d.),

~w;,,., =P(b1,b2, ... ,b,),

Ajk = P(a1 ,a2, ... ,a,) (without loss of generality we have assumed that all

three literals here are positive; the same result can easily be seen to hold if all three

literals are negative).

Consider any constraint (y, z) in C, where z is a variable in F which was

replaced by a Skolem function, say a;, in Ajk· We will show that this constraint

must also hold in W for the arguments with which y and z unify in Sk(~ W), if

these arguments are universally and existentially quantified respectively in W; in

other words, the existential quantifier for the variable in W unifying with z must

come after the universal quantifier for the variable in W unifying withy. Now, a;

is a function containing y as an argument, say a; = g(y, other arguments). Either

y appears elsewhere in Ajk, or it doesn't. If it doesn't, then we don't need to worry

about the constraint (y, z) since it is not relevant for this particular literal. If it

does, then suppose aj contains y. Now consider b; and bj. Since a; is a Skolem

function, b; must be an existentially quantified variable, say b; = v, in W. Since

aj contains y, bj contains a term, say u, which unifies with y; u could either be

a universally quantified variable, an existentially quantified variable, or a function

symbol. If one of the latter two is true, we need not worry about it; if the first of

these is true, i.e. if u is a universally quantified variable, then we must show that

the constraint that Vu must precede 3v in the quantifier string of W holds for W.

Suppose it doesn't. Then in ~w, "3u" comes after "Vv" in the quantifier string

for ~w. Therefore a assigns a Skolem function, say fJ, to u which contains v as an

argument (recall that ~Wa = Sk(~W)); say the assignment is: u <- fJ(v, other

arguments). The substitution a leaves v unchanged, since v is universally quantified
in ~w.

Now, DjkBi = ~w1,k,aat.

42

Therefore yBj = (3(v, other arguments) az

and g(y, other arguments) Bj = vaz.

But this means that y unifies with (3(v, other arguments) and v unifies with g(y,

other arguments). From this we see that y gets unified with a term containing y,

which is a contradiction since such a unification cannot succeed due to occur check.

Hence our assumption must be wrong, i.e. the quantifier "Vu" must precede

"3v" in the quantifier string for W.
We have shown that any constraint (y, z) in C must hold for the corresponding

arguments in W, if the arguments u and v (say) corresponding to y and z are

universally and existentially quantified respectively.

Now, we have the freedom to process the members of the constraints set C

in any order we wish. Process them in the order which will make the order and

position of the newly inserted existential quantifiers in the quantifier string ofF the

same as in the quantifier string of W, relative to the universal quantifiers which are

already present in the partially completed quantifier string of F. Name the formula

constructed in this way "F"; then F -+ W. •

Corollary to Theorem 2.4: There exists F E JC such that F ::5 W.

Proof: From the Corollary to Theorem 2.1, Theorem 2.4, and the definition of

::5 .•

Theorem 2.5 {F I F ::5 W} is finite up to variants, assuming that ifF is written

in conjunctive normal form, then no two disjunctions of F are identical, and no

disjunction of F contains more than one occurrence of the same literal.

Proof : We show that the set {F I F is more general than W} is finite up to

variants subject to the above condition, namely that ifF is written in conjunctive

normal form, then no two disjunctions of F are identical, and no disjunction of F

contains more than one occurrence of the same literal. Suppose a formula W is

given, and suppose F is a formula which is more general than W. Let both Wand

F be given in prenex-conjunctive normal form as :

F = QF ((Fn V F12 V ... V Fh,)11(F21 V F22 V ... V F2;,)/\ ... /\(Fnt V Fn2 V ... V Fn;J)
and

W = Qw((Wn V W12 V ... V Wti,) 1\ (W21 V Wn V ... V W2h) 1\ ... /\ (Wmt V

Wm2 V ... V Wmj=))

where QF, Q w are the quantifier strings of the formulas F and vV respectively. Since

F is more general than W, by definition for every disjunction (Fpl V Fp2 V ... V Fp;P) of

F, there is a set of literals {Wj,k, vVj,k, ... , Wj,k,} of W such that given 1 :S; r :S; ip,

there exists 1 :'0: s :'0: I such that the following relationship holds between Fpr and

Wiska :

43

Suppose Fpr = ±P(al,a2, ... ,a,), where± denotes the sign of Fpr· Then

Wj, k, = ±P(b1, b2, ... , b,) (Wj, k, has the same sign as Fpr), and for every k such

that 1 :'0 k :'0 t,

(i) If h is an existentially quantified variable, then ak is either an existentially

quantified variable, a universally quantified variable, or a function symbol which

occurs in W.
(ii) If bk is a universally quantified variable, then so is ak.

(iii) If bk is a function symbol with u arguments e1, e2, ... , eu, then ak is either:

(a) the same function symbol with the same number of arguments, say

!J, /2, ... ,/u, and conditions (i), (ii) and (iii) hold for every pair of arguments e;

and/;, 1 ::; i::; u, or

(b) ak is a universally quantified variable.

From the above analysis, it can be seen that only a finite number of distinct

literals Fpr (up to variants) can be constructed which satisfy these conditions. But

then there exist only a finite number of formulas F made up of conjunctions of

disjunctions of such literals, provided no two such disjunctions are identical, and no

disjunction of F contains more than one occurrence of the same literal.

Hence the number of formulas which are more general than W is finite up to

variants, subject to the conditions in the statement of the theorem; this means that

{ F / F ::::; W} is also finite up to variants subject to the same conditions. •

Theorem 2.6 If F1, F2 and W are three formulas such that

F1::::; W, F2::::; W,
then

(H II F2)::::; W, (F1 V F2) ::::; W.

Proof : Since F1 ::::; W, F2 ::::; W, therefore we know that

F1 _., W, F2 -> W
and therefore

(F1 1\ F2)-> W, (F1 V F2)-> W.
Also, since each of F1 and F2 are more general than W, from the definition of

"more general than" it can be seen that both F1 1\ F 2 and F1 V F 2 are more general

than W. Hence

by definition. •

44

2.4 Summary

We have seen that given formulas Hand W such that H----> W, we can derive

a Skolemized formula 1) by resolution from Sk(H) which can be unskolemized in

such a way that the resulting formula F has the following properties :

(i) H ----> F ----> W
(ii) F :; W .
We also saw that { F I F :; W} is finite up to variants, subject to the restriction

that if F is expressed in conjunctive normal form, then no two disjunctions of F

are identical, and no disjunction of F contains more than one occurrence of the

same literal. Note that this method of deriving F does not require using tautologies

during the resolution process.

However, it will happen that we know H and do not know W. In such a case,

we will have to derive all possible formulas 1) by resolution from Sk(H), mark 1)

in all possible ways, and apply the unskolemization algorithm to all such marked

formulas. The unskolemization algorithm will produce a family of formulas K, out

of which (at least) one formula F will have the properties described above.

45

3. Mechanical generation of loop invariants for
program verification

In this chapter, we will develop a method for mechanically deriving loop in

variants for a flowchart program. No complete method can exist for automatically

deriving loop invariants for all possible programs, since by Cook's completeness

result (Cook 78], there exist program loops for which no suitable loop invariants

exist, unless the language being used is "expressive" in some sense (see (Loeckx and

Sieber 87] for a detailed coverage of this topic). Any calculus based on attaching

first-order formulas to arcs of flowchart programs may be incomplete because the

set of possible values on an arc of the flowchart may not be first-order definable

(Wand 78]. Most of the attempts made at developing methods for automatically

generating loop invariants have been in the nature of heuristics so far, and thus

none of these methods has been complete in any sense. In contrast, we can make

the following completeness claim about our method : given any program loop, if a
loop invariant exists for that loop in a given first-order language relative to a given

finite set of first-order axioms, then our method can produce a valid loop invariant

for that loop. Of course, not all theories of interest can be expressed by a finite

collection of first-order axioms.

In what follows, we first describe in detail past work in the area of program

verification. We then explain how to apply the theory developed in Chapter 2 for

mechanically generating loop invariants.

3.1 Past work

In an age where more and more reliance is being placed upon computer software

in all spheres of life, there is bound to be some concern about the correctness of

programs being written and used. According to Elspas et a!. (Elspas et a!. 72],

when we compare programs written in the 1970s to those written in the 1960s,

the number of errors per line of debugged code is undoubtedly lower than before;

however, since the size of programs written in the 1970s is much larger than in

1960, the number of errors per program is more or less unchanged. The traditional

manner of assuring program correctness is to run a program on "representative"

data sets and verify that the results obtained are indeed what is expected. This

method, however, cannot provide anything more than some degree of confidence

that the program will always fulfill its objective, and is by no means a guarantee

of the program's correctness. Moreover, with this method, design flaws often are

detected only after a large investment has been made to develop the system to a

point where it can be run. The rebuilding that is caused by the late detection

of these flaws contributes significantly to the high cost of software construction

and maintenance [Good 85]. For this reason, computer scientists started turning

their attention to formal mathematical methods for rigorously proving program

correctness. The inductive assertions method for program verification was developed

by Floyd in 1967 [Floyd 67] and is now the basis for a large number of automated

program verification systems. This method requires that the user annotate the

loops of the program with inductive assertions (also called loop invariants) which

are invariants of the loops. However, specifying inductive assertions for program

loops is a redundant, tedious and error-prone task for the programmer [German and

Wegbreit 75]. Therefore an area of research which is of great interest and potentially

of great use to the the community is the automatic derivation of inductive assertions

for program loops. This chapter describes an iteration method for automatically

deriving loop invariants for flowchart programs.

Dijkstra [Dijkstra 89] made a strong case for the indispensability of formal

program verification, arguing that software bugs are programming errors which

can be eliminated by formally verifying programs. His article evoked a heated

response from many members of the community, some of them arguing that since

there is always a human element involved, be it in programming or in program

verification, and since human beings are imperfect, error-free programs are virtually

an unattainable dream. Others have even questioned the desirability of formal

program verification [De Millo et al. 79]. The existence of such diametrically

opposed viewpoints indicates that this issue will not resolved in the near future.

The following is a review of some program verification systems which have

been built in the past. These can be divided, for our purposes, into two broad

categories : those in which the user has to supply the loop invariants for the loops

in the program, and those in which the program verifier provides assistance to the

user in deriving the loop invariants for the program being verified.

In his pioneer system, King [King 69] describes a program verifier which he

wrote and implemented for his Ph.D. dissertation. He regards his system as a

first step toward developing a "verifying compiler", which not only performs the

translation of a program to machine executable form, but also attempts to prove

47

that the program is "correct". The system is written in assembly language running

on an IBM 360 and operates on programs written in a simple programming language

for integer arithmetic. The model of computation he uses is also described in [King

71]. In this model, programs can consist of three types of statements : assignment

statements, tests, and the "halt" statement. The method described is essentially

the inductive assertions method of Floyd [Floyd 67]. The inductive assertions for

the loops of the program to be verified have to be provided by the programmer.

The formal analysis of the program produces verification conditions that must be

proved to be theorems over integers. These theorems are proved by powerful formula

simplification routines and specialized techniques for integer expressions. King lists

nine examples which he used to test his system. The verification of the ninth

example was unsuccessful. Deutsch [Deutsch 73] and others later found that the

inductive assertion for the loop of this program was not strong enough and that the

program could not be proved correct if that inductive assertion was used.

Deutsch describes an interactive program verifier called PIVOT (Programmer's

Interactive Verification and Organizational Tool) in his Ph.D. dissertation [Deutsch

73]. This work is very similar to that of King [King 69] in certain areas such as

representation and simplification of arithmetic expressions. The verifier is based

on Floyd's inductive assertions method. An algebraic, statement-oriented language

is used for the programs to be analyzed. Deutsch added an interactive facility to

his verifier to cope with the inability of his system to generate inductive proofs

automatically; the user can thus guide the proof procedure if necessary.

Another program verification system in which the user provides the inductive

assertions for the program being proved correct is one described by Cooper [Cooper

71]. He describes a system aimed at building routines to be used in mechanical and

mechanically-aided proofs about the correctness and convergence of programs. His

system contains an arithmetic simplifier which can reduce arithmetic expressions

to a more standard form and also performs conversion to conjunctive or disjunc

tive normal form. Another component of the system is an implementation of a

modified version of the Pres burger arithmetic algorithm (a formula is said to be

a formula of Pres burger arithmetic if it is formed from algebraic expressions, only

allowing variables, constants, addition and subtraction, the arithmetic relations <
and =, the propositional calculus logical connectives, and universal or existential

quantification). Programs are regarded as being made up of blocks, and relations

describing the properties of the blocks are attached to the blocks, much in the same

fashion as attaching predicates to a point in a program as described by Floyd [Floyd

67]. However, in contrast to the Floyd approach, the equations for a loop block are

inherently second-order. These can be changed to first-order equations if all the

48

loop predicates are specified by the programmer. Cooper goes on to say that iter

ating a loop a few times soon gives the programmer a good idea of what a suitable

invariant might be; however, he has not come up with a program which could do

this automatically.

Good et al. [Good et al. 75] report the development of an interactive pro

gram verification system for verifying Pascal programs. In their system, the user

is primarily responsible for correctness proofs for programs. All loop invariants
must be provided by the programmer. The verification condition generator is an

implementation of the axioms and rules of inference which constitute the axiomatic

definition of Pascal. The theorem prover used is based on natural deduction, which

facilitates computer-user interaction, since the theorems being proved are expressed

in a form more intuitively comprehensible to the user. The prover is interactive and

is based on the premise that if it can construct a proof automatically, it will do so

fairly quickly; if a theorem has not been proved within some specified time limit,

the prover stops and waits for interactive direction. A sorting program taken from

[King 69] is given as an example illustrating the working of the verifier.

Suzuki [Suzuki 75] describes methods for verifying programs written in a sub

set of Pascal, which may contain data structures such as array, pointer, and record,

and control structures such as while, repeat, for, procedure, function, and coroutine.

According to Suzuki, the two major hurdles in automatic program verification are

the following. First, the language used to express assertions is usually first-order

predicate logic, which he claims is unnatural. Secondly, general-purpose theorem

provers are usually inadequate for proving the verification conditions generated from

a given program. His system allows users to introduce new symbols by documenta

tion in the form of three simple kinds of statements which are used by the prover

as rewriting rules to expand new symbols, reduction strategies which state that

some expressions are reduced to others under specified conditions, and goal-subgoal

strategies which state that certain well-formed formulas are true if certain others

are true. The basis of the deduction mechanism used is a Gentzen-type formal

system. Suzuki illustrates the working of his verifier by demonstrating correctness

proofs for Floyd's Treesort and Hoare's FIND programs. The loop invariants for

programs verified by this method have to be supplied by the user.

Polak [Polak 81] describes the design, implementation and verification of a

compiler for a Pascal-like language. The Stanford Verifier [Stanford 79] is used to

give a complete formal machine-checked verification of the compiler. The author

regards the verification as an integral part of program development. The verification

system used is based on Hoare's calculus [Hoare 69]. Loop invariants must be

supplied by the programmer.

49

The IOTA project [Nakajima and Yuasa 83] was motivated by a need to de

velop a mechanizable verification method for programming with modules. This led
to the design of a programming and specification language IOTA for modular pro

gramming and then to the development of a total programming system. The system

provides an integrated environment to enhance the goal of modular programming

and consists of five major subsystems : developer, debugger, verifier, prover, and

executor. The program verifier is based on Hoare's system and the loop invariants

are provided by the programmer.

Good [Good 85] describes the Gypsy verification environment, which is a large,

interactive computer program that supports the construction of formal, mathemat

ical proofs about the behavior of software systems. It contains tools for supporting

the normal software development process as well as tools for constructing formal

proofs. The environment is based on the Gypsy language [Good et al. 78]. The

external environment consists of data objects, each of which has a name and value,

which are changed as a result of implementing a program. Internal data objects

can be created and used by an implementation of a program to accomplish its ef

fect. Gypsy provides a means of stating both internal and external specifications

of a program, which define constraints of its implementation. From these specifica

tions, the verification conditions for a program can be built and the program can

be verified by Floyd's inductive assertions method. These verification conditions

are then proved with an interactive proof checker, which relies heavily on user guid

ance. Some examples illustrating the use of the system are given. A measure of the

efficiency of the system is given for two examples in terms of the number of proved

executable Gypsy lines per work-day per CPU-hour.

German and Wegbreit [German and Wegbreit 75] describe a system which pro

vides assistance to the user in synthesizing correct inductive assertions. The system

is called VISTA and it uses four principal methods to obtain inductive assertions :

1) symbolic evaluation in a weak interpretation, 2) combining output assertions with

loop exit information to obtain trial loop assertions, and generalizing these where

necessary, 3) propagating valid assertions forward through the program, modifying

them as required by the program transformations, and 4) extracting information

from proofs that fail in order to determine how assertions should be strengthened.

None of these methods are complete, but when coupled together they can help in

automatically deriving inductive assertions in a number of cases. The authors be

lieve that the language for specifying assertions should be improved to facilitate

specification of assertions by the programmer. Also, the theorem prover which is

used by the program verifier should have the capability of efficiently checking the

validity ofa formula and a number of slightly varied formulas. They have succeeded

50

in generating inductive assertions for the first seven examples in [King 69] and in ex

tending the incomplete inductive assertion in (Example 9, King 69] to the complete

inductive assertion. The theorem prover used is PIVOT, described in (Deutsch 73].

An interactive approach to program verification for Pascal programs is de

scribed by von Henke and Luckham (von Henke and Luckham 75]. They are of the

view that a program verifier is a tool which can sometimes enable a programmer to

gain a degree of certainty about his or other people's programs. Thus the program

verifier aids the user in situations where documentation is incomplete, the program

is unfinished or badly written, or the data structures are non-standard. The veri

fication system is the same as that described in (Suzuki 75]. An example is given

where a programmer writes a partially incomplete program for performing unifica

tion; the program also contains errors. The verification system used interactively

participates in locating errors and omissions in the program. The methodology

given is not complete, and neither is it intended to be; many of the problems which

arise during a verification involve the user in making choices and decisions. This

verifier is intended for use in conjunction with other programming facilities.

Some work has been done in the past on the subject of deriving inductive asser

tions mechanically. Wegbreit (Wegbreit 73] describes heuristic methods for mechan

ically deriving loop invariants from their boundary conditions and for mechanically

completing partially specified loop predicates. The method uses the output predi

cate to derive suitable loop predicates by dragging the output predicate backwards

through the program and modifying it suitably when passing through the statements

of the program. Another alternative he gives is to take a programmer-supplied in

ductive assertion, which contains the "essential idea" of a loop, and mechanically fill

in the details to obtain a complete and correct loop predicate. Wegbreit described

some domain-dependent and some domain-independent heuristics for deriving loop

predicates. He starts by using the weakest possible loop invariant for a particular

loop which will satisfy one of the verification conditions, and tries to strengthen

this loop invariant using a number of heuristics. The heuristics include strengthen

ing the current loop invariant by dropping some disjuncts, propagating predicates

backwards through the program, adding expressions which are equal to zero to one

side of an equality, multiplying one side of an equality by an expression which is

equal to one, eliminating variables from inequalities using transitivity, etc. These

heuristics are illustrated with the help of several examples, all involving simple loop

programs or nested loop programs. A short example illustrating this approach is

the following: the flowchart of Figure 3.1 computes the quotient Q and the remain

der R of integer X divided by integer Y. Here the input predicate ¢ is given by

X 2: ·o II Y > 0, and the output predicate 1/J = (X = QY + R II 0 s; R II R < Y).

51

\START I
4> = {X ~ 0 , y > 0}

Q +-- 0
R -x

Ao fb•{X20,

w
Al

R < y "\ YES
J A4

HALT\

NO
{X = QY + A2 t =

R +-R- Y
a -a• 1

Figur7 3.1 Calculating the quotient and remainder of two numbers

This implies that at arc A 0 , the predicate Po =(X;::: 01\ Y > 01\ Q = 0 1\ R =X)
holds. To verify the flowchart, it suffices to find a loop predicate P 1 at arc A1 such
that

(E1) Po-+ P1

(E2) P1 1\ 8(1, 2, 3, 1) -+ P{, where 8(1, 2, 3, 1) is the transformation due to the
flowchart path AI> A2, Aa, A1 in that order, and P{ is predicate P1 with the values
of the variables altered by going through path A1>A2, Aa, A1 once.

(E3) P1 /\6(1,4)-+ ,P', where 8(1,4) is the transformation due to the flowchart
path A1, A4 in that order, and ,P' is predicate ,P with the values of the variables
altered by going through path A1 , A4 once.

The standard means for generating a loop predicate is to use (E3) and start
with trial choice of P 1 = (6(1,4) -+ ,P'). Here, this gives P1 = (R < Y -+ (X =

QY + R 1\ 0 ::; R 1\ R < Y)). Converting to disjunctive form and simplifying,

52

P1 = (R :2: YV(X = QY +RAO::; R)). To verify the flowchart, it suffices to prove

that with this choice of P 1 , (E1) and (E2) are each valid. (E1) is

(X :2: 0 A Y > 0 A Q = 0 A R =X)-+ (R :2: Y V (X= QY + R A 0 :S R))

which is valid. However, (E2) is

(R :2: Y V (X = QY + R A 0 :S R)) A R :2: Y A R' = R- Y A Q' = Q + 1 --+

(R' :2: Y V (X = Q'Y + R' A 0::; R'))

· which, while satisfiable, is not valid. This suggests that the trial choice for P1 should

be replaced by a stronger one. Dropping a disjunct is a possible strengthening

transformation; plausibility arguments suggest that the disjunct to drop is the one

arising from 8(1,4). Hence consider the next trial choice P1 =(X= QY + R A 0::;

R). (E1) remains valid; (E2) becomes

(X = QY + R A 0 ::; R) A R :2: Y A R' - R- Y A Q' - Q + 1 -+ (X
Q'Y + R' A 0 ::; R')

which is also valid. Hence, this choice of P 1 is said to validate (E1) and (E2), and

the flowchart is verified.

It appears that the method would not be as easy to apply to programs with

arbitrary loop structures. Wegbreit mentions that such programs could be handled

by obtaining an approximation to one loop predicate by a finite expansion to some

depth i, and using this approximation to obtain another loop predicate, and so on.

This heuristic is not illustrated in any example. These methods were the result

of hand simulations and were not actually implemented. Wegbreit mentions that

a breadth-first search capability would be required in the implementation of this

system. He believes that this method would be successful when applied to programs

which have their loops tagged with assertions of varying degrees of completeness :

some complete, some partial, and some untagged.

The efforts of Katz and Manna [Katz and Manna 73] are also directed towards

automatically deriving loop invariants. They describe two general approaches for

doing so; the first is the top-down approach, in which the loop invariant is obtained

by analyzing the predicates which are known to be true at the entrances and exits

of the loop, and the second is the bottom-up approach, in which the loop invariant

is generated directly from the statements in the loop. The top-down approach is

similar to that described by Wegbreit in [Wegbreit 73]. The bottom-up approach

tries to find general expressions for the values of the program variables after n

loop iterations and then eliminate n from these expressions. As a brief example,

suppose that program variables Yl and Y2 are changed only in the assignments

(Y1, Y2) <-- (Yl + xya, Y2 + 5ya) inside a loop; then

53

n n

(n) (0) + ""' (i-1) (n) (o) + 5 ""' (i-1)
Y1 = Y1 x ~ Y3 , Yz = Yz ~ Y3

i=l i=l

where y< i) denotes the value of y after the ;th loop iteration. Therefore

(n) (0) n (n) (0)
Y1 - Y1 ""' (i-1) Yz - Yz = ~Y3 =

X ~1 5

Assuming we know that the initial values of Y1 and Y2 upon first entering the

loop are Yio) = 1 and y~o) = 0, we obtain the invariant 5(y1 -1) = xyz.

All the given heuristics apply to loops without branches. A different set of

heuristics is given for programs with arrays; underlying these heuristics is the

assumption that arrays are used to treat a large number of variables in a uni

form manner and not as a collection of unrelated variables. Assertions about

arrays are assumed to be of the form Vj [< j- index >-->< j -array >] or

3j [< j- index> II< j- array>], where< j- index> is a claim on the indices

of the array and < j- array > is the claim which is made about the array elements

themselves. The rules given in this paper do not comprise a general system for

finding inductive assertions; rather, they just provide some useful guidelines which

could help in finding some inductive assertions which commonly occur in practice.

Others have done research on methods for automatically deriving inductive

assertions for specific types of programs. Caplain [Caplain 75] describes a technique

applicable to numerical programs, which is based on expressing the transformation

of the n variables in a loop by an x n matrix; i.e. if X is a vector of n variables, then
express the transformation effected upon X in the loop by writing Xtranaformed =
[A]X + 6, where [A] is a n x n matrix and 6 is a constant vector. If [A] is

diagonalizable, i.e. if [A] can be expressed as [A] = [P]-1 [D][P], where [D] is a

diagonal matrix, then a set of "basic invariants" can be exhibited which has the

property that every invariant expression can be expressed as a function of the basic

invariants, and that no basic invariant can be expressed as a function of the others.

Thus this basis of invariant expressions is minimal and sufficient for the purpose of

any proof, because it subsumes any other invariant. For non-linear transformations,

he suggests finding a change of variables which will linearize the transformation and

make it diagonalizable. Various rules are given for dealing with loops with branches.

The rules given are not complete and require a rather sophisticated mechanization

which would probably succeed only with interactive intervention of the user. The

application of a similar approach for non-numerical programs would require an

elaborate axiomatization of the domain type, making the outcome of such research

uncertain.

54

Some work has also been done in program verification involving higher order

logics. Manna [Manna 70] shows that it is possible to formalize all properties

regularly observed in deterministic and non-deterministic algorithms in second-order

predicate calculus. He also shows that for any algorithm, it suffices to know how to

formalize its partial correctness by a second-order formula in order to formalize all

other properties by second-order formulas.

An oft-repeated complaint against general-purpose theorem provers is that they

are incapable of efficiently handling the proofs which arise during program verifi

cation. In the opinion of Elspas et a!. [Elspas et a!. 72], special-purpose theorem

provers need to be built for program verification, e.g. King's system [King 70] or

that of Rulifson et al. [Rulifson et a!. 71]. They do not think that it is feasible for

a machine to generate loop invariants without human intervention at some stage.

Theorem provers have in general been most successful when applied to proofs of

theorems in relatively small axiomatic domains like group theory and lattice theory

and have been less successful on problems in fields such as number theory. One rea

son for this is the necessity of including mathematical induction among the axioms

of the theory, which cannot be done in first-order logic. A way around this is to

introduce an induction axiom for each predicate that might conceivably be needed

in a certain proof.

Some special-purpose theorem provers have been built for program verifiers.

King [King 70] describes an interpretation-oriented theorem prover over integers

built as part of a program verifier (described more fully in [King 69]). The task of

the theorem prover is to prove theorems in which the functions are the arithmetic

operators+, -, *• div, f, mod, and abs, and the predicates are>, <, ::::, :5, =,and

io- Since these functions and predicates have a fixed interpretation, it is possible to

use highly specialized and domain-specific procedures in the theorem prover. Note

that in general, it is theoretically impossible to construct a program which can

decide the validity of any expression in this general class of expressions (see [Davis

et al. 61]). The theorem prover consists of two parts : the formula simplifying

system and the linear prover. The formula simplifying system maintains expressions

in a certain "normal" form. Several simplifying procedures are applied to eliminate

subsumed clauses and to reduce sets of equalities and inequalities into smaller sets.

The theorem to be proved is then negated and an attempt is made to derive a

contradiction. The next stage is to eliminate any variable globally defined by an

equality, eliminate special functions such as abs, mod, and div, break the problem

into subproblems, and call the linear prover. The linear prover deals with linear

systems of inequalities and tries to find a contradiction or at least narrow down the

range of values of the variables. These results are then applied to the remaining (if

55

any) non-linear relations in an attempt to derive a contradiction. King reports that

the time taken for the simpli:tfcation of most theorems took about 10 seconds per

theorem, the only complicated part of his system being the linear prover.

Another decision procedure designed specifically for proving theorems in a pro

gram verifier is described by Nelson and Oppen [Nelson and Oppen 79]. They

describe how to combine decision procedures for four different quantifier-free theo

ries : the theory of real numbers under+ and ::;, the theory of arrays under store

and select, the theory of list structure with car, cdr, cons and atom, and the

theory of equality with uninterpreted function symbols. Each theory is character

ized by its set of nonlogical symbols and nonlogical axioms. These four theories

are combined by propagating any equalities entailed in each theory to the decision

procedures of the other theories. An algorithm is described for the equality prop

agation procedure and a proof of its correctness is given. The resulting decision

procedure is NP-complete. A shortcoming of this decision procedure is the fact
that only multiplication by constants can be handled (e.g. 2 * x can be written as

x + x). This system is a part of the Stanford Pascal Verifier, an interactive system

for reasoning about Pascal programs.

A suggestion regarding a method of building a special-purpose theorem prover

for verifying programs has been put forward in [Sarkar and De Sarkar 89a]. Accord

ing to the authors, it is counter-intuitive to use resolution-based theorem provers

for proving verification conditions arising during the verification of programs over

integers, since this requires translating the conditions to be proved into predicate

calculus, while for program verification it is more natural for the user to provide as

sertions in algebraic notation. They present a new inference rule, called implication

resolution, which is a generalization of resolution. This and other inference rules can

be applied directly to the formulas of integer arithmetic. Every term is expressed

in a normal form (this is the same normal form as described in [King 69]), and then
the various inference rules are applied. In a related paper [Sarkar and De Sarkar

89b], Sarkar and De Sarkar describe a set of inference rules for handling quantified

formulas and arrays in verifying integer programs. The integer axioms are built

into the inference rules rather than being provided as premises. A normal form is
described for quantified formulas. This paper does not treat existentially quantified

formulas. The rules described in the above two papers have been implemented in a

theorem prover for proving the verification conditions arising in iterative programs

over integers [Sarkar and De Sarkar 89c]. The prover is written in Pascal and imple

mented on a HP 9000 minicomputer. An assessment of the efficiency of the prover

is given based on the efficiency of proof construction and the memory space used.

Spitzen and Wegbreit [Spitzen and Wegbreit 75] have done some work on the

56

unification and synthesis of data structures. They discuss how data structures can

be precisely specified and give examples using data structures like stacks, buffers,

and queues. They present an axiomatization of a programming language suitable

for automatic verification, and show how programs which realize these data struc

tures may be proved correct. Spitzen and Wegbreit believe that whereas mechanical

verification is within the reach of current verification systems, mechanical synthe

sis is substantially harder since it seems to be inherently a second-order process

requiring some form of induction.

3.2 Floyd's inductive assertions method

In [Floyd 67], Floyd describes a method for verifying flowchart programs. (This

description is taken from [Manna 74].) Suppose we are given a flowchart program

with a description of its behavior, i.e. a characteristic predicate 'if; (called an output

predicate), which describes the relationships among the program variables that must

be satisfied at the completion of the program execution. We are also given an input

predicate </>, which defines the input restrictions that must be satisfied to make

execution of the program meaningful. Our task is to guarantee that for all program

executions with inputs satisfying the input predicate, the program terminates, and

that at the completion of execution the output predicate is satisfied.

We distinguish among three types of variables, written as three vectors :

(i) an input vector x = (x 1,x2, ... ,xn), which consists of the given input values

and therefore never changes during computation;

(ii) a program vector y = (yt,y2 , ... ,ym), which is used as temporary storage

during computation; and

(iii) an output vector z = (zt,Z2, ... ,zl), which yields the output values when

computation terminates.

We say that a program is partially correct with respect to </> and 'if; if for every

input ~ such that </>(~) is true and the computation of the program terminates, 'if; is

true for the values of the program variables at the completion of execution. Thus

in partial correctness we don't care about termination.

Suppose we are given a flowchart program P, an input predicate </>, and an

output predicate 'if;. To prove that P is partially correct with respect to </> and 'if;
we proceed as follows :

1. Cutpoints. The first step is to cut the loops of the program by choosing on

the arcs of the flowchart a finite set of points, called cut points, such that every loop

includes at least one such cutpoint.

57

2. Inductive assertions. The next step is to associate with each cutpoint i of

the program a predicate p;(x, y), called the inductive assertion (or loop invariant),

which characterizes the relation among the variables at that cutpoint. In other

words, whenever control reaches point i, p;(x, tJ) must be true for the current values

of x and tJ at this point. The input predicate <f>(x) is attached to the START point,

and the output predicate ,P(x, z) is attached to the HALT points.

3. Verification conditions. The third step is to construct for every path a

leading from cutpoint i to cutpoint j the verification condition

'v'x'v'y(p;(x, y) 1\ Ra(x, tl)--+ Pi(x, ra(x, y))]

where Ra(x, y) indicates the condition for path a to be traversed, and ra(x, tJ)
describes the transformation of the values of y effected while path a is traversed. A

backward-substitution technique for obtaining Ra and r <> is as follows. Let a be a

path leading from cutpoint ito j. Initially, R(x, y) is set to true and r(x, y) is set to

y, and both are attached to cutpoint j; then in each step, the old Rand rare used

to construct the new R and r, moving backward toward cutpoint i. The final R
and r obtained at cut point i are the desired Ra and r <>. The rules for constructing

the new Rand r in each step are given below, according to the statement occurring

just before the old Rand r.

1. Statement : t1 <- f(x)
New values for Rand r: R(x,j(x)), r(x,J(x)).

2. Statement : tJ <- g(x, y)
New values for Rand r: R(x,g(x,y)), r(x,g(x,tJ)).

3. Statement : t(x, y) (test condition, where the old R and r are on the "true"
branch leading out of the condition)

New values for Rand r: t(x,y) 1\ R(x,y), r(x,y).
4. Statement: t(x,y) (test condition, where the old Rand rare on the "false"

branch leading out of the condition)

New values for Rand r: ~t(x, y) 1\ R(x, tJ), r(x, y).

4. Proving the verification conditions. The fourth and final step is to prove

that all these verification conditions for our choice of inductive assertions are true.

Proving the verification conditions implies that each predicate attached to a cut

point has the property that whenever control reaches the point, the predicate is

true for the current values of the variables; in particular, whenever control reaches

a HALT point, ,P(x,z) is true for the current values of x and z. In other words,

proving the verification conditions shows that the given program is partially correct

with respect to </> and '¢.

All of these steps are rather mechanical except for Step 2. Discovering the

58

proper loop invariants to attach to cutpoints is a non-trivial matter and requires a

thorough understanding of the program.

3.3 Overview of the method

In this section we give an overview of an iteration method to derive loop invari

ants for programs for the purpose of program verification. Suppose we are given a

program. Perform the following steps :

1. Draw a flowchart for the program, cut the loops, and attach loop invariants

(these are unknown) and input and output assertions where appropriate. Note that

we are assuming that loop invariants exist for all loops; if they do not, then this

method is not applicable. A symbol is attached at every loop cutpoint; this symbol

represents an unknown loop invariant.

2. Generate the verification conditions for the program as explained in the

previous section.

3. Apply the iteration method to the formulas of the verification conditions to

obtain the loop invariants.

Step 3 needs to be described in detail. We give below a brief overview of the

method we will use. The detailed algorithm is given in Section 3.6.

Note that a "known" formula is one which does not contain any loop invariant.

In the following, W, W1 and Wz denote loop invariants, and H, H 1 and Hz denote

known formulas. Any verification condition involving a loop invariant is of one of

the following three forms.

(i) H--+ W

(ii) H A W1 --+ Wz

(iii) H 1 A W--> Hz.
To see that this is true, recall that there is one cutpoint for every loop in the

program, one cutpoint at the entry of the program, and one cutpoint at every exit

of the program. Therefore a path in the program could be of one of the following

four types :

(1) A path from the entry cutpoint to a loop cutpoint

(2) A path from a loop cutpoint to a loop cutpoint

(3) A path from a loop cutpoint to an exit cutpoint

(4) A path from the entry cutpoint to an exit cutpoint

Of these four types, a verification condition for a path of type 4 does not

involve any loop invariants and will therefore not be considered here. A verification

condition for a path of type 1 will be of the form H --> W (where H is a known

59

formula and W is the loop invariant at the cutpoint at the end of the path), since

the conditions which hold at the beginning of the path and during the path traversal

are known, and W is the loop invariant of the cutpoint at the end of the path. A

verification condition for a path of type 2 will be of the form H 1\ W1 --> W2 (where
H is a known formula and W1, W2 are the loop invariants of the cutpoints at the

beginning and end of the path respectively), since the condition which holds at the

beginning of the path is wl' the conditions which hold during the path traversal

are known, and W2 is the loop invariant of the cutpoint at the end of the path.

A verification condition for a path of type 3 will be of the form H 1 1\ W --> H 2
(where H 1, H 2 are known formulas and W is the loop invariant of the cutpoint at

the beginning of the path), since the condition which holds at the beginning of the

path is W, the conditions which hold during the path traversal are known, and the

output condition which holds at the end of the path is known.

We will obtain successively more accurate approximations to the loop invari

ants. For this purpose, we will define the function GET-APPROX in Section 3.7 to

be a binary function which takes as arguments a formula H and a symbol W and

returns a formula F such that H--> F which is an approximation for W. Note that

H must be a known formula; W is the name of an unknown loop invariant.

Initially, only the input and output assertions are given. We initially approx

imate all the loop invariants by setting them to "false". We will represent the ith

approximation to W by W;; the initial approximation to W is W0 • Informally, the

method we will use is the following : suppose W is some (unknown) loop invari

ant in the program. Consider all the verification conditions in which W appears

on the right-hand side of the implication sign. We replace all occurrences of loop

invariants in these verification conditions with their current approximations. Sup

pose that the last approximation calculated for W was W;. Suppose the resulting
verification conditions are :

H1--> W;

H2-. W;

H3--> W;

Hn--> W;

(where i gives the number of the current iteration). Note that loop invariants may

occur in the formulas H1, H2, ... , Hn above; all such occurrences are replaced by the

current approximations for these loop invariants. For all the Hj's, 1 ~ j ~ n, check

whether Hj --> W; is true or not. Let T be the set of all Hj's such that Hj -. W;

60

is not true. If Tis empty, then set Wi+ 1 = W;; if Tis not empty, then set W;+l =
GET-APPROX(W; V R, W), where R = V{Hj I Hj E T}. Note that for all j such

that 1 $ j $ n, Hj --+ W;+1 and W; --+ vV;+l· This is because the new formula W;+1

generated by the function GET-APPROX is a logical consequence of the disjunction

of W; and all the formulas in the set T; thus it is a logical consequence of each of

these formulas.

We then look for another loop invariant and find the next approximation to it

exactly as described for W; (this time using vVi+l as an approximation for W), and

so on. Recall that all the verification conditions in which W appears on the right

hand side of the implication sign are H1 --+ W, H2 --+ W, H3 --+ W, ... , Hn --+ W. If

we have W;+l = W; (this happens when the set Tis empty), then since Hj --+ W;+1

for all j such that 1 $ j $ n, and since vV;+l = W;, we have Hj --+ W; for all j

such that 1 :::;; j :::;; n. When this happens for all the inductive assertions, then we

are done.

3.4 Some observations about the programming language
model

A program is partially correct if all the verification conditions derived from

the program after assigning appropriate loop invariants are valid in a model M of

the data structures and primitive operations of the language. For instance, most

programming languages contain the arithmetic operators + and -; hence a model

M of such a programming language would reflect the semantics of these operations.

In other words, we would like to prove

M f= vc

for all the verification conditions "vc" of the program being verified.

Now the question of whether there exists an axiomatization of the model M
arises. (A theory Tis said to be axiomatizable if there exists a decidable set W <;::; T

such that T is exactly the set of all formulas derivable from W in the predicate cal

culus.) Some examples of axiomatizable theories are the set of all logically valid

first-order formulas, the theory of natural numbers with successor function, and

Presburger arithmetic (Presburger arithmetic consists of addition and the predi

cate "<",over the natural numbers). Peano arithmetic (addition and multiplica

tion along with the predicate "<" over the natural numbers) is not axiomatizable;

however, the well-known Peano axioms along with the principle of induction over

the natural numbers characterize all properties of the natural numbers, including

those of the Peano arithmetic, i.e. those which may be expressed as formulas of

61

first-order logic. This is not in contradiction to the fact that Peano arithmetic is not

axiomatizable, because the principle of induction cannot be expressed in first-order

logic, as it involves quantification over predicates [Loeckx and Sieber 87].

Assuming that there exists an axiomatization A of a model M (A is a set of

axioms such that A is decidable and such that the set of all formulas true under

M is exactly the set of all formulas which are derivable from A in the predicate

calculus), the verification problem reduces to a proof of the form

A f- vc

for all verification conditions "vc" of the program being verified. Now, any verifi

cation condition is of the form L _,. M (see Section 3.2), for first-order formulas L
and M. Therefore the above can be written as

A f- (L _,. M)

which is equivalent to

f- ((A 1\ L) _,. M)

Henceforth we will assume that the models of the programming languages under

consideration are axiomatizable, and that an axiomatization A of the language is

provided when the verification conditions are being proved; in other words, the

formulas in A are taken to be axioms and can be used for any proof. This may seem

like a very restrictive assumption, since we know that even Peano arithmetic is not

axiomatizable; however, in many cases, we circumvent this problem by providing

suitable instances of the principle of induction as required, or by providing the

system with enough facts to be able to derive the desired formulas from these facts.

The reader should nevertheless be aware of this restriction on the power of our

system.

3.5 Description of algorithm for generating loop invariants

The notation described in Section 3.3 is used throughout this algorithm. VVe

first briefly describe the algorithm step by step. We assume that W 1 , W 2 , ... , wn
are the loop invariants of the program. As mentioned previously, we let the initial

approximations of all verification conditions be "false", and denote the initial ap

proximation of each W; by W~. The j'h approximation for W; will be denoted by

Wj for every i, 1 :S: i :S: n. If the last approximation which has been calculated

for a loop invariant Wi is the k'h approximation, then "index(Wi)" is set to "k".
Initially, index(Wi) = 0 for every i, 1 :S: i :S: n. These initializations are performed

in step 1.

62

In step 2, we construct a list called "list", containing all the loop invariants'

names (i.e. W 1 , W 2 , ... , wn) in a particular order. The order is decided as follows.

First, all loop invariants which figure on right-hand sides of implications of verifica

tion conditions of the form H ---> Wi are appended to the list (in any order). Note

that no duplicate elements are ever permitted in the list; if some loop invariant is

already in the list, it is not added to the list again. We then start examining the

list, starting at the head of the list, and keep adding new elements at the tail of the

list depending on what the element of the list being examined is. This is done as

follows. Suppose the element at the head of the list is Wk. Then we look for all

verification conditions which contain Wk on the left-hand side of their implication

sign, and which contain some loop invariant w• on the right-hand side of their

implication sign, and for every such verification condition, if Wi is not already a

member of the list, it is added at the tail of the list. This process is then repeated

for the second element of the list, the third, and so on, until every loop invariant

has been added to the list.

