
CHAPTER 1

INTRODUCTION

1.1 REALISTIC IMAGES IN REAL TIME

A central goal of computer graphics is to produce images by computer that are so realistic that they cannot
be distinguished from reality—so-called photorealism.  Real-time computer graphics has an analogous
goal:  to produce a sequence of moving images so rapidly and with enough fidelity that they are indistin-
guishable from a moving scene in the real world.  We call this goal cinerealism.

High quality rendering methods, such as ray tracing and radiosity, have made major strides toward photo-
realism, though much work still remains.  Cinerealism is a more elusive goal, since it adds the constraint of
time to the image-generation process.  Generally, algorithms that produce the most realistic images require
the most time to execute, thus the two goals of real-time computer graphics oppose each other.

During the 25-30 years that real-time graphics has been developing, great progress has been made toward
cinerealism on many fronts:

• Display technologies have improved.  Raster-graphics displays have largely replaced line-drawing
displays.

• Lighting and shading models have improved.  Gouraud and Phong shading have largely replaced
flat shading.  Texturing is now becoming available.

• Visibility algorithms have improved.  General methods, such as the z-buffer algorithm, have
replaced restrictive methods, such as fixed-priority or depth-sort algorithms.

• Image fidelity has improved.  Early systems used monochrome displays and were plagued by
aliasing (stairsteps and "jaggies").  Current systems display continuous-tone colors and avoid most
aliasing artifacts.

• More complex datasets can now be displayed.  The earliest systems displayed only 10 to 100
vectors in real time (30 frames per second or higher).  Early raster systems displayed only a few
hundred polygons in real time.  Current systems display tens of thousands of polygons in real time.

Progress in this field has been propelled both by technology and by advances in algorithms.  Real-time
graphics has profited from the same advances in semiconductor technology that have dramatically reduced
the size and cost, and increased the performance of general-purpose computers.  Algorithms have been
developed to compute more realistic images.  Many of these, such as Gouraud and Phong shading,
antialiasing, and texturing are now implemented in hardware.

Current workstation and experimental graphics systems display almost 100,000 Gouraud- or Phong-shaded
unantialiased polygons in real-time and significantly fewer than this with antialiasing and/or limited textur-
ing [SGI90, FUCH89].  Flight-simulator graphics systems support texturing comprehensively, but have
much lower polygon performance [STAR89, EVAN91].  Despite this impressive progress, current systems
fall far short of cinerealism.  To accurately model real-world scenes, more primitives must be displayed and
antialiasing, texturing, and other features, such as shadows and transparency, are needed.  All of these
enhancements require extra processing.  To implement them while generating images at real-time rates
requires exceedingly high computation rates.

1.2 MULTIPROCESSOR GRAPHICS

The architects of general-purpose computers have dealt with the need for higher performance by increasing
clock speeds and by performing operations concurrently.  Concurrent processing has become a major area
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of research in computer architecture.  It has two principal forms:  pipelining and parallelism.  These are also
the major building blocks for high-speed graphics architectures.  Virtually all interactive or real-time graph-
ics systems exploit concurrency in some fashion [MOLN90].

There are two fundamental types of calculations involved in computing an image:  geometry calculations,
which convert primitives from their native coordinate system to screen coordinates, and rasterization,
which converts geometry information into shaded pixels.  Both must be performed rapidly and in balance
with each other.  Geometry calculations can be parallelized by processing multiple primitives and/or multi-
ple primitive components (frequently vertices of triangles) in parallel.  Rasterization can be parallelized by
computing multiple pixels or multiple primitives in parallel.

Early graphics systems performed most operations serially, parallelizing only the calculations in the inner
loops of the geometry and rasterization stages.  These systems were comparatively simple and had straight-
forward programming models.  Later systems, such as Silicon Graphics' VGX and Pixel-Planes 5, have
applied multiple layers of parallelism to achieve higher performance.  Such systems have very high peak
rendering speeds, but are so complex to program that these speeds are seldom attained in actual
applications.

1.3 IMAGE COMPOSITION

This thesis explores a larger-grained form of parallelism than has been traditionally been applied to the
image-generation problem—entire images are computed in parallel.  The central idea is to partition the
display dataset statically over a number of independent renderers.  Each renderer then computes an image
of the primitives in its partition.  The images from each renderer are then merged or composited into a final
image of the entire dataset.

Architectures of this type are called image-composition architectures.  The approach has many possible
variations.  For example, the dataset could be partitioned over the renderers so that images from each
renderer can be overlaid in a predetermined order.  Alternatively, each pixel of each image can have its own
priority, so that composition is done on a pixel-by-pixel basis.

Image composition offers two intriguing advantages over existing architectural techniques:

• Arbitrary scalability.  System performance can be scaled arbitrarily by increasing the number of
renderers.

• Simple programming model.  Renderers compute images of their portions of the database
independently and, therefore, can be programmed as simple graphics systems.

These potential advantages make image composition an appealing method for building very high perfor-
mance graphics systems, since they directly address two of the most troublesome problems of existing
architectures.

The approach is not without its problems, however.  Compositing images from each renderer requires very
high data bandwidths throughout the system—higher even than video rates, since priority information, as
well as color, are generally needed for compositing.  Additional features such as antialiasing and complex
shading models increase the required bandwidth further.  Renderers cannot be built on a small scale either,
since they must be able to generate full-resolution images at high frame rates.

1.4 THESIS SUMMARY AND CONTRIBUTION OF THIS WORK

This dissertation is not the first attempt to apply image-composition to generating images.  Image composi-
tion has been defined, explored, and implemented in many different contexts (see Chapter 3).  It is the
basis, for example, of chroma-key, a common technique for superimposing video signals.  It has been used
in computer graphics to compute animations.  It has also been used as a basis for several graphics architec-
tures, such as Cohen and Demetrescu's polygon processor pipeline [DEME80] and General Electric's
NASA II flight simulator [BUNK89].

This dissertation differs from previous work in that it uses image composition with large-scale (multiple-
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primitive) renderers to create very high performance systems.  It also addresses the problem of antialiasing
comprehensively, which has not been done before.  The overall aim is to establish the following thesis:

"Image composition forms the basis of a family of flexible, scalable image-generation
architectures that can achieve higher performance than existing architectures."

We will do this in two parts:  First we will explore the architectural space of image-composition architec-
tures, examining variations on the approach and their advantages and disadvantages.  Second, we will
present the design of a prototype image-composition system to substantiate the claims in the thesis
statement.

The prototype system design uses Pixel-Planes 5 technology and antialiases by supersampling.  It is
targeted for very high performance:  a two card-cage system is expected to render 2.5 million Gouraud-
shaded polygons per second, 2 million Phong-shaded polygons per second, 870 thousand antialiased
polygons per second, and generate 1280x1024-pixel images at up to 90 frames per second.  Additional card
cages can be added for even higher performance.

A two card-cage version of the prototype system should have higher performance than any system demon-
strated to date.1   The system is realizable with current technology and directly supports a wide variety of
primitives and rendering algorithms.

The prototype system is not described in complete detail, but many of the parts have been demonstrated in
existing machines (particularly Pixel-Planes 5).  The majority of Part II is devoted to motivating, explain-
ing, and justifying parts of the prototype system that are different from Pixel-Planes 5 or have not been
demonstrated before.  The aim is to offer convincing evidence that the system is feasible as described, but
not to document it in full detail.2

1.5 ORGANIZATION OF THIS DISSERTATION

The body of this dissertation is divided into two parts:  Part I (Chapters 2–5) describes image-composition
architectures in general; Part II (Chapters 6-9) describes the prototype system.

Part I (Chapters 2–5):  Image-composition architectures

Chapter 2 provides background for the remaining chapters.  It discusses the requirements for real-time
graphics systems, summarizes approaches that have been taken in previous systems, and places image
composition in a taxonomy of multiprocessor graphics architectures.  Chapter 3 reviews related work by
other researchers and describes the basic variations of image-composition architectures.  Chapter 4
examines solutions to the aliasing problem.  Chapter 5 discusses other issues that impact system
performance or flexibility, such as the structure of the image-composition network, load-balancing, latency,
and the suitability of image-composition architectures for advanced rendering algorithms.  It presents a
taxonomy of image-composition architectures and analyzes the economics of image-composition archi-
tectures compared to other approaches.

Part II:  (Chapters 6–9):  A prototype system design

Chapter 6 describes the motivations behind the prototype system design and describes the system at high
level.  Chapter 7 describes the image-composition network, a very high bandwidth network that supports
real-time update rates with supersampling antialiasing.  Chapter 8 describes the Renderer/Shader board, the
heart of the prototype system.  Chapter 9 describes the synchronization and control methods for prototype
system and presents results of simulation and performance analysis.

Related documents
_____________
1In 1991 the fastest commercial graphics system is Silicon Graphics' SkyWriter, which has a maximum speed of 2.2
million flat-shaded, unlit, triangles per second [ROHL91].  Pixel-Planes 5, an experimental graphics system built at
UNC, renders 2.3 million Phong-shaded triangles per second (demonstrated at Siggraph '91).

2We have plans to build a machine based on these ideas.  It uses newer technology, runs at higher clock speeds, and
achieves significantly higher performance than the system described here.  It is not the focus of this dissertation
because of its speculative nature, but is described briefly in Chapter 10.
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The author has written (or co-authored) two documents that support this work and are referenced frequently
within the dissertation:

MOLN90 Molnar, Steven and Henry Fuchs, "Advanced Raster Graphics Architecture", Chapter 18 in
Computer Graphics:  Principles and Practice by James D. Foley, Andries van Dam,  Steven K.
Feiner, and John F. Hughes, Addison-Wesley, New York, 1990, pp. 855–922.

This chapter describes the field of raster graphics architecture, the computational requirements for graphics
systems, and the spectrum of approaches used to build high-performance graphics systems over the past 20
years.

MOLN91 Molnar, Steven, "Efficient Supersampling Antialiasing for High-Performance Architectures,"
Technical Report TR-91-023, Department of Computer Science, University of North Carolina
at Chapel Hill, 1991.

This technical report reviews the theory of supersampling and describes techniques to minimize the number
of samples needed to antialias images in high-performance graphics systems, including image-composition
systems.
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CHAPTER 2

REAL-TIME IMAGE GENERATION

The pioneer graphics systems of the 1960s used vector displays and could draw only dozens to hundreds of
lines in real time [SUTH63].  Since then, the following features have become available in real-time
systems:

• Higher-complexity line drawings.  (examples:  Evans and Sutherland's Line Drawing System  in
1971 and Evans and Sutherland's PS300 in 1981 [FOLE82]).

• Shaded display with flat shading.  (examples: Evans and Sutherland's NOVOVIEW SP1 in 1977
[SCHA83] and Megatek's 7200 in 1981 [FOLE82]).

• Gouraud shading hundreds of polygons.  (examples:  Evans and Sutherland's CT-4 in 1977
[SCHA83]).

• Direct display of non-polygon primitives.  (examples:  Pixel-Planes 4 (spheres and Constructive
Solid Geometry) in 1986 [FUCH85]).

• Gouraud shading of thousands of polygons.  (examples:  Silicon Graphics' GTX [AKEL88] and
Stellar's GS1000  [APGA88] in 1988).

• Antialiasing.  (examples:  various flight simulators, Stellar's GS1000 in 1988, and Silicon
Graphics' VGX in 1990 [HAEB90]).

• Textures.  (examples:  various flight simulators and Silicon Graphics' VGX.).

Until 1990, the only systems that could generate antialiased images with textures in real time were multi-
million dollar flight simulators.  These systems generally had relatively low polygon performance
compared to graphics workstations [SCHA83].  Graphics workstations traditionally have focused on
displaying large numbers of primitives, which are necessary for computer-aided design and other modeling
applications [AKEL88, APGA88, BORD89, SGI90].

In the last several years the two approaches have begun to converge:  flight simulators have increased their
polygon performance and graphics workstations have begun to support antialiasing and texturing
[EVAN91, AKEL90].  The consensus appears to be that real-time image-generation systems of the future
must both increase polygon performance and provide realistic rendering to be successful [SPRO90].

This chapter presents background information on real-time image generation.  Section 2.1 discusses objec-
tives for performance and realism in real-time graphics systems.  Section 2.2 discusses the computational
requirements for such systems.  Section 2.3 describes three classes of multiprocessor image-generation
architectures (image composition is the third of these classes).

2.1 OBJECTIVES FOR REAL-TIME SYSTEMS

Current systems display extremely complex datasets (tens of thousands of primitives) in real time and
support fairly realistic lighting and shading models.  Future systems must meet or exceed these
performance levels, should be free of distracting artifacts, and should provide support for more realistic
rendering.  We briefly review what we believe to be the important objectives for future real-time image-
generation systems.  (By their nature, such judgments are subjective, but we must have a target at which to
aim a new design).

2.1.1 Screen Resolution

Ideally, a graphics system's display resolution should match the resolution of the human eye.  Experiments
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on the human visual system indicate that the human eye can resolve features separated by  3 to 10 arc-
minutes, depending on the brightness and contrast of the features [ROSE73].  If we assume an 18-inch wide
display screen viewed from 18 inches (typical for a person viewing a desktop workstation monitor), this
corresponds to a linear screen resolution of 350 to 1150 pixels.  Current high-resolution monitors display
1280x1024 pixels.  This appears to be a reasonable standard for high-performance image-generation
systems.

2.1.2 Color Fidelity

The human visual system can distinguish a gamut of hundreds of thousands of colors.  Color CRTs can
display a large fraction, but not all, of these colors.  To represent as much of the color gamut as possible,
and to allow the linear combinations of color necessary for shading and antialiasing, a linear, three-
component color model is needed (even more complex models may be desirable).  RGB is the most
common choice for graphics systems.  To provide the illusion of continuous-tone images, at least 8 bits are
required to represent each color component.  (See [FOLE90] for a discussion of color in computer graphics
and pointers to the literature).

2.1.3 Lighting and Shading

A graphics system must accurately model the interaction between light and the elements of a scene.  The
physics of light transport is fairly well understood.  Unfortunately, to model the physics exactly for non-
trivial scenes requires a prohibitive amount of computation.  Rather than model the physics exactly,
rendering algorithms make approximations that are less costly to compute.

The most realistic methods in common use are ray tracing and radiosity.  These are extremely compute-
intensive, often requiring days to compute a single image (radiosity has the advantage that it can be
precomputed for static scenes).  Generally, the more realistic the lighting and shading model, the more
computation that is required.

Most current high-performance systems support Gouraud or Phong lighting and Gouraud shading.  A few
systems support Phong shading.  Future systems should support Phong shading with multiple, local light
sources.

2.1.4 Antialiasing

Aliasing is a common artifact, which results from attempts to display a continuous geometric image
containing high spatial frequencies on a discrete display device with a comparatively low sampling rate.
High-frequency components from the underlying image map incorrectly to lower frequencies, causing stair-
stepping and moiré patterns in static images and crawling and scintillation in moving images (see Figure
4.2 for an example of a static image with severe aliasing).  [FOLE90] provides a good introduction to the
area and references to the literature.

The aim of any antialiasing method is to attenuate frequency components in the underlying image that are
higher than the Nyquist frequency (the maximum spatial frequency that can be represented) of the display
device.  Antialiasing methods can be divided into two classes:  object-precision methods, which determine
pixel coverage analytically, and image-precision methods, which estimate pixel coverage by sampling
[FOLE90].

Object-precision methods require a great deal of computation and are prone to special cases; consequently,
they are expensive to implement.  Image-precision methods are simpler and have fewer special cases; they
have become the universal choice in high-performance graphics systems.  Image-precision methods gener-
ally involve sampling scene geometry at subpixel resolution.  This requires accurate point-sampling during
rasterization.

Antialiasing is a compute-intensive process, however it is implemented.  Most current systems that perform
antialiasing do so with steep performance penalties (in some systems, such as flight simulators, antialiasing
is a fundamental part of the application; even in systems such as these, where antialiasing cannot be "turned
off", it consumes significant hardware resources that could have been spent elsewhere).  Antialiasing plays
a large role in determining which image-composition architectures are feasible.  We will return to this
subject at length in Chapter 4.
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2.1.5 Frame Rate

To create the illusion of a moving image, the image must be updated rapidly.  24 Hz is a lower limit for
motion to appear smooth.  Even this is insufficient if the view or elements in the scene move rapidly.
Flight simulation, one of the most demanding applications, requires update rates of 30 to 72 Hz.  Frames
must be double-buffered, so that only finished frames are presented to the user (unless the system is fast
enough to refresh the screen ahead of the CRT beam).

2.1.6 Latency

Latency, the time between sampling user inputs and displaying the image, is a crucial issue for interactive,
real-time systems.  Users sense latency as a lag between movement of controls and a response in the visible
image.  Latency reduces controllability and the illusion of being immersed in the simulated environment.
In certain applications, such as head-mounted displays or flight simulators, high latency can cause motion
sickness [DEYO89].

Latency is an issue distinct from update rate.  Many high-performance graphics systems increase their
update rate by pipelining.  For example, primitives of one frame can be transformed, while primitives from
the preceding frame are rasterized, while primitives from the preceding frame are refreshed from a double-
buffered frame buffer.  Pipelining increases the frame rate, but does not improve latency.  The lower bound
for latency is the frame update time.  Flight simulators perform predictive tracking to minimize the apparent
latency, but user motions can not be predicted with complete accuracy and, therefore, the results are not
perfect.

