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C EZARY Z. J ANIKO w. Inductive Learning of Decision Rules from Attribute-Based 
Examples: A Knowledge-Intensive Genetic Algorithm Approach (Under the direction 
of Kenneth DeJong) 

Abstract 

Genetic algorithms are stochastic adaptive systems whose search method models nat­
ural genetic inheritance and the Darwinian struggle for survival. Their importance 
results from the robustness and domain independence of such a search. Robustness 
is a desirable quality of any search method. In particular, this property has led to 
many successful genetic algorithm applications involving parameter optimization of 
unknown, possibly non-smooth and discontinuous functions. Domain independence 
of the search is also a praised characteristic since it allows for easy applications in 
different domains. However, it is a potential source of limitations of the metho<]. as 
well. 

In this dissertation, we present a modified genetic algorithm designed for the prob­
lem of supervised inductive learning in feature-based spaces which utilizes domain 
dependent task-specific know ledge. Supervised learning is one of the most popular 
problems studied in machine learning and, consequently, has attracted considerable 
attention of the genetic algorithm community. Thus far, these efforts have lacked the 
level of success achieved in parameter optimization. The approach developed here 
uses the same high level descriptive language that is used in rule-based supervised 
learning methods. This allows for an easy utilization of inference rules of the well 
known inductive learuing methodology, which replace the traditional domain inde­
pendent operators. Moreover, a closer relationship between the underlying task and 
the processing mechanisms provides a setting for an application of more powerful 
task-specific heuristics. 

Initial results indicate that genetic algorithms can be effectively used to process 
high level concepts and incorporate task-specific knowledge. In this particular case 
of supervised learning, this new method proves to be competitive to other symbolic 
systems. Moreover, it is potentially more robust as it provides a powerful framework 
that uses cooperation among competing solutions and does not assume any prior 
relationships among attributes. 
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Preface 

The main goal of this project was to show that modeling simple ideas of nature, 
those utilized in the computational framework known as genetic algorithms, could be 
successfully applied to supervised inductive learning if such atomic nature-modeled 
mechanisms were abstracted to the conceptual level of the problem. Such ideas are 
not completely new. Some researchers previously argued for the incorporation- of 
task-specific knowledge into genetic algorithms applied to machine learning as ~ell 
as to other domains. However, their approaches could be described as a combination 
of the traditional approaches with some problem specific operators. Moreover, no 
such approach was implemented for the particular task of building symbolic concept 
descriptions in attribute-based spaces. My idea here was just to use the framework 
of genetic algorithms, and to organize the search by a set of operators designed inde­
pendently from the underlying mechanisms. Having as much interest in showing the 
feasibility and potentials of such an approach as in proving grounds for a subsequent 
development of an actual system, a special emphasis is placed on dealing with some 
design and implementation issues. 

At the same time, I was pursuing two secondary goals. Firstly, I tried to find 
some common ground between such a genetic algorithm abstraction to the problem 
level and the more traditional artificial intelligence problem solving paradigm of pro­
duction systems. The idea was that some of the negative characteristics of genetic 
algorithms, especially high time complexity, could be further improved by exploring 
and employing some production system ideas. Secondly, a natural by-product of this 
work is a special tool allowing for a deeper study of the theory and methodology of 
symbolic inductive learning since this approach can be viewed as an implementation 
of such a methodology with the liberal and robust search control of genetic algorithms. 

A note on notation: all relevant terms being explained are first shown in italic. 

I would like to thank all people who directly and indirectly supported me and 
provided valuable insights. In particular, I would like to thank Ryszard Michalski 
for an excellent introduction to inductive learning and scholastic attitudes, Zbigniew 
Ras for his continuous support throughout my graduate years, and Kenneth DeJong 
with Zbigniew Michalewicz for introducing me to the ideas of genetic algorithms. 

Special thanks are reserved for my wife, Grazyna, for her understanding and love. 
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Chapter 1 

INTRODUCTION 

The problem of automatic knowledge acquisition is a central issue in machine learniJ!g, 
a subfield of artificial intelligence (AI) devoted toward designing methods and method­
ologies for both knowledge representation and self-creation or self-reorganization of 
such knowledge by automata. A big part of that research is devoted toward restricted 
attribute-based spaces. Such popularity can be attributed to the existence of many 
practical problems without a sufficiently understood body of knowledge, but with 
widely available data in the form of feature descriptions. 

Traditionally, all approaches to automatic knowledge acquisition have been clas­
sified into non-symbolic and symbolic, depending on the output language. Non­
symbolic inductive learning systems, often called subsymbolic, usually do not acquire 
any explicit knowledge but rather gather other information necessary for the de­
scriptive process. They include statistical models, where the only representation is 
by means of all stored examples or some statistics on them, and the connectionist 
models, where the knowledge is distributed among a network's connections and an 
activation method. Symbolic systems, on the other hand, produce explicit knowledge 
in a high level descriptive language. However, an equally important distinction can 
be based on the level of inference. All non-symbolic approaches process low level 
entities (usually numerical parameters). On the other hand, the level of inference of 
symbolic approaches widely varies, with those operating at higher level showing an 
advantage: mechanisms based on symbol manipulations, in addition to being closely 
related to their task-objectives, allow for the use of the same input and output lan­
guage. This, in turn, creates the possibility of employing some more sophisticated 
learning paradigms, e.g. closed-loop learning ([44]) . 

With the development of the computer there hase been an increasing interest in 
simulating nature as means for problem solving. One of the most known frameworks 
was developed by Holland ([22]) and is known as genetic algorithms (GAs). This ap­
proach models the natural processes of inheritance of coded knowledge and survival by 
fitness or degree of adaptation to the environment. The two most important charac­
teristics of GAs are robustness and domain independence of their search mechanism. 
Robustness, an ultimate goal of any system, is a natural by-product of the search 
strategy which performs simultaneous space exploration and exploitation (global and 
local search). This makes the mechanism quite independent of the characteristics 



that normally break most other approaches, such as non-smoothness or discontinuity 
of the evaluation function. Domain independence, on the other hand, is obtained 
by designing the search operators in the space of the lowest level representation en­
tities. However, such an approach has both advantages and disadvantages. On the 
positive side is the fact that a new application requires only a coding of the problem 
to this artificial space. On the negative side lies the fact that the quality of such a 
coding is crucial to the genetic algorithm's performance. Moreover, operating in this 
space means using problem-blind operators, which often overlook some important 
information that normally could be utilized to guide the search. 

Nevertheless, genetic algorithms have been quite successfully applied to a num­
ber of problems. The most outstanding results come from the field of parameter 
optimization (e.g. [9, 12]), where the mentioned coding is rather easy and straight­
forward. Moreover, a non-standard floating-point representation seems to provide 
for additional effectiveness (e.g. [34, 35]). Other successful applications include opti­
mization problems like wire routing and scheduling, game playing, cognitive modeling, 
transportation problems, the traveling salesman problem, and optimal control prob­
lems (e.g. [5, 8, 10, 21, 18, 63]). However, applications to machine learning, although 
partially successful ([32, 53, 57, 58]), never succeeded in more complex domains and 
encountered many additional problems ([12]). The genetic algorithm approach to 
supervised learning in an attribute--based space is normally referred to as symbolic. 
However, the processing is normally done in symbols of the artificial, not the problem, 
language (with some exceptions, e.g. [32]). This mismatch is the main reason for the 
low rate of success. Recognizing this, there have recently been a few attempts to find 
a more problem related representation ([13, 19, 58, 61 ]), but they generally still fail 
to provide symbol processing at an appropriately high conceptual level. 

We propose to use a rule-based representation (with condition-action pairs) as the 
natural choice for a symbolic system operating in this space. Having that, we propose 
to use operators that directly model the inference rules defined in such a framework, 
namely those of the inductive learning methodology (described by Michalski in [39]). 
By doing this, we utilize the task-specific problem solving methodology and abstract 
the genetic algorithm's inference to the problem-specific symbol level. This can be 
viewed as a knowledge-intensive approach, i.e. using a vast amount of task-specific 
information, which replaces the blind search of traditional domain-independent op­
erators by a heuristic search. Implementing all the extra knowledge in the operators 
leaves the remainder of the genetic algorithm intact and allows for an easy extension 
of these ideas to other domains. Because of the richness of such new operators and 
their domain-dependent behavior, the new algorithm does not enjoy the same theo­
retical foundations as the traditional GAs do. Nevertheless, we try to show how to 
justify it intuitively, and the results of our experiments show its applicability. 

This approach can be seen as a genetic algorithm for processing high level struc­
tures specific to the problem. Because of this change, one may question whether it is 
still a genetic algorithm. We do not attempt to deal here with this delicate issue since 
it would require a clear definition of the boundaries of genetic algorithms. However, 
such boundaries are not well defined and are problematic on their own. 

The same ideas can be also derived from the artificial intelligence and machine 
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learning point of view. Then, this approach can be seen as a modified production 
system that uses stochastically firing task-specific inference rules directly on formulas 
of a rule-based framework. To deal with the problems of weak heuristics and huge 
search spaces, the very liberal and robust control mechanism of genetic algorithms is 
used. This leads to a potentially very robust design which does not assume any prior 
relationship among different attributes (as, for example, ID does). The robustness is a 
result of the existence of the platform for both cooperation (by information exchange) 
and competition among many different simultaneous solutions. This, in turn, can be 
seen as an extension of the AQ's ideas of processing competing directions (AQ does 
it by retaining a number of partial covers simultaneously, as explained in chapter 
3). Here, we provide the cooperation and use more powerful heuristics (the inference 
rules and their adjusting applicabilities). 

This dissertation is organized as follows. In chapter 2 we describe genetic algo· 
rithms and present their theoretical foundations along with some intuition behind 
their applicability. In chapter 3 we define the problem of supervised learning· of 
concept descriptions from feature-based examples, describe some important related 
issues, and outline the well-known inductive learning methodology. In chapter 4 we 
briefly describe the most known approaches to supervised learning, including tradi­
tional symbolic and non-symbolic methods as well as those based on genetic algo­
rithms. In chapter 5 we describe the ideas leading to this new approach, followed 
by a detailed description of the resulting algorithm's components. In chapter 6 we 
try to deal with some important implementation issues, and in chapter 7 we further 
illustrate the system's behavior by tracing a sample application. Then, in chapter 8 
we try to justify and describe the same approach from the point of view of artificial 
intelligence and machine learning. We follow with a systematic experimentation in 
chapter 9. Finally, in chapter 10 we draw some conclusions and describe work to be 
done in the future in order to produce a complete learning system. 
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Chapter 2 

GENETIC ALGORITHMS 

In this chapter we introduce the idea of genetic algorithms, present some theoretical 
foundations behind their applicability, and conclude with a simple example. 

2.1 What Genetic Algorithms Are 

Genetic algorithms are adaptive methods of searching a solution space by applying 
operators modeled after the natural genetic inheritance and simulating the Darwinian 
struggle for survival. They belong to the class of probabilistic algorithms, yet are 
distinguished by their different search method and relative insensitivity to local traps. 

In general, a G A performs a multi-directional search, and it encourages informa­
tion formation and exchange between such directions. It does so by maintaining a 
population of proposed solutions (chromosomes) for a given problem. Each solution 
is represented in a fixed alphabet (usually binary) with an established meaning. The 
population undergoes a simulated evolution: relatively "good" solutions produce off­
spring, which subsequently replace the "worse" ones. The estimate of the quality of 
a solution is based on an evaluation function, which plays the role of an environment. 
The existence of such a population provides for the superiority of genetic algorithms 
over pure hill-climbing methods (i.e. methods that seek a goal by always following the 
direction of the best outlook), for at any time the GA provides for both exploitation 
of the most promising solutions and exploration of the search space. 

Each iteration, called a reproduction cycle, is performed in three steps (see figure 
2.1 ). During the selection step a new population is formed from stochastically best 
samples (with replacement). Then, during the recombination step some of the mem­
bers of the newly selected population are altered. Finally, all such altered individuals 
are evaluated. 

The mating process (recombination) itself is based on the application of two op­
erators: mutation and crossove1·. Mutation introduces random variability into the 
population, and crossover exchanges random pieces of two chromosomes in the hope 
of propagating partial solutions (see figure 2.2). Because both of these operators are 
defined on syntactic pieces of the underlying representation (when each chromosome 
is viewed as a sequence of the symbols of the low level alphabet), the search has 



procedure genetic algorithm 
begin 

t = 0 
initialize P( t) 
evaluate P( t) 
while (not termination-condition) do 
begin 

t=t+1 
select P( t) from P( t- 1) 
recombine P(t) 
evaluate P( t) 

end 
end 

Figure 2.1: A genetic algorithm. 

domain-independent properties. However, the applicability of a GA to a particular 
problem depends on the representation emphasizing meaningful semantic pieces of in­
formation (called building blocks) to be used by the crossover operator, in addition to 
the evaluation function properly guiding the search. Then, the applicability is often 
decreased if the operators are defined to manipulate lower level syntactic structures 
- as is often the case. 

mutation: 
xj = ( b1 ... bk ... bn) 
'-> 
t+l- ( - ) Xi - b1 ... bk ... bn 

crossover: 
xj = (bl .. · bkbk+l ·. · bn) 
xj = (dl ... dkdk+l ... dn) 
'-> 

xj+1 = ( b1 ... bkdk+l ... dn) 
xj+l = (dl ... dkbk+l ... bn) 

Figure 2.2: Examples of mutation and one-point crossover. 

Specifying a genetic algorithm for a particular problem involves describing a num­
ber of components. Among them, the most important are: 

• A genetic representation for potential solutions to the problem, which also de­
fines the search space of the algorithm. 

• A method of generating the initial population of potential solutions. 

• An evaluation function that plays the role of the environment, rating solutions 
in terms of their "fitness" or "adaptation" to this environment. 

• Genetic operators that alter the composition of chromosomes during recombi­
nation. 

• Values for various parameters that the genetic algorithm uses (population size, 
probabilities of applying genetic operators, etc.). 
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2.2 Why Genetic Algorithms Work 

The theoretical foundations of genetic algorithms rely on the notion of a schema (e.g. 
[22]) - a similarity template allowing an exploration of similarities among chromo­
somes. A schema is built by introducing a new don't care symbol ( *) into the alphabet 
of genes - such a schema represents all strings (a hyperplane, or subset of the search 
space) that it matches on all positions other than *· Assuming a binary alphabet and 
a population of size n, there are between 2n and n · 2n different schemata represented; 
at least n 3 of them are processed at any time - Holland has called this property 
an "implicit parallelism", as it is obtained without any extra memory/processing 
requirements. 

Two other important notions associated with the schema are necessary to derive 
the theoretical basis: 

• Schema order, o(H), is the number of defining, i.e. non don't care, positi;;,s. 
Essentially, it defines the speciality of a schema. 

• Schema defining length, R(H), is the distance between the first and the last 
defining symbols of a chromosome. It defines the compactness of information 
contained in a schema. 

Assuming that the reproductive probability is proportional to fitness, we can derive 
the following two versions of the growth equation (e.g. [21]): 

m(H, t + 1) = m(H, t) · f(H, t) 
!( t) 

where m(H, t) is the number of schemata H at time t, f(H, t) is the average fitness 
of schemata H at time t, and f(t) is the average fitness of the population, and the . . 
recursive version 

m(H, t) = m(H, 0) · (1 +c)' 

where c is the above-average part of H's fitness. 
These two equations show that the selection increases sampling rates of the above­

average schemata and that this change is exponential. However, no new schemata 
(not represented in the initial t = 0 sampling) can be formed, which prohibits the 
application of the selection alone. This is exactly why the recombination phase is 
introduced: crossover enables structured, yet random, information exchange, and 
mutation introduces additional variability into the population. Therefore, to formu­
late the complete theory, we must consider the effect of both of these operators on 
the growth equation. Assuming independent probabilities Pc and Pm for one-point 
crossover and mutation respectively, we obtain: 

f(H, t) [ R(H) ] 
m(H, t+ 1) > m(H, t) · · 1- Pc-

1 1 
- Pm · o(H) 

- f(t) -

This result can be stated as ([21 ]): 
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Schemata Theorem: Short, low~order, above average schemata receive exponen­
tially increasing trials in subsequent generations of a genetic algo1'ithm. 

An immediate result of this theorem is that GA explore the search space by short 
schemata which subsequently are used for information exchange during crossover: 

Building Block Hypothesis: A genetic algo1·ithm seeks near optimal performance 
through the juxtaposition of short, low~order, high~performance schemata, called the 
building blocks. 

Although some effort has been done to prove this hypothesis (e.g. [4]), for most 
nontrivial applications we rely on empirical results. Nevertheless, this hypothesis 
suggests that the coding problem for a genetic algorithm is critical for its performance, 
and that such a coding should emphasize meaningful building blocks. This, in turn, 
suggests the following intuitive approach to problem solving by genetic algorithms: 

Intuition: The problem representation in a GA should be such that conceptu;r;tlly 
related alleles are close together in the resulting genotype. 

