
PART II

A PROTOTYPE SYSTEM DESIGN

64

CHAPTER 6

PIXELFLOW: A PROTOTYPE IMAGE-COMPOSITION SYSTEM

Part II (Chapters 6 - 9) describe the design of PixelFlow, a prototype image-composition system, to demon-
strate the claims made in the thesis statement. Although the system has not been implemented yet, the
design presented in these chapters is intended to illuminate its main implementation and performance
issues.

The PixelFlow design has the following characteristics:

• Flexible. It can display many primitive types using advanced rendering algorithms.

• Scalable. Its performance scales linearly with the number of renderers.

• Achieves higher performance than existing systems. The PixelFlow design described here is
expected to render 2.5 million Gouraud-shaded triangles in a two-card–cage system and be
expandable to much higher performance—well above that of any existing or published system
known to the author.

The PixelFlow architecture is a hybrid, having characteristics of both the supersampling-style and
A-buffer–style architectures described in Part I. PixelFlow renderers use i8601 microprocessors for
geometry calculations and Pixel-Planes-style logic-enhanced memory chips for rasterization. A rectangular
region of the screen is rasterized as a unit, as in a parallel z-buffer system; multiple regions are rasterized
sequentially, as in a scan-line system. After each region is rasterized, pixels from the multiple renderers are
scanned out and composited over an extremely high-bandwidth image-composition network. Antialiasing
is performed by supersampling.

Message-Passing Network
(32 bits @ 80 MHz)

Image-Composition Network
(160 bits @ 80 MHz)

Host
Host

Monitor

High-res
Monitor

RGB
r Renderers s Shaders

Host
Inter-
face

Renderer Renderer Shader Shader
Frame
Buffer

Figure 6.1: Block diagram of the prototype PixelFlow system.

PixelFlow systems can be implemented with varying levels of sophistication. We will describe a relatively
unsophisticated system here, which uses only proven technology and components, to establish the claims of
the thesis statement. The system we plan to build is more sophisticated, having a higher-speed image-

1Intel and i860 are trademarks of Intel Corporation.

66

composition network and more capable enhanced-memory chips. It requires an aggressive memory-chip
design that has not yet been completed, and, therefore, is not suitable for our proof-of-concept design. We
will briefly describe our plans for this enhanced system in Chapter 10.

Figure 6.1 shows a block diagram of the prototype PixelFlow system. The system is modular and can be
configured with an arbitrary number of renderers. Each can display approximately 70,000 z-buffered,
Gouraud-shaded, 100-pixel triangles per second. A two-card–cage system containing 36 renderers, there-
fore, can display approximately 2.5 million Gouraud-shaded triangles per second. A subset of the renderers
can be configured as shaders for Phong shading, volume rendering, antialiasing, or more sophisticated
shading algorithms.

This chapter describes the design objectives and major architectural decisions that led to the prototype-
system design, and gives an overview of its components. Chapters 7 and 8 describe the image-composition
network and renderer/shader board in detail. Chapter 9 describes the system's synchronization and control
algorithms and presents simulation results.

6.1 DESIGN OBJECTIVES

The aim was to design a proof-of-concept image composition system that establishes the claims in the
thesis statement and is interesting in its own right. We believed that a system containing 100,000 polygon-
per-second renderers could reduce the cost of image composition to an acceptably small fraction of the
overall system cost, and that this could lead to an interesting, realizable system. The following are the five
major design objectives for the prototype system:

• Scalability to extremely high performance. The system must demonstrate the scalability
property of image-composition architectures.

• Support for advanced primitives and shading models. The system should be flexible enough
so that the same system resources can be used to render simple scenes rapidly, or to render
sophisticated scenes with curved surfaces, volume data, Phong shading, multiple light sources,
high-quality antialiasing, or texturing as rapidly as possible. Applications such as computer-aided
modeling and scientific visualization must be able to trade image quality for rendering time.

• High frame rate and low latency. This is crucial for real-time applications, such as flight simula-
tors and head-mounted displays. The system should sustain frame rates of at least 24-30 Hz. for
antialiased images and have latency as close to one frame time as possible, with an upper bound of
two frame times.

• High resolution, antialiased display. The system should support real-time frame rates for
antialiased images at 1280x1024-pixel resolution (the current high-resolution–display standard).

• Economically and technically feasible. The prototype system must be realizable, both economi-
cally and technically. It must achieve its performance with a reasonable amount of hardware. (A
rough target for a two-card–cage system is three million triangles per second). The system must
use proven components and technology, making use of off-the-shelf or existing parts when
available, and to avoid exotic or expensive parts and technologies.

The next section describes major architectural features of the design in an order that roughly parallels their
evolution.

6.2 ARCHITECTURAL DECISIONS

This section describes the main architectural decisions that led to the PixelFlow design and their
motivation.

6.2.1 Z-buffer Rendering with Supersampling Antialiasing

The crucial system parameter for image-composition systems is bandwidth in the image-composition
network. Initially, we believed that supersampling requires too much bandwidth to be practical in a

67

moderate-cost system. Two data words (color and z) are required for each subpixel sample, and
conventional wisdom says that 8 to 16 samples are needed for adequate sampling. As a result, we focused
our early efforts on scan-line–based A-buffer systems. Two realizations led us to reconsider the
supersampling approach:

1) A-buffer compositing requires four data words per fragment and two to three fragments per pixel
in complex images—a total of 8-10 words per pixel (see Section 4.3.2).

2) Supersampling can produce reasonable-quality images with as few as 5 samples per pixel, if
sample locations and weights are chosen carefully [MOLN91].

Since supersampling requires only two words per sample, five samples per pixel require no more bandwidth
than the two to three fragments per pixel in an A-buffer system. Supersampling also avoids artifacts that
arise from sampling interpolated parameters only once per pixel. Further, the compositor in a z-buffer
system is much simpler, so it can be smaller and run faster than an A-buffer compositor. This renewed our
interest in z-buffer, supersampling systems. The missing link was a high-performance, compact z-buffer
rendering engine.

6.2.2 Pixel-Planes 5-Style Renderers

Our group's previous graphics-system design was Pixel-Planes 5, a high-performance system that renders
more than two million polygons per second using a "smart memory" approach. The central idea is to render
an entire primitive in parallel on a 128x128-pixel rasterizer array. The rasterizer contains a processor for
each pixel and computes all the pixels in parallel. The system computes an entire image by assigning a
rasterizer to each region of the screen and processing all of the primitives that fall into that region
[FUCH89].

One of the current design efforts in our laboratory is a development by IVEX Corporation of a one-board
graphics engine for polygon rendering in a flight simulator. A feasibility study for that project was to mea-
sure the rendering performance of a system composed of one Pixel-Planes 5 Graphics Processor Board and
one Renderer Board. Trey Greer, of IVEX Corp., implemented software to do this and determined that a
Graphics Processor/Renderer pair can render approximately 50,000 antialiased triangles per second and
100,000 unantialiased triangles per second [GREE91].

A one-board renderer of this type satisfied our need for high rendering performance in a compact package.
We considered other renderer implementations, such as an array of multiple i860s and a 4x4-pixel footprint
processor, but found the Pixel-Planes 5 design to be the simplest and most economical. Also, since the new
design would have much in common with Pixel-Planes 5, we could use existing designs and components.
The serial ports of the enhanced-memory chips (EMCs) led to a natural, high-bandwidth interface to the
image-composition network: a renderer containing 64–80 EMCs has 256–320 serial communication wires
that can transmit pixel data at 20 MHz.

After some analysis, we realized that the 20 MHz EMC serial ports did not provide the composition-
network bandwidth we needed. John Poulton suggested that the chips could be modified in a
straightforward way to double the speed of the serial port to 40 MHz. This reimplementation of the EMC
could use a newer CMOS technology with smaller feature size (1.2µ vs. 1.6µ), also allowing us to increase
the amount of memory on the chip.

We decided that a renderer board with 80 improved EMCs (covering a 160x128-pixel region) provided a
good balance between image-composition–network bandwidth, processor utilization, and bin-replication
overhead. The EMCs' 320 serial-port wires would provide enough bandwidth to render high-resolution
images with five samples per pixel at almost 30 Hz.

6.2.3 Wide, Slow Image Composition Network

We decided to implement the image-composition network as a pipeline, rather than a tree, to make the
hardware easier to build (see Section 5.1). Each renderer board would have its own compositor to merge its
pixel data onto the composition network. Presented with 320 40 MHz wires from each renderer, we had to
choose an appropriate implementation for the image-composition network. The two main choices were:

68

• Fast and narrow. We could multiplex the signals to use fewer, high-speed wires. This would re-
quire level conversion to a higher-speed technology such as ECL, as well as multiplexing circuitry.

• Wide and slow. We could leave the network wide and use conventional TTL or CMOS tech-
nology for compositing and transmitting pixel data between boards, though many wires and
connectors would be required.

Initially, we considered a fast, narrow image-composition network. ECL circuitry can run at speeds of up
to several hundred MHz. This would minimize the number of wires connecting boards. Although we have
had positive experiences with the 160 MHz 32-bit ring network in Pixel-Planes 5, it requires disciplined
design, and the problems increase as the clock rate increases. We would also need to multiplex the parallel
data paths on each board. This would be expensive in terms of parts and board area, particularly consider-
ing the cost of TTL/ECL level conversion—one part for every six signals.

The technical problems seemed more difficult with a very fast network, and the savings in parts were
doubtful. The format of pixels transmitted from EMCs led to a simplification that tipped the balance in
favor of a wide network. Each EMC has two 2-bit ports, over which pixels are transmitted in two-bit-serial
fashion at 40 MHz. If the image-composition network runs at 80 MHz, the two-bit data from the EMCs can
be multiplexed onto a single wire; pixel data could then be transmitted between compositor chips bit-
serially.

Compositing requires comparing z-values of corresponding pixels. The serial nature of the EMC serial port
led to the notion of serializing the composition calculations, allowing them to be performed in simple, fast
programmable logic devices (PLDs). Gazelle Microcircuits manufactures PLDs with propagation delays as
low as 5 nsec. (see Section 7.1.1). Compositor PLDs could be positioned near the board edge, minimizing
the wire length between parts. All of these factors meant that we could design the image-composition
network to run at 80 MHz with 160 wires passing from board to board, a number readily supportable using
standard connector technology.

6.2.4 Support for Deferred Shading

As described in Section 5.5.1, many shading calculations depend only on generic quantities, such as surface
color and surface-normal vectors. These calculations can be performed only once per pixel, rather than
once per primitive, if we use deferred shading (see Section 5.5.1).

To implement deferred shading efficiently in an image-composition system, a processor is required that can
accept rasterized pixels from the image-composition network at full speed, shade the pixels, and forward
them on to the frame buffer. The Pixel-Planes EMCs on the renderer boards are ideal processors for
deferred shading, but the data is in the wrong place at the wrong time. We can solve this by designating a
subset of the renderer boards as shaders.

In a system with shaders, renderers send pixel attributes such as intrinsic colors, surface-normal vectors,
and z values over the image-composition network to the shaders, instead of RGB values. The shaders
perform shading calculations and forward the shaded pixels to the frame buffer. They also blend pixel
samples for supersampling antialiasing.

The compositors require additional operating modes to allow renderers to be used as shaders. They must be
able to load pixels into the EMCs, unload them without compositing, and forward pixels without modifica-
tion. These modes can easily be incorporated into the compositor PLDs (see Section 7.1.1).

6.2.5 Buffering for Multiple Regions

As described in Section 5.4, load-balancing is an important concern for images with an uneven distribution
of primitives over the screen, or if the database distribution algorithm is imperfect (this is especially
important for immediate-mode applications). An entire frame of buffering between the renderers and
image-composition network is needed to solve this problem completely. If regions are processed in
scrambled order, less buffering is required for non-pathological scenes, since successive regions come from
different areas of the screen, and are likely to contain uncorrelated numbers of primitives.

Buffer chips can be added between the EMCs and compositor chips, or buffering can be incorporated into
the EMCs themselves. External buffer memories must sustain the image-composition network's full band-

69

width at their input and output ports. This would require 80 buffer chips with double, bi-directional, 4-bit
40 MHz ports. This is possible using triple-ported VRAMs, but is expensive in dollars, board area, and in
added control complexity.

The alternative, buffering several regions of pixel data on the EMCs, is not feasible with the 6-transistor
static memory cells used in the Pixel-Planes 5 EMCs, but could conceivably be done if 4-transistor or
1-transistor dynamic-memory cells were used. Sample layouts of each type of memory cell indicate that
256 bits per pixel are possible with the 6-T design, 512 with the 4-T design, and 1024 with the 1-T design
(all of these assume 256 pixels per EMC) [POUL91]. A 1-T memory system would require an extensive
redesign of the EMC. A 4-T design provides sufficient buffering for four screen regions and can be
incorporated into the framework of the Pixel-Planes 5 EMC.

Simulation shows that four-region buffering reduces the load-balancing problem by up to a factor of two
for our test images (see Section 9.2). This is still far from the factor of ten or so that is possible, given the
dynamic-load–balance ratios of these datasets. Eight or more regions of buffering would be preferable, but
this would significantly raise the cost of the EMC. Four regions of buffering seems to be a reasonable
compromise.

6.3 PIXELFLOW SYSTEM OVERVIEW

We now give a brief overview of the prototype PixelFlow system. We will describe each component at
high level in this section. Crucial components, such as the image-composition network, the renderer/shader
board, and the software architecture are described in more detail in Chapters 7 – 9.

A PixelFlow system is composed of one or more 19-inch card cages containing up to 21 circuit boards each
and connected to a DECStation 5000, or other high-speed workstation. The boards in each card cage are
attached to a common backplane, which contains wiring for a message-passing network and an image-
composition network that extends to each system board.

The prototype PixelFlow system contains three main board types:

• Renderer/shaders, which are one-board graphics computers capable of rendering 70,000
z-buffered triangles per second or computing shading models for 160x128 pixels in parallel.

• A host interface, which implements the connection to the host computer and contains synchroniza-
tion and diagnostic hardware for the image-composition network

• A frame buffer, which buffers and displays composited pixels.

Multiple card cages can be connected by placing them side-by-side and connecting their backplanes
together with special bridge boards and connectors. End boards are needed to turn signals around at the
left and right ends of the outermost backplanes. Figure 6.2 shows a logical diagram of a two-card–cage
PixelFlow system.

The message-passing network is a general-purpose communication network that allows any board to send
messages to any other board. It is a scaled-down version of the multi-channel token ring used in Pixel-
Planes 5. It contains four point-to-point communication channels, each of which can transmit data between
any pair of boards at 80 Mbyte/sec. The network is used for loading code and data during system initial-
ization and for updating viewing parameters and editing the graphics database during interactive operation.

The image-composition network is a very wide (160-bit), high-speed (80 MHz) special-purpose communi-
cation network for rapidly moving pixel data between adjacent boards. It performs two functions in
different parts of the system: it transfers pixel data between compositors in the renderers and transfers
rendered pixels from the shaders to the frame buffer. The image-composition network is implemented as
160 wires that connect adjacent backplane slots. Compositor chips on the renderer and shader boards
synchronously transmit data to compositors on adjacent boards.

70

Backplane

Message-Passing Network
(32 bits @ 80 MHz)

Backplane

Image Composition Network
(160 bits @ 80 MHz)

Bridge
Board

Card cage #1 Card cage #2

Hi-res
Monitor

Host Workstation Input devices

networks

R
en

de
re

r

R
en

de
re

r

R
en

de
re

r

H
os

t I
nt

er
fa

ce

R
en

de
re

r

R
en

de
re

r

S
ha

de
r

S
ha

de
r

F
ra

m
e

B
uf

fe
r

End
Board

End
Board

Figure 6.2: Two-card–cage PixelFlow system.

We now briefly describe the various components of the system. The image-composition network and the
renderer/shader board will be discussed in more detail in Chapters 7 and 8.