2.1.7 Scene Complexity

The factor that generally receives the most attention is the number of primitives that can be displayed per
unit time.  This determines the maximum complexity of scene that can be displayed at a given frame rate.
The highest-performance systems available in 1991 display approximately 1–2 million polygons per second
[SGI90, FUCH89].  At 30 Hz update rates, this corresponds to a scene complexity of approximately 30–60
thousand polygons.  Such scenes do not approach the visual complexity of scenes in everyday life.  Much
higher performance is needed to display realistic scenes; performance in the range of several million
triangles per second is desirable in the near future.

2.1.8 Sophisticated Effects

Sophisticated primitive types, such as curved surfaces and volume data, and advanced rendering methods,
such as texturing, environment mapping, transparency, and shadows, greatly enhance realism, but are com-
putationally expensive.  Until recently, few graphics systems supported these capabilities in real time.  As
polygon performance grows, however, there seems to be a feeling that some of the increased performance
should be spent on more sophisticated primitives and rendering methods.

Specialized hardware, which has traditionally been used to build high-performance systems, skews the
system's performance toward some capabilities, but makes others less cost-effective.  To be able to trade
rendering performance for realistic effects, the system architecture must be flexible enough so that the same
hardware resources can be used for either purpose, leaving the application designer or user to choose
appropriately between the two.

2.2 THE RENDERING TASK

Image generation is extremely compute-intensive, particularly when real-time frame rates are required.  It is
also very regular and can be parallelized in many different ways.  Consequently, image-generation has been
a prime candidate for acceleration by special-purpose hardware.

[MOLN90], written by the author and co-author Henry Fuchs, is a general review of parallel rendering
techniques.  (It contains the traditional literature review and references for parallel image generation;
Chapter 3 contains a literature review and references for image-composition).

In this section we describe the basic computations required to generate images.  In Section 2.3 we introduce
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multiprocessing techniques that are needed to generate images at extremely high speeds.

2.2.1 Standard Rendering Pipeline

The basic image-generation process has changed little in the last 20 years [WATK70].  It can be modeled as
a sequence of computational stages that transforms geometric descriptions of primitives into screen coordi-
nates, then converts these descriptions into pixel values.  Figure 2.1 shows a version of the rendering
pipeline that is appropriate for z-buffer rendering of Gouraud or Phong-shaded polygons (other rendering
algorithms require variations to the pipeline).

Geometric
transfor-
mation

Clipping
Division by

w and view-
port mapping

Raster-
ization

Database
traversal

Geometry processing

Trivial
accept/
reject

Rasterization

MonitorLighting

Traversal

Figure 2.1:  Standard rendering pipeline for z-buffer rendering of Gouraud or Phong-shaded
polygons (adapted from [MOLN90]).

[MOLN90] describes each of these stages in detail and the architectural approaches that have been used to
build high-performance systems.  We refer the interested reader there for more information.

2.2.2 Computational Requirements

[MOLN90] also estimates the number of computations required in each stage to render a sample database
containing 10,000 polygons.    For a 1280x1024 image updated at 24 Hz, 81 million floating-point
operations are required per second in the geometry stages, and 78 million integer operations and 122
million frame-buffer–memory accesses are required per second for rasterization.

The fastest floating-point processors currently available compute approximately 30 million floating-point
operations per second; the fastest integer processors compute approximately 50 million integer operations
per second; and the fastest DRAM memory systems have cycle times of approximately 70 nsec.  The
performance requirements for this modest application, therefore, exceed the capabilities of a single
processor or single memory system.  Current systems, such as the Silicon Graphics VGX, can display
46,000 polygons at 24 Hz, nearly five times higher complexity than this sample application [SGI90].  The
VGX, and virtually all commercial high-performance graphics systems, use some form of parallelism.

2.3 MULTIPROCESSOR ARCHITECTURES

As mentioned above, the target of this dissertation is much higher performance than existing commercial
graphics systems.  A rough goal might be 100,000 polygons at 30 Hz update rates.  Extrapolating the
computation estimates above implies that approximately 1 billion floating-point operations, 100 million
integer operations, and 150 million frame-buffer accesses are required per second (the floating-point
calculations could be reduced by a factor of about 3 if mesh primitives are used).

If we want to render polygons (or other primitives) at these rates, the rendering task must be distributed
over multiple processors at every stage in the rendering pipeline.  We call architectures of this type multi-
processor graphics architectures.  They are a relatively new topic in the field of graphics architecture.
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2.3.1 Classes of Multiprocessor Architectures 1

The 3D rendering task can be divided into three major parts:  database traversal, geometry processing and
rasterization (see Figure 2.1).  The compute-intensive portions are geometry processing, which consists of
floating-point operations on primitives in object coordinates, and rasterization, which consists of integer
operations on primitives in screen coordinates.  Extremely high performance systems must perform both in
parallel.2

G G G G

R R R R

Geometry processor/
rasterizer network

Rasterizer/frame buffer network

Database distribution network

to video controller 
and monitor

MP Master
processor

Parallel
geometry
processors

Parallel
rasterizers

Figure 2.2:  Canonical multiprocessor graphics system.  G units are geometry processors.
R units are rasterizers.

We can describe a multiprocessor graphics architecture as a cluster of geometry processors and a cluster of
rasterization processors connected by an appropriate set of communication paths, as shown in Figure 2.2.
Primitives are initially specified in object coordinates and may be transformed to fall anywhere on (or off)
the screen.  The communication paths convey primitives from one set of processors to another, redistribut-
ing primitives (or fractions of primitives) where necessary.

The redistribution or sorting of primitives onto the screen is a major problem to solve in distributing the
rendering task across multiple processors.  There appear to be three distinct ways of solving the problem,
illustrated in Figure 2.3.

_____________
1This classification is the result of extensive group discussions among the Pixel-Planes team.  It does not fit existing
machines particularly well, since few of them are designed for the performance levels we assume here (and, therefore,
do not require such high degrees of parallelism).  The classification provides a way to think about future systems with
extremely high performance.

2Database traversal can be problematic as well.  It is generally considered to be part of the application program, and,
therefore, has received little attention in the literature.  Attempts to parallelize geometry processing can affect the
traversal method and vice versa.
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Figure 2.3:  Three classes of multiprocessor graphics architectures:  (a)  Sort Middle,  (b)
Sort First, and (c)  Sort Last.

The sort can take place before geometry processing (Sort First), between geometry processing and rasteri-
zation (Sort Middle), or after rasterization (Sort Last).  We will discuss the properties of each in turn.

2.3.2 Sort Middle (Screen-Space Subdivision)

A natural way to parallelize the geometry calculations is to assign each geometry processor a fraction of the
primitives.  A natural way to parallelize rasterization is to assign each rasterization processor a fraction of
the pixels of the screen (a time-proven method to accelerate rendering).

In traditional architectures, there is a choice of whether to assign each rasterization processor a contiguous
region of pixels (Figure 2.4(a)) or an interleaved set of pixels (Figure 2.4(b)).  In the interleaved scheme,
each rasterizer must handle all of the primitives.  For the performance levels we are assuming, there simply
are too many primitives for this to be feasible.  Dividing the screen into contiguous regions reduces the
number of primitives that each rasterization processor must handle.
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Figure 2.4:  Screen-partitioning methods:  (a)  each processor is assigned a contiguous
region of pixels;  (b)  each processor is assigned pixels in an interleaved pattern.

This distribution of work gives rise to the sort-middle architecture.  We need a sorting network to connect
the parallel geometry processors and parallel rasterization processors, since the primitives on any geometry
processor may fall anywhere on the screen.  This network must take transformed primitives, determine
which region (or regions) they affect, and convey them to the appropriate rasterizer.  It must be a global
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network, since it receives primitives from all of the geometry processors and must send them to all of the
rasterizers.  It must have high bandwidth, since it transfers a description of the entire dataset between
geometry processors and rasterizers every frame.

In a sort-middle architecture, the rendering process proceeds as follows:  Primitives are transformed, sorted
by screen region, and routed from geometry processors to rasterizers over a high-performance network.
Each rasterizer then paints a complete image of its region of the screen.  When all of the regions are
complete, the image fragments are collected and assembled in an image buffer for display.

Sort Middle has the following advantages:

• The database distribution method is unconstrained by the assignment of rasterizers to screen
regions or the particular view.

• Each rasterizer handles all of the primitives in a screen region, so the rasterization method is
unconstrained.

Sort Middle has the following disadvantages:

• It requires a distributed display database.

• It requires a global communication network, which must transfer all of the primitives between
geometry processors and rasterizers every frame.  The bandwidth requirements for this network
scale linearly with performance.

• It is susceptible to load imbalances between rasterizers when primitives are distributed unevenly
over the screen.

• It has difficulty with order-dependent primitives.  Primitives from different geometry processors
can arrive at the same rasterizer in a non-deterministic order.  (A synchronization method, such as
described in [TORB87], can be used.)

• Its latency is high.  All of the primitives must be sorted into screen regions before the rasterization
of any region can finish.

To the author's knowledge, only one sort-middle system has ever been implemented:  Pixel-Planes 5
[FUCH89].  The system's demonstrated performance of 2.3 million Phong-shaded triangles per second is
the highest reported to date.  Its communication network has a limited (but large) amount of bandwidth
available.  This limits its maximum performance.

2.3.3 Sort First (Dynamic Database Redistribution)

Sort First uses the same screen-space subdivision approach as Sort Middle.  However, geometry processors
and rasterizers are coupled together, forming complete rendering units called renderers.  Each renderer is
made responsible for a single screen region.  The distinguishing feature of this approach is that after the
initial random distribution of primitives to renderers, primitives are redistributed by screen region to the
appropriate renderer.  This requires transforming primitives into screen coordinates, classifying them with
respect to region boundaries, and transferring any primitives that fall outside of its renderer's region to the
appropriate renderer—all before rasterization can begin.

Sort First can be efficient if there is frame-to-frame coherence—similarities between successive frames.
The hope is that, with high frame rates, most primitives processed by a renderer in one frame will be
processed by the same renderer in the next frame.  Only primitives that cross region boundaries must be
transferred to adjacent renderers.  Some provision must be made for primitives that fall off the screen, since
they may reappear in future frames.

Sort First has the following advantages:

• Rendering is simple after sorting.  After sorting, renderers are independent; each computes a single
partial-screen image.
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• Its bandwidth requirements may be low.  Frame-to-frame coherence should minimize the number
of primitives that must be transferred each frame.

• Only local communication is required.  Primitives generally are transferred to neighboring
renderers.

Sort First has the following disadvantages:

• It is susceptible to load imbalances.  Primitives may clump, concentrating the work on a few
renderers.

• Screen boundaries cause complications.  It is not clear where to send primitives that fall off the
screen.  They may reappear somewhere else.

• Its programming model and data structures are complex.  The database must be redistributed
dynamically.

Because of its inflexibility and load-imbalance problems, Sort First probably is impractical except for
specialized applications, where the distribution of primitives across the screen is relatively uniform and
frame rates are high (flight simulators may be one such example).  To the author's knowledge, this
technique has never been implemented.

2.3.4 Sort Last (Image Composition)

In Sort Last, geometry processors and rasterizers are paired to form renderers, as in Sort First.  Each
renderer is assigned a random portion of the database, as in Sort Middle.  The difference is that, now,
renderers are made responsible for the entire screen.  Each renderer computes a full-screen image of its
portion of the primitives.  These partial images are then composited together, a priority sorting that
eliminates surfaces in one partial image hidden by those in another.

Sort Last or image composition has the advantage that no sorting or redistribution of primitives is required
in the renderers; each renderer computes the image of its primitives as if it were the only one in the system.
The "sorting" network in this architecture takes the form of a high-bandwidth "smart" network that compos-
ites images.  The simplest way to do this is to composite images pair-wise.  This results in either a binary-
tree or pipeline structure for the image-composition network.  Since the network must operate at high
speeds to maintain real-time frame rates, special composition processors or compositors are required.  The
compositor implementation may restrict the kinds of rendering algorithms that the architecture can support.

Since a tree-structured or pipelined image-composition network can accommodate an arbitrary number of
nodes, and renderers compute their subimages independently, image-composition architectures have an
intriguing property:  they can be scaled to arbitrarily high performance by adding renderers and
compositors.

Sort Last has the following advantages:

• Renderers have a simple programming model.  They compute their partial images independently.

• Load balance is automatic.  Each renderer can be given approximately the same amount of work.

• Communication is local and the bandwidth is constant.  It is determined by the maximum rate
images can be composited.

• The architecture is linearly scalable.

Sort Last has the following disadvantages:

• It requires a distributed display database.

• It restricts the class of rendering methods.  The rendering method must produce pixels in format
suitable for compositing.

• It requires an image-composition network with very high bandwidth.
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Because of the high bandwidth requirements and expense of the image-composition network, Sort Last has
been explored very little until recently.  Its property of arbitrary scalability and simple programming model,
however, make it appealing for very high-performance systems.

2.3.5 Comparison of Approaches

Each multiprocessing strategy has advantages and disadvantages for certain applications and rendering
algorithms.  The sort operation is disruptive wherever it occurs.  In sort-first architectures, the distribution
of the database is constrained; in sort-middle architectures, the rendering process must be "interrupted" to
allow for primitive redistribution; in sort-last architectures, all images must have a consistent format,
suitable for compositing.

If sorting is performed first or last, geometry processors and rasterizers can be combined into complete
renderers, allowing flexible and high-bandwidth communication between the two parts.  Since renderers are
complete graphics systems, many of the standard approaches for building graphics systems can be
employed.

Sort First appears to be of limited use because of its load-balance and screen-boundary problems.  Sort
Middle has proven itself to be a powerful approach in Pixel-Planes 5.  David Ellsworth is analyzing the
properties of this architecture as part of his PhD dissertation [ELLS91].  Sort Last has received little
attention so far, but appears very promising.  It is the focus of the remainder of this dissertation.
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CHAPTER 3

IMAGE COMPOSITION

As we saw in the Chapter 2, multiprocessing appears to be inevitable if we wish to compute high-resolution
images of complex datasets at high update rates.  The sort from object coordinates to screen coordinates is a
fundamental operation in all such systems.  In this chapter and in the remainder of this dissertation, we will
be concerned with sort-last or image-composition architectures—architectures in which the sort takes place
after individual images (of part of the dataset) have been rendered.

As we saw in Chapter 2, image-composition architectures offer the following potential advantages:

• Scalability.  Since renderers operate independently and a tree-structured or pipeline image-
composition network can accommodate an arbitrary number of renderers and compositors, the
performance of the system can be scaled by adding renderers and compositors to the system.

• Simple programming model.  Aside from database distribution and editing, the rendering process
on each renderer is independent of all of the others.  The parallelism of the overall system is
hidden from the point of view of the programmer.

• Flexibility.  The composition method is independent of the algorithm used to generate the sub-
images.  Subimages can be generated by any algorithm that produces images of the proper format.

In this chapter we consider several variations on the image composition theme.  Each has its own set of
advantages and disadvantages.  Indeed, image composition forms the basis for a variety of rendering
architectures with widely differing properties.

Section 3.1 reviews previous work in image-composition architectures.  Section 3.2 describes systems that
overlay images in which every pixel has the same priority.  Section 3.3 describes systems that provide
separate priorities for each pixel.

3.1 PREVIOUS WORK

Image composition has been used in various forms for many years—not all of them related to computer
graphics.  We now review previous research results and system implementations based on, or related to,
image composition.

3.1.1 Processor-per-Primitive Systems

Systems with multiple processors that are each responsible for a single primitive (so-called processor-per-
primitive systems), are a simple form of image-composition architecture.  Generally, pixel streams
produced by each processor are composited together by passing the streams between processors or feeding
them into a composition network.

This approach was used to build some of the earliest real-time graphics systems.  General Electric's NASA
II flight simulator, built in 1967, was one of the first such systems [BUNK89].  The NASA II allocated one
polygon (face) per processor (face card).  Each face card computed the image of its polygon in scan-line
order at video rates.  Faces were each assigned a fixed priority.  A hardware priority multiplexer chose the
visible pixel with the highest priority and forwarded it on to the display.  The NASA II could only accom-
modate 60 face cards, and the polygon on each face card had a single color.  The performance of the system
was, therefore, quite limited.

Cohen and Demetrescu proposed a processor-per-primitive system in which priorities (depth or z values)
are associated with individual pixels, rather than for entire polygons [DEME80].  Pixels would stream
through a pipeline of triangle processors at video rates, with the color value of the closest surface emerging



18

from the end.

Fussell proposed a similar system, in which triangle processors would feed their pixel streams (with z
values) into a binary tree of comparators [FUSS82].  The advantage of the binary-tree organization was that
triangle processors could work on the same pixel at the same time.

Weinberg proposed an enhancement to Demetrescu's system for antialiasing.  Variable-length packets con-
taining subpixel information would be sent between pipelined polygon processors, and a filtering module
would filter the subpixels appropriately [WEIN81].  A difficulty with this approach is that the amount of
information representing each pixel can increase and decrease as the pixel flowed through the pipeline.
Weinberg estimated that the number of surfaces per pixel packet would be less than two for typical images.