2.3 How Genetic Algorithms Work: an Example 

We close this chapter with an illustration of a genetic algorithm at work (figure 
2.3). Consider a multimodal function of one variable f(x), with a given domain 
x E (a, b). Using the binary alphabet, we code this variable as a chromosome. The 
number of bits in such a representation depends on the variable's domain (b - a) 
and a desired precision. Assuming ten binary bits, a chromosome (and, therefore, a 
potential solution) may look as follows: 

0011101011 

Of course, to evaluate the fitness of each such binary number, it first must be trans­
lated to its decimal equivalence (235 here) and then scaled to the domain (a, b). For 
example, the above chromosome translates to the value: 

evaluation = 235· 2k~1 
Then, we decide the population size (twenty in this case), and fill it with randomly 
generated chromosomes ( t = 0). This random initialization corresponds to sampling 
the search space. We evaluate the samples (the dots in the reference figure repre­
sent the evaluations of the chromosomes). Next, we select a new population with 
higher-valued chromosomes having proportionally bigger probability of appearance, 
and we apply the genetic operators to produce new samples. Here are two examples 
of possible mutation and crossover: 

mutation: crossover: 

0011101011 0011101011 
'-+ 1100000010 
0010101011 '-+ 

0000000010 
1111101011 
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f x) sampling distribution 

t=O 

-"'-------~-~X X 
a a 

sampling distribution sampling distribution 

i=lOO t=lOOO 

Figure 2.3: An example of a genetic algorithm at work. 

We iterate the evaluate/select/recombine process a number of times. After a 
number of such iterations, the sampling concentrates around the high-payoff subspace 
(see figure 2.3 after 100 and 1000 iterations). With a sufficient number of such 
iterations the solution can be found (or closely approximated, in general). 
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Chapter 3 

INDUCTIVE LEARNING FROM 
EXAMPLES 

In this section we define the problem of inductive learning from examples of an 
attribute-based space and describe some important related issues. We also present 
inference methods of the well known inductive learning methodology, which we sub­
sequently use as the basis for our new approach. 

3.1 Problem Statement 

Concept learning is a fundamental cognitive process that involves learning descrip­
tions of some categories (i.e. sets drawn from a common class) of objects. Such de­
scriptions can be placed in different universes. We are considering here the restricted 
attribute-based spaces, spanned by a number of attributes, each of which has a finite 
set of allowed values (in essence, this is a generalization of boolean functions from 
two- to multi-valued domains). A priori knowledge consists of a set of events, i.e. 
examples of the space. Each such an event is actually a point in the attribute-based 
problem space. Moreover, we are considering here the case of supervised learning, i.e. 
learning assuming that each a priori event is preclassified as an example of one of the 
concepts to be learned. 

In other words, each concept is described in terms of a set of sample events. 
Its members are called positive examples of the concept. The task is to generalize 
the a priori knowledge in order to produce descriptions of such concepts. When a 
rule-based framework is used to express such descriptions, the acquired knowledge 
is often called decision rules. Such rules can subsequently be used to both infer 
properties of the corresponding classes and to classify other, previously unclassified, 
events from the space. For example, consider the case of the cardiac unit's database 
of a hospital, where each patient is described in terms of a fixed number of attributes 
including his/her personal information, clinical history, and results of various tests. 
Assuming that all numerical measurements are divided into discrete intervals, each 
patient becomes a single event in the finite-sized space. Furthermore, assume that 
some of the patients are known to have a certain heart disease, while others are known 



not to have it. Finding a feature-spanned description of the first group of patients 
certainly would help us define groups of people in high risk groups, as well as help us 
predict the risk of developing this disease in new patients. 

The generated knowledge can, following various intentions and criteria, describe 
characteristic or discriminant properties of the categories ([39]). Characteristic are 
the most typical properties, and should be maximal, i.e. listing a maximal number 
of appropriate features (a feature is an attribute-value pair). This kind of learning is 
often conducted on positive events only. Discriminant are the properties necessary to 
differentiate a given concept from others, and normally such a minimal set is sought 
~. this learning requires both positive and negative events (negative events are those 
representing other classes). In order for the sets of positive and negative events to 
be disjoint, the descriptive power of the features must be sufficient. Such a scenario 
(called consistent) is desired, but not necessary for the learning (if the initial data set 
is inconsistent, a special protocol for treatment of such problematic examples must 
be employed). . · 

3.2 Language 

An important issue is that of defining both the input and the output language. The 
input language serves as an interface between the environment (as a teacher) and the 
system. Therefore, it should combine requirements of both these entities. Moreover, 
it should minimize inconsistencies among data. The output language serves as an 
interface between the system and the application environment. Therefore, it should 
combine the requirements of the learning system with those of such an environment. 
For example, for a purely classification application, there is no need to express the 
acquired knowledge on any comprehensive level. The output interface is only to 
provide obtained classifications of some new events. On the other hand, a learning 
agent used as a part of a hybrid intelligent system must be able to communicate 
its knowledge to other parts of the whole system (see figure 3.2). If such a system 
contains elements operating in a high level language (as an expert system, human 
expert, etc. ), our learning agent should be able to express its knowledge at the same 
level. 

Learning systems unable to produce high level knowledge are often classified as 
non-symbolic, and the other ones as symbolic. However, such a classification does 
not reflect the important issue of the language of the inference mechanism; in [69] 
the authors call systems that produce high level output but operate on a lower level 
heterogeneous. We try to make a similar distinction where we feel it is important. 

In the non-symbolic systems the output knowledge usually consists of a set of 
numerical parameters. In the symbolic systems two choices proved to be dominating: 
decision trees ([49]) and decision rules ([38]). Rules normally have the advantage of 
being the same on both the input and the output, which facilitates some important 
learning strategies as incremental or closed-loop learning. However, this advantage is 
rather an elegance, since it has been shown that decision trees can be both converted 
to rules ([51]) and applied in an incremental environment ([62]). Nevertheless, the 
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difference actually goes beyond the elegance if one considers the level of inference: 
the rule-based systems normally also operate on structures of the same language. 

One widely used language, which is not only closely associated with rules, but 
is normally also used to represent input events for any program operating in an 
attribute-based space, is V L 1 ([41 ]). Variables (attributes) are the basic units having 
multi-valued domains. According to the relationship among different domain values, 
such domains may be of different types: 

• Nominal, e.g. {Yes, No} in boolean attributes 

• Linear, e.g. AgeOJPatient, with linearly ordered values 

• Structured, with partially ordered values 

Relations"=,#,<,~'>, 2:" associate variables with their values by means of: se­
lectors having the form [variable relation value], with the natural semantics. For 
example, [Age > Young] is interpreted as the set of people of Middle or Old age, 
assuming the three values (Young, Middle, Old) in the domain of the linear attribute 
Age. Notice that while the "=, #" relations can appear in any selector, the other four 
can only be used with ordered domains. The value in a selector is a single domain 
value. However, for the '=' relation it may be a disjunction of such values. In this 
case we call it an internal disjunction: this greatly reduces the complexity of the 
formulas of the language. Conjunctions of selectors form complexes. 

The significance of the language relies on the natural correspondence to a rule­
based paradigm. Selectors can be used to express conditions on single attributes. 
Complexes can be used to express rules of the form: 

complex ::> decision 

Because of that, the semantics of the language's constructs are easily understood. 
For example, the following set of rules describes people with heart problems as those 
which are older and have high blood pressure, or those with high cholesterol levels: 

[BloodPressure = High][Age # Young] ::> HeartRiskGroup 
[ CholesterolLevel = High] ::> HeartRiskGroup 

The internal disjunction, along with the natural semantics, makes the equality 
relation alone sufficient to represent any formula of the language. For example, 

• Assuming that the attribute A has a linearly ordered domain: 

[A 2': v] {==} [A= v, v;, ... , vk] 

where v;, ... , Vk are all domain values greater than v in the ordering. 

• For any attribute B: 
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where v, ... , Vk are all domain values different from v. 

This fact provides for great simplicity and uniformity to further discussion of process­
ing the elements of the language, as it allows us to define all the operators in terms 
of the equality relation alone (chapter 5 and 6). 

3.3 Conceptualization 

The idea of a concept itself may be defined in many different ways, depending on the 
assumed concept representation and on methods of instance classification. According 
to Smith and Medlin ([60]), historically there have been three basic approaches: 

• The classical view, which assumes that all instances of a concept share some 
common properties which uniquely identify the concept. It assumes that eon-
cepts are complete and consistent descriptions of categories. · · 

• The probabilistic view, which states that the common properties are the most 
typical, but any instance does not have to possess all of them. The concept 
membership is decided by an accumulated degree of fitness. 

• The exemplar view, where a concept is represented by its most typical examples 
(exemplars), and the concept membership is decided by a measure of fit to an 
exemplar. 

Each of these views has been criticized for its inability to precisely model human 
conceptualization. For example, the classical view has been criticized for its inability 
to represent disjunctive and imprecise concepts. The first of these disadvantages is 
relaxed by a rule-based view. However, such a view is crisp as it does not account for 
imprecise concepts. The exemplar and probabilistic views, on the other hand, were 
mostly criticized for ignoring the role of generalization. The most recent trends seem 
to explore hybrid views, combining some crisp approaches (as rules) with probabilistic 
ones ([15]) as means of dealing with noise and imprecise concepts. For example, the 
two-tiered approach employed in AQ15 combines a rule-based view representing most 
typical properties with an inferential quantitative part accommodating boundary and 
imprecise cases ([ 42]). 

In addition to psychological evidence, the choice of the conceptualization method 
is often dictated by the underlying knowledge acquisition method, or rather its out­
put language. For example, assuming a sufficient set of attributes for the events to 
be consistent and a crisp view, a decision tree can naturally produce complete and 
consistent partition of the search space (a search space is covered completely if ev­
ery subspace is covered, and it is covered consistently if no subspace is covered in 
a conflicting manner). This is so because the decision tree mechanism starts with 
the whole space and recursively cuts it into disjoint subspaces. On the other hand, 
it is more difficult for a set of rules to cover the search space in the same manner 
(normally such qualities are required only with respect to the set of training events; in 
such a case we say that the rules are complete/ consistent with respect to the training 
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data set). Therefore, an extra mechanism is needed to account for possible cases of 
no-match and multiple-match. Such problems can be avoided while learning simple 
concepts (called single-concepts) if the system learns only the concept description 
and its negation is assumed to represent the negation of the concept (see figure 3.1). 

3.4 

B01010101 
A 0 1 2 3 

1 
Negation of ~1::=~-t--r--J--jl-llz 
the concept 0 

!----+---+-+--11 1 

Concept 

0 

1 

0 0 

CD 

Figure 3.1: An example of a single concept learned by one description. 

Goals of Knowledge Acquisition 

-~ 

The purpose of extracting information about some concepts of an attribute-based 
space is to acquire knowledge able to: 

• Predict classifications of previously unseen examples by assigning confidence 
factors to different hypotheses. 

• Interact with other entities of a hybrid intelligent system, e.g. with a human or 
an artificial expert. For ease and feasibility of such interactions, the language 
of the system should be coherent with that of the other entities. 

Until now, most automatic acquisition systems were used as either direct classi­
fication systems, or their output was to be further processed by hand. This is why 
most experiments evaluating qualities of such systems concentrated on the prediction 
accuracy (see e.g. [25]). Nevertheless, there were sporadic attempts to address the 
other issue as well (e.g. [54, 69]). It seems appropriate to say that while the prediction 
accuracy will continue to have high importance in future learning systems, the ability 
to express the knowledge on a high abstract level will play an increasingly important 
role. An additional reason for that, pointed out by Michalski in [43], relates to the 
increasing dependence on any automatically generated knowledge: 

"An important implication ... is that any new knowledge generated by 
machines should be subjected to close human scrutiny before it is used. 
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Figure 3.2: The usage environment for a learning system. 

This suggests an important goal for research in machine learning: if peo­
ple have to understand and validate machine-generated knowledge, then 
machine learning systems should be equipped with adequate explanation 
capabilities. Furthermore, knowledge created by machines should be ex­
pressed in forms closely corresponding to human descriptions and mental 
models of this knowledge; that is, such knowledge should satisfy what this 
author calls the comprehensibility principle." 

3.5 Incremental Learning 

According to Holland ([23]), an inductive process in a rule-based framework must 
accommodate both revision of rules and generation of new ones. Generation of new 
rules is associated with two sources, the environment and existing knowledge. Ac­
cording to Michalski ([39]), an inductive learning system must accommodate the 
production of new rules, as well as generalization and specialization of existing ones. 
According to Winston ([67]), near-miss examples, carefully chosen by the teacher, 
specialize existing models, while correct examples further generalize them. All the 
above, in addition to some psychological evidence, support the idea of incremental 
concept learning. First concept descriptions are formed early, after seeing few exam­
ples. Upon experiencing new evidence, the knowledge is revised: 

• If the new evidence is consistent, the knowledge might be further generalized, 
as the confidence in certain assertions increases. 

• If the new evidence is inconsistent, the knowledge must be refined by special­
ization of the overgeneralized assertions. 

In addition, normally not all examples of a concept are available simultaneously. This 
is true for both natural and artificial systems. Therefore, a learning agent should 
be able to perform incremental conceptualization, unless special circumstances exist 
(such as a relatively static world), which permit a batch learning (with the assumption 
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that all available examples are available simultaneously). Accordingly, incremental 
capabilities are receiving increasing attention of the research community ([15]). 

There are two different approaches to learning in the context of increasing number 
of examples. The first assumes the existence of working memory able to remember all 
previously seen events for a future reference. This approach is normally referred to 
as full memory learning, and the incremental processing is associated with both pre­
viously generated knowledge and previously seen examples, in addition to the newly 
presented events (one should also mention here the case of so called batch-incremental 
systems, which process the incrementally available events in relation to only the previ­
ously seen events, disregarding the previously generated knowledge). The feasibility 
of such full memory systems is restricted by the data set size. However, its other 
advantages, especially relative conceptual simplicity, cause many learning systems to 
follow this direction. In addition, two other important factors favor this approach in 
the domain of attribute-based spaces: the available data sets for many interesting 
concepts are appropriately small, and such systems can normally accommodate 'the 
large data sets by means of some special techniques (see section 4.1.2). 

The other approach assumes that the only available memory is for the generated 
body of knowledge. In general, systems of this kind are conceptually more difficult to 
apprehend. They find more use in other machine learning subfields, especially where 
single events are of high complexity. 

3.6 Inference Rules of the Inductive 
Methodology 

Michalski ([39]) provides a detailed description of various inductive operators that 
constitute the process of inductive inference. In the restricted language V L1 (for 
induction in an attribute-based space), the most important are: condition dropping 
-i.e. dropping a selector from the concept description; adding alternative rule and 
dropping a rule- adding/removing one rule from the description; extending a refer­
ence - extending an internal disjunction; closing an interval - for linear domains 
filling up missing values between two present values in a selector; climbing generaliza­
tion - for structured domains climbing the generalization tree; turning a conjunction 
to a disjunction; inductive resolution- analogous to the resolution principle. These 
operators are either generalizing or specializing existing knowledge. There is no pro­
vision for generating the initial set of rules. In section 5.5 we define our operators. 
We also discuss the choice of the initial knowledge (section 5.3). 
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Chapter 4 

PREVIOUS APPROACHES 

Over the past few decades there have been many different approaches to the problem 
of supervised learning in attribute-based spaces. Some of them came from th; AI 
community, others from fields such as statistics. One of the most recent ideas has been 
to use genetic algorithms, to which we pay special attention since our new approach 
tries to extend such ideas by those of the inductive methodology. 

4.1 Traditional Approaches 

As mentioned earlier, non-symbolic systems rely mostly on quantitative information 
processing. Therefore, they are further away from mainstream AI devoted to symbol 
processing. On the other hand, the symbolic systems apply the qualitative approach 
to learning: the output is a high level description, and the processing itself is often 
done at the symbol level. 

4.1.1 Non-symbolic 

Statistical approaches account for the vast majority of non-symbolic, or numerical, 
approaches. They usually operate in batch mode on the data set in order to ob­
tain some statistical measures, which are later used as probabilistic approximations 
of appearances of different features. To achieve a suitable classification, this infor­
mation's correlation to a new example is accumulated using some inference methods. 
Among such methods, the Bayesian probabilistic model is the most known ([47]). The 
disadvantage of these approaches is that they rely on low level processing for high 
level learning. Furthermore, such treatment makes it hard to process any available 
problem specific knowledge. In addition, the measures used treat all features inde­
pendently, and high processing complexity does not allow exploration of inter-feature 
dependencies ([47]), even though they could be incorporated ([54]). 