6.3.1 Host and Host Interface

The host computer is a DECStation 50001, or some other general-purpose computer, that serves as the
system master. It loads code and data onto the various system boards, distributes the display database over
the rasterizers, runs the application, samples user inputs, and determines the changes to be made during
each frame.

The host interface connects the host to the system backplane. In addition, it contains diagnostic and
synchronization circuitry for the image-composition network. Figure 6.3 shows a block diagram of the
host-interface board.

The pixel buffer is composed of 10 banks of VRAM memory that can load data onto the image-composition
network at full speed. It provides a way for the host computer to send diagnostic data or background
images to other boards in the system via the image-composition network. The corner turners and output
multiplexer PLDs are similar to the corner turners and input demultiplexer PLDs used in the frame buffer
(see Section 6.3.5).

The system is designed to support most applications using a retained-mode data structure. In a typical
application, the host computer first initializes the system, configuring the different boards appropriately,
and booting the processors on the renderer/shader boards. Next, it reads the database off disk (or wherever
it resides) and distributes it and loads it onto the renderers. For load-balancing, the host distributes
primitives over the renderers using scattering. It must keep track of where each primitive resides in the
system, so it can update it or delete it when necessary (it can use the same general approach as is done in
Pixel-Planes 5 [ELLS90a]).

1DECStation is a trademark of the Digital Equipment Corporation.

71

Transmit
Register

Receive
FIFO

Message-Passing
Network

Output Mux
PLDs

Corner Turners
(10 chips)

Pixel Buffer
(10 banks, 32
bits, VRAM)

TurboChannel
Option Board
(Pgm'd I/O)

DecStation 5000 Host

R
ib

bo
n

C
ab

le

Image-Composition
Network

R
dy

In
G

oO
ut

C
on

tr
ol

Figure 6.3: Block diagram of host interface.

After the database has been loaded and distributed, the host typically executes the loop shown in Figure 6.4
(various optimizations to this loop are possible). The host broadcasts editing commands over the message-
passing network. It can keep up with the rest of the system as long as the editing commands are few and
easy to calculate.

repeat {
sample user inputs;
send editing commands;
send render command to the Renderers;
wait for finished handshake from the Renderers;

}

Figure 6.4: Pseudocode for host algorithm.

Other application models for the system are possible. For example, the message-passing network and
processors on the renderer boards represent a general, message-passing multicomputer. An application
could be parallelized to run on the renderers and to generate primitives in immediate mode. The renderers,
in this case, would process these primitives directly.

6.3.2 Message-Passing Network

The message-passing communication network is a four-channel token ring that supports point-to-point
communication between any pair of boards. It is a scaled-down implementation of the multi-channel token
ring used in Pixel-Planes 5 [GREE89].

The ring is implemented as 32 data wires that transmit data at 80 MHz. The four channels are time-division
multiplexed onto the data wires, such that data for a single channel is sent on every fourth word. A
message from any sender to any receiver can take place over any of the four channels. The ring network
has one node for each board in the system. Each node has a unique id, which is used to address messages
destined for that node.

The ring transmit interface is fairly simple: the sender formulates a message and prepends a destination
address containing the receiver id and other user-defined address information. It asserts this address on its

72

transmit port and asserts the TxReady signal. The ring then attempts to acquire the receiver. Receivers are
treated as resources that can be assigned to senders; each resource has a corresponding bit in a circulating
control field. Once the receiver is acquired, the ring waits for a free channel. Once the receiver and a
channel have been acquired, the ring interface asserts the TxGo signal. This tells the sender that it can
begin clocking message data out the transmit port at 20 MHz. The sender terminates the communication by
deasserting the TxReady signal.

The receive interface works as follows: The receiver board asserts the RxReady signal when it is ready to
accept data (from any sender). The ring interface asserts RxPut when data arrives at the receive port. The
receive board may deassert RxReady at its discretion when it begins receiving data. The ring will not allow
another message to arrive until RxReady is asserted again. The receiver board is responsible for buffering
incoming data. This usually means that it must have a first-in-first-out buffer (FIFO) of some sort, which
can limit the length of messages that can be sent.

Figure 6.5 shows a block diagram of the ring-node interface.

Data

Transmit
control

Transmit
data

Receive
control

Receive
data

Application
Board

Ring
Network

T
xG

o

R
xR

ea
dy

R
xP

ut

32

32

32

32

T
xD

at
a

Ctl

R
xD

at
a

T
xR

ea
dy

DataCtl

Figure 6.5: Ring node transmit and receive interface.

The communication ring in Pixel-Planes 5 has eight 20-Mword/sec channels, in contrast to the four
channels in PixelFlow. However, the Pixel-Planes 5 ring must convey all of the primitives in the database
between Graphics Processors and Renderers every frame, as well as all of the pixels to the frame buffer.
PixelFlow has none of this high-bandwidth traffic, so its bandwidth requirements are less. A four-channel
ring can be implemented with TTL logic and PLDs running at 80 MHz. (This clock rate is possible with
TTL because the wiring channels between boards are short.) As in Pixel-Planes 5, the ring is collapsed
onto the backplane to avoid having to "close" the ring with a long connection (see Figure 6.6).

Figure 6.6: Ring flattened on backplane to reduce wire lengths.

6.3.3 Renderer/Shaders

The renderer/shader boards are the workhorses of the system. Renderers store and rasterize a partition of
the database. Shaders shade and antialias composited pixels. Although renderers and shaders perform
different functions, the same board design is used for each. The board is configured as a renderer or a
shader by the software that is loaded onto it. We first describe the components on a renderer/shader board,
and then describe the tasks performed in each configuration.

Renderer/Shader-Board Components. The renderer/shader board is composed of three main parts: a
graphics processor, a rasterizer, and a compositor. The graphics processor (GP) is a fast floating-point

73

processor based on the Intel i860 microprocessor. It is patterned after the Pixel-Planes 5 Graphics
Processor Board [MOLN89]. It has 8 Mbytes of local VRAM memory, a transmit and receive interface to
the message-passing network, and a FIFO interface to the rasterizer.

EMC Array
(80 chips,

160x128 pixels)

Receive
FIFO

Transmit
Register

IGC
(40 MHz)Input

Ctl

32 bits
@ 20MHz

32 bits
@ 20MHz

Message-Passing
Network

random

i860
(40 MHz)

VRAM
(8 Mbytes)

i860 Bus

64 bits
@ 20MHz

Graphics Processor Rasterizer

serial

160 bits
@ 80MHz

160 bits
@ 80MHz

Compositor
(80 Gazelle

22VP10-7 PLDs)

320 bits
@ 40MHz

Image-Composition
Network

Figure 6.7: Block diagram of renderer/shader board.

The rasterizer is a massively parallel rasterization processor, patterned after the Pixel-Planes 5 Renderer
Board [EYLE90]. It contains an Image Generation Controller (IGC) and an array of 80 modified
Enhanced Memory Chips (EMCs). The compositor contains 80 compositor chips with associated control
circuitry. Figure 6.7 shows a block diagram of a renderer/shader board.

The GP handles communication over the message-passing network, stores data, and sends commands to the
IGC, which controls the EMC array. The IGC is equipped with two input FIFOs, one for storing rendering
commands (shading commands in the case of a shader), the other for storing compositing commands. The
IGC converts word-parallel commands and coefficients into bit-serial commands required by the EMCs.

Each EMC contains 256 pixels. Each pixel contains 512 bits of local memory, a 1-bit ALU, a leaf node of
the linear-expression tree, and a variable-length (64 or 128-bit) transfer buffer. The transfer buffer in each
EMC is connected to a 4-bit, 40 MHz, bidirectional serial data port, which is wired to a compositor chip.
The EMCs rasterize and shade using algorithms developed for Pixel-Planes 5 [FUCH89].

Compositor chips merge the pixel stream from the current renderer with the pixel stream from the upstream
renderers. They also load and unload pixels onto the shaders, and transfer pixels to the frame buffer for
display.

Renderers. On a renderer board, the GP stores its portion of the database in its VRAM memory. At the
beginning of each new frame, the GP receives editing commands and a new viewing transformation from
the host. At the start of the frame, the GP processes these commands and sorts primitives into screen
regions. Then, region-by-region, the GP transforms primitives into screen coordinates and loads them into
the IGC FIFOs.

The IGC and EMC array execute these commands, rasterizing the primitives that fall into each region.
When a region is finished, it is copied into the transfer buffer in the EMCs, and composited with the
corresponding region on each of the rasterizers. The composited pixel data from the last renderer can either
be loaded directly into the frame buffer, or loaded into a shader, for antialiasing or advanced shading

74

calculations.

Shaders. In a shader, the EMC array does almost all of the work. The GP's only function is to load
shading instructions into the IGC FIFOs. The shader receives rasterized regions, one at a time, over the
composition network into the transfer buffer of its EMC array. It copies this pixel data into another portion
of pixel memory and then performs shading calculations on it. When the region has been completely
shaded, color data is copied back into the transfer buffer, and sent out to the frame buffer for display.

To keep the image-composition network busy, the shader's operation must be pipelined. It does this by
shading one region while the next region is being loaded into its transfer buffer. When the new region is
loaded, it is shaded while the previous region is transferred out.

6.3.4 Image-Composition Network

The image-composition network merges pixel streams from each renderer into a single pixel stream, loads
and unloads the shaders, and transfers shaded pixels to the frame buffer for display. It is composed of the
compositor chips on each renderer/shader board, their associated control circuitry, and the interconnect
wiring on the system backplane.

Compositor chips are paired one-to-one with EMC chips on renderer/shader boards, a total of 80 per board.
Each compositor chip has a 4-bit 40 MHz bidirectional port connecting it to its associated EMC, and two
2-bit, serial ports connecting it to compositor chips on adjacent boards. The input port connects to the
renderer/shader upstream. The output port connects to the renderer/shader (or frame buffer) downstream.
The input and output ports are each 2 bits wide and run at 80 MHz. Figure 6.8 shows the connections for a
single compositor chip.

Compositor

EMC

22

EMC data
(2 x 2@40 Mhz)

Compositor
(downstream

board)

Compositor
(upstream

board)

Compositor data
(2 x 1@80 Mhz)

Serial port

Figure 6.8: Connections to a single compositor chip.

Because the communication port from each EMC is much narrower than the data for one pixel, pixels are
transferred serially. Due to layout considerations in the EMC, the EMC's serial port presents 2-bit slices of
each of two pixels over its serial port on each 40-MHz clock tick. This 2-bit-wide data is converted by the
compositor chips into bit-serial data at twice the clock frequency—80 MHz. The entire image-composition
network operates on bit-serial data. This makes comparison of z values exceedingly simple: z values are
sent down most-significant-bit first. The bits are compared one at a time. The first bit that differs
determines which pixel is in front. This sets state bits in the compositor chip that forward the remainder of
the nearer pixel's data to the output bitstream. Figure 6.9 diagrams the bit-serial compositing process for
one pixel.

The compositors on the EMCs implement several operations in addition to the composite operation
described above. They allow pixels to be loaded into the EMC array, unloaded without compositing, or
simply forwarded on without modification. These extra modes are needed when the board functions as a
shader (these modes are described in detail in Section 7.1.1).

75

Z31Z30Z29Z28Z27Z26

110110

Z'31Z'30Z'29Z'28Z'27Z'26

110101

Z'0

BluGrn

Red'Blu'Grn'

z bits identical

Z'26Red'Blu'Grn' Z31Z30Z29Z28Z27

Bit-serial
compositor

Output Bitstream

Input Bitstreams

xxxx00000000000000000 0 0 0

Compositor State Bits

Z0

110101
Z'0

1-bit z comparison at this point
selects lower bit-stream

000011111111111111111 1 1 1

Select

Latched

Red

Figure 6.9: Bit-serial composition of two pixel streams.

The image-composition network operates by transferring a 160x128 region of pixels at a time.
Synchronization circuitry on each board assures that each renderer is ready prior to beginning a transfer,
and sequences the transfers on each of the boards. Each transfer runs uninterrupted until a full 160x128
region has been transferred.

Since each compositor chip has a communication bandwidth of 40 MHz • 4 bits = 160 Mbit/second to/from
its associated EMC, the total bandwidth between the rasterizer and compositor on each renderer/shader
board is 80 • 160 Mbit/second = 1600 Mbyte/second. This bandwidth determines the system's maximum
update rate, screen resolution, and number of samples per pixel. Since these properties can be traded off
against each other, the network bandwidth can be used in a variety of ways. Typical examples are:

• 1280x1024 screen, Gouraud-shaded polygons, 5 samples per pixel, 27 frames per second.

• 1280x1024 screen, Phong-shaded polygons, 1 sample per pixel, 55 frames per second.

• 640x512 screen, Phong-shaded polygons, 5 samples per pixel, 53 frames per second.

6.3.5 Frame Buffer

The frame-buffer board implements a conventional 1280x1024, double-buffered, 24-bit frame-buffer. Its
input port accepts pixel data arriving over the image-composition network. It, therefore, must support the
composition-network bandwidth and convert the bit-serial pixel streams arriving over the network into
word-parallel pixel data needed for the frame buffer. Because the frame buffer interacts with the image-
composition network in real time, it requires a fairly sophisticated controller. It is provided with an i860,
which serves as controller and can also read and write data to the frame buffer, as necessary. Figure 6.10
shows a block diagram of the frame-buffer board.

76

32 bits
@ 20MHz

i860 Bus

32 bits
@ 20MHz

160 bits
@ 80MHz

160 bits
@ 80MHz

10x32 bits @ 40MHz
Message-Passing
Network Interface

Message-Passing
Network

LUTs/
DACs

DRAM
(8 Mbytes)

10x32 bits @ 20MHz

RGB video
out

5x24 bits
@ pxclk/5

Corner Turners
(10 chips)

3-port DRAM array
(10 banks, 32 bits)

random
port

serial
port

serial
port

Image-Composition
Network

Input demulti-
plexer PLDs

i860
(40 MHz)

64 bits
@ 20MHz

Figure 6.10: Block diagram of a frame-buffer board.

The frame buffer contains ten 32-bit banks of triple-port 1 Mbit DRAM chips (these DRAMs, such as the
Micron MT43C4258, are like VRAMs, except that they have two high-speed serial ports [MICR91]). This
is exactly enough memory to support a double-buffered 1280x1024 screen.

The crucial part of the frame-buffer design is the interface between the image-composition network and the
DRAM. The frame buffer must be able to accept pixel data from the image-composition network at full
speed. This is done in two stages: an array of high-speed demultiplexer PLDs, and an array of corner-
turner chips.

3 3 3 3 3 3 3 3 3 3 3 3

6 6 6 6 2

Demux Demux Demux Demux Demux Demux

3 3

6

Demux

4

Corner Turner
(1 of 10)

320 wires
@ 40 MHz

(50% duty cycle)

160 wires
@ 80 MHz

320 wires
@ 20 MHz

32 @ 20 Mhz

to 3-port DRAM (serial port)

from
composition

network

6

to composi-
tion network

Figure 6.11: Demultiplexer PLDs and corner turners.

The incoming pixel stream is directed to an array of 54 high-speed 22V10 PLDs, similar to the compositors
on a renderer/shader board. These PLDs demultiplex the 160 wires running at 80 MHz to 320 wires
running at 40 MHz (see Figure 6.11). In addition, they forward the original pixel stream back onto the

77

image-composition network so that more than one frame-buffer board can be included in a system.

The second stage consists of ten corner turners. These are programmable gate arrays, which receive 2-bit
serial pixel data from the input demultiplexers and convert it into word-parallel format compatible with the
DRAMs.1 They also divide the data rate by two, since the input pixel stream contains z information, as
well as color information, and the z information is spurious at this point. The output of each corner turner
mates with one of the serial ports of one bank of DRAM. The serial port accepts pixels from the corner
turner at 20 MHz.

