
Inductive Learning of Decision Rules
from Attribute-Based Examples:

A Knowledge-Intensive
Genetic Algorithm Approach

TR91-030

July, 1991

Cezary Z. J anikow

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/ Aflirmative Action Institution.

-·

Inductive Learning of Decision Rules
from Attribute-Based Examples:

A Knowledge-Intensive Genetic Algorithm
Approach

by

Cezary Z . .Janikow

A dissertation submitted to the faculty of the
University of North Carolina at Chapel Hill in partial

fulfillment of the requirements for the degree of Doctor of
Philosophy in the Department of Computer Science.

Chapel Hill, 1991

Approved by:

@1991
Cezary Z. Janikow

ALL RIGHTS RESERVED

11

C EZARY Z. J ANIKO w. Inductive Learning of Decision Rules from Attribute-Based
Examples: A Knowledge-Intensive Genetic Algorithm Approach (Under the direction
of Kenneth DeJong)

Abstract

Genetic algorithms are stochastic adaptive systems whose search method models nat­
ural genetic inheritance and the Darwinian struggle for survival. Their importance
results from the robustness and domain independence of such a search. Robustness
is a desirable quality of any search method. In particular, this property has led to
many successful genetic algorithm applications involving parameter optimization of
unknown, possibly non-smooth and discontinuous functions. Domain independence
of the search is also a praised characteristic since it allows for easy applications in
different domains. However, it is a potential source of limitations of the metho<]. as
well.

In this dissertation, we present a modified genetic algorithm designed for the prob­
lem of supervised inductive learning in feature-based spaces which utilizes domain
dependent task-specific know ledge. Supervised learning is one of the most popular
problems studied in machine learning and, consequently, has attracted considerable
attention of the genetic algorithm community. Thus far, these efforts have lacked the
level of success achieved in parameter optimization. The approach developed here
uses the same high level descriptive language that is used in rule-based supervised
learning methods. This allows for an easy utilization of inference rules of the well
known inductive learuing methodology, which replace the traditional domain inde­
pendent operators. Moreover, a closer relationship between the underlying task and
the processing mechanisms provides a setting for an application of more powerful
task-specific heuristics.

Initial results indicate that genetic algorithms can be effectively used to process
high level concepts and incorporate task-specific knowledge. In this particular case
of supervised learning, this new method proves to be competitive to other symbolic
systems. Moreover, it is potentially more robust as it provides a powerful framework
that uses cooperation among competing solutions and does not assume any prior
relationships among attributes.

III

Preface

The main goal of this project was to show that modeling simple ideas of nature,
those utilized in the computational framework known as genetic algorithms, could be
successfully applied to supervised inductive learning if such atomic nature-modeled
mechanisms were abstracted to the conceptual level of the problem. Such ideas are
not completely new. Some researchers previously argued for the incorporation- of
task-specific knowledge into genetic algorithms applied to machine learning as ~ell
as to other domains. However, their approaches could be described as a combination
of the traditional approaches with some problem specific operators. Moreover, no
such approach was implemented for the particular task of building symbolic concept
descriptions in attribute-based spaces. My idea here was just to use the framework
of genetic algorithms, and to organize the search by a set of operators designed inde­
pendently from the underlying mechanisms. Having as much interest in showing the
feasibility and potentials of such an approach as in proving grounds for a subsequent
development of an actual system, a special emphasis is placed on dealing with some
design and implementation issues.

At the same time, I was pursuing two secondary goals. Firstly, I tried to find
some common ground between such a genetic algorithm abstraction to the problem
level and the more traditional artificial intelligence problem solving paradigm of pro­
duction systems. The idea was that some of the negative characteristics of genetic
algorithms, especially high time complexity, could be further improved by exploring
and employing some production system ideas. Secondly, a natural by-product of this
work is a special tool allowing for a deeper study of the theory and methodology of
symbolic inductive learning since this approach can be viewed as an implementation
of such a methodology with the liberal and robust search control of genetic algorithms.

A note on notation: all relevant terms being explained are first shown in italic.

I would like to thank all people who directly and indirectly supported me and
provided valuable insights. In particular, I would like to thank Ryszard Michalski
for an excellent introduction to inductive learning and scholastic attitudes, Zbigniew
Ras for his continuous support throughout my graduate years, and Kenneth DeJong
with Zbigniew Michalewicz for introducing me to the ideas of genetic algorithms.

Special thanks are reserved for my wife, Grazyna, for her understanding and love.

IV

Contents

1 INTRODUCTION 1

2 GENETIC ALGORITHMS 4
2.1 What Genetic Algorithms Are 0 ••••••• ~ 4
2.2 Why Genetic Algorithms Work 6
2.3 How Genetic Algorithms Work: an Example 7

3 INDUCTIVE LEARNING FROM EXAMPLES 9
3.1 Problem Statement 9
3.2 Language • 0 •••••••••• 10
3.3 Conceptualization 12
3.4 Goals of Knowledge Acquisition 13
3.5 Incremental Learning 14
3.6 Inference Rules of the Inductive

Methodology 15

4 PREVIOUS APPROACHES 16
4.1 Traditional Approaches . 16

4.1.1 Non-symbolic 16
4.1.2 Symbolic 17

4.2 Genetic Algorithm Approaches. 18

5 THE MODIFIED GENETIC ALGORITHM 20
5.1 Ideas Used 20
5.2 Representation and Search Space 24
5.3 Initial Population . . . 24
5.4 Evaluation Mechanism 25
5.5 Operators •• 0 •••• 26

5.5.1 Definitions ... 27
5.5.2 Dynamic aspects 35

5.6 Algorithm 37

6 SOME IMPLEMENTATION ISSUES 38
6.1 Sampling Mechanism . . 38
6.2 Internal Representation . 38
6.3 Data Compilation 40

v

7 A TRACE OF THE SYSTEM'S BEHAVIOR
7.1 Data Compilation .
7.2 Initialization . . .
7.3 Initial Evaluation
7.4 One Iteration ..

7 .4.1 Selection .
7.4.2 Reproduction
7 .4.3 Evaluation . .

7.5 The Remaining Iterations

8 AN ALTERNATIVE VIEW
8.1 Database .
8.2 Operators
8.3 Control
8.4 Efficiency Considerations .

9 EXPERIMENTS
9.1 Experimental Methodology .
9.2 Emerald's Robot World
9.3 DNF Concepts
9.4 Multiplexers
9.5 Breast Cancer
9.6 Dealing with Empty and Invalid Rules
9. 7 Incremental Learning .
9.8 Initialization

10 CONCLUSIONS AND FURTHER RESEARCH
10.1 Parameter Abstraction
10.2 Multiple Concepts
10.3 Noisy Information ...
10.4 Other Operators
10.5 More Intelligent Initialization

Bibliography

VI

42
43
44
44
45
46
46
47
47

51
54
54

~55
. "56

57
57
58
60
62
65
66
67
68

70
71
72
74
74
75

76

List of Tables

5.1 Completeness and consistency measures. 25

7.1 Application probabilities 43

9.1 Error rate summary in the robot world .. 59
9.2 GIL's error rate in the robot world. ... ~59
9.3 Complexity's summary in the robot world. 60
9.4 GIL's complexity in the robot world. ... 60
9.5 GIL's accuracy on multiplexer / 11 ••••.• 64
9.6 Summary of the breast cancer experiment. 66
9.7 The effects of retaining invalid and empty rules. 67

Vll

List of Figures

2.1 A genetic algorithm.
2.2 Examples of mutation and one-point crossover.
2.3 An example of a genetic algorithm at work.

3.1 An example of a single concept learned by one description.
3.2 The usage environment for a learning system. . . .

5.1 The spectrum of knowledge incorporation in a GA.
5.2 Application of a GA with traditional operators.
5.3 Application of a task-specific genetic algorithm.
5.4 A genetic algorithm with traditional operators ...
5.5 A genetic algorithm with task-specific operators.

6.1 An internal representation of a sample chromosome.
6.2 Examples of binary coverage vectors of a feature.

7.1 The goal concept and the training events ..
7.2 The best initial chromosome

8.1 A production system architecture ..

9.1 Diagramatic visualization of the acquired knowledge.
9.2 Batch-incremental results on DNF data.
9.3 Learning curve on multiplexer j 6 • ••••••••••

9.4 A sample behavior on multiplexer j 11 • • ..••••

9.5 Comparison of the batch and incremental learning.
9.6 The effect of initial hypotheses in the initial database ..

10.1 A sample result of learning multi-descriptions
10.2 A sample internal representation of a two-concepts case.

Vlll

5
5
8

~13

"14

21
22
23
23
23

39
41

44
45

52

61
63
64
65
68
68

72
73

I

Chapter 1

INTRODUCTION

The problem of automatic knowledge acquisition is a central issue in machine learniJ!g,
a subfield of artificial intelligence (AI) devoted toward designing methods and method­
ologies for both knowledge representation and self-creation or self-reorganization of
such knowledge by automata. A big part of that research is devoted toward restricted
attribute-based spaces. Such popularity can be attributed to the existence of many
practical problems without a sufficiently understood body of knowledge, but with
widely available data in the form of feature descriptions.

Traditionally, all approaches to automatic knowledge acquisition have been clas­
sified into non-symbolic and symbolic, depending on the output language. Non­
symbolic inductive learning systems, often called subsymbolic, usually do not acquire
any explicit knowledge but rather gather other information necessary for the de­
scriptive process. They include statistical models, where the only representation is
by means of all stored examples or some statistics on them, and the connectionist
models, where the knowledge is distributed among a network's connections and an
activation method. Symbolic systems, on the other hand, produce explicit knowledge
in a high level descriptive language. However, an equally important distinction can
be based on the level of inference. All non-symbolic approaches process low level
entities (usually numerical parameters). On the other hand, the level of inference of
symbolic approaches widely varies, with those operating at higher level showing an
advantage: mechanisms based on symbol manipulations, in addition to being closely
related to their task-objectives, allow for the use of the same input and output lan­
guage. This, in turn, creates the possibility of employing some more sophisticated
learning paradigms, e.g. closed-loop learning ([44]) .

With the development of the computer there hase been an increasing interest in
simulating nature as means for problem solving. One of the most known frameworks
was developed by Holland ([22]) and is known as genetic algorithms (GAs). This ap­
proach models the natural processes of inheritance of coded knowledge and survival by
fitness or degree of adaptation to the environment. The two most important charac­
teristics of GAs are robustness and domain independence of their search mechanism.
Robustness, an ultimate goal of any system, is a natural by-product of the search
strategy which performs simultaneous space exploration and exploitation (global and
local search). This makes the mechanism quite independent of the characteristics

that normally break most other approaches, such as non-smoothness or discontinuity
of the evaluation function. Domain independence, on the other hand, is obtained
by designing the search operators in the space of the lowest level representation en­
tities. However, such an approach has both advantages and disadvantages. On the
positive side is the fact that a new application requires only a coding of the problem
to this artificial space. On the negative side lies the fact that the quality of such a
coding is crucial to the genetic algorithm's performance. Moreover, operating in this
space means using problem-blind operators, which often overlook some important
information that normally could be utilized to guide the search.

Nevertheless, genetic algorithms have been quite successfully applied to a num­
ber of problems. The most outstanding results come from the field of parameter
optimization (e.g. [9, 12]), where the mentioned coding is rather easy and straight­
forward. Moreover, a non-standard floating-point representation seems to provide
for additional effectiveness (e.g. [34, 35]). Other successful applications include opti­
mization problems like wire routing and scheduling, game playing, cognitive modeling,
transportation problems, the traveling salesman problem, and optimal control prob­
lems (e.g. [5, 8, 10, 21, 18, 63]). However, applications to machine learning, although
partially successful ([32, 53, 57, 58]), never succeeded in more complex domains and
encountered many additional problems ([12]). The genetic algorithm approach to
supervised learning in an attribute--based space is normally referred to as symbolic.
However, the processing is normally done in symbols of the artificial, not the problem,
language (with some exceptions, e.g. [32]). This mismatch is the main reason for the
low rate of success. Recognizing this, there have recently been a few attempts to find
a more problem related representation ([13, 19, 58, 61]), but they generally still fail
to provide symbol processing at an appropriately high conceptual level.

We propose to use a rule-based representation (with condition-action pairs) as the
natural choice for a symbolic system operating in this space. Having that, we propose
to use operators that directly model the inference rules defined in such a framework,
namely those of the inductive learning methodology (described by Michalski in [39]).
By doing this, we utilize the task-specific problem solving methodology and abstract
the genetic algorithm's inference to the problem-specific symbol level. This can be
viewed as a knowledge-intensive approach, i.e. using a vast amount of task-specific
information, which replaces the blind search of traditional domain-independent op­
erators by a heuristic search. Implementing all the extra knowledge in the operators
leaves the remainder of the genetic algorithm intact and allows for an easy extension
of these ideas to other domains. Because of the richness of such new operators and
their domain-dependent behavior, the new algorithm does not enjoy the same theo­
retical foundations as the traditional GAs do. Nevertheless, we try to show how to
justify it intuitively, and the results of our experiments show its applicability.

This approach can be seen as a genetic algorithm for processing high level struc­
tures specific to the problem. Because of this change, one may question whether it is
still a genetic algorithm. We do not attempt to deal here with this delicate issue since
it would require a clear definition of the boundaries of genetic algorithms. However,
such boundaries are not well defined and are problematic on their own.

The same ideas can be also derived from the artificial intelligence and machine

2

learning point of view. Then, this approach can be seen as a modified production
system that uses stochastically firing task-specific inference rules directly on formulas
of a rule-based framework. To deal with the problems of weak heuristics and huge
search spaces, the very liberal and robust control mechanism of genetic algorithms is
used. This leads to a potentially very robust design which does not assume any prior
relationship among different attributes (as, for example, ID does). The robustness is a
result of the existence of the platform for both cooperation (by information exchange)
and competition among many different simultaneous solutions. This, in turn, can be
seen as an extension of the AQ's ideas of processing competing directions (AQ does
it by retaining a number of partial covers simultaneously, as explained in chapter
3). Here, we provide the cooperation and use more powerful heuristics (the inference
rules and their adjusting applicabilities).

This dissertation is organized as follows. In chapter 2 we describe genetic algo·
rithms and present their theoretical foundations along with some intuition behind
their applicability. In chapter 3 we define the problem of supervised learning· of
concept descriptions from feature-based examples, describe some important related
issues, and outline the well-known inductive learning methodology. In chapter 4 we
briefly describe the most known approaches to supervised learning, including tradi­
tional symbolic and non-symbolic methods as well as those based on genetic algo­
rithms. In chapter 5 we describe the ideas leading to this new approach, followed
by a detailed description of the resulting algorithm's components. In chapter 6 we
try to deal with some important implementation issues, and in chapter 7 we further
illustrate the system's behavior by tracing a sample application. Then, in chapter 8
we try to justify and describe the same approach from the point of view of artificial
intelligence and machine learning. We follow with a systematic experimentation in
chapter 9. Finally, in chapter 10 we draw some conclusions and describe work to be
done in the future in order to produce a complete learning system.

3

Chapter 2

GENETIC ALGORITHMS

In this chapter we introduce the idea of genetic algorithms, present some theoretical
foundations behind their applicability, and conclude with a simple example.

2.1 What Genetic Algorithms Are

Genetic algorithms are adaptive methods of searching a solution space by applying
operators modeled after the natural genetic inheritance and simulating the Darwinian
struggle for survival. They belong to the class of probabilistic algorithms, yet are
distinguished by their different search method and relative insensitivity to local traps.

In general, a G A performs a multi-directional search, and it encourages informa­
tion formation and exchange between such directions. It does so by maintaining a
population of proposed solutions (chromosomes) for a given problem. Each solution
is represented in a fixed alphabet (usually binary) with an established meaning. The
population undergoes a simulated evolution: relatively "good" solutions produce off­
spring, which subsequently replace the "worse" ones. The estimate of the quality of
a solution is based on an evaluation function, which plays the role of an environment.
The existence of such a population provides for the superiority of genetic algorithms
over pure hill-climbing methods (i.e. methods that seek a goal by always following the
direction of the best outlook), for at any time the GA provides for both exploitation
of the most promising solutions and exploration of the search space.

Each iteration, called a reproduction cycle, is performed in three steps (see figure
2.1). During the selection step a new population is formed from stochastically best
samples (with replacement). Then, during the recombination step some of the mem­
bers of the newly selected population are altered. Finally, all such altered individuals
are evaluated.

The mating process (recombination) itself is based on the application of two op­
erators: mutation and crossove1·. Mutation introduces random variability into the
population, and crossover exchanges random pieces of two chromosomes in the hope
of propagating partial solutions (see figure 2.2). Because both of these operators are
defined on syntactic pieces of the underlying representation (when each chromosome
is viewed as a sequence of the symbols of the low level alphabet), the search has

procedure genetic algorithm
begin

t = 0
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin

t=t+1
select P(t) from P(t- 1)
recombine P(t)
evaluate P(t)

end
end

Figure 2.1: A genetic algorithm.

domain-independent properties. However, the applicability of a GA to a particular
problem depends on the representation emphasizing meaningful semantic pieces of in­
formation (called building blocks) to be used by the crossover operator, in addition to
the evaluation function properly guiding the search. Then, the applicability is often
decreased if the operators are defined to manipulate lower level syntactic structures
- as is often the case.

mutation:
xj = (b1 ... bk ... bn)
'->
t+l- (-) Xi - b1 ... bk ... bn

crossover:
xj = (bl .. · bkbk+l ·. · bn)
xj = (dl ... dkdk+l ... dn)
'->

xj+1 = (b1 ... bkdk+l ... dn)
xj+l = (dl ... dkbk+l ... bn)

Figure 2.2: Examples of mutation and one-point crossover.

Specifying a genetic algorithm for a particular problem involves describing a num­
ber of components. Among them, the most important are:

• A genetic representation for potential solutions to the problem, which also de­
fines the search space of the algorithm.

• A method of generating the initial population of potential solutions.

• An evaluation function that plays the role of the environment, rating solutions
in terms of their "fitness" or "adaptation" to this environment.

• Genetic operators that alter the composition of chromosomes during recombi­
nation.

• Values for various parameters that the genetic algorithm uses (population size,
probabilities of applying genetic operators, etc.).