Deering et. al. proposed a pipelined, triangle-processor system similar to Cohen and Demetrescu's with
enhancements to compute Phong shading and to improve the efficiency of the triangle processors
[DEER88].  Rather than computing color values in each processor and sending them down the pipeline, the
processors would compute the components of the surface-normal vector for each pixel and send these,
together with the polygon's intrinsic color, down the pipeline.  A separate shading processor called a
Normal Vector Shader, at the end of the triangle-processor pipeline, would evaluate the Phong lighting
model for each pixel.  The design also allowed triangle processors to be loaded with several triangles
during a frame time, so long as the triangles do not overlap in y.  This enhancement allows the a system
with n triangle processors to render scenes containing significantly more than n triangles.

Schneider and Claussen proposed a pipelined triangle-processor system called PROOF (Pipeline for
Rendering in an Object-Oriented Framework), that combines elements of Weinberg's and Deering's
proposed systems [SCHN88].  Like Weinberg's system, PROOF would pass a variable-length list of objects
between processors for each pixel.  Like Deering's system, shading would be performed by a shading
processor at the end of the triangle-processor pipeline.

Kedem and Ellis proposed and built a system for ray-casting Constructive Solid Geometry (CSG) objects
[KEDE84].  In this system, primitives of a CSG tree are assigned to custom processors called Primitive
Classifiers.  Other custom processors, called Combine Classifiers, at the interior nodes of the CSG tree
perform z-comparisons and the in/out classifications required for CSG.  Kedem and Ellis have built a proto-
type ray-casting system, which has 256 Primitive Classifiers and 256x8 Combine Classifiers.  The system
performs 100–150 million ray/primitive classifications per second, but cannot display frames in real time
because of a low-speed connection to the frame buffer [KEDE91].

All of the processor-per-primitive systems described above share a common limitation:  their performance
degrades rapidly when the number of primitives exceeds the number of processors.

3.1.2 Video-Overlay Systems

Simple overlays have been used to composite images in video editors, video games, and in flight simula-
tors—applications in which one image has absolute priority over another image.  Video editors typically
use chroma-keying, in which pixels in the primary image having a particular color (such as saturated blue)
are overwritten by pixels in the secondary image.  A technique used in some flight simulators is to build a
pipeline of processors, each of which generates an image of increasing priority.  Pixels generated by one
processor overwrite those generated by previous processors.  This is effective, for example, when aircraft
always occlude lights, which in turn always occlude surface terrain.

3.1.3 Image-Composition Algorithms

The general image-composition problem allows pixels in each image to have independent priorities.  The
simplest solution is to compare priority or z values of corresponding pixels in each image to determine
which one has highest priority.  This composition method suffers from the same types of image aliasing as
the conventional z-buffer algorithm.

Duff described a more sophisticated composition algorithm that uses z-values at the four corners of each
pixel to approximate the fractional contribution from each image [DUFF85].  Although economical, this
technique does not handle every case correctly (it is adequate for compositing uncorrelated images
produced by separate renderers, such as airplanes over terrain, but fails when primitives from different
images share common edges).  Duff recognized this limitation, but argued that it was of little consequence
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for the applications he intended.  We will discuss Duff's algorithm in more detail in Section 3.3.1.

Nakamae et. al. described a technique based on decomposing multiple images into visible spans on scan-
lines with higher y resolution than the raster display [NAKA89].  The composite image is computed by
merging spans from multiple images.  The subscanline spans allow an antialiased color to be calculated for
each pixel.

3.1.4 Large-Grain Image-Composition Systems

We discussed image-composition systems with a process per primitive in Section 3.1.1.  Several image-
composition systems with multi-primitive renderers have been proposed as well.  Fuchs and Johnson
sketched a graphics system architecture that computes images of portions of a display list on separate
processors and combines them using a priority encoder [FUCH79].  The portion of the paper that included
the sketch was not included in the conference proceedings.

Leray proposed a device for combining two video streams containing z information as well as color infor-
mation [LERA87].  The z values would be used to determine priorities for each pixel of the composite
image.  He proposed using these devices to place synthetic objects in real scenes or to combine the outputs
of two z-buffer frame buffers.

Bender et. al. proposed a system based on Inmos Transputers that uses a BSP-tree algorithm to compute
polygon priorities and a DMA engine to combine pixels from several frame buffers into a composite frame
buffer [BEND89].

Molnar proposed combining the outputs of several z-buffer renderers using a binary tree of z-compara-
tor/multiplexers and argued that such a system could achieve linearly scalable performance at constant
performance vs. price [MOLN88].

Shaw et. al. proposed implementing a simplified version of Duff's algorithm in VLSI chips to make
possible a multi-renderer system with antialiasing [SHAW88].  The compositor chip was fabricated, but a
prototype system was not completed.

3.1.5 Contribution of this Work

This dissertation uses many of the ideas just summarized.  It makes the following new contributions:

• It identifies the issues involved in building high-performance image-composition systems with
large-grain renderers.

• It addresses the antialiasing problem comprehensively.

• It describes a prototype design that demonstrates the feasibility of the approach.

The goal of this research is to explore this new, promising architectural space and to show that many of its
potential benefits can be realized in practical systems.

3.2 FIXED-PRIORITY IMAGE COMPOSITION

The simplest variant of image composition assigns a fixed priority to each subimage.  Pixels within sub-
images may encode, in addition to color, the transparency (or opacity) of the subimage at that pixel.
Multiple subimages can be overlaid, creating a complicated image from a number of simple ones.

3.2.1 Chroma Key

A simple and early method of overlaying images is analog chroma-key.  In this method a particular color
that does not appear in the image is designated as the key color.  Fully saturated blue is a common choice.
Each subimage is recorded over a background of the key color (this can be done simply by videotaping a
subject against a blue background).  An analog chroma-key device, diagrammed in Figure 3.1,  composites
the image.  The chroma keyer compares the color of the foreground image to the key color.  If the colors
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differ, it transmits the foreground color; if the colors match, it transmits the background color.

Multiple chroma-key devices can be cascaded to composite multiple several images in real time.
Alternatively, images can be stored on videotape after compositing and composited with additional images
in successive passes.  Chroma key is commonly used in the video and special effects fields.  Lucasfilm used
it to create the space combat special effects in Star Wars.  Television news broadcasts and commercials
frequently use it to overlay commentators over background images or video footage.

Comparator
(to key value)

Selector
Background 
video signal

Foreground 
video signal Composite 

video signal

Foreground/Background select

Figure 3.1:  Block diagram of chroma-key compositor.

Figure 3.2 shows a 160x128-pixel image of three polygons composited using chroma-key.  Separate images
were computed for each polygon over a fully-saturated blue background (the key color).  The images were
composited in front to back order on top of the blue background image.  Note that a blue boundary can be
seen around the polygon silhouettes.  This occurs because the key color bleeds into pixels that are only
partially covered by the front image.  This effect can be seen occasionally on television images.

Figure 3.2:  Chroma-key overlay of three 160x128-pixel images (one for each polygon) over a
blue background.

3.2.2 RGBα Overlay

Although chroma-key compositors typically operate on analog video, they can be designed to operate on
digital video as well.   A more appealing technique for digital video is to encode transparency information
in a channel separate from the color [PORT84].  This prevents ambiguities when an image contains colors
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close to the key color and allows blends between the two images.  The extra channel is generally called
alpha or α.  An alpha value of 1 indicates an opaque foreground pixel; an alpha value of 0 indicates a
transparent foreground pixel.  Intermediate values of alpha, if allowed, represent varying degrees of
transparency.

A digital RGBα compositor is more complicated than its chroma-key counterpart.  It must linearly interpo-
late between the background and foreground color based on alpha.  This requires multipliers and adders for
each channel.  The composited color is given by the composition equations:

Rcomp = αfront • Rfront + (1 – αfront ) • Rback

Gcomp = αfront • Gfront + (1 – αfront ) • Gback

Bcomp = αfront • Bfront + (1 – αfront ) • Bback

Since each channel typically is represented in eight or ten bits, these functions cn be implemented in
relatively simple hardware.  Figure 3.3 shows a block diagram of the compositor for one color channel.

×

α front

1−α front +

color back

color out

×color front

Figure 3.3:  Block diagram of one channel of an RGB α compositor.

Alpha can be used to smooth the edges of images.  For example, the boundary of an object in the
foreground image may not coincide with pixel boundaries.  It would be improper to color border pixels
completely in either the foreground or background colors.  If alpha is set to the fraction of the pixel actually
covered in the foreground image, it can be used to smoothly blend the foreground and background colors
together, reducing stair-step effects or aliasing.

Figure 3.4 shows an RGBα overlay of the three-polygon image of Figure 3.2.  Notice that a hint of red and
blue is apparent in the pixels lying on the boundary between the two white polygons.  Such bleed-through
artifacts can occur when a pixel is partially covered in two or more images.  Although the seam between the
two white polygons obscures the background completely, the compositing algorithm has no way to distin-
guish this case from cases in which two polygons partially cover a pixel, but leave the background exposed.
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Figure 3.4:  RGB α overlay of images above.

Figures 3.5(a–c) show the possibilities that can occur when more than one polygon partially covers a pixel.
Each figure is a blow-up of one pixel, in which two polygons (in separate images) partially cover a
background image.  Polygon A is in the front image; polygon B is in the middle image; the background is in
the far image.  Although αA and αB are the same in all three cases, the amount of background image visible
differs in the three cases.
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Figure 3.5:  Front polygon A and middle polygon B have the same cover age in cases (a), (b),
and (c), but expose differing amounts of the background color.

Since there is no way to distinguish between these cases when compositing, an arbitrary choice has to be
made.  Typically, the coverage fractions of the original pixel are used to determine the coverage fractions of
the area left uncovered by the front surface, as in Figure 3.5(b).  When this assumption fails, artifacts are
produced.  These artifacts are most noticeable when subimages contain correlated features, such as the
shared edge between polygons in the example above.  When component images are independent, as in
several spaceships over a field of stars, the artifacts occur at random pixels and are difficult to detect.

RGBα compositing has been used in animation systems, to composite images from different renderers
[PORT84], and in flight simulators, such as the IVEX VDS-2000, to superimpose images of lights and
aircraft over images of terrain features and the runway environment [GREE91].
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3.3 PIXEL-PRIORITY IMAGE COMPOSITION

Fixed-priority compositing methods are severely limited in that every pixel in a subimage is assigned the
same priority.  They cannot handle images that overlap in nontrivial ways, such as aircraft flying between
mountains in a flight simulator, or a person standing in a room with furnishings.  A more general form of
image composition, called pixel-priority image composition, remedies this by providing each pixel with an
independent priority.  Priorities generally are based on the distance from the viewer to the nearest surface
visible at each pixel—the pixel's z value.  Pixel priorities or z values are generally encoded as an additional
channel beside the color (and, optionally, alpha) channels.

Pixel-priority image composition, in its simplest form, is easy to implement.  Renderers scan out z values
along with color values.  To compute each pixel in the final image, z values of corresponding pixels of each
subimage are compared.  The pixel with the lowest z value "wins"; its color is used in the final image.  Z
values can indicate coverage as well as priority:  pixels whose z value is set to zmax (the largest repre-
sentable z value) are effectively transparent, since they have the lowest possible priority.  This method does
not allow intermediate transparency values, however.

3.3.1 The Aliasing Problem

Although pixel-priority image composition is more flexible than fixed-priority composition, it makes
antialiasing more difficult.  We could include an alpha channel with each image to encode partial coverage,
as we did before, but a new problem emerges:  the result depends on the order in which images are
composited.

Consider the side view of a pixel shown in Figure 3.6.  Here, three polygon fragments A, B, and C are
visible in the final pixel.  Assume that each polygon fragment is stored in a separate image, and that each
pixel is represented by three components:  color (RGB), α, and z.  We wish to calculate the composited
pixel value A comp B comp C.

A
B C

z

A comp B
C

A
B comp C

(A comp B)
comp C

After first
composite

Final result

Initial
configuration

(A comp B) (B comp  C)

A comp 
(B comp C)

(A comp B) comp C A comp  (B comp C)

Height of
pixel

Figure 3.6:  Non-associativity of alpha-blend compositing.  A , B, and C are polygon frag-
ments that partially cover the pixel (pixel is viewed from the side; z increases to the right).

Polygons A and B each cover half of the pixel.  Polygon C covers the pixel completely, but lies behind the
other two polygons.  To compute A comp B comp C, we can compute either A comp B or B comp C first,
indicated by the two arrows in the figure.  The figure shows the pixel's state after the first step in both cases.
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After the second composite, we see that the final result differs in each case.  The result of (A comp B) comp
C is correct except for possible bleed-through artifacts.  The result of A comp (B comp C) is incorrect,
however, since the contribution  of B  is lost.  We see from this example that comp is not associative and
produces errors if pixels are composited in the wrong order.  Since each image can have arbitrary z values
at each pixel, there is no way to assure the correct compositing order for every pixel in an image.

Duff described an alternate compositing algorithm that mitigates this problem under certain circumstances
[DUFF85].  He proposed representing pixels by RGBα, as before, but sampling z values at pixel corners,
rather than at their centers.  Since corner z values are shared by four adjacent pixels, an entire image of this
form can be stored in nearly the same space as a regular image (only one extra row and column are
required).

The advantage of sampling z values at the corners of pixels is that extra context information is available at
each pixel to reduce compositing errors.  The first step in compositing two pixels A and B is to determine
which z value is nearest at each of the four corners.  There are 24 = 16 possibilities, shown in Figure 3.7.
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Figure 3.7:  16 possible coverage cases for Duff's algorithm.  Pixel corners are labelled A or
B depending on whether zA or zB is in front.  Labels a and b indicate regions where A or B
are assumed visible (figure adapted from [DUFF85]).

The fractional coverage of A and B visible in the composited pixel is determined by linearly interpolating z
values for A and B along each pixel edge and determining the point where they intersect.  If pixels have unit
area, then area a is the fraction that A is assumed to be in front and b is the fraction that B is assumed to be
in front.  The final pixel value is given by a • RGBαA + b • RGBαB, where RGBαA is the composited
pixel value assuming A is in front and RGBαB is the composited pixel value assuming B is in front.

Duff's algorithm works correctly when one pixel covers the other at all four z values and when a single
covering polygon in A intersects a single covering polygon in B.  The method breaks down, however, when
polygon edges fall within a pixel, a limitation recognized by Duff.  Figures 3.8(a) and 3.8(b) show close-up
views of two pixels that demonstrate this problem.  In each case polygons A and B  have the same RGB, α,
and z values.  In Figure 3.8(a), the polygons share a common edge and completely obscure the background,
whereas in Figure 3.8(b), the polygons leave a substantial portion of the background visible.  Duff's
algorithm cannot distinguish between the two cases and makes an intermediate assumption.  This results in
color bleeding similar to that produced by fixed-priority alpha-blending.
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Figure 3.8:  Coverage ambiguity in Duff's algorithm.  Cases (a) and (b) result in the same
composited pixel value.

If uncorrelated images are composited, such as independent objects in a complex scene, artifacts occur only
at isolated pixels and are relatively benign.  When images are correlated—for example when primitives in
separate images share an edge—the artifacts are systematic.  Unfortunately, shared edges appear to be a
necessary evil to assure load balance across the renderers in an image-composition system (see Section
5.4).  This makes Duff's algorithm a poor choice for general-purpose image-composition systems.

Compositing algorithm requirements.  We have seen that the compositing algorithm for a pixel-priority
image-composition architecture must have several properties to avoid errors such as color bleeding and
dependence on the compositing order:

• Commutativity.   The final image should not depend on the order in which images are composited.

• Associativity.  The final image should not depend on the order in which images are composited.

• Explicit subpixel geometry.  To avoid color bleeding, we need a method that retains the coverage
geometry of primitives that partially cover pixels.  This can be done analytically (difficult) or
discretely (by sampling).

These requirements preclude the simple antialiasing schemes that were effective in fixed-priority image-
composition systems.  They force us to us to investigate more general approaches, such as supersampling
and the A-buffer algorithm.  We will return to this issue at length in Chapter 4.

3.3.2 A Simple Pixel-Priority System 1

If we ignore antialiasing for the moment, the composition operation is very simple:  z values are compared
and the nearer pixel is chosen.  This can easily be implemented in software or hardware.  Figure 3.9 shows
a block diagram of a simple hardware implementation.  Such a hardware compositor could run at real-time
video rates or higher.

Pixel-priority image composition can be used as the basis for high-performance image-generation architec-
tures.  Separate priorities at each pixel allow the visibility-determination algorithm to be distributed over
the image-composition network, providing the architecture with its tantalizing properties of scalability and
near-constant performance vs. price.

_____________
1This section is based largely on [MOLN88] and has elements from several previously published proposals, reviewed
in Section 3.1.4.
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Figure 3.9:  Block diagram of a simple pixel-priority compositor.

