
APPENDIX A

STATISTICS FOR SAMPLE DATASETS

This appendix describes and gives statistics for several test databases that are used throughout the disserta-
tion.  Each of these database is composed of polygons (though in one case, the polygons are generated by
tiling spheres).  Various lighting and shading models are used.

These datasets were intended to be representative of datasets that might be displayed on a high-performance
image-composition system.  An effort was made to choose datasets that have varying characteristics, such
as numbers, shapes, sizes, and distributions of primitives.  The datasets were chosen to fulfill four require-
ments:  1) cover a wide spectrum of applications, including types and distributions of primitives,  2) contain
large numbers of primitives—approximately the size of databases that would be real-time or interactive in
the prototype system, 3)  used in real applications,  and 4)  readily available to the author.

We wanted to include datasets representing the range of applications we could imagine for the architecture,
including:

• Architectural walkthrough with radiosity.

• Flight simulation.

• Medical imaging.

• Molecular graphics.

• Computer-aided design.

Each sample database has its own section (Sections A.1 through A.6).  A photograph of the dataset is
presented, followed by a description, credit information, and a variety of primitive and rendering statistics.
The statistics include the following information:

• Visible triangles.  The number of triangles that could not be trivially rejected during clipping and
were passed to the rasterization phase of the renderer.  Note that these can be slightly different for
high- and low-resolution images because the antialiasing kernel extends the screen boundaries
slightly.  The effect is more pronounced for low-resolution images.

• Active pixels.  The percentage of non-background pixels.

• Complex pixels.  The percentage of pixels where two or more surfaces (including background)
were visible.

• Triangle area.  The number of screen pixels covered by a visible triangle (after clipping to screen
boundaries).  The mean, standard deviation, and maximum values over all visible triangles are
given.

• Depth complexity.  The total number of triangles that completely or partially cover a pixel
(whether they are visible or not).  The mean, standard deviation, and maximum values over all
pixels are given.

The following two statistics are mainly relevant for A-buffer rendering:

• Visible triangles per pixel (maximum).  The total number of triangles that are visible at a pixel at
any time during rasterization.  The number of partially-visible triangles at a pixel can increase or
decrease as partially covering or completely covering fragments are added.  This statistic gives an
indication of the maximum bandwidth that must be supported anywhere in the image-composition
network in an A-buffer system.  Again, mean, standard deviation, and maximum values over all
pixels are given.
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• Visible triangles per pixel (final).  The total number of triangles that are visible at a pixel after all
triangles have been rendered.  This gives an indication of the bandwidth required at the root of the
image-composition network in an A-buffer system.  Again, mean, standard deviation, and
maximum values over all pixels are given.

Each of these statistics is calculated under four conditions:  for the full dataset rendered at low-resolution
(640x512 pixels) and high-resolution (1280x1024 pixels) and for one partition of the dataset (we assume
there are 36 renderers so one partition contains 1/36 of the primitives) at the same two screen resolutions.
The statistics for a single partition give an idea of the rendering performance and bandwidth required at
each renderer and at the renderer input of each compositor.

The last set of statistics applies to systems such as PixelFlow, which subdivide the screen into regions.  The
static load-balance ratio is a measure of the effectiveness of the database distribution method.  It is the ratio
of the number of on-screen primitives on the busiest renderer to the average number of on-screen primitives
on any renderer.  The dynamic load-balance ratio is a measure of the unevenness of the screen distribution
of primitives on different renderers and is described in Section 5.4.3.

• Static load-balance ratio (scattered).  The static load-balance ratio resulting from a scattered
distribution of primitives over the 36 renderers.

• Static load-balance ratio (clustered).  The static load-balance ratio resulting from a clustered
distribution of primitives over the 36 renderers.

• Dynamic load-balance ratio (scattered).  The dynamic load-balance ratio resulting from a
scattered distribution of primitives over the 36 renderers.

• Dynamic load-balance ratio (clustered).  The dynamic load-balance ratio resulting from a
clustered distribution of primitives over the 36 renderers.

• Bin replication factor.  The average number of times each triangle needs to be processed (caused
by falling into more than one screen region).  Small primitives generally fall into a single region.
Large primitives or primitives that cross region boundaries fall into several regions and must be
processed several times.
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A.1 SPACE STATION AND SHUTTLE

Figure A.1:  Image of Space Station and Shuttle database (1280x1024 resolution).

Description:  Space shuttle docking with proposed NASA space station.  Database contains 3,784 phong-
shaded polygons (quadrilaterals and triangles).