5

2.2 Why Genetic Algorithms Work

The theoretical foundations of genetic algorithms rely on the notion of a schema (e.g.
[22]) - a similarity template allowing an exploration of similarities among chromo­
somes. A schema is built by introducing a new don't care symbol (*) into the alphabet
of genes - such a schema represents all strings (a hyperplane, or subset of the search
space) that it matches on all positions other than *· Assuming a binary alphabet and
a population of size n, there are between 2n and n · 2n different schemata represented;
at least n 3 of them are processed at any time - Holland has called this property
an "implicit parallelism", as it is obtained without any extra memory/processing
requirements.

Two other important notions associated with the schema are necessary to derive
the theoretical basis:

• Schema order, o(H), is the number of defining, i.e. non don't care, positi;;,s.
Essentially, it defines the speciality of a schema.

• Schema defining length, R(H), is the distance between the first and the last
defining symbols of a chromosome. It defines the compactness of information
contained in a schema.

Assuming that the reproductive probability is proportional to fitness, we can derive
the following two versions of the growth equation (e.g. [21]):

m(H, t + 1) = m(H, t) · f(H, t)
!(t)

where m(H, t) is the number of schemata H at time t, f(H, t) is the average fitness
of schemata H at time t, and f(t) is the average fitness of the population, and the . .
recursive version

m(H, t) = m(H, 0) · (1 +c)'

where c is the above-average part of H's fitness.
These two equations show that the selection increases sampling rates of the above­

average schemata and that this change is exponential. However, no new schemata
(not represented in the initial t = 0 sampling) can be formed, which prohibits the
application of the selection alone. This is exactly why the recombination phase is
introduced: crossover enables structured, yet random, information exchange, and
mutation introduces additional variability into the population. Therefore, to formu­
late the complete theory, we must consider the effect of both of these operators on
the growth equation. Assuming independent probabilities Pc and Pm for one-point
crossover and mutation respectively, we obtain:

f(H, t) [R(H)]
m(H, t+ 1) > m(H, t) · · 1- Pc-

1 1
- Pm · o(H)

- f(t) -

This result can be stated as ([21]):

6

Schemata Theorem: Short, low~order, above average schemata receive exponen­
tially increasing trials in subsequent generations of a genetic algo1'ithm.

An immediate result of this theorem is that GA explore the search space by short
schemata which subsequently are used for information exchange during crossover:

Building Block Hypothesis: A genetic algo1·ithm seeks near optimal performance
through the juxtaposition of short, low~order, high~performance schemata, called the
building blocks.

Although some effort has been done to prove this hypothesis (e.g. [4]), for most
nontrivial applications we rely on empirical results. Nevertheless, this hypothesis
suggests that the coding problem for a genetic algorithm is critical for its performance,
and that such a coding should emphasize meaningful building blocks. This, in turn,
suggests the following intuitive approach to problem solving by genetic algorithms:

Intuition: The problem representation in a GA should be such that conceptu;r;tlly
related alleles are close together in the resulting genotype.

2.3 How Genetic Algorithms Work: an Example

We close this chapter with an illustration of a genetic algorithm at work (figure
2.3). Consider a multimodal function of one variable f(x), with a given domain
x E (a, b). Using the binary alphabet, we code this variable as a chromosome. The
number of bits in such a representation depends on the variable's domain (b - a)
and a desired precision. Assuming ten binary bits, a chromosome (and, therefore, a
potential solution) may look as follows:

0011101011

Of course, to evaluate the fitness of each such binary number, it first must be trans­
lated to its decimal equivalence (235 here) and then scaled to the domain (a, b). For
example, the above chromosome translates to the value:

evaluation = 235· 2k~1
Then, we decide the population size (twenty in this case), and fill it with randomly
generated chromosomes (t = 0). This random initialization corresponds to sampling
the search space. We evaluate the samples (the dots in the reference figure repre­
sent the evaluations of the chromosomes). Next, we select a new population with
higher-valued chromosomes having proportionally bigger probability of appearance,
and we apply the genetic operators to produce new samples. Here are two examples
of possible mutation and crossover:

mutation: crossover:

0011101011 0011101011
'-+ 1100000010
0010101011 '-+

0000000010
1111101011

7

f x) sampling distribution

t=O

-"'-------~-~X X
a a

sampling distribution sampling distribution

i=lOO t=lOOO

Figure 2.3: An example of a genetic algorithm at work.

We iterate the evaluate/select/recombine process a number of times. After a
number of such iterations, the sampling concentrates around the high-payoff subspace
(see figure 2.3 after 100 and 1000 iterations). With a sufficient number of such
iterations the solution can be found (or closely approximated, in general).

8

Chapter 3

INDUCTIVE LEARNING FROM
EXAMPLES

In this section we define the problem of inductive learning from examples of an
attribute-based space and describe some important related issues. We also present
inference methods of the well known inductive learning methodology, which we sub­
sequently use as the basis for our new approach.

3.1 Problem Statement

Concept learning is a fundamental cognitive process that involves learning descrip­
tions of some categories (i.e. sets drawn from a common class) of objects. Such de­
scriptions can be placed in different universes. We are considering here the restricted
attribute-based spaces, spanned by a number of attributes, each of which has a finite
set of allowed values (in essence, this is a generalization of boolean functions from
two- to multi-valued domains). A priori knowledge consists of a set of events, i.e.
examples of the space. Each such an event is actually a point in the attribute-based
problem space. Moreover, we are considering here the case of supervised learning, i.e.
learning assuming that each a priori event is preclassified as an example of one of the
concepts to be learned.

In other words, each concept is described in terms of a set of sample events.
Its members are called positive examples of the concept. The task is to generalize
the a priori knowledge in order to produce descriptions of such concepts. When a
rule-based framework is used to express such descriptions, the acquired knowledge
is often called decision rules. Such rules can subsequently be used to both infer
properties of the corresponding classes and to classify other, previously unclassified,
events from the space. For example, consider the case of the cardiac unit's database
of a hospital, where each patient is described in terms of a fixed number of attributes
including his/her personal information, clinical history, and results of various tests.
Assuming that all numerical measurements are divided into discrete intervals, each
patient becomes a single event in the finite-sized space. Furthermore, assume that
some of the patients are known to have a certain heart disease, while others are known

not to have it. Finding a feature-spanned description of the first group of patients
certainly would help us define groups of people in high risk groups, as well as help us
predict the risk of developing this disease in new patients.

The generated knowledge can, following various intentions and criteria, describe
characteristic or discriminant properties of the categories ([39]). Characteristic are
the most typical properties, and should be maximal, i.e. listing a maximal number
of appropriate features (a feature is an attribute-value pair). This kind of learning is
often conducted on positive events only. Discriminant are the properties necessary to
differentiate a given concept from others, and normally such a minimal set is sought
~. this learning requires both positive and negative events (negative events are those
representing other classes). In order for the sets of positive and negative events to
be disjoint, the descriptive power of the features must be sufficient. Such a scenario
(called consistent) is desired, but not necessary for the learning (if the initial data set
is inconsistent, a special protocol for treatment of such problematic examples must
be employed). . ·

3.2 Language

An important issue is that of defining both the input and the output language. The
input language serves as an interface between the environment (as a teacher) and the
system. Therefore, it should combine requirements of both these entities. Moreover,
it should minimize inconsistencies among data. The output language serves as an
interface between the system and the application environment. Therefore, it should
combine the requirements of the learning system with those of such an environment.
For example, for a purely classification application, there is no need to express the
acquired knowledge on any comprehensive level. The output interface is only to
provide obtained classifications of some new events. On the other hand, a learning
agent used as a part of a hybrid intelligent system must be able to communicate
its knowledge to other parts of the whole system (see figure 3.2). If such a system
contains elements operating in a high level language (as an expert system, human
expert, etc.), our learning agent should be able to express its knowledge at the same
level.

Learning systems unable to produce high level knowledge are often classified as
non-symbolic, and the other ones as symbolic. However, such a classification does
not reflect the important issue of the language of the inference mechanism; in [69]
the authors call systems that produce high level output but operate on a lower level
heterogeneous. We try to make a similar distinction where we feel it is important.

In the non-symbolic systems the output knowledge usually consists of a set of
numerical parameters. In the symbolic systems two choices proved to be dominating:
decision trees ([49]) and decision rules ([38]). Rules normally have the advantage of
being the same on both the input and the output, which facilitates some important
learning strategies as incremental or closed-loop learning. However, this advantage is
rather an elegance, since it has been shown that decision trees can be both converted
to rules ([51]) and applied in an incremental environment ([62]). Nevertheless, the

10

difference actually goes beyond the elegance if one considers the level of inference:
the rule-based systems normally also operate on structures of the same language.

One widely used language, which is not only closely associated with rules, but
is normally also used to represent input events for any program operating in an
attribute-based space, is V L 1 ([41]). Variables (attributes) are the basic units having
multi-valued domains. According to the relationship among different domain values,
such domains may be of different types:

• Nominal, e.g. {Yes, No} in boolean attributes

• Linear, e.g. AgeOJPatient, with linearly ordered values

• Structured, with partially ordered values

Relations"=,#,<,~'>, 2:" associate variables with their values by means of: se­
lectors having the form [variable relation value], with the natural semantics. For
example, [Age > Young] is interpreted as the set of people of Middle or Old age,
assuming the three values (Young, Middle, Old) in the domain of the linear attribute
Age. Notice that while the "=, #" relations can appear in any selector, the other four
can only be used with ordered domains. The value in a selector is a single domain
value. However, for the '=' relation it may be a disjunction of such values. In this
case we call it an internal disjunction: this greatly reduces the complexity of the
formulas of the language. Conjunctions of selectors form complexes.

The significance of the language relies on the natural correspondence to a rule­
based paradigm. Selectors can be used to express conditions on single attributes.
Complexes can be used to express rules of the form:

complex ::> decision

Because of that, the semantics of the language's constructs are easily understood.
For example, the following set of rules describes people with heart problems as those
which are older and have high blood pressure, or those with high cholesterol levels:

[BloodPressure = High][Age # Young] ::> HeartRiskGroup
[CholesterolLevel = High] ::> HeartRiskGroup

The internal disjunction, along with the natural semantics, makes the equality
relation alone sufficient to represent any formula of the language. For example,

• Assuming that the attribute A has a linearly ordered domain:

[A 2': v] {==} [A= v, v;, ... , vk]

where v;, ... , Vk are all domain values greater than v in the ordering.

• For any attribute B:

11

where v, ... , Vk are all domain values different from v.

This fact provides for great simplicity and uniformity to further discussion of process­
ing the elements of the language, as it allows us to define all the operators in terms
of the equality relation alone (chapter 5 and 6).

3.3 Conceptualization

The idea of a concept itself may be defined in many different ways, depending on the
assumed concept representation and on methods of instance classification. According
to Smith and Medlin ([60]), historically there have been three basic approaches:

• The classical view, which assumes that all instances of a concept share some
common properties which uniquely identify the concept. It assumes that eon-
cepts are complete and consistent descriptions of categories. · ·

• The probabilistic view, which states that the common properties are the most
typical, but any instance does not have to possess all of them. The concept
membership is decided by an accumulated degree of fitness.

• The exemplar view, where a concept is represented by its most typical examples
(exemplars), and the concept membership is decided by a measure of fit to an
exemplar.

Each of these views has been criticized for its inability to precisely model human
conceptualization. For example, the classical view has been criticized for its inability
to represent disjunctive and imprecise concepts. The first of these disadvantages is
relaxed by a rule-based view. However, such a view is crisp as it does not account for
imprecise concepts. The exemplar and probabilistic views, on the other hand, were
mostly criticized for ignoring the role of generalization. The most recent trends seem
to explore hybrid views, combining some crisp approaches (as rules) with probabilistic
ones ([15]) as means of dealing with noise and imprecise concepts. For example, the
two-tiered approach employed in AQ15 combines a rule-based view representing most
typical properties with an inferential quantitative part accommodating boundary and
imprecise cases ([42]).

In addition to psychological evidence, the choice of the conceptualization method
is often dictated by the underlying knowledge acquisition method, or rather its out­
put language. For example, assuming a sufficient set of attributes for the events to
be consistent and a crisp view, a decision tree can naturally produce complete and
consistent partition of the search space (a search space is covered completely if ev­
ery subspace is covered, and it is covered consistently if no subspace is covered in
a conflicting manner). This is so because the decision tree mechanism starts with
the whole space and recursively cuts it into disjoint subspaces. On the other hand,
it is more difficult for a set of rules to cover the search space in the same manner
(normally such qualities are required only with respect to the set of training events; in
such a case we say that the rules are complete/ consistent with respect to the training

12

data set). Therefore, an extra mechanism is needed to account for possible cases of
no-match and multiple-match. Such problems can be avoided while learning simple
concepts (called single-concepts) if the system learns only the concept description
and its negation is assumed to represent the negation of the concept (see figure 3.1).

3.4

B01010101
A 0 1 2 3

1
Negation of ~1::=~-t--r--J--jl-llz
the concept 0

!----+---+-+--11 1

Concept

0

1

0 0

CD

Figure 3.1: An example of a single concept learned by one description.

Goals of Knowledge Acquisition

-~

The purpose of extracting information about some concepts of an attribute-based
space is to acquire knowledge able to:

• Predict classifications of previously unseen examples by assigning confidence
factors to different hypotheses.

• Interact with other entities of a hybrid intelligent system, e.g. with a human or
an artificial expert. For ease and feasibility of such interactions, the language
of the system should be coherent with that of the other entities.

Until now, most automatic acquisition systems were used as either direct classi­
fication systems, or their output was to be further processed by hand. This is why
most experiments evaluating qualities of such systems concentrated on the prediction
accuracy (see e.g. [25]). Nevertheless, there were sporadic attempts to address the
other issue as well (e.g. [54, 69]). It seems appropriate to say that while the prediction
accuracy will continue to have high importance in future learning systems, the ability
to express the knowledge on a high abstract level will play an increasingly important
role. An additional reason for that, pointed out by Michalski in [43], relates to the
increasing dependence on any automatically generated knowledge:

"An important implication ... is that any new knowledge generated by
machines should be subjected to close human scrutiny before it is used.

13

Numerical
classification

New events for
recognition ~ Other

Leamer components v Learning
events

Human
expert

Figure 3.2: The usage environment for a learning system.

This suggests an important goal for research in machine learning: if peo­
ple have to understand and validate machine-generated knowledge, then
machine learning systems should be equipped with adequate explanation
capabilities. Furthermore, knowledge created by machines should be ex­
pressed in forms closely corresponding to human descriptions and mental
models of this knowledge; that is, such knowledge should satisfy what this
author calls the comprehensibility principle."

3.5 Incremental Learning

According to Holland ([23]), an inductive process in a rule-based framework must
accommodate both revision of rules and generation of new ones. Generation of new
rules is associated with two sources, the environment and existing knowledge. Ac­
cording to Michalski ([39]), an inductive learning system must accommodate the
production of new rules, as well as generalization and specialization of existing ones.
According to Winston ([67]), near-miss examples, carefully chosen by the teacher,
specialize existing models, while correct examples further generalize them. All the
above, in addition to some psychological evidence, support the idea of incremental
concept learning. First concept descriptions are formed early, after seeing few exam­
ples. Upon experiencing new evidence, the knowledge is revised:

• If the new evidence is consistent, the knowledge might be further generalized,
as the confidence in certain assertions increases.

• If the new evidence is inconsistent, the knowledge must be refined by special­
ization of the overgeneralized assertions.

In addition, normally not all examples of a concept are available simultaneously. This
is true for both natural and artificial systems. Therefore, a learning agent should
be able to perform incremental conceptualization, unless special circumstances exist
(such as a relatively static world), which permit a batch learning (with the assumption

14

that all available examples are available simultaneously). Accordingly, incremental
capabilities are receiving increasing attention of the research community ([15]).

There are two different approaches to learning in the context of increasing number
of examples. The first assumes the existence of working memory able to remember all
previously seen events for a future reference. This approach is normally referred to
as full memory learning, and the incremental processing is associated with both pre­
viously generated knowledge and previously seen examples, in addition to the newly
presented events (one should also mention here the case of so called batch-incremental
systems, which process the incrementally available events in relation to only the previ­
ously seen events, disregarding the previously generated knowledge). The feasibility
of such full memory systems is restricted by the data set size. However, its other
advantages, especially relative conceptual simplicity, cause many learning systems to
follow this direction. In addition, two other important factors favor this approach in
the domain of attribute-based spaces: the available data sets for many interesting
concepts are appropriately small, and such systems can normally accommodate 'the
large data sets by means of some special techniques (see section 4.1.2).

The other approach assumes that the only available memory is for the generated
body of knowledge. In general, systems of this kind are conceptually more difficult to
apprehend. They find more use in other machine learning subfields, especially where
single events are of high complexity.

3.6 Inference Rules of the Inductive
Methodology

Michalski ([39]) provides a detailed description of various inductive operators that
constitute the process of inductive inference. In the restricted language V L1 (for
induction in an attribute-based space), the most important are: condition dropping
-i.e. dropping a selector from the concept description; adding alternative rule and
dropping a rule- adding/removing one rule from the description; extending a refer­
ence - extending an internal disjunction; closing an interval - for linear domains
filling up missing values between two present values in a selector; climbing generaliza­
tion - for structured domains climbing the generalization tree; turning a conjunction
to a disjunction; inductive resolution- analogous to the resolution principle. These
operators are either generalizing or specializing existing knowledge. There is no pro­
vision for generating the initial set of rules. In section 5.5 we define our operators.
We also discuss the choice of the initial knowledge (section 5.3).

15

Chapter 4

PREVIOUS APPROACHES

Over the past few decades there have been many different approaches to the problem
of supervised learning in attribute-based spaces. Some of them came from th; AI
community, others from fields such as statistics. One of the most recent ideas has been
to use genetic algorithms, to which we pay special attention since our new approach
tries to extend such ideas by those of the inductive methodology.

4.1 Traditional Approaches

As mentioned earlier, non-symbolic systems rely mostly on quantitative information
processing. Therefore, they are further away from mainstream AI devoted to symbol
processing. On the other hand, the symbolic systems apply the qualitative approach
to learning: the output is a high level description, and the processing itself is often
done at the symbol level.