Figure 3.10 shows a block diagram of a simple z-buffer image-composition system.  Eight rendering
engines, each capable of rendering 400,000 Gouraud-shaded triangles per second (typical of current
commercial systems) are harnessed together, providing a net rendering speed of 3.2 million triangles per
second.  Each renderer in this system is equipped with its own full-screen color and z-buffer.
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Figure 3.10:  Pixel-priority system for displaying 3.2 million triangles per second.

Each renderer is assigned a fraction of the display database during system initialization.  Rendering
proceeds as follows:  renderers transform their respective primitives into screen coordinates using identical
modeling and viewing transformations, and rasterize them into their own color and z buffers.  Next, the
systems synchronously scan out color and z values into a binary tree of compositors, which successively
combine them into the single RGB/z stream that emerges from the root of the composition tree.  The RGB
stream is fed into conventional color look-up-tables and digital-to-analog converters to drive the display
monitor.  This system operates at video rates and, therefore, requires no final frame buffer.  Each additional
renderer requires one additional compositor, so performance vs. price is constant.

Z-buffer Renderers.  The video scan-out mechanism of a conventional frame buffer provides a ready-
made interface to the image-composition network.  Normally RGB values for each pixel are scanned out in
raster order and sent to the display device (see Figure 3.11).  If we modify the frame buffer to scan out z
values as well as RGB values, and to do so synchronously on all renderers, we can build a z-buffer
composition system out of conventional rendering engines.
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Figure 3.11:  Conventional high-resolution video system

The frame buffers in most commercial rendering systems are built out of DRAMs or VRAMs.  Single-
ported DRAMs are generally used to store z-values and other pixel data not for display, while dual-ported
VRAMs are used to store the color values.  An easy way scan out z values is to store them in VRAMs in the
same manner as color values.  VRAM memory densities approach DRAM densities, and the same
sequencing logic that drives the RGB scanout circuitry can drive the z scanout circuitry.  A method for
synchronizing the scanout circuitry on each of the boards is needed.  A straightforward way to do this is to
provide a global, synchronous scanout clock to each frame buffer board, and to connect this to the genlock
circuit of each frame buffer.1  Note that if rendering is to occur concurrently with video display, the
z-buffer, in addition to the color buffer, must be double-buffered.  This requires extra memory.  These
changes require modifications to the frame-buffer board, but the changes are largely confined to the video
output portion of the system.

Z-buffer Compositors.  The compositors in the system merge two RGB/z data streams into one.  Even
though they are simple, they must run at very high speeds—80 to 140 MHz for a 1280x1024 monitor
refreshed at 60 Hz.  The compositor can be pipelined by sending z-values one clock cycle ahead of RGB
values, as shown in Figure 3.12.  The compositor shown here can be built using 100K ECL parts for
approximately US $1102, plus board and connector costs.
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Figure 3.12:  Block diagram of a high-speed ECL compositor.

Although z-buffer image-composition systems can achieve extremely high performance and are simple to

_____________
1High-speed synchronous clocks can be distributed in large systems using salphasic (constant-phase) clock technology
demonstrated in Pixel-Planes 5 [CHI90].

2Price of six Fairchild F10016 and 12 Fairchild F100155 ECL parts (Hamilton-Avnet Electronics, Raleigh NC, prices
quoted 8/30/88).
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construct, they suffer from a major limitation—aliasing.  We consider solutions to the aliasing problem in
Chapter 4.



CHAPTER 4

SOLVING THE ALIASING PROBLEM

We now consider the problem of aliasing in pixel-priority architectures.  Since high-performance systems
must be able to generate high-quality, antialiased images, the aliasing problem must be solved to make
image-composition architectures feasible.  This chapter explores the main alternatives and the architectural
families they lead to.  Section 4.1 introduces two image-precision antialiasing approaches:  supersampling
and A-buffer algorithms.  Section 4.2 describes the supersampling family of image-composition architec-
tures.  Section 4.3 describes the A-buffer family of image-composition architectures.

4.1 ANTIALIASING APPROACHES

We saw in Section 3.3 that simple antialiasing methods, such as alpha-blending and Duff's algorithm, are
inadequate for pixel-priority image-composition systems, because they are not associative and do not
preserve subpixel geometry.  We now turn our attention to two general (but more expensive) methods:
supersampling and A-buffer algorithms.

4.1.1 Supersampling

Supersampling is a general approach to antialiasing in which the image is sampled at higher-than-pixel
resolution and filtered down to pixel resolution using a low-pass filter.  It is a brute force algorithm,
requiring a great deal of computation, but is the simplest and most general image-precision antialiasing
algorithm known.  Supersampling is a large and active research area within computer graphics.  A full
discussion of its subtleties is beyond the scope of this dissertation.  [FOLE90] provides a good introduction
to the area and pointers to the literature.  This section provides a brief overview of supersampling as it
pertains to image-composition architectures.
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Figure 4.1:  Conceptual pipeline of operations performed during supersampling.

Supersampling has the four conceptual steps shown in Figure 4.1.  First, the image is sampled at several
times the pixel resolution.  This results in a high-resolution digital image that can represent components of
higher frequency than can a single-sample-per-pixel image.  Next, a digital low-pass filter attenuates
frequency components above the Nyquist frequency of the one-sample-per-pixel image.  Third, a continu-
ous image is reconstructed from the high-resolution digital image.  Finally, the image is resampled with a
single sample per pixel.

In an actual implementation, the third and fourth steps, reconstruction and resampling, are never performed
explicitly.  Instead, the image is only sampled at the locations needed to compute the pixel values in the
low-resolution image.  These samples are averaged together, using blending coefficients determined by the
low-pass filter, to produce a single, antialiased color for each pixel.

Supersampling is a very general approach.  Since it determines the visible surface and color for each sample
point, it accurately antialiases images containing any type of primitive, shaded in any fashion—so long as
enough samples are taken to represent the high-frequency components in the underlying image.  (Since any
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image that contains lines or edges of polygons has components of infinite spatial frequency, this can seldom
be done perfectly).  Figure 4.2 shows a 160x128-pixel image of a space station sampled with 1 sample per
pixel (no antialiasing), and supersampled with 5, 16, and 32 samples per pixel.

Figure 4.2:  Space station scene with 1 sample per pixel (upper left), 5 samples per pixel
(upper right), 16 samples per pixel (lower left), and 32 samples per pixel (lower right).

Unfortunately, supersampling an image with k samples per pixel requires rendering the image at k times the
resolution or rendering it k times with slightly different coordinate offsets—a k-fold increase in computa-
tional cost over the unantialiased image.  For good quality images, k is typically chosen to be 16 or greater.
This is a burdensome computational expense for any system, particularly real-time ones.  We can minimize
k by cleverly choosing sampling patterns and blending coefficients.  [MOLN91] contains a discussion of
the issues involved.  Nevertheless, k values of at least 5 appear necessary for tolerable antialiasing, no
matter how samples and weights are chosen, and much higher k values would be preferable if they were
less expensive.

[FUCH85] and [EYLE88] describe a supersampling technique called successive refinement.  A crude image
is presented to the user at full speed as long as the user manipulates the view or any rendering parameters.
When the image is held stationary (or is changed less frequently than the update rate), further samples are
computed and averaged in with the previous samples, producing a supersampled image in incremental
fashion.  This technique is useful in applications where positioning the dataset and analyzing can be done
separately.  It less useful in real-time applications, where high-quality moving images are required in every
frame.

4.1.2 A-Buffer

The second general antialiasing approach is to vary adaptively the amount of information used to represent
each pixel, using more information where spatial frequencies are high and less information where spatial
frequencies are low.  We will refer to algorithms of this type, conveniently, but somewhat incorrectly, as
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A-buffer algorithms.1  A-buffer algorithms address the main difficulties of supersampling:  its high
computational cost and its high bandwidth requirements.  Their main disadvantages are added complexity
and artifacts under certain circumstances.

(a) (b) (c)

Specular
highlight

Implicit 
edge

Explicit
edge

Figure 4.3:  Sources of high-frequency components in a displayed image:  (a)  Explicit primi-
tive edge,  (b)  implicit edge where primitives intersect,  and (c)  specular highlight.

Computer-generated images typically contain three sources of high-frequency components:

• Explicit edges.  The zero-width boundaries of primitives have infinite spatial frequencies (Figure
4.3(a)).

• Implicit edges.  Interpenetrating primitives cause implicit edges, which also have infinite spatial
frequencies (Figure 4.3(b)).

• High-frequency shading effects.  Certain shading effects, such as specular highlights, shadows,
and textures can contain high-frequency components.  For example, a Phong-shaded cylinder
several pixels wide can have a specular highlight much narrower than a pixel (Figure 4.3(c)).

If we ignore texturing, which requires special treatment anyway (see Section 5.5.3), the main source of high
frequency components in most images is polygon edges.  Pixels near polygon edges need extra sampling;
pixels in the interior of polygons can generally be sampled once per pixel.  A-buffer algorithms take advan-
tage of this by storing extra information for pixels that contain polygon edges, and simply storing color and
z values for the others.

The potential savings are substantial.  The three largest sample datasets in Appendix A contain between
120,000 to 350,000 polygons.  In high-resolution (1280x1024) images of these datasets, fewer than 50% of
the pixels contain contributions from two or more primitives.  If we can take advantage of this, we can
produce high quality images and substantially reduce the bandwidth requirements for the image-
composition network.

The original A-buffer algorithm described by Carpenter in [CARP84] assumes that rendering is performed
using a screen-sized image buffer.  The entry for each pixel can contain either a single color and z value, or
else a pointer to a linked list of partially-covering primitive surfaces.  Initially, each pixel in the screen
buffer is set to the color and z value of the background.  As primitives are rasterized, they are diced into
pixel-sized pieces called fragments.  Fragments may completely cover a pixel, or may only partially cover
it (if an edge of the polygon passes through the pixel, for example).

At each pixel affected by a polygon, a determination is made as to whether the fragment covers the pixel
completely or partially.  If it covers the pixel completely and is the closest surface so far, the fragment's
color and z value replace the values stored in the screen buffer.  If it covers the pixel only partially, a record
is made containing the fragment's color, z, and partial-coverage information (generally an alpha value or a
subpixel coverage bitmask).  The entry in the screen buffer is changed to a pointer, which points to this
newly created record.  This record contains a pointer to another such record, containing the color and z
value of the background (see Figure 4.4).  As additional primitives are rasterized, they are merged into the
screen buffer in this fashion.
_____________
1The name A-buffer was coined by Carpenter in [CARP84] to refer to a particular algorithm of this type.  Since that
time, it has informally taken on a wider meaning.  We will use the term A-buffer to refer to all antialiasing algorithms
that use a variable-length list of fragments to represent each pixel.
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In the original A-buffer paper, there is no restriction on the length of the linked lists of fragments.  In
pathological cases, where many primitives partially cover a single pixel, the linked lists can become
arbitrarily long.  However, fragments that completely cover a pixel obscure all of the fragments behind
them and truncate the list.  This tends to limit the length that lists actually achieve.

RGB

z
bitmask

ptr

RGB

z
bitmask

ptr

RGB

z
bitmask

ptr

A B C

A

B

C
x

pix ptr

ø

Figure 4.4:  Magnified view of pixel and linked list of fragments for the three surfaces A, B,
and C visible at the pixel.

The original A-buffer algorithm was used to produce high-quality antialiased images in the initial Reyes
rendering system [CARP84].  This system was designed to run on virtual-memory uniprocessors, such as
the VAX 11/780, a much more flexible software environment than parallel renderers in an image-
composition system.

A-buffer algorithms can be adapted to image-composition architectures by feeding the fragment lists into
the image-composition network, where they are composited and eventually resolved.  This approach has
been proposed by several researchers [WEIN81, SCHN88], but (to the author's knowledge) has never been
implemented.  The approach has a number of problems:

• It requires sophisticated processing at the compositors to interpret the variable-format pixel
streams and composite them correctly.

• It requires transmitting extra information for complex pixels.  Even though this is normally less
than the k-fold increase with supersampling (in pathological cases it can be more), it exacerbates
the bandwidth problem to some degree.

• It produces artifacts that are not found in supersampled images

Fortunately, most of these problems can be solved, or at least mitigated, and the approach offers a number
of advantages, including high-quality images with modest composition-network bandwidth and a natural
way to implement transparency.  We will discuss the A-buffer family of image-composition architectures in
detail in Section 4.3.

4.2 SUPERSAMPLING ARCHITECTURES

As explained in Section 3.3.1, supersampling is a brute-force algorithm that requires a great deal of compu-
tation, but it is the simplest and most general image-precision antialiasing algorithm known.  It is the basis
for the supersampling family of image-composition architectures, whose properties we will discuss in the
following sections.

4.2.1 The Factor of k

Brute-force algorithms have brute-force costs:  to compute k samples per pixel, we must do k times as much
work as for an unantialiased image.  Brute-force algorithms have advantages, however.  For example, the
z-buffer algorithm was at one time thought too extravagant in memory usage to be practical [SUTH74].
Because of its simplicity and the decreasing cost of memory, nearly all graphics systems now use the
z-buffer algorithm.  Perhaps supersampling antialiasing has similar advantages.

If we wish to supersample without sacrificing frame rate, we must overcome two challenges:

• We must compute k times as many samples per second as in an unantialiased image.
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• We must increase the bandwidth of the image composition network by a factor of k, since we must
composite subpixel samples before resampling.

The first point has implications for the renderers, the second for both the renderers and the image-
composition network.

4.2.2 Computing Additional Samples

The computational power required of each renderer is proportional roughly to:

# of primitives • # of subpixel samples • frame rate

If we wish to increase the number of samples by a factor of k, we either increase the renderer's power by a
factor of k, reduce the number of primitives, or reduce the frame rate.  If we knew how to increase the
renderers' performance easily, we would not be worried about image composition.  We are left, then, with
trading the number of primitives or frame rate for the extra samples.

Fortunately, things are not be as bad as they seem.  There is considerable coherence between the multiple,
slightly offset, images required for supersampling.  Depending on the renderer design, some calculations
may be factored out and performed just once for all of the subsamples.  For example, vertex normal vectors
need to be calculated only once.  Taking advantage of such coherence can reduce the computational
expense below the nominal factor of k.

4.2.3 Increasing the Bandwidth

The most serious obstacle to supersampling is the increased pixel bandwidth required.  The numbers are
enormous and affect the renderer and every aspect of the image-composition network.  For example,
consider a system that updates a 1280x1024 screen with 5 samples per pixel at 30 Hz.  The composition
bandwidth is:

1280x1024 pixels • 5 samples/pixel • 8 bytes/sample • 30 frames/second

= 1.57 Gbyte/sec

No individual factor is outlandish, but the product certainly appears to be.  To achieve this bandwidth
requires either:

• 1 wire at 12.6 GHz.

• 32 wires at 393 MHz.

• 128 wires at 98 MHz.

• 512 wires at 24.5 MHz.

This bandwidth requirement is not for a single, localized datapath within a single board; rather, it is neces-
sary at the output port of the renderer and at every link in the image-composition network, many of which
span board boundaries.

Fortunately, this may not be a problem for the renderers.  Z-buffer renderers have huge bandwidth require-
ments at the input ports of their frame buffers (see [MOLN90]).  Current commercial systems generally use
16-40 banks of frame-buffer memory to achieve this bandwidth [AKEL88, POTM89].  If they are built
using VRAMs, as many are, even greater bandwidth is available at the output port.  For example, a 20-bank
VRAM memory system with 20 MHz serial ports provides 20 • 20 Mword/sec = 1.6 Gbyte/sec at its output
port.  This satisfies the bandwidth requirement for the renderer output port.

The image-composition network, however, bears the brunt of the factor of k.  It must span several boards,
and has many high-speed connections, which are extremely expensive in board area and dollars.

If real-time update rates are not required for antialiased images, there is an escape route:  we can use
successive refinement.  Successive refinement requires no hardware modifications for the renderers or
image-composition network.  It does, however, require a final accumulator frame buffer capable of
blending new sample values with previous ones [HAEB90].  Accumulator frame buffers are relatively easy
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to implement.  Such a system can compute high quality images, but with a penalty in speed.

If we want high frame rates we have no choice but to increase the image-composition network's bandwidth
k-fold, or to choose a different antialiasing algorithm.  We initially believed that the composition-network
bandwidth would dominate the other costs of the system, making it infeasible unless the system contained
very high-performance renderers.  Consequently, we began investigating lower-bandwidth alternatives,
such as the A-buffer method described in the following section.  After considering the properties of each
method, the tradeoffs became less certain; much can be said for the feasibility of implementing simple
operations in parallel, a strongpoint of the supersampling approach.  The prototype system design described
in Part II of this dissertation uses the supersampling method.

4.3 A-BUFFER ARCHITECTURES

A-buffer antialiasing is the second general approach for antialiasing in image-composition architectures.
Its primary advantage over supersampling is that pixels contain extra information only where needed.  Each
pixel is represented by a variable number of partially-visible primitive fragments; the number of fragments
depends on the number of primitives that are potentially visible at the pixel.  Since most pixels in most
images can be represented by one or two fragments, we might expect that less information per pixel is
needed in an A-buffer system than in a supersampling system.

Unfortunately, A-buffer algorithms are complex and produce several types of undesirable artifacts.  These
artifacts stem from the fact that depth and surface values are only computed at the center of each pixel, and
this is insufficient when edges pass through a pixel or surfaces interpenetrate.