The DRAMs' second serial ports are connected to 5-way multiplexing video look-up-tables and digital-to-
analog converters in the conventional way [FOLE90].

The i860 has access to the DRAMs' random port. It can read and write pixels, allowing it to read the
contents of the frame buffer or write data to it (useful for text, windows, and debugging). The frame-buffer
memory controller occasionally takes over the DRAMs' random port to perform row loads for either of the
two serial ports.

6.3.6 Algorithms and Performance

The PixelFlow architecture supports a wide variety of rendering algorithms and primitive types, from
Gouraud-shaded polygons, to Phong-shaded volume data, to directly rendered Constructive-Solid-
Geometry objects. It supports immediate-mode and retained-mode traversal methods. It is scalable over a
wide variety of performance levels. One of the main motivations for developing the architecture was to
support experiments with new rendering algorithms.

The system was designed with high-quality polygon rendering as its primary application. Polygon render-
ing can be thought of as a least-common-denominator for other algorithms. Figure 6.12 shows the steps for
rendering polygons from a retained-mode database and the system components on which they are executed.

Transfor-
mation and

sorting

Composi-
tion

Shading
Database
traversal

Graphics Processor

Format
conver-

sion
Display

Raster-
ization

Frame Buffer

Input
sampling/

Application

Host ShaderComposition
Network

Rasterizer

Figure 6.12: Assignment of rendering steps to processing units.

We now briefly describe the major steps of this rendering algorithm.

Host computer. In a typical application, the host computer is the overall system master. It loads code and
data onto the various system boards, distributes the display database over the rasterizers, samples user
inputs, and determines the changes to be made during each frame. Because the host is under-powered
compared to the rest of the system, and because the host-interface is a low-bandwidth link, the host only
participates minimally in image generation.

The host communicates with the rest of the system over the message-passing network. It prepares editing
commands each frame that describe changes needed in the next frame. It transmits these to the renderers.
It can keep up with the rest of the system as long as the editing commands are few and easy to calculate.

Renderers. The renderers maintain a portion of the distributed display database in their local memories.
Each frame, they execute the editing commands transmitted by the host, then transform and rasterize their
portion of the primitives.

1A custom corner-turner chip was built for Pixel-Planes 5. The corner turner for the PixelFlow frame buffer has
slightly different requirements. It could be implemented as a custom chip as well, or possibly as a programmable gate
array [ACTE91, XILI91].

78

Because the system uses Pixel-Planes 5 style rasterizers, it rasterizes one 160x128 region of the screen at a
time. This means that primitives must be sorted into bins for each screen region before rasterization can
take place. The straightforward method for doing this is to transform all of the primitives and copy the
rendering commands into the appropriate bins, as in Pixel-Planes 5 [FUCH89]. The problem with this is
that it costs a frame of latency: one frame is transformed and bin-classified while the previous frame is
rasterized. We plan to save this frame of latency by classifying primitives into bins in a preprocessing step,
similar to the one described for A-buffer architectures in Section 5.2.3. Primitives will be bin-classified
with the minimum amount of calculation possible, a fraction of the overall front-end task.

After the primitives have been sorted, they are converted into IGC instructions, and rasterized one bin at a
time. The IGC and EMC array rasterize the primitives for each region. If several samples are required for
each pixel, the scene is rasterized several times, with slightly different screen-space offsets for each pass.
When a region has been rasterized, it is copied into the EMCs' transfer buffer, and composited over the
image-composition network.

Shaders. Shaders, if they are used, intercept composited, rasterized regions, and compute a shading model
on each pixel in the region. When antialiasing with several samples per pixel, successive regions sent to
each shader contain successive samples. The samples are blended together using precomputed blending
coefficients stored at each shader.

When all of the samples have been blended, the antialiased, shaded region of pixels is transferred over the
composition network to the frame buffer.

Frame Buffer. The frame buffer receives shaded, antialiased pixels and stores them in the appropriate
portion of its refresh memory. When all of the regions for a frame have been received, it switches buffers,
and displays the new frame.

Note that rendering occurs in a discrete fashion: one 160x128 region is rasterized/shaded at a time. Each
board in the system must know the type and location of each region to handle it in the appropriate way:
whether to composite it, load it into a shader, unload it, forward it on without processing, and so forth. This
is done by distributing a rendering recipe to each board before rendering begins. The rendering recipe is a
list of the regions to be transferred over the image-composition network and the corresponding action to be
taken for each region. For some boards, the rendering recipe is simple. For example, the frame buffer's
rendering recipe simply states whether the region is to be stored and where, and at which point it should
switch buffers. The rendering recipe for a shader is more complicated. It must load regions, blend other
regions in, forward some regions on without processing, and unload other regions.

Performance. We have written a software timing simulator for the prototype system. It is parameterized
by the number of renderers and shaders, and can be loaded with statistics for any desired image. It has an
accurate model of the time required for different types of processing and data transfers, and provides
appropriate rendering recipes for each system component. Details on the simulation method and simulation
results are contained in Chapter 9.

CHAPTER 7

IMAGE-COMPOSITION NETWORK

The image-composition network is the backbone of the PixelFlow system. It carries pixels from renderer to
renderer on their way to the frame buffer, compositing each renderer's pixels in as it goes. It performs the
per-pixel sort, allowing multiple renderers to work in parallel on the same image with very little overhead.
This provides the architecture with its property of near-linear scalability.

The image-composition network is implemented as an extremely high bandwidth, unidirectional datapath
that extends across the entire system backplane (or backplanes—in a multiple-rack system). The backplane
provides point-to-point wiring between boards, but the active circuitry is contained on each board.

The composition network is 160 bits wide and runs at 80 MHz, providing 1.6 Gbyte/second of bandwidth
between adjacent boards. This raw bandwidth determines the maximum screen resolution, frame rate, and
number of samples per pixel in the system. These parameters can be traded off against each other, but their
product must be less than the total bandwidth.

Individual compositor nodes in the network are configurable under program control. This enables the same
hardware to function as a compositor in a renderer board and as a network interface in shader boards.

The composition network is composed of two parts: a data path, which carries pixel data from board to
board, and a control path, which synchronizes and sequences transfers over the network. We now describe
these parts in more detail.

7.1 DATA PATH

The datapath is a 160-bit wide point-to-point communication network that connects each pair of adjacent
boards in the system. The interconnection wires are part of the system backplane. High-density connectors
bring the data path wires out to each board, along with associated control signals.

All of the active circuitry for the data path is contained on individual renderer/shader and frame-buffer
boards. Although logically part of the image-composition network, they are placed on application boards
for convenience. The data-path portion of the composition node on a renderer/shader is composed of 80
surface-mount compositor chips, placed near the backplane edge of the board. The compositors interface
directly to the EMCs on the board, and are controlled by the control path, which we will describe in Section
7.2.

7.1.1 Compositor PLD

The compositor chips are small, surface-mount, devices that implement the composition function on two
bit-serial pixel streams at once. Each chip composites the two pixel streams from its corresponding EMC's
serial port with two bit-serial pixel streams from the upstream renderer (see Figure 6.8). The EMC inter-
face runs at 40 MHz; the compositor input and output interfaces run at 80 MHz (the 80 • 2 wires of the
input and output ports account for the 160-bit width of the data path).

Clock speeds of 80 MHz require special attention. This is near the limits of the fastest TTL logic families,
and precludes wire lengths of more than a few inches. Fortunately, programmable logic devices (PLDs)
have recently become available with propagation delays as low as 5 nsec. Gazelle Microcircuits recently
introduced a line of fairly complex PLDs fabricated with a special gallium-arsenide process with speeds in
this range. Although they are not field programmable, they can be programmed rapidly by laser in the
factory and are available at reasonable prices (approximately $25 in quantity in 1991) [GAZE88].

The Gazelle 7 nsec 22VP10, a 24-pin PLD with 22 signal pins and up to 10 outputs, is sufficient to perform
the composition operation. Figure 7.1 lists the timing specifications for the Gazelle 22VP10-7.

80

Symbol Description Min Max
tPD Input to non-registered output 3 nsec 7.5 nsec

tEA Input to output enable 3 7.5

tER Input to output disable 3 7.5

tCO Clock to output 3 6

tS Input setup time 3 –

tH Input hold time 0 –

fMAX Maximum frequency 111 Mhz –

Figure 7.1: Timing specifications for the Gazelle 22VP10-7 PLD (from [GAZE88]).

The compositor's operating mode is determined by two mode inputs. These select one of the following
three operations (see Figure 7.2):

• Composite. Composite the two pixel streams from the EMC with the two pixel streams at the
input port. Transmit the result over the output port.

• Load/Forward. Load the input stream into the EMCs and forward it to the output port without
modification.

• Unload. Send data from the EMC over the output port. Ignore pixels arriving at the input port.

Unload

from EMCs

Load/Forward

to EMCs

Composite

from EMCs

Figure 7.2: Compositor operating modes.

The Composite mode requires that pixels have their z value first and its bits ordered from most-significant
bit (MSB) to least-significant bit (LSB) (see Section 6.3.4). When the nearer pixel has been determined,
the compositor sets state bits recording which pixel is in front and that the priority decision has been made
for this pixel. These two state bits determine which pixel is transmitted for the remaining z bits and all of
the other data bits in the pixel.

The Composite mode is the only mode needed for renderer boards. Shaders need the other modes,
however, to load regions into their EMCs, unload regions that have been shaded, and to forward regions
that pertain to other shaders. Load and Forward modes are really distinct operations as far as the shader is
concerned; it either loads data from the composition network or ignores the data and forwards it onward.
The two operations are combined into the single Load/Forward compositor mode for simplicity.

7.1.2 Wiring Delays and Clock Distribution

To minimize signal propagation delays, compositor chips are placed as close to the backplane edge of the
board as possible. An 80 MHz clock period is only 12.5 nsec. The output propagation delay from the
compositors is 6 nsec. The input setup time is 3 nsec. Adding approximately 1 nsec for clock skew leaves
approximately 2.5 nsec for signal propagation—assuming there are no reflections or ringing. This corre-
sponds to a maximum signal-path length of 15 inches or 38 cm.. This requires that all data-path signals be
routed carefully and terminated properly. Series termination at the transmit end reduces the power
consumption to a tolerable level and reduces forward crosstalk.

High-density card-edge connectors are available with pin spacing of 100 mils laterally and 50 mils longitu-

81

dinally [TERA89]. A four-rank connector provides 40 connections per inch. The 320 datapath connections
for each board, therefore, require 320 / 40 = 8 inches of board edge. This is feasible with a 9u (14.437
inch) height board, even allowing connector space for the control path, the message passing network
(approximately 100 pins), and power, ground, and clock connections.

High-speed signaling requires a low-skew clock-distribution scheme. Vernon Chi invented a clever method
called salphasic clock distribution for distributing clocks with very low skew over a large system. This
method was demonstrated in the Pixel-Planes 5 system [CHI90]. The basic notion is to distribute clock
signals as a standing wave of the proper frequency. A standing wave has the property that every point
along it has the same phase. Differential amplifiers capture the zero crossings of the standing wave and
convert them into clock signals. A 160 MHz clock distributed across three 19-inch racks in Pixel-Planes 5
has a measured clock skew of less than 200 picoseconds between any two boards. We can readily employ
this scheme, or some variation of it, in the prototype PixelFlow system.

7.1.3 Region-by-Region Transfers

Transfers over the image-composition network have a quantum of one region size. The number of bits in a
pixel is variable: it can be either 64 or 128 bits. Once a transfer begins, however, all the pixels in a
region—whatever the pixel size—are transmitted from the source board(s) and loaded into the destination
board(s).

The clock rate and pixel size determine the transfer time for a region. With 64-bit pixels, the transfer time
is 160 • 128 pixels • 64 bits/pixel / (160 • 80 Mbit/sec) = 102.4 µsec. For 128-bit pixels, the transfer time is
twice as long, 204.8 µsec.

Region transfers typically perform one of two tasks. They either composite regions of pixels from render-
ers or transfer shaded pixels to the frame buffer. (Other operations are possible, such as transferring a
region from one renderer to another, but these are not needed in standard polygon rendering). Each region
transfer has a particular meaning to each board in the system, and the format of the pixel data may differ,
depending on the type of transfer. Each board must know the purpose of the transfer to configure itself
correctly. The schedule of transfers for an individual board is called a rendering recipe. The rendering
recipes on each board are the distributed controllers for the parallel system. Rendering recipes will be
discussed in detail in Section 9.1.2. Individual transfers are synchronized by the control path, which we
will discuss next.

7.2 CONTROL PATH

Transfer operations must be synchronized with great precision and low overhead to make maximum use of
the image-composition network. When a transfer begins and the upstream renderer begins to transmit
pixels, downstream renderers must be ready to receive them at the correct 80-MHz clock cycle. The
composition network also must determine when all of the boards are ready to begin the next transfer. This
decision must be made rapidly, since any delay affects the net bandwidth that can be achieved over the
image-composition network, hence, the system's maximum speed.

The control path implements these two functions. In addition, it synchronizes transfers with other
components on each board.

7.2.1 Ready and Go Chains

The ready chain and go chain are hardware interlocks for synchronizing transfers over the composition
network. A ready token propagates upstream from board to board, indicating when boards are ready for the
next transfer. A go token propagates downstream, marking the start of a transfer.

Each compositor has a ready/go controller with three inputs and three outputs. The XferReady input comes
from the rasterizer. It indicates when the rasterizer is ready for the next transfer to begin. XferReady,
ReadyIn and ReadyOut implement the ready chain; the ready token is encoded by low-to-high transitions of
ReadyOut on each board. GoIn, GoOut, and XferGo implement the go chain; the go token is encoded by
low-to-high transitions of GoOut on each board. Figure 7.3 shows a block diagram of the ready/go
controller.

82

ReadyOut

GoIn

ReadyIn

GoOut

X
fe

rG
o

X
fe

rR
ea

dy

(to next
compositor)

(from previous
compositor)

Ready/Go
Controller

(to rasterizer)

Figure 7.3: Ready/go controller.

The frame buffer asserts ReadyOut when it is ready for the next transfer to begin. The ready/go controller
on each board receives ReadyIn from the downstream compositor and outputs ReadyOut to the upstream
compositor. It asserts ReadyOut after ReadyIn and XferReady have both been asserted. The transfer begins
when ready reaches the upstream renderer. Thus, each board can delay the transfer until it is ready to
begin.

Go propagates through the composition network in the opposite direction of ready. The upstream composi-
tor asserts XferGo and GoOut to begin a transfer. When each compositor receives GoIn, it asserts XferGo
to the board and GoOut to the downstream compositor. The boards cannot veto go in the same manner they
can veto ready; they lost the privilege when they asserted XferReady. The arrival of go means that n clock
cycles later (n is determined by the startup delay of the output sequencing circuitry), pixels will flow over
the composition network. When the transfer has completed, the controller deasserts XferGo and GoOut, the
frame buffer (when it is ready) asserts ReadyOut, and the next transfer cycle begins.

Ready

Go

Ready

Go

Frame
Buffer

Renderer Renderer Master
Renderer

XferGo XferReady

Ready

Go

Ready

Go

Ready

Go

Ready

Go

Ready

Go

Ready

Go

Ready

Go

Ready

Go

R/G
Ctl

Time

Figure 7.4: Ready and go chains at various stages during a transfer.

83

The ready/go controller on the upstream renderer has a slightly different function. Rather than passing
ready upstream and go downstream, it simply asserts GoOut after it receives ReadyIn and XferReady.
Since this controller determines when a transfer actually begins, it is called the master controller . The
controller on each board can function as either a slave or master. The mode is selected by a bit in the
compositor configuration register (see Section 8.2.2). Figure 7.4 shows the ready and go chains with
master and slave controllers at various stages during a transfer cycle.

The incoming pixel stream is directed to an array of 54 high-speed 22V10 PLDs, similar to the compositors
on a renderer/shader board. These PLDs demultiplex the 160 wires running at 80 MHz to 320 wires
running at 40 MHz (see Figure 6.11). In addition, they forward the original pixel stream back onto the
image-composition network so that more than one frame-buffer board can be included in a system.