Another numerical approach comes from the neural network community. A neural 
network is a cognitive model of the human brain and is composed of two kinds of 
elements: processing elements (nodes of the network) and connections ([55]). Viewed 
as a memory, such a network has its knowledge distributed among the connections -
called weights. These weights determine the propagation of excitatory and inhibitory 



signals which in turn determine the excitation of certain nodes. Such a memory 
model is capable of learning. The backward propagation of a failure is the best known 
method of setting the weights. A neural network method has been applied to simple 
cases of concept learning with some success (see [68]). However, these applications 
are totally quantitative as well, which makes it difficult to establish a platform for 
any higher level knowledge utilization or understanding. 

As described, the non-symbolic systems do not follow the methods of the inductive 
learning methodology, but rather perform numerical computations. This, however, 
leads to an apparent advantage of better applicability to processing noisy information 
([54]). 

4.1.2 Symbolic 

The two prominent symbolic approaches to supervised feature-based learning, .:Jec­
ognized as benchmarks, are Michalski's AQ ([39]) and Quinlan's ID ([48]). They"are 
both considered symbolic systems, even though they have some numerical elements: 
ID uses an information measure function, while the two-tiered representation of AQ 
performs a partially probabilistic inference. 

The AQ approach is based on inductive generalization and specialization of the 
V L1 formulas using the idea of a cover of the positive against the negative events. The 
cover is constructed in an iterative manner, starting with only one positive and one 
negative event and continuing until the generated cover is complete and consistent. 
To prevent an apparent exponential growth in the number of generated descriptions, 
special heuristics, which accommodate some learning criteria, are employed to reduce 
the size of partial covers. However, retaining a number of such current covers provides 
for a competition among different solutions. This approach conceptually follows the 
ideas of inductive methodology, as the generated knowledge is either generalized or 
specialized, as appropriate. However, the algorithm itself uses only the logic-based 
operators of negation, union, and intersection to process the current description. 

The many proposed extensions of this basic algorithm facilitate incremental learn­
ing, constructive learning, use of initial hypotheses and domain assertions, etc. (see 
[40]). In addition, both the most representative examples selection method ([37]) and 
the two-tiered concept representation ([42]) allow for processing of noisy data. 

In the ID approach, the training examples are represented by feature vectors 
similar to events in V Lt. The algorithm constructs a decision tree, where each leaf is 
associated with a single decision class, each internal node corresponds to an attribute, 
while each node's branches correspond to a value of that attribute. One of the features 
of such a tree is that no path from the root to a leaf has two nodes corresponding to 
the same attribute. The algorithm itself is an iterative application of the information 
content formula: I= p * log(p), where pis a probability of given information ([48]). 
At each node of the tree the algorithm only treats events satisfied by the path to 
this node: the information content is calculated for all such remaining attributes and 
events, and the attribute giving the maximal information gain is selected as the label 
for this node. 

This approach, despite its apparent disadvantage of "no look-ahead" (a node is 
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constructed based on the currently best attribute), proved to be successful in terms 
of recognition quality. However, the numerical formula used causes serious problems 
while trying to incorporate some domain specific knowledge. On the other hand, re­
cent extensions allow for incremental concept learning ([62]), for reducing the tree to 
binary ([31]), for pruning the tree, and for converting it to a set of rules ([51]). How­
ever, the algorithm is conceptually very distant from the inductive learning method­
ology. It iteratively applies specialization, starting with the whole event space. Only 
then generalization can be applied, by means of tree pruning or rule construction 
techniques. 

Both of the above are full memory systems, meaning that they assume the avail­
ability of all previously seen events at any time during incremental learning. However, 
they both allow for processing large quantities of data: the AQ uses a preprocessing 
mechanism selecting only the most representative events ([37]), and the ID uses the 
idea of data windowing. _. 

4.2 Genetic Algorithm Approaches 

Since the early 1980's there has been an increasing interest in applying GA methods 
to machine learning -in particular to learning production rules, whose special case 
is the problem of supervised learning from examples of an attribute--based space. The 
main problem in such applications is to find a suitable representation, able to both 
capture the desired problem characteristics and to represent a potential solution (as 
we mentioned in section 2.2). Using a rule-based concept representation brings a 
different kind of problem: the number of such rules (disjuncts) is not known a priori. 
Therefore, the traditional fixed length representation is unsuitable. Two different 
approaches have been proposed: 

• Michigan approach, where the population still consists of fixed length elements, 
but the solution is represented by a set of chromosomes from the population. 
This methodology, known as CS for classifier systems, along with a special 
"bucket brigade" mechanism for credit assignment, was originally developed by 
Holland and colleagues ([23]). Here, each chromosome, called a classifier, repre­
sents a structure composed of conditions and messages lists. The environment, 
together with the activated rules, provides a set of active messages. These, 
in turn, activate other classifiers by satisfying their conditions. The chained 
actions of message-condition pairs cluster the rules together. Because of this 
chaining mechanism, this approach seems more suitable for planning than con­
cept learning. 

• Pitt approach, which represents an extension of the traditional fixed-length 
chromosome approaches. Here, variable length chromosomes are used to rep­
resent proposed solutions individually. Such a representation (LS for Learning 
System) was originally suggested and theorized by Smith in [61). This repre­
sentation seems more naturally suited for the supervised learning from feature­
based examples problem. 
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Both of these approaches suffer from some drawbacks: the classifier systems rely 
on the problematic bucket brigade for a nontrivial credit assignment. The variable 
length approach constitutes a wide divergence from the traditional GA, and, therefore, 
requires special treatment. Nevertheless, some applications prove to be successful, 
although in quite limited applications (e.g. [19, 57, 66]). The two most noticeable 
genetic algorithm approaches to supervised concept learning in attribute-based spaces 
come from Koza and DeJong with Spears, both in the LS framework. Koza uses lisp 
programs (similar to decision trees) as means of representing potential solutions, with 
some tree-based operators that are closed in the space of such representation: some 
results are presented in [32]. DeJong and Spears use a binary representation for 
multi-valued domains, and implement only the traditional operators of mutation and 
crossover in their GABIL system. In [13] they compare GABIL's batch-incremental 
learning with those of ID5 ([62]) in the domain of random DNF descriptions. 

With very few exceptions (e.g. [13, 32]), all systems for rule-based learning .-use 
a three-symbol alphabet {0, 1, # }, where # stands for a wild-card character (~.g. 
[19, 17, 57]). Such an alphabet is the choice of both CS and LS based systems, as 
it allows for easy coding of various general aspects of machine learning. However, 
it is not so well suited for non-binary domains, where an attribute can take a value 
from an unpredictably (but assumed finite) sized domain: in particular it is not well 
suited for feature-based spaces. This problem was originally pointed out by Greene 
and Smith in [17], and a nice solution was employed by DeJong and Spears in the 
previously mentioned publication ([13]). 
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Chapter 5 

THE MODIFIED GENETIC 
ALGORITHM 

.. 
In this chapter we first describe the major ideas used to derive the system's design, and 
then present the system itself by defining the necessary components (those listed in 
section 2.1). Some implementation issues, strongly associated with any such approach, 
are addressed in the next chapter. 

5.1 Ideas Used 

One of the most praised characteristics of a genetic algorithm is its domain-independent 
search ([12]). This is the source of both the many successes of GAs, especially in pa­
rameter optimization, and, at the same time, of many limitations in other applications 
(see chapter 1 ). In general, such arguments fall into the same category as those calling 
for more domain specific AI methods two decades ago. Recall that, at first, general 
problem solvers (GPS) were devised- which were to play the role of general tools for 
many nontrivial problems. It soon turned out that, due mostly to the unmanageable 
complexity of such methods, it was necessary for the designers of intelligent systems 
to incorporate domain and problem specific knowledge, by either making it explicit 
or by hiding it in the implementation. 

The need for problem specific knowledge incorporation into GAs was recognized 
as a method for an improvement in many different domains (e.g. [18]). Davis calls for 
such approaches in [8], where he calls them "hybrid" genetic algorithms and argues 
to explore combinations of GAs with existing methodologies in any possible domain. 
Similar ideas were called for in applications to machine learning. For example, Forrest 
proposed to use high level operators ([16]) such as "concept specialization" and "value 
restriction"; Antonisse and Keller called for similar incorporations in [1 ]. However, 
both of the above were restricted to classifier systems and the three-symbol alphabet. 

Following the Pitt approach, which seems more natural for our task of learning 
disjunctive descriptions, we are faced with chromosomes of varying number of fixed 
length structures. Then, there is a whole spectrum of possible GA designs along 
the dimension of task-specific knowledge utilization (see figure 5.1). On one side 



,None Level of task-knowledge incorporated Ful~ 

Only classical mutation 
and crossover operators 

No domain-independent operators, 
only fully implemented problem 
solving methodology 

Figure 5.1: The spectrum of knowledge incorporation in a GA. 

of the spectrum lies a method which only uses the classical operators of mutation 
and crossover. Such an approach is conceptually very easy. Moreover, it enjoys the 
same theoretical foundations as the fixed-length GAs: Smith showed that a variable­
length list of fixed-length structures satisfies the Schemata Theorem, provided that 
such structures are positionally independent ([61 ]). The above determines the existing 
popularity of such approaches in any domain. The same is true in the particular ease 
of supervised inductive learning. For example, the previously mentioned GABIL 
system follow this path. 

On the other side of the spectrum lies a knowledge--intensive method which com­
pletely abandons the traditional domain-independent operators, and, instead, fully 
implements the specific problem solving methodology. This approach is conceptually 
much more challenging as it requires, in addition to the GA implementation, a clear 
and conscious understanding of the problem being solved, along with a well described 
complete solving methodology defined at the problem level. This fact, in addition to 
the lack of well established theoretical foundations, determines the low popularity of 
such approaches. In particular, we are not aware of any GA for supervised learning 
in attribute--based spaces working at this end of the spectrum. 

From the above discussion a clear trade-off emerges between the two extreme 
approaches along the spectrum. Domain-independent operators are conceptually 
easy, while the design of task-specific operators requires deep understanding of the 
problem solving methodology. The former is also backed by the Schemata Theorem, 
but the search is problem-blind (except for the measure of fitness, see figure 5.2), and 
it may easily fail under the restriction of resource limitations (e.g. time constraints). 
The latter approach does not have the same theoretical support, but it is backed by 
the task--specific knowledge used to guide and conduct the search (see figure 5.3). This 
property should provide for a faster convergence to a desired solution. Moreover, it 
may be easily shown that all the operators we subsequently define and use (section 5.5) 
are actually special cases of the traditional mutation and crossover. This provides an 
intuitive support for the Schemata Theorem. Also, because the operators are defined 
on the semantic pieces of the problem, one may easily argue that this design naturally 
satisfies the building block hypothesis as well (chapter 2). 

These are some of the reasons for our decision to pursue this path. But even 
a more appealing and important justification arises in the context of the learning 
process understanding and validation. Applications of the task-specific knowledge 
as the only means for inference mechanisms provide for a better understanding of 
the underlying principles of the learning system. Such an understanding becomes 
increasingly important while designing systems able not only to generate knowledge, 
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Figure 5.2: Application of a GA with traditional operators. 

but also able to explain and justify their behavior. For example, Michalski wrote in 
[41 ]: 

" ... one should strive to facilitate human understanding not only of 
the surface results but also of the underlying principles, assumptions, and 
theories that lead to these results." 

This approach is also justified as an abstraction of the genetic algorithm approach. 
Following the previous discussion on GAs, and those intuitive results stating that the 
best representation should provide the chromosome structure reflecting syntactic and 
conceptual knowledge of the problem, we actually go to the extreme of using the 
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Figure 5.3: Application of a task-specific genetic algorithm. 
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Figure 5.4: A genetic algorithm with traditional operators. 

problem space as the working search space. In other words, while applications of the 
traditional domain-independent operators provide for a domain-independent search 
conducted in the artificial representation space (figures 5.4 and 5.2), we escape the 
critical coding problem by moving the genetic algorithm into the problem space and 
organizing the work there (figure 5.5 and 5.3). 

Work done here 

Figure 5.5: A genetic algorithm with task-specific operators. 
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5.2 Representation and Search Space 

We adopt the multiple-valued logic language V L1 (section 3.2) as the choice for a 
chromosome's representation. Then, the search space is the space of sets of rules, 
spanned by given features; this is the space of V L1 concept descriptions. Because we 
do not employ any extra axioms, it is quite feasible and possible to have redundant 
descriptions, e.g. 

[Age > Young] ::> HeartRiskGroup 
[Age = Old] ::> HeartRiskGroup 

For simplicity of presentation (but not lack of generality), from now on we only 
consider V L1 formulas built using the'=' relation and internal disjunction. Such as­
sumptions do not introduce any restrictions on the power of the language (see section 
3.2), and make the forthcoming discussion both more uniform and comprehensibJ.e. 

Moreover, for the same reasons, we assume that we are dealing with single con­
cepts, and that we are learning only a single description - the space not covered 
by such a description is assumed to represent the negation of the concept (as e.g. 
in [13]). This simplification allows us to assume a crisp rule-based conceptualiza­
tion. We address possible generalizations of this approach to multiple concepts and 
non-crisp views in the part on future research directions (chapter 10). 

Because of the assumption of learning only a single concept description, all rules 
are associated with the same single decision, which subsequently does not have to be 
stated explicitly in the "complex::> decision" syntax. Accordingly, when no confusion 
can arise, we may refer to the same set of rules as just a logical disjunction of V L1 

complexes. 

5.3 Initial Population 

The population contains individuals, each of which is a potentially feasible solution 
(a set of rules of the V L1 language). Its size remains fixed (as a parameter of the 
system). Initially the population must be filled with potential solutions. Such an 
initialization might be totally random (as is normally the case in genetic algorithms), 
or it might incorporate some task-specific knowledge. There is an obvious trade-off 
between the level of knowledge used in such an intelligent initialization. On one side 
of the spectrum is the random choice, very cheap and simple. On the other side, 
we have an initialization which produces actual solutions to the problem, differing 
possibly by some applied criteria. This latter initialization is actually as hard as the 
problem we wish to solve. Therefore, it is inapplicable. 

We follow the idea of as simple an initialization as possible, yet intelligent. Ac­
cordingly, we allow for three different types of chromosomes to fill the population 
initially: 

• The first type is just a random initialization. Each individual is a set of a 
random number of complexes, randomly generated on the search space. 
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• The second type is initialization with data. Each individual is just a random 
positive training event. 

• The third type is initialization with priori hypotheses, provided such are avail­
able. Each individual is just a single hypothesis given by the environment. 
Having such capabilities, the system can be used as a knowledge refinement 
tool - possibly cooperating with an expert system of an intelligent hybrid 
framework. 

Actual experiments show that the best average behavior is obtained while using 
a combination of these three (or the first two if initial hypotheses are not specified), 
even though the importance of the initialization with positive events diminished quite 
a bit when we used an operator that adds such positive events to current descriptions. 

5.4 Evaluation Mechanism 

The evaluation function must reflect the learning criteria. In supervised learning 
from examples, the criteria normally include completeness, consistency, and possibly 
complexity. In general, one may wish to accommodate some additional criteria, e.g. 
cost of attributes, length of descriptions, their generality, etc. , but we did not consider 
them in the current implementation. 

II Structure type II Completeness I Consistency II 

II A rule set II s+fE: 11 - E f E II 
.. A rule .. ef E . 1 - ej s+ .. 

Table 5.1: Completeness and consistency measures. 

The completeness and consistency of a rule, or a rule set, measures its quality 
with respect to the set of training events. We use the formulas presented in table 5.1, 
where e+ / e- is the number of positive/negative training events currently covered by 
a rule, c:+ / C is the number of such events covered by a rule set, and E+ / E- is the 
total number of such events. These two measures are meaningful only to rule sets 
and individual rules. For conditions, the measures of the parent rule are used. These 
definitions assume the full memory model (see section 3.5). 

Combining multiple criteria in a single evaluation measure is very difficult and 
critical for the convergence problem ([21 ]). In our case we need to combine three such 
values. We can ease this task by replacing the completeness and consistency measures 
with a single measure of correctness. There are two different well accepted ways to 
combine the two: 

correctness= c++(E--c) 
E++E 

cor; ectn es 
8 

= ;:wcc1...::· c:::.o:.cm::<p:.::l e::.:t:::.e:.cne::.:s:.::s'"+...::w'-'2'-'· c:.::occn:::.s:::i s"-t e::.:n::c:.<Ly 
w1+w2 
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The first of those assumes that each positive and negative event has the same 
effect. This may be advantageous in eases where such an assumption is true, but may 
be disastrous in cases where their relative number is quite different. The second, on 
the other hand, assumes that the positive and negative events have different effects, 
controlled by the weights w1 and w 2 , and related to the relative frequency of posi­
tive/negative examples in the training set. The choice of the better measure should 
be based on some additional task-specific information, as what is the meaning of such 
relative frequences. 