In this section we will take a closer look at the problems and opportunities of the A-buffer approach.
Section 4.3.1 describes how A-buffer algorithms can be implemented on an image-composition system.
Section 4.3.2 describes enhancements to the simple A-buffer algorithm to mitigate artifacts.  Sections 4.3.3
to 4.3.5 discuss possible implementations for various system components.

4.3.1 Applying the A-Buffer to Image Composition

The classic A-buffer algorithm uses a screen buffer to maintain a sorted list of partially visible primitives at
each pixel.  In an image-composition architecture, each renderer computes its own image.  The image-
composition network must combine the partial-coverage information from the multiple renderers into a
single pixel stream.

In a simple A-buffer image-composition system, fragments contain the following information:

• RGB—the color value for the fragment (obtained by sampling the linear equations for R, G, and B
at the center of each pixel).

• z —the depth value for the fragment (obtained by sampling the linear equation for z at the center
of the pixel).

• Coverage bitmask—an N-bit value which contains a coverage bit for each subsample within the
pixel (each bit is set if the corresponding sample point lies inside the fragment).

To render an image, each renderer must compute, for each pixel in the image, an ordered list of fragments
resulting from the primitives in its database partition.  This list contains the fragments that are potentially
visible at that pixel in increasing z order, ending with the nearest fragment that completely covers the pixel.
We call the list of fragments for each pixel a pixel packet.  The renderer places pixel packets onto the
image-composition network in scan-line order.

The compositors in an A-buffer system have a more demanding task than the compositors we have
discussed before.  They must parse the pixel streams coming from each input and interleave fragments
within a pixel so that the pixel stream has the same format at the compositor's output as it does at its two
inputs.  Since fragments from one compositor input can cover fragments from the other input, the
compositors must be smart enough to truncate the fragment list when the pixel becomes completely
covered.  The list of fragments for each pixel, therefore, can increase if partially-visible fragments are
added to the front of the list, or shrink if completely covering fragments obscure fragments behind them.
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A-buffer systems require an extra module not found in supersampling systems:  a pixel assembler to
convert the multiple fragments per pixel into RGB values.  It does this by blending the colors of each
fragment within a pixel packet based on the coverage information in the fragments.  The result is a single
RGB value (assembled pixel) for each pixel.  Since the pixel stream entering the pixel assembler contains
coverage information for all of the primitives in the scene, it is the point of highest bandwidth in the system.

The stream of assembled pixels (RGB values) emerging from the pixel assembler can be stored in a double-
buffered frame buffer, to allow the screen to be refreshed at any rate desired.

4.3.2 Minimizing Artifacts

The standard A-buffer algorithm leads to several types of artifacts:

1) Visibility errors.

2) Shading errors.

3) Aliasing of high-frequency shading effects.

All of these artifacts stem from sampling interpolated parameters at pixel centers only.  This can result in
erroneous z or color values when the sample point lies outside the polygon and can result in aliasing if the
sample point misses a high-frequency shading effect.  We now examine each of these artifacts more closely
and suggest enhancements to the standard algorithm to minimize these artifacts.

Visibility errors.  The visible fragment at each pixel is determined by comparing the z values of each
fragment in a pixel packet.  Z values are computed by sampling the linear expression for z (by forward
differences or some other means) at the pixel center.  Since fragments are constructed for polygons that
cover pixels only partially, the sample point for a fragment may lie outside the corresponding polygon, and
may vary significantly from the z value at the closest polygon edge.  When polygons are close to edge-on,
the z gradient may be very high, and the z value at the sample point can be larger or smaller than the
maximum or minimum z value of the entire polygon.

pixel boundaries

z values sampled 
outside polygon 
boundaries

pink 
polygon

eye location

green
polygon

Figure 4.5:  Visibility errors caused by sampling z outside of polygon boundaries (scene is
viewed from above).

This effect can lead to visibility errors, as shown in Figures 4.5 and 4.6.  Figure 4.5 shows two polygons
seen from above.  The front face of the front polygon is colored olive green.  The front face of the back
polygon is colored pink.  Because of the errors in z, pixels along the intersection between these two
polygons appear to have the pink surface in front.  Figure 4.6 shows a rendered image of the same scene
that exhibits these artifacts.

Although these artifacts are noticeable in static images, they twinkle from frame to frame in moving
images, making them unacceptable in real-time systems.  The problem can be addressed in a number of
ways:  One solution is to calculate the z value at the nearest point on the polygon edge.  This might produce
pleasing results, but would greatly complicate the rasterization algorithm, the inner loop of the rendering
process.  The pixel could be sampled at multiple locations, but then we would not need the list of
fragments; the algorithm would reduce to supersampling, discussed in Section 4.2.
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Figure 4.6:  A-buffer-rendered image of the two-polygon scene in Figure 4.5.  Several pixels
along the intersection between polygons are colored pink, whereas only green should be
visible.

Another approach is to calculate z values at several points within the pixel, but to defer these calculations
until after image composition.  This can be done by encoding z slope information in the pixel packet, rather
than the z values for multiple sample points.  In this approach, subpixel z values do not have to be
calculated for fragments that are eliminated in the image-composition process, and the increase in image-
composition bandwidth  is modest.

The slope information required to do this is the change in z with respect to screen-space x (dz/dx) and the
change in z with respect to screen-space y (dz/dy).  Unfortunately, z values for a single surface can vary
substantially within a pixel in nearly edge-on polygons.  This means that dz/dx and dz/dy must be able to
represent a substantial fraction of the full z range.  On the other hand, slope information does not need to be
very precise; in most cases intersecting surfaces will have slopes that differ significantly.
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Figure 4.7:  (a) Compact representation of dz/dx and dz/dy.  (b) Data for mat for 4-word
fragment.

In our software simulator, we have obtained reasonable results using 16-bit slope values with 32-bit z
values.  The slope values are offset 12-bits into the 32-bit z value, as shown in Figure 4.7.  This means that
a one-pixel displacement in x can alter z by as much as 1/64th of the 32-bit z range.  This is a compact
representation for dz/dx and dz/dy, since both slope values fit into a single 32-bit single word.  This only
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increases the data requirements for a fragment by 1 word (from 3 words to 4).

Is this a worthwhile addition to an A-buffer composition system?  Consider the costs and benefits.  There
are three added costs:  1)  extra bandwidth in the image-composition network,  2)  extra work to calculate
slope values, and  3)  extra work to calculate subsample z values during pixel assembly.

The added bandwidth is significant, but probably tolerable (4 words per fragment instead of 3).  Slope
values are extremely easy to compute—they already exist!  These are the same slope values used to
advance z from pixel to pixel or from scan line to scan line in virtually any renderer.  The only
complications are format conversion and clamping, since slopes may be represented as floating-point values
in the renderer.  These are both relatively simple operations, and can be implemented in hardware, if
necessary.  Calculating z values for each subpixel sample during pixel assembly is another matter.  This
substantially complicates the task of pixel assembly.  But there are two pieces of good news:  it only has to
be done for potentially visible fragments (a large savings), and it is only needed at only one place in the
system.  Hence, it is a fixed cost for the system and does not affect its scalability.

Figure 4.8:  Two-polygon scene rendered using z slope information.

Figure 4.8 shows the same scene that was rendered in Figure 4.7, but this time using z slope information.
The artifacts disappear completely.  This approach seems to be a reasonable compromise toward rendering
high-quality images without overwhelming the image-composition process.

Shading errors.  Another type of artifact, also caused by sampling only once per pixel, is errors in shading.
When fragments do not cover a pixel completely, interpolated values, such as R, G, and B in Gouraud
shading or normal-vector components in Phong shading, can be sampled outside the polygon's boundary,
resulting in errors.  This is especially severe when polygons are nearly edge-on.  For example, Gouraud-
shaded polygons with high color gradients can have color values that overflow the minimum or maximum
allowable values and wrap around.

Figure 4.9 demonstrates this phenomenon.  The nearly edge-on polygons at the top and bottom of the
airplane's fuselage have high color gradients.  Color values at some boundary pixels overflow the 0-255
color range, wrap around, and are grossly incorrect.  Errors in surface-normal vectors used for Phong
shading are less pronounced, since they are renormalized after interpolation.  They still can result in
incorrect Phong highlights.
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Figure 4.9:  Gouraud-shaded image of an X-29 aircraft with color-wraparound artifacts

These artifacts could be eliminated the same way we eliminated errors in z: by computing slopes for each
color parameter, storing them with each fragment, and evaluating them for each subpixel sample during
pixel assembly.  Unfortunately, there are three (or more) color or normal channels, in contrast to one z
channel.  Since color and normal values require fewer bits of precision than z values,  the three pairs of
slopes could be stored more compactly than z slopes.  Still, handling multiple channels would be expensive.

Figure 4.10:  Scene in Figure 4.9 with color clamping.

A simpler, cruder approach is to clamp interpolated parameters for each fragment to the minimum and



39

maximum values of the polygon.  These values are readily available; they are the minimum and maximum
values of the parameter at each of the polygon vertices.  They can be computed once for an entire polygon
during geometry processing and made available to the rasterizer.  This method has the additional advantage
of being completely independent of the image-composition network.

Figure 4.10 shows the same scene as in Figure 4.9, but with clamped color values.  For all of the images we
have tested, this simple approach appears to do an acceptable job.  To see if it produced any distracting
time-dependent artifacts, we incorporated the method into a prototype real-time flight simulator.  The
artifacts were mitigated to the point of not being distracting—or even noticeable—without scrutinizing the
image.  Both this approach, and the more general approach using slopes, appear feasible.

High-frequency shading effects.  A third type of artifact is caused by undersampling high-frequency shad-
ing effects, such as Phong highlights.  For  example, consider a front-lit metallic cylinder that is only two or
three pixels in diameter.  This cylinder will have very sharply defined highlights that are much narrower
than the width of a pixel.  The spatial frequency of the highlight is higher than half the A-buffer's one-
sample-per-pixel sampling frequency (the Nyquist frequency for a one-sample-per-pixel image), and,
therefore, will alias.  Figure 4.11 is an example of such an image.

Figure 4.11:  A-buffer rendering of highly specular cylinders (640x512-pixel resolution with
32 samples in the fragment bitmask).

Figure 4.12 shows the same scene rendered using supersampling (with the same resolution and the same
number of samples per pixel).  The supersampled image contains less aliasing because each subpixel
sample is shaded independently, whereas a single color value is used for all the subpixel samples in the
A-buffer algorithm.

Unfortunately, there is no easy way to extend the A-buffer algorithm to avoid these artifacts without reduc-
ing it to supersampling.  One possible solution is to supersample the color values in the renderer and use the
blended color during image composition.  This does not reduce the amount of calculation over supersam-
pling on the renderers, but does reduce the image-composition network bandwidth.  This approach still
results in errors when pixels are partially obscured, however, because some obscured sample points may
contribute to the final pixel color, but it is certainly an improvement over the standard A-buffer algorithm.
If we wish to avoid these artifacts entirely, the only alternative appears to be supersampling throughout the
rendering process.
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Figure 4.12:  Supersampled rendering of same scene (also 640x512-pixel resolution with 32
samples per pixel in same locations as A-buffer).

We rendered each of the sample databases in Appendix A using both supersampling and an enhanced
A-buffer algorithm using z slopes and color clamping (but not supersampled colors).  Very few artifacts
were apparent in the A-buffer images.  A-buffer rendering appears to be a feasible method for generating
high-quality images as long as highly specular objects can be avoided.  We will compare the two
approaches further in Chapter 5.

4.3.3 A-Buffer Renderers

We now focus on implementation issues for A-buffer architectures.  An A-buffer image-composition
system requires scan-line A-buffer renderers, special compositors, and a pixel assembler.  All of these can
conceivably be built, but they present challenging design problems.  In this section and the following
sections we briefly discuss some of the issues involved in implementing an A-buffer image-composition
system.

A-buffer renderers must be able to generate a sufficient number of fragments to render complex, high-
resolution images in real time.  A database partition of 3,500 triangles is required to render 100,000
polygons per second at 30 Hz.  Based on the statistics from the sample images in Appendix A, high-
resolution images containing 3,500 to 10,000 triangles average approximately 1.04 to 1.16 fragments per
sample.  Renderers of this size must generate, therefore, approximately 1.16 • 1280 • 1024 • 30 = 46 million
fragments per second.

A-buffer renderers could be built using a large image-buffer (as in the original A-buffer paper) or using a
scan-line approach.  The linked lists required to store the multiple fragments per pixel makes the image-
buffer approach difficult to implement.  Also, since scan-line renderers produce pixels in the order they are
needed by the image-composition network, scan-line rendering appears to be a natural fit here.

Most scan-line renderers implement the following three pipelined operations [MOLN90]:

• Transformation and bin sorting.  Primitives are transformed into screen coordinates and stored
in a list, based on the first scan-line in which they are active.

• Active segment sorting.  A list of active polygons is built for each succeeding scan line (only
incremental changes are needed between scan lines).  The intersection of each polygon with the
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current scan line is called a segment..  The list is sorted by the segments' left endpoints.

• Pixel generation.  A list of active segments is built for each pixel in the scan-line (only incremen-
tal changes are needed between pixels).  The active segments are used to determine the values for
each pixel.

Some of the earliest real-time raster systems used scan-line rendering [WATK70, SCHA83], though each
polygon had a constant color (flat shading) and they did not perform antialiasing.  These systems were
extremely parsimonious in terms of numbers of parts, however.  Later scan-line renderers, that incorporated
Gouraud shading and antialiasing, are much more complex [BUNK89, NIIM84].  An A-buffer renderer
requires even more sophisticated visibility and shading calculations:  it must calculate RGB, z, dz/dx and
dz/dy, and bitmasks for each fragment.

RGB and z are linearly interpolated parameters that can be calculated easily using forward differences.
dz/dx and dz/dy are constants for each primitive.  Bitmasks are more difficult to calculate.  They could be
calculated by supersampling the primitive geometry at each pixel, but this would defeat many of the
benefits of the A-buffer approach.  A simpler way is to use look-up-tables based on slope and intercept
parameters, as described in [ABRA85].  This allows a large number (up to 32) samples to be determined in
constant time.

Computing multiple fragments per pixel is straightforward:  a fragment is created for each segment active
at the current pixel.  Conventional scan-line renderers only need to determine which segment has the small-
est z value;  A-buffer renderers must sort the fragments into ascending z order, an extra complication.
Fortunately, this task can be moved to the input port of the compositor (see Section 4.3.4).

Buffering between the fragment generator and the image-composition network is also needed.  Since differ-
ent renderers may have different distributions of primitives, and the image-composition network handles
the same pixels simultaneously from all of the renderers (at least, close to simultaneously), buffering is
required to dissociate the two operations.  We will see in Section 5.4, that this memory must be able to hold
a substantial fraction of the pixel packets for an entire image.

4.3.4 A-Buffer Compositors

The second critical component in the architecture is the compositor.  A-buffer compositors must perform
non-trivial compositing and do so at extremely high speeds.  To composite two A-buffer pixel streams
requires comparing fragments from each stream one-by-one.  Fragments must be interleaved and truncated
when further fragments can no longer be visible.

Determining pixel coverage.  Various criteria can be used to determine when a pixel is completely
covered.  Some require more computation, but result in minimum-length pixel packets.  Others take less
computation, but result in pixel packets that are unnecessarily long.

A simple, but inefficient method is to interleave pixel fragments and to truncate the list only when a
fragment is encountered that completely covers the pixel.  This requires only a logical and of the coverage
bits, but is inefficient, since adjacent polygons whose seam crosses a polygon are not recognized as
covering the polygon.  This can be a common situation, since primitives of a tiled surface may be placed on
separate renderers for load balancing, as explained in Section 5.3.

Fragment list lengths can be minimized by accumulating a coverage bitmask for the pixel.  This can be
done by logically oring the coverage bitmask of each succeeding fragment with a cumulative coverage
bitmask.  When all of the bits have are set, the pixel is considered to be covered.  This is computationally
inexpensive and correctly handles the case of a pixel covered by multiple abutting polygons.

A complication with either approach is the fact that fragments span a range in z, rather than having a single
z value.  If we do not treat these correctly, we can create artifacts and undo the benefits of adding dz/dx and
dz/dy to z values.  Computing actual z values at each subsample point is far too much work to be performed
in each compositor.  A more tractable approach is to compute z values at the corners of the pixel for each
fragment (the corners represent the minimum and maximum x and y locations of any subpixel sample).  We
can conclude that one fragment is in front of another if its z value is less than the other fragment's z value at
each corner of the pixel.  We should only truncate fragments that lie entirely behind the covering fragment
(or fragments).
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Specialized compositor inputs.  If the image-composition network is structured as a pipeline, rather than a
tree, the compositor input ports can be specialized:  one can handle the high bandwidth from the previous
compositor, and the other can be tailored to interface with a renderer.  One specialization that is possible is
to sort fragments from the renderer in the compositor itself.

This can be done by incorporating a rebound sorter into the compositor's input port.  A rebound sorter is an
array of processing elements that read in unsorted data and output the data in sorted order [KUNG88].  A
rebound sorter has a finite depth N, determined by the number of processing elements in the sorter; N must
be relatively small to be practical.  These restrictions are acceptable in an image-composition system.