Note that all of the signals in the ready and go chains (except XferReady) operate at 80 MHz to keep up
with the composition-network data path and to reduce overhead. Even so, the overhead from the ready and
go chains can be noticeable in large systems. In a 40-board system operating at 80 MHz, the overhead is 40
• 2 • 12.5 nsec = 1 µsec., which is approximately 1% of the transfer time for 64-bit pixels.

7.2.2 Controlling the Compositors

The XferGo signal from the control path indicates the beginning of a transfer. This signal may arrive at any
80-MHz clock cycle after XferReady has been asserted. The compositor sequencer configures and
sequences the compositors and the EMCs' serial ports so that they are ready to composite, load, or unload
pixels n clock cycles after XferGo is asserted.

The compositor sequencer has two parts: a configuration register and a timer. The configuration register
stores the control bits that determine the compositor's operating mode (Composite, Load//Forward, or
Unload) and the EMC serial port's transfer mode (read or write). It is loaded by a special IGC instruction
called IGC_COMP_CONFIG (Section 8.2.2 describes the IGC interface to the image composition
network).

The timer keeps track of the number of pixels that have been composited and enables and disables the EMC
serial port at the appropriate time. It is preset before the transfer begins by the IGC instruction
IGC_COMP_LEN to the appropriate length for 64 or 128-bit pixel transfers. After XferGo is asserted, it
asserts the XferEnab signal to the EMC serial port for 8,192 80-MHz cycles for 64-bit transfers and 16,384
80-MHz cycles for 128-bit transfers, then deasserts XferEnab. This is the precise length of time required to
transfer all of the pixels in one region.

7.3 PERFORMANCE MODEL

We now briefly estimate the image-composition network's performance. We first consider a simple system
consisting of renderers and frame buffer only. Then we consider more complicated systems, which include
shaders and perform supersampling. We will be concerned with image-composition–network performance
only in this section. Overall system performance depends on other system components as well. This
requires simulation and is analyzed in Chapter 9.

7.3.1 Simple Rendering Algorithm

A simple system configuration consists of a host interface, renderers, and a frame buffer. Without shaders,
such a system cannot antialias and is restricted to simple rendering algorithms, such as Gouraud shading.

The image-composition network operates in the single mode, Composite, in this system. Regions of pixels
are rendered on each of the renderers and composited over the composition network on the way to the
frame buffer. 64-bit pixels are ample to encode the z value and color value for each pixel.

The performance of the image-composition network in this case is its raw bandwidth minus the overhead
for setting up transfers. Consider a single transfer. The transfer itself requires 102.4 µsec. Setting up the
transfer requires copying 64 bits of data from a rendering buffer in the EMC to the transfer buffer (64 • 2
ALU operations) plus, perhaps, 10 more operations to change configurations, etc. With a clock speed of 40
MHz, this is a total of (128+10) • 25 nsec = 3.5 µsec. The total time for a transfer is, therefore, 102.4 + 3.5

84

= 105.9 µsec or 9,443 regions per second. This is sufficient to update a 1280 x 1024-pixel high-resolution
image at 147.5 updates per second!

7.3.2 Shaders and Supersampling

Next consider a system with shaders for deferred-shading calculations and supersampling. The image-
composition network's behavior is more complicated in this case: rendering and composition occurs as
before (though, perhaps with more data transmitted per pixel). Composited pixels are loaded into shaders,
rather than the frame buffer, however.

Assume that we have a system with s shaders and are supersampling with k samples per pixel. Since each
shader is responsible for one region at a time, the system will process s regions at a time. The first step is to
rasterize the first sample for the first s regions. These are loaded into the shaders (s transfers). Then the
remaining k-1 samples are rasterized and loaded into the shaders (s • (k–1) transfers). Each shader shades
each region-sample and blends it in with the previous samples while the other shaders are being loaded.
After a total of s • k cycles, each shader contains the blended color values for its region, and sends its color
values to the frame buffer.

Unfortunately, there is only a single path into the EMCs from the compositor chips. This means that
shaders cannot send blended pixels to the frame buffer at the same time they receive a new rasterized
region. We can overlap these transfers almost completely by having the renderers perform a null transfer
while the first shader unloads its pixel data to the frame buffer (see Figure 7.5). We call these null transfers
burps. Once the first shader has unloaded its pixels, the next shader can unload its pixels while the first
shader is reloaded. This continues until all of the shaders have unloaded their pixels.

Transfer

1
2
3

Renderers
Frame
BufferShaders

4
5
6
7
8
9

10

(burp)

11

All transfers
are from left

to right
R0 R1 R2 R3 S0 S1 S2 FB

Figure 7.5: Transfers for system with 4 renderers and 3 shaders, comput ing 2 samples per
pixel.

Burp transfers require an extra transfer every s supersampled regions (every s • k transfers). This overhead
is significant if either s or k is small. Phong shading requires at least 3 shaders, and reasonable antialiasing
requires at least 5 samples. The overhead for burps in this case is 1/15 = 6.67%.

A further source of overhead exists. When the last region of the image has been rasterized and composited,
it still must be shaded and transferred to the frame buffer. This could be pipelined with compositing for the
next frame—if the next frame can be rendered immediately (this would be the case in a real-time applica-
tion like flight simulation). If there may be a pause before the next frame, the current frame must be
finished without delay, since the delay may be arbitrarily long. Shading the last regions requires s region
times. Transferring the shaded regions to the frame buffer requires an additional s region times.
Unfortunately, these cannot be overlapped with other region transfers. If we are rendering a 1280 x 1024
image (64 regions) with 5 samples per pixel, and 3 Shaders, this amounts to 6/(64 • 5) = 1.88% overhead.

85

We can derive a formula for the total number of transfers required to render an image with r regions, s
shaders, and k samples per pixel. It is:

transfers = (s + 1) • r / s + // first sample (includes burp)
(k – 1) • s • r / s + // other samples (no burp)
2 • s // empty pipe

= rk + r/s + 2s // total

This formula makes intuitive sense: the rk transfers are the ideal number for r regions and k samples; the
r/s transfers are the number of burps; and the 2s transfers are the number of transfers to finish the last
regions. If the number of regions is not a multiple of the number of shaders, some shaders will be idle as
the last regions are computed. The formula in this case is more complicated. Let b = ceiling (r/s). The
number of transfers in this case is given by:

transfers = (s + 1) • b + // first sample (includes burp)
(k – 1) • s • b + // other samples (no burp)
2 • s // empty pipe

= skb + b + 2s // total

Again, the result is intuitive: skb is the theoretical number of regions (taking the idle shaders into account),
b is the number of burp transfers, and 2s is the number of transfers for the last regions.

Figure 7.6 shows the expected frame rate, considering image-composition–network performance alone, for
a range of rendering and system parameters. The transfer time, as mentioned above is 102.4 µsec for 64-bit
regions and 204.8 µsec for 128-bit regions.

Screen
resolution

Pixel
size Shaders Samples

Percent
overhead

Total
transfers

Frames/
second Application

640x512 64 bits 0 1 0 16 610.3 Gouraud

640x512 64 2 5 13.0 92 106.1 Gouraud, antialiased

640x512 128 4 1 42.8 28 174.4 Phong

640x512 128 4 5 13.0 92 53.1 Phong, antialiased

1280x1024 64 0 1 0 64 152.6 Gouraud

1280x1024 64 2 5 10.1 356 27.4 Gouraud, antialiased

1280x1024 128 4 1 27.3 88 55.5 Phong

1280x1024 128 4 5 7.0 344 14.2 Phong, antialiased

Figure 7.6: Composition-network performance under varying conditions.

86

CHAPTER 8

RENDERER/SHADER BOARD

A renderer/shader board implements an entire z-buffer rendering engine capable of rendering 70,000
z-buffered triangles per second and shading 160x128 pixels in parallel. A PixelFlow system can be
configured with any number of renderer/shaders. Renderers are responsible for storing the display
database, traversing it, transforming and rasterizing primitives, and compositing the rendered pixels with
pixels from other renderers. Shaders receive rendered pixels from the image-composition network, buffer
them, evaluate a shading model for all of the pixels in a 160x128-pixel region in parallel, and forward the
pixels to the frame buffer. Although a single board type is used to implement both functions, individual
renderer/shader boards must be designated as renderers or shaders when each application program begins.

A renderer/shader board has three main parts: a graphics processor, a rasterizer, and a compositor. The
graphics processor is a fast floating-point processor based on the Intel i860 microprocessor. It is similar to
the Graphics Processor board in Pixel-Planes 5 [MOLN89]. It contains its own local memory and has
access to the message-passing network and the rasterizer. The graphics processor is responsible for
traversing a partition of the display dataset (stored in its local memory), transforming primitives from
object coordinates into screen coordinates, computing instructions to be passed to the rasterizer, and sorting
these into bins corresponding to individual screen regions.

The rasterizer is a 160x128-pixel SIMD logic-enhanced memory array. It is similar to the Renderer board
in Pixel-Planes 5 [EYLE90]. It rasterizes using the Pixel-Planes approach of processing every pixel in the
array in parallel. The array can be moved from region to region, processing all of the primitives that fall
into each region, until the entire image has been calculated [FUCH89].

EMC Array
(80 chips,

160x128 pixels)

Receive
FIFO

Transmit
Register

IGC
(40 MHz)Input

Ctl

32 bits
@ 20MHz

32 bits
@ 20MHz

Message-Passing
Network

random

i860
(40 MHz)

VRAM
(8 Mbytes)

i860 Bus

64 bits
@ 20MHz

Graphics Processor Rasterizer

serial

160 bits
@ 80MHz

160 bits
@ 80MHz

Compositor
(80 Gazelle

22VP10-7 PLDs)

320 bits
@ 40MHz

Image-Composition
Network

Figure 8.1: Block diagram of a renderer/shader board.

88

Associated with the rasterizer is a compositor. The compositor merges pixel data from the rasterizer with
pixel data flowing over the image-composition network. It combines pixels arriving on the 160 input wires
(from the upstream renderer boards) with the corresponding pixels calculated at the current renderer. The
visible RGB and z values are passed on to downstream renderers, shaders, or a frame buffer on 160
outgoing wires.

Figure 8.1 shows a block diagram of a renderer/shader board. The following sections describe its
components in more detail.

8.1 GRAPHICS PROCESSOR

The graphics processor (GP) consists of an Intel i860 microprocessor, 8 Mbytes of VRAM memory, and a
message-passing–network interface. The network interface occupies one node on the ring network, and
allows devices on other ring nodes to send programs and data to the GP, and to receive data from it. The
GP consists of six main modules: the i860, its VRAM memory, a ring transmit interface, a ring receive
interface, a status register, and an EPROM for booting the i860. The GP is very similar to the Graphics
Processor board in Pixel-Planes 5. The main differences are the use of VRAMs instead of DRAMs and the
two-way interleaved-memory scheme explained in Section 8.1.2. Figure 8.2 shows a block diagram of a
GP.

Receive
FIFO

Transmit
Register

32 bits
@ 20MHz

32 bits
@ 20MHz

random port

i860
(40 MHz)

VRAM
(8 Mbytes)

GP Bus

32 bits
@ 20MHz

to Message-Passing
Network

32 bits
@ 20MHz

64 bits
@ 20MHz

64 bits
@ 20MHz

Boot
EPROM

Status
Register

8 bits
@ slow

64 bits
@ 10 MHz

to
IGC

serial
port

IGC Input
FIFOs

input control

Figure 8.2: Block diagram of the graphics processor.

8.1.1 Intel i860 Microprocessor

This subsection gives a brief overview of the Intel i860 microprocessor, the heart of the graphics processor.
For more information, see the i860 64-Bit Microprocessor Data Sheet [INTE90a], the i860 64-Bit
Microprocessor Hardware Reference Manual [INTE90b], or the i860 64-Bit Microprocessor
Programmer's Reference Manual [INTE90c].

The i860 is a 64-bit RISC microprocessor with on-chip code and data caches. Internally, it contains a RISC
integer processor and a 64-bit floating-point processor. The processor runs at 40 MHz and can perform an
integer operation and a floating-point operation (potentially a multiply/accumulate) every 40 MHz clock
cycle. This gives it a peak processing speed of 40 integer MIPS and 80 MFLOPS. Figure 8.3 shows a
block diagram of the i860 microprocessor.

89

To external bus
(64 bits data,

32 bits address)

64-bit
data-
paths

Internal bus

Floating-point
multiplier

Floating-point
adderGraphics unit

Data cache
(8 Kbytes)

Floating-point
control and
registers

(16 x 64 bits)

Instruction
cache

(4 Kbytes)

Integer unit
and registers
(32 x 32 bits)

Bus control
and memory
management

(128 bits)

Figure 8.3: Block diagram of the i860 microprocessor.

The integer processor controls overall operation of the i860. It executes load, store, integer, and control-
transfer instructions and fetches instructions for the floating-point processor. It contains 32 32-bit registers.
It can respond to software-initiated and externally-initiated traps and interrupts. It supports virtual memory
with a 64-entry, four-way set-associative translation lookaside buffer (TLB). When paging is enabled, the
i860 uses the TLB to translate logical addresses to physical addresses and to check for access violations.

The floating-point processor contains a 64-bit floating-point adder, multiplier, and parallel graphics unit. It
has its own set of registers, which can be accessed as 32 32-bit registers or 16 64-bit registers. Special load
and store instructions allow four adjacent 32-bit registers to be loaded from or stored to cache simultane-
ously. All floating-point and graphics instructions use these registers as their source and destination
operands. Graphics instructions use a special, parallel integer unit to perform multiple additions and
comparisons in parallel. Floating-point and graphics instructions have a latency of 3–4 cycles, but generate
a new result every clock cycle.

The instruction cache is a 4 Kbyte two-way set-associative memory with 32-byte blocks. It transfers up to
64-bits per clock cycle to the instruction unit. The data cache is an 8 Kbyte two-way set-associative
memory, also with 32-byte blocks. It transfers up to 64 bits per clock cycle to the integer unit and up to
128 bits per clock cycle to the floating-point unit. The data cache uses a write-back scheme. Caching can
be inhibited by software when desired.

The processor communicates with external memory and I/O devices via a 64-bit bus called the local bus.
The local bus runs at a 25 nsec pitch with a maximum speed of one cycle every 50 nsec (two 40-MHz clock
cycles). It is pipelined, allowing up to three bus requests to be outstanding at once.

8.1.2 VRAM Memory System

The graphics processor contains 8 Mbytes of VRAM memory. The memory is 64 bits wide (to match the
local bus) and contains four banks of sixteen 256K x 4 VRAM chips. The VRAMs' random ports are
connected to the i860's local bus. Their serial ports are mapped onto the IGC's input port. The VRAMs,
together with a DMA controller, form an input FIFO for the IGC (this will be described in detail in Section
8.2.1).

90

0x00000
0x00002

Addr<0> = 0

A
dd

r<
18

:1
>

A
dd

r<
19

>
 =

 0
Bank 0

(2 MBytes)
Bank 1

(2 MBytes)

Bank 2
(2 MBytes)

Bank 3
(2 MBytes)

0x00004
0x00006
0x00008
...

0x00001
0x00003
0x00005
0x00007
0x00009
...

0x7FFFE
0x80000
0x80002
0x80004
0x80006
0x80008
...

0x80001
0x80003
0x80005
0x80007
0x80009
...

0x7FFFF
0x7FFFC 0x7FFFD

0xFFFFE 0xFFFFF
0xFFFFC 0xFFFFD

LSB of
address

LSB of
address

Addr<0> = 1

A
dd

r<
19

>
 =

 1

A
dd

r<
18

:1
>

64 bits 64 bits

Figure 8.4: Four-bank, two-way interleaved memory organization.