The list built in step 2 is used in step 3 to provide the order in which the

iteration will proceed. Starting with the first loop invariant in this list, and repeating

the same process for each element of the list in order, we do the following. Initialize

the set T to be an empty set. Suppose that the first element in list is the loop

invariant W. We go through the list of all the verification conditions, and for every

verification condition which has W on the right-hand side of its implication sign, we

do the following. Suppose this verification condition is J--+ W. J could either be of

the form J = H, for some known formula H, or J could be of the form J = H 1\ Wi,
for some loop invariant Wi. Note that JiVl could be equal to W. If J is of the latter

form, then Wi is replaced by liVfndex(Wi) in J. Call the transformed formula "J"'.
We then check whether J' --+ liV;ndex(W) is true or not. If it isn't, we add J' to the

set T. This process is repeated for all the verificatio!llconditions. We then obtain

the next approximation for W as follows. First, index(W) is incremented by 1. If

the set Tis empty, then the current approximation for W is retained, and "fiag(W)"

is set to "true" to mark this fact. If the set T is not empty, then we obtain the next

approximation Windex(W) for W by calling the routine "GET-APPROX" to return

a formula Windex(W) such that

Windex(W)-1 V R--+ W;ndex(W)>

where R is the disjunction of all the elements ofT. The fact that T was non-empty

is marked by setting flag(W) to "false".

This whole process is repeated until all the flags for all the loop invariants are

set to "true" at the same time. This indicates that the current approximations for

the loop invariants satisfy all the verification conditions and can therefore be used

63

as valid loop invariants. Step 4 sets vV~pprox to be the last approximation obtained
for Wi, which is a valid loop invariant for every i such that 1 ::; i ::; n.

The algorithm is given below in Pascal-like pseudo-code.

3.6 The iteration algorithm

{ COMMENT : Let V be the set of verification conditions for the program; suppose

v = {vcj,VC2,···· vcm}· Let all the (unknown) loop invariants be WI, W 2, ... , wn.
We denote the formula on the left-hand side of the implication sign in a verification

condition "vc" by "lhs(vc)", and similarly we denote the formula on the right-hand

side of the implication sign in a verification condition "vc" by "rhs(vc)".}

1. For i := 1 to n do

{index(W;) := 0;

Wj :=false
}

2. list := empty;

ptr := 1;

for i := 1 to m do
if (vc; is of the form H--+ Wi) and not(member(list,Wi)) then

append(list, Wi);

while length(list) < n do
{current := ptr1h element in list;

for every vc E V such that (lhs(vc) contains current) and (rhs(vc) = W;
for some i) and (not(member(list,Wi))) do

append(list, Wi);

ptr := ptr + 1

}

3. repeat

for i := 1 to n do

{W := ;th element in list;

T:=0;
for j := 1 to m do

{ ifrhs(vcj) = W then

};

if • (lhs(vcj) implies Windex(W)) then
T := T U { lhs(vcj)}

64

index(W) := index(W) + 1;

if T #- 0 then

else

{ flag(W) :=false;

W;ndex(W) := GET-APPROX(Windex(W)-1 V

(Vj{H/H E T}), W) (see Note after algorithm)

}

{ flag(W) := true;

Windex(W) := Windex(W)-1

}
}

until/\7=1 flag(Wi);

4. fori := 1 ton do
W; ·- Wi

approx ·- index(W)

5. Halt.

Note. Each time GET-APPROX is called, any occurrence of an unknown loop
invariant WJ in the first argument of GET-APPROX is replaced by its current

approximation, which is Wfndex(Wi)"

We now describe the function GET-APPROX. We will then prove that this

iteration algorithm is sound and complete.

3.7 The function GET-APPROX

The function GET-APPROX takes two arguments H and W, where His a

known formula and W is the name of a loop invariant for which GET-APPROX

will return an approximation. Note that the value of W is unknown. We will see

that GET-APPROX can return a formula F such that H-+ F-+ Wand such that

F :S W. In Chapter 2, we saw that such a formula can be derived by resolution
from Sk(H) and unskolemization.

The derivation ofF can be made more efficient by noting that the problem at

hand is really simpler than just deriving logical consequences of one formula. To
see this, note that the argument H is a disjunction

H = W; V H 1 V H 2 V ... V Hk

where W; is the previous approximation obtained for W, and each Hj (1 S: j S: k)
is the left-hand side of a verification condition for which the right-hand side is W,
and which is not valid with the current approximations for loop invariants (see the

iteration algorithm). Note that k" could be zero here.

65

Our goal is to generate a formula S which is a logical consequence of H, i.e.

such that

W; V H1 V H2 V .•• V Hk --> S.

The above implication is equivalent to the k + 1 implications
W;......, S
H1--> S

Hk--> S.

We therefore need to generate a formula S which is a logical consequence of

each of W;, H1, ... , Hk. We have k + 1 formulas, each of which imply S, and we

are trying to derive S from these. We can generate a logical consequence for each

of W;, H 1 , ••. , Hk by the resolution and unskolemization method of Chapter 2.

Suppose a logical consequence F of one of these formulas has been generated by

resolution and then unskolemization. We then check if F is implied by all of the

formulas W;, H 1 , .•• , Hk (it is obviously implied by at least one of them, since F is

a logical consequence of one of these formulas). Such a formula F is obtained for

each of the formulas W;, H1 , .•. , Hk. We then collect together the F's which are

implied by all of the formulas W;, H1 , ••• , Hk (i.e. W;--> F, H 1 --> F, H2 --> F, ... ,

Hk -->F) and let S be their conjunction. Sis then returned by GET-APPROX as

the i + 1 th approximation for W. Clearly, H --> S, since each F in the conjunction

S was implied by all of the formulas W;, H1 , ••. , Hk.

If after a number "b" of trials, we are not able to obtain any F which is derived

from one of W;, H 1 , ••• , H k and is implied by all of them, then we take S to be the

disjunction of all the k + 1 formulas each of which was a logical consequence of one

of W;, Hr, ... , Hk. Here too, H--> S. In the algorithm, "b" is a bound input by the

user.

The approach is slightly different when an approximation is being generated for

a loop invariant W for which there exists at least one verification condition of the

form H' 1\ W --> H", where H' and H" are known formulas (i.e. W appears on the

left-hand side of a verification condition whose right-hand side is a known formula).

In this case, we adopt an approach which guides the search for a loop invariant more

effectively than that described above. Here, before generating logical consequences

of W;, Hr, ... , Hk, we first check whether H' 1\ H--> H" is valid for all verification

conditions of the form H' 1\ W -+ H" (if this is not the case, we backtrack). If
H' 1\ H --> H" is valid for all verification conditions of the form H' 1\ W --> H", this

means that

66

H' 1\ (W; v HI v ... v Hk)-+ H"

is valid for all such verification conditions. Therefore

H' 1\ W; -+ H"
H' 1\ H1 -+ H"

H' 1\ Hk -+ H"

are all valid.
Recall that in the preceding paragraphs, we generated logical consequences of

each of W;, HI, Hz, ... , Hk in our search for an approximation for W. In this case,

however, we have one more piece of information about W, namely:

H' 1\ W-+ H".

Therefore, an approximation F for W must satisfy the above formula when substi

tuted for W, i.e. we must have

H' 1\ F-+ H".

We therefore proceed as follows. Let Bj be any one of W;, HI, ... , Hk, and

suppose that H' 1\ W-+ H" is a verification condition. Since H' 1\Bj -+ H" is valid,

H' 1\ B i 1\ ~H" is unsatisfiable in the model of the programming language being used.

Therefore there exists a resolution proof of the unsatisfiability of H' 1\ Bj 1\ ~H"

in this model (by the completeness of resolution). Recall that from the discussion

in Section 3.4, a set AXIOMS of axioms which characterize the programming

language model are to be used in this resolution proof. Consider some derivation of

the empty clause from Sk(AXIOMS 1\H' 1\Bj 1\ ~H"). We can perform as many of

the resolutions in this derivation as possible between Sk(Bj 1\ AXIOMS) first, and

then perform resolutions with the resulting clauses and S k(H' 1\ ~H"). Consider the

set of clauses (called PROOFS, say) thus derived from Sk(Bj 1\ AXIOMS). From

the above, PROOFS 1\Sk(H' 1\ ~H") is unsatisfiable. We therefore unskolemize

some subset of PROOFS to obtain a formula F. After such an F is obtained for

each of W;, HI, ... , Hk, we proceed as explained earlier and obtain a formula S

as before. Note that Sis a logical consequence of each of Wi, HI, Hz, ... , Hk,

and hence of H. We then check whether H' 1\ S -+ H" is valid for all verification

conditions of the form H' 1\ W -+ H" (if this is not the case, we backtrack). As

noted earlier, this is a necessary condition for S to be a valid approximation for W.
The method described above restricts the search for an approximation S for W

to all possible sets "PROOFS" generated as explained above, rather than the set

of all possible logical consequences of H. The following discussion shows that it is

sufficient to do so. We know that a valid approximation F for W can be generated

67

as a logical consequence of Bj, i.e. Sk(F) can be generated by resolution from

Sk(Bj II AXIOMS). Suppose such an approximation F has been generated. Since

F is a valid approximation for W, it must satisfy

H' II F--+ H".

Hence we can obtain a resolution proof of the unsatisfiability of Sk(AX IOMS)
IISk(H') II Sk(F) II Sk(~H"). However, Sk(F) was obtained by resolution from

Sk(Bj II AXIOMS). Therefore it is possible to obtain Sk(F) by resolution from

Sk(Bj II AXIOMS) in a resolution proof of the unsatisfiability of

Sk(AX !OMS) II Sk(Bj) II Sk(H') II Sk(~H"),

since such a resolution proof can be obtained by :

1. Deriving Sk(F) from Sk(Bi II AXIOMS)
2. Deriving the empty clause from AXIOMS II Sk(F) II Sk(H') II Sk(~H").

This method of generating F helps to restrict the search for a loop invariant,
since the known formulas H" on the right-hand sides of verification conditions of

the form H' II W--+ H" help to direct the search for F. This will be more clearly

demonstrated in the examples in Section 3.11.

Note. W; may itself be a disjunction of formulas, i.e. we may have

W; = A1 V Az V 000 V Am.
In this case, H = A 1 V oo• V Am V H1 V oo• V H k; thus we will have k + m formulas

for which logical consequences have to be generated (unlike the above-described

situation where we had k + 1 such formulas).

The algorithm for the function GET-APPROX and two procedures which it

calls are given below.

function GET-APPROX(H, W);

begin

input(b);
if there is one or more verification condition of the form H 1 11 W --+ H 2 then

S := DIRECTED...SEARCH(H, W)

else S := CONSEQUENCE(H, W);

return(S)

end.

function CONSEQUENCE(H, W);

begin

S :=true;

numiterations := 0;

68

end.

Suppose H = B1 V B2 V ... V Br;
while (S =true) and (numiterations <b) do

{numiterations := numiterations + 1;

for i := 1 to r do

generate a formulaS; E unsk(Res(B; 1\ AX !OMS));

for i := 1 to r do

}

if Bk --+ S; for all k such that 1 :=::; k :=::; r then

S := S 1\ S;

if (S =true) then let S = S1 v S2 v ... V Sr;
return(S)

function DIRECTED...SEARCH(H, W);

begin

end.

check if H1 1\ H --+ H2 for all verification conditions of the form H1 1\ W--+
H 2; if not, then BACKTRACK;

numiterations := 0;

S :=true;

Suppose H = B1 V B2 V ... V Br;

while (S =true) and (numiterations <b) do

{numiterations := numiterations + 1;

for i := 1 to r do

{PROOFS := set of all clauses generated from B; 1\

AXIOMS by resolution during some proof of H1 1\ B;--+
H2; (see Note 1 below)

chooseS; E unsk(SUB) for some subset SUB of PROOFS

}
for i := 1 to r do

}

if Bk -> S; for all k such that 1 :=::; k :=::; r then

S := S 1\ S;

if (S =true) then letS= S1 V S2 v ... v Sr;
check if H1/\S-> H 2 for all verification conditions of the form H1/\ W-> H2 ;

if not, then BACKTRACK;

return(S)

69

Note 1. Since H 1 II H --> H 2 is valid for all verification conditions of the form

H 1 II W--> H2 , and since H = B1 V ... V Br, clearly for every i such that 1 :::; i :::;

r, H1 11 B; --> H2 . Consider a proof of unsatisfiability of Sk(AXIOMS II H1 II

B;) 11 Sk(~H2) by resolution, for one such verification condition H1 II W --> H2.

These resolutions can be rearranged so that any resolutions among clauses of B;
and clauses of AXIOMS are performed first. Let the set of clauses from B; and

AXIOMS and the clauses generated by these resolutions be the set PROOFS.

3.8 Proof of completeness of the iteration algorithm

We now prove the completeness of this algorithm, i.e. we show that if there

exists a valid loop invariant for a given loop, the algorithm can derive it. The proof

of completeness is based on the following five facts :

(i) The first time that GET-APPROX(H, W) is called, H--> W is valid.

(ii) If H ___. W, then GET-APPROX(H, W) can returnS such that S:::: W.

(iii) If GET-APPROX(H, W) has returned S such that S =::: W all the n

times it has been called, then when it is called for the n + 1 th time, H will

imply W.
(iv) GET-APPROX(H, W) can always return S such that S =::: W.
(v) If GET-APPROX always returns a formula such that S =::: W, where W

is its second argument, then the algorithm terminates and returns a valid

loop invariant.

We prove these statements one by one.

Proof of (i) : Suppose GET-APPROX has not yet been called. Then the ap

proximations for all loop invariants are currently set to "false". Consider the first

argument H of GET-APPROX. If the second argument of GET-APPROX is W,

then His a disjunction of W0 and the left-hand sides of verification conditions which

have W on their right-hand sides and which are not valid with W set to "false".
However, it can be seen that none of these left-hand sides can contain an occurrence

of any loop invariant; the reason for this is that since all the current approximations

for all loop invariants are "false", any left-hand side containing an occurrence of

a loop invariant would have the value "false" (since false II H' = false for all

H'). And since false -->X is valid no matter what the value of X is, a verification

condition containing a loop invariant in its left-hand side would be valid. Thus all

the left-hand sides of verification conditions which are included as disjunctions in H
must be known formulas without any occurrences of loop invariants, and the right

hand sides of these verification conditions are all W. Hence each of these left-hand

sides must imply W. Since W 0 --> W (because W0 =false), clearly here H--> W.

70

Proof of (ii) : Suppose GET-APPROX(H, W) is called, and suppose H -+ W.
GET-APPROX in turn calls either CONSEQUENCE or DIRECTED..SEARCH.

Case (1). Suppose CONSEQUENCE(H, W) gets called by GET-APPROX. We

have H = B 1 V Bz V ... V Br, where some of the B;'s constitute the previous approx

imation for W, and the remaining Bj's are left-hand sides of verification conditions
whose right-hand sides are W. Now, since H-+ W, we have

Br V Bz V ... V Br -+ W

Therefore for any i,

B;-+ (Br V B2 V ... V Br)-+ W
i.e. (B; -+ W) is valid for all 1 :S: i :S: r.

Since for each i, an S; can be found in unsk(Res(B; II AX !OMS)) with the

property that S; ~ W (because B; -+ W; thus we can use the results from Chapter

2), it is possible to obtain the S;'s above so that S; ~ W for all 1 :S: i :S: r. It may
happen that S; is implied by some of the other Bk's; if it is implied by all the Bk 's,
then S; is added as a conjunct in formulaS. After this is done for each i such that

1 :S: i :S: r, Swill be a conjunction of S;'s such that S; ~ W for all i. But then by

Theorem 2.6, S ~ W.
If not even one formula S; can be derived from B; such that S; is implied by

all the other Bj's (for any i such that 1 :S: i :S: r) in a number b of trials, then S is
taken to be the disjunction of the last set of S;'s which were obtained in the WHILE

loop; since each of these S;'s had the property that S; ~ W, by Theorem 2.6, we

haveS~ W.
Hence we see that it is possible for the function CONSEQUENCE to return a

formula S which has the property that S ~ W. Since GET-APPROX also returns

S, this case is proved.

Case (2). Suppose DIRECTED..SEARCH(H, W) gets called by GET-APPROX.

We have H = Br V B2 V ... V Bro where some of the B; 's constitute the previous
approximation for W, and the remaining Bj's are !eft-hand sides of verification
conditions whose right-hand sides are W. As in Case (1), since H-+ W, we get

B; -+ W for all i such that 1 :S: i :S: r.

Now, since DIRECTED..SEARCH has been called, there exist verification con

ditions of the form H 1 II W -+ H2 , where vV is the second argument of DI
RECTED..SEARCH and where Hr, Hz are known formulas. Note that since H-+

W, we have Hrll H-+ H 1 11 W-+ H2, i.e. H 1 11 H-+ H 2 is valid and therefore the

condition to be checked at the entry to the function holds. Let H1 II W -+ Hz be

one such verification condition.

Since B; -+ W for all i such that 1 :S: i :S: r, we have Hrll B; -+ H1 11 W-+ Hz,

i.e. Hr II B; -+ Hz. For any i, consider the set of clauses Sk(B; II AX IOJi,f S II H1) II

71

Sk(~Hz) (1 :<::: i :<::: r). This set of clauses is unsatisfiable and therefore there exist

derivations of the empty clause from these clauses. Now, it is possible to derive a
set of clauses 'D; from Sk(B; II AXIOMS) and to unskolemize 'D; to give a formula

S; such that
B;--> S;--> WandS; j W (from the theorems in Chapter 2).
Then, since S;--> W, therefore H 1 11 S; -->Hz is valid; hence since by Theorem

2.2, (V'D;)--> S; is valid, therefore H1 II (V'D;)--> H1 II S; -->Hz, i.e. H1 II (V'D;)-->
Hz is valid; therefore there exists a derivation of the empty clause from Sk(H1 II

AX IOMS)II'D; II Sk(~Hz).

Thus we see that there exists a derivation of the empty clause from Sk(B; II

AXIOMS) II Sk(H1) II Sk(~Hz) such that a set 'D; of clauses is produced by
resolution from Sk(B; II AXIOMS) during this derivation of the empty clause such

that 'D; has the above-mentioned properties (namely that 'D; can be unskolemized

to give S; such that S; j W).

Therefore if we let PROOFS be defined as in Note 1 at the end of the function

DIRECTED..SEARCH, for such a derivation of the empty clause, it is possible

to pick a set of clauses 'D; from PROOFS such that for some S; E unsk(TJ;),

S; j W. As noted in Section 3.7, this method directs the search for W. This will

be demonstrated in examples to follow. Thus for each i, it is possible to choose the

S;'s above so that S; j W for all 1 :<::: i :<::: k. It may happen that S; is implied

by some of the other Bk 's; if it is implied by all the Bk 's, then S; is added as a

conjunct in formula S. After this is done for all i such that 1 :<::: i :<::: r, S will be a

conjunction of S;'s such that S; j W for all i. But then by Theorem 2.6, S j W.
If no such formulas S;, such that S; is implied by all the Bk's, can be derived

from the B; 's in a number b of trials, then S is taken to be the disjunction of the
last set of S;'s which were obtained in the WHILE loop; since each of these S;'s had
the property that S; j W, by Theorem 2.6 S j W.

Hence we see that it is possible for the function DIRECTED ..SEARCH to return
a formulaS which has the property that S j W.

Finally, since S j W, therefore by definitionS--> W, and hence

(HI II S)--> (HI II W) --> H2,
i.e. H1 II S--> H2

and thus the last condition for exit from the function is satisfied; therefore GET

APPROX can returnS such that S j W, and the proof is complete.

Proof of (iii) : Suppose GET-APPROX(H, W) has returned S such that S j W

all the n times it has been called, and suppose GET-APPROX is called for the
n + 1 th time, with first and second arguments H and W respectively. We know that

H = B 1 V B 2 V ... V Br,

72

where some of the B;'s constitute the previous approximation for W, and the re

maining Bj's are left-hand sides of verification conditions whose right-hand sides
are W. For the B;'s which constitute the previous approximation for W, we know

that each of these B;'s imply W (since GET-APPROX returned S such that S :::5 W
all the n times it has been called so far, therefore any approximationS for W re

turned by GET-APPROX had the property that S -; W). For the Bj's which

are left-hand sides of verification conditions with Won their right-hand sides, Bj
can either be written as H 1 or as H 1 II Wk, for some known formula Hr and some

approximation Wk to a loop invariant W' (W' could be equal to W). If Bj can
be written as Hr, then H 1 -; W is valid (since it is a verification condition); if

Bj = H 1 II Wk, then since H 1 II W' -; W is a verification condition, and since

GET-APPROX returned S such that S :::5 W all the n times it has been called so

far, therefore the approximation W£ for W' implies W', therefore we know that

H 1 II W£ --> H 1 II W'
->W

I.e. Hr II W£ -; W is also valid. Hence each Bj implies W.

Therefore H --> W (since H = B 1 V ... V Brand since Bk -; W for all1 :S; k :S; r).

Proof of (iv) : We prove that GET-APPROX can always return a formulaS such

that S :::5 W by induction on the number of times GET-APPROX has been called.

Base case : If GET-APPROX has never been called, and it is being called for

the first time with first and second arguments H and W respectively, then by (i),
H.....; W. Therefore by (ii), GET-APPROX can returnS such that S :::5 W.

Inductive hypothesis : Suppose that for all the n times that GET-APPROX has

been called, it has returned formulas S such that S :::5 W, where W was the second
argument of GET-APPROX in that call.

Inductive step: Suppose GET-APPROX(H, W) is called, this being then+ 1 th call

of GET-APPROX. By the inductive hypothesis, GET-APPROX returned formulas

S such that S :::5 W all the n times that GET-APPROX was called (W being the

second argument of GET-APPROX in each case). Therefore by (iii), H-; W; and

therefore by (ii), GET-APPROX can returnS such that S :::5 Win this n + 1 th call

of GET-APPROX too, and the proof is complete by induction.

Proof of (v) : We saw from (iv) that for each loop invariant Wi, it is possible to

derive approximations Wj (by calling GET-APPROX) such that each Wj derived
has the property that

Wj :::5 Wi Vk.
And since {F I F :::5 Wi} is finite up to variants for any Wi (provided that in

the conjunctive normal form ofF, no two disjunctions ofF are identical, and no

73

disjunction contains more than one occurrence of any literal) from Theorem 2.5,

only a finite number of distinct Wj's exist. But then this means that at some

point during the execution of the algorithm, the Wj's derived will start repeating

themselves.
Thus there exists some integer .A such that

j ?: .A -> (3k < .A such that WJ = Wi) for every i, 1 ::; i ::0 n.

Recall that Wj -> Wj+l for every j ?: 0. We have to show that there will be

a time when /\7=! flag(Wi) will be true. We first show that Wi = WL1 for all i,
1 ::; i ::; n.

We know from the above that there exists k < .A such that

W ; -Wi >.- k·

Therefore W{ = w~ -> w~+l -> w~+2 -> ..• -> WLI -> Wi
. Wi Wi Wi Wi I.e. A-> A-1' A-1-> A"

Therefore W{_1 = Wi.
This is true for every i, 1 ::; i::; n. Therefore flag(Wi) will be set to "true" after

W{ has been calculated. Since this is true for every i, 1 ::; i ::; n, 1\7=! flag(Wi) will

be true after W{ has been calculated for every i, 1 ::; i ::; n, and then the algorithm

halts.

Note. This claim of completeness does not say that no matter which formulas GET

APPROX generates, the algorithm will terminate with the correct answer. Since the

loop invariants W are unknown, there is no way of verifying that an approximation

S generated by GET-APPROX indeed satisfies S ::; W; and a potentially infinite

number of formulas can be generated by GET-APPROX, only a finite number of

whicli satisfy this condition. However, it does say that if a loop invariant exists,

there is a way of deriving it using this algorithm. In the same way, the completeness

of resolution does not guarantee that no matter which clauses are cliosen to be used

in resolution steps, the proof will terminate; rather, it says that there is a way of

obtaining a proof, if one exists, if the proper clauses are chosen for resolution. •

3.9 Proof of soundness of the iteration algorithm

To show that this algorithm is sound, all we need to do is to show that the final

approximations for the loop invariants which are generated are valid loop invariants.

This can be done by showing that all the verification conditions still hold when the

generated loop invariants are substituted for the actual loop invariants. Now, when

the algorithm terminates, all the flags (for every loop invariant) are set to true. This

means that every verification condition with a loop invariant on the right-hand side

of the implication sign is true if w~pprox is substituted for the loop invariant in all

74

such verification conditions. Therefore the only verification conditions which need

to be checked are those which do not have a loop invariant on the right-hand side

of the implication sign, i.e. those of type (iii) :

H1 II Wi -+Hz.

However, note that for any loop invariant Wi for which a verification condition

of the above form exists, the function DIRECTED..SEARCH returns an approxi

mationS for the loop invariant Wi such that H 1 II S-+ Hz, since this condition is

specifically checked for at the end of the function. Thus the function GET -APPROX

also returns an approximation S for the loop invariant W; such that H1 II S -+ Hz.

This means that every approximation Wj for Wi satisfies the formula

H1ll Wj-+ Hz.

Therefore in particular,

H1 II W~pprox -+ Hz
and the soundness of the algorithm is proved. •

3.10 A refinement

In this section, we describe a refinement which can improve the efficiency of

generating loop invariants. The refinement arises from the fact that assertions which

do not mention the program variables need not be included in loop invariants, since

they can be generated from the axioms of the programming language operations.

More formally, suppose the cut points in a program are numbered 0, 1, 2, ... , n,

where cutpoints 0 and n are the cutpoints to which the input and output assertions

are attached, respectively. Let the inductive assertion attached to cutpoint i be

denoted by

A; II B;

where A; consists of formulas which mention the program variables and B; consists

of formulas which do not mention the program variables. Using the notation from

Section 3.2, recall that the verification condition for a path a leading from cutpoint

i to cut point j is given by :

\!Xiiy(A;(x, Y) II B; II R,(x, Y) -+ Aj(r,(x, y)) II Bj)

(since B; and Bj do not mention variables from x andy). This is equivalent to

\!Xiiy(A;(x, y) II B; II R,(x, y)-+ Aj(r,(x, y))) II
\!Xiiy(A;(x,Y) II B; II R,(x,y)-+ Bj)

Since Bj does not mention the program variables,

\!Xiiy(A;(x, Y) II B; II R,(x, Y) -+ Bj)

75

is equivalent to

lfXVy(A;(x, Y) 1\ E;--. Ej)

We assume that this verification condition can be proved from the set of axioms

"AXIOMS" for the programming language operations; thus we have

lfXVy(AXIOMS 1\ A;(x,y) 1\ E;--. Ej)-

This is equivalent to

AXIOMS 1\ (3x3y)(A;(x,Y)) 1\ E;--> Ej)

(since none of x, y occur free in E; and Ej)- It is reasonable to assume that

AXIOMS--. (3x3y)(A;(x,y)).

Thus we have

AXIOMS 1\ E;--. Ej.

Now, clearly AXIOMS --> Eo (recall that Ao 1\ Eo is the input assertion).

Also, from the above, AXIOMS 1\ Eo --> Ej is valid for all j such that the cutpoint

j is reachable from the cutpoint 0 by a path without intervening assertions. Thus

AXIOMS--> Ej for all such j. But then by the connectedness of the program, we

can inductively extend this argument to show that AXIOMS--> Ej for all j such

that 0 :::; j :::; n. Thus all the Ej 's can be dropped from the inductive assertions.

The above result makes the task of generating loop invariants more efficient,

since any formula which is generated by the function GET-APPROX and which

does not contain program variables can be immediately discarded. This greatly

reduces the search space for a valid loop invariant.

3.11 Some examples

Example 3.1 The program over the integers shown in Figure 3.2 computes z =
gcd(x1ox2) for every pair of positive integers XI and x2; that is, z is the greatest

common divisor of XI and x2. The computation method is based on the fact that

If YI > Y2, then gcd(yr, Y2) = gcd(yr - Y2, Y2)

Ifyr < y2, thengcd(yi,Y2) =gcd(yi,Y2 -yi)

If YI = y2, then gcd(yi, Y2) = YI = Y2·
The program is to be proved partially correct with respect to the input predi

cate <f;(x): x 1 > O/\x2 > 0 and the output predicate ,P(x,z): z = gcd(xi,x2). The

two loops of the program have been cut at point E and an unknown loop invari

ant WI attached to this point. We will use the iteration algorithm to derive this

invariant.

76

START

,-----+--------8

T

F

X1 > 0 1\ X;: > 0

c
z~y,l-.._-i

I
I
I
I

HALT

L.--ljl(5i, z): z = gcd(x 1 , x2)

Figure 3.2 Calculating the g.c.d. of two numbers

Since the domain of the given program is the set of integers, and the operations
of the language include arithmetic operations, comparison and equality, we must in
clude the necessary axioms for arithmetic operations, comparison and equality when
performing resolutions. Also, we must provide the definition of the gcd function,
since the function is mentioned in the output assertion '1/J. The axioms listed above
are used to define the gcd function. Let the set of all these axioms be AXIOMS.

We perform the iteration algorithm step by step. There is only one loop in
variant here, therefore n = 1. There are four paths leading from one cutpoint to
another, since two different paths exist in the program loop, depending on which
branch is taken after the test y1 > y2 • We denote old values for the variables YI

and Y2 by y; and y~ respectively.

There are four verification conditions for the program, which are

vc1:: (x1 > 0) II (x2 > 0) II (x 1 = yi) II (x2 = Y2)--> W 1(x,yi>Y2)

77

vc2 = :Jy;(W1(x,yf,y2)i\(yl = y; -y2)i\(y; # y2)i\(y; > Y2)-. W 1 (X",yt,Y2))

vca =: 3y~(W1 (x,yt,Y~)i\(y2 = y~-yt)i\(YI # y~)i\(Yt :S:: y~)---> W 1 (X",yt,Y2))
vc4 = W 1(x,yt,Y2) 1\ (Yt = Y2)---> (Yt = gcd(xt,x2)).

Step 1. index(W1) = 0, W0
1 =false

Step 2. list= [W1
].

Step 3. First iteration :

W=W1

T = {lhs(vc1)}

index(W1) = 1
flag(W 1) = false

Wl =GET-APPROX(WJ V lhs(vct), W 1
)

= GET-APPROX(false v lhs(vc1), W 1)

= GET-APPROX(lhs(vct), W 1
)

= GET-APPROX(xl > 01\ X2 > 0 i\ XJ = Yl i\ X2 = Y2, W 1
).

Call GET-APPROX(H, W 1), where

H = XJ > 0 i\ X2 > 0 i\ XJ = Yl i\ X2 = Y2
input b to be some large number

S := DIRECTED...SEARCH(H, W1)

Call DIRECTED...SEARCH(H, W 1
)

check if AXIOMS 1\ Hi\ (y1 = Y2)---> (Yl = gcd(x1,x2)); since this is valid,
continue;

S :=true;

H=Bt;

WHILE LOOP:

(r = 1)
numiterations := 1

First FOR loop :

PROOFS := set of all clauses generated from B 1 i\ AXIOMS by

resolution during some proof of AXIOMS i\ Hi\ (Yl = Y2)---> (Yt =
gcd(x1, x 2)).

A proof of AXIOMS i\ Hi\ (y1 = Y2)---> (y1 = gcd(x1, x2)) is given
at the end of this example; thus we have

PROOFS := { {xt > 0}, {x2 > 0}, {xt = yt}, {x2 = Y2}, {YI #
Y2,Yl = gcd(yt,Y2)}, {Yt # Y2,Yl = gcd(xt,Y2)}, {Y # Z,Y =
gcd(Y,Z)}, {Yt # Y2,y1 = gcd(x1,x2)} };

From this set, choose S1 =all clauses in PROOFS, leaving out axioms

= XJ > 0 i\ x2 > 0 1\ Xt = Yt i\ x2 = Y2 i\ (Yt # Y2 V YI = gcd(yt, Y2)) i\

(Yt oF Y2 V Yt = gcd(xt,Y2)) i\ (Yt oF Y2 Vy1 = gcd(x1,x2));

78

Second FOR loop :

Since B1 --+ S1 , therefore S := (true 1\ Sr) =

(xr >01\xz >01\xr =yr/\xz =yz/\(yr f=yzVYr =gcd(yr,Yz))/\(yr f=

YzVYr =gcd(xr,yz))/\(yr f=yzVYr =gcd(xl,xz)).

Clearly AXIOMS 1\ S 1\ (Yr = yz) --+ (Yr = gcd(xr,xz)) is valid, therefore
DIRECTED...SEARCH and GET-APPROX return (x1 > 0 1\ x2 > 0 1\ x1 =

Yr/\xz = yz/\(yr f= YzVYr = gcd(yi,Yz))ll(yl f= yzVYI = gcd(x1,yz))ll(y1 f=
Yz Vy1 = gcd(xr,xz)).

Hence we obtained, after calling the function GET-APPROX,

Wl = (x1 > 01\xz > 01\xr = Y1/\xz = Yz/\(yl f= YzVYI = gcd(yr,yz))/\(yr f=
Yz Vy1 = gcd(xi,Yz)) 1\ (Yr f= Yz V Yr = gcd(xr,xz)).

Second iteration of Step 3 :

W=W1

T = {lhs(vc2), lhs(vc3)}

index(W1) = 2

flag(W 1) =false

W,i =GET-APPROX(Wl V lhs(vc2) V lhs(vc3), W 1
)

Call GET-APPROX(H, W 1), where

H = (x1 > 01\xz > O/\x1 = Yr 1\xz = Yz 1\(yl f= Yz Vyr = gcd(yl,yz))/\(yl f=

Yz Vyr =gcd(xr,Yz))/\(yl f=yz Vy1 =gcd(xl,xz))V

(x1 >01\xz >OIIx1 =yi/\xz =yz/\(yl =y; -yz)ll(y; f=yz)/\y; >yz)V

(xr > 01\ xz > 01\ x1 = Y1 1\ xz = y~ 1\ (yz = y~- Yl) 1\ (y~ f= Yl) 1\ YI ::; y~)
= B 1 V Bz V B3.

input b to be some large number

S := DIRECTED...SEARCH(H, W 1)

Call DIRECTED...SEARCH(H, W 1)

check if AXIOMS 1\ H 1\ (YI = Yz)--+ (Yr = gcd(x1,xz)); since this is valid,
continue;

S :=true;

H =B1 V Bz V B 3

First execution of WHILE loop :

(r = 3)

numJterations := 1

First execution of first FOR loop : i = 1 :

PROOFS := set of all clauses generated from B 1 1\ AXIOMS by
resolution during some proof of AXIOMS 1\ B1 1\ (YI = yz)--+ (y1 =

gcd(xr,xz)).

79

A proof of AXIOMS 1\ BI 1\ (YI = Y2)-+ (YI = gcd(xi,x2)) is given
at the end of this example; thus we have

PROOFS := {{xi > 0}, {x2 > 0}, {xt = yt}, {x2 = Y2}, {Y #
Z,Y = gcd(Y,Z)}, {YI # Y2,YI = gcd(y1,y2)}, {Yt # Y2,YI =
gcd(xi, Y2)}, {YI # Y2, YI = gcd(xi, x2)} };
From this set, choose SI =all clauses in PROOFS, leaving out axioms

=XI >OI\x2 >01\xi =yii\x2=Y21\(yi =jy2VY1 =gcd(yi,Y2))1\

(YI # Y2 V YI = gcd(xi, Y2)) 1\ (YI # Y2 V YI = gcd(xi, x2));
Second execution of first FOR loop : i = 2 :

PROOFS := set of all clauses generated from B2 1\ AXIOMS by

resolution during some proof of AXIOMS 1\ B2 1\ (YI = Y2)-+ (YI =

gcd(xi, x2)).

A proof of AXIOMS 1\ B21\ (YI = Y2)-+ (YI = gcd(xi,x2)) is given
at the end of this example; thus we have

PROOFS := {{ ~(Y > Z), gcd(Y, Z) = gcd(Y- Z, Z)}, {Y # Z, Y =

gcd(Y, Z)}, {xi > 0}, {x2 > 0}, {yi > y2}, {xi = yi}, {x2 = Y2},

{Yt = Yi- y2}, {x1 > Y2}, {x1 > x2}, {gcd(xt,xz) = gcd(x1-

x2,x2)}, {Yt = Xt- Y2}, {YI = Xt- x2}, {gcd(xi,x2) = gcd(y1,x2)},

{gcd(x1, x2) = gcd(yl, Y2)}};
From this set, choose S2 = all clauses generated from B 2 1\ AX I01'vf S
in PROOFS, leaving out axioms

= (xi > 0 1\ xz > 0 1\ Yi > Yz 1\ Xt = Yi 1\ xz = Yz 1\ Y1 = Yi - Y2 1\ XI >
Yz 1\ xi > Xz 1\ (gcd(xi, xz) = gcd(xi- xz, xz)) 1\ Yt =xi- Yz 1\ YI =

XI - Xz 1\ (gcd(xi, x2) = gcd(yi, xz)) 1\ gcd(Xt, Xz) = gcd(yi, Y2)).

Third execution of first FOR loop : i = 3 :

PROOFS:= set of all clauses generated from B3 1\ AXIOMS by

resolution during some proof of AXIOMS 1\ B3 1\ (YI = yz) -+ (y1 =

gcd(xi, x 2)).

A proof of AXIOMS 1\ B3 1\ (YI = Yz)-+ (Yt = gcd(xi,xz)) is given
at the end of this example; thus we have

PROOFS := {{ ~(Y < Z), gcd(Y, Z) = gcd(Y, Z- Y)}, {Y # Z, Y =

gcd(Y,Z)}, {xi> 0}, {x2 > 0}, {YI < y~,YI = y~}, {xz = y~}, {xi=

yt}, {yz = Y~- yt}, {y~ # yt}, {YI < y~}, {YI < xz}, {xi < xz},

{gcd(x1,x2) = gcd(x1,x2- XI)}, {yz = Xz- yt}, {yz = x2- xt},

{gcd(Xt, Xz) = gcd(Xt, Y2)}, {gcd(Xt, Xz) = gcd(yl, Y2)}} j

From this set, choose S3 = all clauses generated from B 3 1\ AX IO Nf S
in PROOFS, leaving out axioms

= (xl > 0 1\ X2 > 0 1\ (Yt < Y~ V Yl = Y~) 1\ X2 = Y~ 1\ Xt = YI 1\ Y2 =

80

y~ - YI A y~ # Yl A YI < y~ A YI < X2 A XI < X2 A (gcd(XI, X2) -

gcd(xi,X2- xi)) A Y2 = Xz- YI A Y2 = X2- XI A(gcd(xi,x2) -

gcd(xi, Yz)) A gcd(xi, x2) = gcd(yi, Y2)).

Second FOR loop :

i = 1:

We find that

BI SI is valid;

B2 S1 is not valid;

Ba --> SI is not valid.

i = 2:
We find that

BI --> Sz is not valid;

B2 S 2 is valid;

Ba --> S2 is not valid.

i = 3:

We find that

BI --> Sa is not valid;

B2 --> Sa is not valid;

Ba --> Sa is valid.

Since S =true, the WHILE loop must be repeated again.

The WHILE loop is now repeated several times, with S; chosen to be a different

subset of PROOFS each time (fori= 1, 2, 3). After a number of iterations, we finally

choose

Sz =xi> OAxz >0Agcd(xi,x2) =gcd(yi,Yz),

which satisfies

Thus S is set to be

BI ->Sz

B2 ->Sz

Ba--> Sz.

S = XI > 0 A Xz > 0 A gcd(XI, X2) = gcd(yi, Y2).

Clearly AXIOMS AS A (Yl = Y2)--> (YI = gcd(xi,xz)) is valid, therefore
DIRECTED ...SEARCH and GET-APPROXreturn (xi > 0 A x2 > 0 A gcd(xi,x2) =
gcd(yl, Y2))

Hence we obtained, after calling the function GET-APPROX,

Wi =(xi > 0 A Xz > 0 A gcd(xi,xz) = gcd(yi, Y2))

Third iteration of Step 3 :

81

W=W 1

T = 0 (it can be verified that all the verification conditions are valid with Wi
substituted for W 1 everywhere)

index(W1
) = 3

flag(W1
) = true

Wl-wl
3 - 2

Since flag(W 1) is true, Step 3 terminates.

4. WJpprox = (XJ > 0 /1 Xz > 0 /1 gcd(XJ, Xz) = gcd(yl, Yz))

5. Halt.
The loop invariant derived is

W 1 = (x1 > 0/1 x2 > 0/1 gcd(xi>xz) = gcd(yi,Yz)).

The proofs used in this example were :

Proof of AXIOMS /1 x1 > 0/1 Xz > 0/1 x1 = YI /1 Xz = Y2 /1 (YI = Yz)-+ (YI =
gcd(x1 ,x2)):

(The same proof can be used to show that AXIOMS /1 x1 > 0/1 x 2 > 0/1 x1 =

Y1 II Xz = Y2 II (YI oF Y2 V Yl = gcd(y!, Yz)) II (YI oF Y2 V Y1 = gcd(xl> Yz)) II (YI oF
Y2 Vy1 = gcd(xJ,xz)) /1 (YI = Yz)-+ (YI = gcd(xi,xz)))

1. x1 > 0 Given

2. Xz > 0 Given

3. x1 = y1 Given

4. Xz = Y2 Given

5. Y i' Z V Y = gcd(Y, Z) Axiom

6. (YI = Yz) Given

7. (YI i'gcd(xi,xz)) Given

8. YI i' Yz V Y1 = gcd(yJ, Y2) Instance of 5

9. YI i' Yz V Yl = gcd(x1, Yz) Paramodulate 3,8

10. Yl i' Yz V YI = gcd(xJ,Xz) Paramodulate 4,9

11. YI = gcd(xJ,xz) Resolve 6,10
12. empty clause Resolve 7,11.

Proof of AXIOMS /1 (x1 > 0/1 Xz > 0/1 XJ = yj /1 Xz = Yz /1 (YI = yj- yz) /1 (yj i'
Yz) II yj > Y2 /1 (YI = Yz)-+ (YI = gcd(xJ, xz)) :

1. ~(Y > Z) V gcd(Y, Z) = gcd(Y - Z, Z) Axiom

2. Y i' Z V Y = gcd(Y, Z) Axiom

3. yj > Yz Given

4. XJ = yj Given

5. Xz = Yz Given

6. YJ = yj - Yz Given

82

7. Yr = Yz Given

8. YI =F gcd(xr, xz) Given

9. xr > yz Paramodulate 3,4

10. x1 > x2 Paramodulate 5,9
11. gcd(x1,x2) = gcd(x 1 - x 2 ,x2) Resolve 1,10

12. y1 = xr - Yz Paramodulate 6,4
13. y1 = xr - Xz Paramodulate 5,12
14. gcd(xl>xz) = gcd(yr,xz) Paramodulate 11,13

15. gcd(x 1 ,x2) = gcd(Yl>YZ) Paramodulate 5,14

16. Yr = gcd(y1, yz) Resolve 2,7
17. gcd(x1,x2) = y1 Paramodulate 15,16

18. empty clause Resolve 8,17

Proof of AXIOMS II (x1 > 0 II xz > 0 II xr = Y1ll xz = y~ II (Yz = Y~- YI) II (y~ #
YI) II Y1 ::0 Y~ II (Yr = Yz)--> (YI = gcd(x1,xz)):

1. ~(Y < Z) V gcd(Y, Z) = gcd(Y, Z- Y) Axiom

2. Y # Z V Y = gcd(Y, Z) Axiom

3. Yl < y~ V Yl = y~ Given

4. Xz = y~ Given

5. x 1 = YI Given

6. Yz = y~ - Yl Given

7. y~ =F Yl Given

8. Y1 = Yz Given

9. Y1 # gcd(XI, Xz) Given

10. Y1 < y~ Resolve 3,7

11. Yl < Xz Paramodulate 4,10
12. XI < Xz Paramodulate 5,11
13. gcd(x1,xz) = gcd(xi,XZ -xi) Resolve 1,12

14. Yz = Xz - YI Paramodulate 6,4
15. yz = Xz -XI Paramodulate 5,14
16. gcd(xr,xz) = gcd(xi,yz) Paramodulate 13,15

17. gcd(x1 ,x2) = gcd(yi,yz) Paramodulate 5,16

18. YI = gcd(yi, yz) Resolve 2,8
19. gcd(x1 , x2) = Yl Paramodulate 17,18
20. empty clause Resolve 9,19 •

Example 3.2 This example illustrates the working of the iteration algorithm when

unskolemization is used to derive the loop invariant. The flowchart program in

Figure 3.3 multiplies two numbers by repeated addition of one number to a variable.