Credits:  Dataset courtesy of Don E. Eyles of the Charles Stark Draper Laboratories, Cambridge, MA.
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Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 6,566 6,549 187 187
Active pixels (percent) 46.1 44.7 3.2 2.8
Complex pixels (percent) 14.8 9.3 1.8 1.1
Triangle area (in pixels)
    mean
    standard deviation
    max

80.01
355.27
12,392

264.08
1,369.33
48,790

66.33
196.79
1,739

214.11
734.12
6,607

Depth complexity
    mean
    standard deviation
    max

2.60
2.45
27

2.32
1.97
23

1.04
0.22

5

1.03
0.19

5
Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

1.34
0.85
18

1.18
0.55
14

1.02
0.17

5

1.01
0.12

5
Visible triangles per pixel (final)
    mean
    standard deviation
    max

1.26
0.76
18

1.13
0.48
14

1.02
0.17

5

1.01
0.12

5
Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.09
1.56
1.32
8.24
1.24

1.10
1.81
1.78
13.07
1.53

–
–
–
–

1.28

–
–
–
–

1.51
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A.2 POLIOVIRUS

Figure A.2:  Image of Poliovirus database (1280x1024 resolution).

Description:  3D space-filling model of the poliovirus molecule.  Database contains 46,200 Phong-shaded
spheres, rendered as 16-(triangular)-sided polyhedra.

Credits:  Dataset courtesy of James Hogle, Marie Chow, and David Filman, Research Institute of Scripps
Clinic.



6

Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 370,158 369,819 10,288 10,281
Active pixels (percent) 76.6 76.2 22.0 18.9
Complex pixels (percent) 64.6 44.6 19.6 12.3
Triangle area (in pixels)
    mean
    standard deviation
    max

15.38
7.88
57

42.07
25.25
184

15.35
7.89
53

41.99
25.13
173

Depth complexity
    mean
    standard deviation
    max

18.38
14.25

85

12.86
9.93
66

1.48
1.08
14

1.33
0.79
12

Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

3.41
1.94
14

2.35
1.31
12

1.34
0.79
10

1.17
0.50

8
Visible triangles per pixel (final)
    mean
    standard deviation
    max

2.37
1.48
14

1.67
0.94
10

1.33
0.78
10

1.16
0.49

8
Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.01
1.24
1.07
9.76
1.11

1.02
1.20
1.19
13.61
1.17

–
–
–
–

1.12

–
–
–
–

1.17



7

A.3 RADIOSITY LOBBY

Figure A.3:  Image of Radiosity Lobby database (1280x1024 resolution).

Description:  Radiosity-shaded model of Sitterson Hall lobby, home of the UNC Computer Science
Department.  The lobby database contains 3,954 color-interpolated polygons (mostly quadrilaterals).

Credits:  Dataset courtesy of the UNC Building Walkthrough project, F. P. Brooks, Principal Investigator.
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Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 4,786 4,786 146 146
Active pixels (percent) 96.7 96.5 6.4 5.6
Complex pixels (percent) 19.8 11.7 3.5 2.0
Triangle area (in pixels)
    mean
    standard deviation
    max

313.67
1,491.23
52,247

1,117.23
5,892.04
208,381

181.63
298.13
1,804

591.60
1,090.32

6,690
Depth complexity
    mean
    standard deviation
    max

5.58
4.09
39

5.08
3.38
32

1.08
0.33

6

1.07
0.29

6
Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

1.43
0.85
14

1.23
0.57
13

1.04
0.25

5

1.02
0.17

5
Visible triangles per pixel (final)
    mean
    standard deviation
    max

1.30
0.72
10

1.15
0.47

9

1.04
0.25

5

1.02
0.17

5
Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.26
1.73
1.50
8.19
1.51

1.47
2.80
2.12
11.22
2.21

–
–
–
–

1.51

–
–
–
–

2.18
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A.4 HOUSE INTERIOR

Figure A.4:  Image of House Interior database (1280x1024 resolution).

Description:  Radiosity-shaded model of Professor F. P. Brooks' home.  The house model contains 64,796
color-interpolated polygons, many of which were textured in the original model.