The GP memory uses two-way interleaving to match the fast bus speed of the i860 (50 nsec cycle time)
with the slower speed of the VRAMs. Each of the two interleaved pairs of banks has its own memory
controller and can execute one fast-page-mode memory cycle in 100 nsec. The interleaved bank pairs or
partitions are arranged so successive 64-bit memory locations lie in different partitions (see Figure 8.4).
Reads and writes to consecutive memory locations (as in cache misses) hit alternate partitions. A high
percentage of memory operations are of this type. The average memory cycle time, therefore, can
approach the speed of the i860's local bus. This memory design differs from the design used in Pixel-
Planes 5, which does not use interleaving. It has been successfully implemented at speed in Sun
Microsystems' VX/MVX Visualization Accelerator [SUN91].

Dynamic memories require periodic refreshing to prevent stored data from being corrupted. The GP's
memory controller contains a timer that automatically initiates refresh cycles to meet this requirement.

8.1.3 Message-Passing Network Interface

Since there is no high-bandwidth communication traffic over the message-passing network for most appli-
cations, the GP's transmit and receive interfaces are fairly simple. The transmit interface is a single 32-bit
register. The receive interface is a 1024-word FIFO (a FIFO is needed for the receive interface to meet the
ring protocol of being able to accept a message immediately upon arrival).

Transmit Interface. The GP's transmit port consists of a 32-bit register on the i860's data bus. The GP
latches data into the register using shadow reads—reads from multiply-mapped instances of its data
memory. The i860's address space has 232 addresses—more than are necessary to address its VRAM
memory and I/O devices. The VRAM memory is mapped into the address space three times: once for
normal accesses, once to interpret read data as a destination address, and once to interpret read data as
outgoing message data.

When the i860 reads from the destination-address block, the transmit register latches the read data and
initiates a message transfer using the data in the register as the destination address. It asserts TxReady
while placing the destination address on its transmit port. When TxGo is received (meaning that the
receiver and a ring channel have been acquired), a bit in the status register is set. After loading a
destination address, the i860 simply loops waiting for this status bit to be set. It then transmit the data
words of the message by reading from the transmit data address block. Since the VRAM memory system

91

operates at 20 MHz, its speed matches the speed of the ring channel.

When the entire message has been sent, the i860 writes to the end message command register (see Section
8.1.4), terminating the message. This shadow-read method of transmitting data is twice as fast as using a
memory-mapped register, since only one bus cycle is needed per data word, rather than two, in the case of a
memory-mapped register.

Receive Interface. The receive interface buffers incoming messages in the receive FIFO. When the mes-
sage has been received in its entirety, the receive interface interrupts the i860 with a RxMsgInt interrupt.
The i860 then reads the message from the FIFO, which is mapped into its address space. The message
should contain a word count in one of the first data words, so the i860 knows how many words to read.
The i860 signals that it has finished reading a message by writing to the clear message command register.

8.1.4 Status and Command Registers

Read and write registers for status and synchronization are memory-mapped onto the i860's local bus. The
status register is a read-only register that contains a 16-bit global synchronization timer and several status
bits. The command registers are write-only registers for configuring and controlling various board-level
devices.

Status Register. The synchronization timer is a 16-bit counter that increments every 50 nsec and interrupts
the i860 every time it overflows. It is reset to zero when a system reset occurs, and begins counting
immediately after reset is deasserted. As a result, this timer is nearly synchronous from board to board. By
keeping the high-order bits of the counter in memory (incremented whenever a timer interrupt occurs), a
global system timestamp can be maintained.

The status bits indicate the status of interrupts and other board-level information. The interrupt bits are
sticky bits which are set when an interrupt condition occurs and remain set until explicitly cleared by
writing to the appropriate command register (described in the following section). The remaining bits
indicate board-level information, such as whether:

• IGC FIFOs have room for more data

• IGC FIFOs are empty

• the TxGo signal has been received

• a message has been received over the message-passing network

Command registers. Command registers are implemented as special write-only addresses, which reset
interrupts bits and implement various board-level commands. Some of the important command-register
functions are:

• Reset various interrupts

• Signal the end of an outgoing message

• Signal that an incoming message has been processed

8.1.5 IGC Input FIFOs

The GP sends commands to the rasterizer using two FIFO queues, a rendering command FIFO (RFIFO)
and a transfer command FIFO (TFIFO). The RFIFO stores IGC commands for rasterization. The TFIFO
stores copy and transfer commands for the image-composition network.

When the GP prepares commands for a region, it stores them in its own VRAM memory. It queues
commands up by writing a control word, consisting of the command's address and length, into a 36-bit
hardware FIFO for either the RFIFO or TFIFO. The queue, then, consists of two hardware FIFOs that store
control words in order, and the actual data, which resides in VRAM memory.

Both hardware FIFOs are 1K, synchronous FIFOs that are memory-mapped into the i860's address space.
Operation of the FIFOs will be explained further in Section 8.2.1.

92

8.1.6 Graphics-Processor Algorithm

The GPs on each Renderer communicate with the host computer over the message-passing network and the
IGC via the IGC input structure. The GP interacts with the host for two purposes: 1) to receive new
viewing transformations, editing commands, and the render signal, and 2) to inform the host when it has
processed these commands and is ready to accept commands for the next frame.

When a GP receives the render signal from the host, it transforms all of the primitives in its portion of the
database into screen coordinates and classifies them with respect to screen regions. Transformed primitives
are stored in blocks of memory called bin chunks, which are allocated as needed to store primitives that fall
into each region. Note that a given primitive may fall into more than one region. This is a minor source of
inefficiency and is analyzed in Section 8.3.1.

8 regions
(1280 pixels)

8 regions
(1024 pixels)

1 5 9 13 2 6 10 14

17 ...

3 7 11 15 4 8 12 16

19 20

18

Figure 8.5: Interleaved region processing order.

When all of the primitives have been bin-classified, the GPs go through each screen region, converting
primitives in the corresponding bin into IGC instructions for the rasterizer. To improve dynamic-load
balance, regions are generally processed in an interleaved order, as shown in Figure 8.5 (and discussed in
Section 6.2.5). When every screen region has been processed, the GP is finished with the frame and sends
the finished signal to the host. Figure 8.6 gives pseudocode for this outer-level algorithm.

repeat {
process editing commands from the host;
wait for render command from the host;
bin-classify primitives;
for each screen region

process primitives in region
send finished signal to the host;

}

Figure 8.6: Outer-level GP algorithm.

Processing screen regions. To process a screen region, the GP converts all of the primitives in the
corresponding bin into IGC commands, stores them in its VRAM memory, and stores a pointer to the
commands in the RFIFO.

When all of the commands (primitives) for a region have been loaded into the VRAM and RFIFO, the GP
places an additional command, IGC_REGION_DONE, in the RFIFO, and two commands,
IGC_REGION_COPY and IGC_REGION_XFER, in the TFIFO. The GP then moves to the next region and
repeats the process.

IGC_REGION_DONE tells the rasterizer that it has processed all of the commands for a region;

93

IGC_REGION_COPY tells the rasterizer to copy the region's pixel data to the transfer buffer in the EMC
array; and IGC_REGION_XFER tells the rasterizer to composite the region.

If more than one sample is required per pixel, the GP must load additional sets of rendering commands into
the IGC FIFO for each new sample point. This can be done by repeating the operations above (using a
slightly modified transformation matrix), or by reusing the commands for the first sample point. Since the
only difference between commands for different sample positions is a slight offset in x and y screen coordi-
nates, and A and B tree coefficients are independent of x and y displacements, the existing commands can
be reused if C is replaced with C – ∆x•A – ∆y•B.

Adjusting coefficients in this fashion is approximately twice as fast as generating the commands from
scratch (see Section 8.3.2). A minor complication is that the initial bin-classification must take all of the
sample points into account. This can be done by bloating each primitive's bounding box by the maximum x
and y offsets for any sample point (less than a pixel diameter for typical reconstruction filters). Adjusting
coefficients, rather than calculating successive samples from scratch, allows the GP to support super-
sampling with less than a factor-of-k increase in computation.

repeat {
// First sample
Convert transformed primitives into IGC

instructions and store in RFIFO;
Place IGC_REGION_DONE command in RFIFO;
Place IGC_REGION_COPY command into TFIFO;
Place IGC_REGION_XFER command into TFIFO;

// Additional samples
for each remaining sample

Adjust coefficients and store IGC instructions
in RFIFO;

Place IGC_REGION_DONE command in RFIFO;
Place IGC_REGION_COPY command into TFIFO;
Place IGC_REGION_XFER command into TFIFO;

}

Figure 8.7: GP region-processing algorithm.

The GP performs flow control by checking the FIFOs to be sure they will not overflow before writing
commands to them. Figure 8.7 gives pseudocode for the region-processing algorithm. Note that this ver-
sion of the algorithm assumes that one region is processed at a time. Systems with shaders require that
multiple regions be processed simultaneously (see Section 7.3.2). This requires minor modifications to this
algorithm, which we will illustrate in Section 9.1.1.

8.2 RASTERIZER

The rasterizer converts primitive geometry into pixels when the board operates as a renderer and computes
the shading model for each pixel when the board operates as a shader. Its main components are the Image
Generation Controller (IGC), its associated input FIFOs and control circuitry, and the array of 80
PixelFlow Enhanced Memory Chips (EMCs).

The IGC interprets instructions from the GP that are queued in its input FIFOs. It is a microcoded engine
that executes high-level IGC instructions, converts floating-point coefficients into the serial form required
by the EMCs, and sequences the cycle-by-cycle operation of the EMCs.

The EMCs are CMOS logic-enhanced memory chips, each containing 256 pixel processors. Each pixel
processor has a 1-bit ALU, 512 bits of associated memory, and a leaf cell of the linear-expression tree. The
pixel processors are arranged as a 160x128-pixel SIMD computing surface, that operates on a 160x128-
pixel region in parallel. Each EMC has a 4-bit, bidirectional, 40-MHz serial port. Either 64 or 128 bits of

94

pixel memory (depending on the configuration) form a transfer buffer for communication over the EMC's
serial port. The serial port provides the EMCs with access to the image-composition network.

Figure 8.8 shows a block diagram of the rasterizer. The following sections describe the rasterizer
components in more detail.

GP Bus

validT/R

VRAM
(8 Mbytes)

format

ack

ctl
ack

address

RFIFOTFIFO

DMA
Engine

Stream
Parser

data

32

EMC control and data

3

control

3232 32

random port

serial port

XferGo
(to/from

compositor
sequencer) XferReady

3232 64
64 bits @ 20 MHz

EMC array
(80 chips,

160x128 pixels)320 bits
@ 40 MHz

(to/from
compositor
data path)

IGC

EMC serial
port

Rasterizer

Figure 8.8: Block diagram of the rasterizer.

8.2.1 Input FIFOs and Stream Parser

The rendering command FIFO (RFIFO) and transfer command FIFO (TFIFO) provide communication and
buffering between the GP and the rasterizer. The two hardware FIFOs store pointers to blocks of data in
VRAM and the length of each block. Both FIFOs are needed because the rasterizer performs two types of
processing: rasterization, which is the background task, and region transfers, which occur at unpredictable
times (when the image-composition network is ready).

A DMA controller reads pointers from the hardware FIFOs and fetches the data from the VRAMs' serial
ports. The serial ports of all of the VRAM banks are connected together to a common 32-bit bus and
connected to the IGC input port. A three-bit field of the IGC command opcode is fed into an input
controller called the stream parser. The stream parser decodes these bits, tells the DMA engine which
FIFO to read next, and loads IGC commands into the appropriate IGC input register.

Each hardware input FIFO can store up to 1024 control words. Each control word can point to up to 16K
words of IGC command data, so the total FIFO capacity is 15 million words per FIFO—twice the GP's
memory size! The IGC processes commands at an average rate of about 5 Mword/second for typical
algorithms. If the VRAMs' serial ports run at 20 MHz, they can feed the IGC at four times the typical rate,
which should be ample for most applications.

The stream parser interleaves commands from the RFIFO and TFIFO based on the state of the image-
composition network. It initially reads commands from the RFIFO, but begins processing commands from
the TFIFO when a new transfer needs to be (and is ready to be) initiated.

95

The stream parser accepts two special commands that synchronize transfers over the image-composition
network: IGC_REGION_DONE and IGC_REGION_XFER. It also has three internal variables that
regulate the processing of commands from the two input FIFOs and interact with these special commands:
BuffCnt, BuffWait, and XferWait.

IGC_REGION_DONE indicates that a screen region has been rasterized and is ready to be transferred over
the image-composition network. It is generally loaded into the RFIFO after the commands for rasterizing a
region have been loaded. IGC_REGION_XFER actually initiates the transfer. It is generally loaded into
the TFIFO after the commands which copy pixel data from a buffer in pixel memory into the transfer
buffer.

BuffCnt keeps track of the number of occupied region buffers in pixel memory (regions that have been
rasterized but have not been transferred). It is incremented when an IGC_REGION_DONE command is
received and decremented when an IGC_REGION_XFER command is received.

BuffWait is a semaphore that blocks the processing of commands from the RFIFO. It is set when all of the
buffers in pixel memory are occupied (i.e. BuffCnt = number of physical buffers available). It is cleared
when the next IGC_XFER_REGION command is received, indicating that a transfer can begin and a region
buffer is now available.

XferWait is a semaphore that blocks the processing of commands from the TFIFO when set. It is set when
an IGC_XFER_REGION command initiates a transfer. It is cleared when the transfer finishes (when
XferGo makes a transition from high to low).

Section 9.1.3 describes the complete rasterizer algorithm. Section 9.1.1 gives a step-by-step illustration of
how regions are processed, how the input stream shifts from one input FIFO to the other, and how the
BuffWait condition is handled. One detail to note is that the DMA engine and IGC must be able be stop
processing a set of commands from one FIFO at any IGC command boundary in a block of commands
(commands referenced by a single control word). This is necessary to minimize the overhead between
region transfers. For example, if a large block of commands from the RFIFO is being processed when
XferDone is received, the DMA engine must be able to shift to the TFIFO before finishing the block of
commands—otherwise it would have to delay the next transfer for an arbitrary length of time, degrading the
performance of the image-composition network. The soonest the DMA engine can shift input streams is at
an IGC-command boundary. The DMA engine must be able to resume processing the previous block of
commands when the transfer commands have been processed.

8.2.2 Image Generation Controller

The Image Generation Controller (IGC) controls and sequences the EMCs and synchronizes the rasterizer
with the composition network. The IGC is a custom chip with its own microcode store and a serializer to
convert floating-point input coefficients into the fixed-point, bit-serial form required by the EMCs. It
processes commands from the input FIFOs and stream parser and drives the various control and data inputs
of the EMC array.

The IGC's input stream is a series of commands, which can span one or more 32-bit words. The first word
in each command is an instruction word, which specifies the starting microcode address for the command
and, implicitly, the format of the operands (the operands typically are A, B, and C coefficients for the linear-
expression tree).

Each IGC command is executed by an IGC microcode routine that can take several cycles to execute.
Sample IGC instructions are: I G C _ L O A D, which loads tree results into pixel memory;
IGC_MEMpluseqTREE, which adds tree results to a location in memory; IGC_SETENABS, which sets the
enable registers in every pixel processor; and IGC_TREEgeZERO, which sets the enable registers in pixel
processors whose tree results are greater than or equal to zero. The full set of IGC instructions for Pixel-
Planes 5 is described in [EYLE90]. Additional instructions, such as IGC_COMP_CONFIG,
IGC_COMP_LEN, IGC_XFER_REGION, and IGC_REGION_DONE, are required to interface with the
image-composition network.

The IGC also has two condition-code inputs that allow it to test external conditions, and several control
outputs that allow it to communicate with external devices besides the EMCs. One of these outputs is used
for the XferReady signal, which tells the compositor that it can begin the next region transfer (see Section

96

7.2.1). The other control outputs are used to load the compositor configuration register and timer using the
IGC_COMP_CONFIG command (see Section 7.2.2).