We combine correctness and cost by: 

evaluation= correctness· (1 + w 3 · (1- cost))f 

where w 3 determines the influence of cost (which itself is normalized on < 0, 1 > ), 
and f grows very slowly on < 0,1 > as the population ages (a dynamic approach). 
The cost of a description is measured by its complexity, which combines the numper 
of rules and conditions in the following way: 

complexity = 2 · #rules+ #conditions 

as originally proposed by Michalski (e.g. [69]). The above measure for evaluation is 
an initial experimental rather than a theoretical choice, and provides for a controlled 
bias with respect to descriptions' complexity. 

For most practical tests we used a very low W3 weight ( ~ 0.01 ). Too high a 
value may cause lightly covered rules to be dropped from the descriptions, too low a 
value reduces the rate and probability of simplifying the generated descriptions (e.g. 
dropping redundant rules). The primary reason for the cost accommodation is to 
force differentiation between the same or similarly covering rule sets but of different 
complexity. 

We use a dynamic approach to the use of cost i.e. an approach that adjusts 
its effects as the population ages. We successfully applied similar dynamic ideas in 
other domains (e.g. [35]). The effect of the very slowly raising f is that initially 
cost's influence is very light in order to promote deeper space exploration, and only 
increases at later stages in order to minimize descriptions' complexity. Moreover, 
initial experiments suggest that the system performs better when the f exponent 
somehow fluctuates along the desired behavior, and that the final increase should 
start based upon an anticipated exhaustion of resources or when the currently learned 
description is already complete and consistent. 

5.5 Operators 

The operators transform chromosomes to new (possibly better) states in the search 
space. Since the system operates in the problem space, the operators directly follow 
the inductive learning methodology. According to the three syntactic levels of the 
rule--based framework (conditions, rules, rule sets), we divide the operators into three 
corresponding groups. In addition, each operator is classified as having either gener­
alizing (subsequently denoted by <J), specializing (denoted by I>), or unspecified-
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or independent- behavior (denoted by 0). Note that the inductive methodology 
(section 3.6) does not define independent operators; their introduction is strongly 
associated with the ideas of this genetical search, e.g. the use of a population. 

For a graphical illustration of the operators, we use the following search space: 

Attribute Values Type 
A 0,1,2,3 Linear 
B 0,1 Nominal 
c 0,1,2 Nominal 
D 0,1 Nominal 

in which we demonstrate each operator using the idea of diagramatic visualization 
([69]), which is a multi-valued extension of the well known "Karnaugh map" or 
"Veitch diagram". Following the correspondence of V L1 complexes and rules in _:j;he 
single-concept scenario, we represent a rule set as a disjunction of V L1 compleJ(es; 
each complex is a lhs of a rule corresponding to the same decision. We discuss pos­
sible generalizations to multiple decisions in section 10.2. Also, we try to define the 
operators as simple as possible, in order to reduce the computational overhead. For 
example, we do not use the inductive resolution rule (section 3.6), which requires an 
extensive pattern matching in order to find two complexes having selectors which are 
negations of each other. 

In the subsequent definitions we use the following notation: chrom for a cluo­
mosome representing a set of rules, cpx for a complex, sel for a selector, dec for a 
decision, and e+ / C for a positive/negative example from a category. 

5.5.1 Definitions 

Rule set (V L1 set of complexes) level. At this level, operators act on whole rule 
sets (one or two at a time): 
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• Independent: 

B 
A 

Rules exchange. This operator requires two parent rule sets, and it ex­
changes random rules between these two. It requires two parameters: 
probability of application to a rule set, and probability of rules selection 
for the exchange. 

0 1 0 1 0 1 0 1 
0 1 2 3 CD 

0 Parent rule set 1: 0 
1 [A=O][B=O][C=0,1] V [C=1][D=O] 
0 Parent rule set 2: 1 
1 [C=O] V [A=1][C=2] 
0 

2 
1 Consider the case of exchanging the 

second rule from parent 1 with the • 

0 first rule of parent 2 
0 1 

0 Offspring 1: 
1 1 [A=O][B=O][C=0,1] V [C=O] 

0 Offspring 2: 
2 1 

[A=1][C=2] V [C=1][D=O] 

• Generalization: 

Rules copy. This operator requires two parent rule sets, and it copies a 
random rule from each ofthe the sets to the other. It differs from the "rules 
exchange" operator, as it does not remove information being propagated 
from the rule set. It requires one parameter: probability of application to 
a rule set. 

B01010101 
A 0 1 2 3 CD 

0 0 
1 

-l-l-lHHH 1 O 
1 

2 0 
1 

0 
0 1 

~-+-+-+-+-l 0 

1 1 

0 
2 1 

Parent rule set 1 : 

[A=O][B=O] V [A=1,2,3][ C=O][D=O] 
Parent rule set 2: 

[A=O][B=1] V [A=3][ C=2] 

Consider the case of copying the 
second rule of parent 2 to parent 1 

Offspring 1: 

[A=O][B=O] V [A=O][B=1] 
V [A=1,2,3][C=O][D=O] 

Offspring 2: 

[A=O][B=1] V [A=3][ C=2] 
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New event. This operator acts on a single rule set: if there is a positive 
event not covered yet by the current rule set, this event's description is 
added to the set as a new rule: 
chrom = U;(cpx; ::>dec) and :J,+V;(e+ /'? cpx;) <l chromU(e+ ::>dec) 
It requires only one parameter: probability of application to a rule set. 

~ 0
0

10
1

1 0 2 1 0
3

1 CD 

0 0 
1 

0 
--+--t--t-+-+-1 1 

1 

--t--t--t--t--t--t 2 0 
1 

0 
0 1 

0 
-t-t--t--t--t---i 1 1 

0 
-1-1-1-1-1-1 2 1 

Parent rule set: 

[A=O] V [C=O][D=l] 
An uncovered event: 

[A=3][B=l][ C=O][D=l] 

-· 

Offspring: 
[A=O] V [C=O][D=l] 
V [A=3][B=l][C=O][D=l] 

Rules generalization. This operator acts on a single rule set. It selects two 
random rules and replaces them by their most specific generalization: 
cpx 1 ::>dec, cpx2 ::>dec <l (cpx' ::>dec) 
where cpx' is the most specific generalization (not necessarily consistent 
with respect to previously excluded negative events) of the two complexes. 
It requires one parameter: probability of application to a rule set. 

~ o
0 

10
1

1 0
2

1 0
3

1 CD 

0 ~ 
0 

1 
1 

2 0 
1 

0 
0 1 

0 
1 1 

0 
2 1 

Parent rule set: 

[A=3] V [A=l][C=l][D=O] 
V [A=O][B=O][C=l] 
V [A=l][C=O][D=O] 

Consider generalizing all but the 

the first rule 

Offspring: 

[A=3] V [A=O,l][C=O,l] 
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• Specialization: 

Rules drop. This operator acts on a single rule set, and it drops a random 
rule from that set. It requires one parameter: probability of application 
to a rule. 

~ 0
0

10
1

1 0 2 1 0 3 1 CD 

0 ~ 
0 

-t-t-t-t-t-1 1 
1 

2 0 

Parent rule set: 

[A=O] V [C=O][D=l] V [A=2,3][C=2] 

1 Consider dropping the third rule 

0 
0 1 

0 
-IHHHHH1 1 

0 
---IH'-Ii--1'-li--1 2 1 

Offspring: 

(A=O] V [C=O][D=l] 

-· 

Rules specialization. This operator acts on a single rule set, and it replaces 
two random rules by their most general specification: 
cpx 1 ::>dec, cpx2 ::>dec 1> (cpx' ::>dec) 
where cpx' is the most specific generalization (not necessarily complete) of 
the two complexes. It requires one parameter: probability of application 
to a rule set. 

A
B01010101 

0 I 2 3 CD 

-1---1-IH o ~ 
0 

I 
I 

Parent rule set: 
[A=O] V [A=O,l][C=O] V [C=l] 

2 0 
-if-t-+--t--+--1 1 Consider specializing the first two 

0 
---1-+-++-+--l 0 I 

0 
I I 

0 
1-J-1-J-J-t--t--t-1 2 I 

rules 

Offspring: 

[A=O][C=O] V [C=l] 
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Rule (V L1 complex) level. At this level, operators act on one rule at a time: 

• Independent: 

Rule split. This operator acts on a single rule, and it splits it into a 
number of rules, according to a partition of the values of a condition (an 
absent condition can be selected as well, using all domain values). The set 
of domain values present in the selected condition can be split according 
to each value individually or according to two disjoint subsets of values. 
For the linear data types, the latter split is more desired; in this case 
the present domain values are split by cutting the ordered set of values 
in a single random place. For the nominal data type, the former split 
is more desired. A structured type requires a slightly more sophisticated 
approach, similar to that of the linear type, but with differently defined 
values and orderings. This operator requires three parameters: probabijity 
of application to a rule, and probabilities of a subset vs. all values sp·lit, 
separately for the linear and nominal data types. 

~ o
0 

10 1 1 0 2 1 0 3 1 CD 

0 0 
1 

1-l-l-l-1-1-l-t-l 1 0 
1 

1-l-l-l-1-1-l-t-l 2 0 
1 

0 
0 1 

0 
1 1 

0 
1-1-l-l-l-l-1-t-l 2 1 

• Generali2ation: 

Parent rule: 

[C=O] 

Assume the attribute A is linear, and 
a subset split occurs between the 
values 2 and 3 

Offspring: 
[A=0,1,2)[C=O] V [A=3][C=OJ 

Condition drop. This operator acts on a single rule, and it removes a 
present condition from that rule: 
((cpx = A;sel;) ::> dec) <1 (cpx' ::> dec) 
where cpx' has all but one selectors of cpx. In other words, one of the 
selectors of cpx is extended to cover the whole domain of the associated 
attribute. It requires a single parameter: probability of application to a 
rule. 
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B01010
2
101 

A 0 1 3 CD 

1-t-t-+-+--l--l--t---1 0 0 
1 

0 
-t-tl 

1 

1-t-t-+-+--l--l--t---1 2 0 
1 

0 
1-HI-HI-HI-H o 1 

0 
1 1 

0 
1-+-+-+-+--t--t--t--1 2 1 

Parent rule: 
[A=0,1,2][ C=l J[D=D] 

Assume that the condition associated 
with the D attribute is dropped 

Offspring: 

[A=0,1,2][ C=l] 

.< 

Turning conjunction into disjunction. This operator acts on a single rule, 
and it splits the complex into a disjunction: 
((1\isel;/\1\jselj) ::>dec) <l (1\iseli ::> dec)V(I\jselj ::>dec) 
where the complex's separation into n and m selectors is random and posi­
tion independent. It requires a single parameter: probability of application 
to a rule. 

B01010101 
A 0 1 2 3 CD 

1--11--1--11--1 0 0 
1 

-l-l-lH 1 ° 
1 

1-t-1-t-t-t--t-t-1 2 0 
1 

• Specialization: 

0 
0 1 

0 
1 1 

0 
2 1 

Parent rule: 

[A=D,l][B=l][ C=O,l] 

Offspring: 
[A=O,l][C=O,l] V [B=l] 

Condition introduce. This operator acts on a single rule, and it introduces 
a random condition associated with an unconditioned attribute: 
((cpx = 1\;seli) ::> dec) 1> (cpx' ::> dec) 
where cpx' has, in addition to all the selectors of cpx, a new selector asso­
ciated with an attribute not present in cpx. The new selector is a random 
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choice from among all of its possible internal disjunctions. It requires a 
single parameter: probability of application to a rule. 

CD 

---l---1---1---1 0 ~ 

---l---1---1---1 1 0 
1 

---1-1---1-1 2 0 
1 

0 
-1-1-1---l-1 0 1 

0 
---11-+--t-+--1 1 1 

0 
---11-+--t-+--1 2 1 

Parent rule: 

[A=O,l] 

Assume that we introduce a new 
condition on attribute B: [B=O] 

Offspring: 

[A=O,l][B=O] 

Rule directed split. This operator acts on a single rule. If this rule covers 
a negative event, it is split into a set of maximally general rules, yet con­
sistent with that event, in the following way: 
(cpx ::>dec) and ::le-(e- =? cpx) J> U;(cpx; ::>dec) 
where the new set has cpx's such that (V;cpx;) = (cpx 1\ ~e-). This oper­
ator resembles the action in the heart of the cover procedure of AQ15. It 
requires a single parameter: probability of application to a rule. 

B 0
0 

1 0 1 0 1 0 1 
A 1 2 3 CD 

---1-1---1-1 0 0 
1 

0 
--+-+-+--1 1 

1 

-1-1-f-12 0 
1 

0 
---l---1---1---1 0 1 

0 
---1---1---IH 1 1 

0 
---l---1---1---1 2 1 

Parent rule: 
[A=O,l] 
e-=[A=O][B=l ][ C=O][D=l] 

Offspring: 
[A=l] V [A=O,l][B=O] 
V [A=O,l][C=l,2] V [A=O,l][D=O] 
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Condition (V L1 selector) level: 

• Independent: 
Reference change. This operator acts on a single condition, and it ran­
domly removes or adds a single domain value to this condition. It requires 
a single parameter: probability of application to a condition. 

0 
--1--1--11-l 0 I 

0 
1-HI-1-1-t-1-H 1 1 

0 
-l--1--+--1 2 I 

• Generalization: 

Parent rule: 

[A=0,1,3][ C=0,2] 

Assume the value '3' is removed from -• 

the condition associated with the 
attribute A 

Offspring: 
[A=O,l][C=0,2] 

Reference extension. This operator acts on a single condition, and it ex­
tends the domain by allowing a number of additional values. For the 
nominal type, some random values are selected for extension. For the lin­
ear type, a single value may be selected or, with a higher chance, a range 
may be closed (between two present values, using the domain ordering). 
Moreover, such shorter open ranges have a higher chance of being selected 
over longer ones. This operator requires quite a few parameters, including 
a probability of application to a condition, and a number of selection prob­
abilities determining the choice of an action. For the structured type, we 
replace some of the present values by their parent in the generalization tree, 
giving preference to those offsprings that prevail in number (generalization 
climbing). 
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B 0
0 

I 0 I 0 I 0 I 
A I 2 3 CD 

1-HI-HHHf--H o 
0 

I 

I 0 
I 

1--1--1--1-t-t-t-H 2 o 
I 

0 
1--1-+--t--+-+-t--i---1 0 I 

0 
I I 

~---~~~-4-4-4~ 0 

1-+-+--1--1--f--1--t----l 2 I 

• Specialization: 

Parent rule: 

[A=0,3][C=l][D=O] 

Assume we work with the condition on 
the linear attribute A, 
and we close the open interval 

Offspring: 

[C=l][D=O] 

.. 

Reference restriction. This operator acts on a single condition, and it 
removes some domain values from this condition. Its actions and parame­
ters are analogous to those of the "reference extension", but have opposite 
effects. 

CD 

1-+-+-+-+--l--1--t----l 0 ~ 
I 0 

I 

1-+-+-+-+--l--1--t----l 2 0 
I 

0 
1--I-I-1-1-I-1-H 0 1 

0 
I I 

'1-H o 
1--I-I-1-1-1-I-H 2 1 

5.5.2 Dynamic aspects 

Parent rule: 

[A=1,2,3][ C=l] 

Assume we work with the condition on 
the attribute A, and we remove the 
value '3' from the condition on the 
attribute A 

Offspring: 

[ A=l ,2][ C=l] 

As seen in the definitions, each operator is given some initial probabilities from two 
separate groups: 

• Application probabilities. Each operator is given an initial probability of ap­
plication to its type of structure (based on the level of its definition). These 
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probabilities have a dynamic character with respect to the current context, i.e. 
to both the current coverage and the current, problem-dependent, size of the 
average chromosome. Firstly, priori probabilities of generalizing operators are 
increased for applications to structures (rule sets, rules, conditions) that are 
incomplete, and decreased for those inconsistent. On the other hand, the priori 
probabilities of specializing operators are increased for applications to structures 
that are inconsistent, and decreased for those that are incomplete. Moreover, 
the levels of probability increase/ decrease are based on the levels of inconsis­
tency /incompleteness. In other words, these two measures serve as additional 
heuristics guiding the selection of appropriate operators (in addition to fitness). 
Secondly, all application probabilities are adjusted as to achieve a constant 
chromosomes' update rate. For example, more complex problems, which cause 
the intermediate chromosomes to be longer (both in terms of the number of 
complexes and their sizes), decrease all such probabilities by the same fracti_<:m. 