Credits:  Dataset courtesy of the UNC Building Walkthrough project, F. P. Brooks, Principal Investigator.
Special thanks to Amitabh Varshney for converting the model into PPHIGS archive format.
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Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 51,937 51,922 1,443 1,442
Active pixels (percent) 100 100 16.4 14.4
Complex pixels (percent) 21.8 12.5 8.4 4.8
Triangle area (in pixels)
    mean
    standard deviation
    max

44.03
166.57
10,274

146.26
636.24
40,472

45.40
153.87
2,739

151.23
581.92
10,578

Depth complexity
    mean
    standard deviation
    max

7.98
9.04
122

2.11
4.61
93

1.20
0.50

8

1.17
0.44

7
Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

1.54
1.00
15

1.29
0.66
15

1.10
0.35

6

1.05
0.24

6
Visible triangles per pixel (final)
    mean
    standard deviation
    max

1.30
0.70
12

1.15
0.45
15

1.10
0.34

6

1.05
0.24

6
Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.01
1.56
1.08
4.95
1.19

1.02
1.48
1.16
8.09
1.25

–
–
–
–

1.18

–
–
–
–

1.25
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A.5 EARTH

Figure A.5:  Image of Earth database (1280x1024 resolution).

Description:  Topographic database of the Earth sampled at 1-degree resolution and broken into vertex-
colored triangles.  Vertex colors correspond to elevation.  The model consists of 4,654 triangle strips,
containing 133,534 triangles.

Credits:  Dataset courtesy of Jonathan Leech, University of North Carolina at Chapel Hill.
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Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 128,880 128,880 3,640 3,640
Active pixels (percent) 49.4 49.2 4.4 3.6
Complex pixels (percent) 33.7 20.6 3.9 2.6
Triangle area (in pixels)
    mean
    standard deviation
    max

8.92
8.29
107

22.94
26.10
351

8.83
8.06
73

22.69
25.32
234

Depth complexity
    mean
    standard deviation
    max

4.51
4.32
74

3.26
2.80
67

1.10
0.55
20

1.06
0.38
18

Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

1.85
1.50
19

1.44
0.94
22

1.08
0.47
17

1.04
0.28
16

Visible triangles per pixel (final)
    mean
    standard deviation
    max

1.54
1.02
14

1.27
0.64
12

1.08
0.46
17

1.04
0.28
16

Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.03
1.48
1.15
4.50
1.11

1.04
1.22
1.33
7.18
1.14

–
–
–
–

1.12

–
–
–
–

1.13
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A.6 PIPES

Figure A.6:  Image of Pipes database (1280x1024 resolution).

Description:  Procedurally generated database containing numerous pipes and fittings.  Model consists of
139,032 discrete, Phong-shaded triangles.

Credits:  Database courtesy of Lee Westover, Sun Microsystems Inc.
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Rendering statistics:

Entire scene 1 partition (out of 36)
Parameter 640x512 1280x1024 640x512 1280x1024

Visible triangles 137,905 137,747 3,832 3,827
Active pixels (percent) 52.7 51.4 12.6 8.4
Complex pixels (percent) 51.5 39.9 12.6 7.8
Triangle area (in pixels)
    mean
    standard deviation
    max

13.48
21.48
292

34.28
57.15
766

13.04
20.26
251

32.68
52.70
704

Depth complexity
    mean
    standard deviation
    max

6.66
7.54
78

4.59
4.83
52

1.15
0.44

6

1.10
0.33

7
Visible triangles per pixel (maximum)
    mean
    standard deviation
    max

2.88
2.23
20

2.06
1.44
20

1.15
0.42

6

1.09
0.31

6
Visible triangles per pixel (final)
    mean
    standard deviation
    max

2.35
1.71
19

1.68
1.06
20

1.15
0.42

6

1.09
0.31

6
Region statistics (160x128 regions)
    Static load-balance ratio (scattered)
    Static load-balance ratio (clustered)
    Dynamic load-balance ratio (scattered)
    Dynamic load-balance ratio (clustered)
    Bin replication factor

1.01
1.14
1.06
11.80
1.09

1.01
1.14
1.12
22.32
1.15

–
–
–
–

1.09

–
–
–
–

1.15



APPENDIX B

COST ESTIMATES FOR THE PROTOTYPE SYSTEM

The following sections contain cost estimates for the various components of the prototype system.  Most
prices are based on actual costs for similar items used in Pixel-Planes 5 (prices paid in 1990–1991).  Except
where noted, assembly, integration, and testing costs are omitted in these cost estimates.   If the machine
were produced in production quantities, component costs would decrease by perhaps a factor of two, due to
higher volume and cost-driven design changes.  A rule of thumb described by [BISH91] is that a niche
computer product's selling price is approximately 3–5 times its component cost.  This means that the
approximate retail cost for a commercial prototype system might range from $435,000 to $730,000 for a
one card-cage system and $822,000 to $1,370,000 for a two card-cage system.