8.2.3 EMC Array

Rasterization is actually performed in the array of 80 PixelFlow EMCs. Each EMC contains a 1-bit ALU
and 512 bits of local memory for 256 pixels. The EMCs form a 2-dimensional SIMD processor array that
covers a 160x128-pixel region of the screen. This logical array can be "moved" to operate on any region of
the display screen.

Each pixel is provided with its own 1-bit processor, an output of the linear-expression tree, 512 bits of
local memory, and a 64-bit or 128-bit communication register or transfer buffer. Figure 8.9 shows a logical
diagram of an EMC.

25
6

P
ix

el
s 12

8
P

ix
el

s

2 2

Pixel
Memory
(384 bits)

Transfer
Buffer

(128 bits)
P

ix
el

 A
LU

's

Li
ne

ar
 E

xp
re

ss
io

n
T

re
e

Address Instruction A,B,C
Circuitry for one pixel

2 x 2 @ 40 MHz (to image-composition network)

Figure 8.9: Logical diagram of a PixelFlow EMC.

Pixel processors. Pixel processors are general-purpose 1-bit processors with carry registers and enable
registers, which allow operations to be performed on a subset of the pixels. The pixel processor can use
tree results or local memory as operands and can write results back to local memory. It can also transfer
data between memory, the carry register, and the transfer buffer.

Linear-expression tree. The linear-expression tree evaluates bilinear expressions Ax + By + C for each
pixel of the array in parallel. A, B, and C are coefficients loaded from the IGC and (x, y) represent the
pixel's screen coordinates. Many graphics calculations can be cast into the form of bilinear expressions.
For example, the edges, depth, and color values of Gouraud-shaded triangles can be cast into this form
[FUCH85].

The IGC controls the operation of the EMC array. IGC instructions and coefficients are serialized and
broadcast to all of the EMCs in parallel. The SIMD pixel processors execute these instructions in lock-step.
The enable registers in each pixel processor are used to control which subset of the pixel processors are
active at any given time.

Pixel memory. The 512 bits of local memory at each pixel are sufficient to store depth, color, and,
perhaps, other intermediate data for several screen regions. This allows regions to be buffered in the EMCs
to prevent bottlenecks due to uneven distributions of primitives on the screen. When a region of pixels is
ready to be composited, the corresponding data is copied from its position in regular pixel memory to the
transfer buffer at each pixel.

Transfer buffer. The transfer buffer is a distinguished, 128-bit portion of pixel memory. It can be

97

accessed in two ways: 1) by the pixel processor (normal mode), and 2) via an external serial port (transfer
mode). In normal mode, the ALUs can access the transfer buffer just like any other part of pixel memory.
This allows the ALUs to copy data into or out of the transfer buffer. In transfer mode, the transfer buffer is
isolated from the ALUs and connected to the EMC's serial transfer port.

Li
ne

ar
 E

xp
re

ss
io

n
T

re
e

T
ra

ns
fe

r
B

uf
fe

r

P
ix

el
 A

LU
's

Enhanced Memory Chip

1/2 of
Compositor

PLD
Z31

Z30

Z29

Z28

Z'31Z'30Z'29....

Z"31Z"30Z"29....

Z'28

....

....

From previous renderer

To next compositor

Pixel
Memory

2 @ 40 Mhz

1 @ 80 Mhz

Figure 8.10: Snapshot of the EMC transfer port in operation.

Figure 8.10 shows a snapshot of the transfer port in operation. The transfer buffers in each pixel are
connected to a double 2-bit-wide external port on the EMC called the serial or transfer port. Two bits of
each of two pixels are presented at the port simultaneously. On the next cycle, the next most significant
two bits of each pixel are presented. The port cycles through every bit-pair of every pixel contained in the
EMC's transfer buffer during a transfer. The amount of data transferred is either 64 bits or 128 bits per
pixel, depending on an external input called XferLen. The transfer port runs at 40 MHz, so 64-bit transfers
take 128•32•25 nsec = 102.4 msec and 128-bit transfers take 204.8 msec. The transfer port provides a
communication bandwidth of 20 MByte/second per EMC.

Each EMC's transfer port mates with a compositor chip. This provides the high-bandwidth connection
between the rasterizer and image-composition network.

EMC feasibility. The PixelFlow EMC described here is very similar to the EMC used in Pixel-Planes 5
[FUCH89]. The three differences are: 1) additional memory per pixel, 2) higher-speed transfer port, and
3) larger, configurable transfer buffer. None of these modifications are difficult to implement.

The Pixel-Planes 5 EMC was built using 1.6µ CMOS technology. A similar 1.2µ CMOS process is
available now, providing higher density and faster transistors. The Pixel-Planes 5 EMC used a 6-transistor
static cell to implement the pixel memory. A 4-transistor dynamic-memory cell can be substituted easily,
doubling the memory density. The faster process makes the 40 MHz transfer port easy to implement. The
larger transfer buffer is a minor design change.

8.2.4 Rasterizer Algorithm

The rasterizer processes IGC instructions describing the primitives in the scene and converts them into
pixel values. The rasterizer operates in region-sized batches, rasterizing the primitives for one region (one
region-sample, when supersampling) at a time. It then copies the pixel data into the EMCs' transfer buffer
to await composition.

The background task of the IGCs and EMCs is to rasterize regions. The EMCs contain buffering for up to

98

four regions in addition to the region being scanned out of the transfer buffer. It continues rasterizing as
long as commands are present in the RFIFO and space remains in pixel memory to rasterize the current
region.

From time to time rasterization is "interrupted" by high-to-low transitions of XferGo from the compositor
sequencer, indicating that a transfer has completed. This tells the stream parser to read commands from the
TFIFO, which contains IGC_REGION_COPY and IGC_REGION_XFER commands. These commands
copy pixel data from the appropriate buffer in the EMC to the EMC transfer buffer and set the XferReady
signal, indicating that the next transfer is ready to begin. When these two commands have been processed,
the IGC resumes processing commands from the RFIFO.

repeat {
if (!XferWait && !TFifoEmpty) {

// Process a command from the TFIFO
read FifoCommand from TFIFO;
switch (FifoCommand) {

case IGC_REGION_COPY:
copy region into Transfer Buffer;
break;

case IGC_REGION_XFER:
--BuffCnt;
XferReady = TRUE;
XferWait = TRUE;
BuffWait = FALSE;
break;

}
}

else if (!BuffWait && !RFifoEmpty) {
// Process a command from the RFIFO
read FifoCommand from RFIFO;
switch (FifoCommand) {

case (any rendering command):
do some rendering;
break;

case IGC_REGION_DONE:
++BuffCnt;
if (BuffCnt ≥ MAX_BUFFS)

BuffWait = TRUE;
break;

}
}

else
do nothing;

// Reset XferReady and XferWait if necessary
if (XferGo becomes TRUE)

XferReady = FALSE;
if (XferGo becomes FALSE)

XferWait = FALSE;
}

Figure 8.11: Rasterizer algorithm.

The state variable BuffWait prevents rasterization commands from being processed when no buffer space is
available for rasterized pixels. The state variable XferWait prevents a new region from being copied into

99

the transfer buffer until the previous transfer is finished (Section 8.2.1 explains the function of these
variables in more detail). Figure 8.11 gives pseudocode for the rasterizer algorithm.

8.3 PERFORMANCE MODEL

In this section we develop a performance model for the renderer/shader board. We must consider the raw
processing speed of each module and inefficiencies that may occur during operation. The results developed
here are used as parameters for the system simulator described in Chapter 9.

8.3.1 Bin Classification

Since the SIMD rasterizer contains a processor for each pixel in a 160x128-pixel region, the processing
time for a primitive does not depend on the size of the primitive, as long as it falls entirely within a region.
Large primitives, or primitives that cover region boundaries can affect two or more regions. This increases
the number of primitives that must be processed by the rasterizers. We call this phenomenon bin
replication. We define the bin-replication factor for a given scene to be the number of primitives actually
rasterized divided by the number of visible primitives.

How large are the bin-replication factors for typical scenes? We will approach this problem in two steps:
1) developing a simplified model, which we will solve analytically, and 2) validating the model with
measurements on actual datasets.

Analytic model. We make the following simplifying assumptions: Assume that every polygon in the
dataset has an identical screen-space bounding box of width w and height h. Assume, further, that each
polygon has an equal probability of falling anywhere on the screen. Let W be the width and H be the height
of a screen region.

We can compute the average number of regions covered by a given polygon by the following integral:

bin replication factor = p x ,y()r x ,y()dxdy∫
screen

∫

where p(x,y) is the probability that the center of the bounding box falls at point (x,y) and r(x,y) is the
number of regions affected by this placement of the bounding box. If we ignore the effect of the edge of
the screen (11% of the region boundaries are screen edges on a 1280x1024 screen), we can reduce this to an
integral over a single screen region with p(x,y) =1/HW over the entire region:

p x ,y() r x ,y()
0

W

∫
0

H

∫ dxdy = 1
HW

r x , y() dxdy
0

W

∫
0

H

∫
We can determine r(x,y) using the geometric construction shown in Figure 8.12. The screen region is
divided into three parts: corner areas, edge areas, and a center area. If the center point of a w x h bounding
box falls in a corner area, the primitive must be processed in four screen regions. If it falls in an edge area,
the primitive must be processed in two screen regions. If it falls in the center area, the primitive must be
processed in only one screen region.

100

W

H Regions in which ∆ must
be processed twice

Regions in which ∆ must
be processed four times

Bounding box for
canonical primitive

w

h

w/2

(x,y)

h/2

(center of
bounding box)

Regions in which ∆ must
be processed once

Figure 8.12: Geometric construction for evaluating r(x,y).

Using this geometric construction, the integral reduces to the following:

4 ⋅ area of cornerregions + 2 ⋅ area of edgeregions + 1 ⋅ area of center region
HW

=
4 ⋅ 4 w

2() h
2

 + 2 ⋅ 2 h
2

 W −w() + 2 w
2() H − h() + 1 ⋅ W −w() H − h()

HW

=
4 ⋅ wh() + 2 ⋅ hW + wH − 2hw() + 1 ⋅ WH − Wh − Hw +wh()

HW

= w + W
W

h + H

H

This equation was first derived by John Eyles as part of the performance model for Pixel-Planes 5, which
has similar inefficiencies due to bin replication. Figure 8.13 plots the predicted bin-replication factor for
several square region sizes and square bounding-box sizes. The predicted bin-replication factor for the
160x128-pixel region size of the prototype system is 1.15 for 10x10-pixel bounding boxes and 1.30 for
20x20-pixel bounding boxes.

Bin-
replication

factor

Region size

32x32 64x64 128x128 256x256

1.2

512x512

10x10

20x20

1.4

1.0

1.6

1.8

2.0

2.2

2.4

2.6

Bounding box size

Figure 8.13: Bin replication factor as function of region size.

101

Empirical measurement. Appendix A contains the actual bin-replication factors for the six sample
databases. Figure 8.14 lists the average triangle area and the predicted and actual bin-replication ratios for
these databases. To compute w and h, we assumed that primitives cover one third of the area of the
bounding box (an assumption based largely on intuition—it can be quite poor for databases with long, thin
primitives). Therefore, w = h = sqrt(3A), where A is the average screen-space area of the primitives in the
dataset.

Visible Average Bin-replication ratio

Dataset triangles triangle area Predicted Measured

Space station and shuttle 6,549 264.08 1.43 1.53

Poliovirus 369,819 42.07 1.16 1.17

Radiosity lobby 4,786 1,117.23 1.98 2.21

House 51,922 146.26 1.32 1.25

Earth 128,880 22.94 1.12 1.14

Pipes 137,747 32.28 1.15 1.15

Figure 8.14: Predicted and actual bin-replication factors for sample datasets rendered at
1280x1024-pixel resolution.

Earth Pipes

Bin-
replication

factor

Space Polio-
virus

Radiosity
lobby

House

1.2

1.4

1.0

1.6

2.0

2.2

1.8
Predicted

Measured

Bin-replication factor

Figure 8.15: Graph of results in Figure 8.14.

Figure 8.15 plots this same information. We can see that the simplified model correlates well with the
measured replication factors. For all of the sample databases with large numbers of primitives (excluding
the space and lobby databases), the bin-replication factor is less than 1.2. This makes intuitive sense, since
high-complexity databases tend to have small primitives. This corresponds to a relatively small amount of
rasterization overhead, and should not significantly degrade the performance of the system. Bin-replication
affects Pixel-Planes 5, as well, and turned out to have only minor impact on the system's performance.

8.3.2 Renderer Performance

To build a performance model for the renderer board we need to know how fast the different board compo-
nents bin-sort, transform, adjust, and rasterize primitives. Pixel-Planes 5 uses i860s for transformation and
Pixel-Planes EMCs for rasterization, so we used the measured performance of Pixel-Planes 5 as a starting
point. In consultation with David Ellsworth, who has performed extensive performance analysis on Pixel-

102

Planes 5, we arrived at the performance estimates shown in Figure 8.16.

Gouraud shading Phong shading

Task Clock cycles Time (nsec) Clock cycles Time (nsec)

Graphics processor
 Bin-classification time
 Transformation time
 Adjusting time

225
250
220

4,500
5,000
4,400

275
300
220

5,500
6,000
4,400

Rasterizer
 Rasterization time
 Region copy time

230
132

5,750
3,300

300
260

7,500
6,500

Figure 8.16: Renderer performance model.

The bin-classification time, transformation time, adjusting time, and rasterization time all refer to the time
required to process a single primitive. The region-copy time is the time required to copy a region's worth of
pixel data from pixel memory to the transfer buffer in the EMCs.

We can use these statistics to test the balance between GPs and rasterizers. To compute a Phong-shaded
image antialiased with 5 samples per pixel, the GP spends one bin-classify time (5,500 nsec), one transfor-
mation time (6,000 nsec), and four adjust times (4•4,400 nsec) per primitive, a total of 29,100 nsec. The
rasterizer spends five rasterization times (5•7,500 nsec) per primitive, a total of 37,500. Thus, the GP and
rasterizer are balanced to within 23% for antialiased triangle rendering. Bin-replication overhead affects
the rasterizer more than the GP, so this evens the balance further.

8.3.3 Shader Performance

Shader performance is less critical than renderer performance, since we can provide the system with as
many shaders as necessary to calculate a given shading model. This is a fixed cost for the system, indepen-
dent of the number of renderers and the renderers' performance.

From measurements made on Pixel-Planes 5, we estimate that shaders require approximately 400-500 µsec
to Phong-shade a region of pixels with a single light source. Since the transfer time for Phong-shaded
pixels is 204.8 µsec, between two and four shaders are needed for the system to run at full speed when
Phong shading. Additional light sources, or more complex shading models, such as procedural textures
may double or triple the shading time.

There is an additional advantage to using more shaders: fewer burp transfers are required, so the effective
composition network bandwidth increases. We anticipate that four shaders are sufficient for most deferred-
shading applications.

CHAPTER 9

CONTROL ALGORITHMS AND PERFORMANCE

This chapter analyzes system-wide control and performance issues. Section 9.1 describes the distributed
control algorithm used to synchronize the graphics processors, rasterizers, and compositors in the system.
Section 9.2 investigates the amount of buffering required to minimize dynamic load imbalances. Section
9.3 describes the simulation method and gives performance estimates for a range of databases and system
configurations.

9.1 SYNCHRONIZATION AND CONTROL

In previous chapters we described the boards in a PixelFlow system and the portion of the rendering
algorithm performed on each board. This section describes the overall synchronization and control of the
system. Section 9.1.1 discusses synchronization between the rasterizer and compositor on a renderer board.
Section 9.1.2 discusses rendering recipes, the method of high-level control.