83

START

X<>- 0
y- b

B
w

Figure 3.3 Multiplying two numbers by repeated addition

The program is to be proved partially correct with respect to the input predicate
tj>(x, y): b 2: 0 and the output predicate ,P(x): x =a* b. The loop of the program
has been cut at point B and an unknown loop invariant W attached to this point.
We will use the iteration algorithm to derive this invariant.

Since the domain of the given program is the set of integers, and the operations
of the language include arithmetic operations and equality, we must include the nec
essary axioms for arithmetic operations and equality when performing resolutions.
Let the set of all theseaxioms be AXIOMS.

We perform the iteration algorithm step by step. There is only one loop in

variant here, therefore n = 1. There are three paths leading from one cutpoint to
another. We denote old values for the variables x and y by x' and y' respectively.
As in the previous example, proofs of unsatisfiability obtained in the function DI
RECTED ..SEARCH can be found at the end of this example. The three verification
conditions for this program are :

1. (y =b) A (b 2: 0) A (x = 0)-> W(x, y)

2. 3x'3y'(W(x',y') A y' of 0 A (x = x' +a) A (y = y'- 1)-> W(x, y))

3. W(x,y)l\(y=O)->(x=a*b).

Tracing the iteration algorithm, we get

84

1. index(W) = 0

2. list= [W]

3. First iteration of Step 3 :
Wo =false
T = {lhs(vcl)}
flag(W) = false

W1 =GET-APPROX(Wo V lhs(vc1), W)
= GET-APPROX(!alse V ((y =b) II (b ~ 0) II (x = 0)), W)
= GET-APPROX(((y =b) II (b ~ 0) II (x = 0)), W)

H = B1 = ((y =b) II (b ~ 0) II (x = 0))
call DIRECTED..SEARCH(((y =b) II (b ~ 0) II (x = 0)), W)

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} };
Choose S1 = all clauses in PROOFS except axioms

= ((y =b) II (x = 0) II (b ~ 0));
returnS= ((y =b) II (b ~ 0) II (x = 0))

Second iteration of Step 3 :

W1 = ((y =b) II (b ~ 0) II (x = 0))
T = {lhs(vc2)}
flag(W) = false

W2 =GET-APPROX(W1 V lhs(vc2), W)

= GET-APPROX(((y =b) II (b ~ 0) II (x = 0))
V((y' =b) II (b ~ 0) II (x' = 0) II y' -=1 0 II (x = x' +a) II (y = y'- 1)), W)

H = B1 V B2 = ((y =b) II (b ~ 0) II (x = 0))
V((y' =b) II (b ~ 0) II (x' = 0) II y' "=I 0 II (x = x' +a) II (y = y'- 1))
call DIRECTED..SEARCH(B1 V Bz, W)

First execution of first FOR loop :

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} };
Choose S1 = all clauses in PROOFS except axioms
= ((y =b) II (x = 0) II (b ~ 0));

Second execution of first FOR loop :
PROOFS = {{x = a}, {y = b- 1}, {b ~ 0}, {y' = b}, {y = y'-

1},{x' = O},{x = x' + a},{x = 0 + a},{x =a+ O},{Y * Z =
Z*Y},{Z* 1 = Z},{X- Y -=I Z,X = Y + Z},{Z = Z +0}};
Choose S2 =all clauses in PROOFS except axioms
= ((y = b- 1) II (x =a) II (b ~ 0) II (y' = b) II (y = y'- 1) II (x' =
0) II (x = x' +a) II (x = 0 +a) II (x =a+ 0));

Second FOR loop:
i = 1; we find that

85

B1 --> S1 is valid;

B2 --> S1 is not valid;

i = 2; we find that

B1 --> S2 is not valid;

B2 --> S2 is valid;

Since S = true, the WHILE loop must be repeated again. After

several repetitions, however, no formula is derived such that B 1 and

B2 both imply it. Thus we exit from the WHILE loop.

We get S = S1 V S2

= ((y =b) 1\ (x = 0) 1\ (b :2: O))V
((y = b- 1) 1\ (x =a) 1\ (b;:::: 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' =

0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x =a+ 0));
returnS= ((y = b)l\(x = 0)1\(b :2: D))V((y = b-1)1\(x = a)l\(b;::::
0) 1\(y' = b)l\(y = y' -1) 1\ (x' = 0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x =

a+ 0))

Third iteration of Step 3 :

W2 = ((y =b) 1\ (b :2: 0) II (x = 0)) V ((y = b -1) 1\ (x =a) II (b :2: 0) II (y' =

b) 1\ (y = y'- 1) 1\ (x' = 0) 1\ (x = x' +a) 1\ (x = 0 +a) II (x =a+ 0))
T = { lhs(vc2)}

flag(W) =false
W3 =GET-APPROX(W2 V lhs(vc2), W)

= GET-APPROX(((y =b) 1\ (b :2: 0) II (x =D))
v((y = b -1) 1\ (x =a) 1\ (b;:::: 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' = 0) 1\ (x =

x' + a) 1\ (x = 0 + a) 1\ (x = a + 0))

V((y' =/= 0) II (y = y'- 1) 1\ (x = x' +a)/\
(((y' =b) 1\ (b :2: 0) II (x' = 0)) V ((y' = b- 1) 1\ (x' =a) 1\ (b;:::: 0) 1\ (y" =

b) 1\ (y' = y"- 1) II (x" = 0) 1\ (x' = x" +a) 1\ (x' = 0 +a) 1\ (x' =a+ 0))), W)
H = ((y =b) II (b :2: 0) II (x = 0))

V((y = b -1) II (x =a) II (b :2: 0) 1\ (y' =b) II (y = y' -1) II (x' = 0) 1\ (x =
x' + a) 1\ (x = 0 + a) II (x = a + 0))

V((y' =/= 0) II (y = y' -1) 1\ (x = x' +a) 1\ (y' =b) 1\ (b;:::: 0) 1\ (x' = 0))
V((y' =/= 0) 1\ (y = y'- 1) II (x = x' +a) 1\ (y' = b- 1) 1\ (x' = a) 1\ (b;::::

0) 1\ (y" = b) 1\ (y' = y" - 1) 1\ (x" = 0) 1\ (x' = x" +a) 1\ (x' = 0 +a) 1\ (x' = a+ 0))
= ((y =b) 1\ (b :2: 0) 1\ (x = 0))

V((y' =/= 0) 1\ (y = y'- 1) 1\ (x = x' +a) 1\ (y' =b) 1\ (b :2: 0) 1\ (x' = 0))

V((y' =/= 0) II (y = y'- 1) 1\ (x = x' +a) 1\ (y' = b- 1) 1\ (x' = a) 1\ (b ;::::
0) 1\ (y" =b) II (y' = y11 -1) II (x" = 0) 1\ (x' = x" +a) 1\ (x' = 0 +a) 1\ (x' =a+ 0))

= B1 V B2 V B3

86

call DIRECTED..SEARCH(B1 V B 2 V B 3 , W)

First execution of first FOR loop :

PROOFS= { {x = 0}, {y = b}, {b ~ 0}, {Z * 0 = 0} };
Choose 5 1 = all clauses in PROOFS except axioms

= ((y =b) 1\ (x = 0) 1\ (b ~ 0));
Second execution of first FOR loop :

PROOFS= {{x = a},{y = b-1},{b ~ O},{y' = b},{y = y'-

1},{x' = O},{x = x'+a},{x = O+a},{x = a+O},{Y*Z

Z * Y}, {Z * 1 = Z}, {X- Y ~ Z,X = Y + Z}, {Z + 0 = Z} };
Choose 5z = all clauses in PROOFS except axioms

= ((y = b- 1) 1\ (x =a) 1\ (b ~ 0) 1\ (y' =b) 1\ (y = y'- 1) 1\ (x' =
0) 1\ (x = x' +a) 1\ (x = 0 +a) 1\ (x =a+ 0));

Third execution of first FOR loop :

PROOFS= {{x = a*2},{y = b-2},{b ~ O},{y' = b-1},{x' =
a}, { y = y' - 1}, { x = x' + a}, { y = b - 1 - 1}, { x = a + a}, { Z * 2 =
Z+Z}, {-1-1 = -2}, {X-Y ~ Z,X = Y +Z}, {Z = Z+O}, {Y*Z =

z * Y}};
Choose 53 = unsk(a!l clauses in PROOFS except axioms)

= unsk((x = a*2)1\(y = b-2)1\(b ~ 0)1\(y' = b-1)1\(x' =
a) 1\ (y = y'- 1) 1\ (x = x' +a) 1\ (y = b- 1- 1) 1\ (x =a+ a));

= 3z((y = b- z) 1\ (x = a* z) 1\ (b ~ 0) 1\ (y' = b- 1) 1\ (x' =a) 1\ (y =
y' - 1) 1\ (x = x' + a) 1\ (y = b - 1 - 1) 1\ (x = a + a)) ;
(obtained by unskolemizing the symbol "2" and replacing it by the
existentially quantified variable z)

Second FOR loop:

i = 1 :

We find that

Bt --+ 5t is valid;

Bz --+ 5t is not valid;

B3 --+ 51 is not valid.
i = 2:

We find that

Bt --+ 5z is not valid;

Bz --+ 5z is valid;

B3 --> 5z is not valid.

i = 3:
We find that

Bt -+ 53 is not valid;

87

B2 -+ S3 is not valid;

B3 -+ S3 is valid.

Since S = true, the WHILE loop must be repeated again.

The WHILE loop is now repeated several times, with S; chosen to be a different

subset of PROOFS each time (fori= 1, 2, 3). After a number of iterations, we finally

choose

S3 = :iz((y = b- z) II (x =au) II (b <': 0)),

which satisfies

Thus S is set to be

B1 _, s2

Bz-> Sz
Ba-+ Sz.

S = :iz((y = b- z) II (x =au) II (b <': 0))

returnS= :lz((y = b- z) II (x =a* z) II (b <': 0))

Fourth iteration of Step 3 :

T = 0 (it can be verified that all the verification conditions are valid with W3
substituted for W everywhere)

flag(W) = true

w4 =W3
Since flag(W) is true, Step 3 terminates.

4. Wapprox = :lz(X = a * z II y = b - z) II b <': 0

5. Halt.

The proofs used in this example were :

Proof of AX I 0 M S II x = 0 II y = b II y = 0 -> x = a * b :
1. x = 0 Given

2. y = b Given

3. Z * 0 = 0 Axiom

4. y = 0 Given

5. x oft a* b
6. 0 oft a* b

7. 0 oft a* Y

8. 0 oft a* 0

Given

Paramodulate 1,5

Paramodulate 2,6

Paramodulate 4, 7

9. empty clause Resolve 3,8.

Proof of AX I 0]Yf S II y' = b II b <': 0 II x' = 0 II y' oft 0 II x = x' + a II y = y' - 111 y =
0->x=a*b:

1. y' = b Given

88

2. x' = 0 Given

3. x = x' + a Given

4. y = y' - 1 Given

5. Z * 1 = Z Axiom
6. X - Y f= Z, X = Y + Z Axiom

7. Z = Z + 0 Axiom

8. Y * Z = Z * Y Axiom
9. y = 0 Given

10. x f= a* b Given
11. y = b- 1 Paramodulate 1,4

12. x = 0 + a Paramodulate 2,3

13. x =a+ 0 Paramodulate 8,12

14. 0 = b- 1 Paramodulate 9,11

15. b = 1 + 0 Resolve 6,14

16. b = 1 Paramodulate 7,15

17. x f= a* 1 Paramodulate 10,16

18. x f= a Paramodulate 5,17

19. x =a Paramodulate 7,13

20. empty clause Resolve 18,19.

Proof of AXIOMS II (y' f= 0) II (y = y' -1) II (x = x' +a) II (y' = b- 1) II (x' =
a)ll (b?: 0) II (y" = b) II (y' = y" -1) II (x" = 0) II (x' = x 11 +a) II (x' = 0+ a) II (x' =

a+ 0) II y = 0 ---> x = a* b :

1. y1 = b - 1 Given

2. y = y1
- 1 Given

3. x' = a Given

4. x = x' + a Given

5. X - Y f= Z, X = Y + Z Axiom

6. Z * 2 = Z + Z Axiom
7. -1- 1 = -2 Axiom

8. Z = Z + 0 Axiom

9. Y * Z = Z * Y Axiom
10. y = 0 Given

11. x f= a* b Given

12. y = b -1- 1 Paramodulate 1,2

13. x = a + a Paramodulate 3,4

14. x =a* 2 Paramodulate 6,13

15. y = b- 2 Paramodulate 7,12

16. 0 = b- 2 Paramodulate 10,15

89

17. b = 2 + 0 Resolve 5,16

18. b = 2 Paramodulate 8,17

19. x =Fa* 2 Paramodulate 11,18

20. empty clause Resolve 14,19.

Comments : The unskolemization which was performed for the symbol "2" in the

third iteration of Step 3 could have been performed for the symbols "0" or "1" in

the first and second iterations of Step 3 respectively, but this would have required

some rewriting; the clause { x = 0} would have had to be rewritten as { x = a* 0} in

the first case, and the clause { x = a} would have had to be rewritten as { x = a* 1}

in the second case. It is not easy to "guess" how this rewriting should be done.

However, in the third iteration of Step 3, the replacement of the symbol "2" by

an existentially quantified variable was more straightforward, since no imaginative

rewriting was required (the rewriting of a+ a to a* 2 and of b- 1 - 1 to b- 2

was performed during the last proof shown above since the theorem to be refuted

required this rewriting).

Example 3.3 In this example, a loop invariant for the flowchart program shown

in Figure 3.1 is derived. In Section 3.1, we showed how a loop invariant for this

program was derived using Wegbreit's top-down approach. The same program was

also verified by King [King 69]. The program calculates the quotient and remainder

of numbers x and y and is to be proved partially correct with respect to the input

predicate <f>(x, y): x 2 01\ y > 0 and the output predicate ,P(x): x = q * y + r 1\0 :<:::

r 1\ r < y. An unknown loop invariant W for the program loop is to be generated.

Since the domain of the given program is the set of integers, and the operations

of the language include arithmetic operations and equality, we must include the nec

essary axioms for arithmetic operations and equality when performing resolutions.

Let the set of all these axioms be AXIOMS.
We perform the iteration algorithm step by step. There is only one loop in

variant here, therefore n = 1. There are three paths leading from one cutpoint to

another. We denote new values for the variables q and r by q1 and r 1 respectively.

As in the previous example, proofs of unsatisfiability obtained in the function DI

RECTED ..SEARCH can be found at the end of this example. The three verification

conditions for this program are :

1. x 2 01\ y > 01\ q = 01\ r = x--> W(q, r)
2. :lq':lr'(W(q, r) 1\ r 2 y 1\ q' = q + 1 1\ r' = r- y-; W(q', r'))
3. W(q, r) 1\ r < y--> x = q * y + r 1\0 :": r 1\ r < y.

Tracing the iteration algorithm, we get

90

1. index(W) = 0

2. list= [W]
3. First iteration of Step 3 :

Wo =false

T = {lhs(vq)}
flag(W) = false

W1 =GET-APPROX(Wo V lhs(vc1), W)

= GET-APPROX(false V (x :2: OAy > OA q =OAr= x), W)

= GET-APPROX((x :2: 0 A y > 0 A q = 0 A r = x), W)
H = B1 = x :2: 0 A y > 0 A q = 0 A r = x

call DIRECTED...SEARCH(x :2: 0 A y > 0 A q = 0 A r = x, W)
Prove that (x :2: 0 A y > 0 A q = 0 A r = x) A r < y -+ x = q * y + r A 0 :::;

rAr < y

PROOFS= { {x :2: O},{q = O},{r = x},{O*Z = Z}, {q*Z = O},{X #
Y,Z +X= Z +Y},{Z +r = Z +x},{q*y+r = q*y+x},{q*y+r =

0 + x }, {0 + Z = Z}, { q * y + r = x }, {r :2: 0}}
Choose S1 to be the last two clauses in the set PROOFS listed above;

I.e.

S1 = r :2: 0 A q * y + r = x

return S = r :2: 0 A q * y + r = x.

Second iteration of Step 3 :
T = 0 (it can be verified that all the verification conditions are valid with

wl substituted for w everywhere)

flag(W) = true

W2=W1

4. Wapprox = r :2: 0 A q * y + r = X.

5. Halt.

The proof used in this example was :

Proof of AXIOMS Ax :2: 0 A y > 0 A q = 0 A r = x A r < y-+ x = q * y + r A r :2:
0Ar<y:

1. x :2: 0 Given
2. q = 0 Given

3. r = x Given

4. r < y Given

5. x # q * y + r V ~(r :2: 0) V r :2: y Given

6. 0 * Z = 0 Axiom

7. q * Z = 0 Paramodulate 2,6

91

8. X o1 Y V Z + X = Z + Y Axiom
9. Z + r = Z + x Resolve 3,8

10. q * y + r = q * y + x factor of 9
11. q * y + r = 0 + x Paramodulate 7,10

12. 0 + Z = Z Axiom

13. q * y + r = x Paramodulate 11,12
14. r 2:: 0 Paramodulate 1,3

15,(r 2:: 0) V r 2:: y Resolve 5, 13

16. r 2:: y Resolve 14,15
17,(Y 2:: Z), ...,(Y < Z) Axiom
18,(r 2:: y) Resolve 4, 17

19. empty clause Resolve 16, 18.

92

4. Learning from examples in first-order logic

4.1 Introduction

An excellent introduction to the subject of machine learning can be found

in [Michalski et a!. 86]. According to Michalski, learned knowledge is inherently

conjectural, i.e. any knowledge created by generalization from specific observations

or by analogy to known facts cannot in principle be proven correct, although it may

be disproved. He claims that all scientific human information processing activities

are oriented toward determining adequate and simple descriptions or explanations

of surrounding environment and phenomena [Michalski 74]. The ability to create

the simplest descriptions, using only the "most significant" concepts, and disregard

the "irrelevant details", is highly regarded and considered evidence of intelligence.

One of the important potential applications of inductive learning programs,

according to Michalski [Michalski 77], is in knowledge-based systems, which have a

potential for wide application. Due to the error-prone and tedious nature of pro

gramming knowledge by hand into the computer, there is a need for developing new

efficient ways of introducing knowledge into machines. Inductive programs could

determine production rules from specific examples of decisions or transformations,

optimize a given body of rules (by joining a few specific rules into one more general

rule or by detecting unnecessary conditions), create "rule models" which compactly

describe a given body of rules (and can be useful for identifying missing informa

tion or errors in new rules), automatically correct rules in view of new contradictive

information, etc. He also believes that inductive programs could be used to help

specialists working in applied sciences, e.g. biology, plant pathology, physiology,

medicine, etc., in formulating hypotheses explaining data, detecting data patterns

in complex numerical data, selecting the most relevant variables describing data,

etc.

At present, to make a computer perform a task, one has to write a complete

and correct algorithm for that task, and program the algorithm into the computer.

These activities involve a tedious and time-consuming effort by specially trained

personnel. Current computer systems cannot improve significantly on the basis of

past mistakes, nor can they acquire new abilities by observing and imitating experts.

Machine learning research strives to open the possibility of instructing computers

in such new ways.

For a comprehensive survey of inductive inference theory, see [Angluin and

Smith 83]. They distinguish between inductive inference and learning as follows :

to learn is to "gain knowledge, understanding, or skill by study, instruction or

experience". In contrast, induction is defined as "the act, process, or result of an

instance of reasoning from a part to a whole, from particulars to general, or from

the individual to the universal".

In what follows, we describe some of the past work in different areas of machine

learning. A number of different definitions of learning are outlined, to give the reader

a feel for some of the different approaches to learning taken by researchers in the

field.

Valiant [Valiant 84] views learning as the process of deducing a program for

performing a task, from information that does not provide an explicit description of

such a program. The description language used is propositional calculus. A concept

is said to be "learned" if a program for recognizing it has been deduced (by means

other than the acquisition from the outside of the explicit program). The deduction

procedure will output an expression that approximates the expression to be learned

with high likelihood. He shows that it is possible to design learning machines that

have all of the following three properties :

1) The machines can provably learn whole classes of concepts and these classes

can be characterized.

2) The classes of concepts are appropriate and non-trivial for general-purpose

knowledge.

3) The computational process by which the machines deduce the desired pro

grams requires a feasible (i.e. polynomial) number of steps.

The learner is assumed to have access to a supply of positive examples which
have a probabilistic distribution determined arbitrarily by nature. Valiant demon

strates that the following three classes of Boolean expressions are learnable in poly

nomial time : (1) conjunctive normal form expressions with a bounded number of

literals in each clause; (2) monotone disjunctive normal form expressions, and (3)

arbitrary expressions in which each variable occurs just once. The main techni

cal discovery in this paper is that with this probabilistic notion of learning, highly

convergent learning is possible for whole classes of Boolean functions. This distin

guishes this approach from more traditional ones where learning is seen as a process

of "inducing" some general rule from information that is insufficient for a reliable

deduction to be made. However, the conjectured existence of some good cryp-

94

tographic functions that are easy to compute implies that some easy-to-compute

functions are not learnable.

In his landmark paper, Gold [Gold 67] defines a language learnability model as

the following triple :

1. A definition of learnability

2. A method of information presentation

3. A naming relation which assigns names to languages.

Only one definition of learnability, called identifiability in the limit, is consid

ered in Gold's paper. A class of languages is said to be identifiable in the limit with

respect to a given language learnability model if there is an algorithm which makes

a guess at each time instant about the identity of the language being learned, and

after some finite time the guesses are all the same and are a name of the language

being learned. Note that the learner does not necessarily know when its guess is

correct, and must go on processing information forever because there is always the

possibility that information will appear which will force it to change its guess. Two

basic methods of information presentation are considered by Gold, namely "text"

and "informant". A text for a language L is a sequence of strings from L such that

every string of L occurs at least once in the text. On the other hand, an informant
for L can tell the learner whether any string is an element of L, and does so for

every possible string over the given alphabet. Two naming relations are considered,

namely "tester" and "generator". In both cases the name of a language, i.e. a gram

mar, is a Turing machine : a tester for L is a Turing machine which is a decision
procedure for L, and a generator for Lis a Turing machine which generates L. Note

that a tester for L exists if and only if L is recursive, and a generator for L exists if

and only if L is recursively enumerable. Gold classifies classes of languages on the

basis of whether they are learnable in particular learning models. He shows that

the class of context-sensitive languages is learnable from an informant, but that not

even the class of regular languages is learnable from a text.

A number of researchers have investigated the problem of synthesizing logic

programs from examples. Shapiro [Shapiro 81] describes an incremental inductive

inference algorithm for solving model inference problems. The model inference

problem is defined as follows : "Given the ability to test observational sentences

for their truth in some unknown model M, find a finite set of hypotheses, true in

M, that imply all true observational sentences." An example of an inductive infer

ence problem is program synthesis from examples. The task is to infer a program

inductively, given examples of its input/output behavior. Shapiro gives two algo

rithms which derive Horn clause programs given a collection of facts. The first is

an enumerative model inference algorithm which enumerates all finite sets of Horn

95

clauses over a certain language L and tests each of them one by one until a program

is found which is neither too strong nor too weak with respect to the known facts.

This enumeration approach is very powerful but also extremely inefficient. The sec

ond algorithm (incremental model inference algorithm) begins with the conjecture

"T=false" and incrementally refines or generalizes T until Tis neither too strong

nor too weak with respect to the known facts. Shapiro defines a refinement operator

for use in the algorithm, and describes a backtracing algorithm for removing refuted

hypotheses from T if T is too strong.

In [Sammut and Banerji 86], the authors explore two issues : the role that

memory plays in acquiring new concepts, and the extent to which the learner can

take an active part in acquiring these concepts. A program MARVIN which learns

concepts from examples is described. MARVIN uses a description language very

similar to Prolog; therefore for MARVIN, learning a concept is equivalent to syn

thesizing a logic program. A concept is represented by a set of Horn clauses. Given

an example of a concept, MARVIN generates a trial concept by generalizing the

example. Then, in order to find out if the trial concept is consistent or not, MAR

VIN shows the "trainer" (i.e. the user) instances of the concept. If the program

can construct an object that does not belong to the target concept but does belong

to the trial concept, then the trial concept is inconsistent and a new one must be

found. MARVIN has no ability to invent existentially quantified variables other

than those derived from the example, nor can it deal with universal quantification.

The results obtained by MARVIN are similar to those obtained by Shapiro [Shapiro

81] and Tinkham (Tinkham 90] in that MARVIN can be regarded as a synthesizer

of Prolog programs.

Vere [Vere 75] developed a method for inducing concepts which can be described

by a conjunction of literals in the predicate calculus, with terms limited to constants

and universally quantified variables. The method relies upon a graph representation

of a conjunction of literals. An n-ary predicate is represented by a list of n + 1

terms, the first of which represents the predicate but is otherwise undistinguished

from the remaining n terms of the list, which are the arguments of the predicate. A

generalization of a conjunction of literals is obtained by (a) dropping zero or more

literals from the conjunction, and (b) replacing constants by variables. A maximal

unifying generalization of two conjunctions of literals a and f3 is defined to be a

conjunction of literals 'Y such that 'Y is more general than a and more general than

(3, and such that there is no conjunction of literals 'Y' such that 'Y' is more general

than both a and /3 and such that 'Y is more general than 'Y'· Vere's method works

in a bottom-up fashion in which the input examples are processed one at a time to

build the set of conjunctive generalizations. The algorithm for generalizing a pair

96

of events consists of the following four steps :

1) The literals in each of the two events are matched in all possible ways to

generate a set of matching pairs P. By definition, two literals match if they contain
the same number of constants and they share at least one common term in the same

position.

2) All possible subsets of Pare selected such that no single literal of one event is

paired with more than one literal in another event. Each of these subsets eventually

forms a new generalization of the events.

3) Each subset of matching pairs from Step 2 is extended by adding to the

subset additional pairs of literals that did not previously match. A new pair is
added to a subset S of P if each literal in that pair is related to some other pair in

S by a common constant in a common position.

4) Finally, the resulting set of pairs is converted into a new conjunction of

literals by merging each pair to form a single literal.

One problem with this method is the creation of "vacuous literals", such as (X

Y Z), i.e. a literal where the predicate as well as all arguments are variables. Such a

literal is obviously meaningless but can be generated by the algorithm, which makes

it inefficient. Steps 2 and 3 compute a very large number of subsets and it is not
clear if the method would be viable in practice. This method will be discussed in

more detail in Section 4. 7.

The above work is extended in [Vere 78] to learning operators from situation

sequences and before-and-after pairs. A relational production has the form a-> /3,
where a and j3 are conjunctions of literals, called the antecedent and the consequent

respectively. The intersection of the sets of literals contained in the antecedent and

the consequent is called the context of the production. For the purposes of general
ization, a production is regarded as an ordered list of three conjunctions of literals :
the context/, the antecedent a, and the consequent j3. Given two productions, their

maximal common generalizations are computed by computing the maximal com

mon generalizations of each of their three components using the method presented
in [Vere 75] for computing the maximal common generalization of two conjunctions

of literals. The process is generalized to a method for computing a minimal set

of maximal common generalizations of an arbitrary number of productions. Vere

presents four example problems run on the Thoth-p computer implementation of
this production generalization theory.

Mitchell [Mitchell 77] describes a method for learning rules from a set of posi

tive and negative training instances with reference to the Meta-DENDRAL program

[Buchanan and Mitchell 77]. They use a candidate elimination approach which

maintains and modifies a representation of the space of all plausible rule versions.

97

Their algorithm is guaranteed to find all rule versions consistent with the observed

training data, without any backtracking and independent of the order of presenta

tion of the training instances. They define a partial order representing "generality"

(or specificity) on rules; a rule Rl is said to be less general (or more specific) than

a rule R2 if and only if it is applicable to a proper subset of the instances in which

rule R2 will apply. Version spaces are then represented by sets G and S of max

imally general versions and maximally specific versions respectively. Each time a

new training instance is introduced, all the rules conflicting with that instance are

eliminated from the version space. If the new training instance is a negative ex

ample, then each element of G which matches the instance must be replaced by a

minimally more specific version which does not match the instance. This is done

by adding constraints taken from elements in the maximally specific version, and

thus remaining consistent with the previous positive examples. The dual operation

is performed for positive examples. The system described is not reliable in "noisy"

domains as in such a case all rules will be eliminated from the version space.

In (Dietterich and Michalski 83], the authors describe four criteria for evalu

ating learning methods and apply them to five existing systems for learning from

examples. The study focuses on the problem of learning structural descriptions from

a set of positive training instances, or methods for finding the maximally-specific

conjunctive generalization (MSC- generalization) that characterizes a given class

of entities. A conjunctive generalization is defined as a description of a class of

objects obtained by forming the conjunction of a group of primitive statements. A

MSC-generalization is the most detailed (most specific) description that is true of

all the known objects in the class. Since specific descriptions list many facts about

the class, the MSC-generalization is the longest conjunctive generalization that still

describes all of the training instances. The partially ordered space of descriptions

of different levels of generality can be described by indicating what transformations

are being applied to change less general descriptions into more general ones. A

generalization rule is one which, when applied to a description S1 , produces a more

general description Sz, i.e. S1 -> S 2 holds. The generalization rules considered are :

1) Dropping condition rule

2) Turning constants to variables

3) Adding internal disjunctions

4) Closing interval

5) Climbing generalization tree

6) Finding extrema of partial orders (constructive induction rule).

Most existing systems have not implemented constructive induction rules in

any general way. Instead, specific procedures are written to generate the new de-

98

scriptors. Induction methods can be divided into bottom-up (data-driven), top

down (model-driven) and mixed methods. Bottom-up methods process the input

events one at a time, gradually generalizing the current set of descriptions until

a final conjunctive generalization is computed. Top-down methods search for a

small number of conjunctions that together cover all of the input events. First

some initial hypotheses are chosen from the partially ordered set of all possible de

scriptions. If these hypotheses satisfy certain criteria, the search halts. Otherwise

the current hypotheses are modified by slightly generalizing or specializing them.

Top-down methods have better noise-immunity than bottom-up methods and can

easily be extended to cover disjunctions; however, the working hypotheses must be

repeatedly checked to determine whether they subsume all of the input events. The

selected methods of induction are evaluated in terms of the following four cri te

ria : adequacy of the representation language, rules of generalization implemented,

computational efficiency, and flexibility and extensibility.

The problem of computing maximally-specific generalizations of relational de

scriptions is also examined in [Watanabe and Rendell 90]. The authors describe a

search program, called X-search, for finding MSC-generalizations of given structural

descriptions. A one-sided approach to Mitchell's version space method [Mitchell 77]

is adopted here; the authors compute only the set S of maximally-specific expres

sions consistent with the given examples, and not the set G of all maximally general

expressions consistent with the given examples. Since k-ary predicates can be repre

sented using a combination of unary and binary predicates, the representation used

only allows unary and binary predicates. Only existential quantifiers are permitted

in their representation. The computation of generalizations is a search in a tree

where nodes correspond to relational descriptions.

In a recent paper, Vanlehn [Vanlehn 89] describes an algorithm for specializing

overly general concepts. It may happen that in the process of inducing a concept

from examples, it is necessary to make the concept less general because the concept

matches a negative example. The representation he uses for concepts is a conjunc

tion of positive literals, where all variables are represented existentially. Examples

are represented by conjunctions of ground literals. Also, all variables are assumed

to designate distinct objects. With this restriction, the set of all generalizations

of a concept s corresponds to the set of all subsets of the literals of s. The spe

cialization algorithm described makes use of a bit-vector representation that allows

fast parallel bit-vector computation to be used and converts the problem into the

set covering problem, which is known to be NP-complete. Despite this, Vanlehn

reports that the algorithm seems to work reasonably well in practice.

In [Kodratoff and Ganascia 86], the authors describe algorithms for generalizing

99

a set of examples. Their generalization algorithm discovers significant links in the

examples and expresses them as variable bindings. The first step of generalization

is to find for each member E of the learning set a formula E' such that E' can be
rewritten as E using transformation rules such that all the E"s "structurally match"

each other. Two formulas are said to "structurally match" if they are identical

except for the constants and the variables that instantiate their predicates. The
generalization rules used are : climbing the generalization tree and using rewrite
rules. First some constant is chosen in each example and replaced by a common

variable. Then the occurrence of these newly introduced variables is detected and
the fact that these occurrences belong to all the examples is checked. If this is not the

case, then an attempt is made to generate them using the provided generalization

rules. In general, more than one generalization of two given examples may be

obtained, due to the fact that structural matching does not always give a unique
solution. The generalizations obtained may be incomparable (i.e. none of these

generalizations is more general than any other). The second step of generalization is

called the "generalization phase" and involves detecting the common links between

variables in all the structurally matching formulas. The representation language is

analogous to using literals and conjunction. There are no disjunctions or quantifiers
in the examples. Thus the scope of this system is somewhat limited.

In (Kodratoff et a!. 85], the same idea is pursued. The authors follow the prin
ciple that variable links present in both examples and counterexamples are not very

significant, whereas links producing a matching failure are very significant. They

present a clustering algorithm based on a "syntactic distance" defined by consid

ering the size and nature of the changes made to a description in order to put it

into structural matching with the others. The parameters which are used to mea
sure the syntactic distance between a pair of examples are : the predicates which

have to be dropped when generalizing the two examples (using the dropping rules),

the predicates which are common to the two examples, the predicates which are
introduced by using theorems when generalizing the two examples, and the predi

cates introduced by the use of idempotency when generalizing the two examples. A

partial ordering is associated with each of these four measures and a hierarchy of

concepts built based on the resulting partial order relation. The definition of the

partial orders allows for the use of heuristics by the user to give a higher weight to

some predicates than to others, etc .. The method seems rather complicated and its
utility is not demonstrated in the paper.

Mitchell [Mitchell 83] reviews some of the issues involved in learning from ex

amples, in the context of a particular learning program called LEX. LEX illustrates

how a program can learn useful heuristics for solving integral calculus problems. Its

100

design is based on four distinct modules, which are (i) the problem solver, which

uses the available heuristics to attempt to solve a given problem within allocated

time and resources; (ii) the critic, which analyzes the search tree generated by the

problem solver, to produce a set of positive and negative training instances from

which heuristics will be inferred; (iii) the generalizer, which proposes and refines

general heuristics by generalizing from· the training instances provided by the critic;

and (iv) the problem generator, which generates practice problems for the system.

Alternative descriptions of a heuristic are called the version space of the heuristic.

Although LEX has been able to improve its performance at solving integral calculus

problems by a few orders of magnitude when practice problems were provided by

hand, results have not been nearly so encouraging when LEX was provided with

practice problems by the problem generator.

From the above, it is clear that the approaches taken to learning by different

researchers differ widely both in their methodology as well as in the representation

language used. The subject of learning has been divided into a number of different

fields, such as learning from examples, learning from observation, learning from in

struction, and so on. We will study learning from examples. This topic itself can be

subdivided into two categories : learning from positive examples and learning from

positive and negative examples (we will deal with the former). Negative examples

are also known as counterexamples. When learning from positive examples, a con

cept must be found which describes all of the input examples. On the other hand,

when counterexamples are also provided, the concept to be learned must not only

describe all the input (positive) examples, but must also contradict all the input

counterexamples or negative examples. In other words, we must find a concept

which is a logical consequence of all the positive examples (called the completeness

condition) and which is not a logical consequence of any of the negative examples

(called the consistency condition).

4.2 Motivation

The specific learning problem which we will be addressing in this chapter is

concerned with learning characteristic descriptions from examples. A characteristic

description is a description of a collection of objects, situations or events which

states facts that are true of all objects in the class. More formally, a statement S
is a description of objects 0 1 , 02, 0 3 , ••. if

01-; s,
02-; s,
03-; s,

101

and so on, where -> denotes logical implication.

A critical issue in machine learning is the choice of a representation language, in

which descriptions of situations and the situations themselves are represented. One

of the impediments to the progress of research in the field of machine learning has

been the diversity of representation languages used, making it laborious to compare

and combine research efforts. There is a tradeoff to be made between the complex

ities of the language chosen and the resulting complexity of the learning process.

The complexity of learning descriptions expressed in a rich language is tremendously

higher than that of learning descriptions expressed in a more restricted language.

This is due to the larger space of possible descriptions in a richer description lan

guage. For this reason, much of the previous work on learning from examples used

specialized representation languages or subsets of first-order logic (such as conjunc

tions of literals, ground formulas, formulas without existential quantifiers, etc.) or

Boolean logic as representation language. So far, no methods have been proposed

for learning from concepts expressed in full first-order logic, with quantifiers and

functions.

We present a learning methodology which uses first-order logic as representa

tion language. We feel that using first-order logic to represent examples allows our

method to have a much wider applicability due to the power of first-order predicate

calculus and its widespread use in a number of different fields. We will show that

due to the choice of first-order logic as a representation language, this method can

be applied in a number of different fields where first-order logic is used. In partic

ular, we will show that this algorithm can be used very effectively in conjunction

with our method for deriving loop invariants for program verification. It can also

be applied in traditional areas like the blocks world, where many similar algorithms

in the field have been applied. We will then show that the performance of this

algorithm compares favorably with others in the same field.

Following the terminology used in [Dietterich and Michalski 83], our algorithm

performs concept acquisition, i.e. given examples El and E2 in first-order logic

notation, the algorithm attempts to discover a concept EX such that El -> EX
and E2 -> EX, and such that EX captures all the features common to both the

examples; the concepts and examples are expressed in first-order logic. This is a

problem of discovering a logical consequence of two formulas in first-order logic, and

will be achieved by using the resolution and unskolemization method of Chapter 2.

In this chapter, we will explore in more detail how some of the non determinism of the

102

unskolemization algorithm can be done away with by looking for common features

between El and E2. These common features are used to decide which functions will

be unskolemized, i.e. which functions will be replaced by existentially quantified

variables. Thus these common features will guide the marking of the clauses for

unskolemization. Recall that this marking was performed nondeterministically in

the unskolemization algorithm.

Note that it may happen that more than two examples are available to us. In

such a case, the algorithm can be applied first to two of the examples, then to the

concept learned from these examples and the next example, and so on.

4.3 Role of bias in learning

The examples which are presented to a learning program are also called training
instances. Given a collection of training instances, a bias is the set of all factors that

collectively influence the selection of the concept learned [Utgoff 86]. Learning from

concepts can be regarded as a function of two arguments : the training instances

and the bias for concept selection. Thus the choice of a bias is crucial, since it

guides the learning program to make a selection from the available concepts.

Now, given a number of examples, there can be an infinite number of logical

consequences of these examples. If we are also given counterexamples, then there is

a natural way of limiting the candidate solutions, since an additional constraint is

imposed on these solutions, namely the consistency condition. However, in the pres

ence of only positive examples with no counterexamples, we must find some other

way of imposing a limit on how general a description can be. In other words, a suit

able bias must be decided upon. There have been a number of solutions suggested

to this problem in the past. One solution is to require that the concept generated

be the longest conjunctive statement satisfying the completeness condition [Vere

75], [Hayes-Roth and McDermott 78]. Their representations did not allow disjunc

tive concepts. Another way is to require that the description not exceed a given

degree of generality, which can be measured in several ways. One such method,

suggested in [Stepp 78], is to use the ratio of all distinct events which could poten

tially satisfy the description to the number of positive examples. The bias we use

for concept selection is to select a concept which is as specific as possible, subject to

a number of different constraints. The motivation for these constraints is explained

below. The meaning of "specific" here is similar to the meaning stated earlier for

MSC-generalizations.

Our method essentially uses a graphical representation of the clauses in each

example, and tries to match pairs of clauses (taking one from each example) in such

103

a way that the two clauses contain at least one predicate in common. Then the

arguments of the predicates of these clauses are matched and a "marking" for the

two examples chosen (this "marking" designates which functions will be replaced

by existential variables) using a maximum weight matching algorithm for bipartite

graphs to determine the marking which will give a learned concept containing as

much detail as possible. The unskolemization of the marked formulas then proceeds

according to the unskolemization algorithm in Chapter 2.

Let us try to motivate the above ideas. Suppose we are given two input ex

amples. These two examples are compared, and we try to find pairs of clauses C1

and C2 , one belonging to each example, such that the intersection of the sets of

predicates in each clause is non-empty. The reason for this is that we are trying

to find common features of the two examples. For example, if there is a red object

named "a" in one example, and a red object named "b" in the other example, then

the two examples would contain clauses :

{red(a)} and {red(b)} respectively.

We would like to discover this common feature and state that there exists a red

object in both examples. In this particular case, the two clauses being compared

contain the predicate "red" and no other. However, it may happen that we have

the following clauses, one taken from each example :

{red(a) V circle(a)} and {red(b)}.

Then we would still like to be able to discover the following common feature

between these two examples :

3x(red(x) V circle(x)).

This explains why we choose to impose the condition that the intersection of

the sets of predicates in each clause should be non-empty if these two clauses are

taken from different examples and are to be considered for generalization.