• Selection probabilities: These serve as a mean of selecting one of a number of 
possible actions or substructures to participate in the operations ~ they are 
static. 

While selecting the appropriate method of completeness/ consistency incorpora­
tion, we must be careful not to decrease the probabilities too far as to prevent certain 
operations from performing. Since we want the changes to be linear with those mea­
sures, the following seem natural (but still experimental) choices: 

Generalizing operators: p' = p · (~-completeness) · (~+consistency) 
Specializing operators: p' = p · (~+completeness) · (~-consistency) 

The new value p' is the adjusted probability, and p is the actual probability. It 
is important to mention that since p' is computed differently for each chromosome, 
it does not replace the a priori p. The simplicity of this formulas guarantee low 
computational overhead. 

To accommodate the changes in problem-specific characteristics, namely the av­
erage size of a complex and the average length of chromosomes in the current popu­
lation, we use the following approximation. vVe observe the number of chromosomes 
undergoing recombination in a given population. If this number represents too large 
a portion of the population, we decrease all the priori application probabilities by 
the same fraction for the next reproductive iteration. If this number is too small, we 
do the opposite. Since the adjustments are computed for the whole population, they 
actually always replace the priori values (or those resulting from the last change). 
Experiments show that with an appropriately small such adjustment fraction, the 
changes converge and then the probabilities remain relatively steady. This method 
provides for a partial independence of such probabilities from some characteristics of 
the problems. We discuss more such methods in section 10.1. 
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5.6 Algorithm 

The algorithm uses the above components and the control of genetic algorithms (sec­
tion 2.1 ). At each iteration all rule sets of the population are evaluated, and a new 
population is formed by drawing members from the original one in such a way that 
more fit individuals have a higher chance of being selected (chapter 2 and 5.4). Follow­
ing that, the operators are applied to such a population in order to move these partial 
solutions, hopefully, closer to the sought state. Each operator acts on structures from 
its level, applying itself to some randomly selected structures: the application de­
pends on both initial probabilities, the consistency/completeness of such structures, 
and the size of the currently average chromosome. Then, the cycle repeats until a 
desired description is found or some resources are exhausted. For a better illustration 
refer to chapter 7. 
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Chapter 6 

SOME IMPLEMENTATION 
ISSUES 

We implemented a simple C version of the proposed approach in order to be able to 
test our ideas. The choice of the language, aside from efficiency, was based on avail­
ability of bitwise logical operators used to speed up the evaluation mechanism (section 
6.3). We call this implementation GIL (for Genetic-Based Inductive Learning). In 
this chapter we present the most important issues facing any such implementation, 
along with approaches used in GIL. 

6.1 Sampling Mechanism 

The selection algorithm is to choose some chromosomes from the current population 
to form a new population, with possible omissions and repetitions. There are many 
standard ways of performing this step. Baker provides an excellent discussion of such 
in [3]: we use the stochastic universal sampling mechanism. This method builds a 
roulette wheel for the chromosomes, with each chromosome having allocated a portion 
of the wheel proportional to its evaluation fitness. A second wheel is constructed with 
equally spaced marks. The number of such marks is the same as the number of samples 
to be drawn (the size of the population). The wheels are placed on a single axis and 
the one with marks is randomly spun against the other. The positions of the marks, 
in relation to the space allocated for each chromosome on the other wheel, are then 
observed: a chromosome is selected once for each mark landing in its allocated space. 

6.2 Internal Representation 

In section 5.2 we described the architecture of the chromosome, in terms of the lan­
guage used. Now we discuss some important issues associated with the internal 
representation. 

In section 4.2 we mentioned that the widely used three-symbol alphabet is not 
suitable for the multi-valued domains of feature-based spaces. A more appropriate 
solution was suggested originally by Greene and Smith in (17], and recently used by 



DeJong and Spears in their GABIL system ([13]). This approach uses binary digits 
to represent domain values. For example, assuming that an attribute has five domain 
values, the binary vector 11001 represents the condition saying that the attribute 
must have the first, second, or the last value (assuming some positional enumeration 
of values from the left, and a use of the internal disjunction). If the longest domain 
is not longer than the bitwise length of available integer or unsigned data types, each 
condition can easily be represented by one such simple data object. If some domains 
are longer, a vector of such data objects can be used. We use exactly these ideas to 
implement conditions (selectors of V L1). 

In section 3.2 and 5.2 we showed how, without the loss of generality, our assump­
tion of learning only one description allows us to work with complexes built using 
the internal disjunction and only the '=' relation, and that a disjunction of such 
complexes can be treated interchangeably with the a set of V L1 rules. We use this 
fact throughout this implementation, and we discuss possible extensions to multiple 
descriptions in section 10.2. · · 

A chromosome's length is actually unrestricted -a rule set may contain any num­
ber of rules. Because of that, the only way to represent rule sets is to organize them 
as linked lists. This gives us freedom up to a given machine's capacity. An important 
issue associated with the rule set is that of treating rules that are invalid, i.e. con­
ditions that are totally restricted - exclude all domain values. DeJong and Spears 
suggested keeping such rules as possible sources of valid conditions (GABIL uses this 
strategy). We performed some experiments to study the trade-off between antici­
pated increases in the computational cost of retaining these rules vs. improvements 
in predictive accuracy of the system. Our conclusions are far from final. Nevertheless, 
they suggest there is a clear conflict between these two factors (see section 9.6). A 
similar issue arises in the context of empty rules, i.e. those not covering any positive 
events. Such rules, again, may be removed or retained. Also, there seems to be a 
similar kind of complexity vs. quality trade-off. We experimented with this issue as 
well, and some results are reported in the same section. 

Figure 6.1: An internal representation of a sample chromosome. 

Each complex is a conjunction of a number of conditions. The number of such 
possible conditions, in a given complex, is bounded by the total number of attributes. 
We use that bound as a way of simplifying the internal representation: a complex is 
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represented by a vector of conditions. Furthermore, for simplicity and efficiency, we 
associate a fixed positional correspondence between the attributes of the vector. This 
does not introduce any problems since no operators acting at the condition level are 
positionally dependent - their application is nondeterministic. 

Such an implementation introduces a new dilemma: how to treat unrestricted 
conditions, i.e. those that include all domain values in the selector. It is a question 
of elegance, or possible efficiency, rather than power: an unrestricted selector can 
be dropped from its complex without of any semantic change to the rule associated 
with this complex. We tried both approaches: one with all selectors present in each 
complex, the other with unrestricted selectors invisible to all operators by means of 
a special flag. Since we found no significant difference in the system's performance 
under both conditions, from now on we assume the latter approach without a loss of 
generality. 

The above ideas are illustrated in figure 6.1, assuming the set of features 1).<;ed 
in section 5.5 while defining the operators and an 8-bit machine. This figure shows 
an internal representation of a chromosome, which can be viewed as a disjunction 
of complexes or a set of rules using an implicit decision. Moreover, depending on 
the treatment of unrestricted domains, the same chromosome can be described in 
different ways, as well. The resulting four possible semantically equivalent views are 
as follows: 

• [A= 0,1,3J[B = 0,1J[C = 2][D = 0,1] ::> dec, 
[A= O][B = O][C = 0, 1j[D = 0, 1] ::> dec 

• [A = 0, 1, 3][C = 2] ::> dec, 
[A= OJ[B = O][C = 0, 1] ::> dec 

• [A= 0, 1, 3J[B = 0, 1J[C = 2j[D = 0, 1] V [A= OJ[B = OJ[C = 0, 1][D = 0, 1] 

• [A= 0,1,3J[C = 2]V [A= OJ[B = OJ[C = 0,1] 

6.3 Data Compilation 

A very commonly cited disadvantage of genetic approaches to problem solving is 
their time complexity (e.g. [52]). This problem becomes especially visible when the 
evaluation requires an extensive computation. This is also the case when evaluating 
rule sets in the supervised inductive learning, as this process involves extensive pattern 
matching. Concerned with such problems, we designed a special method of data 
compilation, aimed at improving the time complexity of the system. 

The idea is as follows: rather than storing data in terms of features, store features 
in terms of data coverage (assuming full memory learning). In other words, for 
each possible feature, retain information about the events covered by this feature. 
This must be done separately for each concept. Moreover, it must be done even 
for concepts not being explicitly learned. For example, this means that GIL has to 
remember such coverage separately for both the concept and its negation. We achieve 
this by enumerating all learning events, and constructing binary coverage vectors. 
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Positive coverage vector: 10000001000000001010000000 
Negative coverage vector: 000000000001010 

Figure 6.2: Examples of binary coverage vectors of a feature. 

The idea behind these vectors is analogous to that of representing conditions. 
Suppose a learning session uses E+ positive events and E- negative examples. Then, 
a coverage vector is constructed as a vector of a simple data type (integer or unsigned) 
of length l = rE/ (8 · sizeof(datatype))l, for both E+ and E- separately. In such a 
vector, a binary one at position n indicates that the structure that owns this coverage 
vector covers event #n. For example, the vectors in figure 6.2 indicate that the given 
feature covers positive events #1, 8, 17, 19 (out of 25), and negative events # 12 and 
14 (out of 15). 

As mentioned, prior to learning all data is precompiled into such vectors, for all 
possible features. During the actual run of the system, similar vectors are constructed 
for all structures of the database: from the features upwards. For example, having 
the feature coverages we can easily construct both positive and negative coverage 
of the condition [A=0,2] by means a simple bitwise OR (assuming a language that 
provides such an operation, e.g. C) on appropriate coverage vectors of features (A=O) 
and (A=2). Subsequently, conditions' coverages are propagated to rules by means of 
a simple bitwise AND. Finally, rules' coverages are propagated to rule sets again by 
means of the bitwise OR. 

Perhaps the most important effect of such an approach is that we can easily 
incrementally upgrade such coverages using a minimal amount of work after the initial 
database is fully covered. For example, consider a case of the rules copy operator 
applied to the following two rule sets: 

R1 = ri,ri 
R2 =r~,ri,r~ 

and suppose the operator copies r~ to R1 . The coverage of the second rule set does not 
change. To compute the coverage of the first rule set it is sufficient to perform bitwise 
OR between the coverage of the ruler~ (which did not change during this operation) 
with the coverage of the original R1. In other words, we compute this coverage using 
two bitwise OR operations (one for the positive and one for the negative coverage). 
In general, the number of such required operations increases (very slowly linearly) 
with the number of training events. 

As another example, consider the case of the reference change operation, with a 
single change from 0 to 1, on position#, in a condition's binary vector. All that needs 
to be done to update the coverage of this condition is to perform bitwise OR on the 
coverages (positive and negative) of the corresponding feature number # associated 
with the given attribute with those of the original condition. Then, this change must 
be propagated to the appropriate rule's and rule set's coverages, using similar simple 
computations. 
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Chapter 7 

A TRACE OF THE SYSTEM'S 
BEHAVIOR 

.. 
In this chapter we trace GIL's behavior on a sample application. We explain in detail 
the major steps of the GA algorithm (figure 2.1): initialization, initial evaluation, 
and one basic iteration. Finally, we trace all the remaining iterations. This further 
explains and exemplifies this system and its ideas. For this experiment, the following 
implementation options were used: delete both invalid and empty complexes, make 
the unrestricted selectors invisible, and use the correctness measure that combines 
completeness and consistency with the equal weights. 

For the experiment, we decided to use data of a moderate complexity, yet sim­
ple enough to be represented by the diagramatic visualization method. One of the 
concepts further described and tested in section 9.2 was a perfect choice. It comes 
from the world of Emerald's robots ([29]) described by the following six attributes 
(we boldface the abbreviations subsequently used in this chapter): 

Attribute 
HeadShape 
Body 
Smiling 
Holding 
J acketColor 
Tie 

Values 
Round, Square, Octagon 
Round, Square, Octagon 
Yes, No 
Sword, Balloon, Flag 
Red, Yell ow, Green, Blue 
Yes, No 

and is one of those presented in [69]: 

Head is Round and Color is Red or Head is Square and Holding a Balloon 

The above concept is represented by the following set of rules: 

[H-R][J=R] ::> Concept 
[Ho=S][H=B] ::> Concept 

or, assuming an implicit decision as used in GIL, by the following formula: 

[H=R][J-R] V [H=S][Ilo=B] 



The goal was to learn such a concept description when only presented with a limited 
number of training events. In other words, this experiment was designed to test both 
GIL's ability to learn descriptions and its ability to generalize. 

The above attributes span an event space of size 432: 84 of them satisfy the 
concept. The training was done using a random 20% of both positive and negative 
examples: 17 and 70 respectively (see figure 7.1 for a visualization of the target 
concept and the training events). The population size was set to 40, initialized equally 
by both random descriptions and positive training events. The system was set to run 
100 iterations. Other implementational parameters were set as follows: w1 = w2 = 
0.5, w 3 = 0.02, the cost was normalized with respect to the highest cost in the current 
population. The priori application probabilities, along with actual adjusted values 
(adjustment for the currently average size of the chromosomes, see section 5.4) at the 
end of this experiment, and at the end of one of those of chapter 9, are presented in 
table 7.1. This scaling was computed assuming a desired rate of 80% chromoso~es 
to be updated by the recombination step. The selection probabilities were as follows: 
0.2 for a rule selection in "rules exchange"; 0.1 for "splitting a rule" according to two 
subsets, as opposed to all domain values, for the nominal type, and 0.7 for the linear 
type; 0.5 for all probabilities on the condition level. 

Level Operator Initial This Multiplexer 
Values experiment fn 

Rules exchange 0.20 0.115 0.011 
Rules copy 0.10 0.058 0.050 

Rule set New event 0.40 0.230 0.022 
Rules generalization 0.50 0.288 0.027 
Rules drop 0.50 0.288 0.027 
Rules specialization 0.50 0.288 0.027 
Rule split 0.02 0.011 0.002 
Condition drop 0.10 0.058 0.005 

Rule Turning conj. into disjune. 0.02 0.011 0.002 
Condition introduce 0.10 0.058 0.005 
Rule directed split 0.12 0.069 0.007 
Reference change 0.02 0.012 0.001 

Condition Reference extension 0.03 0.017 0.002 
Reference restriction 0.03 0.017 0.002 

Table 7.1: Application probabilities. 

7.1 Data Compilation 

Data compilation is not part of the algorithm itself, but was rather designed and 
introduced as an implementation method for improving the efficiency of the evaluation 
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EITl Target concept 
+ Positive training events 

Negative training events 

Figure 7.1: The goal concept and the training events. 

.. 

mechanism. This method is described in section 6.3: all the training events were 
compiled into positive and negative binary coverage vectors for all possible features 
of the event space. 

7.2 Initialization 

The population size was set at 40, i.e. the system was simultaneously working on that 
many different potential solutions. Initially, half of these chromosomes were set as 
random positive events (with replacement). The other half was initialized to random 
disjunctions of complexes in the following way: 

• Make one random complex. 

• Append another random complex with a certain probability (0.7 was used). 

• Repeat the previous step until no complex is appended. 

The probability of appending a new complex controls the expected value of the length 
of such random chromosomes. 

1.3 Initial Evaluation 

Each chromosome, being a disjunction of complexes, was initially eva! uated in the 
following way: 

• Both positive and negative binary coverage vectors of each selector present 
in the population were constructed by bitwise ORing the coverage vectors of 
appropriate features. For example, to construct the positive coverage vector for 
the selector [H=R,O], the system would OR such positive vectors of the features 
H=Rand H=O. 
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• Both positive and negative binary coverage vectors of each complex were anal­
ogously constructed by ANDing appropriate vectors of its selectors. 

• The number of binary ones in each such a vector determined the current e+ and 
e- coverage of the corresponding complex. 

• Both positive and negative binary coverage vectors of each chromosome were 
analogously constructed by ORing appropriate vectors of its complexes. 

• The number of binary ones in each such a vector determined the current E+ and 
C coverage of the corresponding chromosome. 

• Both completeness and consistency measures were calculated for all chromo­
somes and complexes, according to section 5.4. 

• The total fitness of each chromosome was evaluated according to section 5:"11. 

The best such evaluated chromosome of the initial population is presented in figure 
7.2; it is a result of a random chromosome generation. 

Iteration 0 (from initialization) 
Cost = 7 : 1 rule, 5 conditions 
Positive coverage = 1 

Negative coverage= 0 

Best rules: 

[B=R][S=NJ[Ho=B][J'-R, Y,B][T=N] 

Figure 7.2: The best initial chromosome. 