Fragments would be processed by the compositor as follows:  the renderer would compute fragments for
the current pixel and load them into the rebound sorter in the compositor in any order.  Up to N fragments
would be read from the sorter (fewer if fewer than N fragments were loaded in the first place).  The
fragments would emerge in ascending z order and then be merged into the pixel stream arriving at the
compositor's other input.  The sorter would be cleared between pixels.  If a pixel contains more than N
fragments, the extras (the ones with largest z values), would drop off the end of the sorter and be discarded.
This can be prevented by making N greater than or equal to the number of subpixel samples—the maximum
number of fragments per pixel.  Even if N is less than the number of samples, N values greater than 8 or 16
should produce only minor errors in the most complex pixels.

Buffering between compositors.  Since compositors can add fragments to the pixel stream and can
truncate fragments that become covered, the amount of information for each pixel can increase or decrease
as the pixel travels through the composition network.  To even out these differences, some amount of
buffering is required between compositors.  Before designing an actual system, one must determine the
amount of buffering required for the types of images that will be rendered.  One must be able to guarantee
that for the set of images likely to be encountered, serious bottlenecks do not arise in the composition
network.  Simulation or queueing analysis is required to answer this question definitively.

Bandwidth requirements.  The compositor must perform all of the functions above and do so at extremely
high speeds.  For example, the pipes database from Appendix A, rendered at 1280x1024 resolution contains
an average of 1.68 fragments per pixel—a total of 2.2 million fragments.  Updating this image at 30 Hz
requires that at least one compositor in the image-composition network process 66 million fragments per
second, a bandwidth of 1.1 Gbyte/second.  The only practical way to achieve this is using high-speed
circuitry with several parallel paths.

4.3.5 Pixel Assembler

A pixel assembler is required to combine the multiple fragments of each pixel packet into a single RGB
value for the pixel.  This involves compositing fragments in front-to-back order, taking into account how
much of the pixel each new fragment covers.

The addition of dz/dx and dz/dy to pixel fragments complicates the pixel assembly algorithm:  the ordering
of fragments may not be the same for all subpixel samples.  To solve this in a general way requires comput-
ing the closest fragment for each subpixel sample.  To achieve the required speed, this must be done in
parallel for each sample.  The final step is to blend the colors from each of the subpixel samples into a color
value for the entire pixel.  If importance sampling is used, this can be a simple average operation
[MOLN91].  If samples have different weights, they must be multiplied by appropriate blend coefficients
before adding.

A-buffer image-composition architectures can render transparent objects in a straightforward way if the
pixel assembler can alpha-blend subpixel samples, instead of simply finding the closest one.  We consider
the extensions needed to support transparency in Section 5.5.2.



CHAPTER 5

ANALYSIS OF IMAGE-COMPOSITION APPROACHES

In Chapters 3 and 4 we introduced image-composition architectures and described two main methods of
antialiasing.  In this chapter we will discuss other factors that influence the performance, flexibility, and
cost of image-composition systems, such as load balancing, latency, and support for advanced rendering
algorithms.  We will compare the advantages and disadvantages of different approaches and present a
taxonomy of image-composition architectures.

Section 5.1 discusses trade-offs between a tree-structured and pipelined image-composition network.
Sections 5.2 through 5.4 discuss performance issues such as latency and load-balancing.  Section 5.5
discusses how advanced rendering algorithms, such as transparency and texturing, map onto image-
composition architectures.  Section 5.6 presents a taxonomy of image-composition architectures.  Section
5.7 discusses the economics of image-composition compared with other image-generation approaches.

5.1 TREE VS. PIPELINE

So far we have paid little attention to the topology of the image-composition network—the way composi-
tors and renderers are connected.  Since compositors combine two input pixel streams into one output
stream, the composition network has the structure of a binary tree.  Binary trees can have many forms, as
shown in Figure 5.1.
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Figure 5.1:  Classes of binary trees:  (a) balanced tree,  (b) mixed tree,  (c) left-heavy tree
(pipeline).

The two extreme cases, balanced trees, and left-heavy (or right-heavy) trees are the most interesting for an
image-composition network.  Each has advantages and disadvantages.  Mixed trees have most of the disad-
vantages of both extremes with few of the advantages.  Figure 5.2 summarizes the properties of the three
approaches.
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Structure of composition network

Property Balanced tree Mixed tree Pipeline

Structure Regular Irregular Linear

Connections between boardsVarying-length, non-
local

Variable-length, non-
local

Single-length, local

Expendability Expansion difficult Expansion difficult Expandable

Latency log2 (# renderers) •

compositor latency
Intermediate # renderers • composi-

tor latency

Input port specialization Must be identical Must be identical Specialization possible

Comp. network bandwidth

(A-buffer systems)

Balanced on average Intermediate Increases toward end

Pixel synchronization Synchronous on each
renderer

Complicated Staggered on each ren-
derer

Figure 5.2:  Properties of different composition-network topologies.

5.1.1 Balanced Tree

In a balanced tree, the pixel stream from every renderer flows through the same number of compositors.
This means that, for A-buffer systems, the bandwidths in different parts of the image-composition network
are relatively balanced and that renderers can operate synchronously, each computing the same pixel at the
same time.  The main disadvantage of balanced trees, however, is their complex structure.  Unless the
physical hardware can be arranged in a tree, the connections between compositors are complicated, and
different-length wires are required to connect different parts of the system.  Also, the number and types of
connections depend on the number of renderers in the system, which makes it difficult to expand the
system.

5.1.2 Pipeline

In a pipeline network (left-heavy or right-heavy tree), the layout problem is trivial:  each renderer is paired
with a compositor and the compositors are connected to the preceding and succeeding compositors, forming
a pipeline.  The pixel stream begins at the upstream renderer and proceeds downstream to the end of the
pipeline.  Additional renderers can be added by extending the pipeline, but the type of connection for each
compositor remains the same.  Another advantage is that compositor input ports may be distinguished.
Since the right input port, for example, always connects to a renderer, it can accept data in a format suited
to the renderer.

The simple structure and easy expandability of pipelines are tremendous advantages.  Pipelines have disad-
vantages, however:  The amount of information carried in the pipeline increases toward the end of the
pipeline (this is only an issue for A-buffer architectures).  Also, renderers in a pipelined network must
calculate pixels in a staggered fashion, so that a renderer finishes a pixel as the corresponding pixel arrives
at its compositor.

Another minor difference between the two approaches is latency,  the length of time required for a pixel to
pass through the network.  Let n be the number of renderers in the system and tc be the time required for a
compositor to process a single pixel.  A balanced tree has a latency of tc • log2 n, since a given pixel passes
through log2 n compositors.  A pipeline network, therefore, has a latency of tc • n, much larger than the
latency of a balanced-tree network.  However, since tc is very small (« 1 µsec), even the longer latency of a
pipeline is negligible compared to a frame time.  For all practical purposes, therefore, the latency of the
image-composition network is negligible, and is not a serious disadvantage for pipelined networks.

The overwhelming consideration for choosing a composition-network topology is the flexibility and
simplicity of the layout.  Here pipelines are the clear winner.  The additional advantage of allowing one port
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to be distinguished lets us divide function between the renderer and compositor as we wish.  We use this to
advantage in the prototype system described in Part II.  We will assume that image-composition networks
have a pipeline topology throughout the rest of this dissertation.

5.2 FRAME RATE AND LATENCY

Three performance issues are crucial for a graphics system:

• Throughput—the number of primitives that can be rendered per second.

• Frame time—the time between successive frames.

• Latency—the time required to compute a single frame.

Image-composition architectures have the property that throughput (primitive rendering performance) can
be increased arbitrarily by adding renderers.  The minimum frame time is determined by the image-
composition network (load balancing plays a part here; we will discuss it in Sections 5.3 and 5.4).  Latency
is determined by the rendering algorithm.  The two rendering approaches we have considered, z-buffer and
scan-line A-buffer, incur latency in different areas.  We now consider ways to reduce the latency on each.

5.2.1 Latency in a Simple Z-Buffer System

Consider a simple image-composition system that uses z-buffer renderers and does not perform antialiasing.
Figure 5.3 shows a time line for the rendering process.  First, control inputs (joysticks or other input
devices) are sampled.  Next, primitives are transformed and rasterized into a screen-sized image buffer.
When all the primitives have been rendered, the images from each renderer are composited and stored in a
frame buffer.

Tsample Trender

Tframe  = Tlatency

Composite frame Render ...Sample 

Tframe     = 
Tlatency   = Tsample + Trender + Tcomposite

Sample Render frame

Tcomposite

Figure 5.3:  Rendering time line for a z-buffer image-composition system 1.

Input sampling, rendering, and compositing, are generally performed in separate hardware units.
Therefore, each unit is busy only a fraction of the frame time.  We can increase throughput and reduce the
frame time by pipelining the three operations, as shown in Figure 5.4.  Now the frame time is reduced, but
the latency is unchanged.  This is a general principle:  pipelining increases a system's throughput, but not its
latency.

_____________
1To be precise, we should include the effect of the frame buffer too, since we cannot view a new image until it appears
on the CRT screen.  When a new image has been loaded into the frame buffer, it must wait for the next vertical retrace
to avoid tearing during the frame.  This adds between 0 and Trefresh to the latency (an average of Trefresh/2), and adds
variability to the frame time.  This effect is the same regardless of the rendering or image-composition method, so we
will ignore it in this discussion.  Note that if Tframe < Trefresh, we can avoid this added delay by updating the frame
buffer directly.  This requires a high and very predictable frame rate, since the CRT must be refreshed every 1/74 to
1/30 of a second.
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Sample 0

Transform and rasterize 0

Composite frame 0

Render frame 1

Sample 1

Render frame 0

Sample 2 Sample 3

Render frame 2

Composite frame 1

TframeTsample Trender Tcomposite

Tframe     = max(Tsample, Trender, Tcomposite)

Tlatency   = Tsample + Trender + Tcomposite

Tlatency

Figure 5.4:  Rendering time line for pipelined z-buffer system.

How can we reduce the system's latency?  Aside from speeding up computations in the rendering pipeline,
the elixir for all evils, we have one other alternative:  divide the task into small chunks and pipeline these,
rather than the overall task.  There is no obvious way to do this in a simple z-buffer system, but we can use
this approach when we add supersampling.

5.2.2 Latency in a Supersampling System

Consider a z-buffer system that antialiases using supersampling.  Figure 5.5 shows a naive way that we
might structure the rendering process.  We could compute all the subsamples for each pixel in the whole
screen, then composite these together to obtain a final supersampled image.

Sample 0

Transform and rasterize 0

Composite hi-res frame 0

Sample 1

Render hi-res frame 0

Sample 2

Tframe

Tsample Trender

Tcomposite

Tframe     = max(Tsample, Trender, Tcomposite)

Tlatency   = Tsample + Trender + Tcomposite

Render hi-res frame 1 Render ...

Compos...

Tlatency

Figure 5.5:  Time line for naive supersampling image-composition system.

This presents two problems:  First, since we cannot start compositing until the entire image is rendered,
each renderer must be able to buffer an entire image, containing color and z, at subpixel resolution.  This
requires an exorbitant amount of storage.  Second, the latency is high, since rendering and compositing
cannot be overlapped for a single frame.

There is a much better method.  Rather than computing the image at high-resolution, we can compute the
image multiple times at low (single-sample-per-pixel) resolution, composite these independently, and
merge them after the composition network.  Figure 5.6 shows the time line for this second approach.

The frame time is unchanged, but the latency is much lower, since we have split the computational task into
small parts that can be pipelined.  Also, the storage requirements are greatly reduced.  The only disadvan-
tage to this approach is that the frame buffer must store the image and blend in successive samples as they
are generated.  Such accumulator frame buffers have been incorporated into existing commercial systems
[APGA88, HAEB90].  The reduced latency and reduced storage requirements make this the preferred
approach for supersampling image-composition systems.
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R0,0 R0,1 R0,2 R0,3 R0, k

Sample 0 Sample 1 Sample 2

Tframe

Tsample Tcomposite

R...R1,0 R1,1 R1,2 R1,3 R1, k• • • • • •

C0,0 C0,1 C0,2 C0,3 C0,k• • • C1,0 C1,1 C1,2 C1,3 C1, k• • •

Trender

Tlatency

Tframe     = max(Tsample, k•Trender, k•Tcomposite)

Tlatency   = Tsample + k • max(Trender,Tcomposite) + Tcomposite

Figure 5.6:  Time line for low-latency supersampling system.  (R i,j means render region i,
sample j.  Ci,j means composite region i, sample j).

5.2.3 Latency in an A-buffer System

Since A-buffer image-composition systems use scan-line renderers, rather than z-buffer renderers, their
rendering time lines look quite different, as shown in Figure 5.7.

Tsample Ttransform

Tframe  = Tlatency

Rasterize and composite Transform...Sample 

Tframe     = 
Tlatency   = Tsample + Ttransform + Trast/comp

Sample Transform and sort

Trast/comp

Figure 5.7:  Time line for simple A-buffer image-composition system.

The rendering algorithm has two main steps:  transforming/bin-sorting primitives and  rasteriz-
ing/compositing pixels in scan-line order.  Because rendering occurs in scan-line order, the entire scene
must be transformed and bin-sorted before rasterization can begin.

Figure 5.8 shows the rendering time line for a pipelined, A-buffer image-composition system.

Sample 0 Sample 1 Sample 2 Sample 3

Transform and sort 0

Rasterize and composite 0

Transform and sort 1 Transform and sort 2

Rasterize and composite 1

Tsample Ttransform Trast/comp Tframe

Tlatency

Tframe     = max(Tsample, Ttransform, Trast/comp)

Tlatency   = Tsample + Ttransform + Trast/comp

Figure 5.8:  Time line for pipelined A-buffer image-composition system.

Is there any way to break steps into smaller parts to reduce the latency?   The answer is yes—provisionally.
The transformation process involves several operations:  transforming vertices into screen coordinates,
transforming normals, computing lighting values, etc.  The only part necessary for bin-sorting is computing
the y extents of primitives and placing them into bins for each scan line.  If the application provides
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sufficient flexibility, we may be able  do just these steps in a quick first pass, and do the rest of the
transformation later.  We would then have the rendering time line shown in Figure 5.9.

Sample 0 Sample 1 Sample 3

Tlatency Tframe

Tsample

Tframe     = max(Tsample, Tsort + Ttransform, Tcomposite)

Tlatency   = Tsample + Tsort + max(Ttransform, Trast/comp)

Bin-sort 0

Rasterize and composite 0

Transform 0

Rasterize and composite 1

Tsort Trast/comp

Sample 2

Bin-sort 1 Transform 1 Bin-sort 2 Transform 2

Rasterize and ...

Ttransform

Figure 5.9:  Time line for A-buffer system with early bin-sorting pass.

Ideally, we could simply compute the screen-space y coordinates of each vertex of each primitive and
compute the minimum and maximum y value for each primitive's vertices (the y extent of the primitive
determines which scan-line bin the primitive belongs to).  We could then store a pointer to the primitive in
object coordinates, rather than the entire transformed primitive, as is typically done.  This would require
minimal storage—approximately two words per primitive—and would require only a fraction of the overall
work of the transformation stage.  We would not have to compute x and z screen-space coordinates, trans-
form normal vectors, or do any setup calculations necessary for rasterization; these could all be done later.

Unfortunately, we may not be able to do things so simply.  Most graphics systems use a hierarchical
representation for the database.  Local transformation matrices may appear anywhere within the hierarchy
to provide local translations or rotations for subtrees in the hierarchy, such as the four instances of wheels
on a car.

A current-transformation matrix is maintained as the hierarchical structure is traversed.  This matrix is
needed to transform the vertices from object coordinates to screen coordinates, as well as to transform
vertex normal vectors.  If we wait until the rasterization phase to compute x and z screen coordinates and
vertex normal vectors, we will no longer have the current transformation matrix.

It may be possible to store references to the various transformation matrices with each bin-sorted primi-
tive—so long as the hierarchy does not contain instances (subtrees that are referenced in more than one
place in the hierarchy).   Instanced primitives have more than one transformation matrix associated with
them.  Because of these complications, the notion of early bin sorting is still a matter for research.

If these problems can be overcome, and they certainly can be for applications with simple display
structures, latency in an A-buffer image-composition system can be reduced to slightly more than a frame
time plus the time required for the bin-sorting pass—very near the optimal value.

5.3 STATIC LOAD BALANCING

An image-composition system achieves its speed by partitioning the display database over multiple render-
ers and rendering the partitions in parallel.  For good system utilization and highest performance, the
computational load must be distributed evenly across the renderers and over an entire frame time.  The
distribution can be uneven in several ways:

• Renderers can have unequal numbers of primitives.

• Primitives on each renderer can take unequal time to process.

• Primitives can map to different parts of the screen, making rendering the bottleneck at times and
composition the bottleneck at other times.

The first two points are examples of static load imbalances:  differences in the amount of work renderers
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have to perform.  The third point is an example of dynamic load imbalance:  changes in processing load
that occur over time.  Both types of imbalance can affect system performance.  The effects of static
imbalances, such as unequal numbers of primitives or unequal processing times on each renderer, are
obvious:  certain renderers finish early and are idle, while others take longer and prolong the frame time.
The effects of dynamic imbalances are more subtle, but can create even worse performance penalties.