The enquiring reader may ask : why impose any restrictions at all? Why

not just try to generalize any pair of clauses, one taken from each example? For

instance, given the following two clauses, one from each example :

{red(a)} and {rectangle(b)},

we could generalize these by the statement

3x(red(x) V rectangle(x)).

It can easily be seen that this statement logically follows from both the given

clauses. However, continuing this line of thought to its logical conclusion, why not

just let the concept to be learned trivially be the logical disjunction of the two

input examples? This disjunction is the most specific logical consequence of the

two examples. But we want to do more than just take the logical disjunction of the

two examples, because taking the logical disjunction of the two examples is trivial

104

and conveys no new or useful information about the common features of the two

examples. We choose to search for the common features between the two examples

as explained in the previous paragraphs.

4.4 A method for learning from examples

4.4.1 Definitions, notation and examples

In what follows, we will use terms and concepts from graph theory. A good
grasp of the basic tenets of graph theory can be obtained from [Bondy and Murty

76]. All the definitions which will be needed for our purposes will be given in this

section.

Definition. A graph G is an ordered pair (V,E) consisting of a non-empty set V

of vertices and a set E of edges which are unordered pairs of vertices. We say that

an edge (a, b) has ends a and b.

Definition. A bipartite graph is one whose vertex set can be partitioned into

two subsets X andY, so that each edge has one end in X and one end in Y; such

a partition (X, Y) is called a bipartition of the graph.

Definition. Two edges (a, b) and (c, d) of a graph G are said to be adjacent in G

if and only if either a = c, a= d, b = c, or b = d.

Definition. Let G = (V, E) be a graph. A subset M of E is called a matching in

G if its elements are edges and no two are adjacent in G; the two ends of an edge

in M are said to be matched under M.

Definition. A graph G is said to be weighted if with each edge e of G there is

associated a real number w(e), called its weight.

Definition. The weight of a matching M of a weighted graph is the sum of all
the weights of the edges in M.

Definition. A maximum weight matching of a graph G is a matching M of G

such that there is no matching 1\!f' of G such that the weight of M' is greater than
that of M.

Definition. Let C be a clause. Then pred(C) is the set of all the predicate symbols,

along with their signs and arities, which occur in C.

For example, if C = {-,P(x),Q(y,a)}, then pred(C) = {-,P1 ,Q2 }; here the
superscripts on the predicate symbols are used to indicate their arities.

Before plunging into the details of the algorithm, we give below a few examples

to illustrate the issues involved in finding common features between examples and

to motivate the algorithm.

105

a c

b e

El E2

Figure 4.1 Blocks for Example 4.1

Example-4.1 This example is a very simple one in which we are given two examples
from the blocks world illustrated in Figure 4.1 (this example is taken from [Dietterich
and Michalski 83], Figure 3-1, p. 51). We can represent the two examples El and
E2 in first-order logic notation as follows :

El =circle(a) 1\ square(b) II ontop(a,b),
E2 = circle(c) 1\ circle(d) 1\ square(e) II ontop(c, e) 1\ inside(d, e),

where the constants a through e are used to represent the various objects in the
two examples. By comparing El and E2, we can immediately see that a common
feature of the two examples is that both have a circle on top of a square. El contains
the following literals :

circle(a) 1\ square(b) II ontop(a, b),

and E2 contains the corresponding literals :

circle(c) II square(e) 1\ ontop(c, e).
Therefore by matching a with c and b with e, we can get the following conse

quence of Eland E2:

3X3Y(circle(X) II square(Y) II ontop(X, Y)),

which is a concept learned from El and E2. The informal meaning of "matching"

two arguments is that we unskolemize them and replace them by the same existential
variable. Thus here, a and c were "matched" together, and we replaced both of
them by the same existential variable X; similarly b and e were "matched" together

106

d

e

El E2

Figure 4.2 Blocks for Example 4.2

and replaced by the same existential variable Y. The concept was obtained by
finding some predicates which El and E2 have in common, and unskolemizing the
conjunction of those predicates. •

Example 4.2 This example is more detailed than the previous one. We have the
following examples El and E2, again from the blocks world, shown in Figure 4.2 :

El = diamond(a) II circle(b) II box(c) II blank(a) II shaded(b) II blank(c) II
thickrim(b) II ontop(a, b) II ontop(b, c) II small(a) II small(b) /\large(c),

E2 = circle(!) II circle(g) II square(d) II rectangle(e) II blank(d) II blank(e) II
shaded(f)llblank(g)llthickrim(f)llontop(d, e)II inside(!, e)llinside(g, e)/\small(d)
/\large(e) /\large(!) II small(g).

We also have the following axioms concerning geometric shapes :

1. VX(diamond(X)-+ polygon(X))
2. VX(square(X) -+ polygon(X))

or, in clause form :
1'. {-.diamond(X),polygon(X)}
2'. { -.square(X),polygon(X)}.

We now need to find similar features in El and E2. We note the following
points:

(i) a and d have three features in common: they are both small, blank objects
and are both on top of some other object. Also, by resolution from the axioms, we
can deduce that a and d are both polygons.

107

(ii) Both c and e are large, blank objects, on top of which some object has been

placed.
(iii) The circle b has features in common with both f and g : all three are

circles, b and f are shaded objects with thick rims, and b and g are both small.

Thus b has more features in common with f than with g.

(iv) There are a great number of other features which El and E2 have in

common; for example, a and g are both blank objects, c and dare also both blank

objects, etc ..

If we want to generate a concept containing as many common features as pos

sible of the two examples, we can get, by pairing a with d, b with j, and c with e,

the following concept :

3X3Y3Z (polygon(X) II blank(X) II small(X) II (ontop(X, Y) Vontop(X, Z)) II circle

(Y) llthickrim(Y)IIshaded(Y)IIlarge(Z)IIblank(Z)II(ontop(X, Z)Vontop(Y, Z))).

(Note : the exact procedure by which these results were obtained will be ex

plained later. At the moment we are simply trying to illustrate the method we will

be using.) •

Recapitulating, we have exposed the following issues which arise when detecting

common features between examples :

(i) It may be possible to detect more common features between examples by

performing resolutions between each example and the axioms given than by com

paring the examples without performing any resolutions.

(ii) Although there are many ways to match the arguments of literals before un

skolemizing, some matches are "better" than others in the sense that more common

features are detected with those matches.

We now explain the method which will be used in the learning algorithm in

order to find the "best" possible match between arguments of predicates in the two

examples. We will use graphical representations of clauses and arguments and from

these graphs we shall determine an optimum matching. We illustrate the method

by using the same examples as in Example 4.2.

First we build the clause graph Gc for these two examples. Gc is a bipartite

graph with bipartition (Xc, Yc), where Xc is the set of clauses representing the

example El, obtained by performing resolutions between El and the set of axioms,

and Yc is the set of clauses representing the example E2, obtained by performing

resolutions between E2 and the set of axioms. The edges Ec of the clause graph

are obtained by introducing an edge (Cr, C2) into Ec if and only if C1 is a clause

in Xc, C2 is a clause in Y;,, and pred(C1) npred(C2) =J 0. The clause graph for E 1

and E2 is shown in Figure 4.3.

108

{polygon(a)} {polygon(d)}

{circle(b)} {rectangle(e)}

{box(c)} {circle(f)}

{blank(a)} {circle(g)}

{shaded(b)} {blank(d)}

{blank(c)} {blank(e)}

{thickrim(b)} {shaded(f)}

{ ontop(a,b)} {blank(g)}

{ ontop(b,c)} {ontop(d,e)}

{small(a)} {inside(f,e)}

{small(b)} {inside(g ,e)}

{large(c)} {thickrim(f)}

{small(d)}

{large(e)}

{large(f)}

{small(g)}

Figure 4.3 Clause graph for Example 4.2

109

d
a

e
b

f
c

g

Figure 4.4 Argument graph for Example 4.2

The edges between clauses in this graph indicate potential generalizations; e.g.
here the edge between polygon(a) and polygon(d) tells us that we could unskolemize
both these clauses to give the formula 3Xpolygon(X). Here the constants a and d
would be unskolemized and replaced by the same existentially quantified variable
X, i.e. a and d are being paired or matched together. We need to find a matching
of the arguments in E1 and E2 which will give us a learned concept with as many
of the common features of E 1 and E2 as possible. This is done by constructing the
argument graph G. for E1 and E2.

Here, G. is a weighted bipartite graph, with bipartitions X. andY •. For every
edge (C1, C2) of Ec, we put the arguments of the literals ofC1 in X., the arguments
of the literals of C2 in Y., and we add an edge of weight 1 between corresponding
arguments of corresponding predicates (i.e. identical predicates) of these clauses. If
an edge already exists between the two arguments, then its weight is incremented by
1. The construction of these two graphs becomes more complicated if either of the

two examples contain universally quantified variables or if arguments of predicates
are functions of arity one or more. This will be explained later. The argument
graph for our example is shown in Figure 4.4.

Here there is an edge of weight 4 between a and d, because there are 4 edges
in the clause graph between clauses containing literals which have a and d in

llO

corresponding argument positions (these edges are ({polygon(a)}, {polygon(d)}),

({blank(a)}, {blank(d)}), ({small(a)}, {small(d)}), ({ontop(a,b)}, {ontop(d,e)})).
The other edges are similarly derived. The edges of the argument graph thus show

which arguments can be paired, and the weights on these edges are in some sense

proportional to the "goodness" of each pairing. Thus we could pair a with either

d, e or g, but the pairing with d would be the best since a and d have four features

in common (the weight of edge (a, d) is 4), whereas a and e have one feature in

common (both are blank objects) and a and g have two features in common (both

are blank and small objects).

Thus we need to find a one-to-one mapping of a subset of Xa with a subset

of Ya such that an argument a is mapped to an argument (3 only if (a,(3) E E.,
where Ea is the set of edges of the argument graph. We choose to have a one

to-one mapping rather than a many-to-one or a many-to-many mapping because

such generalizations usually do not contribute to the detail of the concept generated,

they are sometimes meaningless, and their generation is computationally expensive.

Also, this mapping should be such that the sum of the weights of the edges between

the mapped elements is a maximum. But this is exactly the problem of finding

a maximum weight matching Ma in the weighted bipartite graph G.. For our

examples, this matching can be shown to be the set {(a,d),(b,J),(c,e)}.

If we use this mapping, we need to unskolemize the clauses of the two examples

which contain literals with the same predicate containing matched arguments in

common argument positions. We do this as follows. From the clause graph, we

form a new subgraph by keeping only those clauses C which have at least one edge

e connecting them to another clause D, such that clauses C and D contain at least

one predicate in common which has an argument a in the i'h position in C, and

which has an argument f3 in the i'h position in D (for some positive integer i) such

that (a, (3) E M •. We also keep all edges which satisfy the conditions satisfied by

edge e above. This subgraph is shown in Figure 4.5.

Let us mark the arguments to be unskolemized as follows. Since a and d are

matched arguments, we will replace a and d by X <- a and X <- d respectively;

similarly we replace b and f by Y <- b and Y <- f respectively; and finally we

replace c and e by Z <- c and Z <- e respectively. The marking "X <- a" indicates

that the argument "a" will eventually be replaced by the existentially quantified

variable "X", and a similar meaning holds for the other marked arguments. The

resulting marked formulas are :

E1 = polygon(X <-a) 1\ blank(X<- a) 1\ small(X <-a) 1\ ontop(X <-a, Y <-

b)/\circle(Y <- b)/\thickrim(Y <- b)/\shaded(Y <- b)/\blank(Z <- c)/\large(Z <

c) 1\ ontop(Y <- b, Z <- c),

111

{polygon(B)) {polygon(d))

{biBnlc(B)) {biBnk(d))

{smBII(B)) {smBII(d))

{ontop(B,b)) {ontop(d,e))

{circle(b) {circle(f))

{thiclcrim(b) {thickrim(f))

{shBded(b)) {ShBded(f)}

{biBnlc(c)) {biBnk(e))

{IBrge(c)) {IBrge(e))

{ontop(b,c))

Figure 4.5 Sub graph of clause graph for Example 4.2

E 2 =polygon(X+-- d)/\ blank(X +--d)/\ small(X +--d)/\ ontop(X +- d, Z <

e)/\circle(Y +-- f)/\thickrim(Y +-- f)/\shaded(Y +-- f)/\blank(Z +-- e)/\large(Z +

e).

Note that this method of marking E1 and E 2 corresponds to the marking
which is performed in Step 2 of the unskolemization algorithm of Chapter 2. We
now take the conjunction of the pairwise disjunctions of the clauses which have
edges connecting them in Figure 4.5. We get the following formula :

EX = (polygon(X +- a) V polygon(X +- d))/\ (blank(X +- a) V blank(X +
d))/\ (small(X <- a) V small(X +- d))/\ (circle(Y +- b) V circle(Y +- f))/\.
(thickrim(Y +- b) V thickrim(Y +- f)) /\ (shaded(Y +- b) V shaded(Y +- f))/\

(blank(Z +-c) V blank(Z +- e))/\ (large(Z +- c) V large(Z +- e)) II (ontop(X +

a, Y <- b)Vontop(X <-- d, Z +-.e))A(ontop(Y +- b, Z <- c)Vontop(X <-- d, Z <-e)).

Replacing arguments of the form" X +- a" by the existential variable X, we get

EX= 3X3Y3Z(polygon(X) /\ blanl.:(X) /\small(X)/\ circle(Y) /\ thickrirn(Y) /\
shaded(Y) /\blank(Z) /\ large(Z) /\ (ontop(X, Y) V ontop(X, Z)) /\ (ontop(Y, Z) V

112

{P(f(c), f(f(c), g(e)))} {P(f(b), f(f(b), d))}

{Q(a, h(f(a)))} {Q(W, h(f(W)))}

Figure 4.6 Clause graph for Example 4.3

ontop(X,Z))).

EX is a concept learned from the two given examples.
Note that the unskolemization process conforms to the unskolemization algo

rithm of Chapter 2, except that the arguments of clauses are marked deterministi
cally, by using the information gathered from the clause and argument graphs.

We now describe a refinement to the above procedure when universal variables
occur in at least one of the examples. The refinement will first be illustrated in the
following example.

Example 4.3 This is a short example to illustrate the process of matching argu
ments when the arguments of some literals are functions of arity one or more and
when some arguments which are being matched are universally quantified variables.
Let Et and E2 be the following two examples :

Et = P(f(c),J(f(c),g(e))) A Q(a,h(f(a)))
E2 = VW(P(f(b), f(f(b), d)) A Q(W, h(f(W)))).

There are no axioms for this example. The clause graph for these two examples
is shown in Figure 4.6. To construct the argument graph, we need to look at
corresponding arguments in clauses of Et and E2 which are connected by edges in
the clause graph. First consider the corresponding arguments of tke predicate P.
The first argument of P in E 1 is f(c) and the first argument of P in E2 is f(b).
Instead of putting f(c) and f(b) in X. andY. respectively of the argument graph, we
will put c in X. and bin Y., and add an edge between c and b. Similarly, the second
argument of Pin E1 is f(f(c),g(e)) and the second argument of Pin E2 is f(f(b), d).
We therefore increment the weight of the edge (c,b) in G. by 1, and we add an
edge between g(e) and d. Continuing like this, we get the argument graph shown
in Figure 4. 7. Finding a maximum weight matching for this argument graph is

113

2
c b

g(e) 1 d

a 2 w

Figure 4.7 Argument graph for Example 4.3

straightforward: the maximum weight matching isM. = {(c, b), (g(e), d), (a, W)}.
We mark the clauses of E1 and E2 for unskolemization as explained in Example 4.2

as follows:

E1 = P(f(X +- c),J(f(X +- c),Y +- g(e))) A Q(Z +- a,h(f(Z +-a)))
E2 = P(f(X +- b),J(f(X +-b), Y +-d)) A Q(Z +- W, h(f(Z +- W))).

Taking the conjunction of the pairwise disjunctions of the clauses which have
edges connecting them in the clause graph, we get :

EX = (P(f(X +- c),J(f(X +- c),Y +-- g(e))) V P(f(X +- b),j(f(X +
b), Y +--d))) A (Q(Z +-a, h(f(Z +-a))) V Q(Z +- W, h(f(Z +-- W)))).

Unskolemizing EX by performing Steps 4 through 7 of the unskolemization
algorithm, we get :

EX= 3X3Y3Z(P(f(X),J(f(X), Y)) A Q(Z,h(f(Z)))).

However, there is a way to obtain a more specific concept here. Note that a and
W were matched together here, and W is a universally quantified variable. W
and a were unskolemized and replaced by the existential variable Z. However, W
could have been instantiated to a, and the edge (a, W) of weight 2 would have been
replaced by the edge (a, a) of weight 2. Then during unskolemization, the arguments
"a" in each example could have remained unchanged, and using the same procedure
as above, we would have obtained the following concept :

EX'= 3X3Y(P(f(X),J(f(X), Y)) A Q(a, h(f(a))))

which is more specific than EX (note that EX' -> EX) since the arguments of the
predicate Q are a and h(f(a)) instead of Z and h(f(Z)) for an existential variable
z . •

114

The above example suggests a refinement to the previously described method

for constructing argument and clause graphs. Whenever there is an edge in Ea

(i.e. in the argument graph) connecting a universally quantified variable X and a

function symbol f, the universally quantified variable should be instantiated to that

function, and appropriate edges should be added to the argument graph.

Another way of instantiating a universally quantified variable X is to instantiate

X to a function b if there is an edge connecting X to some function a, and there is

an edge connecting a to b. The utility of this is demonstrated as follows : suppose

El = VX(P(X) II Q(b)),
E2 = P(a) II Q(a).

Here in the argument graph, there is an edge joining X and a, and another edge

joining a and b; therefore we will instantiate X to b. Then the first example will

contain the clauses

{P(b)} and {Q(b)},
and the second example will contain the clauses

{P(a)} and {Q(a)},

from which we can deduce

:IY(P(Y) II Q(Y))
as part of the learned concept. This would not have been possible without instan

tiating X to b.

After all these instantiations are performed and appropriate edges between cor

responding arguments of corresponding predicates in Gc are added to the argument

graph Ga, the clause containing the universally quantified variable X being instan

tiated in the clause graph should then be added to the clause graph, along with

the corresponding edges. That is, if a universally quantified variable argument X

occurring in clause C is instantiated to a in the argument graph, then the clause

Ca will be added to the clause graph, where a is the substitution {X+- a}. Also
for every edge e connecting C to a clause D in the clause graph, a new edge e'

connecting C a to D will be added to the clause graph.

4.4.2 The learning algorithm

Let E1 and E2 be the two sets of clauses representing the two given exam

ples, and let AXIOMS be a set of axioms for the given situation. The following

algorithm will find a concept EX such that E 1 -t EX and E2 -t EX.

Algorithm LEARN(E1 , E2 , AXIOMS)

begin

115

end.

Choose Xe E Res(E1 II AXIOMS);

Choose Ye E Res(E2!1AXIOMS);

{COMMENT : The above two steps are performed nondeterministically}

Rename the variables in all the clauses of Xe and Yc so that no two clauses
have any variable in common;

build...clause...graph(Xe, Yc,, Ee);

build..argument...graph(X., Y., E.);

augment...graphs...X(Xa, Ea, Xe, Ee);

augment...graphs_Y(Y., Ea, Ye, Ee)i

maximum_weight..matclling(M.,X., Y., E.);
{COMMENT: This procedure returns a maximum weight matching M. for
the argument graph. The algorithm is not given here since suitable algorithms

can be found in the literature (see for example (Galil 86])}

Me := {(C1, C2) E Ee / the n'h argument an of some literal of C1 contains a

as a subterm and the n'h argument f3n of some literal of C2 contains b as a

sub term in the same position as a appears in an and (a, b) E Ma, for some

positive integer n, where these two literals have the same predicate };

For every edge (a, b) E Ma do

if (a and b are distinct) and (a and b are not both variables) then

replace unmarked occurrences of a and b in Me by Z +- a and

Z +-- b (respectively) (Z is a new variable);

{COMMENT: Call these occurrences of a and b marked}
if (a and b are both variables) then

unify all occurrences of a and b in l'vfe;

EX:= {C1 U C2I(C1, C2) E Me};

if EX = 0 then EX :=true;

for every Skolem function a in EX do

if a is not marked then

replace all occurrences of a in all literals of EX by X +-- a, where

X is a new variable not occurring elsewhere in any clause;

Perform Steps 4 through 7 of the unskolemization algorithm for EX;

The formula EX is the required "learned concept".

procedure build_clause_graph(X0 Ye, Ee);

116

{COMMENT : The clause graph Gc is a bipartite graph with bipartition (Xc, Yc);
thus each clause of Xc or Yc is a vertex of this graph. The set of edges Ec of this

graph is formed as follows :}

begin

Ec .- 0,
for every C1 E Xc, C2 E Yc do

end.

if (pred(C1) npred(C2) # 0) then

Ec :=EcU(Ct,C2)

procedure build_argument_graph(Xa, Ya, E.);

{COMMENT : Let the bipartition of the argument graph be (Xa, Ya), with edge

set E •. Let w be a positive integer weight function for this graph. Initially, X a, Ya
and Ea are empty sets. The graph Ga is built as follows.}

begin

Xa .-0,
Ya := 0;
Ea :=0;
For every pair of clauses C1, C2 such that (C1, C2) E Ec do

{C~ := {L E C1 I pred(L) E C2};

{COMMENT : This set is non-empty since pred(C1) n pred(C2) # 0.}
For every literal L in C~ do

{Let K = {N I N E c2 and N, L have the same predicate with the
same arity and sign};

fori:= 1 to arity of L do

for every literal N inK do

suppose the i'h argument of L is a; and the i'h argument

of N is (3;;

done := false;

repeat

Try to find terms t1, t2 which have the same place

in a; and /3; respectively and such that

((t1 # t2) and ((t1 and t2 begin with dif

ferent function letters) or (at least one of

them is a variable)))

or ((it = t2) and (t1 and t2 are functions

without any arguments or variables));

if there are no such t1, t2 then done := true

117

else

until done

}
}

end.

{Xa := Xa U {tl};
Ya := Ya U {t2};
if (t1, t2) if_ Ea then

else

}

{Ea := Ea U {(t1, t2)};
w((t1, t2)) := 1}

procedure augment_graphs..X(X., Ea, Xc, Ec);

begin
{COMMENT : The following procedure adds instances of certain arguments

of clauses to the set X a of the argument graph, and adds instances of certain

clauses to X c. This is done as demonstrated in and following Example 4.3}

for every variable Z in X aU Ya do

I(Z) := 0;
{COMMENT : I(Z) is a set corresponding to the variable Z which will

contain all the functions to which Z will be instantiated during this

procedure}

for every variable Z E Xa do

{for every edge (Z, a) E Ea where a is a function do

{for every a such that (Z, a) E Ea do

Ea := Ea U (a, a);
Xa :=XaU{a}
I(Z) := I(Z) U {a};
}

for every pair of edges (Z, a), (b, a) E Ea where a, b are functions do

{for every a such that (Z, a) E Ea do

Ea := Ea U {(b,a)};
I(Z) := I(Z) U {b};

}
}

{COMMENT: Now augment the clause graph as follows:}

118

end.

for every clause C E Xc do

for every a E I(Z) do

Xc := Xc U C(Z <--a);
{COMMENT : The clause C(Z <- a) is just the clause C with

every occurrence of Z replaced by a.}
for every edge (C,D) E Ec do

for every a E I(Z) do

Ec := Ec U {(C(Z <-a), D)};

procedure augment..graphs_Y(Ya, Ea, Yc, E 0);

begin

{COMMENT : The following procedure adds instances of certain arguments of

clauses to the set Ya of the argument graph, and adds instances of certain clauses

to Y0 • This is done as demonstrated in and following Example 4.3}

end.

for every variable Z E Ya do

{for every edge (a, Z) E Ea where a is a function do

{for every a such that (a,Z) E Ea do

Ea := Ea U (a, a);

Y.:=Y.u{a}

I(Z) := I(Z) U {a};
}

for every pair of edges (a, Z), (a, b) E Ea where a, b are functions do

{for every a such that (a,Z) E Ea do

Ea := Ea U {(a, b)};
I(Z) := J(Z) U {b};
}

}
{COMMENT: Now augment the clause graph as follows:}

for every clause C E Yc do

for every a E I(Z) do

Yc := Yc u C(Z <-a);

{COMMENT : The clause C(Z <- a) is just the clause C with

every occurrence of Z replaced by a.}

for every edge (D, C) E Ec do

for every a E I(Z) do

Ec := Ec U {(D, C(Z <-a))};

119

We now illustrate the working of the algorithm with a simple example.

Example 4.4 The following example illustrates the use of the unskolemization

algorithm to learn a concept. Let the two given examples be :

El = Vx1 Vx2 P(x1, /(xi), a, x2);
E2 = Vyt'<iy2 P(y1, b, g(y2), Y2)·

The clause graph consists of just one edge :

Ec = {({ P(x1 ,J(x!), a, x2)}, {P(y1, b, g(y2), Y2)})},

and the argument graph contains the following four edges, all of weight 1 :

Ea = {(xi,Yl),(f(xi),b),(a,g(y2)),(x2,Y2)}.

The maximum weight matching for this graph is straightforward to obtain and

consists of all the edges in E •. We now perform the marking step of the learning

algorithm and get the following marked set of clauses EX :

EX= { {P(x1,w1 <-- j(x1),w2 <-- a,y2),P(x1,w1 <-- b,w2 <-- g(y2),y2)} }.

Here w 1 , w 2 are new variables. We now perform the unskolemization algorithm :

Add universal quantifiers Vx1 Vy2 to the front of EX and get :

EX= Vx1 Vy2(P(x1, w1 <-- f(xi), w2 <-- a, Y2)V P(x1, w1 <-- b, w2 <-- g(y2), Y2)).

We replace the marked arguments by existentially quantified variables and get :

EX= Vx1Vy2P(xl,wl,w2,y2)

where WJ and w2 are existentially quantified variables "dependent" on XI and Y2

respectively. By "dependent" we mean that the choice of w 1 depends on x1 , and

similarly for w2 and y2. Thus the universal quantifiers for x1 and y2 must precede

the existential quantifiers for w1 and w2 respectively. There are two formulas which

satisfy these constraints; these are

EX1 = Vxt3wt'1y23w2P(xi,wl,w2,Y2)

and EX2 = Vy23w2Vxt3wiP(xi, w1, w2, Y2)·

These two formulas are the concepts learned from the given input examples El

and E2. •

4.5 Soundness and complexity

In the previous sections, we gave a detailed description of a learning algorithm

and illustrated its use with the help of a number of examples taken from the blocks

world and general first-order logic. We will now prove the soundness of the algo

rithm, i.e. we prove that if two first-order logic formulas E 1 and E2 are input to

the learning algorithm, any formula EX output by the learning algorithm satisfies

120

E1 -> EX and E 2 -> EX

I.e. EX is a valid concept learned from the two examples.

We will also discuss the complexity of the algorithm.

4.5.1 Soundness

Theorem 4.1 Given two examples E1 and E2 as input, the learning algorithm

produces a wff EX such that E1-> EX and Ez-> EX.

Proof : First note that if no two clauses of E 1 and E 2 contain any predicates in

common, then EX will just be the value true, which satisfies E1 ->EX, E 2 ->EX.
Initially, we build clause and argument graphs and augment them by taking

certain instances of variables. Every clause contained in Xc is true for the example

E 1, and similarly every clause contained in Yc is true for the example Ez. The

argument graph links corresponding arguments of certain clauses of Xc and Yc.
In the next step, certain arguments of clauses of E1 and Ez are marked for un

skolemization by marking functions "!" as "Z <-- !" or by unifying variables. This

is done according to the unskolemization algorithm of Chapter 2. Following this, we

take the pairwise union of selected clauses from E1 and Ez; we are performing the

pairwise disjunction of these clauses. Finally, the resulting formula is unskolemized

using the unskolemization algorithm of Chapter 2.

The result is EX, where EX is the unskolemized form of a set of clauses D
(say), where D is the conjunction of the pairwise disjunction of some clauses (or

instances of clauses) from E 1 and E 2 respectively. From results in Chapter 2,

E1 V Ez -> unsk(D) = EX;
therefore E1 ->EX, Ez ->EX. •

4.5.2 Complexity

We now turn to the question of efficiency. It is not really possible to analyze

the complexity of performing resolutions, since this is a nondeterministic process.

The remainder of the algorithm, whim is the portion of the algorithm which builds

graphs, performs maximum weight matchings, and unskoleinizes the resulting set

of clauses, can be performed in polynomial time. A detailed analysis of the time

complexity of the algorithm can be found in the appendix. The maximum weight

matcliing step can be performed using the algorithm described in [Galil 86], in time

O(mn logrmfn+Jln), where m and n are the number of edges and vertices in the

argument graph respectively.

121

4.6 Application to program verification

In the previous sections, we have seen how the learning algorithm can be applied

to traditional areas like the blocks world. We now present an extension of the

algorithm with a view to applying it to program verification. It will be demonstrated

that the process of deriving loop invariants, as described in Chapter 3, can be aided

by applying the learning algorithm. As mentioned earlier, the learning algorithm is

used to remove the nondeterminism from the unskolemization process of Chapter

2.
Recall that we described the problem of generating loop invariants as one of

generating logical consequences of an infinite number of first-order formulas. Very

often, it happens that these formulas (or consequences thereof) have structural

similarities which can be detected by our learning algorithm. Since our learning

algorithm learns a concept implied by two examples expressed in first-order logic,

it can be applied to the problem of deriving loop invariants.

Let us point out here that the task of learning loop invariants is simpler than

the blocks world problems which we have seen so far in the following respect :

when approximations to loop invariants have been derived, there exists a semi

decision procedure which can indicate whether suitable loop invariants have been

derived. This semi-decision procedure consists of examining whether the verification

conditions for the program are satisfied or not with the derived loop invariants

substituted into the verification conditions. Since first-order logic is semi-decidable,

so is the above process.

4.6.1 Applying the learning algorithm

The learning algorithm of Section 4.4.2 can be used for deriving loop invariants

in the following manner. Recall that in Chapter 3, we characterized the problem

of deriving loop invariants as one of deriving logical consequences of an infinite

sequence of formulas Ar,A2 ,A3 , •••• The learning algorithm also generates logical

consequences of two given formulas, by first performing resolutions between the

axioms of the programming language and the two given formulas, and then by

detecting common features between them. In other words, the procedure used will

be:

Given : formulas A;, Aj which hold at the entry to a loop;

a set of axioms (called AX IO J..![S) which characterizes the operations of the

flowchart programming language;

repeat

122

LEARN(A;, Aj, AXIOMS)

until a suitable loop invariant has been derived.

The only problem with this procedure is that there is no general decision proce

dure which can tell us if a suitable loop invariant has been derived. This is because

the only way to know if a suitable loop invariant has been derived is to prove that

all the verification conditions for the program in question are valid for this value

of the loop invariant. Validity being only semi-decidable for first-order formulas,

we are only sure of getting a definite answer to this question if the loop invariant

derived is suitable.

This problem can be tackled by allowing a limited amount of time for proving

that all the verification conditions are valid, and assuming that they are not if they

cannot be proved to be valid within that time. Although this is not a foolproof

solution, it works satisfactorily for a large number of cases. Also, some provers can

show that a given set of clauses is not unsatisfiable by providing a model for the set

of clauses, that is, a truth assignment which makes all the clauses in the set true

(see for example [Lee 90]).

4.6.2 Derivation of loop invariants

The following examples show how the learning algorithm can be used to derive

loop invariants.

Example 4.5 The following example arises as a problem of deriving a loop invariant

for the loop of the flowchart program shown in Figure 4.8. A loop invariant was

derived for this program in Example 3.2 in the previous chapter. We now show

how the same problem is tackled using the learning algorithm. The program loop

contains variables x and y which change in value every time the loop is traversed.

Let A; be the condition which holds for these variables before the loop is entered

for the i'h time. Then we have

A1 = (x = 0 1\ y =b)
A2 = (x =a 1\ y = b -1)
A3 = (x = 2 *a 1\ y = b- 2)
A4 = (x = 3 *a 1\ y = b- 3)

and so on. Let us take the last two formulas and write them in predicate form.

This example is also intended to illustrate the importance of choosing the predicate

representation for examples carefully. We choose the following representation :

A3 = x_equals(mult(2, a)) 1\ y_equals(minus(b, 2))

123

START

X,._ 0
y b

b >• 0

x • a'(b - y)

Figure 4.8 Flowchart program for Example 4.5

A4 = z..equals(mult(3, a)) 1\ y..equals(minus(b, 3)).

Then the clause graph contains the following two edges :

Ec = {({z.equals(mult(2, a))}, {z-equals(mult(3, a))}),
({y..equals(minus(b, 2))}, {y.equals(minus(b, 3))})}

and the argument graph has the following three edges, with their weights indicated
after each edge in brackets :

Ea = {(a,a)(l),(b,b)(1),(2,3)(2)}.

The maximum weight matching for this graph is straightforward to obtain and
consists of all the edges in Ea. We.now perform the marking step of the learning
algorithm and get the following marked set of clauses EX :

EX= { {z..equals(mult(w +- 2, a)), x.equals(mult(w +- 3, a))},
{y..equals(minus(b, w +- 2))}, {y_equals(minus(b, w +- 3))}}.

Here w is a new variable. We now perform the unskolemization. There are
no universal quantifiers to be added; the marked arguments are replaced by an

existentially quantified variable and we get :

124

EX= 3w(x_equals(mult(w,a)) 1\ y_equals(minus(b,w))) (I)

which is the concept learned here. In arithmetic notation,

EX = 3w(x = w * a 1\ y = b - w).
Note that EX is a valid loop invariant for this program loop.

Now consider what results we would have obtained if we had chosen a different

predicate representation for the above two examples. Suppose we had written :

A3 = equal(x, mult(2, a)) 1\ equal(y, minus(b, 2)),
A 4 = equal(x, mult(3, a)) 1\ equal(y, minus(b, 3)).

We would have got the following four edges in the clause graph :

Ec = { ({ equal(x, mult(2, a))}, { equal(x, mult(3, a))}),
({ equal(y, minus(b, 2))}, { equal(y, minus(b, 3))}),

({ equal(x, mult(2, a))}, { equal(y, minus(b, 3))}),
({ equal(y, minus(b, 2)) }, {equal(x, mult(3, a))})}

and the following seven edges in the argument graph, with their weights indicated

after each edge in brackets :

Ea = {(x, x)(1), (y, y)(1), (x, y)(1), (y, x)(1), (a, a)(1), (b, b)(1), (2, 3)(2) }.

We now have two choices for a maximum weight matching for this graph. We
will obviously choose the same three edges as before, viz. {(a, a), (b, b), (2, 3)}. Also

we can either choose the two edges (x,x),(y,y) or the two edges (x,y),(y,x). If
we choose (x,x) and (y,y), then we will obtain the same result as we did with the

previous representation; however, if we choose the edges (x,y) and (y,x), then we
will get the following concept :

EX= 3wt3w23wa(equal(wr, mult(wa, a)) 1\ equal(w2, minus(b, wa)))

which is not of much use to us! This illustrates the importance of choosing a suitable

representation for a set of clauses. •

Example 4.6 The program in Figure 4.9 computes the maximum value stored in

an array C of n numbers. Suppose that we are trying to compute a loop invariant

for the cutpoint B before the entry to the loop. Let Aj be the condition which

holds before the loop is entered for the j'h time. Then we have

Ar =(max= C(l) 1\ i = 1),
A2 =(max= C(l) 1\ max;::: C(2) 1\ i = 2)V

(max= C(2) 1\ max> C(l) 1\ i = 2),

Aa =(max= C(l) 1\ max;::: C(2) 1\ max;::: C(3) 1\ i = 3)V
(max= C(2) 1\ max > C(l) 1\ max ;::: C(3) 1\ i = 3)V
(max= C(3) 1\ max> C(l) 1\ max> C(2) 1\ i = 3),

125

Start

i <·· 1
max <·· C[1]

Halt

F

Figure 4.9 Flowchart program for Example 4.6

and so on. Unlike the previous example, we need to further process these formulas
before trying to generate a learned concept from them. This is done by performing
resolutions between the axioms for the flowchart programming language and the
conditions A2 and A3 • We choose examples A 2 and A3 here because the learning
algorithm can handle only two input formulas at a time. We could equally well have
chosen A1 and any one of A2 or Aa. After a number of resolutions, we get

From A2 : Vk(max? C(k) V k < 1 V k > 2) A (i = 2);

From A3 : Vj(max? C(j) V j < 1 V j > 3) A (i = 3);

126

(the resolutions performed can be found at the end of this example). We express

these two formulas in predicate form as follows :

From A2 : 'Vk(max_ge(C(k)) V lt(k, 1) V gt(k,2)) 1\ equals_i(2);

From A3 : 'Vj(max_ge(C(j)) V lt(j, 1) V gt(j,3)) 1\ equals_i(3).

The clause graph for these contains the following two edges :

Ec = { ({ max_ge(C(k)), lt(k, 1), gt(k, 2)}, { max_ge(C(j)), lt(j, 1), gt(j, 3)}),
({equals_i(2)}, {equals_i(3)})}

and the argument graph has the following three edges, with their weights indicated

after each edge in brackets :

Ea = {(k,j)(3), (1, 1)(1), (2, 3)(2)}.

The maximum weight matching for this graph again consists of all the edges

in Ea. We perform the matching step of the learning algorithm and obtain:

EX= { {max_ge(C(X)), lt(X, 1), gt(X, Y <- 2), gt(X, Y <- 3)},
{ equals_i(Y <- 2), equals_i(Y <- 3)}}

(Here X is a variable obtained by unifying the variables k and j, and Y is a new

variable.) We perform the unskolemization algorithm as before, and get

EX= 3Y'VX((max_ge(C(X)) V It(X, 1) V gt(X, Y)) 1\ equals_i(Y));

or, in arithmetic notation,

EX= 3Y'VX((max :2: C(X)V X< 1 V X> Y) 1\i = Y).

EX is a valid loop invariant for this program loop, at cutpoint B.

Resolution proofs for this example :

Derivation of'Vk((max_ge(C(k))V lt(k, 1)V gt(k, 2))/\(i = 3)) from A3 /\AXIOMS:

1. max= C(1),max > C(1)
2. ~(max> X), max :2: X

3. max= C(1),max :2: C(1)
4. ~(max= X), max :2: X

5. max :2: C(1)
6. X= 1,X > 1,X < 1
7. max :2: (C(X)),X > 1,X < 1

8. max= C(2), max > C(2), max :2: C(2)
9. max = C(2), max :2: C(2)
10. max :2: C(2)
11. y = 2, y > 2, y < 2

12. max :2: (C(Y)), Y > 2, Y < 2

127

given

axwm

resolve 1,2
ax1om

resolve 3,4

axwm

paramodulate 5,6

given

resolve 2,8

resolve 4,9

axwm

paramodulate 10,11

13. max = C(3), max 2: C(3)
14. max 2: C(3)
15. z = 3, z > 3, z < 3
16. max 2: (C(Z)),Z > 3,Z < 3
11. ~cw > I),~cw < 2)
18. max 2: (C(X)),~(X < 2),X < 1
19. max 2: (C(Y)), Y > 2, Y < 1
20. ~cw > 2), ~cw < 3)
21. max 2: (C(Y)),Y < l,~(Y < 3)
22. max 2: (C(Z)),Z < l,Z > 3
23. i = 3

The last two clauses constitute the statement

1 v z > 3) 1\ i = 3).

given

resolve 4,13
ax1om

paramodulate 14,15

axwm
resolve 7,17
resolve 12,18
ruoom

resolve 19,20
resolve 16,21
given
: \fZ((max 2: (C(Z)) V Z <

The statement \fZ((max 2: (C(Z)) V Z < 1 V Z > 2) 1\ i = 2) can be similarly

derived from A2 1\ AXIOMS. •

4. 7 Comparison with other methods

In this section, we compare the performance of our algorithm with that of sev
eral similar algorithms in this field. We will point out the differences between our

algorithm and those described below, and discuss the significance of these differ

ences, with a view to explaining why our approach is worthy of study.

The algorithms which we will be using for comparison are those of Winston

[Winston 75], Vere [Vere 75], Hayes-Roth [Hayes-Roth 78], and Dietterich and

Michalski [Dietterich and Michalski 83]. All of these algorithms attack the same
problem as described here, namely that of finding characteristic descriptions of

situations or objects.
The following discussion compares the five algorithms on the basis of repre

sentation language and algorithm used, and performance on a given blocks world

problem (taken from [Dietterich and Michalski 83], Figure 3-2, p. 51). A similar

comparison was performed by Dietterich and Michalski [Dietterich and Michalski
83] using a number of different algorithms for comparison.

4.7.1 Representation language and learning methodology

In this section we give a brief description of the representation language and

the learning methodology used by the authors listed above.

128

El E2 E3

Figure 4.10 Three blocks examples

a) Winston

Winston uses a semantic network to represent examples and background knowl
edge for the situation at hand. Nodes in the network are used to represent proper
ties of objects, individual examples and links; links in the network represent binary
relationships among the nodes. His learning algorithm first obtains a difference
description by comparing two input examples and then generalizes this difference
description to get one or more new concept descriptions. The difference descrip
tion is obtained by graph-matching the representations of the two examples, and
the generalization is accomplished by creating a network containing the links and
nodes of the two examples which matched exactly. The program uses "near-miss"
negative examples to find a description of the concept.

Winston's method usually tends to develop most specific generalizations of the
input examples, even though he does not precisely define the learning bias used in
his algorithm. There is no mechanism for representing disjunctions in his semantic
network. He also assumes that examples are chosen by an intelligent teacher who
controls the kind of examples used and the order in which they are presented.

b) Hayes-Roth

Hayes-Roth uses parameterized structural representations to represent input
events. The parameterized structural representation for the first example E 1 of
Figure 4.10 is

{{medium: a} {diamond: a} {blank :a} {on top: a, under: b} {medium: b}
{circle: b} {shaded: b} {ontop: b,under: c} {large: c} {box: c} {blank:

c}}.

129

An expression such as {medium: a} is called a case frame; medium is called a

case label, and a is called a parameter. This representation can easily be translated

into first-order logic by writing {medium: a} as medium(a), {ontop: a, under: b}

as on top(a, b), and so on. This representation can only express conjunctions and

does not allow disjunctions.
The learning algorithm works by matching the case frames in the two examples

in all possible ways to give a set A (two case frames match if all their case labels

match). Then a breadth-first search is conducted to find a one-to-one binding for

the parameters of one example with the parameters of the other example. Pairs of

parameters are then replaced by variables to give a learned concept. The algorithm

tries to find most specific generalizations of the two input examples.

c) Vere

Vere's representation consists of a conjunction of "literals" where a literal is a

list of constants called "terms" enclosed in parentheses. Using this representation,

the first example in Figure 4.10 is represented as follows :

(medium a)(diamond a)(blank a)(ontop a b) (medium b)(circle b) (shaded b)

(ontop b c) (large c) (box c)(blank c).
Every term in a literal is treated uniformly (i.e. "medium" is not distinguished

from "a", etc.). No disjunctions are allowed in this representation.