7.4 One Iteration 

Each iteration of the genetic algorithm consists of three basic steps: selection, re­
production, and evaluation (see figure 2.1). However, the special data compilation 
method, along with the use of the binary coverage vectors, allows for combining the 
last two steps into an incrementally evaluated reproduction: each operator is followed 
by a proper update to all the affected vectors and recalculation of the completeness 
and consistency measures (see section 6.3). Then, the only task of the evaluation step 
is to calculate the total fitness: there is no pattern matching involved. Nevertheless, 
such a method still follows the full memory approach: the actual data is replaced 
by the coverage vectors of the features. In the case of an incremental learning (this 
particular example was conducted in the batch mode), every time a new example 
is presented to the system, all appropriate features (those present in that example) 
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would be incrementally updated and propagated to other structures present in the 
population. 

7.4.1 Selection 

During this step a new population is selected from members of the previous population 
with replacement (or from the initial population during the first iteration). The 
selection is performed using the stochastic universal sampling mechanism described 
in section 6.1, which increases selection chances for higher-evaluated chromosomes. 
One important implication of this mechanism is that the best chromosome is always 
guaranteed to appear at least once in the next population. 

7.4.2 Reproduction 
• 

During this step some of the chromosomes of the new population are changed· by 
actions of the genetic operators. Normally, such actions are selected based on some 
static probabilities. However, in our case there are two dynamic factors that affect 
such probabilities: the rate of chromosomes update and completeness and consistency 
measures of proper structures. 

First, the rate of chromosomes update (from the previous generation) is compared 
to that desired (80% in this case, or 32 chromosomes), and if they differ by more than 
some allowable margin, all the application probabilities are accordingly adjusted by a 
small fraction and the new values replace the old ones. Then, the algorithm's control 
walks through all the structures present in the population and nondeterrninistically 
applies selected operators. Competing here operators are those defined for the same 
level. Moreover, both the generalizing and the specializing operators adjust their 
application probabilities for each structure, according to section 5.5.2, before a uni­
form probability generator decides their actual application. For example, consider a 
complex with the following measures: completeness = 0.2, consistency = 0.9. All 
operators defined for this level are tried in a random order: each one actually found 
applicable updates this complex. The independent operators have probabilities of 
application exactly as the priori values (possibly adjusted with respect to the desired 
update rate). The generalizing operators have probabilities of application additionally 
adjusted by 

(~-completeness) · (~+consistency) = 1.82 

and the specializing operators have the probabilities adjusted by 

(~+completeness) · (~-consistency) = 0.42 

In other words, this particular complex would have an increasing pressure for gener­
alization. 

Each operator actually selected for application updates the structure, and then 
it immediately incrementally updates binary coverage vectors from the structure up 
to the chromosome level. This action is very cheap at this moment for most of the 
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operators (for some examples see section 6.3). Also, the appropriate completeness and 
consistency measures are immediately reevaluated. Such an incremental approach not 
only reduces the time complexity of evaluations by taking into account some specific 
information about properties of the operators, but also leaves all the coverages and 
the measures consistent for the other competing operators. This is very important 
since some of them rely on such information for further efficiency improvements. For 
example, the "directed rule split" operator needs to find a negative event inconsistent 
with the current complex. Being able to rely on the coverage vectors, finding such an 
event is reduced to selecting a random binary one from the negative coverage vector of 
this complex: otherwise, the complex would have to be sequentially matched against 
all possible negative training examples. 

7.4.3 Evaluation 
~· 

As we mentioned above, the only task left for the evaluation is to update the fitness 
values, using the completeness, consistency, and cost measures of each chromosome, 
as well as the maximal cost found in this current population (see section 5.4). 

1.5 The Remaining Iterations 

Following the initialization and the initial evaluation (sections 7.2 and 7.3), the system 
was run for the allowable number of iterations. Not every iteration produced a better 
chromosome. In this section we show the best chromosome at each iteration that 
generated such an improvement. 

Iteration 1 
Cost = 15 : 2 rules, 11 conditions 
Positive coverage = 3 
Negative coverage= 0 
Bc>st rules: 

[H=SJ[B=SJ[S- 11[Ho=B][J= J1 
V [H=SJ[B=R][S= J1[Ho=B][J=G][T=N] 

Iteration 2 
Cost = 6 : 1 rule, <1 conditions 
Positive coverage= 6 
Negative coverage= 0 
Best rules: 

[H=SJ[B=S,O][S= J1[Ho=B][J= Y,G,B] 
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Iteration 3 (an overgeneralization) 
Cost = 4 : 1 rule, 2 conditions 

Positive coverage = 12 
Negative coverage= 4 

Best rules: 

[H=R,S][Ho=B] 

Iteration 7 (a redundant rule) 
Cost = 12 : 2 rules, 8 conditions 

Positive coverage= 10 
Negative coverage= 0 
Best rules: 

[H=S][Ho=B][J= Y,G,B] 
V [H=S][B=R][S= Y][Ho=B][J=GJ 

Iteration 8 (the redundancy removed) 
Cost = 5 : 1 rule, 3 conditions 

Positive coverage= 10 
Negative coverage= 0 
Best rules: 

[H=S][Ho=B][J= Y,G,B] 

Iteration 9 
Cost = 13 : 2 rules, 9 conditions 

Positive coverage= 11 

Negative coverage= 0 
Best rules: 

[H=S][Ho=B][J= Y,G,B] 
V [H=R][B=S][S= Y][Ho=S][J=R][T=NJ 
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Iteration 10 
Cost = 12 : 2 rules, 8 conditions 
Positive coverage= 13 
Negative coverage= 0 
Best rules: 

[H=S][Ho=B] 
V [II=R][B=S][S= Y][Ho=S][J=R][T=N] 

Iteration 11 
Cost = 11 : 2 rules, 7 conditions 

Positive coverage= 14 
Negative coverage = 0 

Best rules: 

[H=S][Ho=B] 
V [H=R][B=S][S= 11[Ho=S][J=R] 

Iteration 16 
Cost = 9 : 2 rules, 5 conditions 
Positive coverage= 16 
Negative coverage = 0 

Best rules: 

[H=S][Ho=B] 
V [H=R][B=S,O][J=R] 

Iteration 25 
Cost = 17 : 3 rules, 11 conditions 
Positive coverage = 17 
Negative coverage = 0 
Best rules: 

[II=S][Ilo=B] 
V [II=R][B=S,O][J=R] 

-~ 

V [H=R][B=R][S= Y][Ho=FJ[J=R][T= 11 
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Iteration 27 
Cost = 8 : 2 rules, 4 conditions 

Positive coverage = 17 
Negative coverage= 0 
Best rules: 

[Il=SJ[Ho=B] 
V [H=R][J=R] 

This problem proved to be extremely simple to our algorithm. A complete and 
consistent description was found after only 27 basic iterations, and after 3.1 CPU 
seconds on a DEC3100 station. Moreover, this induction, based on the 20% of~the 
available events, produced a concept description that was complete and consist.ent 
with all the unseen events (this is not necessarily the case with other learning systems 
-see table 9.1). 
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Chapter 8 

AN ALTERNATIVE VIEW 

In chapter 5 we described the ideas and the reasoning leading to the proposed d~ign 
from the point of view of the GA community. In this section we show how the same 
design can be argued on the grounds of artificial intelligence and machine learning. 
We do that by exploring similarities between GAs and the most general problem 
solving paradigm of artificial intelligence- production systems, and by showing how 
the ideas behind the GA modifications can be explained in this framework. 

The methodology of inductive learning, as defined by Michalski in [39], has been 
widely known and accepted. When restricted to attribute-based spaces, it can be 
shortly characterized as a rule-based framework with a set of inference rules and a 
set of principles. Why, then, does no symbolic system actually implement it directly? 
Ainong the known symbolic systems, only Michalski's AQ, with its beam-like search, 
at least implicitly follows the methods by performing simultaneous generalizations 
and specializations - by means of negations, unions, and intersections of formulas 
of the symbolic language. Quinlan's ID separates the two strategies completely: it 
builds complete and consistent descriptions by only specializing the formulas (starting 
with the most general one), and then it possibly applies generalizations by means of 
some tree pruning techniques. It seems that the reasons for such a diversion between 
the theory and practice are lack of clearly defined measures of partial achievements 
(heuristics) and the huge search spaces of inductive learning. 

The space of possible concept descriptions in the attribute-based framework is 
extremely large. For example, using ten descriptive attributes with three values per 
domain we are faced with 710 number of different rules. Then, the number of possible 
concept descriptions is 2710

, or almost 10100000000
. Most approaches deal with this 

problem by performing only one kind of operation (e.g. specializations in decision 
trees), by searching a differently pre-enumerated space (e.g. neural networks), or by 
following a simplified strategy directed by some biased criteria (e.g. AQ). However, we 
want to use the inference rules directly in a rule-based framework. Then, one solution 
would be to use hill-climbing techniques. However, the available heuristics, relying 
mostly on partial measures of completeness and consistency, could easily lead to 
local traps. Therefore, irrevocable strategies are quite inapplicable. Another solution 
would be to use some tentative techniques. However, the huge search spaces would 
require such methods to be extremely well informed, or otherwise the database would 



grow unmanageably fast. Again, the available heuristics are not strong enough to 
provide such qualities. 

To solve this problem we use a search mechanism that keeps the database size un­
der control by retaining only a fixed number of states. This is achieved by abandoning 
states that show little potentials, and fully exploring only those most promising. To 
implement this control we use the mechanisms of genetic algorithms, which exhibit 
exactly such behavior and were shown to be very robust. To organize the method, we 
use the ideas of production systems, whose general architecture is presented in figure 
8.1. The database represents the state of the current search, the production •·ules 
(condition-action pairs) act on the database members to derive new states, and the 
control directs the rule-application process. A rule applied to the database alters its 
state. 

Production systems were originally inspired by attempts to model the human cog­
nitive process, and were first proposed by Post in 1943 ([59, pp. 28]). Their ideawas 
to use production rules, which change states in a way of firing neurons. What arti­
ficial intelligence found interesting in production systems was the clear separation of 
various elements of the paradigm. This, in turn, allowed for transparency, modular 
design, and ease of both maintenance and knowledge refinement. Many different ver­
sions and generalizations of such a design were proposed by the artificial intelligence 
community, often specific for certain domains. However, they all share the ideas of 
the high level modularity, application of rule-like operators, and the name of produc­
tion systems, AI production systems, production rule systems, etc. ([46]). Using such 
general views, one may argue that most expert systems are AI production systems, 
and so are some search methods, e.g. the best first search, when applied to specific 
domains. 

Database Conflict resolution 
Current states control 

* I Knowledge base of .. . 

production rules 

Figure 8.1: A production system architecture. 
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The three top level components are: a database representing the state of the 
current search (depending on the problem and the chosen representation, it might be 
either a single state reflecting all the transformations, or it might be a set of old and 
newly generated states), production rules representing the task-specific knowledge 
about state-transformations, and control for conflict resolution between candidate 
rules (see figure 8.1 ). The system starts either with the state reflecting the initial 
situation (forward direction) or with the desired goal (backward direction). In either 
case, the system runs until an appropriate sequence of rules transforms the initial 
state to the opposite one (e.g. to the goal after staring with the premises). Usually 
both the initial and the goal states are known a priori. In this case the solution is the 
path that transforms one into the other. In general, the ultimate goal may be to find 
the state that best satisfies some criteria. In this case the path may be of no interest. 

A rule can change a state if its condition part is satisfied (the rule can fire). How­
ever, at a given moment a number of rules may candidate for firing. It is the tpsk 
of the control to decide which rule actually alters the state. With this process; the 
database often rapidly grows in size, causing a chain reaction by increasing the num­
ber of candidate rules. Then, the feasibility of such a system depends on the control's 
quality. However, the control relies on heuristics for its decision making. There­
fore, weak heuristics prohibit production system architectures from use in many large 
search spaces. In particular, this is the reason that such an architecture has not been 
applied to the task of supervised learning, despite the well identified representation 
and the inference rules of the inductive methodology. Before we further describe our 
solution, let us compare the GAs and production system architectures. 

Looking back at the general architecture of a GA (figure 5.2), it seems these two 
are very similar. Both separate the current situation (database or population), the 
operators acting on such structures, and the control mechanism that directs the ex­
pansion process. However, there are a number of significant differences as well. In 
production systems, this separation is a natural by-product of the high abstractive 
level; on the other hand, genetic algorithms make this distinction based on different 
principles, often on a level that is distant from the conceptual level of the problem. 
Production rules become candidates for applications in a deterministic manner, by 
satisfying their conditions; operators of a genetic algorithm do not have any depen­
dencies on the current situation, but rather act nondeterministically. In production 
systems the size of the database either grows or stays as just one growing state, 
depending on the choice of the representation; in genetic algorithms the population 
holds a constant number of states - to accommodate new states some of the stochas­
tically worse chromosomes are abandoned. In production systems only one rule fires 
before candidacies is reconsidered; in genetic algorithms all selected rules fire in a 
basic cycle, independently of each other. In production systems a rule always applies 
to a single state to generate a new state; in genetic algorithms a new state may in­
corporate partial information from two parent states. Finally, in production systems 
a new state is a product of a new state and exactly one inference, while in genetic 
algorithms a new chromosome may be a product of few operations. 

The new design of chapter 5 seems to push the genetic algorithm closer to the 
production systems: the inference rules still have the non-deterministic element, but 
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also have a deterministic, problem~specific aspect (i.e. some operators require simple 
condition matching, and probabilities of applications are adjusted by some problem~ 
specific characteristics, namely the current coverage and the average chromosome 
size); the operators encode high level knowledge about state-transformations; differ­
ent initializations provide a kind of bi-directional behavior. Then, the design itself 
can be described as a rule-based architecture, with the rules partially nondetermin­
istic and modeling the task~specific knowledge, with a constant number of expanded 
states, and with the control following that of genetic algorithms. Since such mech­
anisms are known for their robustness, the system should operate in the immense 
space under the constraint of those weak heuristics. 

The system can be pushed even closer to production systems, and we hope that 
exploring such possibilities can further improve both its quality and time performance. 
For example, initial experiments indicate that inversing the application mechanism 
from operator~oriented to state~oriented can improve the system's speed by a fa!;tor 
of five, all without a noticeable change in its quality. In addition, exploring such 
relations can lead to designs of new general artificial intelligence solving paradigms 
utilizing the search principles of genetic algorithms. 

Finally, after these preliminaries, we are ready to describe the system in terms 
of the three components of rule-based systems: the database, inference rules, and 
control. 

8.1 Database 

We use the rule~based framework of the V L1 language. Consequently, the search 
space becames the space of all V L1 descriptions. The goal is to find the best state 
that fits some criteria (completeness, consistency, and possibly some learning bias), 
and not the path leading to such a state. Then, each state of the current database 
is a sets of V L 1 complexes: a potential solution. Each complex is a conjunction of 
conditions that must be satisfied. Finally, each condition is related to exactly one 
attribute, and is equivalent to the V L1 selector. 

8.2 Operators 

The operators transform states of the database to new (possibly better) states in the 
search space. Since the system operates in the space of V L1 ~based descriptions, the 
operators model those of the inductive learning methodology when restricted to the 
attribute~based spaces. To fully use the idea of the population, and to provide similar 
qualities as those of the genetic algorithm search (i.e. robustness), we introduce an 
additional operator which exchanges pieces of information between different states 
("rule exchange"). We also define few additional operators utilizing some additional 
ideas of inductive learning, as replacing a number of rules by their most specific gen­
eralization, or by their most general specialization. Having the advantage of knowing 
the AQ and ID algorithms, we define two operators simulating the basic steps of those 
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two systems. Thus, we have an operator which, given a rule and a negative incon­
sistent event, replaces this rule by all maximal rules consistent with the old rule and 
that event ("rule directed split"). Following the ideas of the ID algorithm, we have 
an operator which partitions a rule using exactly one attribute ("rule split"). Finally, 
we also have a rule which, given a state (i.e. a rule set) and a. positive uncovered 
event, adds this event as a new rule to this current description ("new event"). Ad­
ditional heuristics are used to match operators to specific properties of intermediate 
descriptions (by dynamically adjusting the application probabilities). 

Each operator is given an initial probability of application to its type of structure 
(based on the level of its definition: set of complexes, complex, and selector levels). 
These probabilities have the dynamic character with respect to the current context, 
i.e. to the current completeness and consistency. Prior probabilities of generalizing 
operators are increased for applications to structures (rule sets, rules, conditions) 
that are incomplete. Prior probabilities of specializing operators are increased~for 
applications to structures that are inconsistent. Moreover, the levels of probability 
increase/ decrease are based on the levels of inconsistency /incompleteness. In other 
words, these two measures serve as heuristics guiding the selection of appropriate 
operators. 

8.3 Control 

The control follows that of genetic algorithms. First, the initial database is filled with 
random rules and possibly some positive training events. Then, all the rule sets are 
evaluated to provide some heuristic measures of accomplishments. Such measures use 
the idea of normalized correctness based on completeness and consistency. To prevent 
redundancy in the descriptions, the measure is slightly adjusted with respect to the 
number of complexes in a description (however, we do not use any redundancy remov­
ing axioms). In addition, one may want to include an additional bias based on some 
learning criteria. For example, in the experiments shown here we also accommodate 
a complexity measure (as in [69]) which reflects the number of conditions. 