4.1.1 Non-symbolic

Statistical approaches account for the vast majority of non-symbolic, or numerical,
approaches. They usually operate in batch mode on the data set in order to ob­
tain some statistical measures, which are later used as probabilistic approximations
of appearances of different features. To achieve a suitable classification, this infor­
mation's correlation to a new example is accumulated using some inference methods.
Among such methods, the Bayesian probabilistic model is the most known ([47]). The
disadvantage of these approaches is that they rely on low level processing for high
level learning. Furthermore, such treatment makes it hard to process any available
problem specific knowledge. In addition, the measures used treat all features inde­
pendently, and high processing complexity does not allow exploration of inter-feature
dependencies ([47]), even though they could be incorporated ([54]).

Another numerical approach comes from the neural network community. A neural
network is a cognitive model of the human brain and is composed of two kinds of
elements: processing elements (nodes of the network) and connections ([55]). Viewed
as a memory, such a network has its knowledge distributed among the connections -
called weights. These weights determine the propagation of excitatory and inhibitory

signals which in turn determine the excitation of certain nodes. Such a memory
model is capable of learning. The backward propagation of a failure is the best known
method of setting the weights. A neural network method has been applied to simple
cases of concept learning with some success (see [68]). However, these applications
are totally quantitative as well, which makes it difficult to establish a platform for
any higher level knowledge utilization or understanding.

As described, the non-symbolic systems do not follow the methods of the inductive
learning methodology, but rather perform numerical computations. This, however,
leads to an apparent advantage of better applicability to processing noisy information
([54]).

4.1.2 Symbolic

The two prominent symbolic approaches to supervised feature-based learning, .:Jec­
ognized as benchmarks, are Michalski's AQ ([39]) and Quinlan's ID ([48]). They"are
both considered symbolic systems, even though they have some numerical elements:
ID uses an information measure function, while the two-tiered representation of AQ
performs a partially probabilistic inference.

The AQ approach is based on inductive generalization and specialization of the
V L1 formulas using the idea of a cover of the positive against the negative events. The
cover is constructed in an iterative manner, starting with only one positive and one
negative event and continuing until the generated cover is complete and consistent.
To prevent an apparent exponential growth in the number of generated descriptions,
special heuristics, which accommodate some learning criteria, are employed to reduce
the size of partial covers. However, retaining a number of such current covers provides
for a competition among different solutions. This approach conceptually follows the
ideas of inductive methodology, as the generated knowledge is either generalized or
specialized, as appropriate. However, the algorithm itself uses only the logic-based
operators of negation, union, and intersection to process the current description.

The many proposed extensions of this basic algorithm facilitate incremental learn­
ing, constructive learning, use of initial hypotheses and domain assertions, etc. (see
[40]). In addition, both the most representative examples selection method ([37]) and
the two-tiered concept representation ([42]) allow for processing of noisy data.

In the ID approach, the training examples are represented by feature vectors
similar to events in V Lt. The algorithm constructs a decision tree, where each leaf is
associated with a single decision class, each internal node corresponds to an attribute,
while each node's branches correspond to a value of that attribute. One of the features
of such a tree is that no path from the root to a leaf has two nodes corresponding to
the same attribute. The algorithm itself is an iterative application of the information
content formula: I= p * log(p), where pis a probability of given information ([48]).
At each node of the tree the algorithm only treats events satisfied by the path to
this node: the information content is calculated for all such remaining attributes and
events, and the attribute giving the maximal information gain is selected as the label
for this node.

This approach, despite its apparent disadvantage of "no look-ahead" (a node is

17

constructed based on the currently best attribute), proved to be successful in terms
of recognition quality. However, the numerical formula used causes serious problems
while trying to incorporate some domain specific knowledge. On the other hand, re­
cent extensions allow for incremental concept learning ([62]), for reducing the tree to
binary ([31]), for pruning the tree, and for converting it to a set of rules ([51]). How­
ever, the algorithm is conceptually very distant from the inductive learning method­
ology. It iteratively applies specialization, starting with the whole event space. Only
then generalization can be applied, by means of tree pruning or rule construction
techniques.

Both of the above are full memory systems, meaning that they assume the avail­
ability of all previously seen events at any time during incremental learning. However,
they both allow for processing large quantities of data: the AQ uses a preprocessing
mechanism selecting only the most representative events ([37]), and the ID uses the
idea of data windowing. _.

4.2 Genetic Algorithm Approaches

Since the early 1980's there has been an increasing interest in applying GA methods
to machine learning -in particular to learning production rules, whose special case
is the problem of supervised learning from examples of an attribute--based space. The
main problem in such applications is to find a suitable representation, able to both
capture the desired problem characteristics and to represent a potential solution (as
we mentioned in section 2.2). Using a rule-based concept representation brings a
different kind of problem: the number of such rules (disjuncts) is not known a priori.
Therefore, the traditional fixed length representation is unsuitable. Two different
approaches have been proposed:

• Michigan approach, where the population still consists of fixed length elements,
but the solution is represented by a set of chromosomes from the population.
This methodology, known as CS for classifier systems, along with a special
"bucket brigade" mechanism for credit assignment, was originally developed by
Holland and colleagues ([23]). Here, each chromosome, called a classifier, repre­
sents a structure composed of conditions and messages lists. The environment,
together with the activated rules, provides a set of active messages. These,
in turn, activate other classifiers by satisfying their conditions. The chained
actions of message-condition pairs cluster the rules together. Because of this
chaining mechanism, this approach seems more suitable for planning than con­
cept learning.

• Pitt approach, which represents an extension of the traditional fixed-length
chromosome approaches. Here, variable length chromosomes are used to rep­
resent proposed solutions individually. Such a representation (LS for Learning
System) was originally suggested and theorized by Smith in [61). This repre­
sentation seems more naturally suited for the supervised learning from feature­
based examples problem.

18

Both of these approaches suffer from some drawbacks: the classifier systems rely
on the problematic bucket brigade for a nontrivial credit assignment. The variable
length approach constitutes a wide divergence from the traditional GA, and, therefore,
requires special treatment. Nevertheless, some applications prove to be successful,
although in quite limited applications (e.g. [19, 57, 66]). The two most noticeable
genetic algorithm approaches to supervised concept learning in attribute-based spaces
come from Koza and DeJong with Spears, both in the LS framework. Koza uses lisp
programs (similar to decision trees) as means of representing potential solutions, with
some tree-based operators that are closed in the space of such representation: some
results are presented in [32]. DeJong and Spears use a binary representation for
multi-valued domains, and implement only the traditional operators of mutation and
crossover in their GABIL system. In [13] they compare GABIL's batch-incremental
learning with those of ID5 ([62]) in the domain of random DNF descriptions.

With very few exceptions (e.g. [13, 32]), all systems for rule-based learning .-use
a three-symbol alphabet {0, 1, # }, where # stands for a wild-card character (~.g.
[19, 17, 57]). Such an alphabet is the choice of both CS and LS based systems, as
it allows for easy coding of various general aspects of machine learning. However,
it is not so well suited for non-binary domains, where an attribute can take a value
from an unpredictably (but assumed finite) sized domain: in particular it is not well
suited for feature-based spaces. This problem was originally pointed out by Greene
and Smith in [17], and a nice solution was employed by DeJong and Spears in the
previously mentioned publication ([13]).

19

Chapter 5

THE MODIFIED GENETIC
ALGORITHM

..
In this chapter we first describe the major ideas used to derive the system's design, and
then present the system itself by defining the necessary components (those listed in
section 2.1). Some implementation issues, strongly associated with any such approach,
are addressed in the next chapter.

5.1 Ideas Used

One of the most praised characteristics of a genetic algorithm is its domain-independent
search ([12]). This is the source of both the many successes of GAs, especially in pa­
rameter optimization, and, at the same time, of many limitations in other applications
(see chapter 1). In general, such arguments fall into the same category as those calling
for more domain specific AI methods two decades ago. Recall that, at first, general
problem solvers (GPS) were devised- which were to play the role of general tools for
many nontrivial problems. It soon turned out that, due mostly to the unmanageable
complexity of such methods, it was necessary for the designers of intelligent systems
to incorporate domain and problem specific knowledge, by either making it explicit
or by hiding it in the implementation.

The need for problem specific knowledge incorporation into GAs was recognized
as a method for an improvement in many different domains (e.g. [18]). Davis calls for
such approaches in [8], where he calls them "hybrid" genetic algorithms and argues
to explore combinations of GAs with existing methodologies in any possible domain.
Similar ideas were called for in applications to machine learning. For example, Forrest
proposed to use high level operators ([16]) such as "concept specialization" and "value
restriction"; Antonisse and Keller called for similar incorporations in [1]. However,
both of the above were restricted to classifier systems and the three-symbol alphabet.

Following the Pitt approach, which seems more natural for our task of learning
disjunctive descriptions, we are faced with chromosomes of varying number of fixed
length structures. Then, there is a whole spectrum of possible GA designs along
the dimension of task-specific knowledge utilization (see figure 5.1). On one side

,None Level of task-knowledge incorporated Ful~

Only classical mutation
and crossover operators

No domain-independent operators,
only fully implemented problem
solving methodology

Figure 5.1: The spectrum of knowledge incorporation in a GA.

of the spectrum lies a method which only uses the classical operators of mutation
and crossover. Such an approach is conceptually very easy. Moreover, it enjoys the
same theoretical foundations as the fixed-length GAs: Smith showed that a variable­
length list of fixed-length structures satisfies the Schemata Theorem, provided that
such structures are positionally independent ([61]). The above determines the existing
popularity of such approaches in any domain. The same is true in the particular ease
of supervised inductive learning. For example, the previously mentioned GABIL
system follow this path.

On the other side of the spectrum lies a knowledge--intensive method which com­
pletely abandons the traditional domain-independent operators, and, instead, fully
implements the specific problem solving methodology. This approach is conceptually
much more challenging as it requires, in addition to the GA implementation, a clear
and conscious understanding of the problem being solved, along with a well described
complete solving methodology defined at the problem level. This fact, in addition to
the lack of well established theoretical foundations, determines the low popularity of
such approaches. In particular, we are not aware of any GA for supervised learning
in attribute--based spaces working at this end of the spectrum.

From the above discussion a clear trade-off emerges between the two extreme
approaches along the spectrum. Domain-independent operators are conceptually
easy, while the design of task-specific operators requires deep understanding of the
problem solving methodology. The former is also backed by the Schemata Theorem,
but the search is problem-blind (except for the measure of fitness, see figure 5.2), and
it may easily fail under the restriction of resource limitations (e.g. time constraints).
The latter approach does not have the same theoretical support, but it is backed by
the task--specific knowledge used to guide and conduct the search (see figure 5.3). This
property should provide for a faster convergence to a desired solution. Moreover, it
may be easily shown that all the operators we subsequently define and use (section 5.5)
are actually special cases of the traditional mutation and crossover. This provides an
intuitive support for the Schemata Theorem. Also, because the operators are defined
on the semantic pieces of the problem, one may easily argue that this design naturally
satisfies the building block hypothesis as well (chapter 2).

These are some of the reasons for our decision to pursue this path. But even
a more appealing and important justification arises in the context of the learning
process understanding and validation. Applications of the task-specific knowledge
as the only means for inference mechanisms provide for a better understanding of
the underlying principles of the learning system. Such an understanding becomes
increasingly important while designing systems able not only to generate knowledge,

21

Population

Operators

Domain
knowledge

GAspace

GA control
mechansim

Figure 5.2: Application of a GA with traditional operators.

but also able to explain and justify their behavior. For example, Michalski wrote in
[41]:

" ... one should strive to facilitate human understanding not only of
the surface results but also of the underlying principles, assumptions, and
theories that lead to these results."

This approach is also justified as an abstraction of the genetic algorithm approach.
Following the previous discussion on GAs, and those intuitive results stating that the
best representation should provide the chromosome structure reflecting syntactic and
conceptual knowledge of the problem, we actually go to the extreme of using the

22

Population GA control
mechanism

t
Operators with -
task -domain
knowledge

Figure 5.3: Application of a task-specific genetic algorithm.

c GA)1-----'E"-'v=al=ua""'t-"'io""-n ----{(Problem)

Work done here

Figure 5.4: A genetic algorithm with traditional operators.

problem space as the working search space. In other words, while applications of the
traditional domain-independent operators provide for a domain-independent search
conducted in the artificial representation space (figures 5.4 and 5.2), we escape the
critical coding problem by moving the genetic algorithm into the problem space and
organizing the work there (figure 5.5 and 5.3).

Work done here

Figure 5.5: A genetic algorithm with task-specific operators.

23

5.2 Representation and Search Space

We adopt the multiple-valued logic language V L1 (section 3.2) as the choice for a
chromosome's representation. Then, the search space is the space of sets of rules,
spanned by given features; this is the space of V L1 concept descriptions. Because we
do not employ any extra axioms, it is quite feasible and possible to have redundant
descriptions, e.g.

[Age > Young] ::> HeartRiskGroup
[Age = Old] ::> HeartRiskGroup

For simplicity of presentation (but not lack of generality), from now on we only
consider V L1 formulas built using the'=' relation and internal disjunction. Such as­
sumptions do not introduce any restrictions on the power of the language (see section
3.2), and make the forthcoming discussion both more uniform and comprehensibJ.e.

Moreover, for the same reasons, we assume that we are dealing with single con­
cepts, and that we are learning only a single description - the space not covered
by such a description is assumed to represent the negation of the concept (as e.g.
in [13]). This simplification allows us to assume a crisp rule-based conceptualiza­
tion. We address possible generalizations of this approach to multiple concepts and
non-crisp views in the part on future research directions (chapter 10).

Because of the assumption of learning only a single concept description, all rules
are associated with the same single decision, which subsequently does not have to be
stated explicitly in the "complex::> decision" syntax. Accordingly, when no confusion
can arise, we may refer to the same set of rules as just a logical disjunction of V L1

complexes.

5.3 Initial Population

The population contains individuals, each of which is a potentially feasible solution
(a set of rules of the V L1 language). Its size remains fixed (as a parameter of the
system). Initially the population must be filled with potential solutions. Such an
initialization might be totally random (as is normally the case in genetic algorithms),
or it might incorporate some task-specific knowledge. There is an obvious trade-off
between the level of knowledge used in such an intelligent initialization. On one side
of the spectrum is the random choice, very cheap and simple. On the other side,
we have an initialization which produces actual solutions to the problem, differing
possibly by some applied criteria. This latter initialization is actually as hard as the
problem we wish to solve. Therefore, it is inapplicable.

We follow the idea of as simple an initialization as possible, yet intelligent. Ac­
cordingly, we allow for three different types of chromosomes to fill the population
initially:

• The first type is just a random initialization. Each individual is a set of a
random number of complexes, randomly generated on the search space.

24

• The second type is initialization with data. Each individual is just a random
positive training event.

• The third type is initialization with priori hypotheses, provided such are avail­
able. Each individual is just a single hypothesis given by the environment.
Having such capabilities, the system can be used as a knowledge refinement
tool - possibly cooperating with an expert system of an intelligent hybrid
framework.

Actual experiments show that the best average behavior is obtained while using
a combination of these three (or the first two if initial hypotheses are not specified),
even though the importance of the initialization with positive events diminished quite
a bit when we used an operator that adds such positive events to current descriptions.

5.4 Evaluation Mechanism

The evaluation function must reflect the learning criteria. In supervised learning
from examples, the criteria normally include completeness, consistency, and possibly
complexity. In general, one may wish to accommodate some additional criteria, e.g.
cost of attributes, length of descriptions, their generality, etc. , but we did not consider
them in the current implementation.

II Structure type II Completeness I Consistency II

II A rule set II s+fE: 11 - E f E II
.. A rule .. ef E . 1 - ej s+ ..

Table 5.1: Completeness and consistency measures.

The completeness and consistency of a rule, or a rule set, measures its quality
with respect to the set of training events. We use the formulas presented in table 5.1,
where e+ / e- is the number of positive/negative training events currently covered by
a rule, c:+ / C is the number of such events covered by a rule set, and E+ / E- is the
total number of such events. These two measures are meaningful only to rule sets
and individual rules. For conditions, the measures of the parent rule are used. These
definitions assume the full memory model (see section 3.5).

Combining multiple criteria in a single evaluation measure is very difficult and
critical for the convergence problem ([21]). In our case we need to combine three such
values. We can ease this task by replacing the completeness and consistency measures
with a single measure of correctness. There are two different well accepted ways to
combine the two:

correctness= c++(E--c)
E++E

cor; ectn es
8

= ;:wcc1...::· c:::.o:.cm::<p:.::l e::.:t:::.e:.cne::.:s:.::s'"+...::w'-'2'-'· c:.::occn:::.s:::i s"-t e::.:n::c:.<Ly
w1+w2

25

The first of those assumes that each positive and negative event has the same
effect. This may be advantageous in eases where such an assumption is true, but may
be disastrous in cases where their relative number is quite different. The second, on
the other hand, assumes that the positive and negative events have different effects,
controlled by the weights w1 and w 2 , and related to the relative frequency of posi­
tive/negative examples in the training set. The choice of the better measure should
be based on some additional task-specific information, as what is the meaning of such
relative frequences.

We combine correctness and cost by:

evaluation= correctness· (1 + w 3 · (1- cost))f

where w 3 determines the influence of cost (which itself is normalized on < 0, 1 >),
and f grows very slowly on < 0,1 > as the population ages (a dynamic approach).
The cost of a description is measured by its complexity, which combines the numper
of rules and conditions in the following way:

complexity = 2 · #rules+ #conditions

as originally proposed by Michalski (e.g. [69]). The above measure for evaluation is
an initial experimental rather than a theoretical choice, and provides for a controlled
bias with respect to descriptions' complexity.

For most practical tests we used a very low W3 weight (~ 0.01). Too high a
value may cause lightly covered rules to be dropped from the descriptions, too low a
value reduces the rate and probability of simplifying the generated descriptions (e.g.
dropping redundant rules). The primary reason for the cost accommodation is to
force differentiation between the same or similarly covering rule sets but of different
complexity.