We will discuss static load balancing in the following sections.  We will discuss dynamic load balancing in
Section 5.4.

5.3.1 Database Distribution

To achieve static load balance, the computational load must be distributed evenly across the renderers and
over an entire frame time.  To accomplish this, we must distribute primitives so that each renderer has the
same number of primitives or—even better—that the primitives on each renderer take the same time to
process.

Graphics systems store and traverse a display database in one of two ways:  retained mode, in which primi-
tives are stored in a (mostly) static display structure that is traversed every frame, or immediate mode, in
which the application generates primitives anew every frame [FOLE90].  Each has advantages for certain
applications and each requires a distinct approach to database distribution.  Consequently, we will talk
about them separately.

5.3.2 Retained-Mode Traversal

In a retained-mode display structure, each renderer is initially allocated a fraction of the dataset, which it
displays every frame.  The database can be edited each frame (including changes to transformation matri-
ces), but the assumption is that the vast majority of the data structure is retained from frame to frame.
Since the display structure is generally implemented as part of a graphics library, and the user has only
indirect access to the data, the retained-mode approach gives the rendering software control over how
primitives are represented and assigned to renderers.1

We want to assign primitives to renderers in a way that is easy to implement, has low computational cost
(so the overhead of distributing primitives does not cancel the gains from evening the load), and is robust
with respect to changes in view and changes to the database.  This is easily done if the display structure is
"flat" or non-hierarchical.  In this case, the display structure is simply a collection of primitives with a
single transformation matrix.

If there are P primitives and R renderers, we can simply assign P/R primitives to each renderer.  Note that
this can be done in one of two ways:  we can shuffle primitives in a round-robin fashion, assigning the first
primitive to the first renderer, the second to the second renderer, and so forth; or we can assign the first P/R
primitives to the first renderer, the next P/R primitives on the second renderer, etc.  We call the first
approach scattering, and the second clustering.

The primitives in most databases contain some amount of geometric coherence.  That is, primitives near
each other in the display structure generally lie near to each other in the scene as well.  This means that
clustering tends to preserve this coherence and that primitives in different partitions are likely to fall into
different regions of the screen.  Scattering, on the other hand, tends to make the distribution of primitives
on the screen similar for each partition.  We will see in Section 5.4, that this can be very important for
dynamic load balance.

Clearly, it is easy to assign the same number of primitives to each renderer.  What if different primitives
take different times to process?  This is only a minor issue if the database consists of discrete polygons, but
can be a major concern if it is composed of aggregate primitives, such as triangle strips, which can have
widely varying lengths.  The solution used in Pixel-Planes 5, is to assign a weight to each primitive, based
on an estimate of the time it will take to process [ELLS90a].  Discrete polygons or triangle strips containing

_____________
1Distributed display structures have only recently become a topic of interest in the graphics literature.  [ELLS90a]
describes many of the issues involved and presents an implementation of a distributed PHIGS-like display structure on
Pixel-Planes 5.
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only a few triangle receive low weights; long triangle strips or complex primitives, such as Bezier patches
or NURBs, receive high weights.  The weight can be a simple function that depends on simple parameters,
such as the number of vertices in a triangle strip.  When each new primitive is encountered, it can be added
to the renderer with the lowest load (determined by summing the weights of its primitives).

Weighting primitives can do an excellent job at equalizing the load between renderers.  It creates other
problems, however:  if the user wants to edit or delete a primitive, how do we determine which renderer it
resides on?  How do we assure that a series of edits to the database does not destroy the load balance?
There are many ways these issues can be tackled, but they are beyond the scope of this dissertation.
[ELLS90a] contains a discussion of many of these issues.

5.3.3 Hierarchical Display Structures

Most graphics applications require a more sophisticated database model than a simple collection of primi-
tives.  The standard solution is a hierarchical display structure, in which state-changing commands, such as
transformation matrices, are intermingled with primitives in a tree (or directed acyclic graph) structure (see
Figure 5.10).   This approach has been almost universally used in graphics to support articulation, instanc-
ing, and local transformations for parts of objects [FOLE90].
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Figure 5.10:  Hierarchical display structure.

Hierarchical display structures introduce context into the traversal problem:  what happens to a primitive
depends on more than the primitive's raw coordinates—it depends on where the primitive lies in the display
structure.  For example, a primitive is transformed by the concatenation of all the transformation matrices
above it in the hierarchy.

Traversing a single display structure of this type is relatively straightforward:  a stack is used to store the
current context, and the hierarchy is traversed in depth-first order.  When a branch in the hierarchy is
encountered, a copy of the current context is pushed onto the stack so that any state-changing commands
encountered below the branch point can be "undone."  When the traversal reaches the branch point on the
way up, the stack is popped, restoring the context to its value before the branch was taken.

A distributed database model must emulate this process; it must compute the same context information
during traversal.  As with flat display structures, there are two main approaches:  scattering and clustering,
which are generalizations of the techniques above.

Scattering.  Scattering, as before, means scattering primitives across the renderers.  Now, however, the
display structure contains many small collections of primitives scattered throughout the hierarchy, rather
than a single collection of primitives that can be treated the same.  We can scatter the primitives in each of
these smaller collections of primitives across the renderers, but how do we retain the context information?
Since primitives from every part of the display structure are likely to reside on each renderer, the only
general solution is to replicate the entire hierarchical structure at each renderer.  The display structure on
each renderer, therefore, is a miniature copy of the global display structure—but only contains a fraction of
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the primitives.  Figure 5.11 shows a simple data structure scattered over two renderers.
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Figure 5.11:  Distributing a display structure by scattering.

Scattering has the advantage of making load balancing among renderers nearly automatic under almost all
conditions, but has the disadvantage of requiring extra space to store the multiple copies of the hierarchy
and extra time to traverse them on each renderer.  For databases with deep hierarchies, these can be very
costly.  However, many databases have fairly shallow hierarchies with large numbers of primitives at the
nodes.

Clustering.  We can generalize clustering by assigning entire subtrees of the display structure to different
renderers, as shown in Figure 5.12.  A renderer, therefore, need store only the portions of the hierarchy for
which it is responsible; it does not need a copy of all the state-changing commands.  This scheme saves
space and reduces the time spent traversing the hierarchy, but makes load balancing among renderers more
difficult for several reasons.

Xform
matrix

Xform
matrix

View
matrix

Xform
matrix

Xform
matrix

Prim 0

Prim 1

Prim 2

Prim 3

Prim 4

Prim 5

Prim 6

Prim 7

Prim 8

Prim 9

Xform
matrix

View
matrix

View
matrixRenderer 0 Renderer 1

clumping
Prim 0

Prim 1

Prim 2

Prim 3

Xform
matrix

Xform
matrix

Xform
matrix

Prim 4

Prim 5

Prim 6

Prim 7

Prim 8

Prim 9

Figure 5.12:  Distributing a display structure by clustering.

First, it is unlikely that there will be the same number of subtrees as renderers, and even more unlikely that
each subtree will contain the same number of primitives (or total primitive weight).  We must be prepared,
therefore, to split subtrees across renderers, meaning that some context, at least, must be stored redundantly.

Second, subtrees are likely to be geometrically coherent.  That is, primitives in a subtree are likely to
occupy a similar part of object space, hence, screen space.  When the viewing transformation changes,
entire subtrees may enter or exit the view frustum, dramatically changing the number of primitives actually
rendered on different renderers.  To overcome these limitations, a dynamic load calculation must be
performed on the database, and heuristics  used to allocate subtrees to renderers.  The overhead of
allocating the database in this manner could easily overwhelm any savings in database traversal time by not
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replicating the hierarchy on each renderer.

It is the author's opinion that scattering is the method of choice for most applications on image-composition
machines.  The only exceptions are likely to be applications with large numbers of subtrees that contain few
primitives, such as molecular modeling or scientific visualizations.  An alternate approach for this type of
application is immediate-mode traversal, which we will discuss next.

5.3.4 Immediate-Mode Traversal

The alternative to a retained-mode display structure is immediate-mode traversal.  In this case, the applica-
tion generates the primitives anew every frame.  In a parallel graphics system, this either means that there
must be separate channels from the processor (or processors) running the application to the renderers—
external immediate mode, or that the application runs in parallel on the renderers themselves—local
immediate mode.

In either case, the application programmer decides how primitives are generated and which primitives are
sent to which renderer; the system architect or graphics library designer has no control over how this is
done.  Ideally, the application programmer will write his program so that similar numbers (or weights) of
primitives are sent to each renderer.  Immediate-mode traversal causes even more difficult problems if the
distribution of primitives over the screen is uneven.  We discuss this class of problems next.

5.4 DYNAMIC LOAD BALANCING

In Section 5.3, we discussed static load balancing:  assuring that each renderer has the same amount of
work to do each frame.  We now discuss dynamic load balancing:  assuring that load imbalances do not
develop over time.  Dynamic load imbalances arise for more subtle reasons that static ones, and often
cannot be solved as easily.  For example, a particular dataset and choice of viewing transformation may
map all primitives to the top part of the screen.  A scan-line renderer will bog down during the first few
scanlines, while the image-composition network waits.  Later, the renderer will have little to do, but the
image-composition network will be saturated.  There is no way to assure that primitives will cover the
screen evenly.  The only recourse against problems like this is to add elasticity or buffering to the system.
This will be our general approach to solving dynamic load imbalances.

5.4.1 Z-Buffer Systems

Simple z-buffer systems, or z-buffer systems that use supersampling, are relatively immune to dynamic load
imbalances.  The full-screen image buffer at each renderer provides a full frame of buffering that decouples
rendering from image composition.  Primitives can be clumped anywhere in the image without affecting
performance, since composition does not begin until all the primitives have been rendered.  In some sense,
the buffering to even out dynamic load imbalances has already been paid for in this type of system.

5.4.2 A-Buffer Systems

A-buffer systems, on the other hand, are prone to dynamic load imbalances.  One might suppose that
A-buffer systems are economical because they require little temporary storage:  at first glance, they do not
seem to require much storage between the renderer and composition network, since both process pixels in
the same order, and bin storage can be minimized by pre-sorting, as described in Section 5.2.3.  This naive
approach leads to two problems, one minor, and one catastrophic.

Uneven distribution of primitives over the screen.  Consider the example above, in which a particular
database and viewing transformation cause every primitive in the dataset to fall into the upper fifty scan
lines of the screen, as shown in Figure 5.13.  Rendering is slow for the pixels in the top part of the screen,
since the list of active primitives is long, and several primitives may contribute to each pixel.  During the
first portion of the frame time, the system's speed is limited by the renderers.  When rendering proceeds
past this congested part of the screen, however, the renderers have very little to do, but the compositors
must process all of the remaining pixels.  System performance, at this point, is limited by the composition
network.
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Figure 5.13:  Dynamic load imbalance caused by uneven distribution of primitives across
the screen.

If rendering performance is balanced with composition-network performance (i.e., the ideal rendering time
equals the composition time), this type of load imbalance causes at worst a factor-of-two speed penalty.  In
the worst possible case, rendering and compositing cannot be overlapped, doubling the overall rendering
time.

The solution to this type of problem is to add buffering between the renderers and the composition network.
This allows the renderers to speed ahead when they have little work to do, and to take extra time when they
are heavily loaded, without slowing the composition network down.  A-buffer systems have a mitigating
factor:  the number of fragments per pixel increases in denser parts of the image.  This slows the composi-
tion network down at the same time the renderers are heavily loaded.  Sparse regions of the screen likely
result in little more than one fragment per pixel, allowing the composition network to process pixels faster.

Different distributions on each renderer.  Consider what happens when a dataset is distributed across the
renderers so that primitives from each renderer map onto different parts of the screen, as shown in Figure
5.14.

Renderer 0 Renderer 1 Renderer 2

Figure 5.14:  Dynamic load imbalance caused by uneven distribution of primitives across
the screen at each renderer.

Each renderer now is loaded in different parts of the image.  If composition is performed synchronously
with rendering, the entire system proceeds at the speed of renderer with the heaviest load, and this changes
as we move through the image.  In a very unbalanced case, only one renderer is active at a time while the
other renderers are idle—the effective parallelism is lost and the whole system behaves as a system with
one renderer!  This is a terrible effect, which we must prevent if at all possible.

5.4.3 Dynamic Load-Balance Ratio

The easiest way to deal with this problem is to ensure that primitives are well-distributed over the renderers.
Scattering generally does a good job of this.  To provide a quantitative measure of how well primitives are
distributed in a given database, we define a quantity called the dynamic load-balance ratio.  This is an
estimate of the number of times longer a particular database will take to render on a system with tightly
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coupled rasterizers and compositors than the same database rendered on the same system, but with ideally
distributed primitives.

To calculate the dynamic-load-balance ratio, we first divide the screen into regions that represent a fraction
of the rendering task for the particular rasterization method (for scan-line A-buffer systems, we divide the
screen into stripes of 5 to 10 scan lines; for the prototype system described in Part II, we divide the screen
into rectangles).  We then count the number of primitives from each database partition that are active in
each screen region and compute two sums, Smax and Savg:

S max = max
renderers

# of primitives in R( )
regions R
∑

Savg = average
renderers

# of primitives in R( )
regions R
∑

Smax is the sum over all screen regions R of the maximum number of primitives on any renderer falling
into R.  It represents the rendering effort spent given the uneven distribution of primitives.   Savg is the sum
over all screen regions R of the average number of primitives on each renderer falling into R.  It represents
the theoretical amount of rendering effort required.  The dynamic load-balance ratio, ρ,  is defined by
Smax/Savg,  and can assume values ≥ 1.  It can be interpreted as the number of times longer a database can
take to render than one would predict, based on the number of primitives.

Appendix A calculates ρ for the sample databases assuming rectangular regions, rather than horizontal
stripes, as we have assumed so far (this makes sense for the prototype system and should give similar
results to a calculation using horizontal stripes).  The values range from 1.05 to 1.78 for scattered datasets,
and from 6.31 to 13.17 for clustered datasets.  Thus, scattering has better dynamic load-balance characteris-
tics than clustering.  This is to be expected, since scattering distributes nearby primitives over each of the
renderers, whereas clustering puts nearby primitives on the same renderer.

We cannot always choose how primitives are distributed, however.  Some of the sample datasets have high
dynamic load-balance ratios even after scattering.  One can imagine datasets where this can occur, no
matter what the distribution method.  Immediate-mode traversal creates an even worse problem, since we
have no control over which primitives are assigned to which renderer.  The most likely result is that nearby
primitives will be sent to the same renderer—the worst possible scenario.

Clearly, we must be prepared to control the damage when it does occur.  The only solution is to add buffer-
ing between the renderers and the image-composition network to decouple the two processes.  The amount
that is needed depends on the magnitude of the dynamic load imbalance.  Unfortunately, it is easy to imag-
ine situations where a large fraction of a frame's worth of buffering is needed.  The example above, where
the primitives on each of four renderers map to different quadrants, is one such situation.

This gives rise to a general rule that appears to apply to all image-composition systems:

Rule of image composition and buffering:  Image-composition architectures require a substantial
fraction of a frame of buffering on every renderer unless there is explicit control over the distribu-
tion of primitives to renderers.

Z-buffer systems satisfy the law automatically with their full-screen image buffer.  A-buffer systems must
have a very robust database distribution algorithm or must have substantial buffering between the renderer
and composition network.  The prototype system described later in this dissertation is a hybrid between
z-buffer and A-buffer styles of image-composition architecture.  The need for buffering played a large part
in the development of the architecture.

5.5 ADVANCED RENDERING ALGORITHMS

Up to this point we have concentrated on rendering polygonal databases with Gouraud or Phong shading.
These currently are the prevalent algorithms on real-time, 3D graphics systems, but are by no means the
only ones.  Other more complex and realistic primitives types and rendering algorithms have been devel-
oped and are gaining popularity.  For example, there has been an explosion of new results in volume
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rendering in recent years.  Volume rendering is a more natural method of visualizing many 3D datasets than
surface rendering.  Also, many recent graphics systems support texturing.  Texturing vastly increases the
visual detail in an image without increasing its geometric complexity.

Algorithms such as these are becoming increasingly important.  For a graphics architecture to be viable, it
must be flexible enough to support a variety of algorithms at reasonable performance (unless it can find an
important application niche).  This section considers the suitability of image composition architectures for
advanced rendering algorithms and primitive representations.  We will start by discussing support for
complex shading models, then consider texturing and volume rendering.

5.5.1 Deferred Shading

Gouraud shading requires only three values per pixel:  red, green, blue, all of which are linearly interpo-
lated.  Phong shading, on the other hand, requires the same number of interpolated values, several dot
products, a reciprocal square root, and numerous multiplications.  Shading can get even more complicated.
For example, several light sources can be present; primitives can have different specular and diffuse colors;
fog or atmospheric haze can be present.  Complicated shading models such as these can require a great deal
of computation—far more, even, than hidden-surface elimination itself.