The learning algorithm works as follows. The literals in the two examples are

matched in all possible ways to generate a set of matching pairs. Two literals match

if they have at least one common term in the same position and if they contain the

same number of terms. After this is done, all possible subsets of this set of matching

pairs are chosen so that no literal is paired with more than one literal in the other

example. Following this, subsets of matching pairs are augmented by adding pairs

p of literals such that each literal in p is related to some other pair q in the same

subset by a common term in a common position. Finally, pairs are merged together

in each subset to form a single literal by replacing corresponding terms which are

not already identical by new variables. The goal of the algorithm is to discover

most specific generalizations of the two input examples.

The problem with -this representation is that all terms in a literal are treated

uniformly, even though the first term of a literal is really a predicate symbol. This

gives rise to the following problem : literals consisting only of variables (e.g. (x y))
can be generated, which are meaningless. The generation of these literals makes the

algorithm less efficient. The algorithm allows a many-to-one binding of variables,

which is computationally expensive.

d) Dietterich and Michalski

130

The representation language used here is called V L2 and is an extension of

first-order logic. An example is represented as a conjunction of "selectors". Each

selector contains a function or predicate descriptor (with variables as arguments)

and a list of values that the descriptor can take. For example, the first example in

Figure 4.10 is represented as :

3x3y3z[size(x) = medium] [shape(x) = diamond] [texture(x) = blank]

[ontop (x, y)] [size(y) =medium] [shape(y) =circle] [texture(y) =shaded]

[ontop(y,z)] [size (z) =large] [shape(z) =box] [texture(z) =blank].

Descriptors are divided into two classes : unary or attribute descriptors, and

non-unary or structure-specifying descriptors. The learning algorithm first searches

the description space defined by the structure-specifying descriptors, and then

searches the attribute descriptor space. The first search is conducted using a form of

best-first search in which a set of best candidate descriptions is maintained during

the search. The second search is then conducted using a technique similar to that

used in the first search. Some heuristic criteria are used to evaluate the value of

generalizations; some of these are : maximize the number of input events covered

by a generalization, maximize the number of selectors in a generalization, and so

on.

The algorithm is specially designed for finding maximally specific generaliza

tions, but it sometimes generates descriptions which are not maximally specific.

This is because the search conducted in the structure-only space is allowed to pro

duce less than maximally specific generalizations, because there may exist most

specific generalizations in the complete space whose structure-only component is

not maximally specific in the structure-only space.

The language used allows internal disjunctions to be represented. An example

of an internal disjunction is :

[shape(x) =circle V rectangle],

with the obvious meaning.

4. 7.2 Performance comparison

The objective of all the algorithms described so far is to generate a concept

which is as specific as possible. We therefore compare the performance of these

algorithms on the basis of the concepts learned by them from a set of three examples.

The examples, named E1 , E2 and E3 respectively, are shown in Figure 4.10 and can

be represented as follows in first-order logic :

E1 = medium(a)Adiamond(a) II blank(a) A on top(a, b) II medium(b) A circle(b)

Ashaded(b) A ontop(b, c) A large(c) A box(c) A blank(c),

131

E 2 =medium(d) II square(d) II blank(d) II ontop(d, e)II small(!) II circle(!) II

shaded(!) II inside(!, e) II small(g) II circle(g) II shaded(g) II inside(g, e) Alarge(e) II

rectangle(e) II blank(e),

E 3 = medium(h)Mriangle(h)!lblank(h)!lontop(h, j)llmedium(j)fl rectangle

(j) A shaded(j) II ontop(j, k) !\large(k) II ellipse(k) II blank(k).

The output of the five methods being compared here is given below.

a) Winston

Winston's algorithm is sensitive to the order in which examples are presented

to it. It produces two different concepts for the given three examples of Figure

4.10. The first is the result of presenting examples in the order Ea, E 1 , E2, and the

concept generated can be expressed in first-order logic using the above notation as

follows :

3t3u3v3w3x3y3z(size(x,medium) II texture(x,blank) II shape(x,polygon) II

ontop(x, y) II size(y, w) II texture(y, u) II size(z, v) II texture(z, t)), or, in English :

There is a blank, medium polygon on top of another object that has a texture

and size. There is also another object with texture and size.

If the examples are presented in the order E1 , E 2 , E3 , then the concept learned

IS :

3x(size(x, large) II texture(x, blank)), or, in English:

There is a large blank object.

b) Hayes-Roth

The algorithm given by Hayes-Roth learns three concepts from the three ex-

amples in Figure 4.10. These are given below in first-order logic notation :

3x3y(medium(x) II blank(x) II ontop(x, y)), or, in English:

There is a blank, medium object on top of another object.

3x3y(medium(x) II blank(y) !llarge(y) II ontop(x, y)), or, in English:

There is a medium object on top of a blank large object.

3x3y3z(medium(x)!lblank(x)Alarge(y)!lblank(y)llshaded(z)), or, in English:

There is a medium blank object, a large blank object, and a shaded object.

c) Vere

Vere's learning algorithm produces a large number of generalizations for the

examples in Figure 4.10. This is due to the fact that many-to-one bindings of

variables are permitted, which results in a large number of generalizations. Three

of the most specific generalizations are given below :

132

3x3y3z3w(medium(x) 1\ ontop(x, y) 1\ large(y) 1\ blank(y) 1\ blank(z) 1\ shaded(

w)), or, in English:
There is a medium object on top of a large blank object, a blank object, and

a shaded object.

3x13x2 3x33x4 (medium(x1)I\ blank(X!)1\ontop(x1, X2) /\shaded(X3)/\large(X4)

/\blank(x4)), or, in English:
There is a medium, blank object on top of some other object, there is a shaded

object and a large blank object which are related in some way.

3x1 3x2 3x33x4 (medium(x1) /\on top(X!, x2)I\ large(x2) 1\ blank(x2)/\shaded(X3)

/\blank(x4)), or, in English:

There is a medium object on top of a large blank object, a shaded object, and

a blank object.

d) Dietterich and Michalski

As in the case of Vere's algorithm, Michalski's algorithm produces a large

number of generalizations. Some of the more significant ones are :

3x3y(ontop(x, y) 1\ size(x, medium) 1\ shape(x,polygon) 1\ texture(x, blank) 1\

(size(y, medium) Vsize(y, large)) 1\ (shape(y, rectangle) V shape(y, circle))), or, in

English:

There exists a medium blank polygon on top of a medium or large rectangle

or circle.

3x3y(ontop(x, y) 1\ size(x, medium) 1\ (shape(x, circle) V shape(x, rectangle) V

shape(x, square)) 1\size(y, large)1\texture(y, blank) 1\ (shape(y, rectangle) V shape(

y, box) V shape(y, ellipse))), or, in English:

There exists a medium circle or rectangle or square on top of a large blank

rectangle or box or ellipse.

3x3y(ontop(x,y) 1\ size(x,medium) 1\ shape(x,polygon) 1\ (size(y,medium) V

size(y, large)) 1\(shape(y, rectangle) V shape(y, ellipse) V shape(y, circle))), or, in
English:

There exists a medium polygon on top of a medium or large rectangle or ellipse

or circle.

3x((size(x, small) V size(x, medium))/\ (shape(x, circle)V shape(x, rectangle))
1\texture(x, shaded)), or, in English:

There exists a small or medium shaded circle or rectangle.

e) Our method

We applied our method to all possible combinations of the order of presentation

of the three examples (i.e. E1,E2,E3 ; E2,E3 ,E1; and E1,E3 ,E2). The same

133

formula was obtained in all three cases. The axioms used for performing resolutions

were:

Vx(diamond(x)--> polygon(x))

Vx(square(x) --> polygon(x))

Vx(triangle(x)--+ polygon(x))

Vx(rectangle(x) -->polygon(x))

Vx(box(x)--> polygon(x)).
All possible resolutions were performed between these axioms and the three exam

ples.
The learned concept was :

3x3y3z(medium(x) II polygon(x) II blank(x) II (ontop(x,y) V ontop(x,z)) II

shaded(y) II (ontop(y,z) Vontop(x,z)) lllarge(z) II blank(z)), or, in English:

There is a medium blank polygon x on top of one of two objects y or z; y is

shaded, and z is a large blank object on top of which is either x or y.

The working of the algorithm for the order of presentation E 1 , E 2 , E3 is given

in the appendix.

Discussion

The concepts generated by the algorithms of Winston, Hayes-Roth, and Vere

are less specific than the concept generated by our algorithm, as can be seen at a

glance, since the latter contains more detail than the concepts generated by these

three algorithms. Dietterich and Michalski's algorithm generates a number of very

different descriptions. While these descriptions do not capture all the detail that

our description does, they contain some information that our description does not.

The concepts generated by Dietterich and Michalski's algorithm describe at most

two objects, whereas ours describes three objects and detects relationships between

these objects which none of the algorithms find. The difference in the concepts

generated by these two algorithms is due in part to the differences in the description

languages used by the two methods.

The great advantage of our representation is that it allows disjunctions and

quantifiers to be represented. This automatically makes the scope of application of

our algorithm much wider than the first three algorithms studied. Dietterich and

Michalski's algorithm does allow internal disjunctions and existential quantifiers,

but not universal quantifiers.

In conclusion, we see that our algorithm succeeds in learning a concept from

the given three examples which cannot be learned by any of the four algorithms

used for comparison in this section. Our algorithm performs better than the first

three algorithms in that the concept it learns is more specific than those learned

134

by these three algorithms. Dietterich and Michalski's algorithm succeeds in find

ing a number of concepts which are neither more specific nor less specific than the
concept generated by our algorithm. However, our algorithm has much wider ap
plicability than theirs, since it can handle arbitrary first-order formulas. Dietterich

and Michalski's algorithm uses a special-purpose language, which greatly limits its

usefulness in any other field.

135

5. Mechanizing mathematical induction

5.1 Introduction

Even though theorem provers today are able to prove a vast number of non

trivial mathematical theorems, the proofs of theorems which require the use of

mathematical induction present a special problem. A formal statement of the prin

ciple of mathematical induction runs as follows : for every predicate P, if P(m)

is true for all minimal elements m of a well-founded partial ordering <, and if for

ally, P(x) being true for all elements x less than y implies that P(y) is true, then

P(x) is true for all x. This statement cannot be expressed in first-order logic, since

it involves quantification over predicates. However, second-order logic is not even

semi-decidable, and there exists no complete deduction system for second-order

logic. Recall that first-order logic is semi-decidable but not decidable.

For this reason, due to the properties of second-order logic, many attempts have

been made to prove inductive theorems using first-order logic. Given the limitations

of first-order logic, it is necessary to provide a theorem prover with the necessary

inductive hypotheses which it will need in order to prove a theorem. However,

discovering these inductive hypotheses is a non-trivial task. Another problem is to

discover a suitable well-founded ordering for the elements of the domain involved.

This chapter is devoted to methods for mechanically generating such a well-founded

ordering and inductive hypotheses for certain classes of theorems.

Two approaches to generating inductive hypotheses are adopted here. The

first relies on our method for deriving logical consequences. The second is based on

the fact that there exists a certain class of theorems such that all ground instances

of these theorems are provable by first-order methods. Moreover, such proofs can

have a similar structure. Thus it is possible to detect which inductive hypotheses are

required for a proof of the theorem by induction, by comparing proofs of different

ground instances of the theorem. We describe a complete method for proving such

theorems. Related work in the past has focused primarily on proving equational

theorems using term rewriting techniques. The method described here is more

general and is applicable to equational as well as non-equational theorems.

5.2 Related work

One of the hardest problems in discovering an inductive proof is discovering

an appropriate application of the principle of induction. Boyer and Moore's prover

[Boyer and Moore 79] is perhaps one of the best-known systems which can perform

inductive proofs. Their prover uses the definition of a recursive function to suggest

an induction scheme. When a recursive function is defined, a measure and a well

founded relation must be provided along with the function definition such that

in every recursive call the measure of the variables involved in the recursive call

decreases. This guarantees that a function call will not result in an infinite sequence

of invocations of the function. This measure and well-founded relation suggest an

induction scheme for this function on the variables whose measure decreases with

every function call. Boyer and Moore's prover has succeeded in finding inductive

proofs of an impressive number of theorems including the unique prime factorization

theorem and other number theoretical theorems. It has also been used to prove the

correctness of non-trivial programs such as a simple optimizing expression compiler

and a fast string searching algorithm.

Another system which makes use of a function definition to generate an in

duction scheme is described in [Zhang et a!. 88]. The idea is similar to that of

Boyer and Moore's prover in that different induction schema are used for different

functions determined by their definitions. The non-recursive equation(s) in a def

inition suggests the basis step of an induction proof, while the recursive equation

in the definition suggests the inductive step of a proof. The notion of a cover set is

introduced, which is a finite set of terms covering all the elements of the constructor

model; in other words, a cover set is a finite set of terms which "describes" every

ground constructor term of that sort. One of the hardest problems in applying the

cover set induction principle is to find a suitable cover set. As in [Boyer and Moore

79], the function symbols in the conjecture and their definitions offer an insight into
the problem. The method described is a generalized version of the structural induc

tion principle and is as powerful as Boyer and Moore's induction method; however,

the experiments performed with this system are still very limited as compared to

the achievements of Boyer and Moore's prover.

In a preliminary report, Biundo et a!. [Biundo et a!. 86] describe a system in

which mathematical induction is being incorporated. Given a finite set of axioms

and a formula ¢, their induction theorem prover first attempts to prove rp without

using induction. If this attempt fails, an induction formula is generated from ¢,

after simplifying¢, according to Aubin's method [Aubin 79a], [Aubin 79b]. It may

happen that a given formula is not directly provable by induction, i.e. the induction

formula obtained from the initial one provides an induction hypothesis which is too

137

weak to be usable in the induction step. In such cases it is necessary to find a

more general formula which is sufficient for the initial one such that the induction

hypothesis "carries" the induction. Several techniques for generalizing formulas are

being studied for this purpose.

A lot of work has been done in the field of "inductionless induction", which

is basically proving theorems which would normally require inductive proofs by

using term rewriting techniques. Musser [Musser 80] discovered the use of the

Knuth-Bendix completion procedure [Knuth and Bendix 70] for proving equations

by induction from an equational specification of data types. Since the classical

induction principle is not explicitly invoked in this method, it has been called the

inductionless induction method. The general idea is that an equation is valid in

the initial algebra if and only if adding it to the set of axioms does not result in

an inconsistency. The pioneering work of Musser led to the development of this

method for proving inductive properties of data types. The equational axioms of an

algebraic specification of a data type can often be formed into a convergent set of

rewrite rules. If one adds a rewrite rule corresponding to a data type property whose

proof requires induction, convergence may be destroyed, but often can be restored

by using the Knuth-Bendix algorithm to generate additional rules. A convergent

set of such rules can be used as a decision procedure for the equational theory for

the axioms plus the property added. This fact, combined with a "full specification"

property of axiomatizations, leads to a new method of proof of inductive properties,

not requiring the explicit use of an inductive rule of inference. The significance of

"full specification" lies primarily in that if one has a collection of types that has

been shown to be fully specified, and one extends the collection with a new type

specification so that the augmented collection is also fully specified, then the added

specification does not introduce any new constants into the old types. Thus to

attempt to prove that an equation a = /3 is in the inductive theory of the collection

of types, one adds a new rewrite rule (either a -... /3 or /3 -+ a according to the finite

termination criterion being used) and performs the Knuth-Bendix algorithm. There

are three possible outcomes: (1) The algorithm terminates after generating a finite

number of additional rules, none of which is true -+ false, with the convergence

property affirmed. This means that a = /3 is a theorem; (2) The rule true -..false

is generated, which means that a = /3 is not a theorem; or (3) The Knuth-Bendix

algorithm does not terminate, in which case no definite information is gained about

whether a = /3 is a theorem or not. The main limitation here is the difficulty of

proving the finite termination property of the rules generated (finite termination

of arbitrary sets of rewrite rules is undecidable). Another issue is that of the

practicality of meeting the requirement of "full specifications".

138

Goguen (Goguen 80] describes a more general approach to inductionless induc
tion than Musser. He proves the correctness of algebraic methods for deciding the
equivalence of expressions by applying rewrite rules, and for proving inductive equa

tional hypotheses without using induction. He also shows that the equations true

in the initial algebra are just those provable by structural induction. The results

generalize and rigorize Musser's method for proving inductive hypotheses using the
Knuth-Bendix algorithm, by showing that under certain conditions, an equation is

true if and only if it is consistent.

Toyama (Toyama 86] proposes a method for testing equivalence in a restricted

domain of two given term rewriting systems. By using the Church-Rosser property

and the reachability of term rewriting systems, the method can be used to prove
equivalence of these systems without the explicit use of induction. The method

proposed is an extension of inductionless induction methods developed in (Musser

80], (Goguen 80], (Huet and Hullot 82], etc. and allows the extension of induction
less induction not only to term rewriting systems with the termination property

but also various reduction systems. Toyama proves certain theorems about ab
stract reduction systems, which are then applied to term rewriting systems to prove

equivalence in a restricted domain of two term rewriting systems. His method has
a wider applicability than the inductionless induction methods proposed by Musser

and others, since their method requires the strongly normalizing property to hold,

which is very restrictive and not true of many term rewriting systems.

McCarthy (McCarthy 70] describes a method called recursion induction for
proving the equivalence of recursively defined functions. The method works as

follows : suppose a function f is defined over a set A, and suppose g and h are two

other functions with the same domain as f and which are defined for all elements

of A. Suppose further that g and h satisfy the equation which defined f. Then

the values of g and h agree for all elements of A. This method of proving functions
g and h equivalent is called recursion induction. Some elementary results in the

elementary theory of numbers and in the elementary theory of symbolic expressions

are provable using recursion induction. In number theory one gets as far as the

theorem that if a prime p divides ab, then it divides either a or b. However, to
formulate the unique factorization theorem requires a notation for dealing with sets

of integers. One of the most immediate problems in extending this theory is to

develop better techniques for proving that a recursively defined function converges.

The concept of structural induction can be explained as follows : to prove that

some property holds for some inductively defined data structure, we show that it

holds for the most elementary data, and that it will hold for data of any degree

of complexity provided that it holds for all data of lesser complexity. We may

139

then deduce that it holds for all data (Burstall 69]. This is a special case of a more

general rule termed Noetherian induction: "Let A be an ordered set with minimum

condition and B a subset of A which contains any element a E A whenever it contains

all the elements x EA such that x <a. Then B =A." (A set A satisfies the minimum

condition if every non-empty subset of A has a minimal element.) The structural

induction principle differs from the usual "course of values" induction in two ways :

it allows for partial ordering, instead of total ordering, and it allows induction over

the transfinite steps. Examples of some proofs by structural induction can be found

in (Burstall 69].

In (Wegbreit and Spitzen 76], the authors introduce a method of proof called

generator induction, used for proving properties of programs, which may be stated

informally as follows : to prove that all instances of a class C have some property P,

prove that (1) all instances have the property when they are first created, and (2)

all operations F, which may change the value of a class instance, preserve the truth

of P. This definition is similar to that of computation induction given in (Manna et

a!. 73]. The generator induction principle is used to prove certain properties of a

hashtable program in Simula. The most important property of generator induction,

according to the authors, is that it partitions the program into loosely coupled

parts, proves simple properties of the parts, and demonstrates that the parts are

composed according to simple rules. This allows the decomposition of a proof into

small, comprehensible units corresponding to the structure of the program.

5.3 Description of the first method

We give below a brief overview of the first approach we will be using for deriving

proofs of theorems. Consider what is provable by induction, where all induction

hypotheses are expressible in first-order logic and all orderings are known. This

gives a precisely defined class of formulas. Given a theorem T to be proved, we first

try to prove it without using induction, using a resolution theorem prover. If this

attempt fails, we try to prove the theorem using induction. The first problem to be

tackled is to find a suitable induction scheme, i.e. we must discover a suitable well

founded ordering to be used in the application of the principle of induction. Once

this has been done, an attempt is made to prove the theorem using this ordering

and the induction principle. However, it may happen that this prooffails too, since

this theorem may itself depend on another inductive hypothesis or lemma A. Then
we have

AXIOMS II A -+ T

140

where "AXIOMS" is the set of axioms required for the proof of this theorem. There

fore
AXIOMS 1\ ~T -+ ~A

1.e. ~A is a logical consequence of AXIOMS 1\ ~T. We can therefore use our
method for generating logical consequences and unskolemization to derive ~A from

AXIOMS 1\ ~T. This is a support strategy and will not generate all possible induc

tive theorems from the axioms, since it makes use of the negation of the theorem T

as well as the set of axioms to generate inductive hypotheses. This method can be

extended to theorems which depend on more than one inductive hypothesis. The
remainder of this section elaborates the ideas outlined above.

5.3.1 Discovering a well-founded ordering

Recall that we have assumed that all well-founded orderings are known (these

could be partial as well as total orderings). Now suppose that we are trying to

prove the theorem

'Vx A(x)
where x ranges over some domain D. Consider the set of formulas of the form A(t),

where tis a ground term belonging to D and A(t) is first-order provable. We prove
some subset of these formulas one by one, noting the proof times for each formula.

We denote the time taken to prove A(t) by PT(t). This suggests an ordering in that

objects which are smaller in the ordering will probably have smaller proof times.

We therefore pick an ordering ">-" such that

(X >- Y) -+ (PT(X) > PT(Y))
(at least most of the time).

Example 5.1 Consider the following theorem to be proved by induction :

'VX(reverse(reverse(X)) =X),
where "reverse" is the usual function which reverses lists, and where X ranges over
the set of all lists. We first try to prove the theorem for some ground terms using

the theorem prover OTTER, a resolution theorem prover developed at the Argonne

National Laboratory [McCune 89]. We observe the following proof times for the
ground terms given below :

Theorems proved

reverse(reverse([])) = []

reverse(reverse([1])) = [1]

reverse(reverse([a])) =[a]

141

Time taken (seconds)

0.26

0.34

0.34

reverse(reverse([2, 1])) = [2, 1]
reverse(reverse([a, b])) = [a, b]
reverse(reverse([3, 2, 1])) = [3, 2, 1]
reverse(reverse([5, 2, 9])) = [5, 2, 9]

1.00
1.00
2.16

2.16

From the above proof times, the following observations can be drawn :

1. The proof times increase as the length of the list being substituted for X

increases; here we have

PT([]) < PT([1]) = PT([a]) < PT([2,1]) = PT([a, b]) < PT([3,2,1]) ...
2. The proof times are identical for different ground terms which are lists of the

same length; here we have

PT([1]) = PT([a]), PT([2,1]) = PT([a, b]), and so on.
A well-founded ordering r which satisfies the condition

X r Y -> PT(X) > PT(Y)
is therefore the ordering which is defined as follows : for lists X andY, X r Y if

and only if the length of list X is greater than the length of list Y; X = Y if and

only if the length of list X is equal to the length of list Y; and X -< Y if and only

if Y r X. The minimal element in this ordering is the empty list []. •

5.3.2 Using the induction principle

Once a well-founded ordering W has been found using the method described

in the previous section, we must now apply the principle of induction to prove the

given theorem T = 'Vx A(x). This is done as follows:

Base case : We prove

A(m)
for all minimal elements m of the ordering W by negating A(m), adding it to the

set of axioms, and using resolution to derive the empty clause. If this procedure
fails, this means that some induction hypothesis (hypotheses) is (are) required to

prove the base case. Sections 5.3.3 - 5.3.4 explain how this case is dealt with.

When the proof of the base case is obtained, we proceed to the induction step.

Induction step : Let pred(X) be the set of elements which precede X in the
ordering W. Then we need to prove

'VX(1\ A(Y)-> A(X)).
YEpred(X)

142

Again, this formula is negated, added to the set of axioms and resolution is

used to try and derive the empty clause. If the empty clause cannot be thus derived,

then as before, one or more induction hypotheses may be required to obtain the

proof. This is dealt with in the next two sections.

If a proof is obtained by resolution alone, then the theorem is proved by indue-

tion.

Example 5.2 Consider the following theorem :

WlfZ(reverse(append(Y, cons(Z, []))) = cons(Z,reverse(Y))).

The list notation used here is the same as that used in the programming lan

guage LISP. In particular, if X is an element andY is a list, then cons(X, Y) is a

list of length one more than the length of Y, and contains the element X followed

by the list Y. [] or "nil" represents the empty list.

Let us try to prove the theorem by induction on Y. Using the same method

as in the previous section, we can establish that the same well-founded ordering as

that of Example 5.1 can be used here (i.e. for lists X and Y, X >- Y if and only if

the length of list X is greater than the length of list Y; X = Y if and only if the

length of list X is equal to the length of list Y; and X -< Y if and only if Y >- X).
The minimal element in this ordering is the empty list [] , therefore here the base

case is :

Base case : lfZ(reverse(append([], cons(Z, []))) = cons(Z, reverse([]))).

This was proved by OTTER in 0.28 seconds (see the appendix for proof).

Induction step : An element preceding X in the given ordering could be any

element of length one less than X. In particular, the list cdr(X), where cdr(X)

represents the same list as X with the first element removed, is a list with one

element less than X. Thus we now need to prove that

VYVZ ((reverse(append(cdr(Y), cons(Z, []))) = cons(Z, reverse(cdr(Y)))) -+

(reverse(append(Y, cons(Z, []))) = cons(Z, reverse(Y)))).

This was proved by OTTER in 1.86 seconds (see the appendix for proof).•

5.3.3 Finding one induction hypothesis

Sometimes it may happen that either the base case or the inductive step (or

both) of the previous section cannot be proved by resolution alone, i.e. by first-order

methods alone. This can occur, for example, if the proof depends on some other

lemma which itself needs to be proved by induction before a proof for the actual

theorem being proved can be found. Suppose that the proof depends on one lemma

A, i.e.

143

AXIOMS A A -+ T

where "AXIOMS" is the set of axioms for the theorem T being proved, and where
T can be proved from AXIOMS A A using first-order reasoning. This implication

can be rewritten as
~AXIOMS V ~A V T

which is the same as
AXIOMS A ~T -+ ~A.

~A can therefore be derived from (AXIOMS A ~T) using resolution. To do

this, we need to Skolemize AXIOMS A ~T before performing resolutions among

clauses thus obtained. The clauses which represent Sk(~A) can thus be derived by
resolution from Sk(AXIOMS II ~T). We then unskolemize and negate Sk(~A) to

obtain the lemma A, using our unskolemization algorithm. Lemma A can now be
proved using the methods of Sections 5.3.1 - 5.3.2. Since lemma A has been shown

to be valid, and since AXIOMS A A -+ T, the theorem Tis also valid, and a proof
for T has thus been found.

Example 5.3 We continue with the proof of the theorem of Example 5.1, which

was

VX(reverse(reverse(X)) =X).

Recall that we found a well-founded ordering W for this theorem in Example

5.1 whose minimal element was the empty list []. The base step for the proof
therefore consists of proving

reverse(reverse([]))= [],
which was already done in Example 5.1.

Induction step : An element preceding X in the ordering W could be any element

of length one less than X. In particular, the list cdr(X), where cdr(X) represents

the same list as X with the first element removed, is a list with one element less
than X. Thus we need to prove that

VX((reverse(reverse(cdr(X))) =cdr(X))-+ (reverse(reverse(X)))).

(Call this result T'.) We try to derive the empty clause from AXIOMS A ~T',

but since T' cannot be proved by induction alone, this attempt fails. However, we
succeed in deriving the following clause by resolution from AXIOMS A ~T' :

VX(reverse(append(reverse(cdr(X)), cons(car(X), []))) -:1
cons(car(X), reverse(reverse(cdr(X))))).

We unskolemize this clause by replacing reverse(cdr(X)) and car(X) by new

existential variables Y and Z respectively. This yields the formula

3Y3Z(reverse(append(Y, cons(Z, []))) -:1 cons(Z, reverse(Y))).

Negating, we obtain the following

144

Lemma A= 'VYVZ(reverse(append(Y, cons(Z, []))) = cons(Z, reverse(Y))).
Lemma A was proved by induction (without the use of any lemmas) in Example

5.2, using the methods of Sections 5.3.1 - 5.3.2. Hence the proof of our theorem

VX(reverse(reverse(X)) =X)

is complete. •

5.3.4 Finding more than one induction hypothesis

It may happen that the proof of a theorem T depends on more than one in

ductive lemma. For example, suppose that inductive lemmas A and B are needed

to prove T; in other words, Tis first-order derivable from AXIOMS 1\ A 1\ B. Then

as before, since

AXIOMS 1\ A 1\ B --. T,

we therefore have
AXIOMS 1\ ~T --. ~A V ~B.

Therefore from AXIOMS 1\ ~T, we can derive ~A V ~B by first-order reasoning.

This can be done by resolution from Sk(AXIOMS 1\ ~T). The clauses obtained from

these resolutions representing Sk(~A V ~B) can then be unskolernized and negated
(as we did in Section 5.3.3 for lemma A). We thus obtain A 1\ B, and each of

lemma A and lemma B can be proved by induction using the methods of Sections

5.3.1 - 5.3.2. This method can be extended to any number of inductive lemmas;

however, the method rapidly becomes more and more complicated as the number of
lemmas increases. For this reason, it may be preferable to use our second approach,

described in the next section, for generating inductive hypotheses for such theorems.

5.4 Description of the second method

Suppose that we are trying to prove some theorem T, and suppose that we fail

to find a proof of the theorem using standard first-order methods. This suggests
that induction may be required to prove the theorem.

If induction is to be used, the first problem is to find a well-founded ordering for

the elements. This can be done by the methods described in Section 5.3.1 and this

problem will not be further dwelt upon here. If the theorem can now be proved by

induction using the well-founded ordering thus discovered, then we are done; if not,

then the proof of the theorem may require one or more lemmas, which themselves

need to be proved by induction. Our concern in this section is to discover what these

lemmas are. If only one lemma is required, then the method of Section 5.3.3 may

145

prove useful in finding this lemma; however, the following method can be applied

to any theorem whose proof requires one or more lemmas, each of which have to be

proved by induction. By lemma we mean either some theorem which needs to be

proved separately or some instance T(Y) of the theorem T(X), where Y <X; such

lemmas are also called inductive hypotheses.

Suppose the proof of a theorem T, for which a well-founded ordering P has

been discovered, requires n lemmas A1, A2, ... ,An (these are all unknown). Suppose

that T contains m variables (m ;::: 1), where the i'h variable is drawn from some

domain D; for each i, 1 ~ i ~ m. Let X be an m-tuple consisting of these m

variables. We write the theorem T as T(X). Then a proof of the theorem T(X)
will proceed according to the following two steps :

1. Proof of the base case :

The theorem T(X) is proved to be true for the minimal elements of the ordering

P. We will show below that T(m), for minimal elements m of the ordering P, is

first-order provable for a certain class of theorems T.

2. Inductive step :

Now the inductive step of the theorem T(X) is proved. Using lemmas A1

through An as axioms, a proof of T(X) can be obtained by resolution.

This concludes a proof of T(X) by induction, using then lemmas A1 through

An as axioms.

Now consider the proof ofT(Y) for some ground el~ment Y E D1 xD2 x ... xDm.
This proof can be performed by performing exactly the same steps as in 2 above,

except that we now have none of the lemmas A1 through An. As a result of this,

ground instances of these lemmas will have to be proved. We will show below that

all these ground instances are first-order provable for a certain class of theorems.

Thus in this proof of T(Y), we can find subproofs of lemmas A1 (Y) through An(Y)
(A;(Y) denotes the lemma A; with variables in A; instantiated to the corresponding

values in Y).

Since this is true for all ground elements Y, the above can be repeated for

ground elements Y1,Yz,Y3, ... ,and so on. In each proof of T(Y;), we can find

subproofs of lemmas A1(Y;), Az(Y;), ... , An(Y;).

Now we compare the proofs of T(Y) for different ground Y. These proofs will

be similar in structure except that different instances of the lemmas A1 through

An will appear in these proofs. By detecting these different instances, we should be

able to reconstruct the n lemmas A1 through An· Once these lemmas are known,

the theorem T(X) can be proved by induction using the well-founded ordering P.

In the following theorem, we will show that this method is complete for the

orems which can be proved using the usual induction principle, subject to the fol-

146

lowing restriction. In order to show that this method is complete, we will need to

be able to tell whether certain ground terms t which appear in proofs are less than

a given ground term z or not. Since ground terms may contain Skolem functions

or other functions, it may not always be possible to deduce whether t < z or not.

Thus we will only allow those functions t, z for which it is possible to tell whether

t < z is true or not. For example, if z = 3 and t = plus(l, 1) (where "plus" is the

usual addition function for natural numbers), it is possible to deduce that t is less

than z; however, if z = 3 and t = f(5) for some Skolem function f, then we cannot

tell whether t < z or not.

The feasibility of this method is established in the following theorem.

Theorem 5.1 The method suggested above is complete for theorems that can be

proved by first-order logic with the following induction principle:

(Vx(Vy(y < x-> P(y))-> P(x)))
where < is a well-founded ordering. Additionally, none of the clauses used

should contain terms containing Skolem symbols or other functions for which the

question of whether any of these is less than another term is undecidable.

Proof: Suppose we want to prove P(z) for some ground z, where VxP(x) is a

theorem which can be proved by first-order logic with the above induction principle.

We know that (Vx(Vy(y < x-> P(y))-> P(x))) is true. Express this as

(Vx(3y)[(y < x-> P(y))-> P(x)]).
Substitute the ground term z for x to get

(3y)[(y < z-> P(y))-> P(z)].
Then there are finitely many y; such that

[(Yo< z-> P(yo))-> P(z)J V ... V [(Yn < z----> P(yn))----> P(z)]
is true. To see this, note that if (3x)A(x) is valid for any first order formula A(x),
we know there exist finitely many terms t; such that A(ti) V .•. V A(tn) is valid.

We can show this by converting ~(3x)A(x) to clause form with a new predicate for

A(x), and looking at the instances of this predicate used in the derivation of the

empty clause by resolution.

The above formula can be rewritten as

HYo < Z-> P(yo)) V P(z)] V ... V HYn < z-> P(yn)) V P(z)]
i.e. HYo < z-> P(yo)) V ... V ~(Yn < z -> P(yn))] V P(z)
i.e. ~[(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z-> P(yn))] V P(z)
i.e. [(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z----> P(yn))]-> P(z).

Now consider any conjunct (y; < z ---> P(y;)) in the conjunction on the left

side of the above implication. If y; < z is true, then this conjunct is equivalent to

147

P(y;); if y; < z is false, then this conjunct is equivalent to true and can therefore

be omitted from the above conjunction. We are therefore interested in knowing

whether y; < z is true or false for every i, for 1 ::5 i ::5 n. From the assumption in

the theorem statement, this question can be answered for ally;.

LetT be the set of all Yk's in {yi,Y2,···,Yn} such that Yk < z. Then

/\ P(y)-+ P(z)
yET

Thus P(z) is derivable from a finite conjunction P(yj,) 1\ ... 1\ P(yj,) by first

order logic methods, where all the Yi; 's are ground elements less than z.
Repeating the above argument for each of the elements of the set T, we will

eventually get

P(mi) 1\ ... 1\ P(m.)-+ P(z)
where all the m;'s are minimal elements of the well-founded ordering < (this

follows from the fact that < is a well-founded ordering).

Now consider the proof of P(m;) for some minimal element m; (1 :::; i :::; s).
Since m; is a minimal element, P(m;) is provable from the given axioms and given

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction

previously, then by a simple induction argument on the size of the proof, using the

same method as above, we see that we will eventually obtain a first-order proof of

P(m;) from the axioms.

Thus we see that P(z) can be proved by first-order methods; also, this proof

is made up of proofs of some P(y)'s for y < z, which in turn are made up of proofs

of some P(w)'s for w < y, and so on. In other words, each of these proofs have a

similar structure, and the theorem is proved. •

A similar theorem can be proved for a slightly different version of the induc

tion principle. In this theorem, no assumptions need to be made regarding the

decidability of whether one term is less than another.

Theorem 5.2 The method suggested above is complete for theorems that can be

proved by first-order logic with the following induction principle:

If< is a well-founded ordering, and if for all x, P(x) can be proved by first

order logic from the infinite conjunction of P(y) for ally< x, then for all x, P(x)
is true.

Proof: Suppose we want to prove P(y) for some ground y, where VxP(x) is a

theorem which can be proved by first-order logic with the above induction principle.

From the assumption in the theorem statement, we know that P(y) can be

proved by first-order logic methods from

148

P(y1) II P(y2) II ... II P(yn) II ...

where y; < y Vi 2': 1, i.e. 1\~1 P(y;) -> P(y).
Therefore by the compactness principle, there exists a finite subset {Yit, Yh,

... , Yim} of the y;'s such that

P(yit) II P(yh) II ... 1\ P(Yim) -> P(y).
Repeating the above argument for each of P(yj,) through P(Yim) in place of

P(y), we will eventually get

P(m1) 1\ •.. II P(mr)-> P(y)
where all the m;'s are minimal elements of the well-founded ordering< (this follows

from the fact that < is a well-founded ordering). As in the proof of Theorem 5.1,
since m; is a minimal element, it is provable from the given axioms and given

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction

previously, then by a simple induction argument on the size of the proof, using the

same method as above, we see that we will eventually obtain a first-order proof of

P(m;) from the axioms.
Therefore P(y) is also first-order provable. Also, the proof of P(y) can be

constructed from the proofs of P(y it) through P(Yim), each of which in turn can be

constructed from a finite conjunction of P(zk)'s, for Zk < Yi• (1 ::; k::; m), and so
on. Thus each of these proofs have a similar structure, and the theorem is proved. •

Limitations of this method

1. The first point to note is that for any ground element y, not all proofs of P(y)
will have a similar structure to P(y') for other ground elements y'. Potentially,
there may exist a large number of different proofs of each ground instance.

However, there does exist at least one such proof, as demonstrated in the

preceding theorems. We will need to search through the proofs to find one
such proof.

2. Given proofs of ground instances of P(x), it is a non-trivial task to detect the
similarity in structure between these proofs.

Examples illustrating the use of this method can be found in the appendix.

5.5 Comparison with other methods

The first method given in this chapter uses a support strategy to generate in

ductive hypotheses from the axioms; the second method is more general and makes

use of structural similarities in the proofs of ground instances of the theorem being

proved to discover suitable inductive hypotheses. Much of the work in the field

149

of mechanizing mathematical induction is concentrated in the field of inductionless

induction, described in more detail in Section 5.2. As mentioned earlier, induction
less induction applies term rewriting techniques for proving equational theorems.

Our methods are more general than these since they can be applied to any theorem

which can be proved using the principle of induction. Some more work needs to be

done in order to improve the efficiency of our method.

150

6. Conclusion

6.1 Summary

In this dissertation, we have explored a number of different topics. We first

saw how a class of logical consequences of first-order formulas can be derived using

resolution and unskolemization. We extended the meaning of "unskolemization" to

include replacement of some non-Skolem as well as Skolem functions by existen

tially quantified variables. This allowed a larger class of logical consequences to be

derived, since certain logical consequences of formulas cannot be derived without

unskolemization. A detailed algorithm was given to perform this unskolemization,

and the properties of formulas derived by applying the algorithm were described.

The remainder of this dissertation revolved around different applications for the

above method for deriving logical consequences. We first used the method as part

of an algorithm for the automatic generation of loop invariants. The method was

applicable since a loop invariant is a logical consequence of the various conditions

which are true each time the loop is traversed. We described methods of directing

the search for a valid loop invariant and demonstrated their effectiveness with several

examples. The algorithm for generating loop invariants in first-order logic was

proved to be sound and complete. This is in contrast to all known methods so far,

which are heuristics and are by no means complete.

The next topic discussed was machine learning from examples. Given two

examples El and E2, a concept learned from El and E2 is a logical consequence

of El and E2. Thus we applied our resolution and unskolemization method for

deriving logical consequences to this problem. A graph-based algorithm for learning

by extracting common features from examples was described, and the properties of

the concepts which can be thus learned were discussed. Applications of this learning

algorithm to traditional areas such as the blocks world, as well as the mechanical

derivation of loop invariants, were demonstrated. The performance and working of

our algorithm was compared with those of four other algorithms from the literature,

and it was shown that the performance of our algorithm compared favorably with

the other four. This work is significant because none of the learning algorithms so

· far have used full first-order logic as their representation language. This greatly

widens the scope of applicability of our method.

Finally, we described methods for discovering inductive hypotheses for theo

rems to be proved by induction. Since the principle of mathematical induction is not

expressible in first-order logic, in order to be able to prove theorems by induction

using only first-order logic, we need to know which inductive hypotheses will be re

quired for the proofs of the theorems. We saw that certain inductive hypotheses can

be generated from the axioms and the negation of the theorem by using our method

for generating logical consequences. Another method, which involved extracting in

ductive hypotheses from proofs of ground instances of the theorem, was described.

This method was based on the fact that proofs of ground instances of the theorem

can have similar structures, and information about which inductive hypotheses are

required can be deduced by comparing the structures of these proofs. The method

was shown to be complete for certain classes of theorems. It is more general than

a large number of existing methods, since it can be applied to equational as well

as non-equational theorems. Much of the existing work on this subject deals only

with equational theorems.

6.2 Extensions

6.2.1 Automatic generation of loop invariants

We have developed a novel method of automatically deriving loop invariants

for flowchart programs. The methods described in this dissertation have not been

actually implemented, but have been manually applied to many examples. Many

people have voiced the opinion that the goal of automating the derivation of loop

invariants is unattainable (see for example [Dijkstra 85]). Of course, they can be

proved wrong only if the method we have developed can be made "acceptably"

efficient by the use of suitable strategies. Basically, the function GET-APPROX

needs to be implemented with the use of strategies which will include rewriting

terms to some normal form to improve the efficiency of the resolution procedure,

detecting structural similarities among terms, and so on. The function, as it stands

now, provides some guidance to the process of deriving the invariants. Its efficiency

can probably be greatly improved with the use of some good heuristics. Owing to

the existence of a large number of such heuristics in the literature, this aspect has

not been explored in much detail here. However, even though heuristics will be

able to improve the performance of our algorithm, the algorithm still stands out

from the previous purely heuristic methods in the literature. This is because in our

152

method, heuristics can be embedded within the framework of a complete and sound

algorithm. Thus even if all heuristics fail, our algorithm can still derive a correct

loop invariant. This is in direct contrast to previously developed methods, which

have not been complete in any sense.

Another issue here is that if the given algorithm fails to return a loop invariant

for a given program loop, this could be due to one of two reasons : either the

invariant is not expressible given the theory axiomatized, or the program is not

correct. These two cases cannot be distinguished at present.