9.1.1 Rasterizer/Compositor Synchronization.

Transfers over the image-composition network can be considered to be the heartbeat of a PixelFlow system.
They occur extremely rapidly; over 800 transfers are needed to compute a Phong-shaded, antialiased, high-
resolution image. Transfers cannot begin until every board in the system is ready.

When the composition network begins transferring a region, the transfer continues without interruption
until the entire region has been transferred. The control path of the composition network sequences
transfers and synchronizes transfers with devices on each board.

Figure 9.1 shows a simplified view of the rasterizer and compositor components involved in synchronizing
region transfers. Here we have lumped the IGC and pixel processors into a single entity called the raster-
izer. Buffers 0–3 are portions of pixel memory that can store a region's worth of pixels. Pertinent state
variables and synchronization signals are also labeled.

Ready
Out

Ready
In

Go
Out

Go
In

Pixels
Out

Pixels
In

Xfer
Go

Xfer
Ready

BuffWait

Sequencer

Rasterizer

Rendering
commands

from GP Buffer 3

Compositor

Transfer
commands

from GP Transfer
FIFO

Render
FIFO

Pixel
Memory

XferWait

Buffer 2

Buffer 1

Buffer 0

Transfer Buffer

Figure 9.1: Synchronization components on a renderer board.

104

Figures 9.2(a)-9.2(f) show snapshots of the system while rasterizing and compositing several regions.
Active signals and datapaths are indicated by solid black lines. Buffers that contain data are indicated by
dark gray halftones.

In Figure 9.2(a), Region 0 is rasterized while further IGC instructions for the region are loaded into the
RFIFO. In Figure 9.2(b), rendering commands for Region 0 have been completely loaded into the RFIFO;
the GP is loading its copy and transfer commands into the TFIFO. In Figure 9.2(c), Region 1 has been
completely loaded into the RFIFO and TFIFO; Region 0 is copied into the transfer buffer.

In Figure 9.2(d), the rasterizer processes Region 1; the GP is one region ahead of the rasterizer. Pixel data
for Region 0 has been copied into the transfer buffer, causing XferReady to be asserted. In Figure 9.2(e),
Region 2 is rasterized while Region 0 is composited. In Figure 9.2(f), Region 1 is composited.
Rasterization has stopped because no buffer space is available in pixel memory. It can resume when a
buffer becomes available. (This scenario is especially likely when rendering datasets with small numbers
of primitives).

105

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

Pixels
Out

Pixels
In

Go
Out

Go
In

Ready
Out

Ready
In

Xfer
Ready

Xfer
Go

0

1

2

3

T

Rasterizer

XferWait

RFIFO

Sequencer

from GP

Pixel Memory

from GP

BuffWait

Compositor

TFIFO

copy cmds
for region 0

region 0

region 0 region 0

region 2

copy cmds
for region 1

region 1

region 1

region 0

copy cmds
for region 1

region 2

copy cmds
for region 0

region 1

region 0

copy cmds
for region 1

region 0

region 0

region 2

region 1

region 0

region 3

region 2copy cmds
for region 1

region 5

region 1

region 1

region 6

copy cmds
for region 1 region 3

region 2

region 4

copy cmds
for region 5

(a) GP loads rendering commands into RFIFO.
Region 0 is rasterized.

(b) GP loads copy commands into TFIFO. Region 0
is rasterized.

(c) Region 0 pixels are copied from Buffer 0 to
transfer buffer.

(d) Region 1 is rasterized. Sequencer waits for 'Go'
signal.

(e) Region 0 is composited. Region 2 is rasterized. (f) Region 1 is copied into transfer buffer.
Rasterization pauses because all buffers are full.

Rasterizer

XferWait BuffWait

Rasterizer

XferWait BuffWait

Rasterizer

XferWait BuffWait

Rasterizer

XferWait BuffWait

Rasterizer

XferWait BuffWait

Rasterizer

XferWait BuffWait

Figure 9.2: Snapshot of renderer in various stages of operation.

106

9.1.2 Rendering Recipes

The interlock scheme above handles low-level synchronization between system components. A high-level
control scheme is needed to specify the semantics for region transfers and to control the overall progress of
the rendering algorithm. We have adopted a distributed control method, in which each board keeps track of
the context for each transfer. Each system module (graphics processor, rasterizer, compositor, frame
buffer, etc.) keeps track of the action it must perform during each transfer time. These lists of actions
implicitly define the rendering algorithm. We call these lists of instructions rendering recipes.

Prior to rendering each frame or series of frames, each module must be given an appropriate rendering
recipe. The recipe must take into account information such as the resolution of the display screen, the
number of shaders, and the number of samples per pixel. As the frame is computed, each board follows its
respective recipe. For example, a shader's recipe may tell it to load pixels arriving over the image-
composition network on a particular transfer. The renderers' recipes must tell them to put the appropriate
data on the composition network.

During burp transfers, renderers must perform the normal handshake operations even though they are not
transmitting data or performing useful work. This means that graphics processors must send
IGC_REGION_DONE and IGC_REGION_XFER commands to the rasterizer, and the rasterizer must hand-
shake with the compositor in the usual way, even if the renderer is not transferring pixels.

Polygon rendering. The rendering recipe for a renderer or shader specifies the GP's task for the region, the
rasterizer's task, and the nature of the transfer (Composite, Load, Unload, etc.). The rendering recipe for a
frame buffer specifies whether to load pixels and where they should be stored in the VRAM array.

Figure 9.3 shows a complete set of rendering recipes to compute a 6-region image without shaders or
supersampling. Each row in the figure represents a component in the system. All of the renderers receive
the same rendering recipe. Therefore, only one row is provided for the graphics processors and one for the
rasterizers. Each column represents a region time during the algorithm (note that the first two region times
do not requires transfers over the composition network). The entire algorithm requires only 6 transfers,
since no burp transfers are needed.

Graphics Processor

Rasterizer EMC's

Frame Buffer

Rasterizer Comm. Port

r0 r1 r2

r0 r1 r2

r0 r1 r2

r0 s1

ri represents region i
* means no transfer needed over composition network

r2

r3

r3

r3

r3

r4

r4

r4

r4

r5

r5

r5

Transfer

* * 0 1 2 3 4 5

r5

Figure 9.3: Rendering recipes to compute a 4-region image without shaders or antialiasing.

It is appealing to think of the entire system operating in lock step, with each module performing the same
step in the rendering recipe at the same time, as shown in the figure. Although this is a useful conceptual
model, it is not how the system operates. Only the image-composition network operates synchronously.
The rasterizers are separated from the composition network by buffering and may be up to four regions
ahead. The graphics processors are separated from the rasterizers by buffering and can be many regions
ahead of the rasterizers.

Section 7.3.2 described the more complex sequence of calculations and transfers needed to render a frame
with shaders and supersampling. Shaders require multiple region times to shade each region and renderers
are required to burp to let shaders send pixels to the frame buffer.

Figure 9.4 shows a set of rendering recipes for a system with 2 shaders computing an image with 2-sample-
per-pixel antialiasing. Each shader has a slightly different recipe, since shaders are loaded and unloaded at

107

different times. Notice that the renderers burp for one transfer every four region-times to allow the first
shader to transmit its pixels to the frame buffer. The halftoned cells trace the progress of region 2 through
the system.

Graphics Processor

Rasterizer EMC's

Frame Buffer

Rasterizer Comm. Port

Shader 1 EMC's

r20 r30 r21 r31 r40 r50 r41 r51 r60 r70 r61 r71

r11 r20 r30 r21 r31 r40 r50 r41 r51 r60 r70 r61

r01 r11 r20 r30 r21 r31 r40 r50 r41 r51 r60 r70

Shader 0 EMC's r01 r01 r20 r20 r21 r21 r40 r40 r41 r41 r60 r60

r10 r10 r11 r11 r30 r30 r31 r31 r50 r50 r51 r51

s0 s2 s3s1 s4

Shader 0 Comm. Port r01 r20 r21 r40 r41 r60s2 s4

Shader 1 Comm. Port r11 r30 r31 r50 r51 r70s1 s3

region 2, sample 0 region 2, sample 1 region 2, shaded

s0

rij represents a region before shading (i = region, j = sample)
sij represents a region after shading

Transfer

* * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r00 r10 r01 r11

r00 r10 r01

r00 r10

r00 r00

r00

r10

Figure 9.4: Rendering recipes for system with 2 shaders and 2-sample-per-pixel
antialiasing.

Figure 9.5 shows rendering recipes for a more complicated system: one with 4 shaders computing 3-
sample-per-pixel antialiasing.

s4

s4

r42

Shader 0 Comm. Port r41 r42s0r40

Shader 1 Comm. Port r50 r51 r52s1

Shader 2 Comm. Port r60 r61 r62s2

Shader 3 Comm. Port r70 r71 r72s3

Graphics Processor

Rasterizer EMC's

Frame Buffer

Rasterizer Comm. Port

Shader 1 EMC's

r40 r50 r70 r61r41 r51 r71 r42 r52 r62 r72 r80

r40 r50 r70 r41 r51 r71 r42 r52 r62 r80

r40 r50 r70

r61

r41 r51 r71 r42 r52 r62

Shader 0 EMC's

r72

r60 r90

r60

r60 r61 r72

Shader 3 EMC's

Shader 2 EMC's

r40 r40 r40 r40 r41 r41 r41 r41

r50 r50 r50 r50 r51 r51 r51 r51

r60 r60 r60 r60 r61 r61 r61 r61

r70 r70 r70 r70 r71 r71 r71 r71

r02 r02 r02 r42 r42 r42

r52 r52

r62

r32 r32 r32 r32r31 r31

r22 r22 r22 r22r21

r12 r12 r12 r12

s3s2s1s0

r32r22

r32

region 4, sample 0 region 4, sample 1 region 4, shadedregion 4, sample 2

r32

r22

r80 r80 r80 r80

r52 r52 r90 r90 r90

r80

r80 r90 rA0 rB0

r90 rA0 rB0

rA0 rB0 r81 r91

r81

r90

r62 r62 r62 rA0 rA0

rA0

r72 r72 r72 r72 rB0

rB0

Figure 9.5: Rendering recipes for system with 4 shaders and 3-sample-per-pixel
antialiasing.

The i860 on each system board is responsible for storing and administering the rendering recipe for the
devices on the board. The recipe can be precomputed and stored as a table of actions, or it can be stored
implicitly as an algorithm that runs on the i860. For the system simulator (described in Section 9.3.1), we
encoded the rendering recipes into finite-state machines and verified their correct operation. Formulas for
the number of region times required to execute the rendering recipes for different system configurations are
given in Section 7.3.2.

9.2 DYNAMIC LOAD BALANCE

As described in Section 5.4, dynamic-load balance is a critical issue for image-composition systems that

108

rasterize and composite in image order. Although a PixelFlow system uses z-buffer renderers, it has load-
balance properties similar to A-buffer systems.

A crucial design decision is the number of regions of buffering between the rasterizer and composition
network. If the amount of buffering is too small, databases with high dynamic-load-balance ratios suffer
severe performance penalties. If it is too large, EMC chip area (an expensive resource) is wasted. It is
important to get this number right.

Dataset Dynamic Regions of buffering

(Phong-shaded) LB. ratio 1 2 4 8 16

 Lobby (4786 ∆'s)
 Scattered
 Clustered

1.67
6.77

220,553
138,725

220,553
159,533

220,553
181,288

220,553
192,209

219,541
192,209

 House (51,922 ∆'s)
 Scattered
 Clustered

1.16
8.09

1,251,133
476,349

1,307,859
499,731

1,388,289
605,858

1,410,924
815,102

1,407,100
1,022,087

 Pipes (137,747 ∆'s)
 Scattered
 Clustered

1.05
13.17

1,866,238
248,901

2,015,023
345,040

2,074,191
473,536

2,076,066
675,131

2,076,066
1,040,071

 Poliovirus (369,819 ∆'s)
 Scattered
 Clustered

1.09
9.01

1,927,848
382,855

2,020,538
552,002

2,063,031
703,372

2,063,031
904,424

2,063,031
1,208,796

Figure 9.6: Simulated performance in visible triangles per second for system with 36
renderers and various amounts of buffering.

T
ria

ng
le

s
pe

r
se

co
nd

Regions of buffering

1 2 4 8 16

2M

1.5M

1M

0.5M

0

Lobby

Pipes

Poliovirus

Dataset

Scattered

Clumped

Distribution

2.5M

House

Figure 9.7: Plot of simulated performance (in visible triangles per second) vs. number of
regions of buffering for a 36-renderer system.

Figure 9.6 gives the simulated rendering performance for four sample databases on a 36-renderer system
with different amounts of buffering in the EMCs. The images, in each case, are Phong-shaded,
unantialiased, and are computed at 1280x1024-pixel resolution. Rendering performance is given in visible

109

triangles per second. Figure 9.6 plots the same information.

We see from the graph that the amount of buffering makes almost no difference for databases with low
dynamic load-balance ratios. It makes a substantial difference, however, for datasets with high dynamic
load-balance ratios. The performance degradation is severe with clumpy datasets, even if a large amount of
buffering is available. Eight regions of buffering appears to be a good choice, but is very expensive in
terms of silicon area in the EMC. Four regions of buffering is the most that can conveniently fit in the new
EMC. This means that system performance will suffer in distributed, immediate-mode applications or
applications that distribute primitives poorly.

9.3 ESTIMATED PERFORMANCE

The performance of a deterministic system can be considered to be a vector function with many inputs and
many outputs. The function's outputs are performance parameters that we care to measure, such as frame
rate, latency, the number of triangles per second, etc. The function's inputs are system configuration and
database parameters, such as the number of renderers, the number of shaders, the amount of buffering
between rasterizers and compositors, the primitive-distribution method, etc.

Unfortunately, the performance function for the PixelFlow prototype design is too complex to analyze
completely. We can estimate the function for particular inputs and outputs, however, using simulation.
Section 9.3.1 describes the simulation method and simulators we used. Section 9.3.2 investigates the
system's scalability as the number of renderers is increased. Section 9.3.3 estimates the system's
performance for a range of datasets and a range of system parameters.

9.3.1 Simulation Approach

Two simulators were used to model the prototype system: a rendering simulator to develop rendering
algorithms and to gather statistics for the sample databases, and a timing simulator, to model data-
dependent system timing.

Rendering simulator. The rendering simulator is a general-purpose renderer that was used to develop and
evaluate rendering algorithms, and to gather statistics for the sample databases. The simulator is, in
essence, a scan-line renderer that can compute visibility and shading using a variety of algorithms. It is
also instrumented to gather a variety of scene and rendering-algorithm statistics.

The simulator is written in C and accepts input files in Pixel-Planes 5 archive format, the scene-description
format used in Pixel-Planes 5 [ELLS90b]. Archive format supports a variety of primitive types and allows
one to specify a variety of rendering methods. This allowed us to setup and preview databases on Pixel-
Planes 5, and to verify the correctness of our rendering algorithms. The simulator was used to render the
sample images in Appendix A.

A scan-line renderer was used because of its flexibility. The heart of the simulator is a set of routines that
read in a scene-description file, transform the primitives into screen coordinates, and build the sorted-
polygon lists required for scan-line rendering. The simulator traverses pixels in order and, for each pixel,
computes a list of primitives that are potentially visible at that pixel. To provide for antialiasing algorithms
with wide filter kernels, this list includes primitives that lie up to two pixel diameters from the pixel center.
The primitives can be sampled anywhere in a 4-pixel x 4-pixel square centered at the pixel center, provid-
ing a simple, efficient interface for a variety of visibility and antialiasing algorithms.

The rendering simulator supports the following rendering options:

• Antialiasing method: supersampling or A-buffer.

• Antialiasing kernel and number of samples per pixel.

• Database distribution method: scattering or clustering.

• Partitions: total number and which one to render.

• Output image dimensions.

• Screen region dimensions (to calculate statistics for the prototype system).