We use a dynamic approach to the use of cost i.e. an approach that adjusts
its effects as the population ages. We successfully applied similar dynamic ideas in
other domains (e.g. [35]). The effect of the very slowly raising f is that initially
cost's influence is very light in order to promote deeper space exploration, and only
increases at later stages in order to minimize descriptions' complexity. Moreover,
initial experiments suggest that the system performs better when the f exponent
somehow fluctuates along the desired behavior, and that the final increase should
start based upon an anticipated exhaustion of resources or when the currently learned
description is already complete and consistent.

5.5 Operators

The operators transform chromosomes to new (possibly better) states in the search
space. Since the system operates in the problem space, the operators directly follow
the inductive learning methodology. According to the three syntactic levels of the
rule--based framework (conditions, rules, rule sets), we divide the operators into three
corresponding groups. In addition, each operator is classified as having either gener­
alizing (subsequently denoted by <J), specializing (denoted by I>), or unspecified-

26

or independent- behavior (denoted by 0). Note that the inductive methodology
(section 3.6) does not define independent operators; their introduction is strongly
associated with the ideas of this genetical search, e.g. the use of a population.

For a graphical illustration of the operators, we use the following search space:

Attribute Values Type
A 0,1,2,3 Linear
B 0,1 Nominal
c 0,1,2 Nominal
D 0,1 Nominal

in which we demonstrate each operator using the idea of diagramatic visualization
([69]), which is a multi-valued extension of the well known "Karnaugh map" or
"Veitch diagram". Following the correspondence of V L1 complexes and rules in _:j;he
single-concept scenario, we represent a rule set as a disjunction of V L1 compleJ(es;
each complex is a lhs of a rule corresponding to the same decision. We discuss pos­
sible generalizations to multiple decisions in section 10.2. Also, we try to define the
operators as simple as possible, in order to reduce the computational overhead. For
example, we do not use the inductive resolution rule (section 3.6), which requires an
extensive pattern matching in order to find two complexes having selectors which are
negations of each other.

In the subsequent definitions we use the following notation: chrom for a cluo­
mosome representing a set of rules, cpx for a complex, sel for a selector, dec for a
decision, and e+ / C for a positive/negative example from a category.

5.5.1 Definitions

Rule set (V L1 set of complexes) level. At this level, operators act on whole rule
sets (one or two at a time):

27

• Independent:

B
A

Rules exchange. This operator requires two parent rule sets, and it ex­
changes random rules between these two. It requires two parameters:
probability of application to a rule set, and probability of rules selection
for the exchange.

0 1 0 1 0 1 0 1
0 1 2 3 CD

0 Parent rule set 1: 0
1 [A=O][B=O][C=0,1] V [C=1][D=O]
0 Parent rule set 2: 1
1 [C=O] V [A=1][C=2]
0

2
1 Consider the case of exchanging the

second rule from parent 1 with the •

0 first rule of parent 2
0 1

0 Offspring 1:
1 1 [A=O][B=O][C=0,1] V [C=O]

0 Offspring 2:
2 1

[A=1][C=2] V [C=1][D=O]

• Generalization:

Rules copy. This operator requires two parent rule sets, and it copies a
random rule from each ofthe the sets to the other. It differs from the "rules
exchange" operator, as it does not remove information being propagated
from the rule set. It requires one parameter: probability of application to
a rule set.

B01010101
A 0 1 2 3 CD

0 0
1

-l-l-lHHH 1 O
1

2 0
1

0
0 1

~-+-+-+-+-l 0

1 1

0
2 1

Parent rule set 1 :

[A=O][B=O] V [A=1,2,3][C=O][D=O]
Parent rule set 2:

[A=O][B=1] V [A=3][C=2]

Consider the case of copying the
second rule of parent 2 to parent 1

Offspring 1:

[A=O][B=O] V [A=O][B=1]
V [A=1,2,3][C=O][D=O]

Offspring 2:

[A=O][B=1] V [A=3][C=2]

28

New event. This operator acts on a single rule set: if there is a positive
event not covered yet by the current rule set, this event's description is
added to the set as a new rule:
chrom = U;(cpx; ::>dec) and :J,+V;(e+ /'? cpx;) <l chromU(e+ ::>dec)
It requires only one parameter: probability of application to a rule set.

~ 0
0

10
1

1 0 2 1 0
3

1 CD

0 0
1

0
--+--t--t-+-+-1 1

1

--t--t--t--t--t--t 2 0
1

0
0 1

0
-t-t--t--t--t---i 1 1

0
-1-1-1-1-1-1 2 1

Parent rule set:

[A=O] V [C=O][D=l]
An uncovered event:

[A=3][B=l][C=O][D=l]

-·

Offspring:
[A=O] V [C=O][D=l]
V [A=3][B=l][C=O][D=l]

Rules generalization. This operator acts on a single rule set. It selects two
random rules and replaces them by their most specific generalization:
cpx 1 ::>dec, cpx2 ::>dec <l (cpx' ::>dec)
where cpx' is the most specific generalization (not necessarily consistent
with respect to previously excluded negative events) of the two complexes.
It requires one parameter: probability of application to a rule set.

~ o
0

10
1

1 0
2

1 0
3

1 CD

0 ~
0

1
1

2 0
1

0
0 1

0
1 1

0
2 1

Parent rule set:

[A=3] V [A=l][C=l][D=O]
V [A=O][B=O][C=l]
V [A=l][C=O][D=O]

Consider generalizing all but the

the first rule

Offspring:

[A=3] V [A=O,l][C=O,l]

29

• Specialization:

Rules drop. This operator acts on a single rule set, and it drops a random
rule from that set. It requires one parameter: probability of application
to a rule.

~ 0
0

10
1

1 0 2 1 0 3 1 CD

0 ~
0

-t-t-t-t-t-1 1
1

2 0

Parent rule set:

[A=O] V [C=O][D=l] V [A=2,3][C=2]

1 Consider dropping the third rule

0
0 1

0
-IHHHHH1 1

0
---IH'-Ii--1'-li--1 2 1

Offspring:

(A=O] V [C=O][D=l]

-·

Rules specialization. This operator acts on a single rule set, and it replaces
two random rules by their most general specification:
cpx 1 ::>dec, cpx2 ::>dec 1> (cpx' ::>dec)
where cpx' is the most specific generalization (not necessarily complete) of
the two complexes. It requires one parameter: probability of application
to a rule set.

A
B01010101

0 I 2 3 CD

-1---1-IH o ~
0

I
I

Parent rule set:
[A=O] V [A=O,l][C=O] V [C=l]

2 0
-if-t-+--t--+--1 1 Consider specializing the first two

0
---1-+-++-+--l 0 I

0
I I

0
1-J-1-J-J-t--t--t-1 2 I

rules

Offspring:

[A=O][C=O] V [C=l]

30

Rule (V L1 complex) level. At this level, operators act on one rule at a time:

• Independent:

Rule split. This operator acts on a single rule, and it splits it into a
number of rules, according to a partition of the values of a condition (an
absent condition can be selected as well, using all domain values). The set
of domain values present in the selected condition can be split according
to each value individually or according to two disjoint subsets of values.
For the linear data types, the latter split is more desired; in this case
the present domain values are split by cutting the ordered set of values
in a single random place. For the nominal data type, the former split
is more desired. A structured type requires a slightly more sophisticated
approach, similar to that of the linear type, but with differently defined
values and orderings. This operator requires three parameters: probabijity
of application to a rule, and probabilities of a subset vs. all values sp·lit,
separately for the linear and nominal data types.

~ o
0

10 1 1 0 2 1 0 3 1 CD

0 0
1

1-l-l-l-1-1-l-t-l 1 0
1

1-l-l-l-1-1-l-t-l 2 0
1

0
0 1

0
1 1

0
1-1-l-l-l-l-1-t-l 2 1

• Generali2ation:

Parent rule:

[C=O]

Assume the attribute A is linear, and
a subset split occurs between the
values 2 and 3

Offspring:
[A=0,1,2)[C=O] V [A=3][C=OJ

Condition drop. This operator acts on a single rule, and it removes a
present condition from that rule:
((cpx = A;sel;) ::> dec) <1 (cpx' ::> dec)
where cpx' has all but one selectors of cpx. In other words, one of the
selectors of cpx is extended to cover the whole domain of the associated
attribute. It requires a single parameter: probability of application to a
rule.

31

B01010
2
101

A 0 1 3 CD

1-t-t-+-+--l--l--t---1 0 0
1

0
-t-tl

1

1-t-t-+-+--l--l--t---1 2 0
1

0
1-HI-HI-HI-H o 1

0
1 1

0
1-+-+-+-+--t--t--t--1 2 1

Parent rule:
[A=0,1,2][C=l J[D=D]

Assume that the condition associated
with the D attribute is dropped

Offspring:

[A=0,1,2][C=l]

.<

Turning conjunction into disjunction. This operator acts on a single rule,
and it splits the complex into a disjunction:
((1\isel;/\1\jselj) ::>dec) <l (1\iseli ::> dec)V(I\jselj ::>dec)
where the complex's separation into n and m selectors is random and posi­
tion independent. It requires a single parameter: probability of application
to a rule.

B01010101
A 0 1 2 3 CD

1--11--1--11--1 0 0
1

-l-l-lH 1 °
1

1-t-1-t-t-t--t-t-1 2 0
1

• Specialization:

0
0 1

0
1 1

0
2 1

Parent rule:

[A=D,l][B=l][C=O,l]

Offspring:
[A=O,l][C=O,l] V [B=l]

Condition introduce. This operator acts on a single rule, and it introduces
a random condition associated with an unconditioned attribute:
((cpx = 1\;seli) ::> dec) 1> (cpx' ::> dec)
where cpx' has, in addition to all the selectors of cpx, a new selector asso­
ciated with an attribute not present in cpx. The new selector is a random

32

choice from among all of its possible internal disjunctions. It requires a
single parameter: probability of application to a rule.

CD

---l---1---1---1 0 ~

---l---1---1---1 1 0
1

---1-1---1-1 2 0
1

0
-1-1-1---l-1 0 1

0
---11-+--t-+--1 1 1

0
---11-+--t-+--1 2 1

Parent rule:

[A=O,l]

Assume that we introduce a new
condition on attribute B: [B=O]

Offspring:

[A=O,l][B=O]

Rule directed split. This operator acts on a single rule. If this rule covers
a negative event, it is split into a set of maximally general rules, yet con­
sistent with that event, in the following way:
(cpx ::>dec) and ::le-(e- =? cpx) J> U;(cpx; ::>dec)
where the new set has cpx's such that (V;cpx;) = (cpx 1\ ~e-). This oper­
ator resembles the action in the heart of the cover procedure of AQ15. It
requires a single parameter: probability of application to a rule.

B 0
0

1 0 1 0 1 0 1
A 1 2 3 CD

---1-1---1-1 0 0
1

0
--+-+-+--1 1

1

-1-1-f-12 0
1

0
---l---1---1---1 0 1

0
---1---1---IH 1 1

0
---l---1---1---1 2 1

Parent rule:
[A=O,l]
e-=[A=O][B=l][C=O][D=l]

Offspring:
[A=l] V [A=O,l][B=O]
V [A=O,l][C=l,2] V [A=O,l][D=O]

33

Condition (V L1 selector) level:

• Independent:
Reference change. This operator acts on a single condition, and it ran­
domly removes or adds a single domain value to this condition. It requires
a single parameter: probability of application to a condition.

0
--1--1--11-l 0 I

0
1-HI-1-1-t-1-H 1 1

0
-l--1--+--1 2 I

• Generalization:

Parent rule:

[A=0,1,3][C=0,2]

Assume the value '3' is removed from -•

the condition associated with the
attribute A

Offspring:
[A=O,l][C=0,2]

Reference extension. This operator acts on a single condition, and it ex­
tends the domain by allowing a number of additional values. For the
nominal type, some random values are selected for extension. For the lin­
ear type, a single value may be selected or, with a higher chance, a range
may be closed (between two present values, using the domain ordering).
Moreover, such shorter open ranges have a higher chance of being selected
over longer ones. This operator requires quite a few parameters, including
a probability of application to a condition, and a number of selection prob­
abilities determining the choice of an action. For the structured type, we
replace some of the present values by their parent in the generalization tree,
giving preference to those offsprings that prevail in number (generalization
climbing).

34

B 0
0

I 0 I 0 I 0 I
A I 2 3 CD

1-HI-HHHf--H o
0

I

I 0
I

1--1--1--1-t-t-t-H 2 o
I

0
1--1-+--t--+-+-t--i---1 0 I

0
I I

~---~~~-4-4-4~ 0

1-+-+--1--1--f--1--t----l 2 I

• Specialization:

Parent rule:

[A=0,3][C=l][D=O]

Assume we work with the condition on
the linear attribute A,
and we close the open interval

Offspring:

[C=l][D=O]

..

Reference restriction. This operator acts on a single condition, and it
removes some domain values from this condition. Its actions and parame­
ters are analogous to those of the "reference extension", but have opposite
effects.

CD

1-+-+-+-+--l--1--t----l 0 ~
I 0

I

1-+-+-+-+--l--1--t----l 2 0
I

0
1--I-I-1-1-I-1-H 0 1

0
I I

'1-H o
1--I-I-1-1-1-I-H 2 1

5.5.2 Dynamic aspects

Parent rule:

[A=1,2,3][C=l]

Assume we work with the condition on
the attribute A, and we remove the
value '3' from the condition on the
attribute A

Offspring:

[A=l ,2][C=l]

As seen in the definitions, each operator is given some initial probabilities from two
separate groups:

• Application probabilities. Each operator is given an initial probability of ap­
plication to its type of structure (based on the level of its definition). These

35

probabilities have a dynamic character with respect to the current context, i.e.
to both the current coverage and the current, problem-dependent, size of the
average chromosome. Firstly, priori probabilities of generalizing operators are
increased for applications to structures (rule sets, rules, conditions) that are
incomplete, and decreased for those inconsistent. On the other hand, the priori
probabilities of specializing operators are increased for applications to structures
that are inconsistent, and decreased for those that are incomplete. Moreover,
the levels of probability increase/ decrease are based on the levels of inconsis­
tency /incompleteness. In other words, these two measures serve as additional
heuristics guiding the selection of appropriate operators (in addition to fitness).
Secondly, all application probabilities are adjusted as to achieve a constant
chromosomes' update rate. For example, more complex problems, which cause
the intermediate chromosomes to be longer (both in terms of the number of
complexes and their sizes), decrease all such probabilities by the same fracti_<:m.

• Selection probabilities: These serve as a mean of selecting one of a number of
possible actions or substructures to participate in the operations ~ they are
static.

While selecting the appropriate method of completeness/ consistency incorpora­
tion, we must be careful not to decrease the probabilities too far as to prevent certain
operations from performing. Since we want the changes to be linear with those mea­
sures, the following seem natural (but still experimental) choices:

Generalizing operators: p' = p · (~-completeness) · (~+consistency)
Specializing operators: p' = p · (~+completeness) · (~-consistency)

The new value p' is the adjusted probability, and p is the actual probability. It
is important to mention that since p' is computed differently for each chromosome,
it does not replace the a priori p. The simplicity of this formulas guarantee low
computational overhead.

To accommodate the changes in problem-specific characteristics, namely the av­
erage size of a complex and the average length of chromosomes in the current popu­
lation, we use the following approximation. vVe observe the number of chromosomes
undergoing recombination in a given population. If this number represents too large
a portion of the population, we decrease all the priori application probabilities by
the same fraction for the next reproductive iteration. If this number is too small, we
do the opposite. Since the adjustments are computed for the whole population, they
actually always replace the priori values (or those resulting from the last change).
Experiments show that with an appropriately small such adjustment fraction, the
changes converge and then the probabilities remain relatively steady. This method
provides for a partial independence of such probabilities from some characteristics of
the problems. We discuss more such methods in section 10.1.

36

5.6 Algorithm

The algorithm uses the above components and the control of genetic algorithms (sec­
tion 2.1). At each iteration all rule sets of the population are evaluated, and a new
population is formed by drawing members from the original one in such a way that
more fit individuals have a higher chance of being selected (chapter 2 and 5.4). Follow­
ing that, the operators are applied to such a population in order to move these partial
solutions, hopefully, closer to the sought state. Each operator acts on structures from
its level, applying itself to some randomly selected structures: the application de­
pends on both initial probabilities, the consistency/completeness of such structures,
and the size of the currently average chromosome. Then, the cycle repeats until a
desired description is found or some resources are exhausted. For a better illustration
refer to chapter 7.

37

Chapter 6

SOME IMPLEMENTATION
ISSUES

We implemented a simple C version of the proposed approach in order to be able to
test our ideas. The choice of the language, aside from efficiency, was based on avail­
ability of bitwise logical operators used to speed up the evaluation mechanism (section
6.3). We call this implementation GIL (for Genetic-Based Inductive Learning). In
this chapter we present the most important issues facing any such implementation,
along with approaches used in GIL.

6.1 Sampling Mechanism

The selection algorithm is to choose some chromosomes from the current population
to form a new population, with possible omissions and repetitions. There are many
standard ways of performing this step. Baker provides an excellent discussion of such
in [3]: we use the stochastic universal sampling mechanism. This method builds a
roulette wheel for the chromosomes, with each chromosome having allocated a portion
of the wheel proportional to its evaluation fitness. A second wheel is constructed with
equally spaced marks. The number of such marks is the same as the number of samples
to be drawn (the size of the population). The wheels are placed on a single axis and
the one with marks is randomly spun against the other. The positions of the marks,
in relation to the space allocated for each chromosome on the other wheel, are then
observed: a chromosome is selected once for each mark landing in its allocated space.

6.2 Internal Representation

In section 5.2 we described the architecture of the chromosome, in terms of the lan­
guage used. Now we discuss some important issues associated with the internal
representation.

In section 4.2 we mentioned that the widely used three-symbol alphabet is not
suitable for the multi-valued domains of feature-based spaces. A more appropriate
solution was suggested originally by Greene and Smith in (17], and recently used by

DeJong and Spears in their GABIL system ([13]). This approach uses binary digits
to represent domain values. For example, assuming that an attribute has five domain
values, the binary vector 11001 represents the condition saying that the attribute
must have the first, second, or the last value (assuming some positional enumeration
of values from the left, and a use of the internal disjunction). If the longest domain
is not longer than the bitwise length of available integer or unsigned data types, each
condition can easily be represented by one such simple data object. If some domains
are longer, a vector of such data objects can be used. We use exactly these ideas to
implement conditions (selectors of V L1).