6.2.2 Learning from examples

We propose some extensions and modifications to the learning algorithm pre

sented in Chapter 4.

Allowing many-to-many mappings

The algorithm, as presented in Section 4.4.2, performs a one-to-one mapping

of arguments from the two given examples. This corresponds to the notion that

distinct objects in the two given examples are represented by distinct variables.

However, in certain situations it may be desirable to allow different variables to

represent the same object. In such a case, it is necessary to allow many-to-many

mappings in the argument graph produced by the algorithm. The choice of whether

to consider all possible mappings or a limited number of these can be left to the

user. A very minor modification to the learning algorithm will allow this feature to

be incorporated into the algorithm.

Allowing a limited number of disjunctions

The learning algorithm at present does not allow disjunctions of clauses to

be performed if the clauses have no common predicates. If such disjunctions are

necessary, they can be permitted, either without restriction or with a limit on

the number of disjunctions allowed. This alteration can easily be built into the

algorithm.

Using the algorithm for descriptive generalization

The given algorithm provides a method of deriving a formula EX from two

given formulas El and E2 such that El -> EX, E2-> EX. However, note that

we could also use the algorithm for deriving a formula EX such that EX -; El,

153

EX -+ E2. To see this, suppose that we are given formulas El and E2; then
apply the algorithm to the formulas ~El and ~E2. The algorithm produces a
formula E such that ~El -+ E and ~E2 -+ E; taking contrapositives, we get

~E-+ El, ~E-+ E2. Setting EX= ~E, the result follows. In the terminology of

Michalski [Michalski 83], this process is known as deBcriptive generalization and is

concerned with establishing new concepts or theories characterizing given facts. In

this case E 1 and E 2 are the given facts, and EX is the new concept or theory which

is established. This method of inference is also known as abduction or abductive

inference [Patterson 90].

6.2.3 Mechanizing mathematical induction

The methods developed in Chapter 5 for generating inductive hypotheses are
complete for certain classes of theorems; they need to be made more efficient by the

use of suitable strategies. More research needs to be done into ways of detecting

structural similarities among proofs of different ground instances of theorems.

154

Appendix

Time complexity analysis of the learning algorithm

We analyze the algorithm step by step. For convenience, the main body of the

algorithm is listed below again, with the steps numbered :

Algorithm LEARN(E1,E2,AXIOMS)

begin

1. Choose Xc E Res(E1 1\ AXIOMS);
2. Choose Yc E Res(E2 1\ AXIOMS);
3. Rename the variables in all the clauses of Xc and Ye so that no two clauses

have any variable in common;

4. build..clause..graph(Xc, Yc, Ec);
5. build..argument..graph(X., Y., E.);
6. augment..graphs...X(X., E., Xc, Ec);
7. augment..graphs_Y(Y., E., Yc, Ec);
8. maximum_weight...matching(M.,X., Y., E.);
9. Me:= {(C~,C2) E Ee I the n'h argument an of some literal of C1 contains

a as a subterm and the n'h argument f3n of some literal of C2 contains b as

a subterm in the same position as a appears in an and (a, b) E M., for some

positiveinteger n, where these two literals have the same predicate};

10. For every edge (a, b) E Ma do

if (a and b are distinct) and (a and b are not both variables) then

replace unmarked occurrences of a and b in Me by Z <-- a and Z <-- b
(respectively) (Z is a new variable);

if (a and b are both variables) then

unify all occurrences of a and b in Me;

11. EX:={CIUC2I(CI,C2)EMe};

12. if EX = 0 then EX := true;
13. for every Skolem function a in EX do

if a is not marked then

155

replace all occurrences of a in all literals of EX by X <-a, where X is

a new variable not occurring elsewhere in any clause;

14. Perform Steps 4 through 7 of the unskolemization algorithm for EX;

end.

We will not analyze the complexity of performing resolutions, since this is a

nondeterministic process. The analysis of the algorithm thus begins with step 3

above. The following symbols are used during this analysis :

IXel : number of elements in the set Xe
lYe I : number of elements in the set Ye
IXal: number of elements in the set X a
IYa I : number of elements in the set Ya
ICrl : maximum cardinality of a clause in Xe
ICzl : maximum cardinality of a clause in Ye
arg : maximum length of an argument of a clause in Xe U Ye (i.e. maxi

mum number of symbols in an argument; e.g. f(x,g(y)) has 4 symbols, viz.

j,x,g,y)
arity : maximum arity of a predicate in a clause in Xe U Ye
!Eel : number of edges of the clause graph (bounded above by (IXel + IYel)2)
lEal : number of edges of the argument graph (bounded above by (IXal +
IY.I)2

)

IMa I : size of a maximum weight matching of the argument graph (bounded

above by max(IXal, IYal))
!Mel : cardinality of the set Me (bounded above by I Eel)

The maximum number of operations required for each step is given below,
within a constant factor.

Step 3: IXel * ICrl * arity +lYe I* ICzl * arity
Step 4: IXel * IYel * ICrl * ICzl
Step 5 : !Eel* ICrl * arity * ICzl * arg
Step 6: IX a I* IYal * IYal +(IX a I+ IYal) * (IXel +!Eel)
Step 7: IYal * IXal * IXal + (IXal + IYal) *(lYe I+ !Eel)
Step 8: lEal* (IXal + IYal) * logfiEai/(IX.I+IY.I)+Il(IXal + IYal)
Step 9 : !Eel * IMa I * ICrl * ICzl * arity * arg
Step 10: !Mal* !Mel* (ICrl + ICzl) * arity * arg
Step 11 : !Mel
Step 12 : constant

Step 13: !Mel* arg * (ICrl + ICzl) * arity

156

Step 14 : Each of steps 4 through 7 of the unskolemization algorithm take time

!Mel* (IC1I + IC2I) * arity, for the generation of one unskolemized formula. •

Working of problem from Section 4. 7 using the algorithm LEARN

We process the examples in the order E1, E2 and Ea. The examples are shown
in Figure 4.10. The same result is obtained for other orders of presentation of the

examples.

First the examples E1 and E2 are taken and all possible resolutions are per

formed between these two examples and the given axioms. The resulting sets of

clauses obtained from E 1 and E 2 , called Xe and Ye respectively, are :

Xe = medium(a)!lpolygon(a)!lblank(a)!lontop(a, b)/\ medium(b) 1\ circle(b)!l

shaded(b) 1\ ontop(b, c) 1\ large(c) 1\ polygon(c) 1\ blank(c),

Ye = medium(d) 1\ polygon(d) 1\ blank(d) 1\ ontop(d, e)II small(!) 1\ circle(!)/\

shaded(!) 1\ inside(!, e) 1\ small(g) 1\ circle(g) 1\ shaded(g) 1\ inside(g, e) 1\ large(e) 1\

polygon(e) 1\ blank(e).

We build the clause and argument graphs for Xe and Ye; these graphs are shown

in Figures A.1 and A.2 respectively. These graphs do not need to be augmented

since neither Xe nor Ye contain any variables. There exists two maximum weight

matchings for the argument graph; these are

{(a, d)(4), (b, !)(2), (c, e)(4)} and {(a, d)(4), (b, g)(2), (c, e)(4)}

(the weights for each edge are indicated after each edge in parentheses). However,

it turns out that both these matchings give rise to the same concept. We therefore

choose the first matching and get

Ma ={(a, d), (b,J), (c, e)}.

The set Me contains the edges which are shown in Figure A.3. We then replace

a and d by X <- a and X <- d respectively; we replace b and f by Y <- b and

Y <- f respectively; and we replace c and e by Z <- c and Z <- e respectively in
the edges of Me. We then get

EX = {{medium(X <-a), medium(X <- d)}, {polygon(X <- a),polygon(X

<- d)},{blank(X <- a),blank(X <- d)},{ontop(X <- a,Y <- b),ontop(X <- d,Z <

e)}, { circle(Y <- b), circle(Y <-- /)}, { shaded(Y <- b), shaded(Y <- f)}, {on top(

Y <- b, Z <-c), ontop(X <- d, Z <-e)}, {large(Z <-c), large(Z <-e)}, {blank(Z <

c),blank(Z <-e)}, {polygon(Z <- c),polygon(Z <-e)}}.

157

We now unskolemize EX by replacing the marked arguments by existentially

quantified variables and get

EX = 3X3Y3Z (medium(X) /\polygon(X) 1\ blank(X) 1\ (on top(X, Y) V ontop

(X, Z))llcircle(Y)/\shaded(Y)/\(ontop(Y, Z)Vontop(X, Z))/\large(Z)/\blank(Z)/\

polygon(Z)).

This is the concept learned from E1 and E 2 • We will now apply the algorithm

to E3 and the above formula EX. First we perform all possible resolutions between

the axioms and these examples. EX remains unchanged; we get the following set

of clauses from E3 :

E 3 = { {medium(h)}, {polygon(h)}, {blank(h)}, {ontop(h,j)}, { medium(j)},

{polygon(j)}, { shaded(j) }, { ontop(j, k)}, { large(k)}, {ellipse(k)},

{blank(k)} }.

We now need to express EX in clause form. After Skolemizing EX, we get the

set of clauses

{ {medium(s)}, {polygon(s)}, {blank(s)}, { ontop(s, t), on top(s, u)}, { circle(t) },

{ shaded(t)}, { ontop(t, u), ontop(s, u)}, {large(u)}, {blank(u)}},

where s, t, u are Skolem functions replacing the existentially quantified variables

X, Y, Z respectively.

We build the clause and argument graphs for these two sets of clauses; these

graphs are shown in Figures A.4 and A.5 respectively. These graphs do not need

to be augmented since none of the clauses contain any variables. The maximum

weight matching for the argument graph is :

Ma = {(h,s)(5),(j,t)(3),(k,u)(5)}

(the weights for each edge are indicated after each edge in parentheses). The set

Me contains the edges which are shown in Figure A.6. We then replace h and s

by X +- h and X +- s respectively; we replace j and t by Y +- j and Y +- t

respectively; and we replace k and u by Z +- k and Z <-- u respectively in the edges

of Me. We then get

EX = {{medium(X <-- h), medium(X +- s)}, {polygon(X +- h),polygon(X

<-- s)},{blank(X +- h),blank(X +- s)},{ontop(X +- h,Y +- j),ontop(X +

s,Y +- t), ontop (X+- s,Z +- u)},{ontop(X +- h,Y +- j),ontop(Y +- t,Z +

u),ontop(X <-- s,Z +- u)}, {shaded(Y +- j),shaded(Y +- t)}, {ontop(Y +- j,Z +

k), ontop(Y +- t, Z +- u), ontop(X +- s, Z +- u)}, {ontop(Y <-- j, Z +- k), ontop(X

+- s,Y +- t),ontop(X +- s,Z +- u)},{large(Z +- k),large(Z +- u)},{blank(Z +

k),blank(Z +- u)}}.

158

We now unskolemize EX by replacing the marked arguments by existentially

quantified variables and get

EX = 3X3Y3Z (medium(X) !\polygon(X) i\ blank(X) i\ (ontop(X, Y) V ontop

(X, Z)) i\ (ontop(X, Y) Vontop(Y, Z) V ontop(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V

ontop(X, Z)) i\ large(Z) i\ blank(Z)).

This is the concept learned from E1, E2 and E3. Note that one of the disjunc

tions here is subsumed by two of the others, namely the disjunction (on top(X, Y) V

ontop(Y, Z) V ontop(X, Z)); therefore it can be discarded. The resulting concept

learned from the three given examples is

EX= 3X3Y3Z (medium(X) !\polygon(X) i\ blank(X) i\ (ontop(X, Y) Von top

(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V on top(X, Z)) i\ large(Z) i\ blank(Z)). •

159

{medium(d)}

{polygon(d)}

{medium(a)} {blank(d)}

{polygon(a)} {ontop(d,e)}

{blank(a)} {small(f)}

{ ontop(a,b)} {circle(f)}

{medium(b)} {shaded(f)}

{circle(b)} {inside(f,e)}

{shaded(b)} {small(g)}

{ontop(b,c)} {circle(g)}

{large(c)} {shaded(g)}

{polygon(c)} {inside(g,e)}

{blank(c)} {large(e)}

{polygon(e)}

{blank(e)}

Figure A.l Clause graph for E1 and E2

160

d

b

c

g

161

{medium(a)} {medium(d)}

{polygon(a)} {polygon(d)}

{blank(a)} {blank(d)}

{ ontop(a,b)} {ontop(d,e)}

{circle(b)} {circle(f)}

{shaded(b)} {shaded(f)}

{ontop(b,c)} {large(e)}

{large(.c)} {blank(e)}

{blank(c)} {polygon(e)}

{polygon(c)}

Figure A.3 Subgraph of clause graph for E1 and E 2

162

Figure A.4 Clause graph for Ea and EX

163

h
5

s

t

k u

Figure A.5 Argument graph for E3 and EX

164

{medium(h)} {medium(s)}

{polygon(h)} {polygon(s)}

{blank(h)} {blank(s)}

{ontop(h,j)} { ontop(s,t) ,ontop(s, u)}

{shaded(j)} {shaded(t)}

{ontop(j,k)} { ontop(t, u) ,ontop(s, u)}

{large(k)} {large(u)}

{blank(k)} {blank(u)}

Figure A.6 Subgraph of clause graph for E3 and EX

165

Proofs for Example 5.2

The following proofs were obtained for Example 5.2 using the theorem prover

OTTER:

Proof of base step from Example 5.2 :

1 [] (X= X).
2 [] (append(nil,Y) = Y).
7 [] (reverse(append(nil,cons(y,nil))) != cons(y,reverse(nil))).
8 [] (reverse(nil) = nil).
11 [] (reverse(cons(X,nil)) = cons(X,nil)).
12 [paraJnto,7,2,demod,11,8] (cons(y,nil) != cons(y,nil)).

13 [binary,12,1] .

Proof of induction step from Example 5.2 :

1 [] (X =X).
3 [] (append(X,Y) = cons(car(X),append(cdr(X),Y))) I -listp(X).
4 [] (reverse(X) = append(reverse(cdr(X)),cons(car(X),nil))) 1-listp(X).
5 [] listp(cons(X,Y)).
7 [] (reverse(append(cdr(x),cons(y,nil))) = cons(y,reverse(cdr(x)))).
8 [] listp(x).
9 [] (reverse(append(x,cons(y,nil))) != cons(y,reverse(x))).
11 [] (car(cons(X, Y)) = X).
12 [] (cdr(cons(X, Y)) = Y).

14 [paraJnto,9,3J (reverse(cons(car(x), append(cdr(x), cons(y, nil))))!= cons(y, re
verse(x))) I -listp(x).
17 [binary,14,8] (reverse(cons(car(x), append(cdr(x),cons(y, nil)))) != cons(y, re
verse(x))).
19 [paraJnto,l7,4,demod,12,11] (append(reverse(append(cdr(x), cons(y,nil))), cons(
car(x), nil)) != cons(y, reverse(x))) I -listp(cons(car(x), append(cdr(x), cons(y,
nil)))).

54 [binary,19,5] (append(reverse(append(cdr(x), cons(y, nil))),cons(car(x), nil))!=
cons(y, reverse(x))).

56 [paraJnto,54,7] (append(cons(y, reverse(cdr(x))), cons(car(x), nil)) != cons(y,
reverse(x))) .

61 [paraJnto,56,3,demod,11,12] (cons(y, append(reverse(cdr(x)), cons(car(x), nil)))
! =cons (y, reverse(x))) 1-listp(cons(y, reverse(cdr(x)))).

63 [binary,61,5] (cons(y, append(reverse(cdr(x)), cons(car(x), nil))) != cons(y, re-
verse(x))). .

166

65 [paraJnto,63,4] (cons(y,reverse(x)) != cons(y,reverse(x))) [-listp(x).

68 [binary,65,1]-listp(x).
69 [binary,68,8]. e

Working of examples for Section 5.4

We give below three examples illustrating the technique outlined in Section 5.4

for discovering inductive hypotheses.

Example 5.4 To illustrate the discussion in Section 5.4, suppose that we are trying

to prove the commutativity of addition, using the Peano axioms :

1. 'v'x((x = 0) V (x =a+ 1)) where a is a Skolem symbol

2. 'v'x'v'y((x # y + 1) V (x # 0))
3. 'v'x'v'y((x + 1 # y + 1) V (x = y))
4. 'v'x'v'y(-,(x < y + 1) V (x < y) V (x = y))
5. 'v'x'v'y(-,(x < y) V (x < y+ 1)
6. 'v'x'v'y((x # y) V (x < y + 1))
7. 'v'x(-,(x < 0))
8. 'v'x'v'y((x < y) V (x = y) V (y < x))
9. 'v'x(x + 0 = x)
10. 'v'x'v'y(x + (y + 1) = (x + y) + 1)
11. 'v'x(x * 0 = 0)

12. 'v'x'v'y(x * (y + 1) = x * y + x)
13. 'v'x(x = x)

The theorem to be proved is

'v'x'v'y(x + y = y + x)

An attempt to prove this theorem without induction, using only the above

axioms and resolution, fails. We therefore start trying to prove ground instances of
the theorem. Three ground proofs are shown below :

1) Proof of (1+1) + (((1+1)+1)+1) = (((1+1)+1)+1) + (1+1).
We use paramodulation as well as resolution as inference rules and obtain the

following refutation proof of the negation of the theorem :

Negation of theorem: {(1 + 1) + (((1 + 1) + 1) + 1) # (((1 + 1) + 1) + 1) + (1 + 1)}

1. {((1 + 1) + ((1 + 1) + 1)) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

2. {(((1 + 1) + (1 + 1)) + 1) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)}

167

paramodulate with axiom 10
3. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}

paramodulate with axiom 10

4. {(((1 + 1) + 1) + (1 + 1)) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

5. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

6. {(((1 + 1) + 1) + 1) + (1 + 1) =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

7. {} resolve with axiom 13

2) Proofof(1+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + (1+1).
We use paramodulation as well as resolution as inference rules and obtain the

following refutation proof of the negation of the theorem :

Negation of theorem: {(1+1)+((((1+1)+1)+1)+1) =? ((((1+1)+1)+1)+1)+(1+1)}

1. {(1 + 1) + ((((1 + 1) + 1) + 1) + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

2. {((1 + 1) + (((1 + 1) + 1) + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

3. {(((1 + 1) + ((1 + 1) + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

4. {((((1 + 1) + (1 + 1)) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

5. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

6. {((((1 + 1) + 1) + (1 + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

7. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

8. {((((1 + 1) + 1) + 1) + (1 + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

9. {((((1 + 1) + 1) + 1) + 1) + (1 + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

10. {} resolve with axiom 13.

3) Proof of ((1+1)+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) +
((1+1) + 1).

We use paramodulation as well as resolution as inference rules and obtain the
following refutation proof of the negation of the theorem :

168

Negation of theorem: {((1 + 1) + 1) + ((((1 + 1) + 1) + 1) + 1) ¥ ((((1 + 1) + 1) +

1)+ 1) +((1 +1)+1)}
1. {(((1 + 1) + 1) + (((1 + 1) + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}

paramodulate with axiom 10

2. {((((1+ 1) + 1)+ ((1+ 1) + 1)) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

3. {(((((1+ 1)+ 1)+ (1+ 1)) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

4. {((((((1 + 1) + 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

5. {(((((1+ 1) + 1) + 1) +(1+ 1)) + 1) + 1 ¥ ((((1+ 1)+ 1) + 1)+ 1) + ((1+ 1) + 1)}
paramodulate with axiom 10

6. { ((((1 + 1) + 1) + 1) + ((1 + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

7.{(((((1 + 1) + 1) + 1) + (1 + 1)) + 1) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

8. {((((((1+ 1)+ 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1) + ((1+ 1) + 1)}
paramodulate with axiom 10

9. {(((((1 + 1) + 1) + 1) + 1) + (1 + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

10. {((((1+1)+1)+1)+1)+((1+1)+1) ¥ ((((1+1)+1)+1)+1)+((1+1)+1)}
paramodulate with axiom 10

11. {} resolve with axiom 13.

It can be seen that each proof contains an instance of the proof of the lemma

Vx'Vy((y- 1) + x) + 1 = ((y- 1) + 1) + x,

namely in clauses 4, 8, and 6 for the three proofs respectively.
This lemma can easily be proved by induction, using the well-founded order

<. The given theorem can then be proved by induction, using this lemma as an

axiom. •

Example 5.5 Let us try to prove the theorem

VxVy(X*Y=Y*X).

An attempt to prove this theorem by first-order methods, using the Peano
axioms given in Example 5.4, fails. We therefore try to prove ground instances
of the theorem. We assume that the following simple theorem has already been

169

proved: \lx(O + x = x). Some proofs of ground instances of the theorem are given

below:

1) Proof of 1 *(1+1) = (1+1)*1.
Negation of the theorem : 1 * (1 + 1) -1 (1 + 1) * 1.

The proof proceeds as follows :

1. {(h 1) + 1 "'(1+ 1) * 1}
paramodulate with axiom 12

2. {(h(0+1))+1"1(1+1)d}
paramodulate with Theorem \lx(O + x = x)

3. {((h0)+1)+1"1(1+1)*1}
paramodulate with axiom 12

4. {(0 + 1) + 1 "'(1 + 1) * 1}
paramodulate with axiom 11

5. {0 + (1 + 1) "'(1 + 1) d}
paramodulate with axiom 10

6. {((1 + 1) * 0) + (1 + 1) "'(1 + 1) * 1}
paramodulate with axiom 11

7. {(1+1)*(0+1)"1(1+1)d}
paramodulate with axiom 12

8. {(1 + 1) d "'(1 + 1) d}
paramodulate with Theorem \lx(O + x = x)

9. {} paramodulate with axiom 13.

2) Proof of 1 *((1+1)+1) = ((1+1)+1)*1.
Negation of the theorem: 1 * ((1 + 1) + 1) "I ((1 + 1) + 1) * 1.

The proof proceeds as follows :

1. { (1 * (1 + 1)) + 1 "' ((1 + 1) + 1) * 1}
paramodulate with axiom 12

2. {((1 * 1) + 1) + 1"' ((1 + 1) + 1) * 1}
paramodulate with axiom 12

3. {((h(0+1))+1)+1-l((1+1)+1)d}
paramodulate with Theorem \fx(O + x = x)

4. {(((1 * 0) + 1) + 1) + 1 "'((1 + 1) + 1) * 1}
paramodulate with axiom 12

5. {((0+1)+1)+1-1((1+1)+1)*1}
paramodulate with axiom 11

6. {(0 + (1 + 1)) + 1"' ((1 + 1) + 1) * 1}
paramodulate with axiom 10

7. {(((1 + 1) * 0) + (1 + 1)) + 1 "'((1 + 1) + 1) * 1}

170

paramodulate with axiom 11
8. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1}

paramodulate with axiom 12

9. {((1 + 1) * 1) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

10. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

11. {(((1 + 1) * 0) + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with axiom 12

12. {(0 + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with axiom 11

13. {0+((1+1)+1)-#((1+1)+1)*1}
paramodulate with axiom 10

14. {(((1 + 1) + 1) * 0) + ((1 + 1) + 1) =F ((1 + 1) + 1) * 1}
paramodulate with axiom 11

15. {((1 + 1) + 1) * (0 + 1) =F ((1 + 1) + 1) * 1}
paramodulate with axiom 12

16. {((1 + 1) + 1) * 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

17. {} resolve with axiom 13

3) Proof of (1+1)*((1+1)+1) = ((1+1)+1)*(1+1).
Negation of the theorem: (1 + 1) * ((1 + 1) + 1) =F ((1 + 1) + 1) * (1 + 1).
The proof proceeds as follows :

1. {((1 + 1) * (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

2. { (((1 + 1) * 1) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

3. {(((1 + 1) * (0 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem Vx(O + x = x)

4. {((((1 + 1) * 0) + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

5. {((0 + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 11

6. {(((1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem Vx(O + x = x)

7. {(((1 + 1) + 1) + 1) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 10

8. {(((1 + 1) + 1) + (1+ 1)) + 1 =F ((1 + 1) + 1) * (1+ 1)}

171

paramodulate with axiom 10

9. {((1 + 1) + 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 10

10. {(0 + ((1 + 1) + 1)) + ((1 + 1) + 1)) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem \fx(O + x = x)

11. {((((1 + 1) + 1) * 0) + ((1 + 1) + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 11

12. {(((1 + 1) + 1) * (0 + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

13. {(((1 + 1) + 1) * 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem \fx(O + x = x)

14. {((1 + 1) + 1) * (1 + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

15. {} resolve with axiom 13.

From the proofs of the three above ground instances, we see that each proof

contains a subproof of the lemma

\fx\fy((x + 1) * y = (x * y) + y),

namely in clauses 1, 9, and 1 respectively of the three proofs.

And this lemma can be proved by induction, using the well-founded order<.

The given theorem can then be proved by induction, using this lemma as an axiom. •

Example 5.6 In this example, we solve the same problem as that solved in Example
5.3 in Chapter 5, i.e. we are trying to prove the theorem

\fx(reverse(reverse(x)) = x)

by induction, this time using the method described in this section. A well-founded

ordering for this example was already discovered in Example 5.1 in Chapter 5.

We prove the theorem for different values of ground x :

Proof of reverse(reverse([a, b])) =[a, b] :

The axioms used in this proof are (in clause form) :

1. X=X

2. append(nil, Y) = Y

3. append(X, Y) =cons(car(X), append(cdr(X), Y)) V •listp(X)

4. reverse(nil) = nil

5. reverse(X) = append(reverse(cdr(X)), cons(car(X), nil)) V •listp(X)

6. car(cons(X, Y)) =X

7. cdr(cons(X, Y)) = Y

172

8. listp(cons(X, Y))

Negation of theorem :

reverse(reverse([a, b])) f. [a, b]

Using a set of support strategy, we get the following proof for the theorem :

9. reverse(reverse([a, b])) f. [a, b]

negation of theorem

10. reverse(append(reverse(cdr([a, b])), cons(car([a, b]), nil))) f. [a, b],

~listp([a, b])

paramodulate 9,5

11. reverse(append(reverse(cdr([a, b])), cons(car([a, b]), nil))) f. [a, b]

resolve 8,10

12. reverse(append(reverse([b]), cons(car([a, b]), nil))) f. [a, b]

paramodulate 7,11

13. reverse(append(reverse([b]), [a])) f. [a, b]
paramodulate 6,12

14. reverse(append(append(reverse(cdr([b])), cons(car([b]), nil)), [a])) =f [a, b],

~listp([b])

paramodulate 5,13

15. reverse(append(append(reverse(cdr([b])), [b]), [a])) f. [a, b], ~listp([b])
paramodulate 6,14

16. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b], ~listp([b])
paramodulate 7,15

17. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b]

resolve 8,16

18. reverse(append(append(nil, [b]), [a])) f. [a, b]

paramodulate 4,17

19. reverse(append([b], [a])) f. [a, b]

paramodulate 2,18

20. reverse(cons(car([b]), append(cdr([b]), [a]))) f. [a, b], ~listp([b])
paramodulate 3,19

21. reverse(cons(car([b]), append(nil, [a]))) f. [a, b], ~listp([b])

paramodulate 7,20

22. reverse(cons(car([b]), append(nil, [a]))) f. [a, b]

resolve 8,21

23. reverse(cons(car([b]), [a])) f. [a, b]

paramodulate 2,22

24. reverse([b, a]) f. [a, b]

173

paramodulate 6,23
25. append(reverse(cdr([b, a])), cons(car(cons(b, [a])))) f. [a, b], ~listp([b])

paramodulate 5,24
26. append(reverse([a]), cons(car([b, a]), nil)) f. [a, b], ~listp([b])

paramodulate 7,25

27. append(reverse([a]), [b]) f. [a, b], ~listp([b])
paramodulate 6,26

28. append(reverse([a]), [b]) f. [a, b]
resolve 8,27

29. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b], ~listp([a])
paramodulate 5,28

30. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b]
resolve 8,29

31. append(append(reverse(nil), cons(cm·([a]), nil)), [b]) f. [a, b]
paramodulate 7,30

32. append(append(reverse(nil), [a]), [b]) f. [a, b]
paramodulate 6,31

33. append(append(nil, [a]), [b]) f. [a, b]
paramodulate 4,32

34. append([a], [b]) f. [a, b]
paramodulate 2,33

35. cons(car([a]), append(cdr([a]), [b])) f. [a, b], ~listp([a])
paramodulate 3,34

36. cons(car([a]), append(cdr([a]), [b])) f. [a, b]
resolve 8,35

37. cons(a, append(cdr([a]), [b])) f. [a, b]
paramodulate 6,36

38. cons(a, append(nil, [b])) f. [a, b]
paramodulate 7,37

39. [a, b] f. [a, b]
paramodulate 2,38

40. empty clause

resolve 1,39.

Proof of reverse(reverse([a, b, c])) =[a, b, c] :

Using a set of support strategy, and the same axioms (1 through 8 above), we
get the following proof for the theorem :

9. reverse(reverse([a, b, c])) f. [a, b, c]

174

negation of theorem

10. reverse(append(reverse(cdr([a, b, c])), cons(car([a, b, c]), nil))) =J [a, b, c],
~listp([a, b, c])
paramodulate 5,9

11. reverse(append(reverse([b, c]), cons(car([a, b, c]), nil))) =J [a, b, c],

~listp([a, b, c])
paramodulate 7,10

12. reverse(append(reverse([b, c]), [a])) =J [a, b, c], ~listp([a, b, c])
paramodulate 6,11

13. reverse(append(reverse([b, c]), [a])) =J [a, b, c]

resolve 8,12

14. reverse(append(append(reverse(cdr([b, c])), cons(car([b, c]), nil)), [a])) =J
[a, b, c], ~listp([b, c])
paramodulate 5,13

15. reverse(append(append(reverse(cdr([b, c])), cons(car([b, c]), nil)), [a])) =J
[a, b, c]
resolve 8,14

16. reverse(append(append(reverse([c]), cons(car([b, c]), nil)), [a])) =J [a, b, c]

paramodulate 7,15

17. reverse(append(append(reverse([c]), [bJ), [a])) =J [a, b, c]

paramodulate 6,16

18. reverse(append(append(append(reverse(cdr([c])), cons(car([c]), nil)), [b]), [a]))
=J [a, b, c], ~listp([c])

paramodulate 5,17

19. reverse(append(append(append(reverse(cdr([c])), [c]), [b)), [a])) =J [a, b, c],

~listp([c])

paramodulate 6,18

20. reverse(append(append(append(reverse(nil), [c)), [b]), [a])) =J [a, b, c],

~listp([c])

paramodulate 7,19

21. reverse(append(append(append(reverse(nil), [c]), [b]), [a])) =J [a, b, c]

resolve 8,20

22. reverse(append(append(append(nil, [c)), [b]), [a])) =J [a, b, c]

paramodulate 4,21

23. reverse(append(append([c], [b]), [a])) =J [a, b, c]

paramodulate 2,22

24. reverse(append(cons(car([c]), append(cdr([c]), [b))), [a])) =J [a, b, c], ~listp([c])

paramodulate 3,23

175

25. reverse(append(cons(car([c]), append(cdr([c]), [b])), [a])) of [a, b, c]
resolve 8,24

26. reverse(append(cons(c, append(cdr([c]), [b])), [a])) of [a, b, c]
paramodulate 6,25

27. reverse(append(cons(c, append(nil, [b])), [a])) of [a, b, c]
paramodulate 7,26

28. reverse(append([c, b], [a])) of [a, b, c]
paramodulate 2,27

29. reverse(cons(car([c, b]), append(cdr([c, b]), [a]))) of [a, b, c], ~listp([c, b])

paramodulate 3,28

30. reverse(cons(car([c,b]),append(cdr([c,b]),[a]))) of [a,b,c]

resolve 8,29

31. reverse(cons(c, append(cdr([c, b]), [a]))) of [a, b, c]

paramodulate 6,30

32. reverse(cons(c, append([b], [a]))) of [a, b, c]

paramodulate 7,31

33. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c], ~listp([b])
paramodulate 3,32

34. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c]
resolve 8,33

35. reverse(cons(c,cons(b,append(cdr([b]),[a])))) of [a,b,c]

paramodulate 6,34

36. reverse(cons(c, cons(b, append(nil, [a])))) of [a, b, c]
paramodulate 7,35

37. reverse([c, b, a]) of [a, b, c]
paramodulate 2,36

38. append(reverse(cdr([c, b, a])), cons(car([c, b, a]), nil)) of [a, b, c], ~listp([c, b, a])

paramodulate 5,37

39. append(reverse(cdr([c, b, a])), cons(car([c, b, a]), nil)) of [a, b, c]
resolve 8,38

40. append(reverse([b,a]),cons(car([c,b,a]),nil)) of [a,b,c]

paramodulate 7,39

41. append(reverse([b, a]), [c]) of [a, b, c]
paramodulate 6,40

42. append(append(reverse(cdr([b, a])), cons(car([b, a]), nil)), [c]) of [a, b, c],
~listp([b, a])

paramodulate 5,41

43. append(append(reverse([a]), cons(car([b, a]), nil)), [c]) of [a, b, c], ~listp([b, a])

176

paramodulate 7,42

44. append(append(reverse([a]), [b]), [c]) f [a, b, c], ~listp([b, a])

paramodulate 6,43

45. append(append(reverse([a]), [b]), [c]) f [a, b, c]
resolve 8,44

46. append(append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]), [c])
f [a, b, c], ~listp([a])
paramodulate 5,45

47. append(append(append(reverse(nil), cons(car([a]), nil)), [b]), [c]) f [a, b, c],
~listp([a])

paramodulate 7,46

48. append(append(append(reverse(nil), [a]), [b]), [c]) f [a, b, c], ~listp([a])

paramodulate 6,47

49. append(append(append(nil, [a]), [b]), [c]) f [a, b, c], ~listp([a])

paramodulate 4,48

50. append(append([a], [b]), [c]) f [a, b, c], ~listp([a])
paramodulate 2,49

51. append(append([a], [b]), [c]) f [a, b, c]
resolve 8,50

52. append(cons(car([a]), append(cdr([a]), [b])), [c]) f [a, b, c], ~listp([a])
paramodulate 3,51

53. append(cons(car([a]), append(cdr([a]), [b])), [c]) f [a, b, c]
resolve 8,52

54. append(cons(a, append(cdr([a]), [b])), (c]) f [a, b, c]

paramodulate 6,53

55. append(cons(a, append(nil, [b])), [c]) f [a, b, c]
paramodulate 7,54

56. append([a, b], [c]) f [a, b, c]
paramodulate 2,55

57. cons(car([a, b]), append(cdr([a, b]), [c])) f [a, b, c], ~listp([a, b])

paramodulate 3,56

58. cons(a, append(cdr([a, b]), [c])) f [a, b, c], ~listp([a, b])

paramodulate 6,57

59. cons(a, append([b], [c])) f [a, b, c], ~listp([a, b])

paramodulate 7,58

60. cons(a, append([b], [c])) f [a, b, c]
resolve 8,59

61. cons(a, cons(car([b]), append(cdr([b]), [c]))) f [a, b, c], ~listp([b])

177

paramodulate 3,60

62. cons(a, cons(b, append(cdr([b]), [c]))) o1 [a, b, c], ~listp([b])
paramodulate 6,61

63. cons(a,cons(b,append(nil,[c]))) ol [a,b,c],~listp([b])
paramodulate 7,62

64. cons(a,cons(b,append(nil,[c]))) ol [a,b,c]
resolve 8,63

65. [a, b, c] ol [a, b, c]
paramodulate 2,64

66. empty clause

resolve 1,65.

From the above two ground proofs, it can be seen that instances of the lemma
lixliy(reverse(append(x, cons(y, nil))) = cons(y, reverse(x)))

were proved in both proofs. This is a lemma which needs to be proved by induction

and was proved in Example 5.2 in Chapter 5 earlier. The given theorem can then

be proved by induction, using this lemma as an axiom. •

178

References

Angluin, Dana, Smith, Carl H.: "Inductive Inference: Theory and Methods", Com
puting Surveys 15 (3), pp. 237-269 (1983).

Aubin, Raymond : "Mechanizing Structural Induction Part I : Formal System",
Theoretical Computer Science 9, pp. 329-345 (1979).

Aubin, Raymond : "Mechanizing Structural Induction Part II : Strategies", Theo
retical Computer Science 9, pp. 347-362 (1979).

Biundo, S., Hummel, B., Hutter, D., Walther, C. : "The Karlsruhe Induction The
orem Proving System", Eighth International Conference on Automated De
duction, pp. 672-674 (1986).

Bondy, J. A., Murty, U. S. R. : "Graph Theory with Applications", Elsevier Science
Publishing Co., Inc., New York (1976).

Boyer, Robert S., Moore, J. Strother : "A Computational Logic", Academic Press,
Inc., New York (1979).

Buchanan, B. G., Mitchell, Tom M. : "Model-directed learning of production rules",
Proceedings of the Workshop on Pattern-directed Inference Systems, Hon
olulu, Hawaii (1977).

Burstall, R. M. : "Proving properties of programs by structural induction", Com
puter Journal12 (1), pp. 41-48 (1969).

Caplain, Michel, "Finding invariant assertions for proving programs", Proceedings
of the International Conference on Reliable Software, pp. 165-171 (1975).

Chang, Chin-Lian, Lee, Richard Char-Tung, "Symbolic Logic and Mechanical The
orem Proving", Academic Press Inc., New York (1973).

Cook, Stephen A., "Soundness and completeness of an axiom system for program
verification", SIAM Journal on Computing 7 (1), pp. 70-90 (1978).

Cooper, D. C., "Programs for Mechanical Program Verification", Machine Intelli
gence 6, pp. 43-59 (1971).

Cox, P. T., Pietrzykowski, T., "A complete, nonredundant algorithm for reversed
skolemization", Theoretical Computer Science 28, pp. 239-261 (1984).

Davis, M., Putnam, H., Robinson, J., "The decision problem for exponential Dio
phantine equations", Annals of Mathematics 14, pp. 425-436 (1961).

Deutsch, Laurence P., "An Interactive Program Verifier", Ph.D. dissertation, Uni
versity of California at Berl,eley (1973).

179

Dietterich, Thomas G., Michalski, Ryszard S : "A Comparative Review of Selected
Methods for Learning from Examples", in : Machine Learning : An Artificial
Intelligence Approach, eels. R.S. Michalski, J.G. Carbonell, T.M. Mitchell,
Morgan Kaufmann Publishers, Inc., pp. 41-82 (1983).

Dijkstra, E. W., "In variance and non-determinacy", Mathematical Logic and Pro
gramming Languages, C.A.R. Hoare and J. C. Shepherdson eds., Prentice-Hall,
pp. 157-165 (1985).

Dijkstra, E. W., "On the cruelty of really teaching computing science", Communi
cations of the ACM 32 (12), pp. 1398-1404 (1989).

Elspas, Bernard, Levitt, Karl N., Waldinger, Richard J., Waksman, Abraham, "An
Assessment of Techniques for Proving Program Correctness", ACM Comput
ing Surveys 4 (2), pp. 97-147 (1972).

Floyd, R. W., "Assigning meanings to programs", Proceedings of the Symposium on
Applied Mathematics, American Mathematical Society 19, pp. 19-32 (1967).

Galil, Zvi, "Efficient Algorithms for Finding Maximum Matching in Graphs", ACM
Computing Surveys 18 (1), pp. 23-38 (1986).

German, Steven M., Wegbreit, Ben, "A Synthesizer of Inductive Assertions", IEEE
Transactions on Software Engg., Vol. SE-1 (1), pp. 68-75 (1975).

Goguen, J. A. : "How to prove algebraic inductive hypotheses without induction",
Fifth International Conference on Automated Deduction, pp. 356-373 (1980).

Gold, E. Mark : "Language Identification in the Limit", Information and Control
10, pp. 447-474 (1967).

Good, Donald I., London, Ralph L., Bledsoe, W. W., "An Interactive Program
Verification System", IEEE Transactions on Software Engg., Vol. SE-1 (1)

. (1975).

Good, Donald I., Cohen, R. M., Hoch, C. G., Hunter, L. W., Hare, D. F., "Re
port on the language Gypsy, Version 2.0", Technical Report ICSCA-CMP-10,
Certifiable Minicomputer, Project, ICSCA, The University of Texas at Austin
(1978).

Good, Donald I., "Mechanical proofs about computer programs", Mathematical
Logic and Programming Languages, C.A.R. Hoare and J.C. Shepherdson eds.,
Prentice-Hall, pp. 55-75 (1985).

Gries, David, "The Science of Programming", Springer-Verlag (1981).

Hayes-Roth, Frederick, McDermott, John : "An Interference Matching Technique
for Inducing Abstractions", Communications of the ACM 21 (5), pp. 401-410
(1978).

Hoare, C.A.R., "An axiomatic basis for computer programming", Communications
of the ACM 12, pp. 576-580 (1969).

von Henke, F. W., Luckham, D. C., "A methodology for verifying programs", Pro
ceedings of the International Conference on Reliable Software, pp. 156-164
(1975).

180

Huet, G, Hullot, J.M. : "Proofs by induction in equational theories with construc
tors", Journal of Computer and System Sciences 25 (2) (1982).

Jouannaud, Jean-Pierre, Kounalis, Emmanuel : "Automatic Proofs by Induction in
Equational Theories Without Constructors", Proceedings of the Symposium
on Logic in Computer Science, Cambridge, Massachusetts, pp. 358-366 (1986).

Kapur, Deepak, Musser, David R. : "Inductive reasoning with incomplete specifi
cations" Proceedings of the Symposium on Logic in Computer Science, Cam
bridge, Massachusetts, pp. 367-377 (1986).

Katz, Shmuel M., Manna, Zohar, "A heuristic approach to program verification",
Third International Joint Conference on Artificial Intelligence, pp. 500-512
(1973).

King, James C., "A Program Verifier", Ph.D. dissertation, Carnegie-Mellon Uni
versity (1969).

King, James C., "An Interpretation Oriented Theorem Prover over Integers", Sec
ond Annual ACM Symposium on Theory of Computing, pp. 169-179 (1970).

King, James C., "Proving Programs to be Correct", IEEE Transactions on Com
puters, Vol. C-20 (11), pp. 1331-1336 (1970).

Knuth, D., Bendix, P. : "Simple Word Problems in Universal Algebras", in Com
putational Problems in Abstract Algebra, ed. J. Leech, Pergamon Press, pp.
263-297 (1970).

Kodratoff, Y., Ganascia, J. G., Clavieras, B., Bollinger, T., Tecuci, G. : "Careful
generalization for concept learning", in Advances in Artificial Intelligence, T.
O'Shea (Ed.), Elsevier Science Publishers B. V. (North-Holland), pp. 229-238
(1985).