Following these preliminaries, the algorithm enters a stage in which the three 
iterative steps are performed (selection, reproduction, evaluation) until a desired state 
is found. Since, in general, we do not know the sought description a priori, the 
termination condition may be based on the amount of resources available or some 
criteria for the solution. During selection a new database is generated by choosing 
stochastically better states (with repetitions). In other words, the most promising 
states may appear multiple number of times in the new database, while the weak 
ones may be abandoned. During reproduction the set of inference rules hypothetically 
applies to all structures of the newly selected database. Some of the operators require 
a simple condition to be satisfied in order to candidate for firing, others do not have 
any preconditions. However, the actual firing is non-deterministic, with probabilities 
based on prior values and the context in which each operator applies (completeness 
and consistency of current structures). All operators found to fire perform their 
actions: there is no conflict resolution. This action generates a set of new states, 

55 



which are offspring of the higher-valued previous states. Finally, all new states are 
reevaluated using the available heuristics. 

8.4 Efficiency Considerations 

Our operators are defined as simple atomic actions, which can be performed very 
efficiently on the V L1 descriptions if a special representation is used. However, some 
of the operators require finding a proper positive or negative event. Moreover, the 
reevaluation of a state requires an extensive pattern matching against all training 
events in order to estimate its completeness and consistency. This may be uneconom­
ical and highly inefficient. To deal with this problem we precompile the training data 
into binary coverage vectors, and we subsequently operate on such structures. 
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Chapter 9 

EXPERIMENTS 

In this chapter we report the results of an extensive testing of our approach (using the 
GIL implementation), aimed at both evaluating its behavior under various conditkms 
and comparing its performance to that of other well known systems. All of the forth­
coming results were obtained with the same implementation options and parameters 
as those of chapter 7. The only difference was an increase in population size to 50, 
and a change in the number of iterations as indicated individually. 

9.1 Experimental Methodology 

In the literature, systems are being evaluated and compared on the basis of quality 
while working with a standard set of well recognized artificial and real data: examples 
widely used are random DNFs, multiplexers, soybean disease, breast cancer. To 
evaluate quality of our GIL system we use some of these standard data sets. This also 
allows us to use published results obtained while experimenting with other systems, 
under the assumption of repeating exactly the same experimental sessions. 

As mentioned in section 3.4, the acquired knowledge must meet two criteria: high 
predictive accuracy (classification) of unseen events and comprehensiveness at some 
high cognitive/ conceptual level. The quality of the former measures the generalization 
power of the system. Since the recognition is normally done by associating numerical 
weights of confidence in different decisions, we call it a quantitative property. On the 
other hand, we call the latter a qualitative property. 

The most common experimenting methodology is to split the available events into 
training and testing groups (usually 70% and 30%). Subsequently, the experiment 
calls for a learning session using the training group, followed by testing using the 
other group (containing events unseen during the training). Different measures are 
then used to determine the qualities of a system. For example, for the quantitative 
properties, Michalski and Chilausky define a set of conflicting measures ((38]), under 
the assumption that in some cases it makes no sense to distinguish between two 
close diagnoses. However, most researchers use a single measure of accuracy, defined 
as the ratio of correctly classified events to all testing events: this is the measure 
we use unless otherwise stated. To measure the qualitative properties we either list 



separately the number of rules and conditions used, or combine them according to 
the well accepted formula shown in section 5.4. 

Another important issue is the estimation of such assumed measures. If we had 
an infinite number of training and testing events, we would not have to worry about 
sampling errors (but would have to worry about time complexity). Having only 
limited resources available, the simplest way to estimate the measures is to run a single 
session. However, the confidence in such r,esults is very low. Such experiments are 
permissible only under extreme conditions (e.g. time constraints). A more powerful 
method is to repeat the experiments with randomly selected training and testing 
groups, and report the average results. This is the most often used scenario. Under 
certain conditions (small number of available data events and low time complexity of 
the learning/testing session), a preferred method is so called leaving-one-out. This 
approach uses all-but-one events for training and the remaining event for testing, 
repeating the process for all available events and reporting the average results.~ In 
designing our experiments we use the second of the three described methods, with 
five random resamplings per test (unless otherwise stated). 

9.2 Emerald's Robot World 

Recently, a report of the AI laboratory at GMU was published ([69]) evaluating a 
number of different learning systems using the the world of robots from the Emerald 
system ([29]). Since this report provides a detailed description of the experiment, it 
is relatively easy to repeat exactly the same tests with our system and compare the 
results directly with those reported. 

The following were the six variables describing the robot world: 

Attribute 
Head 
Body 
Smiling 
Holding 
Color 
Tie 

Values 
Round, Square, Octagon 
Round, Square, Octagon 
Yes, No 
Sword, Balloon, Flag 
Red, Yellow, Oreen, Blue 
Yes, No 

and the robots were classified into the following five categories (created by a task­
unaware human): 

Concept 
c, 

Description 
Head is Round and Color is Red or Head is Square and 
Holding a Balloon 
Smiling and Holding a Balloon or Head is Round 
Smiling and not Holding a Swo1·d 
Jacket is Red and no Tie or Head is Round and is Smiling 
Smiling and Holding either a Balloon or a Sword 
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Finally, the task was to learn a description of each concept while seeing only a varying 
percentage of the positive and the negative examples. There were a total of 432 
different robots present in this world. The error rate reported is the average error 
in recognizing all the 432 (both seen and unseen) events. This measure explicitly 
estimates a system's predictive accuracy, while at the same time implicitly judges the 
system's generalization and specialization power. 

Learning Scenario (Positive%/Negative%) 
System 6%/3% 10%/10% 15%/10% 25%/10% 100%/10% 

AQ15 22.8% 5.0% 4.8% 1.2% 0.0% 
BpNet 9.7% 6.3% 4.7% 7.8% 4.8% 
C4.5 9.7% 8.3% 11.3% 2.5% 1.6% 
CFS 21.3% 20.3% 21.5% 19.7% 23.0% 
GIL 4.3% 1.1% 0.0% 0.0% 0.0% 

Table 9.1: Error rate summary in the robot world. 

Learning Scenario (Positive%/Negative%) 
Concept 6%/3% 10%/10% 15%/10% 25%/10% 100%/10% 

c1 11.1% 5.3% 0.0% 0.0% 0.0% 
c2 0.0% 0.0% 0.0% 0.0% 0.0% 
c3 0.0% 0.0% 0.0% 0.0% 0.0% 
c4 10.4% 0.0% 0.0% 0.0% 0.0% 
c5 0.0% 0.0% 0.0% 0.0% 0.0% 

Table 9.2: GIL's error rate in the robot world. 

The systems used in the mentioned experiment were: rule-based AQ15, neural 
network BpNet, decision tree with rules generator C4.5, and genetic classifier system 
CFS (for details see [69]). Table 9.1 reports the average error rate for the five experi­
mental concepts for all five systems (the results of the other four obtained from those 
published experiments). Surprisingly, GIL (run here for the same 100 iterations) pro­
duced the highest recognition rate, especially when seeing only a small percentage of 
the events. Its concept-by-concept results are presented in table 9.2. It is interesting 
to note that the two most difficult concepts ( C1 and C4 ) had the most uneven divi­
sion between the number of positive and negative examples, causing a problem when 
learning with an insufficient number of events (e.g. 6% of the positive instances of C1 

were only about five objects). 
Table 9.3 reports the average acquired knowledge complexity by listing both the 

average number of rules and the average number of conditions, as learned by all five 
systems for different learning scenarios. The NR entry indicates that the complexity 
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Learning Scenario (Positive% /Negative%) 
System 6%/3% 25%/10% 50%/10% 75%/10% 100%/10% 

AQ15 2.6/4 1.6/3 1.6/3 1.6/3 1.6/3 
BpNet NR 18/29 NR NR 32/54 
C4.5 6.8/12.2 4.4/9.2 4.8/9.2 4.8/9.2 3.8/7.3 
CFS NR NR NR NR NR 
GIL 1.4/2.6 1.6/3 1.6/3 1.6/3 1.6/3 

Table 9.3: Complexity's summary in the robot world. 

Learning Scenario (Positive% /Negative%) .. 
Concept 6%/3% 25%/10% 50%/10% 75%/10% 100%/10% 

c1 2/4 2/4 2/4 2/4 2/4 
Cz 2/3 2/3 2/3 2/3 2/3 
c3 1/2 1/2 1/2 1/2 1/2 
c4 1/2 2/4 2/4 2/4 2/4 
Cs 1/2 1/2 1/2 1/2 1/2 

Table 9.4: GIL's complexity in the robot world. 

was large and not reported in the reference paper. The reason for the higher complex­
ity of the connectionist approach is that this is a non-symbolic system operating on 
numerical weights rather than on the problem symbols. On the other hand, the high 
complexity of the genetic approach can be attributed to the fact that the symbolic 
processing was being done in the representation rather than the problem space. This 
result is rather common for genetic algorithm approaches. Therefore, it was a big 
surprise to find that GIL's knowledge was at the same complexity level as that of 
the highly acclaimed AQ15. Again, GIL's results on a concept-by-concept basis are 
presented in Table 9.4. 

Finally, for the most difficult learning concept C1 , and for the most difficult re­
ported learning scenario (6% positive and 3% negative events for training), we present 
a diagramatic visualization ((69]) of the acquired knowledge as compared to the tar­
get concept (figure 9.1). Among the systems not shown, C4.5 produced a slightly 
more fragmented description, while the remaining two produced descriptions quite 
conceptually unrelated to the target (see (69]). 

9.3 DNF Concepts 

Learning DNF descriptions has become a standard way of evaluating different systems 
(e.g. (25]). An interesting experiment was conducted by Spears and DeJong ((13]), 
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Figure 9.1: Diagramatic visualization of the acquired knowledge. 

.. 

in which they compared decision tree based ID5 with their own genetic algorithm 
for supervised concept learning GABIL. The test data for that experiment was a set 
of random DNF descriptions of a varying complexity. The reported results represent 
batch-incremental learning curves: a system's quality measure after seeing n examples 
is defined as an average recognition of a single unknown random event over the last 
ten experiments (from n- 9 ton). Accordingly, the learning curves are undefined for 
n < 10. 

There were a total of six attributes, each having three possible values. Six sets 
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of experiments were conducted, for six randomly constructed DNF concepts of the 
following kind: 

Concept #Rules #Conditions/Rule 
1d1c 1 1 
2d1c 2 1 
1d2c 1 2 
2d2c 2 2 
1d3c 1 3 
2d3c 2 3 

For each experiment, a total of 100 events was chosen randomly. Then, using an 
increasing number of learning events and just one testing event, the learning curves 
were constructed using average results over ten independent runs with resampling. 
For the incremental ID5, the knowledge was updated incrementally upon a ne~~in­
consistent event, while it was generated from scratch in the GABIL system (it does 
not possess such incremental properties). 

We repeated the same experiments in exactly the same environment, using the 
same batch-incremental mode as GABIL. Because the DNFs actually used were not 
reported in that paper, we repeated the experiments not only with resampling, but 
also with randomly regenerated target descriptions (each run of 100 iterations). The 
results are presented in figure 9.2. The original claim of the GABIL system was that it 
could not learn as well as ID5 on simple concepts, but achieved about the same levels 
(in some cases slightly better) of performance as the concepts' complexity increased. 
Our results show that GIL can do both at the same time: it achieves very high 
performance for all kinds of problems. Moreover, it clearly out performances GABIL 
in terms of learning variability: its smooth learning curve indicates low variability in 
performance, while the broken curve of GABIL indicates bigger differences from run 
to run. 

9.4 Multiplexers 

The family of multiplexers is another widely used set of data. Each multiplexer is 
actually a specific case of the more general DNF. For each integer k = 1, 2, ... there 
is a multiplexer boolean function defined in the following way: the function's inputs 
are the k bits (called addresses), and there are exactly 2k outputs (called data bits). 
Accordingly, we have multiplexer h for k = 1, / 6 for k = 2, / 11 for k = 3, etc . . 
The function of a multiplexer is to activate the data bit whose address (in binary, 
assuming some ordering of the data bits starting at 0) is specified by the address bits. 
For example, 

[Ao = OJ[A1 = Oj[A2 = 1] V [Ao = OJ[A1 = 1 J[A3 = 1] 
V[Ao = 1J[A1 = Oj[A4 = 1] V [Ao = 1J[Al = 1J[A5 = 1] 

defines the /6 multiplexer in the F L1 language, assuming that attributes Ao and A1 

are the two address bits, and A2 to A5 are the four data bits. 
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Figure 9.2: Batch-incremental results on DNF data. 

Many experiments have been documented, mostly using f 6 and f 11 functions. 
For example, Koza describes learning the first of these two, while using his LISP­
influenced hierarchical genetic approach. He reports a case of learning the actual 
function after processing 4500 potential solutions, while seeing all 64 (26

) possible 
instances. Our own experiments indicate an average learning after seeing only about 
2000 individuals ( 40 iterations, database size 50). However, these two results should 
not be compared directly - we lacked the necessary details to recreate the same 
setting. We performed a different experiment while presenting our system with an 
increasing number of training events. The resulting learning curve is presented in 
figure 9.3. In all these experiments, GIL ran for 200 iterations, which took an average 
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Figure 9.3: Learning curve on multiplexer Ie-

of 8.5 CPU seconds on a DEC3100 station. 
Multiplexer In is considerably more complex than the simple I6 ; the size of: its 

event space is 2048, or 2n. Table 9.5 reports an average accuracy while learning 
with varying sizes of the training set. These results are similar to those from other 
systems (e.g. [52]), but a different experimental methodology does not allow for a 
direct comparison. An interesting fact observed here was that this learning was quite 
slower than that of I 6 - an average of 20 CPU minutes on the same DEC3100 
station for 2000 iterations. There seem to be two major reasons for this increase. 
Firstly, the complexity of the sought here description was 48 vs. 20 in the previous 
case. Secondly, the number of possible complexes is much larger in the second case, 
giving a much larger search space: approximately 1060000 vs. 10200

• Indirectly, the 
larger search space required more iterations for the learning, and larger intermediate 
states (see figure 9.4) caused a longer processing on each iteration. Nevertheless, this 
complexity still compares very favorably with other GA approaches. We hope to 
improve this even further by a more efficient selection mechanism and a parameter 
tuning (we return to these issues in chapter 10). 

II % training events II Accuracy II 
5% 77% 
10% 88% 
20% 94% 

Table 9.5: GIL's accuracy on multiplexer In· 

Yet another interesting difference between the two multiplexers can be observed 
by comparing the accuracy while learning with a small percentage of the available 
events: In achieves high rates much quicker. The reason for such a behavior seems 
to be the ratio of the concept complexity to the size of event space, which is about 
0.313 for Ie and 0.023 for In· This raises an interesting hypothesis about estimating 
the difficulty of generating descriptions: such a difficulty is proportional, or at least 
highly correlated, to the ratio of the concept's complexity and the size of the event 



space. We hope to further investigate this assertion in the future. 
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Figure 9.4: A sample behavior on multiplexer fn. 

Figure 9.4 traces a sample run while training with 20% of the available events. 
During this learning session, the exact concept was learned after 1700 iterations. A 
consistent and complete description of the training events was found shortly after 
1000 iterations, and the remaining 700 cycles were required to simplify the generated 
description. The first of these two graphs traces completeness and consistency of 
the currently best database individual at 17-iterations intervals (100 data points). 
The other graph traces the complexity of such best individuals. It is interesting to 
note that the complexity rises during the learning, as a result of not finding simple 
enough complete and consistent descriptions, and then decreases - forced down by 
an increasing cost influence (see section 5.4) and formation of such better descriptions. 

9.5 Breast Cancer 

The breast cancer data is one of the most popular natural domains used in experiments 
with inductive learning systems. It contains 286 descriptions of female patients, 
classified as either developing or not developing a recurrence of breast cancer after 
a five year period following the first surgery. The descriptions are generated using 
nine attributes, with an average of 5.8 values per domain. Such descriptive language 
was found to be inconsistent, meaning that some patients having exactly the same 
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description were classified differently. Such a situation puts an extra burden on the 
learning system. 

II System/method II Complexity I Accuracy 1/ 

Human experts Not reported 64% 
AQ15/full rule set 41 rules/160 conditions 66% 
AQ15/best rule only 2 rules/7 conditions 68% 
Assistant/without tree pruning 63 leaves/120 nodes 67% 
Assistant/with tree pruning 9 leaves/16 nodes 72% 
GIL 36 rules/128 conditions 65% 
GIL/with emphasized cost 10 rules/27 conditions 67% 

. 
Table 9.6: Summary of the breast cancer experiment. 