110

It is also profusely instrumented to gather image and rendering statistics, such as the average depth
complexity at each pixel, the number of complex primitives, the bin-replication factor, static and dynamic
load-balance ratios, etc.

The rendering simulator also can calculate and print the distribution of primitives falling into each screen
region. This is used as input to the timing simulator, described next.

Timing simulator. The timing simulator models the time-dependent behavior of the prototype system. It
is written in C++ in an object-oriented fashion. Classes were defined for each significant module in the
system: GPs, IGC FIFOs, rasterizers, and compositors. The input and output parameters for each class
correspond to the module's inputs and outputs. Each class contains a state machine that implements the
rendering recipe for the system module and takes into account the module's time-dependent behavior. The
modules are connected together when the simulator is initialized; the inputs of one module are connected to
the corresponding outputs of other modules. Each module has a routine called tick, which advances time
within the module one 25-nsec clock tick.

For example, the Rasterizer class simulates the rasterizer portion of the renderer board. Elements of class
Rasterizer contain interfaces to two elements of class IGCFifo (one for the RFIFO and one for the TFIFO)
and an element of class Compositor. Internally, Rasterizer elements contain a state machine whose transi-
tions are determined by the inputs from connected modules and a performance model for the rasterizer. It
accepts primitives from the IGC FIFOs at the rate that primitives are rasterized in an actual system. It also
models the synchronization handshaking with the composition network, the TFIFO and RFIFO.

The simulator can be configured to simulate systems with different numbers of renderers and shaders,
different amounts of buffering between components, different region-processing orders, and different trans-
formation, rasterization, and composition speeds. The system accepts primitive-distribution information
calculated in the rendering simulator. It does not compute actual images; it only models the time required
to compute the image. The performance predicted by the timing simulator was cross-checked with perfor-
mance estimates calculated by hand for several simple input configurations. The results agreed to within
reasonable tolerances. The following sections give performance results obtained from the two simulators.

9.3.2 Scalability

To verify that the system's performance indeed scales linearly with the number of renderers over a large
performance range, we ran the simulator on the Lobby, House, Pipes, and Poliovirus datasets with system
configurations of 1, 4, 16, 64, and 256 renderers. Figure 9.8 gives the simulation results in visible triangles
per second for a Gouraud-shaded, 1280x1024 image of each of these datasets. A 256-renderer system
renders over 15 million triangles per second on the Poliovirus database.

Figure 9.9 plots the same information on a log/log scale. The rendering performance on each dataset
initially rises linearly as renderers are added, then reaches a plateau as the image-composition network
saturates. For system performance to continue to increase linearly, the dataset must be large enough that
the rasterization time dominates the composition time—even for very large system configurations.
Poliovirus is one such dataset. The Lobby dataset results in lower performance than the other three because
its polygons are larger, resulting in more bin replication (the bin-replication factor is 2.21 for the Lobby
dataset).

111

Number of Renderers

Dataset 1 4 16 64 256

 Lobby (4,786 ∆'s)
 Gouraud
 Phong

37,744
30,850

141,472
110,864

346,310
198,425

426,180
228,816

448,968
237,678

 House (51,922 ∆'s)
 Gouraud
 Phong

67,249
55,377

267,237
218,300

1,005,967
771,432

2,882,314
1,862,806

4,542,210
2,462,159

 Pipes (137,747 ∆'s)
 Gouraud
 Phong

73,473
60,553

292,711
240,816

1,160,561
948,148

4,464,057
3,533,787

10,158,333
5,819,476

 Poliovirus (369,819 ∆'s)
 Gouraud
 Phong

71,687
59,104

286,129
235,743

1,133,093
931,065

4,388,501
3,547,084

15,623,954
11,166,033

Figure 9.8: Simulation results (in visible triangles per second) for systems of various sizes
rendering Gouraud-shaded, 1280x1024 images.

T
ria

ng
le

s
pe

r
se

co
nd

Number of renderers

1 4 16 64 256

10M

1M

100K

10K

100M

Lobby

Pipes

Poliovirus

Dataset

House

Figure 9.9: Rendering performance (visible triangles per second) vs. number of renderers
(log/log scale).

We can determine how close the system is to being linearly scalable by solving for ß (the scale exponent) in
the following expression:

perf
N renderers

= N
β

⋅ perf
1 renderer

For the Poliovirus dataset, over a range of 1 to 256 renderers, ß = 0.971, which is very near to the ideal
value of 1. These results show that, for sufficiently large datasets, the system's performance scales approx-
imately linearly with the number of renderers up to very high performance values—much higher than can
be achieved on any existing or, to the author's knowledge, proposed system.

9.3.3 Results for Sample Datasets

Simulations were run for all the sample datasets using a variety of system configuration and image-quality
parameters. Figures 9.10 through 9.13 show the results. All of the simulations assume a two card-cage
system with 36 renderers and 4 shaders. Simulations were performed for low-resolution (640x512) and
high-resolution (1280x1024) images and Gouraud- and Phong-shaded primitives.

112

Visible 1 sample 5 samples
Dataset triangles Tris/sec Frame rate Tris/sec Frame rate

 Space station and shuttle
 Scattered
 Clustered

6,566
1,447,212
918,707

220.4
139.9

565,060
255,407

86.1
38.9

 Poliovirus
 Scattered
 Clustered

370,158
2,684,561
1,403,975

7.3
3.8

925,259
338,266

2.5
0.9

 Radiosity lobby
 Scattered
 Clustered

4,786
1,057,212
672,191

220.9
140.4

416,355
215,401

87.0
45.0

 House
 Scattered
 Clustered

51,937
2,389,102
601,218

46.0
25.2

836,445
361,533

16.1
7.0

 Earth
 Scattered
 Clustered

128,880
2,586,394
1,596,630

20.1
12.4

899,498
562,574

7.0
4.4

 Pipes
 Scattered
 Clustered

137,905
2,699,256
1,231,845

19.6
8.9

937,683
313,937

6.8
2.3

Figure 9.10: Simulated rendering performance for 640x512-pixel, Gouraud-shaded images
on a 36-renderer system with 4 shaders.

Visible 1 sample 5 samples
Dataset triangles Tris/sec Frame rate Tris/sec Frame rate

 Space station and shuttle
 Scattered
 Clustered

6,566
847,882
641,838

129.1
97.8

306,693
186,911

46.7
28.5

 Poliovirus
 Scattered
 Clustered

370,158
2,201,343
1,102,606

5.9
3.0

718,534
261,564

1.9
0.7

 Radiosity lobby
 Scattered
 Clustered

4,786
611,919
464,886

127.9
97.1

222,864
156,589

46.6
32.7

 House
 Scattered
 Clustered

51,937
1,885,832
1,014,122

36.3
19.5

640,747
277,551

12.3
5.3

 Earth
 Scattered
 Clustered

128,880
2,097,315
1,268,629

16.3
9.8

696,573
332,911

5.4
2.6

 Pipes
 Scattered
 Clustered

137,905
2,192,448
965,518

15.9
7.0

726,198
241,261

5.3
1.7

Figure 9.11: Simulated rendering performance for 640x512-pixel, Phong-shaded images on
a 36-renderer system with 4 shaders.

113

Visible 1 sample 5 samples
Dataset triangles Tris/sec Frame rate Tris/sec Frame rate

 Space station and shuttle
 Scattered
 Clustered

6,549
590,106
420,293

90.1
64.2

170,545
104,288

26.0
15.9

 Poliovirus
 Scattered
 Clustered

369,819
2,521,608
907,264

6.8
2.5

851,627
189,021

2.3
0.5

 Radiosity lobby
 Scattered
 Clustered

4,786
402,523
284,715

84.1
59.5

112,114
85,580

25.5
17.9

 House
 Scattered
 Clustered

51,922
1,986,486
801,596

38.2
15.4

661,366
188,895

12.7
3.6

 Earth
 Scattered
 Clustered

128,880
2,482,759
970,044

19.3
7.5

813,226
219,894

6.3
1.7

 Pipes
 Scattered
 Clustered

137,747
2,569,427
614,832

18.7
4.5

870,659
124,776

6.3
0.9

Figure 9.12: Simulated rendering performance for 1280x1024-pixel, Gouraud-shaded
images on a 36-renderer system with 4 shaders.

Visible 1 sample 5 samples
Dataset triangles Tris/sec Frame rate Tris/sec Frame rate

 Space station and shuttle
 Scattered
 Clustered

6,549
315,174
278,515

48.1
42.5

87,156
72,921

13.3
11.1

 Poliovirus
 Scattered
 Clustered

369,819
2,063,031
703,372

5.6
1.9

658,310
145,309

1.8
0.4

 Radiosity lobby
 Scattered
 Clustered

4,786
220,180
181,459

46.0
37.0

62,924
54,395

13.1
11.4

 House
 Scattered
 Clustered

51,922
1,387,704
605,949

26.7
11.7

442,399
143,969

8.5
2.8

 Earth
 Scattered
 Clustered

128,880
1,996,592
751,531

15.5
5.8

622.849
168,925

4.8
1.3

 Pipes
 Scattered
 Clustered

137,747
2,074,191
473,536

15.1
3.4

669,780
95,697

4.9
0.7

Figure 9.13: Simulated rendering performance for 1280x1024-pixel, Phong-shaded images
on a 36-renderer system with 4 shaders.

The simulations measured the time to compute a single frame in its entirety. This means that calculations
could not be overlapped from one frame to the next. In an actual system rendering multiple frames, bin-
classification can be partially overlapped with rasterization of the previous frame, increasing the frame rate

114

by 10 to 15%, but not changing the latency. Because of this factor, the frame rates and rendering speeds for
these images are approximately 10–15% pessimistic for 1-sample-per-pixel Gouraud and Phong images and
approximately 3–5% pessimistic for 5-sample-per-pixel images.

CHAPTER 10

CONCLUSION

We have shown that image-composition forms the basis of a rich, new class of high-performance image-
generation architectures. Their simple programming model and property of linear scalability make them a
good choice for extremely high-performance systems. They have the disadvantage of requiring a high-
performance composition network that spans the entire system and places some constraints on the rendering
method. If a fixed-format pixel representation is used, however, this bandwidth is independent of the scene
complexity.

In Part II, we described a prototype system design, PixelFlow, that demonstrates that these properties can
be achieved in a realizable system. The PixelFlow design uses technology available in 1991. Simulation
results indicate that a two-card–cage PixelFlow system can render up to 2.5 million triangles per second
and 870,000 antialiased triangles per second, and that a large-configuration PixelFlow system can render up
to 15 million triangles per second.

Perhaps the most important result for graphics-system architects is that image-composition provides a clean
way to decompose the image-generation problem into an arbitrary number of pieces. This provides a way
to build systems of higher performance when existing approaches reach their maximum levels of
usefulness.

10.1 FUTURE RESEARCH

There are many difficult and interesting issues related to image-composition architectures that remain to be
solved.

First, the field of distributed graphics architectures and algorithms is still new. Work is needed to develop
algorithms to partition datasets over parallel processors so that graphics applications have a clean and
efficient data-manipulation model. This is needed for any distributed-graphics architecture—not just
image-composition architectures.

Second, the relationship between distributed graphics architectures and distributed general-purpose proces-
sors needs to be investigated. A distributed, retained-mode display structure is sufficient for viewing static
scenes, but image-composition systems could be used as immediate-mode graphics servers for general-
purpose multicomputers. The image-composition network provides a way to tie renderers embedded in
different parts of the system together. No sorting is needed to route primitives to the correct renderer. As
application processors compute data to be visualized, they can send it the nearest renderer.

Third, there is the question of how best to support realistic rendering methods, such as texturing,
transparency, and shadows. Texturing is probably best implemented as a deferred-shading process.
Transparency is difficult because it requires sorting, rather than selection, in the image-composition
network. The A-buffer approach seems a natural way to implement transparency, but it requires high-speed
A-buffer renderers and a more complicated image-composition network. Shadows require global
information and appear more problematic.

10.2 TOWARD IMPLEMENTATION

We undertook this research with two aims: first, to demonstrate that the potential advantages of image-
composition architectures can be realized in an actual system, and second, if the results looked promising
enough, to actually build the system. The constraints for a proof-of-concept design and an actual system
design are slightly different. We had to restrict ourselves to proven technology and components in the
prototype-system design to demonstrate that the design is feasible; in an actual-system design, we can use
unproven techniques as long as we can make them work—if the system works, the design is feasible.

116

This section lists the enhancements we intend to incorporate into the system we plan to build. Although
some are risky, they greatly increase the power and usefulness of the system.

• 1024 bits per pixel. Don Speck at Caltech recently demonstrated that one-transistor dynamic-
memory cells can be implemented on standard CMOS processes at very high densities [SPEC91].
A 1-T DRAM cell allows us to place 1024 or more bits per pixel on the new EMC. This will
provide 8 regions of buffering on rasterizers, improving rendering efficiency for datasets with high
dynamic-load-balance ratios, and will provide the extra pixel memory required for complex
lighting, shading, and texturing in the shaders.

• Faster EMCs with 4-bit ALUs and linear-expression tree. Using a newer CMOS process we
can increase the system clock rate from 40 MHz to 50 MHz. The higher density allows more
complex ALUs. We intend to replace the 1-bit ALUs and linear-expression tree of our previous
EMC designs with 4-bit ALUs and a 4-bit linear-expression tree. The linear-expression tree
generalizes to multiple bits in a straightforward way. A 4-bit ALU increases EMC performance by
nearly a factor of 4.

• Compositor within EMC. To reduce board area and power consumption, we plan to incorporate
the compositor function into the EMC itself. This requires a relatively small amount of logic, but
requires extremely high-speed I/O pads. Tom Knight developed an impedance-matched I/O pad
design that operates at extremely high speeds using reduced using signal levels [KNIG88]. Using
this approach, the EMCs should be able to transmit pixel data between boards at 100 MHz. 1-volt
switching levels and series termination reduce power dissipation and power and ground noise.

• Faster, wider image-composition network. Incorporating the compositor into the EMC allows
us to double the number of composition network I/O wires for each EMC. We will reduce the
number of EMCs per renderer/shader board from 80 to 64, but will double the number of
composition network connections 2 in/out to 4 in/out for each EMC. This increases the
composition network bandwidth to 3.2 Gbyte/second, allowing real-time frame rates for
antialiased, high-resolution, Phong-shaded images.

• Twin i860XP graphics processor. To keep up with the higher-performance rasterizer, the
graphics processor will be enhanced to a two-processor design using Intel's follow-on to the i860,
the i860XP [INTE91]. This 64-bit microprocessor has a similar architecture to the i860, but has
double-sized caches, a double-speed data bus, and a higher (50 MHz) clock speed. One of the
i860XPs will be used to run the application program (in immediate mode) or will maintain the
display structure (in retained-mode). The other will perform geometry calculations and feed
primitives to the rasterizer.

• Coefficient adjuster at IGC input. Since the new EMC will be substantially faster than the
EMCs in previous designs, and general-purpose floating-point processors are not keeping pace, we
face a performance imbalance between the geometry-processing and rasterization portions of the
renderer. We can take advantage of the extra rasterizer power by computing additional samples
per pixel. A coefficient adjuster will be incorporated into the IGC to adjust C coefficients for x
and y screen-space offsets required for supersampling. The i860s will only have to calculate the
IGC instructions for a single sample point (at the center of the pixel). The IGC input structure will
read the data multiple times, adjusting C coefficients as needed for additional samples.

• Support for image-based textures. An additional texture-board design will allow MIP-map
textures to be computed at the full image-composition network bandwidth. The texture board
should also be able to perform shading calculations, so the texture board can replace the shader in
the prototype system.

These enhancements will multiply the performance of the renderer/shader board by approximately a factor
of 5. If all goes well, we estimate that a two-card–cage, enhanced PixelFlow system will render 2 million
5-sample-per-pixel antialiased, Phong-shaded, MIP-map textured, 100-pixel triangles per second at 30 Hz
frame rates at 1280x1024 screen resolution.