Kodratoff, Y., Ganascia, J. G. : "Improving the Generalization Step in Learning",
in : Machine Learning : An Artificial Intelligence Approach, Vol. II, eds. R.S.
Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann Publishers, Inc.,
pp. 215-244 (1986).

Lee, Shie-Jue : "CLIN : An Automated Reasoning System Using Clause Linking",
Ph.D. Dissertation, University of North Carolina, Chapel Hill (1990).

Lewis, Harry R., Papadimitriou, Christos H., "Elements of the theory of computa
tion", New Jersey: Prentice-Hall, Inc. (1981).

Loeckx, Jacques, Sieber, Kurt, "The Foundations of Program Verification", John
Wiley and Sons, Ltd. (1987).

Loveland, Donald, "Automated Theorem Proving, A Logical Basis", North-Holland
Publishing Co. (1978).

Manna, Zohar, "Second-order Mathematical Theory of Computation", Second An
nual ACM Symposium on Theory of Computing, pp. 158-168 (1970).

Manna, Zohar, Ness, Stephen, Vuillemin, Jean : "Inductive Methods for Proving
Properties of Programs", Communications of the ACM 16 (8), pp. 491-502
(1973).

181

Manna, Zohar, "Mathematical Theory of Computation", McGraw-Hill, New York
(1974).

McCarthy, John: "A basis for a mathematical theory of computation", in Computer
Programming and Formal Systems, eds. P. Braffort, D. Hirschberg, North
Holland Publishing Co., pp. 33-70 (1970).

McCune, William W., "Un-Skolemizing clause sets", Information Processing Letters
29, pp. 257-263 (1988).

McCune, William W., "OTTER 1.0 Users' Guide", Computer Science Division,
Argonne National Laboratory, Argonne, lllinois (1989).

Michalski, Ryszard S. : "Learning by inductive inference", Technical Report, De
partment of Computer Science, University of Illinois at Urbana-Champaign,
UIUCDCS-R-74-671 (1974).

Michalski, Ryszard S. : "Toward Computer-Aided Induction : A brief review of
currently implemented AQVAL programs", Technical Report, Department of
Computer Science, University of Illinois at Urbana-Champaign, UIUCDCS-R-
77-874 (1977).

Michalski, Ryszard S. : "A Theory and Methodology of Inductive Learning", Ma
chine Learning : An Artificial Intelligence Approach, Vol. I, eds. R. S. Michal
ski, J. G. Carbonell, T. M. Mitchell, Morgan Kaufmann Publishers, Inc., pp.
83-134 (1983).

Michalski, Ryszard S. : "Machine Learning : An Artificial Intelligence Approach",
Vol. II, eds. R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann
Publishers, Inc. (1986).

De Millo, R. A., Lipton, R. J., Per!is, A. J., "Social processes and proofs of theorems
and programs", Communications of the ACM 22, pp. 271-280 (1979).

Mitchell, Tom M. : "Version Spaces : A candidate elimination approach to rule.
learning", Fifth International Joint Conference on Artificial Intelligence, MIT,
Cambridge MA, Vol. 1, pp. 305-310 (1977).

Mitchell, Tom M. : "Learning and Problem Solving", Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1139-1151
(1983).

Musser, David R. : "On proving inductive properties of abstract data types", Sev
enth Annual ACM Symposium on Principle's of Programming Languages, pp.
154--162 (1980).

Nakajima, R., Yuasa, T., "The IOTA programming system", Lecture Notes in Com
puter Science 160, Springer-Verlag (1983).

Nelson, Greg, Oppen, Derek C., "Simplification by Cooperating Decision Proce
dures", ACM Transactions on Programming Languages and Systems 1 (2),
pp. 245-257 (1979).

Patterson, Dan W. : "Introduction to Artificial Intelligence and Expert Systems",
Prentice Hall, Englewood Cliffs, New Jersey (1990).

182

Paul, E. : "Proof by induction in equational theories with relations between con
structors" Ninth Colloquium on Trees in Algebra and Programming, Bor
deaux, France, ed. B. Courcelle, pp. 211-225 (1984).

Polak, Wolfgang, "Compiler Specification and Verification", Lecture Notes in Com
puter Science 124, Springer- Verlag (1981).

Robinson, J. A., "A Machine-oriented Logic based on the Resolution Principle",
Journal of the ACM 12 (1), pp. 23-41 (1965).

Rulifson, J. F., Waldinger, R. J., Derksen, J., "A language for writing problem
solving programs", IFIP Gong. 1971, Yugoslavia, North-Holland Publ. Co.,
Amsterdam (1972).

Sammut, Claude, Banerji, Ranan B. : "Learning Concepts by Asking Questions",
in :Machine Learning: An Artificial Intelligence Approach, Vol. II, eds. R.S.
Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann Publishers, Inc.,
pp. 167-192 (1986).

Sarkar, D., De Sarkar, S. C., "Some Inference Rules for Integer Arithmetic for Ver
ification of Flowchart Programs on Integers", IEEE Transactions on Software
Engineering 15 (1), pp. 1-9 (1989).

Sarkar, D., De Sarkar, S. C., "A Set of Inference Rules for Quantified Formula
Handling and Array Handling in Verification of Programs over Integers", IEEE
Transactions on Software Engineering 15 (11), pp. 1368-1381 (1989).

Sarkar, D., De Sarkar, S. C., "A Theorem Prover for Verifying Iterative Programs
Over Integers", IEEE 'Iransactions on Software Engineering 15 (12), pp. 1550-
1566 (1989).

Shapiro, Ehud Y. : "An Algorithm that Infers Theories from Facts", Seventh Inter
national Joint Conference on Artificial Intelligence, pp. 446-451 (1981).

Spitzen, Jay, Wegbreit, Ben, "The Verification and Synthesis of Data Structures",
Acta Informatica 4, pp. 127-144 (1975).

Stanford Verification Group, "Stanford Pascal Verifier User Manual", Stanford Ver
ification Group Report No. 11 (1979).

Stepp, R. : "The investigation of the UNICLASS inductive program AQ7UNI and
User's Guide", Technical Report 949, Department of Computer Science, Uni
versity of Illinois, Urbana, Illinois (1978).

Suzuki, Narihasa, "Verifying programs by Algebraic and Logical Reduction", Pro
ceedings of the International Conference on Reliable Software, pp. 473-481
(1975).

Tinkham, Nancy : "Induction of Schemata for Program Synthesis", Ph.D. disserta
tion, Department of Computer Science, Duke University, Durham N.C. (1990).

Toyama, Y. : "How to prove equivalence of term rewriting systems without induc
tion", Eighth International Conference on Automated Deduction, pp. 118-127
(1986).

183

Utgoff, Paul E. : "Machine Leaxning of Inductive Bias", Kluwer Academic Publish
ers, Massachusetts (1986).

Valiant, L. G. : "A Theory of the Learnable", Communications of the ACM 27 (11),
pp. 1134-1142 (1984).

Vanlehn, Kurt : "Efficient Specialization of Relational Concepts", Machine Learning
4, pp. 99-106 (1989).

Vere, Steven A. : "Induction of Concepts in the Predicate Calculus", Fourth In
ternational Joint Conference on Arti:ficial Intelligence, Tbilisi, Georgia USSR,
Vol. 1, pp. 281-287 (1975).

Vere, Steven A. : "Inductive leaxning of relational productions", in : Pattern-Dir
ected Inference Systems, eds. D.A. Waterman, Frederick Hayes-Roth, Aca
demic Press, Inc., New York, pp. 281-295 (1978).

Wand, M., "A new incompleteness result for Hoare's system", Journal of the ACM
25, pp. 168-175 (1978).

Watanabe, Larry, Rendell, Larry, "Effective Generalization of Relational Descrip
tions", Proceedings of the Eighth National Conference on Arti:ficial Intelli
gence, pp. 875-881 (1990).

Wegbreit, Ben, "Heuristic Methods for Mechanically Deriving Inductive Asser
tions", Proceedings of Third International Joint Conference on Arti:ficial In
telligence (1973).

Wegbreit, Ben, Spitzen, Jay M. : "Proving Properties of Complex Data Structures",
Journal of the ACM 23 (2), pp. 389-396 (1976).

Winston, P. H. : "Learning structural descriptions from examples", in : The Psy
chology of Computer Vision, ed. P. H. Winston, McGraw-Hill, New York, pp.
157-209 (1975).

Zhang, Hantao, Kapur, Deepak, Krishnamoorthy, Mukkai S. : "A mechanizable
induction principle for equational specifications", Ninth International Confer
ence on Automated Deduction, Argonne, Illinois, pp. 162-181 (1988).

184

then deduce that it holds for all data (Burstall 69]. This is a special case of a more

general rule termed Noetherian induction: "Let A be an ordered set with minimum

condition and B a subset of A which contains any element a E A whenever it contains

all the elements x EA such that x <a. Then B =A." (A set A satisfies the minimum

condition if every non-empty subset of A has a minimal element.) The structural

induction principle differs from the usual "course of values" induction in two ways :

it allows for partial ordering, instead of total ordering, and it allows induction over

the transfinite steps. Examples of some proofs by structural induction can be found

in (Burstall 69].

In (Wegbreit and Spitzen 76], the authors introduce a method of proof called

generator induction, used for proving properties of programs, which may be stated

informally as follows : to prove that all instances of a class C have some property P,

prove that (1) all instances have the property when they are first created, and (2)

all operations F, which may change the value of a class instance, preserve the truth

of P. This definition is similar to that of computation induction given in (Manna et

a!. 73]. The generator induction principle is used to prove certain properties of a

hashtable program in Simula. The most important property of generator induction,

according to the authors, is that it partitions the program into loosely coupled

parts, proves simple properties of the parts, and demonstrates that the parts are

composed according to simple rules. This allows the decomposition of a proof into

small, comprehensible units corresponding to the structure of the program.

5.3 Description of the first method

We give below a brief overview of the first approach we will be using for deriving

proofs of theorems. Consider what is provable by induction, where all induction

hypotheses are expressible in first-order logic and all orderings are known. This

gives a precisely defined class of formulas. Given a theorem T to be proved, we first

try to prove it without using induction, using a resolution theorem prover. If this

attempt fails, we try to prove the theorem using induction. The first problem to be

tackled is to find a suitable induction scheme, i.e. we must discover a suitable well

founded ordering to be used in the application of the principle of induction. Once

this has been done, an attempt is made to prove the theorem using this ordering

and the induction principle. However, it may happen that this prooffails too, since

this theorem may itself depend on another inductive hypothesis or lemma A. Then
we have

AXIOMS II A -+ T

140

where "AXIOMS" is the set of axioms required for the proof of this theorem. There

fore
AXIOMS 1\ ~T -+ ~A

1.e. ~A is a logical consequence of AXIOMS 1\ ~T. We can therefore use our
method for generating logical consequences and unskolemization to derive ~A from

AXIOMS 1\ ~T. This is a support strategy and will not generate all possible induc

tive theorems from the axioms, since it makes use of the negation of the theorem T

as well as the set of axioms to generate inductive hypotheses. This method can be

extended to theorems which depend on more than one inductive hypothesis. The
remainder of this section elaborates the ideas outlined above.

5.3.1 Discovering a well-founded ordering

Recall that we have assumed that all well-founded orderings are known (these

could be partial as well as total orderings). Now suppose that we are trying to

prove the theorem

'Vx A(x)
where x ranges over some domain D. Consider the set of formulas of the form A(t),

where tis a ground term belonging to D and A(t) is first-order provable. We prove
some subset of these formulas one by one, noting the proof times for each formula.

We denote the time taken to prove A(t) by PT(t). This suggests an ordering in that

objects which are smaller in the ordering will probably have smaller proof times.

We therefore pick an ordering ">-" such that

(X >- Y) -+ (PT(X) > PT(Y))
(at least most of the time).

Example 5.1 Consider the following theorem to be proved by induction :

'VX(reverse(reverse(X)) =X),
where "reverse" is the usual function which reverses lists, and where X ranges over
the set of all lists. We first try to prove the theorem for some ground terms using

the theorem prover OTTER, a resolution theorem prover developed at the Argonne

National Laboratory [McCune 89]. We observe the following proof times for the
ground terms given below :

Theorems proved

reverse(reverse([])) = []

reverse(reverse([1])) = [1]

reverse(reverse([a])) =[a]

141

Time taken (seconds)

0.26

0.34

0.34

reverse(reverse([2, 1])) = [2, 1]
reverse(reverse([a, b])) = [a, b]
reverse(reverse([3, 2, 1])) = [3, 2, 1]
reverse(reverse([5, 2, 9])) = [5, 2, 9]

1.00
1.00
2.16

2.16

From the above proof times, the following observations can be drawn :

1. The proof times increase as the length of the list being substituted for X

increases; here we have

PT([]) < PT([1]) = PT([a]) < PT([2,1]) = PT([a, b]) < PT([3,2,1]) ...
2. The proof times are identical for different ground terms which are lists of the

same length; here we have

PT([1]) = PT([a]), PT([2,1]) = PT([a, b]), and so on.
A well-founded ordering r which satisfies the condition

X r Y -> PT(X) > PT(Y)
is therefore the ordering which is defined as follows : for lists X andY, X r Y if

and only if the length of list X is greater than the length of list Y; X = Y if and

only if the length of list X is equal to the length of list Y; and X -< Y if and only

if Y r X. The minimal element in this ordering is the empty list []. •

5.3.2 Using the induction principle

Once a well-founded ordering W has been found using the method described

in the previous section, we must now apply the principle of induction to prove the

given theorem T = 'Vx A(x). This is done as follows:

Base case : We prove

A(m)
for all minimal elements m of the ordering W by negating A(m), adding it to the

set of axioms, and using resolution to derive the empty clause. If this procedure
fails, this means that some induction hypothesis (hypotheses) is (are) required to

prove the base case. Sections 5.3.3 - 5.3.4 explain how this case is dealt with.

When the proof of the base case is obtained, we proceed to the induction step.

Induction step : Let pred(X) be the set of elements which precede X in the
ordering W. Then we need to prove

'VX(1\ A(Y)-> A(X)).
YEpred(X)

142

Again, this formula is negated, added to the set of axioms and resolution is

used to try and derive the empty clause. If the empty clause cannot be thus derived,

then as before, one or more induction hypotheses may be required to obtain the

proof. This is dealt with in the next two sections.

If a proof is obtained by resolution alone, then the theorem is proved by indue-

tion.

Example 5.2 Consider the following theorem :

WlfZ(reverse(append(Y, cons(Z, []))) = cons(Z,reverse(Y))).

The list notation used here is the same as that used in the programming lan

guage LISP. In particular, if X is an element andY is a list, then cons(X, Y) is a

list of length one more than the length of Y, and contains the element X followed

by the list Y. [] or "nil" represents the empty list.

Let us try to prove the theorem by induction on Y. Using the same method

as in the previous section, we can establish that the same well-founded ordering as

that of Example 5.1 can be used here (i.e. for lists X and Y, X >- Y if and only if

the length of list X is greater than the length of list Y; X = Y if and only if the

length of list X is equal to the length of list Y; and X -< Y if and only if Y >- X).
The minimal element in this ordering is the empty list [] , therefore here the base

case is :

Base case : lfZ(reverse(append([], cons(Z, []))) = cons(Z, reverse([]))).

This was proved by OTTER in 0.28 seconds (see the appendix for proof).

Induction step : An element preceding X in the given ordering could be any

element of length one less than X. In particular, the list cdr(X), where cdr(X)

represents the same list as X with the first element removed, is a list with one

element less than X. Thus we now need to prove that

VYVZ ((reverse(append(cdr(Y), cons(Z, []))) = cons(Z, reverse(cdr(Y)))) -+

(reverse(append(Y, cons(Z, []))) = cons(Z, reverse(Y)))).

This was proved by OTTER in 1.86 seconds (see the appendix for proof).•

5.3.3 Finding one induction hypothesis

Sometimes it may happen that either the base case or the inductive step (or

both) of the previous section cannot be proved by resolution alone, i.e. by first-order

methods alone. This can occur, for example, if the proof depends on some other

lemma which itself needs to be proved by induction before a proof for the actual

theorem being proved can be found. Suppose that the proof depends on one lemma

A, i.e.

143

AXIOMS A A -+ T

where "AXIOMS" is the set of axioms for the theorem T being proved, and where
T can be proved from AXIOMS A A using first-order reasoning. This implication

can be rewritten as
~AXIOMS V ~A V T

which is the same as
AXIOMS A ~T -+ ~A.

~A can therefore be derived from (AXIOMS A ~T) using resolution. To do

this, we need to Skolemize AXIOMS A ~T before performing resolutions among

clauses thus obtained. The clauses which represent Sk(~A) can thus be derived by
resolution from Sk(AXIOMS II ~T). We then unskolemize and negate Sk(~A) to

obtain the lemma A, using our unskolemization algorithm. Lemma A can now be
proved using the methods of Sections 5.3.1 - 5.3.2. Since lemma A has been shown

to be valid, and since AXIOMS A A -+ T, the theorem Tis also valid, and a proof
for T has thus been found.

Example 5.3 We continue with the proof of the theorem of Example 5.1, which

was

VX(reverse(reverse(X)) =X).

Recall that we found a well-founded ordering W for this theorem in Example

5.1 whose minimal element was the empty list []. The base step for the proof
therefore consists of proving

reverse(reverse([]))= [],
which was already done in Example 5.1.

Induction step : An element preceding X in the ordering W could be any element

of length one less than X. In particular, the list cdr(X), where cdr(X) represents

the same list as X with the first element removed, is a list with one element less
than X. Thus we need to prove that

VX((reverse(reverse(cdr(X))) =cdr(X))-+ (reverse(reverse(X)))).

(Call this result T'.) We try to derive the empty clause from AXIOMS A ~T',

but since T' cannot be proved by induction alone, this attempt fails. However, we
succeed in deriving the following clause by resolution from AXIOMS A ~T' :

VX(reverse(append(reverse(cdr(X)), cons(car(X), []))) -:1
cons(car(X), reverse(reverse(cdr(X))))).

We unskolemize this clause by replacing reverse(cdr(X)) and car(X) by new

existential variables Y and Z respectively. This yields the formula

3Y3Z(reverse(append(Y, cons(Z, []))) -:1 cons(Z, reverse(Y))).

Negating, we obtain the following

144

Lemma A= 'VYVZ(reverse(append(Y, cons(Z, []))) = cons(Z, reverse(Y))).
Lemma A was proved by induction (without the use of any lemmas) in Example

5.2, using the methods of Sections 5.3.1 - 5.3.2. Hence the proof of our theorem

VX(reverse(reverse(X)) =X)

is complete. •

5.3.4 Finding more than one induction hypothesis

It may happen that the proof of a theorem T depends on more than one in

ductive lemma. For example, suppose that inductive lemmas A and B are needed

to prove T; in other words, Tis first-order derivable from AXIOMS 1\ A 1\ B. Then

as before, since

AXIOMS 1\ A 1\ B --. T,

we therefore have
AXIOMS 1\ ~T --. ~A V ~B.

Therefore from AXIOMS 1\ ~T, we can derive ~A V ~B by first-order reasoning.

This can be done by resolution from Sk(AXIOMS 1\ ~T). The clauses obtained from

these resolutions representing Sk(~A V ~B) can then be unskolernized and negated
(as we did in Section 5.3.3 for lemma A). We thus obtain A 1\ B, and each of

lemma A and lemma B can be proved by induction using the methods of Sections

5.3.1 - 5.3.2. This method can be extended to any number of inductive lemmas;

however, the method rapidly becomes more and more complicated as the number of
lemmas increases. For this reason, it may be preferable to use our second approach,

described in the next section, for generating inductive hypotheses for such theorems.

5.4 Description of the second method

Suppose that we are trying to prove some theorem T, and suppose that we fail

to find a proof of the theorem using standard first-order methods. This suggests
that induction may be required to prove the theorem.

If induction is to be used, the first problem is to find a well-founded ordering for

the elements. This can be done by the methods described in Section 5.3.1 and this

problem will not be further dwelt upon here. If the theorem can now be proved by

induction using the well-founded ordering thus discovered, then we are done; if not,

then the proof of the theorem may require one or more lemmas, which themselves

need to be proved by induction. Our concern in this section is to discover what these

lemmas are. If only one lemma is required, then the method of Section 5.3.3 may

145

prove useful in finding this lemma; however, the following method can be applied

to any theorem whose proof requires one or more lemmas, each of which have to be

proved by induction. By lemma we mean either some theorem which needs to be

proved separately or some instance T(Y) of the theorem T(X), where Y <X; such

lemmas are also called inductive hypotheses.

Suppose the proof of a theorem T, for which a well-founded ordering P has

been discovered, requires n lemmas A1, A2, ... ,An (these are all unknown). Suppose

that T contains m variables (m ;::: 1), where the i'h variable is drawn from some

domain D; for each i, 1 ~ i ~ m. Let X be an m-tuple consisting of these m

variables. We write the theorem T as T(X). Then a proof of the theorem T(X)
will proceed according to the following two steps :

1. Proof of the base case :

The theorem T(X) is proved to be true for the minimal elements of the ordering

P. We will show below that T(m), for minimal elements m of the ordering P, is

first-order provable for a certain class of theorems T.

2. Inductive step :

Now the inductive step of the theorem T(X) is proved. Using lemmas A1

through An as axioms, a proof of T(X) can be obtained by resolution.

This concludes a proof of T(X) by induction, using then lemmas A1 through

An as axioms.

Now consider the proof ofT(Y) for some ground el~ment Y E D1 xD2 x ... xDm.
This proof can be performed by performing exactly the same steps as in 2 above,

except that we now have none of the lemmas A1 through An. As a result of this,

ground instances of these lemmas will have to be proved. We will show below that

all these ground instances are first-order provable for a certain class of theorems.

Thus in this proof of T(Y), we can find subproofs of lemmas A1 (Y) through An(Y)
(A;(Y) denotes the lemma A; with variables in A; instantiated to the corresponding

values in Y).

Since this is true for all ground elements Y, the above can be repeated for

ground elements Y1,Yz,Y3, ... ,and so on. In each proof of T(Y;), we can find

subproofs of lemmas A1(Y;), Az(Y;), ... , An(Y;).

Now we compare the proofs of T(Y) for different ground Y. These proofs will

be similar in structure except that different instances of the lemmas A1 through

An will appear in these proofs. By detecting these different instances, we should be

able to reconstruct the n lemmas A1 through An· Once these lemmas are known,

the theorem T(X) can be proved by induction using the well-founded ordering P.

In the following theorem, we will show that this method is complete for the

orems which can be proved using the usual induction principle, subject to the fol-

146

lowing restriction. In order to show that this method is complete, we will need to

be able to tell whether certain ground terms t which appear in proofs are less than

a given ground term z or not. Since ground terms may contain Skolem functions

or other functions, it may not always be possible to deduce whether t < z or not.

Thus we will only allow those functions t, z for which it is possible to tell whether

t < z is true or not. For example, if z = 3 and t = plus(l, 1) (where "plus" is the

usual addition function for natural numbers), it is possible to deduce that t is less

than z; however, if z = 3 and t = f(5) for some Skolem function f, then we cannot

tell whether t < z or not.

The feasibility of this method is established in the following theorem.

Theorem 5.1 The method suggested above is complete for theorems that can be

proved by first-order logic with the following induction principle:

(Vx(Vy(y < x-> P(y))-> P(x)))
where < is a well-founded ordering. Additionally, none of the clauses used

should contain terms containing Skolem symbols or other functions for which the

question of whether any of these is less than another term is undecidable.

Proof: Suppose we want to prove P(z) for some ground z, where VxP(x) is a

theorem which can be proved by first-order logic with the above induction principle.

We know that (Vx(Vy(y < x-> P(y))-> P(x))) is true. Express this as

(Vx(3y)[(y < x-> P(y))-> P(x)]).
Substitute the ground term z for x to get

(3y)[(y < z-> P(y))-> P(z)].
Then there are finitely many y; such that

[(Yo< z-> P(yo))-> P(z)J V ... V [(Yn < z----> P(yn))----> P(z)]
is true. To see this, note that if (3x)A(x) is valid for any first order formula A(x),
we know there exist finitely many terms t; such that A(ti) V .•. V A(tn) is valid.

We can show this by converting ~(3x)A(x) to clause form with a new predicate for

A(x), and looking at the instances of this predicate used in the derivation of the

empty clause by resolution.

The above formula can be rewritten as

HYo < Z-> P(yo)) V P(z)] V ... V HYn < z-> P(yn)) V P(z)]
i.e. HYo < z-> P(yo)) V ... V ~(Yn < z -> P(yn))] V P(z)
i.e. ~[(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z-> P(yn))] V P(z)
i.e. [(Yo < z-> P(yo)) 1\ ... 1\ (Yn < z----> P(yn))]-> P(z).

Now consider any conjunct (y; < z ---> P(y;)) in the conjunction on the left

side of the above implication. If y; < z is true, then this conjunct is equivalent to

147

P(y;); if y; < z is false, then this conjunct is equivalent to true and can therefore

be omitted from the above conjunction. We are therefore interested in knowing

whether y; < z is true or false for every i, for 1 ::5 i ::5 n. From the assumption in

the theorem statement, this question can be answered for ally;.

LetT be the set of all Yk's in {yi,Y2,···,Yn} such that Yk < z. Then

/\ P(y)-+ P(z)
yET

Thus P(z) is derivable from a finite conjunction P(yj,) 1\ ... 1\ P(yj,) by first

order logic methods, where all the Yi; 's are ground elements less than z.
Repeating the above argument for each of the elements of the set T, we will

eventually get

P(mi) 1\ ... 1\ P(m.)-+ P(z)
where all the m;'s are minimal elements of the well-founded ordering < (this

follows from the fact that < is a well-founded ordering).

Now consider the proof of P(m;) for some minimal element m; (1 :::; i :::; s).
Since m; is a minimal element, P(m;) is provable from the given axioms and given

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction

previously, then by a simple induction argument on the size of the proof, using the

same method as above, we see that we will eventually obtain a first-order proof of

P(m;) from the axioms.

Thus we see that P(z) can be proved by first-order methods; also, this proof

is made up of proofs of some P(y)'s for y < z, which in turn are made up of proofs

of some P(w)'s for w < y, and so on. In other words, each of these proofs have a

similar structure, and the theorem is proved. •

A similar theorem can be proved for a slightly different version of the induc

tion principle. In this theorem, no assumptions need to be made regarding the

decidability of whether one term is less than another.

Theorem 5.2 The method suggested above is complete for theorems that can be

proved by first-order logic with the following induction principle:

If< is a well-founded ordering, and if for all x, P(x) can be proved by first

order logic from the infinite conjunction of P(y) for ally< x, then for all x, P(x)
is true.

Proof: Suppose we want to prove P(y) for some ground y, where VxP(x) is a

theorem which can be proved by first-order logic with the above induction principle.

From the assumption in the theorem statement, we know that P(y) can be

proved by first-order logic methods from

148

P(y1) II P(y2) II ... II P(yn) II ...

where y; < y Vi 2': 1, i.e. 1\~1 P(y;) -> P(y).
Therefore by the compactness principle, there exists a finite subset {Yit, Yh,

... , Yim} of the y;'s such that

P(yit) II P(yh) II ... 1\ P(Yim) -> P(y).
Repeating the above argument for each of P(yj,) through P(Yim) in place of

P(y), we will eventually get

P(m1) 1\ •.. II P(mr)-> P(y)
where all the m;'s are minimal elements of the well-founded ordering< (this follows

from the fact that < is a well-founded ordering). As in the proof of Theorem 5.1,
since m; is a minimal element, it is provable from the given axioms and given

lemmas. If the proof of P(m;) requires the use of lemmas proved by induction

previously, then by a simple induction argument on the size of the proof, using the

same method as above, we see that we will eventually obtain a first-order proof of

P(m;) from the axioms.
Therefore P(y) is also first-order provable. Also, the proof of P(y) can be

constructed from the proofs of P(y it) through P(Yim), each of which in turn can be

constructed from a finite conjunction of P(zk)'s, for Zk < Yi• (1 ::; k::; m), and so
on. Thus each of these proofs have a similar structure, and the theorem is proved. •

Limitations of this method

1. The first point to note is that for any ground element y, not all proofs of P(y)
will have a similar structure to P(y') for other ground elements y'. Potentially,
there may exist a large number of different proofs of each ground instance.

However, there does exist at least one such proof, as demonstrated in the

preceding theorems. We will need to search through the proofs to find one
such proof.

2. Given proofs of ground instances of P(x), it is a non-trivial task to detect the
similarity in structure between these proofs.

Examples illustrating the use of this method can be found in the appendix.

5.5 Comparison with other methods

The first method given in this chapter uses a support strategy to generate in

ductive hypotheses from the axioms; the second method is more general and makes

use of structural similarities in the proofs of ground instances of the theorem being

proved to discover suitable inductive hypotheses. Much of the work in the field

149

of mechanizing mathematical induction is concentrated in the field of inductionless

induction, described in more detail in Section 5.2. As mentioned earlier, induction
less induction applies term rewriting techniques for proving equational theorems.

Our methods are more general than these since they can be applied to any theorem

which can be proved using the principle of induction. Some more work needs to be

done in order to improve the efficiency of our method.

150

6. Conclusion

6.1 Summary

In this dissertation, we have explored a number of different topics. We first

saw how a class of logical consequences of first-order formulas can be derived using

resolution and unskolemization. We extended the meaning of "unskolemization" to

include replacement of some non-Skolem as well as Skolem functions by existen

tially quantified variables. This allowed a larger class of logical consequences to be

derived, since certain logical consequences of formulas cannot be derived without

unskolemization. A detailed algorithm was given to perform this unskolemization,

and the properties of formulas derived by applying the algorithm were described.

The remainder of this dissertation revolved around different applications for the

above method for deriving logical consequences. We first used the method as part

of an algorithm for the automatic generation of loop invariants. The method was

applicable since a loop invariant is a logical consequence of the various conditions

which are true each time the loop is traversed. We described methods of directing

the search for a valid loop invariant and demonstrated their effectiveness with several

examples. The algorithm for generating loop invariants in first-order logic was

proved to be sound and complete. This is in contrast to all known methods so far,

which are heuristics and are by no means complete.

The next topic discussed was machine learning from examples. Given two

examples El and E2, a concept learned from El and E2 is a logical consequence

of El and E2. Thus we applied our resolution and unskolemization method for

deriving logical consequences to this problem. A graph-based algorithm for learning

by extracting common features from examples was described, and the properties of

the concepts which can be thus learned were discussed. Applications of this learning

algorithm to traditional areas such as the blocks world, as well as the mechanical

derivation of loop invariants, were demonstrated. The performance and working of

our algorithm was compared with those of four other algorithms from the literature,

and it was shown that the performance of our algorithm compared favorably with

the other four. This work is significant because none of the learning algorithms so

· far have used full first-order logic as their representation language. This greatly

widens the scope of applicability of our method.

Finally, we described methods for discovering inductive hypotheses for theo

rems to be proved by induction. Since the principle of mathematical induction is not

expressible in first-order logic, in order to be able to prove theorems by induction

using only first-order logic, we need to know which inductive hypotheses will be re

quired for the proofs of the theorems. We saw that certain inductive hypotheses can

be generated from the axioms and the negation of the theorem by using our method

for generating logical consequences. Another method, which involved extracting in

ductive hypotheses from proofs of ground instances of the theorem, was described.

This method was based on the fact that proofs of ground instances of the theorem

can have similar structures, and information about which inductive hypotheses are

required can be deduced by comparing the structures of these proofs. The method

was shown to be complete for certain classes of theorems. It is more general than

a large number of existing methods, since it can be applied to equational as well

as non-equational theorems. Much of the existing work on this subject deals only

with equational theorems.

6.2 Extensions

6.2.1 Automatic generation of loop invariants

We have developed a novel method of automatically deriving loop invariants

for flowchart programs. The methods described in this dissertation have not been

actually implemented, but have been manually applied to many examples. Many

people have voiced the opinion that the goal of automating the derivation of loop

invariants is unattainable (see for example [Dijkstra 85]). Of course, they can be

proved wrong only if the method we have developed can be made "acceptably"

efficient by the use of suitable strategies. Basically, the function GET-APPROX

needs to be implemented with the use of strategies which will include rewriting

terms to some normal form to improve the efficiency of the resolution procedure,

detecting structural similarities among terms, and so on. The function, as it stands

now, provides some guidance to the process of deriving the invariants. Its efficiency

can probably be greatly improved with the use of some good heuristics. Owing to

the existence of a large number of such heuristics in the literature, this aspect has

not been explored in much detail here. However, even though heuristics will be

able to improve the performance of our algorithm, the algorithm still stands out

from the previous purely heuristic methods in the literature. This is because in our

152

method, heuristics can be embedded within the framework of a complete and sound

algorithm. Thus even if all heuristics fail, our algorithm can still derive a correct

loop invariant. This is in direct contrast to previously developed methods, which

have not been complete in any sense.

Another issue here is that if the given algorithm fails to return a loop invariant

for a given program loop, this could be due to one of two reasons : either the

invariant is not expressible given the theory axiomatized, or the program is not

correct. These two cases cannot be distinguished at present.

6.2.2 Learning from examples

We propose some extensions and modifications to the learning algorithm pre

sented in Chapter 4.

Allowing many-to-many mappings

The algorithm, as presented in Section 4.4.2, performs a one-to-one mapping

of arguments from the two given examples. This corresponds to the notion that

distinct objects in the two given examples are represented by distinct variables.

However, in certain situations it may be desirable to allow different variables to

represent the same object. In such a case, it is necessary to allow many-to-many

mappings in the argument graph produced by the algorithm. The choice of whether

to consider all possible mappings or a limited number of these can be left to the

user. A very minor modification to the learning algorithm will allow this feature to

be incorporated into the algorithm.

Allowing a limited number of disjunctions

The learning algorithm at present does not allow disjunctions of clauses to

be performed if the clauses have no common predicates. If such disjunctions are

necessary, they can be permitted, either without restriction or with a limit on

the number of disjunctions allowed. This alteration can easily be built into the

algorithm.

Using the algorithm for descriptive generalization

The given algorithm provides a method of deriving a formula EX from two

given formulas El and E2 such that El -> EX, E2-> EX. However, note that

we could also use the algorithm for deriving a formula EX such that EX -; El,

153

EX -+ E2. To see this, suppose that we are given formulas El and E2; then
apply the algorithm to the formulas ~El and ~E2. The algorithm produces a
formula E such that ~El -+ E and ~E2 -+ E; taking contrapositives, we get

~E-+ El, ~E-+ E2. Setting EX= ~E, the result follows. In the terminology of

Michalski [Michalski 83], this process is known as deBcriptive generalization and is

concerned with establishing new concepts or theories characterizing given facts. In

this case E 1 and E 2 are the given facts, and EX is the new concept or theory which

is established. This method of inference is also known as abduction or abductive

inference [Patterson 90].

6.2.3 Mechanizing mathematical induction

The methods developed in Chapter 5 for generating inductive hypotheses are
complete for certain classes of theorems; they need to be made more efficient by the

use of suitable strategies. More research needs to be done into ways of detecting

structural similarities among proofs of different ground instances of theorems.

154

Appendix

Time complexity analysis of the learning algorithm

We analyze the algorithm step by step. For convenience, the main body of the

algorithm is listed below again, with the steps numbered :

Algorithm LEARN(E1,E2,AXIOMS)

begin

1. Choose Xc E Res(E1 1\ AXIOMS);
2. Choose Yc E Res(E2 1\ AXIOMS);
3. Rename the variables in all the clauses of Xc and Ye so that no two clauses

have any variable in common;

4. build..clause..graph(Xc, Yc, Ec);
5. build..argument..graph(X., Y., E.);
6. augment..graphs...X(X., E., Xc, Ec);
7. augment..graphs_Y(Y., E., Yc, Ec);
8. maximum_weight...matching(M.,X., Y., E.);
9. Me:= {(C~,C2) E Ee I the n'h argument an of some literal of C1 contains

a as a subterm and the n'h argument f3n of some literal of C2 contains b as

a subterm in the same position as a appears in an and (a, b) E M., for some

positiveinteger n, where these two literals have the same predicate};

10. For every edge (a, b) E Ma do

if (a and b are distinct) and (a and b are not both variables) then

replace unmarked occurrences of a and b in Me by Z <-- a and Z <-- b
(respectively) (Z is a new variable);

if (a and b are both variables) then

unify all occurrences of a and b in Me;

11. EX:={CIUC2I(CI,C2)EMe};

12. if EX = 0 then EX := true;
13. for every Skolem function a in EX do

if a is not marked then

155

replace all occurrences of a in all literals of EX by X <-a, where X is

a new variable not occurring elsewhere in any clause;

14. Perform Steps 4 through 7 of the unskolemization algorithm for EX;

end.

We will not analyze the complexity of performing resolutions, since this is a

nondeterministic process. The analysis of the algorithm thus begins with step 3

above. The following symbols are used during this analysis :

IXel : number of elements in the set Xe
lYe I : number of elements in the set Ye
IXal: number of elements in the set X a
IYa I : number of elements in the set Ya
ICrl : maximum cardinality of a clause in Xe
ICzl : maximum cardinality of a clause in Ye
arg : maximum length of an argument of a clause in Xe U Ye (i.e. maxi

mum number of symbols in an argument; e.g. f(x,g(y)) has 4 symbols, viz.

j,x,g,y)
arity : maximum arity of a predicate in a clause in Xe U Ye
!Eel : number of edges of the clause graph (bounded above by (IXel + IYel)2)
lEal : number of edges of the argument graph (bounded above by (IXal +
IY.I)2

)

IMa I : size of a maximum weight matching of the argument graph (bounded

above by max(IXal, IYal))
!Mel : cardinality of the set Me (bounded above by I Eel)

The maximum number of operations required for each step is given below,
within a constant factor.

Step 3: IXel * ICrl * arity +lYe I* ICzl * arity
Step 4: IXel * IYel * ICrl * ICzl
Step 5 : !Eel* ICrl * arity * ICzl * arg
Step 6: IX a I* IYal * IYal +(IX a I+ IYal) * (IXel +!Eel)
Step 7: IYal * IXal * IXal + (IXal + IYal) *(lYe I+ !Eel)
Step 8: lEal* (IXal + IYal) * logfiEai/(IX.I+IY.I)+Il(IXal + IYal)
Step 9 : !Eel * IMa I * ICrl * ICzl * arity * arg
Step 10: !Mal* !Mel* (ICrl + ICzl) * arity * arg
Step 11 : !Mel
Step 12 : constant

Step 13: !Mel* arg * (ICrl + ICzl) * arity

156

Step 14 : Each of steps 4 through 7 of the unskolemization algorithm take time

!Mel* (IC1I + IC2I) * arity, for the generation of one unskolemized formula. •

Working of problem from Section 4. 7 using the algorithm LEARN

We process the examples in the order E1, E2 and Ea. The examples are shown
in Figure 4.10. The same result is obtained for other orders of presentation of the

examples.

First the examples E1 and E2 are taken and all possible resolutions are per

formed between these two examples and the given axioms. The resulting sets of

clauses obtained from E 1 and E 2 , called Xe and Ye respectively, are :

Xe = medium(a)!lpolygon(a)!lblank(a)!lontop(a, b)/\ medium(b) 1\ circle(b)!l

shaded(b) 1\ ontop(b, c) 1\ large(c) 1\ polygon(c) 1\ blank(c),

Ye = medium(d) 1\ polygon(d) 1\ blank(d) 1\ ontop(d, e)II small(!) 1\ circle(!)/\

shaded(!) 1\ inside(!, e) 1\ small(g) 1\ circle(g) 1\ shaded(g) 1\ inside(g, e) 1\ large(e) 1\

polygon(e) 1\ blank(e).

We build the clause and argument graphs for Xe and Ye; these graphs are shown

in Figures A.1 and A.2 respectively. These graphs do not need to be augmented

since neither Xe nor Ye contain any variables. There exists two maximum weight

matchings for the argument graph; these are

{(a, d)(4), (b, !)(2), (c, e)(4)} and {(a, d)(4), (b, g)(2), (c, e)(4)}

(the weights for each edge are indicated after each edge in parentheses). However,

it turns out that both these matchings give rise to the same concept. We therefore

choose the first matching and get

Ma ={(a, d), (b,J), (c, e)}.

The set Me contains the edges which are shown in Figure A.3. We then replace

a and d by X <- a and X <- d respectively; we replace b and f by Y <- b and

Y <- f respectively; and we replace c and e by Z <- c and Z <- e respectively in
the edges of Me. We then get

EX = {{medium(X <-a), medium(X <- d)}, {polygon(X <- a),polygon(X

<- d)},{blank(X <- a),blank(X <- d)},{ontop(X <- a,Y <- b),ontop(X <- d,Z <

e)}, { circle(Y <- b), circle(Y <-- /)}, { shaded(Y <- b), shaded(Y <- f)}, {on top(

Y <- b, Z <-c), ontop(X <- d, Z <-e)}, {large(Z <-c), large(Z <-e)}, {blank(Z <

c),blank(Z <-e)}, {polygon(Z <- c),polygon(Z <-e)}}.

157

We now unskolemize EX by replacing the marked arguments by existentially

quantified variables and get

EX = 3X3Y3Z (medium(X) /\polygon(X) 1\ blank(X) 1\ (on top(X, Y) V ontop

(X, Z))llcircle(Y)/\shaded(Y)/\(ontop(Y, Z)Vontop(X, Z))/\large(Z)/\blank(Z)/\

polygon(Z)).

This is the concept learned from E1 and E 2 • We will now apply the algorithm

to E3 and the above formula EX. First we perform all possible resolutions between

the axioms and these examples. EX remains unchanged; we get the following set

of clauses from E3 :

E 3 = { {medium(h)}, {polygon(h)}, {blank(h)}, {ontop(h,j)}, { medium(j)},

{polygon(j)}, { shaded(j) }, { ontop(j, k)}, { large(k)}, {ellipse(k)},

{blank(k)} }.

We now need to express EX in clause form. After Skolemizing EX, we get the

set of clauses

{ {medium(s)}, {polygon(s)}, {blank(s)}, { ontop(s, t), on top(s, u)}, { circle(t) },

{ shaded(t)}, { ontop(t, u), ontop(s, u)}, {large(u)}, {blank(u)}},

where s, t, u are Skolem functions replacing the existentially quantified variables

X, Y, Z respectively.