An excellent publication by Michalski and colleagues ([41]) lists both quantitative 
and qualitative results on this data set, while using the AQ15 system with a rule 
truncation mechanism and a decision tree system ASSISTANT (this version gener­
ates low complexity binary trees and employs a tree truncation technique: [31 ]). In 
addition, this publication also reports the accuracy of human experts. We repeated 
these experiments (for 1000 iterations) and report all such results in table 9.61

. They 
indicate the applicability of our approach in the case of natural domains as well. 
For compatibility with the complexity results reported for the other systems, we ran 
GIL twice, each time learning one the two possible concepts, and summarizing the 
#conditions and #rules. 

9.6 Dealing with Empty and Invalid Rules 

These experiments study the effect of different treatments of invalid and empty rules. 
An invalid rule occurs if one of its conditions becomes fully restricted, i.e. excludes all 
domain values. Preserving such rules increases the memory contents of the system. 
This has two effects: 

• Useful blocks of information (e.g. partial rules) are not immediately dispensed 
upon an overspecialization, but are preserved for future reference (and possible 
back-generalization). 

• The memory size (database size) of the system increases, causing slower pedor­
mance. 

A similar dual effect occurs in the context of empty rules. An empty rule is that 
not covering any positive events. Intuitively, such rules might also be very useful in 
exploring the search space, but they again increase the size of the database when 
retained. 

1 Database courtesy of the AI Center, GMU. 
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II Which rules retained II CPU seconds I Accuracy I #rules II 
None 25.4 0.90 4.7 
Invalid 26.4 0.94 4.9 
Empty 28.1 0.92 5.0 
Both 49.7 0.95 5.8 

Table 9. 7: The effects of retaining invalid and empty rules. 

Experiments confirm this anticipated trade-off. Table 9.7 compares run times, 
predictive accuracy, and the average size of an individual of the database over the life 
of the simulation, for four different cases: retaining both kind of rules, deleting only 
each kind of rules separately, and deleting both. It can be observed that increas:iug 
the memory size, by retaining any of these two kinds of rules separately, increases 
the system's accuracy, while also increasing the time complexity. In both cases, 
the relatively small complexity overhead is well compensated for by the increase in 
recognition quality. Retaining the empty rules seems to have a smaller effect on 
this quality, but this result may be well related to the high percentage of the search 
space events used for training. Finally, retaining both kinds of rules simultaneously 
produces the best accuracy increase. However, this is associated with a relatively 
high increase in time performance. Such a high increase was rather unanticipated, 
and we suppose it may be related to the implementation of the system itself. More 
tests are needed to test this phenomenon. 

These experiments were conducted using the fa multiplexer, 70% events for train­
ing, and 500 iterations. The number of iterations was fixed as means of generating 
comparable runs, even though in many instances the correct concept was found much 
faster. All results are averages of ten resampled runs. 

9.7 Incremental Learning 

In section 3.5 we mentioned that incremental learning capabilities are important at­
tributes of a learning system. This is the case mainly for two reasons: human learning 
shows incremental characteristics, and a natural setting for a learning system often 
displays dynamic properties - new evidence becomes available from time to time, 
as might be the case in a medical database environment where some of the diagnoses 
may be confirmed after a while, or when new patients are diagnosed. Theoretically, 
the incremental character is obtained by abilities to generalize and specialize existing 
knowledge, as necessary, upon new experience. We would expect our approach to 
possess such properties naturally, as it is based on generalization and specialization 
of the current hypotheses, and it does not explicitly favor any of these two classes of 
actions at any time. To evaluate this assertion, we repeated the batch mode experi­
ments with the fa multiplexer, but in an incremental setting: learning was performed 
using the available data set and 100 generations, with the accuracy estimated. Then, 
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new training events were added (and the old ones remembered as well - full memory 
learning) to that set in 5%-increments, and the system would be allowed to learn 
again. Each time the initial database was set to the final database of the previous 
learning session, the previously generated knowledge. 

Accuracy 

1 ............................................................... . 
• • 
o• 

• ~a~ 8 
••• Batch 

' • ~ ~ o ooo Incremental ~ :; 0 

'---------<>-------E>-- % training events 
50 100 

Figure 9.5: Comparison of the batch and incremental learning. 

The results (figure 9.5) indicate that for a small number of training events the 
incremental mode generates descriptions of slightly lower accuracy, but the differ­
ence vanishes for a higher percentage of such training events. This behavior can be 
explained by observing that a smaller percentage of training events generates lower 
accuracy knowledge in general, which is further from the true descriptions and highly 
biased by the choice of the initial training events. As such a percentage increases, 
the current knowledge gets closer to the sought descriptions, and the extra training 
events become more consistent and less influential. 

# generations 

62 
• • 

• 
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Figure 9.6: The effect of initial hypotheses in the initial database. 

9.8 Initialization 

In section 5.3 we described three different components of the initial population our 
system can accommodate: random rule sets, positive events, and initial hypothe­
ses. We also mentioned that the actual importance of filling the population with 
positive events diminishes with the introduction of the "new event" operator, which 
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inserts uncovered positive events to chromosomes. In this section we study the sys­
tem's ability to accommodate background knowledge in form of initial hypotheses. 
In our experiments we used / 6 multiplexer with all 64 events available for training, 
and we measured the number of iterations needed to find a complete and consistent 
description. Population size was set to 50. 

Figure 9.6 presents the results obtained: the number of generations needed for 
learning the exact concept description, as a function of the number of sought and 
uncorrupted disjuncts presented as input (out offour). A similar pattern exists if the 
hypotheses represent somehow corrupted partial descriptions. The results indicate 
that the system is capable of using such extra information to improve its performance, 
justifying its potential applicability as a dynamic knowledge refinement tool. 
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Chapter 10 

CONCLUSIONS AND 
FURTHER RESEARCH 

We have described a novel approach to supervised inductive learning in attribute­
based spaces which uses a knowledge-intensive genetic algorithm. Such an algorithm 
follows the ideas of traditional GAs, but replaces the domain-independent search 
by domain-specific inference operators modeled upon those of the inductive learn­
ing methodology. This approach represents an abstraction of the traditional genetic 
algorithm to the symbolic level. Initial results show that GAs can be successfully 
applied to more complex, non-numerical, tasks by defining the algorithm at the con­
ceptual level of the problem. This allows for processing high level structures using the 
problem specific methodology and rich heuristics. Moreover, such an abstract view 
provides for the same clear separation of different system's components as found in 
AI production systems. This modularity, in turn, allows for transparent applications 
of similar designs in other domains. 

When pursuing this challenge we did not attempt to produce a system able to 
compete with the existing symbolic systems (AQ and ID based), especially in terms 
of time complexity. Our goal was rather to investigate the potentials of such a method 
of abstracting genetic algorithms, which may be carried to other domains. Neverthe­
less, by designing efficient data compilation methods aimed at reducing the system's 
complexity, and by using more "intelligent" operators than those in the traditional 
GAs, we were able to tackle a number of interesting problems in a reasonable time. 
This alone represents a large improvement over traditional GAs applications. More­
over, since genetic algorithms are naturally suited for parallel architectures, we may 
hope that such reimplementations, along with new technological advances, may be 
faster without of any additional efforts. 

The system also shows significant potentials from the machine learning point of 
view. Firstly, it does not assume attribute independence, as the ID-based systems 
do. Secondly, it uses more problem specific heuristics (the inference rules) than the 
AQ-based systems do. Finally, it extends the AQ's ideas of exploring a number of 
simultaneous directions to a more powerful platform allowing for both competition 
and cooperation (by information exchange). Moreover, it should have potentially 
linear characteristics with respect to event space sizes, but a full explorations of 



this assertion requires more extensive experimentations and an even more efficient 
implementation. 

The current complexity, as well as the overall quality, seems to be unstable and 
to vary with a given problem. We hope that the parameter abstraction (section 10.1) 
can relax this dependency, but, again, it requires an extensive continuing research. 
Other important issues that should be also addressed in the future include learning 
multiple concepts (section 10.2), and dealing with noisy information -possibly by 
changing the rule-based conceptualization view to a more liberal one (section 10.3). 

One should point out that most of the testing data was not suited to explore the 
full potential of this system: most experiments were conducted with two or three­
valued domains. Such domains are much more suitable to the other learning systems 
while this approach can fully explore spaces with larger and typed domains. Actually, 
among the other known learning systems, only AQ15 tries to accommodate this extra 
knowledge, which can be quite valuable when the domains grow. However, it does so 
only after learning the initial complete and consistent descriptions. In this sense; ihis 
approach seems to be the first one to be able to accommodate typed domains for the 
benefit of learning. 

An additional exceptional benefit of this research and its results arises in the 
context of inductive learning. Our results indicate the feasibility of the previously 
proposed inference operators of the inductive learning methodology. Moreover, our 
implementation presents a valuable tool to further studies on this subject, e.g. to 
determine the relative importance of different techniques, and their necessity. More­
over, we feel it is quite possible and feasible to extend this approach to more powerful 
languages, i.e. some extension of V L 1 . 

10.1 Parameter Abstraction 

One of the major disadvantages of the current implementation is its high parameteri­
zation: there are over 30 input parameters that must be specified, with most of them 
being continuous probability values. Under such conditions, it seems highly unlikely 
to select the proper combination for a given run. This is the reason for the worsened 
performance noticed on more complex problems (e.g. multiplexer f 11 ). Moreover, 
on some occasions we observed an improved performance after slightly changing the 
priori probabilities for a given problem. However, a much more extensive and system­
atic experimentation is necessary to determine the actual source of such variations: 
randomness of the runs or some problem-specific characteristics. 

To deal with the problem of the size of the parameter space, it is necessary to 
explore inter- and intra-dependencies between such parameters. For example, all 
rule--set level application probabilities should be specified with respect to each other 
and, as a group, with respect to those of other groups. The dependence of the 
selection probabilities on the problem size should be explored. However, establishing 
such relations requires an extensive testing over a wide variety of different problems. 

To deal with the second problem (dependency on characteristics of the problem), 
the choice of such abstracted parameters should be further (in addition to the dy-
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namic method of section 5.5.2) associated with the problem complexity (determined 
dynamically in the process of learning) and some learning criteria (specified by the 
used or some other requirements). Then, all these parameters could be replaced by 
few conceptual ones, e.g. desired type of descriptions (as specific vs. general, or low 
attribute cost vs. low descriptive cost). Such an abstraction would provide for both 
an easier use and a more efficient performance. 

10.2 Multiple Concepts 

The current system assumes single-concepts only, and proceeds by learning only rules 
associated with the single decision. This lets us treat the decision implicitly, and sub­
sequently simplify the definitions and implementation by processing VL1 complexes 
in place of rules. For the sake of simplicity and continuity, we try to preserve _this 
property while generalizing the approach to learning multiple decisions. • 

When discussing such generalizations, we must consider a related issue: treat­
ing descriptions that are incomplete and inconsistent with respect to the problem 
space. As we mentioned in section 3.3, rule-based framework is not well suited for 
learning descriptions with the above properties, and often these qualities are relaxed. 
However, in such a case, a previously unknown event may be recognized by none 
or multiple concepts. Then, a special arbitration protocol must be employed. The 
simplest such protocol simply returns such an event as unrecognizable: this improves 
correct recognition rate, but also increases overall indecision. Such an approach can 
treat descriptions of all different classes independently. A more sophisticated proto­
col employs some probabilistic measures, thus changes the conceptualization view to 
a non-crisp. However, this also suggests that the descriptions should not be gener­
ated independently, but in a common context. Accordingly, we propose two possible 
generalizations to learning multiple descriptions: one that assumes such rule sets 
independence, the other that does not. 
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Figure 10.1: A sample result of learning multi-descriptions. 

If we assume that each concept description can be learned independently, we 
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Figure 10.2: A sample internal representation of a two-concepts case. 

may use the current system in subsequent learning sessions for each of the sought 
descriptions. Then, during a learning session for class n, all positive events of the 
category n are considered as positive events, while all positive events of all other 
categories as the current negative events. A possible result of such a learning scenario 
for two classes is presented in figure 10.1: some new events will not be classified 
because either the space is not covered, or it is covered in a conflicting manner. This 
simple extension was used in experiments of section 9.5. The same idea may be 
used differently: we may conduct the learning sessions simultaneously in different 
populations, with one population per class being learned. 

The first generalization is impractical if we relax the description's independence 
assumption, for now each rule set must be evaluated in the context of descriptions for 
the other classes. Again, we can preserve the implicitness of decisions if we introduce 
ati additional syntactic level: the concept set level. Then, while learning descriptions 
of n categories, each chromosome becomes a set of descriptions, with each description 
associated with exactly one of the categories. In other words, a chromosome becomes 
a set of the previously defined chromosomes (section 5.2). Then, all operators that 
were defined as acting on two chromosomes will act on two rule sets associated with 
the same decision. All other operators stay exactly as defined previously. However, 
we need new operators to act on the new (V L1 set of sets of rules) level. The only 
defined operator has an independent character, and it exchanges one or more whole­
category descriptions between two chromosomes. In other words, this operator works 
at the level of granularity of a whole rule set associated with one implicit decision. 
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As to the arbitration protocol for the second strategy, a very nice solution was 
proposed by Michalski ((42]) and used in the AQ family: the two-tiered conceptual­
ization view. We suggest using the same approach in such an extended architecture, 
which could provide an additional advantage: the two-tiered view could be used 
during the learning process, while it is used only in a follow-up step in the AQ15 
system. 

Because a given problem specifies a priori the number of categories to be concep­
tualized, we can easily extend the chromosome implementation of section 6.2 to a 
vector of such, where a vector position is associated with the decision number. For 
example, figure 10.2 shows an internal representation of the two concepts of figure 
10.1. 

10.3 Noisy Information .. 
While it might be conceptually advantageous to assume an existence of noise--free 
data, it is often unrealistic under a real world condition. Such noise is normally 
associated with b?th imperfect measurements (instrument and human errors), and 
with the need to represent some continuous domains by discrete sets of features. 
Therefore, an artificial system aimed to work in a realistic domain should deal with 
these issues. Some researchers addressed the problem of noisy features. For example, 
Clark ([7]) discusses the effect of noise on induction and presents his probabilistic 
way of dealing with the problem. Quinlan showed how to deal with the effect of 
noisy data in decision trees ((50]). The two-tiered representation of AQ family of sys­
tems applies to noise effect reduction as well (e.g. (70]). Looking at these attempts, 
it is fair to say that noise accommodation generally employs some kind of proba­
bilistic approach. Our simplified approach assumes a crisp concept representation 
with rule-based conceptualization and is not well suited for dealing with noise: the 
most appealing approach would be to combine rule--coverage information with their 
complexity in such a way that light (very low positive coverage) rules become more 
costly and more applicable to be removed. The same strategy applies also to all of 
the proposed generalizations to deal with multiple concepts. However, in the case 
of the extended chromosome architecture, the two-tiered description may itself be 
more valuable as a noise--accommodation agent, as such descriptions were showed to 
improve noisy recognition in the AQ15 system. 

10.4 Other Operators 

We mentioned in section 5.5 that pursuing atomicity and efficiency over complexity 
made us neglect the inductive resolution rule. It would be an interesting study to 
compare behavior of the current system with another one implementing this operator, 
along with other possible new operators. Such a. study should concentrate on both 
the quantitative and qualitative properties, a.s well a.s a possible quality vs. time 
trade off. 
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In addition, some of the rule set level operators described in section 5.5 could be 
differently defined, depending on the selection of applicable rules. For example, the 
"rules exchange" operator could overlook the selection probability and always select 
a single rule. On the other hand, the "rules copy", "rules generalization", "rules 
drop", and "rules specialization" could be enhanced by such probabilities, instead 
of always choosing a fixed number of rules (one or two, depending on the nature of 
the operator). Again, an extensive study is required to establish values of such new 
operators in relation to those presently used. 

10.5 More Intelligent Initialization 

The ideas used here can be seen as a very specific case of more general ideas pre­
sented by Davis in recently published [8], where he calls for exploring combinations of 
the traditional domain-independent genetic algorithms with some known probl~m­
specific methods (the hybrid approach). The only difference between this system and 
those ideas lies in the initialization: he argues to fill the first population by chro­
mosomes representing properly represented results of some known fast systems. The 
argument for such an enhancement is that then the genetic algorithm can only im­
prove such ad hoc solutions. Therefore, it is guaranteed to perform at least as well 
as such other systems. In our domain there are such programs. For example, most 
decision tree systems are very efficient and produce assertions easily convertible to 
a rule-based format. Since our initial experiments indicate the system's ability to 
process some initial hypotheses, there is a potential for a significant performance and 
time improvement. 
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