B.1 CARD-CAGE COMPONENTS

Part type Quantity     Unit Cost     Cost

1500W switching Power Supplies 2 $3,500.00 $7,000.00
19" Relay rack 1 $3,000.00 $3,000.00
19" Custom Card Cage 1 $3,500.00 $3,500.00
AC power controller/distr 1 $1,000.00 $1,000.00
Cabling, connectors, etc 1 $500.00 $500.00

Total: $15,000.00
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B.2 RENDERER/SHADER COMPONENTS

Part type Quantity     Unit Cost     Cost

9u 10-layer PC Board 1 $1,500.00 $1,500.00
PC Board assembly 1 $500.00 $500.00
Custom 4-rank connector 1 $100.00 $100.00
Bypass cap's 300 $0.16 $48.00
Terminators 100 $0.40 $40.00
Misc conn's, sockets, etc. 1 $100.00 $100.00
i860XR 40 MHz 1 $600.00 $600.00
1Mb VRAM 64 $20.00 $1,280.00
22V10-7 PLD (ring network) 8 $25.00 $200.00
72225 Fifo 2 $110.00 $220.00
Misc PAL's 30 $10.00 $300.00
Misc SSI/TTL 40 $5.00 $200.00
Clock Gen components 1 $100.00 $100.00
EMC1 80 $50.00 $4,000.00

IGC2 1 $1,600.00 $1,600.00
22VP10-7 PLD (compositor) 80 $25.00 $2,000.00

Total: $12,788.00

B.3 HOST INTERFACE COMPONENTS

Part type Quantity     Unit Cost     Cost

9u 10-layer PC Board 1 $1,500.00 $1,500.00
PC Board assembly 1 $500.00 $500.00
Custom 4-rank connector 1 $100.00 $100.00
Bypass cap's 150 $0.16 $24.00
Terminators 50 $0.40 $20.00
Misc conn's, sockets, etc. 1 $100.00 $100.00
1Mb VRAM 80 $20.00 $1,600.00
22V10-7 PLD (ring network) 8 $25.00 $200.00
72225 Fifo 2 $110.00 $220.00
Misc PAL's 10 $10.00 $100.00
Misc SSI/TTL 30 $5.00 $150.00
Clock Gen components 1 $100.00 $100.00
Corner-Turner PGAs 10 $300.00 $3,000.00
22V10-7 PLD (compositor) 54 $25.00 $1,350.00

Total: $8,964.00

_____________
1Price quotation from Hewlett-Packard based on 2000 working PixelFlow EMCs, packaged in 100-pin quad flat-pack,
0.5M transistors, CMOS 34 process (includes mask charges).  Unit price is $41.60 for 3000 working parts.

2Estimate based on cost of Pixel-Planes 5 IGC reimplemented in HP CMOS 34 technology.
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B.4 FRAME BUFFER COMPONENTS

Part type Quantity     Unit Cost     Cost

9u 10-layer PC Board 1 $1,500.00 $1,500.00
PC Board assembly 1 $500.00 $500.00
Custom 4-rank connector 1 $100.00 $100.00
Bypass cap's 150 $0.16 $24.00
Terminators 50 $0.40 $20.00
Misc conn's, sockets, etc. 1 $100.00 $100.00
i860XR 1 $600.00 $600.00
1Mb DRAM 64 $6.00 $384.00
1Mb 3-port DRAM's 80 $45.00 $3,600.00
22V10-7 PLD (ring network) 8 $25.00 $200.00
72225 Fifo 2 $110.00 $220.00
Misc PAL's 30 $10.00 $300.00
Misc SSI/TTL 50 $5.00 $250.00
Clock Gen components 1 $100.00 $100.00
Corner-Turner PGAs 10 $300.00 $3,000.00
22VP10-7 PLD (compositor) 54 $25.00 $1,350.00
200MHz RAMDAC's 3 $205.00 $615.00

Total: $12,863.00

B.5 TOTAL SYSTEM COST

B.5.1 One Card-Cage Configuration1

Component Quantity     Unit Cost     Cost

Renderers 18 $12,788.00 $230,184.00
Shaders 2 $12,788.00 $25,576.00
Host Interface 1 $8,964.00 $8,964.00
Frame Buffers 1 $12,863.00 $12,863.00
Card cage, etc 1 $15,000.00 $15,000.00

Total: $292,587.00

B.5.2 Two Card-Cage Configuration2

Component Quantity     Unit Cost     Cost

Renderers 36 $12,788.00 $460,368.00
Shaders 4 $12,788.00 $51,152.00
Host Interface 1 $8,964.00 $8,964.00
Frame Buffers 1 $12,863.00 $12,863.00
Card cage, etc 1 $15,000.00 $15,000.00

Total: $548,347.00

_____________
1Sufficient for Gouraud shading only.  Impacts composition network performance because of burp transfers.

2Sufficient for Gouraud or Phong shading.
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