In section 3.2 and 5.2 we showed how, without the loss of generality, our assump­
tion of learning only one description allows us to work with complexes built using
the internal disjunction and only the '=' relation, and that a disjunction of such
complexes can be treated interchangeably with the a set of V L1 rules. We use this
fact throughout this implementation, and we discuss possible extensions to multiple
descriptions in section 10.2. · ·

A chromosome's length is actually unrestricted -a rule set may contain any num­
ber of rules. Because of that, the only way to represent rule sets is to organize them
as linked lists. This gives us freedom up to a given machine's capacity. An important
issue associated with the rule set is that of treating rules that are invalid, i.e. con­
ditions that are totally restricted - exclude all domain values. DeJong and Spears
suggested keeping such rules as possible sources of valid conditions (GABIL uses this
strategy). We performed some experiments to study the trade-off between antici­
pated increases in the computational cost of retaining these rules vs. improvements
in predictive accuracy of the system. Our conclusions are far from final. Nevertheless,
they suggest there is a clear conflict between these two factors (see section 9.6). A
similar issue arises in the context of empty rules, i.e. those not covering any positive
events. Such rules, again, may be removed or retained. Also, there seems to be a
similar kind of complexity vs. quality trade-off. We experimented with this issue as
well, and some results are reported in the same section.

Figure 6.1: An internal representation of a sample chromosome.

Each complex is a conjunction of a number of conditions. The number of such
possible conditions, in a given complex, is bounded by the total number of attributes.
We use that bound as a way of simplifying the internal representation: a complex is

39

represented by a vector of conditions. Furthermore, for simplicity and efficiency, we
associate a fixed positional correspondence between the attributes of the vector. This
does not introduce any problems since no operators acting at the condition level are
positionally dependent - their application is nondeterministic.

Such an implementation introduces a new dilemma: how to treat unrestricted
conditions, i.e. those that include all domain values in the selector. It is a question
of elegance, or possible efficiency, rather than power: an unrestricted selector can
be dropped from its complex without of any semantic change to the rule associated
with this complex. We tried both approaches: one with all selectors present in each
complex, the other with unrestricted selectors invisible to all operators by means of
a special flag. Since we found no significant difference in the system's performance
under both conditions, from now on we assume the latter approach without a loss of
generality.

The above ideas are illustrated in figure 6.1, assuming the set of features 1).<;ed
in section 5.5 while defining the operators and an 8-bit machine. This figure shows
an internal representation of a chromosome, which can be viewed as a disjunction
of complexes or a set of rules using an implicit decision. Moreover, depending on
the treatment of unrestricted domains, the same chromosome can be described in
different ways, as well. The resulting four possible semantically equivalent views are
as follows:

• [A= 0,1,3J[B = 0,1J[C = 2][D = 0,1] ::> dec,
[A= O][B = O][C = 0, 1j[D = 0, 1] ::> dec

• [A = 0, 1, 3][C = 2] ::> dec,
[A= OJ[B = O][C = 0, 1] ::> dec

• [A= 0, 1, 3J[B = 0, 1J[C = 2j[D = 0, 1] V [A= OJ[B = OJ[C = 0, 1][D = 0, 1]

• [A= 0,1,3J[C = 2]V [A= OJ[B = OJ[C = 0,1]

6.3 Data Compilation

A very commonly cited disadvantage of genetic approaches to problem solving is
their time complexity (e.g. [52]). This problem becomes especially visible when the
evaluation requires an extensive computation. This is also the case when evaluating
rule sets in the supervised inductive learning, as this process involves extensive pattern
matching. Concerned with such problems, we designed a special method of data
compilation, aimed at improving the time complexity of the system.

The idea is as follows: rather than storing data in terms of features, store features
in terms of data coverage (assuming full memory learning). In other words, for
each possible feature, retain information about the events covered by this feature.
This must be done separately for each concept. Moreover, it must be done even
for concepts not being explicitly learned. For example, this means that GIL has to
remember such coverage separately for both the concept and its negation. We achieve
this by enumerating all learning events, and constructing binary coverage vectors.

40

Positive coverage vector: 10000001000000001010000000
Negative coverage vector: 000000000001010

Figure 6.2: Examples of binary coverage vectors of a feature.

The idea behind these vectors is analogous to that of representing conditions.
Suppose a learning session uses E+ positive events and E- negative examples. Then,
a coverage vector is constructed as a vector of a simple data type (integer or unsigned)
of length l = rE/ (8 · sizeof(datatype))l, for both E+ and E- separately. In such a
vector, a binary one at position n indicates that the structure that owns this coverage
vector covers event #n. For example, the vectors in figure 6.2 indicate that the given
feature covers positive events #1, 8, 17, 19 (out of 25), and negative events # 12 and
14 (out of 15).

As mentioned, prior to learning all data is precompiled into such vectors, for all
possible features. During the actual run of the system, similar vectors are constructed
for all structures of the database: from the features upwards. For example, having
the feature coverages we can easily construct both positive and negative coverage
of the condition [A=0,2] by means a simple bitwise OR (assuming a language that
provides such an operation, e.g. C) on appropriate coverage vectors of features (A=O)
and (A=2). Subsequently, conditions' coverages are propagated to rules by means of
a simple bitwise AND. Finally, rules' coverages are propagated to rule sets again by
means of the bitwise OR.

Perhaps the most important effect of such an approach is that we can easily
incrementally upgrade such coverages using a minimal amount of work after the initial
database is fully covered. For example, consider a case of the rules copy operator
applied to the following two rule sets:

R1 = ri,ri
R2 =r~,ri,r~

and suppose the operator copies r~ to R1 . The coverage of the second rule set does not
change. To compute the coverage of the first rule set it is sufficient to perform bitwise
OR between the coverage of the ruler~ (which did not change during this operation)
with the coverage of the original R1. In other words, we compute this coverage using
two bitwise OR operations (one for the positive and one for the negative coverage).
In general, the number of such required operations increases (very slowly linearly)
with the number of training events.

As another example, consider the case of the reference change operation, with a
single change from 0 to 1, on position#, in a condition's binary vector. All that needs
to be done to update the coverage of this condition is to perform bitwise OR on the
coverages (positive and negative) of the corresponding feature number # associated
with the given attribute with those of the original condition. Then, this change must
be propagated to the appropriate rule's and rule set's coverages, using similar simple
computations.

41

Chapter 7

A TRACE OF THE SYSTEM'S
BEHAVIOR

..
In this chapter we trace GIL's behavior on a sample application. We explain in detail
the major steps of the GA algorithm (figure 2.1): initialization, initial evaluation,
and one basic iteration. Finally, we trace all the remaining iterations. This further
explains and exemplifies this system and its ideas. For this experiment, the following
implementation options were used: delete both invalid and empty complexes, make
the unrestricted selectors invisible, and use the correctness measure that combines
completeness and consistency with the equal weights.

For the experiment, we decided to use data of a moderate complexity, yet sim­
ple enough to be represented by the diagramatic visualization method. One of the
concepts further described and tested in section 9.2 was a perfect choice. It comes
from the world of Emerald's robots ([29]) described by the following six attributes
(we boldface the abbreviations subsequently used in this chapter):

Attribute
HeadShape
Body
Smiling
Holding
J acketColor
Tie

Values
Round, Square, Octagon
Round, Square, Octagon
Yes, No
Sword, Balloon, Flag
Red, Yell ow, Green, Blue
Yes, No

and is one of those presented in [69]:

Head is Round and Color is Red or Head is Square and Holding a Balloon

The above concept is represented by the following set of rules:

[H-R][J=R] ::> Concept
[Ho=S][H=B] ::> Concept

or, assuming an implicit decision as used in GIL, by the following formula:

[H=R][J-R] V [H=S][Ilo=B]

The goal was to learn such a concept description when only presented with a limited
number of training events. In other words, this experiment was designed to test both
GIL's ability to learn descriptions and its ability to generalize.

The above attributes span an event space of size 432: 84 of them satisfy the
concept. The training was done using a random 20% of both positive and negative
examples: 17 and 70 respectively (see figure 7.1 for a visualization of the target
concept and the training events). The population size was set to 40, initialized equally
by both random descriptions and positive training events. The system was set to run
100 iterations. Other implementational parameters were set as follows: w1 = w2 =
0.5, w 3 = 0.02, the cost was normalized with respect to the highest cost in the current
population. The priori application probabilities, along with actual adjusted values
(adjustment for the currently average size of the chromosomes, see section 5.4) at the
end of this experiment, and at the end of one of those of chapter 9, are presented in
table 7.1. This scaling was computed assuming a desired rate of 80% chromoso~es
to be updated by the recombination step. The selection probabilities were as follows:
0.2 for a rule selection in "rules exchange"; 0.1 for "splitting a rule" according to two
subsets, as opposed to all domain values, for the nominal type, and 0.7 for the linear
type; 0.5 for all probabilities on the condition level.

Level Operator Initial This Multiplexer
Values experiment fn

Rules exchange 0.20 0.115 0.011
Rules copy 0.10 0.058 0.050

Rule set New event 0.40 0.230 0.022
Rules generalization 0.50 0.288 0.027
Rules drop 0.50 0.288 0.027
Rules specialization 0.50 0.288 0.027
Rule split 0.02 0.011 0.002
Condition drop 0.10 0.058 0.005

Rule Turning conj. into disjune. 0.02 0.011 0.002
Condition introduce 0.10 0.058 0.005
Rule directed split 0.12 0.069 0.007
Reference change 0.02 0.012 0.001

Condition Reference extension 0.03 0.017 0.002
Reference restriction 0.03 0.017 0.002

Table 7.1: Application probabilities.

7.1 Data Compilation

Data compilation is not part of the algorithm itself, but was rather designed and
introduced as an implementation method for improving the efficiency of the evaluation

43

EITl Target concept
+ Positive training events

Negative training events

Figure 7.1: The goal concept and the training events.

..

mechanism. This method is described in section 6.3: all the training events were
compiled into positive and negative binary coverage vectors for all possible features
of the event space.

7.2 Initialization

The population size was set at 40, i.e. the system was simultaneously working on that
many different potential solutions. Initially, half of these chromosomes were set as
random positive events (with replacement). The other half was initialized to random
disjunctions of complexes in the following way:

• Make one random complex.

• Append another random complex with a certain probability (0.7 was used).

• Repeat the previous step until no complex is appended.

The probability of appending a new complex controls the expected value of the length
of such random chromosomes.

1.3 Initial Evaluation

Each chromosome, being a disjunction of complexes, was initially eva! uated in the
following way:

• Both positive and negative binary coverage vectors of each selector present
in the population were constructed by bitwise ORing the coverage vectors of
appropriate features. For example, to construct the positive coverage vector for
the selector [H=R,O], the system would OR such positive vectors of the features
H=Rand H=O.

44

• Both positive and negative binary coverage vectors of each complex were anal­
ogously constructed by ANDing appropriate vectors of its selectors.

• The number of binary ones in each such a vector determined the current e+ and
e- coverage of the corresponding complex.

• Both positive and negative binary coverage vectors of each chromosome were
analogously constructed by ORing appropriate vectors of its complexes.

• The number of binary ones in each such a vector determined the current E+ and
C coverage of the corresponding chromosome.

• Both completeness and consistency measures were calculated for all chromo­
somes and complexes, according to section 5.4.

• The total fitness of each chromosome was evaluated according to section 5:"11.

The best such evaluated chromosome of the initial population is presented in figure
7.2; it is a result of a random chromosome generation.

Iteration 0 (from initialization)
Cost = 7 : 1 rule, 5 conditions
Positive coverage = 1

Negative coverage= 0

Best rules:

[B=R][S=NJ[Ho=B][J'-R, Y,B][T=N]

Figure 7.2: The best initial chromosome.

7.4 One Iteration

Each iteration of the genetic algorithm consists of three basic steps: selection, re­
production, and evaluation (see figure 2.1). However, the special data compilation
method, along with the use of the binary coverage vectors, allows for combining the
last two steps into an incrementally evaluated reproduction: each operator is followed
by a proper update to all the affected vectors and recalculation of the completeness
and consistency measures (see section 6.3). Then, the only task of the evaluation step
is to calculate the total fitness: there is no pattern matching involved. Nevertheless,
such a method still follows the full memory approach: the actual data is replaced
by the coverage vectors of the features. In the case of an incremental learning (this
particular example was conducted in the batch mode), every time a new example
is presented to the system, all appropriate features (those present in that example)

45

would be incrementally updated and propagated to other structures present in the
population.

7.4.1 Selection

During this step a new population is selected from members of the previous population
with replacement (or from the initial population during the first iteration). The
selection is performed using the stochastic universal sampling mechanism described
in section 6.1, which increases selection chances for higher-evaluated chromosomes.
One important implication of this mechanism is that the best chromosome is always
guaranteed to appear at least once in the next population.

7.4.2 Reproduction
•

During this step some of the chromosomes of the new population are changed· by
actions of the genetic operators. Normally, such actions are selected based on some
static probabilities. However, in our case there are two dynamic factors that affect
such probabilities: the rate of chromosomes update and completeness and consistency
measures of proper structures.

First, the rate of chromosomes update (from the previous generation) is compared
to that desired (80% in this case, or 32 chromosomes), and if they differ by more than
some allowable margin, all the application probabilities are accordingly adjusted by a
small fraction and the new values replace the old ones. Then, the algorithm's control
walks through all the structures present in the population and nondeterrninistically
applies selected operators. Competing here operators are those defined for the same
level. Moreover, both the generalizing and the specializing operators adjust their
application probabilities for each structure, according to section 5.5.2, before a uni­
form probability generator decides their actual application. For example, consider a
complex with the following measures: completeness = 0.2, consistency = 0.9. All
operators defined for this level are tried in a random order: each one actually found
applicable updates this complex. The independent operators have probabilities of
application exactly as the priori values (possibly adjusted with respect to the desired
update rate). The generalizing operators have probabilities of application additionally
adjusted by

(~-completeness) · (~+consistency) = 1.82

and the specializing operators have the probabilities adjusted by

(~+completeness) · (~-consistency) = 0.42

In other words, this particular complex would have an increasing pressure for gener­
alization.

Each operator actually selected for application updates the structure, and then
it immediately incrementally updates binary coverage vectors from the structure up
to the chromosome level. This action is very cheap at this moment for most of the

46

operators (for some examples see section 6.3). Also, the appropriate completeness and
consistency measures are immediately reevaluated. Such an incremental approach not
only reduces the time complexity of evaluations by taking into account some specific
information about properties of the operators, but also leaves all the coverages and
the measures consistent for the other competing operators. This is very important
since some of them rely on such information for further efficiency improvements. For
example, the "directed rule split" operator needs to find a negative event inconsistent
with the current complex. Being able to rely on the coverage vectors, finding such an
event is reduced to selecting a random binary one from the negative coverage vector of
this complex: otherwise, the complex would have to be sequentially matched against
all possible negative training examples.

7.4.3 Evaluation
~·

As we mentioned above, the only task left for the evaluation is to update the fitness
values, using the completeness, consistency, and cost measures of each chromosome,
as well as the maximal cost found in this current population (see section 5.4).

1.5 The Remaining Iterations

Following the initialization and the initial evaluation (sections 7.2 and 7.3), the system
was run for the allowable number of iterations. Not every iteration produced a better
chromosome. In this section we show the best chromosome at each iteration that
generated such an improvement.

Iteration 1
Cost = 15 : 2 rules, 11 conditions
Positive coverage = 3
Negative coverage= 0
Bc>st rules:

[H=SJ[B=SJ[S- 11[Ho=B][J= J1
V [H=SJ[B=R][S= J1[Ho=B][J=G][T=N]

Iteration 2
Cost = 6 : 1 rule, <1 conditions
Positive coverage= 6
Negative coverage= 0
Best rules:

[H=SJ[B=S,O][S= J1[Ho=B][J= Y,G,B]

47

Iteration 3 (an overgeneralization)
Cost = 4 : 1 rule, 2 conditions

Positive coverage = 12
Negative coverage= 4

Best rules:

[H=R,S][Ho=B]

Iteration 7 (a redundant rule)
Cost = 12 : 2 rules, 8 conditions

Positive coverage= 10
Negative coverage= 0
Best rules:

[H=S][Ho=B][J= Y,G,B]
V [H=S][B=R][S= Y][Ho=B][J=GJ

Iteration 8 (the redundancy removed)
Cost = 5 : 1 rule, 3 conditions

Positive coverage= 10
Negative coverage= 0
Best rules:

[H=S][Ho=B][J= Y,G,B]

Iteration 9
Cost = 13 : 2 rules, 9 conditions

Positive coverage= 11

Negative coverage= 0
Best rules:

[H=S][Ho=B][J= Y,G,B]
V [H=R][B=S][S= Y][Ho=S][J=R][T=NJ

48

Iteration 10
Cost = 12 : 2 rules, 8 conditions
Positive coverage= 13
Negative coverage= 0
Best rules:

[H=S][Ho=B]
V [II=R][B=S][S= Y][Ho=S][J=R][T=N]

Iteration 11
Cost = 11 : 2 rules, 7 conditions

Positive coverage= 14
Negative coverage = 0

Best rules:

[H=S][Ho=B]
V [H=R][B=S][S= 11[Ho=S][J=R]

Iteration 16
Cost = 9 : 2 rules, 5 conditions
Positive coverage= 16
Negative coverage = 0

Best rules:

[H=S][Ho=B]
V [H=R][B=S,O][J=R]

Iteration 25
Cost = 17 : 3 rules, 11 conditions
Positive coverage = 17
Negative coverage = 0
Best rules:

[II=S][Ilo=B]
V [II=R][B=S,O][J=R]

-~

V [H=R][B=R][S= Y][Ho=FJ[J=R][T= 11

49

Iteration 27
Cost = 8 : 2 rules, 4 conditions

Positive coverage = 17
Negative coverage= 0
Best rules:

[Il=SJ[Ho=B]
V [H=R][J=R]

This problem proved to be extremely simple to our algorithm. A complete and
consistent description was found after only 27 basic iterations, and after 3.1 CPU
seconds on a DEC3100 station. Moreover, this induction, based on the 20% of~the
available events, produced a concept description that was complete and consist.ent
with all the unseen events (this is not necessarily the case with other learning systems
-see table 9.1).