We build the clause and argument graphs for these two sets of clauses; these

graphs are shown in Figures A.4 and A.5 respectively. These graphs do not need

to be augmented since none of the clauses contain any variables. The maximum

weight matching for the argument graph is :

Ma = {(h,s)(5),(j,t)(3),(k,u)(5)}

(the weights for each edge are indicated after each edge in parentheses). The set

Me contains the edges which are shown in Figure A.6. We then replace h and s

by X +- h and X +- s respectively; we replace j and t by Y +- j and Y +- t

respectively; and we replace k and u by Z +- k and Z <-- u respectively in the edges

of Me. We then get

EX = {{medium(X <-- h), medium(X +- s)}, {polygon(X +- h),polygon(X

<-- s)},{blank(X +- h),blank(X +- s)},{ontop(X +- h,Y +- j),ontop(X +

s,Y +- t), ontop (X+- s,Z +- u)},{ontop(X +- h,Y +- j),ontop(Y +- t,Z +

u),ontop(X <-- s,Z +- u)}, {shaded(Y +- j),shaded(Y +- t)}, {ontop(Y +- j,Z +

k), ontop(Y +- t, Z +- u), ontop(X +- s, Z +- u)}, {ontop(Y <-- j, Z +- k), ontop(X

+- s,Y +- t),ontop(X +- s,Z +- u)},{large(Z +- k),large(Z +- u)},{blank(Z +

k),blank(Z +- u)}}.

158

We now unskolemize EX by replacing the marked arguments by existentially

quantified variables and get

EX = 3X3Y3Z (medium(X) !\polygon(X) i\ blank(X) i\ (ontop(X, Y) V ontop

(X, Z)) i\ (ontop(X, Y) Vontop(Y, Z) V ontop(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V

ontop(X, Z)) i\ large(Z) i\ blank(Z)).

This is the concept learned from E1, E2 and E3. Note that one of the disjunc

tions here is subsumed by two of the others, namely the disjunction (on top(X, Y) V

ontop(Y, Z) V ontop(X, Z)); therefore it can be discarded. The resulting concept

learned from the three given examples is

EX= 3X3Y3Z (medium(X) !\polygon(X) i\ blank(X) i\ (ontop(X, Y) Von top

(X, Z)) i\ shaded(Y) i\ (ontop(Y, Z) V on top(X, Z)) i\ large(Z) i\ blank(Z)). •

159

{medium(d)}

{polygon(d)}

{medium(a)} {blank(d)}

{polygon(a)} {ontop(d,e)}

{blank(a)} {small(f)}

{ ontop(a,b)} {circle(f)}

{medium(b)} {shaded(f)}

{circle(b)} {inside(f,e)}

{shaded(b)} {small(g)}

{ontop(b,c)} {circle(g)}

{large(c)} {shaded(g)}

{polygon(c)} {inside(g,e)}

{blank(c)} {large(e)}

{polygon(e)}

{blank(e)}

Figure A.l Clause graph for E1 and E2

160

d

b

c

g

161

{medium(a)} {medium(d)}

{polygon(a)} {polygon(d)}

{blank(a)} {blank(d)}

{ ontop(a,b)} {ontop(d,e)}

{circle(b)} {circle(f)}

{shaded(b)} {shaded(f)}

{ontop(b,c)} {large(e)}

{large(.c)} {blank(e)}

{blank(c)} {polygon(e)}

{polygon(c)}

Figure A.3 Subgraph of clause graph for E1 and E 2

162

Figure A.4 Clause graph for Ea and EX

163

h
5

s

t

k u

Figure A.5 Argument graph for E3 and EX

164

{medium(h)} {medium(s)}

{polygon(h)} {polygon(s)}

{blank(h)} {blank(s)}

{ontop(h,j)} { ontop(s,t) ,ontop(s, u)}

{shaded(j)} {shaded(t)}

{ontop(j,k)} { ontop(t, u) ,ontop(s, u)}

{large(k)} {large(u)}

{blank(k)} {blank(u)}

Figure A.6 Subgraph of clause graph for E3 and EX

165

Proofs for Example 5.2

The following proofs were obtained for Example 5.2 using the theorem prover

OTTER:

Proof of base step from Example 5.2 :

1 [] (X= X).
2 [] (append(nil,Y) = Y).
7 [] (reverse(append(nil,cons(y,nil))) != cons(y,reverse(nil))).
8 [] (reverse(nil) = nil).
11 [] (reverse(cons(X,nil)) = cons(X,nil)).
12 [paraJnto,7,2,demod,11,8] (cons(y,nil) != cons(y,nil)).

13 [binary,12,1] .

Proof of induction step from Example 5.2 :

1 [] (X =X).
3 [] (append(X,Y) = cons(car(X),append(cdr(X),Y))) I -listp(X).
4 [] (reverse(X) = append(reverse(cdr(X)),cons(car(X),nil))) 1-listp(X).
5 [] listp(cons(X,Y)).
7 [] (reverse(append(cdr(x),cons(y,nil))) = cons(y,reverse(cdr(x)))).
8 [] listp(x).
9 [] (reverse(append(x,cons(y,nil))) != cons(y,reverse(x))).
11 [] (car(cons(X, Y)) = X).
12 [] (cdr(cons(X, Y)) = Y).

14 [paraJnto,9,3J (reverse(cons(car(x), append(cdr(x), cons(y, nil))))!= cons(y, re
verse(x))) I -listp(x).
17 [binary,14,8] (reverse(cons(car(x), append(cdr(x),cons(y, nil)))) != cons(y, re
verse(x))).
19 [paraJnto,l7,4,demod,12,11] (append(reverse(append(cdr(x), cons(y,nil))), cons(
car(x), nil)) != cons(y, reverse(x))) I -listp(cons(car(x), append(cdr(x), cons(y,
nil)))).

54 [binary,19,5] (append(reverse(append(cdr(x), cons(y, nil))),cons(car(x), nil))!=
cons(y, reverse(x))).

56 [paraJnto,54,7] (append(cons(y, reverse(cdr(x))), cons(car(x), nil)) != cons(y,
reverse(x))) .

61 [paraJnto,56,3,demod,11,12] (cons(y, append(reverse(cdr(x)), cons(car(x), nil)))
! =cons (y, reverse(x))) 1-listp(cons(y, reverse(cdr(x)))).

63 [binary,61,5] (cons(y, append(reverse(cdr(x)), cons(car(x), nil))) != cons(y, re-
verse(x))). .

166

65 [paraJnto,63,4] (cons(y,reverse(x)) != cons(y,reverse(x))) [-listp(x).

68 [binary,65,1]-listp(x).
69 [binary,68,8]. e

Working of examples for Section 5.4

We give below three examples illustrating the technique outlined in Section 5.4

for discovering inductive hypotheses.

Example 5.4 To illustrate the discussion in Section 5.4, suppose that we are trying

to prove the commutativity of addition, using the Peano axioms :

1. 'v'x((x = 0) V (x =a+ 1)) where a is a Skolem symbol

2. 'v'x'v'y((x # y + 1) V (x # 0))
3. 'v'x'v'y((x + 1 # y + 1) V (x = y))
4. 'v'x'v'y(-,(x < y + 1) V (x < y) V (x = y))
5. 'v'x'v'y(-,(x < y) V (x < y+ 1)
6. 'v'x'v'y((x # y) V (x < y + 1))
7. 'v'x(-,(x < 0))
8. 'v'x'v'y((x < y) V (x = y) V (y < x))
9. 'v'x(x + 0 = x)
10. 'v'x'v'y(x + (y + 1) = (x + y) + 1)
11. 'v'x(x * 0 = 0)

12. 'v'x'v'y(x * (y + 1) = x * y + x)
13. 'v'x(x = x)

The theorem to be proved is

'v'x'v'y(x + y = y + x)

An attempt to prove this theorem without induction, using only the above

axioms and resolution, fails. We therefore start trying to prove ground instances of
the theorem. Three ground proofs are shown below :

1) Proof of (1+1) + (((1+1)+1)+1) = (((1+1)+1)+1) + (1+1).
We use paramodulation as well as resolution as inference rules and obtain the

following refutation proof of the negation of the theorem :

Negation of theorem: {(1 + 1) + (((1 + 1) + 1) + 1) # (((1 + 1) + 1) + 1) + (1 + 1)}

1. {((1 + 1) + ((1 + 1) + 1)) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

2. {(((1 + 1) + (1 + 1)) + 1) + 1 # (((1 + 1) + 1) + 1) + (1 + 1)}

167

paramodulate with axiom 10
3. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}

paramodulate with axiom 10

4. {(((1 + 1) + 1) + (1 + 1)) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

5. {((((1 + 1) + 1) + 1) + 1) + 1 =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

6. {(((1 + 1) + 1) + 1) + (1 + 1) =? (((1 + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

7. {} resolve with axiom 13

2) Proofof(1+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) + (1+1).
We use paramodulation as well as resolution as inference rules and obtain the

following refutation proof of the negation of the theorem :

Negation of theorem: {(1+1)+((((1+1)+1)+1)+1) =? ((((1+1)+1)+1)+1)+(1+1)}

1. {(1 + 1) + ((((1 + 1) + 1) + 1) + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

2. {((1 + 1) + (((1 + 1) + 1) + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

3. {(((1 + 1) + ((1 + 1) + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

4. {((((1 + 1) + (1 + 1)) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

5. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

6. {((((1 + 1) + 1) + (1 + 1)) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

7. {(((((1 + 1) + 1) + 1) + 1) + 1) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

8. {((((1 + 1) + 1) + 1) + (1 + 1)) + 1 =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

9. {((((1 + 1) + 1) + 1) + 1) + (1 + 1) =? ((((1 + 1) + 1) + 1) + 1) + (1 + 1)}
paramodulate with axiom 10

10. {} resolve with axiom 13.

3) Proof of ((1+1)+1) + ((((1+1)+1)+1)+1) = ((((1+1)+1)+1)+1) +
((1+1) + 1).

We use paramodulation as well as resolution as inference rules and obtain the
following refutation proof of the negation of the theorem :

168

Negation of theorem: {((1 + 1) + 1) + ((((1 + 1) + 1) + 1) + 1) ¥ ((((1 + 1) + 1) +

1)+ 1) +((1 +1)+1)}
1. {(((1 + 1) + 1) + (((1 + 1) + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}

paramodulate with axiom 10

2. {((((1+ 1) + 1)+ ((1+ 1) + 1)) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

3. {(((((1+ 1)+ 1)+ (1+ 1)) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

4. {((((((1 + 1) + 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1)+ ((1+ 1) + 1)}
paramodulate with axiom 10

5. {(((((1+ 1) + 1) + 1) +(1+ 1)) + 1) + 1 ¥ ((((1+ 1)+ 1) + 1)+ 1) + ((1+ 1) + 1)}
paramodulate with axiom 10

6. { ((((1 + 1) + 1) + 1) + ((1 + 1) + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

7.{(((((1 + 1) + 1) + 1) + (1 + 1)) + 1) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

8. {((((((1+ 1)+ 1) + 1) + 1) + 1) + 1) + 1 ¥ ((((1+ 1) + 1) + 1) + 1) + ((1+ 1) + 1)}
paramodulate with axiom 10

9. {(((((1 + 1) + 1) + 1) + 1) + (1 + 1)) + 1 ¥ ((((1 + 1) + 1) + 1) + 1) + ((1 + 1) + 1)}
paramodulate with axiom 10

10. {((((1+1)+1)+1)+1)+((1+1)+1) ¥ ((((1+1)+1)+1)+1)+((1+1)+1)}
paramodulate with axiom 10

11. {} resolve with axiom 13.

It can be seen that each proof contains an instance of the proof of the lemma

Vx'Vy((y- 1) + x) + 1 = ((y- 1) + 1) + x,

namely in clauses 4, 8, and 6 for the three proofs respectively.
This lemma can easily be proved by induction, using the well-founded order

<. The given theorem can then be proved by induction, using this lemma as an

axiom. •

Example 5.5 Let us try to prove the theorem

VxVy(X*Y=Y*X).

An attempt to prove this theorem by first-order methods, using the Peano
axioms given in Example 5.4, fails. We therefore try to prove ground instances
of the theorem. We assume that the following simple theorem has already been

169

proved: \lx(O + x = x). Some proofs of ground instances of the theorem are given

below:

1) Proof of 1 *(1+1) = (1+1)*1.
Negation of the theorem : 1 * (1 + 1) -1 (1 + 1) * 1.

The proof proceeds as follows :

1. {(h 1) + 1 "'(1+ 1) * 1}
paramodulate with axiom 12

2. {(h(0+1))+1"1(1+1)d}
paramodulate with Theorem \lx(O + x = x)

3. {((h0)+1)+1"1(1+1)*1}
paramodulate with axiom 12

4. {(0 + 1) + 1 "'(1 + 1) * 1}
paramodulate with axiom 11

5. {0 + (1 + 1) "'(1 + 1) d}
paramodulate with axiom 10

6. {((1 + 1) * 0) + (1 + 1) "'(1 + 1) * 1}
paramodulate with axiom 11

7. {(1+1)*(0+1)"1(1+1)d}
paramodulate with axiom 12

8. {(1 + 1) d "'(1 + 1) d}
paramodulate with Theorem \lx(O + x = x)

9. {} paramodulate with axiom 13.

2) Proof of 1 *((1+1)+1) = ((1+1)+1)*1.
Negation of the theorem: 1 * ((1 + 1) + 1) "I ((1 + 1) + 1) * 1.

The proof proceeds as follows :

1. { (1 * (1 + 1)) + 1 "' ((1 + 1) + 1) * 1}
paramodulate with axiom 12

2. {((1 * 1) + 1) + 1"' ((1 + 1) + 1) * 1}
paramodulate with axiom 12

3. {((h(0+1))+1)+1-l((1+1)+1)d}
paramodulate with Theorem \fx(O + x = x)

4. {(((1 * 0) + 1) + 1) + 1 "'((1 + 1) + 1) * 1}
paramodulate with axiom 12

5. {((0+1)+1)+1-1((1+1)+1)*1}
paramodulate with axiom 11

6. {(0 + (1 + 1)) + 1"' ((1 + 1) + 1) * 1}
paramodulate with axiom 10

7. {(((1 + 1) * 0) + (1 + 1)) + 1 "'((1 + 1) + 1) * 1}

170

paramodulate with axiom 11
8. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1}

paramodulate with axiom 12

9. {((1 + 1) * 1) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

10. {((1 + 1) * (0 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

11. {(((1 + 1) * 0) + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with axiom 12

12. {(0 + (1 + 1)) + 1 =F ((1 + 1) + 1) * 1}
paramodulate with axiom 11

13. {0+((1+1)+1)-#((1+1)+1)*1}
paramodulate with axiom 10

14. {(((1 + 1) + 1) * 0) + ((1 + 1) + 1) =F ((1 + 1) + 1) * 1}
paramodulate with axiom 11

15. {((1 + 1) + 1) * (0 + 1) =F ((1 + 1) + 1) * 1}
paramodulate with axiom 12

16. {((1 + 1) + 1) * 1 =F ((1 + 1) + 1) * 1}
paramodulate with Theorem Vx(O + x = x)

17. {} resolve with axiom 13

3) Proof of (1+1)*((1+1)+1) = ((1+1)+1)*(1+1).
Negation of the theorem: (1 + 1) * ((1 + 1) + 1) =F ((1 + 1) + 1) * (1 + 1).
The proof proceeds as follows :

1. {((1 + 1) * (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

2. { (((1 + 1) * 1) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

3. {(((1 + 1) * (0 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem Vx(O + x = x)

4. {((((1 + 1) * 0) + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

5. {((0 + (1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 11

6. {(((1 + 1)) + (1 + 1)) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem Vx(O + x = x)

7. {(((1 + 1) + 1) + 1) + (1 + 1) =F ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 10

8. {(((1 + 1) + 1) + (1+ 1)) + 1 =F ((1 + 1) + 1) * (1+ 1)}

171

paramodulate with axiom 10

9. {((1 + 1) + 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 10

10. {(0 + ((1 + 1) + 1)) + ((1 + 1) + 1)) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem \fx(O + x = x)

11. {((((1 + 1) + 1) * 0) + ((1 + 1) + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 11

12. {(((1 + 1) + 1) * (0 + 1)) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

13. {(((1 + 1) + 1) * 1) + ((1 + 1) + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with Theorem \fx(O + x = x)

14. {((1 + 1) + 1) * (1 + 1) # ((1 + 1) + 1) * (1 + 1)}
paramodulate with axiom 12

15. {} resolve with axiom 13.

From the proofs of the three above ground instances, we see that each proof

contains a subproof of the lemma

\fx\fy((x + 1) * y = (x * y) + y),

namely in clauses 1, 9, and 1 respectively of the three proofs.

And this lemma can be proved by induction, using the well-founded order<.

The given theorem can then be proved by induction, using this lemma as an axiom. •

Example 5.6 In this example, we solve the same problem as that solved in Example
5.3 in Chapter 5, i.e. we are trying to prove the theorem

\fx(reverse(reverse(x)) = x)

by induction, this time using the method described in this section. A well-founded

ordering for this example was already discovered in Example 5.1 in Chapter 5.

We prove the theorem for different values of ground x :

Proof of reverse(reverse([a, b])) =[a, b] :

The axioms used in this proof are (in clause form) :

1. X=X

2. append(nil, Y) = Y

3. append(X, Y) =cons(car(X), append(cdr(X), Y)) V •listp(X)

4. reverse(nil) = nil

5. reverse(X) = append(reverse(cdr(X)), cons(car(X), nil)) V •listp(X)

6. car(cons(X, Y)) =X

7. cdr(cons(X, Y)) = Y

172

8. listp(cons(X, Y))

Negation of theorem :

reverse(reverse([a, b])) f. [a, b]

Using a set of support strategy, we get the following proof for the theorem :

9. reverse(reverse([a, b])) f. [a, b]

negation of theorem

10. reverse(append(reverse(cdr([a, b])), cons(car([a, b]), nil))) f. [a, b],

~listp([a, b])

paramodulate 9,5

11. reverse(append(reverse(cdr([a, b])), cons(car([a, b]), nil))) f. [a, b]

resolve 8,10

12. reverse(append(reverse([b]), cons(car([a, b]), nil))) f. [a, b]

paramodulate 7,11

13. reverse(append(reverse([b]), [a])) f. [a, b]
paramodulate 6,12

14. reverse(append(append(reverse(cdr([b])), cons(car([b]), nil)), [a])) =f [a, b],

~listp([b])

paramodulate 5,13

15. reverse(append(append(reverse(cdr([b])), [b]), [a])) f. [a, b], ~listp([b])
paramodulate 6,14

16. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b], ~listp([b])
paramodulate 7,15

17. reverse(append(append(reverse(nil), [b]), [a])) f. [a, b]

resolve 8,16

18. reverse(append(append(nil, [b]), [a])) f. [a, b]

paramodulate 4,17

19. reverse(append([b], [a])) f. [a, b]

paramodulate 2,18

20. reverse(cons(car([b]), append(cdr([b]), [a]))) f. [a, b], ~listp([b])
paramodulate 3,19

21. reverse(cons(car([b]), append(nil, [a]))) f. [a, b], ~listp([b])

paramodulate 7,20

22. reverse(cons(car([b]), append(nil, [a]))) f. [a, b]

resolve 8,21

23. reverse(cons(car([b]), [a])) f. [a, b]

paramodulate 2,22

24. reverse([b, a]) f. [a, b]

173

paramodulate 6,23
25. append(reverse(cdr([b, a])), cons(car(cons(b, [a])))) f. [a, b], ~listp([b])

paramodulate 5,24
26. append(reverse([a]), cons(car([b, a]), nil)) f. [a, b], ~listp([b])

paramodulate 7,25

27. append(reverse([a]), [b]) f. [a, b], ~listp([b])
paramodulate 6,26

28. append(reverse([a]), [b]) f. [a, b]
resolve 8,27

29. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b], ~listp([a])
paramodulate 5,28

30. append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]) f. [a, b]
resolve 8,29

31. append(append(reverse(nil), cons(cm·([a]), nil)), [b]) f. [a, b]
paramodulate 7,30

32. append(append(reverse(nil), [a]), [b]) f. [a, b]
paramodulate 6,31

33. append(append(nil, [a]), [b]) f. [a, b]
paramodulate 4,32

34. append([a], [b]) f. [a, b]
paramodulate 2,33

35. cons(car([a]), append(cdr([a]), [b])) f. [a, b], ~listp([a])
paramodulate 3,34

36. cons(car([a]), append(cdr([a]), [b])) f. [a, b]
resolve 8,35

37. cons(a, append(cdr([a]), [b])) f. [a, b]
paramodulate 6,36

38. cons(a, append(nil, [b])) f. [a, b]
paramodulate 7,37

39. [a, b] f. [a, b]
paramodulate 2,38

40. empty clause

resolve 1,39.

Proof of reverse(reverse([a, b, c])) =[a, b, c] :

Using a set of support strategy, and the same axioms (1 through 8 above), we
get the following proof for the theorem :

9. reverse(reverse([a, b, c])) f. [a, b, c]

174

negation of theorem

10. reverse(append(reverse(cdr([a, b, c])), cons(car([a, b, c]), nil))) =J [a, b, c],
~listp([a, b, c])
paramodulate 5,9

11. reverse(append(reverse([b, c]), cons(car([a, b, c]), nil))) =J [a, b, c],

~listp([a, b, c])
paramodulate 7,10

12. reverse(append(reverse([b, c]), [a])) =J [a, b, c], ~listp([a, b, c])
paramodulate 6,11

13. reverse(append(reverse([b, c]), [a])) =J [a, b, c]

resolve 8,12

14. reverse(append(append(reverse(cdr([b, c])), cons(car([b, c]), nil)), [a])) =J
[a, b, c], ~listp([b, c])
paramodulate 5,13

15. reverse(append(append(reverse(cdr([b, c])), cons(car([b, c]), nil)), [a])) =J
[a, b, c]
resolve 8,14

16. reverse(append(append(reverse([c]), cons(car([b, c]), nil)), [a])) =J [a, b, c]

paramodulate 7,15

17. reverse(append(append(reverse([c]), [bJ), [a])) =J [a, b, c]

paramodulate 6,16

18. reverse(append(append(append(reverse(cdr([c])), cons(car([c]), nil)), [b]), [a]))
=J [a, b, c], ~listp([c])

paramodulate 5,17

19. reverse(append(append(append(reverse(cdr([c])), [c]), [b)), [a])) =J [a, b, c],

~listp([c])

paramodulate 6,18

20. reverse(append(append(append(reverse(nil), [c)), [b]), [a])) =J [a, b, c],

~listp([c])

paramodulate 7,19

21. reverse(append(append(append(reverse(nil), [c]), [b]), [a])) =J [a, b, c]

resolve 8,20

22. reverse(append(append(append(nil, [c)), [b]), [a])) =J [a, b, c]

paramodulate 4,21

23. reverse(append(append([c], [b]), [a])) =J [a, b, c]

paramodulate 2,22

24. reverse(append(cons(car([c]), append(cdr([c]), [b))), [a])) =J [a, b, c], ~listp([c])

paramodulate 3,23

175

25. reverse(append(cons(car([c]), append(cdr([c]), [b])), [a])) of [a, b, c]
resolve 8,24

26. reverse(append(cons(c, append(cdr([c]), [b])), [a])) of [a, b, c]
paramodulate 6,25

27. reverse(append(cons(c, append(nil, [b])), [a])) of [a, b, c]
paramodulate 7,26

28. reverse(append([c, b], [a])) of [a, b, c]
paramodulate 2,27

29. reverse(cons(car([c, b]), append(cdr([c, b]), [a]))) of [a, b, c], ~listp([c, b])

paramodulate 3,28

30. reverse(cons(car([c,b]),append(cdr([c,b]),[a]))) of [a,b,c]

resolve 8,29

31. reverse(cons(c, append(cdr([c, b]), [a]))) of [a, b, c]

paramodulate 6,30

32. reverse(cons(c, append([b], [a]))) of [a, b, c]

paramodulate 7,31

33. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c], ~listp([b])
paramodulate 3,32

34. reverse(cons(c, cons(car([b]), append(cdr([b]), [a])))) of [a, b, c]
resolve 8,33

35. reverse(cons(c,cons(b,append(cdr([b]),[a])))) of [a,b,c]

paramodulate 6,34

36. reverse(cons(c, cons(b, append(nil, [a])))) of [a, b, c]
paramodulate 7,35

37. reverse([c, b, a]) of [a, b, c]
paramodulate 2,36

38. append(reverse(cdr([c, b, a])), cons(car([c, b, a]), nil)) of [a, b, c], ~listp([c, b, a])

paramodulate 5,37

39. append(reverse(cdr([c, b, a])), cons(car([c, b, a]), nil)) of [a, b, c]
resolve 8,38

40. append(reverse([b,a]),cons(car([c,b,a]),nil)) of [a,b,c]

paramodulate 7,39

41. append(reverse([b, a]), [c]) of [a, b, c]
paramodulate 6,40

42. append(append(reverse(cdr([b, a])), cons(car([b, a]), nil)), [c]) of [a, b, c],
~listp([b, a])

paramodulate 5,41

43. append(append(reverse([a]), cons(car([b, a]), nil)), [c]) of [a, b, c], ~listp([b, a])

176

paramodulate 7,42

44. append(append(reverse([a]), [b]), [c]) f [a, b, c], ~listp([b, a])

paramodulate 6,43

45. append(append(reverse([a]), [b]), [c]) f [a, b, c]
resolve 8,44

46. append(append(append(reverse(cdr([a])), cons(car([a]), nil)), [b]), [c])
f [a, b, c], ~listp([a])
paramodulate 5,45

47. append(append(append(reverse(nil), cons(car([a]), nil)), [b]), [c]) f [a, b, c],
~listp([a])

paramodulate 7,46

48. append(append(append(reverse(nil), [a]), [b]), [c]) f [a, b, c], ~listp([a])

paramodulate 6,47

49. append(append(append(nil, [a]), [b]), [c]) f [a, b, c], ~listp([a])

paramodulate 4,48

50. append(append([a], [b]), [c]) f [a, b, c], ~listp([a])
paramodulate 2,49

51. append(append([a], [b]), [c]) f [a, b, c]
resolve 8,50

52. append(cons(car([a]), append(cdr([a]), [b])), [c]) f [a, b, c], ~listp([a])
paramodulate 3,51

53. append(cons(car([a]), append(cdr([a]), [b])), [c]) f [a, b, c]
resolve 8,52

54. append(cons(a, append(cdr([a]), [b])), (c]) f [a, b, c]

paramodulate 6,53

55. append(cons(a, append(nil, [b])), [c]) f [a, b, c]
paramodulate 7,54

56. append([a, b], [c]) f [a, b, c]
paramodulate 2,55

57. cons(car([a, b]), append(cdr([a, b]), [c])) f [a, b, c], ~listp([a, b])

paramodulate 3,56

58. cons(a, append(cdr([a, b]), [c])) f [a, b, c], ~listp([a, b])

paramodulate 6,57

59. cons(a, append([b], [c])) f [a, b, c], ~listp([a, b])

paramodulate 7,58

60. cons(a, append([b], [c])) f [a, b, c]
resolve 8,59

61. cons(a, cons(car([b]), append(cdr([b]), [c]))) f [a, b, c], ~listp([b])

177

paramodulate 3,60

62. cons(a, cons(b, append(cdr([b]), [c]))) o1 [a, b, c], ~listp([b])
paramodulate 6,61

63. cons(a,cons(b,append(nil,[c]))) ol [a,b,c],~listp([b])
paramodulate 7,62

64. cons(a,cons(b,append(nil,[c]))) ol [a,b,c]
resolve 8,63

65. [a, b, c] ol [a, b, c]
paramodulate 2,64

66. empty clause

resolve 1,65.

From the above two ground proofs, it can be seen that instances of the lemma
lixliy(reverse(append(x, cons(y, nil))) = cons(y, reverse(x)))

were proved in both proofs. This is a lemma which needs to be proved by induction

and was proved in Example 5.2 in Chapter 5 earlier. The given theorem can then

be proved by induction, using this lemma as an axiom. •

178

References

Angluin, Dana, Smith, Carl H.: "Inductive Inference: Theory and Methods", Com
puting Surveys 15 (3), pp. 237-269 (1983).

Aubin, Raymond : "Mechanizing Structural Induction Part I : Formal System",
Theoretical Computer Science 9, pp. 329-345 (1979).

Aubin, Raymond : "Mechanizing Structural Induction Part II : Strategies", Theo
retical Computer Science 9, pp. 347-362 (1979).

Biundo, S., Hummel, B., Hutter, D., Walther, C. : "The Karlsruhe Induction The
orem Proving System", Eighth International Conference on Automated De
duction, pp. 672-674 (1986).

Bondy, J. A., Murty, U. S. R. : "Graph Theory with Applications", Elsevier Science
Publishing Co., Inc., New York (1976).

Boyer, Robert S., Moore, J. Strother : "A Computational Logic", Academic Press,
Inc., New York (1979).

Buchanan, B. G., Mitchell, Tom M. : "Model-directed learning of production rules",
Proceedings of the Workshop on Pattern-directed Inference Systems, Hon
olulu, Hawaii (1977).

Burstall, R. M. : "Proving properties of programs by structural induction", Com
puter Journal12 (1), pp. 41-48 (1969).

Caplain, Michel, "Finding invariant assertions for proving programs", Proceedings
of the International Conference on Reliable Software, pp. 165-171 (1975).

Chang, Chin-Lian, Lee, Richard Char-Tung, "Symbolic Logic and Mechanical The
orem Proving", Academic Press Inc., New York (1973).

Cook, Stephen A., "Soundness and completeness of an axiom system for program
verification", SIAM Journal on Computing 7 (1), pp. 70-90 (1978).

Cooper, D. C., "Programs for Mechanical Program Verification", Machine Intelli
gence 6, pp. 43-59 (1971).

Cox, P. T., Pietrzykowski, T., "A complete, nonredundant algorithm for reversed
skolemization", Theoretical Computer Science 28, pp. 239-261 (1984).

Davis, M., Putnam, H., Robinson, J., "The decision problem for exponential Dio
phantine equations", Annals of Mathematics 14, pp. 425-436 (1961).

Deutsch, Laurence P., "An Interactive Program Verifier", Ph.D. dissertation, Uni
versity of California at Berl,eley (1973).

179

Dietterich, Thomas G., Michalski, Ryszard S : "A Comparative Review of Selected
Methods for Learning from Examples", in : Machine Learning : An Artificial
Intelligence Approach, eels. R.S. Michalski, J.G. Carbonell, T.M. Mitchell,
Morgan Kaufmann Publishers, Inc., pp. 41-82 (1983).

Dijkstra, E. W., "In variance and non-determinacy", Mathematical Logic and Pro
gramming Languages, C.A.R. Hoare and J. C. Shepherdson eds., Prentice-Hall,
pp. 157-165 (1985).

Dijkstra, E. W., "On the cruelty of really teaching computing science", Communi
cations of the ACM 32 (12), pp. 1398-1404 (1989).

Elspas, Bernard, Levitt, Karl N., Waldinger, Richard J., Waksman, Abraham, "An
Assessment of Techniques for Proving Program Correctness", ACM Comput
ing Surveys 4 (2), pp. 97-147 (1972).

Floyd, R. W., "Assigning meanings to programs", Proceedings of the Symposium on
Applied Mathematics, American Mathematical Society 19, pp. 19-32 (1967).

Galil, Zvi, "Efficient Algorithms for Finding Maximum Matching in Graphs", ACM
Computing Surveys 18 (1), pp. 23-38 (1986).

German, Steven M., Wegbreit, Ben, "A Synthesizer of Inductive Assertions", IEEE
Transactions on Software Engg., Vol. SE-1 (1), pp. 68-75 (1975).

Goguen, J. A. : "How to prove algebraic inductive hypotheses without induction",
Fifth International Conference on Automated Deduction, pp. 356-373 (1980).

Gold, E. Mark : "Language Identification in the Limit", Information and Control
10, pp. 447-474 (1967).

Good, Donald I., London, Ralph L., Bledsoe, W. W., "An Interactive Program
Verification System", IEEE Transactions on Software Engg., Vol. SE-1 (1)

. (1975).

Good, Donald I., Cohen, R. M., Hoch, C. G., Hunter, L. W., Hare, D. F., "Re
port on the language Gypsy, Version 2.0", Technical Report ICSCA-CMP-10,
Certifiable Minicomputer, Project, ICSCA, The University of Texas at Austin
(1978).

Good, Donald I., "Mechanical proofs about computer programs", Mathematical
Logic and Programming Languages, C.A.R. Hoare and J.C. Shepherdson eds.,
Prentice-Hall, pp. 55-75 (1985).

Gries, David, "The Science of Programming", Springer-Verlag (1981).

Hayes-Roth, Frederick, McDermott, John : "An Interference Matching Technique
for Inducing Abstractions", Communications of the ACM 21 (5), pp. 401-410
(1978).

Hoare, C.A.R., "An axiomatic basis for computer programming", Communications
of the ACM 12, pp. 576-580 (1969).

von Henke, F. W., Luckham, D. C., "A methodology for verifying programs", Pro
ceedings of the International Conference on Reliable Software, pp. 156-164
(1975).

180

Huet, G, Hullot, J.M. : "Proofs by induction in equational theories with construc
tors", Journal of Computer and System Sciences 25 (2) (1982).

Jouannaud, Jean-Pierre, Kounalis, Emmanuel : "Automatic Proofs by Induction in
Equational Theories Without Constructors", Proceedings of the Symposium
on Logic in Computer Science, Cambridge, Massachusetts, pp. 358-366 (1986).

Kapur, Deepak, Musser, David R. : "Inductive reasoning with incomplete specifi
cations" Proceedings of the Symposium on Logic in Computer Science, Cam
bridge, Massachusetts, pp. 367-377 (1986).

Katz, Shmuel M., Manna, Zohar, "A heuristic approach to program verification",
Third International Joint Conference on Artificial Intelligence, pp. 500-512
(1973).

King, James C., "A Program Verifier", Ph.D. dissertation, Carnegie-Mellon Uni
versity (1969).

King, James C., "An Interpretation Oriented Theorem Prover over Integers", Sec
ond Annual ACM Symposium on Theory of Computing, pp. 169-179 (1970).

King, James C., "Proving Programs to be Correct", IEEE Transactions on Com
puters, Vol. C-20 (11), pp. 1331-1336 (1970).

Knuth, D., Bendix, P. : "Simple Word Problems in Universal Algebras", in Com
putational Problems in Abstract Algebra, ed. J. Leech, Pergamon Press, pp.
263-297 (1970).

Kodratoff, Y., Ganascia, J. G., Clavieras, B., Bollinger, T., Tecuci, G. : "Careful
generalization for concept learning", in Advances in Artificial Intelligence, T.
O'Shea (Ed.), Elsevier Science Publishers B. V. (North-Holland), pp. 229-238
(1985).

Kodratoff, Y., Ganascia, J. G. : "Improving the Generalization Step in Learning",
in : Machine Learning : An Artificial Intelligence Approach, Vol. II, eds. R.S.
Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann Publishers, Inc.,
pp. 215-244 (1986).

Lee, Shie-Jue : "CLIN : An Automated Reasoning System Using Clause Linking",
Ph.D. Dissertation, University of North Carolina, Chapel Hill (1990).

Lewis, Harry R., Papadimitriou, Christos H., "Elements of the theory of computa
tion", New Jersey: Prentice-Hall, Inc. (1981).

Loeckx, Jacques, Sieber, Kurt, "The Foundations of Program Verification", John
Wiley and Sons, Ltd. (1987).

Loveland, Donald, "Automated Theorem Proving, A Logical Basis", North-Holland
Publishing Co. (1978).

Manna, Zohar, "Second-order Mathematical Theory of Computation", Second An
nual ACM Symposium on Theory of Computing, pp. 158-168 (1970).

Manna, Zohar, Ness, Stephen, Vuillemin, Jean : "Inductive Methods for Proving
Properties of Programs", Communications of the ACM 16 (8), pp. 491-502
(1973).

181

Manna, Zohar, "Mathematical Theory of Computation", McGraw-Hill, New York
(1974).

McCarthy, John: "A basis for a mathematical theory of computation", in Computer
Programming and Formal Systems, eds. P. Braffort, D. Hirschberg, North
Holland Publishing Co., pp. 33-70 (1970).

McCune, William W., "Un-Skolemizing clause sets", Information Processing Letters
29, pp. 257-263 (1988).

McCune, William W., "OTTER 1.0 Users' Guide", Computer Science Division,
Argonne National Laboratory, Argonne, lllinois (1989).

Michalski, Ryszard S. : "Learning by inductive inference", Technical Report, De
partment of Computer Science, University of Illinois at Urbana-Champaign,
UIUCDCS-R-74-671 (1974).

Michalski, Ryszard S. : "Toward Computer-Aided Induction : A brief review of
currently implemented AQVAL programs", Technical Report, Department of
Computer Science, University of Illinois at Urbana-Champaign, UIUCDCS-R-
77-874 (1977).

Michalski, Ryszard S. : "A Theory and Methodology of Inductive Learning", Ma
chine Learning : An Artificial Intelligence Approach, Vol. I, eds. R. S. Michal
ski, J. G. Carbonell, T. M. Mitchell, Morgan Kaufmann Publishers, Inc., pp.
83-134 (1983).

Michalski, Ryszard S. : "Machine Learning : An Artificial Intelligence Approach",
Vol. II, eds. R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann
Publishers, Inc. (1986).

De Millo, R. A., Lipton, R. J., Per!is, A. J., "Social processes and proofs of theorems
and programs", Communications of the ACM 22, pp. 271-280 (1979).

Mitchell, Tom M. : "Version Spaces : A candidate elimination approach to rule.
learning", Fifth International Joint Conference on Artificial Intelligence, MIT,
Cambridge MA, Vol. 1, pp. 305-310 (1977).

Mitchell, Tom M. : "Learning and Problem Solving", Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1139-1151
(1983).

Musser, David R. : "On proving inductive properties of abstract data types", Sev
enth Annual ACM Symposium on Principle's of Programming Languages, pp.
154--162 (1980).

Nakajima, R., Yuasa, T., "The IOTA programming system", Lecture Notes in Com
puter Science 160, Springer-Verlag (1983).

Nelson, Greg, Oppen, Derek C., "Simplification by Cooperating Decision Proce
dures", ACM Transactions on Programming Languages and Systems 1 (2),
pp. 245-257 (1979).

Patterson, Dan W. : "Introduction to Artificial Intelligence and Expert Systems",
Prentice Hall, Englewood Cliffs, New Jersey (1990).

182

Paul, E. : "Proof by induction in equational theories with relations between con
structors" Ninth Colloquium on Trees in Algebra and Programming, Bor
deaux, France, ed. B. Courcelle, pp. 211-225 (1984).

Polak, Wolfgang, "Compiler Specification and Verification", Lecture Notes in Com
puter Science 124, Springer- Verlag (1981).

Robinson, J. A., "A Machine-oriented Logic based on the Resolution Principle",
Journal of the ACM 12 (1), pp. 23-41 (1965).

Rulifson, J. F., Waldinger, R. J., Derksen, J., "A language for writing problem
solving programs", IFIP Gong. 1971, Yugoslavia, North-Holland Publ. Co.,
Amsterdam (1972).

Sammut, Claude, Banerji, Ranan B. : "Learning Concepts by Asking Questions",
in :Machine Learning: An Artificial Intelligence Approach, Vol. II, eds. R.S.
Michalski, J.G. Carbonell, T.M. Mitchell, Morgan Kaufmann Publishers, Inc.,
pp. 167-192 (1986).

Sarkar, D., De Sarkar, S. C., "Some Inference Rules for Integer Arithmetic for Ver
ification of Flowchart Programs on Integers", IEEE Transactions on Software
Engineering 15 (1), pp. 1-9 (1989).

Sarkar, D., De Sarkar, S. C., "A Set of Inference Rules for Quantified Formula
Handling and Array Handling in Verification of Programs over Integers", IEEE
Transactions on Software Engineering 15 (11), pp. 1368-1381 (1989).

Sarkar, D., De Sarkar, S. C., "A Theorem Prover for Verifying Iterative Programs
Over Integers", IEEE 'Iransactions on Software Engineering 15 (12), pp. 1550-
1566 (1989).

Shapiro, Ehud Y. : "An Algorithm that Infers Theories from Facts", Seventh Inter
national Joint Conference on Artificial Intelligence, pp. 446-451 (1981).

Spitzen, Jay, Wegbreit, Ben, "The Verification and Synthesis of Data Structures",
Acta Informatica 4, pp. 127-144 (1975).

Stanford Verification Group, "Stanford Pascal Verifier User Manual", Stanford Ver
ification Group Report No. 11 (1979).

Stepp, R. : "The investigation of the UNICLASS inductive program AQ7UNI and
User's Guide", Technical Report 949, Department of Computer Science, Uni
versity of Illinois, Urbana, Illinois (1978).

Suzuki, Narihasa, "Verifying programs by Algebraic and Logical Reduction", Pro
ceedings of the International Conference on Reliable Software, pp. 473-481
(1975).

Tinkham, Nancy : "Induction of Schemata for Program Synthesis", Ph.D. disserta
tion, Department of Computer Science, Duke University, Durham N.C. (1990).

Toyama, Y. : "How to prove equivalence of term rewriting systems without induc
tion", Eighth International Conference on Automated Deduction, pp. 118-127
(1986).

183

Utgoff, Paul E. : "Machine Leaxning of Inductive Bias", Kluwer Academic Publish
ers, Massachusetts (1986).

Valiant, L. G. : "A Theory of the Learnable", Communications of the ACM 27 (11),
pp. 1134-1142 (1984).

Vanlehn, Kurt : "Efficient Specialization of Relational Concepts", Machine Learning
4, pp. 99-106 (1989).

Vere, Steven A. : "Induction of Concepts in the Predicate Calculus", Fourth In
ternational Joint Conference on Arti:ficial Intelligence, Tbilisi, Georgia USSR,
Vol. 1, pp. 281-287 (1975).

Vere, Steven A. : "Inductive leaxning of relational productions", in : Pattern-Dir
ected Inference Systems, eds. D.A. Waterman, Frederick Hayes-Roth, Aca
demic Press, Inc., New York, pp. 281-295 (1978).

Wand, M., "A new incompleteness result for Hoare's system", Journal of the ACM
25, pp. 168-175 (1978).

Watanabe, Larry, Rendell, Larry, "Effective Generalization of Relational Descrip
tions", Proceedings of the Eighth National Conference on Arti:ficial Intelli
gence, pp. 875-881 (1990).

Wegbreit, Ben, "Heuristic Methods for Mechanically Deriving Inductive Asser
tions", Proceedings of Third International Joint Conference on Arti:ficial In
telligence (1973).

Wegbreit, Ben, Spitzen, Jay M. : "Proving Properties of Complex Data Structures",
Journal of the ACM 23 (2), pp. 389-396 (1976).

Winston, P. H. : "Learning structural descriptions from examples", in : The Psy
chology of Computer Vision, ed. P. H. Winston, McGraw-Hill, New York, pp.
157-209 (1975).

Zhang, Hantao, Kapur, Deepak, Krishnamoorthy, Mukkai S. : "A mechanizable
induction principle for equational specifications", Ninth International Confer
ence on Automated Deduction, Argonne, Illinois, pp. 162-181 (1988).

184