The straightforward method of rendering is to evaluate the shading model for each pixel of each primitive
as it is rasterized.  This can be extravagant, however, since pixels in one primitive are frequently covered by
pixels from another primitive.  Furthermore, many parts of most shading calculations do not depend on the
primitive:  for example, when Phong-shading a pixel, the surface normal vector must be normalized, no
matter what primitive the normal vector came from.  This general notion suggests an alternate way of
structuring the shading calculations:  we can compute intermediate  values, such as intrinsic colors and
(unnormalized) surface normal vectors, on a per-primitive basis during rasterization, but defer shading
calculations until all of the primitives have been rasterized.

This technique is commonly known as deferred shading.  It has been proposed and/or implemented on
several systems, most notably Deering's Triangle Processor and Normal Vector Shader of [DEER88],
PROOF [SCHN88], and Pixel-Planes 5 [FUCH89].  Deering and Schneider each proposed triangle-
processor systems, which Phong-shade their scenes using a short pipeline of shading processors.  Pixel-
Planes 5 shades 128x128-pixel regions after all of the primitives in the region have been rasterized.

We can use this same approach in an image-composition architecture on two levels:   we can defer shading
within renderers and we can defer shading throughout the entire system.

Deferred shading on individual renderers is nothing new; since renderers are complete graphics systems, we
can defer shading on them as on any other system.  Deferred shading on an entire image-composition
system is much more powerful; if we send intermediate information over the image-composition network,
rather than RGB values, we can defer shading until the entire image has been composited.  This means we
only have to shade each pixel once, independent of the number of renderers and the depth complexity of the
pixel.

This has impact on the architecture, however.  We need to perform these shading calculations after the pixel
streams have been composited—at the end of the composition network.  We can either place a shading
processor before the frame buffer, as in Deering's system, or provide a frame buffer with pixel-processing
capabilities, as in Pixel-Planes.

A side benefit to including a shading processor is that it can also be used to blend sample values for super-
sampling, or to assemble pixels in an A-buffer system.  Deferred shading is a powerful concept when
applied to image-composition architectures.  It plays an important role in the prototype system described in
Part II.

5.5.2 Transparency

True transparency, the accurate rendering of semi-transparent surfaces, requires compositing semi-
transparent surfaces that cover a pixel in front-to-back or back-to-front order.  Since transparent surfaces
can reside on any renderer, and an arbitrary number of transparent surfaces may cover any given pixel,
compositing cannot occur until all possible surfaces are present—at the end of the image-composition
network.  Z-buffer architectures cannot implement true transparency, since they allow only a fixed amount
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of data per pixel, and an arbitrary amount is required.  A-buffer architectures can support transparency, at
the cost of increased load on the image-composition network.

Z-buffer (supersampling) architectures.  Since z-buffer architectures can transmit only a fixed amount of
information per pixel, and an arbitrary amount may be required, the only general solution is to run the
network multiple times, once for the opaque primitives, and once for each transparent primitive1.  The color
and z values from each pass must be stored in an accumulator frame buffer before the surfaces can be com-
posited (they cannot be composited directly, since the primitive in each new pass may fall anywhere in the
list of transparent polygons).

This algorithm can handle only a few transparent primitives, since the composition-network bandwidth is
multiplied by the number of transparent primitives plus one (for the opaque primitives), and an accumulator
frame buffer has limited storage.

The only feasible approach for z-buffer architectures seems to be screen-door transparency.  This works by
computing some samples with transparent objects present and other samples with transparent objects
excluded (several samples per pixel are required for this approach).  Unfortunately, only a few transparency
levels are available and the number of transparent objects is limited, since overlapping transparent objects
should have uncorrelated samples.  Sample coverage can be computed stochastically as well.  This makes it
possible to increase the number of transparent objects, but adds noise to the image [ELLS91].

A-buffer architectures.  A-buffer architectures can implement true transparency in a straightforward way.
Fragments can be created for transparent primitives in the same way as opaque ones.  These fragments can
be conveyed, together with the fragments from opaque primitives, over the image-composition network to
the pixel assembler.  Since the fragments arrive in front-to-back order, they can be used to compute the
pixel color.  Three enhancements to the architecture are required:

1) Fragments must contain an alpha (transparency) value along with RGB values.

2) Transparent fragments must not affect pixel coverage in the compositors.

3) The pixel assembler must be able to composite semi-transparent objects.

The main difficulty with this approach is the added load on the image-composition network.  If a single
transparent object covers the entire screen, the average number of fragments per pixel increases by one.
This is significant, because the average number of fragments per pixel in the test images ranges from 1.13
to 1.68.  The addition of one or more fragments per pixel seriously increases the amount of data that must
be conveyed over the image-composition network.  In addition, the pixel assembler must composite
fragments for each sample point, rather than finding the nearest fragment at each sample point.  This is a
significant amount of extra computation, but is restricted to a single location in the entire system.

5.5.3 Textures

Image-based textures require prefiltering to avoid aliasing artifacts.  Whether the filtering is done by MIP
maps [WILL83], summed-area tables [CROW84], or some other method, several table look-ups are
required per sample.  Procedural textures require a procedure evaluation per sample.  Both require
substantial amounts of calculation.

In some ways, texturing can be considered orthogonal to image composition, since it really is just a sophis-
ticated form of shading.  It could be performed on the renderers, if they are suitably equipped.  However,
texturing can take advantage of the deferred-shading principle.  If it is performed at the end of the image-
composition network, it need only be performed for visible pixels (or visible fragments, in A-buffer
systems).  There are added benefits for texturing:  the texture tables need only be stored once.

_____________
1This is similar to multi-pass algorithms that have been developed for simple z-buffer renderers [MAMM89].  The
difference is that in these multi-pass algorithms, each pass captures the "next-closest" surface.  The new surface can be
composited in with the previous ones after each pass.  The number of passes required is equal to the number of
transparent layers that can cover a pixel plus one (for the opaque primitives).  This method does not extend to image-
composition architectures unless a method is provided for conveying composited images back to the individual
renderers.  Without this feedback, the compositors have no way of detecting the "next-closest" surface.
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Image-based texturing can only be performed in real time with special hardware to look up texture values.
Procedural textures are similar in nature to other shading calculations, and can be implemented on the
deferred-shading processor.  Figure 5.15 shows a block diagram of a system consisting of renderers, a
texturer (for image-based textures), and a deferred shader.

Renderer

Texturer
Image-Composition Network

Shader

Renderer Renderer

Frame Buffer 
and Monitor

Figure 5.15:  Texturing implemented as a deferred-shading process.

5.5.4 Volume Rendering

Volume rendering is the direct display of images computed from a 3D array of data.  The data may repre-
sent density, emissivity of a particular type of radiation, etc.  There are three competitive algorithms for
rapidly displaying volume data:  1)  ray-casting, in which beams are cast into the volume dataset for each
pixel (or pixel subsample) [LEVO88, SABE88, UPSO88] and  2) serial transformations, in which the data
array is transformed by a sequence of three 1-D shear operations to orient it correctly for a particular view
direction [DREB88, HANR90], and 3)  projection methods (splatting), in which voxels are mapped to the
screen and composited [WEST89, SHIR90, MAX90, WILH91].

Splatting appears to be the most promising method for implementation on an image-composition system.
In the standard splatting algorithm, voxels in the dataset are traversed in front-to-back or back-to-front
order and composited into an image buffer using a Gaussian (or other) filter kernel, an operation very
similar to polygon rendering.

On an image-composition architecture, the volume dataset can be partitioned into blocks or slabs, with one
partition assigned to each renderer.  The renderers traverse the voxels in their partition, projecting voxels
onto the screen and compositing them into pixels lying in a neighborhood of the center of projection of the
voxel.  The contribution to each pixel depends on the distance and direction from the pixel to the center of
projection of the voxel.

Voxels can thus be considered standard surface primitives with two odd properties:

1) They must be traversed in order.

2) They are semi-transparent.  The transparency depends on the distance and direction from the pixel
center to the center of projection.

Figure 5.16 shows a voxel splatted onto an image buffer.  After all the pixels have been splatted, the image
buffer contains a semi-transparent image of all the voxels.  These are then composited over the image-
composition network.

We have assumed that an image buffer is available for the rendering calculations.  This is not strictly neces-
sary.  In an A-buffer image-composition system, pixels can be calculated in scan-line order by maintaining
a list of active voxels and compositing them for one pixel at a time.  These compositing operations could
conceivably be performed over the image-composition network.
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Figure 5.16:  Voxel splatted onto image buffer.

If the compositors are general enough to alpha-blend, they can composite the images directly.  The images
must be composited in the correct order, of course.  This places restrictions on the way that the database can
be partitioned.  If the database is partitioned into slabs, the compositing order will be correct for view direc-
tions that are near to perpendicular to the cut planes between slabs.  Since this cannot be guaranteed for all
viewpoints, the database must be replicated three times and partitioned along different axes so that, for any
view, a set of slabs is available that allows compositing in the proper order (only one set of slabs is used for
any particular frame).  This means replicating the database three times, but does not increase the amount of
computation during rendering [NEUM91].

If the compositors are not sophisticated enough to alpha-blend images, blending can be done in a deferred
shader.  To do this, each image from each renderer must be transmitted to the deferred shader, which
composites them together.  This results in lower performance, since the traffic on the image-composition
network is multiplied by the number of renderers.  Since present volume datasets generally contain 2563 or
fewer voxels, the final image may only need to have relatively low resolution.  This could reduce the
amount of data that must flow over the image-composition network.

Ulrich Neumann has implemented a parallel splatting algorithm on Pixel-Planes 5, with compositing
performed over Pixel-Planes 5's general-purpose ring network, instead of a special-purpose image-
composition network.  He has achieved frame rates of up to 3 Hz on 1283 datasets [NEUM91].

5.6 TAXONOMY OF IMAGE-COMPOSITION ARCHITECTURES

As we have seen in the previous sections, the basic notion of compositing images from multiple renderers
leads to a variety of image-composition architectures.  We attempt to organize these into a taxonomy in this
section.

The points of differentiation we have chosen for the taxonomy are the following:

1) Priority method:  fixed-priority or pixel-priority.

2) Number of primitives per renderer:  one or multiple.

3) Antialiasing method:  simple (α-blend or Duff), supersampling, or A-buffer.

There are other points of differentiation as well:  the traversal method (retained mode or immediate mode),
the rendering method (z-buffer or scan-line), the amount of buffering between renderers and compositors,
the composition-network topology, the presence or absence of deferred shading, etc.  We felt that these are
secondary to the points listed above or are dependent on other characteristics of the system (for example, z-
buffer rendering is incompatible with A-buffer antialiasing).

Figure 5.17 shows the resulting taxonomy tree.  The leaves of the tree are labeled by the name of the class
of system and by any examples that have been proposed or built.  The taxonomy shows only branches that
were deemed both feasible and interesting (for example, fixed-priority architectures do not require sophisti-
cated antialiasing, so branches for fixed-priority architectures with supersampling or A-buffer antialiasing
are not shown).
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Figure 5.17:  Taxonomy of image-composition architectures.

The branches that are the most interesting for high-performance systems are z-buffer and A-buffer, large-
grain systems (discussed in Chapter 4).  Z-buffer (supersampling) systems are simpler to implement and do
not produce shading artifacts, since shading is performed independently for each sample point.  However,
they are poor for rendering transparent objects and require a very high bandwidth image-composition
network.  A-buffer systems are more complex, since the pixel-stream format is complicated.  However,
they easily handle transparent objects and have lower image-composition network bandwidth.  Neither
architecture is a clear choice for all applications.  Part II presents a prototype system based on the z-buffer
approach.

5.7 SCALABILITY AND ECONOMICS

Any parallel graphics system requires communication between different processing units.  In most architec-
tures, these communication requirements scale as a function of the  rendering speed.  For example:  the
frame-buffer memory bandwidth in architectures such as Silicon Graphics' VGX scales linearly with
rendering speed; the global communication network bandwidth in a sort-middle architecture such as Pixel-
Planes 5 scales linearly with rendering speed.  Both of these become difficult to implement above certain
performance levels:  frame-buffer partitioning reaches a point of diminishing returns as the number of
partitions exceeds the number of pixels in a typical primitive; global communication networks are difficult
to build at high speeds.

Sort-last architectures have the property that the bandwidth between adjacent modules is constant.  Since
only local communication with fixed bandwidth is required between adjacent renderers, the capacity of the
communication network scales as renderers are added to the system.  Hence, the performance of sort-last
architectures increases nearly linearly with the number of renderers, as does the price of the system.

How do image-composition architectures compare to existing architectural approaches?    Figure 5.18 gives
the performance and price for a number of currently-available rendering systems.  The information was
obtained in most cases from sales representatives of the various companies and should be interpreted with
appropriate caveats.  For example, the performance figures are never-to-be-exceeded, peak numbers that
can be difficult to achieve in actual applications.  Furthermore, systems may perform best under different
conditions and can be configured with various amounts peripheral hardware, such as disk drives, memory
etc.  All of this makes meaningful comparisons between systems difficult.1

_____________
1Some systems contain hardware for Gouraud shading with no performance penalty and quote performance for
Gouraud-shaded triangles; others quote performance for flat-shaded triangles.  Some assume triangles are contained in
triangle-strip meshes; others assume independent triangles.  Some systems are equipped with multiple general-purpose
processors and high-performance disk drives; others are stripped down and therefore look deceptively inexpensive.
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The performance estimates for the PixelFlow prototype system (described in Part II) are based on rasterizer
performance alone, rather than the pessimistic assumptions made in the performance analysis section of
Chapter 9.  These optimistic estimates are conceivable, given a sufficiently restricted application program
(this is generally the criterion used for "marketing" performance in commercial systems).  We calculated
performance in this way to put the prototype system on a more even footing with the commercial systems.
The price for the PixelFlow systems was obtained by dividing the component-cost estimate from Appendix
B by 2 for production and multiplying by 3 for markup and overhead.

System Tris/sec Price Notes
Hewlett-Packard
7000 T4

330 K $118,190 50-pixel, 10x10-pixel bounding box, flat-shaded
tris.  Price is for Model 750, 16 Mbytes RAM,
SCSI disk, 19" monitor, 1280x1024 resolution.

Silicon Graphics
"Indigo"

40 K $14,031 50-pixel, 10x10-pixel bounding box, flat-shaded
tris.  Single R3000 processor with 16 Mbytes
RAM, 432 Mbyte disk.

Silicon Graphics
420VGX

1.1 M $168,050 50-pixel, 10x10-pixel bounding box, flat-shaded,
unlit tris.  Two R4000 processors, 385 Mbyte disk,
32 Mbytes RAM, 4x10 array of image engines.

Silicon Graphics
480VGX

1.1 M $268,050 As above, except 8 R4000 processors.

Silicon Graphics
SkyWriter

2.2 M $249,900 As above, except 4 R4000 processors and two
VGX pipelines.

Sun Microsystems
VX/MVX

100 K $120,000 Estimates from a developer of the system.

Prototype system
1/2 card cage

1.3 M $266,0001 Gouraud-shaded tris.  9 renderers, 2 shaders, bin-
replication factor = 1.2.  Performance based on
rasterizer only.  Price from Appendix B • 0.5
(production) • 3 (markup and overhead)

Prototype system
1 card cage

2.6 M $435,0005 As above, except 18 renderers and 2 shaders.

Prototype system
2 card cages

5.2 M $822,0005 As above, except 36 renderers and 4 shaders.

Figure 5.18:  Performance and price for various systems available in 1991 (including
estimates for the prototype system).

Unfortunately, the communication bandwidths in an image-composition network are huge, particularly for
high-resolution images with supersampling.  In the previous chapters, we have shown how such bandwidths
can be achieved.  For image-composition architectures to be cost-effective, the cost of a node in the image-
composition network must be low compared to the cost of a renderer, and this requires high-performance
renderers.

Figure 5.19 plots this same information.  One can see that current commercial systems have a maximum
rendering speed in 1991 of approximately 2 million triangles per second.  The PixelFlow prototype system,
on the other hand, should achieve this in a one card-cage configuration.  The performance/price ratios for
some of the commercial systems are higher.  This means that if one desires rendering performance in the
range possible in current commercial systems, the prototype system is not as economical an alternative.
However, if one desires higher performance than is possible in other ways, image-composition is a feasible
way to achieve it.

Defining accurate benchmarks for comparing graphics systems is an issue of heated discussion [BLAU88].

1See Appendix B.
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Figure 5.19:  Performance vs. price for PixelFlow prototype system and representative sys-
tems in 1991.

One could argue that, if commercial systems push current architectures that do not scale to higher and
higher speeds, they will come closer to fundamental limits, such as clock speed, maximum packaging
density, etc., and their performance vs. price will decrease at higher performance levels.  This has already
happened with conventional computers:  supercomputers, which require exotic packaging and technology,
have lower performance vs. price than RISC workstations, for example.

The prototype system, on the other hand, has a performance-cost curve that asymptotically approaches a
line of constant slope.  The slope is the performance vs. price of a single renderer.  The curve begins
initially below this line because the prototype system contains fixed costs that are independent of system
size, such as shaders and a frame buffer.  For image-composition architectures to be cost-effective, the
performance vs. price of a single renderer must be high, and the system must contain enough renderers to
amortize the fixed costs of the system.
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