50

Chapter 8

AN ALTERNATIVE VIEW

In chapter 5 we described the ideas and the reasoning leading to the proposed d~ign
from the point of view of the GA community. In this section we show how the same
design can be argued on the grounds of artificial intelligence and machine learning.
We do that by exploring similarities between GAs and the most general problem
solving paradigm of artificial intelligence- production systems, and by showing how
the ideas behind the GA modifications can be explained in this framework.

The methodology of inductive learning, as defined by Michalski in [39], has been
widely known and accepted. When restricted to attribute-based spaces, it can be
shortly characterized as a rule-based framework with a set of inference rules and a
set of principles. Why, then, does no symbolic system actually implement it directly?
Ainong the known symbolic systems, only Michalski's AQ, with its beam-like search,
at least implicitly follows the methods by performing simultaneous generalizations
and specializations - by means of negations, unions, and intersections of formulas
of the symbolic language. Quinlan's ID separates the two strategies completely: it
builds complete and consistent descriptions by only specializing the formulas (starting
with the most general one), and then it possibly applies generalizations by means of
some tree pruning techniques. It seems that the reasons for such a diversion between
the theory and practice are lack of clearly defined measures of partial achievements
(heuristics) and the huge search spaces of inductive learning.

The space of possible concept descriptions in the attribute-based framework is
extremely large. For example, using ten descriptive attributes with three values per
domain we are faced with 710 number of different rules. Then, the number of possible
concept descriptions is 2710

, or almost 10100000000
. Most approaches deal with this

problem by performing only one kind of operation (e.g. specializations in decision
trees), by searching a differently pre-enumerated space (e.g. neural networks), or by
following a simplified strategy directed by some biased criteria (e.g. AQ). However, we
want to use the inference rules directly in a rule-based framework. Then, one solution
would be to use hill-climbing techniques. However, the available heuristics, relying
mostly on partial measures of completeness and consistency, could easily lead to
local traps. Therefore, irrevocable strategies are quite inapplicable. Another solution
would be to use some tentative techniques. However, the huge search spaces would
require such methods to be extremely well informed, or otherwise the database would

grow unmanageably fast. Again, the available heuristics are not strong enough to
provide such qualities.

To solve this problem we use a search mechanism that keeps the database size un­
der control by retaining only a fixed number of states. This is achieved by abandoning
states that show little potentials, and fully exploring only those most promising. To
implement this control we use the mechanisms of genetic algorithms, which exhibit
exactly such behavior and were shown to be very robust. To organize the method, we
use the ideas of production systems, whose general architecture is presented in figure
8.1. The database represents the state of the current search, the production •·ules
(condition-action pairs) act on the database members to derive new states, and the
control directs the rule-application process. A rule applied to the database alters its
state.

Production systems were originally inspired by attempts to model the human cog­
nitive process, and were first proposed by Post in 1943 ([59, pp. 28]). Their ideawas
to use production rules, which change states in a way of firing neurons. What arti­
ficial intelligence found interesting in production systems was the clear separation of
various elements of the paradigm. This, in turn, allowed for transparency, modular
design, and ease of both maintenance and knowledge refinement. Many different ver­
sions and generalizations of such a design were proposed by the artificial intelligence
community, often specific for certain domains. However, they all share the ideas of
the high level modularity, application of rule-like operators, and the name of produc­
tion systems, AI production systems, production rule systems, etc. ([46]). Using such
general views, one may argue that most expert systems are AI production systems,
and so are some search methods, e.g. the best first search, when applied to specific
domains.

Database Conflict resolution
Current states control

* I Knowledge base of .. .

production rules

Figure 8.1: A production system architecture.

52

The three top level components are: a database representing the state of the
current search (depending on the problem and the chosen representation, it might be
either a single state reflecting all the transformations, or it might be a set of old and
newly generated states), production rules representing the task-specific knowledge
about state-transformations, and control for conflict resolution between candidate
rules (see figure 8.1). The system starts either with the state reflecting the initial
situation (forward direction) or with the desired goal (backward direction). In either
case, the system runs until an appropriate sequence of rules transforms the initial
state to the opposite one (e.g. to the goal after staring with the premises). Usually
both the initial and the goal states are known a priori. In this case the solution is the
path that transforms one into the other. In general, the ultimate goal may be to find
the state that best satisfies some criteria. In this case the path may be of no interest.

A rule can change a state if its condition part is satisfied (the rule can fire). How­
ever, at a given moment a number of rules may candidate for firing. It is the tpsk
of the control to decide which rule actually alters the state. With this process; the
database often rapidly grows in size, causing a chain reaction by increasing the num­
ber of candidate rules. Then, the feasibility of such a system depends on the control's
quality. However, the control relies on heuristics for its decision making. There­
fore, weak heuristics prohibit production system architectures from use in many large
search spaces. In particular, this is the reason that such an architecture has not been
applied to the task of supervised learning, despite the well identified representation
and the inference rules of the inductive methodology. Before we further describe our
solution, let us compare the GAs and production system architectures.

Looking back at the general architecture of a GA (figure 5.2), it seems these two
are very similar. Both separate the current situation (database or population), the
operators acting on such structures, and the control mechanism that directs the ex­
pansion process. However, there are a number of significant differences as well. In
production systems, this separation is a natural by-product of the high abstractive
level; on the other hand, genetic algorithms make this distinction based on different
principles, often on a level that is distant from the conceptual level of the problem.
Production rules become candidates for applications in a deterministic manner, by
satisfying their conditions; operators of a genetic algorithm do not have any depen­
dencies on the current situation, but rather act nondeterministically. In production
systems the size of the database either grows or stays as just one growing state,
depending on the choice of the representation; in genetic algorithms the population
holds a constant number of states - to accommodate new states some of the stochas­
tically worse chromosomes are abandoned. In production systems only one rule fires
before candidacies is reconsidered; in genetic algorithms all selected rules fire in a
basic cycle, independently of each other. In production systems a rule always applies
to a single state to generate a new state; in genetic algorithms a new state may in­
corporate partial information from two parent states. Finally, in production systems
a new state is a product of a new state and exactly one inference, while in genetic
algorithms a new chromosome may be a product of few operations.

The new design of chapter 5 seems to push the genetic algorithm closer to the
production systems: the inference rules still have the non-deterministic element, but

53

also have a deterministic, problem~specific aspect (i.e. some operators require simple
condition matching, and probabilities of applications are adjusted by some problem~
specific characteristics, namely the current coverage and the average chromosome
size); the operators encode high level knowledge about state-transformations; differ­
ent initializations provide a kind of bi-directional behavior. Then, the design itself
can be described as a rule-based architecture, with the rules partially nondetermin­
istic and modeling the task~specific knowledge, with a constant number of expanded
states, and with the control following that of genetic algorithms. Since such mech­
anisms are known for their robustness, the system should operate in the immense
space under the constraint of those weak heuristics.

The system can be pushed even closer to production systems, and we hope that
exploring such possibilities can further improve both its quality and time performance.
For example, initial experiments indicate that inversing the application mechanism
from operator~oriented to state~oriented can improve the system's speed by a fa!;tor
of five, all without a noticeable change in its quality. In addition, exploring such
relations can lead to designs of new general artificial intelligence solving paradigms
utilizing the search principles of genetic algorithms.

Finally, after these preliminaries, we are ready to describe the system in terms
of the three components of rule-based systems: the database, inference rules, and
control.

8.1 Database

We use the rule~based framework of the V L1 language. Consequently, the search
space becames the space of all V L1 descriptions. The goal is to find the best state
that fits some criteria (completeness, consistency, and possibly some learning bias),
and not the path leading to such a state. Then, each state of the current database
is a sets of V L 1 complexes: a potential solution. Each complex is a conjunction of
conditions that must be satisfied. Finally, each condition is related to exactly one
attribute, and is equivalent to the V L1 selector.

8.2 Operators

The operators transform states of the database to new (possibly better) states in the
search space. Since the system operates in the space of V L1 ~based descriptions, the
operators model those of the inductive learning methodology when restricted to the
attribute~based spaces. To fully use the idea of the population, and to provide similar
qualities as those of the genetic algorithm search (i.e. robustness), we introduce an
additional operator which exchanges pieces of information between different states
("rule exchange"). We also define few additional operators utilizing some additional
ideas of inductive learning, as replacing a number of rules by their most specific gen­
eralization, or by their most general specialization. Having the advantage of knowing
the AQ and ID algorithms, we define two operators simulating the basic steps of those

54

two systems. Thus, we have an operator which, given a rule and a negative incon­
sistent event, replaces this rule by all maximal rules consistent with the old rule and
that event ("rule directed split"). Following the ideas of the ID algorithm, we have
an operator which partitions a rule using exactly one attribute ("rule split"). Finally,
we also have a rule which, given a state (i.e. a rule set) and a. positive uncovered
event, adds this event as a new rule to this current description ("new event"). Ad­
ditional heuristics are used to match operators to specific properties of intermediate
descriptions (by dynamically adjusting the application probabilities).

Each operator is given an initial probability of application to its type of structure
(based on the level of its definition: set of complexes, complex, and selector levels).
These probabilities have the dynamic character with respect to the current context,
i.e. to the current completeness and consistency. Prior probabilities of generalizing
operators are increased for applications to structures (rule sets, rules, conditions)
that are incomplete. Prior probabilities of specializing operators are increased~for
applications to structures that are inconsistent. Moreover, the levels of probability
increase/ decrease are based on the levels of inconsistency /incompleteness. In other
words, these two measures serve as heuristics guiding the selection of appropriate
operators.

8.3 Control

The control follows that of genetic algorithms. First, the initial database is filled with
random rules and possibly some positive training events. Then, all the rule sets are
evaluated to provide some heuristic measures of accomplishments. Such measures use
the idea of normalized correctness based on completeness and consistency. To prevent
redundancy in the descriptions, the measure is slightly adjusted with respect to the
number of complexes in a description (however, we do not use any redundancy remov­
ing axioms). In addition, one may want to include an additional bias based on some
learning criteria. For example, in the experiments shown here we also accommodate
a complexity measure (as in [69]) which reflects the number of conditions.

Following these preliminaries, the algorithm enters a stage in which the three
iterative steps are performed (selection, reproduction, evaluation) until a desired state
is found. Since, in general, we do not know the sought description a priori, the
termination condition may be based on the amount of resources available or some
criteria for the solution. During selection a new database is generated by choosing
stochastically better states (with repetitions). In other words, the most promising
states may appear multiple number of times in the new database, while the weak
ones may be abandoned. During reproduction the set of inference rules hypothetically
applies to all structures of the newly selected database. Some of the operators require
a simple condition to be satisfied in order to candidate for firing, others do not have
any preconditions. However, the actual firing is non-deterministic, with probabilities
based on prior values and the context in which each operator applies (completeness
and consistency of current structures). All operators found to fire perform their
actions: there is no conflict resolution. This action generates a set of new states,

55

which are offspring of the higher-valued previous states. Finally, all new states are
reevaluated using the available heuristics.

8.4 Efficiency Considerations

Our operators are defined as simple atomic actions, which can be performed very
efficiently on the V L1 descriptions if a special representation is used. However, some
of the operators require finding a proper positive or negative event. Moreover, the
reevaluation of a state requires an extensive pattern matching against all training
events in order to estimate its completeness and consistency. This may be uneconom­
ical and highly inefficient. To deal with this problem we precompile the training data
into binary coverage vectors, and we subsequently operate on such structures.

56

Chapter 9

EXPERIMENTS

In this chapter we report the results of an extensive testing of our approach (using the
GIL implementation), aimed at both evaluating its behavior under various conditkms
and comparing its performance to that of other well known systems. All of the forth­
coming results were obtained with the same implementation options and parameters
as those of chapter 7. The only difference was an increase in population size to 50,
and a change in the number of iterations as indicated individually.

9.1 Experimental Methodology

In the literature, systems are being evaluated and compared on the basis of quality
while working with a standard set of well recognized artificial and real data: examples
widely used are random DNFs, multiplexers, soybean disease, breast cancer. To
evaluate quality of our GIL system we use some of these standard data sets. This also
allows us to use published results obtained while experimenting with other systems,
under the assumption of repeating exactly the same experimental sessions.

As mentioned in section 3.4, the acquired knowledge must meet two criteria: high
predictive accuracy (classification) of unseen events and comprehensiveness at some
high cognitive/ conceptual level. The quality of the former measures the generalization
power of the system. Since the recognition is normally done by associating numerical
weights of confidence in different decisions, we call it a quantitative property. On the
other hand, we call the latter a qualitative property.

The most common experimenting methodology is to split the available events into
training and testing groups (usually 70% and 30%). Subsequently, the experiment
calls for a learning session using the training group, followed by testing using the
other group (containing events unseen during the training). Different measures are
then used to determine the qualities of a system. For example, for the quantitative
properties, Michalski and Chilausky define a set of conflicting measures ((38]), under
the assumption that in some cases it makes no sense to distinguish between two
close diagnoses. However, most researchers use a single measure of accuracy, defined
as the ratio of correctly classified events to all testing events: this is the measure
we use unless otherwise stated. To measure the qualitative properties we either list

separately the number of rules and conditions used, or combine them according to
the well accepted formula shown in section 5.4.

Another important issue is the estimation of such assumed measures. If we had
an infinite number of training and testing events, we would not have to worry about
sampling errors (but would have to worry about time complexity). Having only
limited resources available, the simplest way to estimate the measures is to run a single
session. However, the confidence in such r,esults is very low. Such experiments are
permissible only under extreme conditions (e.g. time constraints). A more powerful
method is to repeat the experiments with randomly selected training and testing
groups, and report the average results. This is the most often used scenario. Under
certain conditions (small number of available data events and low time complexity of
the learning/testing session), a preferred method is so called leaving-one-out. This
approach uses all-but-one events for training and the remaining event for testing,
repeating the process for all available events and reporting the average results.~ In
designing our experiments we use the second of the three described methods, with
five random resamplings per test (unless otherwise stated).

9.2 Emerald's Robot World

Recently, a report of the AI laboratory at GMU was published ([69]) evaluating a
number of different learning systems using the the world of robots from the Emerald
system ([29]). Since this report provides a detailed description of the experiment, it
is relatively easy to repeat exactly the same tests with our system and compare the
results directly with those reported.

The following were the six variables describing the robot world:

Attribute
Head
Body
Smiling
Holding
Color
Tie

Values
Round, Square, Octagon
Round, Square, Octagon
Yes, No
Sword, Balloon, Flag
Red, Yellow, Oreen, Blue
Yes, No

and the robots were classified into the following five categories (created by a task­
unaware human):

Concept
c,

Description
Head is Round and Color is Red or Head is Square and
Holding a Balloon
Smiling and Holding a Balloon or Head is Round
Smiling and not Holding a Swo1·d
Jacket is Red and no Tie or Head is Round and is Smiling
Smiling and Holding either a Balloon or a Sword

58

Finally, the task was to learn a description of each concept while seeing only a varying
percentage of the positive and the negative examples. There were a total of 432
different robots present in this world. The error rate reported is the average error
in recognizing all the 432 (both seen and unseen) events. This measure explicitly
estimates a system's predictive accuracy, while at the same time implicitly judges the
system's generalization and specialization power.

Learning Scenario (Positive%/Negative%)
System 6%/3% 10%/10% 15%/10% 25%/10% 100%/10%

AQ15 22.8% 5.0% 4.8% 1.2% 0.0%
BpNet 9.7% 6.3% 4.7% 7.8% 4.8%
C4.5 9.7% 8.3% 11.3% 2.5% 1.6%
CFS 21.3% 20.3% 21.5% 19.7% 23.0%
GIL 4.3% 1.1% 0.0% 0.0% 0.0%

Table 9.1: Error rate summary in the robot world.

Learning Scenario (Positive%/Negative%)
Concept 6%/3% 10%/10% 15%/10% 25%/10% 100%/10%

c1 11.1% 5.3% 0.0% 0.0% 0.0%
c2 0.0% 0.0% 0.0% 0.0% 0.0%
c3 0.0% 0.0% 0.0% 0.0% 0.0%
c4 10.4% 0.0% 0.0% 0.0% 0.0%
c5 0.0% 0.0% 0.0% 0.0% 0.0%

Table 9.2: GIL's error rate in the robot world.

The systems used in the mentioned experiment were: rule-based AQ15, neural
network BpNet, decision tree with rules generator C4.5, and genetic classifier system
CFS (for details see [69]). Table 9.1 reports the average error rate for the five experi­
mental concepts for all five systems (the results of the other four obtained from those
published experiments). Surprisingly, GIL (run here for the same 100 iterations) pro­
duced the highest recognition rate, especially when seeing only a small percentage of
the events. Its concept-by-concept results are presented in table 9.2. It is interesting
to note that the two most difficult concepts (C1 and C4) had the most uneven divi­
sion between the number of positive and negative examples, causing a problem when
learning with an insufficient number of events (e.g. 6% of the positive instances of C1

were only about five objects).
Table 9.3 reports the average acquired knowledge complexity by listing both the

average number of rules and the average number of conditions, as learned by all five
systems for different learning scenarios. The NR entry indicates that the complexity

59

Learning Scenario (Positive% /Negative%)
System 6%/3% 25%/10% 50%/10% 75%/10% 100%/10%

AQ15 2.6/4 1.6/3 1.6/3 1.6/3 1.6/3
BpNet NR 18/29 NR NR 32/54
C4.5 6.8/12.2 4.4/9.2 4.8/9.2 4.8/9.2 3.8/7.3
CFS NR NR NR NR NR
GIL 1.4/2.6 1.6/3 1.6/3 1.6/3 1.6/3

Table 9.3: Complexity's summary in the robot world.

Learning Scenario (Positive% /Negative%) ..
Concept 6%/3% 25%/10% 50%/10% 75%/10% 100%/10%

c1 2/4 2/4 2/4 2/4 2/4
Cz 2/3 2/3 2/3 2/3 2/3
c3 1/2 1/2 1/2 1/2 1/2
c4 1/2 2/4 2/4 2/4 2/4
Cs 1/2 1/2 1/2 1/2 1/2

Table 9.4: GIL's complexity in the robot world.

was large and not reported in the reference paper. The reason for the higher complex­
ity of the connectionist approach is that this is a non-symbolic system operating on
numerical weights rather than on the problem symbols. On the other hand, the high
complexity of the genetic approach can be attributed to the fact that the symbolic
processing was being done in the representation rather than the problem space. This
result is rather common for genetic algorithm approaches. Therefore, it was a big
surprise to find that GIL's knowledge was at the same complexity level as that of
the highly acclaimed AQ15. Again, GIL's results on a concept-by-concept basis are
presented in Table 9.4.

Finally, for the most difficult learning concept C1 , and for the most difficult re­
ported learning scenario (6% positive and 3% negative events for training), we present
a diagramatic visualization ((69]) of the acquired knowledge as compared to the tar­
get concept (figure 9.1). Among the systems not shown, C4.5 produced a slightly
more fragmented description, while the remaining two produced descriptions quite
conceptually unrelated to the target (see (69]).

9.3 DNF Concepts

Learning DNF descriptions has become a standard way of evaluating different systems
(e.g. (25]). An interesting experiment was conducted by Spears and DeJong ((13]),

60

lvlrl xH vl'l xlrlxlr I vb' I xbll xl,lxbil xbll xlrl xbll
Tle

IR ly IG Is le ly IG Is le ly Ia Is I
JacketColor

I s I Ho~dmg I F I
-mEl

Target concept

Learned concept

Target

AQ15

GIL

Figure 9.1: Diagramatic visualization of the acquired knowledge.

..

in which they compared decision tree based ID5 with their own genetic algorithm
for supervised concept learning GABIL. The test data for that experiment was a set
of random DNF descriptions of a varying complexity. The reported results represent
batch-incremental learning curves: a system's quality measure after seeing n examples
is defined as an average recognition of a single unknown random event over the last
ten experiments (from n- 9 ton). Accordingly, the learning curves are undefined for
n < 10.

There were a total of six attributes, each having three possible values. Six sets

61

of experiments were conducted, for six randomly constructed DNF concepts of the
following kind:

Concept #Rules #Conditions/Rule
1d1c 1 1
2d1c 2 1
1d2c 1 2
2d2c 2 2
1d3c 1 3
2d3c 2 3

For each experiment, a total of 100 events was chosen randomly. Then, using an
increasing number of learning events and just one testing event, the learning curves
were constructed using average results over ten independent runs with resampling.
For the incremental ID5, the knowledge was updated incrementally upon a ne~~in­
consistent event, while it was generated from scratch in the GABIL system (it does
not possess such incremental properties).

We repeated the same experiments in exactly the same environment, using the
same batch-incremental mode as GABIL. Because the DNFs actually used were not
reported in that paper, we repeated the experiments not only with resampling, but
also with randomly regenerated target descriptions (each run of 100 iterations). The
results are presented in figure 9.2. The original claim of the GABIL system was that it
could not learn as well as ID5 on simple concepts, but achieved about the same levels
(in some cases slightly better) of performance as the concepts' complexity increased.
Our results show that GIL can do both at the same time: it achieves very high
performance for all kinds of problems. Moreover, it clearly out performances GABIL
in terms of learning variability: its smooth learning curve indicates low variability in
performance, while the broken curve of GABIL indicates bigger differences from run
to run.

9.4 Multiplexers

The family of multiplexers is another widely used set of data. Each multiplexer is
actually a specific case of the more general DNF. For each integer k = 1, 2, ... there
is a multiplexer boolean function defined in the following way: the function's inputs
are the k bits (called addresses), and there are exactly 2k outputs (called data bits).
Accordingly, we have multiplexer h for k = 1, / 6 for k = 2, / 11 for k = 3, etc . .
The function of a multiplexer is to activate the data bit whose address (in binary,
assuming some ordering of the data bits starting at 0) is specified by the address bits.
For example,

[Ao = OJ[A1 = Oj[A2 = 1] V [Ao = OJ[A1 = 1 J[A3 = 1]
V[Ao = 1J[A1 = Oj[A4 = 1] V [Ao = 1J[Al = 1J[A5 = 1]

defines the /6 multiplexer in the F L1 language, assuming that attributes Ao and A1

are the two address bits, and A2 to A5 are the four data bits.

62

Figure 9.2: Batch-incremental results on DNF data.

Many experiments have been documented, mostly using f 6 and f 11 functions.
For example, Koza describes learning the first of these two, while using his LISP­
influenced hierarchical genetic approach. He reports a case of learning the actual
function after processing 4500 potential solutions, while seeing all 64 (26

) possible
instances. Our own experiments indicate an average learning after seeing only about
2000 individuals (40 iterations, database size 50). However, these two results should
not be compared directly - we lacked the necessary details to recreate the same
setting. We performed a different experiment while presenting our system with an
increasing number of training events. The resulting learning curve is presented in
figure 9.3. In all these experiments, GIL ran for 200 iterations, which took an average

63

Accuracy

1 .. ;;···~······•· ..

• •
• • • • •

• • • •
• •

'------<>-------<>--% training events
50 100

Figure 9.3: Learning curve on multiplexer Ie-

of 8.5 CPU seconds on a DEC3100 station.
Multiplexer In is considerably more complex than the simple I6 ; the size of: its

event space is 2048, or 2n. Table 9.5 reports an average accuracy while learning
with varying sizes of the training set. These results are similar to those from other
systems (e.g. [52]), but a different experimental methodology does not allow for a
direct comparison. An interesting fact observed here was that this learning was quite
slower than that of I 6 - an average of 20 CPU minutes on the same DEC3100
station for 2000 iterations. There seem to be two major reasons for this increase.
Firstly, the complexity of the sought here description was 48 vs. 20 in the previous
case. Secondly, the number of possible complexes is much larger in the second case,
giving a much larger search space: approximately 1060000 vs. 10200

• Indirectly, the
larger search space required more iterations for the learning, and larger intermediate
states (see figure 9.4) caused a longer processing on each iteration. Nevertheless, this
complexity still compares very favorably with other GA approaches. We hope to
improve this even further by a more efficient selection mechanism and a parameter
tuning (we return to these issues in chapter 10).

II % training events II Accuracy II
5% 77%
10% 88%
20% 94%

Table 9.5: GIL's accuracy on multiplexer In·

Yet another interesting difference between the two multiplexers can be observed
by comparing the accuracy while learning with a small percentage of the available
events: In achieves high rates much quicker. The reason for such a behavior seems
to be the ratio of the concept complexity to the size of event space, which is about
0.313 for Ie and 0.023 for In· This raises an interesting hypothesis about estimating
the difficulty of generating descriptions: such a difficulty is proportional, or at least
highly correlated, to the ratio of the concept's complexity and the size of the event

space. We hope to further investigate this assertion in the future.

Completeness/ consistency of the best rule set

1 ·······················~·····;;e· =----
--~ "" ~

•
•

Consistency

= Completeness

L------------t>---#iterations
1700

Complexity of the best rule set

,.
•.vo •: ..

A .. "'.. "' - ·
-··J-,

., "-..,.\ . .._
48 ,: .. \ ..

1700
iterations

Figure 9.4: A sample behavior on multiplexer fn.

Figure 9.4 traces a sample run while training with 20% of the available events.
During this learning session, the exact concept was learned after 1700 iterations. A
consistent and complete description of the training events was found shortly after
1000 iterations, and the remaining 700 cycles were required to simplify the generated
description. The first of these two graphs traces completeness and consistency of
the currently best database individual at 17-iterations intervals (100 data points).
The other graph traces the complexity of such best individuals. It is interesting to
note that the complexity rises during the learning, as a result of not finding simple
enough complete and consistent descriptions, and then decreases - forced down by
an increasing cost influence (see section 5.4) and formation of such better descriptions.

9.5 Breast Cancer

The breast cancer data is one of the most popular natural domains used in experiments
with inductive learning systems. It contains 286 descriptions of female patients,
classified as either developing or not developing a recurrence of breast cancer after
a five year period following the first surgery. The descriptions are generated using
nine attributes, with an average of 5.8 values per domain. Such descriptive language
was found to be inconsistent, meaning that some patients having exactly the same

65

description were classified differently. Such a situation puts an extra burden on the
learning system.

II System/method II Complexity I Accuracy 1/

Human experts Not reported 64%
AQ15/full rule set 41 rules/160 conditions 66%
AQ15/best rule only 2 rules/7 conditions 68%
Assistant/without tree pruning 63 leaves/120 nodes 67%
Assistant/with tree pruning 9 leaves/16 nodes 72%
GIL 36 rules/128 conditions 65%
GIL/with emphasized cost 10 rules/27 conditions 67%

.
Table 9.6: Summary of the breast cancer experiment.

An excellent publication by Michalski and colleagues ([41]) lists both quantitative
and qualitative results on this data set, while using the AQ15 system with a rule
truncation mechanism and a decision tree system ASSISTANT (this version gener­
ates low complexity binary trees and employs a tree truncation technique: [31]). In
addition, this publication also reports the accuracy of human experts. We repeated
these experiments (for 1000 iterations) and report all such results in table 9.61

. They
indicate the applicability of our approach in the case of natural domains as well.
For compatibility with the complexity results reported for the other systems, we ran
GIL twice, each time learning one the two possible concepts, and summarizing the
#conditions and #rules.

9.6 Dealing with Empty and Invalid Rules

These experiments study the effect of different treatments of invalid and empty rules.
An invalid rule occurs if one of its conditions becomes fully restricted, i.e. excludes all
domain values. Preserving such rules increases the memory contents of the system.
This has two effects:

• Useful blocks of information (e.g. partial rules) are not immediately dispensed
upon an overspecialization, but are preserved for future reference (and possible
back-generalization).

• The memory size (database size) of the system increases, causing slower pedor­
mance.

A similar dual effect occurs in the context of empty rules. An empty rule is that
not covering any positive events. Intuitively, such rules might also be very useful in
exploring the search space, but they again increase the size of the database when
retained.

1 Database courtesy of the AI Center, GMU.

66

II Which rules retained II CPU seconds I Accuracy I #rules II
None 25.4 0.90 4.7
Invalid 26.4 0.94 4.9
Empty 28.1 0.92 5.0
Both 49.7 0.95 5.8

Table 9. 7: The effects of retaining invalid and empty rules.

Experiments confirm this anticipated trade-off. Table 9.7 compares run times,
predictive accuracy, and the average size of an individual of the database over the life
of the simulation, for four different cases: retaining both kind of rules, deleting only
each kind of rules separately, and deleting both. It can be observed that increas:iug
the memory size, by retaining any of these two kinds of rules separately, increases
the system's accuracy, while also increasing the time complexity. In both cases,
the relatively small complexity overhead is well compensated for by the increase in
recognition quality. Retaining the empty rules seems to have a smaller effect on
this quality, but this result may be well related to the high percentage of the search
space events used for training. Finally, retaining both kinds of rules simultaneously
produces the best accuracy increase. However, this is associated with a relatively
high increase in time performance. Such a high increase was rather unanticipated,
and we suppose it may be related to the implementation of the system itself. More
tests are needed to test this phenomenon.

These experiments were conducted using the fa multiplexer, 70% events for train­
ing, and 500 iterations. The number of iterations was fixed as means of generating
comparable runs, even though in many instances the correct concept was found much
faster. All results are averages of ten resampled runs.

9.7 Incremental Learning

In section 3.5 we mentioned that incremental learning capabilities are important at­
tributes of a learning system. This is the case mainly for two reasons: human learning
shows incremental characteristics, and a natural setting for a learning system often
displays dynamic properties - new evidence becomes available from time to time,
as might be the case in a medical database environment where some of the diagnoses
may be confirmed after a while, or when new patients are diagnosed. Theoretically,
the incremental character is obtained by abilities to generalize and specialize existing
knowledge, as necessary, upon new experience. We would expect our approach to
possess such properties naturally, as it is based on generalization and specialization
of the current hypotheses, and it does not explicitly favor any of these two classes of
actions at any time. To evaluate this assertion, we repeated the batch mode experi­
ments with the fa multiplexer, but in an incremental setting: learning was performed
using the available data set and 100 generations, with the accuracy estimated. Then,

67

new training events were added (and the old ones remembered as well - full memory
learning) to that set in 5%-increments, and the system would be allowed to learn
again. Each time the initial database was set to the final database of the previous
learning session, the previously generated knowledge.

Accuracy

1
• •
o•

• ~a~ 8
••• Batch

' • ~ ~ o ooo Incremental ~ :; 0

'---------<>-------E>-- % training events
50 100

Figure 9.5: Comparison of the batch and incremental learning.

The results (figure 9.5) indicate that for a small number of training events the
incremental mode generates descriptions of slightly lower accuracy, but the differ­
ence vanishes for a higher percentage of such training events. This behavior can be
explained by observing that a smaller percentage of training events generates lower
accuracy knowledge in general, which is further from the true descriptions and highly
biased by the choice of the initial training events. As such a percentage increases,
the current knowledge gets closer to the sought descriptions, and the extra training
events become more consistent and less influential.

generations

62
• •

•

'--------------- # hypotheses
1 2 3 4

Figure 9.6: The effect of initial hypotheses in the initial database.

9.8 Initialization

In section 5.3 we described three different components of the initial population our
system can accommodate: random rule sets, positive events, and initial hypothe­
ses. We also mentioned that the actual importance of filling the population with
positive events diminishes with the introduction of the "new event" operator, which

68

inserts uncovered positive events to chromosomes. In this section we study the sys­
tem's ability to accommodate background knowledge in form of initial hypotheses.
In our experiments we used / 6 multiplexer with all 64 events available for training,
and we measured the number of iterations needed to find a complete and consistent
description. Population size was set to 50.

Figure 9.6 presents the results obtained: the number of generations needed for
learning the exact concept description, as a function of the number of sought and
uncorrupted disjuncts presented as input (out offour). A similar pattern exists if the
hypotheses represent somehow corrupted partial descriptions. The results indicate
that the system is capable of using such extra information to improve its performance,
justifying its potential applicability as a dynamic knowledge refinement tool.

69

Chapter 10

CONCLUSIONS AND
FURTHER RESEARCH

We have described a novel approach to supervised inductive learning in attribute­
based spaces which uses a knowledge-intensive genetic algorithm. Such an algorithm
follows the ideas of traditional GAs, but replaces the domain-independent search
by domain-specific inference operators modeled upon those of the inductive learn­
ing methodology. This approach represents an abstraction of the traditional genetic
algorithm to the symbolic level. Initial results show that GAs can be successfully
applied to more complex, non-numerical, tasks by defining the algorithm at the con­
ceptual level of the problem. This allows for processing high level structures using the
problem specific methodology and rich heuristics. Moreover, such an abstract view
provides for the same clear separation of different system's components as found in
AI production systems. This modularity, in turn, allows for transparent applications
of similar designs in other domains.

When pursuing this challenge we did not attempt to produce a system able to
compete with the existing symbolic systems (AQ and ID based), especially in terms
of time complexity. Our goal was rather to investigate the potentials of such a method
of abstracting genetic algorithms, which may be carried to other domains. Neverthe­
less, by designing efficient data compilation methods aimed at reducing the system's
complexity, and by using more "intelligent" operators than those in the traditional
GAs, we were able to tackle a number of interesting problems in a reasonable time.
This alone represents a large improvement over traditional GAs applications. More­
over, since genetic algorithms are naturally suited for parallel architectures, we may
hope that such reimplementations, along with new technological advances, may be
faster without of any additional efforts.

The system also shows significant potentials from the machine learning point of
view. Firstly, it does not assume attribute independence, as the ID-based systems
do. Secondly, it uses more problem specific heuristics (the inference rules) than the
AQ-based systems do. Finally, it extends the AQ's ideas of exploring a number of
simultaneous directions to a more powerful platform allowing for both competition
and cooperation (by information exchange). Moreover, it should have potentially
linear characteristics with respect to event space sizes, but a full explorations of

this assertion requires more extensive experimentations and an even more efficient
implementation.

The current complexity, as well as the overall quality, seems to be unstable and
to vary with a given problem. We hope that the parameter abstraction (section 10.1)
can relax this dependency, but, again, it requires an extensive continuing research.
Other important issues that should be also addressed in the future include learning
multiple concepts (section 10.2), and dealing with noisy information -possibly by
changing the rule-based conceptualization view to a more liberal one (section 10.3).

One should point out that most of the testing data was not suited to explore the
full potential of this system: most experiments were conducted with two or three­
valued domains. Such domains are much more suitable to the other learning systems
while this approach can fully explore spaces with larger and typed domains. Actually,
among the other known learning systems, only AQ15 tries to accommodate this extra
knowledge, which can be quite valuable when the domains grow. However, it does so
only after learning the initial complete and consistent descriptions. In this sense; ihis
approach seems to be the first one to be able to accommodate typed domains for the
benefit of learning.

An additional exceptional benefit of this research and its results arises in the
context of inductive learning. Our results indicate the feasibility of the previously
proposed inference operators of the inductive learning methodology. Moreover, our
implementation presents a valuable tool to further studies on this subject, e.g. to
determine the relative importance of different techniques, and their necessity. More­
over, we feel it is quite possible and feasible to extend this approach to more powerful
languages, i.e. some extension of V L 1 .

10.1 Parameter Abstraction

One of the major disadvantages of the current implementation is its high parameteri­
zation: there are over 30 input parameters that must be specified, with most of them
being continuous probability values. Under such conditions, it seems highly unlikely
to select the proper combination for a given run. This is the reason for the worsened
performance noticed on more complex problems (e.g. multiplexer f 11). Moreover,
on some occasions we observed an improved performance after slightly changing the
priori probabilities for a given problem. However, a much more extensive and system­
atic experimentation is necessary to determine the actual source of such variations:
randomness of the runs or some problem-specific characteristics.

To deal with the problem of the size of the parameter space, it is necessary to
explore inter- and intra-dependencies between such parameters. For example, all
rule--set level application probabilities should be specified with respect to each other
and, as a group, with respect to those of other groups. The dependence of the
selection probabilities on the problem size should be explored. However, establishing
such relations requires an extensive testing over a wide variety of different problems.

To deal with the second problem (dependency on characteristics of the problem),
the choice of such abstracted parameters should be further (in addition to the dy-

71

namic method of section 5.5.2) associated with the problem complexity (determined
dynamically in the process of learning) and some learning criteria (specified by the
used or some other requirements). Then, all these parameters could be replaced by
few conceptual ones, e.g. desired type of descriptions (as specific vs. general, or low
attribute cost vs. low descriptive cost). Such an abstraction would provide for both
an easier use and a more efficient performance.

10.2 Multiple Concepts

The current system assumes single-concepts only, and proceeds by learning only rules
associated with the single decision. This lets us treat the decision implicitly, and sub­
sequently simplify the definitions and implementation by processing VL1 complexes
in place of rules. For the sake of simplicity and continuity, we try to preserve _this
property while generalizing the approach to learning multiple decisions. •

When discussing such generalizations, we must consider a related issue: treat­
ing descriptions that are incomplete and inconsistent with respect to the problem
space. As we mentioned in section 3.3, rule-based framework is not well suited for
learning descriptions with the above properties, and often these qualities are relaxed.
However, in such a case, a previously unknown event may be recognized by none
or multiple concepts. Then, a special arbitration protocol must be employed. The
simplest such protocol simply returns such an event as unrecognizable: this improves
correct recognition rate, but also increases overall indecision. Such an approach can
treat descriptions of all different classes independently. A more sophisticated proto­
col employs some probabilistic measures, thus changes the conceptualization view to
a non-crisp. However, this also suggests that the descriptions should not be gener­
ated independently, but in a common context. Accordingly, we propose two possible
generalizations to learning multiple descriptions: one that assumes such rule sets
independence, the other that does not.

lncomplete
subspace

lnconsistent
subspace

BOIOIOIOI
A 0 I 2 3

I

2 0

I I

0

I

0 0

CD

Figure 10.1: A sample result of learning multi-descriptions.

If we assume that each concept description can be learned independently, we

72

..
Concept 1

.. ..
Concept 2

Figure 10.2: A sample internal representation of a two-concepts case.

may use the current system in subsequent learning sessions for each of the sought
descriptions. Then, during a learning session for class n, all positive events of the
category n are considered as positive events, while all positive events of all other
categories as the current negative events. A possible result of such a learning scenario
for two classes is presented in figure 10.1: some new events will not be classified
because either the space is not covered, or it is covered in a conflicting manner. This
simple extension was used in experiments of section 9.5. The same idea may be
used differently: we may conduct the learning sessions simultaneously in different
populations, with one population per class being learned.

The first generalization is impractical if we relax the description's independence
assumption, for now each rule set must be evaluated in the context of descriptions for
the other classes. Again, we can preserve the implicitness of decisions if we introduce
ati additional syntactic level: the concept set level. Then, while learning descriptions
of n categories, each chromosome becomes a set of descriptions, with each description
associated with exactly one of the categories. In other words, a chromosome becomes
a set of the previously defined chromosomes (section 5.2). Then, all operators that
were defined as acting on two chromosomes will act on two rule sets associated with
the same decision. All other operators stay exactly as defined previously. However,
we need new operators to act on the new (V L1 set of sets of rules) level. The only
defined operator has an independent character, and it exchanges one or more whole­
category descriptions between two chromosomes. In other words, this operator works
at the level of granularity of a whole rule set associated with one implicit decision.

73

As to the arbitration protocol for the second strategy, a very nice solution was
proposed by Michalski ((42]) and used in the AQ family: the two-tiered conceptual­
ization view. We suggest using the same approach in such an extended architecture,
which could provide an additional advantage: the two-tiered view could be used
during the learning process, while it is used only in a follow-up step in the AQ15
system.

Because a given problem specifies a priori the number of categories to be concep­
tualized, we can easily extend the chromosome implementation of section 6.2 to a
vector of such, where a vector position is associated with the decision number. For
example, figure 10.2 shows an internal representation of the two concepts of figure
10.1.

10.3 Noisy Information ..
While it might be conceptually advantageous to assume an existence of noise--free
data, it is often unrealistic under a real world condition. Such noise is normally
associated with b?th imperfect measurements (instrument and human errors), and
with the need to represent some continuous domains by discrete sets of features.
Therefore, an artificial system aimed to work in a realistic domain should deal with
these issues. Some researchers addressed the problem of noisy features. For example,
Clark ([7]) discusses the effect of noise on induction and presents his probabilistic
way of dealing with the problem. Quinlan showed how to deal with the effect of
noisy data in decision trees ((50]). The two-tiered representation of AQ family of sys­
tems applies to noise effect reduction as well (e.g. (70]). Looking at these attempts,
it is fair to say that noise accommodation generally employs some kind of proba­
bilistic approach. Our simplified approach assumes a crisp concept representation
with rule-based conceptualization and is not well suited for dealing with noise: the
most appealing approach would be to combine rule--coverage information with their
complexity in such a way that light (very low positive coverage) rules become more
costly and more applicable to be removed. The same strategy applies also to all of
the proposed generalizations to deal with multiple concepts. However, in the case
of the extended chromosome architecture, the two-tiered description may itself be
more valuable as a noise--accommodation agent, as such descriptions were showed to
improve noisy recognition in the AQ15 system.

10.4 Other Operators

We mentioned in section 5.5 that pursuing atomicity and efficiency over complexity
made us neglect the inductive resolution rule. It would be an interesting study to
compare behavior of the current system with another one implementing this operator,
along with other possible new operators. Such a. study should concentrate on both
the quantitative and qualitative properties, a.s well a.s a possible quality vs. time
trade off.

74

In addition, some of the rule set level operators described in section 5.5 could be
differently defined, depending on the selection of applicable rules. For example, the
"rules exchange" operator could overlook the selection probability and always select
a single rule. On the other hand, the "rules copy", "rules generalization", "rules
drop", and "rules specialization" could be enhanced by such probabilities, instead
of always choosing a fixed number of rules (one or two, depending on the nature of
the operator). Again, an extensive study is required to establish values of such new
operators in relation to those presently used.

10.5 More Intelligent Initialization

The ideas used here can be seen as a very specific case of more general ideas pre­
sented by Davis in recently published [8], where he calls for exploring combinations of
the traditional domain-independent genetic algorithms with some known probl~m­
specific methods (the hybrid approach). The only difference between this system and
those ideas lies in the initialization: he argues to fill the first population by chro­
mosomes representing properly represented results of some known fast systems. The
argument for such an enhancement is that then the genetic algorithm can only im­
prove such ad hoc solutions. Therefore, it is guaranteed to perform at least as well
as such other systems. In our domain there are such programs. For example, most
decision tree systems are very efficient and produce assertions easily convertible to
a rule-based format. Since our initial experiments indicate the system's ability to
process some initial hypotheses, there is a potential for a significant performance and
time improvement.

75

Bibliography

[1] Antonisse, H.J. & Keller, K.S., "Genetic Operators for High Level J(nowledge
Representation", Proceedings of the Second International Conference on Genetic
Algorithms, 1987.

[2] Bairn, P.W., "Automated Acquisition of Decision Rules: the Problems of:.At­
tribute Construction and Selection", Reports of the Department of CS, U niver~ity
of Illinois at Urbana-Champaign, 1984.

[3] Baker, J.E., "Reducing Bias and Inefficiency in the Selection Algorithm", Pro­
ceedings of the Second International Conference on Genetic Algo1·ithms, 1987.

[4] Bethke, A.D., "Genetic Algorithms as Function Optimizers", PhD Dissertation,
University of Michigan, 1980.

[5] Booker, Lashon B., "Intelligent Behavior as an Adoption to the Task Environ­
ment", Ph.D. Dissertation, University of Michigan, 1982.

[6] Bosworth, J., Foo, N., Zeigler, B.P., "Comparison of Genetic Algorithms with
Conjugate Gradient Methods", (CR-2093), Washington, DC: National Aeronau­
tics and Space Administration.

[7] Clark, P. and Niblett, T., "Induction in Noisy Domains", Progress in 1\Iachine
Learning, Bratlm, I. and Lavrac, N. (ed.), Sigma Press, 1987.

[8] Davis, L. (ed), Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

[9] DeJong, KA., "An Analysis of the Behavior of a Class Genetic Adaptive Sys­
tems', Doctoral Dissertation, University of Pittsburgh, 1976.

(10] DeJong, K.A., "Genetic Algorithms: a 10 year Perspective", Proceedings of the
First International Conference on Genetic Algorithms, 1985.

[11] DeJong, K.A., Genetic Algorithms: A 10 Year Perspective, Proceedings of the
First International Conference on Genetic Algorithms, 1985.

[12] DeJong, K.A., "Learning with Genetic Algorithm: An Overview", Machine
Learning 3,1988.

[13] DeJong K.A. & Spears, W.M., "Using Genetic Algorithms for Supervised Concept
Learning", Proceedings of the Second International Conference on Tools for AI,
1990.

[14] Davis, L., (editor), Genetic Algorithms and Simulated Annealing, Pitman, Lon­
don, 1987.

[15] Fisher, D.H., McKusic, K.B., "An Empirical Comparison of the ID3 and Back­
propagation", Proceedings of the Eleventh International Joint Conference on Ar­
tificial Intelligence, 1989.

[16] Forrest, S., "Implementing Semantic Networks Structures Using the Classifier
System", Proceedings of the First International Conference on Genetic Algo­
rithms, 1985. .

[17] Greene, D.P. & Smith, S.F., "A Genetic System for Learning Models of Con­
sumer Choice", Proceedings of the Second International Conference on Genetic
Algorithms, 1985.

[18] Grefenstette, J., "Incorporating Problem Specific Knowledge into Genetic Algo­
rithms", Genetic Algorithms and Simulated Annealing, Pitman, London, 1987.

[19] Goldberg, D.E., "Genetic Algorithm and Rule Learning in Dynamic Control Sys­
tem", Proceedings of the First International Conference on Genetic Algorithms,
1985.

[20] Goldberg, D.E. & Holland, J.H., "Genetic Algorithms and Machine Learning",
Machine Learning 3, 1988.

[21] Goldberg, D.E., Genetic Algorithms in Search, Optimization Cf Machine Learn­
ing, Addison-Wesley Publishing Co, 1989.

[22] Holland, J.H., Adaptation in Natural and Artificial Systems, Ann Arbor: Uni­
versity of Michigan Press, 1975.

[23] Holland, J.H., "Escaping Brittleness", Machine Learning II, ed. R. Michalski, J.
Carbonell, T. Mitchel, Morgan Kaufmann, 1986.

[24] Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R., Induction, The MIT
Press, 1986,

[25] Sridharan, N.S. (ed.), Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, 1989.

[26] Janikow, C.Z. & Michalewicz, Z., "A Specialized Genetic Algorithm for Numeri­
cal Optimization Problems", Proceedings of the Second International Conference
on Tools for AI, 1990.

77

[27] Janikow, C.Z., "An Experimental Study Comparing Symbolic and Subsymbolic
Inductive Learning Systems", Proceedings of FLAIRS-91: Machine Learning,
1991, pp. 81-86.

[28] Janikow, C.Z. & Michalewicz, Z., "An Experimental Comparison of Binary and
Floating Point Representations in Genetic Algorithms", Proceedings of the Fourth
International Conference on Genetic Algorithms, 1991, to appear.

[29] Kaufman, K.A., Michalski, R.S., Schultz, A.C., "EMERALD 1: An Integrated
System of Machine Learning and Discovery Programs for Education and Re­
search", Center for AI, GMU, User's Guide. No. MLI-89-12, 1989.

[30] Kondratoff, I., An Introduction to Machine Learning, Pitman, 1988.

[31] Kononenko, I., Bratko, I., Roskar, E., "Experiments in Automatic Learning of
Medical Diagnostic Rules", Technical Report, J. Stefan Institute, Ljubljana; Yu­
goslavia, 1984.

[32] Koza, J.R., "Hierarchical Genetic Algorithms Operating on Populations of Com­
puter Programs", Proceedings of t.he International Joint Conference on Artificial
Intell-igence 1989.

[33] Lbov, G.S., "Selection of an Effective System of Dependent Features", Collection
of papers of lust. for Mathematics, Academy of Science, Novosibirsk, 1965.

· [34] Michalewicz, Z. & Janikow, C.Z., "GENOCOP: A Genetic Algorithm for Nu­
merical Optimization Problems with Linear Constraints", Communications of
the ACM, to appear.

[35] Michalewicz, Z. & Janikow, C.Z., "Genetic Algorithms for Numerical Optimiza­
tion", Statistics and Computing, to appear.

[36] Michalewicz, Z. & Janikow, C.Z., "Handling Constraints in Genetic Algorithms",
Proceedings of the Fourth International Conference on Genetic Algorithms, 1991,
to appear.

[37] Michalski, R.S. & Larson, J.B., "Selection of Most Representative Tmining Ex­
amples and Incremental Generalization of VL Hypothesis", Report, Dept. of CS,
University of Illinois at Urbana-Champaign, 1978.

[38] Michalski, R.S. & Chilausky, R.L., "Learning by Being Told and Learning f1·om
Examples: An Experimental Comparison of the Two Methods of Knowledge Ac­
quisition in the Context of Developing an Expe1·t System for Soybean Disease
Diagnosis", International Joumal of Policy Analysis and Information Systems",
Vol. 4, No. 2, pp. 125-161, 1980.

[39] Michalski, R.S., "Theory and Methodology of Inductive Learning", Machine
Learning I, 1983.

78

[40] Michalski, R.S. & Reinke, R.E. "Incremental Learning of Concept Descriptions:
A Method And Experimental Results", Machine Intelligence 11, 1985.

[41] Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N., "The AQ15 Inductive Learning
System: An Overview and Experiments", Report, Dept. of CS, University of
Illinois at Urbana-Champaign, 1986.

[42] Michalski, R.S., "Two-Tiered Concept Meaning, Inferential Matching and Con­
ceptual Cohesiveness", Dept of Computer Science, Univ. of Illinois, 1986.

[43] Michalski, R.S., "Understanding the Nature of Lear-ning, Machine Learning II,
Morgan Kaufmann, 1986.

[44] Michalski, R.S. & Watanabe, "Constructive Closed-loop Learning: Fundamental
Ideas and Examples", Technical Report, ML Center, GMU, 1988. ~•

[45] Michalski, R.S., "Learning Flexible Concepts", Machine Learning III, Morgan
Kaufmann, 1990.

[46] Nilsson, N., Principles of Artificial Intelligence, Morgan Kaufmann, 1980.

[47] Pearl, J., Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann,
1989.

[48] Quinlan, J.R., "Learning Efficient Classification Procedures and their applica­
tions to Chess End Games", Machine Learning I, 1983.

[49] Quinlan, J.R., "Induction of Decision Trees", Machine Learning, Vol. 1, No. 1.

[50] Quinlan, J.R., "The Effect of Noise on Concept Leaming", Machine Learning II,
Morgan Kaufmann, 1986.

[51] Quinlan, J.R., "Generating Production Rules from Decision Trees", Proceedings
of the tenth International Joint Conference on Artificial Intelligence, 1987.

[52] Quinlan, J.R., "An Empirical Comparison of Genetic and Decision-tree Classi­
fiers", Proceedings of the Fifth International Conference on Machine Learning,
1988.

[53] Rendell, L.A., "Genetic Plans and the Probabilistic Learning System: Synthe­
sis and Results", Proceedings of the First International Conference on Genetic
Algorithms, 1985.

[54] Rendell, 1., Cho, H., Seshu, R., "Impmving the design of Similarity-Based Rule­
Learning Systems", International Journal of Expert Systems, Vol. 2, No.1, 1989.

[55] Rumelhart, D. & McClelland, J ., Parallel Dish·ibuted Processing: Explomtion in
the Microstructure of Cognition, vol.l, MIT Press, 1986.

79

[56] Schaffer, J.D., "Some Experiments in Machine Learning Using Vecto1· Evaluated
Genetic Algorithms", Ph.D. Dissertation, Vanderbilt University, 1984.

[57] Schaffer, J.D., "Learning Multiclass Pattern Dise1·imination", Proceedings of the
First International Conference on Genetic Algorithms, 1985.

[58] Schaffer, J.D., "An Adaptive Crossover Distribution Mechanism for GeneticAl­
gorithms", Proceedings of the Second International Conference on Genetic Algo­
rithms, 1987.

[59] Schutzer, D, Artificial Intelligence, An Application-oriented Approach, Van Nos­
trand Reinhold Company, 1987.

[60] Smith, E. & Medlin, D., Categories and Concepts, Harvard University Press,
1981. .

[61] Smith, S.F., "A Learning System Based on Genetic Algorithms", PhD Disserta­
tion, Univ. of Pittsburgh, 1980.

[62] Utgoff, P.E., "ID5: An Incremental ID3", Proceedings of the 5th International
Conference on Machine Learning, 1988.

[63] Vignaux, G. & Michalewicz, Z., "A Genetic Algorithm for the Linear Transporta­
tion Problem", IEEE Transactions on Systems, Man, and Cybernetics, Vol.21,
No.2.

[64] Weiss, S.M. & Kulikowski, C.A., Computer Systems That Learn, Morgan Kauf­
mann, 1990.

[65] Weiss, S.M. & Kapouleas, I., "An Empirical Comparison of Pattern Recognition,
Neural Nets, and l'>fachine Learning Classification Methods", Proceedings of the
International Joint Conference on Artificial Intelligence, 1989.

[66] Wilson, S., "Classifier Systems and the Animal Problem", Machine Learning,
3:2, 1987.

[67] Winston, P.H., Artificial Intelligence, Addison Wesley, 1984.

[68] Wisniewski, E.J. & Anderson, J.A., "Some lnte1·esting Properties of a Connec­
tionist Inductive Learning System", Proceedings of the 5th International Confer­
ence on JJ1achine Learning, 1988.

[69] Wnek, J., Sarma, J., Wahab, A., Michalski, R.S., "Comparing Learning
Paradigms via Diagramatic Visualization", Methodologies for Intelligent Systems
5, M. Emrich, Z. Ras, M. Zemankowa (eds), 1990.

[70] Zhang, J. & Michalski, R.S., "Rule Optimization via SG-TRUNC Method", Tech­
nical Repods, AI Laboratory, GMU, 1989.